Does aquatic foraging impact head shape evolution in snakes?
Cornette, Raphaël; Fabre, Anne-Claire; Godoy-Diana, Ramiro; Herrel, Anthony
2016-01-01
Evolutionary trajectories are often biased by developmental and historical factors. However, environmental factors can also impose constraints on the evolutionary trajectories of organisms leading to convergence of morphology in similar ecological contexts. The physical properties of water impose strong constraints on aquatic feeding animals by generating pressure waves that can alert prey and potentially push them away from the mouth. These hydrodynamic constraints have resulted in the independent evolution of suction feeding in most groups of secondarily aquatic tetrapods. Despite the fact that snakes cannot use suction, they have invaded the aquatic milieu many times independently. Here, we test whether the aquatic environment has constrained head shape evolution in snakes and whether shape converges on that predicted by biomechanical models. To do so, we used three-dimensional geometric morphometrics and comparative, phylogenetically informed analyses on a large sample of aquatic snake species. Our results show that aquatic snakes partially conform to our predictions and have a narrower anterior part of the head and dorsally positioned eyes and nostrils. This morphology is observed, irrespective of the phylogenetic relationships among species, suggesting that the aquatic environment does indeed drive the evolution of head shape in snakes, thus biasing the evolutionary trajectory of this group of animals. PMID:27581887
Does aquatic foraging impact head shape evolution in snakes?
Segall, Marion; Cornette, Raphaël; Fabre, Anne-Claire; Godoy-Diana, Ramiro; Herrel, Anthony
2016-08-31
Evolutionary trajectories are often biased by developmental and historical factors. However, environmental factors can also impose constraints on the evolutionary trajectories of organisms leading to convergence of morphology in similar ecological contexts. The physical properties of water impose strong constraints on aquatic feeding animals by generating pressure waves that can alert prey and potentially push them away from the mouth. These hydrodynamic constraints have resulted in the independent evolution of suction feeding in most groups of secondarily aquatic tetrapods. Despite the fact that snakes cannot use suction, they have invaded the aquatic milieu many times independently. Here, we test whether the aquatic environment has constrained head shape evolution in snakes and whether shape converges on that predicted by biomechanical models. To do so, we used three-dimensional geometric morphometrics and comparative, phylogenetically informed analyses on a large sample of aquatic snake species. Our results show that aquatic snakes partially conform to our predictions and have a narrower anterior part of the head and dorsally positioned eyes and nostrils. This morphology is observed, irrespective of the phylogenetic relationships among species, suggesting that the aquatic environment does indeed drive the evolution of head shape in snakes, thus biasing the evolutionary trajectory of this group of animals. © 2016 The Author(s).
Convergent evolution of mechanically optimal locomotion in aquatic invertebrates and vertebrates.
Bale, Rahul; Neveln, Izaak D; Bhalla, Amneet Pal Singh; MacIver, Malcolm A; Patankar, Neelesh A
2015-04-01
Examples of animals evolving similar traits despite the absence of that trait in the last common ancestor, such as the wing and camera-type lens eye in vertebrates and invertebrates, are called cases of convergent evolution. Instances of convergent evolution of locomotory patterns that quantitatively agree with the mechanically optimal solution are very rare. Here, we show that, with respect to a very diverse group of aquatic animals, a mechanically optimal method of swimming with elongated fins has evolved independently at least eight times in both vertebrate and invertebrate swimmers across three different phyla. Specifically, if we take the length of an undulation along an animal's fin during swimming and divide it by the mean amplitude of undulations along the fin length, the result is consistently around twenty. We call this value the optimal specific wavelength (OSW). We show that the OSW maximizes the force generated by the body, which also maximizes swimming speed. We hypothesize a mechanical basis for this optimality and suggest reasons for its repeated emergence through evolution.
Improved heat tolerance in air drives the recurrent evolution of air-breathing.
Giomi, Folco; Fusi, Marco; Barausse, Alberto; Mostert, Bruce; Pörtner, Hans-Otto; Cannicci, Stefano
2014-05-07
The transition to air-breathing by formerly aquatic species has occurred repeatedly and independently in fish, crabs and other animal phyla, but the proximate drivers of this key innovation remain a long-standing puzzle in evolutionary biology. Most studies attribute the onset of air-breathing to the repeated occurrence of aquatic hypoxia; however, this hypothesis leaves the current geographical distribution of the 300 genera of air-breathing crabs unexplained. Here, we show that their occurrence is mainly related to high environmental temperatures in the tropics. We also demonstrate in an amphibious crab that the reduced cost of oxygen supply in air extends aerobic performance to higher temperatures and thus widens the animal's thermal niche. These findings suggest that high water temperature as a driver consistently explains the numerous times air-breathing has evolved. The data also indicate a central role for oxygen- and capacity-limited thermal tolerance not only in shaping sensitivity to current climate change but also in underpinning the climate-dependent evolution of animals, in this case the evolution of air-breathing.
Improved heat tolerance in air drives the recurrent evolution of air-breathing
Giomi, Folco; Fusi, Marco; Barausse, Alberto; Mostert, Bruce; Pörtner, Hans-Otto; Cannicci, Stefano
2014-01-01
The transition to air-breathing by formerly aquatic species has occurred repeatedly and independently in fish, crabs and other animal phyla, but the proximate drivers of this key innovation remain a long-standing puzzle in evolutionary biology. Most studies attribute the onset of air-breathing to the repeated occurrence of aquatic hypoxia; however, this hypothesis leaves the current geographical distribution of the 300 genera of air-breathing crabs unexplained. Here, we show that their occurrence is mainly related to high environmental temperatures in the tropics. We also demonstrate in an amphibious crab that the reduced cost of oxygen supply in air extends aerobic performance to higher temperatures and thus widens the animal's thermal niche. These findings suggest that high water temperature as a driver consistently explains the numerous times air-breathing has evolved. The data also indicate a central role for oxygen- and capacity-limited thermal tolerance not only in shaping sensitivity to current climate change but also in underpinning the climate-dependent evolution of animals, in this case the evolution of air-breathing. PMID:24619438
Convergent Evolution of Mechanically Optimal Locomotion in Aquatic Invertebrates and Vertebrates
Bale, Rahul; Neveln, Izaak D.; Bhalla, Amneet Pal Singh
2015-01-01
Examples of animals evolving similar traits despite the absence of that trait in the last common ancestor, such as the wing and camera-type lens eye in vertebrates and invertebrates, are called cases of convergent evolution. Instances of convergent evolution of locomotory patterns that quantitatively agree with the mechanically optimal solution are very rare. Here, we show that, with respect to a very diverse group of aquatic animals, a mechanically optimal method of swimming with elongated fins has evolved independently at least eight times in both vertebrate and invertebrate swimmers across three different phyla. Specifically, if we take the length of an undulation along an animal’s fin during swimming and divide it by the mean amplitude of undulations along the fin length, the result is consistently around twenty. We call this value the optimal specific wavelength (OSW). We show that the OSW maximizes the force generated by the body, which also maximizes swimming speed. We hypothesize a mechanical basis for this optimality and suggest reasons for its repeated emergence through evolution. PMID:25919026
Biomechanics and energetics in aquatic and semiaquatic mammals: platypus to whale.
Fish, F E
2000-01-01
A variety of mammalian lineages have secondarily invaded the water. To locomote and thermoregulate in the aqueous medium, mammals developed a range of morphological, physiological, and behavioral adaptations. A distinct difference in the suite of adaptations, which affects energetics, is apparent between semiaquatic and fully aquatic mammals. Semiaquatic mammals swim by paddling, which is inefficient compared to the use of oscillating hydrofoils of aquatic mammals. Semiaquatic mammals swim at the water surface and experience a greater resistive force augmented by wave drag than submerged aquatic mammals. A dense, nonwettable fur insulates semiaquatic mammals, whereas aquatic mammals use a layer of blubber. The fur, while providing insulation and positive buoyancy, incurs a high energy demand for maintenance and limits diving depth. Blubber contours the body to reduce drag, is an energy reserve, and suffers no loss in buoyancy with depth. Despite the high energetic costs of a semiaquatic existence, these animals represent modern analogs of evolutionary intermediates between ancestral terrestrial mammals and their fully aquatic descendants. It is these intermediate animals that indicate which potential selection factors and mechanical constraints may have directed the evolution of more derived aquatic forms.
Aquatics, Flyers, Creepers and Terrestrials--Students' Conceptions of Animal Classification.
ERIC Educational Resources Information Center
Kattmann, Ulrich
2001-01-01
Students prefer to classify creatures along the criteria of habitat and locomotion (method of movement). Discusses the educational consequences for biology instruction, particularly with regard to biological taxonomy, biodiversity, and evolution. (Contains 33 references.) (Author/YDS)
Trevisanato, Siro Igino
2016-08-01
Anaximander's fragments on biology report a theory of evolution, which, unlike the development of other biological systems in the ancient Aegean, is naturalistic and is not based on metaphysics. According to Anaximander, evolution affected all living beings, including humans. The first biological systems formed in an aquatic environment, and were encased in a rugged and robust envelope. Evolution progressed with modifications that enabled the formation of more dynamic biological systems. For instance, after reaching land, the robust armors around aquatic beings dried up, and became brittle, This led to the loss of the armor and the development of more mobile life forms. Anaximander's theory combines observations of animals with speculations, and as such mirrors the more famous theory of evolution by Charles Darwin expressed 24 centuries later. The poor reception received by Anaximander's model in his time, illustrates a zeitgeist that would explain the contemporary lag phase in the development of biology and, as a result, medicine, in the ancient western world.
Physical trade-offs shape the evolution of buoyancy control in sharks.
Gleiss, Adrian C; Potvin, Jean; Goldbogen, Jeremy A
2017-11-15
Buoyancy control is a fundamental aspect of aquatic life that has major implications for locomotor performance and ecological niche. Unlike terrestrial animals, the densities of aquatic animals are similar to the supporting fluid, thus even small changes in body density may have profound effects on locomotion. Here, we analysed the body composition (lipid versus lean tissue) of 32 shark species to study the evolution of buoyancy. Our comparative phylogenetic analyses indicate that although lean tissue displays minor positive allometry, liver volume exhibits pronounced positive allometry, suggesting that larger sharks evolved bulkier body compositions by adding lipid tissue to lean tissue rather than substituting lean for lipid tissue, particularly in the liver. We revealed a continuum of buoyancy control strategies that ranged from more buoyant sharks with larger livers in deeper ecosystems to relatively denser sharks with small livers in epipelagic habitats. Across this eco-morphological spectrum, our hydrodynamic modelling suggests that neutral buoyancy yields lower drag and more efficient steady swimming, whereas negative buoyancy may be more efficient during accelerated movements. The evolution of buoyancy control in sharks suggests that ecological and physiological factors mediate the selective pressures acting on these traits along two major gradients, body size and habitat depth. © 2017 The Author(s).
Touchon, Justin C.; Worley, Julie L.
2015-01-01
Laying eggs out of water was crucial to the transition to land and has evolved repeatedly in multiple animal phyla. However, testing hypotheses about this transition has been difficult because extant species only breed in one environment. The pantless treefrog, Dendropsophus ebraccatus, makes such tests possible because they lay both aquatic and arboreal eggs. Here, we test the oviposition site choices of D. ebraccatus under conflicting risks of arboreal egg desiccation and aquatic egg predation, thereby estimating the relative importance of each selective agent on reproduction. We also measured discrimination between habitats with and without predators and development of naturally laid aquatic and arboreal eggs. Aquatic embryos in nature developed faster than arboreal embryos, implying no cost to aquatic egg laying. In choice tests, D. ebraccatus avoided habitats with fish, showing that they can detect aquatic egg predators. Most importantly, D. ebraccatus laid most eggs in the water when faced with only desiccation risk, but switched to laying eggs arboreally when desiccation risk and aquatic predators were both present. This provides the first experimental evidence to our knowledge that aquatic predation risk influences non-aquatic oviposition and strongly supports the hypothesis that it was a driver of the evolution of terrestrial reproduction. PMID:25948689
Oidtmann, B; Johnston, C; Klotins, K; Mylrea, G; Van, P T; Cabot, S; Martin, P Rosado; Ababouch, L; Berthe, F
2013-02-01
Trading of aquatic animals and aquatic animal products has become increasingly globalized during the last couple of decades. This commodity trade has increased the risk for the spread of aquatic animal pathogens. The World Organisation for Animal Health (OIE) is recognized as the international standard-setting organization for measures relating to international trade in animals and animal products. In this role, OIE has developed the Aquatic Animal Health Code, which provides health measures to be used by competent authorities of importing and exporting countries to avoid the transfer of agents pathogenic for animals or humans, whilst avoiding unjustified sanitary barriers. An OIE ad hoc group developed criteria for assessing the safety of aquatic animals or aquatic animal products for any purpose from a country, zone or compartment not declared free from a given disease 'X'. The criteria were based on the absence of the pathogenic agent in the traded commodity or inactivation of the pathogenic agent by the commercial processing used to produce the commodity. The group also developed criteria to assess the safety of aquatic animals or aquatic animal products for retail trade for human consumption from potentially infected areas. Such commodities were assessed considering the form and presentation of the product, the expected volume of waste tissues generated by the consumer and the likely presence of viable pathogenic agent in the waste. The ad hoc group applied the criteria to commodities listed in the individual disease chapters of the Aquatic Animal Health Code (2008 edition). Revised lists of commodities for which no additional measures should be required by the importing countries regardless of the status for disease X of the exporting country were developed and adopted by the OIE World Assembly of Delegates in May 2011. The rationale of the criteria and their application will be explained and demonstrated using examples. © 2012 Crown Copyright. Reproduced with the permission of the Controller of Her Majesty’s Stationery Office and Cefas, Aquatic Animal Disease Group.
Growing a Thicker Skin: An Exercise for Measuring Organismal Adaptations to Terrestrial Habitats
ERIC Educational Resources Information Center
Nash, Troy R.; Yang, Suann; Inman, John C.
2015-01-01
We describe an alternative to the kinds of observation-based lab exercises that are often used to cover animal and plant evolution with respect to transitioning from aquatic to terrestrial habitats. We wrote this activity to address these objectives, but also to model the process of scientific inquiry and to require students to collect and analyze…
The challenges of good governance in the aquatic animal health sector.
Kahn, S; Mylrea, G; Yaacov, K Bar
2012-08-01
Animal health is fundamental to efficient animal production and, therefore, to food security and human health. This holds true for both terrestrial and aquatic animals. Although partnership between producers and governmental services is vital for effective animal health programmes, many key activities are directly carried out by governmental services. Noting the need to improve the governance of such services in many developing countries, the World Organisation for Animal Health (OIE), using the OIE Tool for the Evaluation of Performance of Veterinary Services, conducts assessments of Veterinary Services and Aquatic Animal Health Services (AAHS) to help strengthen governance and support more effective delivery of animal health programmes. While good governance and the tools to improve governance in the aquatic animal sector are largely based on the same principles as those that apply in the terrestrial animal sector, there are some specific challenges in the aquatic sector that have a bearing on the governance of services in this area. For example, the aquaculture industry has experienced rapid growth and the use of novel species is increasing; there are important gaps in scientific knowledge on diseases of aquatic animals; there is a need for more information on sustainable production; the level of participation of the veterinary profession in aquatic animal health is low; and there is a lack of standardisation in the training of aquatic animal health professionals. Aquaculture development can be a means of alleviating poverty and hunger in developing countries. However, animal diseases, adverse environmental impacts and food safety risks threaten to limit this development. Strengthening AAHS governance and, in consequence, aquatic animal health programmes, is the best way to ensure a dynamic and sustainable aquaculture sector in future. This paper discusses the specific challenges to AAHS governance and some OIE initiatives to help Member Countries to address them.
Mann, Janet; Patterson, Eric M.
2013-01-01
Tool-use research has focused primarily on land-based animals, with less consideration given to aquatic animals and the environmental challenges and conditions they face. Here, we review aquatic tool use and examine the contributing ecological, physiological, cognitive and social factors. Tool use among aquatic animals is rare but taxonomically diverse, occurring in fish, cephalopods, mammals, crabs, urchins and possibly gastropods. While additional research is required, the scarcity of tool use can likely be attributable to the characteristics of aquatic habitats, which are generally not conducive to tool use. Nonetheless, studying tool use by aquatic animals provides insights into the conditions that promote and inhibit tool-use behaviour across biomes. Like land-based tool users, aquatic animals tend to find tools on the substrate and use tools during foraging. However, unlike on land, tool users in water often use other animals (and their products) and water itself as a tool. Among sea otters and dolphins, the two aquatic tool users studied in greatest detail, some individuals specialize in tool use, which is vertically socially transmitted possibly because of their long dependency periods. In all, the contrasts between aquatic- and land-based tool users enlighten our understanding of the adaptive value of tool-use behaviour. PMID:24101631
Mann, Janet; Patterson, Eric M
2013-11-19
Tool-use research has focused primarily on land-based animals, with less consideration given to aquatic animals and the environmental challenges and conditions they face. Here, we review aquatic tool use and examine the contributing ecological, physiological, cognitive and social factors. Tool use among aquatic animals is rare but taxonomically diverse, occurring in fish, cephalopods, mammals, crabs, urchins and possibly gastropods. While additional research is required, the scarcity of tool use can likely be attributable to the characteristics of aquatic habitats, which are generally not conducive to tool use. Nonetheless, studying tool use by aquatic animals provides insights into the conditions that promote and inhibit tool-use behaviour across biomes. Like land-based tool users, aquatic animals tend to find tools on the substrate and use tools during foraging. However, unlike on land, tool users in water often use other animals (and their products) and water itself as a tool. Among sea otters and dolphins, the two aquatic tool users studied in greatest detail, some individuals specialize in tool use, which is vertically socially transmitted possibly because of their long dependency periods. In all, the contrasts between aquatic- and land-based tool users enlighten our understanding of the adaptive value of tool-use behaviour.
Using the Neptune project to benefit Australian aquatic animal health research.
McNamara, M; Ernst, I; Adlard, R D
2015-06-29
Diseases of aquatic animals have had, and continue to have, a significant impact on aquatic animal health. In Australia, where fisheries and aquaculture are important industries, aquatic species have been subject to serious disease outbreaks, including pilchard herpesvirus, the cause of one of the largest wild fish kills ever recorded. At the same time, there is a consensus that Australia's parasite fauna are largely unknown, and that aquatic animal health information is difficult to access. Managing aquatic animal diseases is challenging because they may be entirely new, their hosts may be new to aquaculture, and specialist expertise and basic diagnostic tools may be lacking or absent. The Neptune project was created in response to these challenges, and it aims to increase awareness of aquatic animal diseases, improve disease management, and promote communication between aquatic animal health professionals in Australia. The project consists of an online database, a digital microscopy platform containing a whole-slide image library, a community space, and online communications technology. The database contains aquatic animal health information from published papers, government reports, and other sources, while the library contains slides of key diseases both endemic and exotic to Australia. These assets make Neptune a powerful resource for researchers, students, and biosecurity officials.
Code of Federal Regulations, 2014 CFR
2014-07-01
... aquatic animals in either of the following categories: (a) Cold water fish species or other cold water... (approximately 100,000 pounds) of aquatic animals per year. “Cold water aquatic animals” include, but are not...
Mason, Timothy J; Matthews, Monte
2012-01-01
The eighth edition of the Guide for the Care and Use of Laboratory Animals recognizes the widespread use of aquatic and semiaquatic research animals by including, among other references, an entire section on aquatic animals in its chapter on environment, housing, and management. Recognizing the large number of aquatic and semiaquatic species used in research and the inherent diversity in animal needs, the Guide refers the reader to texts and journal reviews for specific recommendations and suggests consultations with persons experienced in caring for aquatic species. Here we present considerations that may add to the basic information presented in the Guide and offer some recommendations that may be useful for aquatic animal model caregivers and researchers. PMID:22776190
Chapman, Eric G; Przhiboro, Andrey A; Harwood, James D; Foote, Benjamin A; Hoeh, Walter R
2012-09-10
Transitions in habitats and feeding behaviors were fundamental to the diversification of life on Earth. There is ongoing debate regarding the typical directionality of transitions between aquatic and terrestrial habitats and the mechanisms responsible for the preponderance of terrestrial to aquatic transitions. Snail-killing flies (Diptera: Sciomyzidae) represent an excellent model system to study such transitions because their larvae display a range of feeding behaviors, being predators, parasitoids or saprophages of a variety of mollusks in freshwater, shoreline and dry terrestrial habitats. The remarkable genus Tetanocera (Tetanocerini) occupies five larval feeding groups and all of the habitat types mentioned above. This study has four principal objectives: (i) construct a robust estimate of phylogeny for Tetanocera and Tetanocerini, (ii) estimate the evolutionary transitions in larval feeding behaviors and habitats, (iii) test the monophyly of feeding groups and (iv) identify mechanisms underlying sciomyzid habitat and feeding behavior evolution. Bayesian inference and maximum likelihood analyses of molecular data provided strong support that the Sciomyzini, Tetanocerini and Tetanocera are monophyletic. However, the monophyly of many behavioral groupings was rejected via phylogenetic constraint analyses. We determined that (i) the ancestral sciomyzid lineage was terrestrial, (ii) there was a single terrestrial to aquatic habitat transition early in the evolution of the Tetanocerini and (iii) there were at least 10 independent aquatic to terrestrial habitat transitions and at least 15 feeding behavior transitions during tetanocerine phylogenesis. The ancestor of Tetanocera was aquatic with five lineages making independent transitions to terrestrial habitats and seven making independent transitions in feeding behaviors. The preponderance of aquatic to terrestrial transitions in sciomyzids goes against the trend generally observed across eukaryotes. Damp shoreline habitats are likely transitional where larvae can change habitat but still have similar prey available. Transitioning from aquatic to terrestrial habitats is likely easier than the reverse for sciomyzids because morphological characters associated with air-breathing while under the water's surface are lost rather than gained, and sciomyzids originated and diversified during a general drying period in Earth's history. Our results imply that any animal lineage having aquatic and terrestrial members, respiring the same way in both habitats and having the same type of food available in both habitats could show a similar pattern of multiple independent habitat transitions coincident with changes in behavioral and morphological traits.
2012-01-01
Background Transitions in habitats and feeding behaviors were fundamental to the diversification of life on Earth. There is ongoing debate regarding the typical directionality of transitions between aquatic and terrestrial habitats and the mechanisms responsible for the preponderance of terrestrial to aquatic transitions. Snail-killing flies (Diptera: Sciomyzidae) represent an excellent model system to study such transitions because their larvae display a range of feeding behaviors, being predators, parasitoids or saprophages of a variety of mollusks in freshwater, shoreline and dry terrestrial habitats. The remarkable genus Tetanocera (Tetanocerini) occupies five larval feeding groups and all of the habitat types mentioned above. This study has four principal objectives: (i) construct a robust estimate of phylogeny for Tetanocera and Tetanocerini, (ii) estimate the evolutionary transitions in larval feeding behaviors and habitats, (iii) test the monophyly of feeding groups and (iv) identify mechanisms underlying sciomyzid habitat and feeding behavior evolution. Results Bayesian inference and maximum likelihood analyses of molecular data provided strong support that the Sciomyzini, Tetanocerini and Tetanocera are monophyletic. However, the monophyly of many behavioral groupings was rejected via phylogenetic constraint analyses. We determined that (i) the ancestral sciomyzid lineage was terrestrial, (ii) there was a single terrestrial to aquatic habitat transition early in the evolution of the Tetanocerini and (iii) there were at least 10 independent aquatic to terrestrial habitat transitions and at least 15 feeding behavior transitions during tetanocerine phylogenesis. The ancestor of Tetanocera was aquatic with five lineages making independent transitions to terrestrial habitats and seven making independent transitions in feeding behaviors. Conclusions The preponderance of aquatic to terrestrial transitions in sciomyzids goes against the trend generally observed across eukaryotes. Damp shoreline habitats are likely transitional where larvae can change habitat but still have similar prey available. Transitioning from aquatic to terrestrial habitats is likely easier than the reverse for sciomyzids because morphological characters associated with air-breathing while under the water's surface are lost rather than gained, and sciomyzids originated and diversified during a general drying period in Earth's history. Our results imply that any animal lineage having aquatic and terrestrial members, respiring the same way in both habitats and having the same type of food available in both habitats could show a similar pattern of multiple independent habitat transitions coincident with changes in behavioral and morphological traits. PMID:22963084
Convergent evolution of marine mammals is associated with distinct substitutions in common genes
Zhou, Xuming; Seim, Inge; Gladyshev, Vadim N.
2015-01-01
Phenotypic convergence is thought to be driven by parallel substitutions coupled with natural selection at the sequence level. Multiple independent evolutionary transitions of mammals to an aquatic environment offer an opportunity to test this thesis. Here, whole genome alignment of coding sequences identified widespread parallel amino acid substitutions in marine mammals; however, the majority of these changes were not unique to these animals. Conversely, we report that candidate aquatic adaptation genes, identified by signatures of likelihood convergence and/or elevated ratio of nonsynonymous to synonymous nucleotide substitution rate, are characterized by very few parallel substitutions and exhibit distinct sequence changes in each group. Moreover, no significant positive correlation was found between likelihood convergence and positive selection in all three marine lineages. These results suggest that convergence in protein coding genes associated with aquatic lifestyle is mainly characterized by independent substitutions and relaxed negative selection. PMID:26549748
Envisioning the Future of Aquatic Animal Tracking: Technology, Science, and Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lennox, Robert J.; Aarestrup, Kim; Cooke, Steven J.
Electronic tags have proven to be extremely useful for broadening our understanding of aquatic animals by answering diverse questions about their behaviours, physiologies, and life histories fundamental to ecology. Simultaneously, many applied conservation and management efforts are informed by animals tagged with electronic tags. In spite of the many advances in tracking software and hardware, an uncertain future in the world’s aquatic ecosystems portends great challenges for science. Aquatic animal tracking with electronic tags represents both the present and future of integrative biology and ecology in aquatic ecosystems. Here we identify what we regard as the future of aquatic animalmore » tracking in a horizon scanning exercise. We submit that the future of aquatic animal tracking will include opportunities for multi-platform tracking systems for simultaneously monitoring position, activity, physiology, and microhabitat of animals, improved data collection and accessibility with new infrastructure (e.g. tags, receivers) and cyberinfrastructure, and integrated tagging information with animal traits derived from biopsy during tagging. We discuss parallel needs and opportunities in areas related to the application of animal tracking in the future such as knowledge mobilization and governance.« less
Environmental enrichment for aquatic animals.
Corcoran, Mike
2015-05-01
Aquatic animals are the most popular pets in the United States based on the number of owned pets. They are popular display animals and are increasingly used in research settings. Enrichment of captive animals is an important element of zoo and laboratory medicine. The importance of enrichment for aquatic animals has been slower in implementation. For a long time, there was debate over whether or not fish were able to experience pain or form long-term memories. As that debate has reduced and the consciousness of more aquatic animals is accepted, the need to discuss enrichment for these animals has increased. Copyright © 2015 Elsevier Inc. All rights reserved.
Hormonally active phytochemicals and vertebrate evolution.
Lambert, Max R; Edwards, Thea M
2017-06-01
Living plants produce a diversity of chemicals that share structural and functional properties with vertebrate hormones. Wildlife species interact with these chemicals either through consumption of plant materials or aquatic exposure. Accumulating evidence shows that exposure to these hormonally active phytochemicals (HAPs) often has consequences for behavior, physiology, and fecundity. These fitness effects suggest there is potential for an evolutionary response by vertebrates to HAPs. Here, we explore the toxicological HAP-vertebrate relationship in an evolutionary framework and discuss the potential for vertebrates to adapt to or even co-opt the effects of plant-derived chemicals that influence fitness. We lay out several hypotheses about HAPs and provide a path forward to test whether plant-derived chemicals influence vertebrate reproduction and evolution. Studies of phytochemicals with direct impacts on vertebrate reproduction provide an obvious and compelling system for studying evolutionary toxicology. Furthermore, an understanding of whether animal populations evolve in response to HAPs could provide insightful context for the study of rapid evolution and how animals cope with chemical agents in the environment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE... animal production facility means a hatchery, fish farm, or other facility which meets the criteria in... any warm or cold water aquatic animal production facility as a concentrated aquatic animal production...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE... animal production facility means a hatchery, fish farm, or other facility which meets the criteria in... any warm or cold water aquatic animal production facility as a concentrated aquatic animal production...
Obesogens in the aquatic environment: an evolutionary and toxicological perspective.
Capitão, Ana; Lyssimachou, Angeliki; Castro, Luís Filipe Costa; Santos, Miguel M
2017-09-01
The rise of obesity in humans is a major health concern of our times, affecting an increasing proportion of the population worldwide. It is now evident that this phenomenon is not only associated with the lack of exercise and a balanced diet, but also due to environmental factors, such as exposure to environmental chemicals that interfere with lipid homeostasis. These chemicals, also known as obesogens, are present in a wide range of products of our daily life, such as cosmetics, paints, plastics, food cans and pesticide-treated food, among others. A growing body of evidences indicates that their action is not limited to mammals. Obesogens also end up in the aquatic environment, potentially affecting its ecosystems. In fact, reports show that some environmental chemicals are able to alter lipid homeostasis, impacting weight, lipid profile, signaling pathways and/or protein activity, of several taxa of aquatic animals. Such perturbations may give rise to physiological disorders and disease. Although largely unexplored from a comparative perspective, the key molecular components implicated in lipid homeostasis have likely appeared early in animal evolution. Therefore, it is not surprising that the obesogen effects are found in other animal groups beyond mammals. Collectively, data indicates that suspected obesogens impact lipid metabolism across phyla that have diverged over 600 million years ago. Thus, a consistent link between environmental chemical exposure and the obesity epidemic has emerged. This review aims to summarize the available information on the effects of putative obesogens in aquatic organisms, considering the similarities and differences of lipid homeostasis pathways among metazoans, thus contributing to a better understanding of the etiology of obesity in human populations. Finally, we identify the knowledge gaps in this field and we set future research priorities. Copyright © 2017 Elsevier Ltd. All rights reserved.
The aquatic animals' transcriptome resource for comparative functional analysis.
Chou, Chih-Hung; Huang, Hsi-Yuan; Huang, Wei-Chih; Hsu, Sheng-Da; Hsiao, Chung-Der; Liu, Chia-Yu; Chen, Yu-Hung; Liu, Yu-Chen; Huang, Wei-Yun; Lee, Meng-Lin; Chen, Yi-Chang; Huang, Hsien-Da
2018-05-09
Aquatic animals have great economic and ecological importance. Among them, non-model organisms have been studied regarding eco-toxicity, stress biology, and environmental adaptation. Due to recent advances in next-generation sequencing techniques, large amounts of RNA-seq data for aquatic animals are publicly available. However, currently there is no comprehensive resource exist for the analysis, unification, and integration of these datasets. This study utilizes computational approaches to build a new resource of transcriptomic maps for aquatic animals. This aquatic animal transcriptome map database dbATM provides de novo assembly of transcriptome, gene annotation and comparative analysis of more than twenty aquatic organisms without draft genome. To improve the assembly quality, three computational tools (Trinity, Oases and SOAPdenovo-Trans) were employed to enhance individual transcriptome assembly, and CAP3 and CD-HIT-EST software were then used to merge these three assembled transcriptomes. In addition, functional annotation analysis provides valuable clues to gene characteristics, including full-length transcript coding regions, conserved domains, gene ontology and KEGG pathways. Furthermore, all aquatic animal genes are essential for comparative genomics tasks such as constructing homologous gene groups and blast databases and phylogenetic analysis. In conclusion, we establish a resource for non model organism aquatic animals, which is great economic and ecological importance and provide transcriptomic information including functional annotation and comparative transcriptome analysis. The database is now publically accessible through the URL http://dbATM.mbc.nctu.edu.tw/ .
Jeong, Chang-Bum; Kim, Hui-Su; Kang, Hye-Min; Lee, Jae-Seong
2017-04-01
The ATP-binding cassette (ABC) protein superfamily is known to play a fundamental role in biological processes and is highly conserved across animal taxa. The ABC proteins function as active transporters for multiple substrates across the cellular membrane by ATP hydrolysis. As this superfamily is derived from a common ancestor, ABC genes have evolved via lineage-specific duplications through the process of adaptation. In this review, we summarized information about the ABC gene families in aquatic invertebrates, considering their evolution and putative functions in defense mechanisms. Phylogenetic analysis was conducted to examine the evolutionary significance of ABC gene families in aquatic invertebrates. Particularly, a massive expansion of multixenobiotic resistance (MXR)-mediated efflux transporters was identified in the absence of the ABCG2 (BCRP) gene in Ecdysozoa and Platyzoa, suggesting that a loss of Abcg2 gene occurred sporadically in these species during divergence of Protostome to Lophotrochozoa. Furthermore, in aquatic invertebrates, the ecotoxicological significance of MXR is discussed while considering the role of MXR-mediated efflux transporters in response to various environmental pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.
Correlations of Life Form, Pollination Mode and Sexual System in Aquatic Angiosperms
Du, Zhi-Yuan; Wang, Qing-Feng
2014-01-01
Aquatic plants are phylogenetically well dispersed across the angiosperms. Reproductive and other life-history traits of aquatic angiosperms are closely associated with specific growth forms. Hydrophilous pollination exhibits notable examples of convergent evolution in angiosperm reproductive structures, and hydrophiles exhibit great diversity in sexual system. In this study, we reconstructed ancestral characters of aquatic lineages based on the phylogeny of aquatic angiosperms. Our aim is to find the correlations of life form, pollination mode and sexual system in aquatic angiosperms. Hydrophily is the adaptive evolution of completely submersed angiosperms to aquatic habitats. Hydroautogamy and maleflower-ephydrophily are the transitional stages from anemophily and entomophily to hydrophily. True hydrophily occurs in 18 submersed angiosperm genera, which is associated with an unusually high incidence of unisexual flowers. All marine angiosperms are submersed, hydrophilous species. This study would help us understand the evolution of hydrophilous pollination and its correlations with life form and sexual system. PMID:25525810
Exceptionally preserved Cambrian loriciferans and the early animal invasion of the meiobenthos.
Harvey, Thomas H P; Butterfield, Nicholas J
2017-01-30
Microscopic animals that live among and between sediment grains (meiobenthic metazoans) are key constituents of modern aquatic ecosystems, but are effectively absent from the fossil record. We describe an assemblage of microscopic fossil loriciferans (Ecdysozoa, Loricifera) from the late Cambrian Deadwood Formation of western Canada. The fossils share a characteristic head structure and minute adult body size (~300 μm) with modern loriciferans, indicating the early evolution and subsequent conservation of an obligate, permanently meiobenthic lifestyle. The unsuspected fossilization potential of such small animals in marine mudstones offers a new search image for the earliest ecdysozoans and other animals, although the anatomical complexity of loriciferans points to their evolutionary miniaturization from a larger-bodied ancestor. The invasion of animals into ecospace that was previously monopolized by protists will have contributed considerably to the revolutionary geobiological feedbacks of the Proterozoic/Phanerozoic transition.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE NATIONAL... Concentrated Aquatic Animal Production Facility (§ 122.24) A hatchery, fish farm, or other facility is a... aquatic animals in either of the following categories: (a) Cold water fish species or other cold water...
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE NATIONAL... Concentrated Aquatic Animal Production Facility (§ 122.24) A hatchery, fish farm, or other facility is a... aquatic animals in either of the following categories: (a) Cold water fish species or other cold water...
Bekoff, Marc
2007-05-04
In this general, strongly pro-animal, and somewhat utopian and personal essay, I argue that we owe aquatic animals respect and moral consideration just as we owe respect and moral consideration to all other animal beings, regardless of the taxonomic group to which they belong. In many ways it is more difficult to convince some people of our ethical obligations to numerous aquatic animals because we do not identify or empathize with them as we do with animals with whom we are more familiar or to whom we are more closely related, including those species (usually terrestrial) to whom we refer as charismatic megafauna. Many of my examples come from animals that are more well studied but they can be used as models for aquatic animals. I follow Darwinian notions of evolutionary continuity to argue that if we feel pain, then so too do many other animals, including those that live in aquatic environs. Recent scientific data ('science sense') show clearly that many aquatic organisms, much to some people's surprise, likely suffer at our hands and feel their own sorts of pain. Throughout I discuss how cognitive ethology (the study of animal minds) is the unifying science for understanding the subjective, emotional, empathic, and moral lives of animals because it is essential to know what animals do, think, and feel as they go about their daily routines. Lastly, I argue that when we are uncertain if we are inflicting pain due to our incessant, annoying, and frequently unnecessary intrusions into the lives of other animals as we go about 'redecorating nature' (removing animals or moving them from place to place), we should err on the side of the animals and stop engaging in activities that cause pain and suffering.
NASDA aquatic animal experiment facilities for Space Shuttle and ISS.
Uchida, Satoko; Masukawa, Mitsuyo; Kamigaichi, Shigeki
2002-01-01
National Space Development Agency of Japan (NASDA) has developed aquatic animal experiment facilities for NASA Space Shuttle use. Vestibular Function Experiment Unit (VFEU) was firstly designed and developed for physiological research using carp in Spacelab-J (SL-J, STS-47) mission. It was modified as Aquatic Animal Experiment Unit (AAEU) to accommodate small aquatic animals, such as medaka and newt, for second International Microgravity Laboratory (IML-2, STS-65) mission. Then, VFEU was improved to accommodate marine fish and to perform neurobiological experiment for Neurolab (STS-90) and STS-95 missions. We have also developed and used water purification system which was adapted to each facility. Based on these experiences of Space Shuttle missions, we are studying to develop advanced aquatic animal experiment facility for both Space Shuttle and International Space Station (ISS). c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Pharmacokinetic modeling in aquatic animals. 1. Models and concepts
Barron, M.G.; Stehly, Guy R.; Hayton, W.L.
1990-01-01
While clinical and toxicological applications of pharmacokinetics have continued to evolve both conceptually and experimentally, pharmacokinetics modeling in aquatic animals has not progressed accordingly. In this paper we present methods and concepts of pharmacokinetic modeling in aquatic animals using multicompartmental, clearance-based, non-compartmental and physiologically-based pharmacokinetic models. These models should be considered as alternatives to traditional approaches, which assume that the animal acts as a single homogeneous compartment based on apparent monoexponential elimination.
Nitrous oxide emission by aquatic macrofauna
Stief, Peter; Poulsen, Morten; Nielsen, Lars Peter; Brix, Hans; Schramm, Andreas
2009-01-01
A large variety of aquatic animals was found to emit the potent greenhouse gas nitrous oxide when nitrate was present in the environment. The emission was ascribed to denitrification by ingested bacteria in the anoxic animal gut, and the exceptionally high N2O-to-N2 production ratio suggested delayed induction of the last step of denitrification. Filter- and deposit-feeding animal species showed the highest rates of nitrous oxide emission and predators the lowest, probably reflecting the different amounts of denitrifying bacteria in the diet. We estimate that nitrous oxide emission by aquatic animals is quantitatively important in nitrate-rich aquatic environments like freshwater, coastal marine, and deep-sea ecosystems. The contribution of this source to overall nitrous oxide emission from aquatic environments might further increase because of the projected increase of nitrate availability in tropical regions and the numeric dominance of filter- and deposit-feeders in eutrophic ecosystems. PMID:19255427
Role and functions of beneficial microorganisms in sustainable aquaculture.
Zhou, Qunlan; Li, Kangmin; Jun, Xie; Bo, Liu
2009-08-01
This paper aims to review the development of scientific concepts of microecology and ecology of microbes and the role and functions of beneficial microorganisms in aquaculture and mariculture. Beneficial microorganisms play a great role in natural and man-made aquatic ecosystems based on the co-evolution theory in living biosphere on earth. Their functions are to adjust algal population in water bodies so as to avoid unwanted algal bloom; to speed up decomposition of organic matter and to reduce CODmn, NH3-N and NO2-N in water and sediments so as to improve water quality; to suppress fish/shrimp diseases and water-borne pathogens; to enhance immune system of cultured aquatic animals and to produce bioactive compounds such as vitamins, hormones and enzymes that stimulate growth, thus to decrease the FCR of feed.
Jones, Katrina E; Smaers, Jeroen B; Goswami, Anjali
2015-02-04
Which factors influence the distribution patterns of morphological diversity among clades? The adaptive radiation model predicts that a clade entering new ecological niche will experience high rates of evolution early in its history, followed by a gradual slowing. Here we measure disparity and rates of evolution in Carnivora, specifically focusing on the terrestrial-aquatic transition in Pinnipedia. We analyze fissiped (mostly terrestrial, arboreal, and semi-arboreal, but also including the semi-aquatic otter) and pinniped (secondarily aquatic) carnivorans as a case study of an extreme ecological transition. We used 3D geometric morphometrics to quantify cranial shape in 151 carnivoran specimens (64 fissiped, 87 pinniped) and five exceptionally-preserved fossil pinnipeds, including the stem-pinniped Enaliarctos emlongi. Range-based and variance-based disparity measures were compared between pinnipeds and fissipeds. To distinguish between evolutionary modes, a Brownian motion model was compared to selective regime shifts associated with the terrestrial-aquatic transition and at the base of Pinnipedia. Further, evolutionary patterns were estimated on individual branches using both Ornstein-Uhlenbeck and Independent Evolution models, to examine the origin of pinniped diversity. Pinnipeds exhibit greater cranial disparity than fissipeds, even though they are less taxonomically diverse and, as a clade nested within fissipeds, phylogenetically younger. Despite this, there is no increase in the rate of morphological evolution at the base of Pinnipedia, as would be predicted by an adaptive radiation model, and a Brownian motion model of evolution is supported. Instead basal pinnipeds populated new areas of morphospace via low to moderate rates of evolution in new directions, followed by later bursts within the crown-group, potentially associated with ecological diversification within the marine realm. The transition to an aquatic habitat in carnivorans resulted in a shift in cranial morphology without an increase in rate in the stem lineage, contra to the adaptive radiation model. Instead these data suggest a release from evolutionary constraint model, followed by aquatic diversifications within crown families.
Top-Down Proteomics and Farm Animal and Aquatic Sciences.
Campos, Alexandre M O; de Almeida, André M
2016-12-21
Proteomics is a field of growing importance in animal and aquatic sciences. Similar to other proteomic approaches, top-down proteomics is slowly making its way within the vast array of proteomic approaches that researchers have access to. This opinion and mini-review article is dedicated to top-down proteomics and how its use can be of importance to animal and aquatic sciences. Herein, we include an overview of the principles of top-down proteomics and how it differs regarding other more commonly used proteomic methods, especially bottom-up proteomics. In addition, we provide relevant sections on how the approach was or can be used as a research tool and conclude with our opinions of future use in animal and aquatic sciences.
A global database of nitrogen and phosphorus excretion rates of aquatic animals
Vanni, Michael J.; McIntyre, Peter B.; Allen, Dennis; ...
2017-03-06
Though their importance varies greatly among species and ecosystems, animals can be important in modulating ecosystem-level nutrient cycling. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Ecology (MTE) and ecological stoichiometry (ES). They also represent an important set of functional traits that may reflect both environmental and phylogenetic influences. Over the past two decades, studies of animal-mediated nutrient cycling have increased dramatically, especially in aquatic ecosystems. Here we present a global compilation of aquatic animal nutrient excretion rates. The dataset includes 10,534 observations from freshwater andmore » marine animals of N and/or P excretion rates. Furthermore, these observations represent 491 species, including most aquatic phyla. Coverage varies greatly among phyla and other taxonomic levels. The dataset includes information on animal body size, ambient temperature, taxonomic affiliations, and animal body N:P. We used this data set to test predictions of MTE and ES, as described in Vanni and McIntyre (2016; Ecology DOI: 10.1002/ecy.1582).« less
A global database of nitrogen and phosphorus excretion rates of aquatic animals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanni, Michael J.; McIntyre, Peter B.; Allen, Dennis
Though their importance varies greatly among species and ecosystems, animals can be important in modulating ecosystem-level nutrient cycling. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Ecology (MTE) and ecological stoichiometry (ES). They also represent an important set of functional traits that may reflect both environmental and phylogenetic influences. Over the past two decades, studies of animal-mediated nutrient cycling have increased dramatically, especially in aquatic ecosystems. Here we present a global compilation of aquatic animal nutrient excretion rates. The dataset includes 10,534 observations from freshwater andmore » marine animals of N and/or P excretion rates. Furthermore, these observations represent 491 species, including most aquatic phyla. Coverage varies greatly among phyla and other taxonomic levels. The dataset includes information on animal body size, ambient temperature, taxonomic affiliations, and animal body N:P. We used this data set to test predictions of MTE and ES, as described in Vanni and McIntyre (2016; Ecology DOI: 10.1002/ecy.1582).« less
Internal and External Dispersal of Plants by Animals: An Aquatic Perspective on Alien Interference
van Leeuwen, Casper H. A.
2018-01-01
Many alien plants use animal vectors for dispersal of their diaspores (zoochory). If alien plants interact with native disperser animals, this can interfere with animal-mediated dispersal of native diaspores. Interference by alien species is known for frugivorous animals dispersing fruits of terrestrial plants by ingestion, transport and egestion (endozoochory). However, less attention has been paid to possible interference of alien plants with dispersal of diaspores via external attachment (ectozoochory, epizoochory or exozoochory), interference in aquatic ecosystems, or positive effects of alien plants on dispersal of native plants. This literature study addresses the following hypotheses: (1) alien plants may interfere with both internal and external animal-mediated dispersal of native diaspores; (2) interference also occurs in aquatic ecosystems; (3) interference of alien plants can have both negative and positive effects on native plants. The studied literature revealed that alien species can comprise large proportions of both internally and externally transported diaspores. Because animals have limited space for ingested and adhering diaspores, alien species affect both internal and external transport of native diaspores. Alien plant species also form large proportions of all dispersed diaspores in aquatic systems and interfere with dispersal of native aquatic plants. Alien interference can be either negative (e.g., through competition with native plants) or positive (e.g., increased abundance of native dispersers, changed disperser behavior or attracting additional disperser species). I propose many future research directions, because understanding whether alien plant species disrupt or facilitate animal-mediated dispersal of native plants is crucial for targeted conservation of invaded (aquatic) plant communities. PMID:29487609
EFFECTS OF CARCINOGENIC AGENTS ON AQUATIC ANIMALS: AN ENVIRONMENTAL AND EXPERIMENTAL OVERVIEW
A major underlying motivation for seriously studying carcinogenesis in aquatic animals is the concept of utilizing selected lower animal species as models in understanding neoplasia and the neoplastic process. Numerous examples may be cited which illustrate the contribution that ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... respiration by means of a lung structure permitting gaseous exchange between air and the circulatory system; Aquatic animals means appropriately sensitive wholly aquatic animals which carry out respiration by means...
Code of Federal Regulations, 2010 CFR
2010-07-01
... respiration by means of a lung structure permitting gaseous exchange between air and the circulatory system; Aquatic animals means appropriately sensitive wholly aquatic animals which carry out respiration by means...
A novel, bounding gait in swimming turtles: implications for aquatic locomotor diversity.
Mayerl, Christopher J; Blob, Richard W
2017-10-15
Turtles are an iconic lineage in studies of animal locomotion, typifying the use of slow, alternating footfalls during walking. Alternating movements of contralateral limbs are also typical during swimming gaits for most freshwater turtles. Here, we report a novel gait in turtles, in which the pleurodire Emydura subglobosa swims using a bounding gait that coordinates bilateral protraction of both forelimbs with bilateral retraction of both hindlimbs. Use of this bounding gait is correlated with increased limb excursion and decreased stride frequency, but not increased velocity when compared with standard swimming strokes. Bounding by E. subglobosa provides a second example of a non-mammalian lineage that can use bounding gaits, and may give insight into the evolution of aquatic flapping. Parallels in limb muscle fascicle properties between bounding turtles and crocodylids suggest a possible musculoskeletal mechanism underlying the use of bounding gaits in particular lineages. © 2017. Published by The Company of Biologists Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barron, M.G.
1990-11-01
Bioconcentration is the process of accumulation of water-borne chemicals by fish and other aquatic animals through nondietary routes. A proportionality constant relating the concentration of a chemical in water to its concentration in the aquatic animal at steady-state equilibrium is the bioconcentration factor (BCF). The purpose of this paper is to critically evaluate the hypothesis that hydrophobicity is the principal determinant of bioconcentration in aquatic animals and examine the dependence of bioconcentration on species, body size, and environmental factors. BCFs for a variety of chemical classes are evaluated for their conformity to the hydrophobicity model of bioconcentration, and an alternativemore » conceptual model of bioconcentration incorporating animal physiology is presented.« less
von Reumont, Björn M.; Blanke, Alexander; Richter, Sandy; Alvarez, Fernando; Bleidorn, Christoph; Jenner, Ronald A.
2014-01-01
Animal venoms have evolved many times. Venomous species are especially common in three of the four main groups of arthropods (Chelicerata, Myriapoda, and Hexapoda), which together represent tens of thousands of species of venomous spiders, scorpions, centipedes, and hymenopterans. Surprisingly, despite their great diversity of body plans, there is no unambiguous evidence that any crustacean is venomous. We provide the first conclusive evidence that the aquatic, blind, and cave-dwelling remipede crustaceans are venomous and that venoms evolved in all four major arthropod groups. We produced a three-dimensional reconstruction of the venom delivery apparatus of the remipede Speleonectes tulumensis, showing that remipedes can inject venom in a controlled manner. A transcriptomic profile of its venom glands shows that they express a unique cocktail of transcripts coding for known venom toxins, including a diversity of enzymes and a probable paralytic neurotoxin very similar to one described from spider venom. We screened a transcriptomic library obtained from whole animals and identified a nontoxin paralog of the remipede neurotoxin that is not expressed in the venom glands. This allowed us to reconstruct its probable evolutionary origin and underlines the importance of incorporating data derived from nonvenom gland tissue to elucidate the evolution of candidate venom proteins. This first glimpse into the venom of a crustacean and primitively aquatic arthropod reveals conspicuous differences from the venoms of other predatory arthropods such as centipedes, scorpions, and spiders and contributes valuable information for ultimately disentangling the many factors shaping the biology and evolution of venoms and venomous species. PMID:24132120
Global transboundry disease politics: the OIE perspective.
Lightner, D V
2012-06-01
Reviewed in this paper are the steps for listing or de-listing of an aquatic animal disease, the current list of OIE listed aquatic animal diseases, and the reporting requirements for listed diseases by member countries. The current OIE listed aquatic animal diseases includes two diseases of amphibians, nine of fish, seven of mollusks, and eight of crustaceans. Of interest is the difference in importance of the listed diseases in each of the four groups of aquatic animals. In mollusks, parasitic diseases dominate the list, while in fish and crustaceans virus diseases are dominant. Whether a listed disease is due to a virus, fungus, bacterium or a parasite, the occurrence of the disease may adversely affect international trade among trading partners that have, or do not have, the listed disease. By its very nature, the international trade in terrestrial animals and aquatic animals, and their products, is influenced by national and international politics. When the occurrence of an OIE listed or emerging disease becomes an issue between trading partners, trade restrictions may be put in place and disputes are often a consequence. The World Trade Organization named the OIE as the reference body for animal health as it relates to international trade. This action recognized the 88 year history of the work by the OIE in disease control, listing of diseases, the development of the terrestrial and aquatic codes and the diagnostic manuals, and the prompt notification of members by the OIE of the occurrence of listed diseases. The intent of the WTO with this action was likely to minimize disease related trade disputes brought before the WTO. Copyright © 2012 Elsevier Inc. All rights reserved.
The application of epidemiology in aquatic animal health -opportunities and challenges.
Peeler, Edmund J; Taylor, Nicholas G H
2011-08-11
Over recent years the growth in aquaculture, accompanied by the emergence of new and transboundary diseases, has stimulated epidemiological studies of aquatic animal diseases. Great potential exists for both observational and theoretical approaches to investigate the processes driving emergence but, to date, compared to terrestrial systems, relatively few studies exist in aquatic animals. Research using risk methods has assessed routes of introduction of aquatic animal pathogens to facilitate safe trade (e.g. import risk analyses) and support biosecurity. Epidemiological studies of risk factors for disease in aquaculture (most notably Atlantic salmon farming) have effectively supported control measures. Methods developed for terrestrial livestock diseases (e.g. risk-based surveillance) could improve the capacity of aquatic animal surveillance systems to detect disease incursions and emergence. The study of disease in wild populations presents many challenges and the judicious use of theoretical models offers some solutions. Models, parameterised from observational studies of host pathogen interactions, have been used to extrapolate estimates of impacts on the individual to the population level. These have proved effective in estimating the likely impact of parasite infections on wild salmonid populations in Switzerland and Canada (where the importance of farmed salmon as a reservoir of infection was investigated). A lack of data is often the key constraint in the application of new approaches to surveillance and modelling. The need for epidemiological approaches to protect aquatic animal health will inevitably increase in the face of the combined challenges of climate change, increasing anthropogenic pressures, limited water sources and the growth in aquaculture.
SYNOPSIS OF HISTOTECHNIQUES FOR AQUATIC ANIMALS
This synopsis provides an overview of the necropsy, fixation, trimming, and processing of tissues from aquatic organisms for examination using light microscopy. The handling of animals, their tissues, uses of knives, and processing chemicals will be covered. Understanding the his...
The chemoreceptor genes of the waterflea Daphnia pulex: many Grs but no Ors
Peñalva-Arana, D Carolina; Lynch, Michael; Robertson, Hugh M
2009-01-01
Background Chemoreception is vitally important for all animals, yet little is known about the genetics of chemoreception in aquatic organisms. The keystone species Daphnia pulex, a well known crustacean, is the first aquatic invertebrate to have its genome sequenced. This has allowed us the initial investigation of chemoreceptor genes in an aquatic invertebrate, and to begin the study of chemoreceptor evolution across the arthropod phylum. Results We describe 58 Grs (gustatory receptors), belonging to the insect chemoreceptor superfamily, which were identified bioinformatically in the draft genome of the crustacean waterflea Daphnia pulex. No genes encoding proteins similar to the insect odorant receptors (Ors) were identified. These 58 Grs form 3 distinctive subfamilies of 37, 12, and 5 genes, as well as a highly divergent singleton (Gr58). In addition, Grs55–57 share distinctive amino acid motifs and cluster with the sugar receptors of insects, and may illuminate the origin of this distinctive subfamily. ESTs, tiling array, and PCR amplification results support 34 predicted gene models, and preliminary expression data comparing the sexes indicates potential female-biased expression for some genes. Conclusion This repertoire of 58 chemoreceptors presumably mediates the many chemoperception abilities of waterfleas. While it is always possible that the entire Or gene lineage was lost at some point in the history of Daphnia pulex, we think it more likely that the insect Or lineage is indeed a relatively recently expanded gene lineage concomitant with the evolution of terrestriality in the insects or their hexapod ancestors. PMID:19383158
Nassar, Cíntia Cristina Souza; Bondan, Eduardo Fernandes; Alouche, Sandra Regina
2009-09-01
Multiple sclerosis is a demyelinating disease of the central nervous system associated with varied levels of disability. The impact of early physiotherapeutic interventions in the disease progression is unknown. We used an experimental model of demyelination with the gliotoxic agent ethidium bromide and early aquatic exercises to evaluate the motor performance of the animals. We quantified the number of footsteps and errors during the beam walking test. The demyelinated animals walked fewer steps with a greater number of errors than the control group. The demyelinated animals that performed aquatic exercises presented a better motor performance than those that did not exercise. Therefore aquatic exercising was beneficial to the motor performance of rats in this experimental model of demyelination.
NASA Astrophysics Data System (ADS)
Bluem, Volker; Paris, Frank
2002-06-01
The closed equilibrated biological aquatic system (C.E.B.A.S) is a man-made aquatic ecosystem which consists of four subcomponents: an aquatic animal habitat, an aquatic plant bioreactor, an ammonia oxidizing bacteria filter and a data acquisition/control unit. It is a precursor for different types of fish and aquatic plant production sites which are disposed for the integration into bioregenerative life-support systems. The results of two successful spaceflights of a miniaturized C.E.B.A.S version (the C.E.B.A.S. MINI MODULE) allow the optimization of aquatic food production systems which are already developed in the ground laboratory and open new aspects for their utilization as aquatic modules in space bioregenerative life support systems. The total disposition offers different stages of complexity of such aquatic modules starting with simple but efficient aquatic plant cultivators which can be implemented into water recycling systems and ending up in combined plant/fish aquaculture in connection with reproduction modules and hydroponics applications for higher land plants. In principle, aquaculture of fishes and/or other aquatic animals edible for humans offers optimal animal protein production under lowered gravity conditions without the tremendous waste management problems connected with tetrapod breeding and maintenance. The paper presents details of conducted experimental work and of future dispositions which demonstrate clearly that aquaculture is an additional possibility to combine efficient and simple food production in space with water recycling utilizing safe and performable biotechnologies. Moreover, it explains how these systems may contribute to more variable diets to fulfill the needs of multicultural crews.
Pörtner, Hans O; Gutt, Julian
2016-07-01
Understanding thermal ranges and limits of organisms becomes important in light of climate change and observed effects on ecosystems as reported by the IPCC (2014). Evolutionary adaptation to temperature is presently unable to keep animals and other organisms in place; if they can these rather follow the moving isotherms. These effects of climate change on aquatic and terrestrial ecosystems have brought into focus the mechanisms by which temperature and its oscillations shape the biogeography and survival of species. For animals, the integrative concept of oxygen and capacity limited thermal tolerance (OCLTT) has successfully characterized the sublethal limits to performance and the consequences of such limits for ecosystems. Recent models illustrate how routine energy demand defines the realized niche. Steady state temperature-dependent performance profiles thus trace the thermal window and indicate a key role for aerobic metabolism, and the resulting budget of available energy (power), in defining performance under routine conditions, from growth to exercise and reproduction. Differences in the performance and productivity of marine species across latitudes relate to changes in mitochondrial density, capacity, and other features of cellular design. Comparative studies indicate how and why such mechanisms underpinning OCLTT may have developed on evolutionary timescales in different climatic zones and contributed to shaping the functional characteristics and species richness of the respective fauna. A cause-and-effect understanding emerges from considering the relationships between fluctuations in body temperature, cellular design, and performance. Such principles may also have been involved in shaping the functional characteristics of survivors in mass extinction events during earth's history; furthermore, they may provide access to understanding the evolution of endothermy in mammals and birds. Accordingly, an understanding is emerging how climate changes and variability throughout earth's history have influenced animal evolution and co-defined their success or failure from a bio-energetic point of view. Deepening such understanding may further reduce uncertainty about projected impacts of anthropogenic climate variability and change on the distribution, productivity and last not least, survival of aquatic and terrestrial species. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Aquatic Animal Models – Not Just for Ecotox Anymore
A wide range of internationally harmonized toxicity test guidelines employing aquatic animal models have been established for regulatory use. For fish alone, there are over a dozen internationally harmonized toxicity test guidelines that have been, or are being, validated. To dat...
Large-Scale Environmental Influences on Aquatic Animal Health
In the latter portion of the 20th century, North America experienced numerous large-scale mortality events affecting a broad diversity of aquatic animals. Short-term forensic investigations of these events have sometimes characterized a causative agent or condition, but have rare...
Martins, Samantha Eslava; Bianchini, Adalto
2011-07-01
The current status of toxicological tests performed with Brazilian native species was evaluated through a survey of the scientific data available in the literature. The information gathered was processed and an electronic toxicology database (http://www.inct-ta.furg.br/bd_toxicologico.php) was generated. This database provides valuable information for researchers to select sensitive and tolerant aquatic species to a large variety of aquatic pollutants. Furthermore, the toxicology database allows researchers to select species representative of an ecosystem of interest. Analysis of the toxicology database showed that ecotoxicological assays have significantly improved in Brazil over the last decade, in spite of the still relatively low number of tests performed and the restricted number of native species tested. This is because most of the research is developed in a few laboratories concentrated in certain regions of Brazil, especially in Southern and Southeast regions. Considering the extremely rich biodiversity and the large variety of aquatic ecosystems in Brazil, this finding points to the urgent need for the development of ecotoxicological studies with other groups of aquatic animals, such as insects, foraminifera, cnidarians, worms, amphibians, among others. This would help to derive more realistic water quality criteria (WQC) values, which would better protect the different aquatic ecosystems in Brazil. Finally, the toxicology database generated presents solid and science based information, which can encourage and drive the Environmental Regulatory Agencies in Brazil to derive WQC based on native species. In this context, the present paper discusses the historical evolution of ecotoxicological studies in Brazil, and how they have contributed to the improvement of the Brazilian Federal and Regional regulations for environment.
Gardner, Ian A; Whittington, Richard J; Caraguel, Charles G B; Hick, Paul; Moody, Nicholas J G; Corbeil, Serge; Garver, Kyle A.; Warg, Janet V.; Arzul, Isabelle; Purcell, Maureen; St. J. Crane, Mark; Waltzek, Thomas B.; Olesen, Niels J; Lagno, Alicia Gallardo
2016-01-01
Complete and transparent reporting of key elements of diagnostic accuracy studies for infectious diseases in cultured and wild aquatic animals benefits end-users of these tests, enabling the rational design of surveillance programs, the assessment of test results from clinical cases and comparisons of diagnostic test performance. Based on deficiencies in the Standards for Reporting of Diagnostic Accuracy (STARD) guidelines identified in a prior finfish study (Gardner et al. 2014), we adapted the Standards for Reporting of Animal Diagnostic Accuracy Studies—paratuberculosis (STRADAS-paraTB) checklist of 25 reporting items to increase their relevance to finfish, amphibians, molluscs, and crustaceans and provided examples and explanations for each item. The checklist, known as STRADAS-aquatic, was developed and refined by an expert group of 14 transdisciplinary scientists with experience in test evaluation studies using field and experimental samples, in operation of reference laboratories for aquatic animal pathogens, and in development of international aquatic animal health policy. The main changes to the STRADAS-paraTB checklist were to nomenclature related to the species, the addition of guidelines for experimental challenge studies, and the designation of some items as relevant only to experimental studies and ante-mortem tests. We believe that adoption of these guidelines will improve reporting of primary studies of test accuracy for aquatic animal diseases and facilitate assessment of their fitness-for-purpose. Given the importance of diagnostic tests to underpin the Sanitary and Phytosanitary agreement of the World Trade Organization, the principles outlined in this paper should be applied to other World Organisation for Animal Health (OIE)-relevant species.
Gardner, Ian A; Whittington, Richard J; Caraguel, Charles G B; Hick, Paul; Moody, Nicholas J G; Corbeil, Serge; Garver, Kyle A; Warg, Janet V; Arzul, Isabelle; Purcell, Maureen K; Crane, Mark St J; Waltzek, Thomas B; Olesen, Niels J; Gallardo Lagno, Alicia
2016-02-25
Complete and transparent reporting of key elements of diagnostic accuracy studies for infectious diseases in cultured and wild aquatic animals benefits end-users of these tests, enabling the rational design of surveillance programs, the assessment of test results from clinical cases and comparisons of diagnostic test performance. Based on deficiencies in the Standards for Reporting of Diagnostic Accuracy (STARD) guidelines identified in a prior finfish study (Gardner et al. 2014), we adapted the Standards for Reporting of Animal Diagnostic Accuracy Studies-paratuberculosis (STRADAS-paraTB) checklist of 25 reporting items to increase their relevance to finfish, amphibians, molluscs, and crustaceans and provided examples and explanations for each item. The checklist, known as STRADAS-aquatic, was developed and refined by an expert group of 14 transdisciplinary scientists with experience in test evaluation studies using field and experimental samples, in operation of reference laboratories for aquatic animal pathogens, and in development of international aquatic animal health policy. The main changes to the STRADAS-paraTB checklist were to nomenclature related to the species, the addition of guidelines for experimental challenge studies, and the designation of some items as relevant only to experimental studies and ante-mortem tests. We believe that adoption of these guidelines will improve reporting of primary studies of test accuracy for aquatic animal diseases and facilitate assessment of their fitness-for-purpose. Given the importance of diagnostic tests to underpin the Sanitary and Phytosanitary agreement of the World Trade Organization, the principles outlined in this paper should be applied to other World Organisation for Animal Health (OIE)-relevant species.
Neutral buoyancy is optimal to minimize the cost of transport in horizontally swimming seals
Sato, Katsufumi; Aoki, Kagari; Watanabe, Yuuki Y.; Miller, Patrick J. O.
2013-01-01
Flying and terrestrial animals should spend energy to move while supporting their weight against gravity. On the other hand, supported by buoyancy, aquatic animals can minimize the energy cost for supporting their body weight and neutral buoyancy has been considered advantageous for aquatic animals. However, some studies suggested that aquatic animals might use non-neutral buoyancy for gliding and thereby save energy cost for locomotion. We manipulated the body density of seals using detachable weights and floats, and compared stroke efforts of horizontally swimming seals under natural conditions using animal-borne recorders. The results indicated that seals had smaller stroke efforts to swim a given speed when they were closer to neutral buoyancy. We conclude that neutral buoyancy is likely the best body density to minimize the cost of transport in horizontal swimming by seals. PMID:23857645
Neutral buoyancy is optimal to minimize the cost of transport in horizontally swimming seals.
Sato, Katsufumi; Aoki, Kagari; Watanabe, Yuuki Y; Miller, Patrick J O
2013-01-01
Flying and terrestrial animals should spend energy to move while supporting their weight against gravity. On the other hand, supported by buoyancy, aquatic animals can minimize the energy cost for supporting their body weight and neutral buoyancy has been considered advantageous for aquatic animals. However, some studies suggested that aquatic animals might use non-neutral buoyancy for gliding and thereby save energy cost for locomotion. We manipulated the body density of seals using detachable weights and floats, and compared stroke efforts of horizontally swimming seals under natural conditions using animal-borne recorders. The results indicated that seals had smaller stroke efforts to swim a given speed when they were closer to neutral buoyancy. We conclude that neutral buoyancy is likely the best body density to minimize the cost of transport in horizontal swimming by seals.
Exposure assessment of veterinary medicines in aquatic systems
Metcalfe, Chris; Boxall, Alistair; Fenner, Kathrin; Kolpin, Dana W.; Silberhorn, Eric; Staveley, Jane
2008-01-01
The release of veterinary medicines into the aquatic environment may occur through direct or indirect pathways. An example of direct release is the use of medicines in aquaculture (Armstrong et al. 2005; Davies et al. 1998), where chemicals used to treat fish are added directly to water. Indirect releases, in which medicines make their way to water through transport from other matrices, include the application of animal manure to land or direct excretion of residues onto pasture land, from which the therapeutic chemicals may be transported into the aquatic environment (Jørgensen and Halling-Sørensen 2000; Boxall et al. 2003, 2004). Veterinary medicines used to treat companion animals may also be transported into the aquatic environment through disposal of unused medicines, veterinary waste, or animal carcasses (Daughton and Ternes 1999, Boxall et al. 2004). The potential for a veterinary medicine to be released to the aquatic environment will be determined by several different criteria, including the method of treatment, agriculture or aquaculture practices, environmental conditions, and the properties of the veterinary medicine.
This bibliography encompasses a body of in-depth technical information on the mechanics and physiology of respiration in aquatic animals (vertebrate and invertebrate). In compiling the bibliography, special emphasis was given to identifying studies that deal with responses of thi...
Hahor, Waraporn; Thongprajukaew, Karun; Yoonram, Krueawan; Rodjaroen, Somrak
2016-11-01
Postmortem changes have been previously studied in some terrestrial animal models, but no prior information is available on aquatic species. Gastrointestinal functionality was investigated in terms of indices, protein concentration, digestive enzyme activity, and scavenging activity, in an aquatic animal model, Nile tilapia, to assess the postmortem changes. Dead fish were floated indoors, and samples were collected within 48 h after death. Stomasomatic index decreased with postmortem time and correlated positively with protein, pepsin-specific activity, and stomach scavenging activity. Also intestosomatic index decreased significantly and correlated positively with protein, specific activity of trypsin, chymotrypsin, amylase, lipase, and intestinal scavenging activity. In their postmortem changes, the digestive enzymes exhibited earlier lipid degradation than carbohydrate or protein. The intestine changed more rapidly than the stomach. The findings suggest that the postmortem changes of gastrointestinal functionality can serve as primary data for the estimation of time of death of an aquatic animal. © 2016 American Academy of Forensic Sciences.
Cabello, Felipe C; Godfrey, Henry P; Tomova, Alexandra; Ivanova, Larisa; Dölz, Humberto; Millanao, Ana; Buschmann, Alejandro H
2013-07-01
The worldwide growth of aquaculture has been accompanied by a rapid increase in therapeutic and prophylactic usage of antimicrobials including those important in human therapeutics. Approximately 80% of antimicrobials used in aquaculture enter the environment with their activity intact where they select for bacteria whose resistance arises from mutations or more importantly, from mobile genetic elements containing multiple resistance determinants transmissible to other bacteria. Such selection alters biodiversity in aquatic environments and the normal flora of fish and shellfish. The commonality of the mobilome (the total of all mobile genetic elements in a genome) between aquatic and terrestrial bacteria together with the presence of residual antimicrobials, biofilms, and high concentrations of bacteriophages where the aquatic environment may also be contaminated with pathogens of human and animal origin can stimulate exchange of genetic information between aquatic and terrestrial bacteria. Several recently found genetic elements and resistance determinants for quinolones, tetracyclines, and β-lactamases are shared between aquatic bacteria, fish pathogens, and human pathogens, and appear to have originated in aquatic bacteria. Excessive use of antimicrobials in aquaculture can thus potentially negatively impact animal and human health as well as the aquatic environment and should be better assessed and regulated. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.
40 CFR 451.3 - General reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AND STANDARDS CONCENTRATED AQUATIC ANIMAL PRODUCTION POINT SOURCE CATEGORY § 451.3 General reporting... authority of the use in a concentrated aquatic animal production facility subject to this part of any..., the permittee must provide an oral report to the permitting authority as soon as possible, preferably...
USDA-ARS?s Scientific Manuscript database
Antimicrobial susceptibility testing is recommended to determine which antimicrobial agents should be considered for treating a bacterial pathogen. Many bacteria that cause disease in aquatic animals require growth conditions that vary substantially from routine terrestrial pathogens. It has thus ...
Li, Wenhui; Shi, Yali; Gao, Lihong; Liu, Jiemin; Cai, Yaqi
2012-11-01
This study investigated the presence and distribution of 22 antibiotics, including eight quinolones, nine sulfonamides and five macrolides, in the water, sediments, and biota samples from Baiyangdian Lake, China. A total of 132 samples were collected in 2008 and 2010, and laboratory analyses revealed that antibiotics were widely distributed in the lake. Sulfonamides were the dominant antibiotics in the water (0.86-1563 ng L(-1)), while quinolones were prominent in sediments (65.5-1166 μg kg(-1)) and aquatic plants (8.37-6532 μg kg(-1)). Quinolones (17.8-167 μg kg(-1)) and macrolides [from below detection limit (BDL) to 182 μg kg(-1)] were often found in aquatic animals and birds. Salvinia natans exhibited the highest bioaccumulation capability for quinolones among three species of aquatic plants. Geographical differences of antibiotic concentrations were greatly due to anthropogenic activities. Sewage discharged from Baoding City was likely the main source of antibiotics in the lake. Risk assessment of antibiotics on aquatic organisms suggested that algae and aquatic plants might be at risk in surface water, while animals were likely not at risk. Copyright © 2012 Elsevier Ltd. All rights reserved.
Development of a Methodology for the Derivation of Aquatic Plant Water Quality Criteria
Aquatic plants form the base of most aquatic food chains, comprise biodiversity-building habitats and are functionally important in carbon assimilation and oxygen evolution. The USEPA, as stated in the Clean Water Act, establishes criterion values for various pollutants found in ...
Toward a national animal telemetry network for aquatic observations in the United States
Block, Barbara A.; Holbrook, Christopher; Simmons, Samantha E; Holland, Kim N; Ault, Jerald S.; Costa, Daniel P.; Mate, Bruce R; Seitz, Andrew C.; Arendt, Michael D.; Payne, John; Mahmoudi, Behzad; Moore, Peter L.; Price, James; J. J. Levenson,; Wilson, Doug; Kochevar, Randall E
2016-01-01
Animal telemetry is the science of elucidating the movements and behavior of animals in relation to their environment or habitat. Here, we focus on telemetry of aquatic species (marine mammals, sharks, fish, sea birds and turtles) and so are concerned with animal movements and behavior as they move through and above the world’s oceans, coastal rivers, estuaries and great lakes. Animal telemetry devices (“tags”) yield detailed data regarding animal responses to the coupled ocean–atmosphere and physical environment through which they are moving. Animal telemetry has matured and we describe a developing US Animal Telemetry Network (ATN) observing system that monitors aquatic life on a range of temporal and spatial scales that will yield both short- and long-term benefits, fill oceanographic observing and knowledge gaps and advance many of the U.S. National Ocean Policy Priority Objectives. ATN has the potential to create a huge impact for the ocean observing activities undertaken by the U.S. Integrated Ocean Observing System (IOOS) and become a model for establishing additional national-level telemetry networks worldwide.
Not-So-Messy Hands-On Science.
ERIC Educational Resources Information Center
Bryan, Denise; Denty, Amy
2002-01-01
Presents four elementary hands-on science activities that highlight animal adaptation (how birds' beaks are adapted to suit their habitats), the water cycle (how nature cleans rainwater that seeps into the ground), aquatic ecosystems (changes over time in an aquatic habitat), and animal habitats (all living beings' need for food, water, shelter,…
Takei, Y
2000-04-01
The origin of life took place in the ancient sea where the ionic concentration is thought to have been somewhat lower than that of the present day seas. This may partly explain why most vertebrate species have plasma ionic concentrations roughly one-third of seawater. Exceptions are primitive marine cyclostomes whose plasma is almost identical to seawater, and marine cartilaginous fishes that accumulate urea in plasma to increase osmolarity to a seawater level. The mechanisms for regulation of water and electrolyte balance should have evolved from these animals into those of more advanced ones in which plasma ions are regulated to one-third of seawater irrespective of the habitat. Although most extant terrestrial and aquatic animals maintain similar plasma osmolarity and ionic concentrations, the mechanisms of regulation differ greatly among different groups of animals according to their habitat. An outstanding difference is that while plasma Na(+) concentration is a primary factor of regulation in terrestrial mammals and birds, blood volume is most strictly regulated in aquatic teleost fishes. Consistently, while an increase in plasma osmolarity (cellular dehydration) is a major dipsogenic stimulus for birds and mammals, hypovolemia (extracellular dehydration) is a much stronger stimulus for elicitation of drinking in teleost fishes. Furthermore, fish cells in culture are tolerant to changes in environmental osmolarity compared with mammalian cells, further suggesting a secondary role of plasma osmolarity as a target of regulation in fishes. A secondary role of blood volume for body fluid regulation in birds is further assessed by the fact that volume receptors for thirst, salt gland secretion, and vasotocin secretion are localized in the extravascular, interstitial space in some species of birds. All terrestrial animals including mammals have derived from the fishes in phylogeny, during which the mechanisms for body fluid regulation underwent adaptive evolution in the course of transition from aquatic to terrestrial life. Therefore, much can be learned from comparative studies of body fluid regulation that reveals the diversity and uniformity of the mechanisms. In this review, important comparative studies that may contribute to an understanding of body fluid regulation throughout vertebrate species will be summarized.
Markov, Gabriel V; Girard, Jean; Laudet, Vincent; Leblanc, Catherine
2018-06-15
Hormonally active phytochemicals (HAPs) are signaling molecules produced by plants that alter hormonal signaling in animals, due to consumption or environmental exposure. To date, HAPs have been investigated mainly in terrestrial ecosystems. To gain a full understanding of the origin and evolution of plant-animal interactions, it is necessary also to study these interactions in the marine environment, where the major photosynthetic lineages are very distant from the terrestrial plants. Here we focus on chemicals from red and brown macroalgae and point out their potential role as modulators of the endocrine system of aquatic animals through nuclear hormone receptors. We show that, regarding steroids and oxylipins, there are already some candidates available for further functional investigations of ligand-receptor interactions. Furthermore, several carotenoids, produced by cyanobacteria provide candidates that could be investigated with respect to their presence in macroalgae. Finally, regarding halogenated compounds, it is not clear yet which molecules could bridge the gap to explain the transition from lipid sensing to thyroid hormone high affinity binding among nuclear receptors. Copyright © 2018 Elsevier Inc. All rights reserved.
Best practices for germ-free derivation and gnotobiotic zebrafish husbandry
Melancon, E.; De La Torre Canny, S. Gomez; Sichel, S.; Kelly, M.; Wiles, T.J.; Rawls, J.F.; Eisen, J.S.; Guillemin, K.
2017-01-01
All animals are ecosystems with resident microbial communities, referred to as microbiota, which play profound roles in host development, physiology, and evolution. Enabled by new DNA sequencing technologies, there is a burgeoning interest in animal–microbiota interactions, but dissecting the specific impacts of microbes on their hosts is experimentally challenging. Gnotobiology, the study of biological systems in which all members are known, enables precise experimental analysis of the necessity and sufficiency of microbes in animal biology by deriving animals germ-free (GF) and inoculating them with defined microbial lineages. Mammalian host models have long dominated gnotobiology, but we have recently adapted gnotobiotic approaches to the zebrafish (Danio rerio), an important aquatic model. Zebrafish offer several experimental attributes that enable rapid, large-scale gnotobiotic experimentation with high replication rates and exquisite optical resolution. Here we describe detailed protocols for three procedures that form the foundation of zebrafish gnotobiology: derivation of GF embryos, microbial association of GF animals, and long-term, GF husbandry. Our aim is to provide sufficient guidance in zebrafish gnotobiotic methodology to expand and enrich this exciting field of research. PMID:28129860
NASA Astrophysics Data System (ADS)
Barth, H.
An hypothesis is presented concerning the crucial influence of tides on the evolutionary transition from aquatic to land animal forms. The hypothesis suggests that the evolution of higher forms of life on a planet also depends on the existence of a planet-moon system in which the mass ratio of both constituents must be approximately equal to that of the earth-moon system, which is 81:1. The hypothesis is taken into account in the form of the probability factor fb in Drake's formula for estimating the presumed extraterrestrial civilizations in Milky Way which may conceivably make contact.
Detection and identification of Malassezia species in domestic animals and aquatic birds by PCR-RFLP
Zia, M.; Mirhendi, H.; Toghyani, M.
2015-01-01
The present study aimed at detection and species-level identification of the Malassezia yeasts in domestic animals and aquatic birds by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Samples were collected using tape strips and swabs from 471 animals including 97 horses, 102 cattle, 105 sheep, 20 camels, 60 dogs, 30 cats, 1 hamster, 1 squirrel, 50 aquatic birds and 5 turkeys. Tape-strip samples were examined by direct microscopy. All samples were inoculated on modified Leeming and Notman agar medium. DNA extracted from the yeast colonies was amplified by PCR using primers specific for 26S rDNA. RFLP of the PCR products was performed using Hin6I enzyme, and PCR and RFLP products were visualized by agarose gel electrophoresis. Malassezia yeasts were detected at the following frequencies: 15.46% in horses, 12.74% in cattle, 12.38% in sheep, 28.33% in dogs, 26.66% in cats and 26% in aquatic birds. Eighty colonies of 6 species were isolated: Malassezia globosa 41.25%, Malassezia furfur 22.5%, Malassezia restricta 15%, Malassezia sympodialis 15%, Malassezia pachydermatis 5% and Malassezia slooffiae 1.25%. Therefore different lipophilic Malassezia species are found in a wide diversity of animals and aquatic birds. PCR-RFLP is a suitable technique for identification of different Malassezia species. PMID:27175148
Emerging viral diseases of fish and shrimp
Walker, Peter J.; Winton, James R.
2010-01-01
The rise of aquaculture has been one of the most profound changes in global food production of the past 100 years. Driven by population growth, rising demand for seafood and a levelling of production from capture fisheries, the practice of farming aquatic animals has expanded rapidly to become a major global industry. Aquaculture is now integral to the economies of many countries. It has provided employment and been a major driver of socio-economic development in poor rural and coastal communities, particularly in Asia, and has relieved pressure on the sustainability of the natural harvest from our rivers, lakes and oceans. However, the rapid growth of aquaculture has also been the source of anthropogenic change on a massive scale. Aquatic animals have been displaced from their natural environment, cultured in high density, exposed to environmental stress, provided artificial or unnatural feeds, and a prolific global trade has developed in both live aquatic animals and their products. At the same time, over-exploitation of fisheries and anthropogenic stress on aquatic ecosystems has placed pressure on wild fish populations. Not surprisingly, the consequence has been the emergence and spread of an increasing array of new diseases. This review examines the rise and characteristics of aquaculture, the major viral pathogens of fish and shrimp and their impacts, and the particular characteristics of disease emergence in an aquatic, rather than terrestrial, context. It also considers the potential for future disease emergence in aquatic animals as aquaculture continues to expand and faces the challenges presented by climate change. PMID:20409453
Emerging viral diseases of fish and shrimp
Winton, James R.; Walker, Peter J.
2010-01-01
The rise of aquaculture has been one of the most profound changes in global food production of the past 100 years. Driven by population growth, rising demand for seafood and a levelling of production from capture fisheries, the practice of farming aquatic animals has expanded rapidly to become a major global industry. Aquaculture is now integral to the economies of many countries. It has provided employment and been a major driver of socio-economic development in poor rural and coastal communities, particularly in Asia, and has relieved pressure on the sustainability of the natural harvest from our rivers, lakes and oceans. However, the rapid growth of aquaculture has also been the source of anthropogenic change on a massive scale. Aquatic animals have been displaced from their natural environment, cultured in high density, exposed to environmental stress, provided artificial or unnatural feeds, and a prolific global trade has developed in both live aquatic animals and their products. At the same time, over-exploitation of fisheries and anthropogenic stress on aquatic ecosystems has placed pressure on wild fish populations. Not surprisingly, the consequence has been the emergence and spread of an increasing array of new diseases. This review examines the rise and characteristics of aquaculture, the major viral pathogens of fish and shrimp and their impacts, and the particular characteristics of disease emergence in an aquatic, rather than terrestrial, context. It also considers the potential for future disease emergence in aquatic animals as aquaculture continues to expand and faces the challenges presented by climate change.
Science to support aquatic animal health
Purcell, Maureen K.; Harris, M. Camille
2016-10-18
Healthy aquatic ecosystems are home to a diversity of plants, invertebrates, fish and wildlife. Aquatic animal populations face unprecedented threats to their health and survival from climate change, water shortages, habitat alteration, invasive species and environmental contaminants. These environmental stressors can directly impact the prevalence and severity of disease in aquatic populations. For example, periodic fish kills in the upper Chesapeake Bay Watershed are associated with many different opportunistic pathogens that proliferate in stressed fish populations. An estimated 80 percent of endangered juvenile Puget Sound steelhead trout die within two weeks of entering the marine environment, and a role for disease in these losses is being investigated. The introduction of viral hemorrhagic septicemia virus (VHSV) into the Great Lakes—a fishery worth an estimated 7 billion dollars annually—resulted in widespread fish die-offs and virus detections in 28 different fish species. Millions of dying sea stars along the west coast of North America have led to investigations into sea star wasting disease. U.S. Geological Survey (USGS) scientists are assisting managers with these issues through ecological investigations of aquatic animal diseases, field surveillance, and research to promote the development of mitigation strategies.
Aquatic prey capture in snakes: the link between morphology, behavior and hydrodynamics
NASA Astrophysics Data System (ADS)
Segall, Marion; Herrel, Anthony; Godoy-Diana, Ramiro; Funevol Team; Pmmh Team
2017-11-01
Natural selection favors animals that are the most successful in their fitness-related behaviors, such as foraging. Secondary adaptations pose the problem of re-adapting an already 'hypothetically optimized' phenotype to new constraints. When animals forage underwater, they face strong physical constraints, particularly when capturing a prey. The capture requires the predator to be fast and to generate a high acceleration to catch the prey. This involves two main constraints due to the surrounding fluid: drag and added mass. Both of these constraints are related to the shape of the animal. We experimentally explore the relationship between shape and performance in the context of an aquatic strike. As a model, we use 3D-printed snake heads of different shapes and frontal strike kinematics based on in vivo observations. By using direct force measurements, we compare the drag and added mass generated by aquatic and non-aquatic snake models during a strike. Our results show that drag is optimized in aquatic snakes. Added mass appears less important than drag for snakes during an aquatic strike. The flow features associated to the hydrodynamic forces measured allows us to propose a mechanism rendering the shape of the head of aquatic snakes well adapted to catch prey underwater. Region Ile de France and the doctoral school Frontieres du Vivant (FdV) - Programme Bettencourt.
An Energy Harvesting Underwater Acoustic Transmitter for Aquatic Animals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Huidong; Tian, Chuan; Lu, Jun
This paper presents a self-powered underwater acoustic transmitter using a piezoelectric beam to harvest the mechanical energy from fish swimming. This transmitter does not require a battery and is demonstrated in live fish. It transmits an acoustic waveform as the implanted fish swims. It enables long-term monitoring of aquatic animals.
Runoff from land treated with animal manure may contaminate adjacent aquatic ecosystems and negatively impact organisms living in these environments. Of notable concern, influx of estrogens can result in endocrine disruption and affect reproduction in aquatic vertebrates. Vitel...
Social and economic aspects of aquatic animal health.
Adam, K E; Gunn, G J
2017-04-01
Aquaculture is an increasingly important source of animal protein for a growing global population. Disease is a major constraint to production, with resultant socio-economic impacts for individuals, communities and economies which rely on aquaculture. Aquatic animal health is also strongly influenced by human factors, ranging from international trade regulations to the behaviours of individuals working in aquaculture. This article summarises the human factors associated with aquaculture production using international examples for illustration.
NASA Astrophysics Data System (ADS)
Stief, P.
2013-12-01
Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of ammonium from sediments is enhanced more strongly than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna on benthic microbes apparently has small or neutral effects on nitrogen cycling. Animal-microbe symbioses provide abundant and distinct benthic compartments for a multitude of nitrogen-cycle pathways. Recent studies reveal that ecosystem engineering, grazing, and symbioses of benthic macrofauna significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and transport of nitrogen.
NASA Astrophysics Data System (ADS)
Stief, P.
2013-07-01
Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of ammonium from sediments often is enhanced even more than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna on benthic microbes apparently has small or neutral effects on nitrogen cycling. Animal-microbe symbioses provide abundant and distinct benthic compartments for a multitude of nitrogen-cycle pathways. Recent studies revealed that ecosystem engineering, grazing, and symbioses of benthic macrofauna significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and transport of nitrogen.
NASA Astrophysics Data System (ADS)
Blüm, V.; Andriske, M.; Kreuzberg, K.; Schreibman, M. P.
Based on the experiences made with the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) which was primarily deveoloped for long-term and multi-generation experiments with aquatic animals and plants in a space station highly effective fresh water recycling modules were elaborated utilizing a combination of ammonia oxidizing bacteria filters and higher plants. These exhibit a high effectivity to eliminate phosphate and anorganic nitrogen compounds and arc. in addidition. able to contribute to the oxygen supply of the aquatic animals. The C.E.B.A.S. filter system is able to keep a closed artificial aquatic ecosystem containing teleost fishes and water snails biologically stable for several month and to eliminate waste products deriving from degraded dead fishes without a decrease of the oxygen concentration down to less than 3.5 mg/l at 25 °C. More advanced C.E.B.A.S. filter systems, the BIOCURE filters, were also developed for utilization in semiintensive and intensive aquaculture systems for fishes. In fact such combined animal-plant aquaculture systems represent highly effective productions sites for human food if proper plant and fish species are selected The present papers elucidates ways to novel aquaculture systems in which herbivorous fishes are raised by feeding them with plant biomass produced in the BIOCURE filters and presents the scheme of a modification which utilizes a plant species suitable also for human nutrition. Special attention is paid to the benefits of closed aquaculture system modules which may be integrated into bioregenerative life support systems of a higher complexity for, e. g.. lunar or planetary bases including some psychologiccal aspects of the introduction of animal protein production into plant-based life support systems. Moreover, the basic reproductive biological problems of aquatic animal breeding under reduced gravity are explained leading to a disposition of essential research programs in this context.
Hecker, Nikolai; Sharma, Virag; Hiller, Michael
2017-11-01
Kallikrein related peptidase 8 (KLK8; also called neuropsin) is a serine protease that plays distinct roles in the skin and hippocampus. In the skin, KLK8 influences keratinocyte proliferation and desquamation, and activates antimicrobial peptides in sweat. In the hippocampus, KLK8 affects memory acquisition. Here, we examined the evolution of KLK8 in mammals and discovered that, out of 70 placental mammals, KLK8 is exclusively lost in three independent fully-aquatic lineages, comprising dolphin, killer whale, minke whale, and manatee. In addition, while the sperm whale has an intact KLK8 reading frame, the gene evolves neutrally in this species. We suggest that the distinct functions of KLK8 likely became obsolete in the aquatic environment, leading to the subsequent loss of KLK8 in several fully-aquatic mammalian lineages. First, the cetacean and manatee skin lacks sweat glands as an adaptation to the aquatic environment, which likely made the epidermal function of KLK8 obsolete. Second, cetaceans and manatees exhibit a proportionally small hippocampus, which may have rendered the hippocampal functions of KLK8 obsolete. Together, our results shed light on the genomic changes that correlate with skin and neuroanatomical differences of aquatic mammals, and show that even pleiotropic genes can be lost during evolution if an environmental change nullifies the need for the different functions of such genes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Project WILD: Aquatic Education Activity Guide.
ERIC Educational Resources Information Center
Memphis State Univ., TN. Tennessee Administrative Software Clearinghouse.
Project WILD is an interdisciplinary, supplementary environmental and conservation education program which emphasizes wildlife. This document is one guide developed by Project WILD with the specific purpose of focusing on aquatic wildlife, or any wild animals that depend upon aquatic environments for survival. The book contains instructional…
Aquatic animal nutrition for the exotic animal practitioner.
Corcoran, Mike; Roberts-Sweeney, Helen
2014-09-01
Fish are the most popular pets in the United States based on numbers and high-quality medical care is coming to be expected by owners. Increasing numbers of veterinarians are responding to this need and providing veterinary care for aquatic animals. Part of good medical care for exotic animals is advice on husbandry, including nutrition. However, there are numerous missing areas of research for the nutritional needs of many ornamental fish species. What is known for food species can be combined with what is known for ornamental species to give nutritional advice to owners to maximize health in these animals. Copyright © 2014 Elsevier Inc. All rights reserved.
Opportunities for public aquariums to increase the sustainability of the aquatic animal trade.
Tlusty, Michael F; Rhyne, Andrew L; Kaufman, Les; Hutchins, Michael; Reid, Gordon McGregor; Andrews, Chris; Boyle, Paul; Hemdal, Jay; McGilvray, Frazer; Dowd, Scott
2013-01-01
The global aquatic pet trade encompasses a wide diversity of freshwater and marine organisms. While relying on a continual supply of healthy, vibrant aquatic animals, few sustainability initiatives exist within this sector. Public aquariums overlap this industry by acquiring many of the same species through the same sources. End users are also similar, as many aquarium visitors are home aquarists. Here we posit that this overlap with the pet trade gives aquariums significant opportunity to increase the sustainability of the trade in aquarium fishes and invertebrates. Improving the sustainability ethos and practices of the aquatic pet trade can carry a conservation benefit in terms of less waste, and protection of intact functioning ecosystems, at the same time as maintaining its economic and educational benefits and impacts. The relationship would also move forward the goal of public aquariums to advance aquatic conservation in a broad sense. For example, many public aquariums in North America have been instrumental in working with the seafood industry to enact positive change toward increased sustainability. The actions include being good consumers themselves, providing technical knowledge, and providing educational and outreach opportunities. These same opportunities exist for public aquariums to partner with the ornamental fish trade, which will serve to improve business, create new, more ethical and more dependable sources of aquatic animals for public aquariums, and perhaps most important, possibly transform the home aquarium industry from a threat, into a positive force for aquatic conservation. © 2012 Wiley Periodicals, Inc.
Indicators: Benthic Macroinvertebrates
Benthic (meaning “bottom-dwelling”) macroinvertebrates are small aquatic animals and the aquatic larval stages of insects. Benthic macroinvertebrates are commonly used as indicators of the biological condition of waterbodies.
Husbandry of animals on land and in water: similarities and differences.
Shell, E W
1991-10-01
The husbandry of aquatic animals originated in China in approximately 1,100 B.C., thousands of years after the beginning of animal agriculture. The practice did not reach Europe until the Middle Ages. Aquaculture apparently was not very important in Western Europe. The early immigrants from that region did not include fish with the other food animals that they brought with them to the New World. The practice of aquaculture finally came to the United States in the mid-nineteenth century, where it was used for the production of trout for stocking coldwater ponds and streams for sport fishing. Later, cultural practices were extended to warmwater species such as the largemouth black bass and the channel catfish. Thus, aquaculture in the United States was derived from recreational fishing rather than from food production, and from fisheries management rather than from animal science. There are important differences in the hydrosphere and atmosphere as cultural environments. Differences in composition, density, response to physical force, latent heat of fusion, specific heat, transparency, viscosity, and erosiveness of air and water result in different problems for land animal and aquatic animal culturists. Aquaculturists work primarily with "cold-blooded" ("lower") animals, whereas agriculturists work with "warm-blooded" ("higher") animals. In comparison with warm-blooded land animals, cold-blooded aquatic animals are less independent of changes in their environment.(ABSTRACT TRUNCATED AT 250 WORDS)
Risk-based methods for fish and terrestrial animal disease surveillance.
Oidtmann, Birgit; Peeler, Edmund; Lyngstad, Trude; Brun, Edgar; Bang Jensen, Britt; Stärk, Katharina D C
2013-10-01
Over recent years there have been considerable methodological developments in the field of animal disease surveillance. The principles of risk analysis were conceptually applied to surveillance in order to further develop approaches and tools (scenario tree modelling) to design risk-based surveillance (RBS) programmes. In the terrestrial animal context, examples of risk-based surveillance have demonstrated the substantial potential for cost saving, and a similar benefit is expected also for aquatic animals. RBS approaches are currently largely absent for aquatic animal diseases. A major constraint in developing RBS designs in the aquatic context is the lack of published data to assist in the design of RBS: this applies to data on (i) the relative risk of farm sites becoming infected due to the presence or absence of a given risk factor; (ii) the sensitivity of diagnostic tests (specificity is often addressed by follow-up investigation and re-testing and therefore less of a concern); (iii) data on the variability of prevalence of infection for fish within a holding unit, between holding units and at farm level. Another constraint is that some of the most basic data for planning surveillance are missing, e.g. data on farm location and animal movements. In Europe, registration or authorisation of fish farms has only recently become a requirement under EU Directive 2006/88. Additionally, the definition of the epidemiological unit (at site or area level) in the context of aquaculture is a challenge due to the often high level of connectedness (mainly via water) of aquaculture facilities with the aquatic environment. This paper provides a review of the principles, methods and examples of RBS in terrestrial, farmed and wild animals. It discusses the special challenges associated with surveillance for aquatic animal diseases (e.g. accessibility of animals for inspection and sampling, complexity of rearing systems) and provides an overview of current developments relevant for the design of RBS for fish diseases. Suggestions are provided on how the current constraints to applying RBS to fish diseases can be overcome. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
YEE, DONALD A.; JULIANO, STEVEN A.
2007-01-01
SUMMARY 1. Variation in detritus quality and quantity can have significant effects on aquatic invertebrate food webs. Allochthonous inputs of detritus are the principal energy source for organisms in aquatic tree hole microsystems. We compared the effects of two major detritus types found in tree holes, senescent leaves (Sugar Maple and White Oak) and invertebrate carcasses (dead adult fruit flies and crickets), on several water quality characteristics of laboratory microcosms as well as on mass, survival and population performance of the dominant tree hole consumer, Ochlerotatus triseriatus (Diptera: Culicidae). To date, no study has documented the effects of animal detritus in tree hole microsystems or on resident consumers. 2. Aquatic environments receiving invertebrate carcasses had significantly greater total nitrogen, total reactive phosphorus and higher pH, than leaf-based environments. Decay rate of invertebrate carcasses was greater compared to leaf material. Consumption of O2 by micro-organisms increased with increasing detritus amounts, but we detected no difference between detritus types. 3. Ochlerotatus triseriatus larvae grew faster in animal-based treatments, and mean mass of larvae was significantly greater when more animal detritus was used. The effect of animal-based treatments on larvae translated into higher performance for adults, which were three times heavier than counterparts from plant-based containers. Survivorship and estimated population growth rates were significantly greater for O. triseriatus reared on animal-based versus plant-based detritus. 4. We hypothesise two mechanisms for the pronounced effect of invertebrate carcasses on mosquito performance relative to that associated with leaf detritus: (i) invertebrate carcasses decompose more quickly and release nutrients more effectively into the aquatic environment; or (ii) O. triseriatus larvae may directly ingest nutrient-rich components of invertebrate carcasses. Because even relatively small animal detritus additions can have strong effects on O. triseriatus populations, studies need to be conducted to explore the overall role of animal detritus in tree holes in nature. PMID:17476312
Lessons from the Environmental Antibiotic Resistome.
Surette, Matthew D; Wright, Gerard D
2017-09-08
Antibiotic resistance is a global public health issue of growing proportions. All antibiotics are susceptible to resistance. The evidence is now clear that the environment is the single largest source and reservoir of resistance. Soil, aquatic, atmospheric, animal-associated, and built ecosystems are home to microbes that harbor antibiotic resistance elements and the means to mobilize them. The diversity and abundance of resistance in the environment is consistent with the ancient origins of antibiotics and a variety of studies support a long natural history of associated resistance. The implications are clear: Understanding the evolution of resistance in the environment, its diversity, and mechanisms is essential to the management of our existing and future antibiotic resources.
Belmonte, Rodrigo; Löbach, Lars; Christie, James; van den Ackerveken, Guido; Bottin, Arnaud; Bulone, Vincent; Díaz-Moreno, Sara M.; Dumas, Bernard; Fan, Lin; Gaulin, Elodie; Govers, Francine; Grenville-Briggs, Laura J.; Horner, Neil R.; Levin, Joshua Z.; Mammella, Marco; Meijer, Harold J. G.; Morris, Paul; Nusbaum, Chad; Oome, Stan; Phillips, Andrew J.; van Rooyen, David; Rzeszutek, Elzbieta; Saraiva, Marcia; Secombes, Chris J.; Seidl, Michael F.; Snel, Berend; Stassen, Joost H. M.; Sykes, Sean; Tripathy, Sucheta; van den Berg, Herbert; Vega-Arreguin, Julio C.; Wawra, Stephan; Young, Sarah K.; Zeng, Qiandong; Dieguez-Uribeondo, Javier; Russ, Carsten; Tyler, Brett M.; van West, Pieter
2013-01-01
Oomycetes in the class Saprolegniomycetidae of the Eukaryotic kingdom Stramenopila have evolved as severe pathogens of amphibians, crustaceans, fish and insects, resulting in major losses in aquaculture and damage to aquatic ecosystems. We have sequenced the 63 Mb genome of the fresh water fish pathogen, Saprolegnia parasitica. Approximately 1/3 of the assembled genome exhibits loss of heterozygosity, indicating an efficient mechanism for revealing new variation. Comparison of S. parasitica with plant pathogenic oomycetes suggests that during evolution the host cellular environment has driven distinct patterns of gene expansion and loss in the genomes of plant and animal pathogens. S. parasitica possesses one of the largest repertoires of proteases (270) among eukaryotes that are deployed in waves at different points during infection as determined from RNA-Seq data. In contrast, despite being capable of living saprotrophically, parasitism has led to loss of inorganic nitrogen and sulfur assimilation pathways, strikingly similar to losses in obligate plant pathogenic oomycetes and fungi. The large gene families that are hallmarks of plant pathogenic oomycetes such as Phytophthora appear to be lacking in S. parasitica, including those encoding RXLR effectors, Crinkler's, and Necrosis Inducing-Like Proteins (NLP). S. parasitica also has a very large kinome of 543 kinases, 10% of which is induced upon infection. Moreover, S. parasitica encodes several genes typical of animals or animal-pathogens and lacking from other oomycetes, including disintegrins and galactose-binding lectins, whose expression and evolutionary origins implicate horizontal gene transfer in the evolution of animal pathogenesis in S. parasitica. PMID:23785293
The butterfly effect: parasite diversity, environment, and emerging disease in aquatic wildlife.
Adlard, Robert D; Miller, Terrence L; Smit, Nico J
2015-04-01
Aquatic wildlife is increasingly subjected to emerging diseases often due to perturbations of the existing dynamic balance between hosts and their parasites. Accelerating changes in environmental factors, together with anthropogenic translocation of hosts and parasites, act synergistically to produce hard-to-predict disease outcomes in freshwater and marine systems. These outcomes are further complicated by the intimate links between diseases in wildlife and diseases in humans and domestic animals. Here, we explore the interactions of parasites in aquatic wildlife in terms of their biodiversity, their response to environmental change, their emerging diseases, and the contribution of humans and domestic animals to parasitic disease outcomes. This work highlights the clear need for interdisciplinary approaches to ameliorate disease impacts in aquatic wildlife systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rivera, Angela R V; Wyneken, Jeanette; Blob, Richard W
2011-10-01
Novel functions in animals may evolve through changes in morphology, muscle activity or a combination of both. The idea that new functions or behavior can arise solely through changes in structure, without concurrent changes in the patterns of muscle activity that control movement of those structures, has been formalized as the neuromotor conservation hypothesis. In vertebrate locomotor systems, evidence for neuromotor conservation is found across evolutionary transitions in the behavior of terrestrial species, and in evolutionary transitions from terrestrial species to flying species. However, evolutionary transitions in the locomotion of aquatic species have received little comparable study to determine whether changes in morphology and muscle function were coordinated through the evolution of new locomotor behavior. To evaluate the potential for neuromotor conservation in an ancient aquatic system, we quantified forelimb kinematics and muscle activity during swimming in the loggerhead sea turtle, Caretta caretta. Loggerhead forelimbs are hypertrophied into wing-like flippers that produce thrust via dorsoventral forelimb flapping. We compared kinematic and motor patterns from loggerheads with previous data from the red-eared slider, Trachemys scripta, a generalized freshwater species exhibiting unspecialized forelimb morphology and anteroposterior rowing motions during swimming. For some forelimb muscles, comparisons between C. caretta and T. scripta support neuromotor conservation; for example, the coracobrachialis and the latissimus dorsi show similar activation patterns. However, other muscles (deltoideus, pectoralis and triceps) do not show neuromotor conservation; for example, the deltoideus changes dramatically from a limb protractor/elevator in sliders to a joint stabilizer in loggerheads. Thus, during the evolution of flapping in sea turtles, drastic restructuring of the forelimb was accompanied by both conservation and evolutionary novelty in limb motor patterns.
Vertebrate land invasions-past, present, and future: an introduction to the symposium.
Ashley-Ross, Miriam A; Hsieh, S Tonia; Gibb, Alice C; Blob, Richard W
2013-08-01
The transition from aquatic to terrestrial habitats was a seminal event in vertebrate evolution because it precipitated a sudden radiation of species as new land animals diversified in response to novel physical and biological conditions. However, the first stages of this environmental transition presented numerous challenges to ancestrally aquatic organisms, and necessitated changes in the morphological and physiological mechanisms that underlie most life processes, among them movement, feeding, respiration, and reproduction. How did solutions to these functional challenges evolve? One approach to this question is to examine modern vertebrate species that face analogous demands; just as the first tetrapods lived at the margins of bodies of water and likely moved between water and land regularly, many extant fishes and amphibians use their body systems in both aquatic and terrestrial habitats on a daily basis. Thus, studies of amphibious vertebrates elucidate the functional demands of two very different habitats and clarify our understanding of the initial evolutionary challenges of moving onto land. A complementary approach is to use studies of the fossil record and comparative development to gain new perspectives on form and function of modern amphibious and non-amphibious vertebrate taxa. Based on the synthetic approaches presented in the symposium, it is clear that our understanding of aquatic-to-terrestrial transitions is greatly improved by the reciprocal integration of paleontological and neontological perspectives. In addition, common themes and new insights that emerged from this symposium point to the value of innovative approaches, new model species, and cutting-edge research techniques to elucidate the functional challenges and evolutionary changes associated with vertebrates' invasion of the land.
Camargo, Julio A; Alonso, Alvaro
2006-08-01
We provide a global assessment, with detailed multi-scale data, of the ecological and toxicological effects generated by inorganic nitrogen pollution in aquatic ecosystems. Our synthesis of the published scientific literature shows three major environmental problems: (1) it can increase the concentration of hydrogen ions in freshwater ecosystems without much acid-neutralizing capacity, resulting in acidification of those systems; (2) it can stimulate or enhance the development, maintenance and proliferation of primary producers, resulting in eutrophication of aquatic ecosystems; (3) it can reach toxic levels that impair the ability of aquatic animals to survive, grow and reproduce. Inorganic nitrogen pollution of ground and surface waters can also induce adverse effects on human health and economy. Because reductions in SO2 emissions have reduced the atmospheric deposition of H2SO4 across large portions of North America and Europe, while emissions of NOx have gone unchecked, HNO3 is now playing an increasing role in the acidification of freshwater ecosystems. This acidification process has caused several adverse effects on primary and secondary producers, with significant biotic impoverishments, particularly concerning invertebrates and fishes, in many atmospherically acidified lakes and streams. The cultural eutrophication of freshwater, estuarine, and coastal marine ecosystems can cause ecological and toxicological effects that are either directly or indirectly related to the proliferation of primary producers. Extensive kills of both invertebrates and fishes are probably the most dramatic manifestation of hypoxia (or anoxia) in eutrophic and hypereutrophic aquatic ecosystems with low water turnover rates. The decline in dissolved oxygen concentrations can also promote the formation of reduced compounds, such as hydrogen sulphide, resulting in higher adverse (toxic) effects on aquatic animals. Additionally, the occurrence of toxic algae can significantly contribute to the extensive kills of aquatic animals. Cyanobacteria, dinoflagellates and diatoms appear to be major responsible that may be stimulated by inorganic nitrogen pollution. Among the different inorganic nitrogenous compounds (NH4+, NH3, NO2-, HNO2NO3-) that aquatic animals can take up directly from the ambient water, unionized ammonia is the most toxic, while ammonium and nitrate ions are the least toxic. In general, seawater animals seem to be more tolerant to the toxicity of inorganic nitrogenous compounds than freshwater animals, probably because of the ameliorating effect of water salinity (sodium, chloride, calcium and other ions) on the tolerance of aquatic animals. Ingested nitrites and nitrates from polluted drinking waters can induce methemoglobinemia in humans, particularly in young infants, by blocking the oxygen-carrying capacity of hemoglobin. Ingested nitrites and nitrates also have a potential role in developing cancers of the digestive tract through their contribution to the formation of nitrosamines. In addition, some scientific evidences suggest that ingested nitrites and nitrates might result in mutagenicity, teratogenicity and birth defects, contribute to the risks of non-Hodgkin's lymphoma and bladder and ovarian cancers, play a role in the etiology of insulin-dependent diabetes mellitus and in the development of thyroid hypertrophy, or cause spontaneous abortions and respiratory tract infections. Indirect health hazards can occur as a consequence of algal toxins, causing nausea, vomiting, diarrhoea, pneumonia, gastroenteritis, hepatoenteritis, muscular cramps, and several poisoning syndromes (paralytic shellfish poisoning, neurotoxic shellfish poisoning, amnesic shellfish poisoning). Other indirect health hazards can also come from the potential relationship between inorganic nitrogen pollution and human infectious diseases (malaria, cholera). Human sickness and death, extensive kills of aquatic animals, and other negative effects, can have elevated costs on human economy, with the recreation and tourism industry suffering the most important economic impacts, at least locally. It is concluded that levels of total nitrogen lower than 0.5-1.0 mg TN/L could prevent aquatic ecosystems (excluding those ecosystems with naturally high N levels) from developing acidification and eutrophication, at least by inorganic nitrogen pollution. Those relatively low TN levels could also protect aquatic animals against the toxicity of inorganic nitrogenous compounds since, in the absence of eutrophication, surface waters usually present relatively high concentrations of dissolved oxygen, most inorganic reactive nitrogen being in the form of nitrate. Additionally, human health and economy would be safer from the adverse effects of inorganic nitrogen pollution.
Applying Movement Ecology to Marine Animals with Complex Life Cycles.
Allen, Richard M; Metaxas, Anna; Snelgrove, Paul V R
2018-01-03
Marine animals with complex life cycles may move passively or actively for fertilization, dispersal, predator avoidance, resource acquisition, and migration, and over scales from micrometers to thousands of kilometers. This diversity has catalyzed idiosyncratic and unfocused research, creating unsound paradigms regarding the role of movement in ecology and evolution. The emerging movement ecology paradigm offers a framework to consolidate movement research independent of taxon, life-history stage, scale, or discipline. This review applies the framework to movement among life-history stages in marine animals with complex life cycles to consolidate marine movement research and offer insights for scientists working in aquatic and terrestrial realms. Irrespective of data collection or simulation strategy, breaking each life-history stage down into the fundamental units of movement allows each unit to be studied independently or interactively with other units. Understanding these underlying mechanisms of movement within each life-history stage can then be used to construct lifetime movement paths. These paths can allow further investigation of the relative contributions and interdependencies of steps and phases across a lifetime and how these paths influence larger research topics, such as population-level movements.
Applying Movement Ecology to Marine Animals with Complex Life Cycles
NASA Astrophysics Data System (ADS)
Allen, Richard M.; Metaxas, Anna; Snelgrove, Paul V. R.
2018-01-01
Marine animals with complex life cycles may move passively or actively for fertilization, dispersal, predator avoidance, resource acquisition, and migration, and over scales from micrometers to thousands of kilometers. This diversity has catalyzed idiosyncratic and unfocused research, creating unsound paradigms regarding the role of movement in ecology and evolution. The emerging movement ecology paradigm offers a framework to consolidate movement research independent of taxon, life-history stage, scale, or discipline. This review applies the framework to movement among life-history stages in marine animals with complex life cycles to consolidate marine movement research and offer insights for scientists working in aquatic and terrestrial realms. Irrespective of data collection or simulation strategy, breaking each life-history stage down into the fundamental units of movement allows each unit to be studied independently or interactively with other units. Understanding these underlying mechanisms of movement within each life-history stage can then be used to construct lifetime movement paths. These paths can allow further investigation of the relative contributions and interdependencies of steps and phases across a lifetime and how these paths influence larger research topics, such as population-level movements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... CONVEYANCE AND SHIPPING CONTAINERS Aquatic Animal Species § 93.900 Definitions. Wherever in this subpart the... mean: Administrator. The Administrator, Animal and Plant Health Inspection Service, or any person...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... CONVEYANCE AND SHIPPING CONTAINERS Aquatic Animal Species § 93.900 Definitions. Wherever in this subpart the... mean: Administrator. The Administrator, Animal and Plant Health Inspection Service, or any person...
29 CFR 784.148 - General scope of processing, freezing, and curing activities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROVISIONS OF THE FAIR LABOR STANDARDS ACT APPLICABLE TO FISHING AND OPERATIONS ON AQUATIC PRODUCTS Exemptions Provisions Relating to Fishing and Aquatic Products Processing, Freezing, and Curing § 784.148... variety of operations that change the form of the “aquatic forms of animal and vegetable life.” They...
The Cryptochrome/Photolyase Family in aquatic organisms.
Oliveri, Paola; Fortunato, Antonio E; Petrone, Libero; Ishikawa-Fujiwara, Tomoko; Kobayashi, Yuri; Todo, Takeshi; Antonova, Olga; Arboleda, Enrique; Zantke, Juliane; Tessmar-Raible, Kristin; Falciatore, Angela
2014-04-01
The Cryptochrome/Photolyase Family (CPF) represents an ancient group of widely distributed UV-A/blue-light sensitive proteins sharing common structures and chromophores. During the course of evolution, different CPFs acquired distinct functions in DNA repair, light perception and circadian clock regulation. Previous phylogenetic analyses of the CPF have allowed reconstruction of the evolution and distribution of the different CPF super-classes in the tree of life. However, so far only limited information is available from the CPF orthologs in aquatic organisms that evolved in environments harboring great diversity of life forms and showing peculiar light distribution and rhythms. To gain new insights into the evolutionary and functional relationships within the CPF family, we performed a detailed study of CPF members from marine (diatoms, sea urchin and annelid) and freshwater organisms (teleost) that populate diverse habitats and exhibit different life strategies. In particular, we first extended the CPF family phylogeny by including genes from aquatic organisms representative of several branches of the tree of life. Our analysis identifies four major super-classes of CPF proteins and importantly singles out the presence of a plant-like CRY in diatoms and in metazoans. Moreover, we show a dynamic evolution of Cpf genes in eukaryotes with various events of gene duplication coupled to functional diversification and gene loss, which have shaped the complex array of Cpf genes in extant aquatic organisms. Second, we uncover clear rhythmic diurnal expression patterns and light-dependent regulation for the majority of the analyzed Cpf genes in our reference species. Our analyses reconstruct the molecular evolution of the CPF family in eukaryotes and provide a solid foundation for a systematic characterization of novel light activated proteins in aquatic environments. Copyright © 2014. Published by Elsevier B.V.
Disease and health management in Asian aquaculture.
Bondad-Reantaso, Melba G; Subasinghe, Rohana P; Arthur, J Richard; Ogawa, Kazuo; Chinabut, Supranee; Adlard, Robert; Tan, Zilong; Shariff, Mohamed
2005-09-30
Asia contributes more than 90% to the world's aquaculture production. Like other farming systems, aquaculture is plagued with disease problems resulting from its intensification and commercialization. This paper describes the various factors, providing specific examples, which have contributed to the current disease problems faced by what is now the fastest growing food-producing sector globally. These include increased globalization of trade and markets; the intensification of fish-farming practices through the movement of broodstock, postlarvae, fry and fingerlings; the introduction of new species for aquaculture development; the expansion of the ornamental fish trade; the enhancement of marine and coastal areas through the stocking of aquatic animals raised in hatcheries; the unanticipated interactions between cultured and wild populations of aquatic animals; poor or lack of effective biosecurity measures; slow awareness on emerging diseases; the misunderstanding and misuse of specific pathogen free (SPF) stocks; climate change; other human-mediated movements of aquaculture commodities. Data on the socio-economic impacts of aquatic animal diseases are also presented, including estimates of losses in production, direct and indirect income and employment, market access or share of investment, and consumer confidence; food availability; industry failures. Examples of costs of investment in aquatic animal health-related activities, including national strategies, research, surveillance, control and other health management programmes are also provided. Finally, the strategies currently being implemented in the Asian region to deal with transboundary diseases affecting the aquaculture sector are highlighted. These include compliance with international codes, and development and implementation of regional guidelines and national aquatic animal health strategies; new diagnostic and therapeutic techniques and new information technology; new biosecurity measures including risk analysis, epidemiology, surveillance, reporting and planning for emergency response to epizootics; targeted research; institutional strengthening and manpower development (education, training and extension research and diagnostic services).
Monogenean Parasite Cultures: Current Techniques and Recent Advances.
Hutson, Kate Suzanne; Brazenor, Alexander Karlis; Vaughan, David Brendan; Trujillo-González, Alejandro
2018-01-01
Global expansion in fish production and trade of aquatic ornamental species requires advances in aquatic animal health management. Aquatic parasite cultures permit diverse research opportunities to understand parasite-host dynamics and are essential to validate the efficacy of treatments that could reduce infections in captive populations. Monogeneans are important pathogenic parasites of captured captive fishes and exhibit a single-host life cycle, which makes them amenable to in vivo culture. Continuous cultures of oviparous monogenean parasites provide a valuable resource of eggs, oncomiracidia (larvae) and adult parasites for use in varied ecological and applied scientific research. For example, the parasite-host dynamics of Entobdella soleae (van Beneden and Hesse, 1864) and its fish host, Solea solea (Linnaeus, 1758), is one of the most well-documented of all monogeneans following meticulous, dedicated study. Polystoma spp. cultures provide an intriguing model for examining evolution in monogeneans because they exhibit two alternative phenotypes depending on the age of infection of amphibians. Furthermore, assessments of the ecological, pathological and immunological effects of fish parasites in aquaculture have been achieved through cultures of Gyrodactylus von Nordmann, 1832 spp., Benedenia seriolae (Yamaguti, 1934), Neobenedenia Yamaguti, 1963 spp. and Zeuxapta seriolae (Meserve, 1938). This review critically examines methods to establish and maintain in vivo monogenean monocultures on finfish, elasmobranchs and amphibians. Four separate approaches to establish cultures are scrutinised including the collection of live infected hosts, cohabiting recipient hosts with infected stock, cohabiting hosts with parasite eggs or oncomiracidia (larvae) and direct transfer of live adult parasites onto new fish hosts. Specific parasite species' biology and behaviour permits predictive collection of parasite life stages to effectively maintain a continuous culture, while environmental parameters can be altered to manipulate parasite generation time. Parasite virulence and biosecurity are vital components of a well-managed culture to ensure appropriate animal welfare and uncontaminated surrounding environments. Contemporary approaches and techniques are reviewed to ensure optimised monogenean cultures, which ultimately can be used to further our understanding of aquatic parasitology and identify mechanisms to limit infestations in public aquaria, ornamental trade and intensive aquaculture. © 2018 Elsevier Ltd All rights reserved.
Multiple aquatic invasions by an endemic, terrestrial Hawaiian moth radiation
Rubinoff, Daniel; Schmitz, Patrick
2010-01-01
Insects are the most diverse form of life on the planet, dominating both terrestrial and freshwater ecosystems, yet no species has a life stage able to breath, feed, and develop either continually submerged or without access to water. Such truly amphibious insects are unrecorded. In mountain streams across the Hawaiian Islands, some caterpillars in the endemic moth genus Hyposmocoma are truly amphibious. These larvae can breathe and feed indefinitely both above and below the water's surface and can mature completely submerged or dry. Remarkably, a molecular phylogeny based on 2,243 bp from both nuclear (elongation factor 1α and carbomoylphosphate synthase) and mitochondrial (cytochrome oxidase I) genes representing 216 individuals and 89 species of Hyposmocoma reveals that this amphibious lifestyle is an example of parallel evolution and has arisen from strictly terrestrial clades at least three separate times in the genus starting more than 6 million years ago, before the current high islands existed. No other terrestrial genus of animals has sponsored so many independent aquatic invasions, and no other insects are able to remain active indefinitely above and below water. Why and how Hyposmocoma, an overwhelmingly terrestrial group, repeatedly evolved unprecedented aquatic species is unclear, although there are many other evolutionary anomalies across the Hawaiian archipelago. The uniqueness of the community assemblages of Hawaii's isolated biota is likely critical in generating such evolutionary novelty because this amphibious ecology is unknown anywhere else. PMID:20308549
20 CFR 701.301 - Definitions and use of terms.
Code of Federal Regulations, 2011 CFR
2011-04-01
... involved in the controlled cultivation and harvest of aquatic plants and animals, including the cleaning... controlled growing and harvesting of other aquatic species; or (F) Individuals engaged in the building...
Use of Unicellular Algae for Evaluation of Potential Aquatic Contaminants
1977-05-01
entitled "Use of Unicellular Algae for Evaluation of Potential Aquatic Contaminants." Research was conducted by the Water Resources Laboratory, School of...plants and animals. Freshwater algae are critical organisms because of their role as primary producers in all aquatic food chains. Several algal species...AMRL-TR-76-65 USE OF UNICELLULAR ALGAE FOR EVALUATION OF POTENTIAL AQUATIC CONTAMINANTS ANNUAL REPORT J. SCHERFIG P. DIXON C. JUSTICE R. APPLEMAN
Van Wassenbergh, Sam; Aerts, Peter; Herrel, Anthony
2006-01-01
The magnitude of sub-ambient pressure inside the bucco-pharyngeal cavity of aquatic animals is generally considered a valuable metric of suction feeding performance. However, these pressures do not provide a direct indication of the effect of the suction act on the movement of the prey item. Especially when comparing suction performance of animals with differences in the shape of the expanding bucco-pharyngeal cavity, the link between speed of expansion, water velocity, force exerted on the prey and intra-oral pressure remains obscure. By using mathematical models of the heads of catfishes, a morphologically diverse group of aquatic suction feeders, these relationships were tested. The kinematics of these models were fine-tuned to transport a given prey towards the mouth in the same way. Next, the calculated pressures inside these models were compared. The results show that no simple relationship exists between the amount of generated sub-ambient pressure and the force exerted on the prey during suction feeding, unless animals of the same species are compared. Therefore, for evaluating suction performance in aquatic animals in future studies, the focus should be on the flow velocities in front of the mouth, for which a direct relationship exists with the hydrodynamic force exerted on prey. PMID:16849247
The use of probiotics in aquaculture.
Hai, N V
2015-10-01
This study aims to present comprehensive notes for the use of probiotics in aquaculture. Probiotics have been proven to be positive promoters of aquatic animal growth, survival and health. In aquaculture, intestines, gills, the skin mucus of aquatic animals, and habitats or even culture collections and commercial products, can be sources for acquiring appropriate probiotics, which have been identified as bacteria (Gram-positive and Gram-negative) and nonbacteria (bacteriophages, microalgae and yeasts). While a bacterium is a pathogen to one aquatic animal, it can bring benefits to another fish species; a screening process plays a significant role in making a probiotic species specific. The administration of probiotics varies from oral/water routine to feed additives, of which the latter is commonly used in aquaculture. Probiotic applications can be either mono or multiple strains, or even in combination with prebiotic, immunostimulants such as synbiotics and synbiotism, and in live or dead forms. Encapsulating probiotics with live feed is a suitable approach to convey probiotics to aquatic animals. Dosage and duration of time are significant factors in providing desired results. Several modes of actions of probiotics are presented, while some others are not fully understood. Suggestions for further studies on the effects of probiotics in aquaculture are proposed. © 2015 The Society for Applied Microbiology.
Life support for aquatic species - past; present; future
NASA Astrophysics Data System (ADS)
Slenzka, K.
Life Support is a basic issue since manned space flight began. Not only to support astronauts and cosmonauts with the essential things to live, however, also animals which were carried for research to space etc together with men need support systems to survive under space conditions. Most of the animals transported to space participate at the life support system of the spacecraft. However, aquatic species live in water as environment and thus need special developments. Research with aquatic animals has a long tradition in manned space flight resulting in numerous life support systems for them starting with simple plastic bags up to complex support hardware. Most of the recent developments have to be identified as part of a technological oriented system and can be described as small technospheres. As the importance arose to study our Earth as the extraordinary Biosphere we live in, the modeling of small ecosystems began as part of ecophysiological research. In parallel the investigations of Bioregenerative Life Support Systems were launched and identified as necessity for long-term space missions or traveling to Moon and Mars and beyond. This paper focus on previous developments of Life Support Systems for aquatic animals and will show future potential developments towards Bioregenerative Life Support which additionally strongly benefits to our Earth's basic understanding.
Harvest-induced evolution: insights from aquatic and terrestrial systems
Festa-Bianchet, Marco
2017-01-01
Commercial and recreational harvests create selection pressures for fitness-related phenotypic traits that are partly under genetic control. Consequently, harvesting can drive evolution in targeted traits. However, the quantification of harvest-induced evolutionary life history and phenotypic changes is challenging, because both density-dependent feedback and environmental changes may also affect these changes through phenotypic plasticity. Here, we synthesize current knowledge and uncertainties on six key points: (i) whether or not harvest-induced evolution is happening, (ii) whether or not it is beneficial, (iii) how it shapes biological systems, (iv) how it could be avoided, (v) its importance relative to other drivers of phenotypic changes, and (vi) whether or not it should be explicitly accounted for in management. We do this by reviewing findings from aquatic systems exposed to fishing and terrestrial systems targeted by hunting. Evidence from aquatic systems emphasizes evolutionary effects on age and size at maturity, while in terrestrial systems changes are seen in weapon size and date of parturition. We suggest that while harvest-induced evolution is likely to occur and negatively affect populations, the rate of evolutionary changes and their ecological implications can be managed efficiently by simply reducing harvest intensity. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences'. PMID:27920381
29 CFR 784.107 - Relationship of employee's work to operations on the specified aquatic products.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 3 2014-07-01 2014-07-01 false Relationship of employee's work to operations on the... the Two Exemptions § 784.107 Relationship of employee's work to operations on the specified aquatic..., sponges, seaweeds, or other aquatic forms of animal and vegetable life.” The operations enumerated in...
29 CFR 784.107 - Relationship of employee's work to operations on the specified aquatic products.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 3 2013-07-01 2013-07-01 false Relationship of employee's work to operations on the... the Two Exemptions § 784.107 Relationship of employee's work to operations on the specified aquatic..., sponges, seaweeds, or other aquatic forms of animal and vegetable life.” The operations enumerated in...
29 CFR 784.107 - Relationship of employee's work to operations on the specified aquatic products.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 3 2012-07-01 2012-07-01 false Relationship of employee's work to operations on the... the Two Exemptions § 784.107 Relationship of employee's work to operations on the specified aquatic..., sponges, seaweeds, or other aquatic forms of animal and vegetable life.” The operations enumerated in...
29 CFR 784.107 - Relationship of employee's work to operations on the specified aquatic products.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 3 2011-07-01 2011-07-01 false Relationship of employee's work to operations on the... the Two Exemptions § 784.107 Relationship of employee's work to operations on the specified aquatic..., sponges, seaweeds, or other aquatic forms of animal and vegetable life.” The operations enumerated in...
Evolutionary consequences of multidriver environmental change in an aquatic primary producer.
Brennan, Georgina L; Colegrave, Nick; Collins, Sinéad
2017-09-12
Climate change is altering aquatic environments in a complex way, and simultaneous shifts in many properties will drive evolutionary responses in primary producers at the base of both freshwater and marine ecosystems. So far, evolutionary studies have shown how changes in environmental drivers, either alone or in pairs, affect the evolution of growth and other traits in primary producers. Here, we evolve a primary producer in 96 unique environments with different combinations of between one and eight environmental drivers to understand how evolutionary responses to environmental change depend on the identity and number of drivers. Even in multidriver environments, only a few dominant drivers explain most of the evolutionary changes in population growth rates. Most populations converge on the same growth rate by the end of the evolution experiment. However, populations adapt more when these dominant drivers occur in the presence of other drivers. This is due to an increase in the intensity of selection in environments with more drivers, which are more likely to include dominant drivers. Concurrently, many of the trait changes that occur during the initial short-term response to both single and multidriver environmental change revert after about 450 generations of evolution. In future aquatic environments, populations will encounter differing combinations of drivers and intensities of selection, which will alter the adaptive potential of primary producers. Accurately gauging the intensity of selection on key primary producers will help in predicting population size and trait evolution at the base of aquatic food webs.
The forgotten cue: Daphnia bears a not yet described gravireceptive organ system
NASA Astrophysics Data System (ADS)
Laforsch, Christian; Fischer, Jessica; Wolfschoon Ribeiro, Bernard; Schoppmann, Kathrin; Trotter, Benjamin
Gravity has been the only constant environmental factor in evolution of life. For plenty of pelagic organisms it is the only reliable cue for orientation in a three dimensional space especially in turbid or completely dark waters. However, there is a considerable lack of knowledge about gravisensing mechanisms in a huge variety of plankton organisms. Here we introduce a novel mechanoreceptive organ system in the model organism Daphnia functioning as a sinking receptor for the detection of the gravitational field. This organ is connected to two prominent appendages known as the postabdominal setae with so far unknown functioning. Our morphological and behavioural studies show, that the organ system is involved in gravisensing by a passive deflection mechanism not yet described in the animal kingdom. The description of this bifunctional mechanoreceptor will help to elucidate general gravity-related mechanisms valid for other organisms as well and may therefore increase our knowledge on the evolution of graviperception in aquatic ecosystems.
9 CFR 93.912 - Import permits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... CONVEYANCE AND SHIPPING CONTAINERS Aquatic Animal Species General Provisions for Vhs-Regulated Fish Species... and Plant Health Inspection Service, Veterinary Services, National Center for Import and Export, 4700...
9 CFR 93.912 - Import permits.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... CONVEYANCE AND SHIPPING CONTAINERS Aquatic Animal Species General Provisions for Vhs-Regulated Fish Species... and Plant Health Inspection Service, Veterinary Services, National Center for Import and Export, 4700...
Emmenegger, E.J.; Kentop, E.; Thompson, T.M.; Pittam, S.; Ryan, A.; Keon, D.; Carlino, J.A.; Ranson, J.; Life, R.B.; Troyer, R.M.; Garver, K.A.; Kurath, G.
2011-01-01
The AquaPathogen X database is a template for recording information on individual isolates of aquatic pathogens and is freely available for download (http://wfrc.usgs.gov). This database can accommodate the nucleotide sequence data generated in molecular epidemiological studies along with the myriad of abiotic and biotic traits associated with isolates of various pathogens (e.g. viruses, parasites and bacteria) from multiple aquatic animal host species (e.g. fish, shellfish and shrimp). The cataloguing of isolates from different aquatic pathogens simultaneously is a unique feature to the AquaPathogen X database, which can be used in surveillance of emerging aquatic animal diseases and elucidation of key risk factors associated with pathogen incursions into new water systems. An application of the template database that stores the epidemiological profiles of fish virus isolates, called Fish ViroTrak, was also developed. Exported records for two aquatic rhabdovirus species emerging in North America were used in the implementation of two separate web-accessible databases: the Molecular Epidemiology of Aquatic Pathogens infectious haematopoietic necrosis virus (MEAP-IHNV) database (http://gis.nacse.org/ihnv/) released in 2006 and the MEAP- viral haemorrhagic septicaemia virus (http://gis.nacse.org/vhsv/) database released in 2010.
Aquatic models, genomics and chemical risk management.
Cheng, Keith C; Hinton, David E; Mattingly, Carolyn J; Planchart, Antonio
2012-01-01
The 5th Aquatic Animal Models for Human Disease meeting follows four previous meetings (Nairn et al., 2001; Schmale, 2004; Schmale et al., 2007; Hinton et al., 2009) in which advances in aquatic animal models for human disease research were reported, and community discussion of future direction was pursued. At this meeting, discussion at a workshop entitled Bioinformatics and Computational Biology with Web-based Resources (20 September 2010) led to an important conclusion: Aquatic model research using feral and experimental fish, in combination with web-based access to annotated anatomical atlases and toxicological databases, yields data that advance our understanding of human gene function, and can be used to facilitate environmental management and drug development. We propose here that the effects of genes and environment are best appreciated within an anatomical context - the specifically affected cells and organs in the whole animal. We envision the use of automated, whole-animal imaging at cellular resolution and computational morphometry facilitated by high-performance computing and automated entry into toxicological databases, as anchors for genetic and toxicological data, and as connectors between human and model system data. These principles should be applied to both laboratory and feral fish populations, which have been virtually irreplaceable sentinals for environmental contamination that results in human morbidity and mortality. We conclude that automation, database generation, and web-based accessibility, facilitated by genomic/transcriptomic data and high-performance and cloud computing, will potentiate the unique and potentially key roles that aquatic models play in advancing systems biology, drug development, and environmental risk management. Copyright © 2011 Elsevier Inc. All rights reserved.
9 CFR 83.7 - Shipping containers; cleaning and disinfection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Shipping containers; cleaning and disinfection. 83.7 Section 83.7 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... the accredited veterinarian or State, Tribal, or Federal competent authority for aquatic animal health...
9 CFR 93.907-93.909 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false [Reserved] 93.907-93.909 Section 93.907-93.909 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Aquatic Animal Species General Provisions for Svc...
9 CFR 93.907-93.909 - [Reserved
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false [Reserved] 93.907-93.909 Section 93.907-93.909 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Aquatic Animal Species General Provisions for Svc...
9 CFR 83.7 - Shipping containers; cleaning and disinfection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Shipping containers; cleaning and disinfection. 83.7 Section 83.7 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... the accredited veterinarian or State, Tribal, or Federal competent authority for aquatic animal health...
Chesapeake Bay Low Freshwater Inflow Study. Biota Assessment. Phase II. Main Report.
1982-05-01
organisms in shallow water with a sensitive life stage occurring in the spring of the year. This indicates that aquatic vegetation and sessile animals are...variety of animals, primarily waterfowl and aquatic mammals, although the fresh water marsh species are primarily used directly. The major pathway through...of the diverse freshwater /oligohaline SAV community, all of which would be *: similarly impacted by fresh water inflow reductions. In addition, input
Joordens, Josephine C A; Kuipers, Remko S; Wanink, Jan H; Muskiet, Frits A J
2014-12-01
From c. 2 Ma (millions of years ago) onwards, hominin brain size and cognition increased in an unprecedented fashion. The exploitation of high-quality food resources, notably from aquatic ecosystems, may have been a facilitator or driver of this phenomenon. The aim of this study is to contribute to the ongoing debate on the possible role of aquatic resources in hominin evolution by providing a more detailed nutritional context. So far, the debate has focused on the relative importance of terrestrial versus aquatic resources while no distinction has been made between different types of aquatic resources. Here we show that Indian Ocean reef fish and eastern African lake fish yield on average similarly high amounts of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid (AA). Hence a shift from exploiting tropical marine to freshwater ecosystems (or vice versa) would entail no material difference in dietary long-chain polyunsaturated fatty acid (LC-PUFA) availability. However, a shift to marine ecosystems would likely mean a major increase in access to brain-selective micronutrients such as iodine. Fatty fish from marine temperate/cold waters yield twice as much DHA and four times as much EPA as tropical fish, demonstrating that a latitudinal shift in exploitation of African coastal ecosystems could constitute a significant difference in LC-PUFA availability with possible implications for brain development and functioning. We conclude that exploitation of aquatic food resources could have facilitated the initial moderate hominin brain increase as observed in fossils dated to c. 2 Ma, but not the exceptional brain increase in later stages of hominin evolution. We propose that the significant expansion in hominin brain size and cognition later on may have been aided by strong directional selecting forces such as runaway sexual selection of intelligence, and nutritionally supported by exploitation of high-quality food resources in stable and productive aquatic ecosystems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Shen, Tong; Xu, Shixia; Wang, Xiaohong; Yu, Wenhua; Zhou, Kaiya; Yang, Guang
2012-03-24
Cetaceans (whales, dolphins and porpoises) are a group of adapted marine mammals with an enigmatic history of transition from terrestrial to full aquatic habitat and rapid radiation in waters around the world. Throughout this evolution, the pathogen stress-response proteins must have faced challenges from the dramatic change of environmental pathogens in the completely different ecological niches cetaceans occupied. For this reason, cetaceans could be one of the most ideal candidate taxa for studying evolutionary process and associated driving mechanism of vertebrate innate immune systems such as Toll-like receptors (TLRs), which are located at the direct interface between the host and the microbial environment, act at the first line in recognizing specific conserved components of microorganisms, and translate them rapidly into a defense reaction. We used TLR4 as an example to test whether this traditionally regarded pattern recognition receptor molecule was driven by positive selection across cetacean evolutionary history. Overall, the lineage-specific selection test showed that the dN/dS (ω) values along most (30 out of 33) examined cetartiodactylan lineages were less than 1, suggesting a common effect of functional constraint. However, some specific codons made radical changes, fell adjacent to the residues interacting with lipopolysaccharides (LPS), and showed parallel evolution between independent lineages, suggesting that TLR4 was under positive selection. Especially, strong signatures of adaptive evolution on TLR4 were identified in two periods, one corresponding to the early evolutionary transition of the terrestrial ancestors of cetaceans from land to semi-aquatic (represented by the branch leading to whale + hippo) and from semi-aquatic to full aquatic (represented by the ancestral branch leading to cetaceans) habitat, and the other to the rapid diversification and radiation of oceanic dolphins. This is the first study thus far to characterize the TLR gene in cetaceans. Our data present evidences that cetacean TLR4 has undergone adaptive evolution against the background of purifying selection in response to the secondary aquatic adaptation and rapid diversification in the sea. It is suggested that microbial pathogens in different environments are important factors that promote adaptive changes at cetacean TLR4 and new functions of some amino acid sites specialized for recognizing pathogens in dramatically contrasted environments to enhance the fitness for the adaptation and survival of cetaceans.
2012-01-01
Background Cetaceans (whales, dolphins and porpoises) are a group of adapted marine mammals with an enigmatic history of transition from terrestrial to full aquatic habitat and rapid radiation in waters around the world. Throughout this evolution, the pathogen stress-response proteins must have faced challenges from the dramatic change of environmental pathogens in the completely different ecological niches cetaceans occupied. For this reason, cetaceans could be one of the most ideal candidate taxa for studying evolutionary process and associated driving mechanism of vertebrate innate immune systems such as Toll-like receptors (TLRs), which are located at the direct interface between the host and the microbial environment, act at the first line in recognizing specific conserved components of microorganisms, and translate them rapidly into a defense reaction. Results We used TLR4 as an example to test whether this traditionally regarded pattern recognition receptor molecule was driven by positive selection across cetacean evolutionary history. Overall, the lineage-specific selection test showed that the dN/dS (ω) values along most (30 out of 33) examined cetartiodactylan lineages were less than 1, suggesting a common effect of functional constraint. However, some specific codons made radical changes, fell adjacent to the residues interacting with lipopolysaccharides (LPS), and showed parallel evolution between independent lineages, suggesting that TLR4 was under positive selection. Especially, strong signatures of adaptive evolution on TLR4 were identified in two periods, one corresponding to the early evolutionary transition of the terrestrial ancestors of cetaceans from land to semi-aquatic (represented by the branch leading to whale + hippo) and from semi-aquatic to full aquatic (represented by the ancestral branch leading to cetaceans) habitat, and the other to the rapid diversification and radiation of oceanic dolphins. Conclusions This is the first study thus far to characterize the TLR gene in cetaceans. Our data present evidences that cetacean TLR4 has undergone adaptive evolution against the background of purifying selection in response to the secondary aquatic adaptation and rapid diversification in the sea. It is suggested that microbial pathogens in different environments are important factors that promote adaptive changes at cetacean TLR4 and new functions of some amino acid sites specialized for recognizing pathogens in dramatically contrasted environments to enhance the fitness for the adaptation and survival of cetaceans. PMID:22443485
Cognitive ability and sentience: which aquatic animals should be protected?
Broom, D M
2007-05-04
It is of scientific and practical interest to consider the levels of cognitive ability in animals, which animals are sentient, which animals have feelings such as pain and which animals should be protected. A sentient being is one that has some ability to evaluate the actions of others in relation to itself and third parties, to remember some of its own actions and their consequences, to assess risk, to have some feelings and to have some degree of awareness. These abilities can be taken into account when evaluating welfare. There is evidence from some species of fish, cephalopods and decapod crustaceans of substantial perceptual ability, pain and adrenal systems, emotional responses, long- and short-term memory, complex cognition, individual differences, deception, tool use, and social learning. The case for protecting these animals would appear to be substantial. A range of causes of poor welfare in farmed aquatic animals is summarised.
Blob, Richard W; Mayerl, Christopher J; Rivera, Angela R V; Rivera, Gabriel; Young, Vanessa K H
2016-12-01
Though ultimately descended from terrestrial amniotes, turtles have deep roots as an aquatic lineage and are quite diverse in the extent of their aquatic specializations. Many taxa can be viewed as "on the fence" between aquatic and terrestrial realms, whereas others have independently hyperspecialized and moved "all in" to aquatic habitats. Such differences in specialization are reflected strongly in the locomotor system. We have conducted several studies to evaluate the performance consequences of such variation in design, as well as the mechanisms through which specialization for aquatic locomotion is facilitated in turtles. One path to aquatic hyperspecialization has involved the evolutionary transformation of the forelimbs from rowing, tubular limbs with distal paddles into flapping, flattened flippers, as in sea turtles. Prior to the advent of any hydrodynamic advantages, the evolution of such flippers may have been enabled by a reduction in twisting loads on proximal limb bones that accompanied swimming in rowing ancestors, facilitating a shift from tubular to flattened limbs. Moreover, the control of flapping movements appears related primarily to shifts in the activity of a single forelimb muscle, the deltoid. Despite some performance advantages, flapping may entail a locomotor cost in terms of decreased locomotor stability. However, other morphological specializations among rowing species may enhance swimming stability. For example, among highly aquatic pleurodiran turtles, fusion of the pelvis to the shell appears to dramatically reduce motions of the pelvis compared to freshwater cryptodiran species. This could contribute to advantageous increases in aquatic stability among predominantly aquatic pleurodires. Thus, even within the potential constraints of a body plan in which the body is encased by a shell, turtles exhibit diverse locomotor capacities that have enabled diversification into a wide range of aquatic habitats. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Blob, Richard W.; Mayerl, Christopher J.; Rivera, Angela R. V.; Rivera, Gabriel; Young, Vanessa K. H.
2016-01-01
Though ultimately descended from terrestrial amniotes, turtles have deep roots as an aquatic lineage and are quite diverse in the extent of their aquatic specializations. Many taxa can be viewed as “on the fence” between aquatic and terrestrial realms, whereas others have independently hyperspecialized and moved “all in” to aquatic habitats. Such differences in specialization are reflected strongly in the locomotor system. We have conducted several studies to evaluate the performance consequences of such variation in design, as well as the mechanisms through which specialization for aquatic locomotion is facilitated in turtles. One path to aquatic hyperspecialization has involved the evolutionary transformation of the forelimbs from rowing, tubular limbs with distal paddles into flapping, flattened flippers, as in sea turtles. Prior to the advent of any hydrodynamic advantages, the evolution of such flippers may have been enabled by a reduction in twisting loads on proximal limb bones that accompanied swimming in rowing ancestors, facilitating a shift from tubular to flattened limbs. Moreover, the control of flapping movements appears related primarily to shifts in the activity of a single forelimb muscle, the deltoid. Despite some performance advantages, flapping may entail a locomotor cost in terms of decreased locomotor stability. However, other morphological specializations among rowing species may enhance swimming stability. For example, among highly aquatic pleurodiran turtles, fusion of the pelvis to the shell appears to dramatically reduce motions of the pelvis compared to freshwater cryptodiran species. This could contribute to advantageous increases in aquatic stability among predominantly aquatic pleurodires. Thus, even within the potential constraints of a body plan in which the body is encased by a shell, turtles exhibit diverse locomotor capacities that have enabled diversification into a wide range of aquatic habitats. PMID:27940619
The National Nonindigenous Aquatic Species Database
Neilson, Matthew E.; Fuller, Pamela L.
2012-01-01
The U.S. Geological Survey (USGS) Nonindigenous Aquatic Species (NAS) Program maintains a database that monitors, records, and analyzes sightings of nonindigenous aquatic plant and animal species throughout the United States. The program is based at the USGS Wetland and Aquatic Research Center in Gainesville, Florida.The initiative to maintain scientific information on nationwide occurrences of nonindigenous aquatic species began with the Aquatic Nuisance Species Task Force, created by Congress in 1990 to provide timely information to natural resource managers. Since then, the NAS database has been a clearinghouse of information for confirmed sightings of nonindigenous, also known as nonnative, aquatic species throughout the Nation. The database is used to produce email alerts, maps, summary graphs, publications, and other information products to support natural resource managers.
Sullam, Karen E; Rubin, Benjamin E R; Dalton, Christopher M; Kilham, Susan S; Flecker, Alexander S; Russell, Jacob A
2015-07-01
Diverse microbial consortia profoundly influence animal biology, necessitating an understanding of microbiome variation in studies of animal adaptation. Yet, little is known about such variability among fish, in spite of their importance in aquatic ecosystems. The Trinidadian guppy, Poecilia reticulata, is an intriguing candidate to test microbiome-related hypotheses on the drivers and consequences of animal adaptation, given the recent parallel origins of a similar ecotype across streams. To assess the relationships between the microbiome and host adaptation, we used 16S rRNA amplicon sequencing to characterize gut bacteria of two guppy ecotypes with known divergence in diet, life history, physiology and morphology collected from low-predation (LP) and high-predation (HP) habitats in four Trinidadian streams. Guts were populated by several recurring, core bacteria that are related to other fish associates and rarely detected in the environment. Although gut communities of lab-reared guppies differed from those in the wild, microbiome divergence between ecotypes from the same stream was evident under identical rearing conditions, suggesting host genetic divergence can affect associations with gut bacteria. In the field, gut communities varied over time, across streams and between ecotypes in a stream-specific manner. This latter finding, along with PICRUSt predictions of metagenome function, argues against strong parallelism of the gut microbiome in association with LP ecotype evolution. Thus, bacteria cannot be invoked in facilitating the heightened reliance of LP guppies on lower-quality diets. We argue that the macroevolutionary microbiome convergence seen across animals with similar diets may be a signature of secondary microbial shifts arising some time after host-driven adaptation.
Sullam, Karen E; Rubin, Benjamin ER; Dalton, Christopher M; Kilham, Susan S; Flecker, Alexander S; Russell, Jacob A
2015-01-01
Diverse microbial consortia profoundly influence animal biology, necessitating an understanding of microbiome variation in studies of animal adaptation. Yet, little is known about such variability among fish, in spite of their importance in aquatic ecosystems. The Trinidadian guppy, Poecilia reticulata, is an intriguing candidate to test microbiome-related hypotheses on the drivers and consequences of animal adaptation, given the recent parallel origins of a similar ecotype across streams. To assess the relationships between the microbiome and host adaptation, we used 16S rRNA amplicon sequencing to characterize gut bacteria of two guppy ecotypes with known divergence in diet, life history, physiology and morphology collected from low-predation (LP) and high-predation (HP) habitats in four Trinidadian streams. Guts were populated by several recurring, core bacteria that are related to other fish associates and rarely detected in the environment. Although gut communities of lab-reared guppies differed from those in the wild, microbiome divergence between ecotypes from the same stream was evident under identical rearing conditions, suggesting host genetic divergence can affect associations with gut bacteria. In the field, gut communities varied over time, across streams and between ecotypes in a stream-specific manner. This latter finding, along with PICRUSt predictions of metagenome function, argues against strong parallelism of the gut microbiome in association with LP ecotype evolution. Thus, bacteria cannot be invoked in facilitating the heightened reliance of LP guppies on lower-quality diets. We argue that the macroevolutionary microbiome convergence seen across animals with similar diets may be a signature of secondary microbial shifts arising some time after host-driven adaptation. PMID:25575311
Wei, Lee Seong; Wee, Wendy
2013-06-01
This paper describes chemical composition and antimicrobial activity of Cymbopogon nardus citronella essential oil against Edwardsiella spp. (n = 21), Vibrio spp. (n = 6), Aeromonas spp. (n = 2), Escherichia coli (n = 2), Salmonella spp. (n = 2), Flavobacterium spp. (n = 1), Pseudomonas spp. (n = 1) and Streptococcus spp. (n = 1) isolated from internal organs of aquatic animals. Due to the ban of antibiotics for aquaculture use, this study was carried out to evaluate the potential of citronella essential oil as alternative to commercial antibiotic use against systemic bacteria in cultured aquatic animals. The essential oil of C. nardus was prepared by using the steam distillation method and the chemical composition of the essential oil was analyzed by gas chromatography-mass spectroscopy (GC-MS). Minimum inhibitory concentration (MIC) of the essential oil tested against bacterial isolates from various aquatic animals and ATCC type strains were determined using two-fold broth micro dilution method with kanamycin and eugenol as positive controls. A total of 22 chemical compounds were detected in C. nardus essential oil with 6-octenal, 3, 7-dimethyl- or citronellal representing the major compounds (29.6%). The MIC values of the citronella oil ranged from 0.244 µg/ml to 0.977 µg/ml when tested against the bacterial isolates. The results of the present study revealed the potential of C. nardus essential oil as alternative to commercial antibiotics for aquaculture use.
9 CFR 93.906 - Inspection at the port of entry.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Inspection at the port of entry. 93.906 Section 93.906 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT...; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Aquatic Animal Species General Provisions for Svc...
9 CFR 93.915 - Inspection at the port of entry.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Inspection at the port of entry. 93.915 Section 93.915 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT...; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Aquatic Animal Species General Provisions for Vhs...
9 CFR 93.906 - Inspection at the port of entry.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Inspection at the port of entry. 93.906 Section 93.906 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT...; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Aquatic Animal Species General Provisions for Svc...
9 CFR 93.915 - Inspection at the port of entry.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Inspection at the port of entry. 93.915 Section 93.915 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT...; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Aquatic Animal Species General Provisions for Vhs...
The hydrodynamic principle for the caudal fin shape of small aquatic animals
NASA Astrophysics Data System (ADS)
Lee, Jeongsu; Park, Yong-Jai; Cho, Kyu-Jin; Kim, Ho-Young
2014-11-01
The shape of caudal fins of small aquatic animals is completely different from that of large cruising animals like dolphin and tuna which have high aspect-ratio lunate tail. To unveil the physical principle behind natural selection of caudal fins of small aquatic animals, here we investigate the hydrodynamics of an angularly reciprocating plate as a model for the caudal fin oscillation. We find that the thrust production of a reciprocating plate at high Strouhal numbers is dominated by generation of two distinct vortical structures associated with the acceleration and deceleration of the plate regardless of their shape. Based on our observations, we construct a scaling law to predict the thrust of the flapping plate, which agrees well with the experimental data. We then seek the optimal aspect ratio to maximize thrust and efficiency of a flapping plate for fixed flapping frequency and amplitude. Thrust is maximized for the aspect ratio of approximately 0.7. We also theoretically explain the power law behaviors of the thrust and efficiency as a function of the aspect ratio.
RESEARCH SHOWS IMPORTANCE OF RIPARIAN BUFFERS FOR AQUATIC HEALTH
Issue: Excess nitrogen from fertilizer, septic tanks, animal feedlots, and runoff from pavement can threaten aquatic ecosystem health. Riparian buffers -- the vegetated region adjacent to streams and wetlands -- are thought to be effective at intercepting and controlling excess ...
NASDA next-generation aquatic habitat for space shuttle and ISS
NASA Astrophysics Data System (ADS)
Masukawa, M.; Ochiai, T.; Kamigaichi, S.; Uchida, S.; Kono, Y.; Takamatsu, T.; Sakimura, T.
The National Space Development Agency of Japan (NASDA) has more than 20 years of experience developing aquatic animal experiment facilities. These include the Vestibular Function Experiment Unit (VFEU), Aquatic Animal Experiment Unit (AAEU) and another VFEU for marine fish. Each facility had functions such as life support for up to 15 days, water quality control system, gas exchange by artificial lung, video observation through a window by a crewmember, day/night cycle control, feeding system for medaka (AAEU only), and more. We are now studying the next -generation aquatic animal experiment facility or the Aquatic Habitat (AQH) for both Space Shuttle and Space Station use. AQH will have many new capabilities missing in earlier facilities. The following functions are of particular importance: long-term life support for up to 90 days, multigeneration breeding (for medaka and zebrafish), automatic feeding system adaptable for young of fish and amphibians, water quality control for long-term experiments, air-water interface, a computer-driven specimen-monitoring system housed in the facilities, and a specimen sampling system including eggs. A prototype breeding system and the specimen-monitoring system were designed and tested. The prototype breeding system consists of a closed water loop, two 700ml fish chambers with LED lighting, a small artificial lung, and a nitrification bacteria filter. Medaka adult fish were able to mate and spawn in this small breeding system, and the young could grow to adult fish. The water quality control system also worked successfully. For amphibians, the breeding test using tadpoles of xenopus is also starting. We have many difficult technological problems to resolve, but development of AQH is going well. In this paper, we will introduce the results of the component-level test and the concept of AQH. In the future, many space biological experiments will be conducted, especially in the areas of developmental biology, neurophisiology, and the effect of microgravity over multiple generations, through the use of aquatic animals and AQH.
Ecotoxicity literature review of selected Hanford Site contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Driver, C.J.
1994-03-01
Available information on the toxicity, food chain transport, and bioconcentration of several Hanford Site contaminants were reviewed. The contaminants included cesium-137, cobalt-60, europium, nitrate, plutonium, strontium-90, technetium, tritium, uranium, and chromium (III and VI). Toxicity and mobility in both aquatic and terrestrial systems were considered. For aquatic systems, considerable information was available on the chemical and/or radiological toxicity of most of the contaminants in invertebrate animals and fish. Little information was available on aquatic macrophyte response to the contaminants. Terrestrial animals such as waterfowl and amphibians that have high exposure potential in aquatic systems were also largely unrepresented in themore » toxicity literature. The preponderance of toxicity data for terrestrial biota was for laboratory mammals. Bioconcentration factors and transfer coefficients were obtained for primary producers and consumers in representative aquatic and terrestrial systems; however, little data were available for upper trophic level transfer, particularly for terrestrial predators. Food chain transport and toxicity information for the contaminants were generally lacking for desert or sage brush-steppe organisms, particularly plants and reptiles« less
AquaPathogen X--A template database for tracking field isolates of aquatic pathogens
Emmenegger, Evi; Kurath, Gael
2012-01-01
AquaPathogen X is a template database for recording information on individual isolates of aquatic pathogens and is available for download from the U.S. Geological Survey (USGS) Western Fisheries Research Center (WFRC) website (http://wfrc.usgs.gov). This template database can accommodate the nucleotide sequence data generated in molecular epidemiological studies along with the myriad of abiotic and biotic traits associated with isolates of various pathogens (for example, viruses, parasites, or bacteria) from multiple aquatic animal host species (for example, fish, shellfish, or shrimp). The simultaneous cataloging of isolates from different aquatic pathogens is a unique feature to the AquaPathogen X database, which can be used in surveillance of emerging aquatic animal diseases and clarification of main risk factors associated with pathogen incursions into new water systems. As a template database, the data fields are empty upon download and can be modified to user specifications. For example, an application of the template database that stores the epidemiological profiles of fish virus isolates, called Fish ViroTrak (fig. 1), was also developed (Emmenegger and others, 2011).
Sleep alterations in mammals: did aquatic conditions inhibit rapid eye movement sleep?
Madan, Vibha; Jha, Sushil K
2012-12-01
Sleep has been studied widely in mammals and to some extent in other vertebrates. Higher vertebrates such as birds and mammals have evolved an inimitable rapid eye movement (REM) sleep state. During REM sleep, postural muscles become atonic and the temperature regulating machinery remains suspended. Although REM sleep is present in almost all the terrestrial mammals, the aquatic mammals have either radically reduced or completely eliminated REM sleep. Further, we found a significant negative correlation between REM sleep and the adaptation of the organism to live on land or in water. The amount of REM sleep is highest in terrestrial mammals, significantly reduced in semi-aquatic mammals and completely absent or negligible in aquatic mammals. The aquatic mammals are obligate swimmers and have to surface at regular intervals for air. Also, these animals live in thermally challenging environments, where the conductive heat loss is approximately ~90 times greater than air. Therefore, they have to be moving most of the time. As an adaptation, they have evolved unihemispheric sleep, during which they can rove as well as rest. A condition that immobilizes muscle activity and suspends the thermoregulatory machinery, as happens during REM sleep, is not suitable for these animals. It is possible that, in accord with Darwin's theory, aquatic mammals might have abolished REM sleep with time. In this review, we discuss the possibility of the intrinsic role of aquatic conditions in the elimination of REM sleep in the aquatic mammals.
Tropical dermatology: marine and aquatic dermatology.
Haddad, Vidal; Lupi, Omar; Lonza, Juan Pedro; Tyring, Stephen K
2009-11-01
Dermatoses caused by marine organisms are frequently seen in dermatology clinics worldwide. Cutaneous injuries after exposure to marine environments include bacterial and fungal infections and lesions caused by aquatic plants and protists. Some of these diseases are well known by dermatologists, such as Vibrio vulnificus septicemia and erysipeloid, but others are uncommon, such as envenomation caused by ingestion or contact with certain dinoflagellates or cyanobacteria, which are associated with rashes that can begin within minutes after exposure. Many marine/aquatic invertebrates, such as sponges, cnidarians, echinoderms, crustaceans, and mollusks, are associated with different kinds of dermatologic lesions that can vary from irritant or allergic contact dermatitis to physical trauma and envenomations. These cutaneous lesions may result in mild local reactions or can be associated with severe systemic reactions. Invertebrate animals, such as cnidarians, sea urchins, and worms, and aquatic vertebrates, such as venomous fishes and stingrays, are commonly associated with skin lesions in many countries, where they can constitute occupational dermatoses among fishermen and scuba divers, but they can also be observed among persons who contact these animals in kitchens or beaches. The presence of unusual lesions, a recent travel history, and/or a report of contact with an aquatic environment (including ownership of a marine or freshwater aquarium) should alert the dermatologist to the etiology of the cutaneous problems. After completing this learning activity, participants should be able to recognize the cutaneous manifestations of marine/aquatic infections, bites, stings, and wounds, etc., treat the cutaneous manifestations of marine/aquatic injuries, and help prevent marine/aquatic injuries.
Feedstock for ruminant, non-ruminant and aquatic fish in Malaysia-A review
NASA Astrophysics Data System (ADS)
Leman, A. M.; Muzarpar, Syafiq; Baba, I.; Sunar, N. M.; Wahab, R. Abdul
2017-09-01
Large demand of feedstock in Malaysia initiated the farmers to accelerate animal growth by improving quality of livestock's. However, quality increase will effect to the cost increment as well. Therefore, main objective of this study is to review various material and methods which acceptable in Malaysia in order to teach the farmer in selecting appropriate material for animal feed. Animal feed for ruminant, non-ruminant and aquatic fish has big issues in Halal animal feed. It caused by sources of existing animal feed from non-halal material such as blood meal and pig bone. There are various sources of halal animal feed sources such as from plant such as napier, PKC, banana tree and corn leaf as well as from waste material such as waste toufu, waste coconut, soy meal, coconut meal and sagoo. Therefore, the farmer able to select the appropriate material for own animal feed to reduce cost and fulfill the animal feed requirement regarding to protein and nutrient need.
Transition to an Aquatic Habitat Permitted the Repeated Loss of the Pleiotropic KLK8 Gene in Mammals
Hecker, Nikolai; Sharma, Virag
2017-01-01
Abstract Kallikrein related peptidase 8 (KLK8; also called neuropsin) is a serine protease that plays distinct roles in the skin and hippocampus. In the skin, KLK8 influences keratinocyte proliferation and desquamation, and activates antimicrobial peptides in sweat. In the hippocampus, KLK8 affects memory acquisition. Here, we examined the evolution of KLK8 in mammals and discovered that, out of 70 placental mammals, KLK8 is exclusively lost in three independent fully-aquatic lineages, comprising dolphin, killer whale, minke whale, and manatee. In addition, while the sperm whale has an intact KLK8 reading frame, the gene evolves neutrally in this species. We suggest that the distinct functions of KLK8 likely became obsolete in the aquatic environment, leading to the subsequent loss of KLK8 in several fully-aquatic mammalian lineages. First, the cetacean and manatee skin lacks sweat glands as an adaptation to the aquatic environment, which likely made the epidermal function of KLK8 obsolete. Second, cetaceans and manatees exhibit a proportionally small hippocampus, which may have rendered the hippocampal functions of KLK8 obsolete. Together, our results shed light on the genomic changes that correlate with skin and neuroanatomical differences of aquatic mammals, and show that even pleiotropic genes can be lost during evolution if an environmental change nullifies the need for the different functions of such genes. PMID:29145610
Hipsey, Matthew R.; Hamilton, David P.; Hanson, Paul C.; Carey, Cayelan C.; Coletti, Janaine Z; Read, Jordan S.; Ibelings, Bas W; Valensini, Fiona J; Brookes, Justin D
2015-01-01
Maintaining the health of aquatic systems is an essential component of sustainable catchmentmanagement, however, degradation of water quality and aquatic habitat continues to challenge scientistsand policy-makers. To support management and restoration efforts aquatic system models are requiredthat are able to capture the often complex trajectories that these systems display in response to multiplestressors. This paper explores the abilities and limitations of current model approaches in meeting this chal-lenge, and outlines a strategy based on integration of flexible model libraries and data from observationnetworks, within a learning framework, as a means to improve the accuracy and scope of model predictions.The framework is comprised of a data assimilation component that utilizes diverse data streams from sensornetworks, and a second component whereby model structural evolution can occur once the model isassessed against theoretically relevant metrics of system function. Given the scale and transdisciplinarynature of the prediction challenge, network science initiatives are identified as a means to develop and inte-grate diverse model libraries and workflows, and to obtain consensus on diagnostic approaches to modelassessment that can guide model adaptation. We outline how such a framework can help us explore thetheory of how aquatic systems respond to change by bridging bottom-up and top-down lines of enquiry,and, in doing so, also advance the role of prediction in aquatic ecosystem management.
NASA Astrophysics Data System (ADS)
Hipsey, Matthew R.; Hamilton, David P.; Hanson, Paul C.; Carey, Cayelan C.; Coletti, Janaine Z.; Read, Jordan S.; Ibelings, Bas W.; Valesini, Fiona J.; Brookes, Justin D.
2015-09-01
Maintaining the health of aquatic systems is an essential component of sustainable catchment management, however, degradation of water quality and aquatic habitat continues to challenge scientists and policy-makers. To support management and restoration efforts aquatic system models are required that are able to capture the often complex trajectories that these systems display in response to multiple stressors. This paper explores the abilities and limitations of current model approaches in meeting this challenge, and outlines a strategy based on integration of flexible model libraries and data from observation networks, within a learning framework, as a means to improve the accuracy and scope of model predictions. The framework is comprised of a data assimilation component that utilizes diverse data streams from sensor networks, and a second component whereby model structural evolution can occur once the model is assessed against theoretically relevant metrics of system function. Given the scale and transdisciplinary nature of the prediction challenge, network science initiatives are identified as a means to develop and integrate diverse model libraries and workflows, and to obtain consensus on diagnostic approaches to model assessment that can guide model adaptation. We outline how such a framework can help us explore the theory of how aquatic systems respond to change by bridging bottom-up and top-down lines of enquiry, and, in doing so, also advance the role of prediction in aquatic ecosystem management.
GLOBAL CLIMATE AND LARGE-SCALE INFLUENCES ON AQUATIC ANIMAL HEALTH
The last 3 decades have witnessed numerous large-scale mortality events of aquatic organisms in North America. Affected species range from ecologically-important sea urchins to commercially-valuable American lobsters and protected marine mammals. Short-term forensic investigation...
40 CFR 230.43 - Vegetated shallows.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Special Aquatic Sites § 230.43 Vegetated shallows. (a) Vegetated shallows are permanently inundated areas that under normal circumstances support communities of rooted aquatic vegetation, such as turtle grass...) releasing chemicals that adversely affect plants and animals; (4) increasing turbidity levels, thereby...
Propulsive performance of biologically inspired flapping foils at high Reynolds numbers.
Techet, Alexandra H
2008-01-01
Propulsion and maneuvering underwater by flapping foil motion, optimized through years of evolution, is ubiquitous in nature, yet marine propulsors inspired by examples of highly maneuverable marine life or aquatic birds are not widely implemented in engineering. Performance data from flapping foils, moving in a rolling and pitching motion, are presented at high Reynolds numbers, Re=Uc/nu, or O(10(4)), where U is the relative inflow velocity, c is the chord length of the foil, and nu is the kinematic viscosity of the fluid, from water tunnel experiments using a foil actuator module designed after an aquatic penguin or turtle fin. The average thrust coefficients and efficiency measurements are recorded over a range of kinematic flapping amplitudes and frequencies. Results reveal a maximum thrust coefficient of 2.09, and for low values of angle of attack the thrust generally increases with Strouhal number, without much penalty to efficiency. Strouhal number is defined as St=2h(0)f/U, where f is the frequency of flapping, and 2h(0) is the peak-to-peak amplitude of flapping. The thrust and efficiency contour plots also present a useful performance trend where, at low angles of attack, high thrust and efficiency can be gained at sufficiently high Strouhal numbers. Understanding the motion of aquatic penguins and turtle wings and emulating these motions mechanically can yield insight into the hydrodynamics of how these animals swim and also improve performance of biologically inspired propulsive devices.
The application of epidemiology in aquatic animal health -opportunities and challenges
2011-01-01
Over recent years the growth in aquaculture, accompanied by the emergence of new and transboundary diseases, has stimulated epidemiological studies of aquatic animal diseases. Great potential exists for both observational and theoretical approaches to investigate the processes driving emergence but, to date, compared to terrestrial systems, relatively few studies exist in aquatic animals. Research using risk methods has assessed routes of introduction of aquatic animal pathogens to facilitate safe trade (e.g. import risk analyses) and support biosecurity. Epidemiological studies of risk factors for disease in aquaculture (most notably Atlantic salmon farming) have effectively supported control measures. Methods developed for terrestrial livestock diseases (e.g. risk-based surveillance) could improve the capacity of aquatic animal surveillance systems to detect disease incursions and emergence. The study of disease in wild populations presents many challenges and the judicious use of theoretical models offers some solutions. Models, parameterised from observational studies of host pathogen interactions, have been used to extrapolate estimates of impacts on the individual to the population level. These have proved effective in estimating the likely impact of parasite infections on wild salmonid populations in Switzerland and Canada (where the importance of farmed salmon as a reservoir of infection was investigated). A lack of data is often the key constraint in the application of new approaches to surveillance and modelling. The need for epidemiological approaches to protect aquatic animal health will inevitably increase in the face of the combined challenges of climate change, increasing anthropogenic pressures, limited water sources and the growth in aquaculture. Table of contents 1 Introduction 4 2 The development of aquatic epidemiology 7 3 Transboundary and emerging diseases 9 3.1 Import risk analysis (IRA) 10 3.2 Aquaculture and disease emergence 11 3.3 Climate change and disease emergence 13 3.4 Outbreak investigations 13 4 Surveillance and surveys 15 4.1 Investigation of disease prevalence 15 4.2 Developments in surveillance methodology 16 4.2.1 Risk-based surveillance and scenario tree modelling 16 4.2.2 Spatial and temporal analysis 16 4.3 Test validation 17 5 Spread, establishment and impact of pathogens 18 5.1 Identifying routes of spread 18 5.1.1 Ex-ante studies of disease spread 19 5.1.2 Ex-post observational studies 21 5.2 Identifying risk factors for disease establishment 23 5.3 Assessing impact at the population level 24 5.3.1 Recording mortality 24 5.3.2 Farm health and production records 26 5.3.3 Assessing the impact of disease in wild populations 27 6 Conclusions 31 7 Competing interests 32 8 Authors' contributions 32 9 Acknowledgements 33 10 References 33 PMID:21834990
USDA-ARS?s Scientific Manuscript database
Diverse genetic resources and the genetic variability within species are the raw materials by which the productivity of aquatic species populations can be increased for food production. Due to the importance of these resources there is growing international awareness that these resources are importa...
40 CFR 160.45 - Test system supply facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... aquatic plants. (2) Facilities for plant growth, including, but not limited to greenhouses, growth chambers, light banks, and fields. (c) When appropriate, facilities for aquatic animal tests shall be... preserved by appropriate means. (b) When appropriate, plant supply facilities shall be provided. As...
Rates and patterns of molecular evolution in freshwater versus terrestrial insects.
Mitterboeck, T Fatima; Fu, Jinzhong; Adamowicz, Sarah J
2016-11-01
Insect lineages have crossed between terrestrial and aquatic habitats many times, for both immature and adult life stages. We explore patterns in molecular evolutionary rates between 42 sister pairs of related terrestrial and freshwater insect clades using publicly available protein-coding DNA sequence data from the orders Coleoptera, Diptera, Lepidoptera, Hemiptera, Mecoptera, Trichoptera, and Neuroptera. We furthermore test for habitat-associated convergent molecular evolution in the cytochrome c oxidase subunit I (COI) gene in general and at a particular amino acid site previously reported to exhibit habitat-linked convergence within an aquatic beetle group. While ratios of nonsynonymous-to-synonymous substitutions across available loci were higher in terrestrial than freshwater-associated taxa in 26 of 42 lineage pairs, a stronger trend was observed (20 of 31, p binomial = 0.15, p Wilcoxon = 0.017) when examining only terrestrial-aquatic pairs including fully aquatic taxa. We did not observe any widespread changes at particular amino acid sites in COI associated with habitat shifts, although there may be general differences in selection regime linked to habitat.
Marine invasions by non-sea snakes, with thoughts on terrestrial-aquatic-marine transitions.
Murphy, John C
2012-08-01
Few species of snakes show extensive adaptations to aquatic environments and even fewer exploit the oceans. A survey of morphology, lifestyles, and habitats of 2552 alethenophidian snakes revealed 362 (14%) that use aquatic environments, are semi-aquatic, or aquatic; about 70 (2.7%) of these are sea snakes (Hydrophiinae and Laticaudinae). The ancient and aquatic family Acrochordidae contains three extant species, all of which have populations inhabiting brackish or marine environments, as well as freshwater. The Homalopsidae have the most ecologically diverse representatives in coastal habitats. Other families containing species exploiting saline waters with populations in freshwater environments include: the Dipsadidae of the western hemisphere, the cosmopolitan Natricidae, the African Grayinae, and probably a few Colubridae. Species with aquatic and semi-aquatic lifestyles are compared with more terrestrial (fossorial, cryptozoic, and arboreal) species for morphological traits and life histories that are convergent with those found in sea snakes; this may provide clues to the evolution of marine snakes and increase our understanding of snake diversity.
Aquatic modules for bioregenerative life support systems based on the C.E.B.A.S. biotechnology
NASA Astrophysics Data System (ADS)
Bluem, Volker; Paris, Frank
2001-03-01
Most concepts for bioregenerative life support systems are based on edible higher land plants which create some problems with growth and seed generation under space conditions. Animal protein production is mostly neglected because of the tremendous waste management problems with tetrapods under reduced weightlessness. Therefore, the "Closed Equilibrated Biological Aquatic System" (C.E.B.A.S.) was developed which represents an artificial aquatic ecosystem containing aquatic organisms which are adpated at all to "near weightlessness conditions" (fishes Xiphophorus helleri, water snails Biomphalaria glabrata, ammonia oxidizing bacteria and the rootless non-gravitropic edible water plant Ceratophyllum demersum). Basically the C.E.B.A.S. consists of 4 subsystems: a ZOOLOGICASL COMPONENT (animal aquarium), a BOTANICAL COMPONENT (aquatic plant bioreactor), a MICROBIAL COMPONENT (bacteria filter) and an ELECTRONICAL COMPONENT (data acquisition and control unit). Superficially, the function principle appears simple: the plants convert light energy into chemical energy via photosynthesis thus producing biomass and oxygen. The animals and microorganisms use the oxygen for respiration and produce the carbon dioxide which is essential for plant photosynthesis. The ammonia ions excreted by the animals are converted by the bacteria to nitrite and then to nitrate ions which serve as a nitrogen source for the plants. Other essential ions derive from biological degradation of animal waste products and dead organic matter. The C.E.B.A.S. exists in 2 basic versions: the original C.E.B.A.S. with a volume of 150 liters and a self-sustaining standing time of more than 13 month and the so-called C.E.B.A.S. MINI MODULE with a volume of about 8.5 liters. In the latter there is no closed food loop by reasons of available space so that animal food has to be provided via an automated feeder. This device was flown already successfully on the STS-89 and STS-90 spaceshuttle missions and the working hypothesis was verified that aquatic organisms are nearly not affected at all by space conditions, i . e. that the plants exhibited biomass production rates identical to the ground controls and that as well the reproductive, and the immune system as the the embryonic and ontogenic development of the animals remained undisturbed. Currently the C.E.B.A.S. MINI MODLULE is prepared for a third spaceshuttle fligt (STS-107) in spring 2001. Based on the results of the space experiments a series of prototypes of aquatic food production modules for the implementation into BLSS were developed. This paper describes the scientific disposition of the STS-107 experiments and of open and closed aquaculture systems based on another aquatic plant species, the Lemnacean Wolffia arrhiza which is cultured as a vegetable in Southeastern Asia. This plant can be grown in suspension culture and several special bioreactors were developed for this purpose. W. arrhiza reproduces mainly vegetatively by buds but also sexually from time to time and is therefore especially suitable for genetic engineering, too. Therefore it was used, in addition, to optimize the C.E.B.A.S. MINI MODULE to allow experiments with a duration of 4 month in the International Space Station the basic principle of which will be explained. In the context of aquaculture systems for BLSS the continuous replacement of removed fish biomass is an essential demand. Although fish reproduction seems not to be affected in the short-term space experiments with the C.E.B.A.S. MIMI MODULE a functional and reliable hatchery for the production of siblings under reduced weightlessness is connected with some serious problems. Therefore an automated "reproduction module" for the herbivorous fish Tilapia rendalli was developed as a laboratory prototype. It is concluded that aquatic modules of different degrees of complexity can optimize the productivity of BLSS based on higher land plants and that they offer an unique opportunity for the production of animal protein in lunar or planetary bases.
Laurin, E; Thakur, K K; Gardner, I A; Hick, P; Moody, N J G; Crane, M S J; Ernst, I
2018-05-01
Design and reporting quality of diagnostic accuracy studies (DAS) are important metrics for assessing utility of tests used in animal and human health. Following standards for designing DAS will assist in appropriate test selection for specific testing purposes and minimize the risk of reporting biased sensitivity and specificity estimates. To examine the benefits of recommending standards, design information from published DAS literature was assessed for 10 finfish, seven mollusc, nine crustacean and two amphibian diseases listed in the 2017 OIE Manual of Diagnostic Tests for Aquatic Animals. Of the 56 DAS identified, 41 were based on field testing, eight on experimental challenge studies and seven on both. Also, we adapted human and terrestrial-animal standards and guidelines for DAS structure for use in aquatic animal diagnostic research. Through this process, we identified and addressed important metrics for consideration at the design phase: study purpose, targeted disease state, selection of appropriate samples and specimens, laboratory analytical methods, statistical methods and data interpretation. These recommended design standards for DAS are presented as a checklist including risk-of-failure points and actions to mitigate bias at each critical step. Adherence to standards when designing DAS will also facilitate future systematic review and meta-analyses of DAS research literature. © 2018 John Wiley & Sons Ltd.
Feeding Behavior of an Aquatic Snail as a Simple Endpoint to Assess the Exposure to Cadmium.
Alonso, Álvaro; Valle-Torres, Guillermo
2018-01-01
One of the aims of ecotoxicology is the assessment of the effects of chemicals on the ecosystems. Bioassays assessing lethality are frequently used in ecotoxicology, however they usually employ supra-environmental toxic concentrations. Toxicity tests employing behavioral endpoints may present a balance between simplicity (i.e., laboratory bioassays) and complexity (i.e., relevant ecological effects). The aim of this study was to develop a feeding behavioral bioassay with the aquatic snail, Potamopyrgus antipodarum, which included a 2 days exposure to cadmium, followed by a 9 days post-exposure observational period. Several behavioral feeding endpoints were monitored, including percentage of actively feeding animals, percentage of animals in food quadrants and a mobility index. The percentage of actively feeding animals was reduced by the four cadmium treatments (0.009, 0.026, 0.091 and 0.230 mg Cd/L) with the stronger effect in the highest concentration. The two highest cadmium concentrations significantly reduced the percentage of animals in food quadrants and the mobility index. Therefore, the percentage of actively feeding animals was the most sensitive endpoint to cadmium toxicity as the four cadmium concentrations caused a significant decrease in this endpoint. It is concluded that feeding behavior is a useful endpoint to detect the exposure of aquatic snails to cadmium.
Evolutionary Genetics of Hypoxia Tolerance in Cetaceans during Diving
Tian, Ran; Wang, Zhengfei; Niu, Xu; Zhou, Kaiya; Xu, Shixia; Yang, Guang
2016-01-01
Hypoxia was a major challenge faced by cetaceans during the course of secondary aquatic adaptation. Although physiological traits of hypoxia tolerance in cetaceans have been well characterized, the underlying molecular mechanisms remain unknown. We investigated the sequences of 17 hypoxia-tolerance-related genes in representative cetaceans to provide a comprehensive insight into the genetic basis of hypoxia tolerance in these animals. Genes involved in carrying and transporting oxygen in the blood and muscle (hemoglobin-α and β, myoglobin), and genes involved in the regulation of vasoconstriction (endothelin-1, -2, and -3; endothelin receptor type A and B; adrenergic receptor α-1D; and arginine vasopressin) appear to have undergone adaptive evolution, evidence for positive selection on their particular sites, and radical physiochemical property changes of selected condons. Interestingly, “long-diving” cetaceans had relatively higher ω (dN/dS) values than “short-diving” cetaceans for the hemoglobin β gene, indicating divergent selective pressure presented in cetacean lineages with different diving abilities. Additionally, parallel positive selection or amino acid changes (ADRA1D: P50A, A53G, AVPR1B: I/V270T) among animals exposed to different hypoxia habitats reflect functional convergence or similar genetic mechanisms of hypoxia tolerance. In summary, positive selection, divergent selective pressures, and parallel evolution at the molecular level provided some new insights into the genetic adaptation of hypoxia tolerance. PMID:26912402
Recombination in Eukaryotic Single Stranded DNA Viruses
Martin, Darren P.; Biagini, Philippe; Lefeuvre, Pierre; Golden, Michael; Roumagnac, Philippe; Varsani, Arvind
2011-01-01
Although single stranded (ss) DNA viruses that infect humans and their domesticated animals do not generally cause major diseases, the arthropod borne ssDNA viruses of plants do, and as a result seriously constrain food production in most temperate regions of the world. Besides the well known plant and animal-infecting ssDNA viruses, it has recently become apparent through metagenomic surveys of ssDNA molecules that there also exist large numbers of other diverse ssDNA viruses within almost all terrestrial and aquatic environments. The host ranges of these viruses probably span the tree of life and they are likely to be important components of global ecosystems. Various lines of evidence suggest that a pivotal evolutionary process during the generation of this global ssDNA virus diversity has probably been genetic recombination. High rates of homologous recombination, non-homologous recombination and genome component reassortment are known to occur within and between various different ssDNA virus species and we look here at the various roles that these different types of recombination may play, both in the day-to-day biology, and in the longer term evolution, of these viruses. We specifically focus on the ecological, biochemical and selective factors underlying patterns of genetic exchange detectable amongst the ssDNA viruses and discuss how these should all be considered when assessing the adaptive value of recombination during ssDNA virus evolution. PMID:21994803
2009-01-01
Olfaction is essential for the survival of animals. Versatile odour molecules in the environment are received by olfactory receptors (ORs), which form the largest multigene family in vertebrates. Identification of the entire repertories of OR genes using bioinformatics methods from the whole-genome sequences of diverse organisms revealed that the numbers of OR genes vary enormously, ranging from ~1,200 in rats and ~400 in humans to ~150 in zebrafish and ~15 in pufferfish. Most species have a considerable fraction of pseudogenes. Extensive phylogenetic analyses have suggested that the numbers of gene gains and losses are extremely large in the OR gene family, which is a striking example of the birth-and-death evolution. It appears that OR gene repertoires change dynamically, depending on each organism's living environment. For example, higher primates equipped with a well-developed vision system have lost a large number of OR genes. Moreover, two groups of OR genes for detecting airborne odorants greatly expanded after the time of terrestrial adaption in the tetrapod lineage, whereas fishes retain diverse repertoires of genes that were present in aquatic ancestral species. The origin of vertebrate OR genes can be traced back to the common ancestor of all chordate species, but insects, nematodes and echinoderms utilise distinctive families of chemoreceptors, suggesting that chemoreceptor genes have evolved many times independently in animal evolution. PMID:20038498
Vanni, Michael J; McIntyre, Peter B
2016-12-01
The metabolic theory of ecology (MTE) and ecological stoichiometry (ES) are both prominent frameworks for understanding energy and nutrient budgets of organisms. We tested their separate and joint power to predict nitrogen (N) and phosphorus (P) excretion rates of ectothermic aquatic invertebrate and vertebrate animals (10,534 observations worldwide). MTE variables (body size, temperature) performed better than ES variables (trophic guild, vertebrate classification, body N:P) in predicting excretion rates, but the best models included variables from both frameworks. Size scaling coefficients were significantly lower than predicted by MTE (<0.75), were lower for P than N, and varied greatly among species. Contrary to expectations under ES, vertebrates excreted both N and P at higher rates than invertebrates despite having more nutrient-rich bodies, and primary consumers excreted as much nutrients as carnivores despite having nutrient-poor diets. Accounting for body N:P hardly improved upon predictions from treating vertebrate classification categorically. We conclude that basic data on body size, water temperature, trophic guild, and vertebrate classification are sufficient to make general estimates of nutrient excretion rates for any animal taxon or aquatic ecosystem. Nonetheless, dramatic interspecific variation in size-scaling coefficients and counter-intuitive patterns with respect to diet and body composition underscore the need for field data on consumption and egestion rates. Together, MTE and ES provide a powerful conceptual basis for interpreting and predicting nutrient recycling rates of aquatic animals worldwide. © 2016 by the Ecological Society of America.
Wei, Lee Seong; Wee, Wendy
2013-01-01
Background & Objectives This paper describes chemical composition and antimicrobial activity of Cymbopogon nardus citronella essential oil against Edwardsiella spp. (n = 21), Vibrio spp. (n = 6), Aeromonas spp. (n = 2), Escherichia coli (n = 2), Salmonella spp. (n = 2), Flavobacterium spp. (n = 1), Pseudomonas spp. (n = 1) and Streptococcus spp. (n = 1) isolated from internal organs of aquatic animals. Due to the ban of antibiotics for aquaculture use, this study was carried out to evaluate the potential of citronella essential oil as alternative to commercial antibiotic use against systemic bacteria in cultured aquatic animals. Materials & Methods The essential oil of C. nardus was prepared by using the steam distillation method and the chemical composition of the essential oil was analyzed by gas chromatography–mass spectroscopy (GC–MS). Minimum inhibitory concentration (MIC) of the essential oil tested against bacterial isolates from various aquatic animals and ATCC type strains were determined using two-fold broth micro dilution method with kanamycin and eugenol as positive controls. Results A total of 22 chemical compounds were detected in C. nardus essential oil with 6-octenal, 3, 7-dimethyl- or citronellal representing the major compounds (29.6%). The MIC values of the citronella oil ranged from 0.244 µg/ml to 0.977 µg/ml when tested against the bacterial isolates. Conclusion The results of the present study revealed the potential of C. nardus essential oil as alternative to commercial antibiotics for aquaculture use. PMID:23825733
THE ROLE OF MAMMALIAN DATA IN DETERMINING PHARMACEUTICAL RESPONSES IN AQUATIC ORGANISMS
The limitations surrounding application of pharmaceutical data are restricted to extrapolation of the animal and human data across phyla. Experience dictates that mammalian data are most likely to extrapolate predictably to fish and other aquatic vertebrates (e.g. Amphibia), and ...
Aquatic Acoustic Metrics Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
2012-12-18
Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR) devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. The new Aquatic Acoustic Metrics Interface Utility Software (AAMI) is specifically designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals.more » In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame.« less
Patumcharoenpol, Preecha; Rujirawat, Thidarat; Lohnoo, Tassanee; Yingyong, Wanta; Vanittanakom, Nongnuch; Kittichotirat, Weerayuth; Krajaejun, Theerapong
2018-02-01
Pythium insidiosum is an aquatic oomycete microorganism that causes the fatal infectious disease, pythiosis, in humans and animals. The organism has been successfully isolated from the environment worldwide. Diagnosis and treatment of pythiosis is difficult and challenging. Genome sequences of P. insidiosum , isolated from humans, are available and accessible in public databases. To further facilitate biology-, pathogenicity-, and evolution-related genomic and genetic studies of P. insidiosum , we report two additional draft genome sequences of the P. insidiosum strain CBS 573.85 (35.6 Mb in size; accession number, BCFO00000000.1) isolated from a horse with pythiosis, and strain CR02 (37.7 Mb in size; accession number, BCFR00000000.1) isolated from the environment.
Deep phylogeny and evolution of sponges (phylum Porifera).
Wörheide, G; Dohrmann, M; Erpenbeck, D; Larroux, C; Maldonado, M; Voigt, O; Borchiellini, C; Lavrov, D V
2012-01-01
Sponges (phylum Porifera) are a diverse taxon of benthic aquatic animals of great ecological, commercial, and biopharmaceutical importance. They are arguably the earliest-branching metazoan taxon, and therefore, they have great significance in the reconstruction of early metazoan evolution. Yet, the phylogeny and systematics of sponges are to some extent still unresolved, and there is an on-going debate about the exact branching pattern of their main clades and their relationships to the other non-bilaterian animals. Here, we review the current state of the deep phylogeny of sponges. Several studies have suggested that sponges are paraphyletic. However, based on recent phylogenomic analyses, we suggest that the phylum Porifera could well be monophyletic, in accordance with cladistic analyses based on morphology. This finding has many implications for the evolutionary interpretation of early animal traits and sponge development. We further review the contribution that mitochondrial genes and genomes have made to sponge phylogenetics and explore the current state of the molecular phylogenies of the four main sponge lineages (Classes), that is, Demospongiae, Hexactinellida, Calcarea, and Homoscleromorpha, in detail. While classical systematic systems are largely congruent with molecular phylogenies in the class Hexactinellida and in certain parts of Demospongiae and Homoscleromorpha, the high degree of incongruence in the class Calcarea still represents a challenge. We highlight future areas of research to fill existing gaps in our knowledge. By reviewing sponge development in an evolutionary and phylogenetic context, we support previous suggestions that sponge larvae share traits and complexity with eumetazoans and that the simple sedentary adult lifestyle of sponges probably reflects some degree of secondary simplification. In summary, while deep sponge phylogenetics has made many advances in the past years, considerable efforts are still required to achieve a comprehensive understanding of the relationships among and within the main sponge lineages to fully appreciate the evolution of this extraordinary metazoan phylum. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effects of Geometry and Kinematics on Animals Leaping Out of Water
NASA Astrophysics Data System (ADS)
Chang, Brian; Myeong, Jihye; Virot, Emmanuel; Kim, Ho-Young; Jung, Sunghwan
2017-11-01
Leaping out of water is a phenomenon exhibited by a variety of aquatic and semi-aquatic animals, such as frogs and whales. In this study, we aim to elucidate the effects of geometric and kinematic conditions on the propulsive and drag force required for an animal to jump through the water interface. A simple mechanism was designed to measure the propulsive thrust produced by a flapping appendage. In a separate experiment to measure the opposing drag, simplified models of animals are 3D printed and fitted with pressure sensors. The model is accelerated from rest and covers a range of Re from 103 to 105. Using a high-speed camera and pressure sensors, we observed a deformation of the free surface prior to water exit, and correlated this to the drag force. Finally, we discuss a scaling law to describe the general physics which allow animals to leap out of water. NSF EAPSI.
Purcell, Maureen K.; Getchell, Rodman G.; McClure, Carol A.; Weber, S.E.; Garver, Kyle A.
2011-01-01
Real-time, or quantitative, polymerase chain reaction (qPCR) is quickly supplanting other molecular methods for detecting the nucleic acids of human and other animal pathogens owing to the speed and robustness of the technology. As the aquatic animal health community moves toward implementing national diagnostic testing schemes, it will need to evaluate how qPCR technology should be employed. This review outlines the basic principles of qPCR technology, considerations for assay development, standards and controls, assay performance, diagnostic validation, implementation in the diagnostic laboratory, and quality assurance and control measures. These factors are fundamental for ensuring the validity of qPCR assay results obtained in the diagnostic laboratory setting.
ERIC Educational Resources Information Center
Kramer, David S.
1985-01-01
Points out that snails are interesting and easily-managed classroom animals. One advantage of this animal is that it requires no special attention over weekends or holidays. Background information, anatomy, reproduction, and feeding are discussed, along with suggestions for housing aquatic and/or land snails. (DH)
A global database of nitrogen and phosphorus excretion rates of aquatic animals
Animals can be important in modulating ecosystem-level nutrient cycling, although their importance varies greatly among species and ecosystems. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Met...
40 CFR 792.45 - Test system supply facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... maintaining algae and aquatic plants. (2) Facilities, as specified in the protocol, for plant growth... supplies shall be preserved by appropriate means. (b) When appropriate, plant supply facilities shall be..., facilities for aquatic animal tests shall be provided. These include but are not limited to aquaria, holding...
Gujjar, Naveen; Chothe, Shubhada K; Gawai, Shashikant; Nissly, Ruth; Bhushan, Gitanjali; Kanagaraj, Vijayarani; Jayarao, Bhushan M; Kathaperumal, Kumanan; Subbiah, Madhuri; Kuchipudi, Suresh V
2017-01-01
Influenza A viruses (IAVs) continue to threaten animal and human health with constant emergence of novel variants. While aquatic birds are a major reservoir of most IAVs, the role of other terrestrial birds in the evolution of IAVs is becoming increasingly evident. Since 2006, several reports of IAV isolations from emus have surfaced and avian influenza infection of emus can lead to the selection of mammalian like PB2-E627K and PB2-D701N mutants. However, the potential of emus to be co-infected with avian and mammalian IAVs is not yet understood. As a first step, we investigated sialic acid (SA) receptor distribution across major organs and body systems of emu and found a widespread co-expression of both SAα2,3Gal and SAα2,6Gal receptors in various tissues that are compatible with avian and human IAV binding. Our results suggest that emus could allow genetic recombination and hence play an important role in the evolution of IAVs. Copyright © 2016 Elsevier Inc. All rights reserved.
9 CFR 93.910 - General restrictions; exceptions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... (type IV) strain of VHS virus under natural (i.e., non-controlled) conditions of exposure and from which... World Health Organization for Animal Health by the country's competent authority for aquatic animal...
9 CFR 93.910 - General restrictions; exceptions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... (type IV) strain of VHS virus under natural (i.e., non-controlled) conditions of exposure and from which... World Health Organization for Animal Health by the country's competent authority for aquatic animal...
9 CFR 93.910 - General restrictions; exceptions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... (type IV) strain of VHS virus under natural (i.e., non-controlled) conditions of exposure and from which... World Health Organization for Animal Health by the country's competent authority for aquatic animal...
9 CFR 93.910 - General restrictions; exceptions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... (type IV) strain of VHS virus under natural (i.e., non-controlled) conditions of exposure and from which... World Health Organization for Animal Health by the country's competent authority for aquatic animal...
9 CFR 93.910 - General restrictions; exceptions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (type IV) strain of VHS virus under natural (i.e., non-controlled) conditions of exposure and from which... World Health Organization for Animal Health by the country's competent authority for aquatic animal...
NASA Astrophysics Data System (ADS)
Uemoto, H.; Shoji, T.; Uchida, S.
2014-04-01
The biological filter capable of simultaneous nitrification and denitrification was constructed for aquatic animal experiments in the International Space Station (ISS). The biological filter will be used to remove harmful ammonia excreted from aquatic animals in a closed water circulation system (Aquatic Habitat). The biological filter is a cylindrical tank packed with porous glass beads for nitrification and dual plastic bags for denitrification. The porous beads are supporting media for Nitrosomonas europaea and Nitrobacter winogradskyi. The N. europaea cells and N. winogradskyi cells on the porous beads, oxidize the excreted ammonia to nitrate via nitrite. On the other hand, the dual bag is composed of an outer non-woven fabric bag and an inner non-porous polyethylene film bag. The outer bag is supporting media for Paracoccus pantotrophus. The inner bag, in which 99.5% ethanol is packed, releases the ethanol slowly, since ethanol can permeate through the non-porous polyethylene film. The P. pantotrophus cells on the outer bag reduce the produced nitrate to nitrogen gas by using the released ethanol as an electron donor for denitrification. The biological filter constructed in this study consequently removed the ammonia without accumulating nitrate. Most of the excess ethanol was consumed and did not affect the nitrification activity of the N. europaea cells and N. winogradskyi cells severely. In accordance with the aquatic animal experiments in the ISS, small freshwater fish had been bred in the closed water circulation system equipped with the biological filter for 90 days. Ammonia concentration daily excreted from fish is assumed to be 1.7 mg-N/L in the recirculation water. Under such conditions, the harmful ammonia and nitrite concentrations were kept below 0.1 mg-N/L in the recirculation water. Nitrate and total organic carbon concentrations in the recirculation water were kept below 5 mg-N/L and 3 mg-C/L, respectively. All breeding fish were alive and ate the feed well. The results show that the nitrification and denitrification abilities of the biological filter sufficed to keep water quality for aquatic animal experiments in the ISS. This simple and effective system is certainly applicable to aquarium systems and aquaculture systems.
Many active pharmaceutical ingredients (APIs) have been detected in aquatic systems around the world. These systems typically receive continual municipal sewage inputs, which results in pseudo-persistent exposures of aquatic animals to APIs, thus enhancing their bioaccumulative p...
USDA-ARS?s Scientific Manuscript database
Toxoplasma gondii is an important pathogen in aquatic mammals and its presence in these animals may indicate water contamination of aquatic environment by oocysts. Serum samples from 95 dolphins from free-living Amazon River dolphins (Inia geoffrensis) from Sustainable Development Reserve Mamirauá (...
USDA-ARS?s Scientific Manuscript database
Toxoplasma gondii is an important pathogen in aquatic mammals and its presence in these animals may indicate water contamination of aquatic environment by oocysts. Serum samples from 95 dolphins from free-living Amazon River dolphins (Inia geoffrensis) from Sustainable Development Reserve Mamirauá (...
USEPA’s Office of Water (OW) and Office of Pesticide Programs (OPP) are both charged with assessing risks of chemicals to aquatic species. The offices have developed scientifically defensible methods to assess chemicals under the Clean Water Act (CWA) and the Federal Insecticide...
40 CFR 160.43 - Test system care facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (1) In tests with plants or aquatic animals, proper separation of species can be accomplished within..., aquarium, or housing unit. (2) Aquatic toxicity tests for individual projects shall be isolated to the... protocol. (h) For plants, an adequate supply of soil of the appropriate composition, as specified in the...
NASA Astrophysics Data System (ADS)
Rice, S. P.
2012-04-01
The impact on sediment transport processes and channel morphology of several relatively large, iconic animals including beaver and salmon is increasingly well understood. However, many other aquatic fauna are important zoogeomorphic agents and ecosystem engineers. These somewhat overlooked "Cinderella" species include benthic aquatic insect larvae, freshwater crustaceans and many species of fish. Despite relatively modest individual effects, the ubiquity, abundance and cumulative impact of these organisms makes them a potentially significant agency, with as yet undiscovered and unquantified impacts on channel morphology and sediment fluxes. Their actions (digging, foraging, moving, burrowing), constructions and secretions modify bed sediment characteristics (grain size distribution, interlock, imbrication, protrusion), alter bed topography (thence hydraulic roughness) and contribute to biogenic restraints on grain movement. In turn, they can affect the distribution of surface particle entrainment thresholds and bed shear stresses, with implications for bed load transport. Flume experiments have measured some of these impacts and provided direct observations of the mechanisms involved, but many of the most interesting research questions pertain to the impact of these animals at reach, catchment and even landscape scales: Not least, what is the impact of small aquatic animals on bed load flux and yield? This presentation will consider some of the challenges involved in answering this question; that is, of scaling up experimental understanding of how aquatic animals affect bed load transport processes to river scales. Pertinent themes include: (1) the potential impacts of experimental arrangements on the behaviours and activities that affect hydraulic or geomorphological processes; (2) field coincidence of the spatial and temporal distributions of (a) the animals and their behaviours with (b) the physical conditions (substrates, flows) under which those animals are understood to have an effect; (3) the magnitude of any demonstrable net field impact, relative to those other factors that control bed load transport rates.
Observing copepods through a genomic lens
2011-01-01
Background Copepods outnumber every other multicellular animal group. They are critical components of the world's freshwater and marine ecosystems, sensitive indicators of local and global climate change, key ecosystem service providers, parasites and predators of economically important aquatic animals and potential vectors of waterborne disease. Copepods sustain the world fisheries that nourish and support human populations. Although genomic tools have transformed many areas of biological and biomedical research, their power to elucidate aspects of the biology, behavior and ecology of copepods has only recently begun to be exploited. Discussion The extraordinary biological and ecological diversity of the subclass Copepoda provides both unique advantages for addressing key problems in aquatic systems and formidable challenges for developing a focused genomics strategy. This article provides an overview of genomic studies of copepods and discusses strategies for using genomics tools to address key questions at levels extending from individuals to ecosystems. Genomics can, for instance, help to decipher patterns of genome evolution such as those that occur during transitions from free living to symbiotic and parasitic lifestyles and can assist in the identification of genetic mechanisms and accompanying physiological changes associated with adaptation to new or physiologically challenging environments. The adaptive significance of the diversity in genome size and unique mechanisms of genome reorganization during development could similarly be explored. Genome-wide and EST studies of parasitic copepods of salmon and large EST studies of selected free-living copepods have demonstrated the potential utility of modern genomics approaches for the study of copepods and have generated resources such as EST libraries, shotgun genome sequences, BAC libraries, genome maps and inbred lines that will be invaluable in assisting further efforts to provide genomics tools for copepods. Summary Genomics research on copepods is needed to extend our exploration and characterization of their fundamental biological traits, so that we can better understand how copepods function and interact in diverse environments. Availability of large scale genomics resources will also open doors to a wide range of systems biology type studies that view the organism as the fundamental system in which to address key questions in ecology and evolution. PMID:21933388
9 CFR 93.911 - Ports designated for the importation of live VHS-regulated fish species.
Code of Federal Regulations, 2011 CFR
2011-01-01
... PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS... ANIMAL, BIRD, AND POULTRY PRODUCTS; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Aquatic...
A global database of nitrogen and phosphorus excretion rates of aquatic animals
USDA-ARS?s Scientific Manuscript database
Animals can be important in modulating ecosystem-level nutrient cycling, although their importance varies greatly among species and ecosystems. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Eco...
Review of marine animals and bioinspired robotic vehicles: Classifications and characteristics
NASA Astrophysics Data System (ADS)
Zimmerman, S.; Abdelkefi, A.
2017-08-01
Marine robots are a developing topic for military, scientific, and environmental missions. However, most existing marine robots are either limited to flight or limited to swimming. Therefore, the combination of both provides endless possibilities for tasks, such as espionage, pollution and marine wildlife surveillance, and border protection. Applying bioinspiration and biomimetics not only camouflages the robot, but also increases the efficiency of already perfected designs. Because bioinspiration and aerial-aquatic locomotion are the main attraction for this article, this review gathers the characteristics of aerial-aquatic animals useful for such designs. These animals are diving birds and flying fish, specifically plunge-diving birds, surface-diving birds, both plunge- and surface-diving birds, two-winger flying fish, and four-winger flying fish. The overview of the current marine bioinspired and non-bioinspired robots that are both aerial and aquatic are also presented, followed by the limitations and recommendations of the bioinspired robots. It is shown by a comparison between the bioinspired robot and its corresponding animal that the existing robotic systems are not truly bioinspired. The main traits these systems are missing are replicating the exact weight, size, muscle movement, and skin texture of the biological animal. In order to have efficient robots, bioinspiration needs to be perfected. Doing so requires not only the basic design to be replicated, but every detail of the system to be imitated.
Dietary options and behavior suggested by plant biomarker evidence in an early human habitat
NASA Astrophysics Data System (ADS)
Magill, Clayton R.; Ashley, Gail M.; Domínguez-Rodrigo, Manuel; Freeman, Katherine H.
2016-03-01
The availability of plants and freshwater shapes the diets and social behavior of chimpanzees, our closest living relative. However, limited evidence about the spatial relationships shared between ancestral human (hominin) remains, edible resources, refuge, and freshwater leaves the influence of local resources on our species' evolution open to debate. Exceptionally well-preserved organic geochemical fossils-biomarkers-preserved in a soil horizon resolve different plant communities at meter scales across a contiguous 25,000 m2 archaeological land surface at Olduvai Gorge from about 2 Ma. Biomarkers reveal hominins had access to aquatic plants and protective woods in a patchwork landscape, which included a spring-fed wetland near a woodland that both were surrounded by open grassland. Numerous cut-marked animal bones are located within the wooded area, and within meters of wetland vegetation delineated by biomarkers for ferns and sedges. Taken together, plant biomarkers, clustered bone debris, and hominin remains define a clear spatial pattern that places animal butchery amid the refuge of an isolated forest patch and near freshwater with diverse edible resources.
Selenium toxicity: cause and effects in aquatic birds
Spallholz, J.E.; Hoffman, D.J.
2002-01-01
There are several manners in which selenium may express its toxicity: (1) an important mechanism appears to involve the formation of CH3Se- which either enters a redox cycle and generates superoxide and oxidative stress, or forms free radicals that bind to and inhibit important enzymes and proteins. (2) Excess selenium as selenocysteine results in inhibition of selenium methylation metabolism. As a consequence, concentrations of hydrogen selenide, an intermediate metabolite, accumulate in animals and are hepatotoxic, possibly causing other selenium-related adverse effects. (3) It is also possible that the presence of excess selenium analogs of sulfur-containing enzymes and structural proteins play a role in avian teratogenesis. l-selenomethionine is the most likely major dietary form of selenium encountered by aquatic birds, with lesser amounts of l-selenocysteine ingested from aquatic animal foods. The literature is suggestive that l-selenomethionine is not any more toxic to adult birds than other animals. l-Selenomethionine accumulates in tissue protein of adult birds and in the protein of egg white as would be expected to occur in animals. There is no suggestion from the literature that the levels of l-selenomethionine that would be expected to accumulate in eggs in the absence of environmental concentration of selenium pose harm to the developing embryo. For several species of aquatic birds, levels of Se as selenomethionine in the egg above 3 ppm on a wet weight basis result in reduced hatchability and deformed embryos. The toxicity of l-selenomethionine injected directly into eggs is greater than that found from the entry of l-selenomethionine into the egg from the normal adult diet. This suggests that there is unusual if not abnormal metabolism of l-selenomethionine in the embryo not seen when l-selenomethionine is present in egg white protein where it likely serves as a source of selenium for glutathione peroxidase synthesis in the developing aquatic chick.
Disease-protective symbiosis among fishes and other aquatic animals
Snieszko, S.F.
1962-01-01
There have been numerous observations of one species of animal removing parasites from another. These are, however, generally regarded as biological curiosities rather than as significant factors in the control of parasites or disease.
Development of Guidelines for Contaminated Soil and Groundwater at US army Installations
1978-01-01
potential for a contaminant to ml- and DCPD than laboratory animals. DCPD is about 10 grate to off-post surface waters . Aquatic tests are times more... water 0.5 1.3 Water : for recreation 5 13 Water : to protect aquatic life 12.5 0.5 Water : for irrigation 20 20 static bioassays, with 96-hour LC50’s...temporary guidelines for food, drinking water , and water for irrigation, recreation and aquatic life. Ultimately, guidelines will be developed for soil and
ERIC Educational Resources Information Center
Weigel, Margaret
Designed to acquaint students in grades 4-9 with aquatic plants and animals, this guide provides materials which can be used in preparation for field trips or laboratory work, for individual projects, as supplemental activities for a unit, or for learning center projects. Teacher background notes and an answer key for the student activites are…
Exotic aquatic and terrestrial animals in the Hoosier-Shawnee ecological assessment area
Brooks M. Burr; Cynthia M. Basile; Ginny L. Adams; Matthew C. Nicholson
2004-01-01
We reviewed the impact of exotic aquatic and terrestrial wildlife on ecosystems within the Hoosier-Shawnee Ecological Assessment Area. Recent collections within the assessment area have demonstrated that faunal diversity is expanding rapidly from the intentional and unintentional release of nonindigenous species. We report on the origin, status, trends, habitat...
Aquatic Habitats: Exploring Desktop Ponds. Teacher's Guide.
ERIC Educational Resources Information Center
Barrett, Katharine; Willard, Carolyn
This book, for grades 2-6, is designed to provide students with a highly motivating and unique opportunity to investigate an aquatic habitat. Students set up, observe, study, and reflect upon their own "desktop ponds." Accessible plants and small animals used in these activities include Elodea, Tubifex worms, snails, mosquito larvae, and fish.…
Ismail, Nur Afifah Hanun; Wee, Sze Yee; Aris, Ahmad Zaharin
2017-12-01
Fishes are a major protein food source for humans, with a high economic value in the aquaculture industry. Because endocrine disrupting compounds (EDCs) have been introduced into aquatic ecosystems, the exposure of humans and animals that depend on aquatic foods, especially fishes, should be seriously considered. EDCs are emerging pollutants causing global concern because they can disrupt the endocrine system in aquatic organisms, mammals, and humans. These pollutants have been released into the environment through many sources, e.g., wastewater treatment plants, terrestrial run-off (industrial activities, pharmaceuticals, and household waste), and precipitation. The use of pharmaceuticals, pesticides, and fertilizers for maintaining and increasing fish health and growth also contributes to EDC pollution in the water body. Human and animal exposure to EDCs occurs via ingestion of contaminated matrices, especially aquatic foodstuffs. This paper aims to review human EDC exposure via fish consumption. In respect to the trace concentration of EDCs in fish, types of instrument and clean-up method are of great concerns. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of environmental stressors on lipid metabolism in aquatic invertebrates.
Lee, Min-Chul; Park, Jun Chul; Lee, Jae-Seong
2018-07-01
Lipid metabolism is crucial for the survival and propagation of the species, since lipids are an essential cellular component across animal taxa for maintaining homeostasis in the presence of environmental stressors. This review aims to summarize information on the lipid metabolism under environmental stressors in aquatic invertebrates. Fatty acid synthesis from glucose via de novo lipogenesis (DNL) pathway is mostly well-conserved across animal taxa. The structure of free fatty acid (FFA) from both dietary and DNL pathway could be transformed by elongase and desaturase. In addition, FFA can be stored in lipid droplet as triacylglycerol, upon attachment to glycerol. However, due to the limited information on both gene and lipid composition, in-depth studies on the structural modification of FFA and their storage conformation are required. Despite previously validated evidences on the disturbance of the normal life cycle and lipid homeostasis by the environmental stressors (e.g., obesogens, salinity, temperature, pCO 2 , and nutrients) in the aquatic invertebrates, the mechanism behind these effects are still poorly understood. To overcome this limitation, omics approaches such as transcriptomic and proteomic analyses have been used, but there are still gaps in our knowledge on aquatic invertebrates as well as the lipidome. This paper provides a deeper understanding of lipid metabolism in aquatic invertebrates. Copyright © 2018 Elsevier B.V. All rights reserved.
Methodological approaches for nanotoxicology using cnidarian models.
Ambrosone, Alfredo; Tortiglione, Claudia
2013-03-01
The remarkable amenability of aquatic invertebrates to laboratory manipulation has already made a few species belonging to the phylum Cnidaria as attracting systems for exploring animal development. The proliferation of molecular and genomic tools, including the whole genomic sequence of the freshwater polyp Hydra vulgaris and the starlet sea anemone Nematostella vectensis, further enhances the promise of these species to investigate the evolution of key aspects of development biology. In addition, the facility with which cnidarian population can be investigated within their natural ecological context suggests that these models may be profitably expanded to address important questions in ecology and toxicology. In this review, we explore the traits that make Hydra and Nematostella exceptionally attractive model organisms in context of nanotoxicology, and highlight a number of methods and developments likely to further increase that utility in the near future.
Environmental dermatology: skin manifestations of injuries caused by invertebrate aquatic animals*
Haddad Junior, Vidal
2013-01-01
Contact between humans and coastal areas has increased in recent decades, which has led to an increase in injuries from aquatic animals. The majority of these present dermatological manifestations, and some of them show typical lesions. The highest percentages of injuries that occur in marine environments are associated with invertebrates such as sea urchins, jellyfish and Portuguese men-of-war (echinoderms and cnidarians). In this review, we discuss the clinical, therapeutic and preventive aspects of injuries caused by marine and freshwater invertebrates, focusing on first aid measures and diagnosis for dermatologists and professionals in coastal areas. PMID:24068119
The Evolutionary History of Daphniid α-Carbonic Anhydrase within Animalia
Culver, Billy W.; Morton, Philip K.
2015-01-01
Understanding the mechanisms that drive acid-base regulation in organisms is important, especially for organisms in aquatic habitats that experience rapidly fluctuating pH conditions. Previous studies have shown that carbonic anhydrases (CAs), a family of zinc metalloenzymes, are responsible for acid-base regulation in many organisms. Through the use of phylogenetic tools, this present study attempts to elucidate the evolutionary history of the α-CA superfamily, with particular interest in the emerging model aquatic organism Daphnia pulex. We provide one of the most extensive phylogenies of the evolution of α-CAs, with the inclusion of 261 amino acid sequences across taxa ranging from Cnidarians to Homo sapiens. While the phylogeny supports most of our previous understanding on the relationship of how α-CAs have evolved, we find that, contrary to expectations, amino acid conservation with bacterial α-CAs supports the supposition that extracellular α-CAs are the ancestral state of animal α-CAs. Furthermore, we show that two cytosolic and one GPI-anchored α-CA in Daphnia genus have homologs in sister taxa that are possible candidate genes to study for acid-base regulation. In addition, we provide further support for previous findings of a high rate of gene duplication within Daphnia genus, as compared with other organisms. PMID:25893130
Fusi, Marco; Cannicci, Stefano; Daffonchio, Daniele; Mostert, Bruce; Pörtner, Hans-Otto; Giomi, Folco
2016-01-01
The principle of oxygen and capacity limitation of thermal tolerance in ectotherms suggests that the long-term upper limits of an organism's thermal niche are equivalent to the upper limits of the organism's functional capacity for oxygen provision to tissues. Air-breathing ectotherms show wider thermal tolerances, since they can take advantage of the higher availability of oxygen in air than in water. Bimodal species move from aquatic to aerial media and switch between habitats in response to environmental variations such as cyclical or anomalous temperature fluctuations. Here we tested the prediction that bimodal species cope better with thermal stress than truly aquatic species using the crab Pachygrapsus marmoratus as a model species. When in water, oxygen consumption rates of P. marmoratus acutely rise during warming. Beyond a temperature threshold of 23 °C the crab's aerobic metabolism in air remains lower than in water. In parallel, the haemolymph oxygen partial pressure of submerged animals progressive decreases during warming, while it remains low but constant during emersion. Our results demonstrate the ability of a bimodal breathing ectotherm to extend its thermal tolerance during air-breathing, suggesting that there are temperature-related physiological benefits during the evolution of the bimodal life style. PMID:26758742
Fusi, Marco; Cannicci, Stefano; Daffonchio, Daniele; Mostert, Bruce; Pörtner, Hans-Otto; Giomi, Folco
2016-01-13
The principle of oxygen and capacity limitation of thermal tolerance in ectotherms suggests that the long-term upper limits of an organism's thermal niche are equivalent to the upper limits of the organism's functional capacity for oxygen provision to tissues. Air-breathing ectotherms show wider thermal tolerances, since they can take advantage of the higher availability of oxygen in air than in water. Bimodal species move from aquatic to aerial media and switch between habitats in response to environmental variations such as cyclical or anomalous temperature fluctuations. Here we tested the prediction that bimodal species cope better with thermal stress than truly aquatic species using the crab Pachygrapsus marmoratus as a model species. When in water, oxygen consumption rates of P. marmoratus acutely rise during warming. Beyond a temperature threshold of 23 °C the crab's aerobic metabolism in air remains lower than in water. In parallel, the haemolymph oxygen partial pressure of submerged animals progressive decreases during warming, while it remains low but constant during emersion. Our results demonstrate the ability of a bimodal breathing ectotherm to extend its thermal tolerance during air-breathing, suggesting that there are temperature-related physiological benefits during the evolution of the bimodal life style.
Ibrahem, Mai D.
2013-01-01
The increase in the human population in addition to the massive demand for protein of animal origin forced the authorities to seek for additional sources of feed supplies. Aquaculture is the world worth coming expansion to compensate the shortage in animal protein. Feed in aquaculture plays an important role in the production cycle and exert threshold on both practical and economic aspects. Feed additive sectors are expanding day after day to achieve better growth and health for fish and shrimp and to meet the potential requirements of the culturists. Probiotic proved its successes in human and animal feeding practices and recently gained attention in aquaculture; it has beneficial effects in diseases control and competes with various environmental stressors as well as to promote the growth of the cultured organisms. Probiotics have the privilege to manipulate the non-specific innate immunity among fishes, hence help them into resist many pathogenic agents and are actively used worldwide. The present review is an informative compilation of the probiotics, their mode of action and their useful effects on fishes. The review also highlights the status of probiotics in aquaculture of Egypt, probiotic recent prospective for the possible role of probiotics in fish external and internal environment. PMID:26644914
Are Aquatic Viruses a Biological Archive of Genetic Information from Universe?
NASA Astrophysics Data System (ADS)
Toparceanu, F.; Negoita, Gh. T.; Nita, I. I.; Sava, D.
2009-04-01
After 1990, when the viruses were admited as the most abundant lifeforms from aquatic environments, it became obvious that viral lysis had an essential role on release and recycling of nutrients. Studies on cellular cultures and modeling suggest that this is an important quantitative process. The viruses from oceans represent the widest source of genetic diversity on the Earth, uncharacterized yet. The ancient lifeforms records stretching back a million years are locked in ice caps. The trend of glaciers melting as effect of actual climate change will promote the release of ancient viruses from ice caps. The increasing of the freshwater layer led to the replace of some algae species by others. Law-Racovitza Station (69o23'S 76o23'E) from East Antarctica (Larsemann Hills Oasis) offers opportunities to study the Antarctic marine ecosystem, as well as archaic aquatic ecosystems from this area ( 150 lakes and waterways resulted from ice and snow melting during the austral summer). According to Law-Racovitza Station Scientific Program, we are performing studies regarding the effect of climate changes on virus-algae host relationship in these aquatic ecosystems. Phycodnaviruses, that infect the eukaryote algae, are comprised of ancient genes and they are considered a "peek" of genetic diversity useful in biological studies and exobiology regarding the evolution of genetic sequencing. The latest discoveries of the giant aquatic viruses open the unexpected perspectives for understanding the role of viral infection in global ecosystem; beyond the old concept which considered that the viruses were only etiological agents of human, animals and plants illnesses. The aquatic viruses which infect microalgae contain similar genes of other viruses, bacteria, arhebacteria and eukaryotes, all of them being on the same genome. Which is the signification of enormous abundance of viruses and excessive diversity of genetic information encoded by viruses? There is the possibility that the viruses to be a biological archive which contains all genetic information of the whole Earth? So, there are a lot of questions and we are attempting to find answers in the present work which will be examined in the framework of the project entitled ,,The structure and dynamics of polar ecosystems: interhemispheric comparisons of micro, macroflora and biogeochemical processes in relation to climate change" (PolarCLIMATE programme of ESF PP-039/24.11.2008) coordinated by Romania.
Bluem, V; Paris, F
2001-01-01
Most concepts for bioregenerative life support systems are based on edible higher land plants which create some problems with growth and seed generation under space conditions. Animal protein production is mostly neglected because of the tremendous waste management problems with tetrapods under reduced weightlessness. Therefore, the "Closed Equilibrated Biological Aquatic System" (C.E.B.A.S.) was developed which represents an artificial aquatic ecosystem containing aquatic organisms which are adapted at all to "near weightlessness conditions" (fishes Xiphophorus helleri, water snails Biomphalaria glabrata, ammonia oxidizing bacteria and the rootless non-gravitropic edible water plant Ceratophyllum demersum). Basically the C.E.B.A.S. consists of 4 subsystems: a ZOOLOGICAL (correction of ZOOLOGICASL) COMPONENT (animal aquarium), a BOTANICAL COMPONENT (aquatic plant bioreactor), a MICROBIAL COMPONENT (bacteria filter) and an ELECTRONICAL COMPONENT (data acquisition and control unit). Superficially, the function principle appears simple: the plants convert light energy into chemical energy via photosynthesis thus producing biomass and oxygen. The animals and microorganisms use the oxygen for respiration and produce the carbon dioxide which is essential for plant photosynthesis. The ammonia ions excreted by the animals are converted by the bacteria to nitrite and then to nitrate ions which serve as a nitrogen source for the plants. Other essential ions derive from biological degradation of animal waste products and dead organic matter. The C.E.B.A.S. exists in 2 basic versions: the original C.E.B.A.S. with a volume of 150 liters and a self-sustaining standing time of more than 13 month and the so-called C.E.B.A.S. MINI MODULE with a volume of about 8.5 liters. In the latter there is no closed food loop by reasons of available space so that animal food has to be provided via an automated feeder. This device was flown already successfully on the STS-89 and STS-90 spaceshuttle missions and the working hypothesis was verified that aquatic organisms are nearly not affected at all by space conditions, i.e. that the plants exhibited biomass production rates identical to the sound controls and that as well the reproductive, and the immune system as the embryonic and ontogenic development of the animals remained undisturbed. Currently the C.E.B.A.S. MINI MODLULE is prepared for a third spaceshuttle flight (STS-107) in spring 2001. Based on the results of the space experiments a series of prototypes of aquatic food production modules for the implementation into BLSS were developed. This paper describes the scientific disposition of the STS-107 experiment and of open and closed aquaculture systems based on another aquatic plant species, the Lemnacean Wolffia arrhiza which is cultured as a vegetable in Southeastern Asia. This plant can be grown in suspension culture and several special bioreactors were developed for this purpose. W. arrhiza reproduces mainly vegetatively by buds but also sexually from time to time and is therefore especially suitable for genetic engineering, too. Therefore it was used, in addition, to optimize the C.E.B.A.S. MINI MODULE to allow experiments with a duration of 4 month in the International Space Station the basic principle of which will be explained. In the context of aquaculture systems for BLSS the continuous replacement of removed fish biomass is an essential demand. Although fish reproduction seems not to be affected in the shortterm space experiments with the C.E.B.A.S. MINI MODULE a functional and reliable hatchery for the production of siblings under reduced weightlessness is connected with some serious problems. Therefore an automated "reproduction module" for the herbivorous fish Tilapia rendalli was developed as a laboratory prototype. It is concluded that aquatic modules of different degrees of complexity can optimize the productivity of BLSS based on higher land plants and that they offer an unique opportunity for the production of animal protein in lunar or planetary bases. c2001 Elsevier Science Ltd. All rights reserved.
Herrid, Muren; McFarlane, James R
2013-01-01
A major benefit of advanced reproduction technologies (ART) in animal breeding is the ability to produce more progeny per individual parent. This is particularly useful with animals of high genetic merit. Testis germ cell transplantation (TGCT) is emerging as a novel reproductive technology with application in animal breeding systems, including the potential for use as an alternative to artificial insemination (AI), an alternative to transgenesis, part of an approach to reducing generation intervals, or an approach toward development of interspecies hybrids. There is one major difference in TGCT between rodents and some other species associated with immunotolerance in heterologous transplantation. In particular, livestock and aquatic species do not require an immunesuppression procedure to allow donor cell survival in recipient testis. Testicular stem cells from a genetically elite individual transplanted into others can develop and produce a surrogate male-an animal that produces the functional sperm of the original individual. Spermatozoa produced from testis stem cells are the only cells in the body of males that can transmit genetic information to the offspring. The isolation and genetic manipulation of testis stem cells prior to transplantation has been shown to create transgenic animals. However, the current success rate of the transplantation procedure in livestock and aquatic species is low, with a corresponding small proportion of donor spermatozoa in the recipient's semen. The propagation of donor cells in culture and preparation of recipient animals are the two main factors that limit the commercial application of this technique. The current paper reviews and compares recent progress and examines the difficulties of TGCT in both livestock and aquatic species, thereby providing new insights into the application of TGCT in food producing animals.
A simple technique for trapping Siren lacertina, Amphiuma means, and other aquatic vertebrates
Johnson, S.A.; Barichivich, W.J.
2004-01-01
We describe a commercially-available funnel trap for sampling aquatic vertebrates. The traps can be used in heavily vegetated wetlands and can be set in water up to 60 cm deep without concern for drowning the animals. They were especially useful for capturing the aquatic salamanders Siren lacertina and Amphiuma means, which have been difficult to capture with traditional sampling methods. They also were effective for sampling small fishes, particularly centrarchids, and larval anurans. In total, 14 species of amphibians, nine species of aquatic reptiles, and at least 32 fish species were captured. The trap we describe differs significantly from traditional funnel traps (e.g., minnow traps) and holds great promise for studies of small, aquatic vertebrates, in particular Siren and Amphiuma species.
Wan, Jun-Kit; Chu, Wan-Loy; Kok, Yih-Yih; Lee, Choy-Sin
2018-06-06
Plastics, with their many useful physical and chemical properties, are widely used in various industries and activities of daily living. Yet, the insidious effects of plastics, particularly long-term effects on aquatic organisms, are not properly understood. Plastics have been shown to degrade to micro- and nanosize particles known as microplastics and nanoplastics, respectively. These minute particles have been shown to cause various adverse effects on aquatic organisms, ranging from growth inhibition, developmental delay and altered feeding behaviour in aquatic animals to decrease of photosynthetic efficiency and induction of oxidative stress in microalgae. This review paper covers the distribution of microplastics and nanoplastics in aquatic ecosystems, focusing on their effects on microalgae as well as co-toxicity of microplastics and nanoplastics with other pollutants. Besides that, this review paper also discusses future research directions which could be taken to gain a better understanding of the impacts of microplastics and nanoplastics on aquatic ecosystems.
Finfish and aquatic invertebrate pathology resources for now and the future✩
Spitsbergen, Jan M.; Blazer, Vicki S.; Bowser, Paul R.; Cheng, Keith C.; Cooper, Keith R.; Cooper, Timothy K.; Frasca, Salvatore; Groman, David B.; Harper, Claudia M.; (Mac) Law, Jerry M.; Marty, Gary D.; Smolowitz, Roxanna M.; Leger, Judy St.; Wolf, Douglas C.; Wolf, Jeffrey C.
2009-01-01
Utilization of finfish and aquatic invertebrates in biomedical research and as environmental sentinels has grown dramatically in recent decades. Likewise the aquaculture of finfish and invertebrates has expanded rapidly worldwide as populations of some aquatic food species and threatened or endangered aquatic species have plummeted due to overharvesting or habitat degradation. This increasing intensive culture and use of aquatic species has heightened the importance of maintaining a sophisticated understanding of pathology of various organ systems of these diverse species. Yet, except for selected species long cultivated in aquaculture, pathology databases and the workforce of highly trained pathologists lag behind those available for most laboratory animals and domestic mammalian and avian species. Several factors must change to maximize the use, understanding, and protection of important aquatic species: 1) improvements in databases of abnormalities across species; 2) standardization of diagnostic criteria for proliferative and nonproliferative lesions; and 3) more uniform and rigorous training in aquatic morphologic pathology. PMID:18948226
Koletić, Nikola; Novosel, Maja; Rajević, Nives; Franjević, Damjan
2015-01-01
Bryozoans are aquatic invertebrates that inhabit all types of aquatic ecosystems. They are small animals that form large colonies by asexual budding. Colonies can reach the size of several tens of centimeters, while individual units within a colony are the size of a few millimeters. Each individual within a colony works as a separate zooid and is genetically identical to each other individual within the same colony. Most freshwater species of bryozoans belong to the Phylactolaemata class, while several species that tolerate brackish water belong to the Gymnolaemata class. Tissue samples for this study were collected in the rivers of Adriatic and Danube basin and in the wetland areas in the continental part of Croatia (Europe). Freshwater and brackish taxons of bryozoans were genetically analyzed for the purpose of creating phylogenetic relationships between freshwater and brackish taxons of the Phylactolaemata and Gymnolaemata classes and determining the role of brackish species in colonizing freshwater and marine ecosystems. Phylogenetic relationships inferred on the genes for 18S rRNA, 28S rRNA, COI, and ITS2 region confirmed Phylactolaemata bryozoans as radix bryozoan group. Phylogenetic analysis proved Phylactolaemata bryozoan's close relations with taxons from Phoronida phylum as well as the separation of the Lophopodidae family from other families within the Plumatellida genus. Comparative analysis of existing knowledge about the phylogeny of bryozoans and the expansion of known evolutionary hypotheses is proposed with the model of settlement of marine and freshwater ecosystems by the bryozoans group during their evolutionary past. In this case study, brackish bryozoan taxons represent a link for this ecological phylogenetic hypothesis. Comparison of brackish bryozoan species Lophopus crystallinus and Conopeum seurati confirmed a dual colonization of freshwater ecosystems throughout evolution of this group of animals.
T. gondii is an obligate intracellular protozoan parasite that can infect all warm blooded animals ranging from: humans, pets, livestock, to marine aquatic animals. The definitive host is the feline species (both domestic and wild cats), where the sexual stage of the life cycle o...
Ostrovsky, Andrew N; Fairbairn, D
2013-01-01
Matrotrophy has long been known in invertebrates, but it is still poorly understood and has never been reviewed. A striking example of matrotrophy (namely, placentotrophy) is provided by the Bryozoa, a medium-sized phylum of the aquatic colonial filter feeders. Here I report on an extensive anatomical study of placental analogues in 21 species of the bryozoan order Cheilostomata, offering the first review on matrotrophy among aquatic invertebrates. The first anatomical description of incipient placentotrophy in invertebrates is presented together with the evidence for multiple independent origins of placental analogues in this order. The combinations of contrasting oocytic types (macrolecithal or microlecithal) and various degrees of placental development and embryonic enlargement during incubation, found in different bryozoan species, are suggestive of a transitional series from the incipient to the substantial placentotrophy accompanied by an inverse change in oogenesis, a situation reminiscent of some vertebrates. It seems that matrotrophy could trigger the evolution of sexual zooidal polymorphism in some clades. The results of this study show that this phylum, with its wide variety of reproductive patterns, incubation devices, and types of the simple placenta-like systems, offers a promising model for studying parallel evolution of placentotrophy in particular, and matrotrophy in general. PMID:23617914
Living in Water: An Aquatic Science Curriculum for Grades 5-7.
ERIC Educational Resources Information Center
National Aquarium in Baltimore, MD. Dept. of Education.
"Living in Water" is a classroom-based, scientific study of water, aquatic environments, and the plants and animals that live in water. The lessons in this curriculum integrate basic physical, biological, and earth sciences, and mathematics. The integration of language arts is also considered essential to its success. These lessons do not require…
29 CFR 784.107 - Relationship of employee's work to operations on the specified aquatic products.
Code of Federal Regulations, 2010 CFR
2010-07-01
... animal or vegetable life, or any byproduct thereof”. Work performed on products which do not fall within... 29 Labor 3 2010-07-01 2010-07-01 false Relationship of employee's work to operations on the... the Two Exemptions § 784.107 Relationship of employee's work to operations on the specified aquatic...
A behavioural framework for the evolution of feeding in predatory aquatic mammals
Fitzgerald, Erich M. G.; Evans, Alistair R.
2017-01-01
Extant aquatic mammals are a key component of aquatic ecosystems. Their morphology, ecological role and behaviour are, to a large extent, shaped by their feeding ecology. Nevertheless, the nature of this crucial aspect of their biology is often oversimplified and, consequently, misinterpreted. Here, we introduce a new framework that categorizes the feeding cycle of predatory aquatic mammals into four distinct functional stages (prey capture, manipulation and processing, water removal and swallowing), and details the feeding behaviours that can be employed at each stage. Based on this comprehensive scheme, we propose that the feeding strategies of living aquatic mammals form an evolutionary sequence that recalls the land-to-water transition of their ancestors. Our new conception helps to explain and predict the origin of particular feeding styles, such as baleen-assisted filter feeding in whales and raptorial ‘pierce’ feeding in pinnipeds, and informs the structure of present and past ecosystems. PMID:28250183
Selva Kumar, C; Nair, Rahul R; Sivaramakrishnan, K G; Ganesh, D; Janarthanan, S; Arunachalam, M; Sivaruban, T
2012-12-01
Forces that influence the evolution of synonymous codon usage bias are analyzed in six species of three basal orders of aquatic insects. The rationale behind choosing six species of aquatic insects (three from Ephemeroptera, one from Plecoptera, and two from Odonata) for the present analysis is based on phylogenetic position at the basal clades of the Order Insecta facilitating the understanding of the evolution of codon bias and of factors shaping codon usage patterns in primitive clades of insect lineages and their subtle differences in some of their ecological and environmental requirements in terms of habitat-microhabitat requirements, altitudinal preferences, temperature tolerance ranges, and consequent responses to climate change impacts. The present analysis focuses on open reading frames of the 13 protein-coding genes in the mitochondrial genome of six carefully chosen insect species to get a comprehensive picture of the evolutionary intricacies of codon bias. In all the six species, A and T contents are observed to be significantly higher than G and C, and are used roughly equally. Since transcription hypothesis on codon usage demands A richness and T poorness, it is quite likely that mutation pressure may be the key factor associated with synonymous codon usage (SCU) variations in these species because the mutation hypothesis predicts AT richness and GC poorness in the mitochondrial DNA. Thus, AT-biased mutation pressure seems to be an important factor in framing the SCU variation in all the selected species of aquatic insects, which in turn explains the predominance of A and T ending codons in these species. This study does not find any association between microhabitats and codon usage variations in the mitochondria of selected aquatic insects. However, this study has identified major forces, such as compositional constraints and mutation pressure, which shape patterns of codon usage in mitochondrial genes in the primitive clades of insect lineages.
Diversity and impact of prokaryotic toxins on aquatic environments: a review.
Valério, Elisabete; Chaves, Sandra; Tenreiro, Rogério
2010-10-01
Microorganisms are ubiquitous in all habitats and are recognized by their metabolic versatility and ability to produce many bioactive compounds, including toxins. Some of the most common toxins present in water are produced by several cyanobacterial species. As a result, their blooms create major threats to animal and human health, tourism, recreation and aquaculture. Quite a few cyanobacterial toxins have been described, including hepatotoxins, neurotoxins, cytotoxins and dermatotoxins. These toxins are secondary metabolites, presenting a vast diversity of structures and variants. Most of cyanobacterial secondary metabolites are peptides or have peptidic substructures and are assumed to be synthesized by non-ribosomal peptide synthesis (NRPS), involving peptide synthetases, or NRPS/PKS, involving peptide synthetases and polyketide synthases hybrid pathways. Besides cyanobacteria, other bacteria associated with aquatic environments are recognized as significant toxin producers, representing important issues in food safety, public health, and human and animal well being. Vibrio species are one of the most representative groups of aquatic toxin producers, commonly associated with seafood-born infections. Some enterotoxins and hemolysins have been identified as fundamental for V. cholerae and V. vulnificus pathogenesis, but there is evidence for the existence of other potential toxins. Campylobacter spp. and Escherichia coli are also water contaminants and are able to produce important toxins after infecting their hosts. Other bacteria associated with aquatic environments are emerging as toxin producers, namely Legionella pneumophila and Aeromonas hydrophila, described as responsible for the synthesis of several exotoxins, enterotoxins and cytotoxins. Furthermore, several Clostridium species can produce potent neurotoxins. Although not considered aquatic microorganisms, they are ubiquitous in the environment and can easily contaminate drinking and irrigation water. Clostridium members are also spore-forming bacteria and can persist in hostile environmental conditions for long periods of time, contributing to their hazard grade. Similarly, Pseudomonas species are widespread in the environment. Since P. aeruginosa is an emergent opportunistic pathogen, its toxins may represent new hazards for humans and animals. This review presents an overview of the diversity of toxins produced by prokaryotic microorganisms associated with aquatic habitats and their impact on environment, life and health of humans and other animals. Moreover, important issues like the availability of these toxins in the environment, contamination sources and pathways, genes involved in their biosynthesis and molecular mechanisms of some representative toxins are also discussed.
Diversity and Impact of Prokaryotic Toxins on Aquatic Environments: A Review
Valério, Elisabete; Chaves, Sandra; Tenreiro, Rogério
2010-01-01
Microorganisms are ubiquitous in all habitats and are recognized by their metabolic versatility and ability to produce many bioactive compounds, including toxins. Some of the most common toxins present in water are produced by several cyanobacterial species. As a result, their blooms create major threats to animal and human health, tourism, recreation and aquaculture. Quite a few cyanobacterial toxins have been described, including hepatotoxins, neurotoxins, cytotoxins and dermatotoxins. These toxins are secondary metabolites, presenting a vast diversity of structures and variants. Most of cyanobacterial secondary metabolites are peptides or have peptidic substructures and are assumed to be synthesized by non-ribosomal peptide synthesis (NRPS), involving peptide synthetases, or NRPS/PKS, involving peptide synthetases and polyketide synthases hybrid pathways. Besides cyanobacteria, other bacteria associated with aquatic environments are recognized as significant toxin producers, representing important issues in food safety, public health, and human and animal well being. Vibrio species are one of the most representative groups of aquatic toxin producers, commonly associated with seafood-born infections. Some enterotoxins and hemolysins have been identified as fundamental for V. cholerae and V. vulnificus pathogenesis, but there is evidence for the existence of other potential toxins. Campylobacter spp. and Escherichia coli are also water contaminants and are able to produce important toxins after infecting their hosts. Other bacteria associated with aquatic environments are emerging as toxin producers, namely Legionella pneumophila and Aeromonas hydrophila, described as responsible for the synthesis of several exotoxins, enterotoxins and cytotoxins. Furthermore, several Clostridium species can produce potent neurotoxins. Although not considered aquatic microorganisms, they are ubiquitous in the environment and can easily contaminate drinking and irrigation water. Clostridium members are also spore-forming bacteria and can persist in hostile environmental conditions for long periods of time, contributing to their hazard grade. Similarly, Pseudomonas species are widespread in the environment. Since P. aeruginosa is an emergent opportunistic pathogen, its toxins may represent new hazards for humans and animals. This review presents an overview of the diversity of toxins produced by prokaryotic microorganisms associated with aquatic habitats and their impact on environment, life and health of humans and other animals. Moreover, important issues like the availability of these toxins in the environment, contamination sources and pathways, genes involved in their biosynthesis and molecular mechanisms of some representative toxins are also discussed. PMID:22069558
The evolution of scale sensilla in the transition from land to sea in elapid snakes
Crowe-Riddell, Jenna M.; Watson, Amy P.; Suh, Anton Kyuseop; Partridge, Julian C.; Sanders, Kate L.
2016-01-01
Scale sensilla are small tactile mechanosensory organs located on the head scales of many squamate reptiles (lizards and snakes). In sea snakes and sea kraits (Elapidae: Hydrophiinae), these scale organs are presumptive scale sensilla that purportedly function as both tactile mechanoreceptors and potentially as hydrodynamic receptors capable of sensing the displacement of water. We combined scanning electron microscopy, silicone casting of the skin and quadrate sampling with a phylogenetic analysis to assess morphological variation in sensilla on the postocular head scale(s) across four terrestrial, 13 fully aquatic and two semi-aquatic species of elapids. Substantial variation exists in the overall coverage of sensilla (0.8–6.5%) among the species sampled and is broadly overlapping in aquatic and terrestrial lineages. However, two observations suggest a divergent, possibly hydrodynamic sensory role of sensilla in sea snake and sea krait species. First, scale sensilla are more protruding (dome-shaped) in aquatic species than in their terrestrial counterparts. Second, exceptionally high overall coverage of sensilla is found only in the fully aquatic sea snakes, and this attribute appears to have evolved multiple times within this group. Our quantification of coverage as a proxy for relative ‘sensitivity’ represents the first analysis of the evolution of sensilla in the transition from terrestrial to marine habitats. However, evidence from physiological and behavioural studies is needed to confirm the functional role of scale sensilla in sea snakes and sea kraits. PMID:27278646
The evolution of scale sensilla in the transition from land to sea in elapid snakes.
Crowe-Riddell, Jenna M; Snelling, Edward P; Watson, Amy P; Suh, Anton Kyuseop; Partridge, Julian C; Sanders, Kate L
2016-06-01
Scale sensilla are small tactile mechanosensory organs located on the head scales of many squamate reptiles (lizards and snakes). In sea snakes and sea kraits (Elapidae: Hydrophiinae), these scale organs are presumptive scale sensilla that purportedly function as both tactile mechanoreceptors and potentially as hydrodynamic receptors capable of sensing the displacement of water. We combined scanning electron microscopy, silicone casting of the skin and quadrate sampling with a phylogenetic analysis to assess morphological variation in sensilla on the postocular head scale(s) across four terrestrial, 13 fully aquatic and two semi-aquatic species of elapids. Substantial variation exists in the overall coverage of sensilla (0.8-6.5%) among the species sampled and is broadly overlapping in aquatic and terrestrial lineages. However, two observations suggest a divergent, possibly hydrodynamic sensory role of sensilla in sea snake and sea krait species. First, scale sensilla are more protruding (dome-shaped) in aquatic species than in their terrestrial counterparts. Second, exceptionally high overall coverage of sensilla is found only in the fully aquatic sea snakes, and this attribute appears to have evolved multiple times within this group. Our quantification of coverage as a proxy for relative 'sensitivity' represents the first analysis of the evolution of sensilla in the transition from terrestrial to marine habitats. However, evidence from physiological and behavioural studies is needed to confirm the functional role of scale sensilla in sea snakes and sea kraits. © 2016 The Authors.
Effects of predatory ants within and across ecosystems in bromeliad food webs.
Gonçalves, Ana Z; Srivastava, Diane S; Oliveira, Paulo S; Romero, Gustavo Q
2017-07-01
Predation is one of the most fundamental ecological processes affecting biotic communities. Terrestrial predators that live at ecosystem boundaries may alter the diversity of terrestrial organisms, but they may also have cross-ecosystem cascading effects when they feed on organisms with complex life cycles (i.e. organisms that shift from aquatic juvenile stages to terrestrial adult stages) or inhibit female oviposition in the aquatic environment. The predatory ant Odontomachus hastatus establishes its colonies among roots of Vriesea procera, an epiphytic bromeliad species with water-filled tanks that shelters many terrestrial and aquatic organisms. Ants may impact terrestrial communities and deter adult insects from ovipositing in the water of bromeliads via consumptive and non-consumptive effects. Ants do not forage within the aquatic environment; thus, they may be more efficient predators on terrestrial organisms. Therefore, we predict that ants will have stronger effects on terrestrial than aquatic food webs. However, such effects may also be site contingent and depend on the local composition of food webs. To test our hypothesis, we surveyed bromeliads with and without O. hastatus colonies from three different coastal field sites in the Atlantic Forest of southeast Brazil, and quantified the effect of this predatory ant on the composition, density and richness of aquatic and terrestrial metazoans found in these bromeliads. We found that ants changed the composition and reduced the overall density of aquatic and terrestrial metazoans in bromeliad ecosystems. However, effects of ants on species diversity were contingent on site. In general terms, the effects of the ant on aquatic and terrestrial metazoan communities were similar in strength and magnitude. Ants reduced the density of virtually all aquatic functional groups, especially detritivore insects as well as metazoans that reach bromeliads through phoresy on the skin of terrestrial animals (i.e. Ostracoda and Helobdella sp.). Our results suggest that the cross-ecosystem effect of this terrestrial predator on the aquatic metazoans was at least as strong as its within-ecosystem effect on the terrestrial ecosystem, and demonstrates that the same predator can simultaneously initiate cascades in multiple ecosystems. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Ensure consistency among OPP scientists in the use of non-definitive toxicity endpoints for terrestrial and aquatic animals when conducting ecological risk assessments for pesticides and federally listed and non-listed species.
Organism and population-level ecological models for chemical risk assessment
Ecological risk assessment typically focuses on animal populations as endpoints for regulatory ecotoxicology. Scientists at USEPA are developing models for animal populations exposed to a wide range of chemicals from pesticides to emerging contaminants. Modeled taxa include aquat...
Using GIS to analyze animal movements in the marine environment
Hooge, Philip N.; Eichenlaub, William M.; Solomon, Elizabeth K.; Kruse, Gordon H.; Bez, Nicolas; Booth, Anthony; Dorn, Martin W.; Hills, Susan; Lipcius, Romuald N.; Pelletier, Dominique; Roy, Claude; Smith, Stephen J.; Witherell, David B.
2001-01-01
Advanced methods for analyzing animal movements have been little used in the aquatic research environment compared to the terrestrial. In addition, despite obvious advantages of integrating geographic information systems (GIS) with spatial studies of animal movement behavior, movement analysis tools have not been integrated into GIS for either aquatic or terrestrial environments. We therefore developed software that integrates one of the most commonly used GIS programs (ArcView®) with a large collection of animal movement analysis tools. This application, the Animal Movement Analyst Extension (AMAE), can be loaded as an extension to ArcView® under multiple operating system platforms (PC, Unix, and Mac OS). It contains more than 50 functions, including parametric and nonparametric home range analyses, random walk models, habitat analyses, point and circular statistics, tests of complete spatial randomness, tests for autocorrelation and sample size, point and line manipulation tools, and animation tools. This paper describes the use of these functions in analyzing animal location data; some limited examples are drawn from a sonic-tracking study of Pacific halibut (Hippoglossus stenolepis) in Glacier Bay, Alaska. The extension is available on the Internet at www.absc.usgs.gov/glba/gistools/index.htm.
Mori, Kent; Suzuki, Satoshi; Koyabu, Daisuke; Kimura, Junpei; Han, Sung-Yong; Endo, Hideki
2015-05-01
Although the sea otter (Enhydra lutris) is a complete aquatic species, spending its entire life in the ocean, it has been considered morphologically to be a semi-aquatic animal. This study aimed to clarify the unique hindlimb morphology and functional adaptations of E. lutris in comparison to other Mustelidae species. We compared muscle mass and bone measurements of five Mustelidae species: the sea otter, Eurasian river otter (Lutra lutra), American mink (Neovison vison), Japanese weasel (Mustela itatsi) and Siberian weasel (M. sibirica). In comparison with the other 4 species, E. lutris possessed significantly larger gluteus, popliteus and peroneus muscles, but smaller adductor and ischiopubic muscles. The popliteus muscle may act as a medial rotator of the crus, and the peroneus muscle may act as an abductor of the fifth toe and/or the pronator of the foot. The bundles of the gluteus superficialis muscle of E. lutris were fused with those of the tensor fasciae latae muscle and gluteofemoralis muscles, and they may play a role in femur abduction. These results suggest that E. lutris uses the abducted femur, medially rotated crus, eversion of the ankle and abducted fifth digit or extended interdigital web as a powerful propulsion generator. Therefore, we conclude that E. lutris is a complete aquatic animal, possessing differences in the proportions of the hindlimb muscles compared with those in other semi-aquatic and terrestrial mustelids.
Production of EPA and DHA in aquatic ecosystems and their transfer to the land.
Gladyshev, Michail I; Sushchik, Nadezhda N; Makhutova, Olesia N
2013-12-01
Most omnivorous animals, including humans, have to some degree relied on physiologically important polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from food. Only some taxa of microalgae, rather than higher plants can synthesize de novo high amounts of EPA and DHA. Once synthesized by microalgae, PUFA are transferred through trophic chain to organisms of higher levels. Thus, aquatic ecosystems play the unique role in the Biosphere as the principal source of EPA and DHA for most omnivorous animals, including inhabitants of terrestrial ecosystems. PUFA are transferred from aquatic to terrestrial ecosystems through riparian predators, drift of carrion and seaweeds, emergence of amphibiotic insects, and water birds. The essential PUFA are transferred through trophic chains with about twice higher efficiency than bulk carbon. Thereby, PUFA are accumulated, rather than diluted in biomass of organisms of higher trophic levels, e.g., in fish. Mankind is faced with a severe deficiency of EPA and DHA in diet. Although additional sources of PUFA supply for humans, such as aquaculture, biotechnology of microorganisms and transgenic terrestrial oil-seed producing plants are developed, natural fish production of aquatic ecosystems will remain one of the main sources of EPA and DHA for humans. Aquatic ecosystems have to be protected from anthropogenic impacts, such as eutrophication, pollution and warming, which reduce PUFA production. Copyright © 2013 Elsevier Inc. All rights reserved.
Seymour, Roger S; Arndt, Joachim O
2004-03-01
Changes in orientation in a gravitational field markedly alter the patterns of blood pressure and flow in animals, especially tall or long ones such as giraffes or snakes. Vertical orientation tends to reduce blood flow and pressure in the head for two major reasons. First, the increased vertical blood column above the heart creates a gravitational hydrostatic pressure against which the heart must work. Second, expansion of dependent vessels in the lower extremities causes blood pooling and reduces return of venous blood to the heart, thereby lowering flow and pressure. For most animals, it is difficult to separate these two effects, but snakes offer the possibility of bending the animal in the region of the heart and manipulating the two ends of the body independently. We studied baroregulatory responses in terrestrial pythons (Liasis fuscus) and aquatic file snakes (Acrochordus arafurae) by tilting only the front or rear parts and then the whole animal. Changes in head blood pressure during partial tilts added up to the change during full tilt. The vertical distance to the head had twice as much influence on head blood pressure than did blood pooling in the pythons and four times as much in file snakes. This accounts for the cephalad location of the heart in terrestrial species compared with aquatic ones.
Aquatic Acoustic Metrics Interface Utility for Underwater Sound Monitoring and Analysis
Ren, Huiying; Halvorsen, Michele B.; Deng, Zhiqun Daniel; Carlson, Thomas J.
2012-01-01
Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR) devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. In this paper, we provide a detailed description of a new software package, the Aquatic Acoustic Metrics Interface (AAMI), specifically designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals. In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame. The features of the AAMI software are discussed, and several case studies are presented to illustrate its functionality. PMID:22969353
Silva, C V; Henry, R
2013-02-01
Marginal lakes are characterised by their having high biological diversity due to the presence of aquatic macrophytes in their coastal zones, providing habitats for refuge and food for animal community members. Among the fauna components associated with macrophytes, aquatic macroinvertebrates are important because they are an energy source for predators and fish. In six lakes and two different seasons (March and August 2009), the ecological attributes of aquatic macroinvertebrate community associated with Eichhornia azurea were compared and the controlling environmental factors were identified. Since the attributes of macroinvertebrate community are strictly associated with abiotic variables of each distinct habitat, our hypothesis was that each site associated with the same floating aquatic macrophyte (E. azurea) should have a typical composition and density of organisms. We identified 50 taxa of macroinvertebrates, with greater taxa richness for aquatic insects (37 taxa) divided into eight orders; the order Diptera being the most abundant in the two study periods. On the other hand, higher values of total taxa richness were recorded in August. Dissolved oxygen and pH presented the greatest number of significant positive correlations with the different taxa. The animals most frequently collected in the six lakes in March and August 2009 were Hirudinea, Oligochaeta, Hydrachnidae, Conchostraca, Ostracoda, Noteridae, Ceratopogonidae, Chironomidae, Culicidae, Caenidae, Pleidae, Aeshnidae, Libellulidae, Coenagrionidae and Nematoda. Only densities of Trichoptera, Ostracoda and Conchostraca presented the highest significant differences between lakes in both study periods and considering the composition of macroinvertebrates no significant differences were registered for macroinvertebrate composition.
Aquatic-terrestrial transitions of feeding systems in vertebrates: a mechanical perspective.
Heiss, Egon; Aerts, Peter; Van Wassenbergh, Sam
2018-04-25
Transitions to terrestrial environments confront ancestrally aquatic animals with several mechanical and physiological problems owing to the different physical properties of water and air. As aquatic feeders generally make use of flows of water relative to the head to capture, transport and swallow food, it follows that morphological and behavioral changes were inevitably needed for the aquatic animals to successfully perform these functions on land. Here, we summarize the mechanical requirements of successful aquatic-to-terrestrial transitions in food capture, transport and swallowing by vertebrates and review how different taxa managed to fulfill these requirements. Amphibious ray-finned fishes show a variety of strategies to stably lift the anterior trunk, as well as to grab ground-based food with their jaws. However, they still need to return to the water for the intra-oral transport and swallowing process. Using the same mechanical perspective, the potential capabilities of some of the earliest tetrapods to perform terrestrial feeding are evaluated. Within tetrapods, the appearance of a mobile neck and a muscular and movable tongue can safely be regarded as key factors in the colonization of land away from amphibious habitats. Comparative studies on taxa including salamanders, which change from aquatic feeders as larvae to terrestrial feeders as adults, illustrate remodeling patterns in the hyobranchial system that can be linked to its drastic change in function during feeding. Yet, the precise evolutionary history in form and function of the hyolingual system leading to the origin(s) of a muscular and adhesive tongue remains unknown. © 2018. Published by The Company of Biologists Ltd.
Feed conversion efficiency in aquaculture: do we measure it correctly?
NASA Astrophysics Data System (ADS)
Fry, Jillian P.; Mailloux, Nicholas A.; Love, David C.; Milli, Michael C.; Cao, Ling
2018-02-01
Globally, demand for food animal products is rising. At the same time, we face mounting, related pressures including limited natural resources, negative environmental externalities, climate disruption, and population growth. Governments and other stakeholders are seeking strategies to boost food production efficiency and food system resiliency, and aquaculture (farmed seafood) is commonly viewed as having a major role in improving global food security based on longstanding measures of animal production efficiency. The most widely used measurement is called the ‘feed conversion ratio’ (FCR), which is the weight of feed administered over the lifetime of an animal divided by weight gained. By this measure, fed aquaculture and chickens are similarly efficient at converting feed into animal biomass, and both are more efficient compared to pigs and cattle. FCR does not account for differences in feed content, edible portion of an animal, or nutritional quality of the final product. Given these limitations, we searched the literature for alternative efficiency measures and identified ‘nutrient retention’, which can be used to compare protein and calories in feed (inputs) and edible portions of animals (outputs). Protein and calorie retention have not been calculated for most aquaculture species. Focusing on commercial production, we collected data on feed composition, feed conversion ratios, edible portions (i.e. yield), and nutritional content of edible flesh for nine aquatic and three terrestrial farmed animal species. We estimate that 19% of protein and 10% of calories in feed for aquatic species are ultimately made available in the human food supply, with significant variation between species. Comparing all terrestrial and aquatic animals in the study, chickens are most efficient using these measures, followed by Atlantic salmon. Despite lower FCRs in aquaculture, protein and calorie retention for aquaculture production is comparable to livestock production. This is, in part, due to farmed fish and shrimp requiring higher levels of protein and calories in feed compared to chickens, pigs, and cattle. Strategies to address global food security should consider these alternative efficiency measures.
Global change, parasite transmission and disease control: lessons from ecology
Boag, Brian; Ellison, Amy R.; Morgan, Eric R.; Murray, Kris; Pascoe, Emily L.; Sait, Steven M.; Booth, Mark
2017-01-01
Parasitic infections are ubiquitous in wildlife, livestock and human populations, and healthy ecosystems are often parasite rich. Yet, their negative impacts can be extreme. Understanding how both anticipated and cryptic changes in a system might affect parasite transmission at an individual, local and global level is critical for sustainable control in humans and livestock. Here we highlight and synthesize evidence regarding potential effects of ‘system changes’ (both climatic and anthropogenic) on parasite transmission from wild host–parasite systems. Such information could inform more efficient and sustainable parasite control programmes in domestic animals or humans. Many examples from diverse terrestrial and aquatic natural systems show how abiotic and biotic factors affected by system changes can interact additively, multiplicatively or antagonistically to influence parasite transmission, including through altered habitat structure, biodiversity, host demographics and evolution. Despite this, few studies of managed systems explicitly consider these higher-order interactions, or the subsequent effects of parasite evolution, which can conceal or exaggerate measured impacts of control actions. We call for a more integrated approach to investigating transmission dynamics, which recognizes these complexities and makes use of new technologies for data capture and monitoring, and to support robust predictions of altered parasite dynamics in a rapidly changing world. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289256
Predator personality structures prey communities and trophic cascades.
Start, Denon; Gilbert, Benjamin
2017-03-01
Intraspecific variation is central to our understanding of evolution and population ecology, yet its consequences for community ecology are poorly understood. Animal personality - consistent individual differences in suites of behaviours - may be particularly important for trophic dynamics, where predator personality can determine activity rates and patterns of attack. We used mesocosms with aquatic food webs in which the top predator (dragonfly nymphs) varied in activity and subsequent attack rates on zooplankton, and tested the effects of predator personality. We found support for four hypotheses: (1) active predators disproportionately reduce the abundance of prey, (2) active predators select for predator-resistant prey species, (3) active predators strengthen trophic cascades (increase phytoplankton abundance) and (4) active predators are more likely to cannibalise one another, weakening all other trends when at high densities. These results suggest that intraspecific variation in predator personality is an important determinant of prey abundance, community composition and trophic cascades. © 2017 John Wiley & Sons Ltd/CNRS.
Virological Sampling of Inaccessible Wildlife with Drones.
Geoghegan, Jemma L; Pirotta, Vanessa; Harvey, Erin; Smith, Alastair; Buchmann, Jan P; Ostrowski, Martin; Eden, John-Sebastian; Harcourt, Robert; Holmes, Edward C
2018-06-02
There is growing interest in characterizing the viromes of diverse mammalian species, particularly in the context of disease emergence. However, little is known about virome diversity in aquatic mammals, in part due to difficulties in sampling. We characterized the virome of the exhaled breath (or blow) of the Eastern Australian humpback whale ( Megaptera novaeangliae ). To achieve an unbiased survey of virome diversity, a meta-transcriptomic analysis was performed on 19 pooled whale blow samples collected via a purpose-built Unmanned Aerial Vehicle (UAV, or drone) approximately 3 km off the coast of Sydney, Australia during the 2017 winter annual northward migration from Antarctica to northern Australia. To our knowledge, this is the first time that UAVs have been used to sample viruses. Despite the relatively small number of animals surveyed in this initial study, we identified six novel virus species from five viral families. This work demonstrates the potential of UAVs in studies of virus disease, diversity, and evolution.
Ocean Tracking Network (OTN): Development of Oceanographic Data Integration with Animal Movement
NASA Astrophysics Data System (ADS)
Bajona, L.
2016-02-01
OTN is a $168-million ocean research and technology development platform headquartered at Dalhousie University, Canada. Using acoustic and satellite telemetry to globally document the movements and survival of aquatic animals, and their environmental correlates. The OTN Mission: to foster conservation and sustainability of valued species by generating knowledge on the movement patterns of aquatic species in their changing environment. OTN's ever-expanding global network of acoustic receivers listening for over 90 different key animal species is providing for the data needed in working in collaboration with researchers for the development of oceanographic data integration with animal movement. Presented here is Data Management's work to date, status and challenges in OTN's move towards a community standard to enable sharing between projects nationally and internationally; permitting inter-operability with other large national (e.g. CHONe, ArcticNET) and international (IOOS, IMOS) networks. This work includes co-development of Animal Acoustic Telemetry (AAT) metadata standard and implementation using an ERDDAP data server (NOAA, Environmental Research Division's Data Access Program) facilitating ingestion for modelers (eg. netcdf).
The challenges of implementing pathogen control strategies for fishes used in biomedical research
Lawrence, C.; Ennis, D.G.; Harper, C.; Kent, M.L.; Murray, K.; Sanders, G.E.
2012-01-01
Over the past several decades, a number of fish species, including the zebrafish, medaka, and platyfish/swordtail, have become important models for human health and disease. Despite the increasing prevalence of these and other fish species in research, methods for health maintenance and the management of diseases in laboratory populations of these animals are underdeveloped. There is a growing realization that this trend must change, especially as the use of these species expands beyond developmental biology and more towards experimental applications where the presence of underlying disease may affect the physiology animals used in experiments and potentially compromise research results. Therefore, there is a critical need to develop, improve, and implement strategies for managing health and disease in aquatic research facilities. The purpose of this review is to report the proceedings of a workshop entitled "Animal Health and Disease Management in Research Animals" that was recently held at the 5th Aquatic Animal Models for Human Disease in September 2010 at Corvallis, Oregon to discuss the challenges involved with moving the field forward on this front. ?? 2011 Elsevier Inc. All rights reserved.
The influence of habitat on the evolution of plants: a case study across Saxifragales
de Casas, Rafael Rubio; Mort, Mark E.; Soltis, Douglas E.
2016-01-01
Background and Aims Organismal evolution tends to be closely associated with ecological conditions. However, the extent to which this association constrains adaptation or diversification into new habitats remains unclear. We studied habitat evolution in the hyper-diverse angiosperm clade Saxifragales. Methods We used species-level phylogenies for approx. 950 species to analyse the evolution of habitat shifts as well as their influence on plant diversification. We combined habitat characterization based on floristic assignments and state-of-the art phylogenetic comparative methods to estimate within- and across-habitat diversification patterns. Key Results Our analyses showed that Saxifragales diversified into multiple habitats from a forest-inhabiting ancestor and that this diversification is governed by relatively rare habitat shifts. Lineages are likely to stay within inferred ancestral ecological conditions. Adaptation to some habitat types (e.g. aquatic, desert) may be canalizing events that lineages do not escape. Although associations between increased diversification rates and shifts in habitat preferences are occasionally observed, extreme macroevolutionary rates are closely associated with specific habitats. Lineages occurring in shrubland, and especially tundra and rock cliffs, exhibit comparatively high diversification, whereas forest, grassland, desert and aquatic habitats are associated with low diversification. Conclusions The likelihood of occupation of new habitats appears to be asymmetric. Shifts to aquatic and desert habitats may be canalizing events. Other habitats, such as tundra, might act as evolutionary sources, while forests provide the only habitat seemingly colonized easily by lineages originating elsewhere. However, habitat shifts are very rare, and any major environmental alteration is expected to have dramatic evolutionary consequences. PMID:27551029
Reckziegel, Guilherme Carneiro; Dourado, Flávio Santos; Garrone Neto, Domingos; Haddad Junior, Vidal
2015-01-01
We present a review of injuries in humans caused by aquatic animals in Brazil using the Information System for Notifiable Diseases [ Sistema de Informação de Agravos de Notificação (SINAN)] database. A descriptive and retrospective epidemiological study was conducted from 2007 to 2013. A total of 4,118 accidents were recorded. Of these accidents, 88.7% (3,651) were caused by venomous species, and 11.3% (467) were caused by poisonous, traumatic or unidentified aquatic animals. Most of the events were injuries by stingrays (69%) and jellyfish (13.1%). The North region was responsible for the majority of reports (66.2%), with a significant emphasis on accidents caused by freshwater stingrays (92.2% or 2,317 cases). In the South region, the region with the second highest number of records (15.7%), jellyfish caused the majority of accidents (83.7% or 452 cases). The Northeastern region, with 12.5% of the records, was notable because almost all accidents were caused by toadfish (95.6% or 174 cases). Although a comparison of different databases has not been performed, the data presented in this study, compared to local and regional surveys, raises the hypothesis of underreporting of accidents. As the SINAN is the official system for the notification of accidents by venomous animals in Brazil, it is imperative that its operation be reviewed and improved, given that effective measures to prevent accidents by venomous animals depend on a reliable database and the ability to accurately report the true conditions.
Biogeography and body size shuffling of aquatic salamander communities on a shifting refuge
Bonett, Ronald M.; Trujano-Alvarez, Ana Lilia; Williams, Michael J.; Timpe, Elizabeth K.
2013-01-01
Freshwater habitats of coastal plains are refugia for many divergent vertebrate lineages, yet these environments are highly vulnerable to sea-level fluctuations, which suggest that resident communities have endured dynamic histories. Using the fossil record and a multi-locus nuclear phylogeny, we examine divergence times, biogeography, body size evolution and patterns of community assembly of aquatic salamanders from North American coastal plains since the Late Cretaceous. At least five salamander families occurred on the extensive Western Interior Coastal Plain (WICP), which existed from the Late Cretaceous through the Eocene. Four of these families subsequently colonized the emergent Southeastern Coastal Plain (SECP) by the Early Oligocene to Late Miocene. Three families ultimately survived and underwent extensive body size evolution in situ on the SECP. This included at least two major size reversals in recent taxa that are convergent with confamilial WICP ancestors. Dynamics of the coastal plain, major lineage extinctions and frequent extreme changes in body size have resulted in significant shuffling of the size structure of aquatic salamander communities on this shifting refuge since the Cretaceous. PMID:23466988
STUDIES ON THE MARINE QUATERNARY.
MARINE GEOLOGY, PALEONTOLOGY), (*PALEONTOLOGY, AQUATIC ANIMALS), GEOLOGIC AGE DETERMINATION, COASTAL REGIONS, ECOLOGY, MOLLUSCA, GASTROPODA , PELECYPODA, ARGENTINA, CHILE, NEW JERSEY, VIRGINIA, CALIFORNIA, EUROPE
NASA Astrophysics Data System (ADS)
McInroe, Benjamin; Astley, Henry; Kawano, Sandy; Blob, Richard; Goldman, Daniel I.
2015-03-01
In the evolutionary transition from an aquatic to a terrestrial environment, early walkers adapted to the challenges of locomotion on complex, flowable substrates (e.g. sand and mud). Our previous biological and robotic studies have demonstrated that locomotion on such substrates is sensitive to both limb morphology and kinematics. Although reconstructions of early vertebrate skeletal morphologies exist, the kinematic strategies required for successful locomotion by these organisms have not yet been explored. To gain insight into how early walkers contended with complex substrates, we developed a robotic model with appendage morphology inspired by a model analog organism, the mudskipper. We tested mudskippers and the robot on different substrates, including rigid ground and dry granular media, varying incline angle. The mudskippers moved effectively on all level substrates using a fin-driven gait. But as incline angle increased, the animals used their tails in concert with their fins to generate propulsion. Adding an actuated tail to the robot improved robustness, making possible locomotion on otherwise inaccessible inclines. With these discoveries, we are elucidating a minimal template that may have allowed the early walkers to adapt to locomotion on land. This work was supported by NSF PoLS.
Living in Water. An Aquatic Science Curriculum for Grades 4-6. Second Edition.
ERIC Educational Resources Information Center
National Aquarium in Baltimore, MD. Dept. of Education.
This document is a scientific study of water, aquatic environments and the plants and animals that live in water. It was written for grades 4-6 but many activities may also be of interest for use with older students. This curriculum covers both marine and freshwater habitats. Each of five sections addresses a question about water which is then…
Reviving a neglected celestial underwater polarization compass for aquatic animals.
Waterman, Talbot H
2006-02-01
Substantial in situ measurements on clear days in a variety of marine environments at depths in the water down to 200 m have demonstrated the ubiquitous daytime presence of sun-related e-vector (=plane of polarization) patterns. In most lines of sight the e-vectors tilt from horizontal towards the sun at angles equal to the apparent underwater refracted zenith angle of the sun. A maximum tilt-angle of approximately 48.5 degrees , is reached in horizontal lines of sight at 90 degrees to the sun's bearing (the plane of incidence). This tilt limit is set by Snell's window, when the sun is on the horizon. The biological literature since the 1980s has been pervaded with assumptions that daytime aquatic e-vectors are mainly horizontal. This review attempts to set the record straight concerning the potential use of underwater e-vectors as a visual compass and to reopen the field to productive research on aquatic animals' orientation and navigation.
Evolution of CAM and C4 carbon-concentrating mechanisms
Keeley, Jon E.; Rundel, Philip W.
2003-01-01
Mechanisms for concentrating carbon around the Rubisco enzyme, which drives the carbon-reducing steps in photosynthesis, are widespread in plants; in vascular plants they are known as crassulacean acid metabolism (CAM) and C4 photosynthesis. CAM is common in desert succulents, tropical epiphytes, and aquatic plants and is characterized by nighttime fixation of CO2. The proximal selective factor driving the evolution of this CO2-concentrating pathway is low daytime CO2, which results from the unusual reverse stomatal behavior of terrestrial CAM species or from patterns of ambient CO2 availability for aquatic CAM species. In terrestrials the ultimate selective factor is water stress that has selected for increased water use efficiency. In aquatics the ultimate selective factor is diel fluctuations in CO2 availability for palustrine species and extreme oligotrophic conditions for lacustrine species. C4 photosynthesis is based on similar biochemistry but carboxylation steps are spatially separated in the leaf rather than temporally as in CAM. This biochemical pathway is most commonly associated with a specialized leaf anatomy known as Kranz anatomy; however, there are exceptions. The ultimate selective factor driving the evolution of this pathway is excessively high photorespiration that inhibits normal C3 photosynthesis under high light and high temperature in both terrestrial and aquatic habitats. CAM is an ancient pathway that likely has been present since the Paleozoic era in aquatic species from shallow-water palustrine habitats. While atmospheric CO2 levels have undoubtedly affected the evolution of terrestrial plant carbon-concentrating mechanisms, there is reason to believe that past atmospheric changes have not played as important a selective role in the aquatic milieu since palustrine habitats today are not generally carbon sinks, and the selective factors driving aquatic CAM are autogenic. Terrestrial CAM, in contrast, is of increasing selective value under extreme water deficits, and undoubtedly, high Mesozoic CO2 levels reduced the amount of landscape perceived by plants as water limited. Late Tertiary and Quaternary reductions in atmospheric CO2, coupled with increasing seasonality, were probably times of substantial species radiation and ecological expansion for CAM plants. C4 photosynthesis occurs in only about half as many families as CAM, and three-fourths of C4 species are either grasses or sedges. Molecular phylogenies indicate C4 is a more recent innovation than CAM and that it originated in the mid-Tertiary, 20–30 Ma, although some data support an earlier origin. While the timing of the origin of C4 remains controversial, the nearly explosive increase in C4 species is clearly documented in the late Miocene, 4–7 Ma. Increasing seasonality has been widely suggested as an important climatic stimulus for this C4 expansion. Alternatively, based on models of photosynthetic quantum yield at different temperatures and CO2 concentration, it has been hypothesized that the late Miocene C4 expansion resulted from declining atmospheric CO2 levels. This model is most appropriate for explaining the transition from C3 grasslands to C4 grasslands but by itself may not be sufficient to explain the more likely scenario of a late Miocene transition from C3 woodland/ savanna to C4 grasslands. A largely unexplored hypothesis is that climatic changes in late Miocene altered disturbance regimes, in particular the incidence of fires, which today are often associated with maintenance of C4 grasslands. Oceanic charcoal sediments that appear to represent Aeolian deposits from continental wildfires follow a strikingly similar pattern of explosive increase in late Miocene. Climate, CO2, and disturbance are not mutually exclusive explanations and probably all acted in concert to promote the expansion of C4 grasslands. More recently, late Quaternary changes in CO2 may have been responsible for driving major changes in the landscape distribution of C4 species. The theory is sound; however, many of the studies cited in support of this model are open to alternative interpretations, and none has eliminated climatic factors as important selective agents. CAM and C4 evolution required coupling of biochemical pathways with structural changes in photosynthetic tissues, succulence in CAM and Kranz in C4. This was apparently accomplished by piecemeal evolution beginning with mechanisms for recapturing respiratory CO2, although this need not have been so in aquatic CAM species. It has been proposed that the extreme rarity of both pathways in the same plant results from biochemical and structural incompatibilities (Sage 2002). Equally important is the fact that the selective environments are quite different, with CAM evolution thriving on stressful sites inhospitable to C3 species whereas C4 evolution has selected for rapid growth capable of outcompeting associated C3 plants.
Koi, Satoshi; Katayama, Natsu
2013-01-01
Podostemaceae is a family of aquatic angiosperms growing submerged on rocks in fast-flowing water and called moss-like or alga-like riverweeds. It evolved remarkable innovations to adapt to such an extreme environment, one of which is reduced shoots borne on roots adhering to rock surface. Recent observations revealed that the basal subfamily Tristichoideae, like most other angiosperms, has typical shoot apical meristems (SAMs). In species of the subfamily Podostemoideae, however, shoot apical meristems (SAMs) are not formed during development and new leaves arise from the meristematic basal region of preexisting leaves. The genetic basis of this shoot organogenesis process, e.g., the expression patterns of genes homologous to transcription factors regulating shoot development, is essential to better understand the evolution of Podostemaceae. A gene expression analysis found that the SAM-less Podostemoideae leaf has mixed identity of SAM and leaf, and provided insight into the evolution of the shoot in Podostemaceae.
Overview of zoonotic infections from fish and shellfish
USDA-ARS?s Scientific Manuscript database
Zoonosis refers to diseases that can be transferred from animals, whether wild or domesticated, to humans. Zoonotic infections can be divided into: 1) topically acquired infection caused by contact with aquatic animals or their products and 2) food borne infection caused by eating raw or undercooked...
Managing animal health from an aquaculture perspective
USDA-ARS?s Scientific Manuscript database
Aquaculture is the production of aquatic animals for food. The aquaculture industry is a rapidly expanding segment of U. S. agriculture and NOAA estimated the industry was worth $1.2 billion in 2011. Disease related losses in aquaculture either by decreased performance and/or mortality is estimate...
Successful aquatic animal disease emergency programmes
Hastein, T.; Hill, B.J.; Winton, J.R.
1999-01-01
The third part provides a historical review of the build-up of infectious salmon anaemia (ISA) in Norway and the attempts to control the disease using legal measures in the absence of detailed knowledge of the aetiology, epizootiology, pathogenesis, etc. of the disease. The measures taken show that the spread of ISA can be controlled using restrictions on the movement of fish, disinfection procedures, etc. However, acceptance and understanding of the chosen strategy by the fish farmers is a pre-requisite to reach that goal. Finally, the paper summarises future needs for national and international legislation, including the development of standard approaches for control, the creation of appropriate infrastructures and a better understanding of the epidemiology of aquatic animal diseases.
Influences of dietary uptake and reactive sulfides on metal bioavailability from aquatic sediments
Lee, B.-G.
2000-01-01
Understanding how animals are exposed to the large repository of metal pollutants in aquatic sediments is complicated and is important in regulatory decisions. Experiments with four types of invertebrates showed that feeding behavior and dietary uptake control bioaccumulation of cadmium, silver, nickel, and zinc. Metal concentrations in animal tissue correlated with metal concentrations extracted from sediments, but not with metal in porewater, across a range of reactive sulfide concentrations, from 0.5 to 30 micromoles per gram. These results contradict the notion that metal bioavailability in sediments is controlled by geochemical equilibration of metals between porewater and reactive sulfides, a proposed basis for regulatory criteria for metals.
Khila, Abderrahman; Abouheif, Ehab; Rowe, Locke
2014-08-01
Invasion of new ecological habitats is often associated with lineage diversification, yet the genetic changes underlying invasions and radiations are poorly understood. Over 200 million years ago, the semi-aquatic insects invaded water surface from a common terrestrial ancestor and diversified to exploit a wide array of niches. Here, we uncover the changes in regulation and function of the gene Ultrabithorax associated with both the invasion of water surface and the subsequent diversification of the group. In the common ancestor of the semi-aquatic insects, a novel deployment of Ubx protein in the mid-legs increased their length, thereby enhancing their role in water surface walking. In derived lineages that specialize in rowing on the open water, additional changes in the timing of Ubx expression further elongated the mid-legs thereby facilitating their function as oars. In addition, Ubx protein function was selectively reversed to shorten specific rear-leg segments, thereby enabling their function as rudders. These changes in Ubx have generated distinct niche-specialized morphologies that account for the remarkable diversification of the semi-aquatic insects. Therefore, changes in the regulation and function of a key developmental gene may facilitate both the morphological change necessary to transition to novel habitats and fuel subsequent morphological diversification. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Mechanical performance of aquatic rowing and flying.
Walker, J A; Westneat, M W
2000-09-22
Aquatic flight, performed by rowing or flapping fins, wings or limbs, is a primary locomotor mechanism for many animals. We used a computer simulation to compare the mechanical performance of rowing and flapping appendages across a range of speeds. Flapping appendages proved to be more mechanically efficient than rowing appendages at all swimming speeds, suggesting that animals that frequently engage in locomotor behaviours that require energy conservation should employ a flapping stroke. The lower efficiency of rowing appendages across all speeds begs the question of why rowing occurs at all. One answer lies in the ability of rowing fins to generate more thrust than flapping fins during the power stroke. Large forces are necessary for manoeuvring behaviours such as accelerations, turning and braking, which suggests that rowing should be found in slow-swimming animals that frequently manoeuvre. The predictions of the model are supported by observed patterns of behavioural variation among rowing and flapping vertebrates.
Phylogenomic Insights into Animal Evolution.
Telford, Maximilian J; Budd, Graham E; Philippe, Hervé
2015-10-05
Animals make up only a small fraction of the eukaryotic tree of life, yet, from our vantage point as members of the animal kingdom, the evolution of the bewildering diversity of animal forms is endlessly fascinating. In the century following the publication of Darwin's Origin of Species, hypotheses regarding the evolution of the major branches of the animal kingdom - their relationships to each other and the evolution of their body plans - was based on a consideration of the morphological and developmental characteristics of the different animal groups. This morphology-based approach had many successes but important aspects of the evolutionary tree remained disputed. In the past three decades, molecular data, most obviously primary sequences of DNA and proteins, have provided an estimate of animal phylogeny largely independent of the morphological evolution we would ultimately like to understand. The molecular tree that has evolved over the past three decades has drastically altered our view of animal phylogeny and many aspects of the tree are no longer contentious. The focus of molecular studies on relationships between animal groups means, however, that the discipline has become somewhat divorced from the underlying biology and from the morphological characteristics whose evolution we aim to understand. Here, we consider what we currently know of animal phylogeny; what aspects we are still uncertain about and what our improved understanding of animal phylogeny can tell us about the evolution of the great diversity of animal life. Copyright © 2015 Elsevier Ltd. All rights reserved.
MORI, Kent; SUZUKI, Satoshi; KOYABU, Daisuke; KIMURA, Junpei; HAN, Sung-Yong; ENDO, Hideki
2015-01-01
Although the sea otter (Enhydra lutris) is a complete aquatic species, spending its entire life in the ocean, it has been considered morphologically to be a semi-aquatic animal. This study aimed to clarify the unique hindlimb morphology and functional adaptations of E. lutris in comparison to other Mustelidae species. We compared muscle mass and bone measurements of five Mustelidae species: the sea otter, Eurasian river otter (Lutra lutra), American mink (Neovison vison), Japanese weasel (Mustela itatsi) and Siberian weasel (M. sibirica). In comparison with the other 4 species, E. lutris possessed significantly larger gluteus, popliteus and peroneus muscles, but smaller adductor and ischiopubic muscles. The popliteus muscle may act as a medial rotator of the crus, and the peroneus muscle may act as an abductor of the fifth toe and/or the pronator of the foot. The bundles of the gluteus superficialis muscle of E. lutris were fused with those of the tensor fasciae latae muscle and gluteofemoralis muscles, and they may play a role in femur abduction. These results suggest that E. lutris uses the abducted femur, medially rotated crus, eversion of the ankle and abducted fifth digit or extended interdigital web as a powerful propulsion generator. Therefore, we conclude that E. lutris is a complete aquatic animal, possessing differences in the proportions of the hindlimb muscles compared with those in other semi-aquatic and terrestrial mustelids. PMID:25715875
The effect of chronic silver nanoparticles on aquatic system in microcosms.
Jiang, Hong Sheng; Yin, Liyan; Ren, Na Na; Xian, Ling; Zhao, Suting; Li, Wei; Gontero, Brigitte
2017-04-01
Silver nanoparticles (AgNPs) inevitably discharge into aquatic environments due to their abundant use in antibacterial products. It was reported that in laboratory conditions, AgNPs display dose-dependent toxicity to aquatic organisms, such as bacteria, algae, macrophytes, snails and fishes. However, AgNPs could behave differently in natural complex environments. In the present study, a series of microcosms were established to investigate the distribution and toxicity of AgNPs at approximately 500 μg L -1 in aquatic systems. As a comparison, the distribution and toxicity of the same concentration of AgNO 3 were also determined. The results showed that the surface layer of sediment was the main sink of Ag element for both AgNPs and AgNO 3 . Both aquatic plant (Hydrilla verticillata) and animals (Gambusia affinis and Radix spp) significantly accumulated Ag. With short-term treatment, phytoplankton biomass was affected by AgNO 3 but not by AgNPs. Chlorophyll content of H. verticillata increased with both AgNPs and AgNO 3 short-term exposure. However, the biomass of phytoplankton, aquatic plant and animals was not significantly different between control and samples treated with AgNPs or AgNO 3 for 90 d. The communities, diversity and richness of microbes were not significantly affected by AgNPs and AgNO 3 ; in contrast, the nitrification rate and its related microbe (Nitrospira) abundance significantly decreased. AgNPs and AgNO 3 may affect the nitrogen cycle and affect the environment and, since they might be also transferred to food web, they represent a risk for health. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sink or swim? Bone density as a mechanism for buoyancy control in early cetaceans.
Gray, Noel-Marie; Kainec, Kimberly; Madar, Sandra; Tomko, Lucas; Wolfe, Scott
2007-06-01
Previous analyses have shown that secondarily aquatic tetrapods, including whales, exhibit osteological adaptations to life in water as part of their complex buoyancy control systems. These structural specializations of bone span hyperostosis through osteoporosis. The past 15 years of paleontological effort has provided an unprecedented opportunity to examine the osteological transformation of whales as they make their transition to an obligate aquatic lifestyle over a 10-million-year period. It is hypothesized that whales manifest their osteological specialization in the same manner as extant semiaquatic and fully aquatic mammals. This study presents and analysis of the microstructural features of bone in early and late archaic cetaceans, and in a comparative sample of modern terrestrial, semiaquatic, and aquatic mammals. Bone histology was examined from the ribs of 10 fossilized individuals representing five early cetacean families, including Pakicetidae, Ambulocetidae, Protocetidae, Remintonocetidae, and Basilosauridae. Comparisons were then made with rib histology from nine genera of extant mammals including: Odocoileus (deer), Bos (cow), Equus (horse), Canis (dog), Lutra (river otter), Enhydra (sea otter), Choeropsis (pygmy hippo), Trichechus (sea cow), and Delphinus (dolphin). Results show that the transition from terrestrial, to semiaquatic, to obligate aquatic locomotion in archaeocetes involved a radical shift in bone function achieved by means of profound changes at the microstructural level. A surprising finding was that microstructural change predates gross anatomical shift in archaeocetes associated with swimming. Histological analysis shows that high bone density is an aquatic specialization that provides static buoyancy control (ballast) for animals living in shallow water, while low bone density is associated with dynamic buoyancy control for animals living in deep water. Thus, there was a shift from the typical terrestrial form, to osteopetrosis and pachyosteosclerosis, and then to osteoporosis in the first quarter of cetacean evolutionary history. 2007 Wiley-Liss, Inc.
Aquarium Viromes: Viromes of Human-Managed Aquatic Systems.
Kim, Yiseul; Van Bonn, William; Aw, Tiong G; Rose, Joan B
2017-01-01
An aquarium ecosystem is home to many animal species providing conditions similar to native aquatic habitats but under highly controlled management. With a growing interest in understanding the interaction of microbiomes and resident animal health within aquarium environments, we undertook a metagenomic survey of viromes in seven aquarium systems with differing physicochemical and resident animal profiles. Our results show that a diverse array of viruses was represented in aquarium viromes, many of which were widespread in different aquarium systems (27 common viral families in all of the aquarium systems). Most viromes were dominated by DNA phages of the order Caudovirales as commonly found in other aquatic environments with average relative abundance greater than 64%. The composition and structure of aquarium viromes were associated with controlled system parameters, including nitrate, salinity, and temperature as well as resident animal profiles, indicating the close interaction of viromes with aquarium management practices. Furthermore, finding human associated viruses in a touch exhibit suggested that exposure of aquarium systems to human contact may lead to introduction of human cutaneous viruses into aquaria. This is consistent with the high abundance of skin microflora on the palms of healthy individuals and their detection in recreational waters, such as swimming pools. Lastly, assessment of antibiotic resistance genes (ARGs) in aquarium viromes revealed a unique signature of ARGs in different aquarium systems with trimethoprim being the most common. This is the first study to provide vital information on viromes and their unique relationships with management practices in a human-built and controlled aquarium environment.
NASA Astrophysics Data System (ADS)
Gurkov, Anton; Shchapova, Ekaterina; Bedulina, Daria; Baduev, Boris; Borvinskaya, Ekaterina; Meglinski, Igor; Timofeyev, Maxim
2016-11-01
Remote in vivo scanning of physiological parameters is a major trend in the development of new tools for the fields of medicine and animal physiology. For this purpose, a variety of implantable optical micro- and nanosensors have been designed for potential medical applications. At the same time, the important area of environmental sciences has been neglected in the development of techniques for remote physiological measurements. In the field of environmental monitoring and related research, there is a constant demand for new effective and quick techniques for the stress assessment of aquatic animals, and the development of proper methods for remote physiological measurements in vivo may significantly increase the precision and throughput of analyses in this field. In the present study, we apply pH-sensitive microencapsulated biomarkers to remotely monitor the pH of haemolymph in vivo in endemic amphipods from Lake Baikal, and we compare the suitability of this technique for stress assessment with that of common biochemical methods. For the first time, we demonstrate the possibility of remotely detecting a change in a physiological parameter in an aquatic organism under ecologically relevant stressful conditions and show the applicability of techniques using microencapsulated biomarkers for remote physiological measurements in environmental monitoring.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-31
...In accordance with the Paperwork Reduction Act of 1995, this notice announces the Animal and Plant Health Inspection Service's intention to request approval of a new information collection for the approval of laboratories for conducting aquatic animal tests for export health certificates.
The Hoosier-Shawnee Ecological assessment
Frank R., III, ed. Thompson; ed.
2004-01-01
This report is a scientific assessment of the characteristic composition, structure, and processes of ecosystems in the southern one-third of Illinois and Indiana and a small part of western Kentucky. It includes chapters on ecological sections and soils, water resources, forest, plants, and communities, aquatic animals, terrestrial animals, forest diseases and pests...
In the past 20 years, considerable progress in animal alternatives accompanied by advances in the toxicological sciences and new emphases on aquatic vertebrates has appeared. A significant amount of current research is targeted to evaluate alternative test methods that may reduce...
ERIC Educational Resources Information Center
Endreny, Anna
2006-01-01
Crayfish, also known as "crawfish" or "crawdads," are easy to keep in the classroom, and with patience and luck, students will observe the complete life cycle of the crayfish. They will also learn about aquatic animals and habitats and get to conduct inquiry experiments about animal behavior. This article describes how a third-grade teacher used…
50 CFR 70.4 - Prohibited acts.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) MANAGEMENT OF FISHERIES CONSERVATION AREAS NATIONAL FISH HATCHERIES § 70.4 Prohibited acts. (a) The... aquatic animal on any national fish hatchery area is prohibited except as may be authorized under the..., capture, or take any animal on any national fish hatchery area is prohibited except as may be authorized...
50 CFR 70.4 - Prohibited acts.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) MANAGEMENT OF FISHERIES CONSERVATION AREAS NATIONAL FISH HATCHERIES § 70.4 Prohibited acts. (a) The... aquatic animal on any national fish hatchery area is prohibited except as may be authorized under the..., capture, or take any animal on any national fish hatchery area is prohibited except as may be authorized...
50 CFR 70.4 - Prohibited acts.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) MANAGEMENT OF FISHERIES CONSERVATION AREAS NATIONAL FISH HATCHERIES § 70.4 Prohibited acts. (a) The... aquatic animal on any national fish hatchery area is prohibited except as may be authorized under the..., capture, or take any animal on any national fish hatchery area is prohibited except as may be authorized...
50 CFR 70.4 - Prohibited acts.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) MANAGEMENT OF FISHERIES CONSERVATION AREAS NATIONAL FISH HATCHERIES § 70.4 Prohibited acts. (a) The... aquatic animal on any national fish hatchery area is prohibited except as may be authorized under the..., capture, or take any animal on any national fish hatchery area is prohibited except as may be authorized...
50 CFR 70.4 - Prohibited acts.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) MANAGEMENT OF FISHERIES CONSERVATION AREAS NATIONAL FISH HATCHERIES § 70.4 Prohibited acts. (a) The... aquatic animal on any national fish hatchery area is prohibited except as may be authorized under the..., capture, or take any animal on any national fish hatchery area is prohibited except as may be authorized...
Oxygen and Early Animal Evolution
NASA Astrophysics Data System (ADS)
Xiao, S.
2012-12-01
It is often hypothesized that the rise of animals was triggered by an increase in O2 levels in the atmosphere and oceans. However, this hypothesis is remarkably difficult to test, because the timing of animal divergences is poorly resolved, the physiology of early animals is often unknown, estimates of past pO2 levels come with large error bars, and causal relationships between oxygenation and animal evolution are difficult to establish. Nonetheless, existing phylogenetic, paleontological, and geochemical data indicate that the evolution of macroscopic animals and motile macrometazoans with energetically expensive lifestyles may be temporally coupled with ocean oxygenation events in the Ediacaran Period. Thus, it is plausible that ocean oxygenation may have been a limiting factor in the early evolution of macroscopic, complex, and metabolically aggressive animals (particularly bilaterian animals). However, ocean oxygenation and animal evolution were likely engaged in two-way interactions: Ediacaran oxygenation may have initially lifted a physiological barrier for the evolution of animal size, motility, and active lifestyles, but subsequent animal diversification in the Paleozoic may have also changed oceanic redox structures. Viewed in a broader context, the early evolutionary history of animals was contingent upon a series of events, including genetic preparation (developmental genetics), environmental facilitation (oceanic oxygenation), and ecological escalation (Cambrian explosion), but the rise of animals to ecological importance also had important geobiological impacts on oceanic redox structures, sedimentary fabrics, and global geochemical cycles.
Goh, Swee Han; Driedger, David; Gillett, Sandra; Low, Donald E.; Hemmingsen, Sean M.; Amos, Mayben; Chan, David; Lovgren, Marguerite; Willey, Barbara M.; Shaw, Carol; Smith, John A.
1998-01-01
It was recently reported that Streptococcus iniae, a bacterial pathogen of aquatic animals, can cause serious disease in humans. Using the chaperonin 60 (Cpn60) gene identification method with reverse checkerboard hybridization and chemiluminescent detection, we identified correctly each of 12 S. iniae samples among 34 aerobic gram-positive isolates from animal and clinical human sources. PMID:9650992
Mosquitoes and other aquatic insects in fallow field biotopes and rice paddy fields.
Ohba, S Y; Matsuo, T; Takagi, M
2013-03-01
Fallow field biotopes that develop from abandoned rice fields are man-made wetlands that provide new habitats for various aquatic animals. Although consideration of such biotopes generally focuses on their positive aspects, this study evaluated the negative aspects of establishing fallow field biotopes with regard to mosquito breeding sites. To determine whether fallow field biotopes become breeding habitats for vector mosquitoes, we evaluated mosquito fauna in fallow field biotopes and adjacent rice fields. We found larvae of Anopheles lesteri, Anopheles sinensis and Culex tritaeniorhynchus (all: Diptera: Culicidae) in the biotopes. Although abundances of mosquito larvae in the biotopes and rice fields were statistically similar, mosquito abundances in rice fields increased dramatically in August when the water level reduced after the rainy season. The abundance and variety of the mosquitoes' natural predators were greater in biotopes than in rice fields because the former are a permanent and stable aquatic environment. A generalized linear mixed model showed a negative effect of predator diversity on mosquito larvae abundance in both habitats. Although fallow field biotopes become breeding habitats for vector mosquitoes, establishing biotopes from fallow fields in order to protect various aquatic animals, including mosquito insect predators, may help to control mosquito breeding. © 2012 The Royal Entomological Society.
Contribution of science to farm-level aquatic animal health management.
Corsin, F; Giorgetti, G; Mohan, C V
2007-01-01
The contribution of science to farm level disease management is a story of two worlds. The development of effective vaccines has allowed for the control of important salmonid diseases such as furunculosis, yersiniosis and vibriosis and has significantly reduced farmers' reliance on antibiotics. Control of diseases for which cost-effective vaccines have yet to be developed has been achieved through the development of increasingly targeted antibiotics and chemotherapeutants. Increasingly, accurate and rapid diagnostic and water quality tests have allowed farmers to improve farm-level aquatic animal health management. In developed countries, these achievements have been possible thanks to the strong link between science and farm management. This link has been assisted by the presence of strong farmer organizations capable of coordinating research projects and hosting meetings at which scientific information is discussed and disseminated. Although Asia is responsible for the production of about 90% of aquaculture products, it presents a rather different picture from the above. Science has indeed made significant progress in health management but the links with farm management are still weak. Management practices capable of preventing important health problems in shrimp and fish farming are still poorly adopted by farmers. This is largely due to constraints in the dissemination of information to the large number of producers involved, the limited resources of both producers and their countries and the lack of effective farmer organizations capable of liaising with the scientific world. Recently, the Asian region has witnessed some successful examples of aquatic animal health management through the adoption of simple Better Management Practices. Efforts so far have been largely focused on shrimp farming, although activities have been initiated to adopt a similar approach to other commodities. The need for both observational and experimental epidemiological studies to identify simple and affordable farm practices for the control of aquatic animal diseases is highlighted.
Evolution and development in cave animals: from fish to crustaceans.
Protas, Meredith; Jeffery, William R
2012-01-01
Cave animals are excellent models to study the general principles of evolution as well as the mechanisms of adaptation to a novel environment: the perpetual darkness of caves. In this article, two of the major model systems used to study the evolution and development (evo-devo) of cave animals are described: the teleost fish Astyanax mexicanus and the isopod crustacean Asellus aquaticus. The ways in which these animals match the major attributes expected of an evo-devo cave animal model system are described. For both species, we enumerate the regressive and constructive troglomorphic traits that have evolved during their adaptation to cave life, the developmental and genetic basis of these traits, the possible evolutionary forces responsible for them, and potential new areas in which these model systems could be used for further exploration of the evolution of cave animals. Furthermore, we compare the two model cave animals to investigate the mechanisms of troglomorphic evolution. Finally, we propose a few other cave animal systems that would be suitable for development as additional models to obtain a more comprehensive understanding of the developmental and genetic mechanisms involved in troglomorphic evolution.
Rivera, Gabriel; Rivera, Angela R V; Dougherty, Erin E; Blob, Richard W
2006-11-01
The ability to capture prey and avoid predation in aquatic habitats depends strongly on the ability to perform unsteady maneuvers (e.g. turns), which itself depends strongly on body flexibility. Two previous studies of turning performance in rigid-bodied taxa have found either high maneuverability or high agility, but not both. However, examinations of aquatic turning performance in rigid-bodied animals have had limited taxonomic scope and, as such, the effects of many body shapes and designs on aquatic maneuverability and agility have yet to be examined. Turtles represent the oldest extant lineage of rigid-bodied vertebrates and the only aquatic rigid-bodied tetrapods. We evaluated the aquatic turning performance of painted turtles, Chrysemys picta (Schneider, 1783) using the minimum length-specific radius of the turning path (R/L) and the average turning rate (omega(avg)) as measures of maneuverability and agility, respectively. We filmed turtles conducting forward and backward turns in an aquatic arena. Each type of turn was executed using a different pattern of limb movements. During forward turns, turtles consistently protracted the inboard forelimb and held it stationary into the flow, while continuing to move the outboard forelimb and both hindlimbs as in rectilinear swimming. The limb movements of backward turns were more complex than those of forward turns, but involved near simultaneous retraction and protraction of contralateral fore- and hindlimbs, respectively. Forward turns had a minimum R/L of 0.0018 (the second single lowest value reported from any animal) and a maximum omega(avg) of 247.1 degrees. Values of R/L for backward turns (0.0091-0.0950 L) were much less variable than that of forward turns (0.0018-1.0442 L). The maneuverability of turtles is similar to that recorded previously for rigid-bodied boxfish. However, several morphological features of turtles (e.g. shell morphology and limb position) appear to increase agility relative to the body design of boxfish.
The influence of habitat on the evolution of plants: a case study across Saxifragales.
de Casas, Rafael Rubio; Mort, Mark E; Soltis, Douglas E
2016-12-01
Organismal evolution tends to be closely associated with ecological conditions. However, the extent to which this association constrains adaptation or diversification into new habitats remains unclear. We studied habitat evolution in the hyper-diverse angiosperm clade Saxifragales. We used species-level phylogenies for approx. 950 species to analyse the evolution of habitat shifts as well as their influence on plant diversification. We combined habitat characterization based on floristic assignments and state-of-the art phylogenetic comparative methods to estimate within- and across-habitat diversification patterns. Our analyses showed that Saxifragales diversified into multiple habitats from a forest-inhabiting ancestor and that this diversification is governed by relatively rare habitat shifts. Lineages are likely to stay within inferred ancestral ecological conditions. Adaptation to some habitat types (e.g. aquatic, desert) may be canalizing events that lineages do not escape. Although associations between increased diversification rates and shifts in habitat preferences are occasionally observed, extreme macroevolutionary rates are closely associated with specific habitats. Lineages occurring in shrubland, and especially tundra and rock cliffs, exhibit comparatively high diversification, whereas forest, grassland, desert and aquatic habitats are associated with low diversification. The likelihood of occupation of new habitats appears to be asymmetric. Shifts to aquatic and desert habitats may be canalizing events. Other habitats, such as tundra, might act as evolutionary sources, while forests provide the only habitat seemingly colonized easily by lineages originating elsewhere. However, habitat shifts are very rare, and any major environmental alteration is expected to have dramatic evolutionary consequences. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.
The Ocean Tracking Network and its contribution to ocean biological observation
NASA Astrophysics Data System (ADS)
Whoriskey, F. G.
2016-02-01
Animals move to meet their needs for food, shelter, reproduction and to avoid unfavorable environments. In aquatic systems, it is essential that we understand these movements if we are to sustainably manage populations and maintain healthy ecosystems. Thus the ability to document and monitor changes in aquatic animal movements is a biological observing system need. The Ocean Tracking Network (OTN) is a global research, technology development, and data management platform headquartered at Dalhousie University, in Halifax, Nova Scotia working to fill this need. OTN uses electronic telemetry to document the local-to-global movements and survival of aquatic animals, and to correlate them to oceanographic or limnological variables that are influencing movements. Such knowledge can assist with planning for and managing of anthropogenic impacts on present and future animal distributions, including those due to climate change. OTN works with various tracking methods including satellite and data storage tag systems, but its dominant focus is acoustic telemetry. OTN is built on global partnerships for the sharing of equipment and data, and has stimulated technological development in telemetry by bringing researchers with needs for new capabilities together with manufacturers to generate, test, and operationalize new technologies. This has included pioneering work into the use of marine autonomous vehicles (Slocum electric gliders; Liquid Robotics Wave Glider) in animal telemetry research. Similarly, OTN scientists worked with the Sea Mammal Research Unit to develop mobile acoustic receiver that have been placed on grey seals and linked via Bluetooth to a satellite transmitter/receiver. This provided receiver coverage in areas occupied by the seals during their typically extensive migrations and allowed for the examination of ecosystem linkages by documenting behavioral interactions the seals had with the physical environment, conspecifics, and other tagged species.
Development of water quality criteria and screening benchmarks for 2,4,6 trinitrotoluene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talmage, S.S.; Opresko, D.M.
1995-12-31
Munitions compounds and their degradation products are present at many Army Ammunition Plant Superfund sites. Neither Water Quality Criteria (WQC) for aquatic organisms nor safe soil levels for terrestrial plants and animals have been developed for munitions compounds including trinitrotoluene (TNT). Data are available for the calculation of an acute WQC for TNT according to US EPA guidelines but are insufficient to calculate a chronic criterion. However, available data can be used to determine a Secondary Chronic Value (SCV) and to determine lowest chronic values for fish and daphnids (used by EPA in the absence of criteria). Based on datamore » from eight genera of aquatic organisms, an acute WOC of 0.566 mg/L was calculated. Using available data, a SCV of 0.137 mg/L was calculated. Lowest chronic values for fish and for daphnids are 0.04 mg/L and 1.03 mg/L, respectively. The lowest concentration that affected the growth of aquatic plants was 1.0 mg/L. For terrestrial animals, data from studies of laboratory animals can be extrapolated to derive screening benchmarks in the same way in which human toxicity values are derived from laboratory animal data. For terrestrial animals, a no-observed-adverse-effect-level (NOAEL) for reproductive effects of 1.60 mg/kg/day was determined from a subchronic laboratory feeding study with rats. By scaling the test NOAEL on the basis of differences in body size, screening benchmarks were calculated for oral intake for selected mammalian wildlife species. Screening benchmarks were also derived for protection of benthic organisms in sediment, for soil invertebrates, and for terrestrial plants.« less
Deb, Apurba Krishna; Emdad Haque, C
2011-03-24
This research article examines the zootherapeutic uses of fish, shellfish and some other aquatic animals in two fishing villages in Bangladesh-one floodplain and one coastal. The floodplain fishing village Volarkandi is located within the Hakaluki wetland ecosystem in the northern Bangladesh and is inhabited mostly by Muslim fishers, whereas the coastal fishing village Thakurtala is located on Moheskhali island and most of the inhabitants are caste-based Hindu fishers. Participatory techniques were used to collect and validate information from the key informants. The research revealed that, historically, fishers have used fish and other aquatic animals not only as food items for nutrition, but also to solve a host of physical problems and diseases. Fish and shellfish are widely used for their galactogogue and aphrodisiac properties, for quick recovery from long-time sickness, to enhance the 'intelligence level' of children, and to prevent and treat a host of diseases like night blindness, chicken pox, dysentery, piles, muscular inflammation, fistula, malaria, skin diseases and 'big belly' syndrome in children. Depending on the objective of the use, different parts of the animal body, its derivatives, or the whole animal are used. The research also clarified different forms of the recipes used. The socio-cultural construction of the ethnomedicinal uses and the distinct gender roles of the fisherwomen were analyzed. The research revealed that the aetiologies and the preventive measures against folk illness are socio-culturally embedded and such indigenous medical systems grow and are sustained as a situated body of knowledge within the boundaries of a typical world view framed by local culture and biodiversity. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Can thiol compounds be used as biomarkers of aquatic ecosystem contamination by cadmium?
Kovářová, Jana; Svobodová, Zdeňka
2009-01-01
Due to anthropogenic activities, heavy metals still represent a threat for various trophic levels. If aquatic animals are exposed to heavy metals we can obviously observe considerable toxicity. It is well known that an organism affected by cadmium (Cd) synthesize low molecular mass thiol compounds rich in cysteine (Cys), such as metallothioneins (MT) and glutathione (GSH/GSSG). The aim of this study was to summarize the effect of Cd on level of thiol compounds in aquatic organisms, and evaluate that the concentrations of thiol compounds are effective indicators of Cd water pollution and explain their potential use in biomonitoring applications. PMID:21217850
Aquatic CAM photosynthesis: a brief history of its discovery
Keeley, Jon E.
2014-01-01
Aquatic CAM (Crassulacean Acid Metabolism) photosynthesis was discovered while investigating an unrelated biochemical pathway concerned with anaerobic metabolism. George Bowes was a significant contributor to this project early in its infancy. Not only did he provide me with some valuable perspectives on peer review rejections, but by working with his gas exchange system I was able to take our initial observations of diel fluctuations in malic acid to the next level, showing this aquatic plant exhibited dark CO2 uptake. CAM is universal in all aquatic species of the worldwide Lycophyta genus Isoetes and non-existent in terrestrial Isoetes. Outside of this genus aquatic CAM has a limited occurrence in three other families, including the Crassulaceae. This discovery led to fascinating adventures in the highlands of the Peruvian Andes in search of Stylites, a terrestrial relative of Isoetes. Stylites is a plant that is hermetically sealed from the atmosphere and obtains all of its carbon from terrestrial sources and recycles carbon through CAM. Considering the Mesozoic origin of Isoetes in shallow pools, coupled with the fact that aquatic Isoetes universally possess CAM, suggests the earliest evolution of CAM photosynthesis was most likely not in terrestrial plants.
Okada, Morihiro; Miller, Thomas C; Roediger, Julia; Shi, Yun-Bo; Schech, Joseph Mat
2017-09-01
Various animal models are indispensible in biomedical research. Increasing awareness and regulations have prompted the adaptation of more humane approaches in the use of laboratory animals. With the development of easier and faster methodologies to generate genetically altered animals, convenient and humane methods to genotype these animals are important for research involving such animals. Here, we report skin swabbing as a simple and noninvasive method for extracting genomic DNA from mice and frogs for genotyping. We show that this method is highly reliable and suitable for both immature and adult animals. Our approach allows a simpler and more humane approach for genotyping vertebrate animals.
Fluid Flow Simulation and Energetic Analysis of Anomalocarididae Locomotion
NASA Astrophysics Data System (ADS)
Mikel-Stites, Maxwell; Staples, Anne
2014-11-01
While an abundance of animal locomotion simulations have been performed modeling the motions of living arthropods and aquatic animals, little quantitative simulation and reconstruction of gait parameters has been done to model the locomotion of extinct animals, many of which bear little physical resemblance to their modern descendants. To that end, this project seeks to analyze potential swimming patterns used by the anomalocaridid family, (specifically Anomalocaris canadensis, a Cambrian Era aquatic predator), and determine the most probable modes of movement. This will serve to either verify or cast into question the current assumed movement patterns and properties of these animals and create a bridge between similar flexible-bodied swimmers and their robotic counterparts. This will be accomplished by particle-based fluid flow simulations of the flow around the fins of the animal, as well as an energy analysis of a variety of sample gaits. The energy analysis will then be compared to the extant information regarding speed/energy use curves in an attempt to determine which modes of swimming were most energy efficient for a given range of speeds. These results will provide a better understanding of how these long-extinct animals moved, possibly allowing an improved understanding of their behavioral patterns, and may also lead to a novel potential platform for bio-inspired underwater autonomous vehicles (UAVs).
USDA-ARS?s Scientific Manuscript database
Manure spills into streams are an all too common byproduct of animal production. With greater numbers of animals raised on fewer farms, manure spills become greater problems due to the volume of manure spilled into aquatic ecosystems. This book chapter reviews why manure spills occur, and the curren...
USDA-ARS?s Scientific Manuscript database
Estrogens are steroid hormones eliminated from nearly all animals at reasonably high levels, and when released into the environment they can act as endocrine disrupting compounds, particularly to aquatic organisms. Tracing the movement of estrogens from animal waste to impacted waters is complicate...
The Hoosier-Shawnee ecological assessment: Table of contents
Frank R., III ed. Thompson
2004-01-01
This report is a scientific assessment of the characteristic composition, structure, and processes of ecosystems in the southern one-third of Illinois and Indiana and a small part of western Kentucky. It includes chapters on ecological sections and soils, water resources, forest, plants, and communities, aquatic animals, terrestrial animals, forest diseases and pests,...
Wu, Hailong; Huo, Yuanzi; Hu, Ming; Wei, Zhangliang; He, Peimin
2015-06-15
Intensive mariculture results in a rise in nutrient concentrations, then leads to serious eutrophication in coastal waters. Based on the sampling data obtained between August 2012 and July 2013, the eutrophication status in Yantian Bay was assessed, and the proportion of marine animals co-cultured with seaweeds was evaluated. The nutritional quality index (NQI) ranged from 4.37 to 13.20, indicating serious eutrophication conditions. The annual average ratio of nitrogen/phosphorus (N/P) was 25.19, indicating a nitrogen surplus in this system. DIN was selected as the best parameter to balance seaweed absorption and marine animal DIN production. Gracilaria lemaneiformis and Laminaria japonica were selected as co-cultured seaweeds. The optimal proportion of G. lemaneiformis production was assessed as 20074.14 tonnes. The optimal proportion of L. japonica production was evaluated as 15890.68 tonnes. High-temperature adapted seaweeds should be introduced for removing nutrients releasing by farmed aquatic animals in the summer in Yantian Bay. Copyright © 2015 Elsevier Ltd. All rights reserved.
The diversity and evolution of anuran skin peptides.
König, Enrico; Bininda-Emonds, Olaf R P; Shaw, Chris
2015-01-01
Amphibians exhibit various, characteristic adaptations related to their "incomplete" shift from the aquatic to the terrestrial habitat. In particular, the integument was subject to a number of specialized modifications during the evolution of these animals. In this review, we place special emphasis on endogenous host-defence skin peptides from the cuteanous granular glands anuran amphibians (frogs and toads). The overview on the two broad groups of neuroactive and antimicrobial peptides (AMPs) goes beyond a simple itemization in that we provide a new perspective into the evolution and function of anuran AMPs. Briefly, these cationic, amphipathic and α-helical peptides are traditionally viewed as being part of the innate immune system, protecting the moist skin against invading microorganisms through their cytolytic action. However, the complete record of anuran species investigated to date suggests that AMPs are distributed sporadically (i.e., non-universally) across Anura. Together with the intriguing observation that virtually all anurans known to produce neuropeptides in their granular glands also co-secrete cytolytic peptides, we call the traditional role for AMPs as being purely antimicrobial into question and present an alternative scenario. We hypothesize AMPs to assist neuroactive peptides in their antipredator role through their cytolytic action increasing the delivery of the latter to the endocrine and nervous system of the predator. Thus, AMPs are more accurately viewed as cytolysins and their contribution to the immune system is better regarded as an accessory benefit. Copyright © 2014 Elsevier Inc. All rights reserved.
A reconstruction of sexual modes throughout animal evolution.
Sasson, Daniel A; Ryan, Joseph F
2017-12-06
Although most extant animals have separate sexes, simultaneous hermaphrodites can be found in lineages throughout the animal kingdom. However, the sexual modes of key ancestral nodes including the last common ancestor (LCA) of all animals remain unclear. Without these data, it is difficult to infer the reproductive-state transitions that occurred early in animal evolution, and thus a broad understanding of the evolution of animal reproduction remains elusive. In this study, we use a composite phylogeny from four previously published studies, two alternative topologies (ctenophores or sponges as sister to the rest of animals), and multiple phylogenetic approaches to conduct the most extensive analysis to date of the evolution of animal sexual modes. Our analyses clarify the sexual mode of many ancestral animal nodes and allow for sound inferences of modal transitions that have occurred in animal history. Our results also indicate that the transition from separate sexes to hermaphroditism has been more common in animal history than the reverse. These results provide the most complete view of the evolution of animal sexual modes to date and provide a framework for future inquiries into the correlation of these transitions with genes, behaviors, and physiology. These results also suggest that mutations promoting hermaphroditism have historically been more likely to invade gonochoristic populations than vice versa.
Auerbach PS, DiTullio AE. Envenomation by aquatic invertebrates. In: Auerbach PS, Cushing TA, Harris NS, eds. Aurebach's Wilderness Medicine . 7th ed. Philadelphia, PA: Elsevier; 2017:chap 74. Otten EJ. Venomous animal ...
Role of olfaction in Octopus vulgaris reproduction.
Polese, Gianluca; Bertapelle, Carla; Di Cosmo, Anna
2015-01-01
The olfactory system in any animal is the primary sensory system that responds to chemical stimuli emanating from a distant source. In aquatic animals "Odours" are molecules in solution that guide them to locate food, partners, nesting sites, and dangers to avoid. Fish, crustaceans and aquatic molluscs possess sensory systems that have anatomical similarities to the olfactory systems of land-based animals. Molluscs are a large group of aquatic and terrestrial animals that rely heavily on chemical communication with a generally dispersed sense of touch and chemical sensitivity. Cephalopods, the smallest class among extant marine molluscs, are predators with high visual capability and well developed vestibular, auditory, and tactile systems. Nevertheless they possess a well developed olfactory organ, but to date almost nothing is known about the mechanisms, functions and modulation of this chemosensory structure in octopods. Cephalopod brains are the largest of all invertebrate brains and across molluscs show the highest degree of centralization. The reproductive behaviour of Octopus vulgaris is under the control of a complex set of signal molecules such as neuropeptides, neurotransmitters and sex steroids that guide the behaviour from the level of individuals in evaluating mates, to stimulating or deterring copulation, to sperm-egg chemical signalling that promotes fertilization. These signals are intercepted by the olfactory organs and integrated in the olfactory lobes in the central nervous system. In this context we propose a model in which the olfactory organ and the olfactory lobe of O. vulgaris could represent the on-off switch between food intake and reproduction. Copyright © 2014 Elsevier Inc. All rights reserved.
Salter, Caroline E; O'Donnell, Kerry; Sutton, Deanna A; Marancik, David P; Knowles, Susan; Clauss, Tonya M; Berliner, Aimee L; Camus, Alvin C
2012-10-10
During a 4 mo epizootic, 100% of 152 lined seahorses Hippocampus erectus in 3 separate groups died while in quarantine following shipment to a public aquarium. Twelve animals with skin depigmentation and ulceration were received by the Aquatic Pathology Service, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA, for diagnostic evaluation. Microscopically, lesions in 11 seahorses included multifocal epithelial necrosis and ulceration associated with 2 to 7 µm diameter, branching, septate fungal hyphae, typically accompanied by deeper infiltration into underlying skeletal muscle. Angioinvasion, with vascular thrombosis and tissue infarction, was a prominent feature in multiple animals. Fungal invasion of one or more internal organs was observed in 4 animals. Hyphae appeared to course freely through tissues and elicited little or no inflammatory response. Fusariosis has been reported sporadically in fish and other aquatic organisms, but identification has often been limited to the genus level based solely on morphologic features. Morphologic characteristics of the fungus isolated from this case were consistent with the Fusarium solani species complex (FSSC), which includes over 50 members that can only be identified definitively using DNA sequence data. A 3-locus typing scheme identified the isolate as a distinct species/haplotype, designated FSSC 12-a, belonging to a specific lineage that appears adapted to aquatic environments and disease in marine animals. Empirical treatment with itraconazole failed to stop mortalities, and subsequent in vitro antifungal susceptibility data explained a lack of clinical efficacy for this agent. Effective treatment in human medicine has similarly been limited by poor susceptibility to several classes of antifungal compounds.
Aquarium Viromes: Viromes of Human-Managed Aquatic Systems
Kim, Yiseul; Van Bonn, William; Aw, Tiong G.; Rose, Joan B.
2017-01-01
An aquarium ecosystem is home to many animal species providing conditions similar to native aquatic habitats but under highly controlled management. With a growing interest in understanding the interaction of microbiomes and resident animal health within aquarium environments, we undertook a metagenomic survey of viromes in seven aquarium systems with differing physicochemical and resident animal profiles. Our results show that a diverse array of viruses was represented in aquarium viromes, many of which were widespread in different aquarium systems (27 common viral families in all of the aquarium systems). Most viromes were dominated by DNA phages of the order Caudovirales as commonly found in other aquatic environments with average relative abundance greater than 64%. The composition and structure of aquarium viromes were associated with controlled system parameters, including nitrate, salinity, and temperature as well as resident animal profiles, indicating the close interaction of viromes with aquarium management practices. Furthermore, finding human associated viruses in a touch exhibit suggested that exposure of aquarium systems to human contact may lead to introduction of human cutaneous viruses into aquaria. This is consistent with the high abundance of skin microflora on the palms of healthy individuals and their detection in recreational waters, such as swimming pools. Lastly, assessment of antibiotic resistance genes (ARGs) in aquarium viromes revealed a unique signature of ARGs in different aquarium systems with trimethoprim being the most common. This is the first study to provide vital information on viromes and their unique relationships with management practices in a human-built and controlled aquarium environment. PMID:28713358
Tresguerres, Martin; Barott, Katie L.; Barron, Megan E.; Roa, Jinae N.
2014-01-01
Soluble adenylyl cyclase (sAC) is a recently recognized source of the signaling molecule cyclic AMP (cAMP) that is genetically and biochemically distinct from the classic G-protein-regulated transmembrane adenylyl cyclases (tmACs). Mammalian sAC is distributed throughout the cytoplasm and it may be present in the nucleus and inside mitochondria. sAC activity is directly stimulated by HCO3−, and sAC has been confirmed to be a HCO3− sensor in a variety of mammalian cell types. In addition, sAC can functionally associate with carbonic anhydrases to act as a de facto sensor of pH and CO2. The two catalytic domains of sAC are related to HCO3−-regulated adenylyl cyclases from cyanobacteria, suggesting the cAMP pathway is an evolutionarily conserved mechanism for sensing CO2 levels and/or acid/base conditions. Reports of sAC in aquatic animals are still limited but are rapidly accumulating. In shark gills, sAC senses blood alkalosis and triggers compensatory H+ absorption. In the intestine of bony fishes, sAC modulates NaCl and water absorption. And in sea urchin sperm, sAC may participate in the initiation of flagellar movement and in the acrosome reaction. Bioinformatics and RT-PCR results reveal that sAC orthologs are present in most animal phyla. This review summarizes the current knowledge on the physiological roles of sAC in aquatic animals and suggests additional functions in which sAC may be involved. PMID:24574382
The evolution of cell types in animals: emerging principles from molecular studies.
Arendt, Detlev
2008-11-01
Cell types are fundamental units of multicellular life but their evolution is obscure. How did the first cell types emerge and become distinct in animal evolution? What were the sets of cell types that existed at important evolutionary nodes that represent eumetazoan or bilaterian ancestors? How did these ancient cell types diversify further during the evolution of organ systems in the descending evolutionary lines? The recent advent of cell type molecular fingerprinting has yielded initial insights into the evolutionary interrelationships of cell types between remote animal phyla and has allowed us to define some first principles of cell type diversification in animal evolution.
Chen, Ling-Yun; Chen, Jin-Ming; Gituru, Robert Wahiti; Wang, Qing-Feng
2012-03-10
Hydrocharitaceae is a fully aquatic monocot family, consists of 18 genera with approximately 120 species. The family includes both fresh and marine aquatics and exhibits great diversity in form and habit including annual and perennial life histories; submersed, partially submersed and floating leaf habits and linear to orbicular leaf shapes. The family has a cosmopolitan distribution and is well represented in the Tertiary fossil record in Europe. At present, the historical biogeography of the family is not well understood and the generic relationships remain controversial. In this study we investigated the phylogeny and biogeography of Hydrocharitaceae by integrating fossils and DNA sequences from eight genes. We also conducted ancestral state reconstruction for three morphological characters. Phylogenetic analyses produced a phylogeny with most branches strongly supported by bootstrap values greater than 95 and Bayesian posterior probability values of 1.0. Stratiotes is the first diverging lineage with the remaining genera in two clades, one clade consists of Lagarosiphon, Ottelia, Blyxa, Apalanthe, Elodea and Egeria; and the other consists of Hydrocharis-Limnobium, Thalassia, Enhalus, Halophila, Najas, Hydrilla, Vallisneria, Nechamandra and Maidenia. Biogeographic analyses (DIVA, Mesquite) and divergence time estimates (BEAST) resolved the most recent common ancestor of Hydrocharitaceae as being in Asia during the Late Cretaceous and Palaeocene (54.7-72.6 Ma). Dispersals (including long-distance dispersal and migrations through Tethys seaway and land bridges) probably played major roles in the intercontinental distribution of this family. Ancestral state reconstruction suggested that in Hydrocharitaceae evolution of dioecy is bidirectional, viz., from dioecy to hermaphroditism, and from hermaphroditism to dioecy, and that the aerial-submerged leaf habit and short-linear leaf shape are the ancestral states. Our study has shed light on the previously controversial generic phylogeny of Hydrocharitaceae. The study has resolved the historical biogeography of this family and supported dispersal as the most likely explanation for the intercontinental distribution. We have also provided valuable information for understanding the evolution of breeding system and leaf phenotype in aquatic monocots.
Key Ecological Roles for Zoosporic True Fungi in Aquatic Habitats.
Gleason, Frank H; Scholz, Bettina; Jephcott, Thomas G; van Ogtrop, Floris F; Henderson, Linda; Lilje, Osu; Kittelmann, Sandra; Macarthur, Deborah J
2017-03-01
The diversity and abundance of zoosporic true fungi have been analyzed recently using fungal sequence libraries and advances in molecular methods, such as high-throughput sequencing. This review focuses on four evolutionary primitive true fungal phyla: the Aphelidea, Chytridiomycota, Neocallimastigomycota, and Rosellida (Cryptomycota), most species of which are not polycentric or mycelial (filamentous), rather they tend to be primarily monocentric (unicellular). Zoosporic fungi appear to be both abundant and diverse in many aquatic habitats around the world, with abundance often exceeding other fungal phyla in these habitats, and numerous novel genetic sequences identified. Zoosporic fungi are able to survive extreme conditions, such as high and extremely low pH; however, more work remains to be done. They appear to have important ecological roles as saprobes in decomposition of particulate organic substrates, pollen, plant litter, and dead animals; as parasites of zooplankton and algae; as parasites of vertebrate animals (such as frogs); and as symbionts in the digestive tracts of mammals. Some chytrids cause economically important diseases of plants and animals. They regulate sizes of phytoplankton populations. Further metagenomics surveys of aquatic ecosystems are expected to enlarge our knowledge of the diversity of true zoosporic fungi. Coupled with studies on their functional ecology, we are moving closer to unraveling the role of zoosporic fungi in carbon cycling and the impact of climate change on zoosporic fungal populations.
Phylogeny, ecology, and heart position in snakes.
Gartner, Gabriel E A; Hicks, James W; Manzani, Paulo R; Andrade, Denis V; Abe, Augusto S; Wang, Tobias; Secor, Stephen M; Garland, Theodore
2010-01-01
The cardiovascular system of all animals is affected by gravitational pressure gradients, the intensity of which varies according to organismic features, behavior, and habitat occupied. A previous nonphylogenetic analysis of heart position in snakes-which often assume vertical postures-found the heart located 15%-25% of total body length from the head in terrestrial and arboreal species but 25%-45% in aquatic species. It was hypothesized that a more anterior heart in arboreal species served to reduce the hydrostatic blood pressure when these animals adopt vertical postures during climbing, whereas an anterior heart position would not be needed in aquatic habitats, where the effects of gravity are less pronounced. We analyzed a new data set of 155 species from five major families of Alethinophidia (one of the two major branches of snakes, the other being blind snakes, Scolecophidia) using both conventional and phylogenetically based statistical methods. General linear models regressing log(10) snout-heart position on log(10) snout-vent length (SVL), as well as dummy variables coding for habitat and/or clade, were compared using likelihood ratio tests and the Akaike Information Criterion. Heart distance to the tip of the snout scaled isometrically with SVL. In all instances, phylogenetic models that incorporated transformation of the branch lengths under an Ornstein-Uhlenbeck model of evolution (to mimic stabilizing selection) better fit the data as compared with their nonphylogenetic counterparts. The best-fit model predicting snake heart position included aspects of both habitat and clade and indicated that arboreal snakes in our study tend to have hearts placed more posteriorly, opposite the trend identified in previous studies. Phylogenetic signal in relative heart position was apparent both within and among clades. Our results suggest that overcoming gravitational pressure gradients in snakes most likely involves the combined action of several cardiovascular and behavioral adaptations in addition to alterations in relative heart location.
Energetic tradeoffs control the size distribution of aquatic mammals
NASA Astrophysics Data System (ADS)
Gearty, William; McClain, Craig R.; Payne, Jonathan L.
2018-04-01
Four extant lineages of mammals have invaded and diversified in the water: Sirenia, Cetacea, Pinnipedia, and Lutrinae. Most of these aquatic clades are larger bodied, on average, than their closest land-dwelling relatives, but the extent to which potential ecological, biomechanical, and physiological controls contributed to this pattern remains untested quantitatively. Here, we use previously published data on the body masses of 3,859 living and 2,999 fossil mammal species to examine the evolutionary trajectories of body size in aquatic mammals through both comparative phylogenetic analysis and examination of the fossil record. Both methods indicate that the evolution of an aquatic lifestyle is driving three of the four extant aquatic mammal clades toward a size attractor at ˜500 kg. The existence of this body size attractor and the relatively rapid selection toward, and limited deviation from, this attractor rule out most hypothesized drivers of size increase. These three independent body size increases and a shared aquatic optimum size are consistent with control by differences in the scaling of energetic intake and cost functions with body size between the terrestrial and aquatic realms. Under this energetic model, thermoregulatory costs constrain minimum size, whereas limitations on feeding efficiency constrain maximum size. The optimum size occurs at an intermediate value where thermoregulatory costs are low but feeding efficiency remains high. Rather than being released from size pressures, water-dwelling mammals are driven and confined to larger body sizes by the strict energetic demands of the aquatic medium.
Lung collapse among aquatic reptiles and amphibians during long-term diving.
Ultsch, Gordon R; Brainerd, Elizabeth L; Jackson, Donald C
2004-09-01
Numerous aquatic reptiles and amphibians that typically breathe both air and water can remain fully aerobic in normoxic (aerated) water by taking up oxygen from the water via extrapulmonary avenues. Nevertheless, if air access is available, these animals do breathe air, however infrequently. We suggest that such air breathing does not serve an immediate gas exchange function under these conditions, nor is it necessarily related to buoyancy requirements, but serves to keep lungs inflated that would otherwise collapse during prolonged submergence. We also suggest that lung deflation is routine in hibernating aquatic reptiles and amphibians in the northern portions of their ranges, where ice cover prevents surfacing for extended periods.
Chapter 6: Ecology and Biodiversity
Patricia N. Manley; Dennis D. Murphy; Seth Bigelow; Sudeep Chandra
2010-01-01
The integrity of animal and plant communities serves as a critical measure of the effectiveness of policies designed to protect and restore ecosystem processes in the Lake Tahoe basin. The conservation of plants and animals in the Tahoe basin is utterly dependent on the conservation of its terrestrial and aquatic ecosystems; so, in many ways, the research agenda that...
Yang, Jen-Lee
2014-04-01
Acute toxicity testing were carried out the freshwater swamp shrimp, Macrobrachium nipponense, as the model animal for the semiconductor applied metals (gallium, antimony, indium, cadmium, and copper) to evaluate if the species is an suitable experimental animal of pollution in aquatic ecosystem. The static renewal test method of acute lethal concentrations determination was used, and water temperature was maintained at 24.0 ± 0.5°C. Data of individual metal obtained from acute toxicity tests were determined using probit analysis method. The median lethal concentration (96-h LC50) of gallium, antimony, indium, cadmium, and copper for M. nipponense were estimated as 2.7742, 1.9626, 6.8938, 0.0539, and 0.0313 mg/L, respectively. Comparing the toxicity tolerance of M. nipponense with other species which exposed to these metals, it is obviously that the M. nipponense is more sensitive than that of various other aquatic animals.
Ecological theory as a foundation to control pathogenic invasion in aquaculture
De Schryver, Peter; Vadstein, Olav
2014-01-01
Detrimental host–pathogen interactions are a normal phenomenon in aquaculture animal production, and have been counteracted by prophylactic use of antibiotics. Especially, the youngest life stages of cultivated aquatic animals are susceptible to pathogen invasion, resulting in disease and mortality. To establish a more sustainable aquatic food production, there is a need for new microbial management strategies that focus on ‘join them' and not the traditional ‘beat them' approaches. We argue that ecological theory could serve as a foundation for developing sustainable microbial management methods that prevent pathogenic disease in larviculture. Management of the water microbiota in aquaculture systems according to ecological selection principles has been shown to decrease opportunistic pathogen pressure and to result in an improved performance of the cultured animals. We hypothesize that manipulation of the biodiversity of the gut microbiota can increase the host's resistance against pathogenic invasion and infection. However, substantial barriers need to be overcome before active management of the intestinal microbiota can effectively be applied in larviculture. PMID:24892581
Richard E. Wehnes
1989-01-01
The quality of streams and stream habitat for aquatic life and terrestrial animals in the central hardwood forest can be maintained or enhanced through careful protection, management, and re-establishment of streamside forests.
Optimization of radio telemetry receiving systems: Chapter 5.2
Evans, Scott D.; Stevenson, John R.; Adams, Noah S.; Beeman, John W.; Eiler, John H.
2012-01-01
Telemetry provides a powerful and flexible tool for studying fish and other aquatic animals, and its use has become increasingly commonplace. However, telemetry is gear intensive and typically requires more specialized knowledge and training than many other field techniques. As with other scientific methods, collecting good data is dependent on an understanding of the underlying principles behind the approach, knowing how to use the equipment and techniques properly, and recognizing what to do with the data collected. This book provides a road map for using telemetry to study aquatic animals, and provides the basic information needed to plan, implement, and conduct a telemetry study under field conditions. Topics include acoustic or radio telemetry study design, tag implantation techniques, radio and acoustic telemetry principles and case studies, and data management and analysis.
A history of telemetry in fishery research: Chapter 2
Hockersmith, Eric; Beeman, John W.; Adams, Noah S.; Beeman, John W.; Eiler, John H.
2012-01-01
Telemetry provides a powerful and flexible tool for studying fish and other aquatic animals, and its use has become increasingly commonplace. However, telemetry is gear intensive and typically requires more specialized knowledge and training than many other field techniques. As with other scientific methods, collecting good data is dependent on an understanding of the underlying principles behind the approach, knowing how to use the equipment and techniques properly, and recognizing what to do with the data collected. This book provides a road map for using telemetry to study aquatic animals, and provides the basic information needed to plan, implement, and conduct a telemetry study under field conditions. Topics include acoustic or radio telemetry study design, tag implantation techniques, radio and acoustic telemetry principles and case studies, and data management and analysis.
The evolution of pattern camouflage strategies in waterfowl and game birds.
Marshall, Kate L A; Gluckman, Thanh-Lan
2015-05-01
Visual patterns are common in animals. A broad survey of the literature has revealed that different patterns have distinct functions. Irregular patterns (e.g., stipples) typically function in static camouflage, whereas regular patterns (e.g., stripes) have a dual function in both motion camouflage and communication. Moreover, irregular and regular patterns located on different body regions ("bimodal" patterning) can provide an effective compromise between camouflage and communication and/or enhanced concealment via both static and motion camouflage. Here, we compared the frequency of these three pattern types and traced their evolutionary history using Bayesian comparative modeling in aquatic waterfowl (Anseriformes: 118 spp.), which typically escape predators by flight, and terrestrial game birds (Galliformes: 170 spp.), which mainly use a "sit and hide" strategy to avoid predation. Given these life histories, we predicted that selection would favor regular patterning in Anseriformes and irregular or bimodal patterning in Galliformes and that pattern function complexity should increase over the course of evolution. Regular patterns were predominant in Anseriformes whereas regular and bimodal patterns were most frequent in Galliformes, suggesting that patterns with multiple functions are broadly favored by selection over patterns with a single function in static camouflage. We found that the first patterns to evolve were either regular or bimodal in Anseriformes and either irregular or regular in Galliformes. In both orders, irregular patterns could evolve into regular patterns but not the reverse. Our hypothesis of increasing complexity in pattern camouflage function was supported in Galliformes but not in Anseriformes. These results reveal a trajectory of pattern evolution linked to increasing function complexity in Galliformes although not in Anseriformes, suggesting that both ecology and function complexity can have a profound influence on pattern evolution.
The evolution of pattern camouflage strategies in waterfowl and game birds
Marshall, Kate L A; Gluckman, Thanh-Lan
2015-01-01
Visual patterns are common in animals. A broad survey of the literature has revealed that different patterns have distinct functions. Irregular patterns (e.g., stipples) typically function in static camouflage, whereas regular patterns (e.g., stripes) have a dual function in both motion camouflage and communication. Moreover, irregular and regular patterns located on different body regions (“bimodal” patterning) can provide an effective compromise between camouflage and communication and/or enhanced concealment via both static and motion camouflage. Here, we compared the frequency of these three pattern types and traced their evolutionary history using Bayesian comparative modeling in aquatic waterfowl (Anseriformes: 118 spp.), which typically escape predators by flight, and terrestrial game birds (Galliformes: 170 spp.), which mainly use a “sit and hide” strategy to avoid predation. Given these life histories, we predicted that selection would favor regular patterning in Anseriformes and irregular or bimodal patterning in Galliformes and that pattern function complexity should increase over the course of evolution. Regular patterns were predominant in Anseriformes whereas regular and bimodal patterns were most frequent in Galliformes, suggesting that patterns with multiple functions are broadly favored by selection over patterns with a single function in static camouflage. We found that the first patterns to evolve were either regular or bimodal in Anseriformes and either irregular or regular in Galliformes. In both orders, irregular patterns could evolve into regular patterns but not the reverse. Our hypothesis of increasing complexity in pattern camouflage function was supported in Galliformes but not in Anseriformes. These results reveal a trajectory of pattern evolution linked to increasing function complexity in Galliformes although not in Anseriformes, suggesting that both ecology and function complexity can have a profound influence on pattern evolution. PMID:26045950
Always chew your food: freshwater stingrays use mastication to process tough insect prey.
Kolmann, Matthew A; Welch, Kenneth C; Summers, Adam P; Lovejoy, Nathan R
2016-09-14
Chewing, characterized by shearing jaw motions and high-crowned molar teeth, is considered an evolutionary innovation that spurred dietary diversification and evolutionary radiation of mammals. Complex prey-processing behaviours have been thought to be lacking in fishes and other vertebrates, despite the fact that many of these animals feed on tough prey, like insects or even grasses. We investigated prey capture and processing in the insect-feeding freshwater stingray Potamotrygon motoro using high-speed videography. We find that Potamotrygon motoro uses asymmetrical motion of the jaws, effectively chewing, to dismantle insect prey. However, CT scanning suggests that this species has simple teeth. These findings suggest that in contrast to mammalian chewing, asymmetrical jaw action is sufficient for mastication in other vertebrates. We also determined that prey capture in these rays occurs through rapid uplift of the pectoral fins, sucking prey beneath the ray's body, thereby dissociating the jaws from a prey capture role. We suggest that the decoupling of prey capture and processing facilitated the evolution of a highly kinetic feeding apparatus in batoid fishes, giving these animals an ability to consume a wide variety of prey, including molluscs, fishes, aquatic insect larvae and crustaceans. We propose Potamotrygon as a model system for understanding evolutionary convergence of prey processing and chewing in vertebrates. © 2016 The Author(s).
Ghatak, Sandeep; Blom, Jochen; Das, Samir; Sanjukta, Rajkumari; Puro, Kekungu; Mawlong, Michael; Shakuntala, Ingudam; Sen, Arnab; Goesmann, Alexander; Kumar, Ashok; Ngachan, S V
2016-07-01
Aeromonas species are important pathogens of fishes and aquatic animals capable of infecting humans and other animals via food. Due to the paucity of pan-genomic studies on aeromonads, the present study was undertaken to analyse the pan-genome of three clinically important Aeromonas species (A. hydrophila, A. veronii, A. caviae). Results of pan-genome analysis revealed an open pan-genome for all three species with pan-genome sizes of 9181, 7214 and 6884 genes for A. hydrophila, A. veronii and A. caviae, respectively. Core-genome: pan-genome ratio (RCP) indicated greater genomic diversity for A. hydrophila and interestingly RCP emerged as an effective indicator to gauge genomic diversity which could possibly be extended to other organisms too. Phylogenomic network analysis highlighted the influence of homologous recombination and lateral gene transfer in the evolution of Aeromonas spp. Prediction of virulence factors indicated no significant difference among the three species though analysis of pathogenic potential and acquired antimicrobial resistance genes revealed greater hazards from A. hydrophila. In conclusion, the present study highlighted the usefulness of whole genome analyses to infer evolutionary cues for Aeromonas species which indicated considerable phylogenomic diversity for A. hydrophila and hitherto unknown genomic evidence for pathogenic potential of A. hydrophila compared to A. veronii and A. caviae.
Always chew your food: freshwater stingrays use mastication to process tough insect prey
Welch, Kenneth C.; Summers, Adam P.; Lovejoy, Nathan R.
2016-01-01
Chewing, characterized by shearing jaw motions and high-crowned molar teeth, is considered an evolutionary innovation that spurred dietary diversification and evolutionary radiation of mammals. Complex prey-processing behaviours have been thought to be lacking in fishes and other vertebrates, despite the fact that many of these animals feed on tough prey, like insects or even grasses. We investigated prey capture and processing in the insect-feeding freshwater stingray Potamotrygon motoro using high-speed videography. We find that Potamotrygon motoro uses asymmetrical motion of the jaws, effectively chewing, to dismantle insect prey. However, CT scanning suggests that this species has simple teeth. These findings suggest that in contrast to mammalian chewing, asymmetrical jaw action is sufficient for mastication in other vertebrates. We also determined that prey capture in these rays occurs through rapid uplift of the pectoral fins, sucking prey beneath the ray's body, thereby dissociating the jaws from a prey capture role. We suggest that the decoupling of prey capture and processing facilitated the evolution of a highly kinetic feeding apparatus in batoid fishes, giving these animals an ability to consume a wide variety of prey, including molluscs, fishes, aquatic insect larvae and crustaceans. We propose Potamotrygon as a model system for understanding evolutionary convergence of prey processing and chewing in vertebrates. PMID:27629029
Physical Heterogeneity and Aquatic Community Function in River Networks
The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological...
Zanchett, Giliane; Oliveira-Filho, Eduardo C.
2013-01-01
Cyanobacteria or blue-green algae are among the pioneer organisms of planet Earth. They developed an efficient photosynthetic capacity and played a significant role in the evolution of the early atmosphere. Essential for the development and evolution of species, they proliferate easily in aquatic environments, primarily due to human activities. Eutrophic environments are conducive to the appearance of cyanobacterial blooms that not only affect water quality, but also produce highly toxic metabolites. Poisoning and serious chronic effects in humans, such as cancer, have been described. On the other hand, many cyanobacterial genera have been studied for their toxins with anticancer potential in human cell lines, generating promising results for future research toward controlling human adenocarcinomas. This review presents the knowledge that has evolved on the topic of toxins produced by cyanobacteria, ranging from their negative impacts to their benefits. PMID:24152991
Zanchett, Giliane; Oliveira-Filho, Eduardo C
2013-10-23
Cyanobacteria or blue-green algae are among the pioneer organisms of planet Earth. They developed an efficient photosynthetic capacity and played a significant role in the evolution of the early atmosphere. Essential for the development and evolution of species, they proliferate easily in aquatic environments, primarily due to human activities. Eutrophic environments are conducive to the appearance of cyanobacterial blooms that not only affect water quality, but also produce highly toxic metabolites. Poisoning and serious chronic effects in humans, such as cancer, have been described. On the other hand, many cyanobacterial genera have been studied for their toxins with anticancer potential in human cell lines, generating promising results for future research toward controlling human adenocarcinomas. This review presents the knowledge that has evolved on the topic of toxins produced by cyanobacteria, ranging from their negative impacts to their benefits.
Linking Insects with Crustacea: Physiology of the Pancrustacea: An Introduction to the Symposium.
Tamone, Sherry L; Harrison, Jon F
2015-11-01
Insects and crustaceans represent critical, dominant animal groups (by biomass and species number) in terrestrial and aquatic systems, respectively. Insects (hexapods) and crustaceans are historically grouped under separate taxonomic classes within the Phylum Arthropoda, and the research communities studying hexapods and crustaceans are quite distinct. More recently, the hexapods have been shown to be evolutionarily derived from basal crustaceans, and the clade Pancrustacea recognizes this relationship. This recent evolutionary perspective, and the fact that the Society for Integrative and Comparative Biology has strong communities in both invertebrate biology and insect physiology, provides the motivation for this symposium. Speakers in this symposium were selected because of their expertise in a particular field of insect or crustacean physiology, and paired in such a way as to provide a comparative view of the state of the current research in their respective fields. Presenters discussed what aspects of the physiological system are clearly conserved across insects and crustaceans and how cross-talk between researchers utilizing insects and crustaceans can fertilize understanding of such conserved systems. Speakers were also asked to identify strategies that would enable improved understanding of the evolution of physiological systems of the terrestrial insects from the aquatic crustaceans. The following collection of articles describes multiple recent advances in our understanding of Pancrustacean physiology. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E
2015-01-01
1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies. PMID:25954500
Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E
2015-03-01
1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies.
Lindgren, Johan; Everhart, Michael J; Caldwell, Michael W
2011-01-01
The physical properties of water and the environment it presents to its inhabitants provide stringent constraints and selection pressures affecting aquatic adaptation and evolution. Mosasaurs (a group of secondarily aquatic reptiles that occupied a broad array of predatory niches in the Cretaceous marine ecosystems about 98-65 million years ago) have traditionally been considered as anguilliform locomotors capable only of generating short bursts of speed during brief ambush pursuits. Here we report on an exceptionally preserved, long-snouted mosasaur (Ectenosaurus clidastoides) from the Santonian (Upper Cretaceous) part of the Smoky Hill Chalk Member of the Niobrara Formation in western Kansas, USA, that contains phosphatized remains of the integument displaying both depth and structure. The small, ovoid neck and/or anterior trunk scales exhibit a longitudinal central keel, and are obliquely arrayed into an alternating pattern where neighboring scales overlap one another. Supportive sculpturing in the form of two parallel, longitudinal ridges on the inner scale surface and a complex system of multiple, superimposed layers of straight, cross-woven helical fiber bundles in the underlying dermis, may have served to minimize surface deformation and frictional drag during locomotion. Additional parallel fiber bundles oriented at acute angles to the long axis of the animal presumably provided stiffness in the lateral plane. These features suggest that the anterior torso of Ectenosaurus was held somewhat rigid during swimming, thereby limiting propulsive movements to the posterior body and tail.
Williams, D Dudley; Williams, Siân S
2017-07-21
Of the 30 extant orders of true insect, 12 are considered to be aquatic, or semiaquatic, in either some or all of their life stages. Out of these, six orders contain species engaged in entomophagy, but very few are being harvested effectively, leading to over-exploitation and local extinction. Examples of existing practices are given, ranging from the extremes of including insects (e.g., dipterans) in the dietary cores of many indigenous peoples to consumption of selected insects, by a wealthy few, as novelty food (e.g., caddisflies). The comparative nutritional worth of aquatic insects to the human diet and to domestic animal feed is examined. Questions are raised as to whether natural populations of aquatic insects can yield sufficient biomass to be of practicable and sustained use, whether some species can be brought into high-yield cultivation, and what are the requirements and limitations involved in achieving this?
Williams, D. Dudley; Williams, Siân S.
2017-01-01
Of the 30 extant orders of true insect, 12 are considered to be aquatic, or semiaquatic, in either some or all of their life stages. Out of these, six orders contain species engaged in entomophagy, but very few are being harvested effectively, leading to over-exploitation and local extinction. Examples of existing practices are given, ranging from the extremes of including insects (e.g., dipterans) in the dietary cores of many indigenous peoples to consumption of selected insects, by a wealthy few, as novelty food (e.g., caddisflies). The comparative nutritional worth of aquatic insects to the human diet and to domestic animal feed is examined. Questions are raised as to whether natural populations of aquatic insects can yield sufficient biomass to be of practicable and sustained use, whether some species can be brought into high-yield cultivation, and what are the requirements and limitations involved in achieving this? PMID:28754025
Apoptosis: Focus on sea urchin development.
Agnello, Maria; Roccheri, Maria Carmela
2010-03-01
It has been proposed that the apoptosis is an essential requirement for the evolution of all animals, in fact the apoptotic program is highly conserved from nematodes to mammals. Throughout development, apoptosis is employed by multicellular organisms to eliminate damaged or unnecessary cells. Here, we will discuss both developmental programmed cell death (PCD) under normal conditions and stress induced apoptosis, in sea urchin embryos. Sea urchin represent an excellent model system for studying embryogenesis and cellular processes involved in metamorphosis. PCD plays an essential role in sculpting and remodelling the embryos and larvae undergoing metamorphosis. Moreover, this marine organism directly interacts with its environment, and is susceptible to effects of several aquatic contaminants. Apoptosis can be adopted as a defence mechanism against any environmental chemical, physical and mechanical stress, for removing irreversibly damaged cells. This review, while not comprehensive in its reporting, aims to provide an overview of current knowledge on mechanisms to regulate physiological and the induced apoptotic program in sea urchin embryos.
Hashimoto, Takuma; Horikawa, Daiki D.; Saito, Yuki; Kuwahara, Hirokazu; Kozuka-Hata, Hiroko; Shin-I, Tadasu; Minakuchi, Yohei; Ohishi, Kazuko; Motoyama, Ayuko; Aizu, Tomoyuki; Enomoto, Atsushi; Kondo, Koyuki; Tanaka, Sae; Hara, Yuichiro; Koshikawa, Shigeyuki; Sagara, Hiroshi; Miura, Toru; Yokobori, Shin-ichi; Miyagawa, Kiyoshi; Suzuki, Yutaka; Kubo, Takeo; Oyama, Masaaki; Kohara, Yuji; Fujiyama, Asao; Arakawa, Kazuharu; Katayama, Toshiaki; Toyoda, Atsushi; Kunieda, Takekazu
2016-01-01
Tardigrades, also known as water bears, are small aquatic animals. Some tardigrade species tolerate almost complete dehydration and exhibit extraordinary tolerance to various physical extremes in the dehydrated state. Here we determine a high-quality genome sequence of Ramazzottius varieornatus, one of the most stress-tolerant tardigrade species. Precise gene repertoire analyses reveal the presence of a small proportion (1.2% or less) of putative foreign genes, loss of gene pathways that promote stress damage, expansion of gene families related to ameliorating damage, and evolution and high expression of novel tardigrade-unique proteins. Minor changes in the gene expression profiles during dehydration and rehydration suggest constitutive expression of tolerance-related genes. Using human cultured cells, we demonstrate that a tardigrade-unique DNA-associating protein suppresses X-ray-induced DNA damage by ∼40% and improves radiotolerance. These findings indicate the relevance of tardigrade-unique proteins to tolerability and tardigrades could be a bountiful source of new protection genes and mechanisms. PMID:27649274
Hashimoto, Takuma; Horikawa, Daiki D; Saito, Yuki; Kuwahara, Hirokazu; Kozuka-Hata, Hiroko; Shin-I, Tadasu; Minakuchi, Yohei; Ohishi, Kazuko; Motoyama, Ayuko; Aizu, Tomoyuki; Enomoto, Atsushi; Kondo, Koyuki; Tanaka, Sae; Hara, Yuichiro; Koshikawa, Shigeyuki; Sagara, Hiroshi; Miura, Toru; Yokobori, Shin-Ichi; Miyagawa, Kiyoshi; Suzuki, Yutaka; Kubo, Takeo; Oyama, Masaaki; Kohara, Yuji; Fujiyama, Asao; Arakawa, Kazuharu; Katayama, Toshiaki; Toyoda, Atsushi; Kunieda, Takekazu
2016-09-20
Tardigrades, also known as water bears, are small aquatic animals. Some tardigrade species tolerate almost complete dehydration and exhibit extraordinary tolerance to various physical extremes in the dehydrated state. Here we determine a high-quality genome sequence of Ramazzottius varieornatus, one of the most stress-tolerant tardigrade species. Precise gene repertoire analyses reveal the presence of a small proportion (1.2% or less) of putative foreign genes, loss of gene pathways that promote stress damage, expansion of gene families related to ameliorating damage, and evolution and high expression of novel tardigrade-unique proteins. Minor changes in the gene expression profiles during dehydration and rehydration suggest constitutive expression of tolerance-related genes. Using human cultured cells, we demonstrate that a tardigrade-unique DNA-associating protein suppresses X-ray-induced DNA damage by ∼40% and improves radiotolerance. These findings indicate the relevance of tardigrade-unique proteins to tolerability and tardigrades could be a bountiful source of new protection genes and mechanisms.
The Road To Cnidaria: History of Phylogeny of the Myxozoa.
Foox, Jonathan; Siddall, Mark E
2015-06-01
Myxozoans are a clade of highly derived cnidarians. The phylogenetic identity of these extremely simplified parasites of aquatic vertebrates and invertebrates had long been uncertain, with all early classifications designating Myxozoa as protists. Though suggestions were frequently made that the infective spores of these parasites are multicellular and possibly of cnidarian origin, it would take a phylogenetic analysis of ultrastructural developmental characters in combination with rRNA gene sequences to verify the Myxozoa as secondarily reduced cnidarians, sister to the polypoidozoan parasite Polypodium hydriforme . While a series of subsequent molecular studies suggested hypotheses of Myxozoa as basal bilaterians, triploblasts, or even nematodes, phylogenomic analyses with improved taxon sampling corroborated the landmark paper that verified the cnidarian nature of this group. This review of the body of phylogenetic work on Myxozoa aims to clarify historical progress and current knowledge, as well as to emphasize the opportune position that myxozoan biologists now are in, to address fundamental questions of cell biology of these parasites as well as the evolution of animal life.
Code of Federal Regulations, 2012 CFR
2012-10-01
... FISHERIES CONSERVATION AREAS NATIONAL FISH HATCHERIES § 70.1 Purpose. All national fish hatchery areas are maintained for the fundamental purpose of the propagation and distribution of fish and other aquatic animal...
Code of Federal Regulations, 2011 CFR
2011-10-01
... FISHERIES CONSERVATION AREAS NATIONAL FISH HATCHERIES § 70.1 Purpose. All national fish hatchery areas are maintained for the fundamental purpose of the propagation and distribution of fish and other aquatic animal...
Code of Federal Regulations, 2014 CFR
2014-10-01
... FISHERIES CONSERVATION AREAS NATIONAL FISH HATCHERIES § 70.1 Purpose. All national fish hatchery areas are maintained for the fundamental purpose of the propagation and distribution of fish and other aquatic animal...
Code of Federal Regulations, 2013 CFR
2013-10-01
... FISHERIES CONSERVATION AREAS NATIONAL FISH HATCHERIES § 70.1 Purpose. All national fish hatchery areas are maintained for the fundamental purpose of the propagation and distribution of fish and other aquatic animal...
Rezania, Shahabaldin; Taib, Shazwin Mat; Md Din, Mohd Fadhil; Dahalan, Farrah Aini; Kamyab, Hesam
2016-11-15
Environmental pollution specifically water pollution is alarming both in the developed and developing countries. Heavy metal contamination of water resources is a critical issue which adversely affects humans, plants and animals. Phytoremediation is a cost-effective remediation technology which able to treat heavy metal polluted sites. This environmental friendly method has been successfully implemented in constructed wetland (CWs) which is able to restore the aquatic biosystem naturally. Nowadays, many aquatic plant species are being investigated to determine their potential and effectiveness for phytoremediation application, especially high growth rate plants i.e. macrophytes. Based on the findings, phytofiltration (rhizofiltration) is the sole method which defined as heavy metals removal from water by aquatic plants. Due to specific morphology and higher growth rate, free-floating plants were more efficient to uptake heavy metals in comparison with submerged and emergent plants. In this review, the potential of wide range of aquatic plant species with main focus on four well known species (hyper-accumulators): Pistia stratiotes, Eicchornia spp., Lemna spp. and Salvinia spp. was investigated. Moreover, we discussed about the history, methods and future prospects in phytoremediation of heavy metals by aquatic plants comprehensively. Copyright © 2016. Published by Elsevier B.V.
Role of genetically engineered animals in future food production.
McColl, K A; Clarke, B; Doran, T J
2013-03-01
Genetically engineered (GE) animals are likely to have an important role in the future in meeting the food demand of a burgeoning global population. There have already been many notable achievements using this technology in livestock, poultry and aquatic species. In particular, the use of RNA interference (RNAi) to produce virus-resistant animals is a rapidly-developing area of research. However, despite the promise of this technology, very few GE animals have been commercialised. This review aims to provide information so that veterinarians and animal health scientists are better able to participate in the debate on GE animals. © 2013 The Authors. Australian Veterinary Journal © 2013 Australian Veterinary Association.
Carbon isotopes in biological carbonates: Respiration and photosynthesis
McConnaughey, T.A.; Burdett, J.; Whelan, J.F.; Paull, C.K.
1997-01-01
Respired carbon dioxide is an important constituent in the carbonates of most air breathing animals but is much less important in the carbonates of most aquatic animals. This difference is illustrated using carbon isotope data from freshwater and terrestrial snails, ahermatypic corals, and chemoautotrophic and methanotrophic pelecypods. Literature data from fish otoliths and bird and mammal shell and bone carbonates are also considered. Environmental CO2/O2 ratios appear to be the major controlling variable. Atmospheric CO2/O2 ratios are about thirty times lower than in most natural waters, hence air breathing animals absorb less environmental CO2 in the course of obtaining O2. Tissue CO2 therefore, does not isotopically equilibrate with environmental CO2 as thoroughly in air breathers as in aquatic animals, and this is reflected in skeletal carbonates. Animals having efficient oxygen transport systems, such as vertebrates, also accumulate more respired CO2 in their tissues. Photosynthetic corals calcify mainly during the daytime when photosynthetic CO2 uptake is several times faster than respiratory CO2 release. Photosynthesis, therefore, affects skeletal ??13C more strongly than does respiration. Corals also illustrate how "metabolic" effects on skeletal isotopic composition can be estimated, despite the presence of much larger "kinetic" isotope effects. Copyright ?? 1997 Elsevier Science Ltd.
Carbon isotopes in biological carbonates: Respiration and photosynthesis
NASA Astrophysics Data System (ADS)
McConnaughey, Ted A.; Burdett, Jim; Whelan, Joseph F.; Paull, Charles K.
1997-02-01
Respired carbon dioxide is an important constituent in the carbonates of most air breathing animals but is much less important in the carbonates of most aquatic animals. This difference is illustrated using carbon isotope data from freshwater and terrestrial snails, ahermatypic corals, and chemoautotrophic and methanotrophic pelecypods. Literature data from fish otoliths and bird and mammal shell and bone carbonates are also considered. Environmental CO 2/O 2 ratios appear to be the major controlling variable. Atmospheric CO 2/O 2 ratios are about thirty times lower than in most natural waters, hence air breathing animals absorb less environmental CO 2 in the course of obtaining 0 2. Tissue CO 2 therefore, does not isotopically equilibrate with environmental CO 2 as thoroughly in air breathers as in aquatic animals, and this is reflected in skeletal carbonates. Animals having efficient oxygen transport systems, such as vertebrates, also accumulate more respired CO 2 in their tissues. Photosynthetic corals calcify mainly during the daytime when photosynthetic CO 2 uptake is several times faster than respiratory CO 2 release. Photosynthesis, therefore, affects skeletal δ13C more strongly than does respiration. Corals also illustrate how "metabolic" effects on skeletal isotopic composition can be estimated, despite the presence of much larger "kinetic" isotope effects.
Evolution of the Sauropterygian Labyrinth with Increasingly Pelagic Lifestyles.
Neenan, James M; Reich, Tobias; Evers, Serjoscha W; Druckenmiller, Patrick S; Voeten, Dennis F A E; Choiniere, Jonah N; Barrett, Paul M; Pierce, Stephanie E; Benson, Roger B J
2017-12-18
Sauropterygia, a successful clade of marine reptiles abundant in aquatic ecosystems of the Mesozoic, inhabited nearshore to pelagic habitats over >180 million years of evolutionary history [1]. Aquatic vertebrates experience strong buoyancy forces that allow movement in a three-dimensional environment, resulting in structural convergences such as flippers and fish-like bauplans [2, 3], as well as convergences in the sensory systems. We used computed tomographic scans of 19 sauropterygian species to determine how the transition to pelagic lifestyles influenced the evolution of the endosseous labyrinth, which houses the vestibular sensory organ of balance and orientation [4]. Semicircular canal geometries underwent distinct changes during the transition from nearshore Triassic sauropterygians to the later, pelagic plesiosaurs. Triassic sauropterygians have dorsoventrally compact, anteroposteriorly elongate labyrinths, resembling those of crocodylians. In contrast, plesiosaurs have compact, bulbous labyrinths, sharing some features with those of sea turtles. Differences in relative labyrinth size among sauropterygians correspond to locomotory differences: bottom-walking [5, 6] placodonts have proportionally larger labyrinths than actively swimming taxa (i.e., all other sauropterygians). Furthermore, independent evolutionary origins of short-necked, large-headed "pliosauromorph" body proportions among plesiosaurs coincide with reductions of labyrinth size, paralleling the evolutionary history of cetaceans [7]. Sauropterygian labyrinth evolution is therefore correlated closely with both locomotory style and body proportions, and these changes are consistent with isolated observations made previously in other marine tetrapods. Our study presents the first virtual reconstructions of plesiosaur endosseous labyrinths and the first large-scale, quantitative study detailing the effects of increasingly aquatic lifestyles on labyrinth morphology among marine reptiles. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillman, W.S.; Culley, D.D. Jr.
1978-07-01
Among the various approaches to improving present technologies for waste-water treatment, several involve the use of plants, which can remove pollutants and provide materials useful as animal feeds or energy sources. Various aquatic plants are being proposed in such approaches, and the duckweeds in particular, an essentially unique group of higher aquatic plants, might be especially advantageous in such systems. Although this article focuses on only this one group of plants, it can nevertheless provide an introduction to issues that are both scientifically challenging and existentially inescapable.
THE EVOLUTION OF ATOMIC SPECTROSCOPY IN MEASURING TOXIC CONTAMINANTS
Three decades of study of environmental conditions necessary for the protection of freshwater
aquatic life have been limited by the development and application of analytical methodology utilizing atomic adsorption, atomic fluorescence, and atomic emission spectroscopy.
The...
Response of stream salamanders to experimental drought in the southern Appalachian Mountains, USA
Bryan Currinder; Kristen K. Cecala; Robert M. Northington; Michael E. Dorcas
2015-01-01
Droughts act as significant disturbances to freshwater animals and their ecosystems. Given the impending threat of more frequent and persistent droughts because of global climate change, the lack of data on the responses of many aquatic animals to drought is a cause for concern. This study examined the body condition of the most commonly detected species (
26 CFR 48.4042-1 - Tax on fuel used in commercial waterway transportation.
Code of Federal Regulations, 2012 CFR
2012-04-01
... animal life caught on the voyage. The tax imposed by section 4042(a) does not apply to fuel used by a... taxable waterways while traveling to pick up aquatic animal life caught by another vessel and while... Great Dismal Swamp Canal routes. For vessels traveling along the A.I.W.W. no matter how short the...
26 CFR 48.4042-1 - Tax on fuel used in commercial waterway transportation.
Code of Federal Regulations, 2013 CFR
2013-04-01
... animal life caught on the voyage. The tax imposed by section 4042(a) does not apply to fuel used by a... taxable waterways while traveling to pick up aquatic animal life caught by another vessel and while... Great Dismal Swamp Canal routes. For vessels traveling along the A.I.W.W. no matter how short the...
26 CFR 48.4042-1 - Tax on fuel used in commercial waterway transportation.
Code of Federal Regulations, 2010 CFR
2010-04-01
... animal life caught on the voyage. The tax imposed by section 4042(a) does not apply to fuel used by a... taxable waterways while traveling to pick up aquatic animal life caught by another vessel and while... Great Dismal Swamp Canal routes. For vessels traveling along the A.I.W.W. no matter how short the...
26 CFR 48.4042-1 - Tax on fuel used in commercial waterway transportation.
Code of Federal Regulations, 2011 CFR
2011-04-01
... animal life caught on the voyage. The tax imposed by section 4042(a) does not apply to fuel used by a... taxable waterways while traveling to pick up aquatic animal life caught by another vessel and while... Great Dismal Swamp Canal routes. For vessels traveling along the A.I.W.W. no matter how short the...
Body size drives allochthony in food webs of tropical rivers.
Jardine, Timothy D; Rayner, Thomas S; Pettit, Neil E; Valdez, Dominic; Ward, Douglas P; Lindner, Garry; Douglas, Michael M; Bunn, Stuart E
2017-02-01
Food web subsidies from external sources ("allochthony") can support rich biological diversity and high secondary and tertiary production in aquatic systems, even those with low rates of primary production. However, animals vary in their degree of dependence on these subsidies. We examined dietary sources for aquatic animals restricted to refugial habitats (waterholes) during the dry season in Australia's wet-dry tropics, and show that allochthony is strongly size dependent. While small-bodied fishes and invertebrates derived a large proportion of their diet from autochthonous sources within the waterhole (phytoplankton, periphyton, or macrophytes), larger animals, including predatory fishes and crocodiles, demonstrated allochthony from seasonally inundated floodplains, coastal zones or the surrounding savanna. Autochthony declined roughly 10% for each order of magnitude increase in body size. The largest animals in the food web, estuarine crocodiles (Crocodylus porosus), derived ~80% of their diet from allochthonous sources. Allochthony enables crocodiles and large predatory fish to achieve high biomass, countering empirically derived expectations for negative density vs. body size relationships. These results highlight the strong degree of connectivity that exists between rivers and their floodplains in systems largely unaffected by river regulation or dams and levees, and how large iconic predators could be disproportionately affected by these human activities.
Bacterial Influences on Animal Origins
Alegado, Rosanna A.; King, Nicole
2014-01-01
Animals evolved in seas teeming with bacteria, yet the influences of bacteria on animal origins are poorly understood. Comparisons among modern animals and their closest living relatives, the choanoflagellates, suggest that the first animals used flagellated collar cells to capture bacterial prey. The cell biology of prey capture, such as cell adhesion between predator and prey, involves mechanisms that may have been co-opted to mediate intercellular interactions during the evolution of animal multicellularity. Moreover, a history of bacterivory may have influenced the evolution of animal genomes by driving the evolution of genetic pathways for immunity and facilitating lateral gene transfer. Understanding the interactions between bacteria and the progenitors of animals may help to explain the myriad ways in which bacteria shape the biology of modern animals, including ourselves. PMID:25280764
The evolutionary puzzle of egg size, oxygenation and parental care in aquatic environments.
Braga Goncalves, Ines; Ahnesjö, Ingrid; Kvarnemo, Charlotta
2015-08-22
Offspring fitness generally improves with increasing egg size. Yet, eggs of most aquatic organisms are small. A common but largely untested assumption is that larger embryos require more oxygen than they can acquire through diffusion via the egg surface, constraining egg size evolution. However, we found no detrimental effects of large egg size on embryo growth and survival under hypoxic conditions. We tested this in the broad-nosed pipefish, Syngnathus typhle, whose males provide extensive care (nourishment, osmoregulation and oxygenation) to their young in a brood pouch on their bodies. We took advantage of this species' pronounced variation in egg size, correlating positively with female size, and tested the effect of hypoxia (40% dissolved oxygen) versus fully oxygenated (100%) water on embryo size and survival of large versus small eggs after 18 days of paternal brooding. Egg size did not affect embryo survival, regardless of O2 treatment. While hypoxia affected embryo size negatively, both large and small eggs showed similar reductions in growth. Males in hypoxia ventilated more and males with large eggs swam more, but neither treatment affected their position in the water column. Overall, our results call into question the most common explanation for constrained egg size evolution in aquatic environments. © 2015 The Author(s).
The evolutionary puzzle of egg size, oxygenation and parental care in aquatic environments
Braga Goncalves, Ines; Ahnesjö, Ingrid; Kvarnemo, Charlotta
2015-01-01
Offspring fitness generally improves with increasing egg size. Yet, eggs of most aquatic organisms are small. A common but largely untested assumption is that larger embryos require more oxygen than they can acquire through diffusion via the egg surface, constraining egg size evolution. However, we found no detrimental effects of large egg size on embryo growth and survival under hypoxic conditions. We tested this in the broad-nosed pipefish, Syngnathus typhle, whose males provide extensive care (nourishment, osmoregulation and oxygenation) to their young in a brood pouch on their bodies. We took advantage of this species' pronounced variation in egg size, correlating positively with female size, and tested the effect of hypoxia (40% dissolved oxygen) versus fully oxygenated (100%) water on embryo size and survival of large versus small eggs after 18 days of paternal brooding. Egg size did not affect embryo survival, regardless of O2 treatment. While hypoxia affected embryo size negatively, both large and small eggs showed similar reductions in growth. Males in hypoxia ventilated more and males with large eggs swam more, but neither treatment affected their position in the water column. Overall, our results call into question the most common explanation for constrained egg size evolution in aquatic environments. PMID:26290070
A caseian point for the evolution of a diaphragm homologue among the earliest synapsids.
Lambertz, Markus; Shelton, Christen D; Spindler, Frederik; Perry, Steven F
2016-12-01
The origin of the diaphragm remains a poorly understood yet crucial step in the evolution of terrestrial vertebrates, as this unique structure serves as the main respiratory motor for mammals. Here, we analyze the paleobiology and the respiratory apparatus of one of the oldest lineages of mammal-like reptiles: the Caseidae. Combining quantitative bone histology and functional morphological and physiological modeling approaches, we deduce a scenario in which an auxiliary ventilatory structure was present in these early synapsids. Crucial to this hypothesis are indications that at least the phylogenetically advanced caseids might not have been primarily terrestrial but rather were bound to a predominantly aquatic life. Such a lifestyle would have resulted in severe constraints on their ventilatory system, which consequently would have had to cope with diving-related problems. Our modeling of breathing parameters revealed that these caseids were capable of only limited costal breathing and, if aquatic, must have employed some auxiliary ventilatory mechanism to quickly meet their oxygen demand upon surfacing. Given caseids' phylogenetic position at the base of Synapsida and under this aquatic scenario, it would be most parsimonious to assume that a homologue of the mammalian diaphragm had already evolved about 50 Ma earlier than previously assumed. © 2016 New York Academy of Sciences.
NASA Astrophysics Data System (ADS)
Harning, D.; Geirsdottir, A.; Miller, G. H.
2016-12-01
Icelandic lake sediment is well suited to provide high-resolution, well-dated continuous archives of North Atlantic climate variability. We provide new insight into the Holocene climate evolution of Vestfirðir, NW Iceland, from a 10.3 ka multi-proxy lake sediment record from non-glacial lake Skorarvatn. Age control is derived from a combination of tephrochronology and 14C-dated macrofossils. Sediment samples were analyzed for both physical (MS, density) and biological (TC, TN, δ13C, δ15N, C/N, BSi) climate proxies, providing a sub-centennial record of aquatic bioactivity and terrestrial landscape stability, and hence, summer temperature. The lake basin was ice free by at least 10.3 ka yet the waning Icelandic Ice Sheet persisted in the catchment until 9.3 ka. The local Holocene Thermal Maximum (HTM), inferred from maximum aquatic bioactivity, spans 8.9 to 7.2 ka but was interrupted by significant cooling at 8.2 ka. In accordance with other Icelandic climate records documenting progressively cooler summers following the HTM, our record reveals reduced aquatic productivity and elevated terrestrial erosion toward the present. Superimposed on this 1st order trend are abrupt episodes of cooling, inferred from low aquatic bioactivity and/or enhanced landscape instability, at 6.4, 4.2, 3, 2.5 and 1.5 ka. Surprisingly, there is no clear indication of the Little Ice Age (LIA) in our record despite evidence for the local ice cap, Drangajökull, attaining maximum areal coverage at this time. Persistently low temperatures inferred from reduced aquatic productivity plateau at 2 ka whereas increasing terrestrial erosion ceases at 1 ka. Lack of a catchment erosion signal during the LIA may be the result of depleted catchment soils and/or perennially frozen ground preventing the mobilization of soil and vegetation. With the exception of the LIA, Skorarvatn's qualitative summer temperature record corresponds closely to summer sea surface temperature and sea ice records on the North Iceland Shelf, supporting previous evidence that the North Atlantic imparts a significant impact of the state of Iceland's terrestrial climate.
Assessing Endocrine Disrupting Chemicals In Landfills, Solid Waste Sites and Wastewater
EPA researchers are assessing waste water effluents to measure their effects on ecosystems and aquatic animals while also developing innovative solutions to reduce concentrations of potential endocrine disrupting chemicals.
Gyrodactylid Ectoparasites in a Population of Rainbow Trout (Oncorhynchus mykiss)
Garcia, Rachel L; Hansen, Adam G; Chan, Maia M; Sanders, George E
2014-01-01
A colony of rainbow trout (Oncorhynchus mykiss) in a decentralized aquatic animal facility was noted to have an increase in morbidity and mortality (from 4 or 5 fish each month to 3 or 4 fish daily) approximately 2 wk after experimental procedures began. The primary clinical signs were erratic swimming behavior and ‘flashing’ of fish against surfaces within housing enclosures. Moribund and normal rainbow trout were presented alive for diagnostic evaluation; samples of water from housing enclosures were provided for water quality assessment. The trout were determined to be infected with gyrodactylids, a common monogenean ectoparasite of the skin and gills in both marine and freshwater fish. This case report describes the diagnosis, pathology, and treatment of gyrodactylids and husbandry modifications associated with the resolution of this clinical aquatic-animal case. PMID:24411786
Multisensory Integration and Behavioral Plasticity in Sharks from Different Ecological Niches
Gardiner, Jayne M.; Atema, Jelle; Hueter, Robert E.; Motta, Philip J.
2014-01-01
The underwater sensory world and the sensory systems of aquatic animals have become better understood in recent decades, but typically have been studied one sense at a time. A comprehensive analysis of multisensory interactions during complex behavioral tasks has remained a subject of discussion without experimental evidence. We set out to generate a general model of multisensory information extraction by aquatic animals. For our model we chose to analyze the hierarchical, integrative, and sometimes alternate use of various sensory systems during the feeding sequence in three species of sharks that differ in sensory anatomy and behavioral ecology. By blocking senses in different combinations, we show that when some of their normal sensory cues were unavailable, sharks were often still capable of successfully detecting, tracking and capturing prey by switching to alternate sensory modalities. While there were significant species differences, odor was generally the first signal detected, leading to upstream swimming and wake tracking. Closer to the prey, as more sensory cues became available, the preferred sensory modalities varied among species, with vision, hydrodynamic imaging, electroreception, and touch being important for orienting to, striking at, and capturing the prey. Experimental deprivation of senses showed how sharks exploit the many signals that comprise their sensory world, each sense coming into play as they provide more accurate information during the behavioral sequence of hunting. The results may be applicable to aquatic hunting in general and, with appropriate modification, to other types of animal behavior. PMID:24695492
Al-Sammak, Maitham Ahmed; Hoagland, Kyle D; Cassada, David; Snow, Daniel D
2014-01-28
Several groups of microorganisms are capable of producing toxins in aquatic environments. Cyanobacteria are prevalent blue green algae in freshwater systems, and many species produce cyanotoxins which include a variety of chemical irritants, hepatotoxins and neurotoxins. Production and occurrence of potent neurotoxic cyanotoxins β-N-methylamino-L-alanine (BMAA), 2,4-diaminobutyric acid dihydrochloride (DABA), and anatoxin-a are especially critical with environmental implications to public and animal health. Biomagnification, though not well understood in aquatic systems, is potentially relevant to both human and animal health effects. Because little is known regarding their presence in fresh water, we investigated the occurrence and potential for bioaccumulation of cyanotoxins in several Nebraska reservoirs. Collection and analysis of 387 environmental and biological samples (water, fish, and aquatic plant) provided a snapshot of their occurrence. A sensitive detection method was developed using solid phase extraction (SPE) in combination with high pressure liquid chromatography-fluorescence detection (HPLC/FD) with confirmation by liquid chromatography-tandem mass spectrometry (LC/MS/MS). HPLC/FD detection limits ranged from 5 to 7 µg/L and LC/MS/MS detection limits were <0.5 µg/L, while detection limits for biological samples were in the range of 0.8-3.2 ng/g depending on the matrix. Based on these methods, measurable levels of these neurotoxic compounds were detected in approximately 25% of the samples, with detections of BMAA in about 18.1%, DABA in 17.1%, and anatoxin-a in 11.9%.
Al-Sammak, Maitham Ahmed; Hoagland, Kyle D.; Cassada, David; Snow, Daniel D.
2014-01-01
Several groups of microorganisms are capable of producing toxins in aquatic environments. Cyanobacteria are prevalent blue green algae in freshwater systems, and many species produce cyanotoxins which include a variety of chemical irritants, hepatotoxins and neurotoxins. Production and occurrence of potent neurotoxic cyanotoxins β-N-methylamino-l-alanine (BMAA), 2,4-diaminobutyric acid dihydrochloride (DABA), and anatoxin-a are especially critical with environmental implications to public and animal health. Biomagnification, though not well understood in aquatic systems, is potentially relevant to both human and animal health effects. Because little is known regarding their presence in fresh water, we investigated the occurrence and potential for bioaccumulation of cyanotoxins in several Nebraska reservoirs. Collection and analysis of 387 environmental and biological samples (water, fish, and aquatic plant) provided a snapshot of their occurrence. A sensitive detection method was developed using solid phase extraction (SPE) in combination with high pressure liquid chromatography-fluorescence detection (HPLC/FD) with confirmation by liquid chromatography-tandem mass spectrometry (LC/MS/MS). HPLC/FD detection limits ranged from 5 to 7 µg/L and LC/MS/MS detection limits were <0.5 µg/L, while detection limits for biological samples were in the range of 0.8–3.2 ng/g depending on the matrix. Based on these methods, measurable levels of these neurotoxic compounds were detected in approximately 25% of the samples, with detections of BMAA in about 18.1%, DABA in 17.1%, and anatoxin-a in 11.9%. PMID:24476710
Wassersug, R J; Feder, M E
1983-07-01
Larvae of the anurans Rana berlandieri and Xenopus laevis have lungs and can breathe air as well as irrigate buccal and pharyngeal surfaces for aquatic respiration. Larvae of Bufo americanus lack lungs until just before metamorphosis and are obligately aquatic. We examined the relationship between the locomotor stamina (time to fatigue), aquatic oxygen concentration, body size, and respiratory behaviour of swimming larvae of these species, with the following results: Stamina is size-dependent in all three species. Aquatic hypoxia reduces stamina in larvae of all three species, but most conspicuously in Bufo. Breathing air increases stamina in Rana larvae, especially in large animals and under aquatic hypoxia. In contrast to Rana larvae, Xenopus larvae swimming in normoxic water undergo a reduction in stamina when allowed to breathe air. In hypoxic water, aerial respiration moderates the reduction in stamina seen in Xenopus larvae. Branchial irrigation is associated with increased stamina in Xenopus, and is increased under hypoxia and at high swimming velocities. Respiratory demand, buoyancy and the drag associated with branchial irrigation all affect respiratory behaviour in Xenopus larvae. The great amount of interspecific variation in the relationship between respiratory behaviour and stamina reveals the importance of measuring performance directly when attempting to interpret the functional significance of respiratory structures and behaviour.
NASA Astrophysics Data System (ADS)
Bejan, A.; Charles, J. D.; Lorente, S.
2014-07-01
The prevailing view is that we cannot witness biological evolution because it occurred on a time scale immensely greater than our lifetime. Here, we show that we can witness evolution in our lifetime by watching the evolution of the flying human-and-machine species: the airplane. We document this evolution, and we also predict it based on a physics principle: the constructal law. We show that the airplanes must obey theoretical allometric rules that unite them with the birds and other animals. For example, the larger airplanes are faster, more efficient as vehicles, and have greater range. The engine mass is proportional to the body size: this scaling is analogous to animal design, where the mass of the motive organs (muscle, heart, lung) is proportional to the body size. Large or small, airplanes exhibit a proportionality between wing span and fuselage length, and between fuel load and body size. The animal-design counterparts of these features are evident. The view that emerges is that the evolution phenomenon is broader than biological evolution. The evolution of technology, river basins, and animal design is one phenomenon, and it belongs in physics.
Organism and population-level ecological models for ...
Ecological risk assessment typically focuses on animal populations as endpoints for regulatory ecotoxicology. Scientists at USEPA are developing models for animal populations exposed to a wide range of chemicals from pesticides to emerging contaminants. Modeled taxa include aquatic and terrestrial invertebrates, fish, amphibians, and birds, and employ a wide range of methods, from matrix-based projection models to mechanistic bioenergetics models and spatially explicit population models. not applicable
Late Cretaceous Aquatic Plant World in Patagonia, Argentina
Cúneo, N. Rubén; Gandolfo, María A.; Zamaloa, María C.; Hermsen, Elizabeth
2014-01-01
In this contribution, we describe latest Cretaceous aquatic plant communities from the La Colonia Formation, Patagonia, Argentina, based on their taxonomic components and paleoecological attributes. The La Colonia Formation is a geological unit deposited during a Maastrichtian-Danian transgressive episode of the South Atlantic Ocean. This event resulted in the deposition of a series of fine-grained sediments associated with lagoon systems occurring along irregular coastal plains in northern Patagonia. These deposits preserved a diverse biota, including aquatic and terrestrial plants and animals. The aquatic macrophytes can be broadly divided into two groups: free-floating and rooted, the latter with emergent or floating leaves. Free-floating macrophytes include ferns in Salviniaceae (Azolla and Paleoazolla) and a monocot (Araceae). Floating microphytes include green algae (Botryoccocus, Pediastrum and Zygnemataceae). Among the rooted components, marsileaceous water ferns (including Regnellidium and an extinct form) and the eudicot angiosperm Nelumbo (Nelumbonaceae) are the dominant groups. Terrestrial plants occurring in the vegetation surrounding the lagoons include monocots (palms and Typhaceae), ferns with affinities to Dicksoniaceae, conifers, and dicots. A reconstruction of the aquatic plant paleocommuniy is provided based on the distribution of the fossils along a freshwater horizon within the La Colonia Formation. This contribution constitutes the first reconstruction of a Cretaceous aquatic habitat for southern South America. PMID:25148081
Sorimachi, Kenji; Okayasu, Teiji
2015-01-01
The complete vertebrate mitochondrial genome consists of 13 coding genes. We used this genome to investigate the existence of natural selection in vertebrate evolution. From the complete mitochondrial genomes, we predicted nucleotide contents and then separated these values into coding and non-coding regions. When nucleotide contents of a coding or non-coding region were plotted against the nucleotide content of the complete mitochondrial genomes, we obtained linear regression lines only between homonucleotides and their analogs. On every plot using G or A content purine, G content in aquatic vertebrates was higher than that in terrestrial vertebrates, while A content in aquatic vertebrates was lower than that in terrestrial vertebrates. Based on these relationships, vertebrates were separated into two groups, terrestrial and aquatic. However, using C or T content pyrimidine, clear separation between these two groups was not obtained. The hagfish (Eptatretus burgeri) was further separated from both terrestrial and aquatic vertebrates. Based on these results, nucleotide content relationships predicted from the complete vertebrate mitochondrial genomes reveal the existence of natural selection based on evolutionary separation between terrestrial and aquatic vertebrate groups. In addition, we propose that separation of the two groups might be linked to ammonia detoxification based on high G and low A contents, which encode Glu rich and Lys poor proteins.
Detecting spatial regimes in ecosystems
Sundstrom, Shana M.; Eason, Tarsha; Nelson, R. John; Angeler, David G.; Barichievy, Chris; Garmestani, Ahjond S.; Graham, Nicholas A.J.; Granholm, Dean; Gunderson, Lance; Knutson, Melinda; Nash, Kirsty L.; Spanbauer, Trisha; Stow, Craig A.; Allen, Craig R.
2017-01-01
Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological potential (i.e. potential vegetation), and often fail to account for ongoing changes due to stressors such as land use change and climate change and their effects on plant and animal communities. We use Fisher information, an information theory-based method, on both terrestrial and aquatic animal data (U.S. Breeding Bird Survey and marine zooplankton) to identify ecological boundaries, and compare our results to traditional early warning indicators, conventional ecoregion maps and multivariate analyses such as nMDS and cluster analysis. We successfully detected spatial regimes and transitions in both terrestrial and aquatic systems using Fisher information. Furthermore, Fisher information provided explicit spatial information about community change that is absent from other multivariate approaches. Our results suggest that defining spatial regimes based on animal communities may better reflect ecological reality than do traditional ecoregion maps, especially in our current era of rapid and unpredictable ecological change.
Beckman, Erin M; Kawaguchi, Tomohiro; Chandler, G Thomas; Decho, Alan W
2008-12-01
Attached bacteria inhabit the surfaces of many marine animals--a process that may play important roles in the survival and transport through aquatic systems. However, efficient detection of these bacteria has been problematic, especially small aquatic animals such as benthic harpacticoid copepod. Quantum dots (QD) have recently emerged as a significant tool in immunofluorescence detection because of their unique properties compared to other fluorescent probes. In the present study, a polyclonal antibody was raised against the Gram-negative marine bacterium, Alteromonas sp. A microplate-based immunofluorescence bioassay using QD strepavidin conjugates was developed for quantifying putative Alteromonas sp. cells located on the surfaces of a marine harpacticoid copepod, Microarthridion littorale. The number of attached Alteromonas sp. was estimated to be 10(2)+/-8 CFU using this method. The QD approach, coupled to a microplate assay can potentially provide an efficient and accurate method for rapidly detecting multiple bacteria species attached to small invertebrate animals because of their unique excitation and emission characteristics.
Rho, Hyunjin; Shin, Bongjin; Lee, Okbok; Choi, Yu-Hyun; Rho, Jaerang; Lee, Jiyoung
2012-05-01
The increasing usage of antibiotics in the animal farming industry is an emerging worldwide problem contributing to the development of antibiotic resistance. The purpose of this work was to investigate the prevalence and antibiotic resistance profile of bacterial isolates collected from animal farming aquatic environments and meats in a peri-urban community in Daejeon, Korea. In an antibacterial susceptibility test, the bacterial isolates showed a high incidence of resistance (∼26.04%) to cefazolin, tetracycline, gentamycin, norfloxacin, erythromycin and vancomycin. The results from a test for multiple antibiotic resistance indicated that the isolates were displaying an approximately 5-fold increase in the incidence of multiple antibiotic resistance to combinations of two different antibiotics compared to combinations of three or more antibiotics. Most of the isolates showed multi-antibiotic resistance, and the resistance patterns were similar among the sampling groups. Sequencing data analysis of 16S rRNA showed that most of the resistant isolates appeared to be dominated by the classes Betaproteobacteria and Gammaproteobacteria, including the genera Delftia, Burkholderia, Escherichia, Enterobacter, Acinetobacter, Shigella and Pseudomonas.
Löfgren, S E; Miletti, L C; Steindel, M; Bachère, E; Barracco, M A
2008-02-01
Most of the available animal antimicrobial peptides (AMPs) have been tested against bacteria and fungi, but very few against protozoan parasites. In the present study, we investigated the antiparasitic activity of different AMPs isolated from aquatic animals: tachyplesin (Tach, from Tachypleus tridentatus), magainin (Mag, from Xenopus laevis), clavanin (Clav, from Styela clava), penaeidin (Pen, from Litopenaeus vannamei), mytilin (Myt, from Mytilus edulis) and anti-lipopolysaccharide factor (ALF, from Penaeus monodon). The antiparasitic activity was evaluated against the promastigote form of Leishmania braziliensis and epi and trypomastigote forms of Trypanosoma cruzi, through the MTT method. Tach was the most potent peptide, killing completely L. braziliensis and trypomastigote T. cruzi from 12.5microM, whereas Pen and Clav were weakly active against trypomastigotes and Myt against L. braziliensis, only at a high concentration (100microM). Tach and Mag were markedly hemolytic at high concentrations, whereas the other peptides caused only a slight hemolysis (<10% up to 50microM). Our results point to Tach as the only potential candidate for further investigation and potential application as a therapeutic agent.
Assessing the TMDL Approach to Water Quality Management
NASA Astrophysics Data System (ADS)
Aswathanarayana, U.
Every human being on Earth is a stakeholder in water quality management. And so, for that matter, is every animal, domesticated or wild, though they have no constituency Water quality includes not only considerations of water composition for multiple human uses such as drinking and irrigation, but also in terms of its capacity to support systems of aquatic biota in general. This is so because we now realize that our well-being is inseparable from the well-being of, say the aquatic biota. If frogs were dying, we would be next in line!
Nervus terminalis projection to the retina in the 'four-eyed' fish, Anableps anableps.
Meyer, D L; Malz, C R; Jadhao, A G
1996-08-02
The eye of the surface dwelling 'four-eyed' fish, Anableps possesses an aquatic and an aerial optical system. The aerial system is strongly hyperopic when the animal dives, i.e. during mating, and the dorsal pupil is submerged. We studied the retino-petal nervus terminals projection to the aerial and to the aquatic retina by Phe-Met-Arg-Phe-NH2 (FMRF) immunocytochemistry and found both to be equally innervated. This finding sheds doubt on the proposed functional significance of this projection for reproductive behaviour.
Long-term Behavioral Tracking of Freely Swimming Weakly Electric Fish
Jun, James J.; Longtin, André; Maler, Leonard
2014-01-01
Long-term behavioral tracking can capture and quantify natural animal behaviors, including those occurring infrequently. Behaviors such as exploration and social interactions can be best studied by observing unrestrained, freely behaving animals. Weakly electric fish (WEF) display readily observable exploratory and social behaviors by emitting electric organ discharge (EOD). Here, we describe three effective techniques to synchronously measure the EOD, body position, and posture of a free-swimming WEF for an extended period of time. First, we describe the construction of an experimental tank inside of an isolation chamber designed to block external sources of sensory stimuli such as light, sound, and vibration. The aquarium was partitioned to accommodate four test specimens, and automated gates remotely control the animals' access to the central arena. Second, we describe a precise and reliable real-time EOD timing measurement method from freely swimming WEF. Signal distortions caused by the animal's body movements are corrected by spatial averaging and temporal processing stages. Third, we describe an underwater near-infrared imaging setup to observe unperturbed nocturnal animal behaviors. Infrared light pulses were used to synchronize the timing between the video and the physiological signal over a long recording duration. Our automated tracking software measures the animal's body position and posture reliably in an aquatic scene. In combination, these techniques enable long term observation of spontaneous behavior of freely swimming weakly electric fish in a reliable and precise manner. We believe our method can be similarly applied to the study of other aquatic animals by relating their physiological signals with exploratory or social behaviors. PMID:24637642
2012-01-01
Background Hydrocharitaceae is a fully aquatic monocot family, consists of 18 genera with approximately 120 species. The family includes both fresh and marine aquatics and exhibits great diversity in form and habit including annual and perennial life histories; submersed, partially submersed and floating leaf habits and linear to orbicular leaf shapes. The family has a cosmopolitan distribution and is well represented in the Tertiary fossil record in Europe. At present, the historical biogeography of the family is not well understood and the generic relationships remain controversial. In this study we investigated the phylogeny and biogeography of Hydrocharitaceae by integrating fossils and DNA sequences from eight genes. We also conducted ancestral state reconstruction for three morphological characters. Results Phylogenetic analyses produced a phylogeny with most branches strongly supported by bootstrap values greater than 95 and Bayesian posterior probability values of 1.0. Stratiotes is the first diverging lineage with the remaining genera in two clades, one clade consists of Lagarosiphon, Ottelia, Blyxa, Apalanthe, Elodea and Egeria; and the other consists of Hydrocharis-Limnobium, Thalassia, Enhalus, Halophila, Najas, Hydrilla, Vallisneria, Nechamandra and Maidenia. Biogeographic analyses (DIVA, Mesquite) and divergence time estimates (BEAST) resolved the most recent common ancestor of Hydrocharitaceae as being in Asia during the Late Cretaceous and Palaeocene (54.7-72.6 Ma). Dispersals (including long-distance dispersal and migrations through Tethys seaway and land bridges) probably played major roles in the intercontinental distribution of this family. Ancestral state reconstruction suggested that in Hydrocharitaceae evolution of dioecy is bidirectional, viz., from dioecy to hermaphroditism, and from hermaphroditism to dioecy, and that the aerial-submerged leaf habit and short-linear leaf shape are the ancestral states. Conclusions Our study has shed light on the previously controversial generic phylogeny of Hydrocharitaceae. The study has resolved the historical biogeography of this family and supported dispersal as the most likely explanation for the intercontinental distribution. We have also provided valuable information for understanding the evolution of breeding system and leaf phenotype in aquatic monocots. PMID:22404786
Pham, P H; Huang, Y J; Chen, C; Bols, N C
2014-02-01
The effects of Corexit 9500, a dispersant used to clean up oil spills, on invertebrates, lower vertebrates, birds, and human health have been examined, but there is a significant lack of study of the effect of this dispersant on aquatic viruses. In this study, the effects of Corexit 9500 on four aquatic viruses of differing structural composition were examined. Corexit 9500 reduced the titer of the enveloped viral hemorrhagic septicemia virus (VHSV) at all concentrations (10% to 0.001%) examined. The titer of frog virus 3 (FV3), a virus with both enveloped and nonenveloped virions, was reduced only at the high Corexit 9500 concentrations (10% to 0.1%). Corexit 9500 was unable to reduce the titer of nonenveloped infectious pancreatic necrosis virus (IPNV) but enhanced the titer of chum salmon reovirus (CSV) by 2 to 4 logs. With the ability to inactivate enveloped viruses and possibly enhance some nonenveloped viruses, Corexit 9500 has the potential to alter the aquatic virosphere.
He, Jiang; Cui, Jingzhen
2016-01-01
Aquatic products are important sources of animal proteins in human diet, especially in developing countries. As such, the safety of aquatic products is of primary concern. In this study, a standard method is used to detect malachite green (MG) and chloramphenicol (CAP) and to analyse the contents of these banned chemicals in turtle, mandarin fish and grass carp sampled from the region surrounding Dongting Lake area in Hunan, China. Results showed that 10.6% of the samples were MG-positive, most of them turtles. CAP was found in 8.3% of the samples, mostly in mandarin fish. These data indicated that these banned substances are still used in the surveyed area. Hence, adequate strategies must be implemented by the local government to control these banned substances.
Satellite-Based Assessment of the spatial extent of Aquatic Vegetation in Lake Victoria
NASA Astrophysics Data System (ADS)
Clark, W.; Aligeti, N.; Jeyaprakash, T.; Martins, M.; Stodghill, J.; Winstanley, H.
2011-12-01
Lake Victoria in Africa is the second largest freshwater lake in the world and is known for its abundance of aquatic wildlife. In particular over 200 different fish species are caught and sold by local fisherman. The lake is a major contributor to the local economy as a corridor of transportation, source of drinking water, and source of hydropower. However, the invasion of aquatic vegetation such as water hyacinth in the lake has disrupted each of these markets. Aquatic vegetation now covers a substantial area of the coastline blocking waterways, disrupting hydropower, hindering the collection of drinking water and decreasing the profitability of fishing. The vegetation serves as a habitat for disease carrying mosquitoes as well as snakes and snails that spread the parasitic disease bilharzia. The current control measures of invasive aquatic vegetation rely on biological, chemical and mechanical control. The objective of this study was to utilize remote sensing to map aquatic vegetation within Lake Victoria from 2000 to 2011. MODIS, Landsat 4-5TM, and Landsat 7-ETM imagery was employed to perform change detections in vegetation and identify the extent of aquatic vegetation throughout the years. The efficiency of containment efforts were evaluated and ideal time for application of such efforts were suggested. A methodology for aquatic vegetation surveillance was created. The results of this project were presented as a workshop to the Lake Victoria Fisheries Organization, SERVIR, and other partner organizations. The workshop provided instruction into the use of NASA and other satellite derived products. Time series animations of the spatial extent of aquatic vegetation within the lake were created. By identifying seasons of decreased aquatic vegetation, ideal times to employ control efforts were identified. SERVIR will subsequently utilize the methodologies and mapping results of this study to develop operational aquatic vegetation surveillance for Lake Victoria.
ERIC Educational Resources Information Center
Campbell, Nancy
2000-01-01
Explains the process of developing the unit "Building an Aquarium" and introduces four hands-on activities which include teaching students how to read a metric ruler, observing and illustrating an aquatic plant, learning fish anatomy, and learning animal behavior. (YDS)
29 CFR 784.124 - Going to and returning from work.
Code of Federal Regulations, 2010 CFR
2010-07-01
... meaning of this language. However, the phrase does not apply to employees who are not employed in the activities involved in the acquisition of aquatic animal or vegetable life, such as those going to or...
29 CFR 784.124 - Going to and returning from work.
Code of Federal Regulations, 2012 CFR
2012-07-01
... meaning of this language. However, the phrase does not apply to employees who are not employed in the activities involved in the acquisition of aquatic animal or vegetable life, such as those going to or...
29 CFR 784.124 - Going to and returning from work.
Code of Federal Regulations, 2013 CFR
2013-07-01
... meaning of this language. However, the phrase does not apply to employees who are not employed in the activities involved in the acquisition of aquatic animal or vegetable life, such as those going to or...
29 CFR 784.124 - Going to and returning from work.
Code of Federal Regulations, 2014 CFR
2014-07-01
... meaning of this language. However, the phrase does not apply to employees who are not employed in the activities involved in the acquisition of aquatic animal or vegetable life, such as those going to or...
ERIC Educational Resources Information Center
Teutsch, Mark R.
1998-01-01
Details an environmental education course in which students begin a long-term study of water quality in the watershed of a local river, document the habits of aquatic animals, and use federal and state laws to provide protection for these wetlands. (DDR)
Nonpoint Source Pollution: Darby Duck, the Aquatic Crusader
Understanding the characteristics of water, that precious resource we are trying to protect. And understanding how it interacts with other elements in the environment, some of which pollute it and cause problems for people and animals.
Radium concentration factors and their use in health and environmental risk assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meinhold, A.F.; Hamilton, L.D.
1991-12-31
Radium is known to be taken up by aquatic animals, and tends to accumulate in bone, shell and exoskeleton. The most common approach to estimating the uptake of a radionuclide by aquatic animals for use in health and environmental risk assessments is the concentration factor method. The concentration factor method relates the concentration of a contaminant in an organism to the concentration in the surrounding water. Site specific data are not usually available, and generic, default values are often used in risk assessment studies. This paper describes the concentration factor method, summarizes some of the variables which may influence themore » concentration factor for radium, reviews reported concentration factors measured in marine environments and presents concentration factors derived from data collected in a study in coastal Louisiana. The use of generic default values for the concentration factor is also discussed.« less
Radium concentration factors and their use in health and environmental risk assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meinhold, A.F.; Hamilton, L.D.
1991-01-01
Radium is known to be taken up by aquatic animals, and tends to accumulate in bone, shell and exoskeleton. The most common approach to estimating the uptake of a radionuclide by aquatic animals for use in health and environmental risk assessments is the concentration factor method. The concentration factor method relates the concentration of a contaminant in an organism to the concentration in the surrounding water. Site specific data are not usually available, and generic, default values are often used in risk assessment studies. This paper describes the concentration factor method, summarizes some of the variables which may influence themore » concentration factor for radium, reviews reported concentration factors measured in marine environments and presents concentration factors derived from data collected in a study in coastal Louisiana. The use of generic default values for the concentration factor is also discussed.« less
Biotechnology and DNA vaccines for aquatic animals
Kurath, G.
2008-01-01
Biotechnology has been used extensively in the development of vaccines for aquaculture. Modern molecular methods such as polymerase chain reaction (PCR), cloning and microarray analysis have facilitated antigen discovery, construction of novel candidate vaccines, and assessments of vaccine efficacy, mode of action, and host response. This review focuses on DNA vaccines for finfish to illustrate biotechnology applications in this field. Although DNA vaccines for fish rhabdoviruses continue to show the highest efficacy, DNA vaccines for several other viral and bacterial fish pathogens have now been proven to provide significant protection against pathogen challenge. Studies of the fish rhabdovirus DNA vaccines have elucidated factors that affect DNA vaccine efficacy as well as the nature of the fish innate and adaptive immune responses to DNA vaccines. As tools for managing aquatic animal disease emergencies, DNA vaccines have advantages in speed, flexibility, and safety, and one fish DNA vaccine has been licensed.
Detection of animal-derived proteins in feedstuffs in Italy: a reproducibility study.
Ingravalle, Francesco; Abete, Maria Cesarina; Crescio, Maria Ines; Ru, Giuseppe
2007-04-01
Bovine spongiform encephalopathy is a prion disease of ruminants that was first recognized in 1986 in the United Kingdom. Early in the epidemic, it became obvious that the presence of meat and bone meal in feed rations was a common factor in all bovine spongiform encephalopathy cases. The first ban of derived animal proteins in feed was enforced in Europe in 1994 and implemented by Regulation 999/2001 that prohibited the feeding of animal-derived protein to farm animals. The only official method currently accepted by the European Union Commission for test for the presence of animal-derived proteins in feedstuffs is feed microscopy. In Italy, monitoring of feedstuff safety is provided by both the Ministry of Health and the Ministry of Agriculture. The quality of official control, usually assessed by verifying the reproducibility and the accuracy of the testing method, is of fundamental importance for all laboratories and institutions using these results for comparative purposes. The aims of this study were to assess the reproducibility of the official method over all the Italian surveillance network and to provide a model for evaluating the performance of the monitoring system. The accuracy of the identification of the animal class of derived protein detected (avian, mammalian, or aquatic organism) was assessed. The interlaboratory agreement within the overall network reached 0.97 (95% confidence interval of 0.95 to 0.98) for determining the presence or absence of animal-derived proteins (e.g., for mammalian, avian, or aquatic species), and specificity of the identification of the animal class indicated that fish proteins are more easily recognized than are avian or mammalian proteins.
Papadimitriou, Theodoti; Kagalou, Ifigenia; Stalikas, Constantinos; Pilidis, Georgios; Leonardos, Ioannis D
2012-05-01
The objectives of this study were: (1) to examine the distribution and bioaccumulation of microcystins in the main components of the food web (phytoplankton, zooplankton, crayfish, shrimp, mussel, snail, fish, frog) of Lake Pamvotis (NW Greece), (2) to investigate the possibility of microcystin biomagnification and (3) to evaluate the potential threat of the contaminated aquatic organisms to human health. Significant microcystin concentrations were detected in all the aquatic organisms during two different periods, with the higher concentrations observed in phytoplankton and the lower in fish species and frogs. This is the first study reporting microcystin accumulation in the body of the freshwater shrimp Atyaephyra desmsaresti, in the brain of the fish species common carp (Cyprinus carpio) and in the skin of the frog Rana epirotica. Although there was no evidence for microcystin biomagnification, the fact that microcystins were found in lake water and in the tissues of aquatic organisms, suggests that serious risks to animal and public health are possible to occur. In addition, it is likely to be unsafe to consume aquatic species harvested in Lake Pamvotis due to the high-concentrations of accumulated microcystins.
Matsuhashi, Saeko; Doi, Hideyuki; Fujiwara, Ayaka; Watanabe, Sonoko; Minamoto, Toshifumi
2016-01-01
The environmental DNA (eDNA) method has increasingly been recognized as a powerful tool for monitoring aquatic animal species; however, its application for monitoring aquatic plants is limited. To evaluate eDNA analysis for estimating the distribution of aquatic plants, we compared its estimated distributions with eDNA analysis, visual observation, and past distribution records for the submerged species Hydrilla verticillata. Moreover, we conducted aquarium experiments using H. verticillata and Egeria densa and analyzed the relationships between eDNA concentrations and plant biomass to investigate the potential for biomass estimation. The occurrences estimated by eDNA analysis closely corresponded to past distribution records, and eDNA detections were more frequent than visual observations, indicating that the method is potentially more sensitive. The results of the aquarium experiments showed a positive relationship between plant biomass and eDNA concentration; however, the relationship was not always significant. The eDNA concentration peaked within three days of the start of the experiment in most cases, suggesting that plants do not release constant amounts of DNA. These results showed that eDNA analysis can be used for distribution surveys, and has the potential to estimate the biomass of aquatic plants. PMID:27304876
Matsuhashi, Saeko; Doi, Hideyuki; Fujiwara, Ayaka; Watanabe, Sonoko; Minamoto, Toshifumi
2016-01-01
The environmental DNA (eDNA) method has increasingly been recognized as a powerful tool for monitoring aquatic animal species; however, its application for monitoring aquatic plants is limited. To evaluate eDNA analysis for estimating the distribution of aquatic plants, we compared its estimated distributions with eDNA analysis, visual observation, and past distribution records for the submerged species Hydrilla verticillata. Moreover, we conducted aquarium experiments using H. verticillata and Egeria densa and analyzed the relationships between eDNA concentrations and plant biomass to investigate the potential for biomass estimation. The occurrences estimated by eDNA analysis closely corresponded to past distribution records, and eDNA detections were more frequent than visual observations, indicating that the method is potentially more sensitive. The results of the aquarium experiments showed a positive relationship between plant biomass and eDNA concentration; however, the relationship was not always significant. The eDNA concentration peaked within three days of the start of the experiment in most cases, suggesting that plants do not release constant amounts of DNA. These results showed that eDNA analysis can be used for distribution surveys, and has the potential to estimate the biomass of aquatic plants.
Aspects of bioenergetics and civilization.
Zotin, A I; Lamprecht, I
1996-06-07
By means of an allometric relation between the oxygen consumption rate and the body mass of an animal a metabolic coefficient is derived that can be used as a measure of standard metabolism in different animal species. This coefficient increased in the course of evolution corresponding to the time of appearance of each class of animal. It reached its highest values in Primates and passerine birds. A further increase across an energetic threshold was only possible with human civilization. A similar approach to evolution is performed through an encephalization coefficient showing that in all phases of evolution, species existed with a much larger relative brain volume than the other members of their class. These species might have established a non-human civilization on Earth if evolution would have taken another path. Finally, social activities of insects and the use of external energy sources by animals are discussed to show further implications of this bioenergetic approach to evolution.
Evolution and mechanisms of plant tolerance to flooding stress
Jackson, Michael B.; Ishizawa, Kimiharu; Ito, Osamu
2009-01-01
Background In recognition of the 200th anniversary of Charles Darwin's birth, this short article on flooding stress acknowledges not only Darwin's great contribution to the concept of evolution but also to the study of plant physiology. In modern biology, Darwin-inspired reductionist physiology continues to shed light on mechanisms that confer competitive advantage in many varied and challenging environments, including those where flooding is prevalent. Scope Mild flooding is experienced by most land plants but as its severity increases, fewer species are able to grow and survive. At the extreme, a highly exclusive aquatic lifestyle appears to have evolved numerous times over the past 120 million years. Although only 1–2% of angiosperms are aquatics, some of their adaptive characteristics are also seen in those adopting an amphibious lifestyle where flooding is less frequent. Lowland rice, the staple cereal for much of tropical Asia falls into this category. But, even amongst dry-land dwellers, or certain of their sub-populations, modest tolerance to occasional flooding is to be found, for example in wheat. The collection of papers summarized in this article describes advances to the understanding of mechanisms that explain flooding tolerance in aquatic, amphibious and dry-land plants. Work to develop more tolerant crops or manage flood-prone environments more effectively is also included. The experimental approaches range from molecular analyses, through biochemistry and metabolomics to whole-plant physiology, plant breeding and ecology. PMID:19145714
Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life.
Wissler, Lothar; Codoñer, Francisco M; Gu, Jenny; Reusch, Thorsten B H; Olsen, Jeanine L; Procaccini, Gabriele; Bornberg-Bauer, Erich
2011-01-12
Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have adapted to a completely submerged lifestyle in marine waters. Here, we exploit two collections of expressed sequence tags (ESTs) of two wide-spread and ecologically important seagrass species, the Mediterranean seagrass Posidonia oceanica (L.) Delile and the eelgrass Zostera marina L., which have independently evolved from aquatic ancestors. This replicated, yet independent evolutionary history facilitates the identification of traits that may have evolved in parallel and are possible instrumental candidates for adaptation to a marine habitat. In our study, we provide the first quantitative perspective on molecular adaptations in two seagrass species. By constructing orthologous gene clusters shared between two seagrasses (Z. marina and P. oceanica) and eight distantly related terrestrial angiosperm species, 51 genes could be identified with detection of positive selection along the seagrass branches of the phylogenetic tree. Characterization of these positively selected genes using KEGG pathways and the Gene Ontology uncovered that these genes are mostly involved in translation, metabolism, and photosynthesis. These results provide first insights into which seagrass genes have diverged from their terrestrial counterparts via an initial aquatic stage characteristic of the order and to the derived fully-marine stage characteristic of seagrasses. We discuss how adaptive changes in these processes may have contributed to the evolution towards an aquatic and marine existence.
Lönnstedt, Oona M.; McCormick, Mark I.
2015-01-01
In aquatic environments, many prey animals possess damage-released chemical alarm cues that elicit antipredator behaviours in responsive con- and heterospecifics. Despite considerable study, the selective advantage of alarm cues remains unclear. In an attempt to investigate one of the more promising hypotheses concerning the evolution of alarm cues, we examined whether the cue functions in a fashion analogous to the distress vocalizations emitted by many terrestrial animals. Our results suggest that chemical alarm cues in damselfish (Pomacentridae) may have evolved to benefit the cue sender by attracting secondary predators who disrupt the predation event, allowing the prey a greater chance to escape. The coral reef piscivore, the dusky dottyback (Pseudochromis fuscus), chemically eavesdrops on predation events and uses chemical alarm cues from fish prey (lemon damselfish; Pomacentrus moluccensis) in an attempt to find and steal prey from primary predators. Field studies showed that Ps. fuscus aggregate at sites where prey alarm cue has been experimentally released. Furthermore, secondary predators attempted to steal captured prey of primary predators in laboratory trials and enhanced prey escape chances by 35–40%. These results are the first, to the best of our knowledge, to demonstrate a mechanism by which marine fish may benefit from the production and release of alarm cues, and highlight the complex and important role that semiochemicals play in marine predator–prey interactions. PMID:26511043
Skin pigmentation provides evidence of convergent melanism in extinct marine reptiles.
Lindgren, Johan; Sjövall, Peter; Carney, Ryan M; Uvdal, Per; Gren, Johan A; Dyke, Gareth; Schultz, Bo Pagh; Shawkey, Matthew D; Barnes, Kenneth R; Polcyn, Michael J
2014-02-27
Throughout the animal kingdom, adaptive colouration serves critical functions ranging from inconspicuous camouflage to ostentatious sexual display, and can provide important information about the environment and biology of a particular organism. The most ubiquitous and abundant pigment, melanin, also has a diverse range of non-visual roles, including thermoregulation in ectotherms. However, little is known about the functional evolution of this important biochrome through deep time, owing to our limited ability to unambiguously identify traces of it in the fossil record. Here we present direct chemical evidence of pigmentation in fossilized skin, from three distantly related marine reptiles: a leatherback turtle, a mosasaur and an ichthyosaur. We demonstrate that dark traces of soft tissue in these fossils are dominated by molecularly preserved eumelanin, in intimate association with fossilized melanosomes. In addition, we suggest that contrary to the countershading of many pelagic animals, at least some ichthyosaurs were uniformly dark-coloured in life. Our analyses expand current knowledge of pigmentation in fossil integument beyond that of feathers, allowing for the reconstruction of colour over much greater ranges of extinct taxa and anatomy. In turn, our results provide evidence of convergent melanism in three disparate lineages of secondarily aquatic tetrapods. Based on extant marine analogues, we propose that the benefits of thermoregulation and/or crypsis are likely to have contributed to this melanisation, with the former having implications for the ability of each group to exploit cold environments.
Calderón, A; Cardona, A; Nogal, U; Juárez Gracia, A G; Marín, E; Muñoz Hernández, R A
2014-01-01
We report, the application of the photoacoustic technique for monitoring the photosynthesis evolution in aquatic lirium (Eichhornia Crassipes), before and after it was exposed to ultrasonic irradiations. We obtained the disappearance of the phototobaric contribution in the PA signal measured for the irradiated samples with ultrasound of 17 kHz, and therefore of a possible damage in the centers producing the photosynthesis, due to the irradiation. These results show the utility of the ultrasonic irradiation, as well as, of the photosynthesis monitoring by means of the photoacoustic technique, for the elaboration and establishment of methodologies in the control of this aquatic plant, whose propagation causes many consequences extremely unfavorable for the environment, as well as for the diverse human activities that are developed in the bodies of water in the tropical and sub-tropical regions of the world. Copyright © 2013 Elsevier Ltd. All rights reserved.
Evolution of bone microanatomy of the tetrapod tibia and its use in palaeobiological inference.
Kriloff, A; Germain, D; Canoville, A; Vincent, P; Sache, M; Laurin, M
2008-05-01
Bone microanatomy appears to track changes in various physiological or ecological properties of the individual or the taxon. Analyses of sections of the tibia of 99 taxa show a highly significant (P
Liao, Mengna; Yu, Ge; Guo, Ya
2017-01-01
Poyang Lake is suffering from persistent eutrophication, which is degrading the local ecosystem. A better understanding of the mechanisms that drive eutrophication in lake systems is essential to fight the ongoing deterioration. In this study, hydraulic residence time (HRT) was used to evaluate Poyang Lake’s trophic state. A hydrology and ecosystem forced model was constructed to simulate long-term changes in algae and aquatic plant biomass and total phosphorous (TP). A comparison analysis revealed that between 1812 and 1828 (i.e., a consistent-change stage), climate and hydrology were the main driving forces, while algae and aquatic plant biomass contributed only 20.9% to the trophic changes in Poyang Lake. However, between 1844 and 1860 the biomass predominated contributing 63.6%. This could be attributed to nutrient absorption by algae and aquatic plants. A correlation analysis of the water TP and algae and aquatic plant biomass revealed a strong positive relationship. However, the algae and aquatic plant growth rate tended to decline after the biomass reached half of the maximum. This research reconstructs the long-term trophic evolution of Poyang Lake and provides a better understanding of the relationship between climatic and hydrological changes and lake ecosystems. PMID:28046083
Wetlands are exceptionally productive landscape features that provide critical habitat for endemic species, threatened/endangered and migratory animals, store floodwaters and maintain baseflows in stream systems, recharge groundwaters, and biogeochemically and physically affect n...
USDA-ARS?s Scientific Manuscript database
Aquatic animals are healthiest and grow best when environmental conditions are within certain ranges that define, for a particular species, “good” water quality. From the outset, successful aquaculture requires a high-quality water supply. Water quality in aquaculture systems also deteriorates as an...
Concepts, tools, and strategies for effluent testing: An international survey
Whole effluent testing (also called Direct Toxicity Assessment) remains a critical long-term assessment tool for aquatic environmental protection. Use of animal alternative approaches for wastewater testing is expected to increase as more regulatory authorities routinely require ...
RESTORED STREAMS ENHANCE ABILITY TO REMOVE EXCESS NITROGEN
Issue: Excess nitrogen from fertilizer, septic tanks, animal feedlots, and runoff from pavement can threaten human and aquatic ecosystem health. Furthermore, degraded ecosystems like those impacted by urbanization have reduced ability to process and remove excess nitrogen from t...
Vulnerability of freshwater native biodiversity to non-native ...
Background/Question/Methods Non-native species pose one of the greatest threats to native biodiversity. The literature provides plentiful empirical and anecdotal evidence of this phenomenon; however, such evidence is limited to local or regional scales. Employing geospatial analyses, we investigate the potential threat of non-native species to threatened and endangered aquatic animal taxa inhabiting unprotected areas across the continental US. We compiled distribution information from existing publicly available databases at the watershed scale (12-digit hydrologic unit code). We mapped non-native aquatic plant and animal species richness, and an index of cumulative invasion pressure, which weights non-native richness by the time since invasion of each species. These distributions were compared to the distributions of native aquatic taxa (fish, amphibians, mollusks, and decapods) from the International Union for the Conservation of Nature (IUCN) database. We mapped the proportion of species listed by IUCN as threatened and endangered, and a species rarity index per watershed. An overlay analysis identified watersheds experiencing high pressure from non-native species and also containing high proportions of threatened and endangered species or exhibiting high species rarity. Conservation priorities were identified by generating priority indices from these overlays and mapping them relative to the distribution of protected areas across the US. Results/Conclusion
Héritier, Laurent; Badets, Mathieu; Du Preez, Louis H; Aisien, Martins S O; Lixian, Fan; Combes, Claude; Verneau, Olivier
2015-11-01
Polystomatid flatworms (Platyhelminthes) are monogenean parasites that infect exclusively aquatic or semi-aquatic sarcopterygians such as the Australian lungfish, amphibians, freshwater turtles and the African common hippopotamus. Previous studies on the phylogenetic relationships of these parasites, excluding Oculotrema hippopotami infecting common hippos, showed a global coevolution between hosts and their parasites at a macroevolutionary scale. These studies also demonstrated a strong correlation between the diversification of early neobatrachian polystomes and Gondwana breakup in the Mesozoic period. However the origin of chelonian polystomes is still in question as a switch from presumably primitive aquatic amniotes to turtles at the time of their first appearance, or soon after during their radiation, was assumed. In order to resolve this sticking point, we extended the phylogeny of polystomes with broader parasite sampling, i.e. 55 polystome species including Nanopolystoma tinsleyi a polystome infecting caecilians and O. hippopotami, and larger set of sequence data covering two nuclear and two mitochondrial genes coding for the ribosomal RNA 18S and 28S, the Cytochrome c Oxidase I and the ribosomal RNA 12S, respectively. The secondary structure of nuclear rRNAs genes (stems and loops) was taken into account for sequence alignments and Bayesian analyses were performed based on the appropriate models of evolution selected independently for the four designed partitions. Molecular calibrations were also conducted for dating the main speciation events in the polystome tree. The phylogenetic position of chelonian parasites that are phylogenetically closer to N. tinsleyi than all other amphibian polystomes and molecular time estimates suggest that these parasites originated following a switch from caecilians, at a geological period when primitive turtles may already have adapted to an aquatic life style, i.e. at about 178Million years ago, or a little later when the crown group of extant turtles have already diversified, i.e. at about 152Mya. Similarly, because O. hippopotami constitutes the sister group of chelonian parasites, proposing that an African caecilian could be the ancestral host for this polystome species seems at this stage the most likely hypothesis to explain its occurrence within the common hippo. Regardless of the scenario that may be predicted to explain the origin of polystomes within aquatic or semi-aquatic amniotes, their presence and evolution are indicative of early aquatic ecological habits within ancestral lineages. Copyright © 2015 Elsevier Inc. All rights reserved.
Calci, K R; Burkhardt, W; Watkins, W D; Rippey, S R
1998-12-01
Male-specific bacteriophage (MSB) densities were determined in animal and human fecal wastes to assess their potential impact on aquatic environments. Fecal samples (1,031) from cattle, chickens, dairy cows, dogs, ducks, geese, goats, hogs, horses, seagulls, sheep, and humans as well as 64 sewerage samples were examined for MSB. All animal species were found to harbor MSB, although the great majority excreted these viruses at very low levels. The results from this study demonstrate that in areas affected by both human and animal wastes, wastewater treatment plants are the principal contributors of MSB to fresh, estuarine, and marine waters.
Calci, Kevin R.; Burkhardt, William; Watkins, William D.; Rippey, Scott R.
1998-01-01
Male-specific bacteriophage (MSB) densities were determined in animal and human fecal wastes to assess their potential impact on aquatic environments. Fecal samples (1,031) from cattle, chickens, dairy cows, dogs, ducks, geese, goats, hogs, horses, seagulls, sheep, and humans as well as 64 sewerage samples were examined for MSB. All animal species were found to harbor MSB, although the great majority excreted these viruses at very low levels. The results from this study demonstrate that in areas affected by both human and animal wastes, wastewater treatment plants are the principal contributors of MSB to fresh, estuarine, and marine waters. PMID:9835602
Jermakowicz, Walter J; Dorsey, David A; Brown, Amy L; Wojciechowski, Karen; Giscombe, Claudette L; Graves, Brent M; Summers, Cliff H; Ten Eyck, Gary R
2004-08-01
Nearly all vertebrates possess an olfactory organ but the vomeronasal organ is a synapomorphy for tetrapods. Nevertheless, it has been lost in several groups of tetrapods, including aquatic and marine animals. The present study examines the development of the olfactory and vomeronasal organs in two terrestrial anurans that exhibit different developmental modes. This study compares the development of the olfactory and vomeronasal organs in metamorphic anurans that exhibit an aquatic larva (Bufo americanus) and directly developing anurans that have eliminated the tadpole (Eleutherodactylus coqui). The olfactory epithelium in larval B. americanus is divided into dorsal and ventral branches in the rostral and mid-nasal regions. The larval olfactory pattern in E. coqui has been eliminated. Ontogeny of the olfactory system in E. coqui embryos starts to vary substantially from the larval pattern around the time of operculum development, the temporal period when the larval stage is hypothesized to have been eliminated. The nasal anatomy of the two frogs does not appear morphologically similar until the late stages of embryogenesis in E. coqui and the terminal portion of metamorphosis in B. americanus. Both species and their respective developing offspring, aquatic tadpoles and terrestrial egg/embryos, possess a vomeronasal organ. The vomeronasal organ develops at mid-embryogenesis in E. coqui and during the middle of the larval period in B. americanus, which is relatively late for neobatrachians. Development of the vomeronasal organ in both frogs is linked to the developmental pattern of the olfactory system. This study supports the hypothesis that the most recent common ancestor of tetrapods possessed a vomeronasal organ and was aquatic, and that the vomeronasal organ was retained in the Amphibia, but lost in some other groups of tetrapods, including aquatic and marine animals. Copyright 2004 Wiley-Liss, Inc.
Ando, Konami; Fujiwara, Shin-Ichi
2016-12-01
Habitat shifts from land to water have occurred independently in several mammal lineages. However, because we do not know completely about the relationship between skeletal morphology and function, both reliable life reconstructions of each extinct taxon and the timing of those shifts in locomotor strategies are yet to be fully understood. We estimated the strengths of rib cages against vertical compression in 26 extant and four extinct mammal specimens including cetartiodactyls, paenungulates, and carnivorans, representing 11 terrestrial, six semi-aquatic, and nine obligate aquatic taxa. Our analyses of extant taxa showed that strengths were high among terrestrial/semi-aquatic mammals, whose rib cages are subjected to vertical compression during the support on land, whereas strengths were low among obligate aquatic mammals, whose rib cages are not subjected to antigravity force in the water. We therefore propose rib strength as a new index to estimate the ability of an animal to be supported on land while being supported by either the forelimbs or thoracic region. According to our analyses of extinct taxa, this ability to be supported on land was rejected for a basal cetacean (Cetartiodactyla: Ambulocetus) and two desmostylians (Paenungulata: Paleoparadoxia and Neoparadoxia). However, this ability was not rejected for one desmostylian species (Desmostylus). Further study of the ribs of extant/extinct semi-aquatic taxa may help in understanding the ecological shifts in these groups. © 2016 Anatomical Society.
Rolland, C; Danchin, E; de Fraipont, M
1998-06-01
Coloniality in birds has been intensively studied under the cost and benefit approach, but no general conclusion can be given concerning its evolutionary function. Here, we report on a comparative analysis carried out on 320 species of birds using the general method of comparative analysis for discrete variables and the contrast method to analyze the evolution of coloniality. Showing a mean of 23 convergences and 10 reversals, coloniality appears to be a rather labile trait. Colonial breeding appears strongly correlated with the absence of feeding territory, the aquatic habitat, and nest exposure to predators but was not correlated with changes in life-history traits (body mass and clutch size). The correlation of coloniality with the aquatic habitat is in fact explained by a strong correlation with the marine habitat. Unexpectedly, we found that the evolution toward a marine habitat in birds was contingent on coloniality and that coloniality evolved before the passage to a marine life. These results-along with the lack of transitions from the nonmarine to marine habitat in solitary species and the precedence of the loss of feeding territoriality on the passage to a marine life-contradict most of the hypotheses classically accepted to explain coloniality and suggest that we use a different framework to study this evolutionary enigma.
The global public good concept: a means of promoting good veterinary governance.
Eloit, M
2012-08-01
At the outset, the concept of a 'public good' was associated with economic policies. However, it has now evolved not only from a national to a global concept (global public good), but also from a concept applying solely to the production of goods to one encompassing societal issues (education, environment, etc.) and fundamental rights, including the right to health and food. Through their actions, Veterinary Services, as defined by the Terrestrial Animal Health Code (Terrestrial Code) of the World Organisation for Animal Health (OIE), help to improve animal health and reduce production losses. In this way they contribute directly and indirectly to food security and to safeguarding human health and economic resources. The organisation and operating procedures of Veterinary Services are therefore key to the efficient governance required to achieve these objectives. The OIE is a major player in global cooperation and governance in the fields of animal and public health through the implementation of its strategic standardisation mission and other programmes for the benefit of Veterinary Services and OIE Member Countries. Thus, the actions of Veterinary Services and the OIE deserve to be recognised as a global public good, backed by public investment to ensure that all Veterinary Services are in a position to apply the principles of good governance and to comply with the international standards for the quality of Veterinary Services set out in the OIE Terrestrial Code (Section 3 on Quality of Veterinary Services) and Aquatic Animal Health Code (Section 3 on Quality of Aquatic Animal Health Services).
Better Management Practices for Recirculating Aquaculture Systems
USDA-ARS?s Scientific Manuscript database
Under the 2004 federal aquaculture effluent limitation guidelines (Federal Register 2004), recirculating aquaculture systems with an annual production exceeding 45,454 kg (100,000 pounds) are classified as concentrated aquatic animal production (CAAP) facilities and are required to obtain a National...
Forestry, ecosystems, and wildlife: The differences are in the details
Linda Joyce
2008-01-01
Climate affects all terrestrial and aquatic ecosystems in Colorado, and over the long term, plants and animals adapt. In the short term, fires, increased attacks by insects and invasive plant species, and higher temperatures are changing familiar landscapes.
EE2 Changes Gene Expression in Fathead Minnow Testis
Environmental estrogens have been implicated in altering reproductive health of aquatic animals. Early studies of sewage treatment effluents attributed the feminization of male fish to exposure to mixtures of natural and synthetic estrogens. One of the most potent estrogens kno...
7 CFR 761.2 - Abbreviations and definitions.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., vegetable, forage, tree farming, nursery crops, nuts, aquaculture species, and other plant and animal..., reptiles, or aquatic plants) raised in a controlled or selected environment of which the applicant has... farm machinery, equipment, vehicles, foundation and breeding livestock herds and flocks, including...
7 CFR 761.2 - Abbreviations and definitions.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., tree farming, nursery crops, nuts, aquaculture species, and other plant and animal production, as..., reptiles, or aquatic plants) raised in a controlled or selected environment of which the applicant has... machinery, equipment, vehicles, foundation and breeding livestock herds and flocks, including replacements...
Symposium: Ionic and Respiratory Interaction in Aquatic Animals
ERIC Educational Resources Information Center
Physiologist, 1976
1976-01-01
Presented are eight abstracts of a symposium held in conjunction with the American Physiological Society (APS) and the American Society of Zoologists (ASZ). Fish gill structure and function, renal function, acid-base balance and ionic sensitivity are topics discussed. (EB)
75 FR 50748 - Marine Mammals; File No. 14514
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-17
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XW11 Marine Mammals; File No. 14514 AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric... University of Florida, Aquatic Animal Program, College of Veterinary Medicine, Gainesville, FL 32610 (Ruth...
A Teachers' Guide to the Whales of the Gulf of Maine.
ERIC Educational Resources Information Center
Elk, Catherine Kiorpes; Lignell, Kathleen, Ed.
This guide provides: (1) background information for teachers on whales; (2) 10 interdisciplinary activities; (3) teacher resources; (4) a bibliography; and (5) "pocket materials." Topic areas addressed in the first section include evolution and adaptation to an aquatic environment, diversity of whales, functional anatomy of feeding and…
Aquatic invasive species are one of the major ecological threats to the ecological integrity of estuarine and near-coastal waters. However, lack of systematic inventories of nonindigenous species across the North Pacific countries limits our ability to assess how the extent of i...
NASA Astrophysics Data System (ADS)
Beraldi-Campesi, Hugo; Cevallos-Ferriz, Sergio R. S.; Centeno-García, Elena; Arenas-Abad, Concepción; Fernández, Luis Pedro
2006-10-01
A depositional model of the Eocene-Oligocene Coatzingo Formation in Tepexi de Rodríguez (Puebla, Mexico) is proposed, based on facies analysis of one of the best-preserved sections, the Axamilpa Section. The sedimentary evolution is interpreted as the retrogradation of an alluvial system, followed by the progressive expansion of an alkaline lake system, with deltaic, palustrine, and evaporitic environments. The analysis suggests a change towards more arid conditions with time. Fossils from this region, such as fossil tracks of artiodactyls, aquatic birds and cat-like mammals, suggest that these animals traversed the area, ostracods populated the lake waters, and plants grew on incipient soils and riparian environments many times throughout the history of the basin. The inferred habitat for some fossil plants coincides with the sedimentological interpretation of an arid to semiarid climate for that epoch. This combined sedimentological-paleontological study of the Axamilpa Section provides an environmental context in which fossils can be placed and brings into attention important biotic episodes, like bird and camelid migrations or the origin of endemic but extinct plants in this area.
Toxicity of Cúspide 480SL® spray mixture formulation of glyphosate to aquatic organisms.
Currie, Zachary; Prosser, Ryan S; Rodriguez-Gil, Jose Luis; Mahon, Kim; Poirier, Dave; Solomon, Keith R
2015-05-01
In 2011, an alternative formulation of glyphosate (Cúspide 480SL®) was chosen to replace Roundup-SL®, Fuete-SL®, and Gly-41® for the control of Erythroxylum coca, the source of cocaine, in Colombia. Cúspide 480SL contains the active ingredient glyphosate isopropylamine (IPA) salt, which is the same active ingredient used in previous formulations. However, Cúspide 480SL contains an alkyl polyglycoside surfactant rather than the polyethoxylated tallow amine (POEA) surfactant used in other formulations and known to be more toxic to nonprimary producing aquatic organisms than glyphosate itself. An adjuvant, Cosmo-Flux F411, and water also are added to the spray mixture before application. Aquatic ecosystems adjacent to the target coca fields might be exposed to the spray mix, placing aquatic organisms at risk. Because no toxicity data were available for spray mixture on aquatic organisms, acute toxicity tests were conducted on aquatic plants, invertebrates, and fish, by using the Cúspide 480SL spray mix as described on the label. Based on the median effective concentration (EC50) values for similar organisms, the spray mixture was less toxic to aquatic organisms than formulations previously used for the control of coca (i.e., Roundup-SL, Fuete-SL, and Gly-41). A physical effect induced by Cosmo-Flux F411 was observed in Daphnia magna, Ceriodaphnia dubia, and Hyalella azteca, causing the invertebrates to be trapped in an oily film that was present at the surface of the water. However, a hazard assessment for the Cúspide 480SL spray mix, using estimated worst-case exposure scenario concentrations and EC50 values from the toxicity tests, indicated de minimis hazard for the tested aquatic animals, with hazard quotients all <1. © 2015 SETAC.
NASA Technical Reports Server (NTRS)
Wolverton, B. C.; Barlow, R. M.; Mcdonald, R. C.
1975-01-01
Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolverton, B.C.; Barlow, R.M.; Mcdonald, R.C.
1975-05-12
Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications. (Author) (GRA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kargin, F.
1996-10-01
Cadmium is not an essential metal for aquatic organisms. It enters the aquatic environment through anthropogenic sources such as industry and agriculture. Kay et al. indicated that in the USA and Belgium 40-50% of Salmo gairdneri contained 1-20 {mu}g Cd/L. Various agents are known to reduce metal accumulation in tissues of aquantic animals. This study investigates cadmium elimination from the tissues of cadmium contaminated Tilapia zilli and changes in protein levels in the tissues after exposures to cadmium, EDTA and freshwater. 18 refs., 2 tabs.
NASA Astrophysics Data System (ADS)
Conlan, Hilary; Grant, Rachel
2013-04-01
When tectonic stresses build up in the Earth's crust, highly mobile electronic charge carriers are activated which cause a range of follow-on reactions when they arrive at the Earth's surface, primarily air ionization and at the rock-water interface oxidation of water to hydrogen peroxide. Anecdotal reports of many earthworms appearing at the ground surface and behavioural changes in toads before earthquakes suggests that these animals may be reacting to environmental changes. This paper reports the results of experimental work, with subterranean and semi-aquatic invertebrates, simulating these pre-earthquake changes.
Lewandowski, Jill; Luczkovich, Joseph; Cato, Douglas; Dunlop, Rebecca
2016-01-01
There is little disagreement among regulators, scientists, and other interested parties as to the complexity surrounding our understanding of the potential and realized impacts of anthropogenic noise on marine life. Given the challenges of research in an aquatic environment, the breadth of species of interest and the range of human-made noise-producing activities, it is difficult at best to identify the most important science needs that improve our understanding and ultimately regulation of the issue.
The evolution, diversity, and host associations of rhabdoviruses.
Longdon, Ben; Murray, Gemma G R; Palmer, William J; Day, Jonathan P; Parker, Darren J; Welch, John J; Obbard, Darren J; Jiggins, Francis M
2015-01-01
Metagenomic studies are leading to the discovery of a hidden diversity of RNA viruses. These new viruses are poorly characterized and new approaches are needed predict the host species these viruses pose a risk to. The rhabdoviruses are a diverse family of RNA viruses that includes important pathogens of humans, animals, and plants. We have discovered thirty-two new rhabdoviruses through a combination of our own RNA sequencing of insects and searching public sequence databases. Combining these with previously known sequences we reconstructed the phylogeny of 195 rhabdovirus sequences, and produced the most in depth analysis of the family to date. In most cases we know nothing about the biology of the viruses beyond the host they were identified from, but our dataset provides a powerful phylogenetic approach to predict which are vector-borne viruses and which are specific to vertebrates or arthropods. By reconstructing ancestral and present host states we found that switches between major groups of hosts have occurred rarely during rhabdovirus evolution. This allowed us to propose seventy-six new likely vector-borne vertebrate viruses among viruses identified from vertebrates or biting insects. Based on currently available data, our analysis suggests it is likely there was a single origin of the known plant viruses and arthropod-borne vertebrate viruses, while vertebrate- and arthropod-specific viruses arose at least twice. There are also few transitions between aquatic and terrestrial ecosystems. Viruses also cluster together at a finer scale, with closely related viruses tending to be found in closely related hosts. Our data therefore suggest that throughout their evolution, rhabdoviruses have occasionally jumped between distantly related host species before spreading through related hosts in the same environment. This approach offers a way to predict the most probable biology and key traits of newly discovered viruses.
Comparative genomics of bdelloid rotifers: Insights from desiccating and nondesiccating species
Almeida, Pedro; Wilson, Christopher G.; Smith, Thomas P.; Fontaneto, Diego; Crisp, Alastair; Micklem, Gos; Tunnacliffe, Alan
2018-01-01
Bdelloid rotifers are a class of microscopic invertebrates that have existed for millions of years apparently without sex or meiosis. They inhabit a variety of temporary and permanent freshwater habitats globally, and many species are remarkably tolerant of desiccation. Bdelloids offer an opportunity to better understand the evolution of sex and recombination, but previous work has emphasised desiccation as the cause of several unusual genomic features in this group. Here, we present high-quality whole-genome sequences of 3 bdelloid species: Rotaria macrura and R. magnacalcarata, which are both desiccation intolerant, and Adineta ricciae, which is desiccation tolerant. In combination with the published assembly of A. vaga, which is also desiccation tolerant, we apply a comparative genomics approach to evaluate the potential effects of desiccation tolerance and asexuality on genome evolution in bdelloids. We find that ancestral tetraploidy is conserved among all 4 bdelloid species, but homologous divergence in obligately aquatic Rotaria genomes is unexpectedly low. This finding is contrary to current models regarding the role of desiccation in shaping bdelloid genomes. In addition, we find that homologous regions in A. ricciae are largely collinear and do not form palindromic repeats as observed in the published A. vaga assembly. Consequently, several features interpreted as genomic evidence for long-term ameiotic evolution are not general to all bdelloid species, even within the same genus. Finally, we substantiate previous findings of high levels of horizontally transferred nonmetazoan genes in both desiccating and nondesiccating bdelloid species and show that this unusual feature is not shared by other animal phyla, even those with desiccation-tolerant representatives. These comparisons call into question the proposed role of desiccation in mediating horizontal genetic transfer. PMID:29689044
Ancestral Ca2+ Signaling Machinery in Early Animal and Fungal Evolution
Cai, Xinjiang; Clapham, David E.
2012-01-01
Animals and fungi diverged from a common unicellular ancestor of Opisthokonta, yet they exhibit significant differences in their components of Ca2+ signaling pathways. Many Ca2+ signaling molecules appear to be either animal-specific or fungal-specific, which is generally believed to result from lineage-specific adaptations to distinct physiological requirements. Here, by analyzing the genomic data from several close relatives of animals and fungi, we demonstrate that many components of animal and fungal Ca2+ signaling machineries are present in the apusozoan protist Thecamonas trahens, which belongs to the putative unicellular sister group to Opisthokonta. We also identify the conserved portion of Ca2+ signaling molecules in early evolution of animals and fungi following their divergence. Furthermore, our results reveal the lineage-specific expansion of Ca2+ channels and transporters in the unicellular ancestors of animals and in basal fungi. These findings provide novel insights into the evolution and regulation of Ca2+ signaling critical for animal and fungal biology. PMID:21680871
Detecting spatial regimes in ecosystems | Science Inventory ...
Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological potential (i.e. potential vegetation), and often fail to account for ongoing changes due to stressors such as land use change and climate change and their effects on plant and animal communities. We use Fisher information, an information theory based method, on both terrestrial and aquatic animal data (US Breeding Bird Survey and marine zooplankton) to identify ecological boundaries, and compare our results to traditional early warning indicators, conventional ecoregion maps, and multivariate analysis such as nMDS (non-metric Multidimensional Scaling) and cluster analysis. We successfully detect spatial regimes and transitions in both terrestrial and aquatic systems using Fisher information. Furthermore, Fisher information provided explicit spatial information about community change that is absent from other multivariate approaches. Our results suggest that defining spatial regimes based on animal communities may better reflect ecological reality than do traditional ecoregion maps, especially in our current era of rapid and unpredictable ecological change. Use an information theory based method to identify ecological boundaries and compare our results to traditional early warning
Sloman, Katherine A; Mandic, Milica; Todgham, Anne E; Fangue, Nann A; Subrt, Peter; Richards, Jeffrey G
2008-03-01
Animals living in the intertidal zone experience regular, predictable fluctuations in physical parameters including temperature, oxygen and salinity and rely on behavioural, physiological and biochemical mechanisms to cope with environmental variation. In the present study, behavioural strategies induced by aquatic hypoxia (e.g. emergence) were performed at similar oxygen tensions across laboratory, mesocosm and field environments; the number of individuals performing these behaviours at any one time was similar in mesocosms and the field. The use of aquatic surface respiration (ASR) was more plastic than emergence behaviour, occurring at a lower oxygen tension in juveniles than adults and being influenced by the addition of alarm substance. Oxygen uptake was lower in air than in water in adults but, in contrast, oxygen uptake was not influenced by the respiratory medium in juveniles. In the laboratory, 72 h of forced emergence did not affect whole body concentrations of lactate but when ASR and emergence were prevented within mesocosm environments there was a significant elevation of lactate. The present study highlights the benefits of transcending traditional laboratory/field boundaries allowing the responses of laboratory-held animals to environmental fluctuation to be integrated with how these animals perform in their natural environment.
NASA Astrophysics Data System (ADS)
Simoniello, C.; Currier, R. D.; Kirkpatrick, B. A.; Kobara, S.
2016-02-01
Exciting advances in aquatic animal tracking capabilities are contributing to the development of a national Animal Telemetry Network under the U.S. Integrated Ocean Observing System. Ongoing efforts in this arena with the Gulf of Mexico Coastal Ocean Observing System Regional Association (GCOOS-RA) and partners, have laid the foundation for innovative community engagement that uses the iTAG platform to enhance ocean literacy. Presented will be an example of how the Utag for iTAG campaign was developed as a community service project in a Pinellas County, Florida, elementary school where approximately 70% of the students are underserved and/or underrepresented and more than half are on free or reduced lunch. The project incorporates the integration of telemetry platforms in the Gulf, a student-led visual arts project to develop the program logo, crowdsourcing to raise money to purchase telemetry tags, and a communication network that includes interactions among students, formal and informal educators, and scientists from the United States and Canada. The work is part of a larger effort by the GCOOS-RA to develop its citizen science observing network for the Gulf of Mexico.
Separability of drag and thrust in undulatory animals and machines
NASA Astrophysics Data System (ADS)
Bale, Rahul; Shirgaonkar, Anup A.; Neveln, Izaak D.; Bhalla, Amneet Pal Singh; Maciver, Malcolm A.; Patankar, Neelesh A.
2014-12-01
For nearly a century, researchers have tried to understand the swimming of aquatic animals in terms of a balance between the forward thrust from swimming movements and drag on the body. Prior approaches have failed to provide a separation of these two forces for undulatory swimmers such as lamprey and eels, where most parts of the body are simultaneously generating drag and thrust. We nonetheless show that this separation is possible, and delineate its fundamental basis in undulatory swimmers. Our approach unifies a vast diversity of undulatory aquatic animals (anguilliform, sub-carangiform, gymnotiform, bal-istiform, rajiform) and provides design principles for highly agile bioinspired underwater vehicles. This approach has practical utility within biology as well as engineering. It is a predictive tool for use in understanding the role of the mechanics of movement in the evolutionary emergence of morphological features relating to locomotion. For example, we demonstrate that the drag-thrust separation framework helps to predict the observed height of the ribbon fin of electric knifefish, a diverse group of neotropical fish which are an important model system in sensory neurobiology. We also show how drag-thrust separation leads to models that can predict the swimming velocity of an organism or a robotic vehicle.
The Evolution of Multicellular Plants and Animals.
ERIC Educational Resources Information Center
Valentine, James W.
1978-01-01
Traces the evolution of unicellular organisms to the multi-cellular plants and animals in existence today. Major events are depicted in a geologic timetable. Organisms, extinct and recent, are classified by taxonomic group. (MA)
Relative toxicities of pure propylene and ethylene glycol and formulated deicers on plant species
DOE Office of Scientific and Technical Information (OSTI.GOV)
DuFresne, D.L.; Pillard, D.A.
1994-12-31
Propylene and ethylene glycol deicers are commonly used at airports in the US and other countries to remove and retard the accumulation of snow and ice on aircraft. Deicers may not only enter water bodies without treatment, due to excessive storm-related flow, but also may expose terrestrial organisms to high concentrations through surface runoff. Most available toxicity data are for aquatic vertebrates and invertebrate species; this study examined effects on terrestrial and aquatic plants. Terrestrial plant species included both a monocot (rye grass, Lolium perenne) and a dicot (lettuce, Lactuca saliva). Aquatic species included a single cell alga (Selenastrum capricomutum),more » and an aquatic macrophyte (duckweed, Lemna minor). Glycol deicers were obtained in the formulated mixtures used on aircraft. Pure ethylene and propylene glycol were obtained from Sigma{reg_sign}. Parameters measured included germination, root and shoot length, survival, and growth. Formulated deicers, like those used at airports, were generally more toxic than pure chemicals, based on glycol concentration. This greater toxicity of formulated deicers is consistent with results of tests using animal species.« less
Cell Cycle Control in the Early Embryonic Development of Aquatic Animal Species
Siefert, Joseph C.; Clowdus, Emily A.; Sansam, Christopher L.
2016-01-01
The cell cycle is integrated with many aspects of embryonic development. Not only is proper control over the pace of cell proliferation important, but also the timing of cell cycle progression is coordinated with transcription, cell migration, and cell differentiation. Due to the ease with which the embryos of aquatic organisms can be observed and manipulated, they have been a popular choice for embryologists throughout history. In the cell cycle field, aquatic organisms have been extremely important because they have played a major role in the discovery and analysis of key regulators of the cell cycle. In particular, the frog Xenopus laevis has been instrumental for understanding how the basic embryonic cell cycle is regulated. More recently, the zebrafish has been used to understand how the cell cycle is remodeled during vertebrate development and how it is regulated during morphogenesis. This review describes how some of the unique strengths of aquatic species have been leveraged for cell cycle research and suggests how species such as Xenopus and zebrafish will continue to reveal the roles of the cell cycle in human biology and disease. PMID:26475527
Lebo, Jon A.; Zajicek, James L.; Huckins, James N.; Petty, Jimmie D.; Peterman, Paul H.
1992-01-01
A method is given for the recovery, cleanup, and analysis of polycyclic aromatic hydrocarbons (PAHs) that have been sequestered in SPMDs (semipermeable membrane devices). SPMDs are polymeric membranes enclosing lipids, and mimic the bioconcentration process of aquatic animals. SPMDs are used as passive, in situ monitors of contamination by organic pollutants of aquatic environments. The method reported here includes dialytic recovery of the PAHs, cleanup of the dialysates using size exclusion, adsorption, and argentation chromatographic modules in tandem, then analysis by gas chromatography with photoionization or mass spectrometric detection. The method is demonstrated to overcome the presence of a variety of environmental co-contaminants and other potential interferents in the dialysates. A field application is also demonstrated in which SPMDs are used to monitor PAH contamination in an urban creek. Approaches to the use of SPMD data to calculate aqueous concentrations of PAHs are discussed. The use of SPMDs in combination with the complementary, PAH-specific cleanup procedure provides a unique approach to the analysis of PAH residues in the aquatic environment.
Unpacking brown food-webs: Animal trophic identity reflects rampant microbivory
USDA-ARS?s Scientific Manuscript database
Detritivory is the dominant trophic paradigm in most terrestrial, aquatic, and marine ecosystems, yet accurate measurement of consumer trophic position within detrital (= ‘brown’) food-webs has remained impenetrable. Measurement of detritivore trophic position is complicated by the fact that detritu...
40 CFR 124.52 - Permits required on a case-by-case basis.
Code of Federal Regulations, 2011 CFR
2011-07-01
...), concentrated aquatic animal production facilities (§ l22.24), storm water discharges (§ 122.26), and certain... storm water discharge under this section (see § 122.26(a)(1)(v), (c)(1)(v), and (a)(9)(iii) of this...
40 CFR 124.52 - Permits required on a case-by-case basis.
Code of Federal Regulations, 2013 CFR
2013-07-01
...), concentrated aquatic animal production facilities (§ l22.24), storm water discharges (§ 122.26), and certain... storm water discharge under this section (see § 122.26(a)(1)(v), (c)(1)(v), and (a)(9)(iii) of this...
40 CFR 124.52 - Permits required on a case-by-case basis.
Code of Federal Regulations, 2012 CFR
2012-07-01
...), concentrated aquatic animal production facilities (§ l22.24), storm water discharges (§ 122.26), and certain... storm water discharge under this section (see § 122.26(a)(1)(v), (c)(1)(v), and (a)(9)(iii) of this...
40 CFR 124.52 - Permits required on a case-by-case basis.
Code of Federal Regulations, 2014 CFR
2014-07-01
...), concentrated aquatic animal production facilities (§ l22.24), storm water discharges (§ 122.26), and certain... storm water discharge under this section (see § 122.26(a)(1)(v), (c)(1)(v), and (a)(9)(iii) of this...
40 CFR 124.52 - Permits required on a case-by-case basis.
Code of Federal Regulations, 2010 CFR
2010-07-01
...), concentrated aquatic animal production facilities (§ l22.24), storm water discharges (§ 122.26), and certain... storm water discharge under this section (see § 122.26(a)(1)(v), (c)(1)(v), and (a)(9)(iii) of this...
ACUTE TOXICITY OF PARA-NONYLPHENOL TO SALTWATER ANIMALS
?para-Nonylphenol (PNP), a mixture of alkylphenols used in producing nonionic surfactants, is distributed widely in surface waters and aquatic sediments, where it can affect saltwater species. This article describes a database for acute toxicity of PNP derived for calculating a n...
Adaptive Patterns of Mitogenome Evolution Are Associated with the Loss of Shell Scutes in Turtles.
Escalona, Tibisay; Weadick, Cameron J; Antunes, Agostinho
2017-10-01
The mitochondrial genome encodes several protein components of the oxidative phosphorylation (OXPHOS) pathway and is critical for aerobic respiration. These proteins have evolved adaptively in many taxa, but linking molecular-level patterns with higher-level attributes (e.g., morphology, physiology) remains a challenge. Turtles are a promising system for exploring mitochondrial genome evolution as different species face distinct respiratory challenges and employ multiple strategies for ensuring efficient respiration. One prominent adaptation to a highly aquatic lifestyle in turtles is the secondary loss of keratenized shell scutes (i.e., soft-shells), which is associated with enhanced swimming ability and, in some species, cutaneous respiration. We used codon models to examine patterns of selection on mitochondrial protein-coding genes along the three turtle lineages that independently evolved soft-shells. We found strong evidence for positive selection along the branches leading to the pig-nosed turtle (Carettochelys insculpta) and the softshells clade (Trionychidae), but only weak evidence for the leatherback (Dermochelys coriacea) branch. Positively selected sites were found to be particularly prevalent in OXPHOS Complex I proteins, especially subunit ND2, along both positively selected lineages, consistent with convergent adaptive evolution. Structural analysis showed that many of the identified sites are within key regions or near residues involved in proton transport, indicating that positive selection may have precipitated substantial changes in mitochondrial function. Overall, our study provides evidence that physiological challenges associated with adaptation to a highly aquatic lifestyle have shaped the evolution of the turtle mitochondrial genome in a lineage-specific manner. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The C.E.B.A.S.-Minimodule: Behaviour of an Artificial Aquatic Ecological System During Spaceflight
NASA Astrophysics Data System (ADS)
Bluem, V.; Andriske, M.; Paris, F.; Voeste, D.
The C.E.B.A.S.-Minimodule, a closed aquatic ecosystem integrated into a middeck locker and consisting of a Zoological (animal tanks), a Botanical (plant bioreactor), a Microbial (bacteria filter) and an Electronic Component (data acquisition/control system) was flown on the STS-89 spaceshuttle mission in January 1998 for 9 days. Preflight the plant bioreactor was loaded with 53 g of Ceratophyllum demersum (coontail) and the animal tanks with 4 adult pregnant females of the fish, Xiphophorus helleri (sword-tails), 200 juveniles of the same species less than 1 week of age, 38 large and 30 juvenile Biomphalaria glabrata water snails. The filter compartment was filled with 200 g of lava grain inoculated with laboratory strains of ammonia-oxidizing bacteria. A ground reference was undertaken with the same biological setup with a delay of 4 d. After an adaptation period of 5 d the system was closed and integrated into the spaceshuttle one day before launch. Video recordings of the animals were automatically taken for 10 minutes in 2-hour periods; the tapes were changed daily by the astronauts. The chemical and physical data for the aquatic system were within the expected range and were closely comparable in comparison to the ground reference. After 9 d under space conditions, the plant biomass increased to 117 g. The plants were all found in very good condition. All 4 adult female fish were retrieved in a good physiological condition. The juvenile fishes had a survival rate of about 33 %. Almost 97 % of the snails had survived and produced more than 250 neonates and 40 spawning packs. All samples were distributed according to a defined schedule and satisfied all scientific needs of the involved 12 principal investigators. This was the first successful spaceflight of an artificial aquatic ecosystem containing vertebrates, invertebrates, higher plants and microorganisms self-sustained by its inhabitants only. C.E.B.A.S. in a modified form and biological setup is a promising candidate for the early space station utilization as a first midterm experiment
Aquatic food production modules in bioregenerative life support systems based on higher plants
NASA Astrophysics Data System (ADS)
Bluem, V.; Paris, F.
Most bioregenerative life support systems (BLSS) are based on gravitropic higher plants which exhibit growth and seed generation disturbances in microgravity. Even when used for a lunar or martian base the reduced gravity may induce a decreased productivity in comparison to Earth. Therefore, the implementation of aquatic biomass production modules in higher plant and/or hybrid BLSS may compensate for this and offer, in addition, the possibility to produce animal protein for human nutrition. It was shown on the SLS-89 and SLS-90 space shuttle missions with the C.E.B.A.S.-MINI MODULE that the edible non gravitropic rootless higher aquatic plant Ceratophyllum demeresum exhibits an undisturbed high biomass production rate in space and that the teleost fish species, Xiphophorus helleri, adapts rapidly to space conditions without loss of its normal reproductive functions. Based on these findings a series of ground-based aquatic food production systems were developed which are disposed for utilization in space. These are plant production bioreactors for the species mentioned above and another suitable candidate, the lemnacean (duckweed) species, Wolffia arrhiza. Moreover, combined intensive aquaculture systems with a closed food loop between herbivorous fishes and aquatic and land plants are being developed which may be suitable for integration into a BLSS of higher complexity.
Zeyl, Jeffrey N; Johnston, Carol E
2015-10-01
Animals exhibit unique hearing adaptations in relation to the habitat media in which they reside. This study was a comparative analysis of auditory specialization in relation to habitat medium in Testudines, a taxon that includes both highly aquatic and fully terrestrial members. Evoked potential audiograms were collected in four species groups representing diversity along the aquatic-terrestrial spectrum: terrestrial and fossorial Gopherus polyphemus, terrestrial Terrapene carolina carolina, and aquatic Trachemys scripta and Sternotherus (S. odoratus and S. minor). Additionally, underwater sensitivity was tested in T. c. carolina, T. scripta, and Sternotherus with tympana submerged just below the water surface. In aerial audiograms, T. c. carolina were most sensitive, with thresholds 18 dB lower than Sternotherus. At 100-300 Hz, thresholds in T. c. carolina, G. polyphemus, and T. scripta were similar to each other. At 400-800 Hz, G. polyphemus thresholds were elevated to 11 dB above T. c. carolina. The underwater audiograms of T. c. carolina, T. scripta, and Sternotherus were similar. The results suggest aerial hearing adaptations in emydids and high-frequency hearing loss associated with seismic vibration detection in G. polyphemus. The underwater audiogram of T. c. carolina could reflect retention of ancestral aquatic auditory function.
Plant defences on land and in water: why are they so different?
2016-01-01
Background Plants (attached photosynthesizing organisms) are eaten by a wide variety of herbivorous animals. Despite a vast literature on plant defence, contrasting patterns of antiherbivore adaptation among marine, freshwater and land plants have been little noticed, documented or understood. Scope Here I show how the surrounding medium (water or air) affects not only the plants themselves, but also the sensory and locomotor capacities of herbivores and their predators, and I discuss patterns of defence and host specialization of plants and herbivores on land and in water. I analysed the literature on herbivory with special reference to mechanical defences and sensory cues emitted by plants. Spines, hairs, asymmetrically oriented features on plant surfaces, and visual and olfactory signals that confuse or repel herbivores are common in land plants but rare or absent in water-dwelling plants. Small terrestrial herbivores are more often host-specific than their aquatic counterparts. I propose that patterns of selection on terrestrial herbivores and plants differ from those on aquatic species. Land plants must often attract animal dispersers and pollinators that, like their herbivorous counterparts, require sophisticated locomotor and sensory abilities. Plants counter their attractiveness to animal helpers by evolving effective contact defences and long-distance cues that mislead or warn herbivores. The locomotor and sensory world of small aquatic herbivores is more limited. These characteristics result from the lower viscosity and density of air compared with water as well as from limitations on plant physiology and signal transmission in water. Evolutionary innovations have not eliminated the contrasts in the conditions of life between water and land. Conclusion Plant defence can be understood fully when herbivores and their victims are considered in the broader context of other interactions among coexisting species and of the medium in which these interactions occur. PMID:27091505
Liu, Wenxiu; He, Wei; Wu, Jingyi; Qin, Ning; He, Qishuang; Xu, Fuliu
2018-05-12
Residual levels of perfluoroalkyl acids (PFAAs) in seven species of aquatic animals were analyzed by liquid chromatography-mass spectrometry. The distribution, composition, bioaccumulation, and biomagnification of PFAAs and their effect factors were studied. The results showed that: 1) Wet weight concentrations of 17 PFAAs in the aquatic animals ranged from 1.77 to 38.65 ng/g, with a mean value of 12.71 ± 9.21 ng/g. PFOS was the predominant contaminant (4.57 ± 4.57 ng/g, 6.76%-46.25%), followed by PFDA (1.95 ± 1.37 ng/g, 11.68%-21.25%) and PFUdA (1.84 ± 1.21 ng/g, 9.73%-35.34%. 2) PFAA residual levels in Culter erythropterus (30.98 ± 6.65 ng/g) were the highest, followed by Hemibarbus maculatus (16.79 ± 1.88 ng/g), while the PFAA levels in Carassius auratus were the lowest (2.22 ± 0.60 ng/g). 3) Biota-water bioaccumulation factors (BAFs), biota-suspended solid accumulation factors (BSSAFs) and biota-sediment accumulation factors (BSAFs) ranged from 0.35 to 12,370.51, 7.77 to 8452.92 and 9.10 to 6984.61, respectively. Bioaccumulation by shrimp and snails was significantly affected by Kow. 4) Food web magnification factors were greater than 1, indicating that biomagnification of PFAAs occurs across trophic levels. The bioaccumulation and biomagnification of PFAAs were significantly correlated with carbon chain length. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gladden, J.B.; Lower, M.W.; Mackey, H.E.
1985-07-01
Several semi-aquatic vertebrate species are regularly observed in ''natural'' and ''post-thermal'' environments at SRP. Fewer species are regularly observed in thermally-altered areas. Yellow-bellied slider turtles, however, seem to thrive in areas of mildly elevated temperatures where they exhibit larger female body size than specimens from some ambient temperature areas of the SRP. Yellow-bellied slider turtles are the predominant species of semi-aquatic turtle on the SRP. Research conducted during 1984 was aimed toward examination of the activity levels of these animals, and their movement patterns within and among thermally- and nonthermally-altered wetlands on the SRP. Additional studies conducted on movement patternsmore » of turtles in relation to reproduction examined emigration rates in five species of turtles during years of normal rainfall compared with a year of drought at a Carolina Bay. Studies of body size of slider turtles showed that animals inhabiting thermally-altered areas attain larger sizes than do individuals from ambient areas, presumably because the elevated temperatures allow for longer annual activity and feeding periods. Slider turtles from coastal, and from thermally- and nonthermally-altered inland populations, were examined for relationships between growth and clutch parameters. Slider turtles from an area of radioactive contamination were also studied for a determination of strontium-90 and cesium-137 bio-elimination. Studies of the brown water snake in the vicinity of Steel Creek and in the vicinity of Upper Three Runs Creek showed that these animals are primarily diurnal and prefer cool water temperatures. Preliminary sampling was initiated in 1984 to determine the structure of the Steel Creek snake community. 65 refs., 5 figs., 26 tabs.« less
Souid, Ghada; Souayed, Nouha; Haouas, Zohra; Maaroufi, Khira
2018-03-15
Okadaic Acid (OA) is a marine toxin responsible for DSP (Diarrheic Shellfish Poisoning) in humans produced by dinoflagellate. The genotoxic and cytotoxic effects of OA have been well reported in mammalian experimental animals and in vitro cultured cells. However, there are no available investigations regarding the involvement of the oxidative stress pathways in OA toxicity, especially on aquatic animals such as fish. In this context, we aimed in the present work to demonstrate whether OA (7.5 μg/ml) induces oxidative stress and histopathological damages in the fish species Sparus aurata under short term exposure (2 h, 4 h and 24 h). To this end, we have assessed lipid peroxidation and anti-oxidative stress response in liver tissue, and finally ultrastructural changes were investigated in hepatic and gills tissues. Our results clearly showed that OA induced significant enhancement in all tested parameters in a time dependent manner and seems to be a strong inducer of oxidative stress in aquatic animals. The data of the present study indicate also that histology is a successful tool to reveal OA impact on liver and gill tissues of Sparus aurata since the animal showed vascular dilation and hepatocellular membrane disintegration in liver and hypertrophy in secondary lamellae and necrotic aspect in the primary lamellae in gill tissue. Copyright © 2018 Elsevier Ltd. All rights reserved.
Vision in semi-aquatic snakes: Intraocular morphology, accommodation, and eye: Body allometry
NASA Astrophysics Data System (ADS)
Plylar, Helen Bond
Vision in vertebrates generally relies on the refractive power of the cornea and crystalline lens to facilitate vision. Light from the environment enters the eye and is refracted by the cornea and lens onto the retina for production of an image. When an animal with a system designed for air submerges underwater, the refractive power of the cornea is lost. Semi-aquatic animals (e.g., water snakes, turtles, aquatic mammals) must overcome this loss of corneal refractive power through visual accommodation. Accommodation relies on change of the position or shape of the lens to change the focal length of the optical system. Intraocular muscles and fibers facilitate lenticular displacement and deformation. Snakes, in general, are largely unstudied in terms of visual acuity and intraocular morphology. I used light microscopy and scanning electron microscopy to examine differences in eye anatomy between five sympatric colubrid snake species (Nerodia cyclopion, N. fasciata, N. rhombifer, Pantherophis obsoletus, and Thamnophis proximus) from Southeast Louisiana. I discovered previously undescribed structures associated with the lens in semi-aquatic species. Photorefractive methods were used to assess refractive error. While all species overcame the expected hyperopia imposed by submergence, there was interspecific variation in refractive error. To assess scaling of eye size with body size, I measure of eye size, head size, and body size in Nerodia cyclopion and N. fasciata from the SLU Vertebrate Museum. In both species, body size increases at a significantly faster rate than head size and eye size (negative allometry). Small snakes have large eyes relative to body size, and large snakes have relatively small eyes. There were interspecific differences in scaling of eye size with body size, where N. fasciata had larger eye diameter, but N. cyclopion had longer eyes (axial length).
Evolution. Animal Life in Action[TM]. Schlessinger Science Library. [Videotape].
ERIC Educational Resources Information Center
2000
This 23-minute videotape for grades 5-8, presents the myriad of animal life that exists on the planet. Students can view and perform experiments and investigations that help explain animal traits and habits. The story of evolution starts with the study of fossils that helps scientists link today's living organisms with those of the past. Students…
The Mini Space Farm—A Food Regenerative System in the Long-term Manned Space Mission.
NASA Astrophysics Data System (ADS)
Zhang, Mao
In this invention we propose rearing six types of small animals which are mainly insects, all the biological wastes (bio-waste) in the space human life environment, including the human and animal feces, inedible parts of the plants and animals, food bits and other bio-wastes,can be feedstuff for rearing these six small animals, each one can recycle and digest the specific wastes to be their nourishing biomass. The biomass of these six animals, combine with the inedible parts of the space plants, will further be used as feedstuff for feeding edible animals of poultry, aquatics, amphibians, even the livestock. The meat, egg and milk from these edible animals are taken as human's animal food. Here we name these animals are as Edible Animal (EA), these six small animals are as Recycling Animals (RA). The water and nutrition left in the residues after rearing the RA can be recycled again by other RA or used to fertilize the space plants. The appropriate space plants include both terrestrial and aquatic species, such as vegetable,grain,feeding plant,edible algae and germs,also be cultivated as vegetarian food which have already successfully developed by NASA and other countries. These RA have strong reproduction ability, short life cycle, rich of nutrition, and can be easily reared in high densities with high efficiency in microgravity. Like the RA, the EA and space plants, they can be continuously reared in cages,boxes and water tanks as the solid manner, their optimal growth temperature and the humidity are same with RA, so they can be fed in the same cabin. Rearing RA, EA and plants together can provide a self-sustaining food system with minimum volume, weight, energy, labor and cost, which is the basis for realizing mini space farm in long term manned space missions. In this way, two kinds of mini space farm models have been designed: A cabin model to be used on ISS and flight craft functioning within a microgravity environment, and a greenhouse model to be used on planetary habitats with low gravity.
Conspicuous and aposematic spines in the animal kingdom
NASA Astrophysics Data System (ADS)
Inbar, Moshe; Lev-Yadun, Simcha
2005-04-01
Spines serve as a common physical defence mechanism in both the plant and animal kingdoms. Here we argue that as in plants, defensive animal spines are often conspicuous (shape and colour) and should be considered aposematic. Conspicuous spines may evolve as signals or serve as a cue for potential predators. Spine conspicuousness in animals has evolved independently across and within phyla occupying aquatic and terrestrial ecosystems, indicating that this convergent phenomenon is highly adaptive. Still, many spines are cryptic, suggesting that conspicuity is not simply constrained by developmental factors such as differences in the chemical composition of the integument. Aposematism does not preclude the signalling role of conspicuous spines in the sexual arena.
Buřič, M; Grabicová, K; Kubec, J; Kouba, A; Kuklina, I; Kozák, P; Grabic, R; Randák, T
2018-05-14
Environmental pollution by pharmaceutically active compounds, used in quantities similar to those of pesticides and other organic micropollutants, is increasingly recognized as a major threat to the aquatic environment. These compounds are only partly removed from wastewaters and, despite their low concentrations, directly and indirectly affect behaviour of freshwater organisms in natural habitats. The aim of this study was to behaviourally assess the effects of an opioid painkiller (tramadol) and antidepressant drug (citalopram) on behaviour patterns of a clonal model species, marbled crayfish. Animals exposed to environmentally relevant concentrations of both tested compounds (∼1 μg l -1 ) exhibited significantly lower velocity and shorter distance moved than controls. Crayfish exposed to tramadol spent more time in shelters. Results were obtained by a simple and rapid method recommended as suitable for assessment of behaviour in aquatic organisms exposed to single pollutants and combinations. Copyright © 2018 Elsevier B.V. All rights reserved.
Complex Homology and the Evolution of Nervous Systems
Liebeskind, Benjamin J.; Hillis, David M.; Zakon, Harold H.; Hofmann, Hans A.
2016-01-01
We examine the complex evolution of animal nervous systems and discuss the ramifications of this complexity for inferring the nature of early animals. Although reconstructing the origins of nervous systems remains a central challenge in biology, and the phenotypic complexity of early animals remains controversial, a compelling picture is emerging. We now know that the nervous system and other key animal innovations contain a large degree of homoplasy, at least on the molecular level. Conflicting hypotheses about early nervous system evolution are due primarily to differences in the interpretation of this homoplasy. We highlight the need for explicit discussion of assumptions and discuss the limitations of current approaches for inferring ancient phenotypic states. PMID:26746806
Early animal evolution: emerging views from comparative biology and geology
NASA Technical Reports Server (NTRS)
Knoll, A. H.; Carroll, S. B.
1999-01-01
The Cambrian appearance of fossils representing diverse phyla has long inspired hypotheses about possible genetic or environmental catalysts of early animal evolution. Only recently, however, have data begun to emerge that can resolve the sequence of genetic and morphological innovations, environmental events, and ecological interactions that collectively shaped Cambrian evolution. Assembly of the modern genetic tool kit for development and the initial divergence of major animal clades occurred during the Proterozoic Eon. Crown group morphologies diversified in the Cambrian through changes in the genetic regulatory networks that organize animal ontogeny. Cambrian radiation may have been triggered by environmental perturbation near the Proterozoic-Cambrian boundary and subsequently amplified by ecological interactions within reorganized ecosystems.
Pelagic larval duration predicts extinction risk in a freshwater fish clade.
Douglas, Morgan; Keck, Benjamin P; Ruble, Crystal; Petty, Melissa; Shute, J R; Rakes, Patrick; Hulsey, C Darrin
2013-01-01
Pelagic larval duration (PLD) can influence evolutionary processes ranging from dispersal to extinction in aquatic organisms. Using estimates of PLD obtained from species of North American darters (Percidae: Etheostomatinae), we demonstrate that this freshwater fish clade exhibits surprising variation in PLD. Comparative analyses provide some evidence that higher stream gradients favour the evolution of shorter PLD. Additionally, similar to patterns in the marine fossil record in which lower PLD is associated with greater extinction probability, we found a reduced PLD in darter lineages was evolutionarily associated with extinction risk. Understanding the causes and consequences of PLD length could lead to better management and conservation of organisms in our increasingly imperiled aquatic environments.
BIOAVAILABILITY OF CHEMICAL CONTAMINANTS IN AQUATIC SYSTEMS
Before a chemical can elicit toxicity, the animal must accumulate a dose at a target tissue of sufficient magnitude to produce a response. Bioavailability refers to the degree to which this accumulation occurs relative to the amount of chemical present in the environment, and is ...
Aquatic antagonists: lionfish stings.
Burnett, J W
2001-07-01
Although lionfish can be found in all the oceans, the highest incidences of human stings appear to be in the tropics, especially in the Indo-Pacific area and Mediterranean Sea. The recent interest in tropical fish aquaria has expanded the geographic range of the stings of these animals.
7 CFR 761.2 - Abbreviations and definitions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... other plant and animal production, as determined by the Agency. Allonge is an attachment or an addendum..., crustaceans or other invertebrates, amphibians, reptiles, or aquatic plants) raised in a controlled or... and breeding livestock herds and flocks, including replacements, and real estate that serves as...
7 CFR 761.2 - Abbreviations and definitions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... other plant and animal production, as determined by the Agency. Allonge is an attachment or an addendum..., crustaceans or other invertebrates, amphibians, reptiles, or aquatic plants) raised in a controlled or... and breeding livestock herds and flocks, including replacements, and real estate that serves as...
7 CFR 761.2 - Abbreviations and definitions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... species, and other plant and animal production, as determined by the Agency. Allonge is an attachment or..., crustaceans or other invertebrates, amphibians, reptiles, or aquatic plants) raised in a controlled or... and breeding livestock herds and flocks, including replacements, and real estate that serves as...
Tools to Compare Diving-Animal Kinematics with Acoustic Behavior and Exposure
2010-09-30
2007. Acoustic determination of activity and flipper stroke rate in foraging northern fur seal females. Endanger. Species Res., doi:10.3354/esr00050...sound recording device (Bioacoustic Probe) to document the acoustic environment of a blacktip reef shark (Carcharhinus melanopterus). Aquat . Living
Alkalinity and hardness: Critical but elusive concepts in aquaculture
USDA-ARS?s Scientific Manuscript database
Total alkalinity and total hardness are familiar variables to those involved in aquatic animal production. Aquaculturists – both scientists and practitioners alike – tend to have some understanding of the two variables and of methods for adjusting their concentrations. The chemistry and the biolog...
Code of Federal Regulations, 2011 CFR
2011-07-01
... lipid) of a substance's lipid-normalized concentration in tissue of an aquatic organism to its organic... develop neoplasms, in animals or humans. The classification of carcinogens is discussed in section II.A of... Species Act. Existing Great Lakes discharger is any building, structure, facility, or installation from...
Code of Federal Regulations, 2010 CFR
2010-07-01
... lipid) of a substance's lipid-normalized concentration in tissue of an aquatic organism to its organic... develop neoplasms, in animals or humans. The classification of carcinogens is discussed in section II.A of... Species Act. Existing Great Lakes discharger is any building, structure, facility, or installation from...
Flandroy, Lucette; Poutahidis, Theofilos; Berg, Gabriele; Clarke, Gerard; Dao, Maria-Carlota; Decaestecker, Ellen; Furman, Eeva; Haahtela, Tari; Massart, Sébastien; Plovier, Hubert; Sanz, Yolanda; Rook, Graham
2018-06-15
Plants, animals and humans, are colonized by microorganisms (microbiota) and transiently exposed to countless others. The microbiota affects the development and function of essentially all organ systems, and contributes to adaptation and evolution, while protecting against pathogenic microorganisms and toxins. Genetics and lifestyle factors, including diet, antibiotics and other drugs, and exposure to the natural environment, affect the composition of the microbiota, which influences host health through modulation of interrelated physiological systems. These include immune system development and regulation, metabolic and endocrine pathways, brain function and epigenetic modification of the genome. Importantly, parental microbiotas have transgenerational impacts on the health of progeny. Humans, animals and plants share similar relationships with microbes. Research paradigms from humans and other mammals, amphibians, insects, planktonic crustaceans and plants demonstrate the influence of environmental microbial ecosystems on the microbiota and health of organisms, and indicate links between environmental and internal microbial diversity and good health. Therefore, overlapping compositions, and interconnected roles of microbes in human, animal and plant health should be considered within the broader context of terrestrial and aquatic microbial ecosystems that are challenged by the human lifestyle and by agricultural and industrial activities. Here, we propose research priorities and organizational, educational and administrative measures that will help to identify safe microbe-associated health-promoting modalities and practices. In the spirit of an expanding version of "One health" that includes environmental health and its relation to human cultures and habits (EcoHealth), we urge that the lifestyle-microbiota-human health nexus be taken into account in societal decision making. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Renewable fluid dynamic energy derived from aquatic animal locomotion.
Dabiri, John O
2007-09-01
Aquatic animals swimming in isolation and in groups are known to extract energy from the vortices in environmental flows, significantly reducing muscle activity required for locomotion. A model for the vortex dynamics associated with this phenomenon is developed, showing that the energy extraction mechanism can be described by simple criteria governing the kinematics of the vortices relative to the body in the flow. In this way, we need not make direct appeal to the fluid dynamics, which can be more difficult to evaluate than the kinematics. Examples of these principles as exhibited in swimming fish and existing energy conversion devices are described. A benefit of the developed framework is that the potentially infinite-dimensional parameter space of the fluid-structure interaction is reduced to a maximum of eight combinations of three parameters. The model may potentially aid in the design and evaluation of unsteady aero- and hydrodynamic energy conversion systems that surpass the Betz efficiency limit of steady fluid dynamic energy conversion systems.
Toxicity of fire retardant chemicals to aquatic organisms: Progress report
Hamilton, Steven J.; McDonald, Susan F.; Gaikowski, Mark P.; Buhl, Kevin J.; Ramsey, G.S.
1996-01-01
Fire retardants and suppressants used extensively in North America are often applied in environmentally sensitive areas that may contain endangered, threatened, or economically important plant and animal species. We conducted laboratory acute toxicity tests in both hard and soft waters with five commonly used fire control chemicals (Fire Trol LCG-R, Fire-Trol GTS-R, Phos-Chek D-75-F, Phos-Chek WD-881, and Silv-Ex). Organisms used in the tests included two fish (rainbow trout and fathead minnow), two aquatic invertebrates (Daphnia magna and Hyalella azteca), and a green algae (Selenastrum capricornutum). In general, the green algae was substantially more sensitive to the three non-foam fire chemicals than the animals, the Daphnia were the most sensitive test organism in exposures with foams. The two foams (Silv-Ex and Phos-Chek WD-881) had similar toxicity and were more toxic than the three non-foams. Water quality did not seem to modify the toxicity of the five fire chemicals in a consistent manner.
Garrone Neto, Domingos; Cordeiro, Ricardo Carlos; Haddad, Vidal
2005-01-01
This is a cross-sectional study of work-related accidents among traditional fishermen in the Medium Araguaia River region of Tocantins, Brazil. From June to August 2002, fishermen from the Municipality of Araguacema were interviewed about the organization of their work activities and work-related accidents during the previous six months. Of the 92 participating fishermen, 56 reported having suffered a work-related accident (annual incidence was 82.6%). Some 95.7% of those interviewed did not regularly pay social security insurance as self-employed workers and were not aware of their social rights and duties. For fishermen reporting accidents, this proportion was 98.2%. Approximately 23.0% had another work activity, mainly as construction workers (47.6%) or sport-fishing guides (23.9%). Injuries inflicted by aquatic animals were the main form of accidents (about 86.0%). From these results, it is apparent that accidents from aquatic animals are an important health hazard, in some cases causing temporary work incapacity.
Jenkins, Jill A.; Draugelis-Dale, Rassa O.
2006-01-01
The Sonny Bono Salton Sea National Wildlife Refuge (SSNWR) is located 64 km north of the Mexican border at the southern end of the Salton Sea in California's Imperial Valley. Freshwater ponds and managed habitats at the SSNWR, Calipatria, Calif. are supplied with Colorado River water that carries compounds from upstream sources. Components include municipal and industrial discharges, agricultural drainage, and sewage plant inputs. Aquatic animals in these ecosystems are continuously exposed to multiple constituents, several of which have been demonstrated to be associated with hormonal disturbances. We investigated possible endocrine impacts to fish in the Imperial Valley, Calif., by addressing the null hypothesis that aquatic species in impacted sites did not exhibit evidence of endocrine disruption as compared with those from nonimpacted sites. The results presented are intended to provide managers with science-based information and interpretations about the condition of the animals in their ecosystems for the minimization of potential adverse effects to trust fish and wildlife resources and for the maximization of available water resources.
Jones, K E; Pierce, S E
2016-03-01
Ecological diversification into new environments presents new mechanical challenges for locomotion. An extreme example of this is the transition from a terrestrial to an aquatic lifestyle. Here, we examine the implications of life in a neutrally buoyant environment on adaptations of the axial skeleton to evolutionary increases in body size. On land, mammals must use their thoracolumbar vertebral column for body support against gravity and thus exhibit increasing stabilization of the trunk as body size increases. Conversely, in water, the role of the axial skeleton in body support is reduced, and, in aquatic mammals, the vertebral column functions primarily in locomotion. Therefore, we hypothesize that the allometric stabilization associated with increasing body size in terrestrial mammals will be minimized in secondarily aquatic mammals. We test this by comparing the scaling exponent (slope) of vertebral measures from 57 terrestrial species (23 felids, 34 bovids) to 23 semi-aquatic species (pinnipeds), using phylogenetically corrected regressions. Terrestrial taxa meet predictions of allometric stabilization, with posterior vertebral column (lumbar region) shortening, increased vertebral height compared to width, and shorter, more disc-shaped centra. In contrast, pinniped vertebral proportions (e.g. length, width, height) scale with isometry, and in some cases, centra even become more spool-shaped with increasing size, suggesting increased flexibility. Our results demonstrate that evolution of a secondarily aquatic lifestyle has modified the mechanical constraints associated with evolutionary increases in body size, relative to terrestrial taxa. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Karlen, Sarah J.; Krubitzer, Leah
2007-01-01
Marsupials are a diverse group of mammals that occupy a large range of habitats and have evolved a wide array of unique adaptations. Although they are as diverse as placental mammals, our understanding of marsupial brain organization is more limited. Like placental mammals, marsupials have striking similarities in neocortical organization, such as a constellation of cortical fields including S1, S2, V1, V2, and A1, that are functionally, architectonically, and connectionally distinct. In this review, we describe the general lifestyle and morphological characteristics of all marsupials and the organization of somatosensory, motor, visual, and auditory cortex. For each sensory system, we compare the functional organization and the corticocortical and thalamocortical connections of the neocortex across species. Differences between placental and marsupial species are discussed and the theories on neocortical evolution that have been derived from studying marsupials, particularly the idea of a sensorimotor amalgam, are evaluated. Overall, marsupials inhabit a variety of niches and assume many different lifestyles. For example, marsupials occupy terrestrial, arboreal, burrowing, and aquatic environments; some animals are highly social while others are solitary; and different species are carnivorous, herbivorous, or omnivorous. For each of these adaptations, marsupials have evolved an array of morphological, behavioral, and cortical specializations that are strikingly similar to those observed in placental mammals occupying similar habitats, which indicate that there are constraints imposed on evolving nervous systems that result in recurrent solutions to similar environmental challenges. PMID:17507143
Li, Kui; Sun, Xiaohui; Chen, Meixiu; Sun, Yingying; Tian, Ran; Wang, Zhengfei; Xu, Shixia; Yang, Guang
2018-01-01
The diversity of body plans of mammals accelerates the innovation of lifestyles and the extensive adaptation to different habitats, including terrestrial, aerial and aquatic habitats. However, the genetic basis of those phenotypic modifications, which have occurred during mammalian evolution, remains poorly explored. In the present study, we synthetically surveyed the evolutionary pattern of Hox clusters that played a powerful role in the morphogenesis along the head-tail axis of animal embryos and the main regulatory factors (Mll, Bmi1 and E2f6) that control the expression of Hox genes. A deflected density of repetitive elements and lineage-specific radical mutations of Mll have been determined in marine mammals with morphological changes, suggesting that evolutionary changes may alter Hox gene expression in these lineages, leading to the morphological modification of these lineages. Although no positive selection was detected at certain ancestor nodes of lineages, the increased ω values of Hox genes implied the relaxation of functional constraints of these genes during the mammalian evolutionary process. More importantly, 49 positively-selected sites were identified in mammalian lineages with phenotypic modifications, indicating adaptive evolution acting on Hox genes and regulatory factors. In addition, 3 parallel amino acid substitutions in some Hox genes were examined in marine mammals, which might be responsible for their streamlined body. © 2017 The Authors. Integrative Zoology published by International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Rubber tire leachates in the aquatic environment.
Evans, J J
1997-01-01
Tires have a deleterious effect on the environment. This review discusses the background of scrap tires discarded in the environment, including tire composition, adverse environmental effects, threats to public health and safety, and solid waste management. Despite the widespread use of scrap tires in environmental applications, both land-based and aquatic, data on the indicators of environmental degradation are extremely scarce. Indicators of environmental degradation include analysis of chemicals within the water and sediment, analysis of contaminants within organisms, and analysis of the biological effects of these compounds on plants, animals, microbes, and organelles. Although these indicators are most useful when used in parallel, a review of the available information on chemical characterization of tire leachate from tire storage facilities, manufacturing, usage in recycling applications, and toxicity exposure studies, of vegetation surveys from waste tire areas and reviews of mammalian tire product toxicity, and of toxicity, mutagenicity, and carcinogenicity of tire exposure in experimental aquatic animals, microbes, and organelles is presented. The major characteristics of these studies are discussed in specific sections. The "Discussion and Conclusions" section discusses and summarizes the biological effects and chemical characterization of tire leachates. A global environmental perspective is included to improve our understanding of the deficiency of the current knowledge of tire leachate toxicity from various sources and to encourage interdisciplinary studies to establish the pattern of pollution associated with waste tire management.
Rodrigues, João Fabrício Mota; Diniz-Filho, José Alexandre Felizola
2016-08-01
Habitat may be viewed as an important life history component potentially related to diversification patterns. However, differences in diversification rates between aquatic and terrestrial realms are still poorly explored. Testudines is a group distributed worldwide that lives in aquatic and terrestrial environments, but until now no-one has evaluated the diversification history of the group as a whole. We aim here to investigate the diversification history of turtles and to test if habitat influenced speciation rate in these animals. We reconstructed the phylogeny of the modern species of chelonians and estimated node divergence dates using molecular markers and a Bayesian approach. Then, we used Bayesian Analyses of Macroevolutionary Mixtures to evaluate the diversification history of turtles and evaluate the effect of habitat on this pattern. Our reconstructed phylogeny covered 300 species (87% of the total diversity of the group). We found that the emydid subfamily Deirochelyinae, which forms the turtle hotspot in south-eastern United States, had an increase in its speciation rate, and that Galapagos tortoises had similar increases. Current speciation rates are lower in terrestrial turtles, contradicting studies supporting the idea terrestrial animals diversify more than aquatic species. Our results suggest that habitat, ecological opportunities, island invasions, and climatic factors are important drivers of diversification in modern turtles and reinforce the importance of habitat as a diversification driver. Copyright © 2016 Elsevier Inc. All rights reserved.
Effects of pond draining on biodiversity and water quality of farm ponds.
Usio, Nisikawa; Imada, Miho; Nakagawa, Megumi; Akasaka, Munemitsu; Takamura, Noriko
2013-12-01
Farm ponds have high conservation value because they contribute significantly to regional biodiversity and ecosystem services. In Japan pond draining is a traditional management method that is widely believed to improve water quality and eradicate invasive fish. In addition, fishing by means of pond draining has significant cultural value for local people, serving as a social event. However, there is a widespread belief that pond draining reduces freshwater biodiversity through the extirpation of aquatic animals, but scientific evaluation of the effectiveness of pond draining is lacking. We conducted a large-scale field study to evaluate the effects of pond draining on invasive animal control, water quality, and aquatic biodiversity relative to different pond-management practices, pond physicochemistry, and surrounding land use. The results of boosted regression-tree models and analyses of similarity showed that pond draining had little effect on invasive fish control, water quality, or aquatic biodiversity. Draining even facilitated the colonization of farm ponds by invasive red swamp crayfish (Procambarus clarkii), which in turn may have detrimental effects on the biodiversity and water quality of farm ponds. Our results highlight the need for reconsidering current pond management and developing management plans with respect to multifunctionality of such ponds. Efectos del Drenado de Estanques sobre la Biodiversidad y la Calidad del Agua en Estanques de Cultivo. © 2013 Society for Conservation Biology.
Molecular evolution of cyclin proteins in animals and fungi
2011-01-01
Background The passage through the cell cycle is controlled by complexes of cyclins, the regulatory units, with cyclin-dependent kinases, the catalytic units. It is also known that cyclins form several families, which differ considerably in primary structure from one eukaryotic organism to another. Despite these lines of evidence, the relationship between the evolution of cyclins and their function is an open issue. Here we present the results of our study on the molecular evolution of A-, B-, D-, E-type cyclin proteins in animals and fungi. Results We constructed phylogenetic trees for these proteins, their ancestral sequences and analyzed patterns of amino acid replacements. The analysis of infrequently fixed atypical amino acid replacements in cyclins evidenced that accelerated evolution proceeded predominantly during paralog duplication or after it in animals and fungi and that it was related to aromorphic changes in animals. It was shown also that evolutionary flexibility of cyclin function may be provided by consequential reorganization of regions on protein surface remote from CDK binding sites in animal and fungal cyclins and by functional differentiation of paralogous cyclins formed in animal evolution. Conclusions The results suggested that changes in the number and/or nature of cyclin-binding proteins may underlie the evolutionary role of the alterations in the molecular structure of cyclins and their involvement in diverse molecular-genetic events. PMID:21798004
NASA Astrophysics Data System (ADS)
Pinxten, Rianne; Desclée, Mathieu; Eens, Marcel
2016-09-01
In 1963, the Nobel Prize-winning ethologist Niko Tinbergen proposed a framework for the scientific study of animal behaviour by outlining four questions that should be answered to have a complete understanding: causation, ontogeny, function and evolution. At present, Tinbergen's framework is still considered the best way to guide animal behavioural research. Given the importance in science instruction of demonstrating how scientists work and ask questions, we investigated to what extent Tinbergen's questions are addressed in biology textbooks in secondary education in Flanders, Belgium, and represented in upper-secondary and first-year university students' explanations of behaviour in general and of specific animal behaviours. Our results revealed that teaching of animal behaviour mainly addresses ontogeny and causation, and that Tinbergen's framework is not explicitly referred to. Students typically addressed only one or two questions, with the majority addressing causation or both causation and ontogeny when explaining behaviour in general, but function or causation and function when explaining specific animal behaviours. This high prevalence of function may be due to teleological thinking. Evolution was completely neglected, even in university students who had recently completed an evolution course. Our results revealed that transfer of the concepts of ontogeny and evolution was (almost) absent. We argue why Tinbergen's framework should be an integral part of any biology curriculum.
Wang, W.; Haberer, G.; Gundlach, H.; Gläßer, C.; Nussbaumer, T.; Luo, M.C.; Lomsadze, A.; Borodovsky, M.; Kerstetter, R.A.; Shanklin, J.; Byrant, D.W.; Mockler, T.C.; Appenroth, K.J.; Grimwood, J.; Jenkins, J.; Chow, J.; Choi, C.; Adam, C.; Cao, X.-H.; Fuchs, J.; Schubert, I.; Rokhsar, D.; Schmutz, J.; Michael, T.P.; Mayer, K.F.X.; Messing, J
2014-01-01
The subfamily of the Lemnoideae belongs to a different order than other monocotyledonous species that have been sequenced and comprises aquatic plants that grow rapidly on the water surface. Here we select Spirodela polyrhiza for whole-genome sequencing. We show that Spirodela has a genome with no signs of recent retrotranspositions but signatures of two ancient whole-genome duplications, possibly 95 million years ago (mya), older than those in Arabidopsis and rice. Its genome has only 19,623 predicted protein-coding genes, which is 28% less than the dicotyledonous Arabidopsis thaliana and 50% less than monocotyledonous rice. We propose that at least in part, the neotenous reduction of these aquatic plants is based on readjusted copy numbers of promoters and repressors of the juvenile-to-adult transition. The Spirodela genome, along with its unique biology and physiology, will stimulate new insights into environmental adaptation, ecology, evolution and plant development, and will be instrumental for future bioenergy applications. PMID:24548928
Snail shells as larval habitat of Limatus durhamii (Diptera: Culicidae) in the Yungas of Argentina.
Mangudo, Carolina; Campos, Raúl E; Rossi, Gustavo C; Gleiser, Raquel M
2017-03-01
The shells of dead snails collect water from rainfalls producing aquatic microenvironments called gastrotelmata. These habitats are small and hold simple detritus based on animal communities, being rotifers and culicids the most studied. Although a high diversity of aquatic microhabitats has been reported as larval habitats of mosquitoes in Argentina, the shell of snails has not been investigated yet. We report the shells of three species of native Megalobulimus genus as larval habitats of a neotropical mosquito and suspected vector of bunyaviruses, Limatus durhamii, and describe these microhabitats in the Yungas forest of Argentina. Copyright © 2016 Elsevier B.V. All rights reserved.
Kollah, Bharati; Patra, Ashok Kumar; Mohanty, Santosh Ranjan
2016-03-01
This review addresses the perspectives of Azolla as a multifaceted aquatic resource to ensure ecosystem sustainability. Nitrogen fixing potential of cyanobacterial symbiont varies between 30 and 60 kg N ha(-1) which designates Azolla as an important biological N source for agriculture and animal industry. Azolla exhibits high bioremediation potential for Cd, Cr, Cu, and Zn. Azolla mitigates greenhouse gas emission from agriculture. In flooded rice ecosystem, Azolla dual cropping decreased CH4 emission by 40 % than did urea alone and also stimulated CH4 oxidation. This review highlighted integrated approach using Azolla that offers enormous public health, environmental, and cost benefits.
[Venomous and poisonous animals. IV. Envenomations by venomous aquatic vertebrates].
Bédry, R; De Haro, L
2007-04-01
Epidemiological information on marine envenomation is generally less extensive in Europe than in tropical regions where these injuries are more severe and the need for medical advice is more frequent. For these reasons use of regional Poison Control Centers in the area where the injury occurs must be encouraged. The purpose of this review is to describe envenomation by bony fish (lion fish, stone fish, and catfish), cartilaginous fish (stingrays and poisonous sharks), or other venomous aquatic vertebrates (moray-eels and marine snakes). Understanding of these envenomation syndromes is important not only in tropical areas but also in Europe where importation of dangerous species has increased in recent years.
2008-12-22
CAPE CANAVERAL, Fla. – Near NASA's Kennedy Space Center in Florida, a male Northern pintail duck swims on a pond in the Merritt island National Wildlife Refuge. Pintails inhabit marshes, prairie ponds and tundra. Widely distributed across the U.S. and Canada, the breed winters south to Central America and the West Indies. It feeds largely on seeds of aquatic plants but may also take small aquatic animals. The center shares a boundary with the refuge that includes salt-water estuaries, brackish marshes, hardwood hammocks and pine flatwoods. The diverse landscape provides habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles. Photo credit: NASA/Jim Grossmann
Kawasaki, Minami; Delamare-Deboutteville, Jerome; Bowater, Rachel O; Walker, Mark J; Beatson, Scott; Ben Zakour, Nouri L; Barnes, Andrew C
2018-06-18
Streptococcus agalactiae (GBS) causes disease in a wide range of animals. The serotype Ib lineage is highly adapted to aquatic hosts, exhibiting substantial genome reduction compared with terrestrial conspecifics. Here we sequence genomes from 40 GBS isolates including 25 from wild fish and captive stingrays in Australia, six local veterinary or human clinical isolates, and nine isolates from farmed tilapia in Honduras and compare with 42 genomes from public databases. Phylogenetic analysis based on non-recombinant core genome SNPs indicated that aquatic serotype Ib isolates from Queensland were distantly related to local veterinary and human clinical isolates. In contrast, Australian aquatic isolates are most closely related to a tilapia isolate from Israel, differing by only 63 core-genome SNPs. A consensus minimum spanning tree based on core genome SNPs indicates dissemination of ST-261 from an ancestral tilapia strain, which is congruent with several introductions of tilapia into Australia from Israel during the 1970s and 1980s. Pan-genome analysis identified 1,440 genes as core with the majority being dispensable or strain-specific with non-protein-coding intergenic regions (IGRs) divided amongst core and strain-specific genes. Aquatic serotype Ib strains have lost many virulence factors during adaptation, but six adhesins were well conserved across the aquatic isolates and might be critical for virulence in fish and targets for vaccine development. The close relationship amongst recent ST-261 isolates from Ghana, USA and China with the Israeli tilapia isolate from 1988 implicates the global trade in tilapia seed for aquaculture in the widespread dissemination of serotype Ib fish-adapted GBS. Importance Streptococcus agalactiae (GBS) is a significant pathogen of humans and animals. Some lineages have become adapted to particular hosts and serotype Ib is highly specialized to fish. Here we show that this lineage is likely to have been distributed widely by the global trade in tilapia for aquaculture, with probable introduction into Australia in the 1970s and subsequent dissemination in wild fish populations. We report variability in the polysaccharide capsule amongst this lineage, but identify a cohort of common surface proteins that may be a focus of future vaccine development to reduce the biosecurity risk in international fish trade. © Crown copyright 2018.
2002-01-01
the same amount of money. Today, for every acre of coca crops eradicated in southern Colombia, three acres of Amazon rainforest are cut down to...less accuracy. As a result, people, animals , water supplies and basic subsistence crops are as likely to be sprayed as the coca field. Although the... animals or aquatic life, the perception by the majority of Colombians is that Glyphosate spraying has caused both widespread crop damage and minor
1975-05-01
using both native freshwater and marine target species; the conduct ofcomplete chronic bioassay testing over the life-cycle of the same organisms usedin ...presents by far the greatest degree of sensitivity to perchlorate of any animal tested , and clearly merits verification. Plants. There are r...Between Toxicity and Solution Pressure with Polycelie nigra as Test Animal ", j. Exp. BioZ., 17, 408-415 (1940). 238. Dale, D., "On the Action of
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Purpose. 70.1 Section 70.1 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) MANAGEMENT OF... maintained for the fundamental purpose of the propagation and distribution of fish and other aquatic animal...
40 CFR 451.1 - General applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false General applicability. 451.1 Section 451.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CONCENTRATED AQUATIC ANIMAL PRODUCTION POINT SOURCE CATEGORY § 451.1 General applicability. As defined more specifically in each subpart,...
Impacts of Land-applied Wastes from Concentrated Animal Feeding Operations on Aquatic Organisms
Midwest agricultural fields typically have subsurface tile-drain networks that facilitate transport of excess water from fields to a ditch network system, which can contain sediments, nutrients and pesticides as well as hormones from fields fertilized with manure and associated l...
Endocrine Toxicity of Trenbolone During Larval Development of Xenopus tropicalis
Trenbolone is a non-aromatizeable androgen agonist used extensively in the beef industry. It can be excreted from cattle in an active form and has been measured in aquatic systems associated with or near concentrated animal feeding operations. We characterized the effects of aque...
Israel, Jacqueline S; McCarthy, James E; Rose, Katherine R; Rao, Venkat K
2017-11-01
Across the world, many species of nondomesticated animals dwell among humans in metropolitan areas. Rare animal bites pose a dilemma for hand surgeons, as they often result in operative injuries and recalcitrant infections. The authors treated an 85-year-old man who experienced severe cellulitis of the index finger following an opossum bite. This case prompted a systematic review of upper extremity injuries caused by species other than dogs, cats, snakes, and insects. The authors conducted a systematic review of PubMed and Scopus databases to identify relevant articles published between 1980 and 2016. Two reviewers critically appraised the studies that met inclusion and exclusion criteria. The hand infection in the man who sustained an opossum bite at the authors' institution was successfully treated with targeted antibiotic therapy, hand elevation, and splinting. Seventy-one articles met inclusion criteria for and were included in this systematic review. The vast majority of existing articles represent level IV and level V evidence. The relevant literature suggests that the majority of hand infections attributable to animal bites and stings are polymicrobial. Injuries secondary to aquatic animals appear to be the most frequently described in the literature, and hot water immersion should be used for the majority of envenomation attributable to aquatic species. Infections can often be treated with an aminopenicillin antibiotic combined with a beta-lactamase inhibitor. Given the variability in presentation and potential for sequelae such as soft-tissue necrosis and systemic reactions, hand surgeons should approach such upper extremity injuries with a high degree of caution.
Huang, Xiongwei; Wang, Tifeng; Ye, Ziwen; Han, Guodong; Dong, Yunwei
2015-01-01
The physiological performance of a mid-intertidal limpet Cellana toreuma was determined to study the physiological adaptation of intertidal animals to rapid changes and extreme temperatures during emersion. The relationship between the Arrhenius breakpoint temperature (ABT) and in situ operative body temperature was studied to predict the possible impact of climate change on the species. The temperature coefficient (Q10) of emersed animals was higher than that of submersed animals and the ratio of aerial: aquatic heart rate rose with increasing temperature. The ABTs of submersed and emersed animals were 30.2 and 34.2°C, respectively. The heart rate and levels of molecular biomarkers (hsps, ampkα, ampkβ and sirt1 mRNA) were determined in 48 h simulated semi-diurnal tides. There were no obvious changes of heart rate and gene expression during the transition between emersion and submersion at room temperature, although expressions of hsp70 and hsp90 were induced significantly after thermal stress. These results indicate that C. toreuma can effectively utilize atmospheric oxygen, and the higher Q10 and ABT of emersed animals are adaptations to the rapid change and extreme thermal stress during emersion. However, the in situ operative body temperature frequently exceeds the aerial ABT of C. toreuma, indicating the occurrence of large-scale mortality of C. toreuma in summer, and this species should be sensitive to increasing temperature in the scenario of climate change. © 2014 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.
Houssaye, Alexandra; Lindgren, Johan; Pellegrini, Rodrigo; Lee, Andrew H.; Germain, Damien; Polcyn, Michael J.
2013-01-01
Background During their evolution in the Late Cretaceous, mosasauroids attained a worldwide distribution, accompanied by a marked increase in body size and open ocean adaptations. This transition from land-dwellers to highly marine-adapted forms is readily apparent not only at the gross anatomic level but also in their inner bone architecture, which underwent profound modifications. Methodology/Principal Findings The present contribution describes, both qualitatively and quantitatively, the internal organization (microanatomy) and tissue types and characteristics (histology) of propodial and epipodial bones in one lineage of mosasauroids; i.e., the subfamily Mosasaurinae. By using microanatomical and histological data from limb bones in combination with recently acquired knowledge on the inner structure of ribs and vertebrae, and through comparisons with extant squamates and semi-aquatic to fully marine amniotes, we infer possible implications on mosasaurine evolution, aquatic adaptation, growth rates, and basal metabolic rates. Notably, we observe the occurrence of an unusual type of parallel-fibered bone, with large and randomly shaped osteocyte lacunae (otherwise typical of fibrous bone) and particular microanatomical features in Dallasaurus, which displays, rather than a spongious inner organization, bone mass increase in its humeri and a tubular organization in its femora and ribs. Conclusions/Significance The dominance of an unusual type of parallel-fibered bone suggests growth rates and, by extension, basal metabolic rates intermediate between that of the extant leatherback turtle, Dermochelys, and those suggested for plesiosaur and ichthyosaur reptiles. Moreover, the microanatomical features of the relatively primitive genus Dallasaurus differ from those of more derived mosasaurines, indicating an intermediate stage of adaptation for a marine existence. The more complete image of the various microanatomical trends observed in mosasaurine skeletal elements supports the evolutionary convergence between this lineage of secondarily aquatically adapted squamates and cetaceans in the ecological transition from a coastal to a pelagic lifestyle. PMID:24146919
Houssaye, Alexandra; Lindgren, Johan; Pellegrini, Rodrigo; Lee, Andrew H; Germain, Damien; Polcyn, Michael J
2013-01-01
During their evolution in the Late Cretaceous, mosasauroids attained a worldwide distribution, accompanied by a marked increase in body size and open ocean adaptations. This transition from land-dwellers to highly marine-adapted forms is readily apparent not only at the gross anatomic level but also in their inner bone architecture, which underwent profound modifications. The present contribution describes, both qualitatively and quantitatively, the internal organization (microanatomy) and tissue types and characteristics (histology) of propodial and epipodial bones in one lineage of mosasauroids; i.e., the subfamily Mosasaurinae. By using microanatomical and histological data from limb bones in combination with recently acquired knowledge on the inner structure of ribs and vertebrae, and through comparisons with extant squamates and semi-aquatic to fully marine amniotes, we infer possible implications on mosasaurine evolution, aquatic adaptation, growth rates, and basal metabolic rates. Notably, we observe the occurrence of an unusual type of parallel-fibered bone, with large and randomly shaped osteocyte lacunae (otherwise typical of fibrous bone) and particular microanatomical features in Dallasaurus, which displays, rather than a spongious inner organization, bone mass increase in its humeri and a tubular organization in its femora and ribs. The dominance of an unusual type of parallel-fibered bone suggests growth rates and, by extension, basal metabolic rates intermediate between that of the extant leatherback turtle, Dermochelys, and those suggested for plesiosaur and ichthyosaur reptiles. Moreover, the microanatomical features of the relatively primitive genus Dallasaurus differ from those of more derived mosasaurines, indicating an intermediate stage of adaptation for a marine existence. The more complete image of the various microanatomical trends observed in mosasaurine skeletal elements supports the evolutionary convergence between this lineage of secondarily aquatically adapted squamates and cetaceans in the ecological transition from a coastal to a pelagic lifestyle.
Complex Homology and the Evolution of Nervous Systems.
Liebeskind, Benjamin J; Hillis, David M; Zakon, Harold H; Hofmann, Hans A
2016-02-01
We examine the complex evolution of animal nervous systems and discuss the ramifications of this complexity for inferring the nature of early animals. Although reconstructing the origins of nervous systems remains a central challenge in biology, and the phenotypic complexity of early animals remains controversial, a compelling picture is emerging. We now know that the nervous system and other key animal innovations contain a large degree of homoplasy, at least on the molecular level. Conflicting hypotheses about early nervous system evolution are due primarily to differences in the interpretation of this homoplasy. We highlight the need for explicit discussion of assumptions and discuss the limitations of current approaches for inferring ancient phenotypic states. Copyright © 2015. Published by Elsevier Ltd.
Status of Animal Experiments on International Space Station, and Animal Care Activities in Japan
NASA Astrophysics Data System (ADS)
Izumi, Ryutaro; Ishioka, Noriaki; Yumoto, Akane; Ito, Isao; Shirakawa, Masaki
We would like to introduce animal experiments status on International Space Station (ISS) of Japan. Aquatic Habitat (AQH) was launched at 2012 July, by H-II Transfer Vehicle (HTV, ‘Kounotori’) from Tanegashima island in Japan, which could house small fish (Medaka, or Zebrafish) at most three months. First experiment using AQH was carried out for two months from Oct. 26, 2012, and second experiment would start from February, 2014. Mice housing hardware is now under development. For animal care activities, current topic in Japan is self-estimation for animal experiment status by each institute, and to open the result for public. JAXA conducted self-estimation of fiscal year 2011 (from 2011 April until 2012 March) for the first time, and would continue every fiscal year. JAXA already have its own animal care regulation, under animal care law and policy in Japan, and also referred COSPAR animal care guideline. And this year, JAXA made handbook for animal experiments in space (only Japanese).