Sample records for aquatic animal models

  1. Pharmacokinetic modeling in aquatic animals. 1. Models and concepts

    USGS Publications Warehouse

    Barron, M.G.; Stehly, Guy R.; Hayton, W.L.

    1990-01-01

    While clinical and toxicological applications of pharmacokinetics have continued to evolve both conceptually and experimentally, pharmacokinetics modeling in aquatic animals has not progressed accordingly. In this paper we present methods and concepts of pharmacokinetic modeling in aquatic animals using multicompartmental, clearance-based, non-compartmental and physiologically-based pharmacokinetic models. These models should be considered as alternatives to traditional approaches, which assume that the animal acts as a single homogeneous compartment based on apparent monoexponential elimination.

  2. Aquatic Animal Models – Not Just for Ecotox Anymore

    EPA Science Inventory

    A wide range of internationally harmonized toxicity test guidelines employing aquatic animal models have been established for regulatory use. For fish alone, there are over a dozen internationally harmonized toxicity test guidelines that have been, or are being, validated. To dat...

  3. Tool use by aquatic animals

    PubMed Central

    Mann, Janet; Patterson, Eric M.

    2013-01-01

    Tool-use research has focused primarily on land-based animals, with less consideration given to aquatic animals and the environmental challenges and conditions they face. Here, we review aquatic tool use and examine the contributing ecological, physiological, cognitive and social factors. Tool use among aquatic animals is rare but taxonomically diverse, occurring in fish, cephalopods, mammals, crabs, urchins and possibly gastropods. While additional research is required, the scarcity of tool use can likely be attributable to the characteristics of aquatic habitats, which are generally not conducive to tool use. Nonetheless, studying tool use by aquatic animals provides insights into the conditions that promote and inhibit tool-use behaviour across biomes. Like land-based tool users, aquatic animals tend to find tools on the substrate and use tools during foraging. However, unlike on land, tool users in water often use other animals (and their products) and water itself as a tool. Among sea otters and dolphins, the two aquatic tool users studied in greatest detail, some individuals specialize in tool use, which is vertically socially transmitted possibly because of their long dependency periods. In all, the contrasts between aquatic- and land-based tool users enlighten our understanding of the adaptive value of tool-use behaviour. PMID:24101631

  4. Tool use by aquatic animals.

    PubMed

    Mann, Janet; Patterson, Eric M

    2013-11-19

    Tool-use research has focused primarily on land-based animals, with less consideration given to aquatic animals and the environmental challenges and conditions they face. Here, we review aquatic tool use and examine the contributing ecological, physiological, cognitive and social factors. Tool use among aquatic animals is rare but taxonomically diverse, occurring in fish, cephalopods, mammals, crabs, urchins and possibly gastropods. While additional research is required, the scarcity of tool use can likely be attributable to the characteristics of aquatic habitats, which are generally not conducive to tool use. Nonetheless, studying tool use by aquatic animals provides insights into the conditions that promote and inhibit tool-use behaviour across biomes. Like land-based tool users, aquatic animals tend to find tools on the substrate and use tools during foraging. However, unlike on land, tool users in water often use other animals (and their products) and water itself as a tool. Among sea otters and dolphins, the two aquatic tool users studied in greatest detail, some individuals specialize in tool use, which is vertically socially transmitted possibly because of their long dependency periods. In all, the contrasts between aquatic- and land-based tool users enlighten our understanding of the adaptive value of tool-use behaviour.

  5. Environmental enrichment for aquatic animals.

    PubMed

    Corcoran, Mike

    2015-05-01

    Aquatic animals are the most popular pets in the United States based on the number of owned pets. They are popular display animals and are increasingly used in research settings. Enrichment of captive animals is an important element of zoo and laboratory medicine. The importance of enrichment for aquatic animals has been slower in implementation. For a long time, there was debate over whether or not fish were able to experience pain or form long-term memories. As that debate has reduced and the consciousness of more aquatic animals is accepted, the need to discuss enrichment for these animals has increased. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Assessment of the safety of aquatic animal commodities for international trade: the OIE Aquatic Animal Health code.

    PubMed

    Oidtmann, B; Johnston, C; Klotins, K; Mylrea, G; Van, P T; Cabot, S; Martin, P Rosado; Ababouch, L; Berthe, F

    2013-02-01

    Trading of aquatic animals and aquatic animal products has become increasingly globalized during the last couple of decades. This commodity trade has increased the risk for the spread of aquatic animal pathogens. The World Organisation for Animal Health (OIE) is recognized as the international standard-setting organization for measures relating to international trade in animals and animal products. In this role, OIE has developed the Aquatic Animal Health Code, which provides health measures to be used by competent authorities of importing and exporting countries to avoid the transfer of agents pathogenic for animals or humans, whilst avoiding unjustified sanitary barriers. An OIE ad hoc group developed criteria for assessing the safety of aquatic animals or aquatic animal products for any purpose from a country, zone or compartment not declared free from a given disease 'X'. The criteria were based on the absence of the pathogenic agent in the traded commodity or inactivation of the pathogenic agent by the commercial processing used to produce the commodity. The group also developed criteria to assess the safety of aquatic animals or aquatic animal products for retail trade for human consumption from potentially infected areas. Such commodities were assessed considering the form and presentation of the product, the expected volume of waste tissues generated by the consumer and the likely presence of viable pathogenic agent in the waste. The ad hoc group applied the criteria to commodities listed in the individual disease chapters of the Aquatic Animal Health Code (2008 edition). Revised lists of commodities for which no additional measures should be required by the importing countries regardless of the status for disease X of the exporting country were developed and adopted by the OIE World Assembly of Delegates in May 2011. The rationale of the criteria and their application will be explained and demonstrated using examples. © 2012 Crown Copyright. Reproduced

  7. The aquatic animals' transcriptome resource for comparative functional analysis.

    PubMed

    Chou, Chih-Hung; Huang, Hsi-Yuan; Huang, Wei-Chih; Hsu, Sheng-Da; Hsiao, Chung-Der; Liu, Chia-Yu; Chen, Yu-Hung; Liu, Yu-Chen; Huang, Wei-Yun; Lee, Meng-Lin; Chen, Yi-Chang; Huang, Hsien-Da

    2018-05-09

    Aquatic animals have great economic and ecological importance. Among them, non-model organisms have been studied regarding eco-toxicity, stress biology, and environmental adaptation. Due to recent advances in next-generation sequencing techniques, large amounts of RNA-seq data for aquatic animals are publicly available. However, currently there is no comprehensive resource exist for the analysis, unification, and integration of these datasets. This study utilizes computational approaches to build a new resource of transcriptomic maps for aquatic animals. This aquatic animal transcriptome map database dbATM provides de novo assembly of transcriptome, gene annotation and comparative analysis of more than twenty aquatic organisms without draft genome. To improve the assembly quality, three computational tools (Trinity, Oases and SOAPdenovo-Trans) were employed to enhance individual transcriptome assembly, and CAP3 and CD-HIT-EST software were then used to merge these three assembled transcriptomes. In addition, functional annotation analysis provides valuable clues to gene characteristics, including full-length transcript coding regions, conserved domains, gene ontology and KEGG pathways. Furthermore, all aquatic animal genes are essential for comparative genomics tasks such as constructing homologous gene groups and blast databases and phylogenetic analysis. In conclusion, we establish a resource for non model organism aquatic animals, which is great economic and ecological importance and provide transcriptomic information including functional annotation and comparative transcriptome analysis. The database is now publically accessible through the URL http://dbATM.mbc.nctu.edu.tw/ .

  8. The application of epidemiology in aquatic animal health -opportunities and challenges.

    PubMed

    Peeler, Edmund J; Taylor, Nicholas G H

    2011-08-11

    Over recent years the growth in aquaculture, accompanied by the emergence of new and transboundary diseases, has stimulated epidemiological studies of aquatic animal diseases. Great potential exists for both observational and theoretical approaches to investigate the processes driving emergence but, to date, compared to terrestrial systems, relatively few studies exist in aquatic animals. Research using risk methods has assessed routes of introduction of aquatic animal pathogens to facilitate safe trade (e.g. import risk analyses) and support biosecurity. Epidemiological studies of risk factors for disease in aquaculture (most notably Atlantic salmon farming) have effectively supported control measures. Methods developed for terrestrial livestock diseases (e.g. risk-based surveillance) could improve the capacity of aquatic animal surveillance systems to detect disease incursions and emergence. The study of disease in wild populations presents many challenges and the judicious use of theoretical models offers some solutions. Models, parameterised from observational studies of host pathogen interactions, have been used to extrapolate estimates of impacts on the individual to the population level. These have proved effective in estimating the likely impact of parasite infections on wild salmonid populations in Switzerland and Canada (where the importance of farmed salmon as a reservoir of infection was investigated). A lack of data is often the key constraint in the application of new approaches to surveillance and modelling. The need for epidemiological approaches to protect aquatic animal health will inevitably increase in the face of the combined challenges of climate change, increasing anthropogenic pressures, limited water sources and the growth in aquaculture.

  9. Using the Neptune project to benefit Australian aquatic animal health research.

    PubMed

    McNamara, M; Ernst, I; Adlard, R D

    2015-06-29

    Diseases of aquatic animals have had, and continue to have, a significant impact on aquatic animal health. In Australia, where fisheries and aquaculture are important industries, aquatic species have been subject to serious disease outbreaks, including pilchard herpesvirus, the cause of one of the largest wild fish kills ever recorded. At the same time, there is a consensus that Australia's parasite fauna are largely unknown, and that aquatic animal health information is difficult to access. Managing aquatic animal diseases is challenging because they may be entirely new, their hosts may be new to aquaculture, and specialist expertise and basic diagnostic tools may be lacking or absent. The Neptune project was created in response to these challenges, and it aims to increase awareness of aquatic animal diseases, improve disease management, and promote communication between aquatic animal health professionals in Australia. The project consists of an online database, a digital microscopy platform containing a whole-slide image library, a community space, and online communications technology. The database contains aquatic animal health information from published papers, government reports, and other sources, while the library contains slides of key diseases both endemic and exotic to Australia. These assets make Neptune a powerful resource for researchers, students, and biosecurity officials.

  10. The challenges of good governance in the aquatic animal health sector.

    PubMed

    Kahn, S; Mylrea, G; Yaacov, K Bar

    2012-08-01

    Animal health is fundamental to efficient animal production and, therefore, to food security and human health. This holds true for both terrestrial and aquatic animals. Although partnership between producers and governmental services is vital for effective animal health programmes, many key activities are directly carried out by governmental services. Noting the need to improve the governance of such services in many developing countries, the World Organisation for Animal Health (OIE), using the OIE Tool for the Evaluation of Performance of Veterinary Services, conducts assessments of Veterinary Services and Aquatic Animal Health Services (AAHS) to help strengthen governance and support more effective delivery of animal health programmes. While good governance and the tools to improve governance in the aquatic animal sector are largely based on the same principles as those that apply in the terrestrial animal sector, there are some specific challenges in the aquatic sector that have a bearing on the governance of services in this area. For example, the aquaculture industry has experienced rapid growth and the use of novel species is increasing; there are important gaps in scientific knowledge on diseases of aquatic animals; there is a need for more information on sustainable production; the level of participation of the veterinary profession in aquatic animal health is low; and there is a lack of standardisation in the training of aquatic animal health professionals. Aquaculture development can be a means of alleviating poverty and hunger in developing countries. However, animal diseases, adverse environmental impacts and food safety risks threaten to limit this development. Strengthening AAHS governance and, in consequence, aquatic animal health programmes, is the best way to ensure a dynamic and sustainable aquaculture sector in future. This paper discusses the specific challenges to AAHS governance and some OIE initiatives to help Member Countries to address

  11. Science to support aquatic animal health

    USGS Publications Warehouse

    Purcell, Maureen K.; Harris, M. Camille

    2016-10-18

    Healthy aquatic ecosystems are home to a diversity of plants, invertebrates, fish and wildlife. Aquatic animal populations face unprecedented threats to their health and survival from climate change, water shortages, habitat alteration, invasive species and environmental contaminants. These environmental stressors can directly impact the prevalence and severity of disease in aquatic populations. For example, periodic fish kills in the upper Chesapeake Bay Watershed are associated with many different opportunistic pathogens that proliferate in stressed fish populations. An estimated 80 percent of endangered juvenile Puget Sound steelhead trout die within two weeks of entering the marine environment, and a role for disease in these losses is being investigated. The introduction of viral hemorrhagic septicemia virus (VHSV) into the Great Lakes—a fishery worth an estimated 7 billion dollars annually—resulted in widespread fish die-offs and virus detections in 28 different fish species. Millions of dying sea stars along the west coast of North America have led to investigations into sea star wasting disease. U.S. Geological Survey (USGS) scientists are assisting managers with these issues through ecological investigations of aquatic animal diseases, field surveillance, and research to promote the development of mitigation strategies.

  12. Envisioning the Future of Aquatic Animal Tracking: Technology, Science, and Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lennox, Robert J.; Aarestrup, Kim; Cooke, Steven J.

    Electronic tags have proven to be extremely useful for broadening our understanding of aquatic animals by answering diverse questions about their behaviours, physiologies, and life histories fundamental to ecology. Simultaneously, many applied conservation and management efforts are informed by animals tagged with electronic tags. In spite of the many advances in tracking software and hardware, an uncertain future in the world’s aquatic ecosystems portends great challenges for science. Aquatic animal tracking with electronic tags represents both the present and future of integrative biology and ecology in aquatic ecosystems. Here we identify what we regard as the future of aquatic animalmore » tracking in a horizon scanning exercise. We submit that the future of aquatic animal tracking will include opportunities for multi-platform tracking systems for simultaneously monitoring position, activity, physiology, and microhabitat of animals, improved data collection and accessibility with new infrastructure (e.g. tags, receivers) and cyberinfrastructure, and integrated tagging information with animal traits derived from biopsy during tagging. We discuss parallel needs and opportunities in areas related to the application of animal tracking in the future such as knowledge mobilization and governance.« less

  13. EFFECTS OF CARCINOGENIC AGENTS ON AQUATIC ANIMALS: AN ENVIRONMENTAL AND EXPERIMENTAL OVERVIEW

    EPA Science Inventory

    A major underlying motivation for seriously studying carcinogenesis in aquatic animals is the concept of utilizing selected lower animal species as models in understanding neoplasia and the neoplastic process. Numerous examples may be cited which illustrate the contribution that ...

  14. The application of epidemiology in aquatic animal health -opportunities and challenges

    PubMed Central

    2011-01-01

    Over recent years the growth in aquaculture, accompanied by the emergence of new and transboundary diseases, has stimulated epidemiological studies of aquatic animal diseases. Great potential exists for both observational and theoretical approaches to investigate the processes driving emergence but, to date, compared to terrestrial systems, relatively few studies exist in aquatic animals. Research using risk methods has assessed routes of introduction of aquatic animal pathogens to facilitate safe trade (e.g. import risk analyses) and support biosecurity. Epidemiological studies of risk factors for disease in aquaculture (most notably Atlantic salmon farming) have effectively supported control measures. Methods developed for terrestrial livestock diseases (e.g. risk-based surveillance) could improve the capacity of aquatic animal surveillance systems to detect disease incursions and emergence. The study of disease in wild populations presents many challenges and the judicious use of theoretical models offers some solutions. Models, parameterised from observational studies of host pathogen interactions, have been used to extrapolate estimates of impacts on the individual to the population level. These have proved effective in estimating the likely impact of parasite infections on wild salmonid populations in Switzerland and Canada (where the importance of farmed salmon as a reservoir of infection was investigated). A lack of data is often the key constraint in the application of new approaches to surveillance and modelling. The need for epidemiological approaches to protect aquatic animal health will inevitably increase in the face of the combined challenges of climate change, increasing anthropogenic pressures, limited water sources and the growth in aquaculture. Table of contents 1 Introduction 4 2 The development of aquatic epidemiology 7 3 Transboundary and emerging diseases 9 3.1 Import risk analysis (IRA) 10 3.2 Aquaculture and disease emergence 11 3.3 Climate

  15. NASDA aquatic animal experiment facilities for Space Shuttle and ISS.

    PubMed

    Uchida, Satoko; Masukawa, Mitsuyo; Kamigaichi, Shigeki

    2002-01-01

    National Space Development Agency of Japan (NASDA) has developed aquatic animal experiment facilities for NASA Space Shuttle use. Vestibular Function Experiment Unit (VFEU) was firstly designed and developed for physiological research using carp in Spacelab-J (SL-J, STS-47) mission. It was modified as Aquatic Animal Experiment Unit (AAEU) to accommodate small aquatic animals, such as medaka and newt, for second International Microgravity Laboratory (IML-2, STS-65) mission. Then, VFEU was improved to accommodate marine fish and to perform neurobiological experiment for Neurolab (STS-90) and STS-95 missions. We have also developed and used water purification system which was adapted to each facility. Based on these experiences of Space Shuttle missions, we are studying to develop advanced aquatic animal experiment facility for both Space Shuttle and International Space Station (ISS). c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  16. Aquatic models, genomics and chemical risk management.

    PubMed

    Cheng, Keith C; Hinton, David E; Mattingly, Carolyn J; Planchart, Antonio

    2012-01-01

    The 5th Aquatic Animal Models for Human Disease meeting follows four previous meetings (Nairn et al., 2001; Schmale, 2004; Schmale et al., 2007; Hinton et al., 2009) in which advances in aquatic animal models for human disease research were reported, and community discussion of future direction was pursued. At this meeting, discussion at a workshop entitled Bioinformatics and Computational Biology with Web-based Resources (20 September 2010) led to an important conclusion: Aquatic model research using feral and experimental fish, in combination with web-based access to annotated anatomical atlases and toxicological databases, yields data that advance our understanding of human gene function, and can be used to facilitate environmental management and drug development. We propose here that the effects of genes and environment are best appreciated within an anatomical context - the specifically affected cells and organs in the whole animal. We envision the use of automated, whole-animal imaging at cellular resolution and computational morphometry facilitated by high-performance computing and automated entry into toxicological databases, as anchors for genetic and toxicological data, and as connectors between human and model system data. These principles should be applied to both laboratory and feral fish populations, which have been virtually irreplaceable sentinals for environmental contamination that results in human morbidity and mortality. We conclude that automation, database generation, and web-based accessibility, facilitated by genomic/transcriptomic data and high-performance and cloud computing, will potentiate the unique and potentially key roles that aquatic models play in advancing systems biology, drug development, and environmental risk management. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Aquatic animal nutrition for the exotic animal practitioner.

    PubMed

    Corcoran, Mike; Roberts-Sweeney, Helen

    2014-09-01

    Fish are the most popular pets in the United States based on numbers and high-quality medical care is coming to be expected by owners. Increasing numbers of veterinarians are responding to this need and providing veterinary care for aquatic animals. Part of good medical care for exotic animals is advice on husbandry, including nutrition. However, there are numerous missing areas of research for the nutritional needs of many ornamental fish species. What is known for food species can be combined with what is known for ornamental species to give nutritional advice to owners to maximize health in these animals. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Top-Down Proteomics and Farm Animal and Aquatic Sciences.

    PubMed

    Campos, Alexandre M O; de Almeida, André M

    2016-12-21

    Proteomics is a field of growing importance in animal and aquatic sciences. Similar to other proteomic approaches, top-down proteomics is slowly making its way within the vast array of proteomic approaches that researchers have access to. This opinion and mini-review article is dedicated to top-down proteomics and how its use can be of importance to animal and aquatic sciences. Herein, we include an overview of the principles of top-down proteomics and how it differs regarding other more commonly used proteomic methods, especially bottom-up proteomics. In addition, we provide relevant sections on how the approach was or can be used as a research tool and conclude with our opinions of future use in animal and aquatic sciences.

  19. SYNOPSIS OF HISTOTECHNIQUES FOR AQUATIC ANIMALS

    EPA Science Inventory

    This synopsis provides an overview of the necropsy, fixation, trimming, and processing of tissues from aquatic organisms for examination using light microscopy. The handling of animals, their tissues, uses of knives, and processing chemicals will be covered. Understanding the his...

  20. Gastrointestinal Functionality of Aquatic Animal (Oreochromis niloticus) Carcass in Water Allows Estimating Time of Death.

    PubMed

    Hahor, Waraporn; Thongprajukaew, Karun; Yoonram, Krueawan; Rodjaroen, Somrak

    2016-11-01

    Postmortem changes have been previously studied in some terrestrial animal models, but no prior information is available on aquatic species. Gastrointestinal functionality was investigated in terms of indices, protein concentration, digestive enzyme activity, and scavenging activity, in an aquatic animal model, Nile tilapia, to assess the postmortem changes. Dead fish were floated indoors, and samples were collected within 48 h after death. Stomasomatic index decreased with postmortem time and correlated positively with protein, pepsin-specific activity, and stomach scavenging activity. Also intestosomatic index decreased significantly and correlated positively with protein, specific activity of trypsin, chymotrypsin, amylase, lipase, and intestinal scavenging activity. In their postmortem changes, the digestive enzymes exhibited earlier lipid degradation than carbohydrate or protein. The intestine changed more rapidly than the stomach. The findings suggest that the postmortem changes of gastrointestinal functionality can serve as primary data for the estimation of time of death of an aquatic animal. © 2016 American Academy of Forensic Sciences.

  1. Toward a national animal telemetry network for aquatic observations in the United States

    USGS Publications Warehouse

    Block, Barbara A.; Holbrook, Christopher; Simmons, Samantha E; Holland, Kim N; Ault, Jerald S.; Costa, Daniel P.; Mate, Bruce R; Seitz, Andrew C.; Arendt, Michael D.; Payne, John; Mahmoudi, Behzad; Moore, Peter L.; Price, James; J. J. Levenson,; Wilson, Doug; Kochevar, Randall E

    2016-01-01

    Animal telemetry is the science of elucidating the movements and behavior of animals in relation to their environment or habitat. Here, we focus on telemetry of aquatic species (marine mammals, sharks, fish, sea birds and turtles) and so are concerned with animal movements and behavior as they move through and above the world’s oceans, coastal rivers, estuaries and great lakes. Animal telemetry devices (“tags”) yield detailed data regarding animal responses to the coupled ocean–atmosphere and physical environment through which they are moving. Animal telemetry has matured and we describe a developing US Animal Telemetry Network (ATN) observing system that monitors aquatic life on a range of temporal and spatial scales that will yield both short- and long-term benefits, fill oceanographic observing and knowledge gaps and advance many of the U.S. National Ocean Policy Priority Objectives. ATN has the potential to create a huge impact for the ocean observing activities undertaken by the U.S. Integrated Ocean Observing System (IOOS) and become a model for establishing additional national-level telemetry networks worldwide.

  2. A global database of nitrogen and phosphorus excretion rates of aquatic animals

    DOE PAGES

    Vanni, Michael J.; McIntyre, Peter B.; Allen, Dennis; ...

    2017-03-06

    Though their importance varies greatly among species and ecosystems, animals can be important in modulating ecosystem-level nutrient cycling. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Ecology (MTE) and ecological stoichiometry (ES). They also represent an important set of functional traits that may reflect both environmental and phylogenetic influences. Over the past two decades, studies of animal-mediated nutrient cycling have increased dramatically, especially in aquatic ecosystems. Here we present a global compilation of aquatic animal nutrient excretion rates. The dataset includes 10,534 observations from freshwater andmore » marine animals of N and/or P excretion rates. Furthermore, these observations represent 491 species, including most aquatic phyla. Coverage varies greatly among phyla and other taxonomic levels. The dataset includes information on animal body size, ambient temperature, taxonomic affiliations, and animal body N:P. We used this data set to test predictions of MTE and ES, as described in Vanni and McIntyre (2016; Ecology DOI: 10.1002/ecy.1582).« less

  3. A global database of nitrogen and phosphorus excretion rates of aquatic animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanni, Michael J.; McIntyre, Peter B.; Allen, Dennis

    Though their importance varies greatly among species and ecosystems, animals can be important in modulating ecosystem-level nutrient cycling. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Ecology (MTE) and ecological stoichiometry (ES). They also represent an important set of functional traits that may reflect both environmental and phylogenetic influences. Over the past two decades, studies of animal-mediated nutrient cycling have increased dramatically, especially in aquatic ecosystems. Here we present a global compilation of aquatic animal nutrient excretion rates. The dataset includes 10,534 observations from freshwater andmore » marine animals of N and/or P excretion rates. Furthermore, these observations represent 491 species, including most aquatic phyla. Coverage varies greatly among phyla and other taxonomic levels. The dataset includes information on animal body size, ambient temperature, taxonomic affiliations, and animal body N:P. We used this data set to test predictions of MTE and ES, as described in Vanni and McIntyre (2016; Ecology DOI: 10.1002/ecy.1582).« less

  4. Aquatic Environment, Housing, and Management in the Eighth Edition of the Guide for the Care and Use of Laboratory Animals: Additional Considerations and Recommendations

    PubMed Central

    Mason, Timothy J; Matthews, Monte

    2012-01-01

    The eighth edition of the Guide for the Care and Use of Laboratory Animals recognizes the widespread use of aquatic and semiaquatic research animals by including, among other references, an entire section on aquatic animals in its chapter on environment, housing, and management. Recognizing the large number of aquatic and semiaquatic species used in research and the inherent diversity in animal needs, the Guide refers the reader to texts and journal reviews for specific recommendations and suggests consultations with persons experienced in caring for aquatic species. Here we present considerations that may add to the basic information presented in the Guide and offer some recommendations that may be useful for aquatic animal model caregivers and researchers. PMID:22776190

  5. Aquatic animals, cognitive ethology, and ethics: questions about sentience and other troubling issues that lurk in turbid water.

    PubMed

    Bekoff, Marc

    2007-05-04

    In this general, strongly pro-animal, and somewhat utopian and personal essay, I argue that we owe aquatic animals respect and moral consideration just as we owe respect and moral consideration to all other animal beings, regardless of the taxonomic group to which they belong. In many ways it is more difficult to convince some people of our ethical obligations to numerous aquatic animals because we do not identify or empathize with them as we do with animals with whom we are more familiar or to whom we are more closely related, including those species (usually terrestrial) to whom we refer as charismatic megafauna. Many of my examples come from animals that are more well studied but they can be used as models for aquatic animals. I follow Darwinian notions of evolutionary continuity to argue that if we feel pain, then so too do many other animals, including those that live in aquatic environs. Recent scientific data ('science sense') show clearly that many aquatic organisms, much to some people's surprise, likely suffer at our hands and feel their own sorts of pain. Throughout I discuss how cognitive ethology (the study of animal minds) is the unifying science for understanding the subjective, emotional, empathic, and moral lives of animals because it is essential to know what animals do, think, and feel as they go about their daily routines. Lastly, I argue that when we are uncertain if we are inflicting pain due to our incessant, annoying, and frequently unnecessary intrusions into the lives of other animals as we go about 'redecorating nature' (removing animals or moving them from place to place), we should err on the side of the animals and stop engaging in activities that cause pain and suffering.

  6. The hydrodynamic principle for the caudal fin shape of small aquatic animals

    NASA Astrophysics Data System (ADS)

    Lee, Jeongsu; Park, Yong-Jai; Cho, Kyu-Jin; Kim, Ho-Young

    2014-11-01

    The shape of caudal fins of small aquatic animals is completely different from that of large cruising animals like dolphin and tuna which have high aspect-ratio lunate tail. To unveil the physical principle behind natural selection of caudal fins of small aquatic animals, here we investigate the hydrodynamics of an angularly reciprocating plate as a model for the caudal fin oscillation. We find that the thrust production of a reciprocating plate at high Strouhal numbers is dominated by generation of two distinct vortical structures associated with the acceleration and deceleration of the plate regardless of their shape. Based on our observations, we construct a scaling law to predict the thrust of the flapping plate, which agrees well with the experimental data. We then seek the optimal aspect ratio to maximize thrust and efficiency of a flapping plate for fixed flapping frequency and amplitude. Thrust is maximized for the aspect ratio of approximately 0.7. We also theoretically explain the power law behaviors of the thrust and efficiency as a function of the aspect ratio.

  7. Large-Scale Environmental Influences on Aquatic Animal Health

    EPA Science Inventory

    In the latter portion of the 20th century, North America experienced numerous large-scale mortality events affecting a broad diversity of aquatic animals. Short-term forensic investigations of these events have sometimes characterized a causative agent or condition, but have rare...

  8. Social and economic aspects of aquatic animal health.

    PubMed

    Adam, K E; Gunn, G J

    2017-04-01

    Aquaculture is an increasingly important source of animal protein for a growing global population. Disease is a major constraint to production, with resultant socio-economic impacts for individuals, communities and economies which rely on aquaculture. Aquatic animal health is also strongly influenced by human factors, ranging from international trade regulations to the behaviours of individuals working in aquaculture. This article summarises the human factors associated with aquaculture production using international examples for illustration.

  9. Internal and External Dispersal of Plants by Animals: An Aquatic Perspective on Alien Interference

    PubMed Central

    van Leeuwen, Casper H. A.

    2018-01-01

    Many alien plants use animal vectors for dispersal of their diaspores (zoochory). If alien plants interact with native disperser animals, this can interfere with animal-mediated dispersal of native diaspores. Interference by alien species is known for frugivorous animals dispersing fruits of terrestrial plants by ingestion, transport and egestion (endozoochory). However, less attention has been paid to possible interference of alien plants with dispersal of diaspores via external attachment (ectozoochory, epizoochory or exozoochory), interference in aquatic ecosystems, or positive effects of alien plants on dispersal of native plants. This literature study addresses the following hypotheses: (1) alien plants may interfere with both internal and external animal-mediated dispersal of native diaspores; (2) interference also occurs in aquatic ecosystems; (3) interference of alien plants can have both negative and positive effects on native plants. The studied literature revealed that alien species can comprise large proportions of both internally and externally transported diaspores. Because animals have limited space for ingested and adhering diaspores, alien species affect both internal and external transport of native diaspores. Alien plant species also form large proportions of all dispersed diaspores in aquatic systems and interfere with dispersal of native aquatic plants. Alien interference can be either negative (e.g., through competition with native plants) or positive (e.g., increased abundance of native dispersers, changed disperser behavior or attracting additional disperser species). I propose many future research directions, because understanding whether alien plant species disrupt or facilitate animal-mediated dispersal of native plants is crucial for targeted conservation of invaded (aquatic) plant communities. PMID:29487609

  10. 40 CFR 122.24 - Concentrated aquatic animal production facilities (applicable to State NPDES programs, see § 123...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE... animal production facility means a hatchery, fish farm, or other facility which meets the criteria in... any warm or cold water aquatic animal production facility as a concentrated aquatic animal production...

  11. 40 CFR 122.24 - Concentrated aquatic animal production facilities (applicable to State NPDES programs, see § 123...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE... animal production facility means a hatchery, fish farm, or other facility which meets the criteria in... any warm or cold water aquatic animal production facility as a concentrated aquatic animal production...

  12. 40 CFR Appendix C to Part 122 - Criteria for Determining a Concentrated Aquatic Animal Production Facility (§ 122.24)

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... aquatic animals in either of the following categories: (a) Cold water fish species or other cold water... (approximately 100,000 pounds) of aquatic animals per year. “Cold water aquatic animals” include, but are not...

  13. An Energy Harvesting Underwater Acoustic Transmitter for Aquatic Animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Huidong; Tian, Chuan; Lu, Jun

    This paper presents a self-powered underwater acoustic transmitter using a piezoelectric beam to harvest the mechanical energy from fish swimming. This transmitter does not require a battery and is demonstrated in live fish. It transmits an acoustic waveform as the implanted fish swims. It enables long-term monitoring of aquatic animals.

  14. Micronucleus assay in aquatic animals.

    PubMed

    Bolognesi, Claudia; Hayashi, Makoto

    2011-01-01

    Aquatic pollutants produce multiple consequences at organism, population, community and ecosystem level, affecting organ function, reproductive status, population size, species survival and thus biodiversity. Among these, carcinogenic and mutagenic compounds are the most dangerous as their effects may exert a damage beyond that of individual and may be active through several generations. The application of genotoxicity biomarkers in sentinel organisms allows for the assessment of mutagenic hazards and/or for the identification of the sources and fate of the contaminants. Micronucleus (MN) test as an index of accumulated genetic damage during the lifespan of the cells is one of the most suitable techniques to identify integrated response to the complex mixture of contaminants. MN assay is today widely applied in a large number of wild and transplanted aquatic species. The large majority of studies or programmes on the genotoxic effect of the polluted water environment have been carried out with the use of bivalves and fish. Haemocytes and gill cells are the target tissues most frequently considered for the MN determination in bivalves. The MN test was widely validated and was successfully applied in a large number of field studies using bivalves from the genera Mytilus. MN in fish can be visualised in different cell types: erythrocytes and gill, kidney, hepatic and fin cells. The use of peripheral erythrocytes is more widely used because it avoids the complex cell preparation and the killing of the animals. The MN test in fish erythrocytes was validated in laboratory with different species after exposure to a large number of genotoxic agents. The erythrocyte MN test in fish was also widely and frequently applied for genotoxicity assessment of freshwater and marine environment in situ using native or caged animals following different periods of exposure. Large interspecies differences in sensitivity for MN induction were observed. Further validation studies are

  15. Predicting nutrient excretion of aquatic animals with metabolic ecology and ecological stoichiometry: a global synthesis.

    PubMed

    Vanni, Michael J; McIntyre, Peter B

    2016-12-01

    The metabolic theory of ecology (MTE) and ecological stoichiometry (ES) are both prominent frameworks for understanding energy and nutrient budgets of organisms. We tested their separate and joint power to predict nitrogen (N) and phosphorus (P) excretion rates of ectothermic aquatic invertebrate and vertebrate animals (10,534 observations worldwide). MTE variables (body size, temperature) performed better than ES variables (trophic guild, vertebrate classification, body N:P) in predicting excretion rates, but the best models included variables from both frameworks. Size scaling coefficients were significantly lower than predicted by MTE (<0.75), were lower for P than N, and varied greatly among species. Contrary to expectations under ES, vertebrates excreted both N and P at higher rates than invertebrates despite having more nutrient-rich bodies, and primary consumers excreted as much nutrients as carnivores despite having nutrient-poor diets. Accounting for body N:P hardly improved upon predictions from treating vertebrate classification categorically. We conclude that basic data on body size, water temperature, trophic guild, and vertebrate classification are sufficient to make general estimates of nutrient excretion rates for any animal taxon or aquatic ecosystem. Nonetheless, dramatic interspecific variation in size-scaling coefficients and counter-intuitive patterns with respect to diet and body composition underscore the need for field data on consumption and egestion rates. Together, MTE and ES provide a powerful conceptual basis for interpreting and predicting nutrient recycling rates of aquatic animals worldwide. © 2016 by the Ecological Society of America.

  16. Opportunities for public aquariums to increase the sustainability of the aquatic animal trade.

    PubMed

    Tlusty, Michael F; Rhyne, Andrew L; Kaufman, Les; Hutchins, Michael; Reid, Gordon McGregor; Andrews, Chris; Boyle, Paul; Hemdal, Jay; McGilvray, Frazer; Dowd, Scott

    2013-01-01

    The global aquatic pet trade encompasses a wide diversity of freshwater and marine organisms. While relying on a continual supply of healthy, vibrant aquatic animals, few sustainability initiatives exist within this sector. Public aquariums overlap this industry by acquiring many of the same species through the same sources. End users are also similar, as many aquarium visitors are home aquarists. Here we posit that this overlap with the pet trade gives aquariums significant opportunity to increase the sustainability of the trade in aquarium fishes and invertebrates. Improving the sustainability ethos and practices of the aquatic pet trade can carry a conservation benefit in terms of less waste, and protection of intact functioning ecosystems, at the same time as maintaining its economic and educational benefits and impacts. The relationship would also move forward the goal of public aquariums to advance aquatic conservation in a broad sense. For example, many public aquariums in North America have been instrumental in working with the seafood industry to enact positive change toward increased sustainability. The actions include being good consumers themselves, providing technical knowledge, and providing educational and outreach opportunities. These same opportunities exist for public aquariums to partner with the ornamental fish trade, which will serve to improve business, create new, more ethical and more dependable sources of aquatic animals for public aquariums, and perhaps most important, possibly transform the home aquarium industry from a threat, into a positive force for aquatic conservation. © 2012 Wiley Periodicals, Inc.

  17. Hydrodynamic modelling of aquatic suction performance and intra-oral pressures: limitations for comparative studies

    PubMed Central

    Van Wassenbergh, Sam; Aerts, Peter; Herrel, Anthony

    2006-01-01

    The magnitude of sub-ambient pressure inside the bucco-pharyngeal cavity of aquatic animals is generally considered a valuable metric of suction feeding performance. However, these pressures do not provide a direct indication of the effect of the suction act on the movement of the prey item. Especially when comparing suction performance of animals with differences in the shape of the expanding bucco-pharyngeal cavity, the link between speed of expansion, water velocity, force exerted on the prey and intra-oral pressure remains obscure. By using mathematical models of the heads of catfishes, a morphologically diverse group of aquatic suction feeders, these relationships were tested. The kinematics of these models were fine-tuned to transport a given prey towards the mouth in the same way. Next, the calculated pressures inside these models were compared. The results show that no simple relationship exists between the amount of generated sub-ambient pressure and the force exerted on the prey during suction feeding, unless animals of the same species are compared. Therefore, for evaluating suction performance in aquatic animals in future studies, the focus should be on the flow velocities in front of the mouth, for which a direct relationship exists with the hydrodynamic force exerted on prey. PMID:16849247

  18. Renewable fluid dynamic energy derived from aquatic animal locomotion.

    PubMed

    Dabiri, John O

    2007-09-01

    Aquatic animals swimming in isolation and in groups are known to extract energy from the vortices in environmental flows, significantly reducing muscle activity required for locomotion. A model for the vortex dynamics associated with this phenomenon is developed, showing that the energy extraction mechanism can be described by simple criteria governing the kinematics of the vortices relative to the body in the flow. In this way, we need not make direct appeal to the fluid dynamics, which can be more difficult to evaluate than the kinematics. Examples of these principles as exhibited in swimming fish and existing energy conversion devices are described. A benefit of the developed framework is that the potentially infinite-dimensional parameter space of the fluid-structure interaction is reduced to a maximum of eight combinations of three parameters. The model may potentially aid in the design and evaluation of unsteady aero- and hydrodynamic energy conversion systems that surpass the Betz efficiency limit of steady fluid dynamic energy conversion systems.

  19. Effects of aquatic exercises in a rat model of brainstem demyelination with ethidium bromide on the beam walking test.

    PubMed

    Nassar, Cíntia Cristina Souza; Bondan, Eduardo Fernandes; Alouche, Sandra Regina

    2009-09-01

    Multiple sclerosis is a demyelinating disease of the central nervous system associated with varied levels of disability. The impact of early physiotherapeutic interventions in the disease progression is unknown. We used an experimental model of demyelination with the gliotoxic agent ethidium bromide and early aquatic exercises to evaluate the motor performance of the animals. We quantified the number of footsteps and errors during the beam walking test. The demyelinated animals walked fewer steps with a greater number of errors than the control group. The demyelinated animals that performed aquatic exercises presented a better motor performance than those that did not exercise. Therefore aquatic exercising was beneficial to the motor performance of rats in this experimental model of demyelination.

  20. Contribution of science to farm-level aquatic animal health management.

    PubMed

    Corsin, F; Giorgetti, G; Mohan, C V

    2007-01-01

    The contribution of science to farm level disease management is a story of two worlds. The development of effective vaccines has allowed for the control of important salmonid diseases such as furunculosis, yersiniosis and vibriosis and has significantly reduced farmers' reliance on antibiotics. Control of diseases for which cost-effective vaccines have yet to be developed has been achieved through the development of increasingly targeted antibiotics and chemotherapeutants. Increasingly, accurate and rapid diagnostic and water quality tests have allowed farmers to improve farm-level aquatic animal health management. In developed countries, these achievements have been possible thanks to the strong link between science and farm management. This link has been assisted by the presence of strong farmer organizations capable of coordinating research projects and hosting meetings at which scientific information is discussed and disseminated. Although Asia is responsible for the production of about 90% of aquaculture products, it presents a rather different picture from the above. Science has indeed made significant progress in health management but the links with farm management are still weak. Management practices capable of preventing important health problems in shrimp and fish farming are still poorly adopted by farmers. This is largely due to constraints in the dissemination of information to the large number of producers involved, the limited resources of both producers and their countries and the lack of effective farmer organizations capable of liaising with the scientific world. Recently, the Asian region has witnessed some successful examples of aquatic animal health management through the adoption of simple Better Management Practices. Efforts so far have been largely focused on shrimp farming, although activities have been initiated to adopt a similar approach to other commodities. The need for both observational and experimental epidemiological studies to

  1. Cognitive ability and sentience: which aquatic animals should be protected?

    PubMed

    Broom, D M

    2007-05-04

    It is of scientific and practical interest to consider the levels of cognitive ability in animals, which animals are sentient, which animals have feelings such as pain and which animals should be protected. A sentient being is one that has some ability to evaluate the actions of others in relation to itself and third parties, to remember some of its own actions and their consequences, to assess risk, to have some feelings and to have some degree of awareness. These abilities can be taken into account when evaluating welfare. There is evidence from some species of fish, cephalopods and decapod crustaceans of substantial perceptual ability, pain and adrenal systems, emotional responses, long- and short-term memory, complex cognition, individual differences, deception, tool use, and social learning. The case for protecting these animals would appear to be substantial. A range of causes of poor welfare in farmed aquatic animals is summarised.

  2. Successful aquatic animal disease emergency programmes

    USGS Publications Warehouse

    Hastein, T.; Hill, B.J.; Winton, J.R.

    1999-01-01

    The third part provides a historical review of the build-up of infectious salmon anaemia (ISA) in Norway and the attempts to control the disease using legal measures in the absence of detailed knowledge of the aetiology, epizootiology, pathogenesis, etc. of the disease. The measures taken show that the spread of ISA can be controlled using restrictions on the movement of fish, disinfection procedures, etc. However, acceptance and understanding of the chosen strategy by the fish farmers is a pre-requisite to reach that goal. Finally, the paper summarises future needs for national and international legislation, including the development of standard approaches for control, the creation of appropriate infrastructures and a better understanding of the epidemiology of aquatic animal diseases.

  3. 40 CFR Appendix C to Part 122 - Criteria for Determining a Concentrated Aquatic Animal Production Facility (§ 122.24)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE NATIONAL... Concentrated Aquatic Animal Production Facility (§ 122.24) A hatchery, fish farm, or other facility is a... aquatic animals in either of the following categories: (a) Cold water fish species or other cold water...

  4. 40 CFR Appendix C to Part 122 - Criteria for Determining a Concentrated Aquatic Animal Production Facility (§ 122.24)

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE NATIONAL... Concentrated Aquatic Animal Production Facility (§ 122.24) A hatchery, fish farm, or other facility is a... aquatic animals in either of the following categories: (a) Cold water fish species or other cold water...

  5. Detection and identification of Malassezia species in domestic animals and aquatic birds by PCR-RFLP

    PubMed Central

    Zia, M.; Mirhendi, H.; Toghyani, M.

    2015-01-01

    The present study aimed at detection and species-level identification of the Malassezia yeasts in domestic animals and aquatic birds by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Samples were collected using tape strips and swabs from 471 animals including 97 horses, 102 cattle, 105 sheep, 20 camels, 60 dogs, 30 cats, 1 hamster, 1 squirrel, 50 aquatic birds and 5 turkeys. Tape-strip samples were examined by direct microscopy. All samples were inoculated on modified Leeming and Notman agar medium. DNA extracted from the yeast colonies was amplified by PCR using primers specific for 26S rDNA. RFLP of the PCR products was performed using Hin6I enzyme, and PCR and RFLP products were visualized by agarose gel electrophoresis. Malassezia yeasts were detected at the following frequencies: 15.46% in horses, 12.74% in cattle, 12.38% in sheep, 28.33% in dogs, 26.66% in cats and 26% in aquatic birds. Eighty colonies of 6 species were isolated: Malassezia globosa 41.25%, Malassezia furfur 22.5%, Malassezia restricta 15%, Malassezia sympodialis 15%, Malassezia pachydermatis 5% and Malassezia slooffiae 1.25%. Therefore different lipophilic Malassezia species are found in a wide diversity of animals and aquatic birds. PCR-RFLP is a suitable technique for identification of different Malassezia species. PMID:27175148

  6. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China.

    PubMed

    Li, Wenhui; Shi, Yali; Gao, Lihong; Liu, Jiemin; Cai, Yaqi

    2012-11-01

    This study investigated the presence and distribution of 22 antibiotics, including eight quinolones, nine sulfonamides and five macrolides, in the water, sediments, and biota samples from Baiyangdian Lake, China. A total of 132 samples were collected in 2008 and 2010, and laboratory analyses revealed that antibiotics were widely distributed in the lake. Sulfonamides were the dominant antibiotics in the water (0.86-1563 ng L(-1)), while quinolones were prominent in sediments (65.5-1166 μg kg(-1)) and aquatic plants (8.37-6532 μg kg(-1)). Quinolones (17.8-167 μg kg(-1)) and macrolides [from below detection limit (BDL) to 182 μg kg(-1)] were often found in aquatic animals and birds. Salvinia natans exhibited the highest bioaccumulation capability for quinolones among three species of aquatic plants. Geographical differences of antibiotic concentrations were greatly due to anthropogenic activities. Sewage discharged from Baoding City was likely the main source of antibiotics in the lake. Risk assessment of antibiotics on aquatic organisms suggested that algae and aquatic plants might be at risk in surface water, while animals were likely not at risk. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Ohio Aquatic Gap Analysis-An Assessment of the Biodiversity and Conservation Status of Native Aquatic Animal Species

    USGS Publications Warehouse

    Covert, S. Alex; Kula, Stephanie P.; Simonson, Laura A.

    2007-01-01

    The goal of the GAP Analysis Program is to keep common species common by identifying those species and habitats that are not yet adequately represented in the existing matrix of conservation lands. The Gap Analysis Program (GAP) is sponsored by the Biological Resources Discipline of the U.S. Geological Survey (USGS). The Ohio Aquatic GAP (OH-GAP) is a pilot project that is applying the GAP concept to aquatic-specifically, riverine-data. The mission of GAP is to provide regional assessments of the conservation status of native animal species and to facilitate the application of this information to land-management activities. OH-GAP accomplished this through * mapping aquatic habitat types, * mapping the predicted distributions of fish, crayfish, and bivalves, * documenting the presence of aquatic species in areas managed for conservation, * providing GAP results to the public, planners, managers, policy makers, and researchers, and * building cooperation with multiple organizations to apply GAP results to state and regional management activities. Gap analysis is a coarse-scale assessment of aquatic biodiversity and conservation; the goal is to identify gaps in the conservation of native aquatic species. It is not a substitute for biological field studies and monitoring programs. Gap analysis was conducted for the continuously flowing streams in Ohio. Lakes, reservoirs, wetlands, and the Lake Erie islands were not included in this analysis. The streams in Ohio are in the Lake Erie and Ohio River watersheds and pass through six of the level III ecoregions defined by Omernik: the Eastern Corn Belt Plains, Southern Michigan/Northern Indiana Drift Plains, Huron/Erie Lake Plain, Erie Drift Plains, Interior Plateau, and the Western Allegheny Plateau. To characterize the aquatic habitats available to Ohio fish, crayfish, and bivalves, a classification system needed to be developed and mapped. The process of classification includes delineation of areas of relative

  8. AQUATIC ANIMAL RESPIRATION AND COUGH RESPONSE APPLIED TO INNOVATIVE ENVIRONMENTAL BIOMONITORING: A BIBLIOGRAPHY

    EPA Science Inventory

    This bibliography encompasses a body of in-depth technical information on the mechanics and physiology of respiration in aquatic animals (vertebrate and invertebrate). In compiling the bibliography, special emphasis was given to identifying studies that deal with responses of thi...

  9. A Bayesian network model for predicting aquatic toxicity mode ...

    EPA Pesticide Factsheets

    The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity, but development of predictive MoA classification models in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity MoA using a recently published dataset containing over one thousand chemicals with MoA assignments for aquatic animal toxicity. Two dimensional theoretical chemical descriptors were generated for each chemical using the Toxicity Estimation Software Tool. The model was developed through augmented Markov blanket discovery from the dataset of 1098 chemicals with the MoA broad classifications as a target node. From cross validation, the overall precision for the model was 80.2%. The best precision was for the AChEI MoA (93.5%) where 257 chemicals out of 275 were correctly classified. Model precision was poorest for the reactivity MoA (48.5%) where 48 out of 99 reactive chemicals were correctly classified. Narcosis represented the largest class within the MoA dataset and had a precision and reliability of 80.0%, reflecting the global precision across all of the MoAs. False negatives for narcosis most often fell into electron transport inhibition, neurotoxicity or reactivity MoAs. False negatives for all other MoAs were most often narcosis. A probabilistic sensitivity analysis was undertaken for each MoA to examine the sensitivity to individual and multiple descriptor findings. The results show that the Markov blank

  10. A Bayesian network model for predicting aquatic toxicity mode ...

    EPA Pesticide Factsheets

    The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity but MoA classification in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity mode of action using a recently published dataset containing over one thousand chemicals with MoA assignments for aquatic animal toxicity. Two dimensional theoretical chemical descriptors were generated for each chemical using the Toxicity Estimation Software Tool. The model was developed through augmented Markov blanket discovery from the data set with the MoA broad classifications as a target node. From cross validation, the overall precision for the model was 80.2% with a R2 of 0.959. The best precision was for the AChEI MoA (93.5%) where 257 chemicals out of 275 were correctly classified. Model precision was poorest for the reactivity MoA (48.5%) where 48 out of 99 reactive chemicals were correctly classified. Narcosis represented the largest class within the MoA dataset and had a precision and reliability of 80.0%, reflecting the global precision across all of the MoAs. False negatives for narcosis most often fell into electron transport inhibition, neurotoxicity or reactivity MoAs. False negatives for all other MoAs were most often narcosis. A probabilistic sensitivity analysis was undertaken for each MoA to examine the sensitivity to individual and multiple descriptor findings. The results show that the Markov blanket of a structurally

  11. Reviving a neglected celestial underwater polarization compass for aquatic animals.

    PubMed

    Waterman, Talbot H

    2006-02-01

    Substantial in situ measurements on clear days in a variety of marine environments at depths in the water down to 200 m have demonstrated the ubiquitous daytime presence of sun-related e-vector (=plane of polarization) patterns. In most lines of sight the e-vectors tilt from horizontal towards the sun at angles equal to the apparent underwater refracted zenith angle of the sun. A maximum tilt-angle of approximately 48.5 degrees , is reached in horizontal lines of sight at 90 degrees to the sun's bearing (the plane of incidence). This tilt limit is set by Snell's window, when the sun is on the horizon. The biological literature since the 1980s has been pervaded with assumptions that daytime aquatic e-vectors are mainly horizontal. This review attempts to set the record straight concerning the potential use of underwater e-vectors as a visual compass and to reopen the field to productive research on aquatic animals' orientation and navigation.

  12. New tools for aquatic habitat modeling

    Treesearch

    D. Tonina; J. A. McKean; C. Tang; P. Goodwin

    2011-01-01

    Modeling of aquatic microhabitat in streams has been typically done over short channel reaches using one-dimensional simulations, partly because of a lack of high resolution. subaqueous topographic data to better define model boundary conditions. The Experimental Advanced Airborne Research Lidar (EAARL) is an airborne aquatic-terrestrial sensor that allows simultaneous...

  13. Biotechnology and DNA vaccines for aquatic animals

    USGS Publications Warehouse

    Kurath, G.

    2008-01-01

    Biotechnology has been used extensively in the development of vaccines for aquaculture. Modern molecular methods such as polymerase chain reaction (PCR), cloning and microarray analysis have facilitated antigen discovery, construction of novel candidate vaccines, and assessments of vaccine efficacy, mode of action, and host response. This review focuses on DNA vaccines for finfish to illustrate biotechnology applications in this field. Although DNA vaccines for fish rhabdoviruses continue to show the highest efficacy, DNA vaccines for several other viral and bacterial fish pathogens have now been proven to provide significant protection against pathogen challenge. Studies of the fish rhabdovirus DNA vaccines have elucidated factors that affect DNA vaccine efficacy as well as the nature of the fish innate and adaptive immune responses to DNA vaccines. As tools for managing aquatic animal disease emergencies, DNA vaccines have advantages in speed, flexibility, and safety, and one fish DNA vaccine has been licensed.

  14. Methods for broth dilution susceptibility testing of bacteria isolated from aquatic animals; approved guideline-second edition

    USDA-ARS?s Scientific Manuscript database

    Antimicrobial susceptibility testing is recommended to determine which antimicrobial agents should be considered for treating a bacterial pathogen. Many bacteria that cause disease in aquatic animals require growth conditions that vary substantially from routine terrestrial pathogens. It has thus ...

  15. Chemical composition and antimicrobial activity of Cymbopogon nardus citronella essential oil against systemic bacteria of aquatic animals.

    PubMed

    Wei, Lee Seong; Wee, Wendy

    2013-06-01

    This paper describes chemical composition and antimicrobial activity of Cymbopogon nardus citronella essential oil against Edwardsiella spp. (n = 21), Vibrio spp. (n = 6), Aeromonas spp. (n = 2), Escherichia coli (n = 2), Salmonella spp. (n = 2), Flavobacterium spp. (n = 1), Pseudomonas spp. (n = 1) and Streptococcus spp. (n = 1) isolated from internal organs of aquatic animals. Due to the ban of antibiotics for aquaculture use, this study was carried out to evaluate the potential of citronella essential oil as alternative to commercial antibiotic use against systemic bacteria in cultured aquatic animals. The essential oil of C. nardus was prepared by using the steam distillation method and the chemical composition of the essential oil was analyzed by gas chromatography-mass spectroscopy (GC-MS). Minimum inhibitory concentration (MIC) of the essential oil tested against bacterial isolates from various aquatic animals and ATCC type strains were determined using two-fold broth micro dilution method with kanamycin and eugenol as positive controls. A total of 22 chemical compounds were detected in C. nardus essential oil with 6-octenal, 3, 7-dimethyl- or citronellal representing the major compounds (29.6%). The MIC values of the citronella oil ranged from 0.244 µg/ml to 0.977 µg/ml when tested against the bacterial isolates. The results of the present study revealed the potential of C. nardus essential oil as alternative to commercial antibiotics for aquaculture use.

  16. Modeling Aquatic Toxicity through Chromatographic Systems.

    PubMed

    Fernández-Pumarega, Alejandro; Amézqueta, Susana; Farré, Sandra; Muñoz-Pascual, Laura; Abraham, Michael H; Fuguet, Elisabet; Rosés, Martí

    2017-08-01

    Environmental risk assessment requires information about the toxicity of the growing number of chemical products coming from different origins that can contaminate water and become toxicants to aquatic species or other living beings via the trophic chain. Direct toxicity measurements using sensitive aquatic species can be carried out but they may become expensive and ethically questionable. Literature refers to the use of chromatographic measurements that correlate to the toxic effect of a compound over a specific aquatic species as an alternative to get toxicity information. In this work, we have studied the similarity in the response of the toxicity to different species and we have selected eight representative aquatic species (including tadpoles, fish, water fleas, protozoan, and bacteria) with known nonspecific toxicity to chemical substances. Next, we have selected four chromatographic systems offering good perspectives for surrogation of the eight selected aquatic systems, and thus prediction of toxicity from the chromatographic measurement. Then toxicity has been correlated to the chromatographic retention factor. Satisfactory correlation results have been obtained to emulate toxicity in five of the selected aquatic species through some of the chromatographic systems. Other aquatic species with similar characteristics to these five representative ones could also be emulated by using the same chromatographic systems. The final aim of this study is to model chemical products toxicity to aquatic species by means of chromatographic systems to reduce in vivo testing.

  17. Submersed Aquatic Vegetation Modeling Output Online

    USGS Publications Warehouse

    Yin, Yao; Rogala, Jim; Sullivan, John; Rohweder, Jason J.

    2005-01-01

    Introduction The ability to predict the distribution of submersed aquatic vegetation in the Upper Mississippi River on the basis of physical or chemical variables is useful to resource managers. Wildlife managers have a keen interest in advanced estimates of food quantity such as American wildcelery (Vallisneria americana) population status to give out more informed advisories to hunters before the fall hunting season. Predictions for distribution of submerged aquatic vegetation beds can potentially increase hunter observance of voluntary avoidance zones where foraging birds are left alone to feed undisturbed. In years when submersed aquatic vegetation is predicted to be scarce in important wildlife habitats, managers can get the message out to hunters well before the hunting season (Jim Nissen, Upper Mississippi River National Wildlife and Fish Refuge, La Crosse District Manager, La Crosse, Wisconsin, personal communication). We developed a statistical model to predict the probability of occurrence of submersed aquatic vegetation in Pool 8 of the Upper Mississippi River on the basis of a few hydrological, physical, and geomorphic variables. Our model takes into consideration flow velocity, wind fetch, bathymetry, growing-season daily water level, and light extinction coefficient in the river (fig. 1) and calculates the probability of submersed aquatic vegetation existence in Pool 8 in individual 5- x 5-m grid cells. The model was calibrated using the data collected in 1998 (516 sites), 1999 (595 sites), and 2000 (649 sites) using a stratified random sampling protocol (Yin and others, 2000b). To validate the model, we chose the data from the Long Term Resource Monitoring Program (LTRMP) transect sampling in backwater areas (Rogers and Owens 1995; Yin and others, 2000a) and ran the model for each 5- x 5-m grid cell in every growing season from 1991 to 2001. We tallied all the cells and came up with an annual average percent frequency of submersed aquatic vegetation

  18. Environmental dermatology: skin manifestations of injuries caused by invertebrate aquatic animals*

    PubMed Central

    Haddad Junior, Vidal

    2013-01-01

    Contact between humans and coastal areas has increased in recent decades, which has led to an increase in injuries from aquatic animals. The majority of these present dermatological manifestations, and some of them show typical lesions. The highest percentages of injuries that occur in marine environments are associated with invertebrates such as sea urchins, jellyfish and Portuguese men-of-war (echinoderms and cnidarians). In this review, we discuss the clinical, therapeutic and preventive aspects of injuries caused by marine and freshwater invertebrates, focusing on first aid measures and diagnosis for dermatologists and professionals in coastal areas. PMID:24068119

  19. Chemical composition and antimicrobial activity of Cymbopogon nardus citronella essential oil against systemic bacteria of aquatic animals

    PubMed Central

    Wei, Lee Seong; Wee, Wendy

    2013-01-01

    Background & Objectives This paper describes chemical composition and antimicrobial activity of Cymbopogon nardus citronella essential oil against Edwardsiella spp. (n = 21), Vibrio spp. (n = 6), Aeromonas spp. (n = 2), Escherichia coli (n = 2), Salmonella spp. (n = 2), Flavobacterium spp. (n = 1), Pseudomonas spp. (n = 1) and Streptococcus spp. (n = 1) isolated from internal organs of aquatic animals. Due to the ban of antibiotics for aquaculture use, this study was carried out to evaluate the potential of citronella essential oil as alternative to commercial antibiotic use against systemic bacteria in cultured aquatic animals. Materials & Methods The essential oil of C. nardus was prepared by using the steam distillation method and the chemical composition of the essential oil was analyzed by gas chromatography–mass spectroscopy (GC–MS). Minimum inhibitory concentration (MIC) of the essential oil tested against bacterial isolates from various aquatic animals and ATCC type strains were determined using two-fold broth micro dilution method with kanamycin and eugenol as positive controls. Results A total of 22 chemical compounds were detected in C. nardus essential oil with 6-octenal, 3, 7-dimethyl- or citronellal representing the major compounds (29.6%). The MIC values of the citronella oil ranged from 0.244 µg/ml to 0.977 µg/ml when tested against the bacterial isolates. Conclusion The results of the present study revealed the potential of C. nardus essential oil as alternative to commercial antibiotics for aquaculture use. PMID:23825733

  20. Aquatic prey capture in snakes: the link between morphology, behavior and hydrodynamics

    NASA Astrophysics Data System (ADS)

    Segall, Marion; Herrel, Anthony; Godoy-Diana, Ramiro; Funevol Team; Pmmh Team

    2017-11-01

    Natural selection favors animals that are the most successful in their fitness-related behaviors, such as foraging. Secondary adaptations pose the problem of re-adapting an already 'hypothetically optimized' phenotype to new constraints. When animals forage underwater, they face strong physical constraints, particularly when capturing a prey. The capture requires the predator to be fast and to generate a high acceleration to catch the prey. This involves two main constraints due to the surrounding fluid: drag and added mass. Both of these constraints are related to the shape of the animal. We experimentally explore the relationship between shape and performance in the context of an aquatic strike. As a model, we use 3D-printed snake heads of different shapes and frontal strike kinematics based on in vivo observations. By using direct force measurements, we compare the drag and added mass generated by aquatic and non-aquatic snake models during a strike. Our results show that drag is optimized in aquatic snakes. Added mass appears less important than drag for snakes during an aquatic strike. The flow features associated to the hydrodynamic forces measured allows us to propose a mechanism rendering the shape of the head of aquatic snakes well adapted to catch prey underwater. Region Ile de France and the doctoral school Frontieres du Vivant (FdV) - Programme Bettencourt.

  1. Remote in vivo stress assessment of aquatic animals with microencapsulated biomarkers for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Gurkov, Anton; Shchapova, Ekaterina; Bedulina, Daria; Baduev, Boris; Borvinskaya, Ekaterina; Meglinski, Igor; Timofeyev, Maxim

    2016-11-01

    Remote in vivo scanning of physiological parameters is a major trend in the development of new tools for the fields of medicine and animal physiology. For this purpose, a variety of implantable optical micro- and nanosensors have been designed for potential medical applications. At the same time, the important area of environmental sciences has been neglected in the development of techniques for remote physiological measurements. In the field of environmental monitoring and related research, there is a constant demand for new effective and quick techniques for the stress assessment of aquatic animals, and the development of proper methods for remote physiological measurements in vivo may significantly increase the precision and throughput of analyses in this field. In the present study, we apply pH-sensitive microencapsulated biomarkers to remotely monitor the pH of haemolymph in vivo in endemic amphipods from Lake Baikal, and we compare the suitability of this technique for stress assessment with that of common biochemical methods. For the first time, we demonstrate the possibility of remotely detecting a change in a physiological parameter in an aquatic organism under ecologically relevant stressful conditions and show the applicability of techniques using microencapsulated biomarkers for remote physiological measurements in environmental monitoring.

  2. Does aquatic foraging impact head shape evolution in snakes?

    PubMed

    Segall, Marion; Cornette, Raphaël; Fabre, Anne-Claire; Godoy-Diana, Ramiro; Herrel, Anthony

    2016-08-31

    Evolutionary trajectories are often biased by developmental and historical factors. However, environmental factors can also impose constraints on the evolutionary trajectories of organisms leading to convergence of morphology in similar ecological contexts. The physical properties of water impose strong constraints on aquatic feeding animals by generating pressure waves that can alert prey and potentially push them away from the mouth. These hydrodynamic constraints have resulted in the independent evolution of suction feeding in most groups of secondarily aquatic tetrapods. Despite the fact that snakes cannot use suction, they have invaded the aquatic milieu many times independently. Here, we test whether the aquatic environment has constrained head shape evolution in snakes and whether shape converges on that predicted by biomechanical models. To do so, we used three-dimensional geometric morphometrics and comparative, phylogenetically informed analyses on a large sample of aquatic snake species. Our results show that aquatic snakes partially conform to our predictions and have a narrower anterior part of the head and dorsally positioned eyes and nostrils. This morphology is observed, irrespective of the phylogenetic relationships among species, suggesting that the aquatic environment does indeed drive the evolution of head shape in snakes, thus biasing the evolutionary trajectory of this group of animals. © 2016 The Author(s).

  3. Does aquatic foraging impact head shape evolution in snakes?

    PubMed Central

    Cornette, Raphaël; Fabre, Anne-Claire; Godoy-Diana, Ramiro; Herrel, Anthony

    2016-01-01

    Evolutionary trajectories are often biased by developmental and historical factors. However, environmental factors can also impose constraints on the evolutionary trajectories of organisms leading to convergence of morphology in similar ecological contexts. The physical properties of water impose strong constraints on aquatic feeding animals by generating pressure waves that can alert prey and potentially push them away from the mouth. These hydrodynamic constraints have resulted in the independent evolution of suction feeding in most groups of secondarily aquatic tetrapods. Despite the fact that snakes cannot use suction, they have invaded the aquatic milieu many times independently. Here, we test whether the aquatic environment has constrained head shape evolution in snakes and whether shape converges on that predicted by biomechanical models. To do so, we used three-dimensional geometric morphometrics and comparative, phylogenetically informed analyses on a large sample of aquatic snake species. Our results show that aquatic snakes partially conform to our predictions and have a narrower anterior part of the head and dorsally positioned eyes and nostrils. This morphology is observed, irrespective of the phylogenetic relationships among species, suggesting that the aquatic environment does indeed drive the evolution of head shape in snakes, thus biasing the evolutionary trajectory of this group of animals. PMID:27581887

  4. Nitrous oxide emission by aquatic macrofauna

    PubMed Central

    Stief, Peter; Poulsen, Morten; Nielsen, Lars Peter; Brix, Hans; Schramm, Andreas

    2009-01-01

    A large variety of aquatic animals was found to emit the potent greenhouse gas nitrous oxide when nitrate was present in the environment. The emission was ascribed to denitrification by ingested bacteria in the anoxic animal gut, and the exceptionally high N2O-to-N2 production ratio suggested delayed induction of the last step of denitrification. Filter- and deposit-feeding animal species showed the highest rates of nitrous oxide emission and predators the lowest, probably reflecting the different amounts of denitrifying bacteria in the diet. We estimate that nitrous oxide emission by aquatic animals is quantitatively important in nitrate-rich aquatic environments like freshwater, coastal marine, and deep-sea ecosystems. The contribution of this source to overall nitrous oxide emission from aquatic environments might further increase because of the projected increase of nitrate availability in tropical regions and the numeric dominance of filter- and deposit-feeders in eutrophic ecosystems. PMID:19255427

  5. Life support for aquatic species - past; present; future

    NASA Astrophysics Data System (ADS)

    Slenzka, K.

    Life Support is a basic issue since manned space flight began. Not only to support astronauts and cosmonauts with the essential things to live, however, also animals which were carried for research to space etc together with men need support systems to survive under space conditions. Most of the animals transported to space participate at the life support system of the spacecraft. However, aquatic species live in water as environment and thus need special developments. Research with aquatic animals has a long tradition in manned space flight resulting in numerous life support systems for them starting with simple plastic bags up to complex support hardware. Most of the recent developments have to be identified as part of a technological oriented system and can be described as small technospheres. As the importance arose to study our Earth as the extraordinary Biosphere we live in, the modeling of small ecosystems began as part of ecophysiological research. In parallel the investigations of Bioregenerative Life Support Systems were launched and identified as necessity for long-term space missions or traveling to Moon and Mars and beyond. This paper focus on previous developments of Life Support Systems for aquatic animals and will show future potential developments towards Bioregenerative Life Support which additionally strongly benefits to our Earth's basic understanding.

  6. Design standards for experimental and field studies to evaluate diagnostic accuracy of tests for infectious diseases in aquatic animals.

    PubMed

    Laurin, E; Thakur, K K; Gardner, I A; Hick, P; Moody, N J G; Crane, M S J; Ernst, I

    2018-05-01

    Design and reporting quality of diagnostic accuracy studies (DAS) are important metrics for assessing utility of tests used in animal and human health. Following standards for designing DAS will assist in appropriate test selection for specific testing purposes and minimize the risk of reporting biased sensitivity and specificity estimates. To examine the benefits of recommending standards, design information from published DAS literature was assessed for 10 finfish, seven mollusc, nine crustacean and two amphibian diseases listed in the 2017 OIE Manual of Diagnostic Tests for Aquatic Animals. Of the 56 DAS identified, 41 were based on field testing, eight on experimental challenge studies and seven on both. Also, we adapted human and terrestrial-animal standards and guidelines for DAS structure for use in aquatic animal diagnostic research. Through this process, we identified and addressed important metrics for consideration at the design phase: study purpose, targeted disease state, selection of appropriate samples and specimens, laboratory analytical methods, statistical methods and data interpretation. These recommended design standards for DAS are presented as a checklist including risk-of-failure points and actions to mitigate bias at each critical step. Adherence to standards when designing DAS will also facilitate future systematic review and meta-analyses of DAS research literature. © 2018 John Wiley & Sons Ltd.

  7. Animal protein production modules in biological life support systems: Novel combined aquaculture techniques based on the closed equilibrated biological aquatic system (C.E.B.A.S.)

    NASA Astrophysics Data System (ADS)

    Blüm, V.; Andriske, M.; Kreuzberg, K.; Schreibman, M. P.

    Based on the experiences made with the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) which was primarily deveoloped for long-term and multi-generation experiments with aquatic animals and plants in a space station highly effective fresh water recycling modules were elaborated utilizing a combination of ammonia oxidizing bacteria filters and higher plants. These exhibit a high effectivity to eliminate phosphate and anorganic nitrogen compounds and arc. in addidition. able to contribute to the oxygen supply of the aquatic animals. The C.E.B.A.S. filter system is able to keep a closed artificial aquatic ecosystem containing teleost fishes and water snails biologically stable for several month and to eliminate waste products deriving from degraded dead fishes without a decrease of the oxygen concentration down to less than 3.5 mg/l at 25 °C. More advanced C.E.B.A.S. filter systems, the BIOCURE filters, were also developed for utilization in semiintensive and intensive aquaculture systems for fishes. In fact such combined animal-plant aquaculture systems represent highly effective productions sites for human food if proper plant and fish species are selected The present papers elucidates ways to novel aquaculture systems in which herbivorous fishes are raised by feeding them with plant biomass produced in the BIOCURE filters and presents the scheme of a modification which utilizes a plant species suitable also for human nutrition. Special attention is paid to the benefits of closed aquaculture system modules which may be integrated into bioregenerative life support systems of a higher complexity for, e. g.. lunar or planetary bases including some psychologiccal aspects of the introduction of animal protein production into plant-based life support systems. Moreover, the basic reproductive biological problems of aquatic animal breeding under reduced gravity are explained leading to a disposition of essential research programs in this context.

  8. Quantitative polymerase chain reaction (PCR) for detection of aquatic animal pathogens in a diagnostic laboratory setting

    USGS Publications Warehouse

    Purcell, Maureen K.; Getchell, Rodman G.; McClure, Carol A.; Weber, S.E.; Garver, Kyle A.

    2011-01-01

    Real-time, or quantitative, polymerase chain reaction (qPCR) is quickly supplanting other molecular methods for detecting the nucleic acids of human and other animal pathogens owing to the speed and robustness of the technology. As the aquatic animal health community moves toward implementing national diagnostic testing schemes, it will need to evaluate how qPCR technology should be employed. This review outlines the basic principles of qPCR technology, considerations for assay development, standards and controls, assay performance, diagnostic validation, implementation in the diagnostic laboratory, and quality assurance and control measures. These factors are fundamental for ensuring the validity of qPCR assay results obtained in the diagnostic laboratory setting.

  9. Established and potential physiological roles of bicarbonate-sensing soluble adenylyl cyclase (sAC) in aquatic animals

    PubMed Central

    Tresguerres, Martin; Barott, Katie L.; Barron, Megan E.; Roa, Jinae N.

    2014-01-01

    Soluble adenylyl cyclase (sAC) is a recently recognized source of the signaling molecule cyclic AMP (cAMP) that is genetically and biochemically distinct from the classic G-protein-regulated transmembrane adenylyl cyclases (tmACs). Mammalian sAC is distributed throughout the cytoplasm and it may be present in the nucleus and inside mitochondria. sAC activity is directly stimulated by HCO3−, and sAC has been confirmed to be a HCO3− sensor in a variety of mammalian cell types. In addition, sAC can functionally associate with carbonic anhydrases to act as a de facto sensor of pH and CO2. The two catalytic domains of sAC are related to HCO3−-regulated adenylyl cyclases from cyanobacteria, suggesting the cAMP pathway is an evolutionarily conserved mechanism for sensing CO2 levels and/or acid/base conditions. Reports of sAC in aquatic animals are still limited but are rapidly accumulating. In shark gills, sAC senses blood alkalosis and triggers compensatory H+ absorption. In the intestine of bony fishes, sAC modulates NaCl and water absorption. And in sea urchin sperm, sAC may participate in the initiation of flagellar movement and in the acrosome reaction. Bioinformatics and RT-PCR results reveal that sAC orthologs are present in most animal phyla. This review summarizes the current knowledge on the physiological roles of sAC in aquatic animals and suggests additional functions in which sAC may be involved. PMID:24574382

  10. Novel aquatic modules for bioregenerative life-support systems based on the closed equilibrated biological aquatic system (c.e.b.a.s.)

    NASA Astrophysics Data System (ADS)

    Bluem, Volker; Paris, Frank

    2002-06-01

    The closed equilibrated biological aquatic system (C.E.B.A.S) is a man-made aquatic ecosystem which consists of four subcomponents: an aquatic animal habitat, an aquatic plant bioreactor, an ammonia oxidizing bacteria filter and a data acquisition/control unit. It is a precursor for different types of fish and aquatic plant production sites which are disposed for the integration into bioregenerative life-support systems. The results of two successful spaceflights of a miniaturized C.E.B.A.S version (the C.E.B.A.S. MINI MODULE) allow the optimization of aquatic food production systems which are already developed in the ground laboratory and open new aspects for their utilization as aquatic modules in space bioregenerative life support systems. The total disposition offers different stages of complexity of such aquatic modules starting with simple but efficient aquatic plant cultivators which can be implemented into water recycling systems and ending up in combined plant/fish aquaculture in connection with reproduction modules and hydroponics applications for higher land plants. In principle, aquaculture of fishes and/or other aquatic animals edible for humans offers optimal animal protein production under lowered gravity conditions without the tremendous waste management problems connected with tetrapod breeding and maintenance. The paper presents details of conducted experimental work and of future dispositions which demonstrate clearly that aquaculture is an additional possibility to combine efficient and simple food production in space with water recycling utilizing safe and performable biotechnologies. Moreover, it explains how these systems may contribute to more variable diets to fulfill the needs of multicultural crews.

  11. Urban Runoff: Model Ordinances for Aquatic Buffers

    EPA Pesticide Factsheets

    Aquatic Buffers serve as natural boundaries between local waterways and existing development. The model and example ordinaces below provide suggested language or technical guidance designed to create the most effective stream buffer zones possible.

  12. Trypanocidal and leishmanicidal activities of different antimicrobial peptides (AMPs) isolated from aquatic animals.

    PubMed

    Löfgren, S E; Miletti, L C; Steindel, M; Bachère, E; Barracco, M A

    2008-02-01

    Most of the available animal antimicrobial peptides (AMPs) have been tested against bacteria and fungi, but very few against protozoan parasites. In the present study, we investigated the antiparasitic activity of different AMPs isolated from aquatic animals: tachyplesin (Tach, from Tachypleus tridentatus), magainin (Mag, from Xenopus laevis), clavanin (Clav, from Styela clava), penaeidin (Pen, from Litopenaeus vannamei), mytilin (Myt, from Mytilus edulis) and anti-lipopolysaccharide factor (ALF, from Penaeus monodon). The antiparasitic activity was evaluated against the promastigote form of Leishmania braziliensis and epi and trypomastigote forms of Trypanosoma cruzi, through the MTT method. Tach was the most potent peptide, killing completely L. braziliensis and trypomastigote T. cruzi from 12.5microM, whereas Pen and Clav were weakly active against trypomastigotes and Myt against L. braziliensis, only at a high concentration (100microM). Tach and Mag were markedly hemolytic at high concentrations, whereas the other peptides caused only a slight hemolysis (<10% up to 50microM). Our results point to Tach as the only potential candidate for further investigation and potential application as a therapeutic agent.

  13. Project WILD: Aquatic Education Activity Guide.

    ERIC Educational Resources Information Center

    Memphis State Univ., TN. Tennessee Administrative Software Clearinghouse.

    Project WILD is an interdisciplinary, supplementary environmental and conservation education program which emphasizes wildlife. This document is one guide developed by Project WILD with the specific purpose of focusing on aquatic wildlife, or any wild animals that depend upon aquatic environments for survival. The book contains instructional…

  14. The National Nonindigenous Aquatic Species Database

    USGS Publications Warehouse

    Neilson, Matthew E.; Fuller, Pamela L.

    2012-01-01

    The U.S. Geological Survey (USGS) Nonindigenous Aquatic Species (NAS) Program maintains a database that monitors, records, and analyzes sightings of nonindigenous aquatic plant and animal species throughout the United States. The program is based at the USGS Wetland and Aquatic Research Center in Gainesville, Florida.The initiative to maintain scientific information on nationwide occurrences of nonindigenous aquatic species began with the Aquatic Nuisance Species Task Force, created by Congress in 1990 to provide timely information to natural resource managers. Since then, the NAS database has been a clearinghouse of information for confirmed sightings of nonindigenous, also known as nonnative, aquatic species throughout the Nation. The database is used to produce email alerts, maps, summary graphs, publications, and other information products to support natural resource managers.

  15. 'Every mother is a mini-doctor': ethnomedicinal uses of fish, shellfish and some other aquatic animals in Bangladesh.

    PubMed

    Deb, Apurba Krishna; Emdad Haque, C

    2011-03-24

    This research article examines the zootherapeutic uses of fish, shellfish and some other aquatic animals in two fishing villages in Bangladesh-one floodplain and one coastal. The floodplain fishing village Volarkandi is located within the Hakaluki wetland ecosystem in the northern Bangladesh and is inhabited mostly by Muslim fishers, whereas the coastal fishing village Thakurtala is located on Moheskhali island and most of the inhabitants are caste-based Hindu fishers. Participatory techniques were used to collect and validate information from the key informants. The research revealed that, historically, fishers have used fish and other aquatic animals not only as food items for nutrition, but also to solve a host of physical problems and diseases. Fish and shellfish are widely used for their galactogogue and aphrodisiac properties, for quick recovery from long-time sickness, to enhance the 'intelligence level' of children, and to prevent and treat a host of diseases like night blindness, chicken pox, dysentery, piles, muscular inflammation, fistula, malaria, skin diseases and 'big belly' syndrome in children. Depending on the objective of the use, different parts of the animal body, its derivatives, or the whole animal are used. The research also clarified different forms of the recipes used. The socio-cultural construction of the ethnomedicinal uses and the distinct gender roles of the fisherwomen were analyzed. The research revealed that the aetiologies and the preventive measures against folk illness are socio-culturally embedded and such indigenous medical systems grow and are sustained as a situated body of knowledge within the boundaries of a typical world view framed by local culture and biodiversity. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Aquatic Acoustic Metrics Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-12-18

    Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR) devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. The new Aquatic Acoustic Metrics Interface Utility Software (AAMI) is specifically designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals.more » In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame.« less

  17. Exposure assessment of veterinary medicines in aquatic systems

    USGS Publications Warehouse

    Metcalfe, Chris; Boxall, Alistair; Fenner, Kathrin; Kolpin, Dana W.; Silberhorn, Eric; Staveley, Jane

    2008-01-01

    The release of veterinary medicines into the aquatic environment may occur through direct or indirect pathways. An example of direct release is the use of medicines in aquaculture (Armstrong et al. 2005; Davies et al. 1998), where chemicals used to treat fish are added directly to water. Indirect releases, in which medicines make their way to water through transport from other matrices, include the application of animal manure to land or direct excretion of residues onto pasture land, from which the therapeutic chemicals may be transported into the aquatic environment (Jørgensen and Halling-Sørensen 2000; Boxall et al. 2003, 2004). Veterinary medicines used to treat companion animals may also be transported into the aquatic environment through disposal of unused medicines, veterinary waste, or animal carcasses (Daughton and Ternes 1999, Boxall et al. 2004). The potential for a veterinary medicine to be released to the aquatic environment will be determined by several different criteria, including the method of treatment, agriculture or aquaculture practices, environmental conditions, and the properties of the veterinary medicine.

  18. Mapping, Monitoring and Modeling Submersed Aquatic Vegetation Species and Communities

    NASA Astrophysics Data System (ADS)

    Hartis, Brett Michael

    Aquatic macrophyte communities are critically important habitat species in aquatic systems worldwide. None are more important than those found beneath the water's surface, commonly referred to as submersed aquatic vegetation (SAV). Although vital to such systems, many native submersed plants have shown near irreversible declines in recent decades as water quality impairment, habitat destruction, and encroachment by invasive species have increased. In the past, aquatic plant science has emphasized the restoration and protection of native species and the management of invasive species. Comparatively little emphasis has been directed toward adequately mapping and monitoring these resources to track their viability over time. Modeling the potential intrusion of certain invasive plant species has also been given little attention, likely because aquatic systems in general can be difficult to assess. In recent years, scientists and resource managers alike have begun paying more attention to mapping SAV communities and to address the spread of invasive species across various regions. This research attempts to provide new, cutting-edge techniques to improve SAV mapping and monitoring efforts in coastal regions, at both community and individual species levels, while also providing insights about the establishment potential of Hydrilla verticillata, a noxious, highly invasive submersed plant. Technological advances in satellite remote sensing, interpolation and spatial analysis in geographic information systems, and state-of-the-art climate envelope modeling techniques were used to further assess the dynamic nature of SAV on various scales. This work contributes to the growing science of mapping, monitoring, and modeling of SAV

  19. A multiple testing approach for hazard evaluation of complex mixtures in the aquatic environment: the use of diesel oil as a model

    USGS Publications Warehouse

    Johnson, B. Thomas

    1989-01-01

    Traditional single species toxicity tests and multiple component laboratory-scaled microcosm assays were combined to assess the toxicological hazard of diesel oil, a model complex mixture, to a model aquatic environment. The immediate impact of diesel oil dosed on a freshwater community was studied in a model pond microcosm over 14 days: a 7-day dosage and a 7-day recovery period. A multicomponent laboratory microcosm was designed to monitor the biological effects of diesel oil (1·0 mg litre−1) on four components: water, sediment (soil + microbiota), plants (aquatic macrophytes and algae), and animals (zooplanktonic and zoobenthic invertebrates). To determine the sensitivity of each part of the community to diesel oil contamination and how this model community recovered when the oil dissipated, limnological, toxicological, and microbiological variables were considered. Our model revealed these significant occurrences during the spill period: first, a community production and respiration perturbation, characterized in the water column by a decrease in dissolved oxygen and redox potential and a concomitant increase in alkalinity and conductivity; second, marked changes in microbiota of sediments that included bacterial heterotrophic dominance and a high heterotrophic index (0·6), increased bacterial productivity, and the marked increases in numbers of saprophytic bacteria (10 x) and bacterial oil degraders (1000 x); and third, column water acutely toxic (100% mortality) to two model taxa: Selenastrum capricornutum and Daphnia magna. Following the simulated clean-up procedure to remove the oil slick, the recovery period of this freshwater microcosm was characterized by a return to control values. This experimental design emphasized monitoring toxicological responses in aquatic microcosm; hence, we proposed the term ‘toxicosm’ to describe this approach to aquatic toxicological hazard evaluation. The toxicosm as a valuable toxicological tool for screening

  20. Tropical dermatology: marine and aquatic dermatology.

    PubMed

    Haddad, Vidal; Lupi, Omar; Lonza, Juan Pedro; Tyring, Stephen K

    2009-11-01

    Dermatoses caused by marine organisms are frequently seen in dermatology clinics worldwide. Cutaneous injuries after exposure to marine environments include bacterial and fungal infections and lesions caused by aquatic plants and protists. Some of these diseases are well known by dermatologists, such as Vibrio vulnificus septicemia and erysipeloid, but others are uncommon, such as envenomation caused by ingestion or contact with certain dinoflagellates or cyanobacteria, which are associated with rashes that can begin within minutes after exposure. Many marine/aquatic invertebrates, such as sponges, cnidarians, echinoderms, crustaceans, and mollusks, are associated with different kinds of dermatologic lesions that can vary from irritant or allergic contact dermatitis to physical trauma and envenomations. These cutaneous lesions may result in mild local reactions or can be associated with severe systemic reactions. Invertebrate animals, such as cnidarians, sea urchins, and worms, and aquatic vertebrates, such as venomous fishes and stingrays, are commonly associated with skin lesions in many countries, where they can constitute occupational dermatoses among fishermen and scuba divers, but they can also be observed among persons who contact these animals in kitchens or beaches. The presence of unusual lesions, a recent travel history, and/or a report of contact with an aquatic environment (including ownership of a marine or freshwater aquarium) should alert the dermatologist to the etiology of the cutaneous problems. After completing this learning activity, participants should be able to recognize the cutaneous manifestations of marine/aquatic infections, bites, stings, and wounds, etc., treat the cutaneous manifestations of marine/aquatic injuries, and help prevent marine/aquatic injuries.

  1. Residues, bioaccumulations and biomagnification of perfluoroalkyl acids (PFAAs) in aquatic animals from Lake Chaohu, China.

    PubMed

    Liu, Wenxiu; He, Wei; Wu, Jingyi; Qin, Ning; He, Qishuang; Xu, Fuliu

    2018-05-12

    Residual levels of perfluoroalkyl acids (PFAAs) in seven species of aquatic animals were analyzed by liquid chromatography-mass spectrometry. The distribution, composition, bioaccumulation, and biomagnification of PFAAs and their effect factors were studied. The results showed that: 1) Wet weight concentrations of 17 PFAAs in the aquatic animals ranged from 1.77 to 38.65 ng/g, with a mean value of 12.71 ± 9.21 ng/g. PFOS was the predominant contaminant (4.57 ± 4.57 ng/g, 6.76%-46.25%), followed by PFDA (1.95 ± 1.37 ng/g, 11.68%-21.25%) and PFUdA (1.84 ± 1.21 ng/g, 9.73%-35.34%. 2) PFAA residual levels in Culter erythropterus (30.98 ± 6.65 ng/g) were the highest, followed by Hemibarbus maculatus (16.79 ± 1.88 ng/g), while the PFAA levels in Carassius auratus were the lowest (2.22 ± 0.60 ng/g). 3) Biota-water bioaccumulation factors (BAFs), biota-suspended solid accumulation factors (BSSAFs) and biota-sediment accumulation factors (BSAFs) ranged from 0.35 to 12,370.51, 7.77 to 8452.92 and 9.10 to 6984.61, respectively. Bioaccumulation by shrimp and snails was significantly affected by Kow. 4) Food web magnification factors were greater than 1, indicating that biomagnification of PFAAs occurs across trophic levels. The bioaccumulation and biomagnification of PFAAs were significantly correlated with carbon chain length. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Injuries caused by aquatic animals in Brazil: an analysis of the data present in the information system for notifiable diseases.

    PubMed

    Reckziegel, Guilherme Carneiro; Dourado, Flávio Santos; Garrone Neto, Domingos; Haddad Junior, Vidal

    2015-01-01

    We present a review of injuries in humans caused by aquatic animals in Brazil using the Information System for Notifiable Diseases [ Sistema de Informação de Agravos de Notificação (SINAN)] database. A descriptive and retrospective epidemiological study was conducted from 2007 to 2013. A total of 4,118 accidents were recorded. Of these accidents, 88.7% (3,651) were caused by venomous species, and 11.3% (467) were caused by poisonous, traumatic or unidentified aquatic animals. Most of the events were injuries by stingrays (69%) and jellyfish (13.1%). The North region was responsible for the majority of reports (66.2%), with a significant emphasis on accidents caused by freshwater stingrays (92.2% or 2,317 cases). In the South region, the region with the second highest number of records (15.7%), jellyfish caused the majority of accidents (83.7% or 452 cases). The Northeastern region, with 12.5% of the records, was notable because almost all accidents were caused by toadfish (95.6% or 174 cases). Although a comparison of different databases has not been performed, the data presented in this study, compared to local and regional surveys, raises the hypothesis of underreporting of accidents. As the SINAN is the official system for the notification of accidents by venomous animals in Brazil, it is imperative that its operation be reviewed and improved, given that effective measures to prevent accidents by venomous animals depend on a reliable database and the ability to accurately report the true conditions.

  3. Public lakes, private lakeshore: Modeling protection of native aquatic plants

    USGS Publications Warehouse

    Schroeder, Susan A.; Fulton, David C.

    2013-01-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221–279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey (n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners’ behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property.

  4. Public Lakes, Private Lakeshore: Modeling Protection of Native Aquatic Plants

    NASA Astrophysics Data System (ADS)

    Schroeder, Susan A.; Fulton, David C.

    2013-07-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221-279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey ( n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners' behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property.

  5. [A process of aquatic ecological function regionalization: The dual tree framework and conceptual model].

    PubMed

    Guo, Shu Hai; Wu, Bo

    2017-12-01

    Aquatic ecological regionalization and aquatic ecological function regionalization are the basis of water environmental management of a river basin and rational utilization of an aquatic ecosystem, and have been studied in China for more than ten years. Regarding the common problems in this field, the relationship between aquatic ecological regionalization and aquatic ecological function regionalization was discussed in this study by systematic analysis of the aquatic ecological zoning and the types of aquatic ecological function. Based on the dual tree structure, we put forward the RFCH process and the diamond conceptual model. Taking Liaohe River basin as an example and referring to the results of existing regionalization studies, we classified the aquatic ecological function regions based on three-class aquatic ecological regionalization. This study provided a process framework for aquatic ecological function regionalization of a river basin.

  6. Responses of Aquatic Plants to Eutrophication in Rivers: A Revised Conceptual Model

    PubMed Central

    O’Hare, Matthew T.; Baattrup-Pedersen, Annette; Baumgarte, Inga; Freeman, Anna; Gunn, Iain D. M.; Lázár, Attila N.; Sinclair, Raeannon; Wade, Andrew J.; Bowes, Michael J.

    2018-01-01

    Compared to research on eutrophication in lakes, there has been significantly less work carried out on rivers despite the importance of the topic. However, over the last decade, there has been a surge of interest in the response of aquatic plants to eutrophication in rivers. This is an area of applied research and the work has been driven by the widespread nature of the impacts and the significant opportunities for system remediation. A conceptual model has been put forward to describe how aquatic plants respond to eutrophication. Since the model was created, there have been substantial increases in our understanding of a number of the underlying processes. For example, we now know the threshold nutrient concentrations at which nutrients no longer limit algal growth. We also now know that the physical habitat template of rivers is a primary selector of aquatic plant communities. As such, nutrient enrichment impacts on aquatic plant communities are strongly influenced, both directly and indirectly, by physical habitat. A new conceptual model is proposed that incorporates these findings. The application of the model to management, system remediation, target setting, and our understanding of multi-stressor systems is discussed. We also look to the future and the potential for new numerical models to guide management. PMID:29755484

  7. Eutrophication assessment and bioremediation strategy using seaweeds co-cultured with aquatic animals in an enclosed bay in China.

    PubMed

    Wu, Hailong; Huo, Yuanzi; Hu, Ming; Wei, Zhangliang; He, Peimin

    2015-06-15

    Intensive mariculture results in a rise in nutrient concentrations, then leads to serious eutrophication in coastal waters. Based on the sampling data obtained between August 2012 and July 2013, the eutrophication status in Yantian Bay was assessed, and the proportion of marine animals co-cultured with seaweeds was evaluated. The nutritional quality index (NQI) ranged from 4.37 to 13.20, indicating serious eutrophication conditions. The annual average ratio of nitrogen/phosphorus (N/P) was 25.19, indicating a nitrogen surplus in this system. DIN was selected as the best parameter to balance seaweed absorption and marine animal DIN production. Gracilaria lemaneiformis and Laminaria japonica were selected as co-cultured seaweeds. The optimal proportion of G. lemaneiformis production was assessed as 20074.14 tonnes. The optimal proportion of L. japonica production was evaluated as 15890.68 tonnes. High-temperature adapted seaweeds should be introduced for removing nutrients releasing by farmed aquatic animals in the summer in Yantian Bay. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Effects of Geometry and Kinematics on Animals Leaping Out of Water

    NASA Astrophysics Data System (ADS)

    Chang, Brian; Myeong, Jihye; Virot, Emmanuel; Kim, Ho-Young; Jung, Sunghwan

    2017-11-01

    Leaping out of water is a phenomenon exhibited by a variety of aquatic and semi-aquatic animals, such as frogs and whales. In this study, we aim to elucidate the effects of geometric and kinematic conditions on the propulsive and drag force required for an animal to jump through the water interface. A simple mechanism was designed to measure the propulsive thrust produced by a flapping appendage. In a separate experiment to measure the opposing drag, simplified models of animals are 3D printed and fitted with pressure sensors. The model is accelerated from rest and covers a range of Re from 103 to 105. Using a high-speed camera and pressure sensors, we observed a deformation of the free surface prior to water exit, and correlated this to the drag force. Finally, we discuss a scaling law to describe the general physics which allow animals to leap out of water. NSF EAPSI.

  9. Uncertainty Modeling of Pollutant Transport in Atmosphere and Aquatic Route Using Soft Computing

    NASA Astrophysics Data System (ADS)

    Datta, D.

    2010-10-01

    Hazardous radionuclides are released as pollutants in the atmospheric and aquatic environment (ATAQE) during the normal operation of nuclear power plants. Atmospheric and aquatic dispersion models are routinely used to assess the impact of release of radionuclide from any nuclear facility or hazardous chemicals from any chemical plant on the ATAQE. Effect of the exposure from the hazardous nuclides or chemicals is measured in terms of risk. Uncertainty modeling is an integral part of the risk assessment. The paper focuses the uncertainty modeling of the pollutant transport in atmospheric and aquatic environment using soft computing. Soft computing is addressed due to the lack of information on the parameters that represent the corresponding models. Soft-computing in this domain basically addresses the usage of fuzzy set theory to explore the uncertainty of the model parameters and such type of uncertainty is called as epistemic uncertainty. Each uncertain input parameters of the model is described by a triangular membership function.

  10. Animal models of gastrointestinal and liver diseases. Animal models of acute and chronic pancreatitis

    PubMed Central

    Zhan, Xianbao; Wang, Fan; Bi, Yan

    2016-01-01

    Animal models of pancreatitis are useful for elucidating the pathogenesis of pancreatitis and developing and testing novel interventions. In this review, we aim to summarize the most commonly used animal models, overview their pathophysiology, and discuss their strengths and limitations. We will also briefly describe common animal study procedures and refer readers to more detailed protocols in the literature. Although animal models include pigs, dogs, opossums, and other animals, we will mainly focus on rodent models because of their popularity. Autoimmune pancreatitis and genetically engineered animal models will be reviewed elsewhere. PMID:27418683

  11. Animal models of gastrointestinal and liver diseases. Animal models of acute and chronic pancreatitis.

    PubMed

    Zhan, Xianbao; Wang, Fan; Bi, Yan; Ji, Baoan

    2016-09-01

    Animal models of pancreatitis are useful for elucidating the pathogenesis of pancreatitis and developing and testing novel interventions. In this review, we aim to summarize the most commonly used animal models, overview their pathophysiology, and discuss their strengths and limitations. We will also briefly describe common animal study procedures and refer readers to more detailed protocols in the literature. Although animal models include pigs, dogs, opossums, and other animals, we will mainly focus on rodent models because of their popularity. Autoimmune pancreatitis and genetically engineered animal models will be reviewed elsewhere. Copyright © 2016 the American Physiological Society.

  12. Comparison of digital elevation models for aquatic data development.

    Treesearch

    Sharon Clarke; Kelly Burnett

    2003-01-01

    Thirty-meter digital elevation models (DEMs) produced by the U.S. Geological Survey (USGS) are widely available and commonly used in analyzing aquatic systems. However, these DEMs are of relatively coarse resolution, were inconsistently produced (i.e., Level 1 versus Level 2 DEMs), and lack drainage enforcement. Such issues may hamper efforts to accurately model...

  13. Animal models of addiction

    PubMed Central

    Spanagel, Rainer

    2017-01-01

    In recent years, animal models in psychiatric research have been criticized for their limited translational value to the clinical situation. Failures in clinical trials have thus often been attributed to the lack of predictive power of preclinical animal models. Here, I argue that animal models of voluntary drug intake—under nonoperant and operant conditions—and addiction models based on the Diagnostic and Statistical Manual of Mental Disorders are crucial and informative tools for the identification of pathological mechanisms, target identification, and drug development. These models provide excellent face validity, and it is assumed that the neurochemical and neuroanatomical substrates involved in drug-intake behavior are similar in laboratory rodents and humans. Consequently, animal models of drug consumption and addiction provide predictive validity. This predictive power is best illustrated in alcohol research, in which three approved medications—acamprosate, naltrexone, and nalmefene—were developed by means of animal models and then successfully translated into the clinical situation. PMID:29302222

  14. Risk-based methods for fish and terrestrial animal disease surveillance.

    PubMed

    Oidtmann, Birgit; Peeler, Edmund; Lyngstad, Trude; Brun, Edgar; Bang Jensen, Britt; Stärk, Katharina D C

    2013-10-01

    Over recent years there have been considerable methodological developments in the field of animal disease surveillance. The principles of risk analysis were conceptually applied to surveillance in order to further develop approaches and tools (scenario tree modelling) to design risk-based surveillance (RBS) programmes. In the terrestrial animal context, examples of risk-based surveillance have demonstrated the substantial potential for cost saving, and a similar benefit is expected also for aquatic animals. RBS approaches are currently largely absent for aquatic animal diseases. A major constraint in developing RBS designs in the aquatic context is the lack of published data to assist in the design of RBS: this applies to data on (i) the relative risk of farm sites becoming infected due to the presence or absence of a given risk factor; (ii) the sensitivity of diagnostic tests (specificity is often addressed by follow-up investigation and re-testing and therefore less of a concern); (iii) data on the variability of prevalence of infection for fish within a holding unit, between holding units and at farm level. Another constraint is that some of the most basic data for planning surveillance are missing, e.g. data on farm location and animal movements. In Europe, registration or authorisation of fish farms has only recently become a requirement under EU Directive 2006/88. Additionally, the definition of the epidemiological unit (at site or area level) in the context of aquaculture is a challenge due to the often high level of connectedness (mainly via water) of aquaculture facilities with the aquatic environment. This paper provides a review of the principles, methods and examples of RBS in terrestrial, farmed and wild animals. It discusses the special challenges associated with surveillance for aquatic animal diseases (e.g. accessibility of animals for inspection and sampling, complexity of rearing systems) and provides an overview of current developments relevant

  15. Aquatic toxicity of four veterinary drugs commonly applied in fish farming and animal husbandry.

    PubMed

    Kołodziejska, Marta; Maszkowska, Joanna; Białk-Bielińska, Anna; Steudte, Stephanie; Kumirska, Jolanta; Stepnowski, Piotr; Stolte, Stefan

    2013-08-01

    Doramectin (DOR), metronidazole (MET), florfenicol (FLO), and oxytetracycline (OXT) are among the most widely used veterinary drugs in animal husbandry or in aquaculture. Contamination of the environment by these pharmaceuticals has given cause for concern in recent years. Even though their toxicity has been thoroughly analyzed, knowledge of their ecotoxicity is still limited. We investigated their aquatic toxicity using tests with marine bacteria (Vibrio fischeri), green algae (Scenedesmus vacuolatus), duckweed (Lemna minor) and crustaceans (Daphnia magna). All the ecotoxicological tests were supported by chemical analyses to confirm the exposure concentrations of the pharmaceuticals used in the toxicity experiments, since deviations from the nominal concentration can result in underestimation of biological effects. It was found that OXT and FLO have a stronger adverse effect on duckweed (EC50=3.26 and 2.96mgL(-1) respectively) and green algae (EC50=40.4 and 18.0mgL(-1)) than on bacteria (EC50=108 and 29.4mgL(-1)) and crustaceans (EC50=114 and 337mgL(-1)), whereas MET did not exhibit any adverse effect in the tested concentration range. For DOR a very low EC50 of 6.37×10(-5)mgL(-1) towards D. magna was determined, which is five orders of magnitude lower than values known for the toxic reference compound K2Cr2O7. Our data show the strong influence of certain veterinary drugs on aquatic organisms and contribute to a sound assessment of the environmental hazards posed by commonly used pharmaceuticals. Copyright © 2013. Published by Elsevier Ltd.

  16. ESTIMATION OF AQUATIC SPECIES SENSITIVITY USING INTERSPECIES CORRELATION AND ACUTE TO CHRONIC TOXICITY MODELS

    EPA Science Inventory

    Abstract for presentation

    Estimation of aquatic species sensitivity using interspecies correlation and acute to chronic toxicity models

    Determining species sensitivity of aquatic organisms to contaminants is a critical component of criteria development and ecolog...

  17. Predicting the resilience and recovery of aquatic systems: A framework for model evolution within environmental observatories

    NASA Astrophysics Data System (ADS)

    Hipsey, Matthew R.; Hamilton, David P.; Hanson, Paul C.; Carey, Cayelan C.; Coletti, Janaine Z.; Read, Jordan S.; Ibelings, Bas W.; Valesini, Fiona J.; Brookes, Justin D.

    2015-09-01

    Maintaining the health of aquatic systems is an essential component of sustainable catchment management, however, degradation of water quality and aquatic habitat continues to challenge scientists and policy-makers. To support management and restoration efforts aquatic system models are required that are able to capture the often complex trajectories that these systems display in response to multiple stressors. This paper explores the abilities and limitations of current model approaches in meeting this challenge, and outlines a strategy based on integration of flexible model libraries and data from observation networks, within a learning framework, as a means to improve the accuracy and scope of model predictions. The framework is comprised of a data assimilation component that utilizes diverse data streams from sensor networks, and a second component whereby model structural evolution can occur once the model is assessed against theoretically relevant metrics of system function. Given the scale and transdisciplinary nature of the prediction challenge, network science initiatives are identified as a means to develop and integrate diverse model libraries and workflows, and to obtain consensus on diagnostic approaches to model assessment that can guide model adaptation. We outline how such a framework can help us explore the theory of how aquatic systems respond to change by bridging bottom-up and top-down lines of enquiry, and, in doing so, also advance the role of prediction in aquatic ecosystem management.

  18. Distribution of Microplastics and Nanoplastics in Aquatic Ecosystems and Their Impacts on Aquatic Organisms, with Emphasis on Microalgae.

    PubMed

    Wan, Jun-Kit; Chu, Wan-Loy; Kok, Yih-Yih; Lee, Choy-Sin

    2018-06-06

    Plastics, with their many useful physical and chemical properties, are widely used in various industries and activities of daily living. Yet, the insidious effects of plastics, particularly long-term effects on aquatic organisms, are not properly understood. Plastics have been shown to degrade to micro- and nanosize particles known as microplastics and nanoplastics, respectively. These minute particles have been shown to cause various adverse effects on aquatic organisms, ranging from growth inhibition, developmental delay and altered feeding behaviour in aquatic animals to decrease of photosynthetic efficiency and induction of oxidative stress in microalgae. This review paper covers the distribution of microplastics and nanoplastics in aquatic ecosystems, focusing on their effects on microalgae as well as co-toxicity of microplastics and nanoplastics with other pollutants. Besides that, this review paper also discusses future research directions which could be taken to gain a better understanding of the impacts of microplastics and nanoplastics on aquatic ecosystems.

  19. Modeling nanomaterial environmental fate in aquatic systems.

    PubMed

    Dale, Amy L; Casman, Elizabeth A; Lowry, Gregory V; Lead, Jamie R; Viparelli, Enrica; Baalousha, Mohammed

    2015-03-03

    Mathematical models improve our fundamental understanding of the environmental behavior, fate, and transport of engineered nanomaterials (NMs, chemical substances or materials roughly 1-100 nm in size) and facilitate risk assessment and management activities. Although today's large-scale environmental fate models for NMs are a considerable improvement over early efforts, a gap still remains between the experimental research performed to date on the environmental fate of NMs and its incorporation into models. This article provides an introduction to the current state of the science in modeling the fate and behavior of NMs in aquatic environments. We address the strengths and weaknesses of existing fate models, identify the challenges facing researchers in developing and validating these models, and offer a perspective on how these challenges can be addressed through the combined efforts of modelers and experimentalists.

  20. Use of Unicellular Algae for Evaluation of Potential Aquatic Contaminants

    DTIC Science & Technology

    1977-05-01

    entitled "Use of Unicellular Algae for Evaluation of Potential Aquatic Contaminants." Research was conducted by the Water Resources Laboratory, School of...plants and animals. Freshwater algae are critical organisms because of their role as primary producers in all aquatic food chains. Several algal species...AMRL-TR-76-65 USE OF UNICELLULAR ALGAE FOR EVALUATION OF POTENTIAL AQUATIC CONTAMINANTS ANNUAL REPORT J. SCHERFIG P. DIXON C. JUSTICE R. APPLEMAN

  1. GLOBAL CLIMATE AND LARGE-SCALE INFLUENCES ON AQUATIC ANIMAL HEALTH

    EPA Science Inventory

    The last 3 decades have witnessed numerous large-scale mortality events of aquatic organisms in North America. Affected species range from ecologically-important sea urchins to commercially-valuable American lobsters and protected marine mammals. Short-term forensic investigation...

  2. A commentary on domestic animals as dual-purpose models that benefit agricultural and biomedical research.

    PubMed

    Ireland, J J; Roberts, R M; Palmer, G H; Bauman, D E; Bazer, F W

    2008-10-01

    Research on domestic animals (cattle, swine, sheep, goats, poultry, horses, and aquatic species) at land grant institutions is integral to improving the global competitiveness of US animal agriculture and to resolving complex animal and human diseases. However, dwindling federal and state budgets, years of stagnant funding from USDA for the Competitive State Research, Education, and Extension Service National Research Initiative (CSREES-NRI) Competitive Grants Program, significant reductions in farm animal species and in numbers at land grant institutions, and declining enrollment for graduate studies in animal science are diminishing the resources necessary to conduct research on domestic species. Consequently, recruitment of scientists who use such models to conduct research relevant to animal agriculture and biomedicine at land grant institutions is in jeopardy. Concerned stakeholders have addressed this critical problem by conducting workshops, holding a series of meetings with USDA and National Institutes of Health (NIH) officials, and developing a white paper to propose solutions to obstacles impeding the use of domestic species as dual-purpose animal models for high-priority problems common to agriculture and biomedicine. In addition to shortfalls in research support and human resources, overwhelming use of mouse models in biomedicine, lack of advocacy from university administrators, long-standing cultural barriers between agriculture and human medicine, inadequate grantsmanship by animal scientists, and a scarcity of key reagents and resources are major roadblocks to progress. Solutions will require a large financial enhancement of USDA's Competitive Grants Program, educational programs geared toward explaining how research using agricultural animals benefits both animal agriculture and human health, and the development of a new mind-set in land grant institutions that fosters greater cooperation among basic and applied researchers. Recruitment of

  3. Predicting the resilience and recovery of aquatic systems: a framework for model evolution within environmental observatories

    USGS Publications Warehouse

    Hipsey, Matthew R.; Hamilton, David P.; Hanson, Paul C.; Carey, Cayelan C.; Coletti, Janaine Z; Read, Jordan S.; Ibelings, Bas W; Valensini, Fiona J; Brookes, Justin D

    2015-01-01

    Maintaining the health of aquatic systems is an essential component of sustainable catchmentmanagement, however, degradation of water quality and aquatic habitat continues to challenge scientistsand policy-makers. To support management and restoration efforts aquatic system models are requiredthat are able to capture the often complex trajectories that these systems display in response to multiplestressors. This paper explores the abilities and limitations of current model approaches in meeting this chal-lenge, and outlines a strategy based on integration of flexible model libraries and data from observationnetworks, within a learning framework, as a means to improve the accuracy and scope of model predictions.The framework is comprised of a data assimilation component that utilizes diverse data streams from sensornetworks, and a second component whereby model structural evolution can occur once the model isassessed against theoretically relevant metrics of system function. Given the scale and transdisciplinarynature of the prediction challenge, network science initiatives are identified as a means to develop and inte-grate diverse model libraries and workflows, and to obtain consensus on diagnostic approaches to modelassessment that can guide model adaptation. We outline how such a framework can help us explore thetheory of how aquatic systems respond to change by bridging bottom-up and top-down lines of enquiry,and, in doing so, also advance the role of prediction in aquatic ecosystem management.

  4. Modelling Farm Animal Welfare

    PubMed Central

    Collins, Lisa M.; Part, Chérie E.

    2013-01-01

    Simple Summary In this review paper we discuss the different modeling techniques that have been used in animal welfare research to date. We look at what questions they have been used to answer, the advantages and pitfalls of the methods, and how future research can best use these approaches to answer some of the most important upcoming questions in farm animal welfare. Abstract The use of models in the life sciences has greatly expanded in scope and advanced in technique in recent decades. However, the range, type and complexity of models used in farm animal welfare is comparatively poor, despite the great scope for use of modeling in this field of research. In this paper, we review the different modeling approaches used in farm animal welfare science to date, discussing the types of questions they have been used to answer, the merits and problems associated with the method, and possible future applications of each technique. We find that the most frequently published types of model used in farm animal welfare are conceptual and assessment models; two types of model that are frequently (though not exclusively) based on expert opinion. Simulation, optimization, scenario, and systems modeling approaches are rarer in animal welfare, despite being commonly used in other related fields. Finally, common issues such as a lack of quantitative data to parameterize models, and model selection and validation are discussed throughout the review, with possible solutions and alternative approaches suggested. PMID:26487411

  5. Animal Model of Dermatophytosis

    PubMed Central

    Shimamura, Tsuyoshi; Kubota, Nobuo; Shibuya, Kazutoshi

    2012-01-01

    Dermatophytosis is superficial fungal infection caused by dermatophytes that invade the keratinized tissue of humans and animals. Lesions from dermatophytosis exhibit an inflammatory reaction induced to eliminate the invading fungi by using the host's normal immune function. Many scientists have attempted to establish an experimental animal model to elucidate the pathogenesis of human dermatophytosis and evaluate drug efficacy. However, current animal models have several issues. In the present paper, we surveyed reports about the methodology of the dermatophytosis animal model for tinea corporis, tinea pedis, and tinea unguium and discussed future prospects. PMID:22619489

  6. Animal models of human immunodeficiency virus infection. Public Health Service Animal Models Committee.

    PubMed

    Spertzel, R O

    1989-12-01

    The search for a model of HIV infection continues. While much of the initial work focussed on animal models of AIDS, more recent efforts have sought animal models of HIV infection in which one or more signs of AIDS may be reproduced. Most initial small animal modelling efforts were negative and many such efforts remain unpublished. In 1988, the Public Health Service (PHS) AIDS Animal Model Committee conducted a survey among PHS agencies to identify published and unpublished data on animal models of HIV. To date, the chimpanzee is the only animal to be reliably infected with HIV albeit without development of signs and symptoms normally associated with human AIDS. One recent study has shown the gibbon to be similarly susceptible to infection with HIV. Mice carrying a chimera of elements of the human immune system have been shown to support the growth of HIV and F1 progeny of transgenic mice containing intact copies of HIV proviral DNA, have developed a disease that resembles some aspects of human AIDS. Rabbits, baboons and rhesus monkeys have also been shown to be infected under certain conditions and/or with selected strains of HIV but again without the development of AIDS symptomatology. This report briefly summarizes published and available unpublished data on these efforts to develop an animal model of HIV infection.

  7. Biomechanics and energetics in aquatic and semiaquatic mammals: platypus to whale.

    PubMed

    Fish, F E

    2000-01-01

    A variety of mammalian lineages have secondarily invaded the water. To locomote and thermoregulate in the aqueous medium, mammals developed a range of morphological, physiological, and behavioral adaptations. A distinct difference in the suite of adaptations, which affects energetics, is apparent between semiaquatic and fully aquatic mammals. Semiaquatic mammals swim by paddling, which is inefficient compared to the use of oscillating hydrofoils of aquatic mammals. Semiaquatic mammals swim at the water surface and experience a greater resistive force augmented by wave drag than submerged aquatic mammals. A dense, nonwettable fur insulates semiaquatic mammals, whereas aquatic mammals use a layer of blubber. The fur, while providing insulation and positive buoyancy, incurs a high energy demand for maintenance and limits diving depth. Blubber contours the body to reduce drag, is an energy reserve, and suffers no loss in buoyancy with depth. Despite the high energetic costs of a semiaquatic existence, these animals represent modern analogs of evolutionary intermediates between ancestral terrestrial mammals and their fully aquatic descendants. It is these intermediate animals that indicate which potential selection factors and mechanical constraints may have directed the evolution of more derived aquatic forms.

  8. Animal welfare and use of silkworm as a model animal.

    PubMed

    Sekimizu, N; Paudel, A; Hamamoto, H

    2012-08-01

    Sacrificing model animals is required for developing effective drugs before being used in human beings. In Japan today, at least 4,210,000 mice and other mammals are sacrificed to a total of 6,140,000 per year for the purpose of medical studies. All the animals treated in Japan, including test animals, are managed under control of "Act on Welfare and Management of Animals". Under the principle of this Act, no person shall kill, injure, or inflict cruelty on animals without due cause. "Animal" addressed in the Act can be defined as a "vertebrate animal". If we can make use of invertebrate animals in testing instead of vertebrate ones, that would be a remarkable solution for the issue of animal welfare. Furthermore, there are numerous advantages of using invertebrate animal models: less space and small equipment are enough for taking care of a large number of animals and thus are cost-effective, they can be easily handled, and many biological processes and genes are conserved between mammals and invertebrates. Today, many invertebrates have been used as animal models, but silkworms have many beneficial traits compared to mammals as well as other insects. In a Genome Pharmaceutical Institute's study, we were able to achieve a lot making use of silkworms as model animals. We would like to suggest that pharmaceutical companies and institutes consider the use of the silkworm as a model animal which is efficacious both for financial value by cost cutting and ethical aspects in animals' welfare.

  9. A log-normal distribution model for the molecular weight of aquatic fulvic acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Zhou, Q.; Maurice, P.A.; Chin, Y.-P.; Aiken, G.R.

    2000-01-01

    The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a lognormal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured M(n) and M(w) and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several types of molecular weight data, including the shapes of high- pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a log-normal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured Mn and Mw and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several type's of molecular weight data, including the shapes of high-pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.

  10. Impacts of human-induced environmental change in wetlands on aquatic animals.

    PubMed

    Sievers, Michael; Hale, Robin; Parris, Kirsten M; Swearer, Stephen E

    2018-02-01

    limitations of using only community- and population-level measures to assess habitat quality. Only four studies provided habitat-preference data, preventing investigation of the potential for altered wetlands to function as ecological traps. This is concerning because attempts to identify ecological traps may detect previously unidentified conservation risks. Although there was considerable variability amongst taxa, amphibians were typically the most sensitive taxon, and thus, may be a valuable bio-indicator of wetland quality. Despite suffering reduced survival and reproduction, measures such as time to and mass at metamorphosis were similar between altered and reference wetlands, suggesting that quantifying metamorphosis-related measures in isolation may not provide accurate information on habitat quality. Our review provides the most detailed evaluation to date of the ecological impacts of human alterations to wetland ecosystems. We emphasise that the role of wetlands in human-altered ecosystems can be complex, as they may represent important habitat but also pose potential risks to animals. Reduced availability of natural wetlands is increasing the importance of altered wetlands for aquatic animals. Consequently, we need to define what represents habitat quality from the perspective of animals, and gain a greater understanding of the underlying mechanisms of habitat selection and how these factors could be manipulated. Furthermore, strategies to enhance the quality of these wetlands should be implemented to maximise their conservation potential. © 2017 Cambridge Philosophical Society.

  11. Myeloproliferative Neoplasm Animal Models

    PubMed Central

    Mullally, Ann; Lane, Steven W.; Brumme, Kristina; Ebert, Benjamin L.

    2012-01-01

    Synopsis Myeloproliferative neoplasm (MPN) animal models accurately re-capitulate human disease in mice and have been an important tool for the study of MPN biology and therapy. Transplantation of BCR-ABL transduced bone marrow cells into irradiated syngeneic mice established the field of MPN animal modeling and the retroviral bone marrow transplantation (BMT) assay has been used extensively since. Genetically engineered MPN animal models have enabled detailed characterization of the effects of specific MPN associated genetic abnormalities on the hematopoietic stem and progenitor cell (HSPC) compartment and xenograft models have allowed the study of primary human MPN-propagating cells in vivo. All models have facilitated the pre-clinical development of MPN therapies. JAK2V617F, the most common molecular abnormality in BCR-ABL negative MPN, has been extensively studied using retroviral, transgenic, knock-in and xenograft models. MPN animal models have also been used to investigate additional genetic lesions found in human MPN and to evaluate the bone marrow microenvironment in these diseases. Finally, several genetic lesions, although not common, somatically mutated drivers of MPN in humans induce a MPN phenotype in mice. Future uses for MPN animal models will include modeling compound genetic lesions in MPN and studying myelofibrotic transformation. PMID:23009938

  12. A new mechanism of macrophyte mitigation: how submerged plants reduce malathion's acute toxicity to aquatic animals.

    PubMed

    Brogan, William R; Relyea, Rick A

    2014-08-01

    A growing body of evidence suggests that aquatic plants can mitigate the toxicity of insecticides to sensitive aquatic animals. The current paradigm is that this ability is driven primarily by insecticide sorption to plant tissues, especially for hydrophobic compounds. However, recent work shows that submerged plants can strongly mitigate the toxicity of the relatively hydrophilic insecticide malathion, despite the fact that this compound exhibits a slow sorption rate to plants. To examine this disparity, we tested the hypothesis that the mitigating effect of submerged plants on malathion's toxicity is driven primarily by the increased water pH from plant photosynthesis causing the hydrolysis of malathion, rather than by sorption. To do this, we compared zooplankton (Daphnia magna) survival across five environmentally relevant malathion concentrations (0, 1, 4, 6, or 36 μg L(-1)) in test containers where we chemically manipulated water pH in the absence of plants or added the submerged plant (Elodea canadensis) but manipulated plant photosynthetic activity via shading or no shading. We discovered that malathion was equally lethal to Daphnia at all concentrations tested when photosynthetically inactive (i.e. shaded) plants were present (pH at time of dosing=7.8) or when pH was chemically decreased (pH=7.7). In contrast, when photosynthetically active (i.e. unshaded) plants were present (pH=9.8) or when pH was chemically increased (pH=9.5), the effects of 4 and 6 μg L(-1) of malathion on Daphnia were mitigated strongly and to an equal degree. These results demonstrate that the mitigating effect of submerged plants on malathion's toxicity can be explained entirely by a mechanism of photosynthesizing plants causing an increase in water pH, resulting in rapid malathion hydrolysis. Our findings suggest that current ecotoxicological models and phytoremediation strategies may be overlooking a critical mechanism for mitigating pesticides. Copyright © 2014 Elsevier Ltd

  13. Zebrafish: an animal model for research in veterinary medicine.

    PubMed

    Nowik, N; Podlasz, P; Jakimiuk, A; Kasica, N; Sienkiewicz, W; Kaleczyc, J

    2015-01-01

    The zebrafish (Danio rerio) has become known as an excellent model organism for studies of vertebrate biology, vertebrate genetics, embryonal development, diseases and drug screening. Nevertheless, there is still lack of detailed reports about usage of the zebrafish as a model in veterinary medicine. Comparing to other vertebrates, they can lay hundreds of eggs at weekly intervals, externally fertilized zebrafish embryos are accessible to observation and manipulation at all stages of their development, which makes possible to simplify the research techniques such as fate mapping, fluorescent tracer time-lapse lineage analysis and single cell transplantation. Although zebrafish are only 2.5 cm long, they are easy to maintain. Intraperitoneal and intracerebroventricular injections, blood sampling and measurement of food intake are possible to be carry out in adult zebrafish. Danio rerio is a useful animal model for neurobiology, developmental biology, drug research, virology, microbiology and genetics. A lot of diseases, for which the zebrafish is a perfect model organism, affect aquatic animals. For a part of them, like those caused by Mycobacterium marinum or Pseudoloma neutrophila, Danio rerio is a natural host, but the zebrafish is also susceptible to the most of fish diseases including Itch, Spring viraemia of carp and Infectious spleen and kidney necrosis. The zebrafish is commonly used in research of bacterial virulence. The zebrafish embryo allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host. Plenty of common pathogens can be examined using zebrafish model: Streptococcus iniae, Vibrio anguillarum or Listeria monocytogenes. The steps are taken to use the zebrafish also in fungal research, especially that dealing with Candida albicans and Cryptococcus neoformans. Although, the zebrafish is used commonly as an animal model to study diseases caused by external agents, it is also useful in studies of metabolic

  14. Animal Bioacoustics

    NASA Astrophysics Data System (ADS)

    Fletcher, Neville

    Animals rely upon their acoustic and vibrational senses and abilities to detect the presence of both predators and prey and to communicate with members of the same species. This chapter surveys the physical bases of these abilities and their evolutionary optimization in insects, birds, and other land animals, and in a variety of aquatic animals other than cetaceans, which are treated in Chap. 20. While there are many individual variations, and some animals devote an immense fraction of their time and energy to acoustic communication, there are also many common features in their sound production and in the detection of sounds and vibrations. Excellent treatments of these matters from a biological viewpoint are given in several notable books [19.1,2] and collections of papers [19.3,4,5,6,7,8], together with other more specialized books to be mentioned in the following sections, but treatments from an acoustical viewpoint [19.9] are rare. The main difference between these two approaches is that biological books tend to concentrate on anatomical and physiological details and on behavioral outcomes, while acoustical books use simplified anatomical models and quantitative analysis to model whole-system behavior. This latter is the approach to be adopted here.

  15. An Efficient, Simple, and Noninvasive Procedure for Genotyping Aquatic and Nonaquatic Laboratory Animals.

    PubMed

    Okada, Morihiro; Miller, Thomas C; Roediger, Julia; Shi, Yun-Bo; Schech, Joseph Mat

    2017-09-01

    Various animal models are indispensible in biomedical research. Increasing awareness and regulations have prompted the adaptation of more humane approaches in the use of laboratory animals. With the development of easier and faster methodologies to generate genetically altered animals, convenient and humane methods to genotype these animals are important for research involving such animals. Here, we report skin swabbing as a simple and noninvasive method for extracting genomic DNA from mice and frogs for genotyping. We show that this method is highly reliable and suitable for both immature and adult animals. Our approach allows a simpler and more humane approach for genotyping vertebrate animals.

  16. Mechanical performance of aquatic rowing and flying.

    PubMed

    Walker, J A; Westneat, M W

    2000-09-22

    Aquatic flight, performed by rowing or flapping fins, wings or limbs, is a primary locomotor mechanism for many animals. We used a computer simulation to compare the mechanical performance of rowing and flapping appendages across a range of speeds. Flapping appendages proved to be more mechanically efficient than rowing appendages at all swimming speeds, suggesting that animals that frequently engage in locomotor behaviours that require energy conservation should employ a flapping stroke. The lower efficiency of rowing appendages across all speeds begs the question of why rowing occurs at all. One answer lies in the ability of rowing fins to generate more thrust than flapping fins during the power stroke. Large forces are necessary for manoeuvring behaviours such as accelerations, turning and braking, which suggests that rowing should be found in slow-swimming animals that frequently manoeuvre. The predictions of the model are supported by observed patterns of behavioural variation among rowing and flapping vertebrates.

  17. Two-dimensional hydrologic modeling to evaluate aquatic habitat conditions

    Treesearch

    Pamela Edwards; Frederica Wood; Michael Little; Peter Vila; Peter Vila

    2006-01-01

    We describe the modeling and mapping procedures used to examine aquatic habitat conditions and habitat suitability of a small river in north- central West Virginia where fish survival and reproduction in specific reaches are poor. The study includes: (1) surveying cross sections of streambed reaches and measuring discharges and corresponding water-surface elevations,...

  18. Using GIS to analyze animal movements in the marine environment

    USGS Publications Warehouse

    Hooge, Philip N.; Eichenlaub, William M.; Solomon, Elizabeth K.; Kruse, Gordon H.; Bez, Nicolas; Booth, Anthony; Dorn, Martin W.; Hills, Susan; Lipcius, Romuald N.; Pelletier, Dominique; Roy, Claude; Smith, Stephen J.; Witherell, David B.

    2001-01-01

    Advanced methods for analyzing animal movements have been little used in the aquatic research environment compared to the terrestrial. In addition, despite obvious advantages of integrating geographic information systems (GIS) with spatial studies of animal movement behavior, movement analysis tools have not been integrated into GIS for either aquatic or terrestrial environments. We therefore developed software that integrates one of the most commonly used GIS programs (ArcView®) with a large collection of animal movement analysis tools. This application, the Animal Movement Analyst Extension (AMAE), can be loaded as an extension to ArcView® under multiple operating system platforms (PC, Unix, and Mac OS). It contains more than 50 functions, including parametric and nonparametric home range analyses, random walk models, habitat analyses, point and circular statistics, tests of complete spatial randomness, tests for autocorrelation and sample size, point and line manipulation tools, and animation tools. This paper describes the use of these functions in analyzing animal location data; some limited examples are drawn from a sonic-tracking study of Pacific halibut (Hippoglossus stenolepis) in Glacier Bay, Alaska. The extension is available on the Internet at www.absc.usgs.gov/glba/gistools/index.htm.

  19. Animal Bioacoustics

    NASA Astrophysics Data System (ADS)

    Fletcher, Neville H.

    Animals rely upon their acoustic and vibrational senses and abilities to detect the presence of both predators and prey and to communicate with members of the same species. This chapter surveys the physical bases of these abilities and their evolutionary optimization in insects, birds, and other land animals, and in a variety of aquatic animals other than cetaceans, which are treated in Chap. 20. While there are many individual variations, and some animals devote an immense fraction of their time and energy to acoustic communication, there are also many common features in their sound production and in the detection of sounds and vibrations. Excellent treatments of these matters from a biological viewpoint are given in several notable books [19.1,2] and collections of papers [19.3,4,5,6,7,8], together with other more specialized books to be mentioned in the following sections, but treatments from an acoustical viewpoint [19.9] are rare. The main difference between these two approaches is that biological books tend to concentrate on anatomical and physiological details and on behavioral outcomes, while acoustical books use simplified anatomical models and quantitative analysis to model vocalization frequency scaling in animals hearing sound production animal animal biological biological bioacoustics whole-system behavior. This latter is the approach to be adopted here.

  20. Animal Models of Colorectal Cancer

    PubMed Central

    Johnson, Robert L.; Fleet, James C.

    2012-01-01

    Colorectal cancer is a heterogeneous disease that afflicts a large number of people in the United States. The use of animal models has the potential to increase our understanding of carcinogenesis, tumor biology, and the impact of specific molecular events on colon biology. In addition, animal models with features of specific human colorectal cancers can be used to test strategies for cancer prevention and treatment. In this review we provide an overview of the mechanisms driving human cancer, we discuss the approaches one can take to model colon cancer in animals, and we describe a number of specific animal models that have been developed for the study of colon cancer. We believe that there are many valuable animal models to study various aspects of human colorectal cancer. However, opportunities for improving upon these models exist. PMID:23076650

  1. Animal models of tinnitus.

    PubMed

    Brozoski, Thomas J; Bauer, Carol A

    2016-08-01

    Presented is a thematic review of animal tinnitus models from a functional perspective. Chronic tinnitus is a persistent subjective sound sensation, emergent typically after hearing loss. Although the sensation is experientially simple, it appears to have central a nervous system substrate of unexpected complexity that includes areas outside of those classically defined as auditory. Over the past 27 years animal models have significantly contributed to understanding tinnitus' complex neurophysiology. In that time, a diversity of models have been developed, each with its own strengths and limitations. None has clearly become a standard. Animal models trace their origin to the 1988 experiments of Jastreboff and colleagues. All subsequent models derive some of their features from those experiments. Common features include behavior-dependent psychophysical determination, acoustic conditions that contrast objective sound and silence, and inclusion of at least one normal-hearing control group. In the present review, animal models have been categorized as either interrogative or reflexive. Interrogative models use emitted behavior under voluntary control to indicate hearing. An example would be pressing a lever to obtain food in the presence of a particular sound. In this type of model animals are interrogated about their auditory sensations, analogous to asking a patient, "What do you hear?" These models require at least some training and motivation management, and reflect the perception of tinnitus. Reflexive models, in contrast, employ acoustic modulation of an auditory reflex, such as the acoustic startle response. An unexpected loud sound will elicit a reflexive motor response from many species, including humans. Although involuntary, acoustic startle can be modified by a lower-level preceding event, including a silent sound gap. Sound-gap modulation of acoustic startle appears to discriminate tinnitus in animals as well as humans, and requires no training or

  2. Evaluation of acoustic telemetry grids for determining aquatic animal movement and survival

    USGS Publications Warehouse

    Kraus, Richard T.; Holbrook, Christopher; Vandergoot, Christopher; Stewart, Taylor R.; Faust, Matthew D.; Watkinson, Douglas A.; Charles, Colin; Pegg, Mark; Enders, Eva C.; Krueger, Charles C.

    2018-01-01

    Acoustic telemetry studies have frequently prioritized linear configurations of hydrophone receivers, such as perpendicular from shorelines or across rivers, to detect the presence of tagged aquatic animals. This approach introduces unknown bias when receivers are stationed for convenience at geographic bottlenecks (e.g., at the mouth of an embayment or between islands) as opposed to deployments following a statistical sampling design.We evaluated two-dimensional acoustic receiver arrays (grids: receivers spread uniformly across space) as an alternative approach to provide estimates of survival, movement, and habitat use. Performance of variably-spaced receiver grids (5–25 km spacing) was evaluated by simulating (1) animal tracks as correlated random walks (speed: 0.1–0.9 m/s; turning angle standard deviation: 5–30 degrees); (2) variable tag transmission intervals along each track (nominal delay: 15–300 seconds); and (3) probability of detection of each transmission based on logistic detection range curves (midpoint: 200–1500 m). From simulations, we quantified i) time between successive detections on any receiver (detection time), ii) time between successive detections on different receivers (transit time), and iii) distance between successive detections on different receivers (transit distance).In the most restrictive detection range scenario (200 m), the 95th percentile of transit time was 3.2 days at 5 km grid spacing, 5.7 days at 7 km, and 15.2 days at 25 km; for the 1500 m detection range scenario, it was 0.1 days at 5 km, 0.5 days at 7 km, and 10.8 days at 25 km. These values represented upper bounds on the expected maximum time that an animal could go undetected. Comparison of the simulations with pilot studies on three fishes (walleye Sander vitreus, common carp Cyprinus carpio, and channel catfish Ictalurus punctatus) from two independent large lake ecosystems (lakes Erie and Winnipeg) revealed shorter detection and transit times than what

  3. The Classroom Animal: Snails.

    ERIC Educational Resources Information Center

    Kramer, David S.

    1985-01-01

    Points out that snails are interesting and easily-managed classroom animals. One advantage of this animal is that it requires no special attention over weekends or holidays. Background information, anatomy, reproduction, and feeding are discussed, along with suggestions for housing aquatic and/or land snails. (DH)

  4. Animal models for osteoporosis

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Maran, A.; Lotinun, S.; Hefferan, T.; Evans, G. L.; Zhang, M.; Sibonga, J. D.

    2001-01-01

    Animal models will continue to be important tools in the quest to understand the contribution of specific genes to establishment of peak bone mass and optimal bone architecture, as well as the genetic basis for a predisposition toward accelerated bone loss in the presence of co-morbidity factors such as estrogen deficiency. Existing animal models will continue to be useful for modeling changes in bone metabolism and architecture induced by well-defined local and systemic factors. However, there is a critical unfulfilled need to develop and validate better animal models to allow fruitful investigation of the interaction of the multitude of factors which precipitate senile osteoporosis. Well characterized and validated animal models that can be recommended for investigation of the etiology, prevention and treatment of several forms of osteoporosis have been listed in Table 1. Also listed are models which are provisionally recommended. These latter models have potential but are inadequately characterized, deviate significantly from the human response, require careful choice of strain or age, or are not practical for most investigators to adopt. It cannot be stressed strongly enough that the enormous potential of laboratory animals as models for osteoporosis can only be realized if great care is taken in the choice of an appropriate species, age, experimental design, and measurements. Poor choices will results in misinterpretation of results which ultimately can bring harm to patients who suffer from osteoporosis by delaying advancement of knowledge.

  5. Cell Cycle Control in the Early Embryonic Development of Aquatic Animal Species

    PubMed Central

    Siefert, Joseph C.; Clowdus, Emily A.; Sansam, Christopher L.

    2016-01-01

    The cell cycle is integrated with many aspects of embryonic development. Not only is proper control over the pace of cell proliferation important, but also the timing of cell cycle progression is coordinated with transcription, cell migration, and cell differentiation. Due to the ease with which the embryos of aquatic organisms can be observed and manipulated, they have been a popular choice for embryologists throughout history. In the cell cycle field, aquatic organisms have been extremely important because they have played a major role in the discovery and analysis of key regulators of the cell cycle. In particular, the frog Xenopus laevis has been instrumental for understanding how the basic embryonic cell cycle is regulated. More recently, the zebrafish has been used to understand how the cell cycle is remodeled during vertebrate development and how it is regulated during morphogenesis. This review describes how some of the unique strengths of aquatic species have been leveraged for cell cycle research and suggests how species such as Xenopus and zebrafish will continue to reveal the roles of the cell cycle in human biology and disease. PMID:26475527

  6. A Bayesian network model for predicting aquatic toxicity mode of action using two dimensional theoretical molecular descriptors

    EPA Science Inventory

    The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity, but development of predictive MoA classification models in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity MoA using a recently pu...

  7. Animal models of sarcoidosis.

    PubMed

    Hu, Yijie; Yibrehu, Betel; Zabini, Diana; Kuebler, Wolfgang M

    2017-03-01

    Sarcoidosis is a debilitating, inflammatory, multiorgan, granulomatous disease of unknown cause, commonly affecting the lung. In contrast to other chronic lung diseases such as interstitial pulmonary fibrosis or pulmonary arterial hypertension, there is so far no widely accepted or implemented animal model for this disease. This has hampered our insights into the etiology of sarcoidosis, the mechanisms of its pathogenesis, the identification of new biomarkers and diagnostic tools and, last not least, the development and implementation of novel treatment strategies. Over past years, however, a number of new animal models have been described that may provide useful tools to fill these critical knowledge gaps. In this review, we therefore outline the present status quo for animal models of sarcoidosis, comparing their pros and cons with respect to their ability to mimic the etiological, clinical and histological hallmarks of human disease and discuss their applicability for future research. Overall, the recent surge in animal models has markedly expanded our options for translational research; however, given the relative early stage of most animal models for sarcoidosis, appropriate replication of etiological and histological features of clinical disease, reproducibility and usefulness in terms of identification of new therapeutic targets and biomarkers, and testing of new treatments should be prioritized when considering the refinement of existing or the development of new models.

  8. Aquatic Habitats, Level 4-9.

    ERIC Educational Resources Information Center

    Weigel, Margaret

    Designed to acquaint students in grades 4-9 with aquatic plants and animals, this guide provides materials which can be used in preparation for field trips or laboratory work, for individual projects, as supplemental activities for a unit, or for learning center projects. Teacher background notes and an answer key for the student activites are…

  9. Animal models in burn research.

    PubMed

    Abdullahi, A; Amini-Nik, S; Jeschke, M G

    2014-09-01

    Burn injury is a severe form of trauma affecting more than 2 million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury, to elucidate the pathophysiology, and to explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research.

  10. Logical fallacies in animal model research.

    PubMed

    Sjoberg, Espen A

    2017-02-15

    Animal models of human behavioural deficits involve conducting experiments on animals with the hope of gaining new knowledge that can be applied to humans. This paper aims to address risks, biases, and fallacies associated with drawing conclusions when conducting experiments on animals, with focus on animal models of mental illness. Researchers using animal models are susceptible to a fallacy known as false analogy, where inferences based on assumptions of similarities between animals and humans can potentially lead to an incorrect conclusion. There is also a risk of false positive results when evaluating the validity of a putative animal model, particularly if the experiment is not conducted double-blind. It is further argued that animal model experiments are reconstructions of human experiments, and not replications per se, because the animals cannot follow instructions. This leads to an experimental setup that is altered to accommodate the animals, and typically involves a smaller sample size than a human experiment. Researchers on animal models of human behaviour should increase focus on mechanistic validity in order to ensure that the underlying causal mechanisms driving the behaviour are the same, as relying on face validity makes the model susceptible to logical fallacies and a higher risk of Type 1 errors. We discuss measures to reduce bias and risk of making logical fallacies in animal research, and provide a guideline that researchers can follow to increase the rigour of their experiments.

  11. Mosquitoes and other aquatic insects in fallow field biotopes and rice paddy fields.

    PubMed

    Ohba, S Y; Matsuo, T; Takagi, M

    2013-03-01

    Fallow field biotopes that develop from abandoned rice fields are man-made wetlands that provide new habitats for various aquatic animals. Although consideration of such biotopes generally focuses on their positive aspects, this study evaluated the negative aspects of establishing fallow field biotopes with regard to mosquito breeding sites. To determine whether fallow field biotopes become breeding habitats for vector mosquitoes, we evaluated mosquito fauna in fallow field biotopes and adjacent rice fields. We found larvae of Anopheles lesteri, Anopheles sinensis and Culex tritaeniorhynchus (all: Diptera: Culicidae) in the biotopes. Although abundances of mosquito larvae in the biotopes and rice fields were statistically similar, mosquito abundances in rice fields increased dramatically in August when the water level reduced after the rainy season. The abundance and variety of the mosquitoes' natural predators were greater in biotopes than in rice fields because the former are a permanent and stable aquatic environment. A generalized linear mixed model showed a negative effect of predator diversity on mosquito larvae abundance in both habitats. Although fallow field biotopes become breeding habitats for vector mosquitoes, establishing biotopes from fallow fields in order to protect various aquatic animals, including mosquito insect predators, may help to control mosquito breeding. © 2012 The Royal Entomological Society.

  12. Animal Models in Burn Research

    PubMed Central

    Abdullahi, A.; Amini-Nik, S.; Jeschke, M.G

    2014-01-01

    Burn injury is a severe form of trauma affecting more than two million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury; to elucidate the pathophysiology and explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review paper aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research. PMID:24714880

  13. NASDA next-generation aquatic habitat for space shuttle and ISS

    NASA Astrophysics Data System (ADS)

    Masukawa, M.; Ochiai, T.; Kamigaichi, S.; Uchida, S.; Kono, Y.; Takamatsu, T.; Sakimura, T.

    The National Space Development Agency of Japan (NASDA) has more than 20 years of experience developing aquatic animal experiment facilities. These include the Vestibular Function Experiment Unit (VFEU), Aquatic Animal Experiment Unit (AAEU) and another VFEU for marine fish. Each facility had functions such as life support for up to 15 days, water quality control system, gas exchange by artificial lung, video observation through a window by a crewmember, day/night cycle control, feeding system for medaka (AAEU only), and more. We are now studying the next -generation aquatic animal experiment facility or the Aquatic Habitat (AQH) for both Space Shuttle and Space Station use. AQH will have many new capabilities missing in earlier facilities. The following functions are of particular importance: long-term life support for up to 90 days, multigeneration breeding (for medaka and zebrafish), automatic feeding system adaptable for young of fish and amphibians, water quality control for long-term experiments, air-water interface, a computer-driven specimen-monitoring system housed in the facilities, and a specimen sampling system including eggs. A prototype breeding system and the specimen-monitoring system were designed and tested. The prototype breeding system consists of a closed water loop, two 700ml fish chambers with LED lighting, a small artificial lung, and a nitrification bacteria filter. Medaka adult fish were able to mate and spawn in this small breeding system, and the young could grow to adult fish. The water quality control system also worked successfully. For amphibians, the breeding test using tadpoles of xenopus is also starting. We have many difficult technological problems to resolve, but development of AQH is going well. In this paper, we will introduce the results of the component-level test and the concept of AQH. In the future, many space biological experiments will be conducted, especially in the areas of developmental biology, neurophisiology, and

  14. Selenium toxicity: cause and effects in aquatic birds

    USGS Publications Warehouse

    Spallholz, J.E.; Hoffman, D.J.

    2002-01-01

    There are several manners in which selenium may express its toxicity: (1) an important mechanism appears to involve the formation of CH3Se- which either enters a redox cycle and generates superoxide and oxidative stress, or forms free radicals that bind to and inhibit important enzymes and proteins. (2) Excess selenium as selenocysteine results in inhibition of selenium methylation metabolism. As a consequence, concentrations of hydrogen selenide, an intermediate metabolite, accumulate in animals and are hepatotoxic, possibly causing other selenium-related adverse effects. (3) It is also possible that the presence of excess selenium analogs of sulfur-containing enzymes and structural proteins play a role in avian teratogenesis. l-selenomethionine is the most likely major dietary form of selenium encountered by aquatic birds, with lesser amounts of l-selenocysteine ingested from aquatic animal foods. The literature is suggestive that l-selenomethionine is not any more toxic to adult birds than other animals. l-Selenomethionine accumulates in tissue protein of adult birds and in the protein of egg white as would be expected to occur in animals. There is no suggestion from the literature that the levels of l-selenomethionine that would be expected to accumulate in eggs in the absence of environmental concentration of selenium pose harm to the developing embryo. For several species of aquatic birds, levels of Se as selenomethionine in the egg above 3 ppm on a wet weight basis result in reduced hatchability and deformed embryos. The toxicity of l-selenomethionine injected directly into eggs is greater than that found from the entry of l-selenomethionine into the egg from the normal adult diet. This suggests that there is unusual if not abnormal metabolism of l-selenomethionine in the embryo not seen when l-selenomethionine is present in egg white protein where it likely serves as a source of selenium for glutathione peroxidase synthesis in the developing aquatic chick.

  15. Animal models of cerebral ischemia

    NASA Astrophysics Data System (ADS)

    Khodanovich, M. Yu.; Kisel, A. A.

    2015-11-01

    Cerebral ischemia remains one of the most frequent causes of death and disability worldwide. Animal models are necessary to understand complex molecular mechanisms of brain damage as well as for the development of new therapies for stroke. This review considers a certain range of animal models of cerebral ischemia, including several types of focal and global ischemia. Since animal models vary in specificity for the human disease which they reproduce, the complexity of surgery, infarct size, reliability of reproduction for statistical analysis, and adequate models need to be chosen according to the aim of a study. The reproduction of a particular animal model needs to be evaluated using appropriate tools, including the behavioral assessment of injury and non-invasive and post-mortem control of brain damage. These problems also have been summarized in the review.

  16. Animal models in myopia research.

    PubMed

    Schaeffel, Frank; Feldkaemper, Marita

    2015-11-01

    Our current understanding of the development of refractive errors, in particular myopia, would be substantially limited had Wiesel and Raviola not discovered by accident that monkeys develop axial myopia as a result of deprivation of form vision. Similarly, if Josh Wallman and colleagues had not found that simple plastic goggles attached to the chicken eye generate large amounts of myopia, the chicken model would perhaps not have become such an important animal model. Contrary to previous assumptions about the mechanisms of myopia, these animal models suggested that eye growth is visually controlled locally by the retina, that an afferent connection to the brain is not essential and that emmetropisation uses more sophisticated cues than just the magnitude of retinal blur. While animal models have shown that the retina can determine the sign of defocus, the underlying mechanism is still not entirely clear. Animal models have also provided knowledge about the biochemical nature of the signal cascade converting the output of retinal image processing to changes in choroidal thickness and scleral growth; however, a critical question was, and still is, can the results from animal models be applied to myopia in children? While the basic findings from chickens appear applicable to monkeys, some fundamental questions remain. If eye growth is guided by visual feedback, why is myopic development not self-limiting? Why does undercorrection not arrest myopic progression even though positive lenses induce myopic defocus, which leads to the development of hyperopia in emmetropic animals? Why do some spectacle or contact lens designs reduce myopic progression and others not? It appears that some major differences exist between animals reared with imposed defocus and children treated with various optical corrections, although without the basic knowledge obtained from animal models, we would be lost in an abundance of untestable hypotheses concerning human myopia. © 2015 Optometry

  17. The butterfly effect: parasite diversity, environment, and emerging disease in aquatic wildlife.

    PubMed

    Adlard, Robert D; Miller, Terrence L; Smit, Nico J

    2015-04-01

    Aquatic wildlife is increasingly subjected to emerging diseases often due to perturbations of the existing dynamic balance between hosts and their parasites. Accelerating changes in environmental factors, together with anthropogenic translocation of hosts and parasites, act synergistically to produce hard-to-predict disease outcomes in freshwater and marine systems. These outcomes are further complicated by the intimate links between diseases in wildlife and diseases in humans and domestic animals. Here, we explore the interactions of parasites in aquatic wildlife in terms of their biodiversity, their response to environmental change, their emerging diseases, and the contribution of humans and domestic animals to parasitic disease outcomes. This work highlights the clear need for interdisciplinary approaches to ameliorate disease impacts in aquatic wildlife systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Sleep alterations in mammals: did aquatic conditions inhibit rapid eye movement sleep?

    PubMed

    Madan, Vibha; Jha, Sushil K

    2012-12-01

    Sleep has been studied widely in mammals and to some extent in other vertebrates. Higher vertebrates such as birds and mammals have evolved an inimitable rapid eye movement (REM) sleep state. During REM sleep, postural muscles become atonic and the temperature regulating machinery remains suspended. Although REM sleep is present in almost all the terrestrial mammals, the aquatic mammals have either radically reduced or completely eliminated REM sleep. Further, we found a significant negative correlation between REM sleep and the adaptation of the organism to live on land or in water. The amount of REM sleep is highest in terrestrial mammals, significantly reduced in semi-aquatic mammals and completely absent or negligible in aquatic mammals. The aquatic mammals are obligate swimmers and have to surface at regular intervals for air. Also, these animals live in thermally challenging environments, where the conductive heat loss is approximately ~90 times greater than air. Therefore, they have to be moving most of the time. As an adaptation, they have evolved unihemispheric sleep, during which they can rove as well as rest. A condition that immobilizes muscle activity and suspends the thermoregulatory machinery, as happens during REM sleep, is not suitable for these animals. It is possible that, in accord with Darwin's theory, aquatic mammals might have abolished REM sleep with time. In this review, we discuss the possibility of the intrinsic role of aquatic conditions in the elimination of REM sleep in the aquatic mammals.

  19. Modeling and simulation of an aquatic habitat for bioregenerative life support research

    NASA Astrophysics Data System (ADS)

    Drayer, Gregorio E.; Howard, Ayanna M.

    2014-01-01

    Long duration human spaceflight poses challenges for spacecraft autonomy and the regeneration of life support consumables, such as oxygen and water. Bioregenerative life support systems (BLSS), which make use of biological processes to transform biological byproducts back into consumables, have the ability to recycle organic byproducts and are the preferred option for food production. A limitation in BLSS research is in the non-availability of small-scale experimental capacities that may help to better understand the challenges in system closure, integration, and control. Ground-based aquatic habitats are an option for small-scale research relevant to bioregenerative life support systems (BLSS), given that they can operate as self-contained systems enclosing a habitat composed of various species in a single volume of water. The purpose of this paper is to present the modeling and simulation of a reconfigurable aquatic habitat for experiments in regenerative life support automation; it supports the use of aquatic habitats as a small-scale approach to experiments relevant to larger-scale regenerative life support systems. It presents ground-based aquatic habitats as an option for small-scale BLSS research focusing on the process of respiration, and elaborates on the description of biological processes by introducing models of ecophysiological phenomena for consumers and producers: higher plants of the species Bacopa monnieri produce O2 for snails of the genus Pomacea; the snails consume O2 and generate CO2, which is used by the plants in combination with radiant energy to generate O2 through the process of photosynthesis. Feedback controllers are designed to regulate the concentration of dissolved oxygen in the water. This paper expands the description of biological processes by introducing models of ecophysiological phenomena of the organisms involved. The model of the plants includes a description of the rate of CO2 assimilation as a function of irradiance

  20. Carbon-Flow-Based Modeling of Ecophysiological Processes and Biomass Dynamics of Submersed Aquatic Plants

    DTIC Science & Technology

    2007-09-01

    simulation modeling approach to describing carbon- flow-based, ecophysiological processes and biomass dynamics of fresh- water submersed aquatic plant...the distribution and abundance of SAV. In aquatic systems a small part of the irradiance can be reflected by the water surface, and further...to the fact that water temperatures in the lake were relatively low compared to air tem- peratures because of the large inflow of groundwater (Titus

  1. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications

    NASA Astrophysics Data System (ADS)

    Stief, P.

    2013-12-01

    Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of ammonium from sediments is enhanced more strongly than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna on benthic microbes apparently has small or neutral effects on nitrogen cycling. Animal-microbe symbioses provide abundant and distinct benthic compartments for a multitude of nitrogen-cycle pathways. Recent studies reveal that ecosystem engineering, grazing, and symbioses of benthic macrofauna significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and

  2. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications

    NASA Astrophysics Data System (ADS)

    Stief, P.

    2013-07-01

    Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of ammonium from sediments often is enhanced even more than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna on benthic microbes apparently has small or neutral effects on nitrogen cycling. Animal-microbe symbioses provide abundant and distinct benthic compartments for a multitude of nitrogen-cycle pathways. Recent studies revealed that ecosystem engineering, grazing, and symbioses of benthic macrofauna significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover

  3. Influence of Taxonomic Relatedness and Chemical Mode of Action in Acute Interspecies Estimation Models for Aquatic species

    EPA Science Inventory

    Ecological risks to aquatic organisms are typically assessed using toxicity data for relatively few species and with limited understanding of relative species sensitivity. We developed a comprehensive set of interspecies correlation estimation (ICE) models for aquatic organisms a...

  4. Ocean Circulation Modeling for Aquatic Dispersion of Liquid Radioactive Effluents from Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Y.G.; Lee, G.B.; Bang, S.Y.

    2006-07-01

    Recently, three-dimensional models have been used for aquatic dispersion of radioactive effluents in relation to nuclear power plant siting based on the Notice No. 2003-12 'Guideline for investigating and assessing hydrological and aquatic characteristics of nuclear facility site' of the Ministry of Science and Technology (MOST) in Korea. Several nuclear power plants have been under construction or planed, which are Shin-Kori Unit 1 and 2, Shin-Wolsong Unit 1 and 2, and Shin-Ulchin Unit 1 and 2. For assessing the aquatic dispersion of radionuclides released from the above nuclear power plants, it is necessary to know the coastal currents around sitesmore » which are affected by circulation of East Sea. In this study, a three dimensional hydrodynamic model for the circulation of the East Sea of Korea has been developed as the first phase, which is based on the RIAMOM (Research Institute of Applied Mechanics' Ocean Model, Kyushu University, Japan). The model uses the primitive equation with hydrostatic approximation, and uses Arakawa-B grid system horizontally and Z coordinate vertically. Model domain is 126.5 deg. E to 142.5 deg. E of east longitude and 33 deg. N and 52 deg. N of the north latitude. The space of the horizontal grid was 1/12 deg. to longitude and latitude direction and vertical level was divided to 20. This model uses Generalized Arakawa Scheme, Slant Advection, and Mode-Splitting Method. The input data were from JODC (Japan Oceanographic Data Center), KNFRDI (Korea National Fisheries Research and Development Institute), and ECMWF (European Center for Medium-Range Weather Forecasts). The modeling results are in fairly good agreement with schematic patterns of the surface circulation in the East Sea/Japan Sea. The local current model and aquatic dispersion model of the coastal region will be developed as the second phase. The oceanic dispersion experiments will be also carried out by using ARGO Drifter around a nuclear power plant site. (authors)« less

  5. Animal models in peritoneal dialysis.

    PubMed

    Nikitidou, Olga; Peppa, Vasiliki I; Leivaditis, Konstantinos; Eleftheriadis, Theodoros; Zarogiannis, Sotirios G; Liakopoulos, Vassilios

    2015-01-01

    Peritoneal dialysis (PD) has been extensively used over the past years as a method of kidney replacement therapy for patients with end stage renal disease (ESRD). In an attempt to better understand the properties of the peritoneal membrane and the mechanisms involved in major complications associated with PD, such as inflammation, peritonitis and peritoneal injury, both in vivo and ex vivo animal models have been used. The aim of the present review is to briefly describe the animal models that have been used, and comment on the main problems encountered while working with these models. Moreover, the differences characterizing these animal models, as well as, the differences with humans are highlighted. Finally, it is suggested that the use of standardized protocols is a necessity in order to take full advantage of animal models, extrapolate their results in humans, overcome the problems related to PD and help promote its use.

  6. Environmental fate and biodegradability of benzene derivatives as studied in a model aquatic ecosystem.

    PubMed Central

    Lu, P Y; Metcalf, R L

    1975-01-01

    A model aquatic ecosystem is devised for studying relatively volatile organic compounds and simulating direct discharge of chemical wastes into aquatic ecosystems. Six simple benzene derivatives (aniline, anisole, benzoic acid, chlorobenzene, nitrobenzene, and phthalic anhydride) and other important specialty chemicals: hexachlorobenzene, pentachlorophenol, 2,6-diethylaniline, and 3,5,6-trichloro-2-pyridinol were also chosen for study of environmental behavior and fate in the model aquatic ecosystem. Quantitative relationships of the intrinsic molecular properties of the environmental micropollutants with biological responses are established, e.g., water solubility, partition coefficient, pi constant, sigma constant, ecological magnification, biodegradability index, and comparative detoxication mechanisms, respectively. Water solubility, pi constant, and sigma constant are the most significant factors and control the biological responses of the food chain members. Water solubility and pi constant control the degree of bioaccumulation, and sigma constant limits the metabolism of the xenobiotics via microsomal detoxication enzymes. These highly significant correlations should be useful for predicting environmental fate of organic chemicals. PMID:1157796

  7. Stochastic modelling of animal movement.

    PubMed

    Smouse, Peter E; Focardi, Stefano; Moorcroft, Paul R; Kie, John G; Forester, James D; Morales, Juan M

    2010-07-27

    Modern animal movement modelling derives from two traditions. Lagrangian models, based on random walk behaviour, are useful for multi-step trajectories of single animals. Continuous Eulerian models describe expected behaviour, averaged over stochastic realizations, and are usefully applied to ensembles of individuals. We illustrate three modern research arenas. (i) Models of home-range formation describe the process of an animal 'settling down', accomplished by including one or more focal points that attract the animal's movements. (ii) Memory-based models are used to predict how accumulated experience translates into biased movement choices, employing reinforced random walk behaviour, with previous visitation increasing or decreasing the probability of repetition. (iii) Lévy movement involves a step-length distribution that is over-dispersed, relative to standard probability distributions, and adaptive in exploring new environments or searching for rare targets. Each of these modelling arenas implies more detail in the movement pattern than general models of movement can accommodate, but realistic empiric evaluation of their predictions requires dense locational data, both in time and space, only available with modern GPS telemetry.

  8. Matrix Population Model for Estimating Effects from Time-Varying Aquatic Exposures: Technical Documentation

    EPA Science Inventory

    The Office of Pesticide Programs models daily aquatic pesticide exposure values for 30 years in its risk assessments. However, only a fraction of that information is typically used in these assessments. The population model employed herein is a deterministic, density-dependent pe...

  9. Overview of Animal Models of Obesity

    PubMed Central

    Lutz, Thomas A.; Woods, Stephen C.

    2012-01-01

    This is a review of animal models of obesity currently used in research. We have focused upon more commonly utilized models since there are far too many newly created models to consider, especially those caused by selective molecular genetic approaches modifying one or more genes in specific populations of cells. Further, we will not discuss the generation and use of inducible transgenic animals (induced knock-out or knock-in) even though they often bear significant advantages compared to traditional transgenic animals; influences of the genetic modification during the development of the animals can be minimized. The number of these animal models is simply too large to be covered in this chapter. PMID:22948848

  10. Ocean Tracking Network (OTN): Development of Oceanographic Data Integration with Animal Movement

    NASA Astrophysics Data System (ADS)

    Bajona, L.

    2016-02-01

    OTN is a $168-million ocean research and technology development platform headquartered at Dalhousie University, Canada. Using acoustic and satellite telemetry to globally document the movements and survival of aquatic animals, and their environmental correlates. The OTN Mission: to foster conservation and sustainability of valued species by generating knowledge on the movement patterns of aquatic species in their changing environment. OTN's ever-expanding global network of acoustic receivers listening for over 90 different key animal species is providing for the data needed in working in collaboration with researchers for the development of oceanographic data integration with animal movement. Presented here is Data Management's work to date, status and challenges in OTN's move towards a community standard to enable sharing between projects nationally and internationally; permitting inter-operability with other large national (e.g. CHONe, ArcticNET) and international (IOOS, IMOS) networks. This work includes co-development of Animal Acoustic Telemetry (AAT) metadata standard and implementation using an ERDDAP data server (NOAA, Environmental Research Division's Data Access Program) facilitating ingestion for modelers (eg. netcdf).

  11. Aquatic Trophic Productivity model: A decision support model for river restoration planning in the Methow River, Washington

    USGS Publications Warehouse

    Benjamin, Joseph R.; Bellmore, J. Ryan

    2016-05-19

    In this report, we outline the structure of a stream food-web model constructed to explore how alternative river restoration strategies may affect stream fish populations. We have termed this model the “Aquatic Trophic Productivity model” (ATP). We present the model structure, followed by three case study applications of the model to segments of the Methow River watershed in northern Washington. For two case studies (middle Methow River and lower Twisp River floodplain), we ran a series of simulations to explore how food-web dynamics respond to four distinctly different, but applied, strategies in the Methow River watershed: (1) reconnection of floodplain aquatic habitats, (2) riparian vegetation planting, (3) nutrient augmentation (that is, salmon carcass addition), and (4) enhancement of habitat suitability for fish. For the third case study, we conducted simulations to explore the potential fish and food-web response to habitat improvements conducted in 2012 at the Whitefish Island Side Channel, located in the middle Methow River.

  12. Finfish and aquatic invertebrate pathology resources for now and the future✩

    PubMed Central

    Spitsbergen, Jan M.; Blazer, Vicki S.; Bowser, Paul R.; Cheng, Keith C.; Cooper, Keith R.; Cooper, Timothy K.; Frasca, Salvatore; Groman, David B.; Harper, Claudia M.; (Mac) Law, Jerry M.; Marty, Gary D.; Smolowitz, Roxanna M.; Leger, Judy St.; Wolf, Douglas C.; Wolf, Jeffrey C.

    2009-01-01

    Utilization of finfish and aquatic invertebrates in biomedical research and as environmental sentinels has grown dramatically in recent decades. Likewise the aquaculture of finfish and invertebrates has expanded rapidly worldwide as populations of some aquatic food species and threatened or endangered aquatic species have plummeted due to overharvesting or habitat degradation. This increasing intensive culture and use of aquatic species has heightened the importance of maintaining a sophisticated understanding of pathology of various organ systems of these diverse species. Yet, except for selected species long cultivated in aquaculture, pathology databases and the workforce of highly trained pathologists lag behind those available for most laboratory animals and domestic mammalian and avian species. Several factors must change to maximize the use, understanding, and protection of important aquatic species: 1) improvements in databases of abnormalities across species; 2) standardization of diagnostic criteria for proliferative and nonproliferative lesions; and 3) more uniform and rigorous training in aquatic morphologic pathology. PMID:18948226

  13. Data Basin Aquatic Center: expanding access to aquatic conservation data, analysis tools, people and practical answers

    NASA Astrophysics Data System (ADS)

    Osborne-Gowey, J.; Strittholt, J.; Bergquist, J.; Ward, B. C.; Sheehan, T.; Comendant, T.; Bachelet, D. M.

    2009-12-01

    The world’s aquatic resources are experiencing anthropogenic pressures on an unprecedented scale and aquatic organisms are experiencing widespread population changes and ecosystem-scale habitat alterations. Climate change is likely to exacerbate these threats, in some cases reducing the range of native North American fishes by 20-100% (depending on the location of the population and the model assumptions). Scientists around the globe are generating large volumes of data that vary in quality, format, supporting documentation, and accessibility. Moreover, diverse models are being run at various temporal and spatial scales as scientists attempt to understand previous (and project future) human impacts to aquatic species and their habitats. Conservation scientists often struggle to synthesize this wealth of information for developing practical on-the-ground management strategies. As a result, the best available science is often not utilized in the decision-making and adaptive management processes. As aquatic conservation problems around the globe become more serious and the demand to solve them grows more urgent, scientists and land-use managers need a new way to bring strategic, science-based, and action-oriented approaches to aquatic conservation. The Conservation Biology Institute (CBI), with partners such as ESRI, is developing an Aquatic Center as part of a dynamic, web-based resource (Data Basin; http: databasin.org) that centralizes usable aquatic datasets and provides analytical tools to visualize, analyze, and communicate findings for practical applications. To illustrate its utility, we present example datasets of varying spatial scales and synthesize multiple studies to arrive at novel solutions to aquatic threats.

  14. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment.

    PubMed

    Camargo, Julio A; Alonso, Alvaro

    2006-08-01

    We provide a global assessment, with detailed multi-scale data, of the ecological and toxicological effects generated by inorganic nitrogen pollution in aquatic ecosystems. Our synthesis of the published scientific literature shows three major environmental problems: (1) it can increase the concentration of hydrogen ions in freshwater ecosystems without much acid-neutralizing capacity, resulting in acidification of those systems; (2) it can stimulate or enhance the development, maintenance and proliferation of primary producers, resulting in eutrophication of aquatic ecosystems; (3) it can reach toxic levels that impair the ability of aquatic animals to survive, grow and reproduce. Inorganic nitrogen pollution of ground and surface waters can also induce adverse effects on human health and economy. Because reductions in SO2 emissions have reduced the atmospheric deposition of H2SO4 across large portions of North America and Europe, while emissions of NOx have gone unchecked, HNO3 is now playing an increasing role in the acidification of freshwater ecosystems. This acidification process has caused several adverse effects on primary and secondary producers, with significant biotic impoverishments, particularly concerning invertebrates and fishes, in many atmospherically acidified lakes and streams. The cultural eutrophication of freshwater, estuarine, and coastal marine ecosystems can cause ecological and toxicological effects that are either directly or indirectly related to the proliferation of primary producers. Extensive kills of both invertebrates and fishes are probably the most dramatic manifestation of hypoxia (or anoxia) in eutrophic and hypereutrophic aquatic ecosystems with low water turnover rates. The decline in dissolved oxygen concentrations can also promote the formation of reduced compounds, such as hydrogen sulphide, resulting in higher adverse (toxic) effects on aquatic animals. Additionally, the occurrence of toxic algae can significantly

  15. Animal Models for Periodontal Disease

    PubMed Central

    Oz, Helieh S.; Puleo, David A.

    2011-01-01

    Animal models and cell cultures have contributed new knowledge in biological sciences, including periodontology. Although cultured cells can be used to study physiological processes that occur during the pathogenesis of periodontitis, the complex host response fundamentally responsible for this disease cannot be reproduced in vitro. Among the animal kingdom, rodents, rabbits, pigs, dogs, and nonhuman primates have been used to model human periodontitis, each with advantages and disadvantages. Periodontitis commonly has been induced by placing a bacterial plaque retentive ligature in the gingival sulcus around the molar teeth. In addition, alveolar bone loss has been induced by inoculation or injection of human oral bacteria (e.g., Porphyromonas gingivalis) in different animal models. While animal models have provided a wide range of important data, it is sometimes difficult to determine whether the findings are applicable to humans. In addition, variability in host responses to bacterial infection among individuals contributes significantly to the expression of periodontal diseases. A practical and highly reproducible model that truly mimics the natural pathogenesis of human periodontal disease has yet to be developed. PMID:21331345

  16. Tissue hypoxia during ischemic stroke: adaptive clues from hypoxia-tolerant animal models.

    PubMed

    Nathaniel, Thomas I; Williams-Hernandez, Ashley; Hunter, Anan L; Liddy, Caroline; Peffley, Dennis M; Umesiri, Francis E; Imeh-Nathaniel, Adebobola

    2015-05-01

    The treatment and prevention of hypoxic/ischemic brain injury in stroke patients remain a severe and global medical issue. Numerous clinical studies have resulted in a failure to develop chemical neuroprotection for acute, ischemic stroke. Over 150 estimated clinical trials of ischemic stroke treatments have been done, and more than 200 drugs and combinations of drugs for ischemic and hemorrhagic strokes have been developed. Billions of dollars have been invested for new scientific breakthroughs with only limited success. The revascularization of occluded cerebral arteries such as anti-clot treatments of thrombolysis has proven effective, but it can only be used in a 3-4.5h time frame after the onset of a stroke, and not for every patient. This review is about novel insights on how to resist tissue hypoxia from unconventional animal models. Ability to resist tissue hypoxia is an extraordinary ability that is not common in many laboratory animals such as rat and mouse models. For example, we can learn from a naked mole-rat, Chrysemys picta, how to actively regulate brain metabolic activity to defend the brain against fluctuating oxygen tension and acute bouts of oxidative stress following the onset of a stroke. Additionally, a euthermic arctic ground squirrel can teach us how the brain of a stroke patient can remain well oxygenated during tissue hypoxia with no evidence of cellular stress. In this review, we discuss how these animals provide us with a system to gain insight into the possible mechanisms of tissue hypoxia/ischemia. This issue is of clinical significance to stroke patients. We describe specific physiological and molecular adaptations employed by different animals' models of hypoxia tolerance in aquatic and terrestrial environments. We highlight how these adaptations might provide potential clues on strategies to adapt for the clinical management of tissue hypoxia during conditions such as stroke where oxygen demand fails to match the supply. Copyright

  17. Evaluation of animal models of neurobehavioral disorders

    PubMed Central

    van der Staay, F Josef; Arndt, Saskia S; Nordquist, Rebecca E

    2009-01-01

    Animal models play a central role in all areas of biomedical research. The process of animal model building, development and evaluation has rarely been addressed systematically, despite the long history of using animal models in the investigation of neuropsychiatric disorders and behavioral dysfunctions. An iterative, multi-stage trajectory for developing animal models and assessing their quality is proposed. The process starts with defining the purpose(s) of the model, preferentially based on hypotheses about brain-behavior relationships. Then, the model is developed and tested. The evaluation of the model takes scientific and ethical criteria into consideration. Model development requires a multidisciplinary approach. Preclinical and clinical experts should establish a set of scientific criteria, which a model must meet. The scientific evaluation consists of assessing the replicability/reliability, predictive, construct and external validity/generalizability, and relevance of the model. We emphasize the role of (systematic and extended) replications in the course of the validation process. One may apply a multiple-tiered 'replication battery' to estimate the reliability/replicability, validity, and generalizability of result. Compromised welfare is inherent in many deficiency models in animals. Unfortunately, 'animal welfare' is a vaguely defined concept, making it difficult to establish exact evaluation criteria. Weighing the animal's welfare and considerations as to whether action is indicated to reduce the discomfort must accompany the scientific evaluation at any stage of the model building and evaluation process. Animal model building should be discontinued if the model does not meet the preset scientific criteria, or when animal welfare is severely compromised. The application of the evaluation procedure is exemplified using the rat with neonatal hippocampal lesion as a proposed model of schizophrenia. In a manner congruent to that for improving animal

  18. Animal models.

    PubMed

    Walker, Ellen A

    2010-01-01

    As clinical studies reveal that chemotherapeutic agents may impair several different cognitive domains in humans, the development of preclinical animal models is critical to assess the degree of chemotherapy-induced learning and memory deficits and to understand the underlying neural mechanisms. In this chapter, the effects of various cancer chemotherapeutic agents in rodents on sensory processing, conditioned taste aversion, conditioned emotional response, passive avoidance, spatial learning, cued memory, discrimination learning, delayed-matching-to-sample, novel-object recognition, electrophysiological recordings and autoshaping is reviewed. It appears at first glance that the effects of the cancer chemotherapy agents in these many different models are inconsistent. However, a literature is emerging that reveals subtle or unique changes in sensory processing, acquisition, consolidation and retrieval that are dose- and time-dependent. As more studies examine cancer chemotherapeutic agents alone and in combination during repeated treatment regimens, the animal models will become more predictive tools for the assessment of these impairments and the underlying neural mechanisms. The eventual goal is to collect enough data to enable physicians to make informed choices about therapeutic regimens for their patients and discover new avenues of alternative or complementary therapies that reduce or eliminate chemotherapy-induced cognitive deficits.

  19. Animal models of middle ear cholesteatoma.

    PubMed

    Yamamoto-Fukuda, Tomomi; Takahashi, Haruo; Koji, Takehiko

    2011-01-01

    Middle ear acquired cholesteatoma is a pathological condition associated with otitis media, which may be associated with temporal bone resorption, otorrhea and hearing loss, and occasionally various other complications. Cholesteatoma is characterized by the enhanced proliferation of epithelial cells with aberrant morphologic characteristics. Unfortunately, our understanding of the mechanism underlying its pathogenesis is limited. To investigate its pathogenesis, different animal models have been used. This paper provides a brief overview of the current status of research in the field of pathogenesis of middle ear acquired cholesteatoma, four types of animal models previously reported on, up-to-date cholesteatoma research using these animal models, our current studies of the local hybrid ear model, and the future prospect of new animal models of middle ear cholesteatoma.

  20. Animal Models of Middle Ear Cholesteatoma

    PubMed Central

    Yamamoto-Fukuda, Tomomi; Takahashi, Haruo; Koji, Takehiko

    2011-01-01

    Middle ear acquired cholesteatoma is a pathological condition associated with otitis media, which may be associated with temporal bone resorption, otorrhea and hearing loss, and occasionally various other complications. Cholesteatoma is characterized by the enhanced proliferation of epithelial cells with aberrant morphologic characteristics. Unfortunately, our understanding of the mechanism underlying its pathogenesis is limited. To investigate its pathogenesis, different animal models have been used. This paper provides a brief overview of the current status of research in the field of pathogenesis of middle ear acquired cholesteatoma, four types of animal models previously reported on, up-to-date cholesteatoma research using these animal models, our current studies of the local hybrid ear model, and the future prospect of new animal models of middle ear cholesteatoma. PMID:21541229

  1. Modeling avian exposures to perfluoroalkyl substances in aquatic habitats impacted by historical aqueous film forming foam releases.

    PubMed

    Larson, Emily S; Conder, Jason M; Arblaster, Jennifer A

    2018-06-01

    Releases of Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) associated with Aqueous Film Forming Foams (AFFFs) have the potential to impact on-site and downgradient aquatic habitats. Dietary exposures of aquatic-dependent birds were modeled for seven PFASs (PFHxA, PFOA, PFNA, PFDA, PFHxS, PFOS, and PFDS) using five different scenarios based on measurements of PFASs obtained from five investigations of sites historically-impacted by AFFF. Exposure modeling was conducted for four avian receptors representing various avian feeding guilds: lesser scaup (Aythya affinis), spotted sandpiper (Actitis macularia), great blue heron (Ardea herodias), and osprey (Pandion haliaetus). For the receptor predicted to receive the highest PFAS exposure (spotted sandpiper), model-predicted exposure to PFOS exceeded a laboratory-based, No Observed Adverse Effect Level exposure benchmark in three of the five model scenarios, confirming that risks to aquatic-dependent avian wildlife should be considered for investigations of historic AFFF releases. Perfluoroalkyl sulfonic acids (PFHxS, PFOS, and PFDS) represented 94% (on average) of total PFAS exposures due to their prevalence in historical AFFF formulations, and increased bioaccumulation in aquatic prey items and partitioning to aquatic sediment relative to perfluoroalkyl carboxylic acids. Sediment-associated PFASs (rather than water-associated PFASs) were the source of the highest predicted PFAS exposures, and are likely to be very important for understanding and managing AFFF site-specific ecological risks. Additional considerations for research needs and site-specific ecological risk assessments are discussed with the goal of optimizing ecological risk-based decision making at AFFF sites and prioritizing research needs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. AquaPathogen X--A template database for tracking field isolates of aquatic pathogens

    USGS Publications Warehouse

    Emmenegger, Evi; Kurath, Gael

    2012-01-01

    AquaPathogen X is a template database for recording information on individual isolates of aquatic pathogens and is available for download from the U.S. Geological Survey (USGS) Western Fisheries Research Center (WFRC) website (http://wfrc.usgs.gov). This template database can accommodate the nucleotide sequence data generated in molecular epidemiological studies along with the myriad of abiotic and biotic traits associated with isolates of various pathogens (for example, viruses, parasites, or bacteria) from multiple aquatic animal host species (for example, fish, shellfish, or shrimp). The simultaneous cataloging of isolates from different aquatic pathogens is a unique feature to the AquaPathogen X database, which can be used in surveillance of emerging aquatic animal diseases and clarification of main risk factors associated with pathogen incursions into new water systems. As a template database, the data fields are empty upon download and can be modified to user specifications. For example, an application of the template database that stores the epidemiological profiles of fish virus isolates, called Fish ViroTrak (fig. 1), was also developed (Emmenegger and others, 2011).

  3. Comparison of Global and Mode of Action-Based Models for Aquatic Toxicity

    EPA Science Inventory

    The ability to estimate aquatic toxicity for a wide variety of chemicals is a critical need for ecological risk assessment and chemical regulation. The consensus in the literature is that mode of action (MOA) based QSAR (Quantitative Structure Activity Relationship) models yield ...

  4. An animal model for tinnitus.

    PubMed

    Jastreboff, P J; Brennan, J F; Sasaki, C T

    1988-03-01

    Subjective tinnitus remains obscure, widespread, and without apparent cure. In the absence of a suitable animal model, past investigations took place in humans, resulting in studies that were understandably restricted by the nature of human investigation. Within this context, the development of a valid animal model would be considered a major breakthrough in this field of investigation. Our results showed changes in the spontaneous activity of single neurons in the inferior colliculus, consistent with abnormally increased neuronal activity within the auditory pathways after manipulations known to produce tinnitus in man. A procedure based on a Pavlovian conditioned suppression paradigm was recently developed that allows us to measure tinnitus behaviorally in conscious animals. Accordingly, an animal model of tinnitus is proposed that permits tests of hypotheses relating to tinnitus generation, allowing the accommodation of interventional strategies for the treatment of this widespread auditory disorder.

  5. Animal models of fibromyalgia

    PubMed Central

    2013-01-01

    Animal models of disease states are valuable tools for developing new treatments and investigating underlying mechanisms. They should mimic the symptoms and pathology of the disease and importantly be predictive of effective treatments. Fibromyalgia is characterized by chronic widespread pain with associated co-morbid symptoms that include fatigue, depression, anxiety and sleep dysfunction. In this review, we present different animal models that mimic the signs and symptoms of fibromyalgia. These models are induced by a wide variety of methods that include repeated muscle insults, depletion of biogenic amines, and stress. All potential models produce widespread and long-lasting hyperalgesia without overt peripheral tissue damage and thus mimic the clinical presentation of fibromyalgia. We describe the methods for induction of the model, pathophysiological mechanisms for each model, and treatment profiles. PMID:24314231

  6. RESEARCH SHOWS IMPORTANCE OF RIPARIAN BUFFERS FOR AQUATIC HEALTH

    EPA Science Inventory

    Issue: Excess nitrogen from fertilizer, septic tanks, animal feedlots, and runoff from pavement can threaten aquatic ecosystem health. Riparian buffers -- the vegetated region adjacent to streams and wetlands -- are thought to be effective at intercepting and controlling excess ...

  7. Cyanotoxins: Bioaccumulation and Effects on Aquatic Animals

    PubMed Central

    Ferrão-Filho, Aloysio da S.; Kozlowsky-Suzuki, Betina

    2011-01-01

    Cyanobacteria are photosynthetic prokaryotes with wide geographic distribution that can produce secondary metabolites named cyanotoxins. These toxins can be classified into three main types according to their mechanism of action in vertebrates: hepatotoxins, dermatotoxins and neurotoxins. Many studies on the effects of cyanobacteria and their toxins over a wide range of aquatic organisms, including invertebrates and vertebrates, have reported acute effects (e.g., reduction in survivorship, feeding inhibition, paralysis), chronic effects (e.g., reduction in growth and fecundity), biochemical alterations (e.g., activity of phosphatases, GST, AChE, proteases), and behavioral alterations. Research has also focused on the potential for bioaccumulation and transferring of these toxins through the food chain. Although the herbivorous zooplankton is hypothesized as the main target of cyanotoxins, there is not unquestionable evidence of the deleterious effects of cyanobacteria and their toxins on these organisms. Also, the low toxin burden in secondary consumers points towards biodilution of microcystins in the food web as the predominant process. In this broad review we discuss important issues on bioaccumulation and the effects of cyanotoxins, with emphasis on microcystins, as well as drawbacks and future needs in this field of research. PMID:22363248

  8. Cyanotoxins: bioaccumulation and effects on aquatic animals.

    PubMed

    Ferrão-Filho, Aloysio da S; Kozlowsky-Suzuki, Betina

    2011-12-01

    Cyanobacteria are photosynthetic prokaryotes with wide geographic distribution that can produce secondary metabolites named cyanotoxins. These toxins can be classified into three main types according to their mechanism of action in vertebrates: hepatotoxins, dermatotoxins and neurotoxins. Many studies on the effects of cyanobacteria and their toxins over a wide range of aquatic organisms, including invertebrates and vertebrates, have reported acute effects (e.g., reduction in survivorship, feeding inhibition, paralysis), chronic effects (e.g., reduction in growth and fecundity), biochemical alterations (e.g., activity of phosphatases, GST, AChE, proteases), and behavioral alterations. Research has also focused on the potential for bioaccumulation and transferring of these toxins through the food chain. Although the herbivorous zooplankton is hypothesized as the main target of cyanotoxins, there is not unquestionable evidence of the deleterious effects of cyanobacteria and their toxins on these organisms. Also, the low toxin burden in secondary consumers points towards biodilution of microcystins in the food web as the predominant process. In this broad review we discuss important issues on bioaccumulation and the effects of cyanotoxins, with emphasis on microcystins, as well as drawbacks and future needs in this field of research.

  9. Effects of environmental stressors on lipid metabolism in aquatic invertebrates.

    PubMed

    Lee, Min-Chul; Park, Jun Chul; Lee, Jae-Seong

    2018-07-01

    Lipid metabolism is crucial for the survival and propagation of the species, since lipids are an essential cellular component across animal taxa for maintaining homeostasis in the presence of environmental stressors. This review aims to summarize information on the lipid metabolism under environmental stressors in aquatic invertebrates. Fatty acid synthesis from glucose via de novo lipogenesis (DNL) pathway is mostly well-conserved across animal taxa. The structure of free fatty acid (FFA) from both dietary and DNL pathway could be transformed by elongase and desaturase. In addition, FFA can be stored in lipid droplet as triacylglycerol, upon attachment to glycerol. However, due to the limited information on both gene and lipid composition, in-depth studies on the structural modification of FFA and their storage conformation are required. Despite previously validated evidences on the disturbance of the normal life cycle and lipid homeostasis by the environmental stressors (e.g., obesogens, salinity, temperature, pCO 2 , and nutrients) in the aquatic invertebrates, the mechanism behind these effects are still poorly understood. To overcome this limitation, omics approaches such as transcriptomic and proteomic analyses have been used, but there are still gaps in our knowledge on aquatic invertebrates as well as the lipidome. This paper provides a deeper understanding of lipid metabolism in aquatic invertebrates. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Husbandry of animals on land and in water: similarities and differences.

    PubMed

    Shell, E W

    1991-10-01

    The husbandry of aquatic animals originated in China in approximately 1,100 B.C., thousands of years after the beginning of animal agriculture. The practice did not reach Europe until the Middle Ages. Aquaculture apparently was not very important in Western Europe. The early immigrants from that region did not include fish with the other food animals that they brought with them to the New World. The practice of aquaculture finally came to the United States in the mid-nineteenth century, where it was used for the production of trout for stocking coldwater ponds and streams for sport fishing. Later, cultural practices were extended to warmwater species such as the largemouth black bass and the channel catfish. Thus, aquaculture in the United States was derived from recreational fishing rather than from food production, and from fisheries management rather than from animal science. There are important differences in the hydrosphere and atmosphere as cultural environments. Differences in composition, density, response to physical force, latent heat of fusion, specific heat, transparency, viscosity, and erosiveness of air and water result in different problems for land animal and aquatic animal culturists. Aquaculturists work primarily with "cold-blooded" ("lower") animals, whereas agriculturists work with "warm-blooded" ("higher") animals. In comparison with warm-blooded land animals, cold-blooded aquatic animals are less independent of changes in their environment.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Animal models of sepsis.

    PubMed

    Fink, Mitchell P

    2014-01-01

    Sepsis remains a common, serious, and heterogeneous clinical entity that is difficult to define adequately. Despite its importance as a public health problem, efforts to develop and gain regulatory approval for a specific therapeutic agent for the adjuvant treatment of sepsis have been remarkably unsuccessful. One step in the critical pathway for the development of a new agent for adjuvant treatment of sepsis is evaluation in an appropriate animal model of the human condition. Unfortunately, the animal models that have been used for this purpose have often yielded misleading findings. It is likely that there are multiple reasons for the discrepancies between the results obtained in tests of pharmacological agents in animal models of sepsis and the outcomes of human clinical trials. One of important reason may be that the changes in gene expression, which are triggered by trauma or infection, are different in mice, a commonly used species for preclinical testing, and humans. Additionally, many species, including mice and baboons, are remarkably resistant to the toxic effects of bacterial lipopolysaccharide, whereas humans are exquisitely sensitive. New approaches toward the use of animals for sepsis research are being investigated. But, at present, results from preclinical studies of new therapeutic agents for sepsis must be viewed with a degree of skepticism.

  12. Aquatic Habitats: Exploring Desktop Ponds. Teacher's Guide.

    ERIC Educational Resources Information Center

    Barrett, Katharine; Willard, Carolyn

    This book, for grades 2-6, is designed to provide students with a highly motivating and unique opportunity to investigate an aquatic habitat. Students set up, observe, study, and reflect upon their own "desktop ponds." Accessible plants and small animals used in these activities include Elodea, Tubifex worms, snails, mosquito larvae, and fish.…

  13. Late Cretaceous Aquatic Plant World in Patagonia, Argentina

    PubMed Central

    Cúneo, N. Rubén; Gandolfo, María A.; Zamaloa, María C.; Hermsen, Elizabeth

    2014-01-01

    In this contribution, we describe latest Cretaceous aquatic plant communities from the La Colonia Formation, Patagonia, Argentina, based on their taxonomic components and paleoecological attributes. The La Colonia Formation is a geological unit deposited during a Maastrichtian-Danian transgressive episode of the South Atlantic Ocean. This event resulted in the deposition of a series of fine-grained sediments associated with lagoon systems occurring along irregular coastal plains in northern Patagonia. These deposits preserved a diverse biota, including aquatic and terrestrial plants and animals. The aquatic macrophytes can be broadly divided into two groups: free-floating and rooted, the latter with emergent or floating leaves. Free-floating macrophytes include ferns in Salviniaceae (Azolla and Paleoazolla) and a monocot (Araceae). Floating microphytes include green algae (Botryoccocus, Pediastrum and Zygnemataceae). Among the rooted components, marsileaceous water ferns (including Regnellidium and an extinct form) and the eudicot angiosperm Nelumbo (Nelumbonaceae) are the dominant groups. Terrestrial plants occurring in the vegetation surrounding the lagoons include monocots (palms and Typhaceae), ferns with affinities to Dicksoniaceae, conifers, and dicots. A reconstruction of the aquatic plant paleocommuniy is provided based on the distribution of the fossils along a freshwater horizon within the La Colonia Formation. This contribution constitutes the first reconstruction of a Cretaceous aquatic habitat for southern South America. PMID:25148081

  14. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning.

    PubMed

    Terrado, Marta; Sabater, Sergi; Chaplin-Kramer, Becky; Mandle, Lisa; Ziv, Guy; Acuña, Vicenç

    2016-01-01

    There is a growing pressure of human activities on natural habitats, which leads to biodiversity losses. To mitigate the impact of human activities, environmental policies are developed and implemented, but their effects are commonly not well understood because of the lack of tools to predict the effects of conservation policies on habitat quality and/or diversity. We present a straightforward model for the simultaneous assessment of terrestrial and aquatic habitat quality in river basins as a function of land use and anthropogenic threats to habitat that could be applied under different management scenarios to help understand the trade-offs of conservation actions. We modify the InVEST model for the assessment of terrestrial habitat quality and extend it to freshwater habitats. We assess the reliability of the model in a severely impaired basin by comparing modeled results to observed terrestrial and aquatic biodiversity data. Estimated habitat quality is significantly correlated with observed terrestrial vascular plant richness (R(2)=0.76) and diversity of aquatic macroinvertebrates (R(2)=0.34), as well as with ecosystem functions such as in-stream phosphorus retention (R(2)=0.45). After that, we analyze different scenarios to assess the suitability of the model to inform changes in habitat quality under different conservation strategies. We believe that the developed model can be useful to assess potential levels of biodiversity, and to support conservation planning given its capacity to forecast the effects of management actions in river basins. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Animal models for rotator cuff repair.

    PubMed

    Lebaschi, Amir; Deng, Xiang-Hua; Zong, Jianchun; Cong, Guang-Ting; Carballo, Camila B; Album, Zoe M; Camp, Christopher; Rodeo, Scott A

    2016-11-01

    Rotator cuff (RC) injuries represent a significant source of pain, functional impairment, and morbidity. The large disease burden of RC pathologies necessitates rapid development of research methodologies to treat these conditions. Given their ability to model anatomic, biomechanical, cellular, and molecular aspects of the human RC, animal models have played an indispensable role in reducing injury burden and advancing this field of research for many years. The development of animal models in the musculoskeletal (MSK) research arena is uniquely different from that in other fields in that the similarity of macrostructures and functions is as critical to replicate as cellular and molecular functions. Traditionally, larger animals have been used because of their anatomic similarity to humans and the ease of carrying out realistic surgical procedures. However, refinement of current molecular methods, introduction of novel research tools, and advancements in microsurgical techniques have increased the applicability of small animal models in MSK research. In this paper, we review RC animal models and emphasize a murine model that may serve as a valuable instrument for future RC tendon repair investigations. © 2016 New York Academy of Sciences.

  16. Recommended reporting standards for test accuracy studies of infectious diseases of finfish, amphibians, molluscs and crustaceans: the STRADAS-aquatic checklist

    USGS Publications Warehouse

    Gardner, Ian A; Whittington, Richard J; Caraguel, Charles G B; Hick, Paul; Moody, Nicholas J G; Corbeil, Serge; Garver, Kyle A.; Warg, Janet V.; Arzul, Isabelle; Purcell, Maureen; St. J. Crane, Mark; Waltzek, Thomas B.; Olesen, Niels J; Lagno, Alicia Gallardo

    2016-01-01

    Complete and transparent reporting of key elements of diagnostic accuracy studies for infectious diseases in cultured and wild aquatic animals benefits end-users of these tests, enabling the rational design of surveillance programs, the assessment of test results from clinical cases and comparisons of diagnostic test performance. Based on deficiencies in the Standards for Reporting of Diagnostic Accuracy (STARD) guidelines identified in a prior finfish study (Gardner et al. 2014), we adapted the Standards for Reporting of Animal Diagnostic Accuracy Studies—paratuberculosis (STRADAS-paraTB) checklist of 25 reporting items to increase their relevance to finfish, amphibians, molluscs, and crustaceans and provided examples and explanations for each item. The checklist, known as STRADAS-aquatic, was developed and refined by an expert group of 14 transdisciplinary scientists with experience in test evaluation studies using field and experimental samples, in operation of reference laboratories for aquatic animal pathogens, and in development of international aquatic animal health policy. The main changes to the STRADAS-paraTB checklist were to nomenclature related to the species, the addition of guidelines for experimental challenge studies, and the designation of some items as relevant only to experimental studies and ante-mortem tests. We believe that adoption of these guidelines will improve reporting of primary studies of test accuracy for aquatic animal diseases and facilitate assessment of their fitness-for-purpose. Given the importance of diagnostic tests to underpin the Sanitary and Phytosanitary agreement of the World Trade Organization, the principles outlined in this paper should be applied to other World Organisation for Animal Health (OIE)-relevant species.

  17. Recommended reporting standards for test accuracy studies of infectious diseases of finfish, amphibians, molluscs and crustaceans: the STRADAS-aquatic checklist.

    PubMed

    Gardner, Ian A; Whittington, Richard J; Caraguel, Charles G B; Hick, Paul; Moody, Nicholas J G; Corbeil, Serge; Garver, Kyle A; Warg, Janet V; Arzul, Isabelle; Purcell, Maureen K; Crane, Mark St J; Waltzek, Thomas B; Olesen, Niels J; Gallardo Lagno, Alicia

    2016-02-25

    Complete and transparent reporting of key elements of diagnostic accuracy studies for infectious diseases in cultured and wild aquatic animals benefits end-users of these tests, enabling the rational design of surveillance programs, the assessment of test results from clinical cases and comparisons of diagnostic test performance. Based on deficiencies in the Standards for Reporting of Diagnostic Accuracy (STARD) guidelines identified in a prior finfish study (Gardner et al. 2014), we adapted the Standards for Reporting of Animal Diagnostic Accuracy Studies-paratuberculosis (STRADAS-paraTB) checklist of 25 reporting items to increase their relevance to finfish, amphibians, molluscs, and crustaceans and provided examples and explanations for each item. The checklist, known as STRADAS-aquatic, was developed and refined by an expert group of 14 transdisciplinary scientists with experience in test evaluation studies using field and experimental samples, in operation of reference laboratories for aquatic animal pathogens, and in development of international aquatic animal health policy. The main changes to the STRADAS-paraTB checklist were to nomenclature related to the species, the addition of guidelines for experimental challenge studies, and the designation of some items as relevant only to experimental studies and ante-mortem tests. We believe that adoption of these guidelines will improve reporting of primary studies of test accuracy for aquatic animal diseases and facilitate assessment of their fitness-for-purpose. Given the importance of diagnostic tests to underpin the Sanitary and Phytosanitary agreement of the World Trade Organization, the principles outlined in this paper should be applied to other World Organisation for Animal Health (OIE)-relevant species.

  18. Exotic aquatic and terrestrial animals in the Hoosier-Shawnee ecological assessment area

    Treesearch

    Brooks M. Burr; Cynthia M. Basile; Ginny L. Adams; Matthew C. Nicholson

    2004-01-01

    We reviewed the impact of exotic aquatic and terrestrial wildlife on ecosystems within the Hoosier-Shawnee Ecological Assessment Area. Recent collections within the assessment area have demonstrated that faunal diversity is expanding rapidly from the intentional and unintentional release of nonindigenous species. We report on the origin, status, trends, habitat...

  19. A Bayesian network model for predicting aquatic toxicity mode of action using two dimensional theoretical molecular descriptors-abstract

    EPA Science Inventory

    The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity but MoA classification in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity mode of action using a recently published dataset contain...

  20. Experimental and mathematical modeling of the consumer’s influence on productivity of algae in a model aquatic ecosystem

    NASA Astrophysics Data System (ADS)

    Pisman, T. I.; Galayda, Ya. V.; Shirobokova, I. M.

    A "producer-consumer" ( Chlorella vulgaris- Paramecium caudatum) closed aquatic system has been investigated experimentally and theoretically. It has been found that there is a direct relationship between the growth of the paramecia population and their release of ammonia nitrogen, which is the best form of nitrogen for Chlorella growth. The theoretical study of a model of a "producer-consumer" aquatic biotic cycle with spatially separated compartments has confirmed the contribution of paramecia to nitrogen cycling. It has been shown that an increase in the concentration of nitrogen released as metabolites of paramecia is accompanied by an increase in the productivity of microalgae.

  1. Animal models for filovirus infections.

    PubMed

    Siragam, Vinayakumar; Wong, Gary; Qiu, Xiang-Guo

    2018-01-18

    The family Filoviridae , which includes the genera Marburgvirus and Ebolavirus , contains some of the most pathogenic viruses in humans and non-human primates (NHPs), causing severe hemorrhagic fevers with high fatality rates. Small animal models against filoviruses using mice, guinea pigs, hamsters, and ferrets have been developed with the goal of screening candidate vaccines and antivirals, before testing in the gold standard NHP models. In this review, we summarize the different animal models used to understand filovirus pathogenesis, and discuss the advantages and disadvantages of each model with respect to filovirus disease research.

  2. Animal models for filovirus infections

    PubMed Central

    Siragam, Vinayakumar; Wong, Gary; Qiu, Xiang-Guo

    2018-01-01

    The family Filoviridae, which includes the genera Marburgvirus and Ebolavirus, contains some of the most pathogenic viruses in humans and non-human primates (NHPs), causing severe hemorrhagic fevers with high fatality rates. Small animal models against filoviruses using mice, guinea pigs, hamsters, and ferrets have been developed with the goal of screening candidate vaccines and antivirals, before testing in the gold standard NHP models. In this review, we summarize the different animal models used to understand filovirus pathogenesis, and discuss the advantages and disadvantages of each model with respect to filovirus disease research. PMID:29511141

  3. Animal models for testing anti-prion drugs.

    PubMed

    Fernández-Borges, Natalia; Elezgarai, Saioa R; Eraña, Hasier; Castilla, Joaquín

    2013-01-01

    Prion diseases belong to a group of fatal infectious diseases with no effective therapies available. Throughout the last 35 years, less than 50 different drugs have been tested in different experimental animal models without hopeful results. An important limitation when searching for new drugs is the existence of appropriate models of the disease. The three different possible origins of prion diseases require the existence of different animal models for testing anti-prion compounds. Wild type, over-expressing transgenic mice and other more sophisticated animal models have been used to evaluate a diversity of compounds which some of them were previously tested in different in vitro experimental models. The complexity of prion diseases will require more pre-screening studies, reliable sporadic (or spontaneous) animal models and accurate chemical modifications of the selected compounds before having an effective therapy against human prion diseases. This review is intended to put on display the more relevant animal models that have been used in the search of new antiprion therapies and describe some possible procedures when handling chemical compounds presumed to have anti-prion activity prior to testing them in animal models.

  4. HABITAT EVALUATIONS OF AQUATIC CREATURES USING HSI MODEL CONSIDERING THE RIVER WATER TEMPERATURE

    NASA Astrophysics Data System (ADS)

    Nukazawa, Kei; Shiraiwa, Jun-Ichi; Kazama, So

    Habitats of aquatic creatures (fishes Oncorhynchus masou masou, Plecoglossus altivelis altivel and Cyprinus carpio, fireflies Luciola cruciata and Luciola lateralis, and frogs Anura sp) in the Natori River basin located at the middle of Miyagi prefecture were evaluated dynamically using the water temperature as one of the environmental indices. HSI (Habitat Suitability Index) and WUA (Weighted Useable Area) of aquatic creatures were quantitatively calculated from numerical map information and hydrological simulation with a heat budget model. As results, general HSI of fireflies increased but of frogs decreased by adding the factor water temperature. Migration of Plecoglossus altivelis altivel could be represented by the variation of WUA.

  5. Animal Models of Bone Metastasis

    PubMed Central

    Simmons, J. K.; Hildreth, B. E.; Supsavhad, W.; Elshafae, S. M.; Hassan, B. B.; Dirksen, W. P.; Toribio, R. E.; Rosol, T. J.

    2015-01-01

    Bone is one of the most common sites of cancer metastasis in humans and is a significant source of morbidity and mortality. Bone metastases are considered incurable and result in pain, pathologic fracture, and decreased quality of life. Animal models of skeletal metastases are essential to improve the understanding of the molecular pathways of cancer metastasis and growth in bone and to develop new therapies to inhibit and prevent bone metastases. The ideal animal model should be clinically relevant, reproducible, and representative of human disease. Currently, an ideal model does not exist; however, understanding the strengths and weaknesses of the available models will lead to proper study design and successful cancer research. This review provides an overview of the current in vivo animal models used in the study of skeletal metastases or local tumor invasion into bone and focuses on mammary and prostate cancer, lymphoma, multiple myeloma, head and neck squamous cell carcinoma, and miscellaneous tumors that metastasize to bone. PMID:26021553

  6. Animal Models of Hemophilia

    PubMed Central

    Sabatino, Denise E.; Nichols, Timothy C.; Merricks, Elizabeth; Bellinger, Dwight A.; Herzog, Roland W.; Monahan, Paul E.

    2013-01-01

    The X-linked bleeding disorder hemophilia is caused by mutations in coagulation factor VIII (hemophilia A) or factor IX (hemophilia B). Unless prophylactic treatment is provided, patients with severe disease (less than 1% clotting activity) typically experience frequent spontaneous bleeds. Current treatment is largely based on intravenous infusion of recombinant or plasma-derived coagulation factor concentrate. More effective factor products are being developed. Moreover, gene therapies for sustained correction of hemophilia are showing much promise in pre-clinical studies and in clinical trials. These advances in molecular medicine heavily depend on availability of well-characterized small and large animal models of hemophilia, primarily hemophilia mice and dogs. Experiments in these animals represent important early and intermediate steps of translational research aimed at development of better and safer treatments for hemophilia, such a protein and gene therapies or immune tolerance protocols. While murine models are excellent for studies of large groups of animals using genetically defined strains, canine models are important for testing scale-up and for longer-term follow-up as well as for studies that require larger blood volumes. PMID:22137432

  7. 29 CFR 784.107 - Relationship of employee's work to operations on the specified aquatic products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Relationship of employee's work to operations on the... the Two Exemptions § 784.107 Relationship of employee's work to operations on the specified aquatic..., sponges, seaweeds, or other aquatic forms of animal and vegetable life.” The operations enumerated in...

  8. 29 CFR 784.107 - Relationship of employee's work to operations on the specified aquatic products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Relationship of employee's work to operations on the... the Two Exemptions § 784.107 Relationship of employee's work to operations on the specified aquatic..., sponges, seaweeds, or other aquatic forms of animal and vegetable life.” The operations enumerated in...

  9. 29 CFR 784.107 - Relationship of employee's work to operations on the specified aquatic products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Relationship of employee's work to operations on the... the Two Exemptions § 784.107 Relationship of employee's work to operations on the specified aquatic..., sponges, seaweeds, or other aquatic forms of animal and vegetable life.” The operations enumerated in...

  10. 29 CFR 784.107 - Relationship of employee's work to operations on the specified aquatic products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Relationship of employee's work to operations on the... the Two Exemptions § 784.107 Relationship of employee's work to operations on the specified aquatic..., sponges, seaweeds, or other aquatic forms of animal and vegetable life.” The operations enumerated in...

  11. Aquatic-terrestrial transitions of feeding systems in vertebrates: a mechanical perspective.

    PubMed

    Heiss, Egon; Aerts, Peter; Van Wassenbergh, Sam

    2018-04-25

    Transitions to terrestrial environments confront ancestrally aquatic animals with several mechanical and physiological problems owing to the different physical properties of water and air. As aquatic feeders generally make use of flows of water relative to the head to capture, transport and swallow food, it follows that morphological and behavioral changes were inevitably needed for the aquatic animals to successfully perform these functions on land. Here, we summarize the mechanical requirements of successful aquatic-to-terrestrial transitions in food capture, transport and swallowing by vertebrates and review how different taxa managed to fulfill these requirements. Amphibious ray-finned fishes show a variety of strategies to stably lift the anterior trunk, as well as to grab ground-based food with their jaws. However, they still need to return to the water for the intra-oral transport and swallowing process. Using the same mechanical perspective, the potential capabilities of some of the earliest tetrapods to perform terrestrial feeding are evaluated. Within tetrapods, the appearance of a mobile neck and a muscular and movable tongue can safely be regarded as key factors in the colonization of land away from amphibious habitats. Comparative studies on taxa including salamanders, which change from aquatic feeders as larvae to terrestrial feeders as adults, illustrate remodeling patterns in the hyobranchial system that can be linked to its drastic change in function during feeding. Yet, the precise evolutionary history in form and function of the hyolingual system leading to the origin(s) of a muscular and adhesive tongue remains unknown. © 2018. Published by The Company of Biologists Ltd.

  12. Animal models of exercise and obesity.

    PubMed

    Kasper, Christine E

    2013-01-01

    Animal models have been invaluable in the conduct of nursing research for the past 40 years. This review will focus on specific animal models that can be used in nursing research to study the physiologic phenomena of exercise and obesity when the use of human subjects is either scientifically premature or inappropriate because of the need for sampling tissue or the conduct of longitudinal studies of aging. There exists an extensive body of literature reporting the experimental use of various animal models, in both exercise science and the study of the mechanisms of obesity. Many of these studies are focused on the molecular and genetic mechanisms of organ system adaptation and plasticity in response to exercise, obesity, or both. However, this review will narrowly focus on the models useful to nursing research in the study of exercise in the clinical context of increasing performance and mobility, atrophy and bedrest, fatigue, and aging. Animal models of obesity focus on those that best approximate clinical pathology.

  13. Organism and population-level ecological models for chemical risk assessment

    EPA Science Inventory

    Ecological risk assessment typically focuses on animal populations as endpoints for regulatory ecotoxicology. Scientists at USEPA are developing models for animal populations exposed to a wide range of chemicals from pesticides to emerging contaminants. Modeled taxa include aquat...

  14. CONCEPTUAL MODELS AND METHODS TO GUIDE DIAGNOSTIC RESEARCH INTO CAUSES OF IMPAIRMENT TO AQUATIC ECOSYSTEMS

    EPA Science Inventory

    Methods and conceptual models to guide the development of tools for diagnosing the causes of biological impairment within aquatic ecosystems of the United States are described in this report. The conceptual models developed here address nutrients, suspended and bedded sediments (...

  15. Animal models: an important tool in mycology.

    PubMed

    Capilla, Javier; Clemons, Karl V; Stevens, David A

    2007-12-01

    Animal models of fungal infections are, and will remain, a key tool in the advancement of the medical mycology. Many different types of animal models of fungal infection have been developed, with murine models the most frequently used, for studies of pathogenesis, virulence, immunology, diagnosis, and therapy. The ability to control numerous variables in performing the model allows us to mimic human disease states and quantitatively monitor the course of the disease. However, no single model can answer all questions and different animal species or different routes of infection can show somewhat different results. Thus, the choice of which animal model to use must be made carefully, addressing issues of the type of human disease to mimic, the parameters to follow and collection of the appropriate data to answer those questions being asked. This review addresses a variety of uses for animal models in medical mycology. It focuses on the most clinically important diseases affecting humans and cites various examples of the different types of studies that have been performed. Overall, animal models of fungal infection will continue to be valuable tools in addressing questions concerning fungal infections and contribute to our deeper understanding of how these infections occur, progress and can be controlled and eliminated.

  16. Antibiotic resistance profile of bacterial isolates from animal farming aquatic environments and meats in a peri-urban community in Daejeon, Korea.

    PubMed

    Rho, Hyunjin; Shin, Bongjin; Lee, Okbok; Choi, Yu-Hyun; Rho, Jaerang; Lee, Jiyoung

    2012-05-01

    The increasing usage of antibiotics in the animal farming industry is an emerging worldwide problem contributing to the development of antibiotic resistance. The purpose of this work was to investigate the prevalence and antibiotic resistance profile of bacterial isolates collected from animal farming aquatic environments and meats in a peri-urban community in Daejeon, Korea. In an antibacterial susceptibility test, the bacterial isolates showed a high incidence of resistance (∼26.04%) to cefazolin, tetracycline, gentamycin, norfloxacin, erythromycin and vancomycin. The results from a test for multiple antibiotic resistance indicated that the isolates were displaying an approximately 5-fold increase in the incidence of multiple antibiotic resistance to combinations of two different antibiotics compared to combinations of three or more antibiotics. Most of the isolates showed multi-antibiotic resistance, and the resistance patterns were similar among the sampling groups. Sequencing data analysis of 16S rRNA showed that most of the resistant isolates appeared to be dominated by the classes Betaproteobacteria and Gammaproteobacteria, including the genera Delftia, Burkholderia, Escherichia, Enterobacter, Acinetobacter, Shigella and Pseudomonas.

  17. A general scaling law reveals why the largest animals are not the fastest.

    PubMed

    Hirt, Myriam R; Jetz, Walter; Rall, Björn C; Brose, Ulrich

    2017-08-01

    Speed is the fundamental constraint on animal movement, yet there is no general consensus on the determinants of maximum speed itself. Here, we provide a general scaling model of maximum speed with body mass, which holds across locomotion modes, ecosystem types and taxonomic groups. In contrast to traditional power-law scaling, we predict a hump-shaped relationship resulting from a finite acceleration time for animals, which explains why the largest animals are not the fastest. This model is strongly supported by extensive empirical data (474 species, with body masses ranging from 30 μg to 100 tonnes) from terrestrial as well as aquatic ecosystems. Our approach unravels a fundamental constraint on the upper limit of animal movement, thus enabling a better understanding of realized movement patterns in nature and their multifold ecological consequences.

  18. Imputation approaches for animal movement modeling

    USGS Publications Warehouse

    Scharf, Henry; Hooten, Mevin B.; Johnson, Devin S.

    2017-01-01

    The analysis of telemetry data is common in animal ecological studies. While the collection of telemetry data for individual animals has improved dramatically, the methods to properly account for inherent uncertainties (e.g., measurement error, dependence, barriers to movement) have lagged behind. Still, many new statistical approaches have been developed to infer unknown quantities affecting animal movement or predict movement based on telemetry data. Hierarchical statistical models are useful to account for some of the aforementioned uncertainties, as well as provide population-level inference, but they often come with an increased computational burden. For certain types of statistical models, it is straightforward to provide inference if the latent true animal trajectory is known, but challenging otherwise. In these cases, approaches related to multiple imputation have been employed to account for the uncertainty associated with our knowledge of the latent trajectory. Despite the increasing use of imputation approaches for modeling animal movement, the general sensitivity and accuracy of these methods have not been explored in detail. We provide an introduction to animal movement modeling and describe how imputation approaches may be helpful for certain types of models. We also assess the performance of imputation approaches in two simulation studies. Our simulation studies suggests that inference for model parameters directly related to the location of an individual may be more accurate than inference for parameters associated with higher-order processes such as velocity or acceleration. Finally, we apply these methods to analyze a telemetry data set involving northern fur seals (Callorhinus ursinus) in the Bering Sea. Supplementary materials accompanying this paper appear online.

  19. Animal models of pituitary neoplasia

    PubMed Central

    Lines, K.E.; Stevenson, M.; Thakker, R.V.

    2016-01-01

    Pituitary neoplasias can occur as part of a complex inherited disorder, or more commonly as sporadic (non-familial) disease. Studies of the molecular and genetic mechanisms causing such pituitary tumours have identified dysregulation of >35 genes, with many revealed by studies in mice, rats and zebrafish. Strategies used to generate these animal models have included gene knockout, gene knockin and transgenic over-expression, as well as chemical mutagenesis and drug induction. These animal models provide an important resource for investigation of tissue-specific tumourigenic mechanisms, and evaluations of novel therapies, illustrated by studies into multiple endocrine neoplasia type 1 (MEN1), a hereditary syndrome in which ∼30% of patients develop pituitary adenomas. This review describes animal models of pituitary neoplasia that have been generated, together with some recent advances in gene editing technologies, and an illustration of the use of the Men1 mouse as a pre clinical model for evaluating novel therapies. PMID:26320859

  20. Food allergy animal models: an overview.

    PubMed

    Helm, Ricki M

    2002-05-01

    Specific food allergy is characterized by sensitization to innocuous food proteins with production of allergen-specific IgE that binds to receptors on basophils and mast cells. Upon recurrent exposure to the same allergen, an allergic response is induced by mediator release following cross-linking of cell-bound allergen-specific IgE. The determination of what makes an innocuous food protein an allergen in predisposed individuals is unknown; however, mechanistic and protein allergen predictive models are being actively investigated in a number of animal models. Currently, there is no animal model that will actively profile known food allergens, predict the allergic potential of novel food proteins, or demonstrate clinically the human food allergic sensitization/allergic response. Animal models under investigation include mice, rats, the guinea pig, atopic dog, and neonatal swine. These models are being assessed for production of IgE, clinical responses to re-exposure, and a ranking of food allergens (based on potency) including a nonfood allergen protein source. A selection of animal models actively being investigated that will contribute to our understanding of what makes a protein an allergen and future predictive models for assessing the allergenicity of novel proteins is presented in this review.

  1. Animal Models of Ebolavirus Infection

    PubMed Central

    Claire, Marisa C St; Ragland, Dan R; Bollinger, Laura; Jahrling, Peter B

    2017-01-01

    Ebola virus is a highly pathogenic member of the family Filoviridae that causes a severe hemorrhagic disease in humans and NHP. The 2013–2016 West African outbreak has increased interest in the development and refinement of animal models of Ebola virus disease. These models are used to test countermeasures and vaccines, gain scientific insights into the mechanisms of disease progression and transmission, and study key correlates of immunology. Ebola virus is classified as a BSL4 pathogen and Category A agent, for which the United States government requires preparedness in case of bioterrorism. Rodents, such as Syrian golden hamsters (Mesocricetus auratus), mice (Mus musculus), and guinea pigs (Cavia porcellus), are the most common research species. However, NHP, especially macaques, are favored for Ebola virus disease research due to similarities with humans regarding the pathogenesis, clinical presentation, laboratory findings, and causes of fatality. To satisfy the regulatory requirements for approval of countermeasures against high-consequence pathogens, the FDA instituted the Animal Rule, which permits efficacy studies in animal models in place of human clinical data when such studies are not feasible or ethical. This review provides a comprehensive summary of various animal models and their use in Ebola virus disease research. PMID:28662754

  2. A simple technique for trapping Siren lacertina, Amphiuma means, and other aquatic vertebrates

    USGS Publications Warehouse

    Johnson, S.A.; Barichivich, W.J.

    2004-01-01

    We describe a commercially-available funnel trap for sampling aquatic vertebrates. The traps can be used in heavily vegetated wetlands and can be set in water up to 60 cm deep without concern for drowning the animals. They were especially useful for capturing the aquatic salamanders Siren lacertina and Amphiuma means, which have been difficult to capture with traditional sampling methods. They also were effective for sampling small fishes, particularly centrarchids, and larval anurans. In total, 14 species of amphibians, nine species of aquatic reptiles, and at least 32 fish species were captured. The trap we describe differs significantly from traditional funnel traps (e.g., minnow traps) and holds great promise for studies of small, aquatic vertebrates, in particular Siren and Amphiuma species.

  3. Simulation modeling of high-throughput cryopreservation of aquatic germplasm: a case study of blue catfish sperm processing

    PubMed Central

    Hu, E; Liao, T. W.; Tiersch, T. R.

    2013-01-01

    Emerging commercial-level technology for aquatic sperm cryopreservation has not been modeled by computer simulation. Commercially available software (ARENA, Rockwell Automation, Inc. Milwaukee, WI) was applied to simulate high-throughput sperm cryopreservation of blue catfish (Ictalurus furcatus) based on existing processing capabilities. The goal was to develop a simulation model suitable for production planning and decision making. The objectives were to: 1) predict the maximum output for 8-hr workday; 2) analyze the bottlenecks within the process, and 3) estimate operational costs when run for daily maximum output. High-throughput cryopreservation was divided into six major steps modeled with time, resources and logic structures. The modeled production processed 18 fish and produced 1164 ± 33 (mean ± SD) 0.5-ml straws containing one billion cryopreserved sperm. Two such production lines could support all hybrid catfish production in the US and 15 such lines could support the entire channel catfish industry if it were to adopt artificial spawning techniques. Evaluations were made to improve efficiency, such as increasing scale, optimizing resources, and eliminating underutilized equipment. This model can serve as a template for other aquatic species and assist decision making in industrial application of aquatic germplasm in aquaculture, stock enhancement, conservation, and biomedical model fishes. PMID:25580079

  4. Animal Models for HIV Cure Research.

    PubMed

    Policicchio, Benjamin B; Pandrea, Ivona; Apetrei, Cristian

    2016-01-01

    The HIV-1/AIDS pandemic continues to spread unabated worldwide, and no vaccine exists within our grasp. Effective antiretroviral therapy (ART) has been developed, but ART cannot clear the virus from the infected patient. A cure for HIV-1 is badly needed to stop both the spread of the virus in human populations and disease progression in infected individuals. A safe and effective cure strategy for human immunodeficiency virus (HIV) infection will require multiple tools, and appropriate animal models are tools that are central to cure research. An ideal animal model should recapitulate the essential aspects of HIV pathogenesis and associated immune responses, while permitting invasive studies, thus allowing a thorough evaluation of strategies aimed at reducing the size of the reservoir (functional cure) or eliminating the reservoir altogether (sterilizing cure). Since there is no perfect animal model for cure research, multiple models have been tailored and tested to address specific quintessential questions of virus persistence and eradication. The development of new non-human primate and mouse models, along with a certain interest in the feline model, has the potential to fuel cure research. In this review, we highlight the major animal models currently utilized for cure research and the contributions of each model to this goal.

  5. Animal Models for HIV Cure Research

    PubMed Central

    Policicchio, Benjamin B.; Pandrea, Ivona; Apetrei, Cristian

    2016-01-01

    The HIV-1/AIDS pandemic continues to spread unabated worldwide, and no vaccine exists within our grasp. Effective antiretroviral therapy (ART) has been developed, but ART cannot clear the virus from the infected patient. A cure for HIV-1 is badly needed to stop both the spread of the virus in human populations and disease progression in infected individuals. A safe and effective cure strategy for human immunodeficiency virus (HIV) infection will require multiple tools, and appropriate animal models are tools that are central to cure research. An ideal animal model should recapitulate the essential aspects of HIV pathogenesis and associated immune responses, while permitting invasive studies, thus allowing a thorough evaluation of strategies aimed at reducing the size of the reservoir (functional cure) or eliminating the reservoir altogether (sterilizing cure). Since there is no perfect animal model for cure research, multiple models have been tailored and tested to address specific quintessential questions of virus persistence and eradication. The development of new non-human primate and mouse models, along with a certain interest in the feline model, has the potential to fuel cure research. In this review, we highlight the major animal models currently utilized for cure research and the contributions of each model to this goal. PMID:26858716

  6. Differences in aquatic habitat quality as an impact of one- and two-dimensional hydrodynamic model simulated flow variables

    NASA Astrophysics Data System (ADS)

    Benjankar, R. M.; Sohrabi, M.; Tonina, D.; McKean, J. A.

    2013-12-01

    Aquatic habitat models utilize flow variables which may be predicted with one-dimensional (1D) or two-dimensional (2D) hydrodynamic models to simulate aquatic habitat quality. Studies focusing on the effects of hydrodynamic model dimensionality on predicted aquatic habitat quality are limited. Here we present the analysis of the impact of flow variables predicted with 1D and 2D hydrodynamic models on simulated spatial distribution of habitat quality and Weighted Usable Area (WUA) for fall-spawning Chinook salmon. Our study focuses on three river systems located in central Idaho (USA), which are a straight and pool-riffle reach (South Fork Boise River), small pool-riffle sinuous streams in a large meadow (Bear Valley Creek) and a steep-confined plane-bed stream with occasional deep forced pools (Deadwood River). We consider low and high flows in simple and complex morphologic reaches. Results show that 1D and 2D modeling approaches have effects on both the spatial distribution of the habitat and WUA for both discharge scenarios, but we did not find noticeable differences between complex and simple reaches. In general, the differences in WUA were small, but depended on stream type. Nevertheless, spatially distributed habitat quality difference is considerable in all streams. The steep-confined plane bed stream had larger differences between aquatic habitat quality defined with 1D and 2D flow models compared to results for streams with well defined macro-topographies, such as pool-riffle bed forms. KEY WORDS: one- and two-dimensional hydrodynamic models, habitat modeling, weighted usable area (WUA), hydraulic habitat suitability, high and low discharges, simple and complex reaches

  7. [Venomous and poisonous animals. IV. Envenomations by venomous aquatic vertebrates].

    PubMed

    Bédry, R; De Haro, L

    2007-04-01

    Epidemiological information on marine envenomation is generally less extensive in Europe than in tropical regions where these injuries are more severe and the need for medical advice is more frequent. For these reasons use of regional Poison Control Centers in the area where the injury occurs must be encouraged. The purpose of this review is to describe envenomation by bony fish (lion fish, stone fish, and catfish), cartilaginous fish (stingrays and poisonous sharks), or other venomous aquatic vertebrates (moray-eels and marine snakes). Understanding of these envenomation syndromes is important not only in tropical areas but also in Europe where importation of dangerous species has increased in recent years.

  8. The use of aquatic bioconcentration factors in ecological risk assessments: Confounding issues, laboratory v/s modeled results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, C.; Blanton, M.L.; Dirkes, R.

    1995-12-31

    Bioconcentration in aquatic systems is generally taken to refer to contaminant uptake through non-ingestion pathways (i.e., dermal and respiration uptake). Ecological risk assessments performed on aquatic systems often rely on published data on bioconcentration factors to calibrate models of exposure. However, many published BCFs, especially those from in situ studies, are confounded by uptake from ingestion of prey. As part of exposure assessment and risk analysis of the Columbia River`s Hanford Reach, the authors tested a methodology to estimate radionuclide BCFs for several aquatic species in the Hanford Reach of the Columbia River. The iterative methodology solves for BCFs frommore » known body burdens and environmental media concentrations. This paper provides BCF methodology description comparisons of BCF from literature and modeled values and how they were used in the exposure assessment and risk analysis of the Columbia River`s Hanford Reach.« less

  9. Diversity and impact of prokaryotic toxins on aquatic environments: a review.

    PubMed

    Valério, Elisabete; Chaves, Sandra; Tenreiro, Rogério

    2010-10-01

    Microorganisms are ubiquitous in all habitats and are recognized by their metabolic versatility and ability to produce many bioactive compounds, including toxins. Some of the most common toxins present in water are produced by several cyanobacterial species. As a result, their blooms create major threats to animal and human health, tourism, recreation and aquaculture. Quite a few cyanobacterial toxins have been described, including hepatotoxins, neurotoxins, cytotoxins and dermatotoxins. These toxins are secondary metabolites, presenting a vast diversity of structures and variants. Most of cyanobacterial secondary metabolites are peptides or have peptidic substructures and are assumed to be synthesized by non-ribosomal peptide synthesis (NRPS), involving peptide synthetases, or NRPS/PKS, involving peptide synthetases and polyketide synthases hybrid pathways. Besides cyanobacteria, other bacteria associated with aquatic environments are recognized as significant toxin producers, representing important issues in food safety, public health, and human and animal well being. Vibrio species are one of the most representative groups of aquatic toxin producers, commonly associated with seafood-born infections. Some enterotoxins and hemolysins have been identified as fundamental for V. cholerae and V. vulnificus pathogenesis, but there is evidence for the existence of other potential toxins. Campylobacter spp. and Escherichia coli are also water contaminants and are able to produce important toxins after infecting their hosts. Other bacteria associated with aquatic environments are emerging as toxin producers, namely Legionella pneumophila and Aeromonas hydrophila, described as responsible for the synthesis of several exotoxins, enterotoxins and cytotoxins. Furthermore, several Clostridium species can produce potent neurotoxins. Although not considered aquatic microorganisms, they are ubiquitous in the environment and can easily contaminate drinking and irrigation water

  10. Diversity and Impact of Prokaryotic Toxins on Aquatic Environments: A Review

    PubMed Central

    Valério, Elisabete; Chaves, Sandra; Tenreiro, Rogério

    2010-01-01

    Microorganisms are ubiquitous in all habitats and are recognized by their metabolic versatility and ability to produce many bioactive compounds, including toxins. Some of the most common toxins present in water are produced by several cyanobacterial species. As a result, their blooms create major threats to animal and human health, tourism, recreation and aquaculture. Quite a few cyanobacterial toxins have been described, including hepatotoxins, neurotoxins, cytotoxins and dermatotoxins. These toxins are secondary metabolites, presenting a vast diversity of structures and variants. Most of cyanobacterial secondary metabolites are peptides or have peptidic substructures and are assumed to be synthesized by non-ribosomal peptide synthesis (NRPS), involving peptide synthetases, or NRPS/PKS, involving peptide synthetases and polyketide synthases hybrid pathways. Besides cyanobacteria, other bacteria associated with aquatic environments are recognized as significant toxin producers, representing important issues in food safety, public health, and human and animal well being. Vibrio species are one of the most representative groups of aquatic toxin producers, commonly associated with seafood-born infections. Some enterotoxins and hemolysins have been identified as fundamental for V. cholerae and V. vulnificus pathogenesis, but there is evidence for the existence of other potential toxins. Campylobacter spp. and Escherichia coli are also water contaminants and are able to produce important toxins after infecting their hosts. Other bacteria associated with aquatic environments are emerging as toxin producers, namely Legionella pneumophila and Aeromonas hydrophila, described as responsible for the synthesis of several exotoxins, enterotoxins and cytotoxins. Furthermore, several Clostridium species can produce potent neurotoxins. Although not considered aquatic microorganisms, they are ubiquitous in the environment and can easily contaminate drinking and irrigation water

  11. Ethical guidelines, animal profile, various animal models used in periodontal research with alternatives and future perspectives.

    PubMed

    Pasupuleti, Mohan Kumar; Molahally, Subramanya Shetty; Salwaji, Supraja

    2016-01-01

    Laboratory animal models serve as a facilitator to investigate the etiopathogenesis of periodontal disease, are used to know the efficacy of reconstructive and regenerative procedures, and are also helpful in evaluation of newer therapeutic techniques including laser and implant therapies prior to application in the human beings. The aim of this review is to know the different animal models used in various specialties of dental research and to know the ethical guidelines prior to the usage of experimental models with main emphasis on how to refine, replace, and reduce the number of animal models usage in the laboratory. An online search for experimental animal models used in dental research was performed using MEDLINE/PubMed database. Publications from 2009 to May 2013 in the specialty of periodontics were included in writing this review. A total of 652 references were published in PubMed/MEDLINE databases based on the search terms used. Out of 245 studies, 241 were related to the periodontal research published in English from 2009 to 2013. Relevant papers were chosen according to the inclusion and exclusion criteria. After extensive electronic and hand search on animal models, it has been observed that various animal models were used in dental research. Search on animal models used for dental research purpose revealed that various animals such as rats, mice, guinea pigs, rabbit, beagle dogs, goats, and nonhuman primates were extensively used. However, with the new advancement of ex vivo animal models, it has become easy to investigate disease pathogenesis and to test the efficacy of newer therapeutic modalities with the reduced usage of animal models. This review summarized the large amount of literature on animal models used in periodontal research with main emphasis on ethical guidelines and on reducing the animal model usage in future perspective.

  12. Ethical guidelines, animal profile, various animal models used in periodontal research with alternatives and future perspectives

    PubMed Central

    Pasupuleti, Mohan Kumar; Molahally, Subramanya Shetty; Salwaji, Supraja

    2016-01-01

    Laboratory animal models serve as a facilitator to investigate the etiopathogenesis of periodontal disease, are used to know the efficacy of reconstructive and regenerative procedures, and are also helpful in evaluation of newer therapeutic techniques including laser and implant therapies prior to application in the human beings. The aim of this review is to know the different animal models used in various specialties of dental research and to know the ethical guidelines prior to the usage of experimental models with main emphasis on how to refine, replace, and reduce the number of animal models usage in the laboratory. An online search for experimental animal models used in dental research was performed using MEDLINE/PubMed database. Publications from 2009 to May 2013 in the specialty of periodontics were included in writing this review. A total of 652 references were published in PubMed/MEDLINE databases based on the search terms used. Out of 245 studies, 241 were related to the periodontal research published in English from 2009 to 2013. Relevant papers were chosen according to the inclusion and exclusion criteria. After extensive electronic and hand search on animal models, it has been observed that various animal models were used in dental research. Search on animal models used for dental research purpose revealed that various animals such as rats, mice, guinea pigs, rabbit, beagle dogs, goats, and nonhuman primates were extensively used. However, with the new advancement of ex vivo animal models, it has become easy to investigate disease pathogenesis and to test the efficacy of newer therapeutic modalities with the reduced usage of animal models. This review summarized the large amount of literature on animal models used in periodontal research with main emphasis on ethical guidelines and on reducing the animal model usage in future perspective. PMID:28298815

  13. Animal Models of Subjective Tinnitus

    PubMed Central

    2014-01-01

    Tinnitus is one of the major audiological diseases, affecting a significant portion of the ageing society. Despite its huge personal and presumed economic impact there are only limited therapeutic options available. The reason for this deficiency lies in the very nature of the disease as it is deeply connected to elementary plasticity of auditory processing in the central nervous system. Understanding these mechanisms is essential for developing a therapy that reverses the plastic changes underlying the pathogenesis of tinnitus. This requires experiments that address individual neurons and small networks, something usually not feasible in human patients. However, in animals such invasive experiments on the level of single neurons with high spatial and temporal resolution are possible. Therefore, animal models are a very critical element in the combined efforts for engineering new therapies. This review provides an overview over the most important features of animal models of tinnitus: which laboratory species are suitable, how to induce tinnitus, and how to characterize the perceived tinnitus by behavioral means. In particular, these aspects of tinnitus animal models are discussed in the light of transferability to the human patients. PMID:24829805

  14. Exploration of an urban lake management model to simulate chlorine interference based on the ecological relationships among aquatic species.

    PubMed

    Yan, Zhiqiang; Wang, Yafei; Wu, Di; Xia, Beicheng

    2018-05-29

    In eutrophic lakes, algae are known to be sensitive to chlorine, but the impact of chlorine on the wider ecosystem has not been investigated. To quantitatively investigate the effects of chlorine on the urban lake ecosystem and analyze the changes in the aquatic ecosystem structure, a dynamic response model of aquatic species to chlorine was constructed based on the biomass density dynamics of aquatic species of submerged macrophytes, phytoplankton, zooplankton, periphyton, and benthos. The parameters were calibrated using data from the literature and two simulative experiments. The model was then validated using field data from an urban lake with a surface area of approximately 8000 m 2 located in the downtown area of Guangzhou, South China. The correlation coefficient (R), root mean square error-observations standard deviation ratio (RSR) and index of agreement (IOA) were used to evaluate the accuracy and reliability of the model and the results were consistent with the observations (0.446 R < 0.985, RSR < 0.7, IOA > 0.6). Comparisons between the simulated and observed trends confirmed the feasibility of using this model to investigate the dynamics of aquatic species under chlorine interference. The model can help managers apply a modest amount of chlorine to control eutrophication and provides scientific support for the management of urban lakes.

  15. Aquatic Acoustic Metrics Interface Utility for Underwater Sound Monitoring and Analysis

    PubMed Central

    Ren, Huiying; Halvorsen, Michele B.; Deng, Zhiqun Daniel; Carlson, Thomas J.

    2012-01-01

    Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR) devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. In this paper, we provide a detailed description of a new software package, the Aquatic Acoustic Metrics Interface (AAMI), specifically designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals. In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame. The features of the AAMI software are discussed, and several case studies are presented to illustrate its functionality. PMID:22969353

  16. The effect of chronic silver nanoparticles on aquatic system in microcosms.

    PubMed

    Jiang, Hong Sheng; Yin, Liyan; Ren, Na Na; Xian, Ling; Zhao, Suting; Li, Wei; Gontero, Brigitte

    2017-04-01

    Silver nanoparticles (AgNPs) inevitably discharge into aquatic environments due to their abundant use in antibacterial products. It was reported that in laboratory conditions, AgNPs display dose-dependent toxicity to aquatic organisms, such as bacteria, algae, macrophytes, snails and fishes. However, AgNPs could behave differently in natural complex environments. In the present study, a series of microcosms were established to investigate the distribution and toxicity of AgNPs at approximately 500 μg L -1 in aquatic systems. As a comparison, the distribution and toxicity of the same concentration of AgNO 3 were also determined. The results showed that the surface layer of sediment was the main sink of Ag element for both AgNPs and AgNO 3 . Both aquatic plant (Hydrilla verticillata) and animals (Gambusia affinis and Radix spp) significantly accumulated Ag. With short-term treatment, phytoplankton biomass was affected by AgNO 3 but not by AgNPs. Chlorophyll content of H. verticillata increased with both AgNPs and AgNO 3 short-term exposure. However, the biomass of phytoplankton, aquatic plant and animals was not significantly different between control and samples treated with AgNPs or AgNO 3 for 90 d. The communities, diversity and richness of microbes were not significantly affected by AgNPs and AgNO 3 ; in contrast, the nitrification rate and its related microbe (Nitrospira) abundance significantly decreased. AgNPs and AgNO 3 may affect the nitrogen cycle and affect the environment and, since they might be also transferred to food web, they represent a risk for health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Small Animal Models for Evaluating Filovirus Countermeasures.

    PubMed

    Banadyga, Logan; Wong, Gary; Qiu, Xiangguo

    2018-05-11

    The development of novel therapeutics and vaccines to treat or prevent disease caused by filoviruses, such as Ebola and Marburg viruses, depends on the availability of animal models that faithfully recapitulate clinical hallmarks of disease as it is observed in humans. In particular, small animal models (such as mice and guinea pigs) are historically and frequently used for the primary evaluation of antiviral countermeasures, prior to testing in nonhuman primates, which represent the gold-standard filovirus animal model. In the past several years, however, the filovirus field has witnessed the continued refinement of the mouse and guinea pig models of disease, as well as the introduction of the hamster and ferret models. We now have small animal models for most human-pathogenic filoviruses, many of which are susceptible to wild type virus and demonstrate key features of disease, including robust virus replication, coagulopathy, and immune system dysfunction. Although none of these small animal model systems perfectly recapitulates Ebola virus disease or Marburg virus disease on its own, collectively they offer a nearly complete set of tools in which to carry out the preclinical development of novel antiviral drugs.

  18. The AquaDEB project: Physiological flexibility of aquatic animals analysed with a generic dynamic energy budget model (phase II)

    NASA Astrophysics Data System (ADS)

    Alunno-Bruscia, Marianne; van der Veer, Henk W.; Kooijman, Sebastiaan A. L. M.

    2011-11-01

    This second special issue of the Journal of Sea Research on development and applications of Dynamic Energy Budget (DEB) theory concludes the European Research Project AquaDEB (2007-2011). In this introductory paper we summarise the progress made during the running time of this 5 years' project, present context for the papers in this volume and discuss future directions. The main scientific objectives in AquaDEB were (i) to study and compare the sensitivity of aquatic species (mainly molluscs and fish) to environmental variability within the context of DEB theory for metabolic organisation, and (ii) to evaluate the inter-relationships between different biological levels (individual, population, ecosystem) and temporal scales (life cycle, population dynamics, evolution). AquaDEB phase I focussed on quantifying bio-energetic processes of various aquatic species ( e.g. molluscs, fish, crustaceans, algae) and phase II on: (i) comparing of energetic and physiological strategies among species through the DEB parameter values and identifying the factors responsible for any differences in bioenergetics and physiology; (ii) considering different scenarios of environmental disruption (excess of nutrients, diffuse or massive pollution, exploitation by man, climate change) to forecast effects on growth, reproduction and survival of key species; (iii) scaling up the models for a few species from the individual level up to the level of evolutionary processes. Apart from the three special issues in the Journal of Sea Research — including the DEBIB collaboration (see vol. 65 issue 2), a theme issue on DEB theory appeared in the Philosophical Transactions of the Royal Society B (vol 365, 2010); a large number of publications were produced; the third edition of the DEB book appeared (2010); open-source software was substantially expanded (over 1000 functions); a large open-source systematic collection of ecophysiological data and DEB parameters has been set up; and a series of DEB

  19. Animal models of external traumatic wound infections

    PubMed Central

    Dai, Tianhong; Kharkwal, Gitika B; Tanaka, Masamitsu; Huang, Ying-Ying; Bil de Arce, Vida J

    2011-01-01

    Background: Despite advances in traumatic wound care and management, infections remain a leading cause of mortality, morbidity and economic disruption in millions of wound patients around the world. Animal models have become standard tools for studying a wide array of external traumatic wound infections and testing new antimicrobial strategies. Results: Animal models of external traumatic wound infections reported by different investigators vary in animal species used, microorganism strains, the number of microorganisms applied, the size of the wounds and for burn infections, the length of time the heated object or liquid is in contact with the skin. Methods: This review covers experimental infections in animal models of surgical wounds, skin abrasions, burns, lacerations, excisional wounds and open fractures. Conclusions: As antibiotic resistance continues to increase, more new antimicrobial approaches are urgently needed. These should be tested using standard protocols for infections in external traumatic wounds in animal models. PMID:21701256

  20. Hierarchical animal movement models for population-level inference

    USGS Publications Warehouse

    Hooten, Mevin B.; Buderman, Frances E.; Brost, Brian M.; Hanks, Ephraim M.; Ivans, Jacob S.

    2016-01-01

    New methods for modeling animal movement based on telemetry data are developed regularly. With advances in telemetry capabilities, animal movement models are becoming increasingly sophisticated. Despite a need for population-level inference, animal movement models are still predominantly developed for individual-level inference. Most efforts to upscale the inference to the population level are either post hoc or complicated enough that only the developer can implement the model. Hierarchical Bayesian models provide an ideal platform for the development of population-level animal movement models but can be challenging to fit due to computational limitations or extensive tuning required. We propose a two-stage procedure for fitting hierarchical animal movement models to telemetry data. The two-stage approach is statistically rigorous and allows one to fit individual-level movement models separately, then resample them using a secondary MCMC algorithm. The primary advantages of the two-stage approach are that the first stage is easily parallelizable and the second stage is completely unsupervised, allowing for an automated fitting procedure in many cases. We demonstrate the two-stage procedure with two applications of animal movement models. The first application involves a spatial point process approach to modeling telemetry data, and the second involves a more complicated continuous-time discrete-space animal movement model. We fit these models to simulated data and real telemetry data arising from a population of monitored Canada lynx in Colorado, USA.

  1. Social defeat models in animal science: What we have learned from rodent models.

    PubMed

    Toyoda, Atsushi

    2017-07-01

    Studies on stress and its impacts on animals are very important in many fields of science, including animal science, because various stresses influence animal production and animal welfare. In particular, the social stresses within animal groups have profound impact on animals, with the potential to induce abnormal behaviors and health problems. In humans, social stress induces several health problems, including psychiatric disorders. In animal stress models, social defeat models are well characterized and used in various research fields, particularly in studies concerning mental disorders. Recently, we have focused on behavior, nutrition and metabolism in rodent models of social defeat to elucidate how social stresses affect animals. In this review, recent significant progress in studies related to animal social defeat models are described. In the field of animal science, these stress models may contribute to advances in the development of functional foods and in the management of animal welfare. © 2017 The Authors. Animal Science Journal published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Animal Science.

  2. Current status: Animal models of nausea

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.

    1991-01-01

    The advantages, and possible benefits of a valid, reliable animal model for nausea are discussed, and difficulties inherent to the development of a model are considered. A principle problem for developing models arises because nausea is a subjective sensation that can be identified only in humans. Several putative measures of nausea in animals are considered, with more detailed consideration directed to variation in cardiac rate, levels of vasopressin, and conditioned taste aversion. Demonstration that putative measures are associated with reported nausea in humans is proposed as a requirement for validating measures to be used in animal models. The necessity for a 'real-time' measure of nausea is proposed as an important factor for future research; and the need for improved understanding of the neuroanatomy underlying the emetic syndrome is discussed.

  3. Separability of drag and thrust in undulatory animals and machines

    NASA Astrophysics Data System (ADS)

    Bale, Rahul; Shirgaonkar, Anup A.; Neveln, Izaak D.; Bhalla, Amneet Pal Singh; Maciver, Malcolm A.; Patankar, Neelesh A.

    2014-12-01

    For nearly a century, researchers have tried to understand the swimming of aquatic animals in terms of a balance between the forward thrust from swimming movements and drag on the body. Prior approaches have failed to provide a separation of these two forces for undulatory swimmers such as lamprey and eels, where most parts of the body are simultaneously generating drag and thrust. We nonetheless show that this separation is possible, and delineate its fundamental basis in undulatory swimmers. Our approach unifies a vast diversity of undulatory aquatic animals (anguilliform, sub-carangiform, gymnotiform, bal-istiform, rajiform) and provides design principles for highly agile bioinspired underwater vehicles. This approach has practical utility within biology as well as engineering. It is a predictive tool for use in understanding the role of the mechanics of movement in the evolutionary emergence of morphological features relating to locomotion. For example, we demonstrate that the drag-thrust separation framework helps to predict the observed height of the ribbon fin of electric knifefish, a diverse group of neotropical fish which are an important model system in sensory neurobiology. We also show how drag-thrust separation leads to models that can predict the swimming velocity of an organism or a robotic vehicle.

  4. Separability of drag and thrust in undulatory animals and machines

    PubMed Central

    Bale, Rahul; Shirgaonkar, Anup A.; Neveln, Izaak D.; Bhalla, Amneet Pal Singh; MacIver, Malcolm A.; Patankar, Neelesh A.

    2014-01-01

    For nearly a century, researchers have tried to understand the swimming of aquatic animals in terms of a balance between the forward thrust from swimming movements and drag on the body. Prior approaches have failed to provide a separation of these two forces for undulatory swimmers such as lamprey and eels, where most parts of the body are simultaneously generating drag and thrust. We nonetheless show that this separation is possible, and delineate its fundamental basis in undulatory swimmers. Our approach unifies a vast diversity of undulatory aquatic animals (anguilliform, sub-carangiform, gymnotiform, bal-istiform, rajiform) and provides design principles for highly agile bioinspired underwater vehicles. This approach has practical utility within biology as well as engineering. It is a predictive tool for use in understanding the role of the mechanics of movement in the evolutionary emergence of morphological features relating to locomotion. For example, we demonstrate that the drag-thrust separation framework helps to predict the observed height of the ribbon fin of electric knifefish, a diverse group of neotropical fish which are an important model system in sensory neurobiology. We also show how drag-thrust separation leads to models that can predict the swimming velocity of an organism or a robotic vehicle. PMID:25491270

  5. Animal Models in Cardiovascular Research: Hypertension and Atherosclerosis

    PubMed Central

    Ng, Chun-Yi; Jaarin, Kamsiah

    2015-01-01

    Hypertension and atherosclerosis are among the most common causes of mortality in both developed and developing countries. Experimental animal models of hypertension and atherosclerosis have become a valuable tool for providing information on etiology, pathophysiology, and complications of the disease and on the efficacy and mechanism of action of various drugs and compounds used in treatment. An animal model has been developed to study hypertension and atherosclerosis for several reasons. Compared to human models, an animal model is easily manageable, as compounding effects of dietary and environmental factors can be controlled. Blood vessels and cardiac tissue samples can be taken for detailed experimental and biomolecular examination. Choice of animal model is often determined by the research aim, as well as financial and technical factors. A thorough understanding of the animal models used and complete analysis must be validated so that the data can be extrapolated to humans. In conclusion, animal models for hypertension and atherosclerosis are invaluable in improving our understanding of cardiovascular disease and developing new pharmacological therapies. PMID:26064920

  6. Osteoarthritis: new insights in animal models.

    PubMed

    Longo, Umile Giuseppe; Loppini, Mattia; Fumo, Caterina; Rizzello, Giacomo; Khan, Wasim Sardar; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Osteoarthritis (OA) is the most frequent and symptomatic health problem in the middle-aged and elderly population, with over one-half of all people over the age of 65 showing radiographic changes in painful knees. The aim of the present study was to perform an overview on the available animal models used in the research field on the OA. Discrepancies between the animal models and the human disease are present. As regards human 'idiopathic' OA, with late onset and slow progression, it is perhaps wise not to be overly enthusiastic about animal models that show severe chondrodysplasia and very early OA. Advantage by using genetically engineered mouse models, in comparison with other surgically induced models, is that molecular etiology is known. Find potential molecular markers for the onset of the disease and pay attention to the role of gender and environmental factors should be very helpful in the study of mice that acquire premature OA. Surgically induced destabilization of joint is the most widely used induction method. These models allow the temporal control of disease induction and follow predictable progression of the disease. In animals, ACL transection and meniscectomy show a speed of onset and severity of disease higher than in humans after same injury.

  7. Animal models of traumatic brain injury

    PubMed Central

    Xiong, Ye; Mahmood, Asim; Chopp, Michael

    2014-01-01

    Traumatic brain injury (TBI) is a leading cause of mortality and morbidity in both civilian life and the battlefield worldwide. Survivors of TBI frequently experience long-term disabling changes in cognition, sensorimotor function and personality. Over the past three decades, animal models have been developed to replicate the various aspects of human TBI, to better understand the underlying pathophysiology and to explore potential treatments. Nevertheless, promising neuroprotective drugs, which were identified to be effective in animal TBI models, have all failed in phase II or phase III clinical trials. This failure in clinical translation of preclinical studies highlights a compelling need to revisit the current status of animal models of TBI and therapeutic strategies. PMID:23329160

  8. Animal models for microbicide safety and efficacy testing.

    PubMed

    Veazey, Ronald S

    2013-07-01

    Early studies have cast doubt on the utility of animal models for predicting success or failure of HIV-prevention strategies, but results of multiple human phase 3 microbicide trials, and interrogations into the discrepancies between human and animal model trials, indicate that animal models were, and are, predictive of safety and efficacy of microbicide candidates. Recent studies have shown that topically applied vaginal gels, and oral prophylaxis using single or combination antiretrovirals are indeed effective in preventing sexual HIV transmission in humans, and all of these successes were predicted in animal models. Further, prior discrepancies between animal and human results are finally being deciphered as inadequacies in study design in the model, or quite often, noncompliance in human trials, the latter being increasingly recognized as a major problem in human microbicide trials. Successful microbicide studies in humans have validated results in animal models, and several ongoing studies are further investigating questions of tissue distribution, duration of efficacy, and continued safety with repeated application of these, and other promising microbicide candidates in both murine and nonhuman primate models. Now that we finally have positive correlations with prevention strategies and protection from HIV transmission, we can retrospectively validate animal models for their ability to predict these results, and more importantly, prospectively use these models to select and advance even safer, more effective, and importantly, more durable microbicide candidates into human trials.

  9. Oviposition site choice under conflicting risks demonstrates that aquatic predators drive terrestrial egg-laying

    PubMed Central

    Touchon, Justin C.; Worley, Julie L.

    2015-01-01

    Laying eggs out of water was crucial to the transition to land and has evolved repeatedly in multiple animal phyla. However, testing hypotheses about this transition has been difficult because extant species only breed in one environment. The pantless treefrog, Dendropsophus ebraccatus, makes such tests possible because they lay both aquatic and arboreal eggs. Here, we test the oviposition site choices of D. ebraccatus under conflicting risks of arboreal egg desiccation and aquatic egg predation, thereby estimating the relative importance of each selective agent on reproduction. We also measured discrimination between habitats with and without predators and development of naturally laid aquatic and arboreal eggs. Aquatic embryos in nature developed faster than arboreal embryos, implying no cost to aquatic egg laying. In choice tests, D. ebraccatus avoided habitats with fish, showing that they can detect aquatic egg predators. Most importantly, D. ebraccatus laid most eggs in the water when faced with only desiccation risk, but switched to laying eggs arboreally when desiccation risk and aquatic predators were both present. This provides the first experimental evidence to our knowledge that aquatic predation risk influences non-aquatic oviposition and strongly supports the hypothesis that it was a driver of the evolution of terrestrial reproduction. PMID:25948689

  10. Bridging Animal and Human Models

    PubMed Central

    Barkley-Levenson, Amanda M.; Crabbe, John C.

    2012-01-01

    Genetics play an important role in the development and course of alcohol abuse, and understanding genetic contributions to this disorder may lead to improved preventative and therapeutic strategies in the future. Studies both in humans and in animal models are necessary to fully understand the neurobiology of alcoholism from the molecular to the cognitive level. By dissecting the complex facets of alcoholism into discrete, well-defined phenotypes that are measurable in both human populations and animal models of the disease, researchers will be better able to translate findings across species and integrate the knowledge obtained from various disciplines. Some of the key areas of alcoholism research where consilience between human and animal studies is possible are alcohol withdrawal severity, sensitivity to rewards, impulsivity, and dysregulated alcohol consumption. PMID:23134048

  11. Aquarium Viromes: Viromes of Human-Managed Aquatic Systems

    PubMed Central

    Kim, Yiseul; Van Bonn, William; Aw, Tiong G.; Rose, Joan B.

    2017-01-01

    An aquarium ecosystem is home to many animal species providing conditions similar to native aquatic habitats but under highly controlled management. With a growing interest in understanding the interaction of microbiomes and resident animal health within aquarium environments, we undertook a metagenomic survey of viromes in seven aquarium systems with differing physicochemical and resident animal profiles. Our results show that a diverse array of viruses was represented in aquarium viromes, many of which were widespread in different aquarium systems (27 common viral families in all of the aquarium systems). Most viromes were dominated by DNA phages of the order Caudovirales as commonly found in other aquatic environments with average relative abundance greater than 64%. The composition and structure of aquarium viromes were associated with controlled system parameters, including nitrate, salinity, and temperature as well as resident animal profiles, indicating the close interaction of viromes with aquarium management practices. Furthermore, finding human associated viruses in a touch exhibit suggested that exposure of aquarium systems to human contact may lead to introduction of human cutaneous viruses into aquaria. This is consistent with the high abundance of skin microflora on the palms of healthy individuals and their detection in recreational waters, such as swimming pools. Lastly, assessment of antibiotic resistance genes (ARGs) in aquarium viromes revealed a unique signature of ARGs in different aquarium systems with trimethoprim being the most common. This is the first study to provide vital information on viromes and their unique relationships with management practices in a human-built and controlled aquarium environment. PMID:28713358

  12. Aquarium Viromes: Viromes of Human-Managed Aquatic Systems.

    PubMed

    Kim, Yiseul; Van Bonn, William; Aw, Tiong G; Rose, Joan B

    2017-01-01

    An aquarium ecosystem is home to many animal species providing conditions similar to native aquatic habitats but under highly controlled management. With a growing interest in understanding the interaction of microbiomes and resident animal health within aquarium environments, we undertook a metagenomic survey of viromes in seven aquarium systems with differing physicochemical and resident animal profiles. Our results show that a diverse array of viruses was represented in aquarium viromes, many of which were widespread in different aquarium systems (27 common viral families in all of the aquarium systems). Most viromes were dominated by DNA phages of the order Caudovirales as commonly found in other aquatic environments with average relative abundance greater than 64%. The composition and structure of aquarium viromes were associated with controlled system parameters, including nitrate, salinity, and temperature as well as resident animal profiles, indicating the close interaction of viromes with aquarium management practices. Furthermore, finding human associated viruses in a touch exhibit suggested that exposure of aquarium systems to human contact may lead to introduction of human cutaneous viruses into aquaria. This is consistent with the high abundance of skin microflora on the palms of healthy individuals and their detection in recreational waters, such as swimming pools. Lastly, assessment of antibiotic resistance genes (ARGs) in aquarium viromes revealed a unique signature of ARGs in different aquarium systems with trimethoprim being the most common. This is the first study to provide vital information on viromes and their unique relationships with management practices in a human-built and controlled aquarium environment.

  13. Animal models for dengue vaccine development and testing

    PubMed Central

    2017-01-01

    Dengue fever is a tropical endemic disease; however, because of climate change, it may become a problem in South Korea in the near future. Research on vaccines for dengue fever and outbreak preparedness are currently insufficient. In addition, because there are no appropriate animal models, controversial results from vaccine efficacy assessments and clinical trials have been reported. Therefore, to study the mechanism of dengue fever and test the immunogenicity of vaccines, an appropriate animal model is urgently needed. In addition to mouse models, more suitable models using animals that can be humanized will need to be constructed. In this report, we look at the current status of model animal construction and discuss which models require further development. PMID:28775974

  14. Animal models for dengue vaccine development and testing.

    PubMed

    Na, Woonsung; Yeom, Minjoo; Choi, Il-Kyu; Yook, Heejun; Song, Daesub

    2017-07-01

    Dengue fever is a tropical endemic disease; however, because of climate change, it may become a problem in South Korea in the near future. Research on vaccines for dengue fever and outbreak preparedness are currently insufficient. In addition, because there are no appropriate animal models, controversial results from vaccine efficacy assessments and clinical trials have been reported. Therefore, to study the mechanism of dengue fever and test the immunogenicity of vaccines, an appropriate animal model is urgently needed. In addition to mouse models, more suitable models using animals that can be humanized will need to be constructed. In this report, we look at the current status of model animal construction and discuss which models require further development.

  15. Utag for iTAG: Putting the "U and me" in the Integrated Tracking of Aquatic Animals in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Simoniello, C.; Currier, R. D.; Kirkpatrick, B. A.; Kobara, S.

    2016-02-01

    Exciting advances in aquatic animal tracking capabilities are contributing to the development of a national Animal Telemetry Network under the U.S. Integrated Ocean Observing System. Ongoing efforts in this arena with the Gulf of Mexico Coastal Ocean Observing System Regional Association (GCOOS-RA) and partners, have laid the foundation for innovative community engagement that uses the iTAG platform to enhance ocean literacy. Presented will be an example of how the Utag for iTAG campaign was developed as a community service project in a Pinellas County, Florida, elementary school where approximately 70% of the students are underserved and/or underrepresented and more than half are on free or reduced lunch. The project incorporates the integration of telemetry platforms in the Gulf, a student-led visual arts project to develop the program logo, crowdsourcing to raise money to purchase telemetry tags, and a communication network that includes interactions among students, formal and informal educators, and scientists from the United States and Canada. The work is part of a larger effort by the GCOOS-RA to develop its citizen science observing network for the Gulf of Mexico.

  16. Organism and population-level ecological models for ...

    EPA Pesticide Factsheets

    Ecological risk assessment typically focuses on animal populations as endpoints for regulatory ecotoxicology. Scientists at USEPA are developing models for animal populations exposed to a wide range of chemicals from pesticides to emerging contaminants. Modeled taxa include aquatic and terrestrial invertebrates, fish, amphibians, and birds, and employ a wide range of methods, from matrix-based projection models to mechanistic bioenergetics models and spatially explicit population models. not applicable

  17. Bioavailability and bioaccumulation of metal-based engineered nanomaterials in aquatic environments: concepts and processes: chapter 5

    USGS Publications Warehouse

    Luoma, Samuel N.; Khan, Farhan R.; Croteau, Marie-Noële

    2014-01-01

    Bioavailability of Me-ENMs to aquatic organisms links their release into the environment to ecological implications. Close examination shows some important differences in the conceptual models that define bioavailability for metals and Me-ENMs. Metals are delivered to aquatic animals from Me-ENMs via water, ingestion, and incidental surface exposure. Both metal released from the Me-ENM and uptake of the nanoparticle itself contribute to bioaccumulation. Some mechanisms of toxicity and some of the metrics describing exposure may differ from metals alone. Bioavailability is driven by complex interaction of particle attributes, environmental transformations, and biological traits. Characterization of Me-ENMs is an essential part of understanding bioavailability and requires novel methodologies. The relative importance of the array of processes that could affect Me-ENM bioavailability remains poorly known, but new approaches and models are developing rapidly. Enough is known, however, to conclude that traditional approaches to exposure assessment for metals would not be adequate to assess risks from Me-ENMs.

  18. Pain assessment in animal models of osteoarthritis.

    PubMed

    Piel, Margaret J; Kroin, Jeffrey S; van Wijnen, Andre J; Kc, Ranjan; Im, Hee-Jeong

    2014-03-10

    Assessment of pain in animal models of osteoarthritis is integral to interpretation of a model's utility in representing the clinical condition, and enabling accurate translational medicine. Here we describe behavioral pain assessments available for small and large experimental osteoarthritic pain animal models. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Animal models of cardiac cachexia.

    PubMed

    Molinari, Francesca; Malara, Natalia; Mollace, Vincenzo; Rosano, Giuseppe; Ferraro, Elisabetta

    2016-09-15

    Cachexia is the loss of body weight associated with several chronic diseases including chronic heart failure (CHF). The cachectic condition is mainly due to loss of skeletal muscle mass and adipose tissue depletion. The majority of experimental in vivo studies on cachexia rely on animal models of cancer cachexia while a reliable and appropriate model for cardiac cachexia has not yet been established. A critical issue in generating a cardiac cachexia model is that genetic modifications or pharmacological treatments impairing the heart functionality and used to obtain the heart failure model might likely impair the skeletal muscle, this also being a striated muscle and sharing with the myocardium several molecular and physiological mechanisms. On the other hand, often, the induction of heart damage in the several existing models of heart failure does not necessarily lead to skeletal muscle loss and cachexia. Here we describe the main features of cardiac cachexia and illustrate some animal models proposed for cardiac cachexia studies; they include the genetic calsequestrin and Dahl salt-sensitive models, the monocrotaline model and the surgical models obtained by left anterior descending (LAD) ligation, transverse aortic constriction (TAC) and ascending aortic banding. The availability of a specific animal model for cardiac cachexia is a crucial issue since, besides the common aspects of cachexia in the different syndromes, each disease has some peculiarities in its etiology and pathophysiology leading to cachexia. Such peculiarities need to be unraveled in order to find new targets for effective therapies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Latest animal models for anti-HIV drug discovery.

    PubMed

    Sliva, Katja

    2015-02-01

    HIV research is limited by the fact that lentiviruses are highly species specific. The need for appropriate models to promote research has led to the development of many elaborate surrogate animal models. This review looks at the history of animal models for HIV research. Although natural animal lentivirus infections and chimeric viruses such as chimera between HIV and simian immunodeficiency virus and simian-tropic HIV are briefly discussed, the main focus is on small animal models, including the complex design of the 'humanized' mouse. The review also traces the historic evolution and milestones as well as depicting current models and future prospects for HIV research. HIV research is a complex and challenging task that is highly manpower-, money- and time-consuming. Besides factors such as hypervariability and latency, the lack of appropriate animal models that exhibit and recapitulate the entire infectious process of HIV, is one of the reasons behind the failure to eliminate the lentivirus from the human population. This obstacle has led to the exploitation and further development of many sophisticated surrogate animal models for HIV research. While there is no animal model that perfectly mirrors and mimics HIV infections in humans, there are a variety of host species and viruses that complement each other. Combining the insights from each model, and critically comparing the results obtained with data from human clinical trials should help expand our understanding of HIV pathogenesis and drive future drug development.

  1. Animal models in motion sickness research

    NASA Technical Reports Server (NTRS)

    Daunton, Nancy G.

    1990-01-01

    Practical information on candidate animal models for motion sickness research and on methods used to elicit and detect motion sickness in these models is provided. Four good potential models for use in motion sickness experiments include the dog, cat, squirrel monkey, and rat. It is concluded that the appropriate use of the animal models, combined with exploitation of state-of-the-art biomedical techniques, should generate a great step forward in the understanding of motion sickness mechanisms and in the development of efficient and effective approaches to its prevention and treatment in humans.

  2. Animal models of gastrointestinal and liver diseases. Animal models of cystic fibrosis: gastrointestinal, pancreatic, and hepatobiliary disease and pathophysiology

    PubMed Central

    Olivier, Alicia K.; Gibson-Corley, Katherine N.

    2015-01-01

    Multiple organ systems, including the gastrointestinal tract, pancreas, and hepatobiliary systems, are affected by cystic fibrosis (CF). Many of these changes begin early in life and are difficult to study in young CF patients. Recent development of novel CF animal models has expanded opportunities in the field to better understand CF pathogenesis and evaluate traditional and innovative therapeutics. In this review, we discuss manifestations of CF disease in gastrointestinal, pancreatic, and hepatobiliary systems of humans and animal models. We also compare the similarities and limitations of animal models and discuss future directions for modeling CF. PMID:25591863

  3. Animal Models of Atherosclerosis

    PubMed Central

    Getz, Godfrey S.; Reardon, Catherine A.

    2012-01-01

    Atherosclerosis is a chronic inflammatory disorder that is the underlying cause of most cardiovascular disease. Both cells of the vessel wall and cells of the immune system participate in atherogenesis. This process is heavily influenced by plasma lipoproteins, genetics and the hemodynamics of the blood flow in the artery. A variety of small and large animal models have been used to study the atherogenic process. No model is ideal as each has its own advantages and limitations with respect to manipulation of the atherogenic process and modeling human atherosclerosis or lipoprotein profile. Useful large animal models include pigs, rabbits and non-human primates. Due in large part to the relative ease of genetic manipulation and the relatively short time frame for the development of atherosclerosis, murine models are currently the most extensively used. While not all aspects of murine atherosclerosis are identical to humans, studies using murine models have suggested potential biological processes and interactions that underlie this process. As it becomes clear that different factors may influence different stages of lesion development, the use of mouse models with the ability to turn on or delete proteins or cells in tissue specific and temporal manner will be very valuable. PMID:22383700

  4. Bioconcentration of chlorinated aromatic hydrocarbons in aquatic macrophytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gobas, F.A.P.C.; McNeil, E.J.; Lovett-Doust, L.

    1991-05-01

    This study reports the bioconcentration and the uptake and elimination kinetics of a series of nonreactive, hydrophobic organic substances in the submerged aquatic macrophyte Myriophyllum spicatum. The tested substances represent a wide range of aqueous solubilities and 1-octanol-water partition coefficients (K{sub OW}). The plant-water bioconcentration factor is shown to follow a linear relationship with the octanol-water partition coefficient for all chemicals, including the superhydrophobic chemicals with log K{sub OW} up to 8.3. The uptake and elimination rate constants tend to follow a biphasic relationship with K{sub OW}. A kinetic model is developed for organic chemical bioconcentration is submerged aquatic macrophytemore » species. This model is applied to the Detroit River and Lake St. Clair to illustrate the role of aquatic macrophytes in chemical dynamics in aquatic systems.« less

  5. Aquatic Vegetation of the St. Louis River Estuary: Initial Analysis of Point-intercept Data Collected in 2010 for Restoration Modeling.

    EPA Science Inventory

    A new effort to model aquatic vegetation patterns in the St. Louis River Estuary was initiated in summer of 2010 for the purpose of informing wetland restoration planning in the St. Louis River Area of Concern (AOC) at 40th Avenue West in Duluth. Aquatic vascular plants were doc...

  6. Animal models of schizophrenia

    PubMed Central

    Jones, CA; Watson, DJG; Fone, KCF

    2011-01-01

    Developing reliable, predictive animal models for complex psychiatric disorders, such as schizophrenia, is essential to increase our understanding of the neurobiological basis of the disorder and for the development of novel drugs with improved therapeutic efficacy. All available animal models of schizophrenia fit into four different induction categories: developmental, drug-induced, lesion or genetic manipulation, and the best characterized examples of each type are reviewed herein. Most rodent models have behavioural phenotype changes that resemble ‘positive-like’ symptoms of schizophrenia, probably reflecting altered mesolimbic dopamine function, but fewer models also show altered social interaction, and learning and memory impairment, analogous to negative and cognitive symptoms of schizophrenia respectively. The negative and cognitive impairments in schizophrenia are resistant to treatment with current antipsychotics, even after remission of the psychosis, which limits their therapeutic efficacy. The MATRICS initiative developed a consensus on the core cognitive deficits of schizophrenic patients, and recommended a standardized test battery to evaluate them. More recently, work has begun to identify specific rodent behavioural tasks with translational relevance to specific cognitive domains affected in schizophrenia, and where available this review focuses on reporting the effect of current and potential antipsychotics on these tasks. The review also highlights the need to develop more comprehensive animal models that more adequately replicate deficits in negative and cognitive symptoms. Increasing information on the neurochemical and structural CNS changes accompanying each model will also help assess treatments that prevent the development of schizophrenia rather than treating the symptoms, another pivotal change required to enable new more effective therapeutic strategies to be developed. LINKED ARTICLES This article is part of a themed issue on

  7. The necessity of animal models in pain research.

    PubMed

    Mogil, Jeffrey S; Davis, Karen D; Derbyshire, Stuart W

    2010-10-01

    There exists currently a fair degree of introspection in the pain research community about the value of animal research. This review represents a defense of animal research in pain. We discuss the inherent advantage of animal models over human research as well as the crucial complementary roles animal studies play vis-à-vis human imaging and genetic studies. Finally, we discuss recent developments in animal models of pain that should improve the relevance and translatability of findings using laboratory animals. We believe that pain research using animal models is a continuing necessity-to understand fundamental mechanisms, identify new analgesic targets, and inform, guide and follow up human studies-if novel analgesics are to be developed for the treatment of chronic pain. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  8. The NEON Aquatic Network: Expanding the Availability of Biogeochemical Data

    NASA Astrophysics Data System (ADS)

    Vance, J. M.; Bohall, C.; Fitzgerald, M.; Utz, R.; Parker, S. M.; Roehm, C. L.; Goodman, K. J.; McLaughlin, B.

    2013-12-01

    Aquatic ecosystems are facing unprecedented pressure from climate change and land-use practices. Invasive species, whether plant, animal, insect or microbe present additional threat to aquatic ecosystem services. There are significant scientific challenges to understanding how these forces will interact to affect aquatic ecosystems, as the flow of energy and materials in the environment is driven by multivariate and non-linear biogeochemical cycles. The National Ecological Observatory Network (NEON) will collect and provide observational data across multiple scales. Sites were selected to maximize representation of major North American ecosystems using a multivariate geographic clustering method that partitioned the continental US, AK, HI, and Puerto Rico into 20 eco-climatic domains. The NEON data collection systems and methods are designed to yield standardized, near real-time data subjected to rigorous quality controls prior to public dissemination through an online data portal. NEON will collect data for 30 years to facilitate spatial-temporal analysis of environmental responses and drivers of ecosystem change, ranging from local through continental scales. Here we present the NEON Aquatic Network, a multi-parameter network consisting of a combination of in situ sensor and observational data. This network will provide data to examine biogeochemical, biological, hydrologic and geomorphic metrics at 36 sites, which are a combination of small 1st/2nd order wadeable streams, large rivers and lakes. A typical NEON Aquatic site will host up to two in-stream sensor sets designed to collect near-continuous water quality data (e.g. pH/ORP, temperature, conductivity, dissolved oxygen, CDOM) along with up to 8 shallow groundwater monitoring wells (level, temp., cond.), and a local meteorological station (e.g. 2D wind speed, PAR, barometric pressure, temperature, net radiation). These coupled sensor suites will be complemented by observational data (e.g. water

  9. Acute and Chronic Exercise in Animal Models.

    PubMed

    Thu, Vu Thi; Kim, Hyoung Kyu; Han, Jin

    2017-01-01

    Numerous animal cardiac exercise models using animal subjects have been established to uncover the cardiovascular physiological mechanism of exercise or to determine the effects of exercise on cardiovascular health and disease. In most cases, animal-based cardiovascular exercise modalities include treadmill running, swimming, and voluntary wheel running with a series of intensities, times, and durations. Those used animals include small rodents (e.g., mice and rats) and large animals (e.g., rabbits, dogs, goats, sheep, pigs, and horses). Depending on the research goal, each experimental protocol should also describe whether its respective exercise treatment can produce the anticipated acute or chronic cardiovascular adaptive response. In this chapter, we will briefly describe the most common kinds of animal models of acute and chronic cardiovascular exercises that are currently being conducted and are likely to be chosen in the near future. Strengths and weakness of animal-based cardiac exercise modalities are also discussed.

  10. Animal Models of Human Granulocyte Diseases

    PubMed Central

    Schäffer, Alejandro A.; Klein, Christoph

    2012-01-01

    In vivo animal models have proven very useful to understand basic biological pathways of the immune system, a prerequisite for the development of innovate therapies. This manuscript addresses currently available models for defined human monogenetic defects of neutrophil granulocytes, including murine, zebrafish and larger mammalian species. Strengths and weaknesses of each system are summarized, and clinical investigators may thus be inspired to develop further lines of research to improve diagnosis and therapy by use of the appropriate animal model system. PMID:23351993

  11. Hierarchical models of animal abundance and occurrence

    USGS Publications Warehouse

    Royle, J. Andrew; Dorazio, R.M.

    2006-01-01

    Much of animal ecology is devoted to studies of abundance and occurrence of species, based on surveys of spatially referenced sample units. These surveys frequently yield sparse counts that are contaminated by imperfect detection, making direct inference about abundance or occurrence based on observational data infeasible. This article describes a flexible hierarchical modeling framework for estimation and inference about animal abundance and occurrence from survey data that are subject to imperfect detection. Within this framework, we specify models of abundance and detectability of animals at the level of the local populations defined by the sample units. Information at the level of the local population is aggregated by specifying models that describe variation in abundance and detection among sites. We describe likelihood-based and Bayesian methods for estimation and inference under the resulting hierarchical model. We provide two examples of the application of hierarchical models to animal survey data, the first based on removal counts of stream fish and the second based on avian quadrat counts. For both examples, we provide a Bayesian analysis of the models using the software WinBUGS.

  12. Environmentally relevant concentrations of tramadol and citalopram alter behaviour of an aquatic invertebrate.

    PubMed

    Buřič, M; Grabicová, K; Kubec, J; Kouba, A; Kuklina, I; Kozák, P; Grabic, R; Randák, T

    2018-05-14

    Environmental pollution by pharmaceutically active compounds, used in quantities similar to those of pesticides and other organic micropollutants, is increasingly recognized as a major threat to the aquatic environment. These compounds are only partly removed from wastewaters and, despite their low concentrations, directly and indirectly affect behaviour of freshwater organisms in natural habitats. The aim of this study was to behaviourally assess the effects of an opioid painkiller (tramadol) and antidepressant drug (citalopram) on behaviour patterns of a clonal model species, marbled crayfish. Animals exposed to environmentally relevant concentrations of both tested compounds (∼1 μg l -1 ) exhibited significantly lower velocity and shorter distance moved than controls. Crayfish exposed to tramadol spent more time in shelters. Results were obtained by a simple and rapid method recommended as suitable for assessment of behaviour in aquatic organisms exposed to single pollutants and combinations. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Animal models for acute radiation syndrome drug discovery.

    PubMed

    Singh, Vijay K; Newman, Victoria L; Berg, Allison N; MacVittie, Thomas J

    2015-05-01

    Although significant scientific advances have been made over the past six decades in developing safe, nontoxic and effective radiation/medical countermeasures (MCMs) for acute radiation syndrome (ARS), no drug has been approved by the US FDA. The availability of adequate animal models is a prime requisite under the criteria established by the FDA 'animal rule' for the development of novel MCMs for ARS and the discovery of biomarkers for radiation exposure. This article reviews the developments of MCMs to combat ARS, with particular reference to the various animal models (rodents: mouse and rat; canine: beagle; minipigs and nonhuman primates [NHPs]) utilized for the in-depth evaluation. The objective, pathways and challenges of the FDA Animal Efficacy Rule are also discussed. There are a number of well-defined animal models, the mouse, canine and NHP, that are being used for the development of MCMs. Additional animal models, such as the minipig, are under development to further assist in the identification, efficacy testing and approval of MCMs under the FDA Animal Efficacy Rule.

  14. Animation Augmented Reality Book Model (AAR Book Model) to Enhance Teamwork

    ERIC Educational Resources Information Center

    Chujitarom, Wannaporn; Piriyasurawong, Pallop

    2017-01-01

    This study aims to synthesize an Animation Augmented Reality Book Model (AAR Book Model) to enhance teamwork and to assess the AAR Book Model to enhance teamwork. Samples are five specialists that consist of one animation specialist, two communication and information technology specialists, and two teaching model design specialists, selected by…

  15. Comparison of genetic characteristics and pathogenicity of Lactococcus garvieae isolated from aquatic animals in Taiwan.

    PubMed

    Tsai, Ming-An; Wang, Pei-Chyi; Liaw, Li-Ling; Yoshida, Terutoyo; Chen, Shih-Chu

    2012-12-03

    Seventy-six Taiwanese bacterial isolates including 74 from diseased, cultured, aquatic animals (54 grey mullet Mugil cephalus, 3 basket mullet Chelon alatus, 2 tilapia Oreochromis niloticus, 1 grouper Epinephelus coioides, 2 yellowfin seabream Acanthopagrus latus, 1 Borneo mullet Chelon macrolepis, 1 bullfrog Rana catesbeiana, 1 Japanese eel Anguilla japonica, and 9 giant freshwater prawns Macrobrachium rosenbergii), 1 wild-caught seafood species (squid muscle collected from a restaurant) and 1 human isolate (from a patient with a history of consuming raw squid in the previously mentioned restaurant), all collected between 1999 and 2006, were confirmed by PCR assay to be Lactococcus garvieae. The phenotypic characterization was determined by rabbit anti-KG+ and KG- serums, and 74 of the 76 Taiwanese strains displayed a KG- phenotype. The genetic characterization was investigated by pulsed-field gel electrophoresis (PFGE). Genomic DNA was digested with restriction endonucleases ApaI and SmaI and separated by PFGE. Ten different L. garvieae pulsotypes were identified. Predominant pulsotypes A1a/S1a were obtained from >96% of strains (52 of 54) from grey mullet, demonstrating a clonal dissemination of L. garvieae in grey mullet in Taiwan. In experimental challenges with grey mullet and tilapia, L. garvieae pulsotypes A1/S1 and A11/S11 showed higher virulence compared with other pulsotypes.

  16. Role of Animal Models in Coronary Stenting.

    PubMed

    Iqbal, Javaid; Chamberlain, Janet; Francis, Sheila E; Gunn, Julian

    2016-02-01

    Coronary angioplasty initially employed balloon dilatation only. This technique revolutionized the treatment of coronary artery disease, although outcomes were compromised by acute vessel closure, late constrictive remodeling, and restenosis due to neointimal proliferation. These processes were studied in animal models, which contributed to understanding the biology of endovascular arterial injury. Coronary stents overcome acute recoil, with improvements in the design and metallurgy since then, leading to the development of drug-eluting stents and bioresorbable scaffolds. These devices now undergo computer modeling and benchtop and animal testing before evaluation in clinical trials. Animal models, including rabbit, sheep, dog and pig are available, all with individual benefits and limitations. In smaller mammals, such as mouse and rabbit, the target for stenting is generally the aorta; whereas in larger animals, such as the pig, it is generally the coronary artery. The pig coronary stenting model is a gold-standard for evaluating safety; but insights into biomechanical properties, the biology of stenting, and efficacy in controlling neointimal proliferation can also be gained. Intra-coronary imaging modalities such as intravascular ultrasound and optical coherence tomography allow precise serial evaluation in vivo, and recent developments in genetically modified animal models of atherosclerosis provide realistic test beds for future stents and scaffolds.

  17. Use of the Biotic Ligand Model to predict metal toxicity to aquatic biota in areas of differing geology

    USGS Publications Warehouse

    Smith, Kathleen S.

    2005-01-01

    This work evaluates the use of the biotic ligand model (BLM), an aquatic toxicity model, to predict toxic effects of metals on aquatic biota in areas underlain by different rock types. The chemical composition of water, soil, and sediment is largely derived from the composition of the underlying rock. Geologic source materials control key attributes of water chemistry that affect metal toxicity to aquatic biota, including: 1) potentially toxic elements, 2) alkalinity, 3) total dissolved solids, and 4) soluble major elements, such as Ca and Mg, which contribute to water hardness. Miller (2002) compiled chemical data for water samples collected in watersheds underlain by ten different rock types, and in a mineralized area in western Colorado. He found that each rock type has a unique range of water chemistry. In this study, the ten rock types were grouped into two general categories, igneous and sedimentary. Water collected in watersheds underlain by sedimentary rock has higher mean pH, alkalinity, and calcium concentrations than water collected in watersheds underlain by igneous rock. Water collected in the mineralized area had elevated concentrations of calcium and sulfate in addition to other chemical constituents. Miller's water-chemistry data were used in the BLM (computer program) to determine copper and zinc toxicity to Daphnia magna. Modeling results show that waters from watersheds underlain by different rock types have characteristic ranges of predicted LC 50 values (a measurement of aquatic toxicity) for copper and zinc, with watersheds underlain by igneous rock having lower predicted LC 50 values than watersheds underlain by sedimentary rock. Lower predicted LC 50 values suggest that aquatic biota in watersheds underlain by igneous rock may be more vulnerable to copper and zinc inputs than aquatic biota in watersheds underlain by sedimentary rock. For both copper and zinc, there is a trend of increasing predicted LC 50 values with increasing dissolved

  18. Distribution of submerged aquatic vegetation in the St. Louis River estuary: Maps and models

    EPA Science Inventory

    In late summer of 2011 and 2012 we used echo-sounding gear to map the distribution of submerged aquatic vegetation (SAV) in the St. Louis River Estuary (SLRE). From these data we produced maps of SAV distribution and we created logistic models to predict the probability of occurr...

  19. Systematic Reviews of Animal Models: Methodology versus Epistemology

    PubMed Central

    Greek, Ray; Menache, Andre

    2013-01-01

    Systematic reviews are currently favored methods of evaluating research in order to reach conclusions regarding medical practice. The need for such reviews is necessitated by the fact that no research is perfect and experts are prone to bias. By combining many studies that fulfill specific criteria, one hopes that the strengths can be multiplied and thus reliable conclusions attained. Potential flaws in this process include the assumptions that underlie the research under examination. If the assumptions, or axioms, upon which the research studies are based, are untenable either scientifically or logically, then the results must be highly suspect regardless of the otherwise high quality of the studies or the systematic reviews. We outline recent criticisms of animal-based research, namely that animal models are failing to predict human responses. It is this failure that is purportedly being corrected via systematic reviews. We then examine the assumption that animal models can predict human outcomes to perturbations such as disease or drugs, even under the best of circumstances. We examine the use of animal models in light of empirical evidence comparing human outcomes to those from animal models, complexity theory, and evolutionary biology. We conclude that even if legitimate criticisms of animal models were addressed, through standardization of protocols and systematic reviews, the animal model would still fail as a predictive modality for human response to drugs and disease. Therefore, systematic reviews and meta-analyses of animal-based research are poor tools for attempting to reach conclusions regarding human interventions. PMID:23372426

  20. Large animal models for vaccine development and testing.

    PubMed

    Gerdts, Volker; Wilson, Heather L; Meurens, Francois; van Drunen Littel-van den Hurk, Sylvia; Wilson, Don; Walker, Stewart; Wheler, Colette; Townsend, Hugh; Potter, Andrew A

    2015-01-01

    The development of human vaccines continues to rely on the use of animals for research. Regulatory authorities require novel vaccine candidates to undergo preclinical assessment in animal models before being permitted to enter the clinical phase in human subjects. Substantial progress has been made in recent years in reducing and replacing the number of animals used for preclinical vaccine research through the use of bioinformatics and computational biology to design new vaccine candidates. However, the ultimate goal of a new vaccine is to instruct the immune system to elicit an effective immune response against the pathogen of interest, and no alternatives to live animal use currently exist for evaluation of this response. Studies identifying the mechanisms of immune protection; determining the optimal route and formulation of vaccines; establishing the duration and onset of immunity, as well as the safety and efficacy of new vaccines, must be performed in a living system. Importantly, no single animal model provides all the information required for advancing a new vaccine through the preclinical stage, and research over the last two decades has highlighted that large animals more accurately predict vaccine outcome in humans than do other models. Here we review the advantages and disadvantages of large animal models for human vaccine development and demonstrate that much of the success in bringing a new vaccine to market depends on choosing the most appropriate animal model for preclinical testing. © The Author 2015. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Elements of episodic-like memory in animal models.

    PubMed

    Crystal, Jonathon D

    2009-03-01

    Representations of unique events from one's past constitute the content of episodic memories. A number of studies with non-human animals have revealed that animals remember specific episodes from their past (referred to as episodic-like memory). The development of animal models of memory holds enormous potential for gaining insight into the biological bases of human memory. Specifically, given the extensive knowledge of the rodent brain, the development of rodent models of episodic memory would open new opportunities to explore the neuroanatomical, neurochemical, neurophysiological, and molecular mechanisms of memory. Development of such animal models holds enormous potential for studying functional changes in episodic memory in animal models of Alzheimer's disease, amnesia, and other human memory pathologies. This article reviews several approaches that have been used to assess episodic-like memory in animals. The approaches reviewed include the discrimination of what, where, and when in a radial arm maze, dissociation of recollection and familiarity, object recognition, binding, unexpected questions, and anticipation of a reproductive state. The diversity of approaches may promote the development of converging lines of evidence on the difficult problem of assessing episodic-like memory in animals.

  2. THE ROLE OF MAMMALIAN DATA IN DETERMINING PHARMACEUTICAL RESPONSES IN AQUATIC ORGANISMS

    EPA Science Inventory

    The limitations surrounding application of pharmaceutical data are restricted to extrapolation of the animal and human data across phyla. Experience dictates that mammalian data are most likely to extrapolate predictably to fish and other aquatic vertebrates (e.g. Amphibia), and ...

  3. Development of an aquatic pathogen database (AquaPathogen X) and its utilization in tracking emerging fish virus pathogens in North America

    USGS Publications Warehouse

    Emmenegger, E.J.; Kentop, E.; Thompson, T.M.; Pittam, S.; Ryan, A.; Keon, D.; Carlino, J.A.; Ranson, J.; Life, R.B.; Troyer, R.M.; Garver, K.A.; Kurath, G.

    2011-01-01

    The AquaPathogen X database is a template for recording information on individual isolates of aquatic pathogens and is freely available for download (http://wfrc.usgs.gov). This database can accommodate the nucleotide sequence data generated in molecular epidemiological studies along with the myriad of abiotic and biotic traits associated with isolates of various pathogens (e.g. viruses, parasites and bacteria) from multiple aquatic animal host species (e.g. fish, shellfish and shrimp). The cataloguing of isolates from different aquatic pathogens simultaneously is a unique feature to the AquaPathogen X database, which can be used in surveillance of emerging aquatic animal diseases and elucidation of key risk factors associated with pathogen incursions into new water systems. An application of the template database that stores the epidemiological profiles of fish virus isolates, called Fish ViroTrak, was also developed. Exported records for two aquatic rhabdovirus species emerging in North America were used in the implementation of two separate web-accessible databases: the Molecular Epidemiology of Aquatic Pathogens infectious haematopoietic necrosis virus (MEAP-IHNV) database (http://gis.nacse.org/ihnv/) released in 2006 and the MEAP- viral haemorrhagic septicaemia virus (http://gis.nacse.org/vhsv/) database released in 2010.

  4. Chimeric animal models in human stem cell biology.

    PubMed

    Glover, Joel C; Boulland, Jean-Luc; Halasi, Gabor; Kasumacic, Nedim

    2009-01-01

    The clinical use of stem cells for regenerative medicine is critically dependent on preclinical studies in animal models. In this review we examine some of the key issues and challenges in the use of animal models to study human stem cell biology-experimental standardization, body size, immunological barriers, cell survival factors, fusion of host and donor cells, and in vivo imaging and tracking. We focus particular attention on the various imaging modalities that can be used to track cells in living animals, comparing their strengths and weaknesses and describing technical developments that are likely to lead to new opportunities for the dynamic assessment of stem cell behavior in vivo. We then provide an overview of some of the most commonly used animal models, their advantages and disadvantages, and examples of their use for xenotypic transplantation of human stem cells, with separate reviews of models involving rodents, ungulates, nonhuman primates, and the chicken embryo. As the use of human somatic, embryonic, and induced pluripotent stem cells increases, so too will the range of applications for these animal models. It is likely that increasingly sophisticated uses of human/animal chimeric models will be developed through advances in genetic manipulation, cell delivery, and in vivo imaging.

  5. Landsat test of diffuse reflectance models for aquatic suspended solids measurement

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Alfoldi, T. T.

    1979-01-01

    Landsat radiance data were used to test mathematical models relating diffuse reflectance to aquatic suspended solids concentration. Digital CCT data for Landsat passes over the Bay of Fundy, Nova Scotia were analyzed on a General Electric Co. Image 100 multispectral analysis system. Three data sets were studied separately and together in all combinations with and without solar angle correction. Statistical analysis and chromaticity analysis show that a nonlinear relationship between Landsat radiance and suspended solids concentration is better at curve-fitting than a linear relationship. In particular, the quasi-single-scattering diffuse reflectance model developed by Gordon and coworkers is corroborated. The Gordon model applied to 33 points of MSS 5 data combined from three dates produced r = 0.98.

  6. Genotoxic and reprotoxic effects of tritium and external gamma irradiation on aquatic animals.

    PubMed

    Adam-Guillermin, Christelle; Pereira, Sandrine; Della-Vedova, Claire; Hinton, Tom; Garnier-Laplace, Jacqueline

    2012-01-01

    Aquatic ecosystems are chronically exposed to natural radioactivity or to artificial radionuclides released by human activities (e.g., nuclear medicine and biology,nuclear industry, military applications). Should the nuclear industry expand in the future, radioactive environmental releases, under normal operating conditions or accidental ones, are expected to increase, which raises public concerns about possible consequences on the environment and human health. Radionuclide exposures may drive macromolecule alterations, and among macromolecules DNA is the major target for ionizing radiations. DNA damage, if not correctly repaired, may induce mutations, teratogenesis, and reproductive effects. As such, damage at the molecular level may have consequences at the population level. In this review, we present an overview of the literature dealing with the effects of radionuclides on DNA, development, and reproduction of aquatic organisms. The review focuses on the main radionuclides that are released by nuclear power plants under normal operating conditions, γ emitters and tritium. Additionally, we fitted nonlinear curves to the dose-response data provided in the reviewed publications and manuscripts, and thus obtained endpoints commonly associated with ecotoxicological studies, such as the EDR(10). These were then used as a common metric for comparing the values and data published in the literature.The effects of tritium on aquatic organisms were reviewed for dose rates that ranged from 29 nGy/day to 29 Gy/day. Although beta emission from tritium decay presents a rather special risk of damage to DNA, genotoxicity-induced by tritium has been scarcely studied. Most of the effects studied have related to reproduction and development. Species sensitivity and the form of tritium present are important factors that drive the ecotoxicity of tritium. We have concluded from this review that invertebrates are more sensitive to the effects of tritium than are vertebrates

  7. Microbicide safety/efficacy studies in animals: macaques and small animal models.

    PubMed

    Veazey, Ronald S

    2008-09-01

    A number of microbicide candidates have failed to prevent HIV transmission in human clinical trials, and there is uncertainty as to how many additional trials can be supported by the field. Regardless, there are far too many microbicide candidates in development, and a logical and consistent method for screening and selecting candidates for human clinical trials is desperately needed. The unique host and cell specificity of HIV, however, provides challenges for microbicide safety and efficacy screening, that can only be addressed by rigorous testing in relevant laboratory animal models. A number of laboratory animal model systems ranging from rodents to nonhuman primates, and single versus multiple dose challenges have recently been developed to test microbicide candidates. These models have shed light on both the safety and efficacy of candidate microbicides as well as the early mechanisms involved in transmission. This article summarizes the major advantages and disadvantages of the relevant animal models for microbicide safety and efficacy testing. Currently, nonhuman primates are the only relevant and effective laboratory model for screening microbicide candidates. Given the consistent failures of prior strategies, it is now clear that rigorous safety and efficacy testing in nonhuman primates should be a prerequisite for advancing additional microbicide candidates to human clinical trials.

  8. Microbicide Safety/Efficacy studies in animals -macaques and small animal models

    PubMed Central

    Veazey, Ronald S.

    2009-01-01

    Purpose of review A number of microbicide candidates have failed to prevent HIV transmission in human clinical trials, and there is uncertainty as to how many additional trials can be supported by the field. Regardless, there are far too many microbicide candidates in development, and a logical and consistent method for screening and selecting candidates for human clinical trials is desperately needed. However, the unique host and cell specificity of HIV provides challenges for microbicide safety and efficacy screening, that can only be addressed by rigorous testing in relevant laboratory animal models. Recent findings A number of laboratory animal model systems ranging from rodents to nonhuman primates, and single versus multiple dose challenges have recently been developed to test microbicide candidates. These models have shed light on both the safety and efficacy of candidate microbicides as well as the early mechanisms involved in transmission. This article summarizes the major advantages and disadvantages of the relevant animal models for microbicide safety and efficacy testing. Summary Currently, nonhuman primates are the only relevant and effective laboratory model for screening microbicide candidates. Given the consistent failures of prior strategies, it is now clear that rigorous safety and efficacy testing in nonhuman primates should be a pre-requisite for advancing additional microbicide candidates to human clinical trials. PMID:19373023

  9. Aquatic modules for bioregenerative life support systems based on the C.E.B.A.S. biotechnology

    NASA Astrophysics Data System (ADS)

    Bluem, Volker; Paris, Frank

    2001-03-01

    Most concepts for bioregenerative life support systems are based on edible higher land plants which create some problems with growth and seed generation under space conditions. Animal protein production is mostly neglected because of the tremendous waste management problems with tetrapods under reduced weightlessness. Therefore, the "Closed Equilibrated Biological Aquatic System" (C.E.B.A.S.) was developed which represents an artificial aquatic ecosystem containing aquatic organisms which are adpated at all to "near weightlessness conditions" (fishes Xiphophorus helleri, water snails Biomphalaria glabrata, ammonia oxidizing bacteria and the rootless non-gravitropic edible water plant Ceratophyllum demersum). Basically the C.E.B.A.S. consists of 4 subsystems: a ZOOLOGICASL COMPONENT (animal aquarium), a BOTANICAL COMPONENT (aquatic plant bioreactor), a MICROBIAL COMPONENT (bacteria filter) and an ELECTRONICAL COMPONENT (data acquisition and control unit). Superficially, the function principle appears simple: the plants convert light energy into chemical energy via photosynthesis thus producing biomass and oxygen. The animals and microorganisms use the oxygen for respiration and produce the carbon dioxide which is essential for plant photosynthesis. The ammonia ions excreted by the animals are converted by the bacteria to nitrite and then to nitrate ions which serve as a nitrogen source for the plants. Other essential ions derive from biological degradation of animal waste products and dead organic matter. The C.E.B.A.S. exists in 2 basic versions: the original C.E.B.A.S. with a volume of 150 liters and a self-sustaining standing time of more than 13 month and the so-called C.E.B.A.S. MINI MODULE with a volume of about 8.5 liters. In the latter there is no closed food loop by reasons of available space so that animal food has to be provided via an automated feeder. This device was flown already successfully on the STS-89 and STS-90 spaceshuttle missions and the

  10. Detection of animal-derived proteins in feedstuffs in Italy: a reproducibility study.

    PubMed

    Ingravalle, Francesco; Abete, Maria Cesarina; Crescio, Maria Ines; Ru, Giuseppe

    2007-04-01

    Bovine spongiform encephalopathy is a prion disease of ruminants that was first recognized in 1986 in the United Kingdom. Early in the epidemic, it became obvious that the presence of meat and bone meal in feed rations was a common factor in all bovine spongiform encephalopathy cases. The first ban of derived animal proteins in feed was enforced in Europe in 1994 and implemented by Regulation 999/2001 that prohibited the feeding of animal-derived protein to farm animals. The only official method currently accepted by the European Union Commission for test for the presence of animal-derived proteins in feedstuffs is feed microscopy. In Italy, monitoring of feedstuff safety is provided by both the Ministry of Health and the Ministry of Agriculture. The quality of official control, usually assessed by verifying the reproducibility and the accuracy of the testing method, is of fundamental importance for all laboratories and institutions using these results for comparative purposes. The aims of this study were to assess the reproducibility of the official method over all the Italian surveillance network and to provide a model for evaluating the performance of the monitoring system. The accuracy of the identification of the animal class of derived protein detected (avian, mammalian, or aquatic organism) was assessed. The interlaboratory agreement within the overall network reached 0.97 (95% confidence interval of 0.95 to 0.98) for determining the presence or absence of animal-derived proteins (e.g., for mammalian, avian, or aquatic species), and specificity of the identification of the animal class indicated that fish proteins are more easily recognized than are avian or mammalian proteins.

  11. Evaluation of Time- and Concentration-dependent Toxic Effect Models for use in Aquatic Risk Assessments, Oral Presentation

    EPA Science Inventory

    Various models have been proposed for describing the time- and concentration-dependence of toxic effects to aquatic organisms, which would improve characterization of risks in natural systems. Selected models were evaluated using results from a study on the lethality of copper t...

  12. Animal Models of Zika Virus.

    PubMed

    Bradley, Michael P; Nagamine, Claude M

    2017-06-01

    Zika virus has garnered great attention over the last several years, as outbreaks of the disease have emerged throughout the Western Hemisphere. Until quite recently Zika virus was considered a fairly benign virus, with limited clinical severity in both people and animals. The size and scope of the outbreak in the Western Hemisphere has allowed for the identification of severe clinical disease that is associated with Zika virus infection, most notably microcephaly among newborns, and an association with Guillian-Barré syndrome in adults. This recent association with severe clinical disease, of which further analysis strongly suggested causation by Zika virus, has resulted in a massive increase in the amount of both basic and applied research of this virus. Both small and large animal models are being used to uncover the pathogenesis of this emerging disease and to develop vaccine and therapeutic strategies. Here we review the animal-model-based Zika virus research that has been performed to date.

  13. Animal models of asthma: utility and limitations.

    PubMed

    Aun, Marcelo Vivolo; Bonamichi-Santos, Rafael; Arantes-Costa, Fernanda Magalhães; Kalil, Jorge; Giavina-Bianchi, Pedro

    2017-01-01

    Clinical studies in asthma are not able to clear up all aspects of disease pathophysiology. Animal models have been developed to better understand these mechanisms and to evaluate both safety and efficacy of therapies before starting clinical trials. Several species of animals have been used in experimental models of asthma, such as Drosophila , rats, guinea pigs, cats, dogs, pigs, primates and equines. However, the most common species studied in the last two decades is mice, particularly BALB/c. Animal models of asthma try to mimic the pathophysiology of human disease. They classically include two phases: sensitization and challenge. Sensitization is traditionally performed by intraperitoneal and subcutaneous routes, but intranasal instillation of allergens has been increasingly used because human asthma is induced by inhalation of allergens. Challenges with allergens are performed through aerosol, intranasal or intratracheal instillation. However, few studies have compared different routes of sensitization and challenge. The causative allergen is another important issue in developing a good animal model. Despite being more traditional and leading to intense inflammation, ovalbumin has been replaced by aeroallergens, such as house dust mites, to use the allergens that cause human disease. Finally, researchers should define outcomes to be evaluated, such as serum-specific antibodies, airway hyperresponsiveness, inflammation and remodeling. The present review analyzes the animal models of asthma, assessing differences between species, allergens and routes of allergen administration.

  14. Animal Models for Salmonellosis: Applications in Vaccine Research

    PubMed Central

    Higginson, Ellen E.; Simon, Raphael

    2016-01-01

    Salmonellosis remains an important cause of human disease worldwide. While there are several licensed vaccines for Salmonella enterica serovar Typhi, these vaccines are generally ineffective against other Salmonella serovars. Vaccines that target paratyphoid and nontyphoidal Salmonella serovars are very much in need. Preclinical evaluation of candidate vaccines is highly dependent on the availability of appropriate scientific tools, particularly animal models. Many different animal models exist for various Salmonella serovars, from whole-animal models to smaller models, such as those recently established in insects. Here, we discuss various mouse, rat, rabbit, calf, primate, and insect models for Salmonella infection, all of which have their place in research. However, choosing the right model is imperative in selecting the best vaccine candidates for further clinical testing. In this minireview, we summarize the various animal models that are used to assess salmonellosis, highlight some of the advantages and disadvantages of each, and discuss their value in vaccine development. PMID:27413068

  15. Establishing a laboratory animal model from a transgenic animal: RasH2 mice as a model for carcinogenicity studies in regulatory science.

    PubMed

    Urano, K; Tamaoki, N; Nomura, T

    2012-01-01

    Transgenic animal models have been used in small numbers in gene function studies in vivo for a period of time, but more recently, the use of a single transgenic animal model has been approved as a second species, 6-month alternative (to the routine 2-year, 2-animal model) used in short-term carcinogenicity studies for generating regulatory application data of new drugs. This article addresses many of the issues associated with the creation and use of one of these transgenic models, the rasH2 mouse, for regulatory science. The discussion includes strategies for mass producing mice with the same stable phenotype, including constructing the transgene, choosing a founder mouse, and controlling both the transgene and background genes; strategies for developing the model for regulatory science, including measurements of carcinogen susceptibility, stability of a large-scale production system, and monitoring for uniform carcinogenicity responses; and finally, efficient use of the transgenic animal model on study. Approximately 20% of mouse carcinogenicity studies for new drug applications in the United States currently use transgenic models, typically the rasH2 mouse. The rasH2 mouse could contribute to animal welfare by reducing the numbers of animals used as well as reducing the cost of carcinogenicity studies. A better understanding of the advantages and disadvantages of the transgenic rasH2 mouse will result in greater and more efficient use of this animal model in the future.

  16. Animal Models of Hemophilia and Related Bleeding Disorders

    PubMed Central

    Lozier, Jay N.; Nichols, Timothy C.

    2013-01-01

    Animal models of hemophilia and related diseases are important for development of novel treatments and to understand the pathophysiology of bleeding disorders in humans. Testing in animals with the equivalent human disorder provides informed estimates of doses and measures of efficacy, which aids in design of human trials. Many models of hemophilia A, hemophilia B, and von Willebrand disease have been developed from animals with spontaneous mutations (hemophilia A dogs, rats, sheep; hemophilia B dogs; and von Willebrand disease pigs and dogs), or by targeted gene disruption in mice to create hemophilia A, B, or VWD models. Animal models have been used to generate new insights into the pathophysiology of each bleeding disorder and also to perform pre-clinical assessments of standard protein replacement therapies as well as novel gene transfer technology. Both the differences between species and differences in underlying causative mutations must be considered in choosing the best animal for a specific scientific study PMID:23956467

  17. Obesogens in the aquatic environment: an evolutionary and toxicological perspective.

    PubMed

    Capitão, Ana; Lyssimachou, Angeliki; Castro, Luís Filipe Costa; Santos, Miguel M

    2017-09-01

    The rise of obesity in humans is a major health concern of our times, affecting an increasing proportion of the population worldwide. It is now evident that this phenomenon is not only associated with the lack of exercise and a balanced diet, but also due to environmental factors, such as exposure to environmental chemicals that interfere with lipid homeostasis. These chemicals, also known as obesogens, are present in a wide range of products of our daily life, such as cosmetics, paints, plastics, food cans and pesticide-treated food, among others. A growing body of evidences indicates that their action is not limited to mammals. Obesogens also end up in the aquatic environment, potentially affecting its ecosystems. In fact, reports show that some environmental chemicals are able to alter lipid homeostasis, impacting weight, lipid profile, signaling pathways and/or protein activity, of several taxa of aquatic animals. Such perturbations may give rise to physiological disorders and disease. Although largely unexplored from a comparative perspective, the key molecular components implicated in lipid homeostasis have likely appeared early in animal evolution. Therefore, it is not surprising that the obesogen effects are found in other animal groups beyond mammals. Collectively, data indicates that suspected obesogens impact lipid metabolism across phyla that have diverged over 600 million years ago. Thus, a consistent link between environmental chemical exposure and the obesity epidemic has emerged. This review aims to summarize the available information on the effects of putative obesogens in aquatic organisms, considering the similarities and differences of lipid homeostasis pathways among metazoans, thus contributing to a better understanding of the etiology of obesity in human populations. Finally, we identify the knowledge gaps in this field and we set future research priorities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Production of EPA and DHA in aquatic ecosystems and their transfer to the land.

    PubMed

    Gladyshev, Michail I; Sushchik, Nadezhda N; Makhutova, Olesia N

    2013-12-01

    Most omnivorous animals, including humans, have to some degree relied on physiologically important polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from food. Only some taxa of microalgae, rather than higher plants can synthesize de novo high amounts of EPA and DHA. Once synthesized by microalgae, PUFA are transferred through trophic chain to organisms of higher levels. Thus, aquatic ecosystems play the unique role in the Biosphere as the principal source of EPA and DHA for most omnivorous animals, including inhabitants of terrestrial ecosystems. PUFA are transferred from aquatic to terrestrial ecosystems through riparian predators, drift of carrion and seaweeds, emergence of amphibiotic insects, and water birds. The essential PUFA are transferred through trophic chains with about twice higher efficiency than bulk carbon. Thereby, PUFA are accumulated, rather than diluted in biomass of organisms of higher trophic levels, e.g., in fish. Mankind is faced with a severe deficiency of EPA and DHA in diet. Although additional sources of PUFA supply for humans, such as aquaculture, biotechnology of microorganisms and transgenic terrestrial oil-seed producing plants are developed, natural fish production of aquatic ecosystems will remain one of the main sources of EPA and DHA for humans. Aquatic ecosystems have to be protected from anthropogenic impacts, such as eutrophication, pollution and warming, which reduce PUFA production. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Animal Models of Suicide Trait-Related Behaviors

    PubMed Central

    Malkesman, Oz; Pine, Daniel; Tragon, Tyson; Austin, Daniel R.; Henter, Ioline D.; Chen, Guang; Manji, Husseini K.

    2009-01-01

    Although antidepressants are at least moderately effective in treating major depressive disorder (MDD), concerns have arisen that selective serotonin reuptake inhibitors (SSRIs) are associated with suicidal thinking and behavior, especially in children, adolescents, and young adults. Virtually no experimental research in model systems has considered the mechanisms by which SSRIs may be associated with this potential side effect in some susceptible individuals. Suicide is a complex behavior that is, at best, complicated to study in humans and impossible to fully reproduce in an animal model. However, by investigating traits that show strong cross-species parallels as well as associations with suicide in humans, animal models may elucidate the mechanisms by which SSRIs are associated with suicidal thinking and behavior in the young. Traits linked with suicide in humans that can be successfully modeled in rodents include aggression, impulsivity, irritability, and hopelessness/helplessness. Differences in animal response to particular paradigms and to SSRIs across the lifespan are also discussed. Modeling these relevant traits in animals can help clarify the impact of SSRIs on these traits, suggesting avenues for reducing suicide risk in this vulnerable population. PMID:19269045

  20. Status of Animal Experiments on International Space Station, and Animal Care Activities in Japan

    NASA Astrophysics Data System (ADS)

    Izumi, Ryutaro; Ishioka, Noriaki; Yumoto, Akane; Ito, Isao; Shirakawa, Masaki

    We would like to introduce animal experiments status on International Space Station (ISS) of Japan. Aquatic Habitat (AQH) was launched at 2012 July, by H-II Transfer Vehicle (HTV, ‘Kounotori’) from Tanegashima island in Japan, which could house small fish (Medaka, or Zebrafish) at most three months. First experiment using AQH was carried out for two months from Oct. 26, 2012, and second experiment would start from February, 2014. Mice housing hardware is now under development. For animal care activities, current topic in Japan is self-estimation for animal experiment status by each institute, and to open the result for public. JAXA conducted self-estimation of fiscal year 2011 (from 2011 April until 2012 March) for the first time, and would continue every fiscal year. JAXA already have its own animal care regulation, under animal care law and policy in Japan, and also referred COSPAR animal care guideline. And this year, JAXA made handbook for animal experiments in space (only Japanese).

  1. Biological filter capable of simultaneous nitrification and denitrification for Aquatic Habitat in International Space Station

    NASA Astrophysics Data System (ADS)

    Uemoto, H.; Shoji, T.; Uchida, S.

    2014-04-01

    The biological filter capable of simultaneous nitrification and denitrification was constructed for aquatic animal experiments in the International Space Station (ISS). The biological filter will be used to remove harmful ammonia excreted from aquatic animals in a closed water circulation system (Aquatic Habitat). The biological filter is a cylindrical tank packed with porous glass beads for nitrification and dual plastic bags for denitrification. The porous beads are supporting media for Nitrosomonas europaea and Nitrobacter winogradskyi. The N. europaea cells and N. winogradskyi cells on the porous beads, oxidize the excreted ammonia to nitrate via nitrite. On the other hand, the dual bag is composed of an outer non-woven fabric bag and an inner non-porous polyethylene film bag. The outer bag is supporting media for Paracoccus pantotrophus. The inner bag, in which 99.5% ethanol is packed, releases the ethanol slowly, since ethanol can permeate through the non-porous polyethylene film. The P. pantotrophus cells on the outer bag reduce the produced nitrate to nitrogen gas by using the released ethanol as an electron donor for denitrification. The biological filter constructed in this study consequently removed the ammonia without accumulating nitrate. Most of the excess ethanol was consumed and did not affect the nitrification activity of the N. europaea cells and N. winogradskyi cells severely. In accordance with the aquatic animal experiments in the ISS, small freshwater fish had been bred in the closed water circulation system equipped with the biological filter for 90 days. Ammonia concentration daily excreted from fish is assumed to be 1.7 mg-N/L in the recirculation water. Under such conditions, the harmful ammonia and nitrite concentrations were kept below 0.1 mg-N/L in the recirculation water. Nitrate and total organic carbon concentrations in the recirculation water were kept below 5 mg-N/L and 3 mg-C/L, respectively. All breeding fish were alive and ate

  2. Animal models for percutaneous-device-related infections: a review.

    PubMed

    Shao, Jinlong; Kolwijck, Eva; Jansen, John A; Yang, Fang; Walboomers, X Frank

    2017-06-01

    This review focuses on the construction of animal models for percutaneous-device-related infections, and specifically the role of inoculation of bacteria in such models. Infections around percutaneous devices, such as catheters, dental implants and limb prostheses, are a recurrent and persistent clinical problem. To promote the research on this clinical problem, the establishment of a reliable and validated animal model would be of keen interest. In this review, literature related to percutaneous devices was evaluated, and particular attention was paid to studies involving the use of bacteria. The design of percutaneous devices, susceptibility of various animal species, bacterial strains, amounts of bacteria, method of inoculation and methods for subsequent evaluation of the infection are discussed in detail. Given that an ideal animal model for study of percutaneous-device-related infection is still not existent, this article presents the basis for the construction of such a standardized animal model for percutaneous-device-related infection studies. The inoculation of bacteria is critical to obtain an animal model for standardized studies for percutaneous-device-related infections. Copyright © 2017. Published by Elsevier B.V.

  3. Sex differences in animal models of psychiatric disorders

    PubMed Central

    Kokras, N; Dalla, C

    2014-01-01

    Psychiatric disorders are characterized by sex differences in their prevalence, symptomatology and treatment response. Animal models have been widely employed for the investigation of the neurobiology of such disorders and the discovery of new treatments. However, mostly male animals have been used in preclinical pharmacological studies. In this review, we highlight the need for the inclusion of both male and female animals in experimental studies aiming at gender-oriented prevention, diagnosis and treatment of psychiatric disorders. We present behavioural findings on sex differences from animal models of depression, anxiety, post-traumatic stress disorder, substance-related disorders, obsessive–compulsive disorder, schizophrenia, bipolar disorder and autism. Moreover, when available, we include studies conducted across different stages of the oestrous cycle. By inspection of the relevant literature, it is obvious that robust sex differences exist in models of all psychiatric disorders. However, many times results are conflicting, and no clear conclusion regarding the direction of sex differences and the effect of the oestrous cycle is drawn. Moreover, there is a lack of considerable amount of studies using psychiatric drugs in both male and female animals, in order to evaluate the differential response between the two sexes. Notably, while in most cases animal models successfully mimic drug response in both sexes, test parameters and treatment-sensitive behavioural indices are not always the same for male and female rodents. Thus, there is an increasing need to validate animal models for both sexes and use standard procedures across different laboratories. Linked Articles This article is part of a themed section on Animal Models in Psychiatry Research. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-20 PMID:24697577

  4. Animal models of polymicrobial pneumonia

    PubMed Central

    Hraiech, Sami; Papazian, Laurent; Rolain, Jean-Marc; Bregeon, Fabienne

    2015-01-01

    Pneumonia is one of the leading causes of severe and occasionally life-threatening infections. The physiopathology of pneumonia has been extensively studied, providing information for the development of new treatments for this condition. In addition to in vitro research, animal models have been largely used in the field of pneumonia. Several models have been described and have provided a better understanding of pneumonia under different settings and with various pathogens. However, the concept of one pathogen leading to one infection has been challenged, and recent flu epidemics suggest that some pathogens exhibit highly virulent potential. Although “two hits” animal models have been used to study infectious diseases, few of these models have been described in pneumonia. Therefore the aims of this review were to provide an overview of the available literature in this field, to describe well-studied and uncommon pathogen associations, and to summarize the major insights obtained from this information. PMID:26170617

  5. Rubber tire leachates in the aquatic environment.

    PubMed

    Evans, J J

    1997-01-01

    Tires have a deleterious effect on the environment. This review discusses the background of scrap tires discarded in the environment, including tire composition, adverse environmental effects, threats to public health and safety, and solid waste management. Despite the widespread use of scrap tires in environmental applications, both land-based and aquatic, data on the indicators of environmental degradation are extremely scarce. Indicators of environmental degradation include analysis of chemicals within the water and sediment, analysis of contaminants within organisms, and analysis of the biological effects of these compounds on plants, animals, microbes, and organelles. Although these indicators are most useful when used in parallel, a review of the available information on chemical characterization of tire leachate from tire storage facilities, manufacturing, usage in recycling applications, and toxicity exposure studies, of vegetation surveys from waste tire areas and reviews of mammalian tire product toxicity, and of toxicity, mutagenicity, and carcinogenicity of tire exposure in experimental aquatic animals, microbes, and organelles is presented. The major characteristics of these studies are discussed in specific sections. The "Discussion and Conclusions" section discusses and summarizes the biological effects and chemical characterization of tire leachates. A global environmental perspective is included to improve our understanding of the deficiency of the current knowledge of tire leachate toxicity from various sources and to encourage interdisciplinary studies to establish the pattern of pollution associated with waste tire management.

  6. Reproducibility Issues: Avoiding Pitfalls in Animal Inflammation Models.

    PubMed

    Laman, Jon D; Kooistra, Susanne M; Clausen, Björn E

    2017-01-01

    In light of an enhanced awareness of ethical questions and ever increasing costs when working with animals in biomedical research, there is a dedicated and sometimes fierce debate concerning the (lack of) reproducibility of animal models and their relevance for human inflammatory diseases. Despite evident advancements in searching for alternatives, that is, replacing, reducing, and refining animal experiments-the three R's of Russel and Burch (1959)-understanding the complex interactions of the cells of the immune system, the nervous system and the affected tissue/organ during inflammation critically relies on in vivo models. Consequently, scientific advancement and ultimately novel therapeutic interventions depend on improving the reproducibility of animal inflammation models. As a prelude to the remaining hands-on protocols described in this volume, here, we summarize potential pitfalls of preclinical animal research and provide resources and background reading on how to avoid them.

  7. Modeling individual animal histories with multistate capture–recapture models

    USGS Publications Warehouse

    Lebreton, Jean-Dominique; Nichols, James D.; Barker, Richard J.; Pradel, Roger; Spendelow, Jeffrey A.

    2009-01-01

    Many fields of science begin with a phase of exploration and description, followed by investigations of the processes that account for observed patterns. The science of ecology is no exception, and recent decades have seen a focus on understanding key processes underlying the dynamics of ecological systems. In population ecology, emphasis has shifted from the state variable of population size to the demographic processes responsible for changes in this state variable: birth, death, immigration, and emigration. In evolutionary ecology, some of these same demographic processes, rates of birth and death, are also the determinants of fitness. In animal population ecology, the estimation of state variables and their associated vital rates is especially problematic because of the difficulties in sampling such populations and detecting individual animals. Indeed, early capture–recapture models were developed for the purpose of estimating population size, given the reality that all animals are not caught or detected at any sampling occasion. More recently, capture–recapture models for open populations were developed to draw inferences about survival in the face of these same sampling problems. The focus of this paper is on multi‐state mark–recapture models (MSMR), which first appeared in the 1970s but have undergone substantial development in the last 15 years. These models were developed to deal explicitly with biological variation, in that animals in different “states” (classes defined by location, physiology, behavior, reproductive status, etc.) may have different probabilities of survival and detection. Animal transitions between states are also stochastic and themselves of interest. These general models have proven to be extremely useful and provide a way of thinking about a remarkably wide range of important ecological processes. These methods are now at a stage of refinement and sophistication where they can readily be used by biologists to tackle a wide

  8. Modeling an aquatic ecosystem: application of an evolutionary algorithm with genetic doping to reduce prediction uncertainty

    NASA Astrophysics Data System (ADS)

    Friedel, Michael; Buscema, Massimo

    2016-04-01

    Aquatic ecosystem models can potentially be used to understand the influence of stresses on catchment resource quality. Given that catchment responses are functions of natural and anthropogenic stresses reflected in sparse and spatiotemporal biological, physical, and chemical measurements, an ecosystem is difficult to model using statistical or numerical methods. We propose an artificial adaptive systems approach to model ecosystems. First, an unsupervised machine-learning (ML) network is trained using the set of available sparse and disparate data variables. Second, an evolutionary algorithm with genetic doping is applied to reduce the number of ecosystem variables to an optimal set. Third, the optimal set of ecosystem variables is used to retrain the ML network. Fourth, a stochastic cross-validation approach is applied to quantify and compare the nonlinear uncertainty in selected predictions of the original and reduced models. Results are presented for aquatic ecosystems (tens of thousands of square kilometers) undergoing landscape change in the USA: Upper Illinois River Basin and Central Colorado Assessment Project Area, and Southland region, NZ.

  9. Diabetic aggravation of stroke and animal models

    PubMed Central

    Rehni, Ashish K.; Liu, Allen; Perez-Pinzon, Miguel A.; Dave, Kunjan R.

    2017-01-01

    Cerebral ischemia in diabetics results in severe brain damage. Different animal models of cerebral ischemia have been used to study the aggravation of ischemic brain damage in the diabetic condition. Since different disease conditions such as diabetes differently affect outcome following cerebral ischemia, the Stroke Therapy Academic Industry Roundtable (STAIR) guidelines recommends use of diseased animals for evaluating neuroprotective therapies targeted to reduce cerebral ischemic damage. The goal of this review is to discuss the technicalities and pros/cons of various animal models of cerebral ischemia currently being employed to study diabetes-related ischemic brain damage. The rational use of such animal systems in studying the disease condition may better help evaluate novel therapeutic approaches for diabetes related exacerbation of ischemic brain damage. PMID:28274862

  10. Lung collapse among aquatic reptiles and amphibians during long-term diving.

    PubMed

    Ultsch, Gordon R; Brainerd, Elizabeth L; Jackson, Donald C

    2004-09-01

    Numerous aquatic reptiles and amphibians that typically breathe both air and water can remain fully aerobic in normoxic (aerated) water by taking up oxygen from the water via extrapulmonary avenues. Nevertheless, if air access is available, these animals do breathe air, however infrequently. We suggest that such air breathing does not serve an immediate gas exchange function under these conditions, nor is it necessarily related to buoyancy requirements, but serves to keep lungs inflated that would otherwise collapse during prolonged submergence. We also suggest that lung deflation is routine in hibernating aquatic reptiles and amphibians in the northern portions of their ranges, where ice cover prevents surfacing for extended periods.

  11. Animal models of drug addiction.

    PubMed

    García Pardo, María Pilar; Roger Sánchez, Concepción; De la Rubia Ortí, José Enrique; Aguilar Calpe, María Asunción

    2017-09-29

    The development of animal models of drug reward and addiction is an essential factor for progress in understanding the biological basis of this disorder and for the identification of new therapeutic targets. Depending on the component of reward to be studied, one type of animal model or another may be used. There are models of reinforcement based on the primary hedonic effect produced by the consumption of the addictive substance, such as the self-administration (SA) and intracranial self-stimulation (ICSS) paradigms, and there are models based on the component of reward related to associative learning and cognitive ability to make predictions about obtaining reward in the future, such as the conditioned place preference (CPP) paradigm. In recent years these models have incorporated methodological modifications to study extinction, reinstatement and reconsolidation processes, or to model specific aspects of addictive behavior such as motivation to consume drugs, compulsive consumption or drug seeking under punishment situations. There are also models that link different reinforcement components or model voluntary motivation to consume (two-bottle choice, or drinking in the dark tests). In short, innovations in these models allow progress in scientific knowledge regarding the different aspects that lead individuals to consume a drug and develop compulsive consumption, providing a target for future treatments of addiction.

  12. Transport and fate of radionuclides in aquatic environments--the use of ecosystem modelling for exposure assessments of nuclear facilities.

    PubMed

    Kumblad, L; Kautsky, U; Naeslund, B

    2006-01-01

    In safety assessments of nuclear facilities, a wide range of radioactive isotopes and their potential hazard to a large assortment of organisms and ecosystem types over long time scales need to be considered. Models used for these purposes have typically employed approaches based on generic reference organisms, stylised environments and transfer functions for biological uptake exclusively based on bioconcentration factors (BCFs). These models are of non-mechanistic nature and involve no understanding of uptake and transport processes in the environment, which is a severe limitation when assessing real ecosystems. In this paper, ecosystem models are suggested as a method to include site-specific data and to facilitate the modelling of dynamic systems. An aquatic ecosystem model for the environmental transport of radionuclides is presented and discussed. With this model, driven and constrained by site-specific carbon dynamics and three radionuclide specific mechanisms: (i) radionuclide uptake by plants, (ii) excretion by animals, and (iii) adsorption to organic surfaces, it was possible to estimate the radionuclide concentrations in all components of the modelled ecosystem with only two radionuclide specific input parameters (BCF for plants and Kd). The importance of radionuclide specific mechanisms for the exposure to organisms was examined, and probabilistic and sensitivity analyses to assess the uncertainties related to ecosystem input parameters were performed. Verification of the model suggests that this model produces analogous results to empirically derived data for more than 20 different radionuclides.

  13. Basic mechanisms of MCD in animal models.

    PubMed

    Battaglia, Giorgio; Becker, Albert J; LoTurco, Joseph; Represa, Alfonso; Baraban, Scott C; Roper, Steven N; Vezzani, Annamaria

    2009-09-01

    Epilepsy-associated glioneuronal malformations (malformations of cortical development [MCD]) include focal cortical dysplasias (FCD) and highly differentiated glioneuronal tumors, most frequently gangliogliomas. The neuropathological findings are variable but suggest aberrant proliferation, migration, and differentiation of neural precursor cells as essential pathogenetic elements. Recent advances in animal models for MCDs allow new insights in the molecular pathogenesis of these epilepsy-associated lesions. Novel approaches, presented here, comprise RNA interference strategies to generate and study experimental models of subcortical band heterotopia and study functional aspects of aberrantly shaped and positioned neurons. Exciting analyses address impaired NMDA receptor expression in FCD animal models compared to human FCDs and excitatory imbalances in MCD animal models such as lissencephaly gene ablated mice as well as in utero irradiated rats. An improved understanding of relevant pathomechanisms will advance the development of targeted treatment strategies for epilepsy-associated malformations.

  14. Osteoporotic Animal Models of Bone Healing: Advantages and Pitfalls.

    PubMed

    Calciolari, Elena; Donos, Nikolaos; Mardas, Nikos

    2017-10-01

    The aim of this review was to summarize the advantages and pitfalls of the available osteoporotic animal models of bone healing. A thorough literature search was performed in MEDLINE via OVID and EMBASE to identify animal studies investigating the effect of experimental osteoporosis on bone healing and bone regeneration. The osteotomy model in the proximal tibia is the most popular osseous defect model to study the bone healing process in osteoporotic-like conditions, although other well-characterized models, such as the post-extraction model, might be taken into consideration by future studies. The regenerative potential of osteoporotic bone and its response to biomaterials/regenerative techniques has not been clarified yet, and the critical size defect model might be an appropriate tool to serve this purpose. Since an ideal animal model for simulating osteoporosis does not exist, the type of bone remodeling, the animal lifespan, the age of peak bone mass, and the economic and ethical implications should be considered in our selection process. Furthermore, the influence of animal species, sex, age, and strain on the outcome measurement should be taken into account. In order to make future studies meaningful, standardized international guidelines for osteoporotic animal models of bone healing need to be set up.

  15. Aquatic versus mammalian toxicology: applications of the comparative approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guarino, A.M.

    1987-04-01

    The large body of literature and techniques generated by mammalian toxicity studies provides a conceptual and technical framework within which the absorption, fate, and disposition of xenobiotics in aquatic organisms can be studied. This review emphasizes the similarities and differences between mammalian and aquatic systems, e.g., lung vs. gill as site of absorption and toxicity. These must be taken into consideration when designing aquatic toxicity studies. Studies of phenol red in dogfish shark as an example show physiologic-based pharmacokinetic modeling to be a useful tool for investigating and eventually predicting species differences in xenobiotic disposition and drug differences within themore » same species. This discussion demonstrates that both laboratory and modeling procedures are now available to carry out sophisticated studies of xenobiotic fate and disposition in fish. Such studies are needed to pinpoint sites and mechanisms of pollutant toxicity in aquatic organisms.« less

  16. Appendix C. Analyses of Sensitivity Distributions for Estimation of Acute Hazard Concentrations to Aquatic Animals

    EPA Science Inventory

    USEPA’s Office of Water (OW) and Office of Pesticide Programs (OPP) are both charged with assessing risks of chemicals to aquatic species. The offices have developed scientifically defensible methods to assess chemicals under the Clean Water Act (CWA) and the Federal Insecticide...

  17. Reviewing model application to support animal health decision making.

    PubMed

    Singer, Alexander; Salman, Mo; Thulke, Hans-Hermann

    2011-04-01

    Animal health is of societal importance as it affects human welfare, and anthropogenic interests shape decision making to assure animal health. Scientific advice to support decision making is manifold. Modelling, as one piece of the scientific toolbox, is appreciated for its ability to describe and structure data, to give insight in complex processes and to predict future outcome. In this paper we study the application of scientific modelling to support practical animal health decisions. We reviewed the 35 animal health related scientific opinions adopted by the Animal Health and Animal Welfare Panel of the European Food Safety Authority (EFSA). Thirteen of these documents were based on the application of models. The review took two viewpoints, the decision maker's need and the modeller's approach. In the reviewed material three types of modelling questions were addressed by four specific model types. The correspondence between tasks and models underpinned the importance of the modelling question in triggering the modelling approach. End point quantifications were the dominating request from decision makers, implying that prediction of risk is a major need. However, due to knowledge gaps corresponding modelling studies often shed away from providing exact numbers. Instead, comparative scenario analyses were performed, furthering the understanding of the decision problem and effects of alternative management options. In conclusion, the most adequate scientific support for decision making - including available modelling capacity - might be expected if the required advice is clearly stated. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Classic and new animal models of Parkinson's disease.

    PubMed

    Blesa, Javier; Phani, Sudarshan; Jackson-Lewis, Vernice; Przedborski, Serge

    2012-01-01

    Neurological disorders can be modeled in animals so as to recreate specific pathogenic events and behavioral outcomes. Parkinson's Disease (PD) is the second most common neurodegenerative disease of an aging population, and although there have been several significant findings about the PD disease process, much of this process still remains a mystery. Breakthroughs in the last two decades using animal models have offered insights into the understanding of the PD disease process, its etiology, pathology, and molecular mechanisms. Furthermore, while cellular models have helped to identify specific events, animal models, both toxic and genetic, have replicated almost all of the hallmarks of PD and are useful for testing new neuroprotective or neurorestorative strategies. Moreover, significant advances in the modeling of additional PD features have come to light in both classic and newer models. In this review, we try to provide an updated summary of the main characteristics of these models as well as the strengths and weaknesses of what we believe to be the most popular PD animal models. These models include those produced by 6-hydroxydopamine (6-OHDA), 1-methyl-1,2,3,6-tetrahydropiridine (MPTP), rotenone, and paraquat, as well as several genetic models like those related to alpha-synuclein, PINK1, Parkin and LRRK2 alterations.

  19. Integration of biotic ligand models (BLM) and bioaccumulation kinetics into a mechanistic framework for metal uptake in aquatic organisms.

    PubMed

    Veltman, Karin; Huijbregts, Mark A J; Hendriks, A Jan

    2010-07-01

    Both biotic ligand models (BLM) and bioaccumulation models aim to quantify metal exposure based on mechanistic knowledge, but key factors included in the description of metal uptake differ between the two approaches. Here, we present a quantitative comparison of both approaches and show that BLM and bioaccumulation kinetics can be merged into a common mechanistic framework for metal uptake in aquatic organisms. Our results show that metal-specific absorption efficiencies calculated from BLM-parameters for freshwater fish are highly comparable, i.e. within a factor of 2.4 for silver, cadmium, copper, and zinc, to bioaccumulation-absorption efficiencies for predominantly marine fish. Conditional affinity constants are significantly related to the metal-specific covalent index. Additionally, the affinity constants of calcium, cadmium, copper, sodium, and zinc are significantly comparable across aquatic species, including molluscs, daphnids, and fish. This suggests that affinity constants can be estimated from the covalent index, and constants can be extrapolated across species. A new model is proposed that integrates the combined effect of metal chemodynamics, as speciation, competition, and ligand affinity, and species characteristics, as size, on metal uptake by aquatic organisms. An important direction for further research is the quantitative comparison of the proposed model with acute toxicity values for organisms belonging to different size classes.

  20. Living in Water: An Aquatic Science Curriculum for Grades 5-7.

    ERIC Educational Resources Information Center

    National Aquarium in Baltimore, MD. Dept. of Education.

    "Living in Water" is a classroom-based, scientific study of water, aquatic environments, and the plants and animals that live in water. The lessons in this curriculum integrate basic physical, biological, and earth sciences, and mathematics. The integration of language arts is also considered essential to its success. These lessons do not require…

  1. Satellite-Based Assessment of the spatial extent of Aquatic Vegetation in Lake Victoria

    NASA Astrophysics Data System (ADS)

    Clark, W.; Aligeti, N.; Jeyaprakash, T.; Martins, M.; Stodghill, J.; Winstanley, H.

    2011-12-01

    Lake Victoria in Africa is the second largest freshwater lake in the world and is known for its abundance of aquatic wildlife. In particular over 200 different fish species are caught and sold by local fisherman. The lake is a major contributor to the local economy as a corridor of transportation, source of drinking water, and source of hydropower. However, the invasion of aquatic vegetation such as water hyacinth in the lake has disrupted each of these markets. Aquatic vegetation now covers a substantial area of the coastline blocking waterways, disrupting hydropower, hindering the collection of drinking water and decreasing the profitability of fishing. The vegetation serves as a habitat for disease carrying mosquitoes as well as snakes and snails that spread the parasitic disease bilharzia. The current control measures of invasive aquatic vegetation rely on biological, chemical and mechanical control. The objective of this study was to utilize remote sensing to map aquatic vegetation within Lake Victoria from 2000 to 2011. MODIS, Landsat 4-5TM, and Landsat 7-ETM imagery was employed to perform change detections in vegetation and identify the extent of aquatic vegetation throughout the years. The efficiency of containment efforts were evaluated and ideal time for application of such efforts were suggested. A methodology for aquatic vegetation surveillance was created. The results of this project were presented as a workshop to the Lake Victoria Fisheries Organization, SERVIR, and other partner organizations. The workshop provided instruction into the use of NASA and other satellite derived products. Time series animations of the spatial extent of aquatic vegetation within the lake were created. By identifying seasons of decreased aquatic vegetation, ideal times to employ control efforts were identified. SERVIR will subsequently utilize the methodologies and mapping results of this study to develop operational aquatic vegetation surveillance for Lake Victoria.

  2. Synapse alterations in autism: Review of animal model findings.

    PubMed

    Zatkova, Martina; Bakos, Jan; Hodosy, Julius; Ostatnikova, Daniela

    2016-06-01

    Recent research has produced an explosion of experimental data on the complex neurobiological mechanisms of developmental disorders including autism. Animal models are one approach to studying the phenotypic features and molecular basis of autism. In this review, we describe progress in understanding synaptogenesis and alterations to this process with special emphasis on the cell adhesion molecules and scaffolding proteins implicated in autism. Genetic mouse model experiments are discussed in relation to alterations to selected synaptic proteins and consequent behavioral deficits measured in animal experiments. Pubmed databases were used to search for original and review articles on animal and human clinical studies on autism. The cell adhesion molecules, neurexin, neurolignin and the Shank family of proteins are important molecular targets associated with autism. The heterogeneity of the autism spectrum of disorders limits interpretation of information acquired from any single animal model or animal test. We showed synapse-specific/ model-specific defects associated with a given genotype in these models. Characterization of mouse models with genetic variations may help study the mechanisms of autism in humans. However, it will be necessary to apply new analytic paradigms in using genetically modified mice for understanding autism etiology in humans. Further studies are needed to create animal models with mutations that match the molecular and neural bases of autism.

  3. Computer-animated model of accommodation and presbyopia.

    PubMed

    Goldberg, Daniel B

    2015-02-01

    To understand, demonstrate, and further research the mechanisms of accommodation and presbyopia. Private practice, Little Silver, New Jersey, USA. Experimental study. The CAMA 2.0 computer-animated model of accommodation and presbyopia was produced in collaboration with an experienced medical animator using Autodesk Maya animation software and Adobe After Effects. The computer-animated model demonstrates the configuration and synchronous movements of all accommodative elements. A new classification of the zonular apparatus based on structure and function is proposed. There are 3 divisions of zonular fibers; that is, anterior, crossing, and posterior. The crossing zonular fibers form a scaffolding to support the lens; the anterior and posterior zonular fibers work reciprocally to achieve focused vision. The model demonstrates the important support function of Weiger ligament. Dynamic movement of the ora serrata demonstrates that the forces of ciliary muscle contraction store energy for disaccommodation in the elastic choroid. The flow of aqueous and vitreous provides strong evidence for our understanding of the hydrodynamic interactions during the accommodative cycle. The interaction may result from the elastic stretch in the choroid transmitted to the vitreous rather than from vitreous pressue. The model supports the concept that presbyopia results from loss of elasticity and increasing ocular rigidity in both the lenticular and extralenticular structures. The computer-animated model demonstrates the structures of accommodation moving in synchrony and might enhance understanding of the mechanisms of accommodation and presbyopia. Dr. Goldberg is a consultant to Acevision, Inc., and Bausch & Lomb. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  4. Animal models in plastic and reconstructive surgery simulation-a review.

    PubMed

    Loh, Charles Yuen Yung; Wang, Aline Yen Ling; Tiong, Vincent Tze Yang; Athanassopoulos, Thanassi; Loh, Meiling; Lim, Philip; Kao, Huang-Kai

    2018-01-01

    The use of live and cadaveric animal models in surgical training is well established as a means of teaching and improving surgical skill in a controlled setting. We aim to review, evaluate, and summarize the models published in the literature that are applicable to Plastic Surgery training. A PubMed search for keywords relating to animal models in Plastic Surgery and the associated procedures was conducted. Animal models that had cross over between specialties such as microsurgery with Neurosurgery and pinnaplasty with ear, nose, and throat surgery were included as they were deemed to be relevant to our training curriculum. A level of evidence and recommendation assessment was then given to each surgical model. Our review found animal models applicable to plastic surgery training in four major categories namely-microsurgery training, flap raising, facial surgery, and hand surgery. Twenty-four separate articles described various methods of practicing microsurgical techniques on different types of animals. Fourteen different articles each described various methods of conducting flap-based procedures which consisted of either local or perforator flap dissection. Eight articles described different models for practicing hand surgery techniques. Finally, eight articles described animal models that were used for head and neck procedures. A comprehensive summary of animal models related to plastic surgery training has been compiled. Cadaveric animal models provide a readily available introduction to many procedures and ought to be used instead of live models when feasible. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Corexit 9500 inactivates two enveloped viruses of aquatic animals but enhances the infectivity of a nonenveloped fish virus.

    PubMed

    Pham, P H; Huang, Y J; Chen, C; Bols, N C

    2014-02-01

    The effects of Corexit 9500, a dispersant used to clean up oil spills, on invertebrates, lower vertebrates, birds, and human health have been examined, but there is a significant lack of study of the effect of this dispersant on aquatic viruses. In this study, the effects of Corexit 9500 on four aquatic viruses of differing structural composition were examined. Corexit 9500 reduced the titer of the enveloped viral hemorrhagic septicemia virus (VHSV) at all concentrations (10% to 0.001%) examined. The titer of frog virus 3 (FV3), a virus with both enveloped and nonenveloped virions, was reduced only at the high Corexit 9500 concentrations (10% to 0.1%). Corexit 9500 was unable to reduce the titer of nonenveloped infectious pancreatic necrosis virus (IPNV) but enhanced the titer of chum salmon reovirus (CSV) by 2 to 4 logs. With the ability to inactivate enveloped viruses and possibly enhance some nonenveloped viruses, Corexit 9500 has the potential to alter the aquatic virosphere.

  6. Animal models in the research of abdominal aortic aneurysms development.

    PubMed

    Patelis, N; Moris, D; Schizas, D; Damaskos, C; Perrea, D; Bakoyiannis, C; Liakakos, T; Georgopoulos, S

    2017-12-20

    Abdominal aortic aneurysm (AAA) is a prevalent and potentially life threatening disease. Many animal models have been developed to simulate the natural history of the disease or test preclinical endovascular devices and surgical procedures. The aim of this review is to describe different methods of AAA induction in animal models and report on the effectiveness of the methods described in inducing an analogue of a human AAA. The PubMed database was searched for publications with titles containing the following terms "animal" or "animal model(s)" and keywords "research", "aneurysm(s)", "aorta", "pancreatic elastase", "Angiotensin", "AngII" "calcium chloride" or "CaCl(2)". Starting date for this search was set to 2004, since previously bibliography was already covered by the review of Daugherty and Cassis (2004). We focused on animal studies that reported a model of aneurysm development and progression. A number of different approaches of AAA induction in animal models has been developed, used and combined since the first report in the 1960's. Although specific methods are successful in AAA induction in animal models, it is necessary that these methods and their respective results are in line with the pathophysiology and the mechanisms involved in human AAA development. A researcher should know the advantages/disadvantages of each animal model and choose the appropriate model.

  7. Animal models of post-traumatic epilepsy.

    PubMed

    Ostergard, Thomas; Sweet, Jennifer; Kusyk, Dorian; Herring, Eric; Miller, Jonathan

    2016-10-15

    Post-traumatic epilepsy (PTE) is defined as the development of unprovoked seizures in a delayed fashion after traumatic brain injury (TBI). PTE lies at the intersection of two distinct fields of study, epilepsy and neurotrauma. TBI is associated with a myriad of both focal and diffuse anatomic injuries, and an ideal animal model of epilepsy after TBI must mimic the characteristics of human PTE. The three most commonly used models of TBI are lateral fluid percussion, controlled cortical injury, and weight drop. Much of what is known about PTE has resulted from use of these models. In this review, we describe the most commonly used animal models of TBI with special attention to their advantages and disadvantages with respect to their use as a model of PTE. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Key Ecological Roles for Zoosporic True Fungi in Aquatic Habitats.

    PubMed

    Gleason, Frank H; Scholz, Bettina; Jephcott, Thomas G; van Ogtrop, Floris F; Henderson, Linda; Lilje, Osu; Kittelmann, Sandra; Macarthur, Deborah J

    2017-03-01

    The diversity and abundance of zoosporic true fungi have been analyzed recently using fungal sequence libraries and advances in molecular methods, such as high-throughput sequencing. This review focuses on four evolutionary primitive true fungal phyla: the Aphelidea, Chytridiomycota, Neocallimastigomycota, and Rosellida (Cryptomycota), most species of which are not polycentric or mycelial (filamentous), rather they tend to be primarily monocentric (unicellular). Zoosporic fungi appear to be both abundant and diverse in many aquatic habitats around the world, with abundance often exceeding other fungal phyla in these habitats, and numerous novel genetic sequences identified. Zoosporic fungi are able to survive extreme conditions, such as high and extremely low pH; however, more work remains to be done. They appear to have important ecological roles as saprobes in decomposition of particulate organic substrates, pollen, plant litter, and dead animals; as parasites of zooplankton and algae; as parasites of vertebrate animals (such as frogs); and as symbionts in the digestive tracts of mammals. Some chytrids cause economically important diseases of plants and animals. They regulate sizes of phytoplankton populations. Further metagenomics surveys of aquatic ecosystems are expected to enlarge our knowledge of the diversity of true zoosporic fungi. Coupled with studies on their functional ecology, we are moving closer to unraveling the role of zoosporic fungi in carbon cycling and the impact of climate change on zoosporic fungal populations.

  9. Review of marine animals and bioinspired robotic vehicles: Classifications and characteristics

    NASA Astrophysics Data System (ADS)

    Zimmerman, S.; Abdelkefi, A.

    2017-08-01

    Marine robots are a developing topic for military, scientific, and environmental missions. However, most existing marine robots are either limited to flight or limited to swimming. Therefore, the combination of both provides endless possibilities for tasks, such as espionage, pollution and marine wildlife surveillance, and border protection. Applying bioinspiration and biomimetics not only camouflages the robot, but also increases the efficiency of already perfected designs. Because bioinspiration and aerial-aquatic locomotion are the main attraction for this article, this review gathers the characteristics of aerial-aquatic animals useful for such designs. These animals are diving birds and flying fish, specifically plunge-diving birds, surface-diving birds, both plunge- and surface-diving birds, two-winger flying fish, and four-winger flying fish. The overview of the current marine bioinspired and non-bioinspired robots that are both aerial and aquatic are also presented, followed by the limitations and recommendations of the bioinspired robots. It is shown by a comparison between the bioinspired robot and its corresponding animal that the existing robotic systems are not truly bioinspired. The main traits these systems are missing are replicating the exact weight, size, muscle movement, and skin texture of the biological animal. In order to have efficient robots, bioinspiration needs to be perfected. Doing so requires not only the basic design to be replicated, but every detail of the system to be imitated.

  10. Recent advances in animal model experimentation in autism research.

    PubMed

    Tania, Mousumi; Khan, Md Asaduzzaman; Xia, Kun

    2014-10-01

    Autism, a lifelong neuro-developmental disorder is a uniquely human condition. Animal models are not the perfect tools for the full understanding of human development and behavior, but they can be an important place to start. This review focused on the recent updates of animal model research in autism. We have reviewed the publications over the last three decades, which are related to animal model study in autism. Animal models are important because they allow researchers to study the underlying neurobiology in a way that is not possible in humans. Improving the availability of better animal models will help the field to increase the development of medicines that can relieve disabling symptoms. Results from the therapeutic approaches are encouraging remarkably, since some behavioral alterations could be reversed even when treatment was performed on adult mice. Finding an animal model system with similar behavioral tendencies as humans is thus vital for understanding the brain mechanisms, supporting social motivation and attention, and the manner in which these mechanisms break down in autism. The ongoing studies should therefore increase the understanding of the biological alterations associated with autism as well as the development of knowledge-based treatments therapy for those struggling with autism. In this review, we have presented recent advances in research based on animal models of autism, raising hope for understanding the disease biology for potential therapeutic intervention to improve the quality of life of autism individuals.

  11. Accuracy of Chronic Aquatic Toxicity Estimates Determined from Acute Toxicity Data and Two Time–Response Models.

    EPA Science Inventory

    Traditionally, chronic toxicity in aquatic organisms and wildlife has been determined from either toxicity test data, acute to chronic ratios, or application of safety factors. A more recent alternative approach has been to estimate chronic toxicity by modeling the time course of...

  12. Routine health monitoring in an aquatic species (Oryzias latipes) used in toxicological testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Twerdok, L.E.; Beaman, J.R.; Curry, M.W.

    1995-12-31

    It is critical to establish baseline health endpoints in animal models used in toxicological studies. In mammalian models, procedures for monitoring the health status of test animals have been established and in use for many years; in many aquatic models, including medaka, much of this routine health screening has not been documented. Thus, the purpose of this study was to characterize routine health parameters in medaka and to identify parameters sensitive to changes in health status which could affect the suitability of animals for use in general toxicity and immunotoxicological studies. The endpoints assessed included histopathology (31 organs), identification ofmore » endogenous bacterial flora and, gross necropsy including body weight, length, hematocrit, leukocrit, and plasma immunoglobulin levels. Additional parameters included anterior kidney (the teleost bone marrow equivalent) weight and cell yields plus superoxide anion production. Histological findings included observation of age-related incidence of granulomatous lesions in a variety of organs. Multiple strains of Aeromonas and Pseudomonas were the predominant internal flora in healthy medaka. Hematocrit, leukocrit and plasma IgM levels were within the normal range for this species. Comparisons were made between healthy and handling-stressed fish. Evaluation of data collected to date suggest that leukocrit and superoxide anion production were the most sensitive indicators of the fish health status and suitability for use in general and/or immunotoxicological studies.« less

  13. Cytomegalovirus Antivirals and Development of Improved Animal Models

    PubMed Central

    McGregor, Alistair; Choi, K. Yeon

    2015-01-01

    Introduction Cytomegalovirus (CMV) is a ubiquitous pathogen that establishes a life long asymptomatic infection in healthy individuals. Infection of immunesuppressed individuals causes serious illness. Transplant and AIDS patients are highly susceptible to CMV leading to life threatening end organ disease. Another vulnerable population is the developing fetus in utero, where congenital infection can result in surviving newborns with long term developmental problems. There is no vaccine licensed for CMV and current antivirals suffer from complications associated with prolonged treatment. These include drug toxicity and emergence of resistant strains. There is an obvious need for new antivirals. Candidate intervention strategies are tested in controlled pre-clinical animal models but species specificity of HCMV precludes the direct study of the virus in an animal model. Areas covered This review explores the current status of CMV antivirals and development of new drugs. This includes the use of animal models and the development of new improved models such as humanized animal CMV and bioluminescent imaging of virus in animals in real time. Expert Opinion Various new CMV antivirals are in development, some with greater spectrum of activity against other viruses. Although the greatest need is in the setting of transplant patients there remains an unmet need for a safe antiviral strategy against congenital CMV. This is especially important since an effective CMV vaccine remains an elusive goal. In this capacity greater emphasis should be placed on suitable pre-clinical animal models and greater collaboration between industry and academia. PMID:21883024

  14. Consequences of detritus type in an aquatic microsystem: effects on water quality, micro-organisms and performance of the dominant consumer

    PubMed Central

    YEE, DONALD A.; JULIANO, STEVEN A.

    2007-01-01

    SUMMARY 1. Variation in detritus quality and quantity can have significant effects on aquatic invertebrate food webs. Allochthonous inputs of detritus are the principal energy source for organisms in aquatic tree hole microsystems. We compared the effects of two major detritus types found in tree holes, senescent leaves (Sugar Maple and White Oak) and invertebrate carcasses (dead adult fruit flies and crickets), on several water quality characteristics of laboratory microcosms as well as on mass, survival and population performance of the dominant tree hole consumer, Ochlerotatus triseriatus (Diptera: Culicidae). To date, no study has documented the effects of animal detritus in tree hole microsystems or on resident consumers. 2. Aquatic environments receiving invertebrate carcasses had significantly greater total nitrogen, total reactive phosphorus and higher pH, than leaf-based environments. Decay rate of invertebrate carcasses was greater compared to leaf material. Consumption of O2 by micro-organisms increased with increasing detritus amounts, but we detected no difference between detritus types. 3. Ochlerotatus triseriatus larvae grew faster in animal-based treatments, and mean mass of larvae was significantly greater when more animal detritus was used. The effect of animal-based treatments on larvae translated into higher performance for adults, which were three times heavier than counterparts from plant-based containers. Survivorship and estimated population growth rates were significantly greater for O. triseriatus reared on animal-based versus plant-based detritus. 4. We hypothesise two mechanisms for the pronounced effect of invertebrate carcasses on mosquito performance relative to that associated with leaf detritus: (i) invertebrate carcasses decompose more quickly and release nutrients more effectively into the aquatic environment; or (ii) O. triseriatus larvae may directly ingest nutrient-rich components of invertebrate carcasses. Because even

  15. Nonmurine animal models of food allergy.

    PubMed

    Helm, Ricki M; Ermel, Richard W; Frick, Oscar L

    2003-02-01

    Food allergy can present as immediate hypersensitivity [manifestations mediated by immunoglobulin (Ig)E], delayed-type hypersensitivity (reactions associated with specific T lymphocytes), and inflammatory reactions caused by immune complexes. For reasons of ethics and efficacy, investigations in humans to determine sensitization and allergic responses of IgE production to innocuous food proteins are not feasible. Therefore, animal models are used a) to bypass the innate tendency to develop tolerance to food proteins and induce specific IgE antibody of sufficient avidity/affinity to cause sensitization and upon reexposure to induce an allergic response, b) to predict allergenicity of novel proteins using characteristics of known food allergens, and c) to treat food allergy by using immunotherapeutic strategies to alleviate life-threatening reactions. The predominant hypothesis for IgE-mediated food allergy is that there is an adverse reaction to exogenous food proteins or food protein fragments, which escape lumen hydrolysis, and in a polarized helper T cell subset 2 (Th2) environment, immunoglobulin class switching to allergen-specific IgE is generated in the immune system of the gastrointestinal-associated lymphoid tissues. Traditionally, the immunologic characterization and toxicologic studies of small laboratory animals have provided the basis for development of animal models of food allergy; however, the natural allergic response in large animals, which closely mimic allergic diseases in humans, can also be useful as models for investigations involving food allergy.

  16. Use of Animal Models to Develop Antiaddiction Medications

    PubMed Central

    Gardner, Eliot L.

    2008-01-01

    Although addiction is a uniquely human phenomenon, some of its pathognomonic features can be modeled at the animal level. Such features include the euphoric “high” produced by acute administration of addictive drugs; the dysphoric “crash” produced by acute withdrawal, drug-seeking, and drug-taking behaviors; and relapse to drug-seeking behavior after achieving successful abstinence. Animal models exist for each of these features. In this review, I focus on various animal models of addiction and how they can be used to search for clinically effective antiaddiction medications. I conclude by noting some of the new and novel medications that have been developed preclinically using such models and the hope for further developments along such lines. PMID:18803910

  17. From terrestrial to aquatic fluxes: Integrating stream dynamics within a dynamic global vegetation modeling framework

    NASA Astrophysics Data System (ADS)

    Hoy, Jerad; Poulter, Benjamin; Emmett, Kristen; Cross, Molly; Al-Chokhachy, Robert; Maneta, Marco

    2016-04-01

    Integrated terrestrial ecosystem models simulate the dynamics and feedbacks between climate, vegetation, disturbance, and hydrology and are used to better understand biogeography and biogeochemical cycles. Extending dynamic vegetation models to the aquatic interface requires coupling surface and sub-surface runoff to catchment routing schemes and has the potential to enhance how researchers and managers investigate how changes in the environment might impact the availability of water resources for human and natural systems. In an effort towards creating such a coupled model, we developed catchment-based hydrologic routing and stream temperature model to pair with LPJ-GUESS, a dynamic global vegetation model. LPJ-GUESS simulates detailed stand-level vegetation dynamics such as growth, carbon allocation, and mortality, as well as various physical and hydrologic processes such as canopy interception and through-fall, and can be applied at small spatial scales, i.e., 1 km. We demonstrate how the coupled model can be used to investigate the effects of transient vegetation dynamics and CO2 on seasonal and annual stream discharge and temperature regimes. As a direct management application, we extend the modeling framework to predict habitat suitability for fish habitat within the Greater Yellowstone Ecosystem, a 200,000 km2 region that provides critical habitat for a range of aquatic species. The model is used to evaluate, quantitatively, the effects of management practices aimed to enhance hydrologic resilience to climate change, and benefits for water storage and fish habitat in the coming century.

  18. Software Validation via Model Animation

    NASA Technical Reports Server (NTRS)

    Dutle, Aaron M.; Munoz, Cesar A.; Narkawicz, Anthony J.; Butler, Ricky W.

    2015-01-01

    This paper explores a new approach to validating software implementations that have been produced from formally-verified algorithms. Although visual inspection gives some confidence that the implementations faithfully reflect the formal models, it does not provide complete assurance that the software is correct. The proposed approach, which is based on animation of formal specifications, compares the outputs computed by the software implementations on a given suite of input values to the outputs computed by the formal models on the same inputs, and determines if they are equal up to a given tolerance. The approach is illustrated on a prototype air traffic management system that computes simple kinematic trajectories for aircraft. Proofs for the mathematical models of the system's algorithms are carried out in the Prototype Verification System (PVS). The animation tool PVSio is used to evaluate the formal models on a set of randomly generated test cases. Output values computed by PVSio are compared against output values computed by the actual software. This comparison improves the assurance that the translation from formal models to code is faithful and that, for example, floating point errors do not greatly affect correctness and safety properties.

  19. Disease-protective symbiosis among fishes and other aquatic animals

    USGS Publications Warehouse

    Snieszko, S.F.

    1962-01-01

    There have been numerous observations of one species of animal removing parasites from another. These are, however, generally regarded as biological curiosities rather than as significant factors in the control of parasites or disease.

  20. Combinations of chromosome transfer and genome editing for the development of cell/animal models of human disease and humanized animal models.

    PubMed

    Uno, Narumi; Abe, Satoshi; Oshimura, Mitsuo; Kazuki, Yasuhiro

    2018-02-01

    Chromosome transfer technology, including chromosome modification, enables the introduction of Mb-sized or multiple genes to desired cells or animals. This technology has allowed innovative developments to be made for models of human disease and humanized animals, including Down syndrome model mice and humanized transchromosomic (Tc) immunoglobulin mice. Genome editing techniques are developing rapidly, and permit modifications such as gene knockout and knockin to be performed in various cell lines and animals. This review summarizes chromosome transfer-related technologies and the combined technologies of chromosome transfer and genome editing mainly for the production of cell/animal models of human disease and humanized animal models. Specifically, these include: (1) chromosome modification with genome editing in Chinese hamster ovary cells and mouse A9 cells for efficient transfer to desired cell types; (2) single-nucleotide polymorphism modification in humanized Tc mice with genome editing; and (3) generation of a disease model of Down syndrome-associated hematopoiesis abnormalities by the transfer of human chromosome 21 to normal human embryonic stem cells and the induction of mutation(s) in the endogenous gene(s) with genome editing. These combinations of chromosome transfer and genome editing open up new avenues for drug development and therapy as well as for basic research.

  1. AQUATIC ECOSYSTEMS,

    EPA Science Inventory

    Aquatic ecosystems are a vital part of the urban water cycle (and of urban areas more broadly), and, if healthy, provide a range of goods and services valued by humans (Meyer 1997). For example, aquatic ecosystems (e.g., rivers, lakes, wetlands) provide potable water, food resou...

  2. Animal Models of Diabetic Retinopathy: Summary and Comparison

    PubMed Central

    Lo, Amy C. Y.

    2013-01-01

    Diabetic retinopathy (DR) is a microvascular complication associated with chronic exposure to hyperglycemia and is a major cause of blindness worldwide. Although clinical assessment and retinal autopsy of diabetic patients provide information on the features and progression of DR, its underlying pathophysiological mechanism cannot be deduced. In order to have a better understanding of the development of DR at the molecular and cellular levels, a variety of animal models have been developed. They include pharmacological induction of hyperglycemia and spontaneous diabetic rodents as well as models of angiogenesis without diabetes (to compensate for the absence of proliferative DR symptoms). In this review, we summarize the existing protocols to induce diabetes using STZ. We also describe and compare the pathological presentations, in both morphological and functional aspects, of the currently available DR animal models. The advantages and disadvantages of using different animals, ranging from zebrafish, rodents to other higher-order mammals, are also discussed. Until now, there is no single model that displays all the clinical features of DR as seen in human. Yet, with the understanding of the pathological findings in these animal models, researchers can select the most suitable models for mechanistic studies or drug screening. PMID:24286086

  3. Animal models of obsessive–compulsive disorder: utility and limitations

    PubMed Central

    Alonso, Pino; López-Solà, Clara; Real, Eva; Segalàs, Cinto; Menchón, José Manuel

    2015-01-01

    Obsessive–compulsive disorder (OCD) is a disabling and common neuropsychiatric condition of poorly known etiology. Many attempts have been made in the last few years to develop animal models of OCD with the aim of clarifying the genetic, neurochemical, and neuroanatomical basis of the disorder, as well as of developing novel pharmacological and neurosurgical treatments that may help to improve the prognosis of the illness. The latter goal is particularly important given that around 40% of patients with OCD do not respond to currently available therapies. This article summarizes strengths and limitations of the leading animal models of OCD including genetic, pharmacologically induced, behavioral manipulation-based, and neurodevelopmental models according to their face, construct, and predictive validity. On the basis of this evaluation, we discuss that currently labeled “animal models of OCD” should be regarded not as models of OCD but, rather, as animal models of different psychopathological processes, such as compulsivity, stereotypy, or perseverance, that are present not only in OCD but also in other psychiatric or neurological disorders. Animal models might constitute a challenging approach to study the neural and genetic mechanism of these phenomena from a trans-diagnostic perspective. Animal models are also of particular interest as tools for developing new therapeutic options for OCD, with the greatest convergence focusing on the glutamatergic system, the role of ovarian and related hormones, and the exploration of new potential targets for deep brain stimulation. Finally, future research on neurocognitive deficits associated with OCD through the use of analogous animal tasks could also provide a genuine opportunity to disentangle the complex etiology of the disorder. PMID:26346234

  4. Can thiol compounds be used as biomarkers of aquatic ecosystem contamination by cadmium?

    PubMed Central

    Kovářová, Jana; Svobodová, Zdeňka

    2009-01-01

    Due to anthropogenic activities, heavy metals still represent a threat for various trophic levels. If aquatic animals are exposed to heavy metals we can obviously observe considerable toxicity. It is well known that an organism affected by cadmium (Cd) synthesize low molecular mass thiol compounds rich in cysteine (Cys), such as metallothioneins (MT) and glutathione (GSH/GSSG). The aim of this study was to summarize the effect of Cd on level of thiol compounds in aquatic organisms, and evaluate that the concentrations of thiol compounds are effective indicators of Cd water pollution and explain their potential use in biomonitoring applications. PMID:21217850

  5. The effects of aquatic oxygen concentration, body size and respiratory behaviour on the stamina of obligate aquatic (Bufo americanus) and facultative air-breathing (Xenopus laevis and Rana berlandieri) anuran larvae.

    PubMed

    Wassersug, R J; Feder, M E

    1983-07-01

    Larvae of the anurans Rana berlandieri and Xenopus laevis have lungs and can breathe air as well as irrigate buccal and pharyngeal surfaces for aquatic respiration. Larvae of Bufo americanus lack lungs until just before metamorphosis and are obligately aquatic. We examined the relationship between the locomotor stamina (time to fatigue), aquatic oxygen concentration, body size, and respiratory behaviour of swimming larvae of these species, with the following results: Stamina is size-dependent in all three species. Aquatic hypoxia reduces stamina in larvae of all three species, but most conspicuously in Bufo. Breathing air increases stamina in Rana larvae, especially in large animals and under aquatic hypoxia. In contrast to Rana larvae, Xenopus larvae swimming in normoxic water undergo a reduction in stamina when allowed to breathe air. In hypoxic water, aerial respiration moderates the reduction in stamina seen in Xenopus larvae. Branchial irrigation is associated with increased stamina in Xenopus, and is increased under hypoxia and at high swimming velocities. Respiratory demand, buoyancy and the drag associated with branchial irrigation all affect respiratory behaviour in Xenopus larvae. The great amount of interspecific variation in the relationship between respiratory behaviour and stamina reveals the importance of measuring performance directly when attempting to interpret the functional significance of respiratory structures and behaviour.

  6. Contemporary Animal Models For Human Gene Therapy Applications.

    PubMed

    Gopinath, Chitra; Nathar, Trupti Job; Ghosh, Arkasubhra; Hickstein, Dennis Durand; Nelson, Everette Jacob Remington

    2015-01-01

    Over the past three decades, gene therapy has been making considerable progress as an alternative strategy in the treatment of many diseases. Since 2009, several studies have been reported in humans on the successful treatment of various diseases. Animal models mimicking human disease conditions are very essential at the preclinical stage before embarking on a clinical trial. In gene therapy, for instance, they are useful in the assessment of variables related to the use of viral vectors such as safety, efficacy, dosage and localization of transgene expression. However, choosing a suitable disease-specific model is of paramount importance for successful clinical translation. This review focuses on the animal models that are most commonly used in gene therapy studies, such as murine, canine, non-human primates, rabbits, porcine, and a more recently developed humanized mice. Though small and large animals both have their own pros and cons as disease-specific models, the choice is made largely based on the type and length of study performed. While small animals with a shorter life span could be well-suited for degenerative/aging studies, large animals with longer life span could suit longitudinal studies and also help with dosage adjustments to maximize therapeutic benefit. Recently, humanized mice or mouse-human chimaeras have gained interest in the study of human tissues or cells, thereby providing a more reliable understanding of therapeutic interventions. Thus, animal models are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior to a gene therapy clinical trial.

  7. Managing animal health from an aquaculture perspective

    USDA-ARS?s Scientific Manuscript database

    Aquaculture is the production of aquatic animals for food. The aquaculture industry is a rapidly expanding segment of U. S. agriculture and NOAA estimated the industry was worth $1.2 billion in 2011. Disease related losses in aquaculture either by decreased performance and/or mortality is estimate...

  8. Canopy Modeling of Aquatic Vegetation: Construction of Submerged Vegetation Index

    NASA Astrophysics Data System (ADS)

    Ma, Z.; Zhou, G.

    2018-04-01

    The unique spectral characteristics of submerged vegetation in wetlands determine that the conventional terrestrial vegetation index cannot be directly employed to species identification and parameter inversion of submerged vegetation. Based on the Aquatic Vegetation Radiative Transfer model (AVRT), this paper attempts to construct an index suitable for submerged vegetation, the model simulated data and a scene of Sentinel-2A image in Taihu Lake, China are utilized for assessing the performance of the newly constructed indices and the existent vegetation indices. The results show that the angle index composed by 525 nm, 555 nm and 670 nm can resist the effects of water columns and is more sensitive to vegetation parameters such as LAI. Furthermore, it makes a well discrimination between submerged vegetation and water bodies in the satellite data. We hope that the new index will provide a theoretical basis for future research.

  9. A systematic review of animal models for Staphylococcus aureus osteomyelitis

    PubMed Central

    Reizner, W.; Hunter, J.G.; O’Malley, N.T.; Southgate, R.D.; Schwarz, E.M.; Kates, S.L.

    2015-01-01

    Staphylococcus aureus (S. aureus) osteomyelitis is a significant complication for orthopaedic patients undergoing surgery, particularly with fracture fixation and arthroplasty. Given the difficulty in studying S. aureus infections in human subjects, animal models serve an integral role in exploring the pathogenesis of osteomyelitis, and aid in determining the efficacy of prophylactic and therapeutic treatments. Animal models should mimic the clinical scenarios seen in patients as closely as possible to permit the experimental results to be translated to the corresponding clinical care. To help understand existing animal models of S. aureus, we conducted a systematic search of PubMed & Ovid MEDLINE to identify in vivo animal experiments that have investigated the management of S. aureus osteomyelitis in the context of fractures and metallic implants. In this review, experimental studies are categorized by animal species and are further classified by the setting of the infection. Study methods are summarized and the relevant advantages and disadvantages of each species and model are discussed. While no ideal animal model exists, the understanding of a model’s strengths and limitations should assist clinicians and researchers to appropriately select an animal model to translate the conclusions to the clinical setting. PMID:24668594

  10. Chest compressions in newborn animal models: A review.

    PubMed

    Solevåg, Anne Lee; Cheung, Po-Yin; Lie, Helene; O'Reilly, Megan; Aziz, Khalid; Nakstad, Britt; Schmölzer, Georg Marcus

    2015-11-01

    Much of the knowledge about the optimal way to perform chest compressions (CC) in newborn infants is derived from animal studies. The objective of this review was to identify studies of CC in newborn term animal models and review the evidence. We also provide an overview of the different models. MEDLINE, EMBASE and CINAHL, until September 29th 2014. Study eligibility criteria and interventions: term newborn animal models where CC was performed. Based on 419 retrieved studies from MEDLINE and 502 from EMBASE, 28 studies were included. No additional studies were identified in CINAHL. Most of the studies were performed in pigs after perinatal transition without long-term follow-up. The models differed widely in methodological aspects, which limits the possibility to compare and synthesize findings. Studies uncommonly reported the method for randomization and allocation concealment, and a limited number were blinded. Only the evidence in favour of the two-thumb encircling hands technique for performing CC, a CC to ventilation ratio of 3:1; and that air can be used for ventilation during CC; was supported by more than one study. Animal studies should be performed and reported with the same rigor as in human randomized trials. Good transitional and survival models are needed to further increase the strength of the evidence derived from animal studies of newborn chest compressions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Animal models of GM2 gangliosidosis: utility and limitations.

    PubMed

    Lawson, Cheryl A; Martin, Douglas R

    2016-01-01

    GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay-Sachs and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. As a result, individuals with GM2 gangliosidosis experience progressive neurological diseases including motor deficits, progressive weakness and hypotonia, decreased responsiveness, vision deterioration, and seizures. Mice and cats are well-established animal models for Sandhoff disease, whereas Jacob sheep are the only known laboratory animal model of Tay-Sachs disease to exhibit clinical symptoms. Since the human diseases are relatively rare, animal models are indispensable tools for further study of pathogenesis and for development of potential treatments. Though no effective treatments for gangliosidoses currently exist, animal models have been used to test promising experimental therapies. Herein, the utility and limitations of gangliosidosis animal models and how they have contributed to the development of potential new treatments are described.

  12. Animal models of GM2 gangliosidosis: utility and limitations

    PubMed Central

    Lawson, Cheryl A; Martin, Douglas R

    2016-01-01

    GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay–Sachs and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. As a result, individuals with GM2 gangliosidosis experience progressive neurological diseases including motor deficits, progressive weakness and hypotonia, decreased responsiveness, vision deterioration, and seizures. Mice and cats are well-established animal models for Sandhoff disease, whereas Jacob sheep are the only known laboratory animal model of Tay–Sachs disease to exhibit clinical symptoms. Since the human diseases are relatively rare, animal models are indispensable tools for further study of pathogenesis and for development of potential treatments. Though no effective treatments for gangliosidoses currently exist, animal models have been used to test promising experimental therapies. Herein, the utility and limitations of gangliosidosis animal models and how they have contributed to the development of potential new treatments are described. PMID:27499644

  13. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health.

    PubMed

    Cabello, Felipe C; Godfrey, Henry P; Tomova, Alexandra; Ivanova, Larisa; Dölz, Humberto; Millanao, Ana; Buschmann, Alejandro H

    2013-07-01

    The worldwide growth of aquaculture has been accompanied by a rapid increase in therapeutic and prophylactic usage of antimicrobials including those important in human therapeutics. Approximately 80% of antimicrobials used in aquaculture enter the environment with their activity intact where they select for bacteria whose resistance arises from mutations or more importantly, from mobile genetic elements containing multiple resistance determinants transmissible to other bacteria. Such selection alters biodiversity in aquatic environments and the normal flora of fish and shellfish. The commonality of the mobilome (the total of all mobile genetic elements in a genome) between aquatic and terrestrial bacteria together with the presence of residual antimicrobials, biofilms, and high concentrations of bacteriophages where the aquatic environment may also be contaminated with pathogens of human and animal origin can stimulate exchange of genetic information between aquatic and terrestrial bacteria. Several recently found genetic elements and resistance determinants for quinolones, tetracyclines, and β-lactamases are shared between aquatic bacteria, fish pathogens, and human pathogens, and appear to have originated in aquatic bacteria. Excessive use of antimicrobials in aquaculture can thus potentially negatively impact animal and human health as well as the aquatic environment and should be better assessed and regulated. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  14. Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater.

    PubMed

    Rezania, Shahabaldin; Taib, Shazwin Mat; Md Din, Mohd Fadhil; Dahalan, Farrah Aini; Kamyab, Hesam

    2016-11-15

    Environmental pollution specifically water pollution is alarming both in the developed and developing countries. Heavy metal contamination of water resources is a critical issue which adversely affects humans, plants and animals. Phytoremediation is a cost-effective remediation technology which able to treat heavy metal polluted sites. This environmental friendly method has been successfully implemented in constructed wetland (CWs) which is able to restore the aquatic biosystem naturally. Nowadays, many aquatic plant species are being investigated to determine their potential and effectiveness for phytoremediation application, especially high growth rate plants i.e. macrophytes. Based on the findings, phytofiltration (rhizofiltration) is the sole method which defined as heavy metals removal from water by aquatic plants. Due to specific morphology and higher growth rate, free-floating plants were more efficient to uptake heavy metals in comparison with submerged and emergent plants. In this review, the potential of wide range of aquatic plant species with main focus on four well known species (hyper-accumulators): Pistia stratiotes, Eicchornia spp., Lemna spp. and Salvinia spp. was investigated. Moreover, we discussed about the history, methods and future prospects in phytoremediation of heavy metals by aquatic plants comprehensively. Copyright © 2016. Published by Elsevier B.V.

  15. Aquatic cycling-What do we know? A scoping review on head-out aquatic cycling.

    PubMed

    Rewald, Stefanie; Mesters, Ilse; Lenssen, Antoine F; Bansi, Jens; Lambeck, Johan; de Bie, Rob A; Waller, Benjamin

    2017-01-01

    Over the past few years, aquatic cycling has become a trending fitness activity. However, the literature has not been reviewed exhaustively. Therefore, using scoping review methodology, the aim of this review was to explore the current state of the literature concerning aquatic cycling. This study specifically focused on study designs, populations and outcomes. A comprehensive search of seven databases (PubMed, MEDLINE, Cinahl, Embase, PEDro,Web of Science, WorldCat) was conducted up to 30th September 2016. GoogleScholar, World Cat, ResearchGate, specific aquatic therapy websites and aquatic therapy journals were searched to identify additional literature. Full-text publications in English, German or Dutch were included. Studies were included when the intervention involved head-out cycling carried out in 10° to 35° Celsius water. Exclusion criteria were the use of wet suits or confounding interventions that would affect participants' homeostasis. 63 articles were included and the study parameters of these studies were summarized. Using three grouping themes, included studies were categorised as 1) single session tests comparing aquatic versus land cycling, or 2) aquatic cycling only sessions investigating different exercise conditions and 3) aquatic cycling intervention programmes. Although the experimental conditions differed noticeably across the studies, shared characteristics were identified. Cardiovascular parameters were investigated by many of the studies with the results suggesting that the cardiac demand of aquatic cycling seems similar to land-based cycling. Only six studies evaluated the effect of aquatic cycling interventions. Therefore, future research should investigate the effects of aquatic cycling interventions, preferably in individuals that are expected to gain health benefits from aquatic cycling. Moreover, this comprehensive outline of available literature could serve as a starting point for systematic reviews or clinical studies on the

  16. Aquatic cycling—What do we know? A scoping review on head-out aquatic cycling

    PubMed Central

    Bansi, Jens; Lambeck, Johan; de Bie, Rob A.; Waller, Benjamin

    2017-01-01

    Over the past few years, aquatic cycling has become a trending fitness activity. However, the literature has not been reviewed exhaustively. Therefore, using scoping review methodology, the aim of this review was to explore the current state of the literature concerning aquatic cycling. This study specifically focused on study designs, populations and outcomes. A comprehensive search of seven databases (PubMed, MEDLINE, Cinahl, Embase, PEDro,Web of Science, WorldCat) was conducted up to 30th September 2016. GoogleScholar, World Cat, ResearchGate, specific aquatic therapy websites and aquatic therapy journals were searched to identify additional literature. Full-text publications in English, German or Dutch were included. Studies were included when the intervention involved head-out cycling carried out in 10° to 35° Celsius water. Exclusion criteria were the use of wet suits or confounding interventions that would affect participants’ homeostasis. 63 articles were included and the study parameters of these studies were summarized. Using three grouping themes, included studies were categorised as 1) single session tests comparing aquatic versus land cycling, or 2) aquatic cycling only sessions investigating different exercise conditions and 3) aquatic cycling intervention programmes. Although the experimental conditions differed noticeably across the studies, shared characteristics were identified. Cardiovascular parameters were investigated by many of the studies with the results suggesting that the cardiac demand of aquatic cycling seems similar to land-based cycling. Only six studies evaluated the effect of aquatic cycling interventions. Therefore, future research should investigate the effects of aquatic cycling interventions, preferably in individuals that are expected to gain health benefits from aquatic cycling. Moreover, this comprehensive outline of available literature could serve as a starting point for systematic reviews or clinical studies on the

  17. Animal models of chronic obstructive pulmonary disease.

    PubMed

    Pérez-Rial, Sandra; Girón-Martínez, Álvaro; Peces-Barba, Germán

    2015-03-01

    Animal models of disease have always been welcomed by the scientific community because they provide an approach to the investigation of certain aspects of the disease in question. Animal models of COPD cannot reproduce the heterogeneity of the disease and usually only manage to represent the disease in its milder stages. Moreover, airflow obstruction, the variable that determines patient diagnosis, not always taken into account in the models. For this reason, models have focused on the development of emphysema, easily detectable by lung morphometry, and have disregarded other components of the disease, such as airway injury or associated vascular changes. Continuous, long-term exposure to cigarette smoke is considered the main risk factor for this disease, justifying the fact that the cigarette smoke exposure model is the most widely used. Some variations on this basic model, related to exposure time, the association of other inducers or inhibitors, exacerbations or the use of transgenic animals to facilitate the identification of pathogenic pathways have been developed. Some variations or heterogeneity of this disease, then, can be reproduced and models can be designed for resolving researchers' questions on disease identification or treatment responses. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.

  18. Tethyan changes shaped aquatic diversification.

    PubMed

    Hou, Zhonge; Li, Shuqiang

    2018-05-01

    The Tethys Ocean existed between the continents of Gondwana and Laurasia from the Triassic to the Pliocene. Analyses of multiple biogeographic and phylogenetic histories reveal that the subsequent breakup of the Tethys greatly influenced the distributions of many species. The ancestral Tethyan realm broke into five biogeographic provinces, including the present-day East Pacific, West Atlantic, East Atlantic, Mediterranean Sea, and Indo-West Pacific. Palaeogeographic maps illustrate the Mesozoic Atlantic opening, the Cenozoic closure of the Tethys, the Messinian Salinity Crisis, the mid-Miocene closure of the Central American Seaway, and Quaternary geological changes. Further, we consider Cenozoic sea-level changes and the formation of freshwater habitats. These reconstructions allow assessment of patterns of aquatic diversification for marine and freshwater animals, and comparison of vicariance and dispersal processes. Estimated divergence times indicate that fragmentation of the Tethys was responsible for the vicariant speciation of aquatic animals because these dates are consistent with associated tectonic events. The opening of the Atlantic Ocean during the Cretaceous is responsible for the earliest isolation between the West and East Atlantic. The mid-Miocene closure of the Tethys, which blocked global equatorial currents, appears to have isolated the Atlantic/Mediterranean Sea and Indo-West Pacific. Finally, formation of the Isthmus of Panama isolated East Pacific and West Atlantic marine organisms. Dispersals related to the Messinian Salinity Crisis and Quaternary sea-level changes influenced population structuring. Tethyan changes affected marine habitats, created new freshwater habitats, inland caves and ancient lakes along the Alps and Himalayas, and influenced anchialine caves at the edge of the ancient sea. The extensive new habitats provided opportunities for colonisation and rapid diversification. Future work should focus on testing the biological

  19. Watershed-Scale Modeling of Land-Use and Altered Environment Impacts on Aquatic Weed Growth in the Delta

    NASA Technical Reports Server (NTRS)

    Bubenheim, David; Potter, Christopher; Zhang, Minghua

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, and water quality have all been suspected as playing role in the dramatic expansion of invasive aquatic plants and their impact on ecosystems of the San Francisco Bay / California Delta complex. NASA Ames Research Center, USDA-Agricultural Research Service, the State of California, UC Davis, and local governments have partnered under a USDA sponsored project (DRAAWP) to develop science-based, adaptive-management strategies for invasive aquatic plants in Sacramento-San Joaquin Delta. Critical to developing management strategies is to understand how the Delta is affected by both the magnitude of fluctuations in land-use and climate / drought induced altered environments and how the plants respond to these altered environments. We utilize the Soil Water Assessment Tool (SWAT), a watershed-scale model developed to quantify the impact of land management practices in large and complex watersheds on water quality, as the backbone for a customized Delta model - Delta-SWAT. The model uses land-use, soils, elevation, and hydrologic routing to characterize pesticide and nutrient transport from the Sacramento and San Joaquin rivers watersheds and loading into the Delta. Land-use within the Delta, as well as water extraction to supply those functions, and the resulting return of water to Delta waterways are included in Delta-SWAT. Hydrologic transport within the Delta has required significant attention to address the lack of elevation driven transport processes. Delta-SWAT water quality trend estimates are compared with water quality monitoring conducted throughout the Delta. Aquatic plant response to water quality and other environmental factors is carried out using a customized

  20. Animal movement: Statistical models for telemetry data

    USGS Publications Warehouse

    Hooten, Mevin B.; Johnson, Devin S.; McClintock, Brett T.; Morales, Juan M.

    2017-01-01

    The study of animal movement has always been a key element in ecological science, because it is inherently linked to critical processes that scale from individuals to populations and communities to ecosystems. Rapid improvements in biotelemetry data collection and processing technology have given rise to a variety of statistical methods for characterizing animal movement. The book serves as a comprehensive reference for the types of statistical models used to study individual-based animal movement. 

  1. Feedstock for ruminant, non-ruminant and aquatic fish in Malaysia-A review

    NASA Astrophysics Data System (ADS)

    Leman, A. M.; Muzarpar, Syafiq; Baba, I.; Sunar, N. M.; Wahab, R. Abdul

    2017-09-01

    Large demand of feedstock in Malaysia initiated the farmers to accelerate animal growth by improving quality of livestock's. However, quality increase will effect to the cost increment as well. Therefore, main objective of this study is to review various material and methods which acceptable in Malaysia in order to teach the farmer in selecting appropriate material for animal feed. Animal feed for ruminant, non-ruminant and aquatic fish has big issues in Halal animal feed. It caused by sources of existing animal feed from non-halal material such as blood meal and pig bone. There are various sources of halal animal feed sources such as from plant such as napier, PKC, banana tree and corn leaf as well as from waste material such as waste toufu, waste coconut, soy meal, coconut meal and sagoo. Therefore, the farmer able to select the appropriate material for own animal feed to reduce cost and fulfill the animal feed requirement regarding to protein and nutrient need.

  2. Animal models for periodontal regeneration and peri-implant responses.

    PubMed

    Kantarci, Alpdogan; Hasturk, Hatice; Van Dyke, Thomas E

    2015-06-01

    Translation of experimental data to the clinical setting requires the safety and efficacy of such data to be confirmed in animal systems before application in humans. In dental research, the animal species used is dependent largely on the research question or on the disease model. Periodontal disease and, by analogy, peri-implant disease, are complex infections that result in a tissue-degrading inflammatory response. It is impossible to explore the complex pathogenesis of periodontitis or peri-implantitis using only reductionist in-vitro methods. Both the disease process and healing of the periodontal and peri-implant tissues can be studied in animals. Regeneration (after periodontal surgery), in response to various biologic materials with potential for tissue engineering, is a continuous process involving various types of tissue, including epithelia, connective tissues and alveolar bone. The same principles apply to peri-implant healing. Given the complexity of the biology, animal models are necessary and serve as the standard for successful translation of regenerative materials and dental implants to the clinical setting. Smaller species of animal are more convenient for disease-associated research, whereas larger animals are more appropriate for studies that target tissue healing as the anatomy of larger animals more closely resembles human dento-alveolar architecture. This review focuses on the animal models available for the study of regeneration in periodontal research and implantology; the advantages and disadvantages of each animal model; the interpretation of data acquired; and future perspectives of animal research, with a discussion of possible nonanimal alternatives. Power calculations in such studies are crucial in order to use a sample size that is large enough to generate statistically useful data, whilst, at the same time, small enough to prevent the unnecessary use of animals. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Aquatic modules for bioregenerative life support systems based on the C.E.B.A.S. biotechnology [correction of biotechnilogy].

    PubMed

    Bluem, V; Paris, F

    2001-01-01

    Most concepts for bioregenerative life support systems are based on edible higher land plants which create some problems with growth and seed generation under space conditions. Animal protein production is mostly neglected because of the tremendous waste management problems with tetrapods under reduced weightlessness. Therefore, the "Closed Equilibrated Biological Aquatic System" (C.E.B.A.S.) was developed which represents an artificial aquatic ecosystem containing aquatic organisms which are adapted at all to "near weightlessness conditions" (fishes Xiphophorus helleri, water snails Biomphalaria glabrata, ammonia oxidizing bacteria and the rootless non-gravitropic edible water plant Ceratophyllum demersum). Basically the C.E.B.A.S. consists of 4 subsystems: a ZOOLOGICAL (correction of ZOOLOGICASL) COMPONENT (animal aquarium), a BOTANICAL COMPONENT (aquatic plant bioreactor), a MICROBIAL COMPONENT (bacteria filter) and an ELECTRONICAL COMPONENT (data acquisition and control unit). Superficially, the function principle appears simple: the plants convert light energy into chemical energy via photosynthesis thus producing biomass and oxygen. The animals and microorganisms use the oxygen for respiration and produce the carbon dioxide which is essential for plant photosynthesis. The ammonia ions excreted by the animals are converted by the bacteria to nitrite and then to nitrate ions which serve as a nitrogen source for the plants. Other essential ions derive from biological degradation of animal waste products and dead organic matter. The C.E.B.A.S. exists in 2 basic versions: the original C.E.B.A.S. with a volume of 150 liters and a self-sustaining standing time of more than 13 month and the so-called C.E.B.A.S. MINI MODULE with a volume of about 8.5 liters. In the latter there is no closed food loop by reasons of available space so that animal food has to be provided via an automated feeder. This device was flown already successfully on the STS-89 and STS-90

  4. Overview of large animal myocardial infarction models (review).

    PubMed

    Lukács, E; Magyari, B; Tóth, L; Petrási, Zs; Repa, I; Koller, A; Horváth, Iván

    2012-12-01

    There are several experimental models for the in vivo investigation of myocardial infarction (MI) in small (mouse, rat) and large animals (dog, pig, sheep and baboons). The application of large animal models raises ethical concerns, the design of experiments needs longer follow-up times, requiring proper breeding and housing conditions, therefore resulting in higher cost, than in vitro or small animal studies. On the other hand, the relevance of large animal models is very important, since they mostly resemble to human physiological and pathophysiological processes. The first main difference among MI models is the method of induction (open or closed chest, e.g. surgical or catheter based); the second main difference is the presence or absence of reperfusion. The former (i.e. reperfused MI) allows the investigation of reperfusion injury and new catheter based techniques during percutaneous coronary interventions, while the latter (i.e. nonreperfused MI) serves as a traditional coronary occlusion model, to test the effects of new pharmacological agents and biological therapies, as cell therapy. The reperfused and nonreperfused myocardial infarction has different outcomes, regarding left ventricular function, remodelling, subsequent heart failure, aneurysm formation and mortality. Our aim was to review the literature and report our findings regarding experimental MI models, regarding the differences among species, methods, reproducibility and interpretation.

  5. The aquatic conservation strategy of the Northwest Forest Plan.

    Treesearch

    Gordon H. Reeves; Jack E. Williams; Kelly M. Burnett; Kirsten Gallo

    2006-01-01

    Implemented in 1994, the Aquatic Conservation Strategy of the Northwest Forest Plan was designed to restore and maintain ecological processes for aquatic and riparian area conservation on federal lands in the western portion of the Pacific Northwest. We used decision support models to quantitatively evaluate changes in the condition of selected watersheds. In the...

  6. Aquatic exercise and pain neurophysiology education versus aquatic exercise alone for patients with chronic low back pain: a randomized controlled trial.

    PubMed

    Pires, Diogo; Cruz, Eduardo Brazete; Caeiro, Carmen

    2015-06-01

    The aim of this study was to compare the effectiveness of a combination of aquatic exercise and pain neurophysiology education with aquatic exercise alone in chronic low back pain patients. Single-blind randomized controlled trial. Outpatient clinic. Sixty-two chronic low back pain patients were randomly allocated to receive aquatic exercise and pain neurophysiology education (n = 30) or aquatic exercise alone (n = 32). Twelve sessions of a 6-week aquatic exercise programme preceded by 2 sessions of pain neurophysiology education. Controls received only 12 sessions of the 6-week aquatic exercise programme. The primary outcomes were pain intensity (Visual Analogue Scale) and functional disability (Quebec Back Pain Disability Scale) at the baseline, 6 weeks after the beginning of the aquatic exercise programme and at the 3 months follow-up. Secondary outcome was kinesiophobia (Tampa Scale of Kinesiophobia). Fifty-five participants completed the study. Analysis using mixed-model ANOVA revealed a significant treatment condition interaction on pain intensity at the 3 months follow-up, favoring the education group (mean SD change: -25.4± 26.7 vs -6.6 ± 30.7, P < 0.005). Although participants in the education group were more likely to report perceived functional benefits from treatment at 3 months follow-up (RR=1.63, 95%CI: 1.01-2.63), no significant differences were found in functional disability and kinesiophobia between groups at any time. This study's findings support the provision of pain neurophysiology education as a clinically effective addition to aquatic exercise. © The Author(s) 2014.

  7. Uncertainty in spatially explicit animal dispersal models

    USGS Publications Warehouse

    Mooij, Wolf M.; DeAngelis, Donald L.

    2003-01-01

    Uncertainty in estimates of survival of dispersing animals is a vexing difficulty in conservation biology. The current notion is that this uncertainty decreases the usefulness of spatially explicit population models in particular. We examined this problem by comparing dispersal models of three levels of complexity: (1) an event-based binomial model that considers only the occurrence of mortality or arrival, (2) a temporally explicit exponential model that employs mortality and arrival rates, and (3) a spatially explicit grid-walk model that simulates the movement of animals through an artificial landscape. Each model was fitted to the same set of field data. A first objective of the paper is to illustrate how the maximum-likelihood method can be used in all three cases to estimate the means and confidence limits for the relevant model parameters, given a particular set of data on dispersal survival. Using this framework we show that the structure of the uncertainty for all three models is strikingly similar. In fact, the results of our unified approach imply that spatially explicit dispersal models, which take advantage of information on landscape details, suffer less from uncertainly than do simpler models. Moreover, we show that the proposed strategy of model development safeguards one from error propagation in these more complex models. Finally, our approach shows that all models related to animal dispersal, ranging from simple to complex, can be related in a hierarchical fashion, so that the various approaches to modeling such dispersal can be viewed from a unified perspective.

  8. Aquatic Therapy for Children

    ERIC Educational Resources Information Center

    Kucher, Greta; Moore, Kelsey; Rodia, Rachel; Moser, Christy Szczech

    2015-01-01

    Aquatic therapy has long been highlighted in the literature as a potentially powerful therapeutic intervention. This review will highlight basic definitions of aquatic therapy, review salient research, and identify specific diagnoses that may benefit from aquatic therapy. Online resources, blogs, and books that occupational therapists may find…

  9. Comparative biology of cystic fibrosis animal models.

    PubMed

    Fisher, John T; Zhang, Yulong; Engelhardt, John F

    2011-01-01

    Animal models of human diseases are critical for dissecting mechanisms of pathophysiology and developing therapies. In the context of cystic fibrosis (CF), mouse models have been the dominant species by which to study CF disease processes in vivo for the past two decades. Although much has been learned through these CF mouse models, limitations in the ability of this species to recapitulate spontaneous lung disease and several other organ abnormalities seen in CF humans have created a need for additional species on which to study CF. To this end, pig and ferret CF models have been generated by somatic cell nuclear transfer and are currently being characterized. These new larger animal models have phenotypes that appear to closely resemble human CF disease seen in newborns, and efforts to characterize their adult phenotypes are ongoing. This chapter will review current knowledge about comparative lung cell biology and cystic fibrosis transmembrane conductance regulator (CFTR) biology among mice, pigs, and ferrets that has implications for CF disease modeling in these species. We will focus on methods used to compare the biology and function of CFTR between these species and their relevance to phenotypes seen in the animal models. These cross-species comparisons and the development of both the pig and the ferret CF models may help elucidate pathophysiologic mechanisms of CF lung disease and lead to new therapeutic approaches.

  10. Using biodynamic models to reconcile differences between laboratory toxicity tests and field biomonitoring with aquatic insects

    USGS Publications Warehouse

    Buchwalter, D.B.; Cain, D.J.; Clements, W.H.; Luoma, S.N.

    2007-01-01

    Aquatic insects often dominate lotic ecosystems, yet these organisms are under-represented in trace metal toxicity databases. Furthermore, toxicity data for aquatic insects do not appear to reflect their actual sensitivities to metals in nature, because the concentrations required to elicit toxicity in the laboratory are considerably higher than those found to impact insect communities in the field. New approaches are therefore needed to better understand how and why insects are differentially susceptible to metal exposures. Biodynamic modeling is a powerful tool for understanding interspecific differences in trace metal bioaccumulation. Because bioaccumulation alone does not necessarily correlate with toxicity, we combined biokinetic parameters associated with dissolved cadmium exposures with studies of the subcellular compartmentalization of accumulated Cd. This combination of physiological traits allowed us to make predictions of susceptibility differences to dissolved Cd in three aquatic insect taxa: Ephemerella excrucians, Rhithrogena morrisoni, and Rhyacophila sp. We compared these predictions with long-term field monitoring data and toxicity tests with closely related taxa: Ephemerella infrequens, Rhithrogena hageni, and Rhyacophila brunea. Kinetic parameters allowed us to estimate steady-state concentrations, the time required to reach steady state, and the concentrations of Cd projected to be in potentially toxic compartments for different species. Species-specific physiological traits identified using biodynamic models provided a means for better understanding why toxicity assays with insects have failed to provide meaningful estimates for metal concentrations that would be expected to be protective in nature. ?? 2007 American Chemical Society.

  11. Aquatic Contaminant and Mercury Simulation Modules Developed for Hydrologic and Hydraulic Models

    DTIC Science & Technology

    2016-07-01

    through the food chain. Human health may also be affected by ingesting contaminated water or fish. As a result, the criteria for protecting human...ER D C/ EL T R- 16 -8 Environmental Quality Technology Research Program Aquatic Contaminant and Mercury Simulation Modules Developed...Quality Technology Research Program ERDC/EL TR-16-8 July 2016 Aquatic Contaminant and Mercury Simulation Modules Developed for Hydrologic and

  12. How animal models inform child and adolescent psychiatry.

    PubMed

    Stevens, Hanna E; Vaccarino, Flora M

    2015-05-01

    Every available approach should be used to advance the field of child and adolescent psychiatry. Biological systems are important for the behavioral problems of children. Close examination of nonhuman animals and the biology and behavior that they share with humans is an approach that must be used to advance the clinical work of child psychiatry. We review here how model systems are used to contribute to significant insights into childhood psychiatric disorders. Model systems have not only demonstrated causality of risk factors for psychiatric pathophysiology, but have also allowed child psychiatrists to think in different ways about risks for psychiatric disorders and multiple levels that might be the basis of recovery and prevention. We present examples of how animal systems are used to benefit child psychiatry, including through environmental, genetic, and acute biological manipulations. Animal model work has been essential in our current thinking about childhood disorders, including the importance of dose and timing of risk factors, specific features of risk factors that are significant, neurochemistry involved in brain functioning, molecular components of brain development, and the importance of cellular processes previously neglected in psychiatric theories. Animal models have clear advantages and disadvantages that must be considered for these systems to be useful. Coupled with increasingly sophisticated methods for investigating human behavior and biology, animal model systems will continue to make essential contributions to our field. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. How Animal Models Inform Child and Adolescent Psychiatry

    PubMed Central

    Stevens, Hanna E.; Vaccarino, Flora M.

    2015-01-01

    Objective Every available approach should be utilized to advance the field of child and adolescent psychiatry. Biological systems are important for the behavioral problems of children. Close examination of non-human animals and the biology and behavior they share with humans is an approach that must be used to advance the clinical work of child psychiatry. Method We review here how model systems are used to contribute to significant insights into childhood psychiatric disorders. Model systems have not only demonstrated causality of risk factors for psychiatric pathophysiology but have also allowed child psychiatrists to think in different ways about risks for psychiatric disorders and multiple levels that might be the basis of recovery and prevention. Results We present examples of how animal systems are utilized to benefit child psychiatry, including through environmental, genetic, and acute biological manipulations. Animal model work has been essential in our current thinking about childhood disorders, including the importance of dose and timing of risk factors, specific features of risk factors that are significant, neurochemistry involved in brain functioning, molecular components of brain development, and the importance of cellular processes previously neglected in psychiatric theories. Conclusion Animal models have clear advantages and disadvantages that must both be considered for these systems to be useful. Coupled with increasingly sophisticated methods for investigating human behavior and biology, animal model systems will continue to make essential contributions to our field. PMID:25901771

  14. Animal models of viral hemorrhagic fever.

    PubMed

    Smith, Darci R; Holbrook, Michael R; Gowen, Brian B

    2014-12-01

    The term "viral hemorrhagic fever" (VHF) designates a syndrome of acute febrile illness, increased vascular permeability and coagulation defects which often progresses to bleeding and shock and may be fatal in a significant percentage of cases. The causative agents are some 20 different RNA viruses in the families Arenaviridae, Bunyaviridae, Filoviridae and Flaviviridae, which are maintained in a variety of animal species and are transferred to humans through direct or indirect contact or by an arthropod vector. Except for dengue, which is transmitted among humans by mosquitoes, the geographic distribution of each type of VHF is determined by the range of its animal reservoir. Treatments are available for Argentine HF and Lassa fever, but no approved countermeasures have been developed against other types of VHF. The development of effective interventions is hindered by the sporadic nature of most infections and their occurrence in geographic regions with limited medical resources. Laboratory animal models that faithfully reproduce human disease are therefore essential for the evaluation of potential vaccines and therapeutics. The goal of this review is to highlight the current status of animal models that can be used to study the pathogenesis of VHF and test new countermeasures. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Feeding Behavior of an Aquatic Snail as a Simple Endpoint to Assess the Exposure to Cadmium.

    PubMed

    Alonso, Álvaro; Valle-Torres, Guillermo

    2018-01-01

    One of the aims of ecotoxicology is the assessment of the effects of chemicals on the ecosystems. Bioassays assessing lethality are frequently used in ecotoxicology, however they usually employ supra-environmental toxic concentrations. Toxicity tests employing behavioral endpoints may present a balance between simplicity (i.e., laboratory bioassays) and complexity (i.e., relevant ecological effects). The aim of this study was to develop a feeding behavioral bioassay with the aquatic snail, Potamopyrgus antipodarum, which included a 2 days exposure to cadmium, followed by a 9 days post-exposure observational period. Several behavioral feeding endpoints were monitored, including percentage of actively feeding animals, percentage of animals in food quadrants and a mobility index. The percentage of actively feeding animals was reduced by the four cadmium treatments (0.009, 0.026, 0.091 and 0.230 mg Cd/L) with the stronger effect in the highest concentration. The two highest cadmium concentrations significantly reduced the percentage of animals in food quadrants and the mobility index. Therefore, the percentage of actively feeding animals was the most sensitive endpoint to cadmium toxicity as the four cadmium concentrations caused a significant decrease in this endpoint. It is concluded that feeding behavior is a useful endpoint to detect the exposure of aquatic snails to cadmium.

  16. Large Mammalian Animal Models of Heart Disease

    PubMed Central

    Camacho, Paula; Fan, Huimin; Liu, Zhongmin; He, Jia-Qiang

    2016-01-01

    Due to the biological complexity of the cardiovascular system, the animal model is an urgent pre-clinical need to advance our knowledge of cardiovascular disease and to explore new drugs to repair the damaged heart. Ideally, a model system should be inexpensive, easily manipulated, reproducible, a biological representative of human disease, and ethically sound. Although a larger animal model is more expensive and difficult to manipulate, its genetic, structural, functional, and even disease similarities to humans make it an ideal model to first consider. This review presents the commonly-used large animals—dog, sheep, pig, and non-human primates—while the less-used other large animals—cows, horses—are excluded. The review attempts to introduce unique points for each species regarding its biological property, degrees of susceptibility to develop certain types of heart diseases, and methodology of induced conditions. For example, dogs barely develop myocardial infarction, while dilated cardiomyopathy is developed quite often. Based on the similarities of each species to the human, the model selection may first consider non-human primates—pig, sheep, then dog—but it also depends on other factors, for example, purposes, funding, ethics, and policy. We hope this review can serve as a basic outline of large animal models for cardiovascular researchers and clinicians. PMID:29367573

  17. PHB-degrading bacteria isolated from the gastrointestinal tract of aquatic animals as protective actors against luminescent vibriosis.

    PubMed

    Liu, Yiying; De Schryver, Peter; Van Delsen, Bart; Maignien, Loïs; Boon, Nico; Sorgeloos, Patrick; Verstraete, Willy; Bossier, Peter; Defoirdt, Tom

    2010-10-01

    The use of poly-β-hydroxybutyrate (PHB) was shown to be successful in increasing the resistance of brine shrimp against pathogenic infections. In this study, we isolated for the first time PHB-degrading bacteria from a gastrointestinal environment. Pure strains of PHB-degrading bacteria were isolated from Siberian sturgeon, European sea bass and giant river prawn. The capability of selected isolates to degrade PHB was confirmed in at least two of three setups: (1) growth in minimal medium containing PHB as the sole carbon (C) source, (2) production of clearing zones on minimal agar containing PHB as the sole C source and (3) degradation of PHB (as determined by HPLC analysis) in 10% Luria-Bertani medium containing PHB. Challenge tests showed that the PHB-degrading activity of the selected isolates increased the survival of brine shrimp larvae challenged to a pathogenic Vibrio campbellii strain by a factor 2-3. Finally, one of the PHB-degrading isolates from sturgeon showed a double biocontrol effect because it was also able to inactivate acylhomoserine lactones, a type of quorum-sensing molecule that regulates the virulence of different pathogenic bacteria. Thus, the combined supplementation of a PHB-degrading bacterium and PHB as a synbioticum provides perspectives for improving the gastrointestinal health of aquatic animals. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. IV. Aquatics

    Treesearch

    Michael K. Young

    2011-01-01

    The problem of invasive aquatic species has long been recognized by scientists at the Rocky Mountain Research Station. Fausch and others (2006, 2009) recently overviewed this issue. A point that often distinguishes nonnative aquatic species from nonnatives in other environments is that the presence of some species is frequently prized by managers and the public. For...

  19. Application of the Activity Framework for Assessing Aquatic Ecotoxicology Data for Organic Chemicals.

    PubMed

    Thomas, Paul; Dawick, James; Lampi, Mark; Lemaire, Philippe; Presow, Shaun; van Egmond, Roger; Arnot, Jon A; Mackay, Donald; Mayer, Philipp; Galay Burgos, Malyka

    2015-10-20

    Toxicological research in the 1930s gave the first indications of the link between narcotic toxicity and the chemical activity of organic chemicals. More recently, chemical activity has been proposed as a novel exposure parameter that describes the fraction of saturation and that quantifies the potential for partitioning and diffusive uptake. In the present study, more than 2000 acute and chronic algal, aquatic invertebrates and fish toxicity data, as well as water solubility and melting point values, were collected from a series of sources. The data were critically reviewed and grouped by mode of action (MoA). We considered 660 toxicity data to be of acceptable quality. The 328 data which applied to the 72 substances identified as MoA 1 were then evaluated within the activity-toxicity framework: EC50 and LC50 values for all three taxa correlated generally well with (subcooled) liquid solubilities. Acute toxicity was typically exerted within the chemical activity range of 0.01-0.1, whereas chronic toxicity was exerted in the range of 0.001-0.01. These results confirm that chemical activity has the potential to contribute to the determination, interpretation and prediction of toxicity to aquatic organisms. It also has the potential to enhance regulation of organic chemicals by linking results from laboratory tests, monitoring and modeling programs. The framework can provide an additional line of evidence for assessing aquatic toxicity, for improving the design of toxicity tests, reducing animal usage and addressing chemical mixtures.

  20. Role of genetically engineered animals in future food production.

    PubMed

    McColl, K A; Clarke, B; Doran, T J

    2013-03-01

    Genetically engineered (GE) animals are likely to have an important role in the future in meeting the food demand of a burgeoning global population. There have already been many notable achievements using this technology in livestock, poultry and aquatic species. In particular, the use of RNA interference (RNAi) to produce virus-resistant animals is a rapidly-developing area of research. However, despite the promise of this technology, very few GE animals have been commercialised. This review aims to provide information so that veterinarians and animal health scientists are better able to participate in the debate on GE animals. © 2013 The Authors. Australian Veterinary Journal © 2013 Australian Veterinary Association.

  1. Zebrafish: a model animal for analyzing the impact of environmental pollutants on muscle and brain mitochondrial bioenergetics.

    PubMed

    Bourdineaud, Jean-Paul; Rossignol, R; Brèthes, D

    2013-01-01

    Mercury, anthropogenic release of uranium (U), and nanoparticles constitute hazardous environmental pollutants able to accumulate along the aquatic food chain with severe risk for animal and human health. The impact of such pollutants on living organisms has been up to now approached by classical toxicology in which huge doses of toxic compounds, environmentally irrelevant, are displayed through routes that never occur in the lifespan of organisms (for instance injecting a bolus of mercury to an animal although the main route is through prey and fish eating). We wanted to address the effect of such pollutants on the muscle and brain mitochondrial bioenergetics under realistic conditions, at unprecedented low doses, using an aquatic model animal, the zebrafish Danio rerio. We developed an original method to measure brain mitochondrial respiration: a single brain was put in 1.5 mL conical tube containing a respiratory buffer. Brains were gently homogenized by 13 strokes with a conical plastic pestle, and the homogenates were immediately used for respiration measurements. Skinned muscle fibers were prepared by saponin permeabilization. Zebrafish were contaminated with food containing 13 μg of methylmercury (MeHg)/g, an environmentally relevant dose. In permeabilized muscle fibers, we observed a strong inhibition of both state 3 mitochondrial respiration and cytochrome c oxidase activity after 49 days of MeHg exposure. We measured a dramatic decrease in the rate of ATP release by skinned muscle fibers. Contrarily to muscles, brain mitochondrial respiration was not modified by MeHg exposure although brain accumulated twice as much MeHg than muscles. When zebrafish were exposed to 30 μg/L of waterborne U, the basal mitochondrial respiratory control ratio was decreased in muscles after 28 days of exposure. This was due to an increase of the inner mitochondrial membrane permeability. The impact of a daily ration of food containing gold nanoparticles of two sizes (12 and

  2. Mathematical modeling and simulation of aquatic and aerial animal locomotion

    NASA Astrophysics Data System (ADS)

    Hou, T. Y.; Stredie, V. G.; Wu, T. Y.

    2007-08-01

    In this paper, we investigate the locomotion of fish and birds by applying a new unsteady, flexible wing theory that takes into account the strong nonlinear dynamics semi-analytically. We also make extensive comparative study between the new approach and the modified vortex blob method inspired from Chorin's and Krasny's work. We first implement the modified vortex blob method for two examples and then discuss the numerical implementation of the nonlinear analytical mathematical model of Wu. We will demonstrate that Wu's method can capture the nonlinear effects very well by applying it to some specific cases and by comparing with the experiments available. In particular, we apply Wu's method to analyze Wagner's result for a wing abruptly undergoing an increase in incidence angle. Moreover, we study the vorticity generated by a wing in heaving, pitching and bending motion. In both cases, we show that the new method can accurately represent the vortex structure behind a flying wing and its influence on the bound vortex sheet on the wing.

  3. Animal Models of Cancer-Associated Hypercalcemia

    PubMed Central

    Kohart, Nicole A.; Elshafae, Said M.; Breitbach, Justin T.; Rosol, Thomas J.

    2017-01-01

    Cancer-associated hypercalcemia (CAH) is a frequently-occurring paraneoplastic syndrome that contributes to substantial patient morbidity and occurs in both humans and animals. Patients with CAH are often characterized by markedly elevated serum calcium concentrations that result in a range of clinical symptoms involving the nervous, gastrointestinal and urinary systems. CAH is caused by two principle mechanisms; humorally-mediated and/or through local osteolytic bone metastasis resulting in excessive calcium release from resorbed bone. Humoral hypercalcemia of malignancy (HHM) is the most common mechanism and is due to the production and release of tumor-associated cytokines and humoral factors, such as parathyroid hormone-related protein (PTHrP), that act at distant sites to increase serum calcium concentrations. Local osteolytic hypercalcemia (LOH) occurs when primary or metastatic bone tumors act locally by releasing factors that stimulate osteoclast activity and bone resorption. LOH is a less frequent cause of CAH and in some cases can induce hypercalcemia in concert with HHM. Rarely, ectopic production of parathyroid hormone has been described. PTHrP-mediated hypercalcemia is the most common mechanism of CAH in human and canine malignancies and is recognized in other domestic species. Spontaneous and experimentally-induced animal models have been developed to study the mechanisms of CAH. These models have been essential for the evaluation of novel approaches and adjuvant therapies to manage CAH. This review will highlight the comparative aspects of CAH in humans and animals with a discussion of the available animal models used to study the pathogenesis of this important clinical syndrome. PMID:29056680

  4. Principles for developing animal models of military PTSD

    PubMed Central

    Daskalakis, Nikolaos P.; Yehuda, Rachel

    2014-01-01

    The extent to which animal studies can be relevant to military posttraumatic stress disorder (PTSD) continues to be a matter of discussion. Some features of the clinical syndrome are more easily modeled than others. In the animal literature, a great deal of attention is focused on modeling the characteristics of military exposures and their impact on measurable behaviors and biological parameters. There are many issues to consider regarding the ecological validity of predator, social defeat or immobilization stress to combat-related experience. In contrast, less attention has been paid to individual variation following these exposures. Such variation is critical to understand how individual differences in the response to military trauma exposure may result to PTSD or resilience. It is important to consider potential differences in biological findings when comparing extremely exposed to non-exposed animals, versus those that result from examining individual differences. Animal models of military PTSD are also critical in advancing efforts in clinical treatment. In an ideal translational approach to study deployment related outcomes, information from humans and animals, blood and brain, should be carefully considered in tandem, possibly even computed simultaneously, to identify molecules, pathways and networks that are likely to be the key drivers of military PTSD symptoms. With the use novel biological methodologies (e.g., optogenetics) in the animal models, critical genes and pathways can be tuned up or down (rather than over-expressed or ablated completely) in discrete brain regions. Such techniques together with pre-and post-deployment human imaging will accelerate the identification of novel pharmacological and non-pharmacological intervention strategies. PMID:25206946

  5. Animal models for HIV/AIDS research

    PubMed Central

    Hatziioannou, Theodora; Evans, David T.

    2015-01-01

    The AIDS pandemic continues to present us with unique scientific and public health challenges. Although the development of effective antiretroviral therapy has been a major triumph, the emergence of drug resistance requires active management of treatment regimens and the continued development of new antiretroviral drugs. Moreover, despite nearly 30 years of intensive investigation, we still lack the basic scientific knowledge necessary to produce a safe and effective vaccine against HIV-1. Animal models offer obvious advantages in the study of HIV/AIDS, allowing for a more invasive investigation of the disease and for preclinical testing of drugs and vaccines. Advances in humanized mouse models, non-human primate immunogenetics and recombinant challenge viruses have greatly increased the number and sophistication of available mouse and simian models. Understanding the advantages and limitations of each of these models is essential for the design of animal studies to guide the development of vaccines and antiretroviral therapies for the prevention and treatment of HIV-1 infection. PMID:23154262

  6. Translational value of animal models of kidney failure.

    PubMed

    Ortiz, Alberto; Sanchez-Niño, Maria D; Izquierdo, Maria C; Martin-Cleary, Catalina; Garcia-Bermejo, Laura; Moreno, Juan A; Ruiz-Ortega, Marta; Draibe, Juliana; Cruzado, Josep M; Garcia-Gonzalez, Miguel A; Lopez-Novoa, Jose M; Soler, Maria J; Sanz, Ana B

    2015-07-15

    Acute kidney injury (AKI) and chronic kidney disease (CKD) are associated with decreased renal function and increased mortality risk, while the therapeutic armamentarium is unsatisfactory. The availability of adequate animal models may speed up the discovery of biomarkers for disease staging and therapy individualization as well as design and testing of novel therapeutic strategies. Some longstanding animal models have failed to result in therapeutic advances in the clinical setting, such as kidney ischemia-reperfusion injury and diabetic nephropathy models. In this regard, most models for diabetic nephropathy are unsatisfactory in that they do not evolve to renal failure. Satisfactory models for additional nephropathies are needed. These include anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis, IgA nephropathy, anti-phospholipase-A2-receptor (PLA2R) membranous nephropathy and Fabry nephropathy. However, recent novel models hold promise for clinical translation. Thus, the AKI to CKD translation has been modeled, in some cases with toxins of interest for human CKD such as aristolochic acid. Genetically modified mice provide models for Alport syndrome evolving to renal failure that have resulted in clinical recommendations, polycystic kidney disease models that have provided clues for the development of tolvaptan, that was recently approved for the human disease in Japan; and animal models also contributed to target C5 with eculizumab in hemolytic uremic syndrome. Some ongoing trials explore novel concepts derived from models, such TWEAK targeting as tissue protection for lupus nephritis. We now review animal models reproducing diverse, genetic and acquired, causes of AKI and CKD evolving to kidney failure and discuss the contribution to clinical translation and prospects for the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Optogenetics in animal model of alcohol addiction

    NASA Astrophysics Data System (ADS)

    Nalberczak, Maria; Radwanska, Kasia

    2014-11-01

    Our understanding of the neuronal and molecular basis of alcohol addiction is still not satisfactory. As a consequence we still miss successful therapy of alcoholism. One of the reasons for such state is the lack of appropriate animal models which would allow in-depth analysis of biological basis of addiction. Here we will present our efforts to create the animal model of alcohol addiction in the automated learning device, the IntelliCage setup. Applying this model to optogenetically modified mice with remotely controlled regulation of selected neuronal populations by light may lead to very precise identification of neuronal circuits involved in coding addiction-related behaviors.

  8. Animal Models of Diverticulosis: Review and Recommendations.

    PubMed

    Patel, Bhavesh; Guo, Xiaomei; Noblet, Jillian; Chambers, Sean; Kassab, Ghassan S

    2018-06-01

    Diverticulosis is a structural alteration of the colon tissue characterized by the development of pouch-like structures called diverticula. It afflicts a significant portion of the population in Western countries, with a higher prevalence among the elderly. Diverticulosis is believed to be the result of a synergetic interaction between inherent tissue weakness, diet, colonic microstructure, motility, and genetic factors. A validated etiology has, however, not yet been established. Non-surgical treatment is currently lacking due to this poor understanding, and surgical colon resection is the only long-term solution following recurrent complications. With rising prevalence, the burden of diverticulosis on patients and hospital resources has increased over the past several years. More efficient and less invasive treatment approaches are, thus, urgently needed. Animal models of diverticulosis are crucial to enable a preclinical assessment and evaluation of such novel approaches. This review discusses the animal models of diverticulosis that have been proposed to date. The current models require either a significant amount of time to develop diverticulosis, present a relatively low success rate, or seriously deteriorate the animals' systemic health. Recommendations are thus provided to address these pitfalls through the selection of a suitable animal and the combination of multiple risk factors for diverticulosis.

  9. Expanded Simulation Models Version 3.0 for Growth of the Submerged Aquatic Plants American Wildcelery, Sago Pondweed, Hydrilla, and Eurasian Watermilfoil

    DTIC Science & Technology

    2007-11-01

    availability in the water column, and serve as habitat and food sources for invertebrates, fish, and waterfowl. Many SAV communities in freshwater ...Journal of Freshwater Ecology 10: 19-31. Carr, G. M., H. C. Duthie, and W. D. Taylor. 1997. Models of aquatic plant productivity and growth: A review of...and its effects on aquatic macrophytes in flowing waters . Ecological Applications 1: 249-257. Collins, C. D., and J. H. Wlosinski. 1985. A

  10. Modeling in vivo fluorescence of small animals using TracePro software

    NASA Astrophysics Data System (ADS)

    Leavesley, Silas; Rajwa, Bartek; Freniere, Edward R.; Smith, Linda; Hassler, Richard; Robinson, J. Paul

    2007-02-01

    The theoretical modeling of fluorescence excitation, emission, and propagation within living tissue has been a limiting factor in the development and calibration of in vivo small animal fluorescence imagers. To date, no definitive calibration standard, or phantom, has been developed for use with small animal fluorescence imagers. Our work in the theoretical modeling of fluorescence in small animals using solid modeling software is useful in optimizing the design of small animal imaging systems, and in predicting their response to a theoretical model. In this respect, it is also valuable in the design of a fluorescence phantom for use in in vivo small animal imaging. The use of phantoms is a critical step in the testing and calibration of most diagnostic medical imaging systems. Despite this, a realistic, reproducible, and informative phantom has yet to be produced for use in small animal fluorescence imaging. By modeling the theoretical response of various types of phantoms, it is possible to determine which parameters are necessary for accurately modeling fluorescence within inhomogenous scattering media such as tissue. Here, we present the model that has been developed, the challenges and limitations associated with developing such a model, and the applicability of this model to experimental results obtained in a commercial small animal fluorescence imager.

  11. Cumulative permanent environmental effects for repeated records animal models.

    PubMed

    Schaeffer, L R

    2011-04-01

    The assumption of a single permanent environmental (PE) effect contributing to every record made by an animal is questioned. An alternative model where new PE effects accumulate with each record made by an animal is proposed. An example is used to illustrate the differences between the traditional model and the proposed model. © 2011 Blackwell Verlag GmbH.

  12. Comparative functional anatomy of hindlimb muscles and bones with reference to aquatic adaptation of the sea otter.

    PubMed

    Mori, Kent; Suzuki, Satoshi; Koyabu, Daisuke; Kimura, Junpei; Han, Sung-Yong; Endo, Hideki

    2015-05-01

    Although the sea otter (Enhydra lutris) is a complete aquatic species, spending its entire life in the ocean, it has been considered morphologically to be a semi-aquatic animal. This study aimed to clarify the unique hindlimb morphology and functional adaptations of E. lutris in comparison to other Mustelidae species. We compared muscle mass and bone measurements of five Mustelidae species: the sea otter, Eurasian river otter (Lutra lutra), American mink (Neovison vison), Japanese weasel (Mustela itatsi) and Siberian weasel (M. sibirica). In comparison with the other 4 species, E. lutris possessed significantly larger gluteus, popliteus and peroneus muscles, but smaller adductor and ischiopubic muscles. The popliteus muscle may act as a medial rotator of the crus, and the peroneus muscle may act as an abductor of the fifth toe and/or the pronator of the foot. The bundles of the gluteus superficialis muscle of E. lutris were fused with those of the tensor fasciae latae muscle and gluteofemoralis muscles, and they may play a role in femur abduction. These results suggest that E. lutris uses the abducted femur, medially rotated crus, eversion of the ankle and abducted fifth digit or extended interdigital web as a powerful propulsion generator. Therefore, we conclude that E. lutris is a complete aquatic animal, possessing differences in the proportions of the hindlimb muscles compared with those in other semi-aquatic and terrestrial mustelids.

  13. Comparative functional anatomy of hindlimb muscles and bones with reference to aquatic adaptation of the sea otter

    PubMed Central

    MORI, Kent; SUZUKI, Satoshi; KOYABU, Daisuke; KIMURA, Junpei; HAN, Sung-Yong; ENDO, Hideki

    2015-01-01

    Although the sea otter (Enhydra lutris) is a complete aquatic species, spending its entire life in the ocean, it has been considered morphologically to be a semi-aquatic animal. This study aimed to clarify the unique hindlimb morphology and functional adaptations of E. lutris in comparison to other Mustelidae species. We compared muscle mass and bone measurements of five Mustelidae species: the sea otter, Eurasian river otter (Lutra lutra), American mink (Neovison vison), Japanese weasel (Mustela itatsi) and Siberian weasel (M. sibirica). In comparison with the other 4 species, E. lutris possessed significantly larger gluteus, popliteus and peroneus muscles, but smaller adductor and ischiopubic muscles. The popliteus muscle may act as a medial rotator of the crus, and the peroneus muscle may act as an abductor of the fifth toe and/or the pronator of the foot. The bundles of the gluteus superficialis muscle of E. lutris were fused with those of the tensor fasciae latae muscle and gluteofemoralis muscles, and they may play a role in femur abduction. These results suggest that E. lutris uses the abducted femur, medially rotated crus, eversion of the ankle and abducted fifth digit or extended interdigital web as a powerful propulsion generator. Therefore, we conclude that E. lutris is a complete aquatic animal, possessing differences in the proportions of the hindlimb muscles compared with those in other semi-aquatic and terrestrial mustelids. PMID:25715875

  14. Animal models of the cancer anorexia-cachexia syndrome.

    PubMed

    Bennani-Baiti, Nabila; Walsh, Declan

    2011-09-01

    Cancer cachexia, a complex wasting syndrome, is common in palliative medicine. Animal models expand our understanding of its mechanisms. A review of cancer cachexia and anorexia animal models will help investigators make an informed choice of the study model. Cancer-anorexia cachexia animal models are numerous. No one is ideal. The choice should depend on the research question. To investigate cancer-anorexia cachexia independent of pro-inflammatory cytokine effects, the MAC16 ADK and XK1 are useful. MAC16 ADK helps study the host's tumor metabolic effects, independent of any anorexia or inflammation. XK1 is both anorectic and cachectic, but data about it is limited. All other models induce a host inflammatory response. The Walker 256 ADK and MCG 101 are best avoided due to excessive tumor growth. Since individual models do not address all aspects of the syndrome, use of a combination seems wise. Suggested combinations: MAC16-ADK (non-inflammatory and non-anorectic) with YAH-130 (inflammatory, anorectic, and cachectic), Lewis lung carcinoma (slow onset anorexia) or prostate adenocarcinoma (inflammatory, anorectic but not cachectic) with YAH-130.

  15. Pathophysiology and animal modeling of underactive bladder.

    PubMed

    Tyagi, Pradeep; Smith, Phillip P; Kuchel, George A; de Groat, William C; Birder, Lori A; Chermansky, Christopher J; Adam, Rosalyn M; Tse, Vincent; Chancellor, Michael B; Yoshimura, Naoki

    2014-09-01

    While the symptomology of underactive bladder (UAB) may imply a primary dysfunction of the detrusor muscle, insights into pathophysiology indicate that both myogenic and neurogenic mechanisms need to be considered. Due to lack of proper animal models, the current understanding of the UAB pathophysiology is limited, and much of what is known about the clinical etiology of the condition has been derived from epidemiological data. We hereby review current state of the art in the understanding of the pathophysiology of and animal models used to study the UAB.

  16. Pathophysiology and animal modeling of underactive bladder

    PubMed Central

    Tyagi, Pradeep; Smith, Phillip P.; Kuchel, George A.; de Groat, William C.; Birder, Lori A.; Chermansky, Christopher J.; Adam, Rosalyn M.; Tse, Vincent; Chancellor, Michael B.; Yoshimura, Naoki

    2015-01-01

    While the symptomology of underactive bladder (UAB) may imply a primary dysfunction of the detrusor muscle, insights into pathophysiology indicate that both myogenic and neurogenic mechanisms need to be considered. Due to lack of proper animal models, the current understanding of the UAB pathophysiology is limited, and much of what is known about the clinical etiology of the condition has been derived from epidemiological data. We hereby review current state of the art in the understanding of the pathophysiology of and animal models used to study the UAB. PMID:25238890

  17. Animal Models for the Study of Female Sexual Dysfunction

    PubMed Central

    Marson, Lesley; Giamberardino, Maria Adele; Costantini, Raffaele; Czakanski, Peter; Wesselmann, Ursula

    2017-01-01

    Introduction Significant progress has been made in elucidating the physiological and pharmacological mechanisms of female sexual function through preclinical animal research. The continued development of animal models is vital for the understanding and treatment of the many diverse disorders that occur in women. Aim To provide an updated review of the experimental models evaluating female sexual function that may be useful for clinical translation. Methods Review of English written, peer-reviewed literature, primarily from 2000 to 2012, that described studies on female sexual behavior related to motivation, arousal, physiological monitoring of genital function and urogenital pain. Main Outcomes Measures Analysis of supporting evidence for the suitability of the animal model to provide measurable indices related to desire, arousal, reward, orgasm, and pelvic pain. Results The development of female animal models has provided important insights in the peripheral and central processes regulating sexual function. Behavioral models of sexual desire, motivation, and reward are well developed. Central arousal and orgasmic responses are less well understood, compared with the physiological changes associated with genital arousal. Models of nociception are useful for replicating symptoms and identifying the neurobiological pathways involved. While in some cases translation to women correlates with the findings in animals, the requirement of circulating hormones for sexual receptivity in rodents and the multifactorial nature of women’s sexual function requires better designed studies and careful analysis. The current models have studied sexual dysfunction or pelvic pain in isolation; combining these aspects would help to elucidate interactions of the pathophysiology of pain and sexual dysfunction. Conclusions Basic research in animals has been vital for understanding the anatomy, neurobiology, and physiological mechanisms underlying sexual function and urogenital pain

  18. [Animal models of autoimmune prostatitis and their evaluation criteria].

    PubMed

    Shen, Jia-ming; Lu, Jin-chun; Yao, Bing

    2016-03-01

    Chronic prostatitis is a highly prevalent disease of unclear etiology. Researches show that autoimmune reaction is one cause of the problem. An effective animal model may help a lot to understand the pathogenesis and find proper diagnostic and therapeutic strategies of the disease. Currently used autoimmune prostatitis-related animal models include those of age-dependent spontaneous prostatitis, autoimmune regulator-dependent spontaneous prostatitis, self antigen-induced prostatitis, and steroid-induced prostatitis. Whether an animal model of autoimmune prostatitis is successfully established can be evaluated mainly from the five aspects: histology, morphology, specific antigens, inflammatory factors, and pain intensity.

  19. EPA Region 7 Aquatic Focus Areas (ECO_RES.R7_AQUATIC_FOCUS_AREAS)

    EPA Pesticide Factsheets

    This shapefile consists of 347 individual Aquatic Ecological System (AES) polygons that are the Aquatic Conservation Focus Areas for EPA Region 7. The focus areas are those areas within each aquatic ecological system types that, if preserved, would maintain the biological and ecological diversity extant within that ecological system type. The layer consists of those polygons from the R7_AES.shp shapefile that had the highest ranks. The AES polygons in the Missouri portion of the file were appended and are those that contain the 158 aquatic conservation opportunity areas identified in Missouri as part of another project (Missouri Department of Conservation Aquatic Biodiversity Assessment 2005). Note that the identifiers in the Missouri portion of this file will not match the ID's in any Missouri specific files.

  20. Translational Animal Models of Atopic Dermatitis for Preclinical Studies



    PubMed Central

    Martel, Britta C.; Lovato, Paola; Bäumer, Wolfgang; Olivry, Thierry

    2017-01-01

    There is a medical need to develop new treatments for patients suffering from atopic dermatitis (AD). To improve the discovery and testing of novel treatments, relevant animal models for AD are needed. Generally, these animal models mimic different aspects of the pathophysiology of human AD, such as skin barrier defects and Th2 immune bias with additional Th1 and Th22, and in some populations Th17, activation. However, the pathomechanistic characterization and pharmacological validation of these animal models are generally incomplete. In this paper, we review animal models of AD in the context of preclinical use and their possible translation to the human disease. Most of these models use mice, but we will also critically evaluate dog models of AD, as increasing information on disease mechanism show their likely relevance for the human disease. PMID:28955179

  1. Hydrogeomorphology explains acidification-driven variation in aquatic biological communities in the Neversink Basin, USA

    USGS Publications Warehouse

    Harpold, Adrian A.; Burns, Douglas A.; Walter, M.T.; Steenhuis, Tammo S.

    2013-01-01

    Describing the distribution of aquatic habitats and the health of biological communities can be costly and time-consuming; therefore, simple, inexpensive methods to scale observations of aquatic biota to watersheds that lack data would be useful. In this study, we explored the potential of a simple “hydrogeomorphic” model to predict the effects of acid deposition on macroinvertebrate, fish, and diatom communities in 28 sub-watersheds of the 176-km2 Neversink River basin in the Catskill Mountains of New York State. The empirical model was originally developed to predict stream-water acid neutralizing capacity (ANC) using the watershed slope and drainage density. Because ANC is known to be strongly related to aquatic biological communities in the Neversink, we speculated that the model might correlate well with biotic indicators of ANC response. The hydrogeomorphic model was strongly correlated to several measures of macroinvertebrate and fish community richness and density, but less strongly correlated to diatom acid tolerance. The model was also strongly correlated to biological communities in 18 sub-watersheds independent of the model development, with the linear correlation capturing the strongly acidic nature of small upland watersheds (2). Overall, we demonstrated the applicability of geospatial data sets and a simple hydrogeomorphic model for estimating aquatic biological communities in areas with stream-water acidification, allowing estimates where no direct field observations are available. Similar modeling approaches have the potential to complement or refine expensive and time-consuming measurements of aquatic biota populations and to aid in regional assessments of aquatic health.

  2. Animal Models of Tick-Borne Hemorrhagic Fever Viruses

    PubMed Central

    Zivcec, Marko; Safronetz, David; Feldmann, Heinz

    2013-01-01

    Tick-borne hemorrhagic fever viruses (TBHFV) are detected throughout the African and Eurasian continents and are an emerging or re-emerging threat to many nations. Due to the largely sporadic incidences of these severe diseases, information on human cases and research activities in general have been limited. In the past decade, however, novel TBHFVs have emerged and areas of endemicity have expanded. Therefore, the development of countermeasures is of utmost importance in combating TBHFV as elimination of vectors and interrupting enzootic cycles is all but impossible and ecologically questionable. As in vivo models are the only way to test efficacy and safety of countermeasures, understanding of the available animal models and the development and refinement of animal models is critical in negating the detrimental impact of TBHFVs on public and animal health. PMID:25437041

  3. Animal Models of Zika Virus

    PubMed Central

    Bradley, Michael P; Nagamine, Claude M

    2017-01-01

    Zika virus has garnered great attention over the last several years, as outbreaks of the disease have emerged throughout the Western Hemisphere. Until quite recently Zika virus was considered a fairly benign virus, with limited clinical severity in both people and animals. The size and scope of the outbreak in the Western Hemisphere has allowed for the identification of severe clinical disease that is associated with Zika virus infection, most notably microcephaly among newborns, and an association with Guillian–Barré syndrome in adults. This recent association with severe clinical disease, of which further analysis strongly suggested causation by Zika virus, has resulted in a massive increase in the amount of both basic and applied research of this virus. Both small and large animal models are being used to uncover the pathogenesis of this emerging disease and to develop vaccine and therapeutic strategies. Here we review the animal-model–based Zika virus research that has been performed to date. PMID:28662753

  4. Exploring Animal Models That Resemble Idiopathic Pulmonary Fibrosis

    PubMed Central

    Tashiro, Jun; Rubio, Gustavo A.; Limper, Andrew H.; Williams, Kurt; Elliot, Sharon J.; Ninou, Ioanna; Aidinis, Vassilis; Tzouvelekis, Argyrios; Glassberg, Marilyn K.

    2017-01-01

    Large multicenter clinical trials have led to two recently approved drugs for patients with idiopathic pulmonary fibrosis (IPF); yet, both of these therapies only slow disease progression and do not provide a definitive cure. Traditionally, preclinical trials have utilized mouse models of bleomycin (BLM)-induced pulmonary fibrosis—though several limitations prevent direct translation to human IPF. Spontaneous pulmonary fibrosis occurs in other animal species, including dogs, horses, donkeys, and cats. While the fibrotic lungs of these animals share many characteristics with lungs of patients with IPF, current veterinary classifications of fibrotic lung disease are not entirely equivalent. Additional studies that profile these examples of spontaneous fibroses in animals for similarities to human IPF should prove useful for both human and animal investigators. In the meantime, studies of BLM-induced fibrosis in aged male mice remain the most clinically relevant model for preclinical study for human IPF. Addressing issues such as time course of treatment, animal size and characteristics, clinically irrelevant treatment endpoints, and reproducibility of therapeutic outcomes will improve the current status of preclinical studies. Elucidating the mechanisms responsible for the development of fibrosis and disrepair associated with aging through a collaborative approach between researchers will promote the development of models that more accurately represent the realm of interstitial lung diseases in humans. PMID:28804709

  5. STRESS RESPONSE STUDIES USING ANIMAL MODELS

    EPA Science Inventory

    This presentation will provide the evidence that ozone exposure in animal models induce neuroendocrine stress response and this stress response modulates lung injury and inflammation through adrenergic and glucocorticoid receptors.

  6. Ecological Dose Modeling of Aquatic and Riparian Receptors to Strontium-90 with an Emphasis on Radiosensitive Organs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, Ted M.; Traub, Richard J.; Antonio, Ernest J.

    2011-07-20

    The 100-NR-2 site is the location of elevated releases of strontium-90 to the Columbia River via contaminated groundwater. The resulting dose to aquatic and riparian receptors was evaluated in 2005 (DOE 2009) and compared to U.S. Department of Energy (DOE) dose guidance values. We have conducted additional dose assessments for a broader spectrum of aquatic and riparian organisms using RESRAD Biota and specific exposure scenarios. Because strontium-90 accumulates in bone, we have also modeled the dose to the anterior kidney, a blood-forming and immune system organ that lies close to the spinal column of fish. The resulting dose is primarilymore » attributable to the yttrium-90 progeny of strontium-90 and very little of the dose is associated with the beta emission from strontium-90. All dose modeling results were calculated with an assumption of secular equilibrium between strontium-90 and yttrum-90.« less

  7. Drivers of Non-Native Aquatic Species Invasions across the ...

    EPA Pesticide Factsheets

    Background/Question/Methods Mapping the geographic distribution of non-native aquatic species is a critically important precursor to understanding the anthropogenic and environmental factors that drive freshwater biological invasions. Such efforts are often limited to local scales and/or to a single taxa, missing the opportunity to observe and understand the drivers of macroscale invasion patterns at sub-continental or continental scales. Here we map the distribution of exotic freshwater species richness across the continental United States using publicly accessible species occurrence data (e.g GBIF) and investigate the role of human activity in driving macroscale patterns of aquatic invasion. Using a dasymetric model of human population density and a spatially explicit model of recreational freshwater fishing demand, we analyzed the effect of these metrics of human influence on non-native aquatic species richness at the watershed scale, while controlling for spatial and sampling bias. We also assessed the effects that a temporal mismatch between occurrence data (collected since 1815) and cross-sectional predictors (developed using 2010 data) may have on model fit. Results/Conclusions Our results indicated that non-native aquatic species richness exhibits a highly patchy distribution, with hotspots in the Northeast, Great Lakes, Florida, and human population centers on the Pacific coast. These richness patterns are correlated with population density, but are m

  8. Large Animal Models for Batten Disease: A Review

    PubMed Central

    Weber, Krystal; Pearce, David A.

    2014-01-01

    The neuronal ceroid lipofuscinoses, collectively referred to as Batten disease, make up a group of inherited childhood disorders that result in blindness, motor and cognitive regression, brain atrophy, and seizures, ultimately leading to premature death. So far more than 10 genes have been implicated in different forms of the neuronal ceroid lipofuscinoses. Most related research has involved mouse models, but several naturally occurring large animal models have recently been discovered. In this review, we discuss the different large animal models and their significance in Batten disease research. PMID:24014507

  9. Animating climate model data

    NASA Astrophysics Data System (ADS)

    DaPonte, John S.; Sadowski, Thomas; Thomas, Paul

    2006-05-01

    This paper describes a collaborative project conducted by the Computer Science Department at Southern Connecticut State University and NASA's Goddard Institute for Space Science (GISS). Animations of output from a climate simulation math model used at GISS to predict rainfall and circulation have been produced for West Africa from June to September 2002. These early results have assisted scientists at GISS in evaluating the accuracy of the RM3 climate model when compared to similar results obtained from satellite imagery. The results presented below will be refined to better meet the needs of GISS scientists and will be expanded to cover other geographic regions for a variety of time frames.

  10. One-dimensional and two-dimensional hydrodynamic modelling derived flow properties: Impacts on aquatic habitat quality predictions

    Treesearch

    Rohan Benjankar; Daniele Tonina; James McKean

    2014-01-01

    Studies of the effects of hydrodynamic model dimensionality on simulated flow properties and derived quantities such as aquatic habitat quality are limited. It is important to close this knowledge gap especially now that entire river networks can be mapped at the microhabitat scale due to the advent of point-cloud techniques. This study compares flow properties, such...

  11. Examining Ecological and Ecosystem Level Impacts of Aquatic Invasive Species in Lake Michigan Using An Ecosystem Productivity Model, LM-Eco

    EPA Science Inventory

    Ecological and ecosystem-level impacts of aquatic invasive species in Lake Michigan were examined using the Lake Michigan Ecosystem Model (LM-Eco). The LM-Eco model includes a detailed description of trophic levels and their interactions within the lower food web of Lake Michiga...

  12. Immunogenicity of therapeutic proteins: the use of animal models.

    PubMed

    Brinks, Vera; Jiskoot, Wim; Schellekens, Huub

    2011-10-01

    Immunogenicity of therapeutic proteins lowers patient well-being and drastically increases therapeutic costs. Preventing immunogenicity is an important issue to consider when developing novel therapeutic proteins and applying them in the clinic. Animal models are increasingly used to study immunogenicity of therapeutic proteins. They are employed as predictive tools to assess different aspects of immunogenicity during drug development and have become vital in studying the mechanisms underlying immunogenicity of therapeutic proteins. However, the use of animal models needs critical evaluation. Because of species differences, predictive value of such models is limited, and mechanistic studies can be restricted. This review addresses the suitability of animal models for immunogenicity prediction and summarizes the insights in immunogenicity that they have given so far.

  13. Engineering Large Animal Species to Model Human Diseases.

    PubMed

    Rogers, Christopher S

    2016-07-01

    Animal models are an important resource for studying human diseases. Genetically engineered mice are the most commonly used species and have made significant contributions to our understanding of basic biology, disease mechanisms, and drug development. However, they often fail to recreate important aspects of human diseases and thus can have limited utility as translational research tools. Developing disease models in species more similar to humans may provide a better setting in which to study disease pathogenesis and test new treatments. This unit provides an overview of the history of genetically engineered large animals and the techniques that have made their development possible. Factors to consider when planning a large animal model, including choice of species, type of modification and methodology, characterization, production methods, and regulatory compliance, are also covered. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  14. A global database of nitrogen and phosphorus excretion rates of aquatic animals

    EPA Science Inventory

    Animals can be important in modulating ecosystem-level nutrient cycling, although their importance varies greatly among species and ecosystems. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Met...

  15. Improving Aquatic Plant Management in the California Sacramento-San Joaquin Delta

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Potter, Chris

    2018-01-01

    Management of aquatic weeds in complex watersheds and river systems present many challenges to assessment, planning and implementation of management practices for floating and submerged aquatic invasive plants. The Delta Region Areawide Aquatic Weed Project (DRAAWP), a USDA sponsored area-wide project, is working to enhance planning, decision-making and operational efficiency in the California Sacramento-San Joaquin Delta. Satellite and airborne remote sensing are used map (area coverage and biomass), direct operations, and assess management impacts on plant communities. Archived satellite records going are used to review results from previous climate and management events and aide in developing long-term strategies. Modeling at local and watershed scales provides insight into land-use effects on water quality. Plant growth models informed by remote sensing are being applied spatially across the Delta to balance location and type of aquatic plant, growth response to altered environments, phenology, environmental regulations, and economics in selection of management practices. Initial utilization of remote sensing tools developed for mapping of aquatic invasive weeds improved operational efficiency by focusing limited chemical use to strategic areas with high plant-control impact and incorporating mechanical harvesting when chemical use is restricted. These assessment methods provide a comprehensive and quantitative view of aquatic invasive plants communities in the California Delta, both spatial and temporal, informed by ecological understanding with the objective of improving management and assessment effectiveness.

  16. Aquatic turning performance of painted turtles (Chrysemys picta) and functional consequences of a rigid body design.

    PubMed

    Rivera, Gabriel; Rivera, Angela R V; Dougherty, Erin E; Blob, Richard W

    2006-11-01

    The ability to capture prey and avoid predation in aquatic habitats depends strongly on the ability to perform unsteady maneuvers (e.g. turns), which itself depends strongly on body flexibility. Two previous studies of turning performance in rigid-bodied taxa have found either high maneuverability or high agility, but not both. However, examinations of aquatic turning performance in rigid-bodied animals have had limited taxonomic scope and, as such, the effects of many body shapes and designs on aquatic maneuverability and agility have yet to be examined. Turtles represent the oldest extant lineage of rigid-bodied vertebrates and the only aquatic rigid-bodied tetrapods. We evaluated the aquatic turning performance of painted turtles, Chrysemys picta (Schneider, 1783) using the minimum length-specific radius of the turning path (R/L) and the average turning rate (omega(avg)) as measures of maneuverability and agility, respectively. We filmed turtles conducting forward and backward turns in an aquatic arena. Each type of turn was executed using a different pattern of limb movements. During forward turns, turtles consistently protracted the inboard forelimb and held it stationary into the flow, while continuing to move the outboard forelimb and both hindlimbs as in rectilinear swimming. The limb movements of backward turns were more complex than those of forward turns, but involved near simultaneous retraction and protraction of contralateral fore- and hindlimbs, respectively. Forward turns had a minimum R/L of 0.0018 (the second single lowest value reported from any animal) and a maximum omega(avg) of 247.1 degrees. Values of R/L for backward turns (0.0091-0.0950 L) were much less variable than that of forward turns (0.0018-1.0442 L). The maneuverability of turtles is similar to that recorded previously for rigid-bodied boxfish. However, several morphological features of turtles (e.g. shell morphology and limb position) appear to increase agility relative to the body

  17. A global database of nitrogen and phosphorus excretion rates of aquatic animals

    USDA-ARS?s Scientific Manuscript database

    Animals can be important in modulating ecosystem-level nutrient cycling, although their importance varies greatly among species and ecosystems. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Eco...

  18. Experimental animal modelling for TB vaccine development.

    PubMed

    Cardona, Pere-Joan; Williams, Ann

    2017-03-01

    Research for a novel vaccine to prevent tuberculosis is an urgent medical need. The current vaccine, BCG, has demonstrated a non-homogenous efficacy in humans, but still is the gold standard to be improved upon. In general, the main indicator for testing the potency of new candidates in animal models is the reduction of the bacillary load in the lungs at the acute phase of the infection. Usually, this reduction is similar to that induced by BCG, although in some cases a weak but significant improvement can be detected, but none of candidates are able to prevent establishment of infection. The main characteristics of several laboratory animals are reviewed, reflecting that none are able to simulate the whole characteristics of human tuberculosis. As, so far, no surrogate of protection has been found, it is important to test new candidates in several models in order to generate convincing evidence of efficacy that might be better than that of BCG in humans. It is also important to investigate the use of "in silico" and "ex vivo" models to better understand experimental data and also to try to replace, or at least reduce and refine experimental models in animals. Copyright © 2017. Published by Elsevier Ltd.

  19. Flow management for hydropower extirpates aquatic insects, undermining river food webs

    USGS Publications Warehouse

    Kennedy, Theodore A.; Muehlbauer, Jeffrey D.; Yackulic, Charles B.; Lytle, D.A.; Miller, S.A.; Dibble, Kimberly L.; Kortenhoeven, Eric W.; Metcalfe, Anya; Baxter, Colden V.

    2016-01-01

    Dams impound the majority of rivers and provide important societal benefits, especially daily water releases that enable on-peak hydroelectricity generation. Such “hydropeaking” is common worldwide, but its downstream impacts remain unclear. We evaluated the response of aquatic insects, a cornerstone of river food webs, to hydropeaking using a life history–hydrodynamic model. Our model predicts that aquatic-insect abundance will depend on a basic life-history trait—adult egg-laying behavior—such that open-water layers will be unaffected by hydropeaking, whereas ecologically important and widespread river-edge layers, such as mayflies, will be extirpated. These predictions are supported by a more-than-2500-sample, citizen-science data set of aquatic insects from the Colorado River in the Grand Canyon and by a survey of insect diversity and hydropeaking intensity across dammed rivers of the Western United States. Our study reveals a hydropeaking-related life history bottleneck that precludes viable populations of many aquatic insects from inhabiting regulated rivers.

  20. Oxytocin in animal models of autism spectrum disorder.

    PubMed

    Peñagarikano, Olga

    2017-02-01

    Autism spectrum disorder is a behavioral disorder characterized by impairments in social interaction and communication together with the presence of stereotyped behaviors and restricted interests. Although highly genetic, its etiology is complex which correlates with the extensive heterogeneity found in its clinical manifestation, adding to the challenge of understanding its pathophysiology and develop targeted pharmacotherapies. The neuropeptide oxytocin is part of a highly conserved system involved in the regulation of social behavior, and both animal and human research have shown that variation in the oxytocin system accounts for interindividual differences in the expression of social behaviors in mammals. In autism, recent studies in human patients and animal models are starting to reveal that alterations in the oxytocin system are more common than previously anticipated. Genetic variation in the key players involved in the system (i.e., oxytocin receptor, oxytocin, and CD38) has been found associated with autism in humans, and animal models of the disorder converge in an altered oxytocin system and/or dysfunction in oxytocin related biological processes. Furthermore, oxytocin administration exerts a behavioral and neurobiological response, and thus, the oxytocin system has become a promising potential therapeutical target for autism. Animal models represent a valuable tool to aid in the research into the potential therapeutic use of oxytocin. In this review, I aim to discuss the main findings related to oxytocin research in autism with a focus on findings in animal models. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 202-213, 2017. © 2016 Wiley Periodicals, Inc.

  1. Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms.

    PubMed

    Kang, Jeong-Hun; Asai, Daisuke; Aasi, Daisuke; Katayama, Yoshiki

    2007-01-01

    Bisphenol A [BPA; 2,2-bis(4-hydroxyphenyl)propane], which is mainly used in the production of epoxy resins and polycarbonate plastics, is a known endocrine disruptor and is acutely toxic to aquatic organisms. Due to intensified usage of these products, exposure of organisms to BPA via several routes, such as the environment and food, has increased. The aquatic environment is an important area for the study of BPA. This report reviews the literature concerning contamination routes and degradation of BPA in the aquatic environment and its endocrine-disruptive effects on aquatic organisms.

  2. Methods for Aquatic Resource Assessment

    EPA Science Inventory

    The Methods for Aquatic Resource Assessment (MARA) project consists of three main activities in support of assessing the conditions of the nation’s aquatic resources: 1) scientific support for EPA Office of Water’s national aquatic resource surveys; 2) spatial predications of riv...

  3. Energetic tradeoffs control the size distribution of aquatic mammals

    NASA Astrophysics Data System (ADS)

    Gearty, William; McClain, Craig R.; Payne, Jonathan L.

    2018-04-01

    Four extant lineages of mammals have invaded and diversified in the water: Sirenia, Cetacea, Pinnipedia, and Lutrinae. Most of these aquatic clades are larger bodied, on average, than their closest land-dwelling relatives, but the extent to which potential ecological, biomechanical, and physiological controls contributed to this pattern remains untested quantitatively. Here, we use previously published data on the body masses of 3,859 living and 2,999 fossil mammal species to examine the evolutionary trajectories of body size in aquatic mammals through both comparative phylogenetic analysis and examination of the fossil record. Both methods indicate that the evolution of an aquatic lifestyle is driving three of the four extant aquatic mammal clades toward a size attractor at ˜500 kg. The existence of this body size attractor and the relatively rapid selection toward, and limited deviation from, this attractor rule out most hypothesized drivers of size increase. These three independent body size increases and a shared aquatic optimum size are consistent with control by differences in the scaling of energetic intake and cost functions with body size between the terrestrial and aquatic realms. Under this energetic model, thermoregulatory costs constrain minimum size, whereas limitations on feeding efficiency constrain maximum size. The optimum size occurs at an intermediate value where thermoregulatory costs are low but feeding efficiency remains high. Rather than being released from size pressures, water-dwelling mammals are driven and confined to larger body sizes by the strict energetic demands of the aquatic medium.

  4. Remote Sensing and Modeling for Improving Operational Aquatic Plant Management

    NASA Technical Reports Server (NTRS)

    Bubenheim, Dave

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California’s water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.

  5. Toxicity of Cúspide 480SL® spray mixture formulation of glyphosate to aquatic organisms.

    PubMed

    Currie, Zachary; Prosser, Ryan S; Rodriguez-Gil, Jose Luis; Mahon, Kim; Poirier, Dave; Solomon, Keith R

    2015-05-01

    In 2011, an alternative formulation of glyphosate (Cúspide 480SL®) was chosen to replace Roundup-SL®, Fuete-SL®, and Gly-41® for the control of Erythroxylum coca, the source of cocaine, in Colombia. Cúspide 480SL contains the active ingredient glyphosate isopropylamine (IPA) salt, which is the same active ingredient used in previous formulations. However, Cúspide 480SL contains an alkyl polyglycoside surfactant rather than the polyethoxylated tallow amine (POEA) surfactant used in other formulations and known to be more toxic to nonprimary producing aquatic organisms than glyphosate itself. An adjuvant, Cosmo-Flux F411, and water also are added to the spray mixture before application. Aquatic ecosystems adjacent to the target coca fields might be exposed to the spray mix, placing aquatic organisms at risk. Because no toxicity data were available for spray mixture on aquatic organisms, acute toxicity tests were conducted on aquatic plants, invertebrates, and fish, by using the Cúspide 480SL spray mix as described on the label. Based on the median effective concentration (EC50) values for similar organisms, the spray mixture was less toxic to aquatic organisms than formulations previously used for the control of coca (i.e., Roundup-SL, Fuete-SL, and Gly-41). A physical effect induced by Cosmo-Flux F411 was observed in Daphnia magna, Ceriodaphnia dubia, and Hyalella azteca, causing the invertebrates to be trapped in an oily film that was present at the surface of the water. However, a hazard assessment for the Cúspide 480SL spray mix, using estimated worst-case exposure scenario concentrations and EC50 values from the toxicity tests, indicated de minimis hazard for the tested aquatic animals, with hazard quotients all <1. © 2015 SETAC.

  6. Airway disease phenotypes in animal models of cystic fibrosis.

    PubMed

    McCarron, Alexandra; Donnelley, Martin; Parsons, David

    2018-04-02

    In humans, cystic fibrosis (CF) lung disease is characterised by chronic infection, inflammation, airway remodelling, and mucus obstruction. A lack of pulmonary manifestations in CF mouse models has hindered investigations of airway disease pathogenesis, as well as the development and testing of potential therapeutics. However, recently generated CF animal models including rat, ferret and pig models demonstrate a range of well characterised lung disease phenotypes with varying degrees of severity. This review discusses the airway phenotypes of currently available CF animal models and presents potential applications of each model in airway-related CF research.

  7. Animal models of female pelvic organ prolapse: lessons learned

    PubMed Central

    Couri, Bruna M; Lenis, Andrew T; Borazjani, Ali; Paraiso, Marie Fidela R; Damaser, Margot S

    2012-01-01

    Pelvic organ prolapse is a vaginal protrusion of female pelvic organs. It has high prevalence worldwide and represents a great burden to the economy. The pathophysiology of pelvic organ prolapse is multifactorial and includes genetic predisposition, aberrant connective tissue, obesity, advancing age, vaginal delivery and other risk factors. Owing to the long course prior to patients becoming symptomatic and ethical questions surrounding human studies, animal models are necessary and useful. These models can mimic different human characteristics – histological, anatomical or hormonal, but none present all of the characteristics at the same time. Major animal models include knockout mice, rats, sheep, rabbits and nonhuman primates. In this article we discuss different animal models and their utility for investigating the natural progression of pelvic organ prolapse pathophysiology and novel treatment approaches. PMID:22707980

  8. Reflected stochastic differential equation models for constrained animal movement

    USGS Publications Warehouse

    Hanks, Ephraim M.; Johnson, Devin S.; Hooten, Mevin B.

    2017-01-01

    Movement for many animal species is constrained in space by barriers such as rivers, shorelines, or impassable cliffs. We develop an approach for modeling animal movement constrained in space by considering a class of constrained stochastic processes, reflected stochastic differential equations. Our approach generalizes existing methods for modeling unconstrained animal movement. We present methods for simulation and inference based on augmenting the constrained movement path with a latent unconstrained path and illustrate this augmentation with a simulation example and an analysis of telemetry data from a Steller sea lion (Eumatopias jubatus) in southeast Alaska.

  9. Animal models of age related macular degeneration

    PubMed Central

    Pennesi, Mark E.; Neuringer, Martha; Courtney, Robert J.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations. PMID:22705444

  10. Living in Water. An Aquatic Science Curriculum for Grades 4-6. Second Edition.

    ERIC Educational Resources Information Center

    National Aquarium in Baltimore, MD. Dept. of Education.

    This document is a scientific study of water, aquatic environments and the plants and animals that live in water. It was written for grades 4-6 but many activities may also be of interest for use with older students. This curriculum covers both marine and freshwater habitats. Each of five sections addresses a question about water which is then…

  11. Preclinical Animal Models for Temporomandibular Joint Tissue Engineering.

    PubMed

    Almarza, Alejandro J; Brown, Bryan N; Arzi, Boaz; Ângelo, David Faustino; Chung, William; Badylak, Stephen F; Detamore, Michael

    2018-06-01

    There is a paucity of in vivo studies that investigate the safety and efficacy of temporomandibular joint (TMJ) tissue regeneration approaches, in part due to the lack of established animal models. Review of disease models for study of TMJ is presented herein with an attempt to identify relevant preclinical animal models for TMJ tissue engineering, with emphasis on the disc and condyle. Although degenerative joint disease models have been mainly performed on mice, rats, and rabbits, preclinical regeneration approaches must employ larger animal species. There remains controversy regarding the preferred choice of larger animal models between the farm pig, minipig, goat, sheep, and dog. The advantages of the pig and minipig include their well characterized anatomy, physiology, and tissue properties. The advantages of the sheep and goat are their easier surgical access, low cost per animal, and its high tissue availability. The advantage of the dog is that the joint space is confined, so migration of interpositional devices should be less likely. However, each species has limitations as well. For example, the farm pig has continuous growth until about 18 months of age, and difficult surgical access due to the zygomatic arch covering the lateral aspect of joint. The minipig is not widely available and somewhat costly. The sheep and the goat are herbivores, and their TMJs mainly function in translation. The dog is a carnivore, and the TMJ is a hinge joint that can only rotate. Although no species provides the gold standard for all preclinical TMJ tissue engineering approaches, the goat and sheep have emerged as the leading options, with the minipig as the choice when cost is less of a limitation; and with the dog and farm pig serving as acceptable alternatives. Finally, naturally occurring TMJ disorders in domestic species may be harnessed on a preclinical trial basis as a clinically relevant platform for translation.

  12. Animal models of cartilage repair

    PubMed Central

    Cook, J. L.; Hung, C. T.; Kuroki, K.; Stoker, A. M.; Cook, C. R.; Pfeiffer, F. M.; Sherman, S. L.; Stannard, J. P.

    2014-01-01

    Cartilage repair in terms of replacement, or regeneration of damaged or diseased articular cartilage with functional tissue, is the ‘holy grail’ of joint surgery. A wide spectrum of strategies for cartilage repair currently exists and several of these techniques have been reported to be associated with successful clinical outcomes for appropriately selected indications. However, based on respective advantages, disadvantages, and limitations, no single strategy, or even combination of strategies, provides surgeons with viable options for attaining successful long-term outcomes in the majority of patients. As such, development of novel techniques and optimisation of current techniques need to be, and are, the focus of a great deal of research from the basic science level to clinical trials. Translational research that bridges scientific discoveries to clinical application involves the use of animal models in order to assess safety and efficacy for regulatory approval for human use. This review article provides an overview of animal models for cartilage repair. Cite this article: Bone Joint Res 2014;4:89–94. PMID:24695750

  13. Behavioral Models of Tinnitus and Hyperacusis in Animals

    PubMed Central

    Hayes, Sarah H.; Radziwon, Kelly E.; Stolzberg, Daniel J.; Salvi, Richard J.

    2014-01-01

    The phantom perception of tinnitus and reduced sound-level tolerance associated with hyperacusis have a high comorbidity and can be debilitating conditions for which there are no widely accepted treatments. One factor limiting the development of treatments for tinnitus and hyperacusis is the lack of reliable animal behavioral models of these disorders. Therefore, the purpose of this review is to highlight the current animal models of tinnitus and hyperacusis, and to detail the advantages and disadvantages of each paradigm. To date, this is the first review to include models of both tinnitus and hyperacusis. PMID:25278931

  14. Science: Aquatic Toxicology Matures, Gains Importance.

    ERIC Educational Resources Information Center

    Dagani, Ron

    1980-01-01

    Reviews recent advances in aquatic toxicology, whose major goal is to protect diverse aquatic organisms and whole ecological communities from the dire effects of man-made chemicals. Current legislation is reviewed. Differences in mammalian and aquatic toxicology are listed, and examples of research in aquatic toxicology are discussed. (CS)

  15. Neuroteratology and Animal Modeling of Brain Disorders.

    PubMed

    Archer, Trevor; Kostrzewa, Richard M

    Over the past 60 years, a large number of selective neurotoxins were discovered and developed, making it possible to animal-model a broad range of human neuropsychiatric and neurodevelopmental disorders. In this paper, we highlight those neurotoxins that are most commonly used as neuroteratologic agents, to either produce lifelong destruction of neurons of a particular phenotype, or a group of neurons linked by a specific class of transporter proteins (i.e., dopamine transporter) or body of receptors for a specific neurotransmitter (i.e., NMDA class of glutamate receptors). Actions of a range of neurotoxins are described: 6-hydroxydopamine (6-OHDA), 6-hydroxydopa, DSP-4, MPTP, methamphetamine, IgG-saporin, domoate, NMDA receptor antagonists, and valproate. Their neuroteratologic features are outlined, as well as those of nerve growth factor, epidermal growth factor, and that of stress. The value of each of these neurotoxins in animal modeling of human neurologic, neurodegenerative, and neuropsychiatric disorders is discussed in terms of the respective value as well as limitations of the derived animal model. Neuroteratologic agents have proven to be of immense importance for understanding how associated neural systems in human neural disorders may be better targeted by new therapeutic agents.

  16. Are Aquatic Viruses a Biological Archive of Genetic Information from Universe?

    NASA Astrophysics Data System (ADS)

    Toparceanu, F.; Negoita, Gh. T.; Nita, I. I.; Sava, D.

    2009-04-01

    After 1990, when the viruses were admited as the most abundant lifeforms from aquatic environments, it became obvious that viral lysis had an essential role on release and recycling of nutrients. Studies on cellular cultures and modeling suggest that this is an important quantitative process. The viruses from oceans represent the widest source of genetic diversity on the Earth, uncharacterized yet. The ancient lifeforms records stretching back a million years are locked in ice caps. The trend of glaciers melting as effect of actual climate change will promote the release of ancient viruses from ice caps. The increasing of the freshwater layer led to the replace of some algae species by others. Law-Racovitza Station (69o23'S 76o23'E) from East Antarctica (Larsemann Hills Oasis) offers opportunities to study the Antarctic marine ecosystem, as well as archaic aquatic ecosystems from this area ( 150 lakes and waterways resulted from ice and snow melting during the austral summer). According to Law-Racovitza Station Scientific Program, we are performing studies regarding the effect of climate changes on virus-algae host relationship in these aquatic ecosystems. Phycodnaviruses, that infect the eukaryote algae, are comprised of ancient genes and they are considered a "peek" of genetic diversity useful in biological studies and exobiology regarding the evolution of genetic sequencing. The latest discoveries of the giant aquatic viruses open the unexpected perspectives for understanding the role of viral infection in global ecosystem; beyond the old concept which considered that the viruses were only etiological agents of human, animals and plants illnesses. The aquatic viruses which infect microalgae contain similar genes of other viruses, bacteria, arhebacteria and eukaryotes, all of them being on the same genome. Which is the signification of enormous abundance of viruses and excessive diversity of genetic information encoded by viruses? There is the possibility that

  17. Cardiovascular Adaptations Induced by Resistance Training in Animal Models.

    PubMed

    Melo, S F S; da Silva Júnior, N D; Barauna, V G; Oliveira, E M

    2018-01-01

    In the last 10 years the number of studies showing the benefits of resistance training (RT) to the cardiovascular system, have grown. In comparison to aerobic training, RT-induced favorable adaptations to the cardiovascular system have been ignored for many years, thus the mechanisms of the RT-induced cardiovascular adaptations are still uncovered. The lack of animal models with comparable protocols to the RT performed by humans hampers the knowledge. We have used squat-exercise model, which is widely used by many others laboratories. However, to a lesser extent, other models are also employed to investigate the cardiovascular adaptations. In the subsequent sections we will review the information regarding cardiac morphological adaptations, signaling pathway of the cardiac cell, cardiac function and the vascular adaptation induced by RT using this animal model developed by Tamaki et al. in 1992. Furthermore, we also describe cardiovascular findings observed using other animal models of RT.

  18. Continuous-time discrete-space models for animal movement

    USGS Publications Warehouse

    Hanks, Ephraim M.; Hooten, Mevin B.; Alldredge, Mat W.

    2015-01-01

    The processes influencing animal movement and resource selection are complex and varied. Past efforts to model behavioral changes over time used Bayesian statistical models with variable parameter space, such as reversible-jump Markov chain Monte Carlo approaches, which are computationally demanding and inaccessible to many practitioners. We present a continuous-time discrete-space (CTDS) model of animal movement that can be fit using standard generalized linear modeling (GLM) methods. This CTDS approach allows for the joint modeling of location-based as well as directional drivers of movement. Changing behavior over time is modeled using a varying-coefficient framework which maintains the computational simplicity of a GLM approach, and variable selection is accomplished using a group lasso penalty. We apply our approach to a study of two mountain lions (Puma concolor) in Colorado, USA.

  19. Aquatic Pest Control. Manual 99.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the aquatic pest control category. The text discusses various water use situations; aquatic weed identification; herbicide use and effects; and aquatic insects and their control. (CS)

  20. The Role of Biomarkers in the Assessment of Aquatic Ecosystem Health

    PubMed Central

    Hook, Sharon E; Gallagher, Evan P; Batley, Graeme E

    2016-01-01

    Ensuring the health of aquatic ecosystems and identifying species at risk from the detrimental effects of environmental contaminants can be facilitated by integrating analytical chemical analysis with carefully selected biological endpoints measured in tissues of species of concern. These biological endpoints include molecular, biochemical and physiological markers (i.e. biomarkers) that when integrated, can clarify issues of contaminant bioavailability, bioaccumulation and ecological effects while enabling a better understanding of the effects of non-chemical stressors. In the case of contaminant stressors, an understanding of chemical modes of toxicity can be incorporated with diagnostic markers of aquatic animal physiology to help understand the health status of aquatic organisms in the field. Furthermore, new approaches in functional genomics and bioinformatics can help discriminate individual chemicals, or groups of chemicals among complex mixtures that may contribute to adverse biological effects. While the use of biomarkers is not a new paradigm, such approaches have been underutilized in the context of ecological risk assessment and natural resource damage assessment. From a regulatory standpoint, these approaches can help better assess the complex effects from coastal development activities to assessing ecosystem integrity pre- and post-development or site remediation. PMID:24574147

  1. Mycobacterium ulcerans Ecological Dynamics and Its Association with Freshwater Ecosystems and Aquatic Communities: Results from a 12-Month Environmental Survey in Cameroon

    PubMed Central

    Garchitorena, Andrés; Roche, Benjamin; Kamgang, Roger; Ossomba, Joachim; Babonneau, Jérémie; Landier, Jordi; Fontanet, Arnaud; Flahault, Antoine

    2014-01-01

    Background Mycobacterium ulcerans (MU) is the agent responsible for Buruli Ulcer (BU), an emerging skin disease with dramatic socioeconomic and health outcomes, especially in rural settings. BU emergence and distribution is linked to aquatic ecosystems in tropical and subtropical countries, especially to swampy and flooded areas. Aquatic animal organisms are likely to play a role either as host reservoirs or vectors of the bacilli. However, information on MU ecological dynamics, both in space and time, is dramatically lacking. As a result, the ecology of the disease agent, and consequently its mode of transmission, remains largely unknown, which jeopardizes public health attempts for its control. The objective of this study was to gain insight on MU environmental distribution and colonization of aquatic organisms through time. Methodology/Principal Findings Longitudinal sampling of 32 communities of aquatic macro-invertebrates and vertebrates was conducted from different environments in two BU endemic regions in Cameroon during 12 months. As a result, 238,496 individuals were classified and MU presence was assessed by qPCR in 3,084 sample-pools containing these aquatic organisms. Our study showed a broad distribution of MU in all ecosystems and taxonomic groups, with important regional differences in its occurrence. Colonization dynamics fluctuated along the year, with the highest peaks in August and October. The large variations observed in the colonization dynamics of different taxonomic groups and aquatic ecosystems suggest that the trends shown here are the result of complex ecological processes that need further investigation. Conclusion/Perspectives This is the largest field study on MU ecology to date, providing the first detailed description of its spatio-temporal dynamics in different aquatic ecosystems within BU endemic regions. We argue that coupling this data with fine-scale epidemiological data through statistical and mathematical models will provide a

  2. High-throughput screening and small animal models, where are we?

    PubMed Central

    Giacomotto, Jean; Ségalat, Laurent

    2010-01-01

    Current high-throughput screening methods for drug discovery rely on the existence of targets. Moreover, most of the hits generated during screenings turn out to be invalid after further testing in animal models. To by-pass these limitations, efforts are now being made to screen chemical libraries on whole animals. One of the most commonly used animal model in biology is the murine model Mus musculus. However, its cost limit its use in large-scale therapeutic screening. In contrast, the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the fish Danio rerio are gaining momentum as screening tools. These organisms combine genetic amenability, low cost and culture conditions that are compatible with large-scale screens. Their main advantage is to allow high-throughput screening in a whole-animal context. Moreover, their use is not dependent on the prior identification of a target and permits the selection of compounds with an improved safety profile. This review surveys the versatility of these animal models for drug discovery and discuss the options available at this day. PMID:20423335

  3. Animal models of pancreatitis: Can it be translated to human pain study?

    PubMed Central

    Zhao, Jing-Bo; Liao, Dong-Hua; Nissen, Thomas Dahl

    2013-01-01

    Chronic pancreatitis affects many individuals around the world, and the study of the underlying mechanisms leading to better treatment possibilities are important tasks. Therefore, animal models are needed to illustrate the basic study of pancreatitis. Recently, animal models of acute and chronic pancreatitis have been thoroughly reviewed, but few reviews address the important aspect on the translation of animal studies to human studies. It is well known that pancreatitis is associated with epigastric pain, but the understanding regarding to mechanisms and appropriate treatment of this pain is still unclear. Using animal models to study pancreatitis associated visceral pain is difficult, however, these types of models are a unique way to reveal the mechanisms behind pancreatitis associated visceral pain. In this review, the animal models of acute, chronic and un-common pancreatitis are briefly outlined and animal models related to pancreatitis associated visceral pain are also addressed. PMID:24259952

  4. Animal Models of Substance Abuse and Addiction: Implications for Science, Animal Welfare, and Society

    PubMed Central

    Lynch, Wendy J; Nicholson, Katherine L; Dance, Mario E; Morgan, Richard W; Foley, Patricia L

    2010-01-01

    Substance abuse and addiction are well recognized public health concerns, with 2 NIH institutes (the National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism) specifically targeting this societal problem. As such, this is an important area of research for which animal experiments play a critical role. This overview presents the importance of substance abuse and addiction in society; reviews the development and refinement of animal models that address crucial areas of biology, pathophysiology, clinical treatments, and drug screening for abuse liability; and discusses some of the unique veterinary, husbandry, and IACUC challenges associated with these models. PMID:20579432

  5. Animal models of substance abuse and addiction: implications for science, animal welfare, and society.

    PubMed

    Lynch, Wendy J; Nicholson, Katherine L; Dance, Mario E; Morgan, Richard W; Foley, Patricia L

    2010-06-01

    Substance abuse and addiction are well recognized public health concerns, with 2 NIH institutes (the National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism) specifically targeting this societal problem. As such, this is an important area of research for which animal experiments play a critical role. This overview presents the importance of substance abuse and addiction in society; reviews the development and refinement of animal models that address crucial areas of biology, pathophysiology, clinical treatments, and drug screening for abuse liability; and discusses some of the unique veterinary, husbandry, and IACUC challenges associated with these models.

  6. The National Research Initiative Competitive Grants Program in animal reproduction: changes in priorities and scope relevant to United States animal agriculture.

    PubMed

    Mirando, M A

    2007-03-01

    The National Research Initiative (NRI) Competitive Grants Program is the USDA's major competitive grants program and is administered by the Cooperative State Research, Education, and Extension Service. The NRI was authorized by the US Congress in the 1990 Farm Bill at a funding level of $500 million; however, the maximal NRI appropriation was $181.17 million in fiscal year (FY) 2006. Across all programs, the NRI is mandated to use 40% of its funding to support mission-linked research. Since its inception in 1991, the NRI has funded competitive grants in the discipline of animal reproduction. Before 2004, the Animal Reproduction Program funded a broad range of projects encompassing almost every subdiscipline in reproductive biology of farm animals, including aquatic species important to the aquaculture industry and laboratory animals. During FY 2004, the NRI Animal Reproduction Program narrowed the focus of its funding priorities to 5 issue-based topics in an effort to make greater measurable improvements in a few high-impact areas over the next 10 years. Funding priorities were narrowed further in FY 2006 to 3 subdisciplines based, in part, on recommendations that emerged from a stakeholder workshop conducted by Cooperative State Research, Education, and Extension Service in August 2004. In FY 2003, Congress authorized expenditure of up to 20% of the funds appropriated to the NRI to support projects that integrate at least 2 of the 3 functions of research, education, and extension. In FY 2004, the Animal Reproduction Program included a funding priority for integrated projects focused primarily on infertility in dairy cattle. The program funded its first integrated project in FY 2005. During FY 2002, increased emphasis on justification for the use of model systems (e.g., laboratory animals and in vitro systems) was included in the NRI request for applications. In FY 2006, applications proposing to primarily utilize nonagricultural animal models were excluded from

  7. Advances in animal models of drug addiction.

    PubMed

    Heidbreder, Christian

    2011-01-01

    Drug addiction is a syndrome of impaired response inhibition and salience attribution, which involves a complex neurocircuitry underlying drug reinforcement, drug craving, and compulsive drug-seeking and drug-taking behaviors despite adverse consequences. The concept of disease stages with transitions from acute rewarding effects to early- and end-stage addiction has had an important impact on the design of nonclinical animal models. This chapter reviews the main advances in nonclinical paradigms that aim to at model (1) positive and negative reinforcing effects of addictive drugs; (2) relapse to drug-seeking behavior; (3) reconsolidation of drug cue memories, and (4) compulsive/impulsive drug intake. In addition, recent small animal neuroimaging studies and invertebrate models will be briefly discussed (see also Bifone and Gozzi, Animal models of ADHD, 2011). Continuous improvement in modeling drug intake, craving, withdrawal symptoms, relapse, and comorbid psychiatric associations is a necessary step to better understand the etiology of the disease and to ultimately foster the discovery, validation and optimization of new efficacious pharmacotherapeutic approaches. The modeling of specific subprocesses or constructs that address clinically defined criteria will ultimately increase our understanding of the disease as a whole. Future research will have to address the questions of whether some of these constructs can be reliably used as outcome measures to assess the effects of a treatment in clinical settings, whether changes in those measures can be a target of therapeutic efforts, and whether they relate to biological markers of traits such as impulsivity, which contribute to increased drug-seeking and may predict binge-like patterns of drug intake.

  8. Watershed and Hydrodynamic Modeling for Evaluating the Impact of Land Use Change on Submerged Aquatic Vegetation and Seagrasses in Mobile Bay

    NASA Technical Reports Server (NTRS)

    Estes, Maurice G.; Al-Hamdan, Mohammed; Thom, Ron; Quattrochi, Dale; Woodruff, Dana; Judd, Chaeli; Ellism Jean; Watson, Brian; Rodriguez, Hugo; Johnson, Hoyt

    2009-01-01

    There is a continued need to understand how human activities along the northern Gulf of Mexico coast are impacting the natural ecosystems. The gulf coast is experiencing rapid population growth and associated land cover/land use change. Mobile Bay, AL is a designated pilot region of the Gulf of Mexico Alliance (GOMA) and is the focus area of many current NASA and NOAA studies, for example. This is a critical region, both ecologically and economically to the entire United States because it has the fourth largest freshwater inflow in the continental USA, is a vital nursery habitat for commercially and recreational important fisheries, and houses a working waterfront and port that is expanding. Watershed and hydrodynamic modeling has been performed for Mobile Bay to evaluate the impact of land use change in Mobile and Baldwin counties on the aquatic ecosystem. Watershed modeling using the Loading Simulation Package in C++ (LSPC) was performed for all watersheds contiguous to Mobile Bay for land use Scenarios in 1948, 1992, 2001, and 2030. The Prescott Spatial Growth Model was used to project the 2030 land use scenario based on observed trends. All land use scenarios were developed to a common land classification system developed by merging the 1992 and 2001 National Land Cover Data (NLCD). The LSPC model output provides changes in flow, temperature, sediments and general water quality for 22 discharge points into the Bay. These results were inputted in the Environmental Fluid Dynamics Computer Code (EFDC) hydrodynamic model to generate data on changes in temperature, salinity, and sediment concentrations on a grid with four vertical profiles throughout the Bay s aquatic ecosystems. The models were calibrated using in-situ data collected at sampling stations in and around Mobile bay. This phase of the project has focused on sediment modeling because of its significant influence on light attenuation which is a critical factor in the health of submerged aquatic

  9. Aquatic food production modules in bioregenerative life support systems based on higher plants

    NASA Astrophysics Data System (ADS)

    Bluem, V.; Paris, F.

    Most bioregenerative life support systems (BLSS) are based on gravitropic higher plants which exhibit growth and seed generation disturbances in microgravity. Even when used for a lunar or martian base the reduced gravity may induce a decreased productivity in comparison to Earth. Therefore, the implementation of aquatic biomass production modules in higher plant and/or hybrid BLSS may compensate for this and offer, in addition, the possibility to produce animal protein for human nutrition. It was shown on the SLS-89 and SLS-90 space shuttle missions with the C.E.B.A.S.-MINI MODULE that the edible non gravitropic rootless higher aquatic plant Ceratophyllum demeresum exhibits an undisturbed high biomass production rate in space and that the teleost fish species, Xiphophorus helleri, adapts rapidly to space conditions without loss of its normal reproductive functions. Based on these findings a series of ground-based aquatic food production systems were developed which are disposed for utilization in space. These are plant production bioreactors for the species mentioned above and another suitable candidate, the lemnacean (duckweed) species, Wolffia arrhiza. Moreover, combined intensive aquaculture systems with a closed food loop between herbivorous fishes and aquatic and land plants are being developed which may be suitable for integration into a BLSS of higher complexity.

  10. Animal models of ocular angiogenesis: from development to pathologies.

    PubMed

    Liu, Chi-Hsiu; Wang, Zhongxiao; Sun, Ye; Chen, Jing

    2017-11-01

    Pathological angiogenesis in the eye is an important feature in the pathophysiology of many vision-threatening diseases, including retinopathy of prematurity, diabetic retinopathy, and age-related macular degeneration, as well as corneal diseases with abnormal angiogenesis. Development of reproducible and reliable animal models of ocular angiogenesis has advanced our understanding of both the normal development and the pathobiology of ocular neovascularization. These models have also proven to be valuable experimental tools with which to easily evaluate potential antiangiogenic therapies beyond eye research. This review summarizes the current available animal models of ocular angiogenesis. Models of retinal and choroidal angiogenesis, including oxygen-induced retinopathy, laser-induced choroidal neovascularization, and transgenic mouse models with deficient or spontaneous retinal/choroidal neovascularization, as well as models with induced corneal angiogenesis, are widely used to investigate the molecular and cellular basis of angiogenic mechanisms. Theoretical concepts and experimental protocols of these models are outlined, as well as their advantages and potential limitations, which may help researchers choose the most suitable models for their investigative work.-Liu, C.-H., Wang, Z., Sun, Y., Chen, J. Animal models of ocular angiogenesis: from development to pathologies. © FASEB.

  11. Visualizing Terrestrial and Aquatic Systems in 3-D

    EPA Science Inventory

    The environmental modeling community has a long-standing need for affordable, easy-to-use tools that support 3-D visualization of complex spatial and temporal model output. The Visualization of Terrestrial and Aquatic Systems project (VISTAS) aims to help scientists produce effe...

  12. Sleep and Obesity: A focus on animal models

    PubMed Central

    Mavanji, Vijayakumar; Billington, Charles J.; Kotz, Catherine M.; Teske, Jennifer A.

    2012-01-01

    The rapid rise in obesity prevalence in the modern world parallels a significant reduction in restorative sleep (Agras et al., 2004; Dixon et al., 2007; Dixon et al., 2001; Gangwisch and Heymsfield, 2004; Gupta et al., 2002; Sekine et al., 2002; Vioque et al., 2000; Wolk et al., 2003). Reduced sleep time and quality increases the risk for obesity, but the underlying mechanisms remain unclear (Gangwisch et al., 2005; Hicks et al., 1986; Imaki et al., 2002; Jennings et al., 2007; Moreno et al., 2006). A majority of the theories linking human sleep disturbances and obesity rely on self-reported sleep. However, studies with objective measurements of sleep/wake parameters suggest a U-shaped relationship between sleep and obesity. Studies in animal models are needed to improve our understanding of the association between sleep disturbances and obesity. Genetic and experimenter-induced models mimicking characteristics of human obesity are now available and these animal models will be useful in understanding whether sleep disturbances determine propensity for obesity, or result from obesity. These models exhibit weight gain profiles consistently different from control animals. Thus a careful evaluation of animal models will provide insight into the relationship between sleep disturbances and obesity in humans. In this review we first briefly consider the fundamentals of sleep and key sleep disturbances, such as sleep fragmentation and excessive daytime sleepiness (EDS), observed in obese individuals. Then we consider sleep deprivation studies and the role of circadian alterations in obesity. We describe sleep/wake changes in various rodent models of obesity and obesity resistance. Finally, we discuss possible mechanisms linking sleep disturbances with obesity. PMID:22266350

  13. Proactive aquatic ecotoxicological assessment of room-temperature ionic liquids

    USGS Publications Warehouse

    Kulacki, K.J.; Chaloner, D.T.; Larson, J.H.; Costello, D.M.; Evans-White, M. A.; Docherty, K.M.; Bernot, R.J.; Brueseke, M.A.; Kulpa, C.F.; Lamberti, G.A.

    2011-01-01

    Aquatic environments are being contaminated with a myriad of anthropogenic chemicals, a problem likely to continue due to both unintentional and intentional releases. To protect valuable natural resources, novel chemicals should be shown to be environmentally safe prior to use and potential release into the environment. Such proactive assessment is currently being applied to room-temperature ionic liquids (ILs). Because most ILs are water-soluble, their effects are likely to manifest in aquatic ecosystems. Information on the impacts of ILs on numerous aquatic organisms, focused primarily on acute LC50 and EC50 endpoints, is now available, and trends in toxicity are emerging. Cation structure tends to influence IL toxicity more so than anion structure, and within a cation class, the length of alkyl chain substituents is positively correlated with toxicity. While the effects of ILs on several aquatic organisms have been studied, the challenge for aquatic toxicology is now to predict the effects of ILs in complex natural environments that often include diverse mixtures of organisms, abiotic conditions, and additional stressors. To make robust predictions about ILs will require coupling of ecologically realistic laboratory and field experiments with standard toxicity bioassays and models. Such assessments would likely discourage the development of especially toxic ILs while shifting focus to those that are more environmentally benign. Understanding the broader ecological effects of emerging chemicals, incorporating that information into predictive models, and conveying the conclusions to those who develop, regulate, and use those chemicals, should help avoid future environmental degradation. ?? 2011 Bentham Science Publishers Ltd.

  14. Simple animal models for amyotrophic lateral sclerosis drug discovery.

    PubMed

    Patten, Shunmoogum A; Parker, J Alex; Wen, Xiao-Yan; Drapeau, Pierre

    2016-08-01

    Simple animal models have enabled great progress in uncovering the disease mechanisms of amyotrophic lateral sclerosis (ALS) and are helping in the selection of therapeutic compounds through chemical genetic approaches. Within this article, the authors provide a concise overview of simple model organisms, C. elegans, Drosophila and zebrafish, which have been employed to study ALS and discuss their value to ALS drug discovery. In particular, the authors focus on innovative chemical screens that have established simple organisms as important models for ALS drug discovery. There are several advantages of using simple animal model organisms to accelerate drug discovery for ALS. It is the authors' particular belief that the amenability of simple animal models to various genetic manipulations, the availability of a wide range of transgenic strains for labelling motoneurons and other cell types, combined with live imaging and chemical screens should allow for new detailed studies elucidating early pathological processes in ALS and subsequent drug and target discovery.

  15. Animal models for Ebola and Marburg virus infections

    PubMed Central

    Nakayama, Eri; Saijo, Masayuki

    2013-01-01

    Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus), respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4) pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using non-human primates (NHPs) and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics. PMID:24046765

  16. Animal models for Ebola and Marburg virus infections.

    PubMed

    Nakayama, Eri; Saijo, Masayuki

    2013-09-05

    Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus), respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4) pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using non-human primates (NHPs) and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics.

  17. Developing ecological scenarios for the prospective aquatic risk assessment of pesticides.

    PubMed

    Rico, Andreu; Van den Brink, Paul J; Gylstra, Ronald; Focks, Andreas; Brock, Theo Cm

    2016-07-01

    The prospective aquatic environmental risk assessment (ERA) of pesticides is generally based on the comparison of predicted environmental concentrations in edge-of-field surface waters with regulatory acceptable concentrations derived from laboratory and/or model ecosystem experiments with aquatic organisms. New improvements in mechanistic effect modeling have allowed a better characterization of the ecological risks of pesticides through the incorporation of biological trait information and landscape parameters to assess individual, population and/or community-level effects and recovery. Similarly to exposure models, ecological models require scenarios that describe the environmental context in which they are applied. In this article, we propose a conceptual framework for the development of ecological scenarios that, when merged with exposure scenarios, will constitute environmental scenarios for prospective aquatic ERA. These "unified" environmental scenarios are defined as the combination of the biotic and abiotic parameters that are required to characterize exposure, (direct and indirect) effects, and recovery of aquatic nontarget species under realistic worst-case conditions. Ideally, environmental scenarios aim to avoid a potential mismatch between the parameter values and the spatial-temporal scales currently used in aquatic exposure and effect modeling. This requires a deeper understanding of the ecological entities we intend to protect, which can be preliminarily addressed by the formulation of ecological scenarios. In this article we present a methodological approach for the development of ecological scenarios and illustrate this approach by a case-study for Dutch agricultural ditches and the example focal species Sialis lutaria. Finally, we discuss the applicability of ecological scenarios in ERA and propose research needs and recommendations for their development and integration with exposure scenarios. Integr Environ Assess Manag 2016;12:510-521.

  18. Aquatic Plants and their Control.

    ERIC Educational Resources Information Center

    Michigan State Dept. of Natural Resources, Lansing.

    Aquatic plants can be divided into two types: algae and macrophytes. The goal of aquatic plant management is to maintain a proper balance of plants within a lake and still retain the lake's recreational and economic importance. Aquatic plant management programs have two phases: long-term management (nutrient control), and short-term management…

  19. An analytical framework for estimating aquatic species density from environmental DNA

    USGS Publications Warehouse

    Chambert, Thierry; Pilliod, David S.; Goldberg, Caren S.; Doi, Hideyuki; Takahara, Teruhiko

    2018-01-01

    Environmental DNA (eDNA) analysis of water samples is on the brink of becoming a standard monitoring method for aquatic species. This method has improved detection rates over conventional survey methods and thus has demonstrated effectiveness for estimation of site occupancy and species distribution. The frontier of eDNA applications, however, is to infer species density. Building upon previous studies, we present and assess a modeling approach that aims at inferring animal density from eDNA. The modeling combines eDNA and animal count data from a subset of sites to estimate species density (and associated uncertainties) at other sites where only eDNA data are available. As a proof of concept, we first perform a cross-validation study using experimental data on carp in mesocosms. In these data, fish densities are known without error, which allows us to test the performance of the method with known data. We then evaluate the model using field data from a study on a stream salamander species to assess the potential of this method to work in natural settings, where density can never be known with absolute certainty. Two alternative distributions (Normal and Negative Binomial) to model variability in eDNA concentration data are assessed. Assessment based on the proof of concept data (carp) revealed that the Negative Binomial model provided much more accurate estimates than the model based on a Normal distribution, likely because eDNA data tend to be overdispersed. Greater imprecision was found when we applied the method to the field data, but the Negative Binomial model still provided useful density estimates. We call for further model development in this direction, as well as further research targeted at sampling design optimization. It will be important to assess these approaches on a broad range of study systems.

  20. The Nuremberg Code subverts human health and safety by requiring animal modeling

    PubMed Central

    2012-01-01

    Background The requirement that animals be used in research and testing in order to protect humans was formalized in the Nuremberg Code and subsequent national and international laws, codes, and declarations. Discussion We review the history of these requirements and contrast what was known via science about animal models then with what is known now. We further analyze the predictive value of animal models when used as test subjects for human response to drugs and disease. We explore the use of animals for models in toxicity testing as an example of the problem with using animal models. Summary We conclude that the requirements for animal testing found in the Nuremberg Code were based on scientifically outdated principles, compromised by people with a vested interest in animal experimentation, serve no useful function, increase the cost of drug development, and prevent otherwise safe and efficacious drugs and therapies from being implemented. PMID:22769234

  1. The Nuremberg Code subverts human health and safety by requiring animal modeling.

    PubMed

    Greek, Ray; Pippus, Annalea; Hansen, Lawrence A

    2012-07-08

    The requirement that animals be used in research and testing in order to protect humans was formalized in the Nuremberg Code and subsequent national and international laws, codes, and declarations. We review the history of these requirements and contrast what was known via science about animal models then with what is known now. We further analyze the predictive value of animal models when used as test subjects for human response to drugs and disease. We explore the use of animals for models in toxicity testing as an example of the problem with using animal models. We conclude that the requirements for animal testing found in the Nuremberg Code were based on scientifically outdated principles, compromised by people with a vested interest in animal experimentation, serve no useful function, increase the cost of drug development, and prevent otherwise safe and efficacious drugs and therapies from being implemented.

  2. A novel animal model for skin flap prelamination with biomaterials

    NASA Astrophysics Data System (ADS)

    Zhou, Xianyu; Luo, Xusong; Liu, Fei; Gu, Chuan; Wang, Xi; Yang, Qun; Qian, Yunliang; Yang, Jun

    2016-09-01

    Several animal models of skin flap construction were reported using biomaterials in a way similar to prefabrication. However, there are few animal model using biomaterials similar to prelamination, another main way of clinical skin flap construction that has been proved to be reliable. Can biomaterials be added in skin flap prelamination to reduce the use of autogenous tissues? Beside individual clinical attempts, animal model is needed for randomized controlled trial to objectively evaluate the feasibility and further investigation. Combining human Acellular Dermal Matrix (hADM) and autologous skin graft, we prelaminated flaps based on inguinal fascia. One, two, three and four weeks later, hADM exhibited a sound revascularization and host cell infiltration. Prelaminated skin flaps were then raised and microsurgically transplanted back to groin region. Except for flaps after one week of prelamination, flaps from other subgroups successfully reconstructed defects. After six to sixteen weeks of transplantation, hADM was proved to being able to maintain its original structure, having a wealth of host tissue cells and achieving full revascularization.To our knowledge, this is the first animal model of prelaminating skin flap with biomaterials. Success of this animal model indicates that novel flap prelamination with biomaterials is feasible.

  3. Plasma Vitellogenin and Hormone Levels in Common Snapping Turtles (Chelydra serpentina) from Concentrated Animal Feeding Operation (CAFO) Ponds versus a Reference Site

    EPA Science Inventory

    Runoff from land treated with animal manure may contaminate adjacent aquatic ecosystems and negatively impact organisms living in these environments. Of notable concern, influx of estrogens can result in endocrine disruption and affect reproduction in aquatic vertebrates. Vitel...

  4. Risk screening of pharmaceutical compounds in Romanian aquatic environment.

    PubMed

    Gheorghe, Stefania; Petre, Jana; Lucaciu, Irina; Stoica, Catalina; Nita-Lazar, Mihai

    2016-06-01

    The aquatic environment is under increased pressure by pharmaceutically active compounds (PhACs) due to anthropogenic activities. In spite of being found at very low concentrations (ng/L to μg/L) in the environment, PhACs represent a real danger to aquatic ecosystems due to their bioaccumulation and long-term effects. In this study, the presence in the aquatic environment of six non-steroidal anti-inflammatory drugs (ibuprofen, diclofenac, acetaminophen, naproxen, indomethacin, and ketoprofen), caffeine, and carbamazepine were monitored. Moreover, their aquatic risk and ecotoxicity by three biological models were evaluated. The monitoring studies performed in Romania showed that all studied PhACs were naturally present at concentrations >0.01 μg/L, pointing out the necessity to perform further toxicity tests for environmental risk assessment. The toxicity studies were carried out on aquatic organisms or bacteria and they indicated, for most of the tested PhACs, an insignificant or low toxicity effects: lethal concentrations (LC50) on fish Cyprinus carpio ranged from 42.60 mg/L to more than 100 mg/L; effective concentrations (EC50) on planktonic crustacean Daphnia magna ranged from 11.02 mg/L to more than 100 mg/L; inhibitory concentrations (IC50)/microbial toxic concentrations (MTC) on Vibrio fischeri and other bacterial strains ranged from 7.02 mg/L to more than 100 mg/L. The PhAC aquatic risk was assessed by using the ratio between measured environmental concentration (MEC) and predicted no effect concentration (PNEC) calculated for each type of organism. The average of quotient risks (RQs) revealed that the presence of these compounds in Romania's aquatic environment induced a lower or moderate aquatic risk.

  5. 29 CFR 784.107 - Relationship of employee's work to operations on the specified aquatic products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... animal or vegetable life, or any byproduct thereof”. Work performed on products which do not fall within... 29 Labor 3 2010-07-01 2010-07-01 false Relationship of employee's work to operations on the... the Two Exemptions § 784.107 Relationship of employee's work to operations on the specified aquatic...

  6. Are animal models predictive for human postmortem muscle protein degradation?

    PubMed

    Ehrenfellner, Bianca; Zissler, Angela; Steinbacher, Peter; Monticelli, Fabio C; Pittner, Stefan

    2017-11-01

    A most precise determination of the postmortem interval (PMI) is a crucial aspect in forensic casework. Although there are diverse approaches available to date, the high heterogeneity of cases together with the respective postmortal changes often limit the validity and sufficiency of many methods. Recently, a novel approach for time since death estimation by the analysis of postmortal changes of muscle proteins was proposed. It is however necessary to improve the reliability and accuracy, especially by analysis of possible influencing factors on protein degradation. This is ideally investigated on standardized animal models that, however, require legitimization by a comparison of human and animal tissue, and in this specific case of protein degradation profiles. Only if protein degradation events occur in comparable fashion within different species, respective findings can sufficiently be transferred from the animal model to application in humans. Therefor samples from two frequently used animal models (mouse and pig), as well as forensic cases with representative protein profiles of highly differing PMIs were analyzed. Despite physical and physiological differences between species, western blot analysis revealed similar patterns in most of the investigated proteins. Even most degradation events occurred in comparable fashion. In some other aspects, however, human and animal profiles depicted distinct differences. The results of this experimental series clearly indicate the huge importance of comparative studies, whenever animal models are considered. Although animal models could be shown to reflect the basic principles of protein degradation processes in humans, we also gained insight in the difficulties and limitations of the applicability of the developed methodology in different mammalian species regarding protein specificity and methodic functionality.

  7. Aquatic toxicity testing for aquatic life impact assessments and recent scientific advancements

    EPA Science Inventory

    The focus of this presentation is to provide an overview of the use of aquatic toxicity testing for assessing possible impacts to aquatic life and how new scientific approaches are being researched. Toxicity testing of both ambient and effluent monitoring samples will be discusse...

  8. [RESEARCH PROGRESS OF EXPERIMENTAL ANIMAL MODELS OF AVASCULAR NECROSIS OF FEMORAL HEAD].

    PubMed

    Yu, Kaifu; Tan, Hongbo; Xu, Yongqing

    2015-12-01

    To summarize the current researches and progress on experimental animal models of avascular necrosis of the femoral head. Domestic and internation literature concerning experimental animal models of avascular necrosis of the femoral head was reviewed and analyzed. The methods to prepare the experimental animal models of avascular necrosis of the femoral head can be mainly concluded as traumatic methods (including surgical, physical, and chemical insult), and non-traumatic methods (including steroid, lipopolysaccharide, steroid combined with lipopolysaccharide, steroid combined with horse serum, etc). Each method has both merits and demerits, yet no ideal methods have been developed. There are many methods to prepare the experimental animal models of avascular necrosis of the femoral head, but proper model should be selected based on the aim of research. The establishment of ideal experimental animal models needs further research in future.

  9. Behavioral impairments in animal models for zinc deficiency

    PubMed Central

    Hagmeyer, Simone; Haderspeck, Jasmin Carmen; Grabrucker, Andreas Martin

    2015-01-01

    Apart from teratogenic and pathological effects of zinc deficiency such as the occurrence of skin lesions, anorexia, growth retardation, depressed wound healing, altered immune function, impaired night vision, and alterations in taste and smell acuity, characteristic behavioral changes in animal models and human patients suffering from zinc deficiency have been observed. Given that it is estimated that about 17% of the worldwide population are at risk for zinc deficiency and that zinc deficiency is associated with a variety of brain disorders and disease states in humans, it is of major interest to investigate, how these behavioral changes will affect the individual and a putative course of a disease. Thus, here, we provide a state of the art overview about the behavioral phenotypes observed in various models of zinc deficiency, among them environmentally produced zinc deficient animals as well as animal models based on a genetic alteration of a particular zinc homeostasis gene. Finally, we compare the behavioral phenotypes to the human condition of mild to severe zinc deficiency and provide a model, how zinc deficiency that is associated with many neurodegenerative and neuropsychological disorders might modify the disease pathologies. PMID:25610379

  10. Animal models used for testing hydrogels in cartilage regeneration.

    PubMed

    Zhu, Chuntie; Wu, Qiong; Zhang, Xu; Chen, Fubo; Liu, Xiyang; Yang, Qixiang; Zhu, Lei

    2018-05-14

    Focal cartilage or osteochondral lesions can be painful and detrimental. Besides pain and limited function of joints, cartilage defect is considered as one of the leading extrinsic risk factors for osteoarthritis (OA). Thus, clinicians and scientists have paid great attention to regenerative therapeutic methods for the early treatment of cartilaginous defects. Regenerative medicine, showing great hope for regenerating cartilage tissue, rely on the combination of biodegradable scaffolds and specific biological cues, such as growth factors, adhesive factors and genetic materials. Among all biomaterials, hydrogels have emerged as promising cartilage tissue engineering scaffolds for simultaneous cell growth and drug delivery. A wide range of animal models have been applied in testing repair with hydrogels in cartilage defects. This review summarized the current animal models used to test hydrogels technologies for the regeneration of cartilage. Advantages and disadvantages in the establishment of the cartilage defect animal models among different species were emphasized, as well as feasibility of replication of diseases in animals. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Animal models of ischemic stroke and their application in clinical research.

    PubMed

    Fluri, Felix; Schuhmann, Michael K; Kleinschnitz, Christoph

    2015-01-01

    This review outlines the most frequently used rodent stroke models and discusses their strengths and shortcomings. Mimicking all aspects of human stroke in one animal model is not feasible because ischemic stroke in humans is a heterogeneous disorder with a complex pathophysiology. The transient or permanent middle cerebral artery occlusion (MCAo) model is one of the models that most closely simulate human ischemic stroke. Furthermore, this model is characterized by reliable and well-reproducible infarcts. Therefore, the MCAo model has been involved in the majority of studies that address pathophysiological processes or neuroprotective agents. Another model uses thromboembolic clots and thus is more convenient for investigating thrombolytic agents and pathophysiological processes after thrombolysis. However, for many reasons, preclinical stroke research has a low translational success rate. One factor might be the choice of stroke model. Whereas the therapeutic responsiveness of permanent focal stroke in humans declines significantly within 3 hours after stroke onset, the therapeutic window in animal models with prompt reperfusion is up to 12 hours, resulting in a much longer action time of the investigated agent. Another major problem of animal stroke models is that studies are mostly conducted in young animals without any comorbidity. These models differ from human stroke, which particularly affects elderly people who have various cerebrovascular risk factors. Choosing the most appropriate stroke model and optimizing the study design of preclinical trials might increase the translational potential of animal stroke models.

  12. Animal models of ischemic stroke and their application in clinical research

    PubMed Central

    Fluri, Felix; Schuhmann, Michael K; Kleinschnitz, Christoph

    2015-01-01

    This review outlines the most frequently used rodent stroke models and discusses their strengths and shortcomings. Mimicking all aspects of human stroke in one animal model is not feasible because ischemic stroke in humans is a heterogeneous disorder with a complex pathophysiology. The transient or permanent middle cerebral artery occlusion (MCAo) model is one of the models that most closely simulate human ischemic stroke. Furthermore, this model is characterized by reliable and well-reproducible infarcts. Therefore, the MCAo model has been involved in the majority of studies that address pathophysiological processes or neuroprotective agents. Another model uses thromboembolic clots and thus is more convenient for investigating thrombolytic agents and pathophysiological processes after thrombolysis. However, for many reasons, preclinical stroke research has a low translational success rate. One factor might be the choice of stroke model. Whereas the therapeutic responsiveness of permanent focal stroke in humans declines significantly within 3 hours after stroke onset, the therapeutic window in animal models with prompt reperfusion is up to 12 hours, resulting in a much longer action time of the investigated agent. Another major problem of animal stroke models is that studies are mostly conducted in young animals without any comorbidity. These models differ from human stroke, which particularly affects elderly people who have various cerebrovascular risk factors. Choosing the most appropriate stroke model and optimizing the study design of preclinical trials might increase the translational potential of animal stroke models. PMID:26170628

  13. Aquatic Plant Control Research Program: Literature Review of Economic Valuation of Aquatic Plant Control

    DTIC Science & Technology

    1991-02-01

    200 words) Aquatic plant control is necessary to maintain the flow of benefits for which water resources projects are constructed and operated (e.g...but little work has been performed by the Corps to evaluate the economic benefits resulting from aquatic plant control programs. This report reviewed...the applicability of the project evaluation guidance, Principles and Guidelines (P&G), for the eval- uation of aquatic plant control benefits . It was

  14. Advancing research on animal-transported subsidies by integrating animal movement and ecosystem modelling.

    PubMed

    Earl, Julia E; Zollner, Patrick A

    2017-09-01

    Connections between ecosystems via animals (active subsidies) support ecosystem services and contribute to numerous ecological effects. Thus, the ability to predict the spatial distribution of active subsidies would be useful for ecology and conservation. Previous work modelling active subsidies focused on implicit space or static distributions, which treat passive and active subsidies similarly. Active subsidies are fundamentally different from passive subsidies, because animals can respond to the process of subsidy deposition and ecosystem changes caused by subsidy deposition. We propose addressing this disparity by integrating animal movement and ecosystem ecology to advance active subsidy investigations, make more accurate predictions of subsidy spatial distributions, and enable a mechanistic understanding of subsidy spatial distributions. We review selected quantitative techniques that could be used to accomplish integration and lead to novel insights. The ultimate objective for these types of studies is predictions of subsidy spatial distributions from characteristics of the subsidy and the movement strategy employed by animals that transport subsidies. These advances will be critical in informing the management of ecosystem services, species conservation and ecosystem degradation related to active subsidies. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  15. Above-bottom biomass retrieval of aquatic plants with regression models and SfM data acquired by a UAV platform - A case study in Wild Duck Lake Wetland, Beijing, China

    NASA Astrophysics Data System (ADS)

    Jing, Ran; Gong, Zhaoning; Zhao, Wenji; Pu, Ruiliang; Deng, Lei

    2017-12-01

    Above-bottom biomass (ABB) is considered as an important parameter for measuring the growth status of aquatic plants, and is of great significance for assessing health status of wetland ecosystems. In this study, Structure from Motion (SfM) technique was used to rebuild the study area with high overlapped images acquired by an unmanned aerial vehicle (UAV). We generated orthoimages and SfM dense point cloud data, from which vegetation indices (VIs) and SfM point cloud variables including average height (HAVG), standard deviation of height (HSD) and coefficient of variation of height (HCV) were extracted. These VIs and SfM point cloud variables could effectively characterize the growth status of aquatic plants, and thus they could be used to develop a simple linear regression model (SLR) and a stepwise linear regression model (SWL) with field measured ABB samples of aquatic plants. We also utilized a decision tree method to discriminate different types of aquatic plants. The experimental results indicated that (1) the SfM technique could effectively process high overlapped UAV images and thus be suitable for the reconstruction of fine texture feature of aquatic plant canopy structure; and (2) an SWL model based on point cloud variables: HAVG, HSD, HCV and two VIs: NGRDI, ExGR as independent variables has produced the best predictive result of ABB of aquatic plants in the study area, with a coefficient of determination of 0.84 and a relative root mean square error of 7.13%. In this analysis, a novel method for the quantitative inversion of a growth parameter (i.e., ABB) of aquatic plants in wetlands was demonstrated.

  16. Evaluation of the Environmental DNA Method for Estimating Distribution and Biomass of Submerged Aquatic Plants

    PubMed Central

    Matsuhashi, Saeko; Doi, Hideyuki; Fujiwara, Ayaka; Watanabe, Sonoko; Minamoto, Toshifumi

    2016-01-01

    The environmental DNA (eDNA) method has increasingly been recognized as a powerful tool for monitoring aquatic animal species; however, its application for monitoring aquatic plants is limited. To evaluate eDNA analysis for estimating the distribution of aquatic plants, we compared its estimated distributions with eDNA analysis, visual observation, and past distribution records for the submerged species Hydrilla verticillata. Moreover, we conducted aquarium experiments using H. verticillata and Egeria densa and analyzed the relationships between eDNA concentrations and plant biomass to investigate the potential for biomass estimation. The occurrences estimated by eDNA analysis closely corresponded to past distribution records, and eDNA detections were more frequent than visual observations, indicating that the method is potentially more sensitive. The results of the aquarium experiments showed a positive relationship between plant biomass and eDNA concentration; however, the relationship was not always significant. The eDNA concentration peaked within three days of the start of the experiment in most cases, suggesting that plants do not release constant amounts of DNA. These results showed that eDNA analysis can be used for distribution surveys, and has the potential to estimate the biomass of aquatic plants. PMID:27304876

  17. Evaluation of the Environmental DNA Method for Estimating Distribution and Biomass of Submerged Aquatic Plants.

    PubMed

    Matsuhashi, Saeko; Doi, Hideyuki; Fujiwara, Ayaka; Watanabe, Sonoko; Minamoto, Toshifumi

    2016-01-01

    The environmental DNA (eDNA) method has increasingly been recognized as a powerful tool for monitoring aquatic animal species; however, its application for monitoring aquatic plants is limited. To evaluate eDNA analysis for estimating the distribution of aquatic plants, we compared its estimated distributions with eDNA analysis, visual observation, and past distribution records for the submerged species Hydrilla verticillata. Moreover, we conducted aquarium experiments using H. verticillata and Egeria densa and analyzed the relationships between eDNA concentrations and plant biomass to investigate the potential for biomass estimation. The occurrences estimated by eDNA analysis closely corresponded to past distribution records, and eDNA detections were more frequent than visual observations, indicating that the method is potentially more sensitive. The results of the aquarium experiments showed a positive relationship between plant biomass and eDNA concentration; however, the relationship was not always significant. The eDNA concentration peaked within three days of the start of the experiment in most cases, suggesting that plants do not release constant amounts of DNA. These results showed that eDNA analysis can be used for distribution surveys, and has the potential to estimate the biomass of aquatic plants.

  18. An overview of animal models of pain: disease models and outcome measures

    PubMed Central

    Gregory, N; Harris, AL; Robinson, CR; Dougherty, PM; Fuchs, PN; Sluka, KA

    2013-01-01

    Pain is ultimately a perceptual phenomenon. It is built from information gathered by specialized pain receptors in tissue, modified by spinal and supraspinal mechanisms, and integrated into a discrete sensory experience with an emotional valence in the brain. Because of this, studying intact animals allows the multidimensional nature of pain to be examined. A number of animal models have been developed, reflecting observations that pain phenotypes are mediated by distinct mechanisms. Animal models of pain are designed to mimic distinct clinical diseases to better evaluate underlying mechanisms and potential treatments. Outcome measures are designed to measure multiple parts of the pain experience including reflexive hyperalgesia measures, sensory and affective dimensions of pain and impact of pain on function and quality of life. In this review we discuss the common methods used for inducing each of the pain phenotypes related to clinical pain syndromes, as well as the main behavioral tests for assessing pain in each model. PMID:24035349

  19. Conspicuous and aposematic spines in the animal kingdom

    NASA Astrophysics Data System (ADS)

    Inbar, Moshe; Lev-Yadun, Simcha

    2005-04-01

    Spines serve as a common physical defence mechanism in both the plant and animal kingdoms. Here we argue that as in plants, defensive animal spines are often conspicuous (shape and colour) and should be considered aposematic. Conspicuous spines may evolve as signals or serve as a cue for potential predators. Spine conspicuousness in animals has evolved independently across and within phyla occupying aquatic and terrestrial ecosystems, indicating that this convergent phenomenon is highly adaptive. Still, many spines are cryptic, suggesting that conspicuity is not simply constrained by developmental factors such as differences in the chemical composition of the integument. Aposematism does not preclude the signalling role of conspicuous spines in the sexual arena.

  20. Using Remote Sensing Mapping and Growth Response to Environmental Variability to Aide Aquatic Invasive Plant Management

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Schlick, Greg; Genovese, Vanessa; Wilson, Kenneth D.

    2018-01-01

    Management of aquatic weeds in complex watersheds and river systems present many challenges to assessment, planning and implementation of management practices for floating and submerged aquatic invasive plants. The Delta Region Areawide Aquatic Weed Project (DRAAWP), a USDA sponsored area-wide project, is working to enhance planning, decision-making and operational efficiency in the California Sacramento-San Joaquin Delta. Satellite and airborne remote sensing are used map (area coverage and biomass density), direct operations, and assess management impacts on plant communities. Archived satellite records enable review of results following previous climate and management events and aide in developing long-term strategies. Examples of remote sensing aiding effectiveness of aquatic weed management will be discussed as well as areas for potential technological improvement. Modeling at local and watershed scales using the SWAT modeling tool provides insight into land-use effects on water quality (described by Zhang in same Symposium). Controlled environment growth studies have been conducted to quantify the growth response of invasive aquatic plants to water quality and other environmental factors. Environmental variability occurs across a range of time scales from long-term climate and seasonal trends to short-term water flow mediated variations. Response time for invasive species response are examined at time scales of weeks, day, and hours using a combination of study duration and growth assessment techniques to assess water quality, temperature (air and water), nitrogen, phosphorus, and light effects. These provide response parameters for plant growth models in response to the variation and interact with management and economic models associated with aquatic weed management. Plant growth models are to be informed by remote sensing and applied spatially across the Delta to balance location and type of aquatic plant, growth response to altered environments and

  1. [Application of animal models in gingival retraction experimental curriculum].

    PubMed

    Cai, He; Yang, Shu-ying; Zeng, Yong-xiang; Qin, Han; Hu, Shan-shan; Wang, Jian

    2016-02-01

    To introduce a teaching method for gingival retraction, and evaluate its efficacy for implementation into experimental curricula. First, two kinds of animal models using pigs and cows (below 6 months of age) were established. Twenty-two experienced prosthodontists were then asked to apply gingival retraction on each animal model and evaluate the biofidelity of the 2 models' dento-gingival environment. The data was analyzed with SPSS19.0 software package for paired t test.Then, eighty pre-internship students were randomly divided into 2 groups. Besides the traditional teaching (lecture-based teaching), the experimental group (group A) also had access to skill training (using animal models to practice gingival retraction), while the control group (group B) only used the traditional teaching modality. All students' performance in gingival retraction and impression taking were evaluated in their internship. The data was analyzed with SPSS19.0 software package for Chi-square test. Both pig and cow's dento-gingival environment were similar to that of human being, and there was no significant difference between the two models'biofidelities (P>0.05). In addition, both the effect of gingival retraction and the quality of impression in group A were significantly better than those in group B (P<0.05). Compared with the traditional strategy,practising gingival retraction on animal models can offer greater opportunities for skill development,and be implemented for a wider range of applications.

  2. Animal models to study the pathogenesis of human and animal Clostridium perfringens infections.

    PubMed

    Uzal, Francisco A; McClane, Bruce A; Cheung, Jackie K; Theoret, James; Garcia, Jorge P; Moore, Robert J; Rood, Julian I

    2015-08-31

    The most common animal models used to study Clostridium perfringens infections in humans and animals are reviewed here. The classical C. perfringens-mediated histotoxic disease of humans is clostridial myonecrosis or gas gangrene and the use of a mouse myonecrosis model coupled with genetic studies has contributed greatly to our understanding of disease pathogenesis. Similarly, the use of a chicken model has enhanced our understanding of type A-mediated necrotic enteritis in poultry and has led to the identification of NetB as the primary toxin involved in disease. C. perfringens type A food poisoning is a highly prevalent bacterial illness in the USA and elsewhere. Rabbits and mice are the species most commonly used to study the action of enterotoxin, the causative toxin. Other animal models used to study the effect of this toxin are rats, non-human primates, sheep and cattle. In rabbits and mice, CPE produces severe necrosis of the small intestinal epithelium along with fluid accumulation. C. perfringens type D infection has been studied by inoculating epsilon toxin (ETX) intravenously into mice, rats, sheep, goats and cattle, and by intraduodenal inoculation of whole cultures of this microorganism in mice, sheep, goats and cattle. Molecular Koch's postulates have been fulfilled for enterotoxigenic C. perfringens type A in rabbits and mice, for C. perfringens type A necrotic enteritis and gas gangrene in chickens and mice, respectively, for C. perfringens type C in mice, rabbits and goats, and for C. perfringens type D in mice, sheep and goats. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Animal models to study the pathogenesis of human and animal Clostridium perfringens infections

    PubMed Central

    Uzal, Francisco A.; McClane, Bruce A.; Cheung, Jackie K.; Theoret, James; Garcia, Jorge P.; Moore, Robert J.; Rood, Julian I.

    2016-01-01

    The most common animal models used to study Clostridium perfringens infections in humans and animals are reviewed here. The classical C. perfringens-mediated histotoxic disease of humans is clostridial myonecrosis or gas gangrene and the use of a mouse myonecrosis model coupled with genetic studies has contributed greatly to our understanding of disease pathogenesis. Similarly, the use of a chicken model has enhanced our understanding of type A-mediated necrotic enteritis in poultry and has led to the identification of NetB as the primary toxin involved in disease. C. perfringens type A food poisoning is a highly prevalent bacterial illness in the USA and elsewhere. Rabbits and mice are the species most commonly used to study the action of enterotoxin, the causative toxin. Other animal models used to study the effect of this toxin are rats, non-human primates, sheep and cattle. In rabbits and mice, CPE produces severe necrosis of the small intestinal epithelium along with fluid accumulation. C. perfringens type D infection has been studied by inoculating epsilon toxin (ETX) intravenously into mice, rats, sheep, goats and cattle, and by intraduodenal inoculation of whole cultures of this microorganism in mice, sheep, goats and cattle. Molecular Koch's postulates have been fulfilled for enterotoxigenic C. perfringens type A in rabbits and mice, for C. perfringens type A necrotic enteritis and gas gangrene in chickens and mice, respectively, for C. perfringens type C in mice, rabbits and goats, and for C. perfringens type D in mice, sheep and goats. PMID:25770894

  4. Towards an animal model of food addiction.

    PubMed

    de Jong, Johannes W; Vanderschuren, Louk J M J; Adan, Roger A H

    2012-01-01

    The dramatically increasing prevalence of obesity, associated with potentially life-threatening health problems, including cardiovascular diseases and type II diabetes, poses an enormous public health problem. It has been proposed that the obesity epidemic can be explained by the concept of 'food addiction'. In this review we focus on possible similarities between binge eating disorder (BED), which is highly prevalent in the obese population, and drug addiction. Indeed, both behavioral and neural similarities between addiction and BED have been demonstrated. Behavioral similarities are reflected in the overlap in DSM-IV criteria for drug addiction with the (suggested) criteria for BED and by food addiction-like behavior in animals after prolonged intermittent access to palatable food. Neural similarities include the overlap in brain regions involved in food and drug craving. Decreased dopamine D2 receptor availability in the striatum has been found in animal models of binge eating, after cocaine self-administration in animals as well as in drug addiction and obesity in humans. To further explore the neurobiological basis of food addiction, it is essential to have an animal model to test the addictive potential of palatable food. A recently developed animal model for drug addiction involves three behavioral characteristics that are based on the DSM-IV criteria: i) extremely high motivation to obtain the drug, ii) difficulty in limiting drug seeking even in periods of explicit non-availability, iii) continuation of drug-seeking despite negative consequences. Indeed, it has been shown that a subgroup of rats, after prolonged cocaine self-administration, scores positive on these three criteria. If food possesses addictive properties, then food-addicted rats should also meet these criteria while searching for and consuming food. In this review we discuss evidence from literature regarding food addiction-like behavior. We also suggest future experiments that could

  5. Animal model for hepatitis C virus infection.

    PubMed

    Tsukiyama-Kohara, Kyoko; Kohara, Michinori

    2015-01-01

    Hepatitis C virus (HCV) infects more than 170 million people in the world and chronic HCV infection develops into cirrhosis and hepatocellular carcinoma (HCC). Recently, the effective compounds have been approved for HCV treatment, the protease inhibitor and polymerase inhibitor (direct acting antivirals; DAA). DAA-based therapy enabled to cure from HCV infection. However, development of new drug and vaccine is still required because of the generation of HCV escape mutants from DAA, development of HCC after treatment of DAA, and the high cost of DAA. In order to develop new anti-HCV drug and vaccine, animal infection model of HCV is essential. In this manuscript, we would like to introduce the history and the current status of the development of HCV animal infection model.

  6. Animal models of contraception: utility and limitations

    PubMed Central

    Liechty, Emma R; Bergin, Ingrid L; Bell, Jason D

    2015-01-01

    Appropriate animal modeling is vital for the successful development of novel contraceptive devices. Advances in reproductive biology have identified novel pathways for contraceptive intervention. Here we review species-specific anatomic and physiologic considerations impacting preclinical contraceptive testing, including efficacy testing, mechanistic studies, device design, and modeling off-target effects. Emphasis is placed on the use of nonhuman primate models in contraceptive device development. PMID:29386922

  7. Characterization factors for thermal pollution in freshwater aquatic environments.

    PubMed

    Verones, Francesca; Hanafiah, Marlia Mohd; Pfister, Stephan; Huijbregts, Mark A J; Pelletier, Gregory J; Koehler, Annette

    2010-12-15

    To date the impact of thermal emissions has not been addressed in life cycle assessment despite the narrow thermal tolerance of most aquatic species. A method to derive characterization factors for the impact of cooling water discharges on aquatic ecosystems was developed which uses space and time explicit integration of fate and effects of water temperature changes. The fate factor is calculated with a 1-dimensional steady-state model and reflects the residence time of heat emissions in the river. The effect factor specifies the loss of species diversity per unit of temperature increase and is based on a species sensitivity distribution of temperature tolerance intervals for various aquatic species. As an example, time explicit characterization factors were calculated for the cooling water discharge of a nuclear power plant in Switzerland, quantifying the impact on aquatic ecosystems of the rivers Aare and Rhine. The relative importance of the impact of these cooling water discharges was compared with other impacts in life cycle assessment. We found that thermal emissions are relevant for aquatic ecosystems compared to other stressors, such as chemicals and nutrients. For the case of nuclear electricity investigated, thermal emissions contribute between 3% and over 90% to Ecosystem Quality damage.

  8. Animal models for bone tissue engineering and modelling disease

    PubMed Central

    Griffin, Michelle

    2018-01-01

    ABSTRACT Tissue engineering and its clinical application, regenerative medicine, are instructing multiple approaches to aid in replacing bone loss after defects caused by trauma or cancer. In such cases, bone formation can be guided by engineered biodegradable and nonbiodegradable scaffolds with clearly defined architectural and mechanical properties informed by evidence-based research. With the ever-increasing expansion of bone tissue engineering and the pioneering research conducted to date, preclinical models are becoming a necessity to allow the engineered products to be translated to the clinic. In addition to creating smart bone scaffolds to mitigate bone loss, the field of tissue engineering and regenerative medicine is exploring methods to treat primary and secondary bone malignancies by creating models that mimic the clinical disease manifestation. This Review gives an overview of the preclinical testing in animal models used to evaluate bone regeneration concepts. Immunosuppressed rodent models have shown to be successful in mimicking bone malignancy via the implantation of human-derived cancer cells, whereas large animal models, including pigs, sheep and goats, are being used to provide an insight into bone formation and the effectiveness of scaffolds in induced tibial or femoral defects, providing clinically relevant similarity to human cases. Despite the recent progress, the successful translation of bone regeneration concepts from the bench to the bedside is rooted in the efforts of different research groups to standardise and validate the preclinical models for bone tissue engineering approaches. PMID:29685995

  9. Simple models for studying complex spatiotemporal patterns of animal behavior

    NASA Astrophysics Data System (ADS)

    Tyutyunov, Yuri V.; Titova, Lyudmila I.

    2017-06-01

    Minimal mathematical models able to explain complex patterns of animal behavior are essential parts of simulation systems describing large-scale spatiotemporal dynamics of trophic communities, particularly those with wide-ranging species, such as occur in pelagic environments. We present results obtained with three different modelling approaches: (i) an individual-based model of animal spatial behavior; (ii) a continuous taxis-diffusion-reaction system of partial-difference equations; (iii) a 'hybrid' approach combining the individual-based algorithm of organism movements with explicit description of decay and diffusion of the movement stimuli. Though the models are based on extremely simple rules, they all allow description of spatial movements of animals in a predator-prey system within a closed habitat, reproducing some typical patterns of the pursuit-evasion behavior observed in natural populations. In all three models, at each spatial position the animal movements are determined by local conditions only, so the pattern of collective behavior emerges due to self-organization. The movement velocities of animals are proportional to the density gradients of specific cues emitted by individuals of the antagonistic species (pheromones, exometabolites or mechanical waves of the media, e.g., sound). These cues play a role of taxis stimuli: prey attract predators, while predators repel prey. Depending on the nature and the properties of the movement stimulus we propose using either a simplified individual-based model, a continuous taxis pursuit-evasion system, or a little more detailed 'hybrid' approach that combines simulation of the individual movements with the continuous model describing diffusion and decay of the stimuli in an explicit way. These can be used to improve movement models for many species, including large marine predators.

  10. COASTAL SUBMERGED VEGETATION: AQUATIC HABITAT RESEARCH

    EPA Science Inventory

    Aquatic vegetation is one of the most widespread and important types of aquatic habitat, in part because of the exceptional productivity of the plants. Aquatic vegetation also strongly influences local physical and chemical habitat conditions of significance to fish and shellfis...

  11. Experimental Diabetes Mellitus in Different Animal Models

    PubMed Central

    Al-awar, Amin; Veszelka, Médea; Szűcs, Gergő; Attieh, Zouhair; Murlasits, Zsolt; Török, Szilvia; Pósa, Anikó; Varga, Csaba

    2016-01-01

    Animal models have historically played a critical role in the exploration and characterization of disease pathophysiology and target identification and in the evaluation of novel therapeutic agents and treatments in vivo. Diabetes mellitus disease, commonly known as diabetes, is a group of metabolic disorders characterized by high blood glucose levels for a prolonged time. To avoid late complications of diabetes and related costs, primary prevention and early treatment are therefore necessary. Due to its chronic symptoms, new treatment strategies need to be developed, because of the limited effectiveness of the current therapies. We overviewed the pathophysiological features of diabetes in relation to its complications in type 1 and type 2 mice along with rat models, including Zucker Diabetic Fatty (ZDF) rats, BB rats, LEW 1AR1/-iddm rats, Goto-Kakizaki rats, chemically induced diabetic models, and Nonobese Diabetic mouse, and Akita mice model. The advantages and disadvantages that these models comprise were also addressed in this review. This paper briefly reviews the wide pathophysiological and molecular mechanisms associated with type 1 and type 2 diabetes, particularly focusing on the challenges associated with the evaluation and predictive validation of these models as ideal animal models for preclinical assessments and discovering new drugs and therapeutic agents for translational application in humans. PMID:27595114

  12. Modelling gait transition in two-legged animals

    NASA Astrophysics Data System (ADS)

    Pinto, Carla M. A.; Santos, Alexandra P.

    2011-12-01

    The study of locomotor patterns has been a major research goal in the last decades. Understanding how intralimb and interlimb coordination works out so well in animals' locomotion is a hard and challenging task. Many models have been proposed to model animal's rhythms. These models have also been applied to the control of rhythmic movements of adaptive legged robots, namely biped, quadruped and other designs. In this paper we study gait transition in a central pattern generator (CPG) model for bipeds, the 4-cells model. This model is proposed by Golubitsky, Stewart, Buono and Collins and is studied further by Pinto and Golubitsky. We briefly resume the work done by Pinto and Golubitsky. We compute numerically gait transition in the 4-cells CPG model for bipeds. We use Morris-Lecar equations and Wilson-Cowan equations as the internal dynamics for each cell. We also consider two types of coupling between the cells: diffusive and synaptic. We obtain secondary gaits by bifurcation of primary gaits, by varying the coupling strengths. Nevertheless, some bifurcating branches could not be obtained, emphasizing the fact that despite analytically those bifurcations exist, finding them is a hard task and requires variation of other parameters of the equations. We note that the type of coupling did not influence the results.

  13. Aquatic Insects and their Potential to Contribute to the Diet of the Globally Expanding Human Population.

    PubMed

    Williams, D Dudley; Williams, Siân S

    2017-07-21

    Of the 30 extant orders of true insect, 12 are considered to be aquatic, or semiaquatic, in either some or all of their life stages. Out of these, six orders contain species engaged in entomophagy, but very few are being harvested effectively, leading to over-exploitation and local extinction. Examples of existing practices are given, ranging from the extremes of including insects (e.g., dipterans) in the dietary cores of many indigenous peoples to consumption of selected insects, by a wealthy few, as novelty food (e.g., caddisflies). The comparative nutritional worth of aquatic insects to the human diet and to domestic animal feed is examined. Questions are raised as to whether natural populations of aquatic insects can yield sufficient biomass to be of practicable and sustained use, whether some species can be brought into high-yield cultivation, and what are the requirements and limitations involved in achieving this?

  14. Aquatic Insects and their Potential to Contribute to the Diet of the Globally Expanding Human Population

    PubMed Central

    Williams, D. Dudley; Williams, Siân S.

    2017-01-01

    Of the 30 extant orders of true insect, 12 are considered to be aquatic, or semiaquatic, in either some or all of their life stages. Out of these, six orders contain species engaged in entomophagy, but very few are being harvested effectively, leading to over-exploitation and local extinction. Examples of existing practices are given, ranging from the extremes of including insects (e.g., dipterans) in the dietary cores of many indigenous peoples to consumption of selected insects, by a wealthy few, as novelty food (e.g., caddisflies). The comparative nutritional worth of aquatic insects to the human diet and to domestic animal feed is examined. Questions are raised as to whether natural populations of aquatic insects can yield sufficient biomass to be of practicable and sustained use, whether some species can be brought into high-yield cultivation, and what are the requirements and limitations involved in achieving this? PMID:28754025

  15. Dystrophin-deficient large animal models: translational research and exon skipping

    PubMed Central

    Yu, Xinran; Bao, Bo; Echigoya, Yusuke; Yokota, Toshifumi

    2015-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disorder caused by mutations in the dystrophin gene. Affecting approximately 1 in 3,600-9337 boys, DMD patients exhibit progressive muscle degeneration leading to fatality as a result of heart or respiratory failure. Despite the severity and prevalence of the disease, there is no cure available. While murine models have been successfully used in illustrating the mechanisms of DMD, their utility in DMD research is limited due to their mild disease phenotypes such as lack of severe skeletal muscle and cardiac symptoms. To address the discrepancy between the severity of disease displayed by murine models and human DMD patients, dystrophin-deficient dog models with a splice site mutation in intron 6 were established. Examples of these are Golden Retriever muscular dystrophy and beagle-based Canine X-linked muscular dystrophy. These large animal models are widely employed in therapeutic DMD research due to their close resemblance to the severity of human patient symptoms. Recently, genetically tailored porcine models of DMD with deleted exon 52 were developed by our group and others, and can potentially act as a new large animal model. While therapeutic outcomes derived from these large animal models can be more reliably extrapolated to DMD patients, a comprehensive understanding of these models is still needed. This paper will discuss recent progress and future directions of DMD studies with large animal models such as canine and porcine models. PMID:26396664

  16. Animal models of hospital-acquired pneumonia: current practices and future perspectives

    PubMed Central

    Bielen, Kenny; ’S Jongers, Bart; Malhotra-Kumar, Surbhi; Jorens, Philippe G.; Goossens, Herman

    2017-01-01

    Lower respiratory tract infections are amongst the leading causes of mortality and morbidity worldwide. Especially in hospital settings and more particularly in critically ill ventilated patients, nosocomial pneumonia is one of the most serious infectious complications frequently caused by opportunistic pathogens. Pseudomonas aeruginosa is one of the most important causes of ventilator-associated pneumonia as well as the major cause of chronic pneumonia in cystic fibrosis patients. Animal models of pneumonia allow us to investigate distinct types of pneumonia at various disease stages, studies that are not possible in patients. Different animal models of pneumonia such as one-hit acute pneumonia models, ventilator-associated pneumonia models and biofilm pneumonia models associated with cystic fibrosis have been extensively studied and have considerably aided our understanding of disease pathogenesis and testing and developing new treatment strategies. The present review aims to guide investigators in choosing appropriate animal pneumonia models by describing and comparing the relevant characteristics of each model using P. aeruginosa as a model etiology for hospital-acquired pneumonia. Key to establishing and studying these animal models of infection are well-defined end-points that allow precise monitoring and characterization of disease development that could ultimately aid in translating these findings to patient populations in order to guide therapy. In this respect, and discussed here, is the development of humanized animal models of bacterial pneumonia that could offer unique advantages to study bacterial virulence factor expression and host cytokine production for translational purposes. PMID:28462212

  17. Animal models for microbicide studies.

    PubMed

    Veazey, Ronald S; Shattock, Robin J; Klasse, Per Johan; Moore, John P

    2012-01-01

    There have been encouraging recent successes in the development of safe and effective topical microbicides to prevent vaginal or rectal HIV-1 transmission, based on the use of anti-retroviral drugs. However, much work remains to be accomplished before a microbicide becomes a standard element of prevention science strategies. Animal models should continue to play an important role in pre-clinical testing, with emphasis on safety, pharmacokinetic and efficacy testing.

  18. Animal models of cannabinoid reward

    PubMed Central

    Panlilio, Leigh V; Justinova, Zuzana; Goldberg, Steven R

    2010-01-01

    The endogenous cannabinoid system is involved in numerous physiological and neuropsychological functions. Medications that target this system hold promise for the treatment of a wide variety of disorders. However, as reward is one of the most prominent of these functions, medications that activate this system must be evaluated for abuse potential. Meanwhile, cannabis is already being used chronically by millions of people, many of whom eventually seek treatment for cannabis dependence. Therefore, there is a need for procedures that can be used to: (i) better understand the mechanisms of cannabinoid reward; (ii) evaluate the abuse potential of new medications; and (iii) evaluate the effectiveness of medications developed for treating cannabis dependence. Animal models of cannabinoid reward provide a means of accomplishing these goals. In this review, we briefly describe and evaluate these models, their advantages and their shortcomings. Special emphasis is placed on intravenous cannabinoid self-administration in squirrel monkeys, a valid, reliable and flexible model that we have developed over the past decade. Although the conditions under which cannabinoid drugs have rewarding effects may be more restricted than with other drugs of abuse such as cocaine and heroin, work with these models indicates that cannabinoid reward involves similar brain mechanisms and produces the same kinds of reward-related behaviour. By continuing to use these animal models as tools in the development of new medications, it should be possible to take advantage of the potential benefits provided by the endocannabinoid system while minimizing its potential for harm. This article is part of a themed issue on Cannabinoids. To view the editorial for this themed issue visit http://dx.doi.org/10.1111/j.1476-5381.2010.00831.x PMID:20590560

  19. Establishment of a tumor neovascularization animal model with biomaterials in rabbit corneal pouch.

    PubMed

    Chu, Yu-Ping; Li, Hong-Chuan; Ma, Ling; Xia, Yang

    2018-06-01

    The present animal model of tumor neovascularization most often used by researchers is zebrafish. For studies on human breast cancer cell neovascularization, a new animal model was established to enable a more convenient study of tumor neovascularization. A sodium alginate-gelatin blend gel system was used to design the new animal model. The model was established using rabbit corneal pouch implantation. Then, the animal model was validated by human breast cancer cell lines MCF-7-Kindlin-2 and MCF-7-CMV. The experiment intuitively observed the relationship between tumor and neovascularization, and demonstrated the advantages of this animal model in the study of tumor neovascularization. The use of sodium alginate-gelatin blends to establish tumor neovascularization in a rabbit corneal pouch is a novel and ideal method for the study of neovascularization. It may be a better animal model for expanding the research in this area. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. A capture-recapture survival analysis model for radio-tagged animals

    USGS Publications Warehouse

    Pollock, K.H.; Bunck, C.M.; Winterstein, S.R.; Chen, C.-L.; North, P.M.; Nichols, J.D.

    1995-01-01

    In recent years, survival analysis of radio-tagged animals has developed using methods based on the Kaplan-Meier method used in medical and engineering applications (Pollock et al., 1989a,b). An important assumption of this approach is that all tagged animals with a functioning radio can be relocated at each sampling time with probability 1. This assumption may not always be reasonable in practice. In this paper, we show how a general capture-recapture model can be derived which allows for some probability (less than one) for animals to be relocated. This model is not simply a Jolly-Seber model because it is possible to relocate both dead and live animals, unlike when traditional tagging is used. The model can also be viewed as a generalization of the Kaplan-Meier procedure, thus linking the Jolly-Seber and Kaplan-Meier approaches to survival estimation. We present maximum likelihood estimators and discuss testing between submodels. We also discuss model assumptions and their validity in practice. An example is presented based on canvasback data collected by G. M. Haramis of Patuxent Wildlife Research Center, Laurel, Maryland, USA.

  1. Aquatics for Disabled Persons.

    ERIC Educational Resources Information Center

    Priest, Louise

    1983-01-01

    Rising energy costs and staff reductions pose problems for those who direct aquatic programs for the disabled. At the same time, aquatics programs for the disabled are increasing in number, broadening in scope, and offering new opportunities for research and development of materials. (PP)

  2. The Various Roles of Animal Models in Understanding Human Development

    ERIC Educational Resources Information Center

    Gottlieb, Gilbert; Lickliter, Robert

    2004-01-01

    In this article, the authors take a very conservative view of the contribution of animal models to an understanding of human development. We do not think that homologies can be readily documented with even our most closely related relatives' behavior and psychological functioning. The major contribution of animal models is their provision of food…

  3. Animal models in epigenetic research: institutional animal care and use committee considerations across the lifespan.

    PubMed

    Harris, Craig

    2012-01-01

    The rapid expansion and evolution of epigenetics as a core scientific discipline have raised new questions about how endogenous and environmental factors can inform the mechanisms through which biological form and function are regulated. Existing and proposed animal models used for epigenetic research have targeted a myriad of health and disease endpoints that may be acute, chronic, and transgenerational in nature. Initiating events and outcomes may extend across the entire lifespan to elicit unanticipated phenotypes that are of particular concern to institutional animal care and use committees (IACUCs). The dynamics and plasticity of epigenetic mechanisms produce effects and consequences that are manifest differentially within discreet spatial and temporal contexts, including prenatal development, stem cells, assisted reproductive technologies, production of sexual dimorphisms, senescence, and others. Many dietary and nutritional interventions have also been shown to have a significant impact on biological functions and disease susceptibilities through altered epigenetic programming. The environmental, chemical, toxic, therapeutic, and psychosocial stressors used in animal studies to elicit epigenetic changes can become extreme and should raise IACUC concerns for the well-being and proper care of all research animals involved. Epigenetics research is rapidly becoming an integral part of the search for mechanisms in every major area of biomedical and behavioral research and will foster the continued development of new animal models. From the IACUC perspective, care must be taken to acknowledge the particular needs and concerns created by superimposition of epigenetic mechanisms over diverse fields of investigation to ensure the proper care and use of animals without impeding scientific progress.

  4. Are animal models useful for studying human disc disorders/degeneration?

    PubMed Central

    Eisenstein, Stephen M.; Ito, Keita; Little, Christopher; Kettler, A. Annette; Masuda, Koichi; Melrose, James; Ralphs, Jim; Stokes, Ian; Wilke, Hans Joachim

    2007-01-01

    Intervertebral disc (IVD) degeneration is an often investigated pathophysiological condition because of its implication in causing low back pain. As human material for such studies is difficult to obtain because of ethical and government regulatory restriction, animal tissue, organs and in vivo models have often been used for this purpose. However, there are many differences in cell population, tissue composition, disc and spine anatomy, development, physiology and mechanical properties, between animal species and human. Both naturally occurring and induced degenerative changes may differ significantly from those seen in humans. This paper reviews the many animal models developed for the study of IVD degeneration aetiopathogenesis and treatments thereof. In particular, the limitations and relevance of these models to the human condition are examined, and some general consensus guidelines are presented. Although animal models are invaluable to increase our understanding of disc biology, because of the differences between species, care must be taken when used to study human disc degeneration and much more effort is needed to facilitate research on human disc material. PMID:17632738

  5. Microscopic transport model animation visualisation on KML base

    NASA Astrophysics Data System (ADS)

    Yatskiv, I.; Savrasovs, M.

    2012-10-01

    By reading classical literature devoted to the simulation theory it could be found that one of the greatest possibilities of simulation is the ability to present processes inside the system by animation. This gives to the simulation model additional value during presentation of simulation results for the public and authorities who are not familiar enough with simulation. That is why most of universal and specialised simulation tools have the ability to construct 2D and 3D representation of the model. Usually the development of such representation could take much time and there must be put a lot forces into creating an adequate 3D representation of the model. For long years such well-known microscopic traffic flow simulation software tools as VISSIM, AIMSUN and PARAMICS have had a possibility to produce 2D and 3D animation. But creation of realistic 3D model of the place where traffic flows are simulated, even in these professional software tools it is a hard and time consuming action. The goal of this paper is to describe the concepts of use the existing on-line geographical information systems for visualisation of animation produced by simulation software. For demonstration purposes the following technologies and tools have been used: PTV VISION VISSIM, KML and Google Earth.

  6. Aquatic macroinvertebrates associated with Eichhornia azurea (Swartz) Kunth and relationships with abiotic factors in marginal lentic ecosystems (São Paulo, Brazil).

    PubMed

    Silva, C V; Henry, R

    2013-02-01

    Marginal lakes are characterised by their having high biological diversity due to the presence of aquatic macrophytes in their coastal zones, providing habitats for refuge and food for animal community members. Among the fauna components associated with macrophytes, aquatic macroinvertebrates are important because they are an energy source for predators and fish. In six lakes and two different seasons (March and August 2009), the ecological attributes of aquatic macroinvertebrate community associated with Eichhornia azurea were compared and the controlling environmental factors were identified. Since the attributes of macroinvertebrate community are strictly associated with abiotic variables of each distinct habitat, our hypothesis was that each site associated with the same floating aquatic macrophyte (E. azurea) should have a typical composition and density of organisms. We identified 50 taxa of macroinvertebrates, with greater taxa richness for aquatic insects (37 taxa) divided into eight orders; the order Diptera being the most abundant in the two study periods. On the other hand, higher values of total taxa richness were recorded in August. Dissolved oxygen and pH presented the greatest number of significant positive correlations with the different taxa. The animals most frequently collected in the six lakes in March and August 2009 were Hirudinea, Oligochaeta, Hydrachnidae, Conchostraca, Ostracoda, Noteridae, Ceratopogonidae, Chironomidae, Culicidae, Caenidae, Pleidae, Aeshnidae, Libellulidae, Coenagrionidae and Nematoda. Only densities of Trichoptera, Ostracoda and Conchostraca presented the highest significant differences between lakes in both study periods and considering the composition of macroinvertebrates no significant differences were registered for macroinvertebrate composition.

  7. Bone Inner Structure Suggests Increasing Aquatic Adaptations in Desmostylia (Mammalia, Afrotheria)

    PubMed Central

    Hayashi, Shoji; Houssaye, Alexandra; Nakajima, Yasuhisa; Chiba, Kentaro; Ando, Tatsuro; Sawamura, Hiroshi; Inuzuka, Norihisa; Kaneko, Naotomo; Osaki, Tomohiro

    2013-01-01

    Background The paleoecology of desmostylians has been discussed controversially with a general consensus that desmostylians were aquatic or semi-aquatic to some extent. Bone microanatomy can be used as a powerful tool to infer habitat preference of extinct animals. However, bone microanatomical studies of desmostylians are extremely scarce. Methodology/Principal Findings We analyzed the histology and microanatomy of several desmostylians using thin-sections and CT scans of ribs, humeri, femora and vertebrae. Comparisons with extant mammals allowed us to better understand the mode of life and evolutionary history of these taxa. Desmostylian ribs and long bones generally lack a medullary cavity. This trait has been interpreted as an aquatic adaptation among amniotes. Behemotops and Paleoparadoxia show osteosclerosis (i.e. increase in bone compactness), and Ashoroa pachyosteosclerosis (i.e. combined increase in bone volume and compactness). Conversely, Desmostylus differs from these desmostylians in displaying an osteoporotic-like pattern. Conclusions/Significance In living taxa, bone mass increase provides hydrostatic buoyancy and body trim control suitable for poorly efficient swimmers, while wholly spongy bones are associated with hydrodynamic buoyancy control in active swimmers. Our study suggests that all desmostylians had achieved an essentially, if not exclusively, aquatic lifestyle. Behemotops, Paleoparadoxia and Ashoroa are interpreted as shallow water swimmers, either hovering slowly at a preferred depth, or walking on the bottom, and Desmostylus as a more active swimmer with a peculiar habitat and feeding strategy within Desmostylia. Therefore, desmostylians are, with cetaceans, the second mammal group showing a shift from bone mass increase to a spongy inner organization of bones in their evolutionary history. PMID:23565143

  8. The Use of Animal Models for Stroke Research: A Review

    PubMed Central

    Casals, Juliana B; Pieri, Naira CG; Feitosa, Matheus LT; Ercolin, Anna CM; Roballo, Kelly CS; Barreto, Rodrigo SN; Bressan, Fabiana F; Martins, Daniele S; Miglino, Maria A; Ambrósio, Carlos E

    2011-01-01

    Stroke has been identified as the second leading cause of death worldwide. Stroke is a focal neurologic deficit caused by a change in cerebral circulation. The use of animal models in recent years has improved our understanding of the physiopathology of this disease. Rats and mice are the most commonly used stroke models, but the demand for larger models, such as rabbits and even nonhuman primates, is increasing so as to better understand the disease and its treatment. Although the basic mechanisms of stroke are nearly identical among mammals, we here discuss the differences between the human encephalon and various animals. In addition, we compare common surgical techniques used to induce animal models of stroke. A more complete anatomic knowledge of the cerebral vessels of various model species is needed to develop more reliable models for objective results that improve knowledge of the pathology of stroke in both human and veterinary medicine. PMID:22330245

  9. Animal models and conserved processes

    PubMed Central

    2012-01-01

    Background The concept of conserved processes presents unique opportunities for using nonhuman animal models in biomedical research. However, the concept must be examined in the context that humans and nonhuman animals are evolved, complex, adaptive systems. Given that nonhuman animals are examples of living systems that are differently complex from humans, what does the existence of a conserved gene or process imply for inter-species extrapolation? Methods We surveyed the literature including philosophy of science, biological complexity, conserved processes, evolutionary biology, comparative medicine, anti-neoplastic agents, inhalational anesthetics, and drug development journals in order to determine the value of nonhuman animal models when studying conserved processes. Results Evolution through natural selection has employed components and processes both to produce the same outcomes among species but also to generate different functions and traits. Many genes and processes are conserved, but new combinations of these processes or different regulation of the genes involved in these processes have resulted in unique organisms. Further, there is a hierarchy of organization in complex living systems. At some levels, the components are simple systems that can be analyzed by mathematics or the physical sciences, while at other levels the system cannot be fully analyzed by reducing it to a physical system. The study of complex living systems must alternate between focusing on the parts and examining the intact whole organism while taking into account the connections between the two. Systems biology aims for this holism. We examined the actions of inhalational anesthetic agents and anti-neoplastic agents in order to address what the characteristics of complex living systems imply for inter-species extrapolation of traits and responses related to conserved processes. Conclusion We conclude that even the presence of conserved processes is insufficient for inter

  10. Developmental Aquatics: Assessment and Instructional Programming.

    ERIC Educational Resources Information Center

    Doremus, Wendy A.

    1992-01-01

    This article provides an assessment tool and guidelines for creating instructional programing in aquatic skills development for children with disabilities functioning below levels required for most adapted beginning aquatics programs. It covers individualized goals and objectives, adjustment to the water, and specific aquatic skills. (DB)

  11. Crazy like a fox. Validity and ethics of animal models of human psychiatric disease.

    PubMed

    Rollin, Michael D H; Rollin, Bernard E

    2014-04-01

    Animal models of human disease play a central role in modern biomedical science. Developing animal models for human mental illness presents unique practical and philosophical challenges. In this article we argue that (1) existing animal models of psychiatric disease are not valid, (2) attempts to model syndromes are undermined by current nosology, (3) models of symptoms are rife with circular logic and anthropomorphism, (4) any model must make unjustified assumptions about subjective experience, and (5) any model deemed valid would be inherently unethical, for if an animal adequately models human subjective experience, then there is no morally relevant difference between that animal and a human.

  12. An Overview of Animal Models for Arthropod-Borne Viruses.

    PubMed

    Reynolds, Erin S; Hart, Charles E; Hermance, Meghan E; Brining, Douglas L; Thangamani, Saravanan

    2017-06-01

    Arthropod-borne viruses (arboviruses) have continued to emerge in recent years, posing a significant health threat to millions of people worldwide. The majority of arboviruses that are pathogenic to humans are transmitted by mosquitoes and ticks, but other types of arthropod vectors can also be involved in the transmission of these viruses. To alleviate the health burdens associated with arbovirus infections, it is necessary to focus today's research on disease control and therapeutic strategies. Animal models for arboviruses are valuable experimental tools that can shed light on the pathophysiology of infection and will enable the evaluation of future treatments and vaccine candidates. Ideally an animal model will closely mimic the disease manifestations observed in humans. In this review, we outline the currently available animal models for several viruses vectored by mosquitoes, ticks, and midges, for which there are no standardly available vaccines or therapeutics.

  13. Tissue Engineering in Animal Models for Urinary Diversion: A Systematic Review

    PubMed Central

    Sloff, Marije; de Vries, Rob; Geutjes, Paul; IntHout, Joanna; Ritskes-Hoitinga, Merel

    2014-01-01

    Tissue engineering and regenerative medicine (TERM) approaches may provide alternatives for gastrointestinal tissue in urinary diversion. To continue to clinically translatable studies, TERM alternatives need to be evaluated in (large) controlled and standardized animal studies. Here, we investigated all evidence for the efficacy of tissue engineered constructs in animal models for urinary diversion. Studies investigating this subject were identified through a systematic search of three different databases (PubMed, Embase and Web of Science). From each study, animal characteristics, study characteristics and experimental outcomes for meta-analyses were tabulated. Furthermore, the reporting of items vital for study replication was assessed. The retrieved studies (8 in total) showed extreme heterogeneity in study design, including animal models, biomaterials and type of urinary diversion. All studies were feasibility studies, indicating the novelty of this field. None of the studies included appropriate control groups, i.e. a comparison with the classical treatment using GI tissue. The meta-analysis showed a trend towards successful experimentation in larger animals although no specific animal species could be identified as the most suitable model. Larger animals appear to allow a better translation to the human situation, with respect to anatomy and surgical approaches. It was unclear whether the use of cells benefits the formation of a neo urinary conduit. The reporting of the methodology and data according to standardized guidelines was insufficient and should be improved to increase the value of such publications. In conclusion, animal models in the field of TERM for urinary diversion have probably been chosen for reasons other than their predictive value. Controlled and comparative long term animal studies, with adequate methodological reporting are needed to proceed to clinical translatable studies. This will aid in good quality research with the reduction in

  14. Dynamic Shade and Irradiance Simulation of Aquatic ...

    EPA Pesticide Factsheets

    Penumbra is a landscape shade and irradiance simulation model that simulates how solar energy spatially and temporally interacts within dynamic ecosystems such as riparian zones, forests, and other terrain that cast topological shadows. Direct and indirect solar energy accumulates across landscapes and is the main energy driver for increasing aquatic and landscape temperatures at both local and holistic scales. Landscape disturbances such as landuse change, clear cutting, and fire can cause significant variations in the resulting irradiance reaching particular locations. Penumbra can simulate solar angles and irradiance at definable temporal grains as low as one minute while simulating landscape shadowing up to an entire year. Landscapes can be represented at sub-meter resolutions with appropriate spatial data inputs, such as field data or elevation and surface object heights derived from light detection and ranging (LiDAR) data. This work describes Penumbra’s framework and methodology, external model integration capability, and appropriate model application for a variety of watershed restoration project types. First, an overview of Penumbra’s framework reveals what this model adds to the existing ecological modeling domain. Second, Penumbra’s stand-alone and integration modes are explained and demonstrated. Stand-alone modeling results are showcased within the 3-D visualization tool VISTAS (VISualizing Terrestrial-Aquatic Systems), which fluently summariz

  15. Animal models to improve our understanding and treatment of suicidal behavior.

    PubMed

    Gould, T D; Georgiou, P; Brenner, L A; Brundin, L; Can, A; Courtet, P; Donaldson, Z R; Dwivedi, Y; Guillaume, S; Gottesman, I I; Kanekar, S; Lowry, C A; Renshaw, P F; Rujescu, D; Smith, E G; Turecki, G; Zanos, P; Zarate, C A; Zunszain, P A; Postolache, T T

    2017-04-11

    Worldwide, suicide is a leading cause of death. Although a sizable proportion of deaths by suicide may be preventable, it is well documented that despite major governmental and international investments in research, education and clinical practice suicide rates have not diminished and are even increasing among several at-risk populations. Although nonhuman animals do not engage in suicidal behavior amenable to translational studies, we argue that animal model systems are necessary to investigate candidate endophenotypes of suicidal behavior and the neurobiology underlying these endophenotypes. Animal models are similarly a critical resource to help delineate treatment targets and pharmacological means to improve our ability to manage the risk of suicide. In particular, certain pathophysiological pathways to suicidal behavior, including stress and hypothalamic-pituitary-adrenal axis dysfunction, neurotransmitter system abnormalities, endocrine and neuroimmune changes, aggression, impulsivity and decision-making deficits, as well as the role of critical interactions between genetic and epigenetic factors, development and environmental risk factors can be modeled in laboratory animals. We broadly describe human biological findings, as well as protective effects of medications such as lithium, clozapine, and ketamine associated with modifying risk of engaging in suicidal behavior that are readily translatable to animal models. Endophenotypes of suicidal behavior, studied in animal models, are further useful for moving observed associations with harmful environmental factors (for example, childhood adversity, mechanical trauma aeroallergens, pathogens, inflammation triggers) from association to causation, and developing preventative strategies. Further study in animals will contribute to a more informed, comprehensive, accelerated and ultimately impactful suicide research portfolio.

  16. Animal models to improve our understanding and treatment of suicidal behavior

    PubMed Central

    Gould, T D; Georgiou, P; Brenner, L A; Brundin, L; Can, A; Courtet, P; Donaldson, Z R; Dwivedi, Y; Guillaume, S; Gottesman, I I; Kanekar, S; Lowry, C A; Renshaw, P F; Rujescu, D; Smith, E G; Turecki, G; Zanos, P; Zarate, C A; Zunszain, P A; Postolache, T T

    2017-01-01

    Worldwide, suicide is a leading cause of death. Although a sizable proportion of deaths by suicide may be preventable, it is well documented that despite major governmental and international investments in research, education and clinical practice suicide rates have not diminished and are even increasing among several at-risk populations. Although nonhuman animals do not engage in suicidal behavior amenable to translational studies, we argue that animal model systems are necessary to investigate candidate endophenotypes of suicidal behavior and the neurobiology underlying these endophenotypes. Animal models are similarly a critical resource to help delineate treatment targets and pharmacological means to improve our ability to manage the risk of suicide. In particular, certain pathophysiological pathways to suicidal behavior, including stress and hypothalamic–pituitary–adrenal axis dysfunction, neurotransmitter system abnormalities, endocrine and neuroimmune changes, aggression, impulsivity and decision-making deficits, as well as the role of critical interactions between genetic and epigenetic factors, development and environmental risk factors can be modeled in laboratory animals. We broadly describe human biological findings, as well as protective effects of medications such as lithium, clozapine, and ketamine associated with modifying risk of engaging in suicidal behavior that are readily translatable to animal models. Endophenotypes of suicidal behavior, studied in animal models, are further useful for moving observed associations with harmful environmental factors (for example, childhood adversity, mechanical trauma aeroallergens, pathogens, inflammation triggers) from association to causation, and developing preventative strategies. Further study in animals will contribute to a more informed, comprehensive, accelerated and ultimately impactful suicide research portfolio. PMID:28398339

  17. Congenital ureteropelvic junction obstruction: human disease and animal models

    PubMed Central

    Klein, Julie; Gonzalez, Julien; Miravete, Mathieu; Caubet, Cécile; Chaaya, Rana; Decramer, Stéphane; Bandin, Flavio; Bascands, Jean-Loup; Buffin-Meyer, Bénédicte; Schanstra, Joost P

    2011-01-01

    Ureteropelvic junction (UPJ) obstruction is the most frequently observed cause of obstructive nephropathy in children. Neonatal and foetal animal models have been developed that mimic closely what is observed in human disease. The purpose of this review is to discuss how obstructive nephropathy alters kidney histology and function and describe the molecular mechanisms involved in the progression of the lesions, including inflammation, proliferation/apoptosis, renin–angiotensin system activation and fibrosis, based on both human and animal data. Also we propose that during obstructive nephropathy, hydrodynamic modifications are early inducers of the tubular lesions, which are potentially at the origin of the pathology. Finally, an important observation in animal models is that relief of obstruction during kidney development has important effects on renal function later in adult life. A major short-coming is the absence of data on the impact of UPJ obstruction on long-term adult renal function to elucidate whether these animal data are also valid in humans. PMID:20681980

  18. The Effect of Aquatic Intervention on the Gross Motor Function and Aquatic Skills in Children with Cerebral Palsy

    PubMed Central

    Dimitrijević, Lidija; Aleksandrović, Marko; Madić, Dejan; Okičić, Tomislav; Radovanović, Dragan; Daly, Daniel

    2012-01-01

    The objective of this study was to investigate the effect of an aquatic intervention on the gross motor function and aquatic skills of children with cerebral palsy (CP). Twenty-nine children with CP, aged 5 to 14, were recruited. Fourteen children completed an aquatic intervention (EG), and 13 children served as controls (CG). Two participants dropped out due to events (illness) unrelated to the intervention. The aquatic intervention lasted 6 weeks (2 sessions per week at 55 minutes per session) with a follow-up period of 3 weeks. The outcome measures were the Gross Motor Function Measure (GMFM) for motor function and the Water Orientation Test Alyn 2 (WOTA 2) for aquatic skills assessment. A significant improvement was observed in the secondary assessment of GMFM and WOTA 2. In contrast to the aquatic skills improvement, the GMFM change was not maintained at follow-up. Our results indicate that children with CP can improve gross motor function on dry land and aquatic skills with a 6-week water intervention. The intervention period was too short for sustainable improvement in dry-land motor skills after intervention (follow-up), but time was sufficient to achieve sustainable improvements in aquatic skills. PMID:23487257

  19. The effect of aquatic intervention on the gross motor function and aquatic skills in children with cerebral palsy.

    PubMed

    Dimitrijević, Lidija; Aleksandrović, Marko; Madić, Dejan; Okičić, Tomislav; Radovanović, Dragan; Daly, Daniel

    2012-05-01

    The objective of this study was to investigate the effect of an aquatic intervention on the gross motor function and aquatic skills of children with cerebral palsy (CP). Twenty-nine children with CP, aged 5 to 14, were recruited. Fourteen children completed an aquatic intervention (EG), and 13 children served as controls (CG). Two participants dropped out due to events (illness) unrelated to the intervention. The aquatic intervention lasted 6 weeks (2 sessions per week at 55 minutes per session) with a follow-up period of 3 weeks. The outcome measures were the Gross Motor Function Measure (GMFM) for motor function and the Water Orientation Test Alyn 2 (WOTA 2) for aquatic skills assessment. A significant improvement was observed in the secondary assessment of GMFM and WOTA 2. In contrast to the aquatic skills improvement, the GMFM change was not maintained at follow-up. Our results indicate that children with CP can improve gross motor function on dry land and aquatic skills with a 6-week water intervention. The intervention period was too short for sustainable improvement in dry-land motor skills after intervention (follow-up), but time was sufficient to achieve sustainable improvements in aquatic skills.

  20. Animal models of serotonergic psychedelics.

    PubMed

    Hanks, James B; González-Maeso, Javier

    2013-01-16

    The serotonin 5-HT(2A) receptor is the major target of psychedelic drugs such as lysergic acid diethylamide (LSD), mescaline, and psilocybin. Serotonergic psychedelics induce profound effects on cognition, emotion, and sensory processing that often seem uniquely human. This raises questions about the validity of animal models of psychedelic drug action. Nonetheless, recent findings suggest behavioral abnormalities elicited by psychedelics in rodents that predict such effects in humans. Here we review the behavioral effects induced by psychedelic drugs in rodent models, discuss the translational potential of these findings, and define areas where further research is needed to better understand the molecular mechanisms and neuronal circuits underlying their neuropsychological effects.