Science.gov

Sample records for aquatic animal models

  1. Pharmacokinetic modeling in aquatic animals. 1. Models and concepts

    USGS Publications Warehouse

    Barron, M.G.; Stehly, Guy R.; Hayton, W.L.

    1990-01-01

    While clinical and toxicological applications of pharmacokinetics have continued to evolve both conceptually and experimentally, pharmacokinetics modeling in aquatic animals has not progressed accordingly. In this paper we present methods and concepts of pharmacokinetic modeling in aquatic animals using multicompartmental, clearance-based, non-compartmental and physiologically-based pharmacokinetic models. These models should be considered as alternatives to traditional approaches, which assume that the animal acts as a single homogeneous compartment based on apparent monoexponential elimination.

  2. Aquatic Animal Models – Not Just for Ecotox Anymore

    EPA Science Inventory

    A wide range of internationally harmonized toxicity test guidelines employing aquatic animal models have been established for regulatory use. For fish alone, there are over a dozen internationally harmonized toxicity test guidelines that have been, or are being, validated. To dat...

  3. Environmental enrichment for aquatic animals.

    PubMed

    Corcoran, Mike

    2015-05-01

    Aquatic animals are the most popular pets in the United States based on the number of owned pets. They are popular display animals and are increasingly used in research settings. Enrichment of captive animals is an important element of zoo and laboratory medicine. The importance of enrichment for aquatic animals has been slower in implementation. For a long time, there was debate over whether or not fish were able to experience pain or form long-term memories. As that debate has reduced and the consciousness of more aquatic animals is accepted, the need to discuss enrichment for these animals has increased.

  4. Tool use by aquatic animals

    PubMed Central

    Mann, Janet; Patterson, Eric M.

    2013-01-01

    Tool-use research has focused primarily on land-based animals, with less consideration given to aquatic animals and the environmental challenges and conditions they face. Here, we review aquatic tool use and examine the contributing ecological, physiological, cognitive and social factors. Tool use among aquatic animals is rare but taxonomically diverse, occurring in fish, cephalopods, mammals, crabs, urchins and possibly gastropods. While additional research is required, the scarcity of tool use can likely be attributable to the characteristics of aquatic habitats, which are generally not conducive to tool use. Nonetheless, studying tool use by aquatic animals provides insights into the conditions that promote and inhibit tool-use behaviour across biomes. Like land-based tool users, aquatic animals tend to find tools on the substrate and use tools during foraging. However, unlike on land, tool users in water often use other animals (and their products) and water itself as a tool. Among sea otters and dolphins, the two aquatic tool users studied in greatest detail, some individuals specialize in tool use, which is vertically socially transmitted possibly because of their long dependency periods. In all, the contrasts between aquatic- and land-based tool users enlighten our understanding of the adaptive value of tool-use behaviour. PMID:24101631

  5. SYNOPSIS OF HISTOTECHNIQUES FOR AQUATIC ANIMALS

    EPA Science Inventory

    This synopsis provides an overview of the necropsy, fixation, trimming, and processing of tissues from aquatic organisms for examination using light microscopy. The handling of animals, their tissues, uses of knives, and processing chemicals will be covered. Understanding the his...

  6. [Aquatic animals of medical importance in Brazil].

    PubMed

    Haddad Junior, Vidal

    2003-01-01

    The injuries caused by venomous and poisonous aquatic animals may provoke important morbidity in the victim. The cnidarians (jellyfishes, especially cubomedusas and Portuguese-Man-of-War) caused nearly 25% of 236 accidents by marine animals, while sea urchins were responsible for about 50% and catfish, stingrays and scorpionfish nearly 25%). In freshwater, stingrays and catfish cause injuries with a very similar mechanism to the poisoning and the effects of the toxins of marine species. In a series of about 200 injuries observed among freshwater fishermen, nearly 40% were caused by freshwater catfish, 5% freshwater stingrays and 55% by traumatogenic fish, such as piranhas and traíras. The author presents the aquatic animals that cause injuries to humans in Brazil, the clinical aspects of the envenoming and the first measures for the control of the severe pain observed mainly in the accidents caused by cnidarians and venomous fishes.

  7. Science to support aquatic animal health

    USGS Publications Warehouse

    Purcell, Maureen K.; Harris, M. Camille

    2016-10-18

    Healthy aquatic ecosystems are home to a diversity of plants, invertebrates, fish and wildlife. Aquatic animal populations face unprecedented threats to their health and survival from climate change, water shortages, habitat alteration, invasive species and environmental contaminants. These environmental stressors can directly impact the prevalence and severity of disease in aquatic populations. For example, periodic fish kills in the upper Chesapeake Bay Watershed are associated with many different opportunistic pathogens that proliferate in stressed fish populations. An estimated 80 percent of endangered juvenile Puget Sound steelhead trout die within two weeks of entering the marine environment, and a role for disease in these losses is being investigated. The introduction of viral hemorrhagic septicemia virus (VHSV) into the Great Lakes—a fishery worth an estimated 7 billion dollars annually—resulted in widespread fish die-offs and virus detections in 28 different fish species. Millions of dying sea stars along the west coast of North America have led to investigations into sea star wasting disease. U.S. Geological Survey (USGS) scientists are assisting managers with these issues through ecological investigations of aquatic animal diseases, field surveillance, and research to promote the development of mitigation strategies.

  8. Aquatic animal nutrition for the exotic animal practitioner.

    PubMed

    Corcoran, Mike; Roberts-Sweeney, Helen

    2014-09-01

    Fish are the most popular pets in the United States based on numbers and high-quality medical care is coming to be expected by owners. Increasing numbers of veterinarians are responding to this need and providing veterinary care for aquatic animals. Part of good medical care for exotic animals is advice on husbandry, including nutrition. However, there are numerous missing areas of research for the nutritional needs of many ornamental fish species. What is known for food species can be combined with what is known for ornamental species to give nutritional advice to owners to maximize health in these animals.

  9. Induced pluripotent stem cell technology and aquatic animal species.

    PubMed

    Temkin, Alexis M; Spyropoulos, Demetri D

    2014-06-01

    Aquatic animal species are the overall leaders in the scientific investigation of tough but important global health issues, including environmental toxicants and climate change. Historically, aquatic animal species also stand at the forefront of experimental biology, embryology and stem cell research. Over the past decade, intensive and high-powered investigations principally involving mouse and human cells have brought the generation and study of induced pluripotent stem cells (iPSCs) to a level that facilitates widespread use in a spectrum of species. A review of key features of these investigations is presented here as a primer for the use of iPSC technology to enhance ongoing aquatic animal species studies. iPSC and other cutting edge technologies create the potential to study individuals from "the wild" closer to the level of investigation applied to sophisticated inbred mouse models. A wide variety of surveys and hypothesis-driven investigations can be envisioned using this new capability, including comparisons of organism-specific development and exposure response and the testing of fundamental dogmas established using inbred mice. However, with these new capabilities, also come new criteria for rigorous baseline assessments and testing. Both the methods for inducing pluripotency and the source material can negatively impact iPSC quality and bourgeoning applications. Therefore, more rigorous strategies not required for inbred mouse models will have to be implemented to approach global health issues using individuals from "the wild" for aquatic animal species.

  10. Aquatic Plants and Animals as Ecosystem Engineers

    NASA Astrophysics Data System (ADS)

    Wotton, R. S.

    2005-05-01

    Studies on aquatic plants and animals focus on population dynamics, the structure of communities and the part played by organisms in food webs and other ecosystem processes. As Lawton and Jones point out in "Linking Species and Ecosystems", less attention is given to the role of organisms as ecosystem engineers, modifying the environment in which they live. Yet plants can have a profound effect on their surroundings, altering flow patterns and trapping large amounts of organic and inorganic material. Animals also affect aquatic ecosystems in many ways, both in building structures such as tubes and shelters, and in their feeding. For example, detritus feeders often produce large numbers of faecal pellets (and pseudofaeces in bivalves) and these are very different in size to the materials ingested. Pellets are deposited in masses over the bed of streams, lakes and the sea and therefore effect a translocation of nutrients. The action of plants and animals in altering their environment is likely to be a significant process in all water bodies, from both small to large scale.

  11. Development of aquatic animal experiment facility, Aquatic Habitat (AQH)

    NASA Astrophysics Data System (ADS)

    Uchida, S.; Kono, Y.; Sakimura, T.; Nishikawa, W.; Fujimoto, N.; Murakami, K.; Nakamura, T.

    We have been performing technical studies to develop aquatic animal experiment facility, Aquatic Habitat (AQH), for both of short-term experiments in the Space Shuttle middeck and long-term experiments in the Space Station including the Centrifuge Accommodation Module (CAM). The AQH will have the capabilities to accommodate three-generations of small freshwater fish (medaka and zebrafish) and egg through metamorphosis of amphibian (African clawed frog). For these purposes, the AQH will have the following brand-new capabilities that the previous facilities have never had; 90days experiment duration, automatic feeding according to specimen types and their developmental stages, separation of generations for fish, specimen sample collection in various developmental stages, air/water interface control for amphibian, continuous monitoring of specimen behavior even in dark condition, and so on. We have already performed preliminary breeding tests for medaka and zebrafish with a breeding system prototype. Their mating behavior was performed successfully in the small closed chamber and the hatched larvae grew and started spawning on the 45-47th day after hatching. These results demonstrated that three generational breeding of medaka and zebrafish within 90days would be possible based on this breeding system prototype. Also, we have developed almost of the above new mechanisms, that is, an automatic feeding system, an egg separation mechanism for fish, an air stabilizer to control air/water interface, and a continuous specimen monitoring system through light/dark cycle. Based on these results, we have manufactured a BBM of AQH water circulation system and performed biological compatibility tests as a next step. For African clawed frog breeding, some problems have been revealed through the preliminary tests with the breeding system prototype. Currently, we are performing the investigations to resolve the problems and preparing to proceed to the next step.

  12. Biotechnology and DNA vaccines for aquatic animals

    USGS Publications Warehouse

    Kurath, G.

    2008-01-01

    Biotechnology has been used extensively in the development of vaccines for aquaculture. Modern molecular methods such as polymerase chain reaction (PCR), cloning and microarray analysis have facilitated antigen discovery, construction of novel candidate vaccines, and assessments of vaccine efficacy, mode of action, and host response. This review focuses on DNA vaccines for finfish to illustrate biotechnology applications in this field. Although DNA vaccines for fish rhabdoviruses continue to show the highest efficacy, DNA vaccines for several other viral and bacterial fish pathogens have now been proven to provide significant protection against pathogen challenge. Studies of the fish rhabdovirus DNA vaccines have elucidated factors that affect DNA vaccine efficacy as well as the nature of the fish innate and adaptive immune responses to DNA vaccines. As tools for managing aquatic animal disease emergencies, DNA vaccines have advantages in speed, flexibility, and safety, and one fish DNA vaccine has been licensed.

  13. Successful aquatic animal disease emergency programmes

    USGS Publications Warehouse

    Hastein, T.; Hill, B.J.; Winton, J.R.

    1999-01-01

    The third part provides a historical review of the build-up of infectious salmon anaemia (ISA) in Norway and the attempts to control the disease using legal measures in the absence of detailed knowledge of the aetiology, epizootiology, pathogenesis, etc. of the disease. The measures taken show that the spread of ISA can be controlled using restrictions on the movement of fish, disinfection procedures, etc. However, acceptance and understanding of the chosen strategy by the fish farmers is a pre-requisite to reach that goal. Finally, the paper summarises future needs for national and international legislation, including the development of standard approaches for control, the creation of appropriate infrastructures and a better understanding of the epidemiology of aquatic animal diseases.

  14. Biotechnology and DNA vaccines for aquatic animals.

    PubMed

    Kurath, G

    2008-04-01

    Biotechnology has been used extensively in the development of vaccines for aquaculture. Modern molecular methods such as polymerase chain reaction (PCR), cloning and microarray analysis have facilitated antigen discovery, construction of novel candidate vaccines, and assessments of vaccine efficacy, mode of action, and host response. This review focuses on DNA vaccines for finfish to illustrate biotechnology applications in this field. Although DNA vaccines for fish rhabdoviruses continue to show the highest efficacy, DNA vaccines for several other viral and bacterial fish pathogens have now been proven to provide significant protection against pathogen challenge. Studies of the fish rhabdovirus DNA vaccines have elucidated factors that affect DNA vaccine efficacy as well as the nature of the fish innate and adaptive immune responses to DNA vaccines. As tools for managing aquatic animal disease emergencies, DNA vaccines have advantages in speed, flexibility, and safety, and one fish DNA vaccine has been licensed.

  15. Virtual ethology of aquatic animal heterogeneous behaviours

    NASA Astrophysics Data System (ADS)

    Lim, ChenKim; Tan, KianLam

    2016-08-01

    In the virtual world, the simulation of flocking behaviour has been actively investigated since the 1980 through the boid models. However, ethology is a niche study of animal behaviour from the biological perspective that is rarely instil in the interest of the younger learners nowadays. The keystone of the research is to be able to disseminate the study of animal behaviours through the boid model with the aid of technology. Through the simulation, complex movement of animal behaviours are reproduced based on the extension of basic behaviours of boid algorithm. The techniques here are to (i) Analyse a high-level behavioural framework of motion in the animal behaviours and (ii) Evolves particles to other animal representations to portray more real-time examples of steering behaviours. Although the generality of the results is limited by the number of case study, it also supports the hypothesis that interactive simulation system of virtual ethology can aid the improvement of animal studies.

  16. Low-cost aquatic lab animal holding system.

    PubMed

    Hohn, Claudia; Petrie-Hanson, Lora

    2007-01-01

    We have constructed a low-cost aquatic animal holding system that provides an alternative to expensive, commercially available systems. Our flow-through system is especially useful for programs that are limited in space and funding. The easy assembly and maintenance of the system are advantages for the researchers who may be unfamiliar with aquatic animals.

  17. The AquaDEB project: Physiological flexibility of aquatic animals analysed with a generic dynamic energy budget model (phase II)

    NASA Astrophysics Data System (ADS)

    Alunno-Bruscia, Marianne; van der Veer, Henk W.; Kooijman, Sebastiaan A. L. M.

    2011-11-01

    This second special issue of the Journal of Sea Research on development and applications of Dynamic Energy Budget (DEB) theory concludes the European Research Project AquaDEB (2007-2011). In this introductory paper we summarise the progress made during the running time of this 5 years' project, present context for the papers in this volume and discuss future directions. The main scientific objectives in AquaDEB were (i) to study and compare the sensitivity of aquatic species (mainly molluscs and fish) to environmental variability within the context of DEB theory for metabolic organisation, and (ii) to evaluate the inter-relationships between different biological levels (individual, population, ecosystem) and temporal scales (life cycle, population dynamics, evolution). AquaDEB phase I focussed on quantifying bio-energetic processes of various aquatic species ( e.g. molluscs, fish, crustaceans, algae) and phase II on: (i) comparing of energetic and physiological strategies among species through the DEB parameter values and identifying the factors responsible for any differences in bioenergetics and physiology; (ii) considering different scenarios of environmental disruption (excess of nutrients, diffuse or massive pollution, exploitation by man, climate change) to forecast effects on growth, reproduction and survival of key species; (iii) scaling up the models for a few species from the individual level up to the level of evolutionary processes. Apart from the three special issues in the Journal of Sea Research — including the DEBIB collaboration (see vol. 65 issue 2), a theme issue on DEB theory appeared in the Philosophical Transactions of the Royal Society B (vol 365, 2010); a large number of publications were produced; the third edition of the DEB book appeared (2010); open-source software was substantially expanded (over 1000 functions); a large open-source systematic collection of ecophysiological data and DEB parameters has been set up; and a series of DEB

  18. Assessment of the safety of aquatic animal commodities for international trade: the OIE Aquatic Animal Health code.

    PubMed

    Oidtmann, B; Johnston, C; Klotins, K; Mylrea, G; Van, P T; Cabot, S; Martin, P Rosado; Ababouch, L; Berthe, F

    2013-02-01

    Trading of aquatic animals and aquatic animal products has become increasingly globalized during the last couple of decades. This commodity trade has increased the risk for the spread of aquatic animal pathogens. The World Organisation for Animal Health (OIE) is recognized as the international standard-setting organization for measures relating to international trade in animals and animal products. In this role, OIE has developed the Aquatic Animal Health Code, which provides health measures to be used by competent authorities of importing and exporting countries to avoid the transfer of agents pathogenic for animals or humans, whilst avoiding unjustified sanitary barriers. An OIE ad hoc group developed criteria for assessing the safety of aquatic animals or aquatic animal products for any purpose from a country, zone or compartment not declared free from a given disease 'X'. The criteria were based on the absence of the pathogenic agent in the traded commodity or inactivation of the pathogenic agent by the commercial processing used to produce the commodity. The group also developed criteria to assess the safety of aquatic animals or aquatic animal products for retail trade for human consumption from potentially infected areas. Such commodities were assessed considering the form and presentation of the product, the expected volume of waste tissues generated by the consumer and the likely presence of viable pathogenic agent in the waste. The ad hoc group applied the criteria to commodities listed in the individual disease chapters of the Aquatic Animal Health Code (2008 edition). Revised lists of commodities for which no additional measures should be required by the importing countries regardless of the status for disease X of the exporting country were developed and adopted by the OIE World Assembly of Delegates in May 2011. The rationale of the criteria and their application will be explained and demonstrated using examples.

  19. NASDA aquatic animal experiment facilities for space shuttle and ISS

    NASA Astrophysics Data System (ADS)

    Uchida, Satoko; Masukawa, Mitsuyo; Kamigaichi, Shigeki

    National Space Development Agency of Japan (NASDA) has developed aquatic animal experiment facilities for NASA Space Shuttle use. Vestibular Function Experiment Unit (VFEU) was firstly designed and developed for physiological research using carp in Spacelab-J (SL-J, STS-47) mission. It was modified as Aquatic Animal Experiment Unit (AAEU) to accommodate small aquatic animals, such as medaka and newt, for second International Microgravity Laboratory (IML-2, STS-65) mission. Then, VFEU was improved to accommodate marine fish and to perform neurobiological experiment for Neurolab (STS-90) and STS-95 missions. We have also developed and used water purification system which was adapted to each facility. Based on these experiences of Space Shuttle missions, we are studying to develop advanced aquatic animal experiment facility for both Space Shuttle and International Space Station (ISS).

  20. NASDA aquatic animal experiment facilities for Space Shuttle.

    PubMed

    Sakimura, T; Suzuki, T; Matsubara, S; Uchida, S; Kato, M; Tanemura, R; Honda, S

    1999-12-01

    National Space Development Agency of Japan (NASDA) has been developed aquatic animal experiment facilities for space experiments using NASA Space Shuttle. Vestibular Function Experiment Unit (VFEU) has been firstly designed and developed for Spacelab-J mission (STS-47), and 8 days space experiment with carp has been performed. Following, the VFEU, Aquatic Animal Experiment Unit (AAEU) has been developed to accommodate small aquatic animals second International Microgravity Laboratory mission (IML-2, STS-65). Four kinds of space experiments with goldfish, medaka, newt, and newt eggs have been performed for 15 days mission duration. Then, VFEU has been improved to accommodate marine fish under low temperature condition for Neurolab (STS-90) and STS-95 missions. 17 days (STS-90) and 9 days (STS-95) experiments with oyster toadfish have been performed by using the VFEU. This report summarizes the outline of these aquatic animal experiment facilities.

  1. NASDA aquatic animal experiment facilities for Space Shuttle and ISS.

    PubMed

    Uchida, Satoko; Masukawa, Mitsuyo; Kamigaichi, Shigeki

    2002-01-01

    National Space Development Agency of Japan (NASDA) has developed aquatic animal experiment facilities for NASA Space Shuttle use. Vestibular Function Experiment Unit (VFEU) was firstly designed and developed for physiological research using carp in Spacelab-J (SL-J, STS-47) mission. It was modified as Aquatic Animal Experiment Unit (AAEU) to accommodate small aquatic animals, such as medaka and newt, for second International Microgravity Laboratory (IML-2, STS-65) mission. Then, VFEU was improved to accommodate marine fish and to perform neurobiological experiment for Neurolab (STS-90) and STS-95 missions. We have also developed and used water purification system which was adapted to each facility. Based on these experiences of Space Shuttle missions, we are studying to develop advanced aquatic animal experiment facility for both Space Shuttle and International Space Station (ISS).

  2. The application of risk analysis in aquatic animal health management.

    PubMed

    Peeler, E J; Murray, A G; Thebault, A; Brun, E; Giovaninni, A; Thrush, M A

    2007-09-14

    Risk analysis has only been regularly used in the management of aquatic animal health in recent years. The Agreement on the Application of Sanitary and Phytosanitary measures (SPS) stimulated the application of risk analysis to investigate disease risks associated with international trade (import risk analysis-IRA). A majority (9 of 17) of the risk analyses reviewed were IRA. The other major focus has been the parasite of Atlantic salmon--Gyrodactylus salaris. Six studies investigated the spread of this parasite, between countries, rivers and from farmed to wild stocks, and clearly demonstrated that risk analysis can support aquatic animal health policy development, from international trade and biosecurity to disease interaction between wild and farmed stocks. Other applications of risk analysis included the spread of vertically transmitted pathogens and disease emergence in aquaculture. The Covello-Merkhofer, risk analysis model was most commonly used and appears to be a flexible tool not only for IRA but also the investigation of disease spread in other contexts. The limitations of the identified risk assessments were discussed. A majority were qualitative, partly due to the lack of data for quantitative analysis, and this, it can be argued, constrained their usefulness for trade purposes (i.e. setting appropriate sanitary measures); in other instances, a qualitative result was found to be adequate for decision making. A lack of information about the disease hazards of the large number of fish species traded is likely to constrain quantitative analysis for a number of years. The consequence assessment element of a risk analysis was most likely to be omitted, or limited in scope and depth, rarely extending beyond examining the evidence of susceptibility of farmed and wild species to the identified hazard. The reasons for this are discussed and recommendations made to develop guidelines for a consistent, systematic and multi-disciplinary approach to consequence

  3. Role Models in Aquatic Occupations.

    ERIC Educational Resources Information Center

    Brown, Mabel C.

    1982-01-01

    Provided for each of 12 minority group role models in aquatic occupations are job responsibilities, educational requirements, comments on a typical day at the job, salary range, and recommendations for students wishing to enter the field described. (JN)

  4. Implications of aquatic animal health for human health.

    PubMed Central

    Dawe, C J

    1990-01-01

    Human health and aquatic animal health are organically related at three distinct interfaces. Aquatic animals serve as important contributors to the nutritional protein, lipid, and vitamin requirements of humans; as carriers and transmitters of many infectious and parasitic diseases to which humans are susceptible; and as indicators of toxic and carcinogenic substances that they can convey, in some part, from aquatic environments to man and other terrestrial animals. Transcending these relationships, but less visible and definable to many, is the role that aquatic animals play in the sustenance of our integrated planetary ecosystem. Up to the present, this ecosystem has been compatible with mankind's occupation of a niche within it at high but ultimately limited population levels. In the past century we have become clearly aware that human activities, particularly over-harvesting of aquatic animals together with chemical degradation of their habitats, can quite rapidly lead to perturbances that drastically shift aquatic ecosystems toward conditions of low productivity and impaired function as one of earth's vital organs. The negative values of aquatic animals as disease vectors are far outweighed by their positive values as nutritional sources and as sustainers of a relatively stable equilibrium in the global ecosystem. In the immediate future we can expect to see increased and improved monitoring of aquatic habitats to determine the extent to which aquatic animals cycle anthropogenic toxic and carcinogenic chemicals back to human consumers. In the long term, methods are particularly needed to assess the effects of these pollutants on reproductive success in aquatic communities and in human communities as well. As inputs of habitat-degrading substances change in quality and quantity, it becomes increasingly urgent to evaluate the consequences in advance, not in retrospect. A new, more realistic and comprehensive philosophy regarding aquatic environmental

  5. Recent applications of biotechnology to novel diagnostics for aquatic animals.

    PubMed

    Adams, A; Thompson, K D

    2008-04-01

    Improvement of the methods included in the World Organisation for Animal Health (OIE) Manual of Diagnostic Tests for Aquatic Animals and addition of novel techniques are dependent on the continual development and evaluation of both new and existing methods. Although conventional isolation and characterisation techniques for the diagnosis of many diseases still remain the methods of choice there is the potential to make significant progress in the development of rapid methods that will enhance the diagnosis of disease in aquatic animals. For example, serology, rapid kits based on immunochromatography, Luminex xMAP technology, adaptations of the polymerase chain reaction (PCR), polygenic sequencing and micro-array technology are all methods that merit validation. Each of the technologies has advantages and disadvantages that need to be considered. This is not a definitive list, and new methods being developed (or that are developed in the future) should continue to be validated if they provide potential benefit to the diagnosis of disease in aquatic animals.

  6. Aquatic animal resources in Prehistoric Aegean, Greece.

    PubMed

    Mylona, Dimitra

    2014-12-01

    This paper explores the early stages in the history of fishing in the Aegean Sea in Greece, and highlights its formative phases and its specific characteristics in different points in time. This is testified by various physical remains, such as fish bones, fishing tools, and representations in art, which are gathered in the course of archaeological research. The aquatic resources in the Aegean Sea have been exploited and managed for millennia by communities that lived near the water and often made a living from it. The earliest evidence for a systematic, intensive exploitation of marine resources in the Aegean Sea dates to the Mesolithic, eleven millennia ago. In the Neolithic period, the adoption of a sedentary, agro-pastoral way of life led to a reduction in the intensity of fishing and shellfish gathering. Its importance as an economic resource remained high only in certain regions of rich, eutrophic waters. In the Bronze Age, an era of social complexity and centralized economy, the exploitation of aquatic, mostly marine, resources became a complex, multi-faceted activity which involved subsistence, industry and ideology. The range of preferred fish and invertebrate species, the fishing technology, and the processing of fish and shellfish in order to produce elaborate foods or prestige items are all traceable aspects of the complex relationship between humans and the aquatic resources throughout the prehistory of fishing and shellfish gathering in the Aegean area. The broadening of collaboration between archaeology and physical sciences offers new means to explore these issues in a more thorough and nuanced manner.

  7. Transfer of Foreign DNA into Aquatic Animals by Electroporation

    NASA Astrophysics Data System (ADS)

    Chen, Thomas T.; Chen, Maria J.; Chiou, Tzu-Ting; Lu, J. K.

    Aquatic animals into which a foreign gene or a non-coding DNA fragment is artificially introduced and integrated in their genomes are called transgenic aquatic animals. Since 1985, a wide range of transgenic aquatic animal species have been produced mainly by microinjecting or electroporating homologous or heterologous transgenes into newly fertilized or unfertilized eggs and sometimes, sperm (for review, Chen and Powers, 1990; Hackett, 1993; Chiou et al., 2005). To produce a desired transgenic aquatic animal species, several factors should be considered. First, could the reproduction cycle of the aquatic animal species under consideration be completed in captivity? Second, a specific gene construct must be designed based on the special requirements of each study. For example, the gene construct may contain an open reading frame encoding a gene product of interest and regulatory elements that regulate the expression of the gene in a temporal, spatial and/or devel opmental manner. Third, an efficient method for delivering the transgene construct needs to be identified. Fourth, since not all instances of gene transfer are efficient, a screening method must be adopted for identifying transgenic individuals.

  8. Top-Down Proteomics and Farm Animal and Aquatic Sciences.

    PubMed

    Campos, Alexandre M O; de Almeida, André M

    2016-12-21

    Proteomics is a field of growing importance in animal and aquatic sciences. Similar to other proteomic approaches, top-down proteomics is slowly making its way within the vast array of proteomic approaches that researchers have access to. This opinion and mini-review article is dedicated to top-down proteomics and how its use can be of importance to animal and aquatic sciences. Herein, we include an overview of the principles of top-down proteomics and how it differs regarding other more commonly used proteomic methods, especially bottom-up proteomics. In addition, we provide relevant sections on how the approach was or can be used as a research tool and conclude with our opinions of future use in animal and aquatic sciences.

  9. Top-Down Proteomics and Farm Animal and Aquatic Sciences

    PubMed Central

    Campos, Alexandre M.O.; de Almeida, André M.

    2016-01-01

    Proteomics is a field of growing importance in animal and aquatic sciences. Similar to other proteomic approaches, top-down proteomics is slowly making its way within the vast array of proteomic approaches that researchers have access to. This opinion and mini-review article is dedicated to top-down proteomics and how its use can be of importance to animal and aquatic sciences. Herein, we include an overview of the principles of top-down proteomics and how it differs regarding other more commonly used proteomic methods, especially bottom-up proteomics. In addition, we provide relevant sections on how the approach was or can be used as a research tool and conclude with our opinions of future use in animal and aquatic sciences. PMID:28248248

  10. Cyanotoxins: Bioaccumulation and Effects on Aquatic Animals

    PubMed Central

    Ferrão-Filho, Aloysio da S.; Kozlowsky-Suzuki, Betina

    2011-01-01

    Cyanobacteria are photosynthetic prokaryotes with wide geographic distribution that can produce secondary metabolites named cyanotoxins. These toxins can be classified into three main types according to their mechanism of action in vertebrates: hepatotoxins, dermatotoxins and neurotoxins. Many studies on the effects of cyanobacteria and their toxins over a wide range of aquatic organisms, including invertebrates and vertebrates, have reported acute effects (e.g., reduction in survivorship, feeding inhibition, paralysis), chronic effects (e.g., reduction in growth and fecundity), biochemical alterations (e.g., activity of phosphatases, GST, AChE, proteases), and behavioral alterations. Research has also focused on the potential for bioaccumulation and transferring of these toxins through the food chain. Although the herbivorous zooplankton is hypothesized as the main target of cyanotoxins, there is not unquestionable evidence of the deleterious effects of cyanobacteria and their toxins on these organisms. Also, the low toxin burden in secondary consumers points towards biodilution of microcystins in the food web as the predominant process. In this broad review we discuss important issues on bioaccumulation and the effects of cyanotoxins, with emphasis on microcystins, as well as drawbacks and future needs in this field of research. PMID:22363248

  11. Large-Scale Environmental Influences on Aquatic Animal Health

    EPA Science Inventory

    In the latter portion of the 20th century, North America experienced numerous large-scale mortality events affecting a broad diversity of aquatic animals. Short-term forensic investigations of these events have sometimes characterized a causative agent or condition, but have rare...

  12. An Energy Harvesting Underwater Acoustic Transmitter for Aquatic Animals

    SciTech Connect

    Li, Huidong; Tian, Chuan; Lu, Jun; Myjak, Mitchell J.; Martinez, Jayson J.; Brown, Richard S.; Deng, Zhiqun Daniel

    2016-09-20

    This paper presents a self-powered underwater acoustic transmitter using a piezoelectric beam to harvest the mechanical energy from fish swimming. This transmitter does not require a battery and is demonstrated in live fish. It transmits an acoustic waveform as the implanted fish swims. It enables long-term monitoring of aquatic animals.

  13. An Energy Harvesting Underwater Acoustic Transmitter for Aquatic Animals

    PubMed Central

    Li, Huidong; Tian, Chuan; Lu, Jun; Myjak, Mitchell J.; Martinez, Jayson J.; Brown, Richard S.; Deng, Zhiqun Daniel

    2016-01-01

    Acoustic telemetry is the primary method to actively track aquatic animals for behavioral studies. However, the small storage capacities of the batteries used in the transmitters limit the time that the implanted animals can be studied. In this research, we developed and implemented a battery-free acoustic transmitter that uses a flexible piezoelectric beam to harvest energy from fish swimming as the power source. The transmitter sends out a unique identification code with a sufficiently strong signal (150 dB, ref: 1 μPa at 1 meter) that has a detection range of up to 100 meters. Two prototypes, 100 mm and 77 mm long, respectively, weighing only about 1 gram or less in air, were sub-dermally implanted in two species of live fish. Transmissions were successfully detected as the fish swam in a natural manner. This represents the first known implanted energy-harvesting transmitter demonstrated in vivo. Successful development of this transmitter greatly expands the potential for long-term studies of the behaviors of aquatic animals and for subsequently developing strategies to mitigate the environmental impacts of renewable energy systems. PMID:27647426

  14. An Energy Harvesting Underwater Acoustic Transmitter for Aquatic Animals

    NASA Astrophysics Data System (ADS)

    Li, Huidong; Tian, Chuan; Lu, Jun; Myjak, Mitchell J.; Martinez, Jayson J.; Brown, Richard S.; Deng, Zhiqun Daniel

    2016-09-01

    Acoustic telemetry is the primary method to actively track aquatic animals for behavioral studies. However, the small storage capacities of the batteries used in the transmitters limit the time that the implanted animals can be studied. In this research, we developed and implemented a battery-free acoustic transmitter that uses a flexible piezoelectric beam to harvest energy from fish swimming as the power source. The transmitter sends out a unique identification code with a sufficiently strong signal (150 dB, ref: 1 μPa at 1 meter) that has a detection range of up to 100 meters. Two prototypes, 100 mm and 77 mm long, respectively, weighing only about 1 gram or less in air, were sub-dermally implanted in two species of live fish. Transmissions were successfully detected as the fish swam in a natural manner. This represents the first known implanted energy-harvesting transmitter demonstrated in vivo. Successful development of this transmitter greatly expands the potential for long-term studies of the behaviors of aquatic animals and for subsequently developing strategies to mitigate the environmental impacts of renewable energy systems.

  15. Ohio Aquatic Gap Analysis-An Assessment of the Biodiversity and Conservation Status of Native Aquatic Animal Species

    USGS Publications Warehouse

    Covert, S. Alex; Kula, Stephanie P.; Simonson, Laura A.

    2007-01-01

    The goal of the GAP Analysis Program is to keep common species common by identifying those species and habitats that are not yet adequately represented in the existing matrix of conservation lands. The Gap Analysis Program (GAP) is sponsored by the Biological Resources Discipline of the U.S. Geological Survey (USGS). The Ohio Aquatic GAP (OH-GAP) is a pilot project that is applying the GAP concept to aquatic-specifically, riverine-data. The mission of GAP is to provide regional assessments of the conservation status of native animal species and to facilitate the application of this information to land-management activities. OH-GAP accomplished this through * mapping aquatic habitat types, * mapping the predicted distributions of fish, crayfish, and bivalves, * documenting the presence of aquatic species in areas managed for conservation, * providing GAP results to the public, planners, managers, policy makers, and researchers, and * building cooperation with multiple organizations to apply GAP results to state and regional management activities. Gap analysis is a coarse-scale assessment of aquatic biodiversity and conservation; the goal is to identify gaps in the conservation of native aquatic species. It is not a substitute for biological field studies and monitoring programs. Gap analysis was conducted for the continuously flowing streams in Ohio. Lakes, reservoirs, wetlands, and the Lake Erie islands were not included in this analysis. The streams in Ohio are in the Lake Erie and Ohio River watersheds and pass through six of the level III ecoregions defined by Omernik: the Eastern Corn Belt Plains, Southern Michigan/Northern Indiana Drift Plains, Huron/Erie Lake Plain, Erie Drift Plains, Interior Plateau, and the Western Allegheny Plateau. To characterize the aquatic habitats available to Ohio fish, crayfish, and bivalves, a classification system needed to be developed and mapped. The process of classification includes delineation of areas of relative

  16. Toward a national animal telemetry network for aquatic observations in the United States

    USGS Publications Warehouse

    Block, Barbara A.; Holbrook, Christopher; Simmons, Samantha E; Holland, Kim N; Ault, Jerald S.; Costa, Daniel P.; Mate, Bruce R; Seitz, Andrew C; Arendt, Michael D.; Payne, John; Mahmoudi, Behzad; Moore, Peter L.; Price, James; J. J. Levenson,; Wilson, Doug; Kochevar, Randall E

    2016-01-01

    Animal telemetry is the science of elucidating the movements and behavior of animals in relation to their environment or habitat. Here, we focus on telemetry of aquatic species (marine mammals, sharks, fish, sea birds and turtles) and so are concerned with animal movements and behavior as they move through and above the world’s oceans, coastal rivers, estuaries and great lakes. Animal telemetry devices (“tags”) yield detailed data regarding animal responses to the coupled ocean–atmosphere and physical environment through which they are moving. Animal telemetry has matured and we describe a developing US Animal Telemetry Network (ATN) observing system that monitors aquatic life on a range of temporal and spatial scales that will yield both short- and long-term benefits, fill oceanographic observing and knowledge gaps and advance many of the U.S. National Ocean Policy Priority Objectives. ATN has the potential to create a huge impact for the ocean observing activities undertaken by the U.S. Integrated Ocean Observing System (IOOS) and become a model for establishing additional national-level telemetry networks worldwide.

  17. Urban Runoff: Model Ordinances for Aquatic Buffers

    EPA Pesticide Factsheets

    Aquatic Buffers serve as natural boundaries between local waterways and existing development. The model and example ordinaces below provide suggested language or technical guidance designed to create the most effective stream buffer zones possible.

  18. Influence of pollution on parasites of aquatic animals.

    PubMed

    Khan, R A; Thulin, J

    1991-01-01

    We have tried to draw attention to an increasing body of evidence (from several publications) that parasites of fish might be useful indicators of pollution. Several types of pollutants, including domestic sewage, pesticides, polychlorinated biphenyls, heavy metals, pulp and paper effluents, petroleum aromatic hydrocarbons, acid rain, and others, are known to affect aquatic animals. Many of the latter are parasitized and, under natural environmental conditions, most fish parasites are believed to cause little or no harm. However, chronic exposure to pollutants over a period of time causes biochemical, physiological and behavioural host changes that ultimately can influence the prevalence and intensity of parasitism. Some of these changes include host nutrition, growth and reproduction. Macroscopic lesions might not always be apparent, but subtle disorders in several specific tissues and organs might occur. Pollutants might promote increased parasitism in aquatic animals, especially fish, by impairing the host's immune response or favouring the survival and reproduction of the intermediate hosts. Alternatively, decreased parasitism might ensue through toxicity of the pollutant to free-living stages and intermediate hosts or by alteration of the host's physiology. Experimental studies indicate that the numbers of ectoparasites such as trichodinid ciliates and monogeneans increase significantly on the gills following exposure to a pollutant, and this is supported by field data on other ciliates and monogeneans where evidence of pollution has been clearly demonstrated. There is also evidence that endoparasitic protozoons, such as myxozoons, microsporans and haematozoons, all of which are capable of proliferating in their hosts, increase substantially in prevalence and intensity when interacting with pollutants. The period of patency might also be prolonged in haematozoan infections. Most reports of pollution effects on endoparasites suggest increased parasitism in fish

  19. Predicting nutrient excretion of aquatic animals with metabolic ecology and ecological stoichiometry: a global synthesis.

    PubMed

    Vanni, Michael J; McIntyre, Peter B

    2016-12-01

    The metabolic theory of ecology (MTE) and ecological stoichiometry (ES) are both prominent frameworks for understanding energy and nutrient budgets of organisms. We tested their separate and joint power to predict nitrogen (N) and phosphorus (P) excretion rates of ectothermic aquatic invertebrate and vertebrate animals (10,534 observations worldwide). MTE variables (body size, temperature) performed better than ES variables (trophic guild, vertebrate classification, body N:P) in predicting excretion rates, but the best models included variables from both frameworks. Size scaling coefficients were significantly lower than predicted by MTE (<0.75), were lower for P than N, and varied greatly among species. Contrary to expectations under ES, vertebrates excreted both N and P at higher rates than invertebrates despite having more nutrient-rich bodies, and primary consumers excreted as much nutrients as carnivores despite having nutrient-poor diets. Accounting for body N:P hardly improved upon predictions from treating vertebrate classification categorically. We conclude that basic data on body size, water temperature, trophic guild, and vertebrate classification are sufficient to make general estimates of nutrient excretion rates for any animal taxon or aquatic ecosystem. Nonetheless, dramatic interspecific variation in size-scaling coefficients and counter-intuitive patterns with respect to diet and body composition underscore the need for field data on consumption and egestion rates. Together, MTE and ES provide a powerful conceptual basis for interpreting and predicting nutrient recycling rates of aquatic animals worldwide.

  20. Using the Neptune project to benefit Australian aquatic animal health research.

    PubMed

    McNamara, M; Ernst, I; Adlard, R D

    2015-06-29

    Diseases of aquatic animals have had, and continue to have, a significant impact on aquatic animal health. In Australia, where fisheries and aquaculture are important industries, aquatic species have been subject to serious disease outbreaks, including pilchard herpesvirus, the cause of one of the largest wild fish kills ever recorded. At the same time, there is a consensus that Australia's parasite fauna are largely unknown, and that aquatic animal health information is difficult to access. Managing aquatic animal diseases is challenging because they may be entirely new, their hosts may be new to aquaculture, and specialist expertise and basic diagnostic tools may be lacking or absent. The Neptune project was created in response to these challenges, and it aims to increase awareness of aquatic animal diseases, improve disease management, and promote communication between aquatic animal health professionals in Australia. The project consists of an online database, a digital microscopy platform containing a whole-slide image library, a community space, and online communications technology. The database contains aquatic animal health information from published papers, government reports, and other sources, while the library contains slides of key diseases both endemic and exotic to Australia. These assets make Neptune a powerful resource for researchers, students, and biosecurity officials.

  1. The challenges of good governance in the aquatic animal health sector.

    PubMed

    Kahn, S; Mylrea, G; Yaacov, K Bar

    2012-08-01

    Animal health is fundamental to efficient animal production and, therefore, to food security and human health. This holds true for both terrestrial and aquatic animals. Although partnership between producers and governmental services is vital for effective animal health programmes, many key activities are directly carried out by governmental services. Noting the need to improve the governance of such services in many developing countries, the World Organisation for Animal Health (OIE), using the OIE Tool for the Evaluation of Performance of Veterinary Services, conducts assessments of Veterinary Services and Aquatic Animal Health Services (AAHS) to help strengthen governance and support more effective delivery of animal health programmes. While good governance and the tools to improve governance in the aquatic animal sector are largely based on the same principles as those that apply in the terrestrial animal sector, there are some specific challenges in the aquatic sector that have a bearing on the governance of services in this area. For example, the aquaculture industry has experienced rapid growth and the use of novel species is increasing; there are important gaps in scientific knowledge on diseases of aquatic animals; there is a need for more information on sustainable production; the level of participation of the veterinary profession in aquatic animal health is low; and there is a lack of standardisation in the training of aquatic animal health professionals. Aquaculture development can be a means of alleviating poverty and hunger in developing countries. However, animal diseases, adverse environmental impacts and food safety risks threaten to limit this development. Strengthening AAHS governance and, in consequence, aquatic animal health programmes, is the best way to ensure a dynamic and sustainable aquaculture sector in future. This paper discusses the specific challenges to AAHS governance and some OIE initiatives to help Member Countries to address

  2. Aquatic environment, housing, and management in the eighth edition of the Guide for the Care and Use of Laboratory Animals: additional considerations and recommendations.

    PubMed

    Mason, Timothy J; Matthews, Monte

    2012-05-01

    The eighth edition of the Guide for the Care and Use of Laboratory Animals recognizes the widespread use of aquatic and semiaquatic research animals by including, among other references, an entire section on aquatic animals in its chapter on environment, housing, and management. Recognizing the large number of aquatic and semiaquatic species used in research and the inherent diversity in animal needs, the Guide refers the reader to texts and journal reviews for specific recommendations and suggests consultations with persons experienced in caring for aquatic species. Here we present considerations that may add to the basic information presented in the Guide and offer some recommendations that may be useful for aquatic animal model caregivers and researchers.

  3. Aquatic Environment, Housing, and Management in the Eighth Edition of the Guide for the Care and Use of Laboratory Animals: Additional Considerations and Recommendations

    PubMed Central

    Mason, Timothy J; Matthews, Monte

    2012-01-01

    The eighth edition of the Guide for the Care and Use of Laboratory Animals recognizes the widespread use of aquatic and semiaquatic research animals by including, among other references, an entire section on aquatic animals in its chapter on environment, housing, and management. Recognizing the large number of aquatic and semiaquatic species used in research and the inherent diversity in animal needs, the Guide refers the reader to texts and journal reviews for specific recommendations and suggests consultations with persons experienced in caring for aquatic species. Here we present considerations that may add to the basic information presented in the Guide and offer some recommendations that may be useful for aquatic animal model caregivers and researchers. PMID:22776190

  4. Development of the Gecko (Pachydactylus turneri) Animal Model during Foton M-2 to Study Comparative Effects of Microgravity in Terrestrial and Aquatic Organisms

    NASA Technical Reports Server (NTRS)

    Almeida, E. A.; Roden, C.; Phillips, J. A.; Globus, R. K.; Searby, N.; Vercoutere, W.; Morey-Holton, E.; Gulimova, V.; Saveliev, S.; Tairbekov, M.; Iwaniec, U. T.; McNamra, A. J.; Turner, R. T.

    2006-01-01

    Terrestrial organisms exposed to microgravity during spaceflight experience degeneration in bone, muscle, and possibly other tissues that require gravity-mediated mechanical stimulation for normal regenerative growth. In the Gecko experiment aboard Foton M-2, we flew for the first time, five terrestrial Pachydactylus turneri specimens to develop a model of microgravity effects comparable to the newt Pleurodeles waltl, a well-established model organism for spaceflight. These lower vertebrate species have similar body plans and size, are poikilothermic, have tissue regenerative ability, and are adapted to moderate periods of fasting. Furthermore the gecko (Pachydactylus) can also survive prolonged periods without water. In pre-flight control experiments and after a 16-day Foton M-2 spaceflight without food or water, the geckos were recovered and showed no apparent negative health effects. However, detailed analysis of bone mass and architecture by micro Computed Tomography { pCT), showed that both synchronous control and spaceflight animals lost significant amounts of cancellous bone in the distal femur and humerus relative to basal controls. In addition, cell cycle analysis of 30h post-flight liver tissue reveals a shift of DNA content from G2 and S to G1, both in spaceflight and synchronous controls. Together, these results suggest that housing conditions alone induce rapid catabolism of cancellous bone and reduced normal tissue regeneration. Further use of the gecko Puchydactylus turneri as a spaceflight model requires modification of housing conditions, possibly by including water and food, or changing other factors such as eliminating housing stresses to obtain stable bone structure and tissue regeneration during spaceflight experiments.

  5. [Policies, operational framework and guidelines of the Inter-American Committee on Aquatic Animal Health].

    PubMed

    Martínez, B; Tella, S Koloffon; McGladdery, S; Enríquez, R

    2008-04-01

    The Americas are home to a large population of aquatic animals, most of which are used in aquaculture. Production systems are diverse and are distributed over a wide and varied geographical area. This presents a challenge for the region, which must be able to meet food safety requirements for aquatic animals traded in the international market. The authors describe the creation of the Inter-American Committee on Aquatic Animal Health (IAC-AAH), as well as its composition, operation, objectives, the activities of the groups that form the Committee and the various activities conducted so far.

  6. 40 CFR Appendix C to Part 122 - Criteria for Determining a Concentrated Aquatic Animal Production Facility (§ 122.24)

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... aquatic animals in either of the following categories: (a) Cold water fish species or other cold water... fish species or other warm water aquatic animals in ponds, raceways, or other similar structures which... Concentrated Aquatic Animal Production Facility (§ 122.24) C Appendix C to Part 122 Protection of...

  7. 40 CFR Appendix C to Part 122 - Criteria for Determining a Concentrated Aquatic Animal Production Facility (§ 122.24)

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... aquatic animals in either of the following categories: (a) Cold water fish species or other cold water... fish species or other warm water aquatic animals in ponds, raceways, or other similar structures which... Concentrated Aquatic Animal Production Facility (§ 122.24) C Appendix C to Part 122 Protection of...

  8. 40 CFR Appendix C to Part 122 - Criteria for Determining a Concentrated Aquatic Animal Production Facility (§ 122.24)

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... aquatic animals in either of the following categories: (a) Cold water fish species or other cold water... fish species or other warm water aquatic animals in ponds, raceways, or other similar structures which... Aquatic Animal Production Facility (§ 122.24) C Appendix C to Part 122 Protection of...

  9. 40 CFR Appendix C to Part 122 - Criteria for Determining a Concentrated Aquatic Animal Production Facility (§ 122.24)

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... aquatic animals in either of the following categories: (a) Cold water fish species or other cold water... fish species or other warm water aquatic animals in ponds, raceways, or other similar structures which... Concentrated Aquatic Animal Production Facility (§ 122.24) C Appendix C to Part 122 Protection of...

  10. 40 CFR Appendix C to Part 122 - Criteria for Determining a Concentrated Aquatic Animal Production Facility (§ 122.24)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... aquatic animals in either of the following categories: (a) Cold water fish species or other cold water... fish species or other warm water aquatic animals in ponds, raceways, or other similar structures which... Concentrated Aquatic Animal Production Facility (§ 122.24) C Appendix C to Part 122 Protection of...

  11. Toll-like receptors (TLRs) in aquatic animals: signaling pathways, expressions and immune responses.

    PubMed

    Rauta, Pradipta R; Samanta, Mrinal; Dash, Hirak R; Nayak, Bismita; Das, Surajit

    2014-01-01

    The innate system's recognition of non-self and danger signals is mediated by a limited number of germ-line encoded pattern recognition receptors (PRRs) that recognize pathogen associated molecular patterns (PAMPs). Toll-like receptors (TLRs) are single, non-catalytic, membrane-spanning PRRs present in invertebrates and vertebrates. They act by specifically recognizing PAMPs of a variety of microbes and activate signaling cascades to induce innate immunity. A large number of TLRs have been identified in various aquatic animals of phyla Cnidaria, Annelida, Mollusca, Arthropoda, Echinodermata and Chordata. TLRs of aquatic and warm-blooded higher animals exhibit some distinctive features due to their diverse evolutionary lineages. However, majority of them share conserve signaling pathways in pathogen recognition and innate immunity. Functional analysis of novel TLRs in aquatic animals is very important in understanding the comparative immunology between warm-blooded and aquatic animals. In additions to innate immunity, recent reports have highlighted the additional roles of TLRs in adaptive immunity. Therefore, vaccines against many critical diseases of aquatic animals may be made more effective by supplementing TLR activators which will stimulate dendritic cells. This article describes updated information of TLRs in aquatic animals and their structural and functional relationship with warm-blooded animals.

  12. The application of epidemiology in aquatic animal health -opportunities and challenges

    PubMed Central

    2011-01-01

    Over recent years the growth in aquaculture, accompanied by the emergence of new and transboundary diseases, has stimulated epidemiological studies of aquatic animal diseases. Great potential exists for both observational and theoretical approaches to investigate the processes driving emergence but, to date, compared to terrestrial systems, relatively few studies exist in aquatic animals. Research using risk methods has assessed routes of introduction of aquatic animal pathogens to facilitate safe trade (e.g. import risk analyses) and support biosecurity. Epidemiological studies of risk factors for disease in aquaculture (most notably Atlantic salmon farming) have effectively supported control measures. Methods developed for terrestrial livestock diseases (e.g. risk-based surveillance) could improve the capacity of aquatic animal surveillance systems to detect disease incursions and emergence. The study of disease in wild populations presents many challenges and the judicious use of theoretical models offers some solutions. Models, parameterised from observational studies of host pathogen interactions, have been used to extrapolate estimates of impacts on the individual to the population level. These have proved effective in estimating the likely impact of parasite infections on wild salmonid populations in Switzerland and Canada (where the importance of farmed salmon as a reservoir of infection was investigated). A lack of data is often the key constraint in the application of new approaches to surveillance and modelling. The need for epidemiological approaches to protect aquatic animal health will inevitably increase in the face of the combined challenges of climate change, increasing anthropogenic pressures, limited water sources and the growth in aquaculture. Table of contents 1 Introduction 4 2 The development of aquatic epidemiology 7 3 Transboundary and emerging diseases 9 3.1 Import risk analysis (IRA) 10 3.2 Aquaculture and disease emergence 11 3.3 Climate

  13. Animal Model of Dermatophytosis

    PubMed Central

    Shimamura, Tsuyoshi; Kubota, Nobuo; Shibuya, Kazutoshi

    2012-01-01

    Dermatophytosis is superficial fungal infection caused by dermatophytes that invade the keratinized tissue of humans and animals. Lesions from dermatophytosis exhibit an inflammatory reaction induced to eliminate the invading fungi by using the host's normal immune function. Many scientists have attempted to establish an experimental animal model to elucidate the pathogenesis of human dermatophytosis and evaluate drug efficacy. However, current animal models have several issues. In the present paper, we surveyed reports about the methodology of the dermatophytosis animal model for tinea corporis, tinea pedis, and tinea unguium and discussed future prospects. PMID:22619489

  14. Modelling Farm Animal Welfare

    PubMed Central

    Collins, Lisa M.; Part, Chérie E.

    2013-01-01

    Simple Summary In this review paper we discuss the different modeling techniques that have been used in animal welfare research to date. We look at what questions they have been used to answer, the advantages and pitfalls of the methods, and how future research can best use these approaches to answer some of the most important upcoming questions in farm animal welfare. Abstract The use of models in the life sciences has greatly expanded in scope and advanced in technique in recent decades. However, the range, type and complexity of models used in farm animal welfare is comparatively poor, despite the great scope for use of modeling in this field of research. In this paper, we review the different modeling approaches used in farm animal welfare science to date, discussing the types of questions they have been used to answer, the merits and problems associated with the method, and possible future applications of each technique. We find that the most frequently published types of model used in farm animal welfare are conceptual and assessment models; two types of model that are frequently (though not exclusively) based on expert opinion. Simulation, optimization, scenario, and systems modeling approaches are rarer in animal welfare, despite being commonly used in other related fields. Finally, common issues such as a lack of quantitative data to parameterize models, and model selection and validation are discussed throughout the review, with possible solutions and alternative approaches suggested. PMID:26487411

  15. Animal models of scoliosis.

    PubMed

    Bobyn, Justin D; Little, David G; Gray, Randolph; Schindeler, Aaron

    2015-04-01

    Multiple techniques designed to induce scoliotic deformity have been applied across many animal species. We have undertaken a review of the literature regarding experimental models of scoliosis in animals to discuss their utility in comprehending disease aetiology and treatment. Models of scoliosis in animals can be broadly divided into quadrupedal and bipedal experiments. Quadrupedal models, in the absence of axial gravitation force, depend upon development of a mechanical asymmetry along the spine to initiate a scoliotic deformity. Bipedal models more accurately mimic human posture and consequently are subject to similar forces due to gravity, which have been long appreciated to be a contributing factor to the development of scoliosis. Many effective models of scoliosis in smaller animals have not been successfully translated to primates and humans. Though these models may not clarify the aetiology of human scoliosis, by providing a reliable and reproducible deformity in the spine they are a useful means with which to test interventions designed to correct and prevent deformity.

  16. A 90 day safety assessment of genetically modified rice expressing Cry1Ab/1Ac protein using an aquatic animal model.

    PubMed

    Zhu, Hao-Jun; Chen, Yi; Li, Yun-He; Wang, Jia-Mei; Ding, Jia-Tong; Chen, Xiu-Ping; Peng, Yu-Fa

    2015-04-15

    In fields of transgenic Bt rice, frogs are exposed to Bt proteins through consumption of both target and nontarget insects. In the present study, we assessed the risk posed by transgenic rice expressing a Cry1Ab/1Ac fusion protein (Huahui 1, HH1) on the development of Xenopus laevis. For 90 days, froglets were fed a diet with 30% HH1 rice, 30% parental rice (Minghui 63, MH63), or no rice as a control. Body weight and length were measured every 15 days. After sacrificing the froglets, we performed a range of biological, clinical, and pathological assessments. No significant differences were found in body weight (on day 90: 27.7 ± 2.17, 27.4 ± 2.40, and 27.9 ± 1.67 g for HH1, MH63, and control, respectively), body length (on day 90: 60.2 ± 1.55, 59.3 ± 2.33, and 59.7 ± 1.64 mm for HH1, MH63, and control, respectively), animal behavior, organ weight, liver and kidney function, or the microstructure of some tissues between the froglets fed on the HH1-containing diet and those fed on the MH63-containing or control diets. This indicates that frog development was not adversely affected by dietary intake of Cry1Ab/1Ac protein.

  17. Animal models for osteoporosis

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Maran, A.; Lotinun, S.; Hefferan, T.; Evans, G. L.; Zhang, M.; Sibonga, J. D.

    2001-01-01

    Animal models will continue to be important tools in the quest to understand the contribution of specific genes to establishment of peak bone mass and optimal bone architecture, as well as the genetic basis for a predisposition toward accelerated bone loss in the presence of co-morbidity factors such as estrogen deficiency. Existing animal models will continue to be useful for modeling changes in bone metabolism and architecture induced by well-defined local and systemic factors. However, there is a critical unfulfilled need to develop and validate better animal models to allow fruitful investigation of the interaction of the multitude of factors which precipitate senile osteoporosis. Well characterized and validated animal models that can be recommended for investigation of the etiology, prevention and treatment of several forms of osteoporosis have been listed in Table 1. Also listed are models which are provisionally recommended. These latter models have potential but are inadequately characterized, deviate significantly from the human response, require careful choice of strain or age, or are not practical for most investigators to adopt. It cannot be stressed strongly enough that the enormous potential of laboratory animals as models for osteoporosis can only be realized if great care is taken in the choice of an appropriate species, age, experimental design, and measurements. Poor choices will results in misinterpretation of results which ultimately can bring harm to patients who suffer from osteoporosis by delaying advancement of knowledge.

  18. Submersed Aquatic Vegetation Modeling Output Online

    USGS Publications Warehouse

    Yin, Yao; Rogala, Jim; Sullivan, John; Rohweder, Jason J.

    2005-01-01

    Introduction The ability to predict the distribution of submersed aquatic vegetation in the Upper Mississippi River on the basis of physical or chemical variables is useful to resource managers. Wildlife managers have a keen interest in advanced estimates of food quantity such as American wildcelery (Vallisneria americana) population status to give out more informed advisories to hunters before the fall hunting season. Predictions for distribution of submerged aquatic vegetation beds can potentially increase hunter observance of voluntary avoidance zones where foraging birds are left alone to feed undisturbed. In years when submersed aquatic vegetation is predicted to be scarce in important wildlife habitats, managers can get the message out to hunters well before the hunting season (Jim Nissen, Upper Mississippi River National Wildlife and Fish Refuge, La Crosse District Manager, La Crosse, Wisconsin, personal communication). We developed a statistical model to predict the probability of occurrence of submersed aquatic vegetation in Pool 8 of the Upper Mississippi River on the basis of a few hydrological, physical, and geomorphic variables. Our model takes into consideration flow velocity, wind fetch, bathymetry, growing-season daily water level, and light extinction coefficient in the river (fig. 1) and calculates the probability of submersed aquatic vegetation existence in Pool 8 in individual 5- x 5-m grid cells. The model was calibrated using the data collected in 1998 (516 sites), 1999 (595 sites), and 2000 (649 sites) using a stratified random sampling protocol (Yin and others, 2000b). To validate the model, we chose the data from the Long Term Resource Monitoring Program (LTRMP) transect sampling in backwater areas (Rogers and Owens 1995; Yin and others, 2000a) and ran the model for each 5- x 5-m grid cell in every growing season from 1991 to 2001. We tallied all the cells and came up with an annual average percent frequency of submersed aquatic vegetation

  19. A Bayesian network model for predicting aquatic toxicity mode ...

    EPA Pesticide Factsheets

    The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity, but development of predictive MoA classification models in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity MoA using a recently published dataset containing over one thousand chemicals with MoA assignments for aquatic animal toxicity. Two dimensional theoretical chemical descriptors were generated for each chemical using the Toxicity Estimation Software Tool. The model was developed through augmented Markov blanket discovery from the dataset of 1098 chemicals with the MoA broad classifications as a target node. From cross validation, the overall precision for the model was 80.2%. The best precision was for the AChEI MoA (93.5%) where 257 chemicals out of 275 were correctly classified. Model precision was poorest for the reactivity MoA (48.5%) where 48 out of 99 reactive chemicals were correctly classified. Narcosis represented the largest class within the MoA dataset and had a precision and reliability of 80.0%, reflecting the global precision across all of the MoAs. False negatives for narcosis most often fell into electron transport inhibition, neurotoxicity or reactivity MoAs. False negatives for all other MoAs were most often narcosis. A probabilistic sensitivity analysis was undertaken for each MoA to examine the sensitivity to individual and multiple descriptor findings. The results show that the Markov blank

  20. Animal models of tinnitus.

    PubMed

    Brozoski, Thomas J; Bauer, Carol A

    2016-08-01

    Presented is a thematic review of animal tinnitus models from a functional perspective. Chronic tinnitus is a persistent subjective sound sensation, emergent typically after hearing loss. Although the sensation is experientially simple, it appears to have central a nervous system substrate of unexpected complexity that includes areas outside of those classically defined as auditory. Over the past 27 years animal models have significantly contributed to understanding tinnitus' complex neurophysiology. In that time, a diversity of models have been developed, each with its own strengths and limitations. None has clearly become a standard. Animal models trace their origin to the 1988 experiments of Jastreboff and colleagues. All subsequent models derive some of their features from those experiments. Common features include behavior-dependent psychophysical determination, acoustic conditions that contrast objective sound and silence, and inclusion of at least one normal-hearing control group. In the present review, animal models have been categorized as either interrogative or reflexive. Interrogative models use emitted behavior under voluntary control to indicate hearing. An example would be pressing a lever to obtain food in the presence of a particular sound. In this type of model animals are interrogated about their auditory sensations, analogous to asking a patient, "What do you hear?" These models require at least some training and motivation management, and reflect the perception of tinnitus. Reflexive models, in contrast, employ acoustic modulation of an auditory reflex, such as the acoustic startle response. An unexpected loud sound will elicit a reflexive motor response from many species, including humans. Although involuntary, acoustic startle can be modified by a lower-level preceding event, including a silent sound gap. Sound-gap modulation of acoustic startle appears to discriminate tinnitus in animals as well as humans, and requires no training or

  1. Animal models of sarcoidosis.

    PubMed

    Hu, Yijie; Yibrehu, Betel; Zabini, Diana; Kuebler, Wolfgang M

    2017-03-01

    Sarcoidosis is a debilitating, inflammatory, multiorgan, granulomatous disease of unknown cause, commonly affecting the lung. In contrast to other chronic lung diseases such as interstitial pulmonary fibrosis or pulmonary arterial hypertension, there is so far no widely accepted or implemented animal model for this disease. This has hampered our insights into the etiology of sarcoidosis, the mechanisms of its pathogenesis, the identification of new biomarkers and diagnostic tools and, last not least, the development and implementation of novel treatment strategies. Over past years, however, a number of new animal models have been described that may provide useful tools to fill these critical knowledge gaps. In this review, we therefore outline the present status quo for animal models of sarcoidosis, comparing their pros and cons with respect to their ability to mimic the etiological, clinical and histological hallmarks of human disease and discuss their applicability for future research. Overall, the recent surge in animal models has markedly expanded our options for translational research; however, given the relative early stage of most animal models for sarcoidosis, appropriate replication of etiological and histological features of clinical disease, reproducibility and usefulness in terms of identification of new therapeutic targets and biomarkers, and testing of new treatments should be prioritized when considering the refinement of existing or the development of new models.

  2. Epidemiological approach to aquatic animal health management: opportunities and challenges for developing countries to increase aquatic production through aquaculture.

    PubMed

    Subasinghe, Rohana P

    2005-02-01

    Aquaculture appears to have strongest potential to meet the increasing demands for aquatic products in most regions of the world. The world population is on the increase, as is the demand for aquatic food products. Production from capture fisheries at a global level is levelling off. Potential contributions from aquaculture to local food security, livelihoods and nutrition can be highly significant, especially in many remote and resource-poor rural areas. One of the major constraints to aquaculture production is the losses due to diseases. Over the decades, the sector has faced significant problems with disease outbreaks and epidemics which caused significant economic losses. The use of sound epidemiological principles and logical and science-based approach to identify and manage risks comprise two of the most important components of an effective biosecurity program. The maintenance of effective biosecurity in aquaculture is becoming more and more essential. There will be more demand for aquatic animal epidemiologists as well as epidemiological tools/resources in the region. The use of epidemiology will significantly improve health management, risk analysis and disease control. Although there are clear limitations and complications in the use of epidemiology for controlling aquatic animal pathogens, some positive results have recently emerged from a series of studies and trials to control diseases affecting the small-scale shrimp farming sector in southern India. This paper summarises the results of one such study which emphasizes the significant benefit of close collaboration with farmers, both individually and as groups, and capacity and awareness building among them and the importance of understanding the risk factors and implementing better management practices.

  3. Veterinary medical education and veterinary involvement in aquatic-animal health and aquaculture in Mexico.

    PubMed

    Ortega S, César

    2012-01-01

    This article analyzes curriculum offerings related to aquaculture and/or aquatic-animal health taught in veterinary medical schools or colleges in Mexico. The information database of the Mexican Association of Schools and Colleges of Veterinary Medicine and the Web sites of veterinary institutions indicate that 60% of veterinary colleges include courses related to aquaculture in their curriculum, but most of these are optional courses. There are few specialized continuing education programs or graduate level courses. There is also a lack of veterinary participation, in both public and private sectors, in aquatic-animal health. It is evident that there should be a greater involvement by the veterinary profession in Mexico's aquaculture to ensure food production in a safe and sustainable manner; to achieve this, veterinary medical institutions must include more aquaculture and aquatic-animal health courses in their curricula.

  4. 40 CFR 122.24 - Concentrated aquatic animal production facilities (applicable to State NPDES programs, see § 123...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE... animal production facility means a hatchery, fish farm, or other facility which meets the criteria in... any warm or cold water aquatic animal production facility as a concentrated aquatic animal...

  5. Disease-protective symbiosis among fishes and other aquatic animals

    USGS Publications Warehouse

    Snieszko, S.F.

    1962-01-01

    There have been numerous observations of one species of animal removing parasites from another. These are, however, generally regarded as biological curiosities rather than as significant factors in the control of parasites or disease.

  6. Animal models for osteoporosis.

    PubMed

    Komori, Toshihisa

    2015-07-15

    The major types of osteoporosis in humans are postmenopausal osteoporosis, disuse osteoporosis, and glucocorticoid-induced osteoporosis. Animal models for postmenopausal osteoporosis are generated by ovariectomy. Bone loss occurs in estrogen deficiency due to enhanced bone resorption and impaired osteoblast function. Estrogen receptor α induces osteoclast apoptosis, but the mechanism for impaired osteoblast function remains to be clarified. Animal models for unloading are generated by tail suspension or hind limb immobilization by sciatic neurectomy, tenotomy, or using plaster cast. Unloading inhibits bone formation and enhances bone resorption, and the involvement of the sympathetic nervous system in it needs to be further investigated. The osteocyte network regulates bone mass by responding to mechanical stress. Osteoblast-specific BCL2 transgenic mice, in which the osteocyte network is completely disrupted, can be a mouse model for the evaluation of osteocyte functions. Glucocorticoid treatment inhibits bone formation and enhances bone resorption, and markedly reduces cancellous bone in humans and large animals, but not consistently in rodents.

  7. Opportunities for public aquariums to increase the sustainability of the aquatic animal trade.

    PubMed

    Tlusty, Michael F; Rhyne, Andrew L; Kaufman, Les; Hutchins, Michael; Reid, Gordon McGregor; Andrews, Chris; Boyle, Paul; Hemdal, Jay; McGilvray, Frazer; Dowd, Scott

    2013-01-01

    The global aquatic pet trade encompasses a wide diversity of freshwater and marine organisms. While relying on a continual supply of healthy, vibrant aquatic animals, few sustainability initiatives exist within this sector. Public aquariums overlap this industry by acquiring many of the same species through the same sources. End users are also similar, as many aquarium visitors are home aquarists. Here we posit that this overlap with the pet trade gives aquariums significant opportunity to increase the sustainability of the trade in aquarium fishes and invertebrates. Improving the sustainability ethos and practices of the aquatic pet trade can carry a conservation benefit in terms of less waste, and protection of intact functioning ecosystems, at the same time as maintaining its economic and educational benefits and impacts. The relationship would also move forward the goal of public aquariums to advance aquatic conservation in a broad sense. For example, many public aquariums in North America have been instrumental in working with the seafood industry to enact positive change toward increased sustainability. The actions include being good consumers themselves, providing technical knowledge, and providing educational and outreach opportunities. These same opportunities exist for public aquariums to partner with the ornamental fish trade, which will serve to improve business, create new, more ethical and more dependable sources of aquatic animals for public aquariums, and perhaps most important, possibly transform the home aquarium industry from a threat, into a positive force for aquatic conservation.

  8. Complexity and Animal Models

    DTIC Science & Technology

    2015-01-01

    SEP 2015 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Complexity and animal models 5a. CONTRACT NUMBER 5b. GRANT NUMBER...decrease W/Wmax, thereby maintaining the relationship between variability and W/Wmax. doi:10.1016/j.jcrc.2010.05.012 Complexity and animal models...may not be possible during mass casualty and natural disaster situations or may need to be postponed during combat to avoid danger to the medic’s life

  9. Zebrafish as a model for zoonotic aquatic pathogens

    PubMed Central

    Rowe, Hannah M.; Withey, Jeffrey H.; Neely, Melody N.

    2014-01-01

    Aquatic habitats harbor a multitude of bacterial species. Many of these bacteria can act as pathogens to aquatic species and/or non-aquatic organisms, including humans, that come into contact with contaminated water sources or colonized aquatic organisms. In many instances, the bacteria are not pathogenic to the aquatic species they colonize and are only considered pathogens when they come into contact with humans. There is a general lack of knowledge about how the environmental lifestyle of these pathogens allows them to persist, replicate and produce the necessary pathogenic mechanisms to successfully transmit to the human host and cause disease. Recently, the zebrafish infectious disease model has emerged as an ideal system for examining aquatic pathogens, both in the aquatic environment and during infection of the human host. This review will focus on how the zebrafish has been used successfully to analyze the pathogenesis of aquatic bacterial pathogens. PMID:24607289

  10. Cyclic Hematopoiesis: animal models

    SciTech Connect

    Jones, J.B.; Lange, R.D.

    1983-08-01

    The four existing animal models of cyclic hematopoiesis are briefly described. The unusual erythropoietin (Ep) responses of the W/Wv mouse, the Sl/Sld mouse, and cyclic hematopoietic dog are reviewed. The facts reviewed indicate that the bone marrow itself is capable of influencing regulatory events of hematopoiesis.

  11. A global database of nitrogen and phosphorus excretion rates of aquatic animals

    DOE PAGES

    Vanni, Michael J.; McIntyre, Peter B.; Allen, Dennis; ...

    2017-03-06

    Though their importance varies greatly among species and ecosystems, animals can be important in modulating ecosystem-level nutrient cycling. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Ecology (MTE) and ecological stoichiometry (ES). They also represent an important set of functional traits that may reflect both environmental and phylogenetic influences. Over the past two decades, studies of animal-mediated nutrient cycling have increased dramatically, especially in aquatic ecosystems. Here we present a global compilation of aquatic animal nutrient excretion rates. The dataset includes 10,534 observations from freshwater andmore » marine animals of N and/or P excretion rates. Furthermore, these observations represent 491 species, including most aquatic phyla. Coverage varies greatly among phyla and other taxonomic levels. The dataset includes information on animal body size, ambient temperature, taxonomic affiliations, and animal body N:P. We used this data set to test predictions of MTE and ES, as described in Vanni and McIntyre (2016; Ecology DOI: 10.1002/ecy.1582).« less

  12. AQUATIC ANIMAL RESPIRATION AND COUGH RESPONSE APPLIED TO INNOVATIVE ENVIRONMENTAL BIOMONITORING: A BIBLIOGRAPHY

    EPA Science Inventory

    This bibliography encompasses a body of in-depth technical information on the mechanics and physiology of respiration in aquatic animals (vertebrate and invertebrate). In compiling the bibliography, special emphasis was given to identifying studies that deal with responses of thi...

  13. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China.

    PubMed

    Li, Wenhui; Shi, Yali; Gao, Lihong; Liu, Jiemin; Cai, Yaqi

    2012-11-01

    This study investigated the presence and distribution of 22 antibiotics, including eight quinolones, nine sulfonamides and five macrolides, in the water, sediments, and biota samples from Baiyangdian Lake, China. A total of 132 samples were collected in 2008 and 2010, and laboratory analyses revealed that antibiotics were widely distributed in the lake. Sulfonamides were the dominant antibiotics in the water (0.86-1563 ng L(-1)), while quinolones were prominent in sediments (65.5-1166 μg kg(-1)) and aquatic plants (8.37-6532 μg kg(-1)). Quinolones (17.8-167 μg kg(-1)) and macrolides [from below detection limit (BDL) to 182 μg kg(-1)] were often found in aquatic animals and birds. Salvinia natans exhibited the highest bioaccumulation capability for quinolones among three species of aquatic plants. Geographical differences of antibiotic concentrations were greatly due to anthropogenic activities. Sewage discharged from Baoding City was likely the main source of antibiotics in the lake. Risk assessment of antibiotics on aquatic organisms suggested that algae and aquatic plants might be at risk in surface water, while animals were likely not at risk.

  14. 40 CFR 122.24 - Concentrated aquatic animal production facilities (applicable to State NPDES programs, see § 123...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Concentrated aquatic animal production facilities (applicable to State NPDES programs, see § 123.25). 122.24 Section 122.24 Protection of... § 122.24 Concentrated aquatic animal production facilities (applicable to State NPDES programs,...

  15. Detection and identification of Malassezia species in domestic animals and aquatic birds by PCR-RFLP.

    PubMed

    Zia, M; Mirhendi, H; Toghyani, M

    2015-01-01

    The present study aimed at detection and species-level identification of the Malassezia yeasts in domestic animals and aquatic birds by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Samples were collected using tape strips and swabs from 471 animals including 97 horses, 102 cattle, 105 sheep, 20 camels, 60 dogs, 30 cats, 1 hamster, 1 squirrel, 50 aquatic birds and 5 turkeys. Tape-strip samples were examined by direct microscopy. All samples were inoculated on modified Leeming and Notman agar medium. DNA extracted from the yeast colonies was amplified by PCR using primers specific for 26S rDNA. RFLP of the PCR products was performed using Hin6I enzyme, and PCR and RFLP products were visualized by agarose gel electrophoresis. Malassezia yeasts were detected at the following frequencies: 15.46% in horses, 12.74% in cattle, 12.38% in sheep, 28.33% in dogs, 26.66% in cats and 26% in aquatic birds. Eighty colonies of 6 species were isolated: Malassezia globosa 41.25%, Malassezia furfur 22.5%, Malassezia restricta 15%, Malassezia sympodialis 15%, Malassezia pachydermatis 5% and Malassezia slooffiae 1.25%. Therefore different lipophilic Malassezia species are found in a wide diversity of animals and aquatic birds. PCR-RFLP is a suitable technique for identification of different Malassezia species.

  16. Detection and identification of Malassezia species in domestic animals and aquatic birds by PCR-RFLP

    PubMed Central

    Zia, M.; Mirhendi, H.; Toghyani, M.

    2015-01-01

    The present study aimed at detection and species-level identification of the Malassezia yeasts in domestic animals and aquatic birds by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Samples were collected using tape strips and swabs from 471 animals including 97 horses, 102 cattle, 105 sheep, 20 camels, 60 dogs, 30 cats, 1 hamster, 1 squirrel, 50 aquatic birds and 5 turkeys. Tape-strip samples were examined by direct microscopy. All samples were inoculated on modified Leeming and Notman agar medium. DNA extracted from the yeast colonies was amplified by PCR using primers specific for 26S rDNA. RFLP of the PCR products was performed using Hin6I enzyme, and PCR and RFLP products were visualized by agarose gel electrophoresis. Malassezia yeasts were detected at the following frequencies: 15.46% in horses, 12.74% in cattle, 12.38% in sheep, 28.33% in dogs, 26.66% in cats and 26% in aquatic birds. Eighty colonies of 6 species were isolated: Malassezia globosa 41.25%, Malassezia furfur 22.5%, Malassezia restricta 15%, Malassezia sympodialis 15%, Malassezia pachydermatis 5% and Malassezia slooffiae 1.25%. Therefore different lipophilic Malassezia species are found in a wide diversity of animals and aquatic birds. PCR-RFLP is a suitable technique for identification of different Malassezia species. PMID:27175148

  17. Animal models of schizophrenia

    PubMed Central

    Jones, CA; Watson, DJG; Fone, KCF

    2011-01-01

    Developing reliable, predictive animal models for complex psychiatric disorders, such as schizophrenia, is essential to increase our understanding of the neurobiological basis of the disorder and for the development of novel drugs with improved therapeutic efficacy. All available animal models of schizophrenia fit into four different induction categories: developmental, drug-induced, lesion or genetic manipulation, and the best characterized examples of each type are reviewed herein. Most rodent models have behavioural phenotype changes that resemble ‘positive-like’ symptoms of schizophrenia, probably reflecting altered mesolimbic dopamine function, but fewer models also show altered social interaction, and learning and memory impairment, analogous to negative and cognitive symptoms of schizophrenia respectively. The negative and cognitive impairments in schizophrenia are resistant to treatment with current antipsychotics, even after remission of the psychosis, which limits their therapeutic efficacy. The MATRICS initiative developed a consensus on the core cognitive deficits of schizophrenic patients, and recommended a standardized test battery to evaluate them. More recently, work has begun to identify specific rodent behavioural tasks with translational relevance to specific cognitive domains affected in schizophrenia, and where available this review focuses on reporting the effect of current and potential antipsychotics on these tasks. The review also highlights the need to develop more comprehensive animal models that more adequately replicate deficits in negative and cognitive symptoms. Increasing information on the neurochemical and structural CNS changes accompanying each model will also help assess treatments that prevent the development of schizophrenia rather than treating the symptoms, another pivotal change required to enable new more effective therapeutic strategies to be developed. LINKED ARTICLES This article is part of a themed issue on

  18. Determination of residues of malachite green in aquatic animals.

    PubMed

    Bergwerff, Aldert A; Scherpenisse, Peter

    2003-05-25

    Residues of malachite green (MG) were extracted from homogenized animal tissues with a mixture of McIlvaine buffer (pH 3.0)-acetonitrile, and purified over an aromatic sulfonic acid solid-phase extraction column followed by HPLC or LC-ESI-MS-MS analysis. Ascorbic acid and N,N,N',N'-tetramethyl-1,4-phenylenediamine dihydrochloride were added to reduce de-methylation of the dye. Responses were recorded at 620 nm (HPLC) or by multiple-reaction-monitoring (LC-MS-MS) after post-column oxidation using PbO(2). MG and its primary metabolite leuco-malachite green (LMG) were successfully determined at 2.5-2000 microg/kg in catfish, eel, rainbow trout, salmon, tropical prawns and turbot, with a limit of detection at 1 microg/kg (HPLC) and 0.2 microg/kg (LC-MS-MS) for both MG and LMG. Recoveries for LMG were between 86+/-15% (prawn) and 105+/-14% (eel). Freeze-thawing cycles, and storage at 4 degrees C and -20 degrees C affected the recovery of both MG and LMG. Analyses of eel, trout and (processed) salmon field samples collected at local retailers, fish-market and -shops demonstrated trace levels of MG-residues.

  19. Role of redox metabolism for adaptation of aquatic animals to drastic changes in oxygen availability.

    PubMed

    Welker, Alexis F; Moreira, Daniel C; Campos, Élida G; Hermes-Lima, Marcelo

    2013-08-01

    Large changes in oxygen availability in aquatic environments, ranging from anoxia through to hyperoxia, can lead to corresponding wide variation in the production of reactive oxygen species (ROS) by animals with aquatic respiration. Therefore, animals living in marine, estuarine and freshwater environments have developed efficient antioxidant defenses to minimize oxidative stress and to regulate the cellular actions of ROS. Changes in oxygen levels may lead to bursts of ROS generation that can be particularly harmful. This situation is commonly experienced by aquatic animals during abrupt transitions from periods of hypoxia/anoxia back to oxygenated conditions (e.g. intertidal cycles). The strategies developed differ significantly among aquatic species and are (i) improvement of their endogenous antioxidant system under hyperoxia (that leads to increased ROS formation) or other similar ROS-related stresses, (ii) increase in antioxidant levels when displaying higher metabolic rates, (iii) presence of constitutively high levels of antioxidants, that attenuates oxidative stress derived from fluctuations in oxygen availability, or (iv) increase in the activity of antioxidant enzymes (and/or the levels of their mRNAs) during hypometabolic states associated with anoxia/hypoxia. This enhancement of the antioxidant system - coined over a decade ago as "preparation for oxidative stress" - controls the possible harmful effects of increased ROS formation during hypoxia/reoxygenation. The present article proposes a novel explanation for the biochemical and molecular mechanisms involved in this phenomenon that could be triggered by hypoxia-induced ROS formation. We also discuss the connections among oxygen sensing, oxidative damage and regulation of the endogenous antioxidant defense apparatus in animals adapted to many natural or man-made challenges of the aquatic environment.

  20. Monitoring and surveillance of antimicrobial resistance in microorganisms associated with aquatic animals.

    PubMed

    Smith, P; Alday-Sanz, V; Matysczak, J; Moulin, G; Lavilla-Pitogo, C R; Prater, D

    2013-08-01

    The World Organisation for Animal Health (OIE) Aquatic Animal Health Code recommends that programmes forthe monitoring and surveillance of antimicrobial resistance in microorganisms associated with aquatic animals be initiated by the appropriate authorities. This paper discusses the classes of bacteria to be studied in such programmes and the methods of sample collection to be employed. It also discusses the susceptibility test protocols appropriate for use in such programmes, the interpretive criteria that should be applied to the data they generate and the form in which the output of such programmes should be reported. The authors argue that it is essential that all monitoring and surveillance programmes should employ standardised and internationally harmonised susceptibility test methods to the greatest extent possible. With respect to bacteria capable of infecting aquatic animals, it is recommended that the set of consensus-based standards and guidelines published by the Clinical and Laboratory Standards Institute be adopted as the basis for international harmonisation of test protocols, as they are significantly more developed than any alternatives. It is further recommended that, for the purpose of evaluating antimicrobial resistance trends, such as emerging resistance, the data generated by these protocols should be interpreted by the application of epidemiological cut-off values. However, as yet, internationally agreed cut-off values have been produced for only one species. Thus, for many species, authorities will be obliged to set their own local and laboratory-specific cut-off values. It is recommended that laboratories use a statistical and standardised method of establishing such local cut-off values. Internationally harmonised standard test protocols and interpretive criteria have, to a large extent, been developed to monitor antimicrobial resistance in bacterial species capable of infecting humans. These methods can also be applied to microorganisms

  1. The impact of aquatic animals on bedload transport in gravel-bed rivers

    NASA Astrophysics Data System (ADS)

    Johnson, M.; Rice, S. P.

    2012-12-01

    Grain-scale processes are known to have large impacts on the transport of bed material in rivers. The structure, topography and distribution of grain sizes that make up a bed, all contribute to the mobility of fluvial substrates. Animals in rivers interact with the substrate in a multitude of ways, for example, when burrowing, moving and foraging for food. Alterations to the arrangement of grains that result from these activities have a demonstrable impact on particle stability and critical entrainment stresses. This raises the intriguing possibility that aquatic fauna have large, cumulative impacts on the structure of river bed material and, consequently, on the transport of bed material. The activities of signal crayfish (Pacifastacus leniusculus), a globally important invasive crustacean, alter the arrangement of surface grains in fluvial substrates. They also construct pits and mounds across surfaces within which they shelter. These structural and topographic alterations to surfaces were quantified using repeat laser scans to create Digital Elevation Models (DEMs) before and after crayfish activity. Crayfish moved grains up to 32 mm in diameter and with a submerged weight six times that of average adult crayfish. As a result of crayfish destroying grain-scale structures, 50% more material was entrained from disturbed fluvial substrates in comparison to control surfaces that had not been exposed to crayfish. Animals can also stabilise substrates. Hydropsychid caddisfly larvae bind grains together with silk, which is spun for a variety of purposes including the creation of nets to catch organic matter from the flow. Fine gravels (2-6 mm) that were colonised by natural densities of caddisfly, required 20% increases in shear stress to be mobilised in comparison to uncolonised, control gravels. Whilst these results demonstrate the potential for animals to affect grain-scale processes, their river-scale impact needs to be assessed in field environments, in the

  2. A new mechanism of macrophyte mitigation: how submerged plants reduce malathion's acute toxicity to aquatic animals.

    PubMed

    Brogan, William R; Relyea, Rick A

    2014-08-01

    A growing body of evidence suggests that aquatic plants can mitigate the toxicity of insecticides to sensitive aquatic animals. The current paradigm is that this ability is driven primarily by insecticide sorption to plant tissues, especially for hydrophobic compounds. However, recent work shows that submerged plants can strongly mitigate the toxicity of the relatively hydrophilic insecticide malathion, despite the fact that this compound exhibits a slow sorption rate to plants. To examine this disparity, we tested the hypothesis that the mitigating effect of submerged plants on malathion's toxicity is driven primarily by the increased water pH from plant photosynthesis causing the hydrolysis of malathion, rather than by sorption. To do this, we compared zooplankton (Daphnia magna) survival across five environmentally relevant malathion concentrations (0, 1, 4, 6, or 36 μg L(-1)) in test containers where we chemically manipulated water pH in the absence of plants or added the submerged plant (Elodea canadensis) but manipulated plant photosynthetic activity via shading or no shading. We discovered that malathion was equally lethal to Daphnia at all concentrations tested when photosynthetically inactive (i.e. shaded) plants were present (pH at time of dosing=7.8) or when pH was chemically decreased (pH=7.7). In contrast, when photosynthetically active (i.e. unshaded) plants were present (pH=9.8) or when pH was chemically increased (pH=9.5), the effects of 4 and 6 μg L(-1) of malathion on Daphnia were mitigated strongly and to an equal degree. These results demonstrate that the mitigating effect of submerged plants on malathion's toxicity can be explained entirely by a mechanism of photosynthesizing plants causing an increase in water pH, resulting in rapid malathion hydrolysis. Our findings suggest that current ecotoxicological models and phytoremediation strategies may be overlooking a critical mechanism for mitigating pesticides.

  3. Animal models of narcolepsy.

    PubMed

    Chen, Lichao; Brown, Ritchie E; McKenna, James T; McCarley, Robert W

    2009-08-01

    Narcolepsy is a debilitating sleep disorder with excessive daytime sleepiness and cataplexy as its two major symptoms. Although this disease was first described about one century ago, an animal model was not available until the 1970s. With the establishment of the Stanford canine narcolepsy colony, researchers were able to conduct multiple neurochemical studies to explore the pathophysiology of this disease. It was concluded that there was an imbalance between monoaminergic and cholinergic systems in canine narcolepsy. In 1999, two independent studies revealed that orexin neurotransmission deficiency was pivotal to the development of narcolepsy with cataplexy. This scientific leap fueled the generation of several genetically engineered mouse and rat models of narcolepsy. To facilitate further research, it is imperative that researchers reach a consensus concerning the evaluation of narcoleptic behavioral and EEG phenomenology in these models.

  4. A Bayesian network model for predicting aquatic toxicity mode ...

    EPA Pesticide Factsheets

    The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity but MoA classification in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity mode of action using a recently published dataset containing over one thousand chemicals with MoA assignments for aquatic animal toxicity. Two dimensional theoretical chemical descriptors were generated for each chemical using the Toxicity Estimation Software Tool. The model was developed through augmented Markov blanket discovery from the data set with the MoA broad classifications as a target node. From cross validation, the overall precision for the model was 80.2% with a R2 of 0.959. The best precision was for the AChEI MoA (93.5%) where 257 chemicals out of 275 were correctly classified. Model precision was poorest for the reactivity MoA (48.5%) where 48 out of 99 reactive chemicals were correctly classified. Narcosis represented the largest class within the MoA dataset and had a precision and reliability of 80.0%, reflecting the global precision across all of the MoAs. False negatives for narcosis most often fell into electron transport inhibition, neurotoxicity or reactivity MoAs. False negatives for all other MoAs were most often narcosis. A probabilistic sensitivity analysis was undertaken for each MoA to examine the sensitivity to individual and multiple descriptor findings. The results show that the Markov blanket of a structurally

  5. Methods for broth dilution susceptibility testing of bacteria isolated from aquatic animals; approved guideline-second edition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antimicrobial susceptibility testing is recommended to determine which antimicrobial agents should be considered for treating a bacterial pathogen. Many bacteria that cause disease in aquatic animals require growth conditions that vary substantially from routine terrestrial pathogens. It has thus ...

  6. Assessment of aquatic animal communities in the vicinity of the Palmerton, Pennsylvania, zinc smelters

    SciTech Connect

    Carline, R.F.; Jobsis, G.J. . Pennsylvania Cooperative Fish and Wildlife Research Unit)

    1993-09-01

    Emissions from zinc smelters in Palmerton, Pennsylvania, deposited large quantities of heavy metals, predominantly Zn, Pb, Cu, and Cd, on the surrounding landscape from 1898 to 1980. From 1986 to 1987 the authors studied four small headwater streams that were about 8 to 25 km downwind of the smelters to determine if long-term deposition of heavy metals had any pronounced effects on aquatic communities. Although metal concentrations in soils tended to decrease with increasing distance from the smelters, this trend was not particularly evident in stream sediments, insects, or fish. Diversities of macroinvertebrates and fish were similar among sites. Densities and growth of trout varied among streams, but no in relation to distance from the smelters. They concluded that long-term deposition of heavy metals has not had pronounced effects on aquatic animal communities six to seven years after cessation of primary smelting.

  7. Epidemiology and Economics Support Decisions about Freedom from Aquatic Animal Disease.

    PubMed

    Peeler, E J; Otte, M J

    2016-06-01

    In this study, we review the application of epidemiology and economics to decision-making about freedom from aquatic animal disease, at national and regional level, and recent examples from Europe. Epidemiological data (e.g. pathogen prevalence and distribution) determine the technical feasibility and cost of eradication. The eradication of pathogens which exist in wild populations, or in a latent state, is technically difficult, uncertain and expensive. Notably, the eradication of diseases of molluscs is rarely attempted because host populations (farmed and wild) cannot be completely removed from open water systems. Doubt about the success of eradication translates into uncertain ex-ante cost estimates. Additionally, the benefits of an official disease-free status cannot be estimated with any accuracy. For example, in Europe, official freedom from epizootic ulcerative syndrome and white spot syndrome virus has not been pursued, arguably because the evidence does not exist for the benefits (reduced risk of disease in wild populations) to be estimated and thus weighed against the costs of maintaining disease freedom (e.g. restriction on imports). Economic analysis must assess not only whether the benefits of disease freedom outweigh costs, but whether it is the economically optimal disease control option. Government may also want to compare investment in aquatic animal health with other opportunities. As resources become scarce, governments have sought to share costs of disease control with industry, and thus to ensure equity, the distribution benefits must be known so costs can be borne by those who benefit. The economic principles to support decisions about disease freedom are well established, but their application is constrained by lack of epidemiological data, which may explain the lack of economic analysis in support of aquatic animal management in Europe. The integration of epidemiology and economics in disease control planning will identify research aimed at

  8. Contribution of science to farm-level aquatic animal health management.

    PubMed

    Corsin, F; Giorgetti, G; Mohan, C V

    2007-01-01

    The contribution of science to farm level disease management is a story of two worlds. The development of effective vaccines has allowed for the control of important salmonid diseases such as furunculosis, yersiniosis and vibriosis and has significantly reduced farmers' reliance on antibiotics. Control of diseases for which cost-effective vaccines have yet to be developed has been achieved through the development of increasingly targeted antibiotics and chemotherapeutants. Increasingly, accurate and rapid diagnostic and water quality tests have allowed farmers to improve farm-level aquatic animal health management. In developed countries, these achievements have been possible thanks to the strong link between science and farm management. This link has been assisted by the presence of strong farmer organizations capable of coordinating research projects and hosting meetings at which scientific information is discussed and disseminated. Although Asia is responsible for the production of about 90% of aquaculture products, it presents a rather different picture from the above. Science has indeed made significant progress in health management but the links with farm management are still weak. Management practices capable of preventing important health problems in shrimp and fish farming are still poorly adopted by farmers. This is largely due to constraints in the dissemination of information to the large number of producers involved, the limited resources of both producers and their countries and the lack of effective farmer organizations capable of liaising with the scientific world. Recently, the Asian region has witnessed some successful examples of aquatic animal health management through the adoption of simple Better Management Practices. Efforts so far have been largely focused on shrimp farming, although activities have been initiated to adopt a similar approach to other commodities. The need for both observational and experimental epidemiological studies to

  9. Environmental dermatology: skin manifestations of injuries caused by invertebrate aquatic animals*

    PubMed Central

    Haddad Junior, Vidal

    2013-01-01

    Contact between humans and coastal areas has increased in recent decades, which has led to an increase in injuries from aquatic animals. The majority of these present dermatological manifestations, and some of them show typical lesions. The highest percentages of injuries that occur in marine environments are associated with invertebrates such as sea urchins, jellyfish and Portuguese men-of-war (echinoderms and cnidarians). In this review, we discuss the clinical, therapeutic and preventive aspects of injuries caused by marine and freshwater invertebrates, focusing on first aid measures and diagnosis for dermatologists and professionals in coastal areas. PMID:24068119

  10. Advantages of using aquatic animals for biomedical research on reproductive toxicology

    SciTech Connect

    Mottet, N.K.; Landolt, M.L.

    1987-04-01

    Major advantages of the use of aquatic animals, such as trout, English sole, or sea urchins, for studying the mechanisms of reproductive toxicology are discussed. The remarkable synchrony of differentiation of gametes in large quantities for detailed morphologic and biochemical measurements enables research not readily done on mammalian nonseasonal breeders. Structural differences such as the absence of a fibrous sheath in the more simple structure of fish and sea urchin sperm flagella facilitates comparative study of the mechanism of action of microtubules in flagella movement and the coupling of mitochondrial energy production to microtubules movement.

  11. Advantages of using aquatic animals for biomedical research on reproductive toxicology.

    PubMed Central

    Mottet, N K; Landolt, M L

    1987-01-01

    Major advantages of the use of aquatic animals, such as trout, English sole, or sea urchins, for studying the mechanisms of reproductive toxicology are discussed. The remarkable synchrony of differentiation of gametes in large quantities for detailed morphologic and biochemical measurements enables research not readily done on mammalian nonseasonal breeders. Structural differences such as the absence of a fibrous sheath in the more simple structure of fish and sea urchin sperm flagella facilitates comparative study of the mechanism of action of microtubules in flagella movement and the coupling of mitochondrial energy production to microtubules movement. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. FIGURE 6. FIGURE 7. PMID:3297666

  12. ANIMAL MODELS FOR IMMUNOTOXICITY

    EPA Science Inventory

    Greater susceptibility to infection is a hallmark of compromised immune function in humans and animals, and is often considered the benchmark against which the predictive value of immune function tests are compared. This focus of this paper is resistance to infection with the pa...

  13. Quantitative polymerase chain reaction (PCR) for detection of aquatic animal pathogens in a diagnostic laboratory setting

    USGS Publications Warehouse

    Purcell, Maureen K.; Getchell, Rodman G.; McClure, Carol A.; Weber, S.E.; Garver, Kyle A.

    2011-01-01

    Real-time, or quantitative, polymerase chain reaction (qPCR) is quickly supplanting other molecular methods for detecting the nucleic acids of human and other animal pathogens owing to the speed and robustness of the technology. As the aquatic animal health community moves toward implementing national diagnostic testing schemes, it will need to evaluate how qPCR technology should be employed. This review outlines the basic principles of qPCR technology, considerations for assay development, standards and controls, assay performance, diagnostic validation, implementation in the diagnostic laboratory, and quality assurance and control measures. These factors are fundamental for ensuring the validity of qPCR assay results obtained in the diagnostic laboratory setting.

  14. Quantitative polymerase chain reaction (PCR) for detection of aquatic animal pathogens in a diagnostic laboratory setting.

    PubMed

    Purcell, Maureen K; Getchell, Rodman G; McClure, Carol A; Garver, Kyle A

    2011-09-01

    Real-time, or quantitative, polymerase chain reaction (qPCR) is quickly supplanting other molecular methods for detecting the nucleic acids of human and other animal pathogens owing to the speed and robustness of the technology. As the aquatic animal health community moves toward implementing national diagnostic testing schemes, it will need to evaluate how qPCR technology should be employed. This review outlines the basic principles of qPCR technology, considerations for assay development, standards and controls, assay performance, diagnostic validation, implementation in the diagnostic laboratory, and quality assurance and control measures. These factors are fundamental for ensuring the validity of qPCR assay results obtained in the diagnostic laboratory setting.

  15. Remote in vivo stress assessment of aquatic animals with microencapsulated biomarkers for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Gurkov, Anton; Shchapova, Ekaterina; Bedulina, Daria; Baduev, Boris; Borvinskaya, Ekaterina; Meglinski, Igor; Timofeyev, Maxim

    2016-11-01

    Remote in vivo scanning of physiological parameters is a major trend in the development of new tools for the fields of medicine and animal physiology. For this purpose, a variety of implantable optical micro- and nanosensors have been designed for potential medical applications. At the same time, the important area of environmental sciences has been neglected in the development of techniques for remote physiological measurements. In the field of environmental monitoring and related research, there is a constant demand for new effective and quick techniques for the stress assessment of aquatic animals, and the development of proper methods for remote physiological measurements in vivo may significantly increase the precision and throughput of analyses in this field. In the present study, we apply pH-sensitive microencapsulated biomarkers to remotely monitor the pH of haemolymph in vivo in endemic amphipods from Lake Baikal, and we compare the suitability of this technique for stress assessment with that of common biochemical methods. For the first time, we demonstrate the possibility of remotely detecting a change in a physiological parameter in an aquatic organism under ecologically relevant stressful conditions and show the applicability of techniques using microencapsulated biomarkers for remote physiological measurements in environmental monitoring.

  16. Remote in vivo stress assessment of aquatic animals with microencapsulated biomarkers for environmental monitoring

    PubMed Central

    Gurkov, Anton; Shchapova, Ekaterina; Bedulina, Daria; Baduev, Boris; Borvinskaya, Ekaterina; Meglinski, Igor; Timofeyev, Maxim

    2016-01-01

    Remote in vivo scanning of physiological parameters is a major trend in the development of new tools for the fields of medicine and animal physiology. For this purpose, a variety of implantable optical micro- and nanosensors have been designed for potential medical applications. At the same time, the important area of environmental sciences has been neglected in the development of techniques for remote physiological measurements. In the field of environmental monitoring and related research, there is a constant demand for new effective and quick techniques for the stress assessment of aquatic animals, and the development of proper methods for remote physiological measurements in vivo may significantly increase the precision and throughput of analyses in this field. In the present study, we apply pH-sensitive microencapsulated biomarkers to remotely monitor the pH of haemolymph in vivo in endemic amphipods from Lake Baikal, and we compare the suitability of this technique for stress assessment with that of common biochemical methods. For the first time, we demonstrate the possibility of remotely detecting a change in a physiological parameter in an aquatic organism under ecologically relevant stressful conditions and show the applicability of techniques using microencapsulated biomarkers for remote physiological measurements in environmental monitoring. PMID:27808253

  17. [Psoriasis in the animal model].

    PubMed

    Boehncke, W H

    1997-10-01

    Co-existing inflammation and epidermal hyperproliferation characteristic for psoriasis have been shown to be reproducible in several animal models utilizing a variety of different strategies. These models highlight some points of the multicausal pathogenesis of psoriasis. Based on observations made in the animal models, a hypothesis is proposed for the pathogenesis of psoriasis, the elements of which can be tested in a recently established xenogeneic transplantation model.

  18. Lagrangian studies of animal swimming and aquatic predator-prey interactions

    NASA Astrophysics Data System (ADS)

    Dabiri, John

    2008-03-01

    Experimental studies of animal swimming have been traditionally based on an Eulerian perspective in which the time-dependent flow field surrounding the animal is measured at fixed locations in space. The measured velocity field and its derivatives (e.g. vorticity) can, in principle, be used to deduce the forces, energetics, and fluid transport associated with locomotion in real fluids. However, achieving a connection between measurements of these Eulerian fields and the dynamics of locomotion has proven difficult in practice. We present the application of Lagrangian methods of flow analysis in which the time-dependent trajectories of individual tracer particles in the flow are measured experimentally and subsequently interrogated using dynamical systems tools in order to quantitatively resolve the dynamics of animal swimming. The Lagrangian methods are shown to be readily extended to time-dependent measurements in three spatial dimensions and to in situ field measurements using a recently developed self-contained underwater velocimetry apparatus (SCUVA). Case studies of jellyfish and other aquatic animals observed in the laboratory and in marine environments are used to illustrate the proposed approach. We also show that predator-prey interactions during jellyfish swimming can be addressed using the aforementioned Lagrangian methods in combination with the Maxey-Riley equations for inertial particles in fluid flow.

  19. Animal models of erectile dysfunction.

    PubMed

    Kapoor, Mandeep Singh; Khan, Samsroz Ahmad; Gupta, Sanjay Kumar; Choudhary, Rajesh; Bodakhe, Surendra H

    2015-01-01

    Erectile dysfunction (ED) is a prevalent male sexual dysfunction with profound adverse effects on the physical and the psychosocial health of men and, subsequently, on their partners. The expanded use of various types of rodent models has produced some advances in the study of ED, and neurophysiological studies using various animal models have provided important insights into human sexual dysfunction. At present, animal models play a key role in exploring and screening novel drugs designed to treat ED.

  20. Public Lakes, Private Lakeshore: Modeling Protection of Native Aquatic Plants

    NASA Astrophysics Data System (ADS)

    Schroeder, Susan A.; Fulton, David C.

    2013-07-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221-279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey ( n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners' behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property.

  1. Public lakes, private lakeshore: modeling protection of native aquatic plants.

    PubMed

    Schroeder, Susan A; Fulton, David C

    2013-07-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221-279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey (n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners' behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property.

  2. Animal models of cerebral ischemia

    NASA Astrophysics Data System (ADS)

    Khodanovich, M. Yu.; Kisel, A. A.

    2015-11-01

    Cerebral ischemia remains one of the most frequent causes of death and disability worldwide. Animal models are necessary to understand complex molecular mechanisms of brain damage as well as for the development of new therapies for stroke. This review considers a certain range of animal models of cerebral ischemia, including several types of focal and global ischemia. Since animal models vary in specificity for the human disease which they reproduce, the complexity of surgery, infarct size, reliability of reproduction for statistical analysis, and adequate models need to be chosen according to the aim of a study. The reproduction of a particular animal model needs to be evaluated using appropriate tools, including the behavioral assessment of injury and non-invasive and post-mortem control of brain damage. These problems also have been summarized in the review.

  3. Animal Models in Burn Research

    PubMed Central

    Abdullahi, A.; Amini-Nik, S.; Jeschke, M.G

    2014-01-01

    Burn injury is a severe form of trauma affecting more than two million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury; to elucidate the pathophysiology and explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review paper aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research. PMID:24714880

  4. Animal Models for Candidiasis

    PubMed Central

    Conti, Heather R.; Huppler, Anna R.; Whibley, Natasha; Gaffen, Sarah L.

    2014-01-01

    Multiple forms of candidiasis are clinically important in humans. Established murine models of disseminated, oropharyngeal, vaginal, and cutaneous candidiasis caused by Candida albicans are described in this unit. Detailed materials and methods for C. albicans growth and detection are also described. PMID:24700323

  5. Mapping, Monitoring and Modeling Submersed Aquatic Vegetation Species and Communities

    NASA Astrophysics Data System (ADS)

    Hartis, Brett Michael

    Aquatic macrophyte communities are critically important habitat species in aquatic systems worldwide. None are more important than those found beneath the water's surface, commonly referred to as submersed aquatic vegetation (SAV). Although vital to such systems, many native submersed plants have shown near irreversible declines in recent decades as water quality impairment, habitat destruction, and encroachment by invasive species have increased. In the past, aquatic plant science has emphasized the restoration and protection of native species and the management of invasive species. Comparatively little emphasis has been directed toward adequately mapping and monitoring these resources to track their viability over time. Modeling the potential intrusion of certain invasive plant species has also been given little attention, likely because aquatic systems in general can be difficult to assess. In recent years, scientists and resource managers alike have begun paying more attention to mapping SAV communities and to address the spread of invasive species across various regions. This research attempts to provide new, cutting-edge techniques to improve SAV mapping and monitoring efforts in coastal regions, at both community and individual species levels, while also providing insights about the establishment potential of Hydrilla verticillata, a noxious, highly invasive submersed plant. Technological advances in satellite remote sensing, interpolation and spatial analysis in geographic information systems, and state-of-the-art climate envelope modeling techniques were used to further assess the dynamic nature of SAV on various scales. This work contributes to the growing science of mapping, monitoring, and modeling of SAV

  6. Animal Models of Bacterial Keratitis

    PubMed Central

    Marquart, Mary E.

    2011-01-01

    Bacterial keratitis is a disease of the cornea characterized by pain, redness, inflammation, and opacity. Common causes of this disease are Pseudomonas aeruginosa and Staphylococcus aureus. Animal models of keratitis have been used to elucidate both the bacterial factors and the host inflammatory response involved in the disease. Reviewed herein are animal models of bacterial keratitis and some of the key findings in the last several decades. PMID:21274270

  7. Impact of Anthropogenic Noise on Aquatic Animals: From Single Species to Community-Level Effects.

    PubMed

    Sabet, Saeed Shafiei; Neo, Yik Yaw; Slabbekoorn, Hans

    2016-01-01

    Anthropogenic noise underwater is on the rise and may affect aquatic animals of marine and freshwater ecosystems. Many recent studies concern some sort of impact assessment of a single species. Few studies addressed the noise impact on species interactions underwater, whereas there are some studies that address community-level impact but only on land in air. Key processes such as predator-prey or competitor interactions may be affected by the masking of auditory cues, noise-related disturbance, or attentional interference. Noise-associated changes in these interactions can cause shifts in species abundance and modify communities, leading to fundamental ecosystem changes. To gain further insight into the mechanism and generality of earlier findings, we investigated the impact on both a predator and a prey species in captivity, zebrafish (Danio rerio) preying on waterfleas (Daphnia magna).

  8. Developing an Interdisciplinary Curriculum Framework for Aquatic-Ecosystem Modeling

    ERIC Educational Resources Information Center

    Saito, Laurel; Segale, Heather M.; DeAngelis, Donald L.; Jenkins, Stephen H.

    2007-01-01

    This paper presents results from a July 2005 workshop and course aimed at developing an interdisciplinary course on modeling aquatic ecosystems that will provide the next generation of practitioners with critical skills for which formal training is presently lacking. Five different course models were evaluated: (1) fundamentals/general principles…

  9. Animal models of chronic migraine.

    PubMed

    Storer, Robin James; Supronsinchai, Weera; Srikiatkhachorn, Anan

    2015-01-01

    Many animal models of migraine have been described. Some of them have been useful in the development of new therapies. All of them have their shortcomings. Animal models of chronic migraine have been relatively less frequently described. Whether a rigid distinction between episodic and chronic migraine is useful when their underlying pathophysiology is likely to be the same and that migraine frequency probably depends on complex polygenic influences remains to be determined. Any model of chronic migraine must reflect the chronicity of the disorder and be reliable and validated with pharmacological interventions. Future animal models of chronic migraine are likely to involve recurrent activation of the trigeminal nociceptive system. Valid models would provide a means for investigating pathophysiological mechanism of the transformation from episodic to chronic migraine and may also be used to test the efficacy of potential preventive medications.

  10. Animal Models of Bone Metastasis

    PubMed Central

    Simmons, J. K.; Hildreth, B. E.; Supsavhad, W.; Elshafae, S. M.; Hassan, B. B.; Dirksen, W. P.; Toribio, R. E.; Rosol, T. J.

    2015-01-01

    Bone is one of the most common sites of cancer metastasis in humans and is a significant source of morbidity and mortality. Bone metastases are considered incurable and result in pain, pathologic fracture, and decreased quality of life. Animal models of skeletal metastases are essential to improve the understanding of the molecular pathways of cancer metastasis and growth in bone and to develop new therapies to inhibit and prevent bone metastases. The ideal animal model should be clinically relevant, reproducible, and representative of human disease. Currently, an ideal model does not exist; however, understanding the strengths and weaknesses of the available models will lead to proper study design and successful cancer research. This review provides an overview of the current in vivo animal models used in the study of skeletal metastases or local tumor invasion into bone and focuses on mammary and prostate cancer, lymphoma, multiple myeloma, head and neck squamous cell carcinoma, and miscellaneous tumors that metastasize to bone. PMID:26021553

  11. Animal welfare and use of silkworm as a model animal.

    PubMed

    Sekimizu, N; Paudel, A; Hamamoto, H

    2012-08-01

    Sacrificing model animals is required for developing effective drugs before being used in human beings. In Japan today, at least 4,210,000 mice and other mammals are sacrificed to a total of 6,140,000 per year for the purpose of medical studies. All the animals treated in Japan, including test animals, are managed under control of "Act on Welfare and Management of Animals". Under the principle of this Act, no person shall kill, injure, or inflict cruelty on animals without due cause. "Animal" addressed in the Act can be defined as a "vertebrate animal". If we can make use of invertebrate animals in testing instead of vertebrate ones, that would be a remarkable solution for the issue of animal welfare. Furthermore, there are numerous advantages of using invertebrate animal models: less space and small equipment are enough for taking care of a large number of animals and thus are cost-effective, they can be easily handled, and many biological processes and genes are conserved between mammals and invertebrates. Today, many invertebrates have been used as animal models, but silkworms have many beneficial traits compared to mammals as well as other insects. In a Genome Pharmaceutical Institute's study, we were able to achieve a lot making use of silkworms as model animals. We would like to suggest that pharmaceutical companies and institutes consider the use of the silkworm as a model animal which is efficacious both for financial value by cost cutting and ethical aspects in animals' welfare.

  12. Animal models of pituitary neoplasia

    PubMed Central

    Lines, K.E.; Stevenson, M.; Thakker, R.V.

    2016-01-01

    Pituitary neoplasias can occur as part of a complex inherited disorder, or more commonly as sporadic (non-familial) disease. Studies of the molecular and genetic mechanisms causing such pituitary tumours have identified dysregulation of >35 genes, with many revealed by studies in mice, rats and zebrafish. Strategies used to generate these animal models have included gene knockout, gene knockin and transgenic over-expression, as well as chemical mutagenesis and drug induction. These animal models provide an important resource for investigation of tissue-specific tumourigenic mechanisms, and evaluations of novel therapies, illustrated by studies into multiple endocrine neoplasia type 1 (MEN1), a hereditary syndrome in which ∼30% of patients develop pituitary adenomas. This review describes animal models of pituitary neoplasia that have been generated, together with some recent advances in gene editing technologies, and an illustration of the use of the Men1 mouse as a pre clinical model for evaluating novel therapies. PMID:26320859

  13. Trypanocidal and leishmanicidal activities of different antimicrobial peptides (AMPs) isolated from aquatic animals.

    PubMed

    Löfgren, S E; Miletti, L C; Steindel, M; Bachère, E; Barracco, M A

    2008-02-01

    Most of the available animal antimicrobial peptides (AMPs) have been tested against bacteria and fungi, but very few against protozoan parasites. In the present study, we investigated the antiparasitic activity of different AMPs isolated from aquatic animals: tachyplesin (Tach, from Tachypleus tridentatus), magainin (Mag, from Xenopus laevis), clavanin (Clav, from Styela clava), penaeidin (Pen, from Litopenaeus vannamei), mytilin (Myt, from Mytilus edulis) and anti-lipopolysaccharide factor (ALF, from Penaeus monodon). The antiparasitic activity was evaluated against the promastigote form of Leishmania braziliensis and epi and trypomastigote forms of Trypanosoma cruzi, through the MTT method. Tach was the most potent peptide, killing completely L. braziliensis and trypomastigote T. cruzi from 12.5microM, whereas Pen and Clav were weakly active against trypomastigotes and Myt against L. braziliensis, only at a high concentration (100microM). Tach and Mag were markedly hemolytic at high concentrations, whereas the other peptides caused only a slight hemolysis (<10% up to 50microM). Our results point to Tach as the only potential candidate for further investigation and potential application as a therapeutic agent.

  14. Small animal models of xenotransplantation.

    PubMed

    Wang, Hao

    2012-01-01

    Organ transplantation has become a successful and acceptable treatment for end-stage organ failure. Such success has allowed transplant patients to resume a normal lifestyle. The demands for transplantation have been steadily increasing, as more patients and new diseases are being deemed eligible for treatment via transplantation. However, it is clear that human organs will never meet the increasing demand of transplantation. Therefore, scientists must continue to pursue alternative therapies and explore new treatments to meet the growing demand for the limited number of organs available. Transplanting organs from animals into humans (xenotransplantation) is one such therapy. The observed enthusiasm for xenotransplantation, irrespective of the severe shortage of human organs and tissues available for transplantation, can be said to stem from at least two factors. First, there is the possibility that animal organs and tissues might be less susceptible than those of humans to the recurrence of disease processes. Second, a xenograft might be used as a vehicle for introducing novel genes or biochemical processes which could be of therapeutic value for the transplant recipient.To date, millions of lives have been saved by organ transplantation. These remarkable achievements would have been impossible without experimental transplantation research in animal models. Presently, more than 95% of organ transplantation research projects are carried out using rodents, such as rats and mice. The key factor to ensure the success of these experiments lies in state-of-the art experimental surgery. Small animal models offer unique advantages for the mechanistic study of xenotransplantation rejection. Currently, multiple models have been developed for investigating the different stages of immunological barriers in xenotransplantation. In this chapter, we describe six valuable small animal models that have been used in xenotransplantation research. The methodology for the small animal

  15. Ranking of aquatic toxicity of esters modelled by QSAR.

    PubMed

    Papa, Ester; Battaini, Francesca; Gramatica, Paola

    2005-02-01

    Alternative methods like predictions based on Quantitative Structure-Activity Relationships (QSARs) are now accepted to fill data gaps and define priority lists for more expensive and time consuming assessments. A heterogeneous data set of 74 esters was studied for their aquatic toxicity, and available experimental toxicity data on algae, Daphnia and fish were used to develop statistically validated QSAR models, obtained using multiple linear regression (MLR) by the OLS (Ordinary Least Squares) method and GA-VSS (Variable Subset Selection by Genetic Algorithms) to predict missing values. An ESter Aquatic Toxicity INdex (ESATIN) was then obtained by combining, by PCA, experimental and predicted toxicity data, from which model outliers and esters highly influential due to their structure had been eliminated. Finally this integrated aquatic toxicity index, defined by the PC1 score, was modelled using only a few theoretical molecular descriptors. This last QSAR model, statistically validated for its predictive power, could be proposed as a preliminary evaluative method for screening/prioritising esters according to their integrated aquatic toxicity, just starting from their molecular structure.

  16. Pollution and parasitism in aquatic animals: a meta-analysis of effect size.

    PubMed

    Blanar, Christopher A; Munkittrick, Kelly R; Houlahan, Jeff; Maclatchy, Deborah L; Marcogliese, David J

    2009-06-04

    Numerous studies have indicated that aquatic pollution affects parasite populations and communities. However, the responses of individual taxa and functional groups to specific contaminants, and their effect sizes, have yet to be assessed quantitatively. We began by summarizing general trends in the literature, and found that reports of significant changes in parasitism were most commonly observed in response to eutrophication and metal contamination. Among parasite taxa, significant changes were most commonly reported for acanthocephalans, digeneans and microparasites. We then conducted a quantitative meta-analysis of the effects of pollution on parasitism in aquatic animals. We calculated signed standardized effect sizes (as Cohen's d) for all published studies that provided the necessary descriptive statistics, and compared them among major contaminant types (pesticides, hydrocarbons, polychlorinated biphenyls, pulp mill effluent, metals, sewage, eutrophication, and acidification) and parasite taxa (Acanthocephala, Cestoda, Digenea, Monogenea, Nematoda and microparasites). Effect sizes were not significantly different from zero for many parasite/contaminant interactions, and tended to be highly variable within individual taxa. However, consistently strong, significant negative effects were noted in Digenea and Monogenea, especially in response to metal pollution. Significant effect sizes were typically negative, indicating that pollutants have negative effects on parasite populations. Contaminants also had a slightly negative effect on community richness. When parasites were grouped into heteroxenous (with >1 obligatory host in life cycle) vs. monoxenous (1 obligatory host in life cycle) taxa, the latter were more susceptible to a wide range of pollutants. Similarly, directly exposed (external parasites and the free-living transmission stages of internal parasites) and freshwater taxa were more susceptible to a wider range of pollutants than indirectly exposed

  17. Aquatic toxicity of four veterinary drugs commonly applied in fish farming and animal husbandry.

    PubMed

    Kołodziejska, Marta; Maszkowska, Joanna; Białk-Bielińska, Anna; Steudte, Stephanie; Kumirska, Jolanta; Stepnowski, Piotr; Stolte, Stefan

    2013-08-01

    Doramectin (DOR), metronidazole (MET), florfenicol (FLO), and oxytetracycline (OXT) are among the most widely used veterinary drugs in animal husbandry or in aquaculture. Contamination of the environment by these pharmaceuticals has given cause for concern in recent years. Even though their toxicity has been thoroughly analyzed, knowledge of their ecotoxicity is still limited. We investigated their aquatic toxicity using tests with marine bacteria (Vibrio fischeri), green algae (Scenedesmus vacuolatus), duckweed (Lemna minor) and crustaceans (Daphnia magna). All the ecotoxicological tests were supported by chemical analyses to confirm the exposure concentrations of the pharmaceuticals used in the toxicity experiments, since deviations from the nominal concentration can result in underestimation of biological effects. It was found that OXT and FLO have a stronger adverse effect on duckweed (EC50=3.26 and 2.96mgL(-1) respectively) and green algae (EC50=40.4 and 18.0mgL(-1)) than on bacteria (EC50=108 and 29.4mgL(-1)) and crustaceans (EC50=114 and 337mgL(-1)), whereas MET did not exhibit any adverse effect in the tested concentration range. For DOR a very low EC50 of 6.37×10(-5)mgL(-1) towards D. magna was determined, which is five orders of magnitude lower than values known for the toxic reference compound K2Cr2O7. Our data show the strong influence of certain veterinary drugs on aquatic organisms and contribute to a sound assessment of the environmental hazards posed by commonly used pharmaceuticals.

  18. Stochastic modelling of animal movement

    PubMed Central

    Smouse, Peter E.; Focardi, Stefano; Moorcroft, Paul R.; Kie, John G.; Forester, James D.; Morales, Juan M.

    2010-01-01

    Modern animal movement modelling derives from two traditions. Lagrangian models, based on random walk behaviour, are useful for multi-step trajectories of single animals. Continuous Eulerian models describe expected behaviour, averaged over stochastic realizations, and are usefully applied to ensembles of individuals. We illustrate three modern research arenas. (i) Models of home-range formation describe the process of an animal ‘settling down’, accomplished by including one or more focal points that attract the animal's movements. (ii) Memory-based models are used to predict how accumulated experience translates into biased movement choices, employing reinforced random walk behaviour, with previous visitation increasing or decreasing the probability of repetition. (iii) Lévy movement involves a step-length distribution that is over-dispersed, relative to standard probability distributions, and adaptive in exploring new environments or searching for rare targets. Each of these modelling arenas implies more detail in the movement pattern than general models of movement can accommodate, but realistic empiric evaluation of their predictions requires dense locational data, both in time and space, only available with modern GPS telemetry. PMID:20566497

  19. Animal models of Alzheimer disease.

    PubMed

    LaFerla, Frank M; Green, Kim N

    2012-11-01

    Significant insights into the function of genes associated with Alzheimer disease and related dementias have occurred through studying genetically modified animals. Although none of the existing models fully reproduces the complete spectrum of this insidious human disease, critical aspects of Alzheimer pathology and disease processes can be experimentally recapitulated. Genetically modified animal models have helped advance our understanding of the underlying mechanisms of disease and have proven to be invaluable in the preclinical evaluation of potential therapeutic interventions. Continuing refinement and evolution to yield the next generation of animal models will facilitate successes in producing greater translational concordance between preclinical studies and human clinical trials and eventually lead to the introduction of novel therapies into clinical practice.

  20. Animal models of cardiovascular diseases.

    PubMed

    Zaragoza, Carlos; Gomez-Guerrero, Carmen; Martin-Ventura, Jose Luis; Blanco-Colio, Luis; Lavin, Begoña; Mallavia, Beñat; Tarin, Carlos; Mas, Sebastian; Ortiz, Alberto; Egido, Jesus

    2011-01-01

    Cardiovascular diseases are the first leading cause of death and morbidity in developed countries. The use of animal models have contributed to increase our knowledge, providing new approaches focused to improve the diagnostic and the treatment of these pathologies. Several models have been developed to address cardiovascular complications, including atherothrombotic and cardiac diseases, and the same pathology have been successfully recreated in different species, including small and big animal models of disease. However, genetic and environmental factors play a significant role in cardiovascular pathophysiology, making difficult to match a particular disease, with a single experimental model. Therefore, no exclusive method perfectly recreates the human complication, and depending on the model, additional considerations of cost, infrastructure, and the requirement for specialized personnel, should also have in mind. Considering all these facts, and depending on the budgets available, models should be selected that best reproduce the disease being investigated. Here we will describe models of atherothrombotic diseases, including expanding and occlusive animal models, as well as models of heart failure. Given the wide range of models available, today it is possible to devise the best strategy, which may help us to find more efficient and reliable solutions against human cardiovascular diseases.

  1. Aquatic pathways model to predict the fate of phenolic compounds

    SciTech Connect

    Aaberg, R.L.; Peloquin, R.A.; Strenge, D.L.; Mellinger, P.J.

    1983-04-01

    Organic materials released from energy-related activities could affect human health and the environment. To better assess possible impacts, we developed a model to predict the fate of spills or discharges of pollutants into flowing or static bodies of fresh water. A computer code, Aquatic Pathways Model (APM), was written to implement the model. The computer programs use compartmental analysis to simulate aquatic ecosystems. The APM estimates the concentrations of chemicals in fish tissue, water and sediment, and is therefore useful for assessing exposure to humans through aquatic pathways. The APM will consider any aquatic pathway for which the user has transport data. Additionally, APM will estimate transport rates from physical and chemical properties of chemicals between several key compartments. The major pathways considered are biodegradation, fish and sediment uptake, photolysis, and evaporation. The model has been implemented with parameters for distribution of phenols, an important class of compounds found in the water-soluble fractions of coal liquids. Current modeling efforts show that, in comparison with many pesticides and polyaromatic hydrocarbons (PAH), the lighter phenolics (the cresols) are not persistent in the environment. The properties of heavier molecular weight phenolics (indanols, naphthols) are not well enough understood at this time to make similar judgements. For the twelve phenolics studied, biodegradation appears to be the major pathway for elimination from aquatic environments. A pond system simulation (using APM) of a spill of solvent refined coal (SRC-II) materials indicates that phenol, cresols, and other single cyclic phenolics are degraded to 16 to 25 percent of their original concentrations within 30 hours. Adsorption of these compounds into sediments and accumulation by fish was minor.

  2. Animal Models of Zika Virus.

    PubMed

    P Bradley And Claude M Nagamine, Michael

    2017-03-07

    Zika virus has garnered great attention over the last several years, as outbreaks of the disease have emerged throughout the Western Hemisphere. Until quite recently Zika virus was considered a fairly benign virus, with limited clinical severity in both people and animals. The size and scope of the outbreak in the Western Hemisphere has allowed for the identification of severe clinical disease that is associated with Zika virus infection, most notably microcephaly among newborns, and an association with Guillian-Barré syndrome in adults. This recent association with severe clinical disease, of which further analysis strongly suggested causation by Zika virus, has resulted in a massive increase in the amount of both basic and applied research of this virus. Both small and large animal models are being used to uncover the pathogenesis of this emerging disease and to develop vaccine and therapeutic strategies. Here we review the animal-model-based Zika virus research that has been performed to date.

  3. Animal models for auditory streaming.

    PubMed

    Itatani, Naoya; Klump, Georg M

    2017-02-19

    Sounds in the natural environment need to be assigned to acoustic sources to evaluate complex auditory scenes. Separating sources will affect the analysis of auditory features of sounds. As the benefits of assigning sounds to specific sources accrue to all species communicating acoustically, the ability for auditory scene analysis is widespread among different animals. Animal studies allow for a deeper insight into the neuronal mechanisms underlying auditory scene analysis. Here, we will review the paradigms applied in the study of auditory scene analysis and streaming of sequential sounds in animal models. We will compare the psychophysical results from the animal studies to the evidence obtained in human psychophysics of auditory streaming, i.e. in a task commonly used for measuring the capability for auditory scene analysis. Furthermore, the neuronal correlates of auditory streaming will be reviewed in different animal models and the observations of the neurons' response measures will be related to perception. The across-species comparison will reveal whether similar demands in the analysis of acoustic scenes have resulted in similar perceptual and neuronal processing mechanisms in the wide range of species being capable of auditory scene analysis.This article is part of the themed issue 'Auditory and visual scene analysis'.

  4. Animal models of polymicrobial pneumonia

    PubMed Central

    Hraiech, Sami; Papazian, Laurent; Rolain, Jean-Marc; Bregeon, Fabienne

    2015-01-01

    Pneumonia is one of the leading causes of severe and occasionally life-threatening infections. The physiopathology of pneumonia has been extensively studied, providing information for the development of new treatments for this condition. In addition to in vitro research, animal models have been largely used in the field of pneumonia. Several models have been described and have provided a better understanding of pneumonia under different settings and with various pathogens. However, the concept of one pathogen leading to one infection has been challenged, and recent flu epidemics suggest that some pathogens exhibit highly virulent potential. Although “two hits” animal models have been used to study infectious diseases, few of these models have been described in pneumonia. Therefore the aims of this review were to provide an overview of the available literature in this field, to describe well-studied and uncommon pathogen associations, and to summarize the major insights obtained from this information. PMID:26170617

  5. A small long-life acoustic transmitter for studying the behavior of aquatic animals

    NASA Astrophysics Data System (ADS)

    Lu, J.; Deng, Z. D.; Li, H.; Myjak, M. J.; Martinez, J. J.; Xiao, J.; Brown, R. S.; Cartmell, S. S.

    2016-11-01

    Acoustic telemetry is an important tool for studying the behavior of aquatic animals and assessing the environmental impact of structures such as hydropower facilities. However, the physical size, signal intensity, and service life of off-the-shelf transmitters are presently insufficient for monitoring certain species. In this study, we developed a small, long-life acoustic transmitter with an approximate length of 24.2 mm, diameter of 5.0 mm, and dry weight of 0.72 g. The transmitter generates a coded acoustic signal at 416.7 kHz with a selectable source level between 159 and 163 dB relative to 1 μPa at 1 m, allowing a theoretical detection range of up to 500 m. The expected operational lifetime is 1 yr at a pulse rate interval of 15 s. The new technology makes long-term acoustic telemetry studies of small fish possible, and is being deployed for a long-term tracking of juvenile sturgeon.

  6. The use of bioenergetic measurements for detecting sublethal pollutant-induced stress in aquatic animals

    SciTech Connect

    Carr, R.S. )

    1988-09-01

    A number of different techniques have been used to measure stress-induced shifts in metabolic pathways that influence growth and reproductive potential in aquatic animals. The different techniques that have been employed include bioenergetic measurements such as scope for growth, carbon flux, and O:N ratios. As part of the EPA monitoring program at the 106-Mile Deepwater Municipal Sludge Site, short-term toxicity tests will be conducted at sea during the summer of 1988 to determine the near-field effects of discharging sewage sludge at the 106-Mile Site. The toxicity tests will include exposing both indigenous zooplankton as well as standardized test species to water column and sea-surface microlayer samples obtained from sewage sludge discharge plumes. At the termination of these short-term tests O:N ratio measurements will be made on surviving individuals as an additional measure of sublethal effects. The presentation will include the preliminary results from these field studies as well as a discussion of the utility of this approach for both laboratory and field investigations.

  7. Animal models of papillomavirus pathogenesis.

    PubMed

    Campo, M Saveria

    2002-11-01

    Tumorigenesis due to papillomavirus (PV) infection was first demonstrated in rabbits and cattle early last century. Despite the evidence obtained in animals, the role of viruses in human cancer was dismissed as irrelevant. It took a paradigm shift in the late 1970s for some viruses to be recognised as 'tumour viruses' in humans, and in 1995, more than 60 years after Rous's first demonstration of CRPV oncogenicity, WHO officially declared that 'HPV-16 and HPV-18 are carcinogenic to humans'. Experimental studies with animal PVs have been a determining factor in this decision. Animal PVs have been studied both as agents of disease in animals and as models of human PV infection. In addition to the study of PV infection in whole animals, in vitro studies with animal PV proteins have contributed greatly to the understanding of the mechanisms of cell transformation. Animal PVs cause distressing diseases in both farm and companion animals, such as teat papillomatosis in cattle, equine sarcoids and canine oral papillomatosis and there is an urgent need to understand the pathogenesis of these problematic infections. Persistent and florid teat papillomatosis in cows can lead to mastitis, prevent the suckling of calves and make milking impossible; heavily affected animals are culled and so occasionally are whole herds. Equine sarcoids are often recurrent and untreatable and lead to loss of valuable animals. Canine oral papillomatosis can be very extensive and persistent and lead to great distress. Thus the continuing research in the biology of animal PVs is amply justified. BPVs and CRPV have been for many years the model systems with which to study the biology of HPV. Induction of papillomas and their neoplastic progression has been experimentally demonstrated and reproduced in cattle and rabbits, and virus-cofactor interactions have been elucidated in these systems. With the advancements in molecular and cell culture techniques, the direct study of HPV has become less

  8. Model Compound Interactions Characterizing Aquatic Humic Substances

    DTIC Science & Technology

    1990-01-01

    Isolation...............48 3.3.2 Titration Apparatus..............49 3.3.3 Potentiometric Titrations ..........52 3.3.4 Complexometric Titrations ...Potentiometric Titrations ..........57 4.2.2 Complexometric Titrations ..........61 4.3 Natural Sources and Model Compound Mixtures . .. 69 4.3.1...groundwater ........ .................... 50 3.4 Milli-Q complexometric titrations ... ......... .54 4.1a Potentiometric titration of model compounds

  9. PETROTOX: an aquatic toxicity model for petroleum substances.

    PubMed

    Redman, Aaron D; Parkerton, Thomas F; McGrath, Joy A; Di Toro, Dominic M

    2012-11-01

    A spreadsheet model (PETROTOX) is described that predicts the aquatic toxicity of complex petroleum substances from petroleum substance composition. Substance composition is characterized by specifying mass fractions in constituent hydrocarbon blocks (HBs) based on available analytical information. The HBs are defined by their mass fractions within a defined carbon number range or boiling point interval. Physicochemical properties of the HBs are approximated by assigning representative hydrocarbons from a database of individual hydrocarbons with associated physicochemical properties. A three-phase fate model is used to simulate the distribution of each structure among the water-, air-, and oil-phase liquid in the laboratory test system. Toxicity is then computed based on the predicted aqueous concentrations and aquatic toxicity of each structure and the target lipid model. The toxicity of the complex substance is computed assuming additivity of the contribution of the individual assigned hydrocarbons. Model performance was evaluated by using direct comparisons with measured toxicity data for petroleum substances with sufficient analytical characterization to run the model. Indirect evaluations were made by comparing predicted toxicity distributions using analytical data on petroleum substances from different product categories with independent, empirical distributions of toxicity data available for the same categories. Predictions compared favorably with measured aquatic toxicity data across different petroleum substance categories. These findings demonstrate the utility of PETROTOX for assessing environmental hazards of petroleum substances given knowledge of substance composition.

  10. Animal models of source memory.

    PubMed

    Crystal, Jonathon D

    2016-01-01

    Source memory is the aspect of episodic memory that encodes the origin (i.e., source) of information acquired in the past. Episodic memory (i.e., our memories for unique personal past events) typically involves source memory because those memories focus on the origin of previous events. Source memory is at work when, for example, someone tells a favorite joke to a person while avoiding retelling the joke to the friend who originally shared the joke. Importantly, source memory permits differentiation of one episodic memory from another because source memory includes features that were present when the different memories were formed. This article reviews recent efforts to develop an animal model of source memory using rats. Experiments are reviewed which suggest that source memory is dissociated from other forms of memory. The review highlights strengths and weaknesses of a number of animal models of episodic memory. Animal models of source memory may be used to probe the biological bases of memory. Moreover, these models can be combined with genetic models of Alzheimer's disease to evaluate pharmacotherapies that ultimately have the potential to improve memory.

  11. Animal models of drug addiction.

    PubMed

    García Pardo, María Pilar; Roger Sánchez, Concepción; De la Rubia Ortí, José Enrique; Aguilar Calpe, María Asunción

    2017-01-12

    The development of animal models of drug reward and addiction is an essential factor for progress in understanding the biological basis of this disorder and for the identification of new therapeutic targets. Depending on the component of reward to be studied, one type of animal model or another may be used. There are models of reinforcement based on the primary hedonic effect produced by the consumption of the addictive substance, such as the self-administration (SA) and intracranial self-stimulation (ICSS) paradigms, and there are models based on the component of reward related to associative learning and cognitive ability to make predictions about obtaining reward in the future, such as the conditioned place preference (CPP) paradigm. In recent years these models have incorporated methodological modifications to study extinction, reinstatement and reconsolidation processes, or to model specific aspects of addictive behavior such as motivation to consume drugs, compulsive consumption or drug seeking under punishment situations. There are also models that link different reinforcement components or model voluntary motivation to consume (two-bottle choice, or drinking in the dark tests). In short, innovations in these models allow progress in scientific knowledge regarding the different aspects that lead individuals to consume a drug and develop compulsive consumption, providing a target for future treatments of addiction.

  12. Dynamic model for tritium transfer in an aquatic food chain.

    PubMed

    Melintescu, A; Galeriu, D

    2011-08-01

    Tritium ((3)H) is released from some nuclear facilities in relatively large quantities. It is a ubiquitous isotope because it enters straight into organisms, behaving essentially identically to its stable analogue (hydrogen). Tritium is a key radionuclide in the aquatic environment, in some cases, contributing significantly to the doses received by aquatic, non-human biota and by humans. The updated model presented here is based on more standardized, comprehensive assessments than previously used for the aquatic food chain, including the benthic flora and fauna, with an explicit application to the Danube ecosystem, as well as an extension to the special case of dissolved organic tritium (DOT). The model predicts the organically bound tritium (OBT) in the primary producers (the autotrophs, such as phytoplankton and algae) and in the consumers (the heterotrophs) using their bioenergetics, which involves the investigation of energy expenditure, losses, gains and efficiencies of transformations in the body. The model described in the present study intends to be more specific than a screening-level model, by including a metabolic approach and a description of the direct uptake of DOT in marine phytoplankton and invertebrates. For a better control of tritium transfer into the environment, not only tritiated water must be monitored, but also the other chemical forms and most importantly OBT, in the food chain.

  13. Animal models of cognitive dysfunction.

    PubMed

    Tayebati, Seyed Khosrow

    2006-02-01

    The increased life expectancy in industrialised countries in the last half century has also brought to a greater incidence of neurological disorders, including neurodegenerative diseases and developing in a rather long time. In this respect, Alzheimer's disease (AD), for the large incidence, and the dramatic loss of autonomy caused by its cognitive and behavioural symptoms represents one of the main challenges of modern medicine. Although AD is a typical human disease and probably includes several nosographic entities, the use of animal models may contribute to understand specific aspects of pathophysiology of the disease. The most widely used animal models are rodents and non-human primates. In this review different animal models characterised by impaired cognitive functions are analysed. None of the models available mimics exactly cognitive, behavioural, biochemical and histopathological abnormalities observed in neurological disorders characterised by cognitive impairment. However, partial reproduction of neuropathology and/or cognitive deficits of Alzheimer's disease (AD), vascular dementia and dementia occurring in Huntington's and Parkinson's diseases, or in other neurodegenerative disorders may represent a basis for understanding pathophysiological traits of these diseases and for contributing to their treatments.

  14. The impact of aquatic animals on sediment transport in gravel-bed rivers

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew; Rice, Stephen; Pledger, Andrew

    2014-05-01

    Invertebrate animals have an important and complex role in altering the physical and biochemical environment of marine and freshwater sediments. A database has been compiled which aims to include all published articles that consider how macroinvertebrates alter aquatic systems. The database contains 2300 entries spanning over 120 years of study and representing 800 species. However, only 24 studies focus on invertebrate animals altering geomorphic processes in streams. This is despite the fact that invertebrates are ubiquitous in temperate and tropical rivers; they regularly occur in high densities; and are known to interact with substrates in a multitude of ways; for example when burrowing, moving and foraging for food. Here, we present two examples that demonstrate the potential biogeomorphic significance of invertebrates in rivers. First, the activity of signal crayfish (Pacifastacus leniusculus), a globally widespread invasive crustacean, altered the structure and topography of fluvial substrates in flume experiments. As a result of crayfish destroying grain-scale structures, twice as much material was entrained from disturbed gravel substrates in comparison to control surfaces that had not been exposed to crayfish. Second, Hydropsychid caddisfly larvae bind grains together with silk, which is spun for a variety of purposes including the creation of nets to catch organic matter from the flow. Fine gravels (2-6 mm) that were colonised by natural densities of caddisfly, required significantly greater shear stresses to be mobilised in comparison to uncolonised, control gravels. Whilst these examples demonstrate the potential for invertebrates to alter sediment transport in rivers, their impacts need to be assessed in field environments and at larger scales in order to fully appreciate their significance. Long-term monitoring of radio-tagged crayfish and suspended sediment transport in the Brampton arm of the River Nene suggests that signal crayfish are important

  15. Software Validation via Model Animation

    NASA Technical Reports Server (NTRS)

    Dutle, Aaron M.; Munoz, Cesar A.; Narkawicz, Anthony J.; Butler, Ricky W.

    2015-01-01

    This paper explores a new approach to validating software implementations that have been produced from formally-verified algorithms. Although visual inspection gives some confidence that the implementations faithfully reflect the formal models, it does not provide complete assurance that the software is correct. The proposed approach, which is based on animation of formal specifications, compares the outputs computed by the software implementations on a given suite of input values to the outputs computed by the formal models on the same inputs, and determines if they are equal up to a given tolerance. The approach is illustrated on a prototype air traffic management system that computes simple kinematic trajectories for aircraft. Proofs for the mathematical models of the system's algorithms are carried out in the Prototype Verification System (PVS). The animation tool PVSio is used to evaluate the formal models on a set of randomly generated test cases. Output values computed by PVSio are compared against output values computed by the actual software. This comparison improves the assurance that the translation from formal models to code is faithful and that, for example, floating point errors do not greatly affect correctness and safety properties.

  16. [Animal models of cardiovascular disease].

    PubMed

    Chorro, Francisco J; Such-Belenguer, Luis; López-Merino, Vicente

    2009-01-01

    The use of animal models to study cardiovascular disease has made a substantial contribution to increasing our understanding of disease pathogenesis, has led to the development of diagnostic techniques, and has made it possible to verify the effectiveness of different preventative and therapeutic approaches, whether pharmacological or interventional. The main limitations stem from differences between human and experimentally induced pathology, in terms of both genetic regulatory mechanisms and factors that influence cardiovascular function. The experimental models and preparations used in cardiovascular research include those based on isolated cells or tissues or structures immersed in organ baths. The Langendorff system enables isolated perfused hearts to be studied directly under conditions of either no load or controlled loading. In small mammals, a number of models have been developed of cardiovascular conditions that result from spontaneous genetic mutations or, alternatively, that may be induced by specific genomic modification. One of the techniques employed is gene transfer, which can involve the controlled induction of mutations that result in the expression of abnormalities associated with the development of a broad range of different types of cardiovascular disease. Larger animals are used in experimental models in which it is important that physiological regulatory and homeostatic mechanisms are present.

  17. Model simulation of atrazine exposure to aquatic nontarget organisms

    SciTech Connect

    Williams, W.M.; Cheplick, J.M.; Balu, K.

    1996-10-01

    Pesticide fate and transport models have been identified by a number of regulatory work groups, including the Aquatic Risk Assessment and Mitigation Dialogue Group (ARAMDG) and the FIFRA Exposure Modeling Work Group (EMWG), as potential valuable tools in improving regulatory decisions for pesticide registration. To date, models uses have been limited to preliminary screening evaluations because the predictive capabilities of candidate models have not been adequately characterized and because procedures for scenario identification have not been tested. This paper presents an overview of a comprehensive modeling study that was conducted to evaluate exposure concentrations of atrazine to nontarget organisms and their ecosystems that may result from usage patterns of the herbicide throughout the United States. Simulations were conducted using the Pesticide Root Zone Model (PRZM-2.3) and the Riverine Environments Water Quality Model (RIVWQ-2.0). Included are procedures used for scenario identification, model comparisons to field runoff and aquatic monitoring studies, and the statistical compilation of results for risk assessment use.

  18. Modeling the interaction between flow and highly flexible aquatic vegetation

    NASA Astrophysics Data System (ADS)

    Dijkstra, J. T.; Uittenbogaard, R. E.

    2010-12-01

    Aquatic vegetation has an important role in estuaries and rivers by acting as bed stabilizer, filter, food source, and nursing area. However, macrophyte populations worldwide are under high anthropogenic pressure. Protection and restoration efforts will benefit from more insight into the interaction between vegetation, currents, waves, and sediment transport. Most aquatic plants are very flexible, implying that their shape and hence their drag and turbulence production depend on the flow conditions. We have developed a numerical simulation model that describes this dynamic interaction between very flexible vegetation and a time-varying flow, using the sea grass Zostera marina as an example. The model consists of two parts: an existing 1DV k-ɛ turbulence model simulating the flow combined with a new model simulating the bending of the plants, based on a force balance that takes account of both vegetation position and buoyancy. We validated this model using observations of positions of flexible plastic strips and of the forces they are subjected to, as well as hydrodynamic measurements. The model predicts important properties like the forces on plants, flow velocity profiles, and turbulence characteristics well. Although the validation data are limited, the results are sufficiently encouraging to consider our model to be of generic value in studying flow processes in fields of flexible vegetation.

  19. Multiple mitigation mechanisms: Effects of submerged plants on the toxicity of nine insecticides to aquatic animals.

    PubMed

    Brogan, William R; Relyea, Rick A

    2017-01-01

    Understanding the processes that regulate contaminant impacts in nature is an increasingly important challenge. For insecticides in surface waters, the ability of aquatic plants to sorb, or bind, hydrophobic compounds has been identified as a primary mechanism by which toxicity can be mitigated (i.e. the sorption-based model). However, recent research shows that submerged plants can also rapidly mitigate the toxicity of the less hydrophobic insecticide malathion via alkaline hydrolysis (i.e. the hydrolysis-based model) driven by increased water pH resulting from photosynthesis. However, it is still unknown how generalizable these mitigation mechanisms are across the wide variety of insecticides applied today, and whether any general rules can be ascertained about which types of chemicals may be mitigated by each mechanism. We quantified the degree to which the submerged plant Elodea canadensis mitigated acute (48-h) toxicity to Daphnia magna using nine commonly applied insecticides spanning three chemical classes (carbamates: aldicarb, carbaryl, carbofuran; organophosphates: malathion, diazinon, chlorpyrifos; pyrethroids: permethrin, bifenthrin, lambda-cyhalothrin). We found that insecticides possessing either high octanol-water partition coefficients (log Kow) values (i.e. pyrethroids) or high susceptibility to alkaline hydrolysis (i.e. carbamates and malathion) were all mitigated to some degree by E. canadensis, while the plant had no effect on insecticides possessing intermediate log Kow values and low susceptibility to hydrolysis (i.e. chlorpyrifos and diazinon). Our results provide the first general insights into which types of insecticides are likely to be mitigated by different mechanisms based on known chemical properties. We suggest that current models and mitigation strategies would be improved by the consideration of both mitigation models.

  20. Animal models of RLS phenotypes.

    PubMed

    Allen, Richard P; Donelson, Nathan C; Jones, Byron C; Li, Yuqing; Manconi, Mauro; Rye, David B; Sanyal, Subhabrata; Winkelmann, Juliane

    2017-03-01

    Restless legs syndrome (RLS) is a complex disorder that involves sensory and motor systems. The major pathophysiology of RLS is low iron concentration in the substantia nigra containing the cell bodies of dopamine neurons that project to the striatum, an area that is crucial for modulating movement. People who have RLS often present with normal iron values outside the brain; recent studies implicate several genes are involved in the syndrome. Like most complex diseases, animal models usually do not faithfully capture the full phenotypic spectrum of "disease," which is a uniquely human construct. Nonetheless, animal models have proven useful in helping to unravel the complex pathophysiology of diseases such as RLS and suggesting novel treatment paradigms. For example, hypothesis-independent genome-wide association studies (GWAS) have identified several genes as increasing the risk for RLS, including BTBD9. Independently, the murine homolog Btbd9 was identified as a candidate gene for iron regulation in the midbrain in mice. The relevance of the phenotype of another of the GWAS identified genes, MEIS1, has also been explored. The role of Btbd9 in iron regulation and RLS-like behaviors has been further evaluated in mice carrying a null mutation of the gene and in fruit flies when the BTBD9 protein is degraded. The BTBD9 and MEIS1 stories originate from human GWAS research, supported by work in a genetic reference population of mice (forward genetics) and further verified in mice, fish flies, and worms. Finally, the role of genetics is further supported by an inbred mouse strain that displays many of the phenotypic characteristics of RLS. The role of animal models of RLS phenotypes is also extended to include periodic limb movements.

  1. Animal models of adrenocortical tumorigenesis

    PubMed Central

    Beuschlein, Felix; Galac, Sara; Wilson, David B.

    2011-01-01

    Over the past decade, research on human adrenocortical neoplasia has been dominated by gene expression profiling of tumor specimens and by analysis of genetic disorders associated with a predisposition to these tumors. Although these studies have identified key genes and associated signaling pathways that are dysregulated in adrenocortical neoplasms, the molecular events accounting for the frequent occurrence of benign tumors and low rate of malignant transformation remain unknown. Moreover, the prognosis for patients with adrenocortical carcinoma remains poor, so new medical treatments are needed. Naturally occurring and genetically engineered animal models afford a means to investigate adrenocortical tumorigenesis and to develop novel therapeutics. This comparative review highlights adrenocortical tumor models useful for either mechanistic studies or preclinical testing. Three model species – mouse, ferret, and dog – are reviewed, and their relevance to adrenocortical tumors in humans is discussed. PMID:22100615

  2. Modeling Mercury Fate and Transport in Aquatic Systems

    NASA Astrophysics Data System (ADS)

    Massoudieh, Arash; Žagar, Dušan; Green, Peter G.; Cabrera-Toledo, Carlos; Horvat, Milena; Ginn, Timothy R.; Barkouki, Tammer; Weathers, Tess; Bombardelli, Fabian A.

    Mercury in the aquatic environment is a neurotoxin with several known adverse effects on the natural ecosystem and the human health. Mathematical modeling is a cost-effective way for assessing the risk associated with mercury to aquatic organisms and for developing management plans for the reduction of mercury exposure in such systems. However, the analysis of mercury fate and transport in the aquatic environment requires multiple disciplines of science ranging from sediment transport and hydraulics, to geochemistry and microbiology. Also, it involves the knowledge of some less understood processes such as the microbial and diagenetic processes affecting the chemical speciation of mercury and various mechanisms involved in the mass-exchange of mercury species between the benthic sediments and the overlying water. Due to these complexities, there are many challenges involved in developing an integrated mercury fate and transport model in aquatic systems. This paper identifies the various processes that are potentially important in mercury fate and transport as well as the knowns and unknowns about these processes. Also, an integrated multi-component reactive transport modeling approach is suggested to capture several of those processes. This integrated modeling framework includes the coupled advective-dispersive transport of mercury species in the water body, both in dissolved phase and as associated to mobile suspended sediments. The flux of mercury in the benthic sediments as a result of diffusive mass exchange, bio-dispersion, and hyporheic flow, and the flow generated due to consolidation of newly deposited sediments is also addressed. The model considers in addition the deposition and resuspension of sediments and their effect on the mass exchange of mercury species between the top water and the benthic sediments. As for the biogeochemical processes, the effect of redox stratification and activities of sulfate and iron-reducing bacteria on the methylation of

  3. Animal Models of Autoimmune Neuropathy

    PubMed Central

    Soliven, Betty

    2014-01-01

    The peripheral nervous system (PNS) comprises the cranial nerves, the spinal nerves with their roots and rami, dorsal root ganglia neurons, the peripheral nerves, and peripheral components of the autonomic nervous system. Cell-mediated or antibody-mediated immune attack on the PNS results in distinct clinical syndromes, which are classified based on the tempo of illness, PNS component(s) involved, and the culprit antigen(s) identified. Insights into the pathogenesis of autoimmune neuropathy have been provided by ex vivo immunologic studies, biopsy materials, electrophysiologic studies, and experimental models. This review article summarizes earlier seminal observations and highlights the recent progress in our understanding of immunopathogenesis of autoimmune neuropathies based on data from animal models. PMID:24615441

  4. Animal models and conserved processes

    PubMed Central

    2012-01-01

    Background The concept of conserved processes presents unique opportunities for using nonhuman animal models in biomedical research. However, the concept must be examined in the context that humans and nonhuman animals are evolved, complex, adaptive systems. Given that nonhuman animals are examples of living systems that are differently complex from humans, what does the existence of a conserved gene or process imply for inter-species extrapolation? Methods We surveyed the literature including philosophy of science, biological complexity, conserved processes, evolutionary biology, comparative medicine, anti-neoplastic agents, inhalational anesthetics, and drug development journals in order to determine the value of nonhuman animal models when studying conserved processes. Results Evolution through natural selection has employed components and processes both to produce the same outcomes among species but also to generate different functions and traits. Many genes and processes are conserved, but new combinations of these processes or different regulation of the genes involved in these processes have resulted in unique organisms. Further, there is a hierarchy of organization in complex living systems. At some levels, the components are simple systems that can be analyzed by mathematics or the physical sciences, while at other levels the system cannot be fully analyzed by reducing it to a physical system. The study of complex living systems must alternate between focusing on the parts and examining the intact whole organism while taking into account the connections between the two. Systems biology aims for this holism. We examined the actions of inhalational anesthetic agents and anti-neoplastic agents in order to address what the characteristics of complex living systems imply for inter-species extrapolation of traits and responses related to conserved processes. Conclusion We conclude that even the presence of conserved processes is insufficient for inter

  5. Acute silver toxicity in aquatic animals is a function of sodium uptake rate.

    PubMed

    Bianchini, Adalto; Grosell, Martin; Gregory, Sean M; Wood, Chris M

    2002-04-15

    On the basis of these facts about freshwater fish and invertebrates: (i) the Na+ turnover is a physiological process associated with the gill membranes; (ii) the key mechanism of acute silver toxicity consists of reduction in Na+ uptake by blockade of gill Na+,K+-ATPase; (iii) the mass-specific surface area of the gills depends on animal body mass; and (iv) the gill surface is also the major site of Na+ loss by diffusion, we hypothesized that whole body Na+ uptake rate (i.e., turnover rate) and secondarily body mass would be good predictors of acute silver toxicity. Results obtained from toxicological (LC50 of AgNO3) and physiological (22Na uptake rate) tests performed on juvenile fish (rainbow trout, Oncorhynchus mykiss), early juvenile and adult crayfish (Cambarusdiogenes diogenes), and neonate and adult daphnids (Daphnia magna) in moderately hard water of constant quality support the above hypothesis. Therefore, sensitivity to AgNO3, in terms of either total measured silver or free Ag+, was reliably predicted from the whole body Na+ uptake rate in animals with body mass ranging over 6 orders of magnitude (from micrograms to grams). A positive log-log correlation between acute AgNO3 toxicity and body mass of the same species was also observed. Furthermore, the whole body Na+ uptake rate was inversely related to body mass in unexposed animals. The combination of these last two results explains why the small animals in this study were more sensitive to Ag+ than the larger ones. Taken together, these results clearly point out the possibility of incorporating the Na+ uptake rate into the current version of the Biotic Ligand Model to improve the predictive capacity of this model. In the absence of information on Na+ uptake rate, then body mass may serve as a surrogate.

  6. Application of chicken egg yolk immunoglobulins in the control of terrestrial and aquatic animal diseases: a review.

    PubMed

    Xu, Yongping; Li, Xiaoyu; Jin, Liji; Zhen, Yuhong; Lu, Yanan; Li, Shuying; You, Jiansong; Wang, Linhui

    2011-01-01

    Oral administration of chicken egg yolk immunoglobulin (IgY) has attracted considerable attention as a means of controlling infectious diseases of bacterial and viral origin. Oral administration of IgY possesses many advantages compared with mammalian IgG including cost-effectiveness, convenience and high yield. This review presents an overview of the potential to use IgY immunotherapy for the prevention and treatment of terrestrial and aquatic animal diseases and speculates on the future of IgY technology. Included are a review of the potential application of IgY for the treatment of livestock diseases such as mastitis and diarrhea, poultry diseases such as Salmonella, Campylobacteriosis, infectious bursal disease and Newcastle disease, as well as aquatic diseases like shrimp white spot syndrome virus, Yersina ruckeri and Edwardsiella tarda. Some potential obstacles to the adoption of IgY technology are also discussed.

  7. Animal models of recurrent or bipolar depression.

    PubMed

    Kato, T; Kasahara, T; Kubota-Sakashita, M; Kato, T M; Nakajima, K

    2016-05-03

    Animal models of mental disorders should ideally have construct, face, and predictive validity, but current animal models do not always satisfy these validity criteria. Additionally, animal models of depression rely mainly on stress-induced behavioral changes. These stress-induced models have limited validity, because stress is not a risk factor specific to depression, and the models do not recapitulate the recurrent and spontaneous nature of depressive episodes. Although animal models exhibiting recurrent depressive episodes or bipolar depression have not yet been established, several researchers are trying to generate such animals by modeling clinical risk factors as well as by manipulating a specific neural circuit using emerging techniques.

  8. Companion animals symposium: humanized animal models of the microbiome.

    PubMed

    Gootenberg, D B; Turnbaugh, P J

    2011-05-01

    Humans and other mammals are colonized by trillions of microorganisms, most of which reside in the gastrointestinal tract, that provide key metabolic capabilities, such as the biosynthesis of vitamins and AA, the degradation of dietary plant polysaccharides, and the metabolism of orally administered therapeutics. Although much progress has been made by studying the human microbiome directly, comparing the human microbiome with that of other animals, and constructing in vitro models of the human gut, there remains a need to develop in vivo models where host, microbial, and environmental parameters can be manipulated. Here, we discuss some of the initial results from a promising method that enables the direct manipulation of microbial community structure, environmental exposures, host genotype, and other factors: the colonization of germ-free animals with complex microbial communities, including those from humans or other animal donors. Analyses of these resulting "humanized" gut microbiomes have begun to reveal 1) that key microbial activities can be transferred from the donor to the recipient animal (e.g., microbial reduction of cholesterol and production of equol), 2) that dietary shifts can affect the composition, gene abundance, and gene expression of the gut microbiome, 3) the succession of the microbial community in infants and ex-germ-free adult animals, and 4) the biogeography of these microbes across the length of gastrointestinal tract. Continued studies of humanized and other intentionally colonized animal models stand to provide new insight into not only the human microbiome, but also the microbiomes of our animal companions.

  9. Appendix C. Analyses of Sensitivity Distributions for Estimation of Acute Hazard Concentrations to Aquatic Animals

    EPA Science Inventory

    USEPA’s Office of Water (OW) and Office of Pesticide Programs (OPP) are both charged with assessing risks of chemicals to aquatic species. The offices have developed scientifically defensible methods to assess chemicals under the Clean Water Act (CWA) and the Federal Insecticide...

  10. GLOBAL CLIMATE AND LARGE-SCALE INFLUENCES ON AQUATIC ANIMAL HEALTH

    EPA Science Inventory

    The last 3 decades have witnessed numerous large-scale mortality events of aquatic organisms in North America. Affected species range from ecologically-important sea urchins to commercially-valuable American lobsters and protected marine mammals. Short-term forensic investigation...

  11. Early hominin diet included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, Kenya

    PubMed Central

    Braun, David R.; Harris, John W. K.; Levin, Naomi E.; McCoy, Jack T.; Herries, Andy I. R.; Bamford, Marion K.; Bishop, Laura C.; Richmond, Brian G.; Kibunjia, Mzalendo

    2010-01-01

    The manufacture of stone tools and their use to access animal tissues by Pliocene hominins marks the origin of a key adaptation in human evolutionary history. Here we report an in situ archaeological assemblage from the Koobi Fora Formation in northern Kenya that provides a unique combination of faunal remains, some with direct evidence of butchery, and Oldowan artifacts, which are well dated to 1.95 Ma. This site provides the oldest in situ evidence that hominins, predating Homo erectus, enjoyed access to carcasses of terrestrial and aquatic animals that they butchered in a well-watered habitat. It also provides the earliest definitive evidence of the incorporation into the hominin diet of various aquatic animals including turtles, crocodiles, and fish, which are rich sources of specific nutrients needed in human brain growth. The evidence here shows that these critical brain-growth compounds were part of the diets of hominins before the appearance of Homo ergaster/erectus and could have played an important role in the evolution of larger brains in the early history of our lineage. PMID:20534571

  12. Animal Models of Stress Urinary Incontinence

    PubMed Central

    Jiang, Hai-Hong

    2011-01-01

    Stress urinary incontinence (SUI) is a common health problem significantly affecting the quality of life of women worldwide. Animal models that simulate SUI enable the assessment of the mechanism of risk factors for SUI in a controlled fashion, including childbirth injuries, and enable preclinical testing of new treatments and therapies for SUI. Animal models that simulate childbirth are presently being utilized to determine the mechanisms of the maternal injuries of childbirth that lead to SUI with the goal of developing prophylactic treatments. Methods of assessing SUI in animals that mimic diagnostic methods used clinically have been developed to evaluate the animal models. Use of these animal models to test innovative treatment strategies has the potential to improve clinical management of SUI. This chapter provides a review of the available animal models of SUI, as well as a review of the methods of assessing SUI in animal models, and potential treatments that have been tested on these models. PMID:21290221

  13. Potency of Animal Models in KANSEI Engineering

    NASA Astrophysics Data System (ADS)

    Ozaki, Shigeru; Hisano, Setsuji; Iwamoto, Yoshiki

    Various species of animals have been used as animal models for neuroscience and provided critical information about the brain functions. Although it seems difficult to elucidate a highly advanced function of the human brain, animal models have potency to clarify the fundamental mechanisms of emotion, decision-making and social behavior. In this review, we will pick up common animal models and point to both the merits and demerits caused by the characteristics. We will also mention that wide-ranging approaches from animal models are advantageous to understand KANSEI as well as mind in humans.

  14. Cell cycle control in the early embryonic development of aquatic animal species.

    PubMed

    Siefert, Joseph C; Clowdus, Emily A; Sansam, Christopher L

    2015-12-01

    The cell cycle is integrated with many aspects of embryonic development. Not only is proper control over the pace of cell proliferation important, but also the timing of cell cycle progression is coordinated with transcription, cell migration, and cell differentiation. Due to the ease with which the embryos of aquatic organisms can be observed and manipulated, they have been a popular choice for embryologists throughout history. In the cell cycle field, aquatic organisms have been extremely important because they have played a major role in the discovery and analysis of key regulators of the cell cycle. In particular, the frog Xenopus laevis has been instrumental for understanding how the basic embryonic cell cycle is regulated. More recently, the zebrafish has been used to understand how the cell cycle is remodeled during vertebrate development and how it is regulated during morphogenesis. This review describes how some of the unique strengths of aquatic species have been leveraged for cell cycle research and suggests how species such as Xenopus and zebrafish will continue to reveal the roles of the cell cycle in human biology and disease.

  15. Chronobiology of ethanol: animal models.

    PubMed

    Rosenwasser, Alan M

    2015-06-01

    Clinical and epidemiological observations have revealed that alcohol abuse and alcoholism are associated with widespread disruptions in sleep and other circadian biological rhythms. As with other psychiatric disorders, animal models have been very useful in efforts to better understand the cause and effect relationships underlying the largely correlative human data. This review summarizes the experimental findings indicating bidirectional interactions between alcohol (ethanol) consumption and the circadian timing system, emphasizing behavioral studies conducted in the author's laboratory. Together with convergent evidence from multiple laboratories, the work summarized here establishes that ethanol intake (or administration) alters fundamental properties of the underlying circadian pacemaker. In turn, circadian disruption induced by either environmental or genetic manipulations can alter voluntary ethanol intake. These reciprocal interactions may create a vicious cycle that contributes to the downward spiral of alcohol and drug addiction. In the future, such studies may lead to the development of chronobiologically based interventions to prevent relapse and effectively mitigate some of the societal burden associated with such disorders.

  16. Determination of polybrominated diphenyl ethers in aquatic animal tissue using cleanup by freezing-dispersive liquid-liquid microextraction combined with GC-MS.

    PubMed

    Liu, Xiujuan; Hu, Jia; Huang, Changjiang; Wang, Huili; Wang, Xuedong

    2009-12-01

    A method for the determination of polybrominated diphenyl ethers (PBDEs) in aquatic animal tissue was developed, and it is based on cleanup by freezing-dispersive liquid-liquid microextraction (DLLME) for the pretreatment of samples with fat content. Aquatic animal tissue homogenate was extracted with acetone, and then frozen in a freezer at -80 degrees C. Fat in aquatic animal tissue was isolated from the analytes, i.e. PBDE congeners dissolved in acetone and fat formed floccules at low temperature. The supernatant was extracted using the DLLME technique. Under the optimum DLLME conditions, 0.75 mL supernatant with 33 microL chlorobenzene was added into 5.0 mL pure water, and subsequently cloudy solution was formed. After centrifuging, 1.0 microL lower phase was subjected to GC-MS analysis. Recovery test was performed at fortified concentrations of 5.0-2500 microg/kg. The detection results showed that the recoveries for each target analyte ranged from 75.3 to 127.8%. The repeatability of the proposed method by spiking aquatic animal samples at 10 microg/kg for PBDEs, expressed as RSD, n=5, varied between 4.3 and 10.3% (n=5). LOD of the proposed method for aquatic animal tissue samples were between 2.4 and 4.9 microg/kg for all the analytes.

  17. Pain assessment in animal models of osteoarthritis.

    PubMed

    Piel, Margaret J; Kroin, Jeffrey S; van Wijnen, Andre J; Kc, Ranjan; Im, Hee-Jeong

    2014-03-10

    Assessment of pain in animal models of osteoarthritis is integral to interpretation of a model's utility in representing the clinical condition, and enabling accurate translational medicine. Here we describe behavioral pain assessments available for small and large experimental osteoarthritic pain animal models.

  18. Remote Sensing and Modeling for Improving Operational Aquatic Plant Management

    NASA Technical Reports Server (NTRS)

    Bubenheim, Dave

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California’s water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.

  19. A global database of nitrogen and phosphorus excretion rates of aquatic animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animals can be important in modulating ecosystem-level nutrient cycling, although their importance varies greatly among species and ecosystems. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Eco...

  20. Established and potential physiological roles of bicarbonate-sensing soluble adenylyl cyclase (sAC) in aquatic animals

    PubMed Central

    Tresguerres, Martin; Barott, Katie L.; Barron, Megan E.; Roa, Jinae N.

    2014-01-01

    Soluble adenylyl cyclase (sAC) is a recently recognized source of the signaling molecule cyclic AMP (cAMP) that is genetically and biochemically distinct from the classic G-protein-regulated transmembrane adenylyl cyclases (tmACs). Mammalian sAC is distributed throughout the cytoplasm and it may be present in the nucleus and inside mitochondria. sAC activity is directly stimulated by HCO3−, and sAC has been confirmed to be a HCO3− sensor in a variety of mammalian cell types. In addition, sAC can functionally associate with carbonic anhydrases to act as a de facto sensor of pH and CO2. The two catalytic domains of sAC are related to HCO3−-regulated adenylyl cyclases from cyanobacteria, suggesting the cAMP pathway is an evolutionarily conserved mechanism for sensing CO2 levels and/or acid/base conditions. Reports of sAC in aquatic animals are still limited but are rapidly accumulating. In shark gills, sAC senses blood alkalosis and triggers compensatory H+ absorption. In the intestine of bony fishes, sAC modulates NaCl and water absorption. And in sea urchin sperm, sAC may participate in the initiation of flagellar movement and in the acrosome reaction. Bioinformatics and RT-PCR results reveal that sAC orthologs are present in most animal phyla. This review summarizes the current knowledge on the physiological roles of sAC in aquatic animals and suggests additional functions in which sAC may be involved. PMID:24574382

  1. Established and potential physiological roles of bicarbonate-sensing soluble adenylyl cyclase (sAC) in aquatic animals.

    PubMed

    Tresguerres, Martin; Barott, Katie L; Barron, Megan E; Roa, Jinae N

    2014-03-01

    Soluble adenylyl cyclase (sAC) is a recently recognized source of the signaling molecule cyclic AMP (cAMP) that is genetically and biochemically distinct from the classic G-protein-regulated transmembrane adenylyl cyclases (tmACs). Mammalian sAC is distributed throughout the cytoplasm and it may be present in the nucleus and inside mitochondria. sAC activity is directly stimulated by HCO3(-), and sAC has been confirmed to be a HCO3(-) sensor in a variety of mammalian cell types. In addition, sAC can functionally associate with carbonic anhydrases to act as a de facto sensor of pH and CO2. The two catalytic domains of sAC are related to HCO3(-)-regulated adenylyl cyclases from cyanobacteria, suggesting the cAMP pathway is an evolutionarily conserved mechanism for sensing CO2 levels and/or acid/base conditions. Reports of sAC in aquatic animals are still limited but are rapidly accumulating. In shark gills, sAC senses blood alkalosis and triggers compensatory H(+) absorption. In the intestine of bony fishes, sAC modulates NaCl and water absorption. And in sea urchin sperm, sAC may participate in the initiation of flagellar movement and in the acrosome reaction. Bioinformatics and RT-PCR results reveal that sAC orthologs are present in most animal phyla. This review summarizes the current knowledge on the physiological roles of sAC in aquatic animals and suggests additional functions in which sAC may be involved.

  2. Genotoxic and reprotoxic effects of tritium and external gamma irradiation on aquatic animals.

    PubMed

    Adam-Guillermin, Christelle; Pereira, Sandrine; Della-Vedova, Claire; Hinton, Tom; Garnier-Laplace, Jacqueline

    2012-01-01

    Aquatic ecosystems are chronically exposed to natural radioactivity or to artificial radionuclides released by human activities (e.g., nuclear medicine and biology,nuclear industry, military applications). Should the nuclear industry expand in the future, radioactive environmental releases, under normal operating conditions or accidental ones, are expected to increase, which raises public concerns about possible consequences on the environment and human health. Radionuclide exposures may drive macromolecule alterations, and among macromolecules DNA is the major target for ionizing radiations. DNA damage, if not correctly repaired, may induce mutations, teratogenesis, and reproductive effects. As such, damage at the molecular level may have consequences at the population level. In this review, we present an overview of the literature dealing with the effects of radionuclides on DNA, development, and reproduction of aquatic organisms. The review focuses on the main radionuclides that are released by nuclear power plants under normal operating conditions, γ emitters and tritium. Additionally, we fitted nonlinear curves to the dose-response data provided in the reviewed publications and manuscripts, and thus obtained endpoints commonly associated with ecotoxicological studies, such as the EDR(10). These were then used as a common metric for comparing the values and data published in the literature.The effects of tritium on aquatic organisms were reviewed for dose rates that ranged from 29 nGy/day to 29 Gy/day. Although beta emission from tritium decay presents a rather special risk of damage to DNA, genotoxicity-induced by tritium has been scarcely studied. Most of the effects studied have related to reproduction and development. Species sensitivity and the form of tritium present are important factors that drive the ecotoxicity of tritium. We have concluded from this review that invertebrates are more sensitive to the effects of tritium than are vertebrates

  3. Evaluation of spinal cord injury animal models

    PubMed Central

    Zhang, Ning; Fang, Marong; Chen, Haohao; Gou, Fangming; Ding, Mingxing

    2014-01-01

    Because there is no curative treatment for spinal cord injury, establishing an ideal animal model is important to identify injury mechanisms and develop therapies for individuals suffering from spinal cord injuries. In this article, we systematically review and analyze various kinds of animal models of spinal cord injury and assess their advantages and disadvantages for further studies. PMID:25598784

  4. Animal model and neurobiology of suicide.

    PubMed

    Preti, Antonio

    2011-06-01

    Animal models are formidable tools to investigate the etiology, the course and the potential treatment of an illness. No convincing animal model of suicide has been produced to date, and despite the intensive study of thousands of animal species naturalists have not identified suicide in nonhuman species in field situations. When modeling suicidal behavior in the animal, the greatest challenge is reproducing the role of will and intention in suicide mechanics. To overcome this limitation, current investigations on animals focus on every single step leading to suicide in humans. The most promising endophenotypes worth investigating in animals are the cortisol social-stress response and the aggression/impulsivity trait, involving the serotonergic system. Astroglia, neurotrophic factors and neurotrophins are implied in suicide, too. The prevention of suicide rests on the identification and treatment of every element increasing the risk.

  5. Animal models for the study of tendinopathy.

    PubMed

    Warden, S J

    2007-04-01

    Tendinopathy is a common and significant clinical problem characterised by activity-related pain, focal tendon tenderness and intratendinous imaging changes. Recent histopathological studies have indicated the underlying pathology to be one of tendinosis (degeneration) as opposed to tendinitis (inflammation). Relatively little is known about tendinosis and its pathogenesis. Contributing to this is an absence of validated animal models of the pathology. Animal models of tendinosis represent potential efficient and effective means of furthering our understanding of human tendinopathy and its underlying pathology. By selecting an appropriate species and introducing known risk factors for tendinopathy in humans, it is possible to develop tendon changes in animal models that are consistent with the human condition. This paper overviews the role of animal models in tendinopathy research by discussing the benefits and development of animal models of tendinosis, highlighting potential outcome measures that may be used in animal tendon research, and reviewing current animal models of tendinosis. It is hoped that with further development of animal models of tendinosis, new strategies for the prevention and treatment of tendinopathy in humans will be generated.

  6. Eutrophication assessment and bioremediation strategy using seaweeds co-cultured with aquatic animals in an enclosed bay in China.

    PubMed

    Wu, Hailong; Huo, Yuanzi; Hu, Ming; Wei, Zhangliang; He, Peimin

    2015-06-15

    Intensive mariculture results in a rise in nutrient concentrations, then leads to serious eutrophication in coastal waters. Based on the sampling data obtained between August 2012 and July 2013, the eutrophication status in Yantian Bay was assessed, and the proportion of marine animals co-cultured with seaweeds was evaluated. The nutritional quality index (NQI) ranged from 4.37 to 13.20, indicating serious eutrophication conditions. The annual average ratio of nitrogen/phosphorus (N/P) was 25.19, indicating a nitrogen surplus in this system. DIN was selected as the best parameter to balance seaweed absorption and marine animal DIN production. Gracilaria lemaneiformis and Laminaria japonica were selected as co-cultured seaweeds. The optimal proportion of G. lemaneiformis production was assessed as 20074.14 tonnes. The optimal proportion of L. japonica production was evaluated as 15890.68 tonnes. High-temperature adapted seaweeds should be introduced for removing nutrients releasing by farmed aquatic animals in the summer in Yantian Bay.

  7. Development of an Ussuri catfish Pseudobagrus ussuriensis skin cell line displaying differential cytopathic effects to three aquatic animal viruses.

    PubMed

    Ou, Tong; Lei, Xiao-Ying; He, Li-Bo; Zhou, Feng-Jian; Zhang, Qi-Ya

    2014-08-30

    An Ussuri catfish Pseudobagrus ussuriensis skin (UCS) cell line was developed and subcultured for more than 60 passages. UCS cells consisted of mostly epithelial-like cells and multiplied well in TC199 medium supplemented with 10% fetal bovine serum at 25°C. Chromosome analysis revealed that most UCS cells had a normal diploid karyotype with 2n=52. UCS cells showed differential cytopathic effects (CPEs) after inoculation of spring viremia of carp virus (SVCV, a negative-strand RNA virus), grass carp reovirus (GCRV, a multi-segmented double-stranded RNA virus) and Rana grylio virus (RGV, a large double-stranded DNA virus), and were indicative of high sensitivities to these three aquatic animal viruses by a virus titration study. The CPE caused by SVCV appeared as rounded and granular cells, grape-like clusters and small lytic plaques. Characteristic CPE containing plaque-like syncytia was induced by GCRV. RGV-infected cells produced typical CPE characterized by cells shrinkage and aggregation, formation of clear plaques and cell sheet detachment. Furthermore, significant fluorescent signals were observed after UCS cells were transfected with green fluorescent protein reporter plasmids, and the development of CPE induced by a recombinant RGV, ΔTK-RGV, in UCS cells was illustrated using a combination of light and fluorescence microscopy. The data from this study suggested that UCS cell line can potentially serve as a useful tool for the comparison study of different aquatic animal viruses and the isolation of some newly emerging viruses in Ussuri catfish farming.

  8. CONCEPTUAL MODELS AND METHODS TO GUIDE DIAGNOSTIC RESEARCH INTO CAUSES OF IMPAIRMENT TO AQUATIC ECOSYSTEMS

    EPA Science Inventory

    Methods and conceptual models to guide the development of tools for diagnosing the causes of biological impairment within aquatic ecosystems of the United States are described in this report. The conceptual models developed here address nutrients, suspended and bedded sediments (...

  9. Animal Models in Studying Cerebral Arteriovenous Malformation.

    PubMed

    Xu, Ming; Xu, Hongzhi; Qin, Zhiyong

    2015-01-01

    Brain arteriovenous malformation (AVM) is an important cause of hemorrhagic stroke. The etiology is largely unknown and the therapeutics are controversial. A review of AVM-associated animal models may be helpful in order to understand the up-to-date knowledge and promote further research about the disease. We searched PubMed till December 31, 2014, with the term "arteriovenous malformation," limiting results to animals and English language. Publications that described creations of AVM animal models or investigated AVM-related mechanisms and treatments using these models were reviewed. More than 100 articles fulfilling our inclusion criteria were identified, and from them eight different types of the original models were summarized. The backgrounds and procedures of these models, their applications, and research findings were demonstrated. Animal models are useful in studying the pathogenesis of AVM formation, growth, and rupture, as well as in developing and testing new treatments. Creations of preferable models are expected.

  10. Animal Models in Studying Cerebral Arteriovenous Malformation

    PubMed Central

    Xu, Ming; Xu, Hongzhi; Qin, Zhiyong

    2015-01-01

    Brain arteriovenous malformation (AVM) is an important cause of hemorrhagic stroke. The etiology is largely unknown and the therapeutics are controversial. A review of AVM-associated animal models may be helpful in order to understand the up-to-date knowledge and promote further research about the disease. We searched PubMed till December 31, 2014, with the term “arteriovenous malformation,” limiting results to animals and English language. Publications that described creations of AVM animal models or investigated AVM-related mechanisms and treatments using these models were reviewed. More than 100 articles fulfilling our inclusion criteria were identified, and from them eight different types of the original models were summarized. The backgrounds and procedures of these models, their applications, and research findings were demonstrated. Animal models are useful in studying the pathogenesis of AVM formation, growth, and rupture, as well as in developing and testing new treatments. Creations of preferable models are expected. PMID:26649296

  11. Overview of Animal Models of Obesity

    PubMed Central

    Lutz, Thomas A.; Woods, Stephen C.

    2012-01-01

    This is a review of animal models of obesity currently used in research. We have focused upon more commonly utilized models since there are far too many newly created models to consider, especially those caused by selective molecular genetic approaches modifying one or more genes in specific populations of cells. Further, we will not discuss the generation and use of inducible transgenic animals (induced knock-out or knock-in) even though they often bear significant advantages compared to traditional transgenic animals; influences of the genetic modification during the development of the animals can be minimized. The number of these animal models is simply too large to be covered in this chapter. PMID:22948848

  12. Animal models of external traumatic wound infections

    PubMed Central

    Dai, Tianhong; Kharkwal, Gitika B; Tanaka, Masamitsu; Huang, Ying-Ying; Bil de Arce, Vida J

    2011-01-01

    Background: Despite advances in traumatic wound care and management, infections remain a leading cause of mortality, morbidity and economic disruption in millions of wound patients around the world. Animal models have become standard tools for studying a wide array of external traumatic wound infections and testing new antimicrobial strategies. Results: Animal models of external traumatic wound infections reported by different investigators vary in animal species used, microorganism strains, the number of microorganisms applied, the size of the wounds and for burn infections, the length of time the heated object or liquid is in contact with the skin. Methods: This review covers experimental infections in animal models of surgical wounds, skin abrasions, burns, lacerations, excisional wounds and open fractures. Conclusions: As antibiotic resistance continues to increase, more new antimicrobial approaches are urgently needed. These should be tested using standard protocols for infections in external traumatic wounds in animal models. PMID:21701256

  13. Engineering large animal models of human disease.

    PubMed

    Whitelaw, C Bruce A; Sheets, Timothy P; Lillico, Simon G; Telugu, Bhanu P

    2016-01-01

    The recent development of gene editing tools and methodology for use in livestock enables the production of new animal disease models. These tools facilitate site-specific mutation of the genome, allowing animals carrying known human disease mutations to be produced. In this review, we describe the various gene editing tools and how they can be used for a range of large animal models of diseases. This genomic technology is in its infancy but the expectation is that through the use of gene editing tools we will see a dramatic increase in animal model resources available for both the study of human disease and the translation of this knowledge into the clinic. Comparative pathology will be central to the productive use of these animal models and the successful translation of new therapeutic strategies.

  14. Metallothionein induction as a measure of response to metal exposure in aquatic animals.

    PubMed Central

    Roesijadi, G

    1994-01-01

    Metallothioneins (MTs) are considered central in the intracellular regulation of metals such as copper, zinc, and cadmium. Increased MT synthesis is associated with increased capacity for binding these metals and protection against metal toxicity. Recent advances in the biochemistry and molecular biology of MTs have facilitated research on MTs in aquatic species. For the bivalve mollusc Crassostrea virginica, a species frequently used in studies on the toxicology and environmental monitoring of metals, the primary structure for MT has been deduced from analysis of the proteins and cDNA. Procedures for analysis of MT synthesis and MT gene expression have been applied in studies of response to metal exposure. Induction of specific MT forms by Cd is concentration- and time-dependent. The levels of MT-bound metals exhibit a strong relationship with the cytosolic metal concentrations in a metal-exposed natural population of oysters. Ribonuclease protection assays using sequence-specific antisense RNA probes have shown that the MT mRNA structure in this natural population exhibits considerable individual variability in the 3'-untranslated region. Although yet to be substantiated, the possibility exists that the distribution of this variability may be related to the level of environmental metal contamination. One probe derived from the coding region is suitable for use in quantitative RPAs for oyster MT mRNAs. PMID:7713043

  15. Carcinogenesis studies in rodents for evaluating risks associated with chemical carcinogens in aquatic food animals.

    PubMed Central

    Huff, J; Bucher, J; Yang, R

    1991-01-01

    Fish and shellfish caught in polluted waters contain potentially dangerous amounts of toxic and carcinogenic chemicals. Public concern was heightened when a large percentage of winter flounder taken from Boston Harbor was found to have visible cancer of the liver; winter flounder outside the estuary area had no liver lesions. Long-term chemical carcinogenesis studies could be easily and feasibly designed using laboratory rodents offered diets containing fish caught in polluted waters. Induced cancers in rodents would corroborate field observations in fish; positive results from these studies would provide further evidence about potential human health hazards from eating substantial amounts of chemically contaminated fish. Nonetheless, fish and aquatic organisms should be viewed as environmental biological monitors of pollution or of potential human health hazards, and authorities responsible for assuring clean and safe rivers, bodies of water, and biota should give more attention to these valid biological indicators or sentinels of environmental pollution. Consequently, fish and other sea creatures alone should serve as alarms regarding whether water areas constitute public health hazards. PMID:2050050

  16. The FAO/NACA Asia Regional Technical Guidelines on Health Management for the Responsible Movement of Live Aquatic Animals: lessons learned from their development and implementation.

    PubMed

    Subasinghe, R P; Bondad-Reantaso, M G

    2008-04-01

    Aquaculture is the fastest growing food producing sector in the world and it is expected to produce significant quantities of fish in the coming years to meet the growing global demand for aquatic animal products. The expansion and diversification of the sector, along with globalisation and trade liberalisation have resulted in aquatic animals and animal products moving around the world rapidly, causing serious disease outbreaks stemming from incursions of pathogens through unregulated transboundary movements. It has become necessary to develop appropriate guidelines for establishing national regulatory frameworks to improve responsibility in transboundary movement of live aquatic animals. In 2000, the Food and Agriculture Organization of the United Nations (FAO), in collaboration with the Network of Aquaculture Centres in Asia-Pacific (NACA) and in partnership with 21 Asian countries, developed the Asia Regional Technical Guidelines on Health Management for the Responsible Movement of Live Aquatic Animals. The present article outlines the development process of the guidelines, the lessons learned from their implementation at national level and the way forward.

  17. Animal Models for Cartilage Regeneration and Repair

    PubMed Central

    Szczodry, Michal; Bruno, Stephen

    2010-01-01

    Articular cartilage injury and degeneration are leading causes of disability. Animal studies are critically important to developing effective treatments for cartilage injuries. This review focuses on the use of animal models for the study of the repair and regeneration of focal cartilage defects. Animals commonly used in cartilage repair studies include murine, lapine, canine, caprine, porcine, and equine models. There are advantages and disadvantages to each model. Small animal rodent and lapine models are cost effective, easy to house, and useful for pilot and proof-of-concept studies. The availability of transgenic and knockout mice provide opportunities for mechanistic in vivo study. Athymic mice and rats are additionally useful for evaluating the cartilage repair potential of human cells and tissues. Their small joint size, thin cartilage, and greater potential for intrinsic healing than humans, however, limit the translational value of small animal models. Large animal models with thicker articular cartilage permit study of both partial thickness and full thickness chondral repair, as well as osteochondral repair. Joint size and cartilage thickness for canine, caprine, and mini-pig models remain significantly smaller than that of humans. The repair and regeneration of chondral and osteochondral defects of size and volume comparable to that of clinically significant human lesions can be reliably studied primarily in equine models. While larger animals may more closely approximate the human clinical situation, they carry greater logistical, financial, and ethical considerations. A multifactorial analysis of each animal model should be carried out when planning in vivo studies. Ultimately, the scientific goals of the study will be critical in determining the appropriate animal model. PMID:19831641

  18. Animal models for simulating weightlessness

    NASA Technical Reports Server (NTRS)

    Morey-Holton, E.; Wronski, T. J.

    1982-01-01

    NASA has developed a rat model to simulate on earth some aspects of the weightlessness alterations experienced in space, i.e., unloading and fluid shifts. Comparison of data collected from space flight and from the head-down rat suspension model suggests that this model system reproduces many of the physiological alterations induced by space flight. Data from various versions of the rat model are virtually identical for the same parameters; thus, modifications of the model for acute, chronic, or metabolic studies do not alter the results as long as the critical components of the model are maintained, i.e., a cephalad shift of fluids and/or unloading of the rear limbs.

  19. Hazard evaluation of soil contaminants with aquatic animals and plant toxicity tests

    SciTech Connect

    Ramanathan, A.; Burks, S.L.

    1996-12-31

    Deleterious effects upon the biota should be one of the principal characteristics used to perform the initial assessment of contamination and the acceptable level of clean-up at hazardous waste sites. Acute toxicity tests are probably the best means for conducting rapid preliminary assessment of distribution and extent of toxic conditions at a site. On the other hand acute toxicity tests may not be adequate indicators of potential effects at critical life stages or responses to longer term exposure to contaminants. Chronic toxicity tests are generally more sensitive than acute tests, and can be used to predict {open_quotes}no effect{close_quotes} or {open_quotes}safe{close_quotes} levels of contamination. In addition, chronic tests provide a better index of field population responses and more closely mimic actual exposure in the field. Partial chronic tests such as the 7 d Ceriodaphnia sp. survival and reproduction test and 7 d fathead minnow survival and growth test are widely used to predict effects upon critical stages in the life cycle of chemical and mixtures. The overall objective of this project was to evaluate the potential hazard of contaminants at an abandoned oil refinery upon aquatic ecosystems within the vicinity. A battery of acute and partial chronic toxicity tests were used to evaluate potential effects of contaminated soil and leachates of soil upon rice seed germination and root growth, Ceriodaphnia acute survival, fathead minnow acute survival, Microtox acute response, 7 d Ceriodaphnia survival and reproduction, and 7 d fathead minnow survival and growth. The specific tests used to accomplish the overall objective included; (1) To estimate phytotoxicity of the soil at the selected contaminated areas within the refinery, (2) to determine potential for leaching at the selected contaminated areas within the refinery, and (3) to assess the relative toxicity of each of the six contaminated areas in the refinery. 13 refs., 3 tabs.

  20. Influence of Taxonomic Relatedness and Chemical Mode of Action in Acute Interspecies Estimation Models for Aquatic species

    EPA Science Inventory

    Ecological risks to aquatic organisms are typically assessed using toxicity data for relatively few species and with limited understanding of relative species sensitivity. We developed a comprehensive set of interspecies correlation estimation (ICE) models for aquatic organisms a...

  1. Animal Models of Tuberculosis: Zebrafish

    PubMed Central

    van Leeuwen, Lisanne M.; van der Sar, Astrid M.; Bitter, Wilbert

    2015-01-01

    Over the past decade the zebrafish (Danio rerio) has become an attractive new vertebrate model organism for studying mycobacterial pathogenesis. The combination of medium-throughput screening and real-time in vivo visualization has allowed new ways to dissect host pathogenic interaction in a vertebrate host. Furthermore, genetic screens on the host and bacterial sides have elucidated new mechanisms involved in the initiation of granuloma formation and the importance of a balanced immune response for control of mycobacterial pathogens. This article will highlight the unique features of the zebrafish–Mycobacterium marinum infection model and its added value for tuberculosis research. PMID:25414379

  2. Animal models of orofacial pain.

    PubMed

    Khan, Asma; Hargreaves, Kenneth M

    2010-01-01

    Pain is one of the most common reasons for which patients seek dental and medical care. Orofacial pain conditions consist of a wide range of disorders including odontalgia (toothache), temporomandibular disorders, trigeminal neuralgia and others. Most of these conditions are either inflammatory or neuropathic in nature. This chapter provides an overview of the commonly used models to study inflammatory and neuropathic orofacial pain.

  3. The relevance of animal models in osteoarthritis.

    PubMed

    Moskowitz, R W

    1990-01-01

    Studies of osteoarthritis (OA) in humans are restricted by the slow rate at which the disease progresses, and the limited opportunity for study of the tissue changes over time. A range of animal models of OA have been developed which demonstrate histopathological and gross features typical of OA in humans. Animal models can be used to study OA, and to investigate the effects of a variety of agents, including so-called chondroprotective agents, on the progression of the disease.

  4. Animal protein production modules in biological life support systems: Novel combined aquaculture techniques based on the closed equilibrated biological aquatic system (C.E.B.A.S.)

    NASA Astrophysics Data System (ADS)

    Blüm, V.; Andriske, M.; Kreuzberg, K.; Schreibman, M. P.

    Based on the experiences made with the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) which was primarily deveoloped for long-term and multi-generation experiments with aquatic animals and plants in a space station highly effective fresh water recycling modules were elaborated utilizing a combination of ammonia oxidizing bacteria filters and higher plants. These exhibit a high effectivity to eliminate phosphate and anorganic nitrogen compounds and arc. in addidition. able to contribute to the oxygen supply of the aquatic animals. The C.E.B.A.S. filter system is able to keep a closed artificial aquatic ecosystem containing teleost fishes and water snails biologically stable for several month and to eliminate waste products deriving from degraded dead fishes without a decrease of the oxygen concentration down to less than 3.5 mg/l at 25 °C. More advanced C.E.B.A.S. filter systems, the BIOCURE filters, were also developed for utilization in semiintensive and intensive aquaculture systems for fishes. In fact such combined animal-plant aquaculture systems represent highly effective productions sites for human food if proper plant and fish species are selected The present papers elucidates ways to novel aquaculture systems in which herbivorous fishes are raised by feeding them with plant biomass produced in the BIOCURE filters and presents the scheme of a modification which utilizes a plant species suitable also for human nutrition. Special attention is paid to the benefits of closed aquaculture system modules which may be integrated into bioregenerative life support systems of a higher complexity for, e. g.. lunar or planetary bases including some psychologiccal aspects of the introduction of animal protein production into plant-based life support systems. Moreover, the basic reproductive biological problems of aquatic animal breeding under reduced gravity are explained leading to a disposition of essential research programs in this context.

  5. Aquatic blues: modeling depression and antidepressant action in zebrafish.

    PubMed

    Nguyen, Michael; Stewart, Adam Michael; Kalueff, Allan V

    2014-12-03

    Depression is a serious psychiatric condition affecting millions of patients worldwide. Unipolar depression is characterized by low mood, anhedonia, social withdrawal and other severely debilitating psychiatric symptoms. Bipolar disorder manifests in alternating depressed mood and 'hyperactive' manic/hypomanic states. Animal experimental models are an invaluable tool for research into the pathogenesis of bipolar/unipolar depression, and for the development of potential treatments. Due to their high throughput value, genetic tractability, low cost and quick reproductive cycle, zebrafish (Danio rerio) have emerged as a promising new model species for studying brain disorders. Here, we discuss the developing utility of zebrafish for studying depression disorders, and outline future areas of research in this field. We argue that zebrafish represent a useful model organism for studying depression and its behavioral, genetic and physiological mechanisms, as well as for anti-depressant drug discovery.

  6. Animal models for SARS and MERS coronaviruses

    PubMed Central

    Gretebeck, Lisa M; Subbarao, Kanta

    2015-01-01

    The emergence of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV), two strains of animal coronaviruses that crossed the species barrier to infect and cause severe respiratory infections in humans within the last 12 years, have taught us that coronaviruses represent a global threat that does not recognize international borders. We can expect to see other novel coronaviruses emerge in the future. An ideal animal model should reflect the clinical signs, viral replication and pathology seen in humans. In this review, we present factors to consider in establishing an animal model for the study of novel coronaviruses and compare the different animal models that have been employed to study SARS-CoV and MERS-CoV. PMID:26184451

  7. Animal models of orthopedic implant infection.

    PubMed

    An, Y H; Friedman, R J

    1998-01-01

    Prosthetic infection following total joint replacement can have catastrophic results both physically and psychologically for patients, leading to complete failure of the arthroplasty, possible amputation, prolonged hospitalization, and even death. Although with the use of prophylactic antibiotics and greatly improved operating room techniques the infection rate has decreased markedly during the years, challenges still remain for better preventive and therapeutic measures. In this review the in vivo experimental methods for studies of prosthetic infection are discussed, concentrating on (1) the animal models that have been established and the use of these animal models for studies of pathogenesis of bacteria, behavior of biofilm, effect of biomaterials on prosthetic infection rate, and the effect of infection on biomaterial surfaces, and (2) how to design and conduct an animal model of orthopedic prosthetic infection including animal selection, implant fabrication, bacterial inoculation, surgical technique, and the methods for evaluating the results.

  8. Animal models for SARS and MERS coronaviruses.

    PubMed

    Gretebeck, Lisa M; Subbarao, Kanta

    2015-08-01

    The emergence of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV), two strains of animal coronaviruses that crossed the species barrier to infect and cause severe respiratory infections in humans within the last 12 years, have taught us that coronaviruses represent a global threat that does not recognize international borders. We can expect to see other novel coronaviruses emerge in the future. An ideal animal model should reflect the clinical signs, viral replication and pathology seen in humans. In this review, we present factors to consider in establishing an animal model for the study of novel coronaviruses and compare the different animal models that have been employed to study SARS-CoV and MERS-CoV.

  9. Building models of animals from video.

    PubMed

    Ramanan, Deva; Forsyth, David A; Barnard, Kobus

    2006-08-01

    This paper argues that tracking, object detection, and model building are all similar activities. We describe a fully automatic system that builds 2D articulated models known as pictorial structures from videos of animals. The learned model can be used to detect the animal in the original video--in this sense, the system can be viewed as a generalized tracker (one that is capable of modeling objects while tracking them). The learned model can be matched to a visual library; here, the system can be viewed as a video recognition algorithm. The learned model can also be used to detect the animal in novel images--in this case, the system can be seen as a method for learning models for object recognition. We find that we can significantly improve the pictorial structures by augmenting them with a discriminative texture model learned from a texture library. We develop a novel texture descriptor that outperforms the state-of-the-art for animal textures. We demonstrate the entire system on real video sequences of three different animals. We show that we can automatically track and identify the given animal. We use the learned models to recognize animals from two data sets; images taken by professional photographers from the Corel collection, and assorted images from the Web returned by Google. We demonstrate quite good performance on both data sets. Comparing our results with simple baselines, we show that, for the Google set, we can detect, localize, and recover part articulations from a collection demonstrably hard for object recognition.

  10. Animal models of monogenic migraine.

    PubMed

    Chen, Shih-Pin; Tolner, Else A; Eikermann-Haerter, Katharina

    2016-06-01

    Migraine is a highly prevalent and disabling neurological disorder with a strong genetic component. Rare monogenic forms of migraine, or syndromes in which migraine frequently occurs, help scientists to unravel pathogenetic mechanisms of migraine and its comorbidities. Transgenic mouse models for rare monogenic mutations causing familial hemiplegic migraine (FHM), cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and familial advanced sleep-phase syndrome (FASPS), have been created. Here, we review the current state of research using these mutant mice. We also discuss how currently available experimental approaches, including epigenetic studies, biomolecular analysis and optogenetic technologies, can be used for characterization of migraine genes to further unravel the functional and molecular pathways involved in migraine.

  11. Composite Mandibulectomy: A Novel Animal Model

    PubMed Central

    Sidell, Douglas R.; Aghaloo, Tara; Tetradis, Sotirios; Lee, Min; Bezouglaia, Olga; DeConde, Adam; St. John, Maie A.

    2012-01-01

    Objectives Segmental mandibular defects can result after the treatment of various pathologic processes, including osteoradionecrosis, tumor resection, or fracture nonunion with sequestration. The variety of etiologies and the frequency of occurrence make the reconstruction of segmental mandibular defects a topic of significant interest. Despite these incentives, a well-established small-animal model of the segmental mandibulectomy, including composite resection, does not exist. The objective of this study is the creation of a reliable animal model that can be used to study the reconstruction of en bloc mandibular defects. Surgical techniques and an array of reconstructive options are described. Study design Description of an animal model. Setting Animal laboratory at a quaternary care university medical center. Methods We present an Animal Research Oversight Committee–approved prospective analysis of survival operations in the rat model. A detailed, stepwise description of surgical technique and relevant intraoperative anatomy is presented. Postoperative management, early pitfalls, surgical complications, and future applications are discussed. Results A total of 72 operations were performed by a single individual between July and October 2010. Two intraoperative and 9 postoperative complications were recognized. There were 6 orocutaneous fistulas, 2 abscesses, and 1 seroma. There were 4 fatalities, which were attributed to anesthetic complications (2, intraoperative), hematoma formation (1, postoperative), and foreign-body aspiration (1, postoperative). Conclusion This novel animal model reliably replicates the en bloc segmental mandibular defects seen in our patient population and can be manipulated to achieve a wide variety of research objectives. PMID:22282867

  12. Progress With Nonhuman Animal Models of Addiction.

    PubMed

    Crabbe, John C

    2016-09-01

    Nonhuman animals have been major contributors to the science of the genetics of addiction. Given the explosion of interest in genetics, it is fair to ask, are we making reasonable progress toward our goals with animal models? I will argue that our goals are changing and that overall progress has been steady and seems likely to continue apace. Genetics tools have developed almost incredibly rapidly, enabling both more reductionist and more synthetic or integrative approaches. I believe that these approaches to making progress have been unbalanced in biomedical science, favoring reductionism, particularly in animal genetics. I argue that substantial, novel progress is also likely to come in the other direction, toward synthesis and abstraction. Another area in which future progress with genetic animal models seems poised to contribute more is the reconciliation of human and animal phenotypes, or consilience. The inherent power of the genetic animal models could be more profitably exploited. In the end, animal research has continued to provide novel insights about how genes influence individual differences in addiction risk and consequences. The rules of the genetics game are changing so fast that it is hard to remember how comparatively little we knew even a generation ago. Rather than worry about whether we have been wasting time and resources asking the questions we have been, we should look to the future and see if we can come up with some new ones. The valuable findings from the past will endure, and the sidetracks will be forgotten.

  13. Animal models in motion sickness research

    NASA Technical Reports Server (NTRS)

    Daunton, Nancy G.

    1990-01-01

    Practical information on candidate animal models for motion sickness research and on methods used to elicit and detect motion sickness in these models is provided. Four good potential models for use in motion sickness experiments include the dog, cat, squirrel monkey, and rat. It is concluded that the appropriate use of the animal models, combined with exploitation of state-of-the-art biomedical techniques, should generate a great step forward in the understanding of motion sickness mechanisms and in the development of efficient and effective approaches to its prevention and treatment in humans.

  14. A Bayesian network model for predicting aquatic toxicity mode of action using two dimensional theoretical molecular descriptors.

    PubMed

    Carriger, John F; Martin, Todd M; Barron, Mace G

    2016-11-01

    The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity, but development of predictive MoA classification models in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity MoA using a recently published dataset containing over one thousand chemicals with MoA assignments for aquatic animal toxicity. Two dimensional theoretical chemical descriptors were generated for each chemical using the Toxicity Estimation Software Tool. The model was developed through augmented Markov blanket discovery from the dataset of 1098 chemicals with the MoA broad classifications as a target node. From cross validation, the overall precision for the model was 80.2%. The best precision was for the AChEI MoA (93.5%) where 257 chemicals out of 275 were correctly classified. Model precision was poorest for the reactivity MoA (48.5%) where 48 out of 99 reactive chemicals were correctly classified. Narcosis represented the largest class within the MoA dataset and had a precision and reliability of 80.0%, reflecting the global precision across all of the MoAs. False negatives for narcosis most often fell into electron transport inhibition, neurotoxicity or reactivity MoAs. False negatives for all other MoAs were most often narcosis. A probabilistic sensitivity analysis was undertaken for each MoA to examine the sensitivity to individual and multiple descriptor findings. The results show that the Markov blanket of a structurally complex dataset can simplify analysis and interpretation by identifying a subset of the key chemical descriptors associated with broad aquatic toxicity MoAs, and by providing a computational chemistry-based network classification model with reasonable prediction accuracy.

  15. Determining the availability of sediment-bound trace metals to aquatic deposit-feeding animals

    USGS Publications Warehouse

    Luoma, Samuel N.; Cain, D.J.; Thomson, E.A.; Johansson, C.; Jenne, E.A.; Bryan, G.W.

    1980-01-01

    Physicochemical form affects, by as much as 1000 fold, the uptake rate by deposit-feeding clams of metals bound to sediments. The strength of metal binding to the different sedimentary binding substrates controls this effect. Statistical studies that were spatially intensive (comparing 35 stations in 17 estuaries) and temporally intensive (2 stations through 2 years time) indicate that sediments control the availability of Ag, Cd, Co, Pb, Zn, Fe, and Mn, and possibly Cu to clams and polychaete worms in nature. Metal concentrations removed from sediments by chemical extractants generally follow availability better than do total metal concentrations, but the specific extractant differs among different metals. Concentrations of binding substrates (Fe, Mn, organic carbon, humic substances) also statistically explain a proportion of the variance of metal concentrations in the animals, suggesting that metal partitioning among substrates in sediments is an important control on metal availability. The specific substrates which contribute to availability also differ among metals. Statistical assessment of metal form in sediments suggested that different substrates compete for the partitioning of metals, that each metal is partitioned among a variety of forms in an oxidized sediment, and that partitioning will vary with the physicochemical characteristics of the sediments. (USGS)

  16. Uncertainty in spatially explicit animal dispersal models

    USGS Publications Warehouse

    Mooij, Wolf M.; DeAngelis, Donald L.

    2003-01-01

    Uncertainty in estimates of survival of dispersing animals is a vexing difficulty in conservation biology. The current notion is that this uncertainty decreases the usefulness of spatially explicit population models in particular. We examined this problem by comparing dispersal models of three levels of complexity: (1) an event-based binomial model that considers only the occurrence of mortality or arrival, (2) a temporally explicit exponential model that employs mortality and arrival rates, and (3) a spatially explicit grid-walk model that simulates the movement of animals through an artificial landscape. Each model was fitted to the same set of field data. A first objective of the paper is to illustrate how the maximum-likelihood method can be used in all three cases to estimate the means and confidence limits for the relevant model parameters, given a particular set of data on dispersal survival. Using this framework we show that the structure of the uncertainty for all three models is strikingly similar. In fact, the results of our unified approach imply that spatially explicit dispersal models, which take advantage of information on landscape details, suffer less from uncertainly than do simpler models. Moreover, we show that the proposed strategy of model development safeguards one from error propagation in these more complex models. Finally, our approach shows that all models related to animal dispersal, ranging from simple to complex, can be related in a hierarchical fashion, so that the various approaches to modeling such dispersal can be viewed from a unified perspective.

  17. Animal models of human response to dioxins.

    PubMed Central

    Grassman, J A; Masten, S A; Walker, N J; Lucier, G W

    1998-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the most potent member of a class of chlorinated hydrocarbons that interact with the aryl hydrocarbon receptor (AhR). TCDD and dioxinlike compounds are environmentally and biologically stable and as a result, human exposure is chronic and widespread. Studies of highly exposed human populations show that dioxins produce developmental effects, chloracne, and an increase in all cancers and suggest that they may also alter immune and endocrine function. In contrast, the health effects of low-level environmental exposure have not been established. Experimental animal models can enhance the understanding of the effects of low-level dioxin exposure, particularly when there is evidence that humans respond similarly to the animal models. Although there are species differences in pharmacokinetics, experimental animal models demonstrate AhR-dependent health effects that are similar to those found in exposed human populations. Comparisons of biochemical changes show that humans and animal models have similar degrees of sensitivity to dioxin-induced effects. The information gained from animal models is important for developing mechanistic models of dioxin toxicity and critical for assessing the risks to human populations under different circumstances of exposure. PMID:9599728

  18. Animal models of idiosyncratic drug reactions.

    PubMed

    Ng, Winnie; Lobach, Alexandra R M; Zhu, Xu; Chen, Xin; Liu, Feng; Metushi, Imir G; Sharma, Amy; Li, Jinze; Cai, Ping; Ip, Julia; Novalen, Maria; Popovic, Marija; Zhang, Xiaochu; Tanino, Tadatoshi; Nakagawa, Tetsuya; Li, Yan; Uetrecht, Jack

    2012-01-01

    If we could predict and prevent idiosyncratic drug reactions (IDRs) it would have a profound effect on drug development and therapy. Given our present lack of mechanistic understanding, this goal remains elusive. Hypothesis testing requires valid animal models with characteristics similar to the idiosyncratic reactions that occur in patients. Although it has not been conclusively demonstrated, it appears that almost all IDRs are immune-mediated, and a dominant characteristic is a delay between starting the drug and the onset of the adverse reaction. In contrast, most animal models are acute and therefore involve a different mechanism than idiosyncratic reactions. There are, however, a few animal models such as the nevirapine-induced skin rash in rats that have characteristics very similar to the idiosyncratic reaction that occurs in humans and presumably have a very similar mechanism. These models have allowed testing hypotheses that would be impossible to test in any other way. In addition there are models in which there is a delayed onset of mild hepatic injury that resolves despite continued treatment similar to the "adaptation" reactions that are more common than severe idiosyncratic hepatotoxicity in humans. This probably represents the development of immune tolerance. However, most attempts to develop animal models by stimulating the immune system have been failures. A specific combination of MHC and T cell receptor may be required, but it is likely more complex. Animal studies that determine the requirements for an immune response would provide vital clues about risk factors for IDRs in patients.

  19. Large Animal Models of Huntington's Disease.

    PubMed

    Li, Xiao-Jiang; Li, Shihua

    2015-01-01

    Huntington's disease is caused by the expansion of a polyglutamine repeat (>37 glutamines) in the disease protein huntingtin, which results in preferential neuronal loss in distinct brain regions. Mutant huntingtin causes late-onset neurological symptoms in patients in middle life, though the expression of mutant huntingtin is ubiquitous from early life. Thus, it is important to understand why mutant huntingtin selectively causes neuronal loss in an age-dependent manner. Transgenic animal models have been essential tools for uncovering the pathogenesis and therapeutic targets of neurodegenerative diseases. Genetic mouse models have been investigated extensively and have revealed the common pathological hallmark of age-dependent formation of aggregates or inclusions consisting of misfolded proteins. However, most genetic mouse models lack striking neurodegeneration that has been found in patient brains. Since there are considerable species differences between small and large animals, large animal models of Huntington's disease may allow one to identify the pathological features that are more similar to those in patients and also help uncover more effective therapeutic targets. This chapter will focus on the important findings from large animal models of Huntington's disease and discusses the use of large animal models to investigate the pathogenesis of Huntington's disease and develop new therapeutic strategies.

  20. Current status: Animal models of nausea

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.

    1991-01-01

    The advantages, and possible benefits of a valid, reliable animal model for nausea are discussed, and difficulties inherent to the development of a model are considered. A principle problem for developing models arises because nausea is a subjective sensation that can be identified only in humans. Several putative measures of nausea in animals are considered, with more detailed consideration directed to variation in cardiac rate, levels of vasopressin, and conditioned taste aversion. Demonstration that putative measures are associated with reported nausea in humans is proposed as a requirement for validating measures to be used in animal models. The necessity for a 'real-time' measure of nausea is proposed as an important factor for future research; and the need for improved understanding of the neuroanatomy underlying the emetic syndrome is discussed.

  1. Optogenetics in animal model of alcohol addiction

    NASA Astrophysics Data System (ADS)

    Nalberczak, Maria; Radwanska, Kasia

    2014-11-01

    Our understanding of the neuronal and molecular basis of alcohol addiction is still not satisfactory. As a consequence we still miss successful therapy of alcoholism. One of the reasons for such state is the lack of appropriate animal models which would allow in-depth analysis of biological basis of addiction. Here we will present our efforts to create the animal model of alcohol addiction in the automated learning device, the IntelliCage setup. Applying this model to optogenetically modified mice with remotely controlled regulation of selected neuronal populations by light may lead to very precise identification of neuronal circuits involved in coding addiction-related behaviors.

  2. Animal models of gastrointestinal inflammation and cancer.

    PubMed

    Lu, L; Chan, Ruby L Y; Luo, X M; Wu, William K K; Shin, Vivian Y; Cho, C H

    2014-07-11

    Inflammation and cancer are the two major disorders in the gastrointestinal tract. They are causally related in their pathogenesis. It is important to study animal models' causal relationship and, in particular, to discover new therapeutic agents for such diseases. There are several criteria for these models in order to make them useful in better understanding the etiology and treatment of the said diseases in humans. In this regard, animal models should be similar as possible to human diseases and also be easy to produce and reproducible and also economic to allow a continuous replication in different laboratories. In this review, we summarize the various animal models for inflammatory and cancerous disorders in the upper and lower gastrointestinal tract. Experimental approaches are as simple as by giving a single oral dose of alcohol or other noxious agents or by injections of multiple dosages of ulcer inducing agents or by parenteral administration or in drinking water of carcinogens or by modifying the genetic makeups of animals to produce relatively long-term pathological changes in particular organs. With these methods they could induce consistent inflammatory responses or tumorigenesis in the gastrointestinal mucosa. These animal models are widely used in laboratories in understanding the pathogenesis as well as the mechanisms of action for therapeutic agents in the treatment of gastrointestinal inflammation and cancer.

  3. PHB-degrading bacteria isolated from the gastrointestinal tract of aquatic animals as protective actors against luminescent vibriosis.

    PubMed

    Liu, Yiying; De Schryver, Peter; Van Delsen, Bart; Maignien, Loïs; Boon, Nico; Sorgeloos, Patrick; Verstraete, Willy; Bossier, Peter; Defoirdt, Tom

    2010-10-01

    The use of poly-β-hydroxybutyrate (PHB) was shown to be successful in increasing the resistance of brine shrimp against pathogenic infections. In this study, we isolated for the first time PHB-degrading bacteria from a gastrointestinal environment. Pure strains of PHB-degrading bacteria were isolated from Siberian sturgeon, European sea bass and giant river prawn. The capability of selected isolates to degrade PHB was confirmed in at least two of three setups: (1) growth in minimal medium containing PHB as the sole carbon (C) source, (2) production of clearing zones on minimal agar containing PHB as the sole C source and (3) degradation of PHB (as determined by HPLC analysis) in 10% Luria-Bertani medium containing PHB. Challenge tests showed that the PHB-degrading activity of the selected isolates increased the survival of brine shrimp larvae challenged to a pathogenic Vibrio campbellii strain by a factor 2-3. Finally, one of the PHB-degrading isolates from sturgeon showed a double biocontrol effect because it was also able to inactivate acylhomoserine lactones, a type of quorum-sensing molecule that regulates the virulence of different pathogenic bacteria. Thus, the combined supplementation of a PHB-degrading bacterium and PHB as a synbioticum provides perspectives for improving the gastrointestinal health of aquatic animals.

  4. Large animal models for stem cell therapy.

    PubMed

    Harding, John; Roberts, R Michael; Mirochnitchenko, Oleg

    2013-03-28

    The field of regenerative medicine is approaching translation to clinical practice, and significant safety concerns and knowledge gaps have become clear as clinical practitioners are considering the potential risks and benefits of cell-based therapy. It is necessary to understand the full spectrum of stem cell actions and preclinical evidence for safety and therapeutic efficacy. The role of animal models for gaining this information has increased substantially. There is an urgent need for novel animal models to expand the range of current studies, most of which have been conducted in rodents. Extant models are providing important information but have limitations for a variety of disease categories and can have different size and physiology relative to humans. These differences can preclude the ability to reproduce the results of animal-based preclinical studies in human trials. Larger animal species, such as rabbits, dogs, pigs, sheep, goats, and non-human primates, are better predictors of responses in humans than are rodents, but in each case it will be necessary to choose the best model for a specific application. There is a wide spectrum of potential stem cell-based products that can be used for regenerative medicine, including embryonic and induced pluripotent stem cells, somatic stem cells, and differentiated cellular progeny. The state of knowledge and availability of these cells from large animals vary among species. In most cases, significant effort is required for establishing and characterizing cell lines, comparing behavior to human analogs, and testing potential applications. Stem cell-based therapies present significant safety challenges, which cannot be addressed by traditional procedures and require the development of new protocols and test systems, for which the rigorous use of larger animal species more closely resembling human behavior will be required. In this article, we discuss the current status and challenges of and several major directions

  5. Predicting the resilience and recovery of aquatic systems: A framework for model evolution within environmental observatories

    NASA Astrophysics Data System (ADS)

    Hipsey, Matthew R.; Hamilton, David P.; Hanson, Paul C.; Carey, Cayelan C.; Coletti, Janaine Z.; Read, Jordan S.; Ibelings, Bas W.; Valesini, Fiona J.; Brookes, Justin D.

    2015-09-01

    Maintaining the health of aquatic systems is an essential component of sustainable catchment management, however, degradation of water quality and aquatic habitat continues to challenge scientists and policy-makers. To support management and restoration efforts aquatic system models are required that are able to capture the often complex trajectories that these systems display in response to multiple stressors. This paper explores the abilities and limitations of current model approaches in meeting this challenge, and outlines a strategy based on integration of flexible model libraries and data from observation networks, within a learning framework, as a means to improve the accuracy and scope of model predictions. The framework is comprised of a data assimilation component that utilizes diverse data streams from sensor networks, and a second component whereby model structural evolution can occur once the model is assessed against theoretically relevant metrics of system function. Given the scale and transdisciplinary nature of the prediction challenge, network science initiatives are identified as a means to develop and integrate diverse model libraries and workflows, and to obtain consensus on diagnostic approaches to model assessment that can guide model adaptation. We outline how such a framework can help us explore the theory of how aquatic systems respond to change by bridging bottom-up and top-down lines of enquiry, and, in doing so, also advance the role of prediction in aquatic ecosystem management.

  6. Food allergy animal models: an overview.

    PubMed

    Helm, Ricki M

    2002-05-01

    Specific food allergy is characterized by sensitization to innocuous food proteins with production of allergen-specific IgE that binds to receptors on basophils and mast cells. Upon recurrent exposure to the same allergen, an allergic response is induced by mediator release following cross-linking of cell-bound allergen-specific IgE. The determination of what makes an innocuous food protein an allergen in predisposed individuals is unknown; however, mechanistic and protein allergen predictive models are being actively investigated in a number of animal models. Currently, there is no animal model that will actively profile known food allergens, predict the allergic potential of novel food proteins, or demonstrate clinically the human food allergic sensitization/allergic response. Animal models under investigation include mice, rats, the guinea pig, atopic dog, and neonatal swine. These models are being assessed for production of IgE, clinical responses to re-exposure, and a ranking of food allergens (based on potency) including a nonfood allergen protein source. A selection of animal models actively being investigated that will contribute to our understanding of what makes a protein an allergen and future predictive models for assessing the allergenicity of novel proteins is presented in this review.

  7. Standardization of A Physiologic Hypoparathyroidism Animal Model

    PubMed Central

    Jung, Soo Yeon; Kim, Ha Yeong; Park, Hae Sang; Yin, Xiang Yun; Chung, Sung Min; Kim, Han Su

    2016-01-01

    Ideal hypoparathyroidism animal models are a prerequisite to developing new treatment modalities for this disorder. The purpose of this study was to evaluate the feasibility of a model whereby rats were parathyroidectomized (PTX) using a fluorescent-identification method and the ideal calcium content of the diet was determined. Thirty male rats were divided into surgical sham (SHAM, n = 5) and PTX plus 0, 0.5, and 2% calcium diet groups (PTX-FC (n = 5), PTX-NC (n = 10), and PTX-HC (n = 10), respectively). Serum parathyroid hormone levels decreased to non-detectable levels in all PTX groups. All animals in the PTX—FC group died within 4 days after the operation. All animals survived when supplied calcium in the diet. However, serum calcium levels were higher in the PTX-HC than the SHAM group. The PTX-NC group demonstrated the most representative modeling of primary hypothyroidism. Serum calcium levels decreased and phosphorus levels increased, and bone volume was increased. All animals survived without further treatment and did not show nephrotoxicity including calcium deposits. These findings demonstrate that PTX animal models produced by using the fluorescent-identification method, and fed a 0.5% calcium diet, are appropriate for hypoparathyroidism treatment studies. PMID:27695051

  8. Animal models of traumatic brain injury

    PubMed Central

    Xiong, Ye; Mahmood, Asim; Chopp, Michael

    2014-01-01

    Traumatic brain injury (TBI) is a leading cause of mortality and morbidity in both civilian life and the battlefield worldwide. Survivors of TBI frequently experience long-term disabling changes in cognition, sensorimotor function and personality. Over the past three decades, animal models have been developed to replicate the various aspects of human TBI, to better understand the underlying pathophysiology and to explore potential treatments. Nevertheless, promising neuroprotective drugs, which were identified to be effective in animal TBI models, have all failed in phase II or phase III clinical trials. This failure in clinical translation of preclinical studies highlights a compelling need to revisit the current status of animal models of TBI and therapeutic strategies. PMID:23329160

  9. Predicting the resilience and recovery of aquatic systems: a framework for model evolution within environmental observatories

    USGS Publications Warehouse

    Hipsey, Matthew R.; Hamilton, David P.; Hanson, Paul C.; Carey, Cayelan C; Coletti, Janaine Z; Read, Jordan S.; Ibelings, Bas W; Valensini, Fiona J; Brookes, Justin D

    2015-01-01

    Maintaining the health of aquatic systems is an essential component of sustainable catchmentmanagement, however, degradation of water quality and aquatic habitat continues to challenge scientistsand policy-makers. To support management and restoration efforts aquatic system models are requiredthat are able to capture the often complex trajectories that these systems display in response to multiplestressors. This paper explores the abilities and limitations of current model approaches in meeting this chal-lenge, and outlines a strategy based on integration of flexible model libraries and data from observationnetworks, within a learning framework, as a means to improve the accuracy and scope of model predictions.The framework is comprised of a data assimilation component that utilizes diverse data streams from sensornetworks, and a second component whereby model structural evolution can occur once the model isassessed against theoretically relevant metrics of system function. Given the scale and transdisciplinarynature of the prediction challenge, network science initiatives are identified as a means to develop and inte-grate diverse model libraries and workflows, and to obtain consensus on diagnostic approaches to modelassessment that can guide model adaptation. We outline how such a framework can help us explore thetheory of how aquatic systems respond to change by bridging bottom-up and top-down lines of enquiry,and, in doing so, also advance the role of prediction in aquatic ecosystem management.

  10. Animal and cellular models of Friedreich ataxia.

    PubMed

    Perdomini, Morgane; Hick, Aurore; Puccio, Hélène; Pook, Mark A

    2013-08-01

    The development and use of animal and cellular models of Friedreich ataxia (FRDA) are essential requirements for the understanding of FRDA disease mechanisms and the investigation of potential FRDA therapeutic strategies. Although animal and cellular models of lower organisms have provided valuable information on certain aspects of FRDA disease and therapy, it is intuitive that the most useful models are those of mammals and mammalian cells, which are the closest in physiological terms to FRDA patients. To date, there have been considerable efforts put into the development of several different FRDA mouse models and relevant FRDA mouse and human cell line systems. We summarize the principal mammalian FRDA models, discuss the pros and cons of each system, and describe the ways in which such models have been used to address two of the fundamental, as yet unanswered, questions regarding FRDA. Namely, what is the exact pathophysiology of FRDA and what is the detailed genetic and epigenetic basis of FRDA?

  11. Hierarchical models of animal abundance and occurrence

    USGS Publications Warehouse

    Royle, J. Andrew; Dorazio, R.M.

    2006-01-01

    Much of animal ecology is devoted to studies of abundance and occurrence of species, based on surveys of spatially referenced sample units. These surveys frequently yield sparse counts that are contaminated by imperfect detection, making direct inference about abundance or occurrence based on observational data infeasible. This article describes a flexible hierarchical modeling framework for estimation and inference about animal abundance and occurrence from survey data that are subject to imperfect detection. Within this framework, we specify models of abundance and detectability of animals at the level of the local populations defined by the sample units. Information at the level of the local population is aggregated by specifying models that describe variation in abundance and detection among sites. We describe likelihood-based and Bayesian methods for estimation and inference under the resulting hierarchical model. We provide two examples of the application of hierarchical models to animal survey data, the first based on removal counts of stream fish and the second based on avian quadrat counts. For both examples, we provide a Bayesian analysis of the models using the software WinBUGS.

  12. An ecologist's guide to the animal model.

    PubMed

    Wilson, Alastair J; Réale, Denis; Clements, Michelle N; Morrissey, Michael M; Postma, Erik; Walling, Craig A; Kruuk, Loeske E B; Nussey, Daniel H

    2010-01-01

    1. Efforts to understand the links between evolutionary and ecological dynamics hinge on our ability to measure and understand how genes influence phenotypes, fitness and population dynamics. Quantitative genetics provides a range of theoretical and empirical tools with which to achieve this when the relatedness between individuals within a population is known. 2. A number of recent studies have used a type of mixed-effects model, known as the animal model, to estimate the genetic component of phenotypic variation using data collected in the field. Here, we provide a practical guide for ecologists interested in exploring the potential to apply this quantitative genetic method in their research. 3. We begin by outlining, in simple terms, key concepts in quantitative genetics and how an animal model estimates relevant quantitative genetic parameters, such as heritabilities or genetic correlations. 4. We then provide three detailed example tutorials, for implementation in a variety of software packages, for some basic applications of the animal model. We discuss several important statistical issues relating to best practice when fitting different kinds of mixed models. 5. We conclude by briefly summarizing more complex applications of the animal model, and by highlighting key pitfalls and dangers for the researcher wanting to begin using quantitative genetic tools to address ecological and evolutionary questions.

  13. Pathophysiology and animal modeling of underactive bladder.

    PubMed

    Tyagi, Pradeep; Smith, Phillip P; Kuchel, George A; de Groat, William C; Birder, Lori A; Chermansky, Christopher J; Adam, Rosalyn M; Tse, Vincent; Chancellor, Michael B; Yoshimura, Naoki

    2014-09-01

    While the symptomology of underactive bladder (UAB) may imply a primary dysfunction of the detrusor muscle, insights into pathophysiology indicate that both myogenic and neurogenic mechanisms need to be considered. Due to lack of proper animal models, the current understanding of the UAB pathophysiology is limited, and much of what is known about the clinical etiology of the condition has been derived from epidemiological data. We hereby review current state of the art in the understanding of the pathophysiology of and animal models used to study the UAB.

  14. Animal models of mucositis: implications for therapy.

    PubMed

    Bowen, Joanne M; Gibson, Rachel J; Keefe, Dorothy M K

    2011-01-01

    Alimentary mucositis is a major acute complication in the clinical setting, occurring in a large percentage of patients undergoing cytotoxic therapy. One of the major problems with alimentary mucositis is that the underlying mechanisms behind its development are not entirely understood, which makes it extremely difficult to develop effective interventions. Animal models provide a critical source of knowledge when sampling from patients is unavailable or interventions are yet to be fully tested. This review focuses on the animal models used to increase our understanding of the mechanisms of mucositis and translate new antimucotoxic agents into clinical trials.

  15. Laboratory animal models for esophageal cancer

    PubMed Central

    Nair, Dhanya Venugopalan; Reddy, A. Gopala

    2016-01-01

    The incidence of esophageal cancer is rapidly increasing especially in developing countries. The major risk factors include unhealthy lifestyle practices such as alcohol consumption, smoking, and chewing tobacco to name a few. Diagnosis at an advanced stage and poor prognosis make esophageal cancer one of the most lethal diseases. These factors have urged further research in understanding the pathophysiology of the disease. Animal models not only aid in understanding the molecular pathogenesis of esophageal cancer but also help in developing therapeutic interventions for the disease. This review throws light on the various recent laboratory animal models for esophageal cancer. PMID:27956773

  16. Animal models of focal brain ischemia

    PubMed Central

    2009-01-01

    Stroke is a leading cause of disability and death in many countries. Understanding the pathophysiology of ischemic injury and developing therapies is an important endeavor that requires much additional research. Animal stroke models provide an important mechanism for these activities. A large number of stroke models have been developed and are currently used in laboratories around the world. These models are overviewed as are approaches for measuring infarct size and functional outcome. PMID:20150985

  17. A new paradigm for ammonia excretion in aquatic animals: role of Rhesus (Rh) glycoproteins.

    PubMed

    Wright, Patricia A; Wood, Chris M

    2009-08-01

    Ammonia excretion at the gills of fish has been studied for 80 years, but the mechanism(s) involved remain controversial. The relatively recent discovery of the ammonia-transporting function of the Rhesus (Rh) proteins, a family related to the Mep/Amt family of methyl ammonia and ammonia transporters in bacteria, yeast and plants, and the occurrence of these genes and glycosylated proteins in fish gills has opened a new paradigm. We provide background on the evolution and function of the Rh proteins, and review recent studies employing molecular physiology which demonstrate their important contribution to branchial ammonia efflux. Rhag occurs in red blood cells, whereas several isoforms of both Rhbg and Rhcg occur in many tissues. In the branchial epithelium, Rhcg appears to be localized in apical membranes and Rhbg in basolateral membranes. Their gene expression is upregulated during exposure to high environmental ammonia or internal ammonia infusion, and may be sensitive to synergistic stimulation by ammonia and cortisol. Rhcg in particular appears to be coupled to H(+) excretion and Na(+) uptake mechanisms. We propose a new model for ammonia excretion in freshwater fish and its variable linkage to Na(+) uptake and acid excretion. In this model, Rhag facilitates NH(3) flux out of the erythrocyte, Rhbg moves it across the basolateral membrane of the branchial ionocyte, and an apical "Na(+)/NH (+)(4) exchange complex" consisting of several membrane transporters (Rhcg, V-type H(+)-ATPase, Na(+)/H(+) exchanger NHE-2 and/or NHE-3, Na(+) channel) working together as a metabolon provides an acid trapping mechanism for apical excretion. Intracellular carbonic anhydrase (CA-2) and basolateral Na(+)/HCO (-)(3) cotransporter (NBC-1) and Na(+)/K(+)-ATPase play indirect roles. These mechanisms are normally superimposed on a substantial outward movement of NH(3) by simple diffusion, which is probably dependent on acid trapping in boundary layer water by H(+) ions created by

  18. Metal toxicity, uptake and bioaccumulation in aquatic invertebrates--modelling zinc in crustaceans.

    PubMed

    Rainbow, P S; Luoma, S N

    2011-10-01

    We use published data on the different patterns of the bioaccumulation of zinc by three crustaceans, the caridean decapod Palaemon elegans, the amphipod Orchestia gammarellus and the barnacle Amphibalanus amphitrite, to construct comparative biodynamic models of the bioaccumulation of zinc into metabolically available and detoxified components of accumulated zinc in each crustacean under both field and laboratory toxicity test conditions. We then link these bioaccumulation models to the onset of toxic effects on exposure of the crustaceans to high dissolved zinc bioavailabilities, using the tenets that toxicity effects are related to the total uptake rate of the toxic metal, and that toxicity is not usually dependent on the total accumulated metal concentration but always on the concentration of accumulated metal that is metabolically available. We dismiss the general concept that there is a critical accumulated body concentration of a metal in an invertebrate at which toxicity ensues, except under specific circumstances involving a rare lack of storage detoxification of accumulated metal. We thus propose a theoretical framework that can be extended to other metals and other aquatic invertebrates (indeed other animals) to explain the variation in the relationship between bioaccumulated body concentrations and toxicity, and subsequently to predict this relationship in many other species for which we have bioaccumulation modelling data.

  19. DNA microarray technology in toxicogenomics of aquatic models: methods and applications.

    PubMed

    Ju, Zhenlin; Wells, Melissa C; Walter, Ronald B

    2007-02-01

    Toxicogenomics represents the merging of toxicology with genomics and bioinformatics to investigate biological functions of genome in response to environmental contaminants. Aquatic species have traditionally been used as models in toxicology to characterize the actions of environmental stresses. Recent completion of the DNA sequencing for several fish species has spurred the development of DNA microarrays allowing investigators access to toxicogenomic approaches. However, since microarray technology is thus far limited to only a few aquatic species and derivation of biological meaning from microarray data is highly dependent on statistical arguments, the full potential of microarray in aquatic species research has yet to be realized. Herein we review some of the issues related to construction, probe design, statistical and bioinformatical data analyses, and current applications of DNA microarrays. As a model a recently developed medaka (Oryzias latipes) oligonucleotide microarray was described to highlight some of the issues related to array technology and its application in aquatic species exposed to hypoxia. Although there are known non-biological variations present in microarray data, it remains unquestionable that array technology will have a great impact on aquatic toxicology. Microarray applications in aquatic toxicogenomics will range from the discovery of diagnostic biomarkers, to establishment of stress-specific signatures and molecular pathways hallmarking the adaptation to new environmental conditions.

  20. Animal models of soft-tissue sarcoma

    PubMed Central

    Dodd, Rebecca D.; Mito, Jeffery K.; Kirsch, David G.

    2010-01-01

    Soft-tissue sarcomas (STSs) are rare mesenchymal tumors that arise from muscle, fat and connective tissue. Currently, over 75 subtypes of STS are recognized. The rarity and heterogeneity of patient samples complicate clinical investigations into sarcoma biology. Model organisms might provide traction to our understanding and treatment of the disease. Over the past 10 years, many successful animal models of STS have been developed, primarily genetically engineered mice and zebrafish. These models are useful for studying the relevant oncogenes, signaling pathways and other cell changes involved in generating STSs. Recently, these model systems have become preclinical platforms in which to evaluate new drugs and treatment regimens. Thus, animal models are useful surrogates for understanding STS disease susceptibility and pathogenesis as well as for testing potential therapeutic strategies. PMID:20713645

  1. [Laboratory animal infection in modeling intestinal schistosomiasis].

    PubMed

    Zelia, O P

    1984-01-01

    A comparative efficiency of different regimes for infecting laboratory animals has been determined in order to find out optimal conditions under which an experimental model of intestinal schistosomiasis (infection with Schistosoma mansoni) can be maintained. When evaluating the results of laboratory definitive hosts infection we took into account the character of Schistosoma distribution in animals, which with high probability rate was modelled by means of negative binomial distribution. The main parameters of this distribution were used for determination of effective doses and methods of animals infection alongside with generally accepted indices of infection rate and intensiveness. Analysis of the data obtained has shown that the infection of 150 cercarians per mouse and 200 cercarians per golden and striped hairy-footed hamster by their subcutaneous administration creates optimal density of parasites in the host. Results of investigations have shown that striped hairy-footed hamsters can be used as definitive hosts of Schistosoma.

  2. Are animal models predictive for humans?

    PubMed Central

    2009-01-01

    It is one of the central aims of the philosophy of science to elucidate the meanings of scientific terms and also to think critically about their application. The focus of this essay is the scientific term predict and whether there is credible evidence that animal models, especially in toxicology and pathophysiology, can be used to predict human outcomes. Whether animals can be used to predict human response to drugs and other chemicals is apparently a contentious issue. However, when one empirically analyzes animal models using scientific tools they fall far short of being able to predict human responses. This is not surprising considering what we have learned from fields such evolutionary and developmental biology, gene regulation and expression, epigenetics, complexity theory, and comparative genomics. PMID:19146696

  3. Comparative biology of cystic fibrosis animal models.

    PubMed

    Fisher, John T; Zhang, Yulong; Engelhardt, John F

    2011-01-01

    Animal models of human diseases are critical for dissecting mechanisms of pathophysiology and developing therapies. In the context of cystic fibrosis (CF), mouse models have been the dominant species by which to study CF disease processes in vivo for the past two decades. Although much has been learned through these CF mouse models, limitations in the ability of this species to recapitulate spontaneous lung disease and several other organ abnormalities seen in CF humans have created a need for additional species on which to study CF. To this end, pig and ferret CF models have been generated by somatic cell nuclear transfer and are currently being characterized. These new larger animal models have phenotypes that appear to closely resemble human CF disease seen in newborns, and efforts to characterize their adult phenotypes are ongoing. This chapter will review current knowledge about comparative lung cell biology and cystic fibrosis transmembrane conductance regulator (CFTR) biology among mice, pigs, and ferrets that has implications for CF disease modeling in these species. We will focus on methods used to compare the biology and function of CFTR between these species and their relevance to phenotypes seen in the animal models. These cross-species comparisons and the development of both the pig and the ferret CF models may help elucidate pathophysiologic mechanisms of CF lung disease and lead to new therapeutic approaches.

  4. Aquatic Plant Control Research Program. A Mathematical Model of Submersed Aquatic Plants.

    DTIC Science & Technology

    1985-05-01

    macrophyte compartment include-gross production, dark respiration, photorespiration , nonpredatory mortality, and grazing. The influence of these processes on...phyte model: gross production, dark respiration, photorespiration , nonpreda- tory mortality, and grazing. Control measures affecting macrophytes, such...is mathe- matically expressed as follows: rrate ofi change gross dark of mass = macrophyte * production - respiration - photorespiration g day- I

  5. An animated model of reticulorumen motility.

    PubMed

    Gookin, Jody L; Foster, Derek M; Harvey, Alice M; McWhorter, Dan

    2009-01-01

    Understanding reticulorumen motility is important to the assessment of ruminant health and optimal production, and in the recognition, diagnosis, and treatment of disease. Accordingly, the teaching of reticulorumen motility is a staple of all veterinary curricula. This teaching has historically been based on written descriptions, line drawings, or pressure tracings obtained during contraction sequences. We developed an animated model of reticulorumen motility and hypothesized that veterinary students would prefer use of the model over traditional instructional methods. First-year veterinary students were randomly allocated to one of two online learning exercises: with the animated model (Group A) or with text and line drawings (Group B) depicting reticulorumen motility. Learning was assessed with a multiple-choice quiz and feedback on the learning alternatives was obtained by survey. Seventy-four students participated in the study, including 38/42 in Group A and 36/36 in Group B. Sixty-four out of 72 students (89%) responded that they would prefer use of the animated model if only one of the two learning methods was available. A majority of students agreed or strongly agreed that the animated model was easy to understand and improved their knowledge and appreciation of the importance of reticulorumen motility, and would recommend the model to other veterinary students. Interestingly, students in Group B achieved higher scores on examination than students in Group A. This could be speculatively attributed to the inclusion of an itemized list of contraction sequences in the text provided to Group B and failure of Group A students to read the text associated with the animations.

  6. Transgenic Animal Models of Huntington's Disease.

    PubMed

    Yang, Shang-Hsun; Chan, Anthony W S

    2011-01-01

    Huntington's disease (HD) is a devastating neurodegenerative disorder that currently has no cure. In order to develop effective treatment, an understanding of HD pathogenesis and the evaluation of therapeutic efficacy of novel medications with the aid of animal models are critical steps. Transgenic animals sharing similar genetic defects that lead to HD have provided important discoveries in HD mechanisms that cell models are not able to replicate, which include psychiatric impairment, cognitive behavioral impact, and motor functions. Although transgenic HD rodent models have been widely used in HD research, it is clear that an animal model with comparable physiology to man, similar genetic defects that lead to HD, and the ability to develop similar cognitive and behavioral impairments is critical for explaining HD pathogenesis and the development of cures. Compared to HD rodents, HD transgenic nonhuman primates have not only developed comparable neuropathology but also present HD clinical features such as rigidity, seizure, dystonia, bradykinesia, and chorea that no other animal model has been able to replicate. Distinctive degenerating neurons and the accumulation of neuropil aggregates observed in HD monkey brain strongly support the hypothesis that the unique neuropathogenic events seen in HD monkey brain recapitulate HD in man. The latest development of transgenic HD primates has opened a new era of animal modeling that better represents human genetic disorders such as HD, which will accelerate the development of diagnostic tools and identifying novel biomarkers through longitudinal studies including gene expression and metabolite profiling, and noninvasive imaging. Furthermore, novel treatments with predictable efficacy in human patients can be developed using HD monkeys because of comparable neuropathology and clinical features.

  7. Animal models for photodynamic therapy (PDT)

    PubMed Central

    Silva, Zenildo Santos; Bussadori, Sandra Kalil; Fernandes, Kristianne Porta Santos; Huang, Ying-Ying; Hamblin, Michael R.

    2015-01-01

    Photodynamic therapy (PDT) employs non-toxic dyes called photosensitizers (PSs), which absorb visible light to give the excited singlet state, followed by the long-lived triplet state that can undergo photochemistry. In the presence of ambient oxygen, reactive oxygen species (ROS), such as singlet oxygen and hydroxyl radicals are formed that are able to kill cancer cells, inactivate microbial pathogens and destroy unwanted tissue. Although there are already several clinically approved PSs for various disease indications, many studies around the world are using animal models to investigate the further utility of PDT. The present review will cover the main groups of animal models that have been described in the literature. Cancer comprises the single biggest group of models including syngeneic mouse/rat tumours that can either be subcutaneous or orthotopic and allow the study of anti-tumour immune response; human tumours that need to be implanted in immunosuppressed hosts; carcinogen-induced tumours; and mice that have been genetically engineered to develop cancer (often by pathways similar to those in patients). Infections are the second biggest class of animal models and the anatomical sites include wounds, burns, oral cavity, ears, eyes, nose etc. Responsible pathogens can include Gram-positive and Gram-negative bacteria, fungi, viruses and parasites. A smaller and diverse group of miscellaneous animal models have been reported that allow PDT to be tested in ophthalmology, atherosclerosis, atrial fibrillation, dermatology and wound healing. Successful studies using animal models of PDT are blazing the trail for tomorrow's clinical approvals. PMID:26415497

  8. Henipavirus infections: lessons from animal models.

    PubMed

    Dhondt, Kévin P; Horvat, Branka

    2013-04-09

    The Henipavirus genus contains two highly lethal viruses, the Hendra and Nipah viruses and one, recently discovered, apparently nonpathogenic member; Cedar virus. These three, negative-sense single-stranded RNA viruses, are hosted by fruit bats and use EphrinB2 receptors for entry into cells. The Hendra and Nipah viruses are zoonotic pathogens that emerged in the middle of 90s and have caused severe, and often fatal, neurologic and/or respiratory diseases in both humans and different animals; including spillover into equine and porcine species. Development of relevant models is critical for a better understanding of viral pathogenesis, generating new diagnostic tools, and assessing anti-viral therapeutics and vaccines. This review summarizes available data on several animal models where natural and/or experimental infection has been demonstrated; including pteroid bats, horses, pigs, cats, hamsters, guinea pigs, ferrets, and nonhuman primates. It recapitulates the principal features of viral pathogenesis in these animals and current knowledge on anti-viral immune responses. Lastly it describes the recently characterized murine animal model, which provides the possibility to use numerous and powerful tools available for mice to further decipher henipaviruses immunopathogenesis, prophylaxis, and treatment. The utility of different models to analyze important aspects of henipaviruses-induced disease in humans, potential routes of transmission, and therapeutic approaches are equally discussed.

  9. Henipavirus Infections: Lessons from Animal Models

    PubMed Central

    Dhondt, Kévin P.; Horvat, Branka

    2013-01-01

    The Henipavirus genus contains two highly lethal viruses, the Hendra and Nipah viruses and one, recently discovered, apparently nonpathogenic member; Cedar virus. These three, negative-sense single-stranded RNA viruses, are hosted by fruit bats and use EphrinB2 receptors for entry into cells. The Hendra and Nipah viruses are zoonotic pathogens that emerged in the middle of 90s and have caused severe, and often fatal, neurologic and/or respiratory diseases in both humans and different animals; including spillover into equine and porcine species. Development of relevant models is critical for a better understanding of viral pathogenesis, generating new diagnostic tools, and assessing anti-viral therapeutics and vaccines. This review summarizes available data on several animal models where natural and/or experimental infection has been demonstrated; including pteroid bats, horses, pigs, cats, hamsters, guinea pigs, ferrets, and nonhuman primates. It recapitulates the principal features of viral pathogenesis in these animals and current knowledge on anti-viral immune responses. Lastly it describes the recently characterized murine animal model, which provides the possibility to use numerous and powerful tools available for mice to further decipher henipaviruses immunopathogenesis, prophylaxis, and treatment. The utility of different models to analyze important aspects of henipaviruses-induced disease in humans, potential routes of transmission, and therapeutic approaches are equally discussed. PMID:25437037

  10. Animal models for genetic neuromuscular diseases.

    PubMed

    Vainzof, Mariz; Ayub-Guerrieri, Danielle; Onofre, Paula C G; Martins, Poliana C M; Lopes, Vanessa F; Zilberztajn, Dinorah; Maia, Lucas S; Sell, Karen; Yamamoto, Lydia U

    2008-03-01

    The neuromuscular disorders are a heterogeneous group of genetic diseases, caused by mutations in genes coding sarcolemmal, sarcomeric, and citosolic muscle proteins. Deficiencies or loss of function of these proteins leads to variable degree of progressive loss of motor ability. Several animal models, manifesting phenotypes observed in neuromuscular diseases, have been identified in nature or generated in laboratory. These models generally present physiological alterations observed in human patients and can be used as important tools for genetic, clinic, and histopathological studies. The mdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD). Although it is a good genetic and biochemical model, presenting total deficiency of the protein dystrophin in the muscle, this mouse is not useful for clinical trials because of its very mild phenotype. The canine golden retriever MD model represents a more clinically similar model of DMD due to its larger size and significant muscle weakness. Autosomal recessive limb-girdle MD forms models include the SJL/J mice, which develop a spontaneous myopathy resulting from a mutation in the Dysferlin gene, being a model for LGMD2B. For the human sarcoglycanopahties (SG), the BIO14.6 hamster is the spontaneous animal model for delta-SG deficiency, whereas some canine models with deficiency of SG proteins have also been identified. More recently, using the homologous recombination technique in embryonic stem cell, several mouse models have been developed with null mutations in each one of the four SG genes. All sarcoglycan-null animals display a progressive muscular dystrophy of variable severity and share the property of a significant secondary reduction in the expression of the other members of the sarcoglycan subcomplex and other components of the Dystrophin-glycoprotein complex. Mouse models for congenital MD include the dy/dy (dystrophia-muscularis) mouse and the allelic mutant dy(2J)/dy(2J) mouse

  11. Animal models of chronic obstructive pulmonary disease.

    PubMed

    Pérez-Rial, Sandra; Girón-Martínez, Álvaro; Peces-Barba, Germán

    2015-03-01

    Animal models of disease have always been welcomed by the scientific community because they provide an approach to the investigation of certain aspects of the disease in question. Animal models of COPD cannot reproduce the heterogeneity of the disease and usually only manage to represent the disease in its milder stages. Moreover, airflow obstruction, the variable that determines patient diagnosis, not always taken into account in the models. For this reason, models have focused on the development of emphysema, easily detectable by lung morphometry, and have disregarded other components of the disease, such as airway injury or associated vascular changes. Continuous, long-term exposure to cigarette smoke is considered the main risk factor for this disease, justifying the fact that the cigarette smoke exposure model is the most widely used. Some variations on this basic model, related to exposure time, the association of other inducers or inhibitors, exacerbations or the use of transgenic animals to facilitate the identification of pathogenic pathways have been developed. Some variations or heterogeneity of this disease, then, can be reproduced and models can be designed for resolving researchers' questions on disease identification or treatment responses.

  12. Animal models of trauma-induced coagulopathy.

    PubMed

    Frith, Daniel; Cohen, Mitchell J; Brohi, Karim

    2012-05-01

    Resurgent study of trauma-induced coagulopathy (TIC) has delivered considerable improvements in survival after injury. Robust, valid and clinically relevant experimental models of TIC are essential to support the evolution of our knowledge and management of this condition. The aims of this study were to identify and analyze contemporary animal models of TIC with regard to their ability to accurately characterize known mechanisms of coagulopathy and/or to test the efficacy of therapeutic agents. A literature review was performed. Structured search of the indexed online database MEDLINE/PubMed in July 2010 identified 43 relevant articles containing 23 distinct animal models of TIC. The main aim of 26 studies was to test a therapeutic and the other 17 were conducted to investigate pathophysiology. A preponderance of porcine models was identified. Three new models demonstrating an endogenous acute traumatic coagulopathy (ATC) have offered new insights into the pathophysiology of TIC. Independent or combined effects of induced hypothermia and metabolic acidosis have been extensively evaluated. Recently, a pig model of TIC has been developed that features all major etiologies of TIC, although not in correct chronological order. This review identifies a general lack of experimental research to keep pace with clinical developments. Tissue injury and hemorrhagic shock are fundamental initiating events that prime the hemostatic system for subsequent iatrogenic insults. New animal models utilizing a variety of species that accurately simulate the natural clinical trajectory of trauma are urgently needed.

  13. Small mammalian animal models of heart disease

    PubMed Central

    Camacho, Paula; Fan, Huimin; Liu, Zhongmin; He, Jia-Qiang

    2016-01-01

    There is an urgent clinical need to develop new therapeutic approaches for treating cardiovascular disease, but the biology of cardiovascular regeneration is complex. Model systems are required to advance our understanding of the pathogenesis, progression, and mechanisms underlying cardiovascular disease as well as to test therapeutic approaches to regenerate tissue and restore cardiac function following injury. An ideal model system should be inexpensive, easily manipulated, reproducible, physiologically representative of human disease, and ethically sound. The choice of animal model needs to be considered carefully since it affects experimental outcomes and whether findings of the study can be reasonably translated to humans. This review presents a guideline for the commonly used small animal models (mice, rats, rabbits, and cats) used in cardiac research as an effort to standardize the most relevant procedures and obtain translatable and reproducible results. PMID:27679742

  14. The modelling cycle for collective animal behaviour.

    PubMed

    Sumpter, David J T; Mann, Richard P; Perna, Andrea

    2012-12-06

    Collective animal behaviour is the study of how interactions between individuals produce group level patterns, and why these interactions have evolved. This study has proved itself uniquely interdisciplinary, involving physicists, mathematicians, engineers as well as biologists. Almost all experimental work in this area is related directly or indirectly to mathematical models, with regular movement back and forth between models, experimental data and statistical fitting. In this paper, we describe how the modelling cycle works in the study of collective animal behaviour. We classify studies as addressing questions at different levels or linking different levels, i.e. as local, local to global, global to local or global. We also describe three distinct approaches-theory-driven, data-driven and model selection-to these questions. We show, with reference to our own research on species across different taxa, how we move between these different levels of description and how these various approaches can be applied to link levels together.

  15. Cholestasis: human disease and experimental animal models.

    PubMed

    Rodríguez-Garay, Emilio Alberto

    2003-01-01

    Cholestasis may result from a failure in bile secretion in hepatocytes or ductular cells, or from a blockade to the free bile flow. Human cholestasis may be induced by many drugs, being antibiotics the more common. Other types of cholestasis seen in humans are a group of familial cholestatic disorders, obstructive cholestasis, primary biliary cirrhosis, extrahepatic biliary atresia, primary sclerosing cholangitis, cholestasis of pregnancy, oral contraceptive-induced cholestasis, and sepsis-induced cholestasis. Experimental animal models allow the understanding of pathophysiological mechanisms involved and their clinical correlates. The most common experimental models of intrahepatic cholestasis are estrogen-induced, endotoxin-induced and drug-induced cholestasis. A well known model of extrahepatic biliary obstruction is common bile duct ligation. Drug-induced cholestasis were described using different drugs. On this regard, alpha naphthylisothiocyanate treatment has been extensively used, permitting to describe not only cholestatic alterations but also compensatory mechanisms. Congenital defficiency of transport proteins also were studied in natural rat models of cholestasis. The experimental animal models allow to define down-regulated alterations of hepatocyte transport proteins, and up-regulated ones acting as compensatory mechanisms. In conclusion, animal model and transport protein studies are necessary for the progressive understanding of congenital and acquired human cholestasis, and regulatory mechanisms that operate on liver cells.

  16. Evaluation of Surrogate Animal Models of Melioidosis

    PubMed Central

    Warawa, Jonathan Mark

    2010-01-01

    Burkholderia pseudomallei is the Gram-negative bacterial pathogen responsible for the disease melioidosis. B. pseudomallei establishes disease in susceptible individuals through multiple routes of infection, all of which may proceed to a septicemic disease associated with a high mortality rate. B. pseudomallei opportunistically infects humans and a wide range of animals directly from the environment, and modeling of experimental melioidosis has been conducted in numerous biologically relevant models including mammalian and invertebrate hosts. This review seeks to summarize published findings related to established animal models of melioidosis, with an aim to compare and contrast the virulence of B. pseudomallei in these models. The effect of the route of delivery on disease is also discussed for intravenous, intraperitoneal, subcutaneous, intranasal, aerosol, oral, and intratracheal infection methodologies, with a particular focus on how they relate to modeling clinical melioidosis. The importance of the translational validity of the animal models used in B. pseudomallei research is highlighted as these studies have become increasingly therapeutic in nature. PMID:21772830

  17. Animal models of psoriasis and pustular psoriasis.

    PubMed

    Mizutani, Hitoshi; Yamanaka, Keiichi; Konishi, Hiroshi; Murakami, Takaaki

    2003-04-01

    Investigation of psoriasis and pustular psoriasis is presently hampered by the lack of appropriate animal models. So far, more than ten models have been developed in mice by spontaneous gene mutations and by gene manipulation. However, none of them has satisfactorily reproduced the clinicopathological and immunopathological phenotypes of these diseases. Xenotransplantation techniques have been used for designing models of psoriasis vulgaris, in which CD4(+) T cells have been shown to play an important role. An ideal model for pustular psoriasis should have an immunological background and fulfill the diagnostic criteria of psoriasis.

  18. Nonmurine animal models of food allergy.

    PubMed

    Helm, Ricki M; Ermel, Richard W; Frick, Oscar L

    2003-02-01

    Food allergy can present as immediate hypersensitivity [manifestations mediated by immunoglobulin (Ig)E], delayed-type hypersensitivity (reactions associated with specific T lymphocytes), and inflammatory reactions caused by immune complexes. For reasons of ethics and efficacy, investigations in humans to determine sensitization and allergic responses of IgE production to innocuous food proteins are not feasible. Therefore, animal models are used a) to bypass the innate tendency to develop tolerance to food proteins and induce specific IgE antibody of sufficient avidity/affinity to cause sensitization and upon reexposure to induce an allergic response, b) to predict allergenicity of novel proteins using characteristics of known food allergens, and c) to treat food allergy by using immunotherapeutic strategies to alleviate life-threatening reactions. The predominant hypothesis for IgE-mediated food allergy is that there is an adverse reaction to exogenous food proteins or food protein fragments, which escape lumen hydrolysis, and in a polarized helper T cell subset 2 (Th2) environment, immunoglobulin class switching to allergen-specific IgE is generated in the immune system of the gastrointestinal-associated lymphoid tissues. Traditionally, the immunologic characterization and toxicologic studies of small laboratory animals have provided the basis for development of animal models of food allergy; however, the natural allergic response in large animals, which closely mimic allergic diseases in humans, can also be useful as models for investigations involving food allergy.

  19. Potential animal models of seasonal affective disorder.

    PubMed

    Workman, Joanna L; Nelson, Randy J

    2011-01-01

    Seasonal affective disorder (SAD) is characterized by depressive episodes during winter that are alleviated during summer and by morning bright light treatment. Currently, there is no animal model of SAD. However, it may be possible to use rodents that respond to day length (photoperiod) to understand how photoperiod can shape the brain and behavior in humans. As nights lengthen in the autumn, the duration of the nightly elevation of melatonin increase; seasonally breeding animals use this information to orchestrate seasonal changes in physiology and behavior. SAD may originate from the extended duration of nightly melatonin secretion during fall and winter. These similarities between humans and rodents in melatonin secretion allows for comparisons with rodents that express more depressive-like responses when exposed to short day lengths. For instance, Siberian hamsters, fat sand rats, Nile grass rats, and Wistar rats display a depressive-like phenotype when exposed to short days. Current research in depression and animal models of depression suggests that hippocampal plasticity may underlie the symptoms of depression and depressive-like behaviors, respectively. It is also possible that day length induces structural changes in human brains. Many seasonally breeding rodents undergo changes in whole brain and hippocampal volume in short days. Based on strict validity criteria, there is no animal model of SAD, but rodents that respond to reduced day lengths may be useful to approximate the neurobiological phenomena that occur in people with SAD, leading to greater understanding of the etiology of the disorder as well as novel therapeutic interventions.

  20. Large genetic animal models of Huntington's Disease.

    PubMed

    Morton, A Jennifer; Howland, David S

    2013-01-01

    The dominant nature of the Huntington's disease gene mutation has allowed genetic models to be developed in multiple species, with the mutation causing an abnormal neurological phenotype in all animals in which it is expressed. Many different rodent models have been generated. The most widely used of these, the transgenic R6/2 mouse, carries the mutation in a fragment of the human huntingtin gene and has a rapidly progressive and fatal neurological phenotype with many relevant pathological changes. Nevertheless, their rapid decline has been frequently questioned in the context of a disease that takes years to manifest in humans, and strenuous efforts have been made to make rodent models that are genetically more 'relevant' to the human condition, including full length huntingtin gene transgenic and knock-in mice. While there is no doubt that we have learned, and continue to learn much from rodent models, their usefulness is limited by two species constraints. First, the brains of rodents differ significantly from humans in both their small size and their neuroanatomical organization. Second, rodents have much shorter lifespans than humans. Here, we review new approaches taken to these challenges in the development of models of Huntington's disease in large brained, long-lived animals. We discuss the need for such models, and how they might be used to fill specific niches in preclinical Huntington's disease research, particularly in testing gene-based therapeutics. We discuss the advantages and disadvantages of animals in which the prodromal period of disease extends over a long time span. We suggest that there is considerable 'value added' for large animal models in preclinical Huntington's disease research.

  1. Fantastic animals as an experimental model to teach animal adaptation

    PubMed Central

    Guidetti, Roberto; Baraldi, Laura; Calzolai, Caterina; Pini, Lorenza; Veronesi, Paola; Pederzoli, Aurora

    2007-01-01

    Background Science curricula and teachers should emphasize evolution in a manner commensurate with its importance as a unifying concept in science. The concept of adaptation represents a first step to understand the results of natural selection. We settled an experimental project of alternative didactic to improve knowledge of organism adaptation. Students were involved and stimulated in learning processes by creative activities. To set adaptation in a historic frame, fossil records as evidence of past life and evolution were considered. Results The experimental project is schematized in nine phases: review of previous knowledge; lesson on fossils; lesson on fantastic animals; planning an imaginary world; creation of an imaginary animal; revision of the imaginary animals; adaptations of real animals; adaptations of fossil animals; and public exposition. A rubric to evaluate the student's performances is reported. The project involved professors and students of the University of Modena and Reggio Emilia and of the "G. Marconi" Secondary School of First Degree (Modena, Italy). Conclusion The educational objectives of the project are in line with the National Indications of the Italian Ministry of Public Instruction: knowledge of the characteristics of living beings, the meanings of the term "adaptation", the meaning of fossils, the definition of ecosystem, and the particularity of the different biomes. At the end of the project, students will be able to grasp particular adaptations of real organisms and to deduce information about the environment in which the organism evolved. This project allows students to review previous knowledge and to form their personalities. PMID:17767729

  2. Animal models of enteroaggregative Escherichia coli infection

    PubMed Central

    Philipson, Casandra W.; Bassaganya-Riera, Josep; Hontecillas, Raquel

    2013-01-01

    Enteroaggregative Escherichia coli (EAEC) has been acknowledged as an emerging cause of gastroenteritis worldwide for over two decades. Epidemiologists are revealing the role of EAEC in diarrheal outbreaks as a more common occurrence than ever suggested before. EAEC induced diarrhea is most commonly associated with travelers, children and immunocompromised individuals however its afflictions are not limited to any particular demographic. Many attributes have been discovered and characterized surrounding the capability of EAEC to provoke a potent pro-inflammatory immune response, however cellular and molecular mechanisms underlying initiation, progression and outcomes are largely unknown. This limited understanding can be attributed to heterogeneity in strains and the lack of adequate animal models. This review aims to summarize current knowledge about EAEC etiology, pathogenesis and clinical manifestation. Additionally, current animal models and their limitations will be discussed along with the value of applying systems-wide approaches such as computational modeling to study host-EAEC interactions. PMID:23680797

  3. Pathogenesis of Epilepsy: Challenges in Animal Models

    PubMed Central

    Hui Yin, Yow; Ahmad, Nurulumi; Makmor-Bakry, Mohd

    2013-01-01

    Epilepsy is one of the most common chronic disorders affecting individuals of all ages. A greater understanding of pathogenesis in epilepsy will likely provide the basis fundamental for development of new antiepileptic therapies that aim to prevent the epileptogenesis process or modify the progression of epilepsy in addition to treatment of epilepsy symptomatically. Therefore, several investigations have embarked on advancing knowledge of the mechanism underlying epileptogenesis, understanding in mechanism of pharmacoresistance and discovering antiepileptogenic or disease-modifying therapy. Animal models play a crucial and significant role in providing additional insight into mechanism of epileptogenesis. With the help of these models, epileptogenesis process has been demonstrated to be involved in various molecular and biological pathways or processes. Hence, this article will discuss the known and postulated mechanisms of epileptogenesis and challenges in using the animal models. PMID:24494063

  4. Animal models of coronary heart disease.

    PubMed

    Liao, Jiawei; Huang, Wei; Liu, George

    2015-08-20

    Cardiovascular disease, predominantly coronary heart disease and stroke, leads to high morbidity and mortality not only in developed worlds but also in underdeveloped regions. The dominant pathologic foundation for cardiovascular disease is atherosclerosis and as to coronary heart disease, coronary atherosclerosis and resulting lumen stenosis, even total occlusions. In translational research, several animals, such as mice, rabbits and pigs, have been used as disease models of human atherosclerosis and related cardiovascular disorders. However, coronary lesions are either naturally rare or hard to be fast induced in these models, hence, coronary heart disease induction mostly relies on surgical or pharmaceutical interventions with no or limited primary coronary lesions, thus unrepresentative of human coronary heart disease progression and pathology. In this review, we will describe the progress of animal models of coronary heart disease following either spontaneous or diet-accelerated coronary lesions.

  5. Animal models of insulin resistance: A review.

    PubMed

    Sah, Sangeeta Pilkhwal; Singh, Barinder; Choudhary, Supriti; Kumar, Anil

    2016-12-01

    Insulin resistance can be seen as a molecular and genetic mystery, with a role in the pathophysiology of type 2 diabetes mellitus. It is a basis for a number of chronic diseases like hypertension, dyslipidemia, glucose intolerance, coronary heart disease, cerebral vascular disease along with T2DM, thus the key is to cure and prevent insulin resistance. Critical perspicacity into the etiology of insulin resistance have been gained by the use of animal models where insulin action has been modulated by various transgenic and non-transgenic models which is not possible in human studies. The following review comprises the pathophysiology involved in insulin resistance, various factors causing insulin resistance, their screening and various genetic and non-genetic animal models highlighting the pathological and metabolic characteristics of each.

  6. Animal models of acute renal failure.

    PubMed

    Singh, Amrit Pal; Junemann, Anselm; Muthuraman, Arunachalam; Jaggi, Amteshwar Singh; Singh, Nirmal; Grover, Kuldeep; Dhawan, Ravi

    2012-01-01

    The animal models are pivotal for understanding the characteristics of acute renal failure (ARF) and development of effective therapy for its optimal management. Since the etiology for induction of renal failure is multifold, therefore, a large number of animal models have been developed to mimic the clinical conditions of renal failure. Glycerol-induced renal failure closely mimics the rhabdomyolysis; ischemia-reperfusion-induced ARF simulate the hemodynamic changes-induced changes in renal functioning; drug-induced such as gentamicin, cisplatin, NSAID, ifosfamide-induced ARF mimics the renal failure due to clinical administration of respective drugs; uranium, potassium dichromate-induced ARF mimics the occupational hazard; S-(1,2-dichlorovinyl)-L-cysteine-induced ARF simulate contaminated water-induced renal dysfunction; sepsis-induced ARF mimics the infection-induced renal failure and radiocontrast-induced ARF mimics renal failure in patients during use of radiocontrast media at the time of cardiac catheterization. Since each animal model has been created with specific methodology, therefore, it is essential to describe the model in detail and consequently interpret the results in the context of a specific model.

  7. Animal Models of Depression: Molecular Perspectives

    PubMed Central

    Krishnan, Vaishnav; Nestler, Eric J.

    2012-01-01

    Much of the current understanding about the pathogenesis of altered mood, impaired concentration and neurovegetative symptoms in major depression has come from animal models. However, because of the unique and complex features of human depression, the generation of valid and insightful depression models has been less straightforward than modeling other disabling diseases like cancer or autoimmune conditions. Today’s popular depression models creatively merge ethologically valid behavioral assays with the latest technological advances in molecular biology and automated video-tracking. This chapter reviews depression assays involving acute stress (e.g., forced swim test), models consisting of prolonged physical or social stress (e.g., social defeat), models of secondary depression, genetic models, and experiments designed to elucidate the mechanisms of antidepressant action. These paradigms are critically evaluated in relation to their ease, validity and replicability, the molecular insights that they have provided, and their capacity to offer the next generation of therapeutics for depression. PMID:21225412

  8. Animal models of viral hemorrhagic fever.

    PubMed

    Smith, Darci R; Holbrook, Michael R; Gowen, Brian B

    2014-12-01

    The term "viral hemorrhagic fever" (VHF) designates a syndrome of acute febrile illness, increased vascular permeability and coagulation defects which often progresses to bleeding and shock and may be fatal in a significant percentage of cases. The causative agents are some 20 different RNA viruses in the families Arenaviridae, Bunyaviridae, Filoviridae and Flaviviridae, which are maintained in a variety of animal species and are transferred to humans through direct or indirect contact or by an arthropod vector. Except for dengue, which is transmitted among humans by mosquitoes, the geographic distribution of each type of VHF is determined by the range of its animal reservoir. Treatments are available for Argentine HF and Lassa fever, but no approved countermeasures have been developed against other types of VHF. The development of effective interventions is hindered by the sporadic nature of most infections and their occurrence in geographic regions with limited medical resources. Laboratory animal models that faithfully reproduce human disease are therefore essential for the evaluation of potential vaccines and therapeutics. The goal of this review is to highlight the current status of animal models that can be used to study the pathogenesis of VHF and test new countermeasures.

  9. Towards an animal model of food addiction.

    PubMed

    de Jong, Johannes W; Vanderschuren, Louk J M J; Adan, Roger A H

    2012-01-01

    The dramatically increasing prevalence of obesity, associated with potentially life-threatening health problems, including cardiovascular diseases and type II diabetes, poses an enormous public health problem. It has been proposed that the obesity epidemic can be explained by the concept of 'food addiction'. In this review we focus on possible similarities between binge eating disorder (BED), which is highly prevalent in the obese population, and drug addiction. Indeed, both behavioral and neural similarities between addiction and BED have been demonstrated. Behavioral similarities are reflected in the overlap in DSM-IV criteria for drug addiction with the (suggested) criteria for BED and by food addiction-like behavior in animals after prolonged intermittent access to palatable food. Neural similarities include the overlap in brain regions involved in food and drug craving. Decreased dopamine D2 receptor availability in the striatum has been found in animal models of binge eating, after cocaine self-administration in animals as well as in drug addiction and obesity in humans. To further explore the neurobiological basis of food addiction, it is essential to have an animal model to test the addictive potential of palatable food. A recently developed animal model for drug addiction involves three behavioral characteristics that are based on the DSM-IV criteria: i) extremely high motivation to obtain the drug, ii) difficulty in limiting drug seeking even in periods of explicit non-availability, iii) continuation of drug-seeking despite negative consequences. Indeed, it has been shown that a subgroup of rats, after prolonged cocaine self-administration, scores positive on these three criteria. If food possesses addictive properties, then food-addicted rats should also meet these criteria while searching for and consuming food. In this review we discuss evidence from literature regarding food addiction-like behavior. We also suggest future experiments that could

  10. Matrix Population Model for Estimating Effects from Time-Varying Aquatic Exposures: Technical Documentation

    EPA Science Inventory

    The Office of Pesticide Programs models daily aquatic pesticide exposure values for 30 years in its risk assessments. However, only a fraction of that information is typically used in these assessments. The population model employed herein is a deterministic, density-dependent pe...

  11. Standardised animal models of host microbial mutualism

    PubMed Central

    Macpherson, A J; McCoy, K D

    2015-01-01

    An appreciation of the importance of interactions between microbes and multicellular organisms is currently driving research in biology and biomedicine. Many human diseases involve interactions between the host and the microbiota, so investigating the mechanisms involved is important for human health. Although microbial ecology measurements capture considerable diversity of the communities between individuals, this diversity is highly problematic for reproducible experimental animal models that seek to establish the mechanistic basis for interactions within the overall host-microbial superorganism. Conflicting experimental results may be explained away through unknown differences in the microbiota composition between vivaria or between the microenvironment of different isolated cages. In this position paper, we propose standardised criteria for stabilised and defined experimental animal microbiotas to generate reproducible models of human disease that are suitable for systematic experimentation and are reproducible across different institutions. PMID:25492472

  12. Models of GH deficiency in animal studies.

    PubMed

    Gahete, Manuel D; Luque, Raul M; Castaño, Justo P

    2016-12-01

    Growth hormone (GH) is a peptide hormone released from pituitary somatotrope cells that promotes growth, cell division and regeneration by acting directly through the GH receptor (GHR), or indirectly via hepatic insulin-like growth factor 1 (IGF1) production. GH deficiency (GHD) can cause severe consequences, such as growth failure, changes in body composition and altered insulin sensitivity, depending of the origin, time of onset (childhood or adulthood) or duration of GHD. The highly variable clinical phenotypes of GHD can now be better understood through research on transgenic and naturally-occurring animal models, which are widely employed to investigate the origin, phenotype, and consequences of GHD, and particularly the underlying mechanisms of metabolic disorders associated to GHD. Here, we reviewed the most salient aspects of GH biology, from somatotrope development to GH actions, linked to certain GHD types, as well as the animal models employed to reproduce these GHD-associated alterations.

  13. Animal models of age related macular degeneration.

    PubMed

    Pennesi, Mark E; Neuringer, Martha; Courtney, Robert J

    2012-08-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations.

  14. Animal models of age related macular degeneration

    PubMed Central

    Pennesi, Mark E.; Neuringer, Martha; Courtney, Robert J.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations. PMID:22705444

  15. Integration of geographic information systems and logistic multiple regression for aquatic macrophyte modeling

    SciTech Connect

    Narumalani, S.; Jensen, J.R.; Althausen, J.D.; Burkhalter, S.; Mackey, H.E. Jr.

    1994-06-01

    Since aquatic macrophytes have an important influence on the physical and chemical processes of an ecosystem while simultaneously affecting human activity, it is imperative that they be inventoried and managed wisely. However, mapping wetlands can be a major challenge because they are found in diverse geographic areas ranging from small tributary streams, to shrub or scrub and marsh communities, to open water lacustrian environments. In addition, the type and spatial distribution of wetlands can change dramatically from season to season, especially when nonpersistent species are present. This research, focuses on developing a model for predicting the future growth and distribution of aquatic macrophytes. This model will use a geographic information system (GIS) to analyze some of the biophysical variables that affect aquatic macrophyte growth and distribution. The data will provide scientists information on the future spatial growth and distribution of aquatic macrophytes. This study focuses on the Savannah River Site Par Pond (1,000 ha) and L Lake (400 ha) these are two cooling ponds that have received thermal effluent from nuclear reactor operations. Par Pond was constructed in 1958, and natural invasion of wetland has occurred over its 35-year history, with much of the shoreline having developed extensive beds of persistent and non-persistent aquatic macrophytes.

  16. Animal models of ANCA associated vasculitis

    PubMed Central

    Salama, Alan D.; Little, Mark A

    2012-01-01

    This review seeks to provide an update on the experimental models that have been developed recapitulating clinical ANCA associated vasculitis. The recent insights regarding the application of the models in the study of pathogenesis, and the therapeutic implications of this, are covered in the article by van Timmeren and Heeringa in this issue. Recent findings Rodent models of both MPO- and PR3 ANCA associated vasculitis have been developed, which have provided important insights into the pathogenesis of ANCA associated pulmonary and renal disease. The vast majority of in vivo work in this field has concerned MPO-ANCA associated disease, although the last year has seen some advances in modelling of anti-PR3 disease. As with all experimental animal models they are flawed in one way or another, by virtue of the means by which they are induced, but they have already provided novel directions for future intervention in these complex diseases. To date there are no good models that replicate the granulomatous lesions found in granulomatosis with polyangiitis (GPA, formerly Wegener’s), or the development of vasculitis lesions in organs other than the lungs or kidneys. However, use of a combination of the available models should allow greater understanding of the critical requirements for disease and how these may be potentially monitored and modified in patients. Summary ANCA associated vasculitis can be induced in various forms in susceptible rodents. Further refinements are required for the full spectrum of disease phenotype to be replicated in animals, but critical new targets have been proposed based on use of molecular blocking agents and transgenic animals to elucidate disease pathways. PMID:22089094

  17. Zebrafish: an animal model for research in veterinary medicine.

    PubMed

    Nowik, N; Podlasz, P; Jakimiuk, A; Kasica, N; Sienkiewicz, W; Kaleczyc, J

    2015-01-01

    The zebrafish (Danio rerio) has become known as an excellent model organism for studies of vertebrate biology, vertebrate genetics, embryonal development, diseases and drug screening. Nevertheless, there is still lack of detailed reports about usage of the zebrafish as a model in veterinary medicine. Comparing to other vertebrates, they can lay hundreds of eggs at weekly intervals, externally fertilized zebrafish embryos are accessible to observation and manipulation at all stages of their development, which makes possible to simplify the research techniques such as fate mapping, fluorescent tracer time-lapse lineage analysis and single cell transplantation. Although zebrafish are only 2.5 cm long, they are easy to maintain. Intraperitoneal and intracerebroventricular injections, blood sampling and measurement of food intake are possible to be carry out in adult zebrafish. Danio rerio is a useful animal model for neurobiology, developmental biology, drug research, virology, microbiology and genetics. A lot of diseases, for which the zebrafish is a perfect model organism, affect aquatic animals. For a part of them, like those caused by Mycobacterium marinum or Pseudoloma neutrophila, Danio rerio is a natural host, but the zebrafish is also susceptible to the most of fish diseases including Itch, Spring viraemia of carp and Infectious spleen and kidney necrosis. The zebrafish is commonly used in research of bacterial virulence. The zebrafish embryo allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host. Plenty of common pathogens can be examined using zebrafish model: Streptococcus iniae, Vibrio anguillarum or Listeria monocytogenes. The steps are taken to use the zebrafish also in fungal research, especially that dealing with Candida albicans and Cryptococcus neoformans. Although, the zebrafish is used commonly as an animal model to study diseases caused by external agents, it is also useful in studies of metabolic

  18. Colon Preneoplastic Lesions in Animal Models

    PubMed Central

    Suzui, Masumi; Morioka, Takamitsu; Yoshimi, Naoki

    2013-01-01

    The animal model is a powerful and fundamental tool in the field of biochemical research including toxicology, carcinogenesis, cancer therapeutics and prevention. In the carcinogenesis animal model system, numerous examples of preneoplastic lesions have been isolated and investigated from various perspectives. This may indicate that several options of endpoints to evaluate carcinogenesis effect or therapeutic outcome are presently available; however, classification of preneoplastic lesions has become complicated. For instance, these lesions include aberrant crypt foci (ACF), dysplastic ACF, flat ACF, β-catenin accumulated crypts, and mucin-depleted foci. These lesions have been induced by commonly used chemical carcinogens such as azoxymethane (AOM), 1,2-dimethylhydrazine (DMH), methylnitrosourea (MUN), or 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Investigators can choose any procedures or methods to examine colonic preneoplastic lesions according to their interests and the objectives of their experiments. Based on topographical, histopathological, and biological features of colon cancer preneoplastic lesions in the animal model, we summarize and discuss the character and implications of these lesions. PMID:24526805

  19. Animal models of compulsive eating behavior.

    PubMed

    Di Segni, Matteo; Patrono, Enrico; Patella, Loris; Puglisi-Allegra, Stefano; Ventura, Rossella

    2014-10-22

    Eating disorders are multifactorial conditions that can involve a combination of genetic, metabolic, environmental, and behavioral factors. Studies in humans and laboratory animals show that eating can also be regulated by factors unrelated to metabolic control. Several studies suggest a link between stress, access to highly palatable food, and eating disorders. Eating "comfort foods" in response to a negative emotional state, for example, suggests that some individuals overeat to self-medicate. Clinical data suggest that some individuals may develop addiction-like behaviors from consuming palatable foods. Based on this observation, "food addiction" has emerged as an area of intense scientific research. A growing body of evidence suggests that some aspects of food addiction, such as compulsive eating behavior, can be modeled in animals. Moreover, several areas of the brain, including various neurotransmitter systems, are involved in the reinforcement effects of both food and drugs, suggesting that natural and pharmacological stimuli activate similar neural systems. In addition, several recent studies have identified a putative connection between neural circuits activated in the seeking and intake of both palatable food and drugs. The development of well-characterized animal models will increase our understanding of the etiological factors of food addiction and will help identify the neural substrates involved in eating disorders such as compulsive overeating. Such models will facilitate the development and validation of targeted pharmacological therapies.

  20. Animal Models Utilized in HTLV-1 Research.

    PubMed

    Panfil, Amanda R; Al-Saleem, Jacob J; Green, Patrick L

    2013-01-01

    Since the isolation and discovery of human T-cell leukemia virus type 1 (HTLV-1) over 30 years ago, researchers have utilized animal models to study HTLV-1 transmission, viral persistence, virus-elicited immune responses, and HTLV-1-associated disease development (ATL, HAM/TSP). Non-human primates, rabbits, rats, and mice have all been used to help understand HTLV-1 biology and disease progression. Non-human primates offer a model system that is phylogenetically similar to humans for examining viral persistence. Viral transmission, persistence, and immune responses have been widely studied using New Zealand White rabbits. The advent of molecular clones of HTLV-1 has offered the opportunity to assess the importance of various viral genes in rabbits, non-human primates, and mice. Additionally, over-expression of viral genes using transgenic mice has helped uncover the importance of Tax and Hbz in the induction of lymphoma and other lymphocyte-mediated diseases. HTLV-1 inoculation of certain strains of rats results in histopathological features and clinical symptoms similar to that of humans with HAM/TSP. Transplantation of certain types of ATL cell lines in immunocompromised mice results in lymphoma. Recently, "humanized" mice have been used to model ATL development for the first time. Not all HTLV-1 animal models develop disease and those that do vary in consistency depending on the type of monkey, strain of rat, or even type of ATL cell line used. However, the progress made using animal models cannot be understated as it has led to insights into the mechanisms regulating viral replication, viral persistence, disease development, and, most importantly, model systems to test disease treatments.

  1. Animal Models in Pressure Ulcer Research

    PubMed Central

    Salcido, Richard; Popescu, Adrian; Ahn, Chulhyun

    2007-01-01

    Background/Objective: Research targeting the pathophysiology, prevention, and treatment of pressure ulcers (PrUs) continue to be a significant priority for clinical and basic science research. Spinal cord injury patients particularly benefit from PrU research, because the prevalence of chronic wounds in this category is increasing despite standardized medical care. Because of practical, ethical, and safety considerations, PrUs in the human environment are limited to studies involving patients with pre-existing ulcers. Therefore, we are limited in our basic knowledge pertaining to the development, progression, and healing environment in this devastating disease. Methods: This review provides a synopsis of literature and a discussion of techniques used to induce PrUs in animal models. The question of what animal model best mimics the human PrU environment has been a subject of debate by investigators, peer review panels, and editors. The similarities in wound development and healing in mammalian tissue make murine models a relevant model for understanding the causal factors as well as the wound healing elements. Although we are beginning to understand some of the mechanisms of PrU development, a key dilemma of what makes an apparently healthy tissue develop a PrU waits to be solved. Results and Conclusions: No single method of induction and exploring PrUs in animals can address all the aspects of the pathology of chronic wounds. Each model has its particular strengths and weaknesses. Certain types of models can selectively identify specific aspects of wound development, quantify the extent of lesions, and assess outcomes from interventions. The appropriate interpretation of these methods is significant for proper study design, an understanding of the results, and extrapolation to clinical relevance. PMID:17591222

  2. Animal models of addiction: fat and sugar.

    PubMed

    Morgan, Drake; Sizemore, Glen M

    2011-01-01

    The concept of "food addiction" is gaining acceptance among the scientific community, and much is known about the influence of various components of food (e.g. high-fat, sugar, carbohydrate, salt) on behavior and physiology. Most of the studies to date have studied these consequences following relatively long-term diet manipulations and/or relatively free access to the food of interest. It is suggested that these types of studies are primarily tapping into the energy regulation and homeostatic processes that govern food intake and consumption. More recently, the overlap between the neurobiology of "reward-related" or hedonic effects of food ingestion and other reinforcers such as drugs of abuse has been highlighted, contributing to the notion that "food addiction" exists and that various components of food may be the substance of abuse. Based on preclinical animal models of drug addiction, a new direction for this field is using self-administration procedures and identifying an addiction-like behavioral phenotype in animals following various environmental, genetic, pharmacological, and neurobiological manipulations. Here we provide examples from this research area, with a focus on fat and sugar self-administration, and how the sophisticated animal models of drug addiction can be used to study the determinants and consequences of food addiction.

  3. Corexit 9500 inactivates two enveloped viruses of aquatic animals but enhances the infectivity of a nonenveloped fish virus.

    PubMed

    Pham, P H; Huang, Y J; Chen, C; Bols, N C

    2014-02-01

    The effects of Corexit 9500, a dispersant used to clean up oil spills, on invertebrates, lower vertebrates, birds, and human health have been examined, but there is a significant lack of study of the effect of this dispersant on aquatic viruses. In this study, the effects of Corexit 9500 on four aquatic viruses of differing structural composition were examined. Corexit 9500 reduced the titer of the enveloped viral hemorrhagic septicemia virus (VHSV) at all concentrations (10% to 0.001%) examined. The titer of frog virus 3 (FV3), a virus with both enveloped and nonenveloped virions, was reduced only at the high Corexit 9500 concentrations (10% to 0.1%). Corexit 9500 was unable to reduce the titer of nonenveloped infectious pancreatic necrosis virus (IPNV) but enhanced the titer of chum salmon reovirus (CSV) by 2 to 4 logs. With the ability to inactivate enveloped viruses and possibly enhance some nonenveloped viruses, Corexit 9500 has the potential to alter the aquatic virosphere.

  4. HABITAT EVALUATIONS OF AQUATIC CREATURES USING HSI MODEL CONSIDERING THE RIVER WATER TEMPERATURE

    NASA Astrophysics Data System (ADS)

    Nukazawa, Kei; Shiraiwa, Jun-Ichi; Kazama, So

    Habitats of aquatic creatures (fishes Oncorhynchus masou masou, Plecoglossus altivelis altivel and Cyprinus carpio, fireflies Luciola cruciata and Luciola lateralis, and frogs Anura sp) in the Natori River basin located at the middle of Miyagi prefecture were evaluated dynamically using the water temperature as one of the environmental indices. HSI (Habitat Suitability Index) and WUA (Weighted Useable Area) of aquatic creatures were quantitatively calculated from numerical map information and hydrological simulation with a heat budget model. As results, general HSI of fireflies increased but of frogs decreased by adding the factor water temperature. Migration of Plecoglossus altivelis altivel could be represented by the variation of WUA.

  5. A Bayesian network model for predicting aquatic toxicity mode of action using two dimensional theoretical molecular descriptors

    EPA Science Inventory

    The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity, but development of predictive MoA classification models in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity MoA using a recently pu...

  6. Predicting aquatic macrophyte modeling of a new freshwater lake using remote sensing

    SciTech Connect

    Jensen, J.R.; Narumalani, S.; Weatherbee, O.; Morris, K.S. Jr.; Mackey, H.E. Jr.

    1992-07-01

    Par Pond and L Lake are reservoirs on the Savannah River Site in South Carolina. Beds of aquatic macrophytes (primarily cattail and waterlilies) exist in Par Pond and are now beginning to develop in L Lake. Biophysical knowledge about Par Pond was used to develop `environmental constraint criteria` to predict the future spatial distribution of aquatic macrophytes in L Lake. The L Lake biophysical data were placed in a 5 {times} 5 m raster geographic information system (GIS) and analyzed using Boolean logic. Areas in L Lake which were {le}4 m in depth, {le}10% slope, had a fetch of {le}500 m, and on suitable soil were identified. The final GIS model predicted the spatial distribution of 37.30 ha of aquatic macrophytes which met the environmental constraint criteria (cattails = 12.29 ha and waterlilies = 25.01 ha).

  7. Predicting aquatic macrophyte modeling of a new freshwater lake using remote sensing

    SciTech Connect

    Jensen, J.R.; Narumalani, S.; Weatherbee, O.; Morris, K.S. Jr. . Dept. of Geography); Mackey, H.E. Jr. )

    1992-01-01

    Par Pond and L Lake are reservoirs on the Savannah River Site in South Carolina. Beds of aquatic macrophytes (primarily cattail and waterlilies) exist in Par Pond and are now beginning to develop in L Lake. Biophysical knowledge about Par Pond was used to develop environmental constraint criteria' to predict the future spatial distribution of aquatic macrophytes in L Lake. The L Lake biophysical data were placed in a 5 {times} 5 m raster geographic information system (GIS) and analyzed using Boolean logic. Areas in L Lake which were {le}4 m in depth, {le}10% slope, had a fetch of {le}500 m, and on suitable soil were identified. The final GIS model predicted the spatial distribution of 37.30 ha of aquatic macrophytes which met the environmental constraint criteria (cattails = 12.29 ha and waterlilies = 25.01 ha).

  8. Animal modelling for inherited central vision loss.

    PubMed

    Kostic, Corinne; Arsenijevic, Yvan

    2016-01-01

    Disease-causing variants of a large number of genes trigger inherited retinal degeneration leading to photoreceptor loss. Because cones are essential for daylight and central vision such as reading, mobility, and face recognition, this review focuses on a variety of animal models for cone diseases. The pertinence of using these models to reveal genotype/phenotype correlations and to evaluate new therapeutic strategies is discussed. Interestingly, several large animal models recapitulate human diseases and can serve as a strong base from which to study the biology of disease and to assess the scale-up of new therapies. Examples of innovative approaches will be presented such as lentiviral-based transgenesis in pigs and adeno-associated virus (AAV)-gene transfer into the monkey eye to investigate the neural circuitry plasticity of the visual system. The models reported herein permit the exploration of common mechanisms that exist between different species and the identification and highlighting of pathways that may be specific to primates, including humans.

  9. Animal models for HIV/AIDS research

    PubMed Central

    Hatziioannou, Theodora; Evans, David T.

    2015-01-01

    The AIDS pandemic continues to present us with unique scientific and public health challenges. Although the development of effective antiretroviral therapy has been a major triumph, the emergence of drug resistance requires active management of treatment regimens and the continued development of new antiretroviral drugs. Moreover, despite nearly 30 years of intensive investigation, we still lack the basic scientific knowledge necessary to produce a safe and effective vaccine against HIV-1. Animal models offer obvious advantages in the study of HIV/AIDS, allowing for a more invasive investigation of the disease and for preclinical testing of drugs and vaccines. Advances in humanized mouse models, non-human primate immunogenetics and recombinant challenge viruses have greatly increased the number and sophistication of available mouse and simian models. Understanding the advantages and limitations of each of these models is essential for the design of animal studies to guide the development of vaccines and antiretroviral therapies for the prevention and treatment of HIV-1 infection. PMID:23154262

  10. Comparison of Global and Mode of Action-Based Models for Aquatic Toxicity

    EPA Science Inventory

    The ability to estimate aquatic toxicity for a wide variety of chemicals is a critical need for ecological risk assessment and chemical regulation. The consensus in the literature is that mode of action (MOA) based QSAR (Quantitative Structure Activity Relationship) models yield ...

  11. Distribution of submerged aquatic vegetation in the St. Louis River estuary: Maps and models

    EPA Science Inventory

    In late summer of 2011 and 2012 we used echo-sounding gear to map the distribution of submerged aquatic vegetation (SAV) in the St. Louis River Estuary (SLRE). From these data we produced maps of SAV distribution and we created logistic models to predict the probability of occurr...

  12. Trace element trophic transfer in aquatic organisms: A critique of the kinetic model approach

    USGS Publications Warehouse

    Reinfelder, J.R.; Fisher, N.S.; Luoma, S. N.; Nichols, J.W.; Wang, W.-X.

    1998-01-01

    The bioaccumulation of trace elements in aquatic organisms can be described with a kinetic model that includes linear expressions for uptake and elimination from dissolved and dietary sources. Within this model, trace element trophic transfer is described by four parameters: the weight-specific ingestion rate (IR); the assimilation efficiency (AE); the physiological loss rate constant (ke); and the weight-specific growth rate (g). These four parameters define the trace element trophic transfer potential (TTP=IR·AE/[ke+g]) which is equal to the ratio of the steady-state trace element concentration in a consumer due to trophic accumulation to that in its prey. Recent work devoted to the quantification of AE and ke for a variety of trace elements in aquatic invertebrates has provided the data needed for comparative studies of trace element trophic transfer among different species and trophic levels and, in at least one group of aquatic consumers (marine bivalves), sensitivity analyses and field tests of kinetic bioaccumulation models. Analysis of the trophic transfer potentials of trace elements for which data are available in zooplankton, bivalves, and fish, suggests that slight variations in assimilation efficiency or elimination rate constant may determine whether or not some trace elements (Cd, Se, and Zn) are biomagnified. A linear, single-compartment model may not be appropriate for fish which, unlike many aquatic invertebrates, have a large mass of tissue in which the concentrations of most trace elements are subject to feedback regulation.

  13. Experimental Oral Candidiasis in Animal Models

    PubMed Central

    Samaranayake, Yuthika H.; Samaranayake, Lakshman P.

    2001-01-01

    Oral candidiasis is as much the final outcome of the vulnerability of the host as of the virulence of the invading organism. We review here the extensive literature on animal experiments mainly appertaining to the host predisposing factors that initiate and perpetuate these infections. The monkey, rat, and mouse are the choice models for investigating oral candidiasis, but comparisons between the same or different models appear difficult, because of variables such as the study design, the number of animals used, their diet, the differences in Candida strains, and the duration of the studies. These variables notwithstanding, the following could be concluded. (i) The primate model is ideal for investigating Candida-associated denture stomatitis since both erythematous and pseudomembranous lesions have been produced in monkeys with prosthetic plates; they are, however, expensive and difficult to obtain and maintain. (ii) The rat model (both Sprague-Dawley and Wistar) is well proven for observing chronic oral candidal colonization and infection, due to the ease of breeding and handling and their ready availability. (iii) Mice are similar, but in addition there are well characterized variants simulating immunologic and genetic abnormalities (e.g., athymic, euthymic, murine-acquired immune deficiency syndrome, and severe combined immunodeficient models) and hence are used for short-term studies relating the host immune response and oral candidiasis. Nonetheless, an ideal, relatively inexpensive model representative of the human oral environment in ecological and microbiological terms is yet to be described. Until such a model is developed, researchers should pay attention to standardization of the experimental protocols described here to obtain broadly comparable and meaningful data. PMID:11292645

  14. Animal models of respiratory syncytial virus infection.

    PubMed

    Taylor, Geraldine

    2017-01-11

    Human respiratory syncytial virus (hRSV) is a major cause of respiratory disease and hospitalisation of infants, worldwide, and is also responsible for significant morbidity in adults and excess deaths in the elderly. There is no licensed hRSV vaccine or effective therapeutic agent. However, there are a growing number of hRSV vaccine candidates that have been developed targeting different populations at risk of hRSV infection. Animal models of hRSV play an important role in the preclinical testing of hRSV vaccine candidates and although many have shown efficacy in preclinical studies, few have progressed to clinical trials or they have had only limited success. This is, at least in part, due to the lack of animal models that fully recapitulate the pathogenesis of hRSV infection in humans. This review summarises the strengths and limitations of animal models of hRSV, which include those in which hRSV is used to infect non-human mammalian hosts, and those in which non-human pneumoviruses, such as bovine (b)RSV and pneumonia virus of mice (PVM) are studied in their natural host. Apart from chimpanzees, other non-human primates (NHP) are only semi-permissive for hRSV replication and experimental infection with large doses of virus result in little or no clinical signs of disease, and generally only mild pulmonary pathology. Other animal models such as cotton rats, mice, ferrets, guinea pigs, hamsters, chinchillas, and neonatal lambs are also only semi-permissive for hRSV. Nevertheless, mice and cotton rats have been of value in the development of monoclonal antibody prophylaxis for infants at high risk of severe hRSV infection and have provided insights into mechanisms of immunity to and pathogenesis of hRSV. However, the extent to which they predict hRSV vaccine efficacy and safety is unclear and several hRSV vaccine candidates that are completely protective in rodent models are poorly effective in chimpanzees and other NHP, such as African Green monkeys. Furthermore

  15. Domestic animals as models for biomedical research

    PubMed Central

    Andersson, Leif

    2016-01-01

    Domestic animals are unique models for biomedical research due to their long history (thousands of years) of strong phenotypic selection. This process has enriched for novel mutations that have contributed to phenotype evolution in domestic animals. The characterization of such mutations provides insights in gene function and biological mechanisms. This review summarizes genetic dissection of about 50 genetic variants affecting pigmentation, behaviour, metabolic regulation, and the pattern of locomotion. The variants are controlled by mutations in about 30 different genes, and for 10 of these our group was the first to report an association between the gene and a phenotype. Almost half of the reported mutations occur in non-coding sequences, suggesting that this is the most common type of polymorphism underlying phenotypic variation since this is a biased list where the proportion of coding mutations are inflated as they are easier to find. The review documents that structural changes (duplications, deletions, and inversions) have contributed significantly to the evolution of phenotypic diversity in domestic animals. Finally, we describe five examples of evolution of alleles, which means that alleles have evolved by the accumulation of several consecutive mutations affecting the function of the same gene. PMID:26479863

  16. Domestic animals as models for biomedical research.

    PubMed

    Andersson, Leif

    2016-01-01

    Domestic animals are unique models for biomedical research due to their long history (thousands of years) of strong phenotypic selection. This process has enriched for novel mutations that have contributed to phenotype evolution in domestic animals. The characterization of such mutations provides insights in gene function and biological mechanisms. This review summarizes genetic dissection of about 50 genetic variants affecting pigmentation, behaviour, metabolic regulation, and the pattern of locomotion. The variants are controlled by mutations in about 30 different genes, and for 10 of these our group was the first to report an association between the gene and a phenotype. Almost half of the reported mutations occur in non-coding sequences, suggesting that this is the most common type of polymorphism underlying phenotypic variation since this is a biased list where the proportion of coding mutations are inflated as they are easier to find. The review documents that structural changes (duplications, deletions, and inversions) have contributed significantly to the evolution of phenotypic diversity in domestic animals. Finally, we describe five examples of evolution of alleles, which means that alleles have evolved by the accumulation of several consecutive mutations affecting the function of the same gene.

  17. Animal models of glucocorticoid-induced glaucoma.

    PubMed

    Overby, Darryl R; Clark, Abbot F

    2015-12-01

    Glucocorticoid (GC) therapy is widely used to treat a variety of inflammatory diseases and conditions. While unmatched in their anti-inflammatory and immunosuppressive activities, GC therapy is often associated with the significant ocular side effect of GC-induced ocular hypertension (OHT) and iatrogenic open-angle glaucoma. Investigators have generated GC-induced OHT and glaucoma in at least 8 different species besides man. These models mimic many features of this condition in man and provide morphologic and molecular insights into the pathogenesis of GC-OHT. In addition, there are many clinical, morphological, and molecular similarities between GC-induced glaucoma and primary open-angle glaucoma (POAG), making animals models of GC-induced OHT and glaucoma attractive models in which to study specific aspects of POAG.

  18. Lattice animal model of chromosome organization

    NASA Astrophysics Data System (ADS)

    Iyer, Balaji V. S.; Arya, Gaurav

    2012-07-01

    Polymer models tied together by constraints of looping and confinement have been used to explain many of the observed organizational characteristics of interphase chromosomes. Here we introduce a simple lattice animal representation of interphase chromosomes that combines the features of looping and confinement constraints into a single framework. We show through Monte Carlo simulations that this model qualitatively captures both the leveling off in the spatial distance between genomic markers observed in fluorescent in situ hybridization experiments and the inverse decay in the looping probability as a function of genomic separation observed in chromosome conformation capture experiments. The model also suggests that the collapsed state of chromosomes and their segregation into territories with distinct looping activities might be a natural consequence of confinement.

  19. Animal Models of Glucocorticoid-Induced Glaucoma

    PubMed Central

    Overby, Darryl R.; Clark, Abbot F.

    2015-01-01

    Glucocorticoid (GC) therapy is widely used to treat a variety of inflammatory diseases and conditions. While unmatched in their anti-inflammatory and immunosuppressive activities, GC therapy is often associated with the significant ocular side effect of GC-induced ocular hypertension (OHT) and iatrogenic open-angle glaucoma. Investigators have generated GC-induced OHT and glaucoma in at least 8 different species besides man. These models mimic many features of this condition in man and provide morphologic and molecular insights into the pathogenesis of GC-OHT. In addition, there are many clinical, morphological, and molecular similarities between GC-induced glaucoma and primary open-angle glaucoma (POAG), making animals models of GC-induced OHT and glaucoma attractive models in which to study specific aspects of POAG. PMID:26051991

  20. An animal model for progressive multifocal leukoencephalopathy.

    PubMed

    Haley, Sheila A; Atwood, Walter J

    2014-12-01

    JC virus (JCV) causes progressive multifocal leukoencephalopathy (PML), a demyelinating disease in humans. The disease, once considered fatal, is now managed with immune reconstitution therapy; however, surviving patients remain severely debilitated. Until now, there has been no animal model to study JCV in the brain, and research into treatment has relied on cell culture systems. In this issue of the JCI, Kondo and colleagues developed a mouse model in which human glial cells are engrafted into neonatal mice that are both immunodeficient and deficient for myelin basic protein. When challenged intracerebrally with JCV, these mice exhibit some of the characteristics of PML. The establishment of this chimeric mouse model is a significant advance toward understanding the mechanism of JCV pathogenesis and the identification of drugs to treat or prevent the disease.

  1. Animal models of premature and retarded ejaculation.

    PubMed

    Waldinger, Marcel D; Olivier, Berend

    2005-06-01

    Most of our current understanding of the neurobiology of sexual behavior and ejaculatory function has been derived from animal studies using rats with normal sexual behaviour. However, none of these proposed models adequately represents human ejaculatory disorders. Based on the "ejaculation distribution theory", which postulates that the intravaginal ejaculation latency time in men is represented by a biological continuum, we have developed an animal model for the research of premature and delayed ejaculation. In this model, a large number of male Wistar rats are investigated during 4-6 weekly sexual behavioural tests. Based on the number of ejaculations during 30 min tests, rapid and sluggish ejaculating rats are distinguished, each representing approximately 10% at both ends of a Gaussian distribution. Together with other parameters, such as ejaculation latency time, these rats at either side of the spectrum resemble men with premature and delayed ejaculation, respectively. Comparable to the human situation, in a normal population of rats, endophenotypes exist with regard to basal sexual (ejaculatory) performance.

  2. Macrophages and Uveitis in Experimental Animal Models

    PubMed Central

    Mérida, Salvador; Palacios, Elena; Bosch-Morell, Francisco

    2015-01-01

    Resident and infiltrated macrophages play relevant roles in uveitis as effectors of innate immunity and inductors of acquired immunity. They are major effectors of tissue damage in uveitis and are also considered to be potent antigen-presenting cells. In the last few years, experimental animal models of uveitis have enabled us to enhance our understanding of the leading role of macrophages in eye inflammation processes, including macrophage polarization in experimental autoimmune uveoretinitis and the major role of Toll-like receptor 4 in endotoxin-induced uveitis. This improved knowledge should guide advantageous iterative research to establish mechanisms and possible therapeutic targets for human uveitis resolution. PMID:26078494

  3. A multiple testing approach for hazard evaluation of complex mixtures in the aquatic environment: the use of diesel oil as a model.

    PubMed

    Johnson, B T; Romanenko, V I

    1989-01-01

    Traditional single species toxicity tests and multiple component laboratory-scaled microcosm assays were combined to assess the toxicological hazard of diesel oil, a model complex mixture, to a model aquatic environment. The immediate impact of diesel oil dosed on a freshwater community was studied in a model pond microcosm over 14 days: a 7-day dosage and a 7-day recovery period. A multicomponent laboratory microcosm was designed to monitor the biological effects of diesel oil (1.0 mg litre(-1)) on four components: water, sediment (soil + microbiota), plants (aquatic macrophytes and algae), and animals (zooplanktonic and zoobenthic invertebrates). To determine the sensitivity of each part of the community to diesel oil contamination and how this model community recovered when the oil dissipated, limnological, toxicological, and microbiological variables were considered. Our model revealed these significant occurrences during the spill period: first, a community production and respiration perturbation, characterized in the water column by a decrease in dissolved oxygen and redox potential and a concomitant increase in alkalinity and conductivity; second, marked changes in microbiota of sediments that included bacterial heterotrophic dominance and a high heterotrophic index (0.6), increased bacterial productivity, and the marked increases in numbers of saprophytic bacteria (10 x) and bacterial oil degraders (1000 x); and third, column water acutely toxic (100% mortality) to two model taxa: Selenastrum capricornutum and Daphnia magna. Following the simulated clean-up procedure to remove the oil slick, the recovery period of this freshwater microcosm was characterized by a return to control values. This experimental design emphasized monitoring toxicological responses in aquatic microcosm; hence, we proposed the term 'toxicosm' to describe this approach to aquatic toxicological hazard evaluation. The toxicosm as a valuable toxicological tool for screening aquatic

  4. A multiple testing approach for hazard evaluation of complex mixtures in the aquatic environment: the use of diesel oil as a model

    USGS Publications Warehouse

    Johnson, B. Thomas

    1989-01-01

    Traditional single species toxicity tests and multiple component laboratory-scaled microcosm assays were combined to assess the toxicological hazard of diesel oil, a model complex mixture, to a model aquatic environment. The immediate impact of diesel oil dosed on a freshwater community was studied in a model pond microcosm over 14 days: a 7-day dosage and a 7-day recovery period. A multicomponent laboratory microcosm was designed to monitor the biological effects of diesel oil (1·0 mg litre−1) on four components: water, sediment (soil + microbiota), plants (aquatic macrophytes and algae), and animals (zooplanktonic and zoobenthic invertebrates). To determine the sensitivity of each part of the community to diesel oil contamination and how this model community recovered when the oil dissipated, limnological, toxicological, and microbiological variables were considered. Our model revealed these significant occurrences during the spill period: first, a community production and respiration perturbation, characterized in the water column by a decrease in dissolved oxygen and redox potential and a concomitant increase in alkalinity and conductivity; second, marked changes in microbiota of sediments that included bacterial heterotrophic dominance and a high heterotrophic index (0·6), increased bacterial productivity, and the marked increases in numbers of saprophytic bacteria (10 x) and bacterial oil degraders (1000 x); and third, column water acutely toxic (100% mortality) to two model taxa: Selenastrum capricornutum and Daphnia magna. Following the simulated clean-up procedure to remove the oil slick, the recovery period of this freshwater microcosm was characterized by a return to control values. This experimental design emphasized monitoring toxicological responses in aquatic microcosm; hence, we proposed the term ‘toxicosm’ to describe this approach to aquatic toxicological hazard evaluation. The toxicosm as a valuable toxicological tool for screening

  5. Hyperspectral Aquatic Radiative Transfer Modeling Using a High-Performance Cluster Computing-Based Approach

    SciTech Connect

    Filippi, Anthony M; Bhaduri, Budhendra L; Naughton, III, Thomas J; King, Amy L; Scott, Stephen L; Guneralp, Inci

    2012-01-01

    Abstract For aquatic studies, radiative transfer (RT) modeling can be used to compute hyperspectral above-surface remote sensing reflectance that can be utilized for inverse model development. Inverse models can provide bathymetry and inherent-and bottom-optical property estimation. Because measured oceanic field/organic datasets are often spatio-temporally sparse, synthetic data generation is useful in yielding sufficiently large datasets for inversion model development; however, these forward-modeled data are computationally expensive and time-consuming to generate. This study establishes the magnitude of wall-clock-time savings achieved for performing large, aquatic RT batch-runs using parallel computing versus a sequential approach. Given 2,600 simulations and identical compute-node characteristics, sequential architecture required ~100 hours until termination, whereas a parallel approach required only ~2.5 hours (42 compute nodes) a 40x speed-up. Tools developed for this parallel execution are discussed.

  6. Hyperspectral Aquatic Radiative Transfer Modeling Using a High-Performance Cluster Computing Based Approach

    SciTech Connect

    Fillippi, Anthony; Bhaduri, Budhendra L; Naughton, III, Thomas J; King, Amy L; Scott, Stephen L; Guneralp, Inci

    2012-01-01

    For aquatic studies, radiative transfer (RT) modeling can be used to compute hyperspectral above-surface remote sensing reflectance that can be utilized for inverse model development. Inverse models can provide bathymetry and inherent- and bottom-optical property estimation. Because measured oceanic field/organic datasets are often spatio-temporally sparse, synthetic data generation is useful in yielding sufficiently large datasets for inversion model development; however, these forward-modeled data are computationally expensive and time-consuming to generate. This study establishes the magnitude of wall-clock-time savings achieved for performing large, aquatic RT batch-runs using parallel computing versus a sequential approach. Given 2,600 simulations and identical compute-node characteristics, sequential architecture required {approx}100 hours until termination, whereas a parallel approach required only {approx}2.5 hours (42 compute nodes) - a 40x speed-up. Tools developed for this parallel execution are discussed.

  7. Animal model of neuropathic tachycardia syndrome

    NASA Technical Reports Server (NTRS)

    Carson, R. P.; Appalsamy, M.; Diedrich, A.; Davis, T. L.; Robertson, D.

    2001-01-01

    Clinically relevant autonomic dysfunction can result from either complete or partial loss of sympathetic outflow to effector organs. Reported animal models of autonomic neuropathy have aimed to achieve complete lesions of sympathetic nerves, but incomplete lesions might be more relevant to certain clinical entities. We hypothesized that loss of sympathetic innervation would result in a predicted decrease in arterial pressure and a compensatory increase in heart rate. Increased heart rate due to loss of sympathetic innervation is seemingly paradoxical, but it provides a mechanistic explanation for clinical autonomic syndromes such as neuropathic postural tachycardia syndrome. Partially dysautonomic animals were generated by selectively lesioning postganglionic sympathetic neurons with 150 mg/kg 6-hydroxydopamine hydrobromide in male Sprague-Dawley rats. Blood pressure and heart rate were monitored using radiotelemetry. Systolic blood pressure decreased within hours postlesion (Delta>20 mm Hg). Within 4 days postlesion, heart rate rose and remained elevated above control levels. The severity of the lesion was determined functionally and pharmacologically by spectral analysis and responsiveness to tyramine. Low-frequency spectral power of systolic blood pressure was reduced postlesion and correlated with the diminished tyramine responsiveness (r=0.9572, P=0.0053). The tachycardia was abolished by treatment with the beta-antagonist propranolol, demonstrating that it was mediated by catecholamines acting on cardiac beta-receptors. Partial lesions of the autonomic nervous system have been hypothesized to underlie many disorders, including neuropathic postural tachycardia syndrome. This animal model may help us better understand the pathophysiology of autonomic dysfunction and lead to development of therapeutic interventions.

  8. Neuropsychiatric SLE: from animal model to human.

    PubMed

    Pikman, R; Kivity, S; Levy, Y; Arango, M-T; Chapman, J; Yonath, H; Shoenfeld, Y; Gofrit, S G

    2017-04-01

    Animal models are a key element in disease research and treatment. In the field of neuropsychiatric lupus research, inbred, transgenic and disease-induced mice provide an opportunity to study the pathogenic routes of this multifactorial illness. In addition to achieving a better understanding of the immune mechanisms underlying the disease onset, supplementary metabolic and endocrine influences have been discovered and investigated. The ever-expanding knowledge about the pathologic events that occur at disease inception enables us to explore new drugs and therapeutic approaches further and to test them using the same animal models. Discovery of the molecular targets that constitute the pathogenic basis of the disease along with scientific advancements allow us to target these molecules with monoclonal antibodies and other specific approaches directly. This novel therapy, termed "targeted biological medication" is a promising endeavor towards producing drugs that are more effective and less toxic. Further work to discover additional molecular targets in lupus' pathogenic mechanism and to produce drugs that neutralize their activity is needed to provide patients with safe and efficient methods of controlling and treating the disease.

  9. Ecotoxicogenomic approaches for understanding molecular mechanisms of environmental chemical toxicity using aquatic invertebrate, Daphnia model organism.

    PubMed

    Kim, Hyo Jeong; Koedrith, Preeyaporn; Seo, Young Rok

    2015-05-29

    Due to the rapid advent in genomics technologies and attention to ecological risk assessment, the term "ecotoxicogenomics" has recently emerged to describe integration of omics studies (i.e., transcriptomics, proteomics, metabolomics, and epigenomics) into ecotoxicological fields. Ecotoxicogenomics is defined as study of an entire set of genes or proteins expression in ecological organisms to provide insight on environmental toxicity, offering benefit in ecological risk assessment. Indeed, Daphnia is a model species to study aquatic environmental toxicity designated in the Organization for Economic Co-operation and Development's toxicity test guideline and to investigate expression patterns using ecotoxicology-oriented genomics tools. Our main purpose is to demonstrate the potential utility of gene expression profiling in ecotoxicology by identifying novel biomarkers and relevant modes of toxicity in Daphnia magna. These approaches enable us to address adverse phenotypic outcomes linked to particular gene function(s) and mechanistic understanding of aquatic ecotoxicology as well as exploration of useful biomarkers. Furthermore, key challenges that currently face aquatic ecotoxicology (e.g., predicting toxicant responses among a broad spectrum of phytogenetic groups, predicting impact of temporal exposure on toxicant responses) necessitate the parallel use of other model organisms, both aquatic and terrestrial. By investigating gene expression profiling in an environmentally important organism, this provides viable support for the utility of ecotoxicogenomics.

  10. Ecotoxicogenomic Approaches for Understanding Molecular Mechanisms of Environmental Chemical Toxicity Using Aquatic Invertebrate, Daphnia Model Organism

    PubMed Central

    Kim, Hyo Jeong; Koedrith, Preeyaporn; Seo, Young Rok

    2015-01-01

    Due to the rapid advent in genomics technologies and attention to ecological risk assessment, the term “ecotoxicogenomics” has recently emerged to describe integration of omics studies (i.e., transcriptomics, proteomics, metabolomics, and epigenomics) into ecotoxicological fields. Ecotoxicogenomics is defined as study of an entire set of genes or proteins expression in ecological organisms to provide insight on environmental toxicity, offering benefit in ecological risk assessment. Indeed, Daphnia is a model species to study aquatic environmental toxicity designated in the Organization for Economic Co-operation and Development’s toxicity test guideline and to investigate expression patterns using ecotoxicology-oriented genomics tools. Our main purpose is to demonstrate the potential utility of gene expression profiling in ecotoxicology by identifying novel biomarkers and relevant modes of toxicity in Daphnia magna. These approaches enable us to address adverse phenotypic outcomes linked to particular gene function(s) and mechanistic understanding of aquatic ecotoxicology as well as exploration of useful biomarkers. Furthermore, key challenges that currently face aquatic ecotoxicology (e.g., predicting toxicant responses among a broad spectrum of phytogenetic groups, predicting impact of temporal exposure on toxicant responses) necessitate the parallel use of other model organisms, both aquatic and terrestrial. By investigating gene expression profiling in an environmentally important organism, this provides viable support for the utility of ecotoxicogenomics. PMID:26035755

  11. Modeling the inherent optical properties of aquatic particles using an irregular hexahedral ensemble

    NASA Astrophysics Data System (ADS)

    Xu, Guanglang; Sun, Bingqiang; Brooks, Sarah D.; Yang, Ping; Kattawar, George W.; Zhang, Xiaodong

    2017-04-01

    A statistical approach in defining particle morphology in terms of an ensemble of hexahedra of distorted shapes is employed for modeling the Inherent Optical Properties (IOPs) of aquatic particles. The approach is inspired by the rich variability in shapes of real aquatic particles that cannot be represented by one particular shape. Two methods, the Invariant Imbedding T-matrix (II-TM) and Physical Geometric Optics Hybrid (PGOH) method, are combined to simulate the IOPs for aquatic particles of sizes ranging from the Rayleigh scattering to geometric optics regimes. Nonspherical effects on the IOPs are examined by comparing the results with predictions based on the Lorenz-Mie theory to explore the limitations of assuming the particles to be spherical. We pay special attention to backscattering-related and polarimetric scattering properties, particularly the backscattering ratio, Gordon parameter, backscattering volume scattering function and the degree of linear polarization. The simulated IOPs are compared with the in-situ measurements to assess the feasibility of using a hexahedral ensemble in modeling the IOPs of the aquatic particles.

  12. Animal models of primary biliary cirrhosis.

    PubMed

    Wang, Jinjun; Yang, Guo-Xiang; Tsuneyama, Koichi; Gershwin, M Eric; Ridgway, William M; Leung, Patrick S C

    2014-08-01

    Within the last decade, several mouse models that manifest characteristic features of primary biliary cirrhosis (PBC) with antimitochondrial antibodies (AMAs) and immune-mediated biliary duct pathology have been reported. Here, the authors discuss the current findings on two spontaneous (nonobese diabetic autoimmune biliary disease [NOD.ABD] and dominant negative transforming growth factor-β receptor II [dnTGFβRII]) and two induced (chemical xenobiotics and microbial immunization) models of PBC. These models exhibit the serological, immunological, and histopathological features of human PBC. From these animal models, it is evident that the etiology of PBC is multifactorial and requires both specific genetic predispositions and environmental insults (either xenobiotic chemicals or microbial), which lead to the breaking of tolerance and eventually liver pathology. Human PBC is likely orchestrated by multiple factors and hence no single model can fully mimic the immunopathophysiology of human PBC. Nevertheless, knowledge gained from these models has greatly advanced our understanding of the major immunological pathways as well as the etiology of PBC.

  13. Animal Models of Parkinson's Disease: Vertebrate Genetics

    PubMed Central

    Lee, Yunjong; Dawson, Valina L.; Dawson, Ted M.

    2012-01-01

    Parkinson's disease (PD) is a complex genetic disorder that is associated with environmental risk factors and aging. Vertebrate genetic models, especially mice, have aided the study of autosomal-dominant and autosomal-recessive PD. Mice are capable of showing a broad range of phenotypes and, coupled with their conserved genetic and anatomical structures, provide unparalleled molecular and pathological tools to model human disease. These models used in combination with aging and PD-associated toxins have expanded our understanding of PD pathogenesis. Attempts to refine PD animal models using conditional approaches have yielded in vivo nigrostriatal degeneration that is instructive in ordering pathogenic signaling and in developing therapeutic strategies to cure or halt the disease. Here, we provide an overview of the generation and characterization of transgenic and knockout mice used to study PD followed by a review of the molecular insights that have been gleaned from current PD mouse models. Finally, potential approaches to refine and improve current models are discussed. PMID:22960626

  14. Announcement: Release of CDC's 2016 Model Aquatic Health Code, Second Edition and Revised Hyperchlorination and Fecal Incident Response Recommendations.

    PubMed

    2016-07-22

    The 2016 Model Aquatic Health Code (MAHC), Second Edition was released on July 15, 2016 (http://www.cdc.gov/mahc/editions/current.html). MAHC is national guidance that can be voluntarily adopted by state and local jurisdictions to minimize the risk for illness and injury at public aquatic facilities through facility design, construction, operation, maintenance, and management.

  15. A Bayesian network model for predicting aquatic toxicity mode of action using two dimensional theoretical molecular descriptors-abstract

    EPA Science Inventory

    The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity but MoA classification in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity mode of action using a recently published dataset contain...

  16. Animal Models of Fibrotic Lung Disease

    PubMed Central

    Lawson, William E.; Oury, Tim D.; Sisson, Thomas H.; Raghavendran, Krishnan; Hogaboam, Cory M.

    2013-01-01

    Interstitial lung fibrosis can develop as a consequence of occupational or medical exposure, as a result of genetic defects, and after trauma or acute lung injury leading to fibroproliferative acute respiratory distress syndrome, or it can develop in an idiopathic manner. The pathogenesis of each form of lung fibrosis remains poorly understood. They each result in a progressive loss of lung function with increasing dyspnea, and most forms ultimately result in mortality. To better understand the pathogenesis of lung fibrotic disorders, multiple animal models have been developed. This review summarizes the common and emerging models of lung fibrosis to highlight their usefulness in understanding the cell–cell and soluble mediator interactions that drive fibrotic responses. Recent advances have allowed for the development of models to study targeted injuries of Type II alveolar epithelial cells, fibroblastic autonomous effects, and targeted genetic defects. Repetitive dosing in some models has more closely mimicked the pathology of human fibrotic lung disease. We also have a much better understanding of the fact that the aged lung has increased susceptibility to fibrosis. Each of the models reviewed in this report offers a powerful tool for studying some aspect of fibrotic lung disease. PMID:23526222

  17. Aquatic Contaminant and Mercury Simulation Modules Developed for Hydrologic and Hydraulic Models

    DTIC Science & Technology

    2016-07-01

    environmental challenges. ERDC develops innovative solutions in civil and military engineering, geospatial sciences, water resources, and environmental...The GC models simple kinetics for multiple size classes of solids and user-defined constituents in the water column. The CSM models the kinetics of...aquatic systems. The three water quality modules only compute internal sources and sinks of each state variable for both water column and an underlying

  18. A comparative study of the modeled effects of atrazine on aquatic plant communities in midwestern streams.

    PubMed

    Nair, Shyam K; Bartell, Steven M; Brain, Richard A

    2015-11-01

    Potential effects of atrazine on the nontarget aquatic plants characteristic of lower-order streams in the Midwestern United States were previously assessed using the Comprehensive Aquatic System Model (CASMATZ ). Another similar bioenergetics-based, mechanistic model, AQUATOX, was examined in the present study, with 3 objectives: 1) to develop an AQUATOX model simulation similar to the CASMATZ model reference simulation in describing temporal patterns of biomass production by modeled plant populations, 2) to examine the implications of the different approaches used by the models in deriving plant community-based levels of concern (LOCs) for atrazine, and 3) to determine the feasibility of implementing alternative ecological models to assess ecological impacts of atrazine on lower-order Midwestern streams. The results of the present comparative modeling study demonstrated that a similar reference simulation to that from the CASMATZ model could be developed using the AQUATOX model. It was also determined that development of LOCs and identification of streams with exposures in excess of the LOCs were feasible with the AQUATOX model. Compared with the CASMATZ model results, however, the AQUATOX model consistently produced higher estimates of LOCs and generated non-monotonic variations of atrazine effects with increasing exposures. The results of the present study suggest an opportunity for harmonizing the treatments of toxicity and toxicity parameter estimation in the CASMATZ and the AQUATOX models. Both models appear useful in characterizing the potential impacts of atrazine on nontarget aquatic plant populations in lower-order Midwestern streams. The present model comparison also suggests that, with appropriate parameterization, these process-based models can be used to assess the potential effects of other xenobiotics on stream ecosystems.

  19. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning.

    PubMed

    Terrado, Marta; Sabater, Sergi; Chaplin-Kramer, Becky; Mandle, Lisa; Ziv, Guy; Acuña, Vicenç

    2016-01-01

    There is a growing pressure of human activities on natural habitats, which leads to biodiversity losses. To mitigate the impact of human activities, environmental policies are developed and implemented, but their effects are commonly not well understood because of the lack of tools to predict the effects of conservation policies on habitat quality and/or diversity. We present a straightforward model for the simultaneous assessment of terrestrial and aquatic habitat quality in river basins as a function of land use and anthropogenic threats to habitat that could be applied under different management scenarios to help understand the trade-offs of conservation actions. We modify the InVEST model for the assessment of terrestrial habitat quality and extend it to freshwater habitats. We assess the reliability of the model in a severely impaired basin by comparing modeled results to observed terrestrial and aquatic biodiversity data. Estimated habitat quality is significantly correlated with observed terrestrial vascular plant richness (R(2)=0.76) and diversity of aquatic macroinvertebrates (R(2)=0.34), as well as with ecosystem functions such as in-stream phosphorus retention (R(2)=0.45). After that, we analyze different scenarios to assess the suitability of the model to inform changes in habitat quality under different conservation strategies. We believe that the developed model can be useful to assess potential levels of biodiversity, and to support conservation planning given its capacity to forecast the effects of management actions in river basins.

  20. EcoCasting: Using NetLogo models of aquatic ecosystems to teach scientific inquiry

    NASA Astrophysics Data System (ADS)

    Buzby, C. K.; Jona, K.

    2010-12-01

    The EcoCasting project from the Office of STEM Education Partnerships (OSEP) at Northwestern University has developed a computer model-based curriculum for high school environmental science classes to study complexity in aquatic ecosystems. EcoCasting aims to deliver cutting edge scientific research on bioaccumulation in invaded Great Lakes food webs to high school classes. Scientists and environmental engineers at Northwestern are investigating unusual bioaccumulation patterns in invaded food webs of the Great Lakes. High school students are exploring this authentic data to understand what is causing the anomalies in the data. Students use a series of NetLogo agent-based models of an aquatic ecosystem to study how toxins accumulate in the food web. Using these models, students learn about predator-prey relationships, bioaccumulation, and invasive species. Students are confronted with contradictory data collected by scientists and investigate alternative food web mechanisms at work. By studying the individual variables, students learn common scientific principles. When multiple variables are combined in a unifying model, students learn that the interactions lead to unexpected outcomes. Students learn about the complexity of the ecosystem and gain proficiency interpreting computer models and scientific data collection in this curriculum. Model of aquatic food chain

  1. Vaccines and animal models for arboviral encephalitides.

    PubMed

    Nalca, Aysegul; Fellows, Patricia F; Whitehouse, Chris A

    2003-11-01

    Arthropod-borne viruses ("arboviruses") cause significant human illness ranging from mild, asymptomatic infection to fatal encephalitis or hemorrhagic fever. The most significant arboviruses causing human illness belong to genera in three viral families, Togaviridae, Flaviviridae, and Bunyaviridae. These viruses represent a significant public health threat to many parts of the world, and, as evidenced by the recent introduction of the West Nile virus (WNV) to the Western Hemisphere, they can no longer be considered specific to any one country or region of the world. Like most viral diseases, there are no specific therapies for the arboviral encephalitides; therefore, effective vaccines remain the front line of defense for these diseases. With this in mind, the development of new, more effective vaccines and the appropriate animal models in which to test them become paramount. In fact, for many important arboviruses (e.g. California serogroup and St. Louis encephalitis viruses), there are currently no approved vaccines available for human use. For others, such as the alphaviruses, human vaccines are available only as Investigational New Drugs, and thus are not in widespread use. On the other hand, safe and effective vaccines against tick-borne encephalitis virus (TBEV) and Japanese encephalitis virus (JEV) have been in use for decades. New challenges in vaccine development have been met with new technologies in vaccine research. Many of the newer vaccines are now being developed by recombinant DNA technology. For example, chimeric virus vaccines have been developed using infectious clone technology for many of the arboviruses including, WNV, JEV, and TBEV. Other successful approaches have involved the use of naked DNA encoding and subsequently expressing the desired protective epitopes. Naked DNA vaccines have been used for TBEV and JEV and are currently under development for use against WNV. The development of less expensive, more authentic animal models to

  2. [Analysis of dalbavancin in animal models].

    PubMed

    Murillo, Óscar; El-Haj, Cristina

    2017-01-01

    Multiresistant Gram-positive infections continue to pose a major clinical challenge and the development of new antibiotics is always desirable. Dalbavancin is a lipoglycopeptide with a prolonged half-life that allows long dosing intervals. In experimental models, its activity has been evaluated in distinct models and microorganisms, which limits the conclusions that can be drawn; however, the largest number of studies have been conducted in Staphylococcus aureus infection. Overall, dalbavancin has shown concentration-dependent efficacy and the parameters best explaining its activity are maximal pharmacodynamic concentration/minimal inhibitory concentration and the area under the curve/minimal inhibitory concentration. In these experimental models, dalbavancin has shown good distribution, a prolonged half-life in all animal species and efficacy that is mostly similar to that of previous glycopeptides but with lower doses and with longer dosing intervals. Of note, the efficacy of dalbavancin is not altered by methicillin resistance or the glycopeptide sensitivity of S. aureus. In the case of difficult-to-treat staphylococcal infections (eg, endocarditis, foreign body infections), an adequate dosing interval and high dosage seem to play an important role in the efficacy of the drug. All in all, experimental models can still provide greater knowledge of this new antibiotic to guide clinical research and determine its role in the treatment of distinct infections produced by Gram-positive microorganisms.

  3. [Aquatic ecosystem modelling approach: temperature and water quality models applied to Oualidia and Nador lagoons].

    PubMed

    Idrissi, J Lakhdar; Orbi, A; Hilmi, K; Zidane, F; Moncef, M

    2005-07-01

    The objective of this work is to develop an aquatic ecosystem and apply it on Moroccan lagoon systems. This model will keep us abreast of the yearly development of the main parameters that characterize these ecosystems while integrating all the data that have so far been acquired. Within this framework, a simulation model of the thermal system and a model of the water quality have been elaborated. These models, which have been simulated on the lagoon of Oualidia (North of Morocco) and validated on the lagoon of Nador (North West Mediterranean), permit to foresee the cycles of temperature of the surface and the parameters of the water quality (dissolved oxygen and biomass phytoplankton) by using meteorological information, specific features and in situ measurements in the studied sites. The elaborated model, called Zero-Dimensional, simulates the average conduct of the site during the time of variable states that are representatives of the studied ecosystem. This model will provide answers for the studied phenomena and is a work tool adequate for numerical simplicity.

  4. A log-normal distribution model for the molecular weight of aquatic fulvic acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Zhou, Q.; Maurice, P.A.; Chin, Y.-P.; Aiken, G.R.

    2000-01-01

    The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a lognormal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured M(n) and M(w) and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several types of molecular weight data, including the shapes of high- pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a log-normal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured Mn and Mw and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several type's of molecular weight data, including the shapes of high-pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.

  5. Aquatic Pathways Model to predict the fate of phenolic compounds. Appendixes A through D

    SciTech Connect

    Aaberg, R.L.; Peloquin, R.A.; Strenge, D.L.; Mellinger, P.L.

    1983-04-01

    Organic materials released from energy-related activities could affect human health and the environment. We have developed a model to predict the fate of spills or discharges of pollutants into flowing or static bodies of fresh water. A computer code, Aquatic Pathways Model (APM), was written to implement the model. The APM estimates the concentrations of chemicals in fish tissue, water and sediment, and is therefore useful for assessing exposure to humans through aquatic pathways. The major pathways considered are biodegradation, fish and sediment uptake, photolysis, and evaporation. The model has been implemented with parameters for the distribution of phenols, an important class of compounds found in the water-soluble fractions of coal liquids. The model was developed to estimate the fate of liquids derived from coal. Current modeling efforts show that, in comparison with many pesticides and polyaromatic hydrocarbons (PAH), the lighter phenolics (the cresols) are not persistent in the environment. For the twelve phenolics studied, biodegradation appears to be the major pathway for elimination from aquatic environments. A pond system simulation of a spill of solvent-refined coal (SRC-II) materials indicates that phenol, cresols, and other single cyclic phenolics are degraded to 16 to 25 percent of their original concentrations within 30 hours. Adsorption of these compounds into sediments and accumulation by fish was minor. Results of a simulated spill of a coal liquid (SRC-II) into a pond show that APM predicted the allocation of 12 phenolic components among six compartments at 30 hours after a small spill. The simulation indicated that most of the introduced phenolic compounds were biodegraded. The phenolics remaining in the aquatic system partitioned according to their molecular weight and structure. A substantial amount was predicted to remain in the water, with less than 0.01% distributed in sediment or fish.

  6. Fetal akinesia deformation sequence: an animal model.

    PubMed

    Moessinger, A C

    1983-12-01

    Rat fetuses were paralyzed by daily transuterine injections of curare from day 18 of gestation until term (day 21). The following anomalies were noted at the time of delivery: multiple joint contractures, pulmonary hypoplasia, micrognathia, fetal growth retardation, short umbilical cords, and polyhydramnios. Neither sham-operated nor untouched littermate control fetuses had any of these anomalies. The group of anomalies (or deformation sequence) obtained with this animal model is presumed to result from the paralytic effect of curare. This phenotype bears a striking resemblance to the syndrome of ankyloses, facial anomalies, and pulmonary hypoplasia (also known as Pena and Shokeir I), presumably inherited in an autosomal recessive manner. It is suggested that this phenotype is not specific but, rather, represents a deformation sequence which results from fetal immobilization or akinesia. Diagnostic evaluation of patients with this group of anomalies should include the identification of the underlying pathologic process (etiology of the akinesia) to allow for proper classification and genetic counseling.

  7. Ethical guidelines, animal profile, various animal models used in periodontal research with alternatives and future perspectives

    PubMed Central

    Pasupuleti, Mohan Kumar; Molahally, Subramanya Shetty; Salwaji, Supraja

    2016-01-01

    Laboratory animal models serve as a facilitator to investigate the etiopathogenesis of periodontal disease, are used to know the efficacy of reconstructive and regenerative procedures, and are also helpful in evaluation of newer therapeutic techniques including laser and implant therapies prior to application in the human beings. The aim of this review is to know the different animal models used in various specialties of dental research and to know the ethical guidelines prior to the usage of experimental models with main emphasis on how to refine, replace, and reduce the number of animal models usage in the laboratory. An online search for experimental animal models used in dental research was performed using MEDLINE/PubMed database. Publications from 2009 to May 2013 in the specialty of periodontics were included in writing this review. A total of 652 references were published in PubMed/MEDLINE databases based on the search terms used. Out of 245 studies, 241 were related to the periodontal research published in English from 2009 to 2013. Relevant papers were chosen according to the inclusion and exclusion criteria. After extensive electronic and hand search on animal models, it has been observed that various animal models were used in dental research. Search on animal models used for dental research purpose revealed that various animals such as rats, mice, guinea pigs, rabbit, beagle dogs, goats, and nonhuman primates were extensively used. However, with the new advancement of ex vivo animal models, it has become easy to investigate disease pathogenesis and to test the efficacy of newer therapeutic modalities with the reduced usage of animal models. This review summarized the large amount of literature on animal models used in periodontal research with main emphasis on ethical guidelines and on reducing the animal model usage in future perspective. PMID:28298815

  8. Transport and fate of radionuclides in aquatic environments--the use of ecosystem modelling for exposure assessments of nuclear facilities.

    PubMed

    Kumblad, L; Kautsky, U; Naeslund, B

    2006-01-01

    In safety assessments of nuclear facilities, a wide range of radioactive isotopes and their potential hazard to a large assortment of organisms and ecosystem types over long time scales need to be considered. Models used for these purposes have typically employed approaches based on generic reference organisms, stylised environments and transfer functions for biological uptake exclusively based on bioconcentration factors (BCFs). These models are of non-mechanistic nature and involve no understanding of uptake and transport processes in the environment, which is a severe limitation when assessing real ecosystems. In this paper, ecosystem models are suggested as a method to include site-specific data and to facilitate the modelling of dynamic systems. An aquatic ecosystem model for the environmental transport of radionuclides is presented and discussed. With this model, driven and constrained by site-specific carbon dynamics and three radionuclide specific mechanisms: (i) radionuclide uptake by plants, (ii) excretion by animals, and (iii) adsorption to organic surfaces, it was possible to estimate the radionuclide concentrations in all components of the modelled ecosystem with only two radionuclide specific input parameters (BCF for plants and Kd). The importance of radionuclide specific mechanisms for the exposure to organisms was examined, and probabilistic and sensitivity analyses to assess the uncertainties related to ecosystem input parameters were performed. Verification of the model suggests that this model produces analogous results to empirically derived data for more than 20 different radionuclides.

  9. Modeling plasmalemma ion transport of the aquatic plant Egeria densa.

    PubMed

    Buschmann, P; Sack, H; Köhler, A E; Dahse, I

    1996-11-01

    Fresh-water plants generate extraordinarily high electric potential differences at the plasma membrane. For a deeper understanding of the underlying transport processes a mathematical model of the electrogenic plasmalemma ion transport was developed based on experimental data mainly obtained from Egeria densa. The model uses a general nonlinear network approach and assumes coupling of the transporters via membrane potential. A proton pump, an outward-rectifying K+ channel, an inward-rectifying K+ channel, a Cl- channel and a (2H-Cl)+ symporter are considered to be elements of the system. The model takes into consideration the effects of light, external pH and ionic content of the bath medium on ion transport. As a result it does not only satisfactorily describe the membrane potential as a function of these external physiological factors but also succeeds in simulating the effects of specific inhibitors as well as I-V-curves obtained with the patch-clamp technique in the whole cell mode. The quality of the model was checked by stability and sensitivity analyses.

  10. Impact of pretilachlor herbicide and pyridaphenthion insecticide on aquatic organisms in model streams.

    PubMed

    Takahashi, Yoshiyuki; Houjyo, Toshihiko; Kohjimoto, Toshiki; Takagi, Yutaka; Mori, Katsuhiko; Muraoka, Tetsuro; Annoh, Hirochika; Ogiyama, Kazuhiro; Funaki, Yuki; Tanaka, Kaoru; Wada, Yutaka; Fujita, Toshikazu

    2007-06-01

    To detect the impact of pesticides on aquatic organisms, model streams (3m wide, 20 m long) were established in paddy field in Japan. More than 100 species of aquatic organisms were generated in the model streams. Field tests with pretilachlor herbicide and pyridaphenthion insecticide were carried out in the streams for 3 yr (2001-2003). Exposure of pretilachlor (max. 0.382 mg/L) showed little density changes in algae with a Bray-Curtis percent similarity in the range 81.6-93.3% for algae. Exposure to high concentrations (>0.1mg/L) of pyridaphenthion produced visible density reductions in Cladocera zooplankton species. Reduction of individual aquatic insects in the model streams by pyridaphenthion caused an increase of chlorophyll a greater than that of the control streams. The pesticides used showed no substantial differences in the ecosystems of model streams exposed to maximum environmental concentrations (e.g., 0.01 mg/L) detected in real rivers.

  11. Phenomenological vs. biophysical models of thermal stress in aquatic eggs.

    PubMed

    Martin, Benjamin T; Pike, Andrew; John, Sara N; Hamda, Natnael; Roberts, Jason; Lindley, Steven T; Danner, Eric M

    2017-01-01

    Predicting species responses to climate change is a central challenge in ecology. These predictions are often based on lab-derived phenomenological relationships between temperature and fitness metrics. We tested one of these relationships using the embryonic stage of a Chinook salmon population. We parameterised the model with laboratory data, applied it to predict survival in the field, and found that it significantly underestimated field-derived estimates of thermal mortality. We used a biophysical model based on mass transfer theory to show that the discrepancy was due to the differences in water flow velocities between the lab and the field. This mechanistic approach provides testable predictions for how the thermal tolerance of embryos depends on egg size and flow velocity of the surrounding water. We found support for these predictions across more than 180 fish species, suggesting that flow and temperature mediated oxygen limitation is a general mechanism underlying the thermal tolerance of embryos.

  12. Animal Models of Q Fever (Coxiella burnetii)

    PubMed Central

    Bewley, Kevin R

    2013-01-01

    Q fever, caused by the pathogen Coxiella burnetii, is an acute disease that can progress to become a serious chronic illness. The organism leads an obligate, intracellular lifecycle, during which it multiplies in the phagolytic compartments of the phagocytic cells of the immune system of its hosts. This characteristic makes study of the organism particularly difficult and is perhaps one of the reasons why, more than 70 y after its discovery, much remains unknown about the organism and its pathogenesis. A variety of animal species have been used to study both the acute and chronic forms of the disease. Although none of the models perfectly mimics the disease process in humans, each opens a window onto an important aspect of the pathology of the disease. We have learned that immunosuppression, overexpression of IL10, or physical damage to the heart muscle in mice and guinea pigs can induce disease that is similar to the chronic disease seen in humans, suggesting that this aspect of disease may eventually be fully understood. Models using species from mice to nonhuman primates have been used to evaluate and characterize vaccines to protect against the disease and may ultimately yield safer, less expensive vaccines. PMID:24326221

  13. Predicting aquatic toxicities of chemical pesticides in multiple test species using nonlinear QSTR modeling approaches.

    PubMed

    Basant, Nikita; Gupta, Shikha; Singh, Kunwar P

    2015-11-01

    In this study, we established nonlinear quantitative-structure toxicity relationship (QSTR) models for predicting the toxicities of chemical pesticides in multiple aquatic test species following the OECD (Organization for Economic Cooperation and Development) guidelines. The decision tree forest (DTF) and decision tree boost (DTB) based QSTR models were constructed using a pesticides toxicity dataset in Selenastrum capricornutum and a set of six descriptors. Other six toxicity data sets were used for external validation of the constructed QSTRs. Global QSTR models were also constructed using the combined dataset of all the seven species. The diversity in chemical structures and nonlinearity in the data were evaluated. Model validation was performed deriving several statistical coefficients for the test data and the prediction and generalization abilities of the QSTRs were evaluated. Both the QSTR models identified WPSA1 (weighted charged partial positive surface area) as the most influential descriptor. The DTF and DTB QSTRs performed relatively better than the single decision tree (SDT) and support vector machines (SVM) models used as a benchmark here and yielded R(2) of 0.886 and 0.964 between the measured and predicted toxicity values in the complete dataset (S. capricornutum). The QSTR models applied to six other aquatic species toxicity data yielded R(2) of >0.92 (DTF) and >0.97 (DTB), respectively. The prediction accuracies of the global models were comparable with those of the S. capricornutum models. The results suggest for the appropriateness of the developed QSTR models to reliably predict the aquatic toxicity of chemicals and can be used for regulatory purpose.

  14. Goats as an osteopenic animal model.

    PubMed

    Leung, K S; Siu, W S; Cheung, N M; Lui, P Y; Chow, D H; James, A; Qin, L

    2001-12-01

    A large osteopenic animal model that resembles human osteoporotic changes is essential for osteoporosis research. This study aimed at establishing a large osteopenic animal model in goats. Twenty-five Chinese mountain goats were used in which they were either ovariectomized (OVX) and fed with a low-calcium diet (n = 16) or sham-operated (SHAM; n = 9). Monthly photodensitometric analysis on proximal tibial metaphysis and calcaneus was performed. Two iliac crest biopsy specimens obtained before and 6 months after OVX were used for bone mineral density (BMD) measurement with peripheral quantitative computed tomography (pQCT). Lumbar vertebrae (L2 and L7), humeral heads, and calcanei were collected for BMD measurement after euthanasia. The humeral heads and calcanei were used in biomechanical indentation test. BMD measurement showed a significant 25.0% (p = 0.006) decrease in BMD of the iliac crest biopsy specimens 6 months after OVX. It also was statistically significant when compared with the SHAM (p = 0.028). BMD at L2, L7, calcaneus, and humeral head reduced by 24-33% (p ranged from 0.001 to 0.011) when compared with the SHAM. Photodensitometry showed a continuous decrease in bone density after OVX. There were significant decreases of 18.9% in proximal tibial metaphysis (p = 0.003) and 21.8% in calcaneus (p = 0.023) in the OVX group 6 months postoperatively. Indentation test on the humeral head and calcaneus showed a significant decrease 52% (p = 0.006) and 54% (p = 0.001), respectively, in energy required for displacement of 3 mm in the OVX group compared with the SHAM group. The decreases correlated significantly to the decrease in BMD of the corresponding specimens (r2 = 0.439 and 0.581; p < 0.001 for both). In conclusion, this study showed that OVX plus a low-calcium diet could induce significant osteopenia and deterioration of mechanical properties of the cancellous bone in goats.

  15. Large animal model of chronic pulmonary hypertension.

    PubMed

    Sato, Hitoshi; Hall, Candice M; Griffith, Grant W; Johnson, Kent F; McGillicuddy, John W; Bartlett, Robert H; Cook, Keith E

    2008-01-01

    A large animal model is needed to study artificial lung attachment in a setting simulating chronic lung disease with significant pulmonary hypertension (PH). This study sought to create a sheep model that develops significant PH within 60 days with a low rate of mortality. Sephadex beads were injected in the pulmonary circulation of sheep every other day for 60 days at doses of 0.5, 0.75, and 1 g (n = 10, 10, 7). Mean pulmonary artery pressure, pulmonary capillary wedge pressure, and cardiac output were obtained every 2 weeks. In the 0.5, 0.75, and 1-g groups, 90, 70, and 14.3% of sheep completed the study, respectively, with the remainder experiencing heart failure. By the 60th day, pulmonary vascular resistance had increased (p < 0.01) from 0.89 +/- 0.3 to 3.2 +/- 0.9 mm Hg/(L/min) and from 0.9 +/- 0.3 to 4.3 +/- 3.2 mm Hg/(L/min) in the 0.5 and 0.75-g groups, respectively. Significant right ventricular hypertrophy was observed in the 0.75-g group but not in the 0.5-g group. Data from the 1-g group were insufficient for analysis due to high mortality. Thus, the 0.5 and 0.75-g groups generate significant PH, but the 0.75-g group is a better model of chronic PH in lung disease due to the development of right ventricular hypertrophy.

  16. Using biodynamic models to reconcile differences between laboratory toxicity tests and field biomonitoring with aquatic insects

    USGS Publications Warehouse

    Buchwalter, D.B.; Cain, D.J.; Clements, W.H.; Luoma, S.N.

    2007-01-01

    Aquatic insects often dominate lotic ecosystems, yet these organisms are under-represented in trace metal toxicity databases. Furthermore, toxicity data for aquatic insects do not appear to reflect their actual sensitivities to metals in nature, because the concentrations required to elicit toxicity in the laboratory are considerably higher than those found to impact insect communities in the field. New approaches are therefore needed to better understand how and why insects are differentially susceptible to metal exposures. Biodynamic modeling is a powerful tool for understanding interspecific differences in trace metal bioaccumulation. Because bioaccumulation alone does not necessarily correlate with toxicity, we combined biokinetic parameters associated with dissolved cadmium exposures with studies of the subcellular compartmentalization of accumulated Cd. This combination of physiological traits allowed us to make predictions of susceptibility differences to dissolved Cd in three aquatic insect taxa: Ephemerella excrucians, Rhithrogena morrisoni, and Rhyacophila sp. We compared these predictions with long-term field monitoring data and toxicity tests with closely related taxa: Ephemerella infrequens, Rhithrogena hageni, and Rhyacophila brunea. Kinetic parameters allowed us to estimate steady-state concentrations, the time required to reach steady state, and the concentrations of Cd projected to be in potentially toxic compartments for different species. Species-specific physiological traits identified using biodynamic models provided a means for better understanding why toxicity assays with insects have failed to provide meaningful estimates for metal concentrations that would be expected to be protective in nature. ?? 2007 American Chemical Society.

  17. Environmental fate and biodegradability of benzene derivatives as studied in a model aquatic ecosystem.

    PubMed

    Lu, P Y; Metcalf, R L

    1975-04-01

    A model aquatic ecosystem is devised for studying relatively volatile organic compounds and simulating direct discharge of chemical wastes into aquatic ecosystems. Six simple benzene derivatives (aniline, anisole, benzoic acid, chlorobenzene, nitrobenzene, and phthalic anhydride) and other important specialty chemicals: hexachlorobenzene, pentachlorophenol, 2,6-diethylaniline, and 3,5,6-trichloro-2-pyridinol were also chosen for study of environmental behavior and fate in the model aquatic ecosystem. Quantitative relationships of the intrinsic molecular properties of the environmental micropollutants with biological responses are established, e.g., water solubility, partition coefficient, pi constant, sigma constant, ecological magnification, biodegradability index, and comparative detoxication mechanisms, respectively. Water solubility, pi constant, and sigma constant are the most significant factors and control the biological responses of the food chain members. Water solubility and pi constant control the degree of bioaccumulation, and sigma constant limits the metabolism of the xenobiotics via microsomal detoxication enzymes. These highly significant correlations should be useful for predicting environmental fate of organic chemicals.

  18. A commentary on domestic animals as dual-purpose models that benefit agricultural and biomedical research.

    PubMed

    Ireland, J J; Roberts, R M; Palmer, G H; Bauman, D E; Bazer, F W

    2008-10-01

    Research on domestic animals (cattle, swine, sheep, goats, poultry, horses, and aquatic species) at land grant institutions is integral to improving the global competitiveness of US animal agriculture and to resolving complex animal and human diseases. However, dwindling federal and state budgets, years of stagnant funding from USDA for the Competitive State Research, Education, and Extension Service National Research Initiative (CSREES-NRI) Competitive Grants Program, significant reductions in farm animal species and in numbers at land grant institutions, and declining enrollment for graduate studies in animal science are diminishing the resources necessary to conduct research on domestic species. Consequently, recruitment of scientists who use such models to conduct research relevant to animal agriculture and biomedicine at land grant institutions is in jeopardy. Concerned stakeholders have addressed this critical problem by conducting workshops, holding a series of meetings with USDA and National Institutes of Health (NIH) officials, and developing a white paper to propose solutions to obstacles impeding the use of domestic species as dual-purpose animal models for high-priority problems common to agriculture and biomedicine. In addition to shortfalls in research support and human resources, overwhelming use of mouse models in biomedicine, lack of advocacy from university administrators, long-standing cultural barriers between agriculture and human medicine, inadequate grantsmanship by animal scientists, and a scarcity of key reagents and resources are major roadblocks to progress. Solutions will require a large financial enhancement of USDA's Competitive Grants Program, educational programs geared toward explaining how research using agricultural animals benefits both animal agriculture and human health, and the development of a new mind-set in land grant institutions that fosters greater cooperation among basic and applied researchers. Recruitment of

  19. Animal model of Mycoplasma fermentans respiratory infection

    PubMed Central

    2013-01-01

    Background Mycoplasma fermentans has been associated with respiratory, genitourinary tract infections and rheumatoid diseases but its role as pathogen is controversial. The purpose of this study was to probe that Mycoplasma fermentans is able to produce respiratory tract infection and migrate to several organs on an experimental infection model in hamsters. One hundred and twenty six hamsters were divided in six groups (A-F) of 21 hamsters each. Animals of groups A, B, C were intratracheally injected with one of the mycoplasma strains: Mycoplasma fermentans P 140 (wild strain), Mycoplasma fermentans PG 18 (type strain) or Mycoplasma pneumoniae Eaton strain. Groups D, E, F were the negative, media, and sham controls. Fragments of trachea, lungs, kidney, heart, brain and spleen were cultured and used for the histopathological study. U frequency test was used to compare recovery of mycoplasmas from organs. Results Mycoplasmas were detected by culture and PCR. The three mycoplasma strains induced an interstitial pneumonia; they also migrated to several organs and persisted there for at least 50 days. Mycoplasma fermentans P 140 induced a more severe damage in lungs than Mycoplasma fermentans PG 18. Mycoplasma pneumoniae produced severe damage in lungs and renal damage. Conclusions Mycoplasma fermentans induced a respiratory tract infection and persisted in different organs for several weeks in hamsters. This finding may help to explain the ability of Mycoplasma fermentans to induce pneumonia and chronic infectious diseases in humans. PMID:23298636

  20. The maternal deprivation animal model revisited.

    PubMed

    Marco, Eva M; Llorente, Ricardo; López-Gallardo, Meritxell; Mela, Virginia; Llorente-Berzal, Álvaro; Prada, Carmen; Viveros, María-Paz

    2015-04-01

    Early life stress, in the form of MD (24h at pnd 9), interferes with brain developmental trajectories modifying both behavioral and neurobiochemical parameters. MD has been reported to enhance neuroendocrine responses to stress, to affect emotional behavior and to impair cognitive function. More recently, changes in body weight gain, metabolic parameters and immunological responding have also been described. Present data give support to the fact that neuronal degeneration and/or astrocyte proliferation are present in specific brain regions, mainly hippocampus, prefrontal cortex and hypothalamus, which are particularly vulnerable to the effects of neonatal stress. The MD animal model arises as a valuable tool for the investigation of the brain processes occurring at the narrow time window comprised between pnd 9 and 10 that are critical for the establishment of brain circuitries critical for the regulation of behavior, metabolism and energy homeostasis. In the present review we will discuss three possible mechanisms that might be crucial for the effects of MD, namely, the rapid increase in glucocorticoids, the lack of the neonatal leptin surge, and the enhanced endocannabinoid signaling during the specific critical period of MD. A better understanding of the mechanisms underlying the detrimental consequences of MD is a concern for public health and may provide new insights into mental health prevention strategies and into novel therapeutic approaches in neuropsychiatry.

  1. From terrestrial to aquatic fluxes: Integrating stream dynamics within a dynamic global vegetation modeling framework

    NASA Astrophysics Data System (ADS)

    Hoy, Jerad; Poulter, Benjamin; Emmett, Kristen; Cross, Molly; Al-Chokhachy, Robert; Maneta, Marco

    2016-04-01

    Integrated terrestrial ecosystem models simulate the dynamics and feedbacks between climate, vegetation, disturbance, and hydrology and are used to better understand biogeography and biogeochemical cycles. Extending dynamic vegetation models to the aquatic interface requires coupling surface and sub-surface runoff to catchment routing schemes and has the potential to enhance how researchers and managers investigate how changes in the environment might impact the availability of water resources for human and natural systems. In an effort towards creating such a coupled model, we developed catchment-based hydrologic routing and stream temperature model to pair with LPJ-GUESS, a dynamic global vegetation model. LPJ-GUESS simulates detailed stand-level vegetation dynamics such as growth, carbon allocation, and mortality, as well as various physical and hydrologic processes such as canopy interception and through-fall, and can be applied at small spatial scales, i.e., 1 km. We demonstrate how the coupled model can be used to investigate the effects of transient vegetation dynamics and CO2 on seasonal and annual stream discharge and temperature regimes. As a direct management application, we extend the modeling framework to predict habitat suitability for fish habitat within the Greater Yellowstone Ecosystem, a 200,000 km2 region that provides critical habitat for a range of aquatic species. The model is used to evaluate, quantitatively, the effects of management practices aimed to enhance hydrologic resilience to climate change, and benefits for water storage and fish habitat in the coming century.

  2. Animal models of rheumatoid arthritis: How informative are they?

    PubMed

    McNamee, Kay; Williams, Richard; Seed, Michael

    2015-07-15

    Animal models of arthritis are widely used to de-convolute disease pathways and to identify novel drug targets and therapeutic approaches. However, the high attrition rates of drugs in Phase II/III rates means that a relatively small number of drugs reach the market, despite showing efficacy in pre-clinical models. There is also increasing awareness of the ethical issues surrounding the use of animal models of disease and it is timely, therefore, to review the relevance and translatability of animal models of arthritis. In this paper we review the most commonly used animal models in terms of their pathological similarities to human rheumatoid arthritis as well as their response to drug therapy. In general, the ability of animal models to predict efficacy of biologics in man has been good. However, the predictive power of animal models for small molecules has been variable, probably because of differences in the levels of target knockdown achievable in vivo.

  3. Animal models in virus research: their utility and limitations.

    PubMed

    Louz, Derrick; Bergmans, Hans E; Loos, Birgit P; Hoeben, Rob C

    2013-11-01

    Viral diseases are important threats to public health worldwide. With the number of emerging viral diseases increasing the last decades, there is a growing need for appropriate animal models for virus studies. The relevance of animal models can be limited in terms of mimicking human pathophysiology. In this review, we discuss the utility of animal models for studies of influenza A viruses, HIV and SARS-CoV in light of viral emergence, assessment of infection and transmission risks, and regulatory decision making. We address their relevance and limitations. The susceptibility, immune responses, pathogenesis, and pharmacokinetics may differ between the various animal models. These complexities may thwart translating results from animal experiments to the humans. Within these constraints, animal models are very informative for studying virus immunopathology and transmission modes and for translation of virus research into clinical benefit. Insight in the limitations of the various models may facilitate further improvements of the models.

  4. A generic, process-based model of microbial pollution in aquatic systems

    NASA Astrophysics Data System (ADS)

    Hipsey, Matthew R.; Antenucci, Jason P.; Brookes, Justin D.

    2008-07-01

    Based on a comprehensive synthesis of data available within the literature, a new process-based model of microbial pollution is presented, which is applicable for surface and coastal waters. The model is based on a generic set of parameterisations that describe the dynamics of most protozoan, bacterial and viral organisms of interest, including pathogens and microbial indicator organisms. The parameterisations dynamically account for the effects of temperature, salinity, pH, dissolved oxygen, sunlight, nutrients and turbidity on the growth and mortality of enteric organisms. Parameters for a range of organisms are also presented which are based on collation of literature data. The model has been implemented within an aquatic ecology model, Computational Aquatic Ecosystem Dynamics Model (CAEDYM), which can couple to multidimensional hydrodynamic models. Without adjustment of the literature derived parameter values, a 3-D implementation is validated against observed data from three freshwater systems that differ in their climatic zone, trophic status and operation. The simulations highlight the spatial and temporal variability that may be encountered by operators. Additionally, large differences in the fate and distribution of different species originate from variable rates of growth, mortality and sedimentation and it is emphasized that the use of surrogates for quantifying risk is problematic. The model can be used to help design targeted monitoring programs, explore differences between species, and to support real-time decision-making. Areas where insufficient understanding and data exist are discussed.

  5. Spatially-explicit bioaccumulation modeling in aquatic environments: Results from two demonstration sites.

    PubMed

    von Stackelberg, Katherine; Williams, Marc A; Clough, Jonathan; Johnson, Mark S

    2017-03-11

    Bioaccumulation models quantify the relationship between sediment and water exposure concentrations and resulting tissue levels of chemicals in aquatic organisms, and represent a key link in the suite of tools used to support decision making at contaminated sediment sites. Predicted concentrations in the aquatic food web provide exposure estimates for human health and ecological risk assessments, which, in turn, provide risk-based frameworks for evaluating potential remedial activities and other management alternatives based on the fish consumption pathway. Despite the widespread use of bioaccumulation models to support remedial decision-making, concerns remain about the predictive power of these models. A review of the available literature finds the increased mathematical complexity of typical bioaccumulation model applications is not matched by the deterministic exposure concentrations used to drive the models. We tested a spatially explicit exposure model (FishRand) at two nominally contaminated sites and compared results to estimates of bioaccumulation based on conventional, non-spatial techniques and monitoring data. Differences in predicted fish tissue concentrations across applications were evident, although these demonstration sites were only mildly contaminated and would not warrant management actions on the basis of fish consumption. Nonetheless, predicted tissue concentrations based on the spatially-explicit exposure characterization consistently outperformed conventional, non-spatial techniques across a variety of model performance metrics. These results demonstrate the improved predictive power as well as greater flexibility in evaluating the impacts of food web exposure and fish foraging behavior in a heterogeneous exposure environment. This article is protected by copyright. All rights reserved.

  6. Modeling individual animal histories with multistate capture–recapture models

    USGS Publications Warehouse

    Lebreton, Jean-Dominique; Nichols, James D.; Barker, Richard J.; Pradel, Roger; Spendelow, Jeffrey A.

    2009-01-01

    Many fields of science begin with a phase of exploration and description, followed by investigations of the processes that account for observed patterns. The science of ecology is no exception, and recent decades have seen a focus on understanding key processes underlying the dynamics of ecological systems. In population ecology, emphasis has shifted from the state variable of population size to the demographic processes responsible for changes in this state variable: birth, death, immigration, and emigration. In evolutionary ecology, some of these same demographic processes, rates of birth and death, are also the determinants of fitness. In animal population ecology, the estimation of state variables and their associated vital rates is especially problematic because of the difficulties in sampling such populations and detecting individual animals. Indeed, early capture–recapture models were developed for the purpose of estimating population size, given the reality that all animals are not caught or detected at any sampling occasion. More recently, capture–recapture models for open populations were developed to draw inferences about survival in the face of these same sampling problems. The focus of this paper is on multi‐state mark–recapture models (MSMR), which first appeared in the 1970s but have undergone substantial development in the last 15 years. These models were developed to deal explicitly with biological variation, in that animals in different “states” (classes defined by location, physiology, behavior, reproductive status, etc.) may have different probabilities of survival and detection. Animal transitions between states are also stochastic and themselves of interest. These general models have proven to be extremely useful and provide a way of thinking about a remarkably wide range of important ecological processes. These methods are now at a stage of refinement and sophistication where they can readily be used by biologists to tackle a wide

  7. Animal models to study gluten sensitivity.

    PubMed

    Marietta, Eric V; Murray, Joseph A

    2012-07-01

    The initial development and maintenance of tolerance to dietary antigens is a complex process that, when prevented or interrupted, can lead to human disease. Understanding the mechanisms by which tolerance to specific dietary antigens is attained and maintained is crucial to our understanding of the pathogenesis of diseases related to intolerance of specific dietary antigens. Two diseases that are the result of intolerance to a dietary antigen are celiac disease (CD) and dermatitis herpetiformis (DH). Both of these diseases are dependent upon the ingestion of gluten (the protein fraction of wheat, rye, and barley) and manifest in the gastrointestinal tract and skin, respectively. These gluten-sensitive diseases are two examples of how devastating abnormal immune responses to a ubiquitous food can be. The well-recognized risk genotype for both is conferred by either of the HLA class II molecules DQ2 or DQ8. However, only a minority of individuals who carry these molecules will develop either disease. Also of interest is that the age at diagnosis can range from infancy to 70-80 years of age. This would indicate that intolerance to gluten may potentially be the result of two different phenomena. The first would be that, for various reasons, tolerance to gluten never developed in certain individuals, but that for other individuals, prior tolerance to gluten was lost at some point after childhood. Of recent interest is the concept of non-celiac gluten sensitivity, which manifests as chronic digestive or neurologic symptoms due to gluten, but through mechanisms that remain to be elucidated. This review will address how animal models of gluten-sensitive disorders have substantially contributed to a better understanding of how gluten intolerance can arise and cause disease.

  8. Animal models to evaluate anti-atherosclerotic drugs.

    PubMed

    Priyadharsini, Raman P

    2015-08-01

    Atherosclerosis is a multifactorial condition characterized by endothelial injury, fatty streak deposition, and stiffening of the blood vessels. The pathogenesis is complex and mediated by adhesion molecules, inflammatory cells, and smooth muscle cells. Statins have been the major drugs in treating hypercholesterolemia for the past two decades despite little efficacy. There is an urgent need for new drugs that can replace statins or combined with statins. The preclinical studies evaluating atherosclerosis require an ideal animal model which resembles the disease condition, but there is no single animal model which mimics the disease. The animal models used are rabbits, rats, mice, hamsters, mini pigs, etc. Each animal model has its own advantages and disadvantages. The method of induction of atherosclerosis includes diet, chemical induction, mechanically induced injuries, and genetically manipulated animal models. This review mainly focuses on the various animal models, method of induction, the advantages, disadvantages, and the current perspectives with regard to preclinical studies on atherosclerosis.

  9. Cumulative permanent environmental effects for repeated records animal models.

    PubMed

    Schaeffer, L R

    2011-04-01

    The assumption of a single permanent environmental (PE) effect contributing to every record made by an animal is questioned. An alternative model where new PE effects accumulate with each record made by an animal is proposed. An example is used to illustrate the differences between the traditional model and the proposed model.

  10. Intraperitoneal chemotherapy (IPC) for peritoneal carcinomatosis: review of animal models.

    PubMed

    Gremonprez, Félix; Willaert, Wouter; Ceelen, Wim

    2014-02-01

    The development of suitable animal models is essential to experimental research on intraperitoneal chemotherapy (IPC). This review of the English literature (MEDLINE) presents a detailed analysis of current animal models and gives recommendations for future experimental research. Special consideration should be given to cytotoxic drug dose and concentration, tumor models, and outcome parameters.

  11. Animal models of leukemia: any closer to the real thing?

    PubMed

    Cook, Guerry J; Pardee, Timothy S

    2013-06-01

    Animal models have been invaluable in the efforts to better understand and ultimately treat patients suffering from leukemia. While important insights have been gleaned from these models, limitations must be acknowledged. In this review, we will highlight the various animal models of leukemia and describe their contributions to the improved understanding and treatment of these cancers.

  12. Animal Models of Leukemia: Any closer to the real thing?

    PubMed Central

    Cook, Guerry J; Pardee, Timothy S.

    2012-01-01

    Animal models have been invaluable in the efforts to better understand and ultimately treat patients suffering from leukemia. While important insights have been gleaned from these models, limitations must be acknowledged. In this review, we will highlight the various animal models of leukemia and describe their contributions to the improved understanding and treatment of these cancers. PMID:23081702

  13. Enteric Viruses of Humans and Animals in Aquatic Environments: Health Risks, Detection, and Potential Water Quality Assessment Tools

    PubMed Central

    Fong, Theng-Theng; Lipp, Erin K.

    2005-01-01

    Waterborne enteric viruses threaten both human and animal health. These pathogens are host specific and cause a wide range of diseases and symptoms in humans or other animals. While considerable research has documented the risk of enteric viruses to human health from contact with contaminated water, the current bacterial indicator-based methods for evaluation of water quality are often ineffectual proxies for pathogenic viruses. Additionally, relatively little work has specifically investigated the risk of waterborne viruses to animal health, and this risk currently is not addressed by routine water quality assessments. Nonetheless, because of their host specificity, enteric viruses can fulfill a unique role both for assessing health risks and as measures of contamination source in a watershed, yet the use of animal, as well as human, host-specific viruses in determining sources of fecal pollution has received little attention. With improved molecular detection assays, viruses from key host groups can be targeted directly using PCR amplification or hybridization with a high level of sensitivity and specificity. A multispecies viral analysis would provide needed information for controlling pollution by source, determining human health risks based on assessments of human virus loading and exposure, and determining potential risks to production animal health and could indicate the potential for the presence of other zoonotic pathogens. While there is a need to better understand the prevalence and environmental distribution of nonhuman enteric viruses, the development of improved methods for specific and sensitive detection will facilitate the use of these microbes for library-independent source tracking and water quality assessment tools. PMID:15944460

  14. Do aquatic macrophytes co-occur randomly? An analysis of null models in a tropical floodplain.

    PubMed

    Boschilia, Solana M; Oliveira, Edson F; Thomaz, Sidinei M

    2008-05-01

    One of the main issues in community ecology is the detection of structure and the identification of its related causes. In this study, co-occurrence null models were used to identify possible spatio-temporal patterns in the assemblage of aquatic macrophytes in the Upper Paraná River floodplain. The samples were obtained through the Long Term Ecological Research (LTER) Program at two different grains: (1) a coarser spatial grain in January and August 2001 (entire floodplain lagoons); (2) and a finer spatial grain in November 2006 (1 m(2) quadrats). The study was conducted in 36 lagoons, both connected and disconnected to the main river channel, located in the sub-basins of the Baía, Ivinheima and Paraná rivers. Two null models of species co-occurrence, the C-Score and Checkerboard indices, were used to test the null hypothesis of random structure of the aquatic macrophyte assemblages. The null models showed that the aquatic macrophyte assemblages were spatially structured in the distinct spatial grains. However, despite this general pattern, macrophyte assemblages are organized differently depending on the degree of connectivity, seasonal period and, at a finer grain, depth. Species co-occurrences were random in the disconnected lagoons during flood periods, in deep zones of the lagoons of the Baía River and in the shallow littoral zone in the lagoons of the Paraná River. Analysis of the patterns of co-occurrence indicated that competition and/or habitat preferences are probably important influences on the nonrandom structure of assemblages. However, we suppose that at least three important factors (disturbances by water level fluctuation, dispersion and facilitation) counteract potential effects of competition in specific situations, leading macrophyte assemblages to assume random structure.

  15. Use of a two-dimensional flow model to quantify aquatic habitat

    NASA Astrophysics Data System (ADS)

    Gee, D. M.; Wilcox, D. B.

    1985-04-01

    This paper describes the impacts of potential hydropower retrofits on downstream flow distributions at Lock and Dam No. 8 on the upper Mississippi River. The model used solves the complete Reynolds equations for two-dimensional free-surface flow in the horizontal plane using a finite element solution scheme. RMA-2 has been in continuing use and development at the Hydrologic Engineering Center and elsewhere for the past decade. Although designed primarily for the simulation of hydraulic conditions, RMA-2 may be used in conjunction with related numerical models to simulate sediment transport and water quality. In this study, velocity distributions were evaluated with regard to environmental, navigational and small-boat safety considerations. Aquatic habitat was defined by depth, substrate type and current velocity. Habitat types were quantified by measuring the areas between calculated contours of velocity magnitude (isotachs) for existing and project conditions. The capability for computing and displaying isotachs for the depth-average velocity, velocity one foot from the bottom and near the water surface was developed for this study. The product of this study effort is an application of the RMA-2 model that allows prediction of structural aquatic habitat in hydraulically complex locations. Elements of the instream flow group methodology could be incorporated to provide detailed predictions of impacts to habitat quality. Calibration of the numerical model to field measurements of velocity magnitude and direction is also described.

  16. Modeling an aquatic ecosystem: application of an evolutionary algorithm with genetic doping to reduce prediction uncertainty

    NASA Astrophysics Data System (ADS)

    Friedel, Michael; Buscema, Massimo

    2016-04-01

    Aquatic ecosystem models can potentially be used to understand the influence of stresses on catchment resource quality. Given that catchment responses are functions of natural and anthropogenic stresses reflected in sparse and spatiotemporal biological, physical, and chemical measurements, an ecosystem is difficult to model using statistical or numerical methods. We propose an artificial adaptive systems approach to model ecosystems. First, an unsupervised machine-learning (ML) network is trained using the set of available sparse and disparate data variables. Second, an evolutionary algorithm with genetic doping is applied to reduce the number of ecosystem variables to an optimal set. Third, the optimal set of ecosystem variables is used to retrain the ML network. Fourth, a stochastic cross-validation approach is applied to quantify and compare the nonlinear uncertainty in selected predictions of the original and reduced models. Results are presented for aquatic ecosystems (tens of thousands of square kilometers) undergoing landscape change in the USA: Upper Illinois River Basin and Central Colorado Assessment Project Area, and Southland region, NZ.

  17. MOAtox: A comprehensive mode of action and acute aquatic toxicity database for predictive model development.

    PubMed

    Barron, M G; Lilavois, C R; Martin, T M

    2015-04-01

    The mode of toxic action (MOA) has been recognized as a key determinant of chemical toxicity and as an alternative to chemical class-based predictive toxicity modeling. However, the development of quantitative structure activity relationship (QSAR) and other models has been limited by the availability of comprehensive high quality MOA and toxicity databases. The current study developed a dataset of MOA assignments for 1213 chemicals that included a diversity of metals, pesticides, and other organic compounds that encompassed six broad and 31 specific MOAs. MOA assignments were made using a combination of high confidence approaches that included international consensus classifications, QSAR predictions, and weight of evidence professional judgment based on an assessment of structure and literature information. A toxicity database of 674 acute values linked to chemical MOA was developed for fish and invertebrates. Additionally, species-specific measured or high confidence estimated acute values were developed for the four aquatic species with the most reported toxicity values: rainbow trout (Oncorhynchus mykiss), fathead minnow (Pimephales promelas), bluegill (Lepomis macrochirus), and the cladoceran (Daphnia magna). Measured acute toxicity values met strict standardization and quality assurance requirements. Toxicity values for chemicals with missing species-specific data were estimated using established interspecies correlation models and procedures (Web-ICE; http://epa.gov/ceampubl/fchain/webice/), with the highest confidence values selected. The resulting dataset of MOA assignments and paired toxicity values are provided in spreadsheet format as a comprehensive standardized dataset available for predictive aquatic toxicology model development.

  18. ANIMAL MODELS OF CHRONIC PESTICIDE NEUROTOXICITY.

    EPA Science Inventory

    There is a wealth of literature on neurotoxicological outcomes of acute and short-term exposure to pesticides in laboratory animals, but there are relatively few reports of long-term exposure. Reports in the literature describing "chronic" exposures to pesticides are, in fact, a...

  19. ANIMAL MODELS OF CHRONIC PESTICIDE NEUROTOXICITY.

    EPA Science Inventory

    There is a wealth of literature on neurotoxicological outcomes of acute and short-term exposure to pesticides in laboratory animals, but there are relatively few studies of- long-term exposure. Many reports in the literature describing ;chronic' exposures to pesticides are, in fa...

  20. Institutional Animal Care and Use Committee Considerations for Animal Models of Peripheral Neuropathy

    PubMed Central

    Brabb, Thea; Carbone, Larry; Snyder, Jessica; Phillips, Nona

    2014-01-01

    Peripheral neuropathy and neuropathic pain are debilitating, life-altering conditions that affect a significant proportion of the human population. Animal models, used to study basic disease mechanisms and treatment modalities, are diverse and provide many challenges for institutional animal care and use committee (IACUC) review and postapproval monitoring. Items to consider include regulatory and ethical imperatives in animal models that may be designed to study pain, the basic mechanism of neurodegeneration, and different disease processes for which neuropathic pain is a side effect. Neuropathic pain can be difficult to detect or quantify in many models, and pain management is often unsuccessful in both humans and animals, inspiring the need for more research. Design of humane endpoints requires clear communication of potential adverse outcomes and solutions. Communication with the IACUC, researchers, and veterinary staff is also key for successful postapproval monitoring of these challenging models. PMID:24615447

  1. Modeling and simulation of an aquatic habitat for bioregenerative life support research

    NASA Astrophysics Data System (ADS)

    Drayer, Gregorio E.; Howard, Ayanna M.

    2014-01-01

    Long duration human spaceflight poses challenges for spacecraft autonomy and the regeneration of life support consumables, such as oxygen and water. Bioregenerative life support systems (BLSS), which make use of biological processes to transform biological byproducts back into consumables, have the ability to recycle organic byproducts and are the preferred option for food production. A limitation in BLSS research is in the non-availability of small-scale experimental capacities that may help to better understand the challenges in system closure, integration, and control. Ground-based aquatic habitats are an option for small-scale research relevant to bioregenerative life support systems (BLSS), given that they can operate as self-contained systems enclosing a habitat composed of various species in a single volume of water. The purpose of this paper is to present the modeling and simulation of a reconfigurable aquatic habitat for experiments in regenerative life support automation; it supports the use of aquatic habitats as a small-scale approach to experiments relevant to larger-scale regenerative life support systems. It presents ground-based aquatic habitats as an option for small-scale BLSS research focusing on the process of respiration, and elaborates on the description of biological processes by introducing models of ecophysiological phenomena for consumers and producers: higher plants of the species Bacopa monnieri produce O2 for snails of the genus Pomacea; the snails consume O2 and generate CO2, which is used by the plants in combination with radiant energy to generate O2 through the process of photosynthesis. Feedback controllers are designed to regulate the concentration of dissolved oxygen in the water. This paper expands the description of biological processes by introducing models of ecophysiological phenomena of the organisms involved. The model of the plants includes a description of the rate of CO2 assimilation as a function of irradiance

  2. Hierarchical animal movement models for population-level inference

    USGS Publications Warehouse

    Hooten, Mevin B.; Buderman, Frances E.; Brost, Brian M.; Hanks, Ephraim M.; Ivans, Jacob S.

    2016-01-01

    New methods for modeling animal movement based on telemetry data are developed regularly. With advances in telemetry capabilities, animal movement models are becoming increasingly sophisticated. Despite a need for population-level inference, animal movement models are still predominantly developed for individual-level inference. Most efforts to upscale the inference to the population level are either post hoc or complicated enough that only the developer can implement the model. Hierarchical Bayesian models provide an ideal platform for the development of population-level animal movement models but can be challenging to fit due to computational limitations or extensive tuning required. We propose a two-stage procedure for fitting hierarchical animal movement models to telemetry data. The two-stage approach is statistically rigorous and allows one to fit individual-level movement models separately, then resample them using a secondary MCMC algorithm. The primary advantages of the two-stage approach are that the first stage is easily parallelizable and the second stage is completely unsupervised, allowing for an automated fitting procedure in many cases. We demonstrate the two-stage procedure with two applications of animal movement models. The first application involves a spatial point process approach to modeling telemetry data, and the second involves a more complicated continuous-time discrete-space animal movement model. We fit these models to simulated data and real telemetry data arising from a population of monitored Canada lynx in Colorado, USA.

  3. Modeling organic chemical fate in aquatic systems: Significance of bioaccumulation and relevant time-space scales

    SciTech Connect

    Thomann, R.V.

    1995-06-01

    The importance of aquatic food chain bioaccumulation of organic chemicals in contributing to human dose is derived. It is shown that for chemicals with log octanol water partition coefficients greater than about 3, the role of food chain transfer to fish consumed by humans becomes the more dominant route over drinking water. Modeling of aquatic food chain bioaccumulation then becomes necessary to accurately estimate dose of such chemicals to humans. The relevant time and space scales for groundwater and surface water also indicate a division of organic chemicals at a log octanol water partition coefficient of about 3. For chemicals greater than that level, groundwater transport is minimal, while for chemicals with log octanol water coefficients of less than about 3, detention times are long relative to surface water and biodegradation processes become more significant. An illustration is given of modeling the groundwater transport of two organic chemicals (BCEE and benzene) and a metal (chromium) at a Superfund site. The model indicates that after 10 years only a relatively small fraction of the chemicals had traveled in the groundwater about 300 m to the point of release from the site to surface water. On the other hand, steady state in the adjacent stream and lake is reached rapidly over a distance of 2000 m, illustrating the difference in spatial and temporal scales for the groundwater and surface water. 15 refs., 8 figs., 1 tab.

  4. Antibiotic resistance profile of bacterial isolates from animal farming aquatic environments and meats in a peri-urban community in Daejeon, Korea.

    PubMed

    Rho, Hyunjin; Shin, Bongjin; Lee, Okbok; Choi, Yu-Hyun; Rho, Jaerang; Lee, Jiyoung

    2012-05-01

    The increasing usage of antibiotics in the animal farming industry is an emerging worldwide problem contributing to the development of antibiotic resistance. The purpose of this work was to investigate the prevalence and antibiotic resistance profile of bacterial isolates collected from animal farming aquatic environments and meats in a peri-urban community in Daejeon, Korea. In an antibacterial susceptibility test, the bacterial isolates showed a high incidence of resistance (∼26.04%) to cefazolin, tetracycline, gentamycin, norfloxacin, erythromycin and vancomycin. The results from a test for multiple antibiotic resistance indicated that the isolates were displaying an approximately 5-fold increase in the incidence of multiple antibiotic resistance to combinations of two different antibiotics compared to combinations of three or more antibiotics. Most of the isolates showed multi-antibiotic resistance, and the resistance patterns were similar among the sampling groups. Sequencing data analysis of 16S rRNA showed that most of the resistant isolates appeared to be dominated by the classes Betaproteobacteria and Gammaproteobacteria, including the genera Delftia, Burkholderia, Escherichia, Enterobacter, Acinetobacter, Shigella and Pseudomonas.

  5. Are animal models as good as we think?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Models have been a tool of science at least since the 18th century and serve a variety of purposes from focusing abstract thoughts to representing scaled down version of things for study. Generally, animal models are needed when it is impractical or unethical to study the target animal. Biologists...

  6. The Various Roles of Animal Models in Understanding Human Development

    ERIC Educational Resources Information Center

    Gottlieb, Gilbert; Lickliter, Robert

    2004-01-01

    In this article, the authors take a very conservative view of the contribution of animal models to an understanding of human development. We do not think that homologies can be readily documented with even our most closely related relatives' behavior and psychological functioning. The major contribution of animal models is their provision of food…

  7. Overview of Vertebrate Animal Models of Fungal Infection

    PubMed Central

    Hohl, Tobias M.

    2014-01-01

    Fungi represent emerging infectious threats to human populations worldwide. Mice and other laboratory animals have proved invaluable in modeling clinical syndromes associated with superficial and life-threatening invasive mycoses. This review outlines salient features of common vertebrate animal model systems to study fungal pathogenesis, host antifungal immune responses, and antifungal compounds. PMID:24709390

  8. Technical intelligence in animals: the kea model.

    PubMed

    Huber, Ludwig; Gajdon, Gyula K

    2006-10-01

    The ability to act on information flexibly is one of the cornerstones of intelligent behavior. As particularly informative example, tool-oriented behavior has been investigated to determine to which extent nonhuman animals understand means-end relations, object affordances, and have specific motor skills. Even planning with foresight, goal-directed problem solving and immediate causal inference have been a focus of research. However, these cognitive abilities may not be restricted to tool-using animals but may be found also in animals that show high levels of curiosity, object exploration and manipulation, and extractive foraging behavior. The kea, a New Zealand parrot, is a particularly good example. We here review findings from laboratory experiments and field observations of keas revealing surprising cognitive capacities in the physical domain. In an experiment with captive keas, the success rate of individuals that were allowed to observe a trained conspecific was significantly higher than that of naive control subjects due to their acquisition of some functional understanding of the task through observation. In a further experiment using the string-pulling task, a well-probed test for means-end comprehension, we found the keas finding an immediate solution that could not be improved upon in nine further trials. We interpreted their performance as insightful in the sense of being sensitive of the relevant functional properties of the task and thereby producing a new adaptive response without trial-and-error learning. Together, these findings contribute to the ongoing debate on the distribution of higher cognitive skills in the animal kingdom by showing high levels of sensorimotor intelligence in animals that do not use tools. In conclusion, we suggest that the 'Technical intelligence hypothesis' (Byrne, Machiavellian intelligence II: extensions and evaluations, pp 289-211, 1997), which has been proposed to explain the origin of the ape/monkey grade-shift in

  9. Formal models in animal-metacognition research: the problem of interpreting animals' behavior.

    PubMed

    Smith, J David; Zakrzewski, Alexandria C; Church, Barbara A

    2016-10-01

    Ongoing research explores whether animals have precursors to metacognition-that is, the capacity to monitor mental states or cognitive processes. Comparative psychologists have tested apes, monkeys, rats, pigeons, and a dolphin using perceptual, memory, foraging, and information-seeking paradigms. The consensus is that some species have a functional analog to human metacognition. Recently, though, associative modelers have used formal-mathematical models hoping to describe animals' "metacognitive" performances in associative-behaviorist ways. We evaluate these attempts to reify formal models as proof of particular explanations of animal cognition. These attempts misunderstand the content and proper application of models. They embody mistakes of scientific reasoning. They blur fundamental distinctions in understanding animal cognition. They impede theoretical development. In contrast, an energetic empirical enterprise is achieving strong success in describing the psychology underlying animals' metacognitive performances. We argue that this careful empirical work is the clear path to useful theoretical development. The issues raised here about formal modeling-in the domain of animal metacognition-potentially extend to biobehavioral research more broadly.

  10. Animal models of human respiratory syncytial virus disease.

    PubMed

    Bem, Reinout A; Domachowske, Joseph B; Rosenberg, Helene F

    2011-08-01

    Infection with the human pneumovirus pathogen, respiratory syncytial virus (hRSV), causes a wide spectrum of respiratory disease, notably among infants and the elderly. Laboratory animal studies permit detailed experimental modeling of hRSV disease and are therefore indispensable in the search for novel therapies and preventative strategies. Present animal models include several target species for hRSV, including chimpanzees, cattle, sheep, cotton rats, and mice, as well as alternative animal pneumovirus models, such as bovine RSV and pneumonia virus of mice. These diverse animal models reproduce different features of hRSV disease, and their utilization should therefore be based on the scientific hypothesis under investigation. The purpose of this review is to summarize the strengths and limitations of each of these animal models. Our intent is to provide a resource for investigators and an impetus for future research.

  11. Ethological concepts enhance the translational value of animal models.

    PubMed

    Peters, Suzanne M; Pothuizen, Helen H J; Spruijt, Berry M

    2015-07-15

    The translational value of animal models is an issue of ongoing discussion. We argue that 'Refinement' of animal experiments is needed and this can be achieved by exploiting an ethological approach when setting up and conducting experiments. Ethology aims to assess the functional meaning of behavioral changes, due to experimental manipulation or treatment, in animal models. Although the use of ethological concepts is particularly important for studies involving the measurement of animal behavior (as is the case for most studies on neuro-psychiatric conditions), it will also substantially benefit other disciplines, such as those investigating the immune system or inflammatory response. Using an ethological approach also involves using more optimal testing conditions are employed that have a biological relevance to the animal. Moreover, using a more biological relevant analysis of the data will help to clarify the functional meaning of the modeled readout (e.g. whether it is psychopathological or adaptive in nature). We advocate for instance that more behavioral studies should use animals in group-housed conditions, including the recording of their ultrasonic vocalizations, because (1) social behavior is an essential feature of animal models for human 'social' psychopathologies, such as autism and schizophrenia, and (2) social conditions are indispensable conditions for appropriate behavioral studies in social species, such as the rat. Only when taking these elements into account, the validity of animal experiments and, thus, the translation value of animal models can be enhanced.

  12. The Detroit River: Effects of contaminants and human activities on aquatic plants and animals and their habitats

    USGS Publications Warehouse

    Manny, Bruce A.; Kenaga, David

    1991-01-01

    Despite the extensive urbanization of its watershed, the Detroit River still supports diverse fish and wildlife populations. Conflicting uses of the river for waste disposal, water withdrawals, shipping, recreation, and fishing require innovative management. Chemicals added by man to the Detroit River have adversely affected the health and habitats of the river's plants and animals. In 1985, as part of an Upper Great Lakes Connecting Channels Study sponsored by Environment Canada and the U.S. Environmental Protection Agency, researchers exposed healthy bacteria, plankton, benthic macroinvertebrates, fish, and birds to Detroit River sediments and sediment porewater. Negative impacts included genetic mutations in bacteria; death of macroinvertebrates; accumulation of contaminants in insects, clams, fish, and ducks; and tumor formation in fish. Field surveys showed areas of the river bottom that were otherwise suitable for habitation by a variety of plants and animals were contaminated with chlorinated hydrocarbons and heavy metals and occupied only by pollution-tolerant worms. Destruction of shoreline wetlands and disposal of sewage and toxic substances in the Detroit River have reduced habitat and conflict with basic biological processes, including the sustained production of fish and wildlife. Current regulations do not adequately control pollution loadings. However, remedial actions are being formulated by the U.S. and Canada to restore degraded benthic habitats and eliminate discharges of toxic contaminants into the Detroit River.

  13. Modeling methane bubble growth in fine-grained muddy aquatic sediments: correlation with sediment properties

    NASA Astrophysics Data System (ADS)

    Katsman, Regina

    2015-04-01

    Gassy sediments contribute to destabilization of aquatic infrastructure, air pollution, and global warming. In the current study a precise shape and size of the buoyant mature methane bubble in fine-grained muddy aquatic sediment is defined by numerical and analytical modeling, their results are in a good agreement. A closed-form analytical solution defining the bubble parameters is developed. It is found that the buoyant mature bubble is elliptical in its front view and resembles an inverted tear drop in its cross-section. The size and shape of the mature bubble strongly correlate with sediment fracture toughness. Bubbles formed in the weaker sediments are smaller and characterized by a larger surface-to volume ratio that induces their faster growth and may lead to their faster dissolution below the sediment-water interface. This may prevent their release to the water column and to the atmosphere. Shapes of the bubbles in the weaker sediments deviate further from the spherical configuration, than those in the stronger sediments. Modeled bubble characteristics, important for the acoustic applications, are in a good agreement with field observations and lab experiments.

  14. Model description of trophodynamic behavior of methylmercury in a marine aquatic system.

    PubMed

    Tong, Yindong; Zhang, Wei; Hu, Xindi; Ou, Langbo; Hu, Dan; Yang, Tianjun; Wei, Wen; Wang, Xuejun

    2012-07-01

    A marine food web in Bohai Bay, China, was selected to study methylmercury (MeHg) bioaccumulation, and an aquivalence-based mass balance model was established to explore the possibility of predicting the MeHg concentrations and quantifying MeHg bioaccumulation in the food web. Results showed that both total mercury (THg) and MeHg were biomagnified in the food web. The calculated MeHg concentrations in the selected species agreed well with the measured values, which shows the model could be a useful tool in MeHg concentration prediction in food web. Model outputs also showed that metabolism and growth dilution could be the dominant mechanisms for the reduction of MeHg levels in aquatic organisms. With the increase of trophic level, the contribution of food as a MeHg source for organism is increasing, and MeHg from prey was the dominant source.

  15. Landsat test of diffuse reflectance models for aquatic suspended solids measurement

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Alfoldi, T. T.

    1979-01-01

    Landsat radiance data were used to test mathematical models relating diffuse reflectance to aquatic suspended solids concentration. Digital CCT data for Landsat passes over the Bay of Fundy, Nova Scotia were analyzed on a General Electric Co. Image 100 multispectral analysis system. Three data sets were studied separately and together in all combinations with and without solar angle correction. Statistical analysis and chromaticity analysis show that a nonlinear relationship between Landsat radiance and suspended solids concentration is better at curve-fitting than a linear relationship. In particular, the quasi-single-scattering diffuse reflectance model developed by Gordon and coworkers is corroborated. The Gordon model applied to 33 points of MSS 5 data combined from three dates produced r = 0.98.

  16. Animal Models of Tourette Syndrome—From Proliferation to Standardization

    PubMed Central

    Yael, Dorin; Israelashvili, Michal; Bar-Gad, Izhar

    2016-01-01

    Tourette syndrome (TS) is a childhood onset disorder characterized by motor and vocal tics and associated with multiple comorbid symptoms. Over the last decade, the accumulation of findings from TS patients and the emergence of new technologies have led to the development of novel animal models with high construct validity. In addition, animal models which were previously associated with other disorders were recently attributed to TS. The proliferation of TS animal models has accelerated TS research and provided a better understanding of the mechanism underlying the disorder. This newfound success generates novel challenges, since the conclusions that can be drawn from TS animal model studies are constrained by the considerable variation across models. Typically, each animal model examines a specific subset of deficits and centers on one field of research (physiology/genetics/pharmacology/etc.). Moreover, different studies do not use a standard lexicon to characterize different properties of the model. These factors hinder the evaluation of individual model validity as well as the comparison across models, leading to a formation of a fuzzy, segregated landscape of TS pathophysiology. Here, we call for a standardization process in the study of TS animal models as the next logical step. We believe that a generation of standard examination criteria will improve the utility of these models and enable their consolidation into a general framework. This should lead to a better understanding of these models and their relationship to TS, thereby improving the research of the mechanism underlying this disorder and aiding the development of new treatments. PMID:27065791

  17. Animal Models for Salmonellosis: Applications in Vaccine Research.

    PubMed

    Higginson, Ellen E; Simon, Raphael; Tennant, Sharon M

    2016-09-01

    Salmonellosis remains an important cause of human disease worldwide. While there are several licensed vaccines for Salmonella enterica serovar Typhi, these vaccines are generally ineffective against other Salmonella serovars. Vaccines that target paratyphoid and nontyphoidal Salmonella serovars are very much in need. Preclinical evaluation of candidate vaccines is highly dependent on the availability of appropriate scientific tools, particularly animal models. Many different animal models exist for various Salmonella serovars, from whole-animal models to smaller models, such as those recently established in insects. Here, we discuss various mouse, rat, rabbit, calf, primate, and insect models for Salmonella infection, all of which have their place in research. However, choosing the right model is imperative in selecting the best vaccine candidates for further clinical testing. In this minireview, we summarize the various animal models that are used to assess salmonellosis, highlight some of the advantages and disadvantages of each, and discuss their value in vaccine development.

  18. Animal Models for Salmonellosis: Applications in Vaccine Research

    PubMed Central

    Higginson, Ellen E.; Simon, Raphael

    2016-01-01

    Salmonellosis remains an important cause of human disease worldwide. While there are several licensed vaccines for Salmonella enterica serovar Typhi, these vaccines are generally ineffective against other Salmonella serovars. Vaccines that target paratyphoid and nontyphoidal Salmonella serovars are very much in need. Preclinical evaluation of candidate vaccines is highly dependent on the availability of appropriate scientific tools, particularly animal models. Many different animal models exist for various Salmonella serovars, from whole-animal models to smaller models, such as those recently established in insects. Here, we discuss various mouse, rat, rabbit, calf, primate, and insect models for Salmonella infection, all of which have their place in research. However, choosing the right model is imperative in selecting the best vaccine candidates for further clinical testing. In this minireview, we summarize the various animal models that are used to assess salmonellosis, highlight some of the advantages and disadvantages of each, and discuss their value in vaccine development. PMID:27413068

  19. Systematic Reviews of Animal Models: Methodology versus Epistemology

    PubMed Central

    Greek, Ray; Menache, Andre

    2013-01-01

    Systematic reviews are currently favored methods of evaluating research in order to reach conclusions regarding medical practice. The need for such reviews is necessitated by the fact that no research is perfect and experts are prone to bias. By combining many studies that fulfill specific criteria, one hopes that the strengths can be multiplied and thus reliable conclusions attained. Potential flaws in this process include the assumptions that underlie the research under examination. If the assumptions, or axioms, upon which the research studies are based, are untenable either scientifically or logically, then the results must be highly suspect regardless of the otherwise high quality of the studies or the systematic reviews. We outline recent criticisms of animal-based research, namely that animal models are failing to predict human responses. It is this failure that is purportedly being corrected via systematic reviews. We then examine the assumption that animal models can predict human outcomes to perturbations such as disease or drugs, even under the best of circumstances. We examine the use of animal models in light of empirical evidence comparing human outcomes to those from animal models, complexity theory, and evolutionary biology. We conclude that even if legitimate criticisms of animal models were addressed, through standardization of protocols and systematic reviews, the animal model would still fail as a predictive modality for human response to drugs and disease. Therefore, systematic reviews and meta-analyses of animal-based research are poor tools for attempting to reach conclusions regarding human interventions. PMID:23372426

  20. Systematic reviews of animal models: methodology versus epistemology.

    PubMed

    Greek, Ray; Menache, Andre

    2013-01-01

    Systematic reviews are currently favored methods of evaluating research in order to reach conclusions regarding medical practice. The need for such reviews is necessitated by the fact that no research is perfect and experts are prone to bias. By combining many studies that fulfill specific criteria, one hopes that the strengths can be multiplied and thus reliable conclusions attained. Potential flaws in this process include the assumptions that underlie the research under examination. If the assumptions, or axioms, upon which the research studies are based, are untenable either scientifically or logically, then the results must be highly suspect regardless of the otherwise high quality of the studies or the systematic reviews. We outline recent criticisms of animal-based research, namely that animal models are failing to predict human responses. It is this failure that is purportedly being corrected via systematic reviews. We then examine the assumption that animal models can predict human outcomes to perturbations such as disease or drugs, even under the best of circumstances. We examine the use of animal models in light of empirical evidence comparing human outcomes to those from animal models, complexity theory, and evolutionary biology. We conclude that even if legitimate criticisms of animal models were addressed, through standardization of protocols and systematic reviews, the animal model would still fail as a predictive modality for human response to drugs and disease. Therefore, systematic reviews and meta-analyses of animal-based research are poor tools for attempting to reach conclusions regarding human interventions.

  1. A Statistical Quality Model for Data-Driven Speech Animation.

    PubMed

    Ma, Xiaohan; Deng, Zhigang

    2012-11-01

    In recent years, data-driven speech animation approaches have achieved significant successes in terms of animation quality. However, how to automatically evaluate the realism of novel synthesized speech animations has been an important yet unsolved research problem. In this paper, we propose a novel statistical model (called SAQP) to automatically predict the quality of on-the-fly synthesized speech animations by various data-driven techniques. Its essential idea is to construct a phoneme-based, Speech Animation Trajectory Fitting (SATF) metric to describe speech animation synthesis errors and then build a statistical regression model to learn the association between the obtained SATF metric and the objective speech animation synthesis quality. Through delicately designed user studies, we evaluate the effectiveness and robustness of the proposed SAQP model. To the best of our knowledge, this work is the first-of-its-kind, quantitative quality model for data-driven speech animation. We believe it is the important first step to remove a critical technical barrier for applying data-driven speech animation techniques to numerous online or interactive talking avatar applications.

  2. The use of animal models in diabetes research

    PubMed Central

    King, Aileen JF

    2012-01-01

    Diabetes is a disease characterized by a relative or absolute lack of insulin, leading to hyperglycaemia. There are two main types of diabetes: type 1 diabetes and type 2 diabetes. Type 1 diabetes is due to an autoimmune destruction of the insulin-producing pancreatic beta cells, and type 2 diabetes is caused by insulin resistance coupled by a failure of the beta cell to compensate. Animal models for type 1 diabetes range from animals with spontaneously developing autoimmune diabetes to chemical ablation of the pancreatic beta cells. Type 2 diabetes is modelled in both obese and non-obese animal models with varying degrees of insulin resistance and beta cell failure. This review outlines some of the models currently used in diabetes research. In addition, the use of transgenic and knock-out mouse models is discussed. Ideally, more than one animal model should be used to represent the diversity seen in human diabetic patients. LINKED ARTICLES Animal Models This paper is the latest in a series of publications on the use of animal models in pharmacology research. Readers might be interested in the previous papers. Robinson V (2009). Less is more: reducing the reliance on animal models for nausea and vomiting research. Holmes AM, Rudd JA, Tattersall FD, Aziz Q, Andrews PLR (2009). Opportunities for the replacement of animals in the study of nausea and vomiting. Giacomotto J and Ségalat L (2010). High-throughput screening and small animal models, where are we? McGrath JC, Drummond GB, McLachlan EM, Kilkenny C, Wainwright CL (2010). Guidelines for reporting experiments involving animals: the ARRIVE guidelines. Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG (2010). The ARRIVE guidelines. Emerson M (2010). Refinement, reduction and replacement approaches to in vivo cardiovascular research. Berge O-G (2011). Predictive validity of behavioural animal models for chronic pain. Vickers SP, Jackson HC and Cheetham SC (2011). The utility of animal models to evaluate

  3. Nephrectomized and hepatectomized animal models as tools in preclinical pharmacokinetics.

    PubMed

    Vestergaard, Bill; Agersø, Henrik; Lykkesfeldt, Jens

    2013-08-01

    Early understanding of the pharmacokinetics and metabolic patterns of new drug candidates is essential for selection of optimal candidates to move further in to the drug development process. In vitro methodologies can be used to investigate metabolic patterns, but in general, they lack several aspects of the whole-body physiology. In contrast, the complexity of intact animals does not necessarily allow individual processes to be identified. Animal models lacking a major excretion organ can be used to investigate these individual metabolic processes. Animal models of nephrectomy and hepatectomy have considerable potential as tools in preclinical pharmacokinetics to assess organs of importance for drug clearance and thereby knowledge of potential metabolic processes to manipulate to improve pharmacokinetic properties of the molecules. Detailed knowledge of anatomy and surgical techniques is crucial to successfully establish the models, and a well-balanced anaesthesia and adequate monitoring of the animals are also of major importance. An obvious drawback of animal models lacking an organ is the disruption of normal homoeostasis and the induction of dramatic and ultimately mortal systemic changes in the animals. Refining of the surgical techniques and the post-operative supportive care of the animals can increase the value of these models by minimizing the systemic changes induced, and thorough validation of nephrectomy and hepatectomy models is needed before use of such models as a tool in preclinical pharmacokinetics. The present MiniReview discusses pros and cons of the available techniques associated with establishing nephrectomy and hepatectomy models.

  4. Reviewing model application to support animal health decision making.

    PubMed

    Singer, Alexander; Salman, Mo; Thulke, Hans-Hermann

    2011-04-01

    Animal health is of societal importance as it affects human welfare, and anthropogenic interests shape decision making to assure animal health. Scientific advice to support decision making is manifold. Modelling, as one piece of the scientific toolbox, is appreciated for its ability to describe and structure data, to give insight in complex processes and to predict future outcome. In this paper we study the application of scientific modelling to support practical animal health decisions. We reviewed the 35 animal health related scientific opinions adopted by the Animal Health and Animal Welfare Panel of the European Food Safety Authority (EFSA). Thirteen of these documents were based on the application of models. The review took two viewpoints, the decision maker's need and the modeller's approach. In the reviewed material three types of modelling questions were addressed by four specific model types. The correspondence between tasks and models underpinned the importance of the modelling question in triggering the modelling approach. End point quantifications were the dominating request from decision makers, implying that prediction of risk is a major need. However, due to knowledge gaps corresponding modelling studies often shed away from providing exact numbers. Instead, comparative scenario analyses were performed, furthering the understanding of the decision problem and effects of alternative management options. In conclusion, the most adequate scientific support for decision making - including available modelling capacity - might be expected if the required advice is clearly stated.

  5. Animator

    ERIC Educational Resources Information Center

    Tech Directions, 2008

    2008-01-01

    Art and animation work is the most significant part of electronic game development, but is also found in television commercials, computer programs, the Internet, comic books, and in just about every visual media imaginable. It is the part of the project that makes an abstract design idea concrete and visible. Animators create the motion of life in…

  6. Animal models of henipavirus infection: a review.

    PubMed

    Weingartl, Hana M; Berhane, Yohannes; Czub, Markus

    2009-09-01

    Hendra virus (HeV) and Nipah virus (NiV) form a separate genus Henipavirus within the family Paramyxoviridae, and are classified as biosafety level four pathogens due to their high case fatality rate following human infection and because of the lack of effective vaccines or therapy. Both viruses emerged from their natural reservoir during the last decade of the 20th century, causing severe disease in humans, horses and swine, and infecting a number of other mammalian species. The current review summarises current published data relating to experimental infection of small and large animals, including the natural reservoir species, the Pteropus bat, with HeV or NiV. Susceptibility to infection and virus distribution in the individual species is discussed, along with the pathogenesis, pathological changes, and potential routes of transmission.

  7. Large animal models for vaccine development and testing.

    PubMed

    Gerdts, Volker; Wilson, Heather L; Meurens, Francois; van Drunen Littel-van den Hurk, Sylvia; Wilson, Don; Walker, Stewart; Wheler, Colette; Townsend, Hugh; Potter, Andrew A

    2015-01-01

    The development of human vaccines continues to rely on the use of animals for research. Regulatory authorities require novel vaccine candidates to undergo preclinical assessment in animal models before being permitted to enter the clinical phase in human subjects. Substantial progress has been made in recent years in reducing and replacing the number of animals used for preclinical vaccine research through the use of bioinformatics and computational biology to design new vaccine candidates. However, the ultimate goal of a new vaccine is to instruct the immune system to elicit an effective immune response against the pathogen of interest, and no alternatives to live animal use currently exist for evaluation of this response. Studies identifying the mechanisms of immune protection; determining the optimal route and formulation of vaccines; establishing the duration and onset of immunity, as well as the safety and efficacy of new vaccines, must be performed in a living system. Importantly, no single animal model provides all the information required for advancing a new vaccine through the preclinical stage, and research over the last two decades has highlighted that large animals more accurately predict vaccine outcome in humans than do other models. Here we review the advantages and disadvantages of large animal models for human vaccine development and demonstrate that much of the success in bringing a new vaccine to market depends on choosing the most appropriate animal model for preclinical testing.

  8. Current animal models of obsessive compulsive disorder: an update.

    PubMed

    Albelda, N; Joel, D

    2012-06-01

    During the last 30 years there have been many attempts to develop animal models of obsessive compulsive disorder (OCD), in the hope that they may provide a route for furthering our understanding and treatment of this disorder. The present review provides the reader with an overview of the currently active animal models of OCD, their strengths and limitations, so that the reader can use the review as a guide for establishing new animal models of OCD, evaluating existing animal models and choosing among them according to one's needs. We review current genetic, pharmacological, neurodevelopmental and behavioral animal models of OCD, and evaluate their face validity (derived from phenomenological similarity between the behavior in the animal model and the specific symptoms of the human condition), predictive validity (derived from similarity in response to treatment) and construct validity (derived from similarity in the underlying mechanisms [physiological or psychological]). On the basis of this evaluation we discuss the usefulness of the different models for screening drugs for anti-compulsive activity, detecting new targets for high frequency stimulation, studying the neural mechanisms of OCD and unraveling the role of gonadal hormones. We then describe potential new treatment strategies that emerge from the convergence of data obtained in different models on the one hand, and how different models can be used to model different subtypes or dimensions of OCD, on the other hand.

  9. A probabilistic model for silver bioaccumulation in aquatic systems and assessment of human health risks

    USGS Publications Warehouse

    Warila, James; Batterman, Stuart; Passino-Reader, Dora R.

    2001-01-01

    Silver (Ag) is discharged in wastewater effluents and is also a component in a proposed secondary water disinfectant. A steady-state model was developed to simulate bioaccumulation in aquatic biota and assess ecological and human health risks. Trophic levels included phytoplankton, invertebrates, brown trout, and common carp. Uptake routes included water, food, or sediment. Based on an extensive review of the literature, distributions were derived for most inputs for use in Monte Carlo simulations. Three scenarios represented ranges of dilution and turbidity. Compared with the limited field data available, median estimates of Ag in carp (0.07-2.1 Iμg/g dry weight) were 0.5 to 9 times measured values, and all measurements were within the predicted interquartile range. Median Ag concentrations in biota were ranked invertebrates > phytoplankton > trout > carp. Biotic concentrations were highest for conditions of low dilution and low turbidity. Critical variables included Ag assimilation eficiency, specific feeding rate, and the phytoplankton bioconcentration factor. Bioaccumulation of Ag seems unlikely to result in txicity to aquatic biota and humans consuming fish. Although the highest predicted Ag concentrations in water (>200 ng/L) may pose chronic risks to early survival and development of salmonids and risks of argyria to subsistence fishers, these results occur under highly conservative conditions.

  10. Preclinical animal models of multiple myeloma

    PubMed Central

    Lwin, Seint T; Edwards, Claire M; Silbermann, Rebecca

    2016-01-01

    Multiple myeloma is an incurable plasma-cell malignancy characterized by osteolytic bone disease and immunosuppression. Murine models of multiple myeloma and myeloma bone disease are critical tools for an improved understanding of the pathogenesis of the disease and the development of novel therapeutic strategies. This review will cover commonly used immunocompetent and xenograft models of myeloma, describing the advantages and disadvantages of each model system. In addition, this review provides detailed protocols for establishing systemic and local models of myeloma using both murine and human myeloma cell lines. PMID:26909147

  11. Social defeat as an animal model for depression.

    PubMed

    Hollis, Fiona; Kabbaj, Mohamed

    2014-01-01

    Depression is one of the most disabling medical conditions in the world today, yet its etiologies remain unclear and current treatments are not wholly effective. Animal models are a powerful tool to investigate possible causes and treatments for human diseases. We describe an animal model of social defeat as a possible model for human depression. We discuss the paradigm, behavioral correlates to depression, and potential underlying neurobiological mechanisms with an eye toward possible future therapies.

  12. Reproducibility Issues: Avoiding Pitfalls in Animal Inflammation Models.

    PubMed

    Laman, Jon D; Kooistra, Susanne M; Clausen, Björn E

    2017-01-01

    In light of an enhanced awareness of ethical questions and ever increasing costs when working with animals in biomedical research, there is a dedicated and sometimes fierce debate concerning the (lack of) reproducibility of animal models and their relevance for human inflammatory diseases. Despite evident advancements in searching for alternatives, that is, replacing, reducing, and refining animal experiments-the three R's of Russel and Burch (1959)-understanding the complex interactions of the cells of the immune system, the nervous system and the affected tissue/organ during inflammation critically relies on in vivo models. Consequently, scientific advancement and ultimately novel therapeutic interventions depend on improving the reproducibility of animal inflammation models. As a prelude to the remaining hands-on protocols described in this volume, here, we summarize potential pitfalls of preclinical animal research and provide resources and background reading on how to avoid them.

  13. Evaluation of Time- and Concentration-dependent Toxic Effect Models for use in Aquatic Risk Assessments, Oral Presentation

    EPA Science Inventory

    Various models have been proposed for describing the time- and concentration-dependence of toxic effects to aquatic organisms, which would improve characterization of risks in natural systems. Selected models were evaluated using results from a study on the lethality of copper t...

  14. Animal models of gastrointestinal and liver diseases. Animal models of cystic fibrosis: gastrointestinal, pancreatic, and hepatobiliary disease and pathophysiology.

    PubMed

    Olivier, Alicia K; Gibson-Corley, Katherine N; Meyerholz, David K

    2015-03-15

    Multiple organ systems, including the gastrointestinal tract, pancreas, and hepatobiliary systems, are affected by cystic fibrosis (CF). Many of these changes begin early in life and are difficult to study in young CF patients. Recent development of novel CF animal models has expanded opportunities in the field to better understand CF pathogenesis and evaluate traditional and innovative therapeutics. In this review, we discuss manifestations of CF disease in gastrointestinal, pancreatic, and hepatobiliary systems of humans and animal models. We also compare the similarities and limitations of animal models and discuss future directions for modeling CF.

  15. Animal models of gastrointestinal and liver diseases. Animal models of cystic fibrosis: gastrointestinal, pancreatic, and hepatobiliary disease and pathophysiology

    PubMed Central

    Olivier, Alicia K.; Gibson-Corley, Katherine N.

    2015-01-01

    Multiple organ systems, including the gastrointestinal tract, pancreas, and hepatobiliary systems, are affected by cystic fibrosis (CF). Many of these changes begin early in life and are difficult to study in young CF patients. Recent development of novel CF animal models has expanded opportunities in the field to better understand CF pathogenesis and evaluate traditional and innovative therapeutics. In this review, we discuss manifestations of CF disease in gastrointestinal, pancreatic, and hepatobiliary systems of humans and animal models. We also compare the similarities and limitations of animal models and discuss future directions for modeling CF. PMID:25591863

  16. Alpha-synuclein propagation: New insights from animal models.

    PubMed

    Dehay, Benjamin; Vila, Miquel; Bezard, Erwan; Brundin, Patrik; Kordower, Jeffrey H

    2016-02-01

    Aggregation of alpha-synuclein is implicated in several neurodegenerative diseases collectively termed synucleinopathies. Emerging evidence strongly implicates cell-to-cell transmission of misfolded alpha-synuclein as a common pathogenetic mechanism in synucleinopathies. The impact of alpha-synuclein pathology on neuronal dysfunction and behavioral impairments is being explored in animal models. This review provides an update on how research in animal models supports the concept that misfolded alpha-synuclein spreads from cell to cell and describes how findings in animal models might relate to the disease process in humans. Finally, we discuss the current underlying molecular and cellular mechanisms and future therapeutic strategies targeting alpha-synuclein propagation.

  17. A systematic review of animal models for Staphylococcus aureus osteomyelitis

    PubMed Central

    Reizner, W.; Hunter, J.G.; O’Malley, N.T.; Southgate, R.D.; Schwarz, E.M.; Kates, S.L.

    2015-01-01

    Staphylococcus aureus (S. aureus) osteomyelitis is a significant complication for orthopaedic patients undergoing surgery, particularly with fracture fixation and arthroplasty. Given the difficulty in studying S. aureus infections in human subjects, animal models serve an integral role in exploring the pathogenesis of osteomyelitis, and aid in determining the efficacy of prophylactic and therapeutic treatments. Animal models should mimic the clinical scenarios seen in patients as closely as possible to permit the experimental results to be translated to the corresponding clinical care. To help understand existing animal models of S. aureus, we conducted a systematic search of PubMed & Ovid MEDLINE to identify in vivo animal experiments that have investigated the management of S. aureus osteomyelitis in the context of fractures and metallic implants. In this review, experimental studies are categorized by animal species and are further classified by the setting of the infection. Study methods are summarized and the relevant advantages and disadvantages of each species and model are discussed. While no ideal animal model exists, the understanding of a model’s strengths and limitations should assist clinicians and researchers to appropriately select an animal model to translate the conclusions to the clinical setting. PMID:24668594

  18. Animal Models of Psychosis: Current State and Future Directions

    PubMed Central

    Forrest, Alexandra D.; Coto, Carlos A.; Siegel, Steven J.

    2014-01-01

    Psychosis is an abnormal mental state characterized by disorganization, delusions and hallucinations. Animal models have become an increasingly important research tool in the effort to understand both the underlying pathophysiology and treatment of psychosis. There are multiple animal models for psychosis, with each formed by the coupling of a manipulation and a measurement. In this manuscript we do not address the diseases of which psychosis is a prominent comorbidity. Instead, we summarize the current state of affairs and future directions for animal models of psychosis. To accomplish this, our manuscript will first discuss relevant behavioral and electrophysiological measurements. We then provide an overview of the different manipulations that are combined with these measurements to produce animal models. The strengths and limitations of each model will be addressed in order to evaluate its cross-species comparability. PMID:25215267

  19. [Genetically modified animals as model systems of psoriasis].

    PubMed

    Soboleva, A G; Mezentsev, A V; Bruskin, S A

    2014-01-01

    Psoriasis is a chronic autoimmune skin disorder. Experimental models of psoriasis can be used to study the disease in controlled conditions. Moreover, the experimental models allow to study a certain aspect of the pathological process. Although none of the multiple mouse models reproduces the human disease precisely, lab animals as model systems can be very helpful because of two reasons. First, introduction of new mutations into animal genome allows to reveal the new genes that may play a certain role in pathogenesis of the disease. Second, the experiments that are carried on the lab animals can be used for testing the new drugs and selection of the most efficient chemical agents from a variety of the proposed experimental preparations. The aim of this paper was to summarize the data on the lab animals that serve as experimental models of psoriasis.

  20. Animal models in epigenetic research: institutional animal care and use committee considerations across the lifespan.

    PubMed

    Harris, Craig

    2012-01-01

    The rapid expansion and evolution of epigenetics as a core scientific discipline have raised new questions about how endogenous and environmental factors can inform the mechanisms through which biological form and function are regulated. Existing and proposed animal models used for epigenetic research have targeted a myriad of health and disease endpoints that may be acute, chronic, and transgenerational in nature. Initiating events and outcomes may extend across the entire lifespan to elicit unanticipated phenotypes that are of particular concern to institutional animal care and use committees (IACUCs). The dynamics and plasticity of epigenetic mechanisms produce effects and consequences that are manifest differentially within discreet spatial and temporal contexts, including prenatal development, stem cells, assisted reproductive technologies, production of sexual dimorphisms, senescence, and others. Many dietary and nutritional interventions have also been shown to have a significant impact on biological functions and disease susceptibilities through altered epigenetic programming. The environmental, chemical, toxic, therapeutic, and psychosocial stressors used in animal studies to elicit epigenetic changes can become extreme and should raise IACUC concerns for the well-being and proper care of all research animals involved. Epigenetics research is rapidly becoming an integral part of the search for mechanisms in every major area of biomedical and behavioral research and will foster the continued development of new animal models. From the IACUC perspective, care must be taken to acknowledge the particular needs and concerns created by superimposition of epigenetic mechanisms over diverse fields of investigation to ensure the proper care and use of animals without impeding scientific progress.

  1. Emerging preclinical animal models for FSHD

    PubMed Central

    Lek, Angela; Rahimov, Fedik; Jones, Peter L.; Kunkel, Louis M.

    2015-01-01

    Facioscapulohumeral dystrophy (FSHD) is a unique and complex genetic disease that is not entirely solved. Recent advances in the field have led to a consensus genetic premise for the disorder, enabling researchers to now pursue the design of preclinical models. In this review, we explore all available FSHD models (DUX4-dependent and -independent) for their utility in therapeutic discovery and potential to yield novel disease insights. Due to the complex nature of FSHD, there is currently no single model that accurately recapitulates the genetic and pathophysiological spectrum of the disorder. Existing models are limited to emphasize only specific aspects of the disease, thus highlighting the need for more collaborative research and novel paradigms to advance the translational research space of FSHD. PMID:25801126

  2. Adverse Outcome Pathway (AOP) Informed Modeling of Aquatic Toxicology: QSARs, Read-Across, and Interspecies Verification of Modes of Action.

    PubMed

    Ellison, Claire M; Piechota, Przemyslaw; Madden, Judith C; Enoch, Steven J; Cronin, Mark T D

    2016-04-05

    Alternative approaches have been promoted to reduce the number of vertebrate and invertebrate animals required for the assessment of the potential of compounds to cause harm to the aquatic environment. A key philosophy in the development of alternatives is a greater understanding of the relevant adverse outcome pathway (AOP). One alternative method is the fish embryo toxicity (FET) assay. Although the trends in potency have been shown to be equivalent in embryo and adult assays, a detailed mechanistic analysis of the toxicity data has yet to be performed; such analysis is vital for a full understanding of the AOP. The research presented herein used an updated implementation of the Verhaar scheme to categorize compounds into AOP-informed categories. These were then used in mechanistic (quantitative) structure-activity relationship ((Q)SAR) analysis to show that the descriptors governing the distinct mechanisms of acute fish toxicity are capable of modeling data from the FET assay. The results show that compounds do appear to exhibit the same mechanisms of toxicity across life stages. Thus, this mechanistic analysis supports the argument that the FET assay is a suitable alternative testing strategy for the specified mechanisms and that understanding the AOPs is useful for toxicity prediction across test systems.

  3. Modeling anaerobic digestion of aquatic plants by rumen cultures: cattail as an example.

    PubMed

    Zhao, Bai-Hang; Yue, Zheng-Bo; Ni, Bing-Jie; Mu, Yang; Yu, Han-Qing; Harada, Hideki

    2009-04-01

    Despite of the significance of the anaerobic digestion of lignocellulosic materials, only a limited number of studies have been carried out to evaluate the lignocellulosic digestion kinetics, and information about the modeling of this process is limited. In this work, a mathematical model, based on the Anaerobic Digestion Model No.1 (ADM1), was developed to describe the anaerobic conversion of lignocellulose-rich aquatic plants, with cattail as an example, by rumen microbes. Cattail was fractionated into slowly hydrolysable fraction (SHF), readily hydrolysable fraction (RHF) and inert fraction in the model. The SHF was hydrolyzed by rumen microbes and resulted in the production of RHF. The SHF and RHF had different hydrolysis rates but both with surface-limiting kinetics. The rumen microbial population diversity, including the cattail-, butyrate-, acetate- and H(2)-degraders, was all incorporated in the model structure. Experiments were carried out to identify the parameters and to calibrate and validate this model. The simulation results match the experimental data, implying that the fractionation of cattail into two biodegradation parts, i.e., SHF and RHF, and modeling their hydrolysis rate with a surface-limiting kinetics were appropriate. The model was capable of simulating the anaerobic biodegradation of cattail by the rumen cultures.

  4. Animal models for testing anti-prion drugs.

    PubMed

    Fernández-Borges, Natalia; Elezgarai, Saioa R; Eraña, Hasier; Castilla, Joaquín

    2013-01-01

    Prion diseases belong to a group of fatal infectious diseases with no effective therapies available. Throughout the last 35 years, less than 50 different drugs have been tested in different experimental animal models without hopeful results. An important limitation when searching for new drugs is the existence of appropriate models of the disease. The three different possible origins of prion diseases require the existence of different animal models for testing anti-prion compounds. Wild type, over-expressing transgenic mice and other more sophisticated animal models have been used to evaluate a diversity of compounds which some of them were previously tested in different in vitro experimental models. The complexity of prion diseases will require more pre-screening studies, reliable sporadic (or spontaneous) animal models and accurate chemical modifications of the selected compounds before having an effective therapy against human prion diseases. This review is intended to put on display the more relevant animal models that have been used in the search of new antiprion therapies and describe some possible procedures when handling chemical compounds presumed to have anti-prion activity prior to testing them in animal models.

  5. Exploring the Validity of Valproic Acid Animal Model of Autism

    PubMed Central

    Mabunga, Darine Froy N.; Gonzales, Edson Luck T.; Kim, Ji-woon; Kim, Ki Chan

    2015-01-01

    The valproic acid (VPA) animal model of autism spectrum disorder (ASD) is one of the most widely used animal model in the field. Like any other disease models, it can't model the totality of the features seen in autism. Then, is it valid to model autism? This model demonstrates many of the structural and behavioral features that can be observed in individuals with autism. These similarities enable the model to define relevant pathways of developmental dysregulation resulting from environmental manipulation. The uncovering of these complex pathways resulted to the growing pool of potential therapeutic candidates addressing the core symptoms of ASD. Here, we summarize the validity points of VPA that may or may not qualify it as a valid animal model of ASD. PMID:26713077

  6. Why test animals to treat humans? On the validity of animal models.

    PubMed

    Shelley, Cameron

    2010-09-01

    Critics of animal modeling have advanced a variety of arguments against the validity of the practice. The point of one such form of argument is to establish that animal modeling is pointless and therefore immoral. In this article, critical arguments of this form are divided into three types, the pseudoscience argument, the disanalogy argument, and the predictive validity argument. I contend that none of these criticisms currently succeed, nor are they likely to. However, the connection between validity and morality is important, suggesting that critical efforts would be instructive if they addressed it in a more nuanced way.

  7. Animal models of substance abuse and addiction: implications for science, animal welfare, and society.

    PubMed

    Lynch, Wendy J; Nicholson, Katherine L; Dance, Mario E; Morgan, Richard W; Foley, Patricia L

    2010-06-01

    Substance abuse and addiction are well recognized public health concerns, with 2 NIH institutes (the National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism) specifically targeting this societal problem. As such, this is an important area of research for which animal experiments play a critical role. This overview presents the importance of substance abuse and addiction in society; reviews the development and refinement of animal models that address crucial areas of biology, pathophysiology, clinical treatments, and drug screening for abuse liability; and discusses some of the unique veterinary, husbandry, and IACUC challenges associated with these models.

  8. Animal model: dysmorphogenesis and death in a chicken embryo model.

    PubMed

    Fineman, R M; Schoenwolf, G C

    1987-07-01

    The chicken embryo is a useful animal model for investigating problems in developmental biology and teratology. Here we report data that further define the causes of 2 different patterns of malformation (one associated with amnion abnormalities, the other with isolated neural tube defects) and death induced by making a window in the shell and subshell membranes during the first day of incubation. The interpretation of these data suggests to us the following hypotheses. An early amnion deficit spectrum or syndrome (EADS) in chicken embryos is caused by a brief (less than 10 sec) perturbation that occurs during the windowing procedure. This perturbation results in an acute increase in mechanical tension to the developing embryo and support structures, dehydration localized to the area of the blastoderm, and/or increased friction between the blastoderm and overlying vitelline and shell membranes. Isolated neural tube defects (NTDs) are caused by a longer perturbation (greater than 3 hr) consisting of increased mechanical stress across the blastoderm. The mechanical stress is associated with the introduction of a new air space over the animal pole of the yolk during windowing. The new air space causes the shape of the yolk to change (ie, to be deformed), resulting in an increase in mechanical tension across the vitelline membrane and blastoderm. NTDs involving the head are associated with significant early embryonic mortality, whereas those involving the trunk are not. Death may also be caused by cardiovascular anomalies observed in EADS. It is concluded that disturbances in morphogenesis and death in this model are, therefore, the result of extrinsic forces (eg, mechanical stress, localized dehydration, or friction) acting on different tissue types at various critical times in development. Intensity and duration of these forces on the developing blastoderm are important variables.

  9. ASSESSMENT OF VENOUS THROMBOSIS IN ANIMAL MODELS

    PubMed Central

    SP, Grover; CE, Evans; AS, Patel; B, Modarai; P, Saha; A, Smith

    2016-01-01

    Deep vein thrombosis and common complications, including pulmonary embolism and post thrombotic syndrome, represent a major source of morbidity and mortality worldwide. Experimental models of venous thrombosis have provided considerable insight into the cellular and molecular mechanisms that regulate thrombus formation and subsequent resolution. Here we critically appraise the ex vivo and in vivo techniques used to assess venous thrombosis in these models. Particular attention is paid to imaging modalities, including magnetic resonance imaging, micro computed tomography and high frequency ultrasound that facilitate longitudinal assessment of thrombus size and composition. PMID:26681755

  10. Animal models for screening anxiolytic-like drugs: a perspective

    PubMed Central

    Bourin, Michel

    2015-01-01

    Contemporary biological psychiatry uses experimental animal models to increase our understanding of affective disorder pathogenesis. Modern anxiolytic drug discovery mainly targets specific pathways and molecular determinants within a single phenotypic domain. However, greater understanding of the mechanisms of action is possible through animal models. Primarily developed with rats, animal models in anxiety have been adapted with mixed success for mice, easy-to-use mammals with better genetic possibilities than rats. In this review, we focus on the three most common animal models of anxiety in mice used in the screening of anxiolytics. Both conditioned and unconditioned models are described, in order to represent all types of animal models of anxiety. Behavioral studies require careful attention to variable parameters linked to environment, handling, or paradigms; this is also discussed. Finally, we focus on the consequences of re-exposure to the apparatus. Test-retest procedures can provide new answers, but should be intensively studied in order to revalidate the entire paradigm as an animal model of anxiety. PMID:26487810

  11. Animal models for screening anxiolytic-like drugs: a perspective.

    PubMed

    Bourin, Michel

    2015-09-01

    Contemporary biological psychiatry uses experimental animal models to increase our understanding of affective disorder pathogenesis. Modern anxiolytic drug discovery mainly targets specific pathways and molecular determinants within a single phenotypic domain. However, greater understanding of the mechanisms of action is possible through animal models. Primarily developed with rats, animal models in anxiety have been adapted with mixed success for mice, easy-to-use mammals with better genetic possibilities than rats. In this review, we focus on the three most common animal models of anxiety in mice used in the screening of anxiolytics. Both conditioned and unconditioned models are described, in order to represent all types of animal models of anxiety. Behavioral studies require careful attention to variable parameters linked to environment, handling, or paradigms; this is also discussed. Finally, we focus on the consequences of re-exposure to the apparatus. Test-retest procedures can provide new answers, but should be intensively studied in order to revalidate the entire paradigm as an animal model of anxiety.

  12. Animal Models in Cardiovascular Research: Hypertension and Atherosclerosis

    PubMed Central

    Ng, Chun-Yi; Jaarin, Kamsiah

    2015-01-01

    Hypertension and atherosclerosis are among the most common causes of mortality in both developed and developing countries. Experimental animal models of hypertension and atherosclerosis have become a valuable tool for providing information on etiology, pathophysiology, and complications of the disease and on the efficacy and mechanism of action of various drugs and compounds used in treatment. An animal model has been developed to study hypertension and atherosclerosis for several reasons. Compared to human models, an animal model is easily manageable, as compounding effects of dietary and environmental factors can be controlled. Blood vessels and cardiac tissue samples can be taken for detailed experimental and biomolecular examination. Choice of animal model is often determined by the research aim, as well as financial and technical factors. A thorough understanding of the animal models used and complete analysis must be validated so that the data can be extrapolated to humans. In conclusion, animal models for hypertension and atherosclerosis are invaluable in improving our understanding of cardiovascular disease and developing new pharmacological therapies. PMID:26064920

  13. Animal models for arthritis: innovative tools for prevention and treatment.

    PubMed

    Kollias, George; Papadaki, Piyi; Apparailly, Florence; Vervoordeldonk, Margriet J; Holmdahl, Rikard; Baumans, Vera; Desaintes, Christian; Di Santo, James; Distler, Jörg; Garside, Paul; Hegen, Martin; Huizinga, Tom W J; Jüngel, Astrid; Klareskog, Lars; McInnes, Iain; Ragoussis, Ioannis; Schett, Georg; Hart, Bert 't; Tak, Paul P; Toes, Rene; van den Berg, Wim; Wurst, Wolfgang; Gay, Steffen

    2011-08-01

    The development of novel treatments for rheumatoid arthritis (RA) requires the interplay between clinical observations and studies in animal models. Given the complex molecular pathogenesis and highly heterogeneous clinical picture of RA, there is an urgent need to dissect its multifactorial nature and to propose new strategies for preventive, early and curative treatments. Research on animal models has generated new knowledge on RA pathophysiology and aetiology and has provided highly successful paradigms for innovative drug development. Recent focus has shifted towards the discovery of novel biomarkers, with emphasis on presymptomatic and emerging stages of human RA, and towards addressing the pathophysiological mechanisms and subsequent efficacy of interventions that underlie different disease variants. Shifts in the current paradigms underlying RA pathogenesis have also led to increased demand for new (including humanised) animal models. There is therefore an urgent need to integrate the knowledge on human and animal models with the ultimate goal of creating a comprehensive 'pathogenesis map' that will guide alignment of existing and new animal models to the subset of disease they mimic. This requires full and standardised characterisation of all models at the genotypic, phenotypic and biomarker level, exploiting recent technological developments in 'omics' profiling and computational biology as well as state of the art bioimaging. Efficient integration and dissemination of information and resources as well as outreach to the public will be necessary to manage the plethora of data accumulated and to increase community awareness and support for innovative animal model research in rheumatology.

  14. Laboratory animal models for human Taenia solium.

    PubMed

    Avila, Guillermina; Teran, Nancy; Aguilar-Vega, Laura; Maravilla, Pablo; Mata-Miranda, Pilar; Flisser, Ana

    2006-01-01

    Human beings are the only hosts of adult Taenia solium; thus, many aspects of the host-parasite relationship are unknown. The development of successful experimental models of taeniasis allows in-depth investigations of the host-parasite relationship. We established experimental models in hamsters, gerbils and chinchillas. Here we review our findings regarding the characteristics of the tapeworms, their anchoring site and development, as well as the humoral and cellular immune response they elicit. We also used statistics to analyze the data obtained in different infections performed along several years. Furthermore, we compared the size of T. solium rostellum and strobila recovered from hamsters and gerbils to those obtained from humans. Our data indicate that these rodents are adequate experimental models for studying T. solium in its adult stage; that parasites induce immune responses and that hamsters seem to be more permissive hosts than gerbils, since parasites survive for longer times, grow longer and develop more, and the inflammatory response in the intestinal mucosa against T. solium is moderate. Finally, chinchillas are the most successful experimental definitive model for adult T. solium, since tapeworms with gravid proglottids are obtained, and the life cycle can be continued to the intermediate host.

  15. Mathematical modelling of animate and intentional motion.

    PubMed Central

    Rittscher, Jens; Blake, Andrew; Hoogs, Anthony; Stein, Gees

    2003-01-01

    Our aim is to enable a machine to observe and interpret the behaviour of others. Mathematical models are employed to describe certain biological motions. The main challenge is to design models that are both tractable and meaningful. In the first part we will describe how computer vision techniques, in particular visual tracking, can be applied to recognize a small vocabulary of human actions in a constrained scenario. Mainly the problems of viewpoint and scale invariance need to be overcome to formalize a general framework. Hence the second part of the article is devoted to the question whether a particular human action should be captured in a single complex model or whether it is more promising to make extensive use of semantic knowledge and a collection of low-level models that encode certain motion primitives. Scene context plays a crucial role if we intend to give a higher-level interpretation rather than a low-level physical description of the observed motion. A semantic knowledge base is used to establish the scene context. This approach consists of three main components: visual analysis, the mapping from vision to language and the search of the semantic database. A small number of robust visual detectors is used to generate a higher-level description of the scene. The approach together with a number of results is presented in the third part of this article. PMID:12689374

  16. Animal models of frailty: current applications in clinical research.

    PubMed

    Kane, Alice E; Hilmer, Sarah N; Mach, John; Mitchell, Sarah J; de Cabo, Rafael; Howlett, Susan E

    2016-01-01

    The ethical, logistical, and biological complications of working with an older population of people inherently limits clinical studies of frailty. The recent development of animal models of frailty, and tools for assessing frailty in animal models provides an invaluable opportunity for frailty research. This review summarizes currently published animal models of frailty including the interleukin-10 knock-out mouse, the mouse frailty phenotype assessment tool, and the mouse clinical frailty index. It discusses both current and potential roles of these models in research into mechanisms of frailty, interventions to prevent/delay frailty, and the effect of frailty on outcomes. Finally, this review discusses some of the challenges and opportunities of translating research findings from animals to humans.

  17. Animal challenge models of henipavirus infection and pathogenesis.

    PubMed

    Geisbert, Thomas W; Feldmann, Heinz; Broder, Christopher C

    2012-01-01

    The henipaviruses, Hendra virus (HeV), and Nipah virus (NiV), are enigmatic emerging pathogens that causes severe and often fatal neurologic and/or respiratory disease in both animals and humans. Amongst people, case fatality rates range between 40 and 75% and there are no vaccines or treatments approved for human use. A number of species of animals including guinea pigs, hamsters, cats, ferrets, pigs, and African green monkeys have been employed as animal models of human henipavirus infection. Here, we review the development of animal models for henipavirus infection, discuss the pathology and pathogenesis of these models, and assess the utility of each model to recapitulate important aspects of henipavirus-mediated disease seen in humans.

  18. Animal models of frailty: current applications in clinical research

    PubMed Central

    Kane, Alice E; Hilmer, Sarah N; Mach, John; Mitchell, Sarah J; de Cabo, Rafael; Howlett, Susan E

    2016-01-01

    The ethical, logistical, and biological complications of working with an older population of people inherently limits clinical studies of frailty. The recent development of animal models of frailty, and tools for assessing frailty in animal models provides an invaluable opportunity for frailty research. This review summarizes currently published animal models of frailty including the interleukin-10 knock-out mouse, the mouse frailty phenotype assessment tool, and the mouse clinical frailty index. It discusses both current and potential roles of these models in research into mechanisms of frailty, interventions to prevent/delay frailty, and the effect of frailty on outcomes. Finally, this review discusses some of the challenges and opportunities of translating research findings from animals to humans. PMID:27822024

  19. Reactions of chlorine with selected aromatic models of aquatic humic material

    SciTech Connect

    Norwood, D.L.; Johnson, J.D.; Christman, R.F.; Hass, J.R.; Bobenrieth, M.J.

    1980-02-01

    A series of compounds designed to model the monomeric components of aquatic humic material was reacted with aqueous chlorine at pH 7. Chloroform production and chlorine demand were measured for each compound over varied time periods. All compounds studied produced measurable amounts of chloroform with resorcinol derivatives showing the greatest yields. In addition, the chlorination reactions of resorcinol and 3-methoxy-4-hydroxycinnamic acid were studied in depth with gas chromatography/mass spectrometry (GC/MS). The resorcinol reaction was found to proceed through several chlorinated intermediates, of which the most abundant was 3,5,5-trichlorocyclopent-3-ene-1,2-dione, to chloroform and chlorinated acids. Chlorination of the cinnamic acid derivative produced chlorinated substitution products and chlorophenols, which broke down upon further reaction to chloroacetic acids.

  20. Distribution and bioavailability of ceria nanoparticles in an aquatic ecosystem model.

    PubMed

    Zhang, Peng; He, Xiao; Ma, Yuhui; Lu, Kai; Zhao, Yuliang; Zhang, Zhiyong

    2012-10-01

    Along with the increasing utilization of engineered nanoparticles, there is a growing concern for the potential environmental and health effects of exposure to these newly designed materials. Understanding the behavior of nanoparticles in the environment is a basic need. The present study aims to investigate the distribution and fate of ceria nanoparticles in an aquatic system model which consists of sediments, water, hornworts, fish and snails, using a radiotracer technique. Concentrations of ceria in the samples at regular time intervals were measured. Ceria nanoparticles were readily removed from the water column and partitioned between different organisms. Both snail and fish have fast absorption and clearance abilities. Hornwort has the highest bioaccumulation factors. At the end of the experiment, sediments accumulated most of the nanoparticles with a recovery of 75.7 ± 27.3% of total ceria nanoparticles, suggesting that sediments are major sinks of ceria nanoparticles.

  1. Retinal degeneration in animal models with a defective visual cycle

    PubMed Central

    Maeda, Akiko; Palczewski, Krzysztof

    2014-01-01

    Continuous generation of visual chromophore through the visual (retinoid) cycle is essential to maintain eyesight and retinal heath. Impairments in this cycle and related pathways adversely affect vision. In this review, we summarize the chemical reactions of vitamin A metabolites involved in the retinoid cycle and describe animal models of associated human diseases. Development of potential therapies for retinal disorders in these animal models is also introduced. PMID:25210527

  2. Large animal models of neurological disorders for gene therapy.

    PubMed

    Gagliardi, Christine; Bunnell, Bruce A

    2009-01-01

    he development of therapeutic interventions for genetic disorders and diseases that affect the central nervous system (CNS) has proven challenging. There has been significant progress in the development of gene therapy strategies in murine models of human disease, but gene therapy outcomes in these models do not always translate to the human setting. Therefore, large animal models are crucial to the development of diagnostics, treatments, and eventual cures for debilitating neurological disorders. This review focuses on the description of large animal models of neurological diseases such as lysosomal storage diseases, Parkinsons disease, Huntingtons disease, and neuroAIDS. The review also describes the contributions of these models to progress in gene therapy research.

  3. Modeling Behavior and Variation for Crowd Animation

    DTIC Science & Technology

    2009-08-01

    navigation strategies in complex environments. In Proceedings of the 2003 Intl. Confer- ence on Humanoid Robots , October 2003. 4.7.3 [15] Wallace Ching and...generate spatial and temporal variants from a small amount of data. We think of our work as one step towards the problem of motion variation; we...Treuille and his colleagues [102] generate crowd motions by thinking of crowds of agents as particles in a fluid. They model a potential field in

  4. Animal models for chronic lymphocytic leukemia.

    PubMed

    Pekarsky, Yuri; Zanesi, Nicola; Aqeilan, Rami I; Croce, Carlo M

    2007-04-01

    B-cell chronic lymphocytic leukemia (B-CLL), the most common leukemia in the Western world, results from an expansion of a rare population of CD5+ mature B-lymphocytes. Although clinical features and genomic abnormalities in B-CLL have been studied in considerable detail, the molecular mechanisms underlying disease development has remained unclear until recently. In the last 4 years, several transgenic mouse models for B-CLL were generated. Investigations of these mouse models revealed that deregulation of three pathways, Tcl1-Akt pathway, TNF-NF-kB pathway, and Bcl2-mediated anti-apoptotic pathway, result in the development of B-CLL. While deregulation of TCL1 alone caused a B-CLL phenotype in mice, overexpression of Bcl2 required aberrantly activated TNF-NF-kB pathway signaling to yield the disease phenotype. In this article, we present what has been learned from mice with B-CLL phenotype and how these mouse models of B-CLL were used to test therapeutic treatments for this common leukemia.

  5. Elements of episodic-like memory in animal models.

    PubMed

    Crystal, Jonathon D

    2009-03-01

    Representations of unique events from one's past constitute the content of episodic memories. A number of studies with non-human animals have revealed that animals remember specific episodes from their past (referred to as episodic-like memory). The development of animal models of memory holds enormous potential for gaining insight into the biological bases of human memory. Specifically, given the extensive knowledge of the rodent brain, the development of rodent models of episodic memory would open new opportunities to explore the neuroanatomical, neurochemical, neurophysiological, and molecular mechanisms of memory. Development of such animal models holds enormous potential for studying functional changes in episodic memory in animal models of Alzheimer's disease, amnesia, and other human memory pathologies. This article reviews several approaches that have been used to assess episodic-like memory in animals. The approaches reviewed include the discrimination of what, where, and when in a radial arm maze, dissociation of recollection and familiarity, object recognition, binding, unexpected questions, and anticipation of a reproductive state. The diversity of approaches may promote the development of converging lines of evidence on the difficult problem of assessing episodic-like memory in animals.

  6. Proteomics in farm animals models of human diseases.

    PubMed

    Ceciliani, Fabrizio; Restelli, Laura; Lecchi, Cristina

    2014-10-01

    The need to provide in vivo complex environments to understand human diseases strongly relies on the use of animal models, which traditionally include small rodents and rabbits. It is becoming increasingly evident that the few species utilised to date cannot be regarded as universal. There is a great need for new animal species that are naturally endowed with specific features relevant to human diseases. Farm animals, including pigs, cows, sheep and horses, represent a valid alternative to commonly utilised rodent models. There is an ample scope for the application of proteomic techniques in farm animals, and the establishment of several proteomic maps of plasma and tissue has clearly demonstrated that farm animals provide a disease environment that closely resembles that of human diseases. The present review offers a snapshot of how proteomic techniques have been applied to farm animals to improve their use as biomedical models. Focus will be on specific topics of biomedical research in which farm animal models have been characterised through the application of proteomic techniques.

  7. Using animal models to develop therapeutics for Tourette Syndrome.

    PubMed

    Swerdlow, Neal R; Sutherland, Ashley N

    2005-12-01

    The science of Tourette Syndrome (TS) is advancing at multiple levels of analysis and will be enhanced through the use of animal models. Particular challenges in the development of TS animal models reflect complex features of this disorder, including its waxing and waning course and its "invisible" sensory and psychic symptoms. Animal models can achieve face, predictive, or construct validity based on their particular features. Predictive validity, of most direct relevance to drug development for TS, is achieved to some degree by a several animal models, although the reliance of most of these models on measures of motor suppression may ultimately limit their utility. Other models achieve construct validity with proposed pathophysiological mechanisms related to the immune and neural circuit etiologies of TS. One model-deficient sensorimotor gating of the startle reflex-is discussed in terms of its present and future applications towards advancing our understanding of the pathophysiology and treatment of TS. In addition to models that will advance the pharmacotherapy of TS, other animal models may enhance the utility of nonpharmacologic TS treatments, ranging from behavior therapy to deep brain stimulation (DBS).

  8. Next Generation Framework for Aquatic Modeling of the Earth System (NextFrAMES)

    NASA Astrophysics Data System (ADS)

    Fekete, B. M.; Wollheim, W. M.; Lakhankar, T.; Vorosmarty, C. J.

    2008-12-01

    Earth System model development is becoming an increasingly complex task. As scientists attempt to represent the physical and bio-geochemical processes and various feedback mechanisms in unprecedented detail, the models themselves are becoming increasingly complex. At the same time, the surrounding IT infrastructure needed to carry out these detailed model computations is growing increasingly complex as well. To be accurate and useful, Earth System models must manage a vast amount of data in heterogenous computing environments ranging from single CPU systems to Beowulf type computer clusters. Scientists developing Earth System models increasingly confront obstacles associated with IT infrastructure. Numerous development efforts are on the way to ease that burden and offer model development platforms that reduce IT challenges and allow scientists to focus on their science. While these new modeling frameworks (e.g. FMS, ESMF, CCA, OpenMI) do provide solutions to many IT challenges (performing input/output, managing space and time, establishing model coupling, etc.), they are still considerably complex and often have steep learning curves. Over the course of the last fifteen years ,the University of New Hampshire developed several modeling frameworks independently from the above-mentioned efforts (Data Assembler, Frameworks for Aquatic Modeling of the Earth System and NextFrAMES which is continued at CCNY). While the UNH modeling frameworks have numerous similarities to those developed by other teams, these frameworks, in particular the latest NextFrAMES, represent a novel model development paradigm. While other modeling frameworks focus on providing services to modelers to perform various tasks, NextFrAMES strives to hide all of those services and provide a new approach for modelers to express their scientific thoughts. From a scientific perspective, most models have two core elements: the overall model structure (defining the linkages between the simulated processes

  9. Animal models of osteoarthritis: classification, update, and measurement of outcomes.

    PubMed

    Kuyinu, Emmanuel L; Narayanan, Ganesh; Nair, Lakshmi S; Laurencin, Cato T

    2016-02-02

    Osteoarthritis (OA) is one of the most commonly occurring forms of arthritis in the world today. It is a debilitating chronic illness causing pain and immense discomfort to the affected individual. Significant research is currently ongoing to understand its pathophysiology and develop successful treatment regimens based on this knowledge. Animal models have played a key role in achieving this goal. Animal models currently used to study osteoarthritis can be classified based on the etiology under investigation, primary osteoarthritis, and post-traumatic osteoarthritis, to better clarify the relationship between these models and the pathogenesis of the disease. Non-invasive animal models have shown significant promise in understanding early osteoarthritic changes. Imaging modalities play a pivotal role in understanding the pathogenesis of OA and the correlation with pain. These imaging studies would also allow in vivo surveillance of the disease as a function of time in the animal model. This review summarizes the current understanding of the disease pathogenesis, invasive and non-invasive animal models, imaging modalities, and pain assessment techniques in the animals.

  10. Animal model of sensitization by inhalation.

    PubMed Central

    Barboriak, J J; Knoblock, H W; Hensley, G T; Gombas, O F; Fink, J N

    1976-01-01

    Groups of rats exposed to daily inhalation challenge with aerosolized pigeon serum developed precipitating antibody within 2 weeks and definitive granulomatous inflammatory changes in the lung after 7 weeks of exposure. The dissociation of the two responses to an inhalation challenge indicate that the rat model may serve for screening of the various inhalant antigens for their sensitizing potential, and for investigation of the contributory role of some of the factors involved in the pathogenesis of hypersensitivity pneumonitis. Images FIG. 1 FIG. 2 PMID:939055

  11. The Use of Animal Models for Stroke Research: A Review

    PubMed Central

    Casals, Juliana B; Pieri, Naira CG; Feitosa, Matheus LT; Ercolin, Anna CM; Roballo, Kelly CS; Barreto, Rodrigo SN; Bressan, Fabiana F; Martins, Daniele S; Miglino, Maria A; Ambrósio, Carlos E

    2011-01-01

    Stroke has been identified as the second leading cause of death worldwide. Stroke is a focal neurologic deficit caused by a change in cerebral circulation. The use of animal models in recent years has improved our understanding of the physiopathology of this disease. Rats and mice are the most commonly used stroke models, but the demand for larger models, such as rabbits and even nonhuman primates, is increasing so as to better understand the disease and its treatment. Although the basic mechanisms of stroke are nearly identical among mammals, we here discuss the differences between the human encephalon and various animals. In addition, we compare common surgical techniques used to induce animal models of stroke. A more complete anatomic knowledge of the cerebral vessels of various model species is needed to develop more reliable models for objective results that improve knowledge of the pathology of stroke in both human and veterinary medicine. PMID:22330245

  12. [Comments on an animal model of depression].

    PubMed

    Vaugeois, J-M; El Yacoubi, M; Costentin, J

    2004-09-01

    Depression is a multifactorial illness and genetic factors play a role in its etiology. The understanding of its pathophysiology relies on the availability of experimental models potentially mimicking the disease. Here is presented a model built up by selective breeding of mice with strikingly different responses in the tail suspension test, a stress paradigm aimed at screening potential antidepressants. Indeed, "helpless" mice are essentially immobile in the tail suspension test, as well as the Porsolt forced-swim test, and they show reduced consumption of a palatable 2% sucrose solution. In addition, helpless mice exhibit sleep-wakefulness alterations resembling those classically observed in depressed patients, notably a lighter and more fragmented sleep, with an increase pressure of rapid eye movement sleep. Compared with "nonhelpless" mice, they display higher basal serum corticosterone levels and lower serotonin metabolism index in the hippocampus. Remarkably, serotonin1A autoreceptor stimulation induced greatest hypothermia and inhibition of serotoninergic neuronal firing in the nucleus raphe dorsalis in helpless than in nonhelpless mice. Thus, helpless mice exhibit a decrease in serotoninergic tone, which evokes that associated with endogenous depression in humans. Finally, both the behavioral impairments and the serotoninergic dysfunction can be improved by chronic treatment with the antidepressant fluoxetine. The helpless line of mice may provide an opportunity to approach genes influencing susceptibility to depression and to investigate neurophysiological and neurochemical substrates underlying antidepressant effects.

  13. Aquatic Trophic Productivity model: A decision support model for river restoration planning in the Methow River, Washington

    USGS Publications Warehouse

    Benjamin, Joseph R.; Bellmore, J. Ryan

    2016-05-19

    In this report, we outline the structure of a stream food-web model constructed to explore how alternative river restoration strategies may affect stream fish populations. We have termed this model the “Aquatic Trophic Productivity model” (ATP). We present the model structure, followed by three case study applications of the model to segments of the Methow River watershed in northern Washington. For two case studies (middle Methow River and lower Twisp River floodplain), we ran a series of simulations to explore how food-web dynamics respond to four distinctly different, but applied, strategies in the Methow River watershed: (1) reconnection of floodplain aquatic habitats, (2) riparian vegetation planting, (3) nutrient augmentation (that is, salmon carcass addition), and (4) enhancement of habitat suitability for fish. For the third case study, we conducted simulations to explore the potential fish and food-web response to habitat improvements conducted in 2012 at the Whitefish Island Side Channel, located in the middle Methow River.

  14. Animal models for prenatal gene therapy: the nonhuman primate model.

    PubMed

    Mattar, Citra N; Biswas, Arijit; Choolani, Mahesh; Chan, Jerry K Y

    2012-01-01

    Intrauterine gene therapy (IUGT) potentially enables the treatment and possible cure of monogenic -diseases that cause severe fetal damage. The main benefits of this approach will be the ability to correct the disorder before the onset of irreversible pathology and inducing central immune tolerance to the vector and transgene if treatment is instituted in early gestation. Cure has been demonstrated in small animal models, but because of the significant differences in immune ontogeny and the much shorter gestation compared to humans, it is unlikely that questions of long-term efficacy and safety will be adequately addressed in rodents. The nonhuman primate (NHP) allows investigation of key issues, in particular, the different outcomes in early and late-gestation IUGT associated with different stages of immune maturity, longevity of transgene expression, and delayed-onset adverse events in treated offspring and mothers including insertional mutagenesis. Here, we describe a model based on the Macaca fascicularis using ultrasound and fetoscopic approaches to systemic vector delivery and the processes involved in vector administration and longitudinal analyses.

  15. Animal Models of Cystic Fibrosis Pathology: Phenotypic Parallels and Divergences

    PubMed Central

    McElvaney, Noel G.

    2016-01-01

    Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The resultant characteristic ion transport defect results in decreased mucociliary clearance, bacterial colonisation, and chronic neutrophil-dominated inflammation. Much knowledge surrounding the pathophysiology of the disease has been gained through the generation of animal models, despite inherent limitations in each. The failure of certain mouse models to recapitulate the phenotypic manifestations of human disease has initiated the generation of larger animals in which to study CF, including the pig and the ferret. This review will summarise the basic phenotypes of three animal models and describe the contributions of such animal studies to our current understanding of CF. PMID:27340661

  16. Are animal models relevant to key aspects of human parturition?

    PubMed

    Mitchell, Bryan F; Taggart, Michael J

    2009-09-01

    Preterm birth remains the most serious complication of pregnancy and is associated with increased rates of infant death or permanent neurodevelopmental disability. Our understanding of the regulation of parturition remains inadequate. The scientific literature, largely derived from rodent animal models, suggests two major mechanisms regulating the timing of parturition: the withdrawal of the steroid hormone progesterone and a proinflammatory response by the immune system. However, available evidence strongly suggests that parturition in the human has significantly different regulators and mediators from those in most of the animal models. Our objectives are to critically review the data and concepts that have arisen from use of animal models for parturition and to rationalize the use of a new model. Many animal models have contributed to advances in our understanding of the regulation of parturition. However, we suggest that those animals dependent on progesterone withdrawal to initiate parturition clearly have a limitation to their translation to the human. In such models, a linear sequence of events (e.g., luteolysis, progesterone withdrawal, uterine activation, parturition) gives rise to the concept of a "trigger" mechanism. Conversely, we propose that human parturition may arise from the concomitant maturation of several systems in parallel. We have termed this novel concept "modular accumulation of physiological systems" (MAPS). We also emphasize the urgency to determine the precise role of the immune system in the process of parturition in situations other than intrauterine infection. Finally, we accentuate the need to develop a nonprimate animal model whose physiology is more relevant to human parturition. We suggest that the guinea pig displays several key physiological characteristics of gestation that more closely resemble human pregnancy than do currently favored animal models. We conclude that the application of novel concepts and new models are

  17. Coupling ecological and social network models to assess "transmission" and "contagion" of an aquatic invasive species.

    PubMed

    Haak, Danielle M; Fath, Brian D; Forbes, Valery E; Martin, Dustin R; Pope, Kevin L

    2017-04-01

    Network analysis is used to address diverse ecological, social, economic, and epidemiological questions, but few efforts have been made to combine these field-specific analyses into interdisciplinary approaches that effectively address how complex systems are interdependent and connected to one another. Identifying and understanding these cross-boundary connections improves natural resource management and promotes proactive, rather than reactive, decisions. This research had two main objectives; first, adapt the framework and approach of infectious disease network modeling so that it may be applied to the socio-ecological problem of spreading aquatic invasive species, and second, use this new coupled model to simulate the spread of the invasive Chinese mystery snail (Bellamya chinensis) in a reservoir network in Southeastern Nebraska, USA. The coupled model integrates an existing social network model of how anglers move on the landscape with new reservoir-specific ecological network models. This approach allowed us to identify 1) how angler movement among reservoirs aids in the spread of B. chinensis, 2) how B. chinensis alters energy flows within individual-reservoir food webs, and 3) a new method for assessing the spread of any number of non-native or invasive species within complex, social-ecological systems.

  18. The utility of animal models in developing immunosuppressive agents.

    PubMed

    McDaid, James; Scott, Christopher J; Kissenpfennig, Adrien; Chen, Huifang; Martins, Paulo N

    2015-07-15

    The immune system comprises an integrated network of cellular interactions. Some responses are predictable, while others are more stochastic. While in vitro the outcome of stimulating a single type of cell may be stereotyped and reproducible, in vivo this is often not the case. This phenomenon often merits the use of animal models in predicting the impact of immunosuppressant drugs. A heavy burden of responsibility lies on the shoulders of the investigator when using animal models to study immunosuppressive agents. The principles of the three R׳s: refine (less suffering,), reduce (lower animal numbers) and replace (alternative in vitro assays) must be applied, as described elsewhere in this issue. Well designed animal model experiments have allowed us to develop all the immunosuppressive agents currently available for treating autoimmune disease and transplant recipients. In this review, we examine the common animal models used in developing immunosuppressive agents, focusing on drugs used in transplant surgery. Autoimmune diseases, such as multiple sclerosis, are covered elsewhere in this issue. We look at the utility and limitations of small and large animal models in measuring potency and toxicity of immunosuppressive therapies.

  19. Animal models to study thyroid hormone action in cerebellum.

    PubMed

    Koibuchi, Noriyuki

    2009-06-01

    Thyroid hormone plays a crucial role in the development and functional maintenance of the central nervous system including the cerebellum. To study the molecular mechanisms of thyroid hormone action, various animal models have been used. These are classified: (1) congenital hypothyroid animals due to thyroid gland dysgenesis or thyroid dyshormonogenesis, (2) thyroid hormone receptor (TR) gene-mutated animals, and (3) thyroid hormone transport or metabolism-modified animals. TR is a ligand-activated transcription factor. In the presence of ligand, it activates transcription of target gene, whereas it represses the transcription without ligand. Thus, phenotype of TR-knockout mouse is different from that of hypothyroid animal (low thyroid hormone level), in which unliganded TR actively represses the transcription. On the other hand, human patient harboring mutant TR expresses different phenotypes depending on the function of mutated TR. To mimic this phenotype, other animal models are generated. In addition, recent human studies have shown that thyroid hormone transporters such as monocarboxylate transporter (MCT) 8 may play an important role in thyroid hormone-mediated brain development. However, MCT8 knockout mouse show different phenotypes from a human patient. This article introduces representative animal models currently used to study various aspects of thyroid hormone, particularly to study the involvement of the thyroid hormone system on the development and functional maintenance of the cerebellum.

  20. Sex differences in animal models of psychiatric disorders

    PubMed Central

    Kokras, N; Dalla, C

    2014-01-01

    Psychiatric disorders are characterized by sex differences in their prevalence, symptomatology and treatment response. Animal models have been widely employed for the investigation of the neurobiology of such disorders and the discovery of new treatments. However, mostly male animals have been used in preclinical pharmacological studies. In this review, we highlight the need for the inclusion of both male and female animals in experimental studies aiming at gender-oriented prevention, diagnosis and treatment of psychiatric disorders. We present behavioural findings on sex differences from animal models of depression, anxiety, post-traumatic stress disorder, substance-related disorders, obsessive–compulsive disorder, schizophrenia, bipolar disorder and autism. Moreover, when available, we include studies conducted across different stages of the oestrous cycle. By inspection of the relevant literature, it is obvious that robust sex differences exist in models of all psychiatric disorders. However, many times results are conflicting, and no clear conclusion regarding the direction of sex differences and the effect of the oestrous cycle is drawn. Moreover, there is a lack of considerable amount of studies using psychiatric drugs in both male and female animals, in order to evaluate the differential response between the two sexes. Notably, while in most cases animal models successfully mimic drug response in both sexes, test parameters and treatment-sensitive behavioural indices are not always the same for male and female rodents. Thus, there is an increasing need to validate animal models for both sexes and use standard procedures across different laboratories. Linked Articles This article is part of a themed section on Animal Models in Psychiatry Research. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-20 PMID:24697577

  1. Impairments of Synaptic Plasticity in Aged Animals and in Animal Models of Alzheimer's Disease

    PubMed Central

    Balietti, Marta; Tamagnini, Francesco; Fattoretti, Patrizia; Burattini, Costanza; Casoli, Tiziana; Platano, Daniela; Lattanzio, Fabrizia

    2012-01-01

    Abstract Aging is associated with a gradual decline in cognitive functions, and more dramatic cognitive impairments occur in patients affected by Alzheimer's disease (AD). Electrophysiological and molecular studies performed in aged animals and in animal models of AD have shown that cognitive decline is associated with significant modifications in synaptic plasticity (i.e., activity-dependent changes in synaptic strength) and have elucidated some of the cellular mechanisms underlying this process. Morphological studies have revealed a correlation between the quality of memory performance and the extent of structural changes of synaptic contacts occurring during memory consolidation. We briefly review recent experimental evidence here. PMID:22533439

  2. Animal models of obsessive–compulsive disorder: utility and limitations

    PubMed Central

    Alonso, Pino; López-Solà, Clara; Real, Eva; Segalàs, Cinto; Menchón, José Manuel

    2015-01-01

    Obsessive–compulsive disorder (OCD) is a disabling and common neuropsychiatric condition of poorly known etiology. Many attempts have been made in the last few years to develop animal models of OCD with the aim of clarifying the genetic, neurochemical, and neuroanatomical basis of the disorder, as well as of developing novel pharmacological and neurosurgical treatments that may help to improve the prognosis of the illness. The latter goal is particularly important given that around 40% of patients with OCD do not respond to currently available therapies. This article summarizes strengths and limitations of the leading animal models of OCD including genetic, pharmacologically induced, behavioral manipulation-based, and neurodevelopmental models according to their face, construct, and predictive validity. On the basis of this evaluation, we discuss that currently labeled “animal models of OCD” should be regarded not as models of OCD but, rather, as animal models of different psychopathological processes, such as compulsivity, stereotypy, or perseverance, that are present not only in OCD but also in other psychiatric or neurological disorders. Animal models might constitute a challenging approach to study the neural and genetic mechanism of these phenomena from a trans-diagnostic perspective. Animal models are also of particular interest as tools for developing new therapeutic options for OCD, with the greatest convergence focusing on the glutamatergic system, the role of ovarian and related hormones, and the exploration of new potential targets for deep brain stimulation. Finally, future research on neurocognitive deficits associated with OCD through the use of analogous animal tasks could also provide a genuine opportunity to disentangle the complex etiology of the disorder. PMID:26346234

  3. Aquatic models for the study of renal transport function and pollutant toxicity

    SciTech Connect

    Miller, D.S.

    1987-04-01

    Studies of renal cell transport mechanisms and their impairment by xenobiotics are often limited by technical difficulties related to renal tubule complexity. Problems include the juxtaposition of multiple tubule segments with different transport functions and severely limited access to the tubular lumen. Some limitations can be overcome by the careful selection of an appropriate aquatic experimental system. Two aquatic models for the vertebrate proximal segment are discussed here. The first is the kidney from certain marine flounder, which offers the following advantages: long-term viability, little tissue of nonproximal origin, and easy tubule isolation. Data are presented to demonstrate how studies with flounder kidney can be used to elucidate cellular mechanisms whereby different classes of toxic pollutants may interact. Results from these experiments indicate that the excretion of certain anionic xenobiotics can be delayed (1) by other anionic xenobiotics that compete for secretory transport sites and (2) by compounds that disrupt cellular ion gradients and energy metabolism needed to drive transport. The second system is the crustacean urinary bladder, a simple, flatsheet epithelium. Bladder morphology and transport physiology closely resemble those of vertebrate proximal segment. Electron micrographs show a brush border membrane at the luminal surface, numerous mitochondria, and an infolded serosal membrane, while in vivo and in vitro transport studies show reabsorption of NaCl, nutrients and water and secretion of organic cations; organic anions are secreted in bladders from some species and reabsorbed in others. Moreover, since bladders can be mounted as flat sheets in flux chambers, studies with this tissue avoid the problems of complex renal tubule geometry and tissue heterogeneity and tissue heterogeneity that limit transport studies in proximal tubule.

  4. Animal models of Parkinson's disease: a gateway to therapeutics?

    PubMed

    Le, Weidong; Sayana, Pavani; Jankovic, Joseph

    2014-01-01

    Parkinson's disease (PD) is a progressive, neurodegenerative disorder of unknown etiology, although a complex interaction between environmental and genetic factors has been implicated as a pathogenic mechanism of selected neuronal loss. A better understanding of the etiology, pathogenesis, and molecular mechanisms underlying the disease process may be gained from research on animal models. While cell and tissue models are helpful in unraveling involved molecular pathways, animal models are much better suited to study the pathogenesis and potential treatment strategies. The animal models most relevant to PD include those generated by neurotoxic chemicals that selectively disrupt the catecholaminergic system such as 6-hydroxydopamine; 1-methyl-1,2,3,6-tetrahydropiridine; agricultural pesticide toxins, such as rotenone and paraquat; the ubiquitin proteasome system inhibitors; inflammatory modulators; and several genetically manipulated models, such as α-synuclein, DJ-1, PINK1, Parkin, and leucine-rich repeat kinase 2 transgenic or knock-out animals. Genetic and nongenetic animal models have their own unique advantages and limitations, which must be considered when they are employed in the study of pathogenesis or treatment approaches. This review provides a summary and a critical review of our current knowledge about various in vivo models of PD used to test novel therapeutic strategies.

  5. Animal models of suicide-trait-related behaviors.

    PubMed

    Malkesman, Oz; Pine, Daniel S; Tragon, Tyson; Austin, Daniel R; Henter, Ioline D; Chen, Guang; Manji, Husseini K

    2009-04-01

    Although antidepressants are moderately effective in treating major depressive disorder (MDD), concerns have arisen that selective serotonin-reuptake inhibitors (SSRIs) are associated with suicidal thinking and behavior, especially in children, adolescents and young adults. Almost no experimental research in model systems has considered the mechanisms by which SSRIs might be associated with this potential side effect in some susceptible individuals. Suicide is a complex behavior and impossible to fully reproduce in an animal model. However, by investigating traits that show strong cross-species parallels in addition to associations with suicide in humans, animal models might elucidate the mechanisms by which SSRIs are associated with suicidal thinking and behavior. Traits linked with suicide in humans that can be successfully modeled in rodents include aggression, impulsivity, irritability and hopelessness/helplessness. Modeling these relevant traits in animals can help to clarify the impact of SSRIs on these traits, suggesting avenues for reducing suicide risk in this vulnerable population.

  6. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis

    PubMed Central

    Takahashi, Yoshihisa; Soejima, Yurie; Fukusato, Toshio

    2012-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a condition in which excess fat accumulates in the liver of a patient without a history of alcohol abuse. Nonalcoholic steatohepatitis (NASH), a severe form of NAFLD, can progress to liver cirrhosis and hepatocellular carcinoma. NAFLD is regarded as a hepatic manifestation of metabolic syndrome and incidence has been increasing worldwide in line with the increased prevalence of obesity, type 2 diabetes, and hyperlipemia. Animal models of NAFLD/NASH give crucial information, not only in elucidating pathogenesis of NAFLD/NASH but also in examining therapeutic effects of various agents. An ideal model of NAFLD/NASH should correctly reflect both hepatic histopathology and pathophysiology of human NAFLD/NASH. Animal models of NAFLD/NASH are divided into genetic, dietary, and combination models. In this paper, we review commonly used animal models of NAFLD/NASH referring to their advantages and disadvantages. PMID:22654421

  7. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis.

    PubMed

    Takahashi, Yoshihisa; Soejima, Yurie; Fukusato, Toshio

    2012-05-21

    Nonalcoholic fatty liver disease (NAFLD) is a condition in which excess fat accumulates in the liver of a patient without a history of alcohol abuse. Nonalcoholic steatohepatitis (NASH), a severe form of NAFLD, can progress to liver cirrhosis and hepatocellular carcinoma. NAFLD is regarded as a hepatic manifestation of metabolic syndrome and incidence has been increasing worldwide in line with the increased prevalence of obesity, type 2 diabetes, and hyperlipemia. Animal models of NAFLD/NASH give crucial information, not only in elucidating pathogenesis of NAFLD/NASH but also in examining therapeutic effects of various agents. An ideal model of NAFLD/NASH should correctly reflect both hepatic histopathology and pathophysiology of human NAFLD/NASH. Animal models of NAFLD/NASH are divided into genetic, dietary, and combination models. In this paper, we review commonly used animal models of NAFLD/NASH referring to their advantages and disadvantages.

  8. Plastic as a carrier of POPs to aquatic organisms: a model analysis.

    PubMed

    Koelmans, Albert A; Besseling, Ellen; Wegner, Anna; Foekema, Edwin M

    2013-07-16

    It has been hypothesized that persistent organic pollutants (POPs) in microplastic may pose a risk to aquatic organisms. Here we develop and analyze a conceptual model that simulates the effects of plastic on bioaccumulation of POPs. The model accounts for dilution of exposure concentration by sorption of POPs to plastic (POP "dilution"), increased bioaccumulation by ingestion of plastic-containing POPs ("carrier"), and decreased bioaccumulation by ingestion of clean plastic ("cleaning"). The model is parametrized for the lugworm Arenicola marina and evaluated against recently published bioaccumulation data for this species from laboratory bioassays with polystyrene microplastic. Further scenarios include polyethylene microplastic, nanosized plastic, and open marine systems. Model analysis shows that plastic with low affinity for POPs such as polystyrene will have a marginal decreasing effect on bioaccumulation, governed by dilution. For stronger sorbents such as polyethylene, the dilution, carrier, and cleaning mechanism are more substantial. In closed laboratory bioassay systems, dilution and cleaning dominate, leading to decreased bioaccumulation. Also in open marine systems a decrease is predicted due to a cleaning mechanism that counteracts biomagnification. However, the differences are considered too small to be relevant from a risk assessment perspective.

  9. Development of a dynamic model for estimating the food web transfer of chemicals in small aquatic ecosystems.

    PubMed

    Nfon, Erick; Armitage, James M; Cousins, Ian T

    2011-11-15

    A dynamic combined fate and food web model was developed to estimate the food web transfer of chemicals in small aquatic ecosystems (i.e. ponds). A novel feature of the modeling approach is that aquatic macrophytes (submerged aquatic vegetation) were included in the fate model and were also a food item in the food web model. The paper aims to investigate whether macrophytes are effective at mitigating chemical exposure and to compare the modeling approach developed here with previous modeling approaches recommended in the European Union (EU) guideline for risk assessment of pesticides. The model was used to estimate bioaccumulation of three hypothetical chemicals of varying hydrophobicity in a pond food web comprising 11 species. Three different macrophyte biomass densities were simulated in the model experiments to determine the influence of macrophytes on fate and bioaccumulation. Macrophytes were shown to have a significant effect on the fate and food web transfer of highly hydrophobic compounds with log KOW>=5. Modeled peak concentrations in biota were highest for the scenarios with the lowest macrophyte biomass density. The distribution and food web transfer of the hypothetical compound with the lowest hydrophobicity (log KOW=3) was not affected by the inclusion of aquatic macrophytes in the pond environment. For the three different hypothetical chemicals and at all macrophyte biomass densities, the maximum predicted concentrations in the top predator in the food web model were at least one order of magnitude lower than the values estimated using methods suggested in EU guidelines. The EU guideline thus provides a highly conservative estimate of risk. In our opinion, and subject to further model evaluation, a realistic assessment of dynamic food web transfer and risk can be obtained using the model presented here.

  10. Large animal models of hematopoietic stem cell gene therapy.

    PubMed

    Trobridge, G D; Kiem, H-P

    2010-08-01

    Large animal models have been instrumental in advancing hematopoietic stem cell (HSC) gene therapy. Here we review the advantages of large animal models, their contributions to the field of HSC gene therapy and recent progress in this field. Several properties of human HSCs including their purification, their cell-cycle characteristics, their response to cytokines and the proliferative demands placed on them after transplantation are more similar in large animal models than in mice. Progress in the development and use of retroviral vectors and ex vivo transduction protocols over the last decade has led to efficient gene transfer in both dogs and nonhuman primates. Importantly, the approaches developed in these models have translated well to the clinic. Large animals continue to be useful to evaluate the efficacy and safety of gene therapy, and dogs with hematopoietic diseases have now been cured by HSC gene therapy. Nonhuman primates allow evaluation of aspects of transplantation as well as disease-specific approaches such as AIDS (acquired immunodeficiency syndrome) gene therapy that can not be modeled well in the dog. Finally, large animal models have been used to evaluate the genotoxicity of viral vectors by comparing integration sites in hematopoietic repopulating cells and monitoring clonality after transplantation.

  11. Animal models of COPD: What do they tell us?

    PubMed

    Jones, Bernadette; Donovan, Chantal; Liu, Gang; Gomez, Henry M; Chimankar, Vrushali; Harrison, Celeste L; Wiegman, Cornelis H; Adcock, Ian M; Knight, Darryl A; Hirota, Jeremy A; Hansbro, Philip M

    2017-01-01

    COPD is a major cause of global mortality and morbidity but current treatments are poorly effective. This is because the underlying mechanisms that drive the development and progression of COPD are incompletely understood. Animal models of disease provide a valuable, ethically and economically viable experimental platform to examine these mechanisms and identify biomarkers that may be therapeutic targets that would facilitate the development of improved standard of care. Here, we review the different established animal models of COPD and the various aspects of disease pathophysiology that have been successfully recapitulated in these models including chronic lung inflammation, airway remodelling, emphysema and impaired lung function. Furthermore, some of the mechanistic features, and thus biomarkers and therapeutic targets of COPD identified in animal models are outlined. Some of the existing therapies that suppress some disease symptoms that were identified in animal models and are progressing towards therapeutic development have been outlined. Further studies of representative animal models of human COPD have the strong potential to identify new and effective therapeutic approaches for COPD.

  12. [Laboratory animal anaesthesia: influence of anaesthetic protocols on experimental models].

    PubMed

    Bazin, J-E; Constantin, J-M; Gindre, G

    2004-08-01

    different animal species and human and animals about the effects of anaesthetic agents are very hazardous. Great differences exist between the effects observed in vitro and in whole animals. The effects of the anaesthetics could be totally different if they are used alone or in association. The same anaesthetic could have opposite effects from an organ to another. For results validation, the anaesthesia side effects (hypoventilation, hypotension, cooling em leader ) have to be minimized. All new experimental models should require discussing the possible interferences between anaesthesia and results and to compare results obtained with different anaesthetic protocols.

  13. Life sciences research in space: The requirement for animal models

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.; Philips, R. W.; Ballard, R. W.

    1987-01-01

    Use of animals in NASA space programs is reviewed. Animals are needed because life science experimentation frequently requires long-term controlled exposure to environments, statistical validation, invasive instrumentation or biological tissue sampling, tissue destruction, exposure to dangerous or unknown agents, or sacrifice of the subject. The availability and use of human subjects inflight is complicated by the multiple needs and demands upon crew time. Because only living organisms can sense, integrate and respond to the environment around them, the sole use of tissue culture and computer models is insufficient for understanding the influence of the space environment on intact organisms. Equipment for spaceborne experiments with animals is described.

  14. Brazilian aquatic animal health policy.

    PubMed

    Barros Cavalcante Neto, J; de Azevedo Pedrosa Cunha, E

    2007-01-01

    The potential for the development of aquaculture in Brazil is huge. Marine shrimp cultivation in Brazil began in the 1970s and grew rapidly to produce 90,190 tons in 2003. In 2004, several factors including disease, trade disputes, and devaluation of the Real caused the industry to collapse. The appearance of white spot disease demonstrated a lack of structure and organisation for responding to the problems involved in managing disease outbreaks. Interaction between the stakeholders involved needs to be organised and facilitated. Dissemination of information and economical stability are necessary for maintaining good practices and the sanitary security of production.

  15. Use of animal models to develop antiaddiction medications.

    PubMed

    Gardner, Eliot L

    2008-10-01

    Although addiction is a uniquely human phenomenon, some of its pathognomonic features can be modeled at the animal level. Such features include the euphoric "high" produced by acute administration of addictive drugs; the dysphoric "crash" produced by acute withdrawal; drug-seeking and drug-taking behaviors; and relapse to drug-seeking behavior after achieving successful abstinence. Animal models exist for each of these features. In this review, I focus on various animal models of addiction and how they can be used to search for clinically effective antiaddiction medications. I conclude by noting some of the new and novel medications that have been developed preclinically using such models and the hope for further developments along such lines.

  16. Use of Animal Models to Develop Antiaddiction Medications

    PubMed Central

    Gardner, Eliot L.

    2008-01-01

    Although addiction is a uniquely human phenomenon, some of its pathognomonic features can be modeled at the animal level. Such features include the euphoric “high” produced by acute administration of addictive drugs; the dysphoric “crash” produced by acute withdrawal, drug-seeking, and drug-taking behaviors; and relapse to drug-seeking behavior after achieving successful abstinence. Animal models exist for each of these features. In this review, I focus on various animal models of addiction and how they can be used to search for clinically effective antiaddiction medications. I conclude by noting some of the new and novel medications that have been developed preclinically using such models and the hope for further developments along such lines. PMID:18803910

  17. Canine tumors: a spontaneous animal model of human carcinogenesis.

    PubMed

    Pinho, Salomé S; Carvalho, Sandra; Cabral, Joana; Reis, Celso A; Gärtner, Fátima

    2012-03-01

    The enormous biologic complexity of human cancer has stimulated the development of more appropriate experimental models that could resemble in a natural and spontaneous manner the physiopathologic aspects of cancer biology. Companion animals have many desired characteristics that fill the gap between in vitro and in vivo studies, and these characteristics have proven to be important in understanding many complex molecular aspects of human cancer. Spontaneous tumors in dogs share a wide variety of epidemiologic, biologic, and clinical features with human cancer, which makes this animal model both attractive and underused in oncology research. In this review, we summarize the importance of naturally occurring canine tumors as valuable tools for studying numerous aspects of human cancer as well as the potential use of this animal model for the development of new cancer treatments. We address specifically the use of canine mammary tumors as an increasingly powerful model to study human breast cancer.

  18. Animal models of female pelvic organ prolapse: lessons learned

    PubMed Central

    Couri, Bruna M; Lenis, Andrew T; Borazjani, Ali; Paraiso, Marie Fidela R; Damaser, Margot S

    2012-01-01

    Pelvic organ prolapse is a vaginal protrusion of female pelvic organs. It has high prevalence worldwide and represents a great burden to the economy. The pathophysiology of pelvic organ prolapse is multifactorial and includes genetic predisposition, aberrant connective tissue, obesity, advancing age, vaginal delivery and other risk factors. Owing to the long course prior to patients becoming symptomatic and ethical questions surrounding human studies, animal models are necessary and useful. These models can mimic different human characteristics – histological, anatomical or hormonal, but none present all of the characteristics at the same time. Major animal models include knockout mice, rats, sheep, rabbits and nonhuman primates. In this article we discuss different animal models and their utility for investigating the natural progression of pelvic organ prolapse pathophysiology and novel treatment approaches. PMID:22707980

  19. Behavioral Models of Tinnitus and Hyperacusis in Animals

    PubMed Central

    Hayes, Sarah H.; Radziwon, Kelly E.; Stolzberg, Daniel J.; Salvi, Richard J.

    2014-01-01

    The phantom perception of tinnitus and reduced sound-level tolerance associated with hyperacusis have a high comorbidity and can be debilitating conditions for which there are no widely accepted treatments. One factor limiting the development of treatments for tinnitus and hyperacusis is the lack of reliable animal behavioral models of these disorders. Therefore, the purpose of this review is to highlight the current animal models of tinnitus and hyperacusis, and to detail the advantages and disadvantages of each paradigm. To date, this is the first review to include models of both tinnitus and hyperacusis. PMID:25278931

  20. Recent developments in experimental animal models of Henipavirus infection.

    PubMed

    Rockx, Barry

    2014-07-01

    Hendra (HeV) and Nipah (NiV) viruses (genus Henipavirus (HNV; family Paramyxoviridae) are emerging zoonotic agents that can cause severe respiratory distress and acute encephalitis in humans. Given the lack of effective therapeutics and vaccines for human use, these viruses are considered as public health concerns. Several experimental animal models of HNV infection have been developed in recent years. Here, we review the current status of four of the most promising experimental animal models (mice, hamsters, ferrets, and African green monkeys) and their suitability for modeling the clinical disease, transmission, pathogenesis, prevention, and treatment for HNV infection in humans.

  1. Animal models of self-injurious behaviour: an overview.

    PubMed

    Devine, Darragh P

    2012-01-01

    Self-injurious behaviour is highly prevalent in neurodevelopmental disorders. Interestingly, it is not restricted to any individual diagnostic group. Rather, it is exhibited in various forms across patient groups with distinct genetic defects and classifications of disorders. This suggests that there may be shared neuropathology that confers vulnerability. Convergent evidence from clinical pharmacotherapy, brain imaging studies, postmortem neurochemical analyses, and animal models indicates that dopaminergic insufficiency is a key culprit. This chapter provides an overview of studies in which animal models have been used to investigate the biochemical basis of self-injury, and highlights the convergence in findings between these models and expression of self-injury in humans.

  2. Animal models of post-traumatic stress disorder: face validity

    PubMed Central

    Goswami, Sonal; Rodríguez-Sierra, Olga; Cascardi, Michele; Paré, Denis

    2013-01-01

    Post-traumatic stress disorder (PTSD) is a debilitating condition that develops in a proportion of individuals following a traumatic event. Despite recent advances, ethical limitations associated with human research impede progress in understanding PTSD. Fortunately, much effort has focused on developing animal models to help study the pathophysiology of PTSD. Here, we provide an overview of animal PTSD models where a variety of stressors (physical, psychosocial, or psychogenic) are used to examine the long-term effects of severe trauma. We emphasize models involving predator threat because they reproduce human individual differences in susceptibility to, and in the long-term consequences of, psychological trauma. PMID:23754973

  3. Does aquatic foraging impact head shape evolution in snakes?

    PubMed

    Segall, Marion; Cornette, Raphaël; Fabre, Anne-Claire; Godoy-Diana, Ramiro; Herrel, Anthony

    2016-08-31

    Evolutionary trajectories are often biased by developmental and historical factors. However, environmental factors can also impose constraints on the evolutionary trajectories of organisms leading to convergence of morphology in similar ecological contexts. The physical properties of water impose strong constraints on aquatic feeding animals by generating pressure waves that can alert prey and potentially push them away from the mouth. These hydrodynamic constraints have resulted in the independent evolution of suction feeding in most groups of secondarily aquatic tetrapods. Despite the fact that snakes cannot use suction, they have invaded the aquatic milieu many times independently. Here, we test whether the aquatic environment has constrained head shape evolution in snakes and whether shape converges on that predicted by biomechanical models. To do so, we used three-dimensional geometric morphometrics and comparative, phylogenetically informed analyses on a large sample of aquatic snake species. Our results show that aquatic snakes partially conform to our predictions and have a narrower anterior part of the head and dorsally positioned eyes and nostrils. This morphology is observed, irrespective of the phylogenetic relationships among species, suggesting that the aquatic environment does indeed drive the evolution of head shape in snakes, thus biasing the evolutionary trajectory of this group of animals.

  4. A two or three compartments hyperbolic reaction-diffusion model for the aquatic food chain.

    PubMed

    Barbera, Elvira; Consolo, Giancarlo; Valenti, Giovanna

    2015-06-01

    Two hyperbolic reaction-diffusion models are built up in the framework of Extended Thermodynamics in order to describe the spatio-temporal interactions occurring in a two or three compartments aquatic food chain. The first model focuses on the dynamics between phytoplankton and zooplankton, whereas the second one accounts also for the nutrient. In these models, infections and influence of illumination on photosynthesis are neglected. It is assumed that the zooplankton predation follows a Holling type-III functional response, while the zooplankton mortality is linear. Owing to the hyperbolic structure of our equations, the wave processes occur at finite velocity, so that the paradox of instantaneous diffusion of biological quantities, typical of parabolic systems, is consequently removed. The character of steady states and travelling waves, together with the occurrence of Hopf bifurcations, is then discussed through linear stability analysis. The governing equations are also integrated numerically to validate the analytical results herein obtained and to extract additional information on the population dynamics.

  5. Prediction of aquatic toxicity mode of action using linear discriminant and random forest models.

    PubMed

    Martin, Todd M; Grulke, Christopher M; Young, Douglas M; Russom, Christine L; Wang, Nina Y; Jackson, Crystal R; Barron, Mace G

    2013-09-23

    The ability to determine the mode of action (MOA) for a diverse group of chemicals is a critical part of ecological risk assessment and chemical regulation. However, existing MOA assignment approaches in ecotoxicology have been limited to a relatively few MOAs, have high uncertainty, or rely on professional judgment. In this study, machine based learning algorithms (linear discriminant analysis and random forest) were used to develop models for assigning aquatic toxicity MOA. These methods were selected since they have been shown to be able to correlate diverse data sets and provide an indication of the most important descriptors. A data set of MOA assignments for 924 chemicals was developed using a combination of high confidence assignments, international consensus classifications, ASTER (ASessment Tools for the Evaluation of Risk) predictions, and weight of evidence professional judgment based an assessment of structure and literature information. The overall data set was randomly divided into a training set (75%) and a validation set (25%) and then used to develop linear discriminant analysis (LDA) and random forest (RF) MOA assignment models. The LDA and RF models had high internal concordance and specificity and were able to produce overall prediction accuracies ranging from 84.5 to 87.7% for the validation set. These results demonstrate that computational chemistry approaches can be used to determine the acute toxicity MOAs across a large range of structures and mechanisms.

  6. [The importance of animal models for progress in science].

    PubMed

    Weiser, H

    1989-06-01

    Experimental animals may serve as models for human beings, if analogies between animal and human functions exist. Therefore, the selection of species and strain plays an important role in the development of such models. Knowledge of the nutritional and physiological characteristics of a species is a prerequisite for the composition of complete diets. Often, preliminary work has to begin at the breeding farm in order to make use of such curative models possible. Only when the high requirements of standardization of experimental animals are met can clinical and subclinical symptoms be determined distinctly. By means of sensitive biochemical reactions, imbalances and interactions of nutritive and active ingredients, as well as successful substitutions, can be recorded. The study of absorption and metabolism of preparations is made possible by observing these reactions. However, negative influence on the results of analysis must be eliminated by correct selection of narcotics, and the proper excision and storage of organs. Because of its importance for the planning and evaluation of experiments, biometry is an integral part of every research project. The scientific information which must be gained from the whole experimental animal cannot be substituted by either isolated organs and cell cultures, or by means of computer simulation. A demanding effort, which includes biotechnological methods, is necessary to further reduce the number of experimental animals and, simultaneously, to enhance experimental evidence. In any case, all scientific aims must be in accordance with the ethical principles of the Society for the Prevention of Cruelty to Animals.

  7. Tissue hypoxia during ischemic stroke: adaptive clues from hypoxia-tolerant animal models.

    PubMed

    Nathaniel, Thomas I; Williams-Hernandez, Ashley; Hunter, Anan L; Liddy, Caroline; Peffley, Dennis M; Umesiri, Francis E; Imeh-Nathaniel, Adebobola

    2015-05-01

    The treatment and prevention of hypoxic/ischemic brain injury in stroke patients remain a severe and global medical issue. Numerous clinical studies have resulted in a failure to develop chemical neuroprotection for acute, ischemic stroke. Over 150 estimated clinical trials of ischemic stroke treatments have been done, and more than 200 drugs and combinations of drugs for ischemic and hemorrhagic strokes have been developed. Billions of dollars have been invested for new scientific breakthroughs with only limited success. The revascularization of occluded cerebral arteries such as anti-clot treatments of thrombolysis has proven effective, but it can only be used in a 3-4.5h time frame after the onset of a stroke, and not for every patient. This review is about novel insights on how to resist tissue hypoxia from unconventional animal models. Ability to resist tissue hypoxia is an extraordinary ability that is not common in many laboratory animals such as rat and mouse models. For example, we can learn from a naked mole-rat, Chrysemys picta, how to actively regulate brain metabolic activity to defend the brain against fluctuating oxygen tension and acute bouts of oxidative stress following the onset of a stroke. Additionally, a euthermic arctic ground squirrel can teach us how the brain of a stroke patient can remain well oxygenated during tissue hypoxia with no evidence of cellular stress. In this review, we discuss how these animals provide us with a system to gain insight into the possible mechanisms of tissue hypoxia/ischemia. This issue is of clinical significance to stroke patients. We describe specific physiological and molecular adaptations employed by different animals' models of hypoxia tolerance in aquatic and terrestrial environments. We highlight how these adaptations might provide potential clues on strategies to adapt for the clinical management of tissue hypoxia during conditions such as stroke where oxygen demand fails to match the supply.

  8. Animal models of GM2 gangliosidosis: utility and limitations

    PubMed Central

    Lawson, Cheryl A; Martin, Douglas R

    2016-01-01

    GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay–Sachs and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. As a result, individuals with GM2 gangliosidosis experience progressive neurological diseases including motor deficits, progressive weakness and hypotonia, decreased responsiveness, vision deterioration, and seizures. Mice and cats are well-established animal models for Sandhoff disease, whereas Jacob sheep are the only known laboratory animal model of Tay–Sachs disease to exhibit clinical symptoms. Since the human diseases are relatively rare, animal models are indispensable tools for further study of pathogenesis and for development of potential treatments. Though no effective treatments for gangliosidoses currently exist, animal models have been used to test promising experimental therapies. Herein, the utility and limitations of gangliosidosis animal models and how they have contributed to the development of potential new treatments are described. PMID:27499644

  9. A novel animal model for skin flap prelamination with biomaterials

    NASA Astrophysics Data System (ADS)

    Zhou, Xianyu; Luo, Xusong; Liu, Fei; Gu, Chuan; Wang, Xi; Yang, Qun; Qian, Yunliang; Yang, Jun

    2016-09-01

    Several animal models of skin flap construction were reported using biomaterials in a way similar to prefabrication. However, there are few animal model using biomaterials similar to prelamination, another main way of clinical skin flap construction that has been proved to be reliable. Can biomaterials be added in skin flap prelamination to reduce the use of autogenous tissues? Beside individual clinical attempts, animal model is needed for randomized controlled trial to objectively evaluate the feasibility and further investigation. Combining human Acellular Dermal Matrix (hADM) and autologous skin graft, we prelaminated flaps based on inguinal fascia. One, two, three and four weeks later, hADM exhibited a sound revascularization and host cell infiltration. Prelaminated skin flaps were then raised and microsurgically transplanted back to groin region. Except for flaps after one week of prelamination, flaps from other subgroups successfully reconstructed defects. After six to sixteen weeks of transplantation, hADM was proved to being able to maintain its original structure, having a wealth of host tissue cells and achieving full revascularization.To our knowledge, this is the first animal model of prelaminating skin flap with biomaterials. Success of this animal model indicates that novel flap prelamination with biomaterials is feasible.

  10. Alzheimer’s disease and epilepsy: insight from animal models

    PubMed Central

    Scharfman, Helen E

    2012-01-01

    Alzheimer’s disease (AD) and epilepsy are separated in the medical community, but seizures occur in some patients with AD, and AD is a risk factor for epilepsy. Furthermore, memory impairment is common in patients with epilepsy. The relationship between AD and epilepsy remains an important question because ideas for therapeutic approaches could be shared between AD and epilepsy research laboratories if AD and epilepsy were related. Here we focus on one of the many types of epilepsy, temporal lobe epilepsy (TLE), because patients with TLE often exhibit memory impairment, depression and other comorbidities that occur in AD. Moreover, the seizures that occur in patients with AD may be nonconvulsive, which occur in patients with TLE. Here we first compare neuropathology in TLE and AD with an emphasis on the hippocampus, which is central to both AD and TLE research. Then we compare animal models of AD pathology with animal models of TLE. Although many aspects of the comparisons are still controversial, there is one conclusion that we suggest is clear: some animal models of TLE could be used to help address questions in AD research, and some animal models of AD pathology are bona fide animal models of epilepsy. PMID:22723738

  11. A novel animal model for skin flap prelamination with biomaterials

    PubMed Central

    Zhou, Xianyu; Luo, Xusong; Liu, Fei; Gu, Chuan; Wang, Xi; Yang, Qun; Qian, Yunliang; Yang, Jun

    2016-01-01

    Several animal models of skin flap construction were reported using biomaterials in a way similar to prefabrication. However, there are few animal model using biomaterials similar to prelamination, another main way of clinical skin flap construction that has been proved to be reliable. Can biomaterials be added in skin flap prelamination to reduce the use of autogenous tissues? Beside individual clinical attempts, animal model is needed for randomized controlled trial to objectively evaluate the feasibility and further investigation. Combining human Acellular Dermal Matrix (hADM) and autologous skin graft, we prelaminated flaps based on inguinal fascia. One, two, three and four weeks later, hADM exhibited a sound revascularization and host cell infiltration. Prelaminated skin flaps were then raised and microsurgically transplanted back to groin region. Except for flaps after one week of prelamination, flaps from other subgroups successfully reconstructed defects. After six to sixteen weeks of transplantation, hADM was proved to being able to maintain its original structure, having a wealth of host tissue cells and achieving full revascularization.To our knowledge, this is the first animal model of prelaminating skin flap with biomaterials. Success of this animal model indicates that novel flap prelamination with biomaterials is feasible. PMID:27659066

  12. Animal models of GM2 gangliosidosis: utility and limitations.

    PubMed

    Lawson, Cheryl A; Martin, Douglas R

    2016-01-01

    GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay-Sachs and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. As a result, individuals with GM2 gangliosidosis experience progressive neurological diseases including motor deficits, progressive weakness and hypotonia, decreased responsiveness, vision deterioration, and seizures. Mice and cats are well-established animal models for Sandhoff disease, whereas Jacob sheep are the only known laboratory animal model of Tay-Sachs disease to exhibit clinical symptoms. Since the human diseases are relatively rare, animal models are indispensable tools for further study of pathogenesis and for development of potential treatments. Though no effective treatments for gangliosidoses currently exist, animal models have been used to test promising experimental therapies. Herein, the utility and limitations of gangliosidosis animal models and how they have contributed to the development of potential new treatments are described.

  13. Animal models to study the pathogenesis of human and animal Clostridium perfringens infections

    PubMed Central

    Uzal, Francisco A.; McClane, Bruce A.; Cheung, Jackie K.; Theoret, James; Garcia, Jorge P.; Moore, Robert J.; Rood, Julian I.

    2016-01-01

    The most common animal models used to study Clostridium perfringens infections in humans and animals are reviewed here. The classical C. perfringens-mediated histotoxic disease of humans is clostridial myonecrosis or gas gangrene and the use of a mouse myonecrosis model coupled with genetic studies has contributed greatly to our understanding of disease pathogenesis. Similarly, the use of a chicken model has enhanced our understanding of type A-mediated necrotic enteritis in poultry and has led to the identification of NetB as the primary toxin involved in disease. C. perfringens type A food poisoning is a highly prevalent bacterial illness in the USA and elsewhere. Rabbits and mice are the species most commonly used to study the action of enterotoxin, the causative toxin. Other animal models used to study the effect of this toxin are rats, non-human primates, sheep and cattle. In rabbits and mice, CPE produces severe necrosis of the small intestinal epithelium along with fluid accumulation. C. perfringens type D infection has been studied by inoculating epsilon toxin (ETX) intravenously into mice, rats, sheep, goats and cattle, and by intraduodenal inoculation of whole cultures of this microorganism in mice, sheep, goats and cattle. Molecular Koch's postulates have been fulfilled for enterotoxigenic C. perfringens type A in rabbits and mice, for C. perfringens type A necrotic enteritis and gas gangrene in chickens and mice, respectively, for C. perfringens type C in mice, rabbits and goats, and for C. perfringens type D in mice, sheep and goats. PMID:25770894

  14. Animal models to study the pathogenesis of human and animal Clostridium perfringens infections.

    PubMed

    Uzal, Francisco A; McClane, Bruce A; Cheung, Jackie K; Theoret, James; Garcia, Jorge P; Moore, Robert J; Rood, Julian I

    2015-08-31

    The most common animal models used to study Clostridium perfringens infections in humans and animals are reviewed here. The classical C. perfringens-mediated histotoxic disease of humans is clostridial myonecrosis or gas gangrene and the use of a mouse myonecrosis model coupled with genetic studies has contributed greatly to our understanding of disease pathogenesis. Similarly, the use of a chicken model has enhanced our understanding of type A-mediated necrotic enteritis in poultry and has led to the identification of NetB as the primary toxin involved in disease. C. perfringens type A food poisoning is a highly prevalent bacterial illness in the USA and elsewhere. Rabbits and mice are the species most commonly used to study the action of enterotoxin, the causative toxin. Other animal models used to study the effect of this toxin are rats, non-human primates, sheep and cattle. In rabbits and mice, CPE produces severe necrosis of the small intestinal epithelium along with fluid accumulation. C. perfringens type D infection has been studied by inoculating epsilon toxin (ETX) intravenously into mice, rats, sheep, goats and cattle, and by intraduodenal inoculation of whole cultures of this microorganism in mice, sheep, goats and cattle. Molecular Koch's postulates have been fulfilled for enterotoxigenic C. perfringens type A in rabbits and mice, for C. perfringens type A necrotic enteritis and gas gangrene in chickens and mice, respectively, for C. perfringens type C in mice, rabbits and goats, and for C. perfringens type D in mice, sheep and goats.

  15. A modelling framework for the transport, transformation and biouptake of manufactured nanoparticles in the aquatic environment

    NASA Astrophysics Data System (ADS)

    Lofts, Stephen; Keller, Virginie; Dumont, Egon; Williams, Richard; Praetorius, Antonia; von der Kammer, Frank

    2016-04-01

    The development of innovative new chemical products is a key aspect of the modern economy, yet society demands that such development is environmentally sustainable. Developing knowledge of how new classes of chemicals behave following release to the environment is key to understanding the hazards that will potentially result. Nanoparticles are a key example of a class of chemicals that have undergone a significant expansion in production and use in recent years and so there is a need to develop tools to predict their potential hazard following their deliberate or incidental release to the environment. Generalising the understanding of the environmental behaviour of manufactured nanoparticles in general is challenging, as they are chemically and physically diverse (e.g. metals, metal oxides, carbon nanotubes, cellulose, quantum dots). Furthermore, nanoparticles may be manufactured with capping agents to modify their desired behaviour in industrial applications; such agents may also influence their environmental behaviour. Also, nanoparticles may become significantly modified from their as-manufactured forms both prior to and after the point of environmental release. Tools for predicting nanoparticle behaviour and hazard need to be able to consider a wide range of release scenarios and aspects of nanoparticle behaviour in the environment (e.g. dissolution, transformation of capping agents, agglomeration and aggregation behaviour), where such behaviours are not shared by all types of nanoparticle. This implies the need for flexible, futureproofed tools capable of being updated to take new understanding of behavioural processes into account as such knowledge emerges. This presentation will introduce the NanoFASE model system, a multimedia modelling framework for the transport, transformation and biouptake of manufactured nanoparticles. The complete system will comprise atmospheric, terrestrial and aquatic compartments to allow holistic simulation of nanoparticles; this

  16. The USDA national animal germplasm program and the aquatic species collection. In: T.R. Tiersch and C.C. Green (eds.) Cryopreservation in Aquatic Species, 2nd Edition. World Aquaculture Society, Baton Rouge, LA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diverse genetic resources and the genetic variability within species are the raw materials by which the productivity of aquatic species populations can be increased for food production. Due to the importance of these resources there is growing international awareness that these resources are importa...

  17. Performance Assessment of Two Whole-Lake Acoustic Positional Telemetry Systems - Is Reality Mining of Free-Ranging Aquatic Animals Technologically Possible?

    PubMed Central

    Baktoft, Henrik; Zajicek, Petr; Klefoth, Thomas; Svendsen, Jon C.; Jacobsen, Lene; Pedersen, Martin Wæver; March Morla, David; Skov, Christian; Nakayama, Shinnosuke; Arlinghaus, Robert

    2015-01-01

    Acoustic positional telemetry systems (APTs) represent a novel approach to study the behaviour of free ranging aquatic animals in the wild at unprecedented detail. System manufactures promise remarkably high temporal and spatial resolution. However, the performance of APTs has rarely been rigorously tested at the level of entire ecosystems. Moreover, the effect of habitat structure on system performance has only been poorly documented. Two APTs were deployed to cover two small lakes and a series of standardized stationary tests were conducted to assess system performance. Furthermore, a number of tow tests were conducted to simulate moving fish. Based on these data, we quantified system performance in terms of data yield, accuracy and precision as a function of structural complexity in relation to vegetation. Mean data yield of the two systems was 40 % (Lake1) and 60 % (Lake2). Average system accuracy (acc) and precision (prec) were Lake1: acc = 3.1 m, prec = 1.1 m; Lake2: acc = 1.0 m, prec = 0.2 m. System performance was negatively affected by structural complexity, i.e., open water habitats yielded far better performance than structurally complex vegetated habitats. Post-processing greatly improved data quality, and sub-meter accuracy and precision were, on average, regularly achieved in Lake2 but remained the exception in the larger and structurally more complex Lake1. Moving transmitters were tracked well by both systems. Whereas overestimation of moved distance is inevitable for stationary transmitters due to accumulation of small tracking errors, moving transmitters can result in both over- and underestimation of distances depending on circumstances. Both deployed APTs were capable of providing high resolution positional data at the scale of entire lakes and are suitable systems to mine the reality of free ranging fish in their natural environment. This opens important opportunities to advance several fields of study such as movement ecology and animal social

  18. The use of animal models in behavioural neuroscience research.

    PubMed

    Bovenkerk, Bernice; Kaldewaij, Frederike

    2015-01-01

    Animal models are used in experiments in the behavioural neurosciences that aim to contribute to the prevention and treatment of cognitive and affective disorders in human beings, such as anxiety and depression. Ironically, those animals that are likely to be the best models for psychopathology are also likely to be considered the ones that are most morally problematic to use, if it seems probable that (and if indeed they are initially selected as models because) they have experiences that are similar to human experiences that we have strong reasons to avoid causing, and indeed aim to alleviate (such as pain, anxiety or sadness). In this paper, against the background of contemporary discussions in animal ethics and the philosophy of animal minds, we discuss the views that it is morally permissible to use animals in these kinds of experiments, and that it is better to use less cognitively complex animals (such as zebrafish) than more complex animals (such as dogs). First, we criticise some justifications for the claim that human beings and more complex animals have higher moral status. We argue that contemporary approaches that attribute equal moral status to all beings that are capable of conscious strivings strivings (e.g. avoiding pain and anxiety; aiming to eat and play) are based on more plausible assumptions. Second, we argue that it is problematic to assume that less cognitively complex animals have a lesser sensory and emotional experience than more complex beings across the board. In specific cases, there might be good reasons to assume that more complex beings would be harmed more by a specific physical or environmental intervention, but it might also be that they sometimes are harmed less because of a better ability to cope. Determining whether a specific experiment is justified is therefore a complex issue. Our aim in this chapter is to stimulate further reflection on these common assumptions behind the use of animal models for psychopathologies. In

  19. Modelling of instream flow needs: The link between sediment and aquatic habitat

    USGS Publications Warehouse

    Milhous, R.T.

    1998-01-01

    Instream flows are needed to remove undesirable accumulations of sediment. Fines and sand accumulate on and in gravels during periods of low flow and must be removed (flushed) periodically in order for the gravel to continue as suitable habitat for aquatic animals. Sediment of all sizes can also fill pools in the river and must be removed in order to maintain pool habitat. A new technique relates the sizes of sediment important in the biological process to the size transported as wash, suspended and bed loads. The technique has a biological component, a hydraulic component and a selection component that links the two. The technique was used to determine the instream flows needed to maintain habitat for Colorado squawfish in the Gunnison River in western Colorado. Flows included a flushing flow to remove course sand form the riffles where Colorado squawfish spawn, to remove fines and sand from the river in general, to remove gravel from pools, and to scour side channels. The Gunnison River has a mean discharge of 73 m3/s and the flows of both sediment and water in the river have been modified by the construction of reservoirs and by major diversions for irrigation. The flows needed to maintain the spawning habitat for the Colorado squawfish by removing fines and sand from the riffles is 355 m3/s, to remove sand and fines from the river is 354 m3/s, to remove gravel from pools is 484 m3/s and to scour side channels is 210 m3/s. The flow required to maintain the riffles during spawning is 210 m3/s. These flushing flows are not required each year but they are required periodically (usually not less than once in every 3 years); and the maintenance flow is needed every year. ??1998 John Wiley & Sons, Ltd.

  20. Geometrical optics approach to modelling vision in semi-aquatic snakes

    NASA Astrophysics Data System (ADS)

    Almashhad, Khadijah Abdrabalnabi

    Snake's eyes have some very special characteristics that make them rather enviable. One interesting characteristic about semi-aquatic snakes is their ability to adapt their vision on land or underwater to interact with their environment without any problems, so semi-aquatic snakes constitute a threat to prey on both media. Semi-aquatic snake's eye, in general, is not largely studied in terms of optical properties and the mechanical properties. We examined the optical properties by studying the behavior of refractive index of a lens under stress while we investigated the mechanical properties to understand the relationship between force and compression by using the Hertzian theory of elastic.

  1. The pain of pain: challenges of animal behavior models.

    PubMed

    Barrett, James E

    2015-04-15

    Berend Olivier has had a long-standing interest in the utility of animal models for a wide variety of therapeutic indications. His work has spanned multiple types of models, blending ethological, or species typical and naturalistic behaviors, along with methodologies based on learned behavior. He has consistently done so, from an analytical as well as predictive perspective, and has made multiple contributions while working in both the pharmaceutical industry and within an academic institution. Although focused primarily on psychiatric disorders, Berend has conducted research in the area of pain in humans and in animals, demonstrating an expansive appreciation for the breadth, scope and significance of the science and applications of the discipline of pharmacology to these diverse areas. This review focuses on the use of animal models in pain research from the perspective of the long-standing deficiencies in the development of therapeutics in this area and from a preclinical perspective where the translational weaknesses have been quite problematic. The challenges confronting animal models of pain, however, are not unique to this area of research, as they cut across several therapeutic areas. Despite the deficiencies, failures and concerns, existing animal models of pain continue to be of widespread use and are essential to progress in pain research as well as in other areas. Although not focusing on specific animal models of pain, this paper seeks to examine general issues facing the use of these models. It does so by exploring alternative approaches which capture recent developments, which build upon principles and concepts we have learned from Berend's contributions, and which provide the prospect of helping to address the absence of novel therapeutics in this area.

  2. Computer simulation models are implementable as replacements for animal experiments.

    PubMed

    Badyal, Dinesh K; Modgill, Vikas; Kaur, Jasleen

    2009-04-01

    It has become increasingly difficult to perform animal experiments, because of issues related to the procurement of animals, and strict regulations and ethical issues related to their use. As a result, it is felt that the teaching of pharmacology should be more clinically oriented and that unnecessary animal experimentation should be avoided. Although a number of computer simulation models (CSMs) are available, they are not being widely used. Interactive demonstrations were conducted to encourage the departmental faculty to use CSMs. Four different animal experiments were selected, that dealt with actions of autonomic drugs. The students observed demonstrations of animal experiments involving conventional methods and the use of CSMs. This was followed by hands-on experience of the same experiment, but using CSMs in small groups, instead of hands-on experience with the animal procedures. Test scores and feedback showed that there was better understanding of the mechanisms of action of the drugs, gained in a shorter time. The majority of the students found the teaching programme used to be good to excellent. CSMs can be used repeatedly and independently by students, and this avoids unnecessary experimentation and also causing pain and trauma to animals. The CSM programme can be implemented in existing teaching schedules for pharmacology undergraduate teaching with basic infrastructure support, and is readily adaptable for use by other institutes.

  3. Aquatic Vegetation of the St. Louis River Estuary: Initial Analysis of Point-intercept Data Collected in 2010 for Restoration Modeling.

    EPA Science Inventory

    A new effort to model aquatic vegetation patterns in the St. Louis River Estuary was initiated in summer of 2010 for the purpose of informing wetland restoration planning in the St. Louis River Area of Concern (AOC) at 40th Avenue West in Duluth. Aquatic vascular plants were doc...

  4. Lessons Learned from Animal Models of Inherited Bleeding Disorders

    PubMed Central

    Nichols, Timothy C.

    2014-01-01

    Advances in treatment of hemophilia and von Willebrand disease (VWD) depend heavily on the availability of well-characterized animal models. These animals faithfully recapitulate the severe bleeding phenotype that occurs in humans with these inherited bleeding disorders. Research in these animal models represents important early and intermediate steps of translational research aimed at addressing current limitations in treatment such as the development of inhibitory antibodies to coagulation factors VIII and IX (FVIII, FIX) or von Willebrand factor (VWF), the life-long need for frequent venous access, the expense of therapy, and the ongoing need for improved ex vivo coagulation assays and in vivo methods for assessing hemostasis. The primary strengths of research that utilizes these highly relevant animal models include the development of better and safer treatments for hemophilia and VWD. Careful consideration of the strengths and limitations of the specific models is essential for optimizing chances for successful translation of advances to clinical medicine that benefits humans and animals. PMID:26052366

  5. Pain assessment in animal models: do we need further studies?

    PubMed

    Gigliuto, Carmelo; De Gregori, Manuela; Malafoglia, Valentina; Raffaeli, William; Compagnone, Christian; Visai, Livia; Petrini, Paola; Avanzini, Maria Antonietta; Muscoli, Carolina; Viganò, Jacopo; Calabrese, Francesco; Dominioni, Tommaso; Allegri, Massimo; Cobianchi, Lorenzo

    2014-01-01

    In the last two decades, animal models have become important tools in understanding and treating pain, and in predicting analgesic efficacy. Although rodent models retain a dominant role in the study of pain mechanisms, large animal models may predict human biology and pharmacology in certain pain conditions more accurately. Taking into consideration the anatomical and physiological characteristics common to man and pigs (median body size, digestive apparatus, number, size, distribution and communication of vessels in dermal skin, epidermal-dermal junctions, the immunoreactivity of peptide nerve fibers, distribution of nociceptive and non-nociceptive fiber classes, and changes in axonal excitability), swines seem to provide the most suitable animal model for pain assessment. Locomotor function, clinical signs, and measurements (respiratory rate, heart rate, blood pressure, temperature, electromyography), behavior (bright/quiet, alert, responsive, depressed, unresponsive), plasma concentration of substance P and cortisol, vocalization, lameness, and axon reflex vasodilatation by laser Doppler imaging have been used to assess pain, but none of these evaluations have proved entirely satisfactory. It is necessary to identify new methods for evaluating pain in large animals (particularly pigs), because of their similarities to humans. This could lead to improved assessment of pain and improved analgesic treatment for both humans and laboratory animals.

  6. Amphibians as animal models for laboratory research in physiology.

    PubMed

    Burggren, Warren W; Warburton, Stephen

    2007-01-01

    The concept of animal models is well honored, and amphibians have played a prominent part in the success of using key species to discover new information about all animals. As animal models, amphibians offer several advantages that include a well-understood basic physiology, a taxonomic diversity well suited to comparative studies, tolerance to temperature and oxygen variation, and a greater similarity to humans than many other currently popular animal models. Amphibians now account for approximately 1/4 to 1/3 of lower vertebrate and invertebrate research, and this proportion is especially true in physiological research, as evident from the high profile of amphibians as animal models in Nobel Prize research. Currently, amphibians play prominent roles in research in the physiology of musculoskeletal, cardiovascular, renal, respiratory, reproductive, and sensory systems. Amphibians are also used extensively in physiological studies aimed at generating new insights in evolutionary biology, especially in the investigation of the evolution of air breathing and terrestriality. Environmental physiology also utilizes amphibians, ranging from studies of cryoprotectants for tissue preservation to physiological reactions to hypergravity and space exploration. Amphibians are also playing a key role in studies of environmental endocrine disruptors that are having disproportionately large effects on amphibian populations and where specific species can serve as sentinel species for environmental pollution. Finally, amphibian genera such as Xenopus, a genus relatively well understood metabolically and physiologically, will continue to contribute increasingly in this new era of systems biology and "X-omics."

  7. Pain assessment in animal models: do we need further studies?

    PubMed Central

    Gigliuto, Carmelo; De Gregori, Manuela; Malafoglia, Valentina; Raffaeli, William; Compagnone, Christian; Visai, Livia; Petrini, Paola; Avanzini, Maria Antonietta; Muscoli, Carolina; Viganò, Jacopo; Calabrese, Francesco; Dominioni, Tommaso; Allegri, Massimo; Cobianchi, Lorenzo

    2014-01-01

    In the last two decades, animal models have become important tools in understanding and treating pain, and in predicting analgesic efficacy. Although rodent models retain a dominant role in the study of pain mechanisms, large animal models may predict human biology and pharmacology in certain pain conditions more accurately. Taking into consideration the anatomical and physiological characteristics common to man and pigs (median body size, digestive apparatus, number, size, distribution and communication of vessels in dermal skin, epidermal–dermal junctions, the immunoreactivity of peptide nerve fibers, distribution of nociceptive and non-nociceptive fiber classes, and changes in axonal excitability), swines seem to provide the most suitable animal model for pain assessment. Locomotor function, clinical signs, and measurements (respiratory rate, heart rate, blood pressure, temperature, electromyography), behavior (bright/quiet, alert, responsive, depressed, unresponsive), plasma concentration of substance P and cortisol, vocalization, lameness, and axon reflex vasodilatation by laser Doppler imaging have been used to assess pain, but none of these evaluations have proved entirely satisfactory. It is necessary to identify new methods for evaluating pain in large animals (particularly pigs), because of their similarities to humans. This could lead to improved assessment of pain and improved analgesic treatment for both humans and laboratory animals. PMID:24855386

  8. Diabetic cardiac autonomic neuropathy: insights from animal models.

    PubMed

    Stables, Catherine L; Glasser, Rebecca L; Feldman, Eva L

    2013-10-01

    Cardiac autonomic neuropathy (CAN) is a relatively common and often devastating complication of diabetes. The major clinical signs are tachycardia, exercise intolerance, and orthostatic hypotension, but the most severe aspects of this complication are high rates of cardiac events and mortality. One of the earliest manifestations of CAN is reduced heart rate variability, and detection of this, along with abnormal results in postural blood pressure testing and/or the Valsalva maneuver, are central to diagnosis of the disease. The treatment options for CAN, beyond glycemic control, are extremely limited and lack evidence of efficacy. The underlying molecular mechanisms are also poorly understood. Thus, CAN is associated with a poor prognosis and there is a compelling need for research to understand, prevent, and reverse CAN. In this review of the literature we examine the use and usefulness of animal models of CAN in diabetes. Compared to other diabetic complications, the number of animal studies of CAN is very low. The published studies range across a variety of species, methods of inducing diabetes, and timescales examined, leading to high variability in study outcomes. The lack of well-characterized animal models makes it difficult to judge the relevance of these models to the human disease. One major advantage of animal studies is the ability to probe underlying molecular mechanisms, and the limited numbers of mechanistic studies conducted to date are outlined. Thus, while animal models of CAN in diabetes are crucial to better understanding and development of therapies, they are currently under-used.

  9. Animal Models in Behçet's Disease.

    PubMed

    Yildirim, Ozlem

    2012-01-01

    Behçet's disease is a chronic, recurrent, multisystemic, inflammatory disorder affecting mainly the oral and urogenital mucosa and the uveal tract. Although the etiology and pathogenesis of Behçet's disease are unknown, numerous etiologies have been proposed, including environmental, infectious, and immunological factors; an autoimmune basis, characterized by circulating immune complexes and complement activation, has gained increasing acceptance. To test and understand immunopathogenesis of Behçet's disease, animal models were developed based on enviromental pollutants, bacterial and human heat shock protein derived peptides, and virus injections. Using these animal models separately and/or concurrently allows for a more effective investigation into Behçet's disease. Animal models developed in the last 10 years aim at the development of efficient and safe treatment options.

  10. Use of the Biotic Ligand Model to predict metal toxicity to aquatic biota in areas of differing geology

    USGS Publications Warehouse

    Smith, Kathleen S.

    2005-01-01

    This work evaluates the use of the biotic ligand model (BLM), an aquatic toxicity model, to predict toxic effects of metals on aquatic biota in areas underlain by different rock types. The chemical composition of water, soil, and sediment is largely derived from the composition of the underlying rock. Geologic source materials control key attributes of water chemistry that affect metal toxicity to aquatic biota, including: 1) potentially toxic elements, 2) alkalinity, 3) total dissolved solids, and 4) soluble major elements, such as Ca and Mg, which contribute to water hardness. Miller (2002) compiled chemical data for water samples collected in watersheds underlain by ten different rock types, and in a mineralized area in western Colorado. He found that each rock type has a unique range of water chemistry. In this study, the ten rock types were grouped into two general categories, igneous and sedimentary. Water collected in watersheds underlain by sedimentary rock has higher mean pH, alkalinity, and calcium concentrations than water collected in watersheds underlain by igneous rock. Water collected in the mineralized area had elevated concentrations of calcium and sulfate in addition to other chemical constituents. Miller's water-chemistry data were used in the BLM (computer program) to determine copper and zinc toxicity to Daphnia magna. Modeling results show that waters from watersheds underlain by different rock types have characteristic ranges of predicted LC 50 values (a measurement of aquatic toxicity) for copper and zinc, with watersheds underlain by igneous rock having lower predicted LC 50 values than watersheds underlain by sedimentary rock. Lower predicted LC 50 values suggest that aquatic biota in watersheds underlain by igneous rock may be more vulnerable to copper and zinc inputs than aquatic biota in watersheds underlain by sedimentary rock. For both copper and zinc, there is a trend of increasing predicted LC 50 values with increasing dissolved

  11. Minireview: Epigenetic programming of diabetes and obesity: animal models.

    PubMed

    Seki, Yoshinori; Williams, Lyda; Vuguin, Patricia M; Charron, Maureen J

    2012-03-01

    A growing body of evidence suggests that the intrauterine (IU) environment has a significant and lasting effect on the long-term health of the growing fetus and the development of metabolic disease in later life as put forth in the fetal origins of disease hypothesis. Metabolic diseases have been associated with alterations in the epigenome that occur without changes in the DNA sequence, such as cytosine methylation of DNA, histone posttranslational modifications, and micro-RNA. Animal models of epigenetic modifications secondary to an altered IU milieu are an invaluable tool to study the mechanisms that determine the development of metabolic diseases, such as diabetes and obesity. Rodent and nonlitter bearing animals are good models for the study of disease, because they have similar embryology, anatomy, and physiology to humans. Thus, it is feasible to monitor and modify the IU environment of animal models in order to gain insight into the molecular basis of human metabolic disease pathogenesis. In this review, the database of PubMed was searched for articles published between 1999 and 2011. Key words included epigenetic modifications, IU growth retardation, small for gestational age, animal models, metabolic disease, and obesity. The inclusion criteria used to select studies included animal models of epigenetic modifications during fetal and neonatal development associated with adult metabolic syndrome. Experimental manipulations included: changes in the nutritional status of the pregnant female (calorie-restricted, high-fat, or low-protein diets during pregnancy), as well as the father; interference with placenta function, or uterine blood flow, environmental toxin exposure during pregnancy, as well as dietary modifications during the neonatal (lactation) as well as pubertal period. This review article is focused solely on studies in animal models that demonstrate epigenetic changes that are correlated with manifestation of metabolic disease, including diabetes

  12. Nicotine neuroprotection against nigrostriatal damage: importance of the animal model.

    PubMed

    Quik, Maryka; O'Neill, Michael; Perez, Xiomara A

    2007-05-01

    Parkinson's disease is a neurodegenerative movement disorder that is characterized by a loss of nigrostriatal dopamine-containing neurons. Unexpectedly, there is a reduced incidence of Parkinson's disease in tobacco users. This finding is important because the identification of the component(s) responsible for this effect could lead to therapeutic strategies to slow down or halt the progression of Parkinson's disease. Results from cell culture models consistently show that nicotine protects against neurotoxicity. However, data from animal models of nigrostriatal damage are conflicting, thus raising questions about a neuroprotective role of nicotine. Accumulating evidence indicates that discrepancies are observed primarily in mouse models of the disease. By contrast, reproducible protection occurs in rat models and in a nonhuman primate parkinsonian model that closely resembles the human disease. These findings highlight the need to use the appropriate animal model and treatment conditions when testing putative neuroprotective agents.

  13. Continuous-time discrete-space models for animal movement

    USGS Publications Warehouse

    Hanks, Ephraim M.; Hooten, Mevin B.; Alldredge, Mat W.

    2015-01-01

    The processes influencing animal movement and resource selection are complex and varied. Past efforts to model behavioral changes over time used Bayesian statistical models with variable parameter space, such as reversible-jump Markov chain Monte Carlo approaches, which are computationally demanding and inaccessible to many practitioners. We present a continuous-time discrete-space (CTDS) model of animal movement that can be fit using standard generalized linear modeling (GLM) methods. This CTDS approach allows for the joint modeling of location-based as well as directional drivers of movement. Changing behavior over time is modeled using a varying-coefficient framework which maintains the computational simplicity of a GLM approach, and variable selection is accomplished using a group lasso penalty. We apply our approach to a study of two mountain lions (Puma concolor) in Colorado, USA.

  14. Animal models of efficacy to accelerate drug discovery in malaria.

    PubMed

    Jiménez-Díaz, María Belén; Viera, Sara; Fernández-Alvaro, Elena; Angulo-Barturen, Iñigo

    2014-01-01

    The emergence of resistance to artemisinins and the renewed efforts to eradicate malaria demand the urgent development of new drugs. In this endeavour, the evaluation of efficacy in animal models is often a go/no go decision assay in drug discovery. This important role relies on the capability of animal models to assess the disposition, toxicology and efficacy of drugs in a single test. Although the relative merits of each efficacy model of malaria as human surrogate have been extensively discussed, there are no critical analyses on the use of such models in current drug discovery. In this article, we intend to analyse how efficacy models are used to discover new antimalarial drugs. Our analysis indicates that testing drug efficacy is often the last assay in each discovery stage and the experimental designs utilized are not optimized to expedite decision-making and inform clinical development. In light of this analysis, we propose new ways to accelerate drug discovery using efficacy models.

  15. Animal models of skin disease for drug discovery

    PubMed Central

    Avci, Pinar; Sadasivam, Magesh; Gupta, Asheesh; De Melo, Wanessa CMA; Huang, Ying-Ying; Yin, Rui; Rakkiyappan, Chandran; Kumar, Raj; Otufowora, Ayodeji; Nyame, Theodore; Hamblin, Michael R

    2013-01-01

    Introduction Discovery of novel drugs, treatments, and testing of consumer products in the field of dermatology is a multi-billion dollar business. Due to the distressing nature of many dermatological diseases, and the enormous consumer demand for products to reverse the effects of skin photodamage, aging, and hair loss, this is a very active field. Areas covered In this paper, we will cover the use of animal models that have been reported to recapitulate to a greater or lesser extent the features of human dermatological disease. There has been a remarkable increase in the number and variety of transgenic mouse models in recent years, and the basic strategy for constructing them is outlined. Expert opinion Inflammatory and autoimmune skin diseases are all represented by a range of mouse models both transgenic and normal. Skin cancer is mainly studied in mice and fish. Wound healing is studied in a wider range of animal species, and skin infections such as acne and leprosy also have been studied in animal models. Moving to the more consumer-oriented area of dermatology, there are models for studying the harmful effect of sunlight on the skin, and testing of sunscreens, and several different animal models of hair loss or alopecia. PMID:23293893

  16. Animal Models of Diabetic Retinopathy: Summary and Comparison

    PubMed Central

    Lo, Amy C. Y.

    2013-01-01

    Diabetic retinopathy (DR) is a microvascular complication associated with chronic exposure to hyperglycemia and is a major cause of blindness worldwide. Although clinical assessment and retinal autopsy of diabetic patients provide information on the features and progression of DR, its underlying pathophysiological mechanism cannot be deduced. In order to have a better understanding of the development of DR at the molecular and cellular levels, a variety of animal models have been developed. They include pharmacological induction of hyperglycemia and spontaneous diabetic rodents as well as models of angiogenesis without diabetes (to compensate for the absence of proliferative DR symptoms). In this review, we summarize the existing protocols to induce diabetes using STZ. We also describe and compare the pathological presentations, in both morphological and functional aspects, of the currently available DR animal models. The advantages and disadvantages of using different animals, ranging from zebrafish, rodents to other higher-order mammals, are also discussed. Until now, there is no single model that displays all the clinical features of DR as seen in human. Yet, with the understanding of the pathological findings in these animal models, researchers can select the most suitable models for mechanistic studies or drug screening. PMID:24286086

  17. Development and Practical Application of Petroleum and Dispersant Interspecies Correlation Models for Aquatic Species

    EPA Science Inventory

    Assessing the acute toxicity of physically and chemically dispersed oil following an oil spill has generally relied on existing toxicological data for a relatively limited number of aquatic species. Recognition of differences in species sensitivities to contaminants has facilitat...

  18. INTER-SPECIES MODELS FOR ACUTE AQUATIC TOXICITY BASED ON MECHANISM OF ACTION

    EPA Science Inventory

    This presentation will provide interspecies QSARs for acute toxicity to 17 aquatic species, such as fish, snail, tadpole, hydrozoan, crustacean, insect larvae, and bacteria developed using 5,000 toxic effect results for approximately 2400 chemicals.

  19. The role of animal models in tendon research

    PubMed Central

    Hast, M. W.; Zuskov, A.; Soslowsky, L. J.

    2014-01-01

    Tendinopathy is a debilitating musculoskeletal condition which can cause significant pain and lead to complete rupture of the tendon, which often requires surgical repair. Due in part to the large spectrum of tendon pathologies, these disorders continue to be a clinical challenge. Animal models are often used in this field of research as they offer an attractive framework to examine the cascade of processes that occur throughout both tendon pathology and repair. This review discusses the structural, mechanical, and biological changes that occur throughout tendon pathology in animal models, as well as strategies for the improvement of tendon healing. Cite this article: Bone Joint Res 2014;3:193–202. PMID:24958818

  20. Translational value of animal models of kidney failure.

    PubMed

    Ortiz, Alberto; Sanchez-Niño, Maria D; Izquierdo, Maria C; Martin-Cleary, Catalina; Garcia-Bermejo, Laura; Moreno, Juan A; Ruiz-Ortega, Marta; Draibe, Juliana; Cruzado, Josep M; Garcia-Gonzalez, Miguel A; Lopez-Novoa, Jose M; Soler, Maria J; Sanz, Ana B

    2015-07-15

    Acute kidney injury (AKI) and chronic kidney disease (CKD) are associated with decreased renal function and increased mortality risk, while the therapeutic armamentarium is unsatisfactory. The availability of adequate animal models may speed up the discovery of biomarkers for disease staging and therapy individualization as well as design and testing of novel therapeutic strategies. Some longstanding animal models have failed to result in therapeutic advances in the clinical setting, such as kidney ischemia-reperfusion injury and diabetic nephropathy models. In this regard, most models for diabetic nephropathy are unsatisfactory in that they do not evolve to renal failure. Satisfactory models for additional nephropathies are needed. These include anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis, IgA nephropathy, anti-phospholipase-A2-receptor (PLA2R) membranous nephropathy and Fabry nephropathy. However, recent novel models hold promise for clinical translation. Thus, the AKI to CKD translation has been modeled, in some cases with toxins of interest for human CKD such as aristolochic acid. Genetically modified mice provide models for Alport syndrome evolving to renal failure that have resulted in clinical recommendations, polycystic kidney disease models that have provided clues for the development of tolvaptan, that was recently approved for the human disease in Japan; and animal models also contributed to target C5 with eculizumab in hemolytic uremic syndrome. Some ongoing trials explore novel concepts derived from models, such TWEAK targeting as tissue protection for lupus nephritis. We now review animal models reproducing diverse, genetic and acquired, causes of AKI and CKD evolving to kidney failure and discuss the contribution to clinical translation and prospects for the future.

  1. Simulation modeling of high-throughput cryopreservation of aquatic germplasm: a case study of blue catfish sperm processing

    PubMed Central

    Hu, E; Liao, T. W.; Tiersch, T. R.

    2013-01-01

    Emerging commercial-level technology for aquatic sperm cryopreservation has not been modeled by computer simulation. Commercially available software (ARENA, Rockwell