Science.gov

Sample records for aquatic humic substances

  1. Preparative isolation of aquatic humic substances

    USGS Publications Warehouse

    Thurman, E.M.; Malcolm, R.L.

    1981-01-01

    A useful procedure has been developed which utilizes adsorption chromatography followed by size-exclusion chromatography, hydrogen saturation by ion exchange, and lypholization to obtain low-ash aqueous humic substances. The preparative concentration of aquatic humic substances is done by multiple reconcentration procedures even though initial concentrations of aqueous humus may be less than 25 ??g/L. The procedure yields concentration factors of 25 000 times for both humic and fulvic acid in water.

  2. DBP formation of aquatic humic substances

    USGS Publications Warehouse

    Pomes, M.L.; Green, W.R.; Thurman, E.M.; Orem, W.H.; Lerch, H.E.

    1999-01-01

    Aquatic humic substances (AHSs) in water generate potentially harmful disinfection by-products (DBPs) such as haloacetic acids (HAAs) and trihalomethanes (THMs) during chlorination. AHSs from two Arkansas reservoirs were characterized to define source, identify meta-dihydroxybenzene (m-DHB) structures as probable DBP precursors, and evaluate predicted HAA and THM formation potentials. Elemental nitrogen content 0.5 ??eq/mg, ??13C values of -27???, and low yields of syringyl phenols found by cupric oxide (CuO) oxidation suggest a pine tree source for the AHSs found in the Maumelle and Winona reservoirs in Little Rock, Ark. CuO oxidation yielded fewer m-DHB structures in Maumelle AHSs than in Winona AHSs. A higher 3,5-dihydroxybenzoic acid (3,5-DHBA) content correlated with increased HAA and THM formation potential. The 3,5-DHBA concentration in Winona AHSs was similar to the range found in AHSs extracted from deciduous leaf litter, twigs, and grass leachates.

  3. Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity

    USGS Publications Warehouse

    Chin, Y.-P.; Aiken, G.R.; Danielsen, K.M.

    1997-01-01

    The binding of pyrene to a number of humic substances isolated from various aquatic sources and a commercial humic acid was measured using the solubility enhancement method. The humic materials used in this study were characterized by various spectroscopic and liquid chromatography methods. A strong correlation was observed between the pyrene binding coefficient, K(doc), and the molecular weights, molar absorptivities at 280 nm, and aromaticity of the aquatic humic substances. Binding of pyrene to the commercial humic acid, however, was significantly stronger and did not obey the relationships observed between K(doc) and the chemical properties of the aquatic humic substrates. These results suggest that the molecular weight and the aromatic content of the humic substrates exert influences on the binding of nonpolar and planar aromatic molecules and that the physicochemical properties of both humic materials and organic solutes are important in controlling the speciation of nonpolar organic contaminants in natural waters.

  4. Order of functionality loss during photodegradation of aquatic humic substances.

    PubMed

    Thorn, Kevin A; Younger, Steven J; Cox, Larry G

    2010-01-01

    The time course photodegradation of the Nordic aquatic fulvic and humic acids and Suwannee River XAD-4 acids subjected to UV irradiation with an unfiltered medium pressure mercury lamp was studied by liquid-state 13C nuclear magnetic resonance. Photodecarboxylation was a significant pathway in all cases. Decreases in ketone, aromatic, and O-alkyl carbons were observed throughout the course of the irradiations, whereas C-alkyl carbons resisted photodegradation. Peaks attributable to the low-molecular-weight photodegradation products bicarbonate, formate, acetate, and succinate grew in intensity with irradiation time. The final products of the irradiations were decarboxylated, hydrophobic, predominantly C-alkyl and O-alkyl materials that were resistant to further photodegradation. The total amount of carbon susceptible to loss appeared to be related mainly to the total concentration of carbonyl and aromatic carbons and partly to the concentration of O-alkyl carbons in the fulvic, humic, and XAD-4 acids. The carbon losses for Nordic fulvic, Nordic Humic, Suwannee fulvic, and Suwannee XAD-4 acids were estimated to be 75, 63, 56, and 17%, respectively. More detailed analyses of the effects of irradiation on the carbonyl functionality in Nordic humic acid and Laurentian soil fulvic acid through reaction with hydroxylamine in conjunction with 15N nuclear magnetic resonance analysis confirmed preferential photodegradation of the quinone/hydroquinone functionality over ketone groups and the loss of ester groups in Laurentian fulvic acid.

  5. Order of functionality loss during photodegradation of aquatic humic substances

    USGS Publications Warehouse

    Thorn, Kevin A.; Younger, Steven J.; Cox, Larry G.

    2009-01-01

    The time course photodegradation of the Nordic aquatic fulvic and humic acids and Suwannee River XAD-4 acids subjected to UV irradiation with an unfiltered medium pressure mercury lamp was studied by liquid-state 13C nuclear magnetic resonance. Photodecarboxylation was a significant pathway in all cases. Decreases in ketone, aromatic, and O-alkyl carbons were observed throughout the course of the irradiations, whereas C-alkyl carbons resisted photodegradation. Peaks attributable to the low-molecular-weight photodegradation products bicarbonate, formate, acetate, and succinate grew in intensity with irradiation time. The final products of the irradiations were decarboxylated, hydrophobic, predominantly C-alkyl and O-alkyl materials that were resistant to further photodegradation. The total amount of carbon susceptible to loss appeared to be related mainly to the total concentration of carbonyl and aromatic carbons and partly to the concentration of O-alkyl carbons in the fulvic, humic, and XAD-4 acids. The carbon losses for Nordic fulvic, Nordic Humic, Suwannee fulvic, and Suwannee XAD-4 acids were estimated to be 75, 63, 56, and 17%, respectively. More detailed analyses of the effects of irradiation on the carbonyl functionality in Nordic humic acid and Laurentian soil fulvic acid through reaction with hydroxylamine in conjunction with 15N nuclear magnetic resonance analysis confirmed preferential photodegradation of the quinone/hydroquinone functionality over ketone groups and the loss of ester groups in Laurentian fulvic acid.

  6. Reconnaissance samplings and characterization of aquatic humic substances at the Yuma Desalting Test Facility, Arizona

    USGS Publications Warehouse

    Malcolm, R.L.; Wershaw, R. L.; Thurman, E.M.; Aiken, G.R.; Pinckney, D.J.; Kaakinen, J.

    1981-01-01

    Smectite clay minerals were found to be the principal compound on the surface of the cellulose-acetate, reverse-osmosis membranes at the Yuma Desalting Test Facility. These clay minerals were not present in the pumped ground water, but were blown into the conveyance canal from adjacent soils. Humic substances from the water and suspended sediments were associated with the clay films on the membrane, but no definitive results concerning their role in fouling were achieved. Microbial fouling is believed to be only a minor aspect of membrane fouling. Chemical and physical changes in humic substances were extensively studied at four points in the water-treatment process. Humic substances accounted for the largest component (over 25 percent) of organic constituents. Humic substances in the canal source water were similar to other aquatic humic substances present in natural waters. During the treatment process, these substances are brominated and decolorized. The effect of these halogenated humic substances on membrane fouling is unclear, but their presence in the reverse-osmosis product water and reverse-osmosis reject brine, along with volatile trihalomethanes, has led to environmental concerns. (USGS)

  7. Presence and potential significance of aromatic-ketone groups in aquatic humic substances

    USGS Publications Warehouse

    Leenheer, J.A.; Wilson, M.A.; Malcolm, R.L.

    1987-01-01

    Aquatic humic- and fulvic-acid standards of the International Humic Substances Society were characterized, with emphasis on carbonyl-group nature and content, by carbon-13 nuclear-magnetic-resonance spectroscopy, proton nuclear-magnetic-resonance spectroscopy, and infrared spectroscopy. After comparing spectral results of underivatized humic and fulvic acids with spectral results of chemically modified derivatives, that allow improved observation of the carbonyl group, the data clearly indicated that aromatic ketone groups comprised the majority of the carbonyl-group content. About one ketone group per monocyclic aromatic ring was determined for both humic and fulvic acids. Aromatic-ketone groups were hypothesized to form by photolytic rearrangements and oxidation of phenolic ester and hydrocarbon precursors; these groups have potential significance regarding haloform formation in water, reactivity resulting from active hydrogen of the methyl and methylene adjacent to the ketone groups, and formation of hemiketal and lactol structures. Aromatic-ketone groups also may be the point of attachment between aliphatic and aromatic moieties of aquatic humic-substance structure. ?? 1987.

  8. Effects of molecular weight on the diffusion coefficient of aquatic dissolved organic matter and humic substances.

    PubMed

    Balch, J; Guéguen, C

    2015-01-01

    In situ measurements of labile metal species using diffusive gradients in thin films (DGT) passive samplers are based on the diffusion rates of individual species. Although most studies have dealt with chemically isolated humic substances, the diffusion of dissolved organic matter (DOM) across the hydrogel is not well understood. In this study, the diffusion coefficient (D) and molecular weight (MW) of 11 aquatic DOM and 4 humic substances (HS) were determined. Natural, unaltered aquatic DOM was capable of diffusing across the diffusive gel membrane with D values ranging from 2.48×10(-6) to 5.31×10(-6) cm(2) s(-1). Humic substances had diffusion coefficient values ranging from 3.48×10(-6) to 6.05×10(-6) cm(2) s(-1), congruent with previous studies. Molecular weight of aquatic DOM and HS samples (∼500-1750 Da) measured using asymmetrical flow field-flow fractionation (AF4) strongly influenced D, with larger molecular weight DOM having lower D values. No noticeable changes in DOM size properties were observed during the diffusion process, suggesting that DOM remains intact following diffusion across the diffusive gel. The influence of molecular weight on DOM mobility will assist in further understanding and development of the DGT technique and the uptake and mobility of contaminants associated with DOM in aquatic environments.

  9. Hydrophilic interaction liquid chromatography method for measuring the composition of aquatic humic substances.

    PubMed

    Wang, Ren-Qi; Gutierrez, Leonardo; Choon, Ng Siu; Croué, Jean-Philippe

    2015-01-01

    A hydrophilic interaction liquid chromatography (HILIC) method was developed to measure the composition of humic substances from river, reservoir, and treated wastewater based on their physicochemical properties. The current method fractionates the humic substances into four well-defined groups based on parallel analyses with a neutral and a cationic HILIC column, using mobile phases of varied compositions and pH. The results indicate that: (i) the proportion of carboxylic acids in the humic substances from terrestrial origins is less than half of that from treated wastewater (Jeddah, KSA), (ii) a higher content of basic compounds was observed in the humic substances from treated wastewater and Ribou Reservoir (Cholet, France) than in the sample from Loire River (France), (iii) a higher percentage of hydrophobic macromolecules were found in the humic substances from Loire River than in the other samples, and (iv) humic substances of treated wastewater contained less ionic neutral compounds (i.e., pKa 5-9) than the waters from terrestrial origins. The physicochemical property disparity amongst the compounds in each humic substances sample was also evaluated. The humic substances from the lightly humic Loire river displayed the highest disparity, whereas the highly humic Suwannee river (Georgia, USA) showed the most homogeneous humic substances.

  10. Factors to be considered in the isolation and characterization of aquatic humic substances

    NASA Astrophysics Data System (ADS)

    Malcolm, Ronald L.

    A detailed procedure using XAD-8 resin is presented for the isolation of dissolved fulvic acids and humic acids from water. The procedure entails pressure filtration to remove suspended sediment, sorption of humic substances onto XAD-8 resin at pH 2, desorption of humic substances in base, fulvic/humic separation at pH 1, desalting on XAD-8 resin, hydrogen saturation on cation exchange resin, and freeze-drying. Careful attention must be given to thorough resin cleaning and many procedural details in order to obtain relatively ash-free humic isolates. The equipment required for the procedure is expensive and the method is time consuming, but no other isolation method is known to produce quantitative and unaltered humic isolates from water. The procedure can be used to isolate small quantities (less than 100 mg) of humic substances from water, or it can be scaled to produce large quantities (100 g or more) of humic substances from water. Humic substances may be characterized by several methods. The more useful traditional characterization methods include elemental analysis, ash content, functional group analysis by titration and infrared spectroscopy, and molecular weight analysis. The new characterization methods of 1H-NMR, 13C-NMR, pyrolysis/mass spectroscopy, amino acid analysis, saccharide analysis, and carbon isotopic analysis (14C and 13C content) are usually more definitive than traditional characterizations.

  11. Comparison of structural features of dissolved organic matter isolated from rainwater with those of aquatic humic substances

    NASA Astrophysics Data System (ADS)

    Santos, P.; Santos, E.; Duarte, A.

    2012-04-01

    The complexity of rainwater dissolved organic matter (DOM), a large percentage of which remains uncharacterized, has made difficult to determine the role of rainwater DOM in regional and global carbon budgets. Recent studies have focused on determining the structural characteristics of the bulk DOM in rainwater, reporting the prevalence of DOM with characteristics resembling those of natural humic substances due to its polyacidic nature. However, it is important to investigate the structural features of humic-like DOM isolated from rainwater and to evaluate whether such features differ from those found in aquatic humic substances, namely in what concerns the relative content of aliphacity and aromaticity. In this work, rainwater samples were collected for about one year, in Aveiro (Portugal). Humic-like DOM was extracted from rainwater by a procedure based on adsorption onto DAX-8 resin. The International Humic Substance Society (IHSS) (http://www.ihss.gatech.edu) operationally defined dissolved humic substances (HSs) on the base of adsorption onto a XAD-8 like resin. The isolation and extraction procedure adopted in the present work for the extraction of DOM from rainwater was slightly modified from the procedure recommended by the IHSS as suggested by Santos et al. (2009). Then, humic-like DOM isolated from rainwater was analysed by 1H NMR spectroscopy. Due to the small amounts of DOM extracted from rainwater, the DOM fractions extracted from rainwater samples were combined for each sampling season, and the 1H NMR results were compared between seasons and also with spectra of aquatic humic substances from available literature. Similar structural characteristics were observed for extracted DOM from the different seasons: high content of aliphatic structures, of hydroxy and alkoxy groups, of carbonyl groups and unsaturated carbon atoms, and low content in aromatic structures when compared with aliphatic structures. Moreover, results suggest that the DOM extracted

  12. Binding of mercury(II) to aquatic humic substances: Influence of pH and source of humic substances

    USGS Publications Warehouse

    Haitzer, M.; Aiken, G.R.; Ryan, J.N.

    2003-01-01

    Conditional distribution coefficients (KDOM???) for Hg(II) binding to seven dissolved organic matter (DOM) isolates were measured at environmentally relevant ratios of Hg(II) to DOM. The results show that KDOM??? values for different types of samples (humic acids, fulvic acids, hydrophobic acids) isolated from diverse aquatic environments were all within 1 order of magnitude (1022.5??1.0-1023.5??1.0 L kg-1), suggesting similar Hg(II) binding environments, presumably involving thiol groups, for the different isolates. KDOM??? values decreased at low pHs (4) compared to values at pH 7, indicating proton competition for the strong Hg(II) binding sites. Chemical modeling of Hg(II)-DOM binding at different pH values was consistent with bidentate binding of Hg(II) by one thiol group (pKa = 10.3) and one other group (pKa = 6.3) in the DOM, which is in agreement with recent results on the structure of Hg(II)-DOM bonds obtained by extended X-ray absorption fine structure spectroscopy (EXAFS).

  13. Evaluation of salinity effect on quantitative analysis of aquatic humic substances using nonionic DAX-8 resin.

    PubMed

    Kida, Morimaru; Ohtsuka, Toshiyuki; Kato, Taku; Suzuki, Takeshi; Fujitake, Nobuhide

    2016-03-01

    A nonionic macroporous resin, Amberlite(®) XAD-8, or its substitute, Supelite™ DAX-8, is used when isolating or quantifying aquatic humic substances (AHS). However, the effect of salinity on the adsorption behavior of AHS onto the resin is yet to be confirmed, rendering the possibility of salinity-induced changes in the values of quantified amounts or characteristics of AHS obtained from a salty system. To verify the results of quantification and isolation of AHS using the resin in different salinity systems, the effect of salinity on such quantitative analyses of AHS has been examined. It has been concluded that the salinity effect is in general trivial and will not hinder comparison of results regardless of sample solution salinity.

  14. Evaluation of salinity effect on quantitative analysis of aquatic humic substances using nonionic DAX-8 resin.

    PubMed

    Kida, Morimaru; Ohtsuka, Toshiyuki; Kato, Taku; Suzuki, Takeshi; Fujitake, Nobuhide

    2016-03-01

    A nonionic macroporous resin, Amberlite(®) XAD-8, or its substitute, Supelite™ DAX-8, is used when isolating or quantifying aquatic humic substances (AHS). However, the effect of salinity on the adsorption behavior of AHS onto the resin is yet to be confirmed, rendering the possibility of salinity-induced changes in the values of quantified amounts or characteristics of AHS obtained from a salty system. To verify the results of quantification and isolation of AHS using the resin in different salinity systems, the effect of salinity on such quantitative analyses of AHS has been examined. It has been concluded that the salinity effect is in general trivial and will not hinder comparison of results regardless of sample solution salinity. PMID:26714295

  15. Chitosan nanoparticles loaded the herbicide paraquat: the influence of the aquatic humic substances on the colloidal stability and toxicity.

    PubMed

    Grillo, Renato; Clemente, Zaira; de Oliveira, Jhones Luis; Campos, Estefânia Vangelie Ramos; Chalupe, Victor C; Jonsson, Claudio M; de Lima, Renata; Sanches, Gabriela; Nishisaka, Caroline S; Rosa, André H; Oehlke, Kathleen; Greiner, Ralf; Fraceto, Leonardo F

    2015-04-01

    Polymeric nanoparticles have been developed for several applications, among them as carrier system of pesticides. However, few studies have investigated the fate of these materials in the environment in relation to colloidal stability and toxicity. In nature, humic substances are the main agents responsible for complexation with metals and organic compounds, as well as responsible for the dynamics of these nanoparticles in aquatic and terrestrial environments. In this context, the evaluation of the influence of aquatic humic substances (AHS) on the colloidal stability and toxicity of polymeric nanoparticles of chitosan/tripolyphosphate with or without paraquat was performed. In this study, the nanoparticles were prepared by the ionic gelation method and characterized by size distribution measurements (DLS and NTA), zeta potential, infrared and fluorescence spectroscopy. Allium cepa genotoxicity studies and ecotoxicity assays with the alga Pseudokirchneriella subcapitata were used to investigate the effect of aquatic humic substances (AHS) on the toxicity of this delivery system. No changes were observed in the physical-chemical stability of the nanoparticles due to the presence of AHS using DLS and NTA techniques. However some evidence of interaction between the nanoparticles and AHS was observed by infrared and fluorescence spectroscopies. The ecotoxicity and genotoxicity assays showed that humic substances can decrease the toxic effects of nanoparticles containing paraquat. These results are interesting because they are important for understanding the interaction of these nanostructured carrier systems with species present in aquatic ecosystems such as humic substances, and in this way, opening new perspectives for studies on the dynamics of these carrier systems in the ecosystem. PMID:25636059

  16. Complexes of the antimicrobial ciprofloxacin with soil, peat, and aquatic humic substances.

    PubMed

    Aristilde, Ludmilla; Sposito, Garrison

    2013-07-01

    Natural organic matter (NOM) is implicated in the binding of antibiotics by particles in soils and waters. The authors' previous computational study revealed structural rearrangement of both hydrophilic and hydrophobic moieties of NOM to favor H-bonding and other intermolecular interactions, as well as both competition with ion-exchange reactions and bridging interactions by NOM-bound divalent cations. The importance of these interactions was investigated using fluorescence-quenching spectroscopy to study the adsorption of ciprofloxacin (Cipro), a fluoroquinolone antibiotic, on 4 reference humic substances (HSs): Elliott soil humic acid (HA), Pahokee peat HA, and Suwannee river HA and fulvic acid. A simple affinity spectrum HS model was developed to characterize the cation-exchange capacity and the amount of H-bond donor moieties as a function of pH. The adsorption results stress the influence of both pH conditions and the type of HS: both soil HA and peat HA exhibited up to 3 times higher sorption capacity than the aquatic HS at pH ≥ 6, normalizing to the aromatic C content accounted for the differences among the terrestrial HS, and increasing the concentration of divalent cations led to a decrease in adsorption on aquatic HA but not on soil HA. In addition, the pH-dependent speciation models of the Cipro-HS complexes illustrate an increase in complexation due to an increase in deprotonation of HS ligands with increasing pH and, at circumneutral and alkaline pH, enhanced complexation of zwitterionic Cipro only in the presence of soil HA and peat HA. The findings of the present study imply that, in addition to electrostatic interactions, van der Waals interactions as facilitated by aromatic structures and H-bond donating moieties in terrestrial HS may facilitate a favorable binding environment. Environ Toxicol Chem 2013;32:1467-1478. © 2013 SETAC.

  17. Characterization of high molecular weight disinfection byproducts resulting from chlorination of aquatic humic substances.

    PubMed

    Zhang, Xiangru; Minear, Roger A

    2002-10-01

    Aquatic humic substances react with chlorine to produce numerous disinfection byproducts (DBPs) during chlorination of drinking water. Although low molecular weight (MW) chlorinated DBPs have been intensively studied over the past several decades, relatively little is known about high MW chlorinated DBPs (above 500 Da) that may be associated with adverse health implications. In this work, carrier-free radioactive 36Cl was introduced into a Suwannee River fulvic acid sample to label the chlorine-containing DBPs. By combining the fractionation techniques of ultrafiltration (UF) and size exclusion chromatography (SEC) with the detection of 36Cl, UV, and dissolved organic carbon (DOC), the high MW region in the SEC-36Cl profiles of the chlorinated sample with and without UF was defined. SEC-UV and SEC-DOC profiles were found to be approximately indicative of SEC-36Cl profiles for the high MW region. The MW distribution shows that the high MW chlorinated DBPs were highly dispersed with an average MW around 2000 Da based on calibration with polystyrene sulfonate standards. The Cl/C atomic ratios of the high MW DBPs were roughly constant (0.025), which is much lower than those of the common known chlorinated DBPs.

  18. Interaction of arsenic species with tropical river aquatic humic substances enriched with aluminum and iron.

    PubMed

    de Oliveira, Lilian Karla; Melo, Camila de Almeida; Fraceto, Leonardo Fernandes; Friese, Kurt; Rosa, André Henrique

    2016-04-01

    The mobility and bioavailability of arsenic (As) are strongly controlled by adsorption/precipitation processes involving metal oxides. However, the organic matter present in the environment, in combination with these oxides, can also play an important role in the cycle of arsenic. This work concerns the interaction between As and two samples of aquatic humic substances (AHS) from tropical rivers. The AHS were extracted as proposed by IHSS, and were characterized by (13)C NMR. The experiments were conducted with the AHS in natura and enriched with metal cations, with different concentrations of As, and complexation capacity was evaluated at three different pH levels (5.0, 7.0, and 9.0). The AHS samples showed similar chemical compositions. The results suggested that there was no interaction between As(III) and AHS in natura or enriched with Al. Low concentrations of As(V) were bound to AHS in natura. For As(III), the complexation capacity of the AHS enriched with Fe was approximately 48 μmol per g of C, while the values for As(V) were in the range 69-80 μmol per grams of C. Fluorescence spectra showed that changes in Eh affected the complexation reactions of As(V) species with AHS. PMID:26606934

  19. Interaction of arsenic species with tropical river aquatic humic substances enriched with aluminum and iron.

    PubMed

    de Oliveira, Lilian Karla; Melo, Camila de Almeida; Fraceto, Leonardo Fernandes; Friese, Kurt; Rosa, André Henrique

    2016-04-01

    The mobility and bioavailability of arsenic (As) are strongly controlled by adsorption/precipitation processes involving metal oxides. However, the organic matter present in the environment, in combination with these oxides, can also play an important role in the cycle of arsenic. This work concerns the interaction between As and two samples of aquatic humic substances (AHS) from tropical rivers. The AHS were extracted as proposed by IHSS, and were characterized by (13)C NMR. The experiments were conducted with the AHS in natura and enriched with metal cations, with different concentrations of As, and complexation capacity was evaluated at three different pH levels (5.0, 7.0, and 9.0). The AHS samples showed similar chemical compositions. The results suggested that there was no interaction between As(III) and AHS in natura or enriched with Al. Low concentrations of As(V) were bound to AHS in natura. For As(III), the complexation capacity of the AHS enriched with Fe was approximately 48 μmol per g of C, while the values for As(V) were in the range 69-80 μmol per grams of C. Fluorescence spectra showed that changes in Eh affected the complexation reactions of As(V) species with AHS.

  20. Analytical fractionation of aquatic humic substances and their metal species by means of multistage ultrafiltration.

    PubMed

    Aster, B; Burba, P; Broekaert, J A

    1996-03-01

    The molecular-size fractionation of aquatic humic substances (HS) and their metal species by means of a novel sequential-stage ultrafiltration (UF) device equipped with five appropriate ultramembranes (1, 5, 10, 50 and 100 kD) is described. First of all, the concentration dynamics of macromolecules, particulary HS, during five-stage UF and its subsequent washing step has been modelled. Based on these results, the fractionation of aquatic HS (from ground and bog water) by means of multistage UF has been optimized for an analytical scale (10 ml sample, 1 mg/ml HS, 10 ml washing solution, pH 6.0). The molecular size-distribution of selected aquatic HS (BOC 1/2 from the "DFG-Versuchsfeld Bocholt", VM 5 from "Venner Moor", Germany) studied by five-stage UF exhibited strong systematic influences of the procedure used for their isolation. The molecular-size distribution of HS obtained by on-line UF and gel permeation chromatography (GPC) showed a satisfactory agreement in the range 1-50 kD. Moreover, when interrupting multistage UF for > 48 h a slow transformation in the HS samples has been found as gradually additional HS fractions of < 1 kD have been formed. Besides unloaded HS molecules, the molecular-size distribution of freshly formed metal species of HS (1.0 mg metal/g HS of Al(III), Cd(II), Cu(II), Fe(III), Mn(II), Ni(II), Pb(II), Zn(II), each) has been characterized by multistage UF as a function of pH-value, degree of loading and complexation time. Metal determinations as carried out by flame AAS, showed that considerable metal fractions in HS especially are present in molecules > 50 kD, which seemed to be rather acid-inert. With complexation times of < 2 days a transient shift of the molecular size distribution of both HS and their metal species (e.g., Al(III), Fe(III) to higher values (> 10 kD) has been found.

  1. Characterization of aquatic humic substances to DBPs formation in advanced treatment processes for conventionally treated water.

    PubMed

    Kim, Hyun-Chul; Yu, Myong-Jin

    2007-05-01

    An advanced water treatment demonstration plant consisted of ozone/granular activated carbon processes was operated to study feasibility of the processes. Natural organic matter (NOM) from raw and process waters at the demonstration plant was isolated into humic and non-humic fractions by physicochemical fractionation method to investigate characteristics of humic fraction (i.e., humic substances, HS) as a predominant haloform reactant. Ozone did not significantly oxidize the carboxylic fraction (from 39.1 to 35.9%), while GAC removed some of the carboxylic fraction (from 35.9 to 29.1%). Formation potential of trihalomethanes (THMs) as compared to haloacetic acids formation potential (HAAFP) was highly influenced by HS. Higher yields of THMs resulted from chlorination of HS with a higher phenolic content and phenolic fraction in the HS gradually decreased from 60.5% to 15.8% through the water treatment. The structural and functional changes of HS were identified by elemental, Fourier-transform infrared (FT-IR) and proton nuclear magnetic resonance ((1)H NMR) analyses, and these results were mutually consistent. The functional distribution data obtained by using A-21 resin could be used to support the interpretation of data obtained from the spectroscopic analyses. Decreases in ratio of UV absorbance at 253 nm and 203 nm (A(253)/A(203)) and DBPFPs/DOC showed consistent trends, therefore, A(253)/A(203) ratio may be a good indicator for the disinfection by-product formation potentials (DBPFPs).

  2. Methylation patterns of aquatic humic substances determined by 13C NMR spectroscopy

    USGS Publications Warehouse

    Thorn, K.A.; Steelink, C.; Wershaw, R. L.

    1987-01-01

    13C NMR spectroscopy is used to examine the hydroxyl group functionality of a series of humic and fulvic acids from different aquatic environments. Samples first are methylated with 13C-labeled diazomethane. The NMR spectra of the diazomethylated samples allow one to distinguish between methyl esters of carboxylic acids, methyl ethers of phenolic hydroxyls, and methyl ethers of phenolic hydroxyls adjacent to two substituents. Samples are then permethylated with 13C-labeled methyl iodide/NaH. 13C NMR spectra of permethylated samples show that a significant fraction of the hydroxyl groups is not methylated with diazomethane alone. In these spectra methyl ethers of carbohydrate and aliphatic hydroxyls overlap with methyl ethers of phenolic hydroxyls. Side reactions of the methyltion procedure including carbon methylation in the CH3I/NaH procedure, are also examined. Humic and fulvic acids from bog, swamp, groundwater, and lake waters showssome differences in their distribution of hydroxyl groups, mainly in the concentrations of phenolic hydroxyls, which may be attributed to their different biogeochemical origins. ?? 1987.

  3. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    USGS Publications Warehouse

    Thorn, K.A.; Cox, L.G.

    2009-01-01

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS 15N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by 15N NMR. Liquid state 15N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (1H-15N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  4. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    SciTech Connect

    Thorn, Kevin A.; Cox, Larry G.

    2009-02-28

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS ¹⁵N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by ¹⁵N NMR. Liquid state ¹⁵N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (¹H–¹⁵N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  5. Characterization of typical aquatic humic substances in areas of sugarcane cultivation in Brazil using tetramethylammonium hydroxide thermochemolysis.

    PubMed

    Tadini, A M; Constantino, I C; Nuzzo, A; Spaccini, R; Piccolo, A; Moreira, A B; Bisinoti, M C

    2015-06-15

    Aquatic humic substances (AHSs) differ from one environment to another depending on land use and occupation. In addition, the effects of planting sugarcane on AHSs are not well known. Thus, the aim of this study was to characterize AHSs extracted from a river in a typical region of sugarcane cultivation during dry and rainy seasons. The main characteristics of the AHSs were obtained using Fourier transformation infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and off-line pyrolysis coupled with gas chromatography and mass spectrometry (off-line tetramethylammonium hydroxide (TMAH)-GC-MS-thermochemolysis). The FTIR and NMR results were used to infer that no distinctions occurred between the sampling periods. The samples were composed of aromatic groups that were potentially associated with the presence of residual vegetable materials (lignin). The results of the off-line TMAH-GC-MS-thermochemolysis indicated that the structures of the AHSs had uniform compositions that were rich in fatty acid methyl esters (FAMEs), polysaccharide derivatives, aliphatic biopolymers derived from plants, long hydrocarbon chains, branched alkyl groups and methylene carbons. Thus, the results showed that the AHSs obtained from the sugarcane cultivation area during the crop period mainly consisted of resistant aliphatic hydrocarbons, which are derivatives of lignin and FAMEs in compounds rich in humic acid. Therefore, we concluded that sugarcane cultivation produces changes in AHSs because greater amounts of lignin derivatives were observed during the dry season, corresponding to sugarcane cultivation.

  6. Sources and haloacetic acid/trihalomethane formation potentials of aquatic humic substances in the Wakarusa River and Clinton Lake near Lawrence, Kansas

    USGS Publications Warehouse

    Pomes, M.L.; Larive, C.K.; Thurman, E.M.; Green, W.R.; Orem, W.H.; Rostad, C.E.; Coplen, T.B.; Cutak, B.J.; Dixon, A.M.

    2000-01-01

    Gram quantities of aquatic humic substances (AHS) were extracted from the Wakarusa River-Clinton Lake Reservoir system, near Lawrence, KS, to support nuclear magnetic resonance (NMR) experimental studies, report concentrations of dissolved organic carbon (DOC) and AHS, define sources of the AHS, and determine if the AHS yield sufficient quantities of haloacetic acids (HAA5) and trihalomethanes (THM4) that exceed U.S. Environmental Protection Agency (EPA) Maximum Contaminant Levels (MCL) in drinking water. AHS from the Wakarusa River and Clinton Lake originated from riparian forest vegetation, reflected respective effects of soil organic matter and aquatic algal/bacterial sources, and bore evidence of biological degradation and photodegradation. AHS from the Wakarusa River showed the effect of terrestrial sources, whereas Clinton Lake humicacid also reflected aquatic algal/bacterial sources. Greater amounts of carbon attributable to tannin-derived chemical structures may correspond with higher HAA5 and THM4 yields for Clinton Lake fulvic acid. Prior to appreciable leaf-fall from deciduous trees, the combined (humic and fulvic acid) THM4 formation potentials for the Wakarusa River approached the proposed EPA THM4 Stage I MCL of 80 ??g/L, and the combined THM4 formation potential for Clinton Lake slightly exceeded the proposed THM4 Stage II MCL of 40 ??g/L. Finally, AHS from Clinton Lake could account for most (>70%) of the THM4 concentrations in finished water from the Clinton Lake Water Treatment Plant based on September 23, 1996, THM4 results.Gram quantities of aquatic humic substances (AHS) were extracted from the Wakarusa River-Clinton Lake Reservoir system, near Lawrence, KS, to support nuclear magnetic resonance (NMR) experimental studies, report concentrations of dissolved organic carbon (DOC) and AHS, define sources of the AHS, and determine if the AHS yield sufficient quantities of haloacetic acids (HAA5) and trihalomethanes (THM4) that exceed U

  7. Humic substances alleviate the aquatic toxicity of polyvinylpyrrolidone-coated silver nanoparticles to organisms of different trophic levels.

    PubMed

    Wang, Zhuang; Quik, Joris T K; Song, Lan; Van Den Brandhof, Evert-Jan; Wouterse, Marja; Peijnenburg, Willie J G M

    2015-06-01

    The present study investigated how humic substances (HS) modify the aquatic toxicity of silver nanoparticles (AgNPs) as these particles agglomerate in water and interact with HS. An alga species (Raphidocelis subcapitata), a cladoceran species (Chydorus sphaericus), and a freshwater fish larva (Danio rerio), representing organisms of different trophic levels, were exposed to colloids of the polyvinylpyrrolidone-coated AgNPs in the presence and absence of HS. Results show that the presence of HS alleviated the aquatic toxicity of the AgNP colloids to all the organisms in a dose-dependent manner. The particle size distribution of the AgNPs' colloidal particles shifted to lower values due to the presence of HS, implying that the decrease in the toxicity of the AgNP colloids cannot be explained by the variation of agglomeration size. The surface charge of the AgNPs was found to be more negative in the presence of high concentrations of HS, suggesting an electrostatic barrier by which HS might limit interactions between particles and algae cells; indeed, this effect reduced the algae toxicity. Observations on silver ions (Ag(+)) release show that HS inhibit AgNP dissolution, depending on the concentrations of HS. When toxic effects were expressed as a function of each Ag-species, toxicity of the free Ag(+) was found to be much higher than that of the agglomerated particles.

  8. Humic substances alleviate the aquatic toxicity of polyvinylpyrrolidone-coated silver nanoparticles to organisms of different trophic levels.

    PubMed

    Wang, Zhuang; Quik, Joris T K; Song, Lan; Van Den Brandhof, Evert-Jan; Wouterse, Marja; Peijnenburg, Willie J G M

    2015-06-01

    The present study investigated how humic substances (HS) modify the aquatic toxicity of silver nanoparticles (AgNPs) as these particles agglomerate in water and interact with HS. An alga species (Raphidocelis subcapitata), a cladoceran species (Chydorus sphaericus), and a freshwater fish larva (Danio rerio), representing organisms of different trophic levels, were exposed to colloids of the polyvinylpyrrolidone-coated AgNPs in the presence and absence of HS. Results show that the presence of HS alleviated the aquatic toxicity of the AgNP colloids to all the organisms in a dose-dependent manner. The particle size distribution of the AgNPs' colloidal particles shifted to lower values due to the presence of HS, implying that the decrease in the toxicity of the AgNP colloids cannot be explained by the variation of agglomeration size. The surface charge of the AgNPs was found to be more negative in the presence of high concentrations of HS, suggesting an electrostatic barrier by which HS might limit interactions between particles and algae cells; indeed, this effect reduced the algae toxicity. Observations on silver ions (Ag(+)) release show that HS inhibit AgNP dissolution, depending on the concentrations of HS. When toxic effects were expressed as a function of each Ag-species, toxicity of the free Ag(+) was found to be much higher than that of the agglomerated particles. PMID:25683234

  9. Calculation of molecular weights of humic substances from colligative data: Application to aquatic humus and its molecular size fractions

    NASA Astrophysics Data System (ADS)

    Reuter, J. H.; Perdue, E. M.

    1981-11-01

    A rigorous mathematical expression for the dependence of colligative properties on acid dissociation of water soluble humic substances is presented. New data for number average molecular weights of a river derived humic material and its gel permeation Chromatographic fractions are compared with M¯n values obtained by a reevaluation of previously published experimental observations on soil and water fulvic acids. The results reveal a remarkable similarity of fulvic acids from widely different sources with respect to number-average molecular weight.

  10. Application of a membrane model to the sorptive interactions of humic substances.

    PubMed Central

    Wershaw, R L

    1989-01-01

    Humic substances, the dark-colored, natural organic polyelectrolytes that are found in practically all soils, sediments, and natural water, strongly interact with both inorganic and organic pollutants. Inorganic cationic species generally undergo complexation reactions with humic substances. The binding of cations, such as cupric ions, by humic substances often markedly reduces their toxicity to aquatic organisms. Some inorganic anionic species, in the presence of metal ions, are sorbed by humic substances. In these instances the metal ions appear to form bridges between the humic substances and the anions. Several different types of interactions take place between organic compounds and humic materials. Hydrophobic organic species partition into either insoluble or soluble humic substances. The insoluble humic substances will remove hydrophobic organic compounds from the aqueous phase, thereby rendering them less mobile. However, soluble humic substances will solubilize hydrophobic organics, increasing their mobility. Other types of interactions between humic substances and organic compounds, such as adsorption and ion exchange, also have been observed. These various interactions between humic substances and pollutants are important in governing their fate and movement in natural water systems, and, for this reason, a detailed understanding of the mechanisms of the interaction is important. A recently developed membrane model of the structure of humic substances is described; this model enables one to better understand the physical-chemical properties of these materials. Images FIGURE 2. FIGURE 3. PMID:2533555

  11. **1**5N-NMR INVESTIGATION OF HYDROXYLAMINE DERIVATIZED HUMIC SUBSTANCES.

    USGS Publications Warehouse

    Thorn, Kevin A.; Arterburn, Jeffrey B.; Mikita, Michael A.

    1986-01-01

    Humic substances are the most abundant naturally occurring refactory organic compounds in soils and water. They have a broad range of physical, chemical and physiological properties. In soils, humic substances contribute to the cation exchange capacity, help maintain the physical structure, and play a role in plant growth and nutrition. In aquatic systems, humic substances serve to regulate the levels of inorganic constituents, yield trihalomethanes upon chlorination, and transport or concentrate organic and inorganic pollutants. The oxygen containing functional groups of humic and fulvic acids are believed to play a key role in the chemical properties of humic substances. This study was undertaken to gain additional information on the specific types of oxygen functionalities in humic substances. Since the analysis of hydroxyl moieties had been earlier established, we focused our attention on the analysis of ketone and aldehyde functional groups in humic substances.

  12. Molecular aggregation of humic substances

    USGS Publications Warehouse

    Wershaw, R. L.

    1999-01-01

    Humic substances (HS) form molecular aggregates in solution and on mineral surfaces. Elucidation of the mechanism of formation of these aggregates is important for an understanding of the interactions of HS in soils arid natural waters. The HS are formed mainly by enzymatic depolymerization and oxidation of plant biopolymers. These reactions transform the aromatic and lipid plant components into amphiphilic molecules, that is, molecules that consist of separate hydrophobic (nonpolar) and hydrophilic (polar) parts. The nonpolar parts of the molecules are composed of relatively unaltered segments of plant polymers and the polar parts of carboxylic acid groups. These amphiphiles form membrane-like aggregates on mineral surfaces and micelle-like aggregates in solution. The exterior surfaces of these aggregates are hydrophilic, and the interiors constitute separate hydrophobic liquid-like phases.

  13. Photochemical aspects related to humic substances

    SciTech Connect

    Frimmel, F.H. )

    1994-01-01

    Dissolved humic substances (HS) show yellow color and relatively strong absorption in the UV range [a(254 nm) ca. 0.04 cm[sup [minus]1] for c(DOC) = 1 mg/L]. This is the basis for photochemical reactions in the photic zone of aquatic systems and in water treatment using IV sources. Even though understanding the mechanisms involved in the energy transfer and the resulting reactions is hampered by the poorly defined structure of HS, reliable information has been gathered on some typical aspects of their photochemistry. The luminescence of HS can be influenced and partly quenched by molecular interactions with other water constituents (e.g., heavy metals and organic micropollutants). The presence of oxygen may lead to the sensitized production of singlet oxygen (O[sub 2]), that can react specifically with substances containing diene structures or low valent sulfur. Because of the presence of these structures in HS, humic molecules will also react with the sensitized products. As a consequence, their biological, chemical, and physical properties are influenced. In addition, HS have a significant impact on the photochemical treatment of organic micropollutants in water. This has to be kept in mind when using photochemical steps for water treatment. The results from model experiments reflecting the conditions in surface water and in water treatment are given and discussed. In the presence of H[sub 2]O[sub 2], irradiation led to a transformation and partial degradation of HS. The rate of photochemical degradation of pesticides (e.g., atrazine) was decreased in the presence of HS. Fe and Mn quenched the luminescence. From this, a decrease of excited states of HS for sensitizing reactions can be deduced. The results suggest the manyfold and significant influences of HS on the photochemistry of aquatic systems. 66 refs., 9 figs., 7 tabs.

  14. Humic substance formation during wastewater infiltration

    SciTech Connect

    Siegrist, R.L. ); Hildmann-Smed, R.; Filip, Z.K. , Langen . Inst. fuer Wasser-, Boden- und Lufthygiene); Jenssen, P.D. . Centre for Soil and Environmental Research)

    1991-01-01

    Soil infiltration of wastewater effluents is a widely practiced method of treatment and disposal/reuse throughout the world. Renovation of the wastewater results from a wide variety of complex physicochemical and biological processes. One set of processes is speculated to involve the accumulation of organic matter by filtration and sorption followed by formation of humic substances. This humic substance formation can effect the performance of soil treatment systems by contributing to soil pore clogging and reduction in hydraulic capacity, and by yielding reactive substances and an enhancement of purification processes. While there has been a wealth of research into the nature and genesis of humic substances in terrestrial environments, there has been limited research of humic substance formation during soil infiltration of wastewater. The purpose of the research reported herein was to determine if humic substances can form under conditions typical of those present during wastewater infiltration into natural soil systems. This work was conducted during 1989 to 1990 as a collaborative effort between the Centre for Soil and Environmental Research, located in Aas, Norway and the Institute for Water, Soil and Air Hygiene located in Langen, West Germany. 11 refs., 3 figs., 6 tabs.

  15. Comparative study for separation of aquatic humic substances by capillary zone electrophoresis using uncoated, polymer coated and gel-filled capillaries.

    PubMed

    Peuravuori, Juhani; Lepane, Viia; Lehtonen, Tero; Pihlaja, Kalevi

    2004-01-01

    Several comparative capillary zone electrophoresis (CZE) experiments were carried out by means of uncoated, polyvinyl alcohol (PVA) and polyacrylamide (PAA) coated silica open tubular capillaries and gel-filled capillaries (linear non-cross-linked polyacrylamide, PAGE, by a pre-coated PAA capillary) using different kinds of background electrolytes (BGEs) and organic modifiers for characterization of aquatic dissolved humic matter (DHM). Organic compounds, such as acetic acid, acetate buffer, methanol, ethylene glycol, acetonitrile, dimethylsulphoxide, 5 M urea and sodium dodecyl sulphate (SDS) were tested as sample modifiers to improve the separative power. The fractionation mode by a PVA coated open tubular capillary using 40 mM phosphate buffer at pH 6.8 and 5 M urea-water as the sample modifier turned out to be fairly practical as well as its PAA homologue. Linear non-cross-linked PAGE with 10% gel concentration and 5 M urea-water as the sample modifier using 40 mM phosphate buffer at pH 6.8 produced the most reliable results as to the adaptation of physical gels, especially if the interactions of humic solutes with the gel matrix are not critical. The addition of SDS in the linear PAGE gel increased the interaction of humic solutes with the gel matrix but also improved the separative power and strengthened the chaotropic effect of the urea modifier.

  16. EFFECTS OF ALUMINUM-INDUCED AGGREGATION ON THE FLUORESCENCE OF HUMIC SUBSTANCES. (R822251)

    EPA Science Inventory

    Aluminum-induced aggregates of terrestrial and aquatic humic acid standards from the International Humic Substances Society are shown to be fluorescent by means of a multiwavelength fluorescence anisotropy experiment in which the data was treated with a model for nonspherical ...

  17. On the nature of humic substances

    NASA Astrophysics Data System (ADS)

    Fedotov, G. N.; Shoba, S. A.

    2015-12-01

    It is argued that the isolation of low-molecular-weight compounds from humic substances does not prove their supramolecular nature, because small molecules can be sorbed on macromolecules by interacting with them due to noncovalent bonds. The relative mobility of molecular segments in humic substances has been proposed to be used as a criterion for the discrimination between the humic substances of supraand macromolecular nature. The macromolecules are characterized by mobility of their segments, whereas supramolecular systems have stiff structure. This difference between macroand supramolecules results in different behaviors of the matrices (gels) formed from them in the processes of segregation. In the macromolecules, the formations of a new phase appearing at the segregation (microphase separation) are of nano size, at least in one dimension. They are incapable of moving within the matrix and form a well-known, limited set of systems. In the supramolecular matrices, the new-phase formations should have higher mobility and ability to move within the matrix with the formation of particles and zones of not only nano, but also micro sizes, as well as a significantly larger set of systems, including fractal configurations. The experimental electron microscopic study of the humic matrices of soil gels shows that the new-phase formations in the matrix of humic substances have not only nano, but also micro sizes and are capable of moving within the matrix, which confirms the supramolecular nature of humic substances. The proposed method has allowed generalizing the supraand macromolecular approaches, because macromolecules can enter into the composition of supramolecular systems. It is no less important that the behavior of HSs can be perceived as the behavior of stiff impenetrable particles that may compose the structures of different types and sizes.

  18. Effects of pollution on humic substances.

    PubMed

    Schnitzer, M; Kerndorff, H

    1980-01-01

    To assess effects of industrial and environmental pollution on analytical characteristics of humic substances, we isolated humic acids (HA's) and fulvic acids (FA's) from unpolluted and polluted soils and sediments. Following purification, the HA's and FA's were characterized by elemental (C, H, O, N, S) and functional group (CO2H, phenolic OH, total acidity) analyses, infrared (IR) spectrophotometry, differential thermal analysis (DTA) and by metal (Fe, Al, Cu, Mn, Pb, Ni, Co, Zn, Cr, Cd, Hg, Ca and Mg) analyses. Si was also determined in all samples. Polluted HA's and FA's contained more N and S but less O and were richer in all metals and Si than were unpolluted ones. IR spectra showed that polluted humic materials were enriched in COO- groups, secondary non-cyclic amides and possible also in SO3H groups. DTA curves indicated that polluted HA's and FA's were more thermostable than unpolluted HA's and FA's. Unusually high N, S, Cu, Cr, Zn and Hg contents of humic materials appear to be useful indicators of soil and sediment pollution.

  19. Effects of humic substances on the bioconcentration of polycyclic aromatic hydrocarbons: Correlations with spectroscopic and chemical properties of humic substances

    USGS Publications Warehouse

    Haitzer, M.; Abbt-Braun, G.; Traunspurger, W.; Steinberg, C.E.W.

    1999-01-01

    The presence of dissolved humic substances (HS, fulvic and humic acids) generally reduces the uptake of hydrophobic organic compounds into aquatic organisms. The extent of this effect depends both on the concentration and on the origin of the HS. The aim of this study was to investigate the role of qualitative differences between HS from different origins. The effects of seven different HS on the bioconcentration of pyrene and benzo[a]pyrene (BaP) in the nematode Caenorhabditis elegans were related to the spectroscopic and chemical properties of the HS. The effect of each humic material on the bioconcentration of pyrene or BaP was quantified as a 'biologically determined' partition coefficient K(DOC). We observed significant linear relationships between K(DOC) and the atomic H/C ratio, the specific absorptivity at 254 nm, the content of aromatic carbons (as determined by 13C nuclear magnetic resonance spectroscopy, the copper-complexing capacity, the content of phenolic OH groups, and the molecular weight of the HS. There was no discernible relationship of K(DOC) with the atomic (N + O)/C ratio, an indicator of the polarity of HS. Taken together, our results show that the variability in the effects of HS from different origins could be related to variations in bulk properties of the HS. Parameters describing the aromaticity of the humic materials seemed to be most useful for estimating effects of HS on the bioconcentration of pyrene and BaP.

  20. Effects of humic substances on the bioconcentration of polycyclic aromatic hydrocarbons: Correlations with spectroscopic and chemical properties of humic substances

    SciTech Connect

    Haitzer, M.; Abbt-Braun, G.; Traunspurger, W.; Steinberg, C.E.W.

    1999-12-01

    The presence of dissolved humic substances (HS, fulvic and humic acids) generally reduces the uptake of hydrophobic organic compounds into aquatic organisms. The extent of this effect depends both on the concentration and on the origin of the HS. The aim of this study was to investigate the role of qualitative differences between HS from different origins. The effects of seven different HS on the bioconcentration of pyrene and benzo[a]pyrene (BaP) in the nematode Caenorhabditis elegans were related to the spectroscopic and chemical properties of the HS. The effect of each humic material on the bioconcentration of pyrene or BaP was quantified as a biologically determined partition coefficient K{sub DOC}. The authors observed significant linear relationships between K{sub DOC} and the atomic H/C ratio, the specific absorptivity at 254 nm, the content of aromatic carbons as determined by {sup 13}C nuclear magnetic resonance spectroscopy, the copper-complexing capacity, the content of phenolic OH groups, and the molecular weight of the HS. There was no discernible relationship of K{sub DOC} with the atomic (N + O)/C ratio, an indicator of the polarity of HS. Taken together, their results show that the variability in the effects of HS from different origins could be related to variations in bulk properties of the HS. Parameters describing the aromaticity of the humic materials seemed to be most useful for estimating effects of HS on the bioconcentration of pyrene and BaP.

  1. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments

    NASA Astrophysics Data System (ADS)

    Klüpfel, Laura; Piepenbrock, Annette; Kappler, Andreas; Sander, Michael

    2014-03-01

    Humic substances form through the degradation of microbial and plant precursors, and make up a significant fraction of natural organic matter in terrestrial and aquatic environments. Humic substances are redox-active and can act as terminal electron acceptors in anaerobic microbial respiration. Reduced humic substances may become re-oxidized during aeration of temporarily anoxic systems, such as wetlands, sediments and many soils. If the transfer of electrons from anaerobic respiration through humic substances to oxygen is sustained over many redox cycles, it may competitively suppress electron transfer to carbon dioxide, and thereby lower the formation of methane in temporarily anoxic systems. Here, we monitor changes in the redox states of four chemically distinct dissolved humic substances over successive cycles of reduction by the bacterium Shewanella oneidensis MR-1 and oxidation by oxygen, in a series of laboratory experiments. We show that electron transfer to and from these substances is fully reversible and sustainable over successive redox cycles. We suggest that redox cycling of humic substances may largely suppress methane production in temporarily anoxic systems.

  2. Mechanisms of humic substances degradation by fungi

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Hadar, Y.; Grinhut, T.

    2012-04-01

    Humic substances (HS) are formed by secondary synthesis reactions (humification) during the decay process and transformation of biomolecules originating from plants and other dead organisms. In nature, HS are extremely resistant to biological degradation. Thus, these substances are major components in the C cycle and in the biosphere and therefore, the understanding of the process leading to their formation and transformation and degradation is vital. Fungi active in the decomposition process of HS include mainly ascomycetes and basidiomycetes that are common in the upper layer of forest and grassland soils. Many basidiomycetes belong to the white-rot fungi (WRF) and litter-decomposing fungi (LDF). These fungi are considered to be the most efficient lignin degraders due to their nonspecific oxidizing enzymes: manganese peroxidase (MnP), lignin peroxidase (LiP) and laccase. Although bacteria dominate compost and participate in the turnover of HS, their ability to degrade stable macromolecules such as lignin and HS is limited. The overall objectives of this research were to corroborate biodegradation processes of HS by WRF. The specific objectives were: (i) To isolate, identify and characterize HS degrading WRF from biosolids (BS) compost; (ii) To study the biodegradation process of three types of HS, which differ in their structure, by WRF isolated from BS compost; and (iii) To investigate the mechanisms of HA degradation by WRF using two main approaches: (a) Study the physical and chemical analyses of the organic compounds obtained from direct fungal degradation of HA as well as elucidation of the relevant enzymatic reactions; and (b) Study the enzymatic and biochemical mechanisms involved during HA degradation. In order to study the capability of fungi to degrade HS, seventy fungal strains were isolated from biosolids (BS) compost. Two of the most active fungal species were identified based on rDNA sequences and designated Trametes sp. M23 and Phanerochaetesp., Y6

  3. The impact of humic acid on chromium phytoextraction by aquatic macrophyte Lemna minor.

    PubMed

    Kalčíková, Gabriela; Zupančič, Marija; Jemec, Anita; Gotvajn, Andreja Žgajnar

    2016-03-01

    Studies assessing chromium phytoextration from natural waters rarely consider potential implications of chromium speciation in the presence of ubiquitous humic substances. Therefore, the present study investigated the influence of environmentally relevant concentration of humic acid (TOC = 10 mg L(-1)) on chromium speciation (Cr = 0.15 mg L(-1)) and consequently on phytoextraction by aquatic macrophyte duckweed Lemna minor. In absence of humic acid, only hexavalent chromium was present in water samples and easily taken up by L. minor. Chromium uptake resulted in a significant reduction of growth rate by 22% and decrease of chlorophyll a and chlorophyll b contents by 48% and 43%, respectively. On the other hand, presence of humic acid significantly reduced chromium bioavailability (57% Cr uptake decrease) and consequently it did not cause any measurable effect to duckweed. Such effect was related to abiotic reduction of hexavalent chromium species to trivalent. Hence, findings of our study suggest that presence of humic acid and chromium speciation cannot be neglected during phytoextraction studies.

  4. The impact of humic acid on chromium phytoextraction by aquatic macrophyte Lemna minor.

    PubMed

    Kalčíková, Gabriela; Zupančič, Marija; Jemec, Anita; Gotvajn, Andreja Žgajnar

    2016-03-01

    Studies assessing chromium phytoextration from natural waters rarely consider potential implications of chromium speciation in the presence of ubiquitous humic substances. Therefore, the present study investigated the influence of environmentally relevant concentration of humic acid (TOC = 10 mg L(-1)) on chromium speciation (Cr = 0.15 mg L(-1)) and consequently on phytoextraction by aquatic macrophyte duckweed Lemna minor. In absence of humic acid, only hexavalent chromium was present in water samples and easily taken up by L. minor. Chromium uptake resulted in a significant reduction of growth rate by 22% and decrease of chlorophyll a and chlorophyll b contents by 48% and 43%, respectively. On the other hand, presence of humic acid significantly reduced chromium bioavailability (57% Cr uptake decrease) and consequently it did not cause any measurable effect to duckweed. Such effect was related to abiotic reduction of hexavalent chromium species to trivalent. Hence, findings of our study suggest that presence of humic acid and chromium speciation cannot be neglected during phytoextraction studies. PMID:26766370

  5. Humic substances as a mediator for microbially catalyzed metal reduction

    USGS Publications Warehouse

    Lovley, D.R.; Fraga, J.L.; Blunt-Harris, E. L.; Hayes, L.A.; Phillips, E.J.P.; Coates, J.D.

    1998-01-01

    The potential for humic substances to serve as a terminal electron acceptor in microbial respiration and to function as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides was investigated. The Fe(III)-reducing microorganism Geobacter metallireducens conserved energy to support growth from electron transport to humics as evidenced by continued oxidation of acetate to carbon dioxide after as many as nine transfers in a medium with acetate as the electron donor and soil humic acids as the electron acceptor. Growth of G. metallireducens with poorly crystalline Fe(III) oxide as the electron acceptor was greatly stimulated by the addition of as little as 100 ??M of the humics analog, anthraquinone-2,6-disulfonate. Other quinones investigated, including lawsone, menadione, and anthraquinone-2-sulfonate, also stimulated Fe(III) oxide reduction. A wide phylogenetic diversity of microorganisms capable of Fe(III) reduction were also able to transfer electrons to humics. Microorganisms which can not reduce Fe(III) could not reduce humics. Humics stimulated the reduction of structural Fe(III) in clay and the crystalline Fe(III) forms, goethite and hematite. These results demonstrate that electron shuttling between Fe(III)-reducing microorganisms and Fe(III) via humics not only accelerates the microbial reduction of poorly crystalline Fe(III) oxide, but also can facilitate the reduction of Fe(III) forms that are not typically reduced by microorganisms in the absence of humics. Addition of humic substances to enhance electron shuttling between Fe(III)-reducing microorganisms and Fe(III) oxides may be a useful strategy to stimulate the remediation of soils and sediments contaminated with organic or metal pollutants.

  6. Humic substances interfere with detection of pathogenic prion protein

    USGS Publications Warehouse

    Smith, Christen B.; Booth, Clarissa J.; Wadzinski, Tyler J.; Legname, Giuseppe; Chappell, Rick; Johnson, Christopher J.; Pedersen, Joel A.

    2014-01-01

    Studies examining the persistence of prions (the etiological agent of transmissible spongiform encephalopathies) in soil require accurate quantification of pathogenic prion protein (PrPTSE) extracted from or in the presence of soil particles. Here, we demonstrate that natural organic matter (NOM) in soil impacts PrPTSE detection by immunoblotting. Methods commonly used to extract PrPTSE from soils release substantial amounts of NOM, and NOM inhibited PrPTSE immunoblot signal. The degree of immunoblot interference increased with increasing NOM concentration and decreasing NOM polarity. Humic substances affected immunoblot detection of prion protein from both deer and hamsters. We also establish that after interaction with humic acid, PrPTSE remains infectious to hamsters inoculated intracerebrally, and humic acid appeared to slow disease progression. These results provide evidence for interactions between PrPTSE and humic substances that influence both accurate measurement of PrPTSE in soil and disease transmission.

  7. BDE-209: kinetic studies and effect of humic substances on photodegradation in water.

    PubMed

    Leal, J F; Esteves, V I; Santos, E B H

    2013-12-17

    BDE-209 is a brominated flame retardant and a priority contaminant, which has been found in several environmental matrices, namely, in water. To date, there are no quantum yield data for BDE-209 photodegradation by sunlight in water, to allow predicting half-life times in aquatic systems. In this work, the kinetics of BDE-209 photodegradation in water was studied and the influence of different fractions of aquatic humic substances (HS) was evaluated. Aqueous solutions of BDE-209 exposed for different periods of time to simulated sunlight were analyzed by HPLC-UV after being concentrated using dispersive liquid-liquid microextraction (DLLME) or solid-phase extraction (SPE). The photodegradation of BDE-209 in aqueous solution followed pseudo-first-order kinetics. The average quantum yield obtained of 0.010 ± 0.001 (about 20-fold lower than the quantum yield determined in ethanol) allow to predict an outdoor half-life time of 3.5 h. The photodegradation percentage of BDE-209 was not significantly affected by the XAD-4 fraction of HS, but it decreased substantially in the presence of humic and fulvic acids. Light screening by the humic substances could not explain this delay, which is probably the result of the association of the compound with the hydrophobic sites of the humic material.

  8. Bromoform formation in ozonated groundwater containing bromide and humic substances

    SciTech Connect

    Cooper, W.J.; Amy, G.L.; Moore, C.A.; Zika, R.G.

    1986-01-01

    The effect of bromide ion, organic carbon concentration (natural aquatic humic substances), pH, and solar irradiation on the formation of bromoform in ozonated groundwater has been studied. The studies were conducted on four unique samples of groundwater taken from different regions of the Biscayne Aquifer in southern Florida. All other conditions being equal, increases in bromide ion concentrations resulted in increases in CHBr/sub 3/ formation. In three of the four samples, CHBr/sub 3/ formation decreased as the pH level increased from 5 to 9. The fourth sample exhibited an opposite trend whereby the CHBr/sub 3/ concentration increased with increasing pH. Bromoform concentration increased with increased O/sub 3/ concentration over an ozone dosage range of 3.4 to 6.7 mg/L. Ozonated samples placed in sunlight immediately after ozone addition showed a decrease in the formation of CHBr/sub 3/ presumably due to the photodecomposition of HOBr/OBr.

  9. QUANTITATIVE FOURIER TRANSFORM INFRARED SPECTROSCOPIC INVESTIGATION OF HUMIC SUBSTANCE FUNCTIONAL GROUP COMPOSITION

    EPA Science Inventory

    Infrared (IR) spectroscopy has been widely used for the structural investigation of humic substances. Although Fourier Transform Infrared (FTIR) instrumentation has been available for sometime, relatively little work with these instruments has been reported for humic substances,...

  10. FLUORESCENCE CHARACTERIZATION OF IHSS HUMIC SUBSTANCES: TOTAL LUMINESCENCE SPECTRA WITH ABSORBANCE CORRECTION. (R822251)

    EPA Science Inventory

    Total luminescence spectroscopy was applied to the fluorescence characterization of humic substances obtained from the International Humic Substances Society (IHSS). Results show that total luminescence spectra, represented as excitation-emission matrices (EEMs), may be used to d...

  11. Competitive complexation of metal ions with humic substances.

    PubMed

    Zhou, Ping; Yan, Hui; Gu, Baohua

    2005-03-01

    The surface complexation model was applied to simulate the competitive complexation of Ni, Ca and Al with humic substances. The presence of two types of binding sites in humic acid, carboxylic and phenolic functional groups, were assumed at both low and high pH conditions. Potentiometric titrations were used to characterize the intrinsic acidity constants of the two binding sites and their concentrations. It was found that the diffuse-layer model (DLM) could fit the experimental data well under different experimental conditions. Ni and Ca ions strongly compete with each other for reactions with the humic acid but Al showed little influence on the complexation of either Ni or Ca due to its hydrolysis and precipitation at pH approximately 5. The surface complexation constants determined from the mono-element systems were compared with those obtained from the multiple-element system (a mixture of the three metal ions). Results indicate little changes in the intrinsic surface complexation constants. Modeling results also indicate that high concentrations of Ca in the contaminated groundwater could strongly inhibit the complexation of Ni ions whereas an increase in pH and the humic concentration could attenuate such competitive interactions. The present study suggests that the surface complexation model could be useful in predicting interactions of the metal ions with humic substances and potentially aid in the design of remediation strategies for metal-contaminated soil and groundwater.

  12. Trihalomethane formation potential of aquatic and terrestrial fulvic and humic acids: Sorption on activated carbon.

    PubMed

    Abouleish, Mohamed Y Z; Wells, Martha J M

    2015-07-15

    Humic substances (HSs) are precursors for the formation of hazardous disinfection by-products (DBPs) during chlorination of water. Various surrogate parameters have been used to investigate the generation of DBPs by HS precursors and the removal of these precursors by activated carbon treatment. Dissolved organic carbon (DOC)- and ultraviolet absorbance (UVA254)-based isotherms are commonly reported and presumed to be good predictors of the trihalomethane formation potential (THMFP). However, THMFP-based isotherms are rarely published such that the three types of parameters have not been compared directly. Batch equilibrium experiments on activated carbon were used to generate constant-initial-concentration sorption isotherms for well-characterized samples obtained from the International Humic Substances Society (IHSS). HSs representing type (fulvic acid [FA], humic acid [HA]), origin (aquatic, terrestrial), and geographical source (Nordic, Suwannee, Peat, Soil) were examined at pH6 and pH9. THMFP-based isotherms were generated and compared to determine if DOC- and UVA254-based isotherms were good predictors of the THMFP. The sorption process depended on the composition of the HSs and the chemical nature of the activated carbon, both of which were influenced by pH. Activated carbon removal of THM-precursors was pH- and HS-dependent. In some instances, the THMFP existed after UVA254 was depleted.

  13. Nitrite fixation by humic substances: Nitrogen-15 nuclear magnetic resonance evidence for potential intermediates in chemodenitrification

    USGS Publications Warehouse

    Thorn, K.A.; Mikita, M.A.

    2000-01-01

    Studies have suggested that NO2/-, produced during nitrification and denitrification, can become incorporated into soil organic matter and, in one of the processes associated with chemodenitrification, react with organic matter to form trace N gases, including N2O. To gain an understanding of the nitrosation chemistry on a molecular level, soil and aquatic humic substances were reacted with 15N-labeled NaNO2, and analyzed by liquid phase 15N and 13C nuclear magnetic resonance (NMR). The International Humic Substances Society (IHSS) Pahokee peat and peat humic acid were also reacted with Na15NO2 and analyzed by solid-state 15N NMR. In Suwannee River, Armadale, and Laurentian fulvic acids, phenolic rings and activated methylene groups underwent nitrosation to form nitrosophenols (quinone monoximes) and ketoximes, respectively. The oximes underwent Beckmann rearrangements to 2??amides, and Beckmann fragmentations to nitriles. The nitriles in turn underwent hydrolysis to 1??amides. Peaks tentatively identified as imine, indophenol, or azoxybenzene nitrogens were clearly present in spectra of samples nitrosated at pH 6 but diminished at pH 3. The 15N NMR spectrum of the peat humic acid exhibited peaks corresponding with N-nitroso groups in addition to nitrosophenols, ketoximes, and secondary Beckmann reaction products. Formation of N-nitroso groups was more significant in the whole peat compared with the peat humic acid. Carbon-13 NMR analyses also indicated the occurrence of nitrosative demethoxylation in peat and soil humic acids. Reaction of 15N-NH3 fixated fulvic acid with unlabeled NO2/- resulted in nitrosative deamination of aminohydroquinone N, suggesting a previously unrecognized pathway for production of N2 gas in soils fertilized with NH3.Studies have suggested that NO2-, produced during nitrification and denitrification, can become incorporated into soil organic matter and, in one of the processes associated with chemodenitrification, react with organic

  14. Characterization of the International Humic Substances Society standard and reference fulvic and humic acids by solution state carbon-13 (13C) and hydrogen-1 (1H) nuclear magnetic resonance spectrometry

    USGS Publications Warehouse

    Thorn, Kevin A.; Folan, Daniel W.; MacCarthy, Patrick

    1989-01-01

    Standard and reference samples of the International Humic Substances Society have been characterized by solution state carbon-13 and hydrogen-1 nuclear magnetic resonance (NMR) spectrometry. Samples included the Suwannee River, soil, and peat standard fulvic and humic acids, the Leonardite standard humic acid, the Nordic aquatic reference fulvic and humic acids, and the Summit Hill soil reference humic acid. Aqueous-solution carbon-13 NMR analyses included the measurement of spin-lattice relaxation times, measurement of nuclear Overhauser enhancement factors, measurement of quantitative carbon distributions, recording of attached proton test spectra, and recording of spectra under nonquantitative conditions. Distortionless enhancement by polarization transfer carbon-13 NMR spectra also were recorded on the Suwannee River fulvic acid in deuterated dimethyl sulfoxide. Hydrogen-1 NMR spectra were recorded on sodium salts of the samples in deuterium oxide. The carbon aromaticities of the samples ranged from 0.24 for the Suwannee River fulvic acid to 0.58 for the Leonardite humic acid.

  15. A comparison of water solubility enhancements of organic solutes by aquatic humic materials and commercial humic acids

    USGS Publications Warehouse

    Chlou, C.T.; Kile, D.E.; Brinton, T.I.; Malcolm, R.L.; Leenheer, J.A.; MacCarthy, P.

    1987-01-01

    Water solubility enhancements of 1,1-bis(p-chloro-phenyl)-2,2,2-trichloroethane (p,p???-DDT), 2,4,5,2???,5???-pentachlorobiphenyl (2,4,5,2???,5???-PCB), and 2,4,4???-tri-chlorobiphenyl (2,4,4???-PCB) by dissolved organic matter have been studied with the following samples: (1) acidic water samples from the Suwannee River, Georgia, and the Sopchoppy River, Florida; (2) a humic extract of a nearly neutral pH water from the Calcasieu River, Louisiana; (3) commercial humic acids from the Aldrich Chemical Co. and Fluka-Tridom Chemical Corp. The calculated partition coefficients on a dissolved organic carbon basis (Kdoc) for organic solutes with water samples and aquatic humic extracts from this and earlier studies indicate that the enhancement effect varies with the molecular composition of the aquatic humic materials. The Kdoc values with water and aquatic humic samples are, however, far less than the observed Kdoc values obtained with the two commercial samples, by factors of about 4-20. In view of this finding, one should be cautious in interpreting the effects of the dissolved organic matter on solubility enhancement of organic solutes on the basis of the use of commercial humic acids.

  16. Comparing humic substance and protein compound effects on the bioaccumulation of perfluoroalkyl substances by Daphnia magna in water.

    PubMed

    Xia, Xinghui; Dai, Zhineng; Rabearisoa, Andry Harinaina; Zhao, Pujun; Jiang, Xiaoman

    2015-01-01

    The influence of humic substances and protein compounds on the bioaccumulation of six types of perfluoroalkyl substances (PFASs) in Daphnia magna was compared. The humic substances included humic acid (HA) and fulvic acid (FA), the protein compounds included chicken egg albumin (albumin) and peptone, and the PFASs included perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid, perfluoroundecanoic acid, and perfluorododecanoic acid. Four concentrations (0, 1, 10, and 20 mg L(-1)) of the four dissolved organic matter (DOM) types were investigated. At the 1 mg L(-1) level, HA and albumin enhanced all tested PFAS bioaccumulation, whereas FA and peptone only enhanced the bioaccumulation of shorter-chain PFASs (PFOS, PFOA, and PFNA). However, all four DOM types decreased all tested PFAS bioaccumulation at the 20 mg L(-1) level, and the decreasing ratios of bioaccumulation factors caused by FA, HA, albumin, and peptone were 1-49%, 23-77%, 17-58%, and 8-56%, respectively compared with those without DOM. This is because DOM not only reduced the bioavailable concentrations and uptake rates of PFASs but also lowered the elimination rates of PFASs in D. magna, and these opposite effects would change with different DOM types and concentrations. Although the partition coefficients (L kg(-1)) of PFASs between HA and water (10(4.21)-10(4.98)) were much lower than those between albumin and water (10(4.92)-10(5.86)), their effects on PFAS bioaccumulation were comparable. This study suggests that although PFASs are a type of proteinophilic compounds, humic substances also have important effects on their bioavailability and bioaccumulation in aquatic organisms.

  17. Dissolved humic substances initiate DNA-methylation in cladocerans.

    PubMed

    Menzel, Stefanie; Bouchnak, Rihab; Menzel, Ralph; Steinberg, Christian E W

    2011-10-01

    DNA-methylation is one pathway of epigenetic programming of gene expression and can be responsive to environmental challenges such as methylating agents in the food. Here we report on the DNA-methylation in the cladocerans Daphnia magna and Moina macrocopa exposed to humic substances, ubiquitous biogeochemicals. The methylation of DNA can alter the stress response, presumably including exposure to synthetic xenobiotic chemicals. PMID:21963594

  18. Interactions of dissolved humic substances with oppositely charged fluorescent dyes for tracer techniques.

    PubMed

    Hafuka, Akira; Ding, Qing; Yamamura, Hiroshi; Yamada, Koji; Satoh, Hisashi

    2015-11-15

    To investigate interactions between oppositely charged fluorescent dyes and dissolved humic substances, fluorescence quenching of fluorescein and rhodamine 6G with dissolved humic substances was performed. Binding coefficients were obtained by the Stern-Volmer equation. The fluorescence of rhodamine 6G was largely quenched by the addition of humic acid and a non-linear Stern-Volmer plot was obtained. This strong quenching may be caused by the electrostatic interaction between cationic rhodamine 6G and humic acid and strengthened by the hydrophobic repulsion. In contrast, the quenching and interactive effects of dissolved humic substances for fluorescein were relatively weak. PMID:26318652

  19. Formation of Humic Substances in Weathered MSWI Bottom Ash

    PubMed Central

    Zhang, Haixia; Shimaoka, Takayuki

    2013-01-01

    The study aimed at evaluating the humic substances (HSs) content from municipal solid waste incinerator (MSWI) bottom ash and its variation with time and the effect of temperature on HSs formation. The process suggested by IHSS was applied to extract HSs from two different bottom ash samples, and the extracted efficiency with NaOH and Na4P2O7 was compared. MSWI bottom ash samples were incubated at 37°C and 50°C for 1 year. HSs and nonhumic substances were extracted from the bottom ash sample with different incubated period by 0.1 M NaOH/Na4P2O7. Results show that the rate of humic acid formation increased originally with incubation time, reached a maximum at 12th week under 37°C and at 18th week under 50°C, and then decreased with time. More humic acid in MSWI bottom ash was formed under 50°C incubated condition compared with that incubated under 37°C. Also, the elemental compositions of HSs extracted from bottom ash are reported. PMID:23844394

  20. Formation of humic substances in weathered MSWI bottom ash.

    PubMed

    Zhang, Haixia; Shimaoka, Takayuki

    2013-01-01

    The study aimed at evaluating the humic substances (HSs) content from municipal solid waste incinerator (MSWI) bottom ash and its variation with time and the effect of temperature on HSs formation. The process suggested by IHSS was applied to extract HSs from two different bottom ash samples, and the extracted efficiency with NaOH and Na4P2O7 was compared. MSWI bottom ash samples were incubated at 37°C and 50°C for 1 year. HSs and nonhumic substances were extracted from the bottom ash sample with different incubated period by 0.1 M NaOH/Na₄P₂O₇. Results show that the rate of humic acid formation increased originally with incubation time, reached a maximum at 12th week under 37°C and at 18th week under 50°C, and then decreased with time. More humic acid in MSWI bottom ash was formed under 50°C incubated condition compared with that incubated under 37°C. Also, the elemental compositions of HSs extracted from bottom ash are reported. PMID:23844394

  1. Interactions of Tc(IV) with humic substances

    SciTech Connect

    Boggs, M. A.; Minton, Travis; Lomasney, Samuel; Islam, Mohammed; Dong, Wenming; Gu, Baohua; Wall, Nathalie

    2011-01-01

    To understand the key processes affecting 99Tc mobility in the subsurface and help with the remediation of contaminated sites, the binding constants of several humic substances (humic and fulvic acids) with Tc(IV) were determined, using a solvent extraction technique. The novelty of this paper lies in the determination of the binding constants of the complexes formed with the individual species TcO(OH)+ and TcO(OH)20. Binding constants were found to be 6.8 and between 3.9 and 4.3, for log 1, 1,1 and log 1,-2,1, respectively; these values were little modified by a change of ionic strength, in most cases, between 0.1 M to 1.0 M, nor were they by the nature and origin of the humic substances. Modeling calculations based on these show TcO(OH)-HA to be the predominant complex in a system containing 20 ppm HA and in the 4-6 pH range, while TcO(OH)20 and TcO(OH)2-HA are the major species, in the pH 6-8 range.

  2. Evaluating aggregation of gold nanoparticles and humic substances using fluorescence spectroscopy.

    PubMed

    Pallem, Vasanta L; Stretz, Holly A; Wells, Martha J M

    2009-10-01

    The fate and transport of diagnostic gold nanoparticles in surface waters would significantly depend on their interactions with humic substances, which are ubiquitously found in natural aquatic systems. The current study employs UV-visible absorbance and fluorescence spectroscopy to investigate the interactions of commercial humic acid (HA) with gold nanoparticles having a core size of 5 nm and coated with two different stabilizers, beta-D-glucose and citrate. Humic substances (HS) are fluorescent in nature, providing a unique probe of nanometer-scale morphological changes for interactions between these natural polyelectrolytes and water-soluble gold nanoparticles. Quenching of fluorescence intensity was observed with beta-D-glucose-coated gold nanoparticles, whereas an enhancement effect was noticed with the citrate-coated particles when mixed with HA having concentrations of 2 and 8 ppm (surface waters typically may contain approximately 10 ppm HS). Examining the quenching and enhancement of fluorescence provides insight into the structural changes taking place at the coated gold nanoparticle-HA interface. The quenching behavior suggested ligand exchange due to nanometer-scale contact between the HA and beta-D-glucose-coated gold nanoparticles, whereas the enhancement effect with citrate particles would indicate overcoating, leading to increased transfer distances for fluorescence resonance energy transfer. PMID:19848172

  3. Capillary electrophoretic separation of humic substances using hydroxyethyl cellulose as a buffer additive and its application to characterization of humic substances in a river water sample.

    PubMed

    Takahashi, Toru; Kawana, Jun; Hoshino, Hitoshi

    2009-01-01

    We have developed a concise tool for the investigation of the transition of humic substances in environmental water. The separation of water-soluble humic substances was achieved rapidly and effectively by capillary electrophoresis using a polyacrylamide-coated capillary and a phosphate electrophoretic buffer solution (pH 7.0) containing hydroxyethyl cellulose. The separation mechanism was assessed using the ultrafiltration technique. The effect of the complexation of humic substances with metal ions was studied by using the proposed method. When Fe(III) ions or EDTA was added to the sample solution of fulvic acid, a distinct change in the electropherogram pattern based on the conformational change of fulvic acid was observed. The successful application of the proposed method to the characterization of humic substances in a river water sample was also demonstrated.

  4. Effects of humic substances from different sources on growth and nutrient content of cucumber plants

    NASA Astrophysics Data System (ADS)

    Abad, Manuel; Fornes, Fernando; García, Diego; Cegarra, Juan; Roig, Asunciôn

    Humic substances prepared from different sources of organic materials were tested for their effects on nutrient uptake and growth of cucumber plants. Plants were grown in a modified Hoagland solution (iron as soluble FeCl3), with the addition of 50 mg/l of carbon in the form of humic substances derived from lignite, sphagnum moss or sedge peat. Humic substances produced highly significant increases in the growth of plant tops and roots, in the stem height, in the number of flowers per plant and in the leaf size. The addition of humic substances also resulted in an increase in the contents of N, P. K, Ca, Mg and Fe in the roots and also in the N, P and Fe contents in the shoots. Variation of effects of humic substances derived from different organic materials was not significant.

  5. The influence of mechanochemical modification on prevention of toxic ability of humic acids towards phenanthrene in aquatic environment

    NASA Astrophysics Data System (ADS)

    Shekhovtsova, N. S.; Maltseva, E. V.; Glyzina, T. S.; Ovchinnikova, I. S.

    2015-11-01

    The aim of the research work is to quantify interaction between phenanthrene with modified humic acids in aquatic environment. The changes in the structure and properties of humic acids after modifications were studied with 1H NMR spectroscopy and potentiometric titration methods. Our research demonstrates that the application of thiourea as a modified agent increases the binding capacity of humic acids towards phenanthrene.

  6. Atmospheric So2 Emissions Since the Late 1800s Change Organic Sulfur Forms in Humic Substance Extracts of Soils

    SciTech Connect

    Lehmann,J.; Solomon, D.; Zhao, F.; McGrath, S.

    2008-01-01

    Atmospheric SO2 emissions in the UK and globally increased 6- and 20-fold, respectively, from the mid-1800s to the 1960s resulting in increased S deposition, acid rain, and concurrent acidification of terrestrial and aquatic ecosystems. Structural analyses using synchrotron-based X-ray near-edge spectroscopy (XANES) on humic substance extracts of archived samples from the Rothamsted Park Grass Experiment reveal a significant (R2 = -0.58; P < 0.05; N = 7) shift in soil organic sulfur (S) forms, from reduced to more oxidized organic S between 1876 and 1981, even though soil total S contents remained relatively constant. Over the last 30 years, a decrease in emissions and consequent S deposition has again corresponded with a change of organic S structures of humic extractsreverting in the direction of their early industrial composition. However, the observed reversal lagged behind reductions in emissions by 19 years, which was computed using cross correlations between time series data (R2 = 0.66; P = 0.0024; N = 11). Presently, the ratio of oxidized-to-reduced organic S in humic substance extracts is nearly double that of early industrial times at identical SO2 emission loads. The significant and persistent structural changes of organic S in humic substances as a response to SO2 emissions and S deposition may have effects on recuperation of soils and surface waters from acidification.

  7. Atmospheric SO2 emissions since the late 1800s change organic sulfur forms in humic substance extracts of soils.

    PubMed

    Lehmann, Johannes; Solomon, Dawit; Zhao, Fang-Jie; McGrath, Steve P

    2008-05-15

    Atmospheric SO2 emissions in the UK and globally increased 6- and 20-fold, respectively, from the mid-1800s to the 1960s resulting in increased S deposition, acid rain, and concurrent acidification of terrestrial and aquatic ecosystems. Structural analyses using synchrotron-based X-ray near-edge spectroscopy (XANES) on humic substance extracts of archived samples from the Rothamsted Park Grass Experiment reveal a significant (R2 = -0.58; P < 0.05; N = 7) shift in soil organic sulfur (S) forms, from reduced to more oxidized organic S between 1876 and 1981, even though soil total S contents remained relatively constant. Over the last 30 years, a decrease in emissions and consequent S deposition has again corresponded with a change of organic S structures of humic extracts-reverting in the direction of their early industrial composition. However, the observed reversal lagged behind reductions in emissions by 19 years, which was computed using cross correlations between time series data (R2 = 0.66; P = 0.0024; N = 11). Presently, the ratio of oxidized-to-reduced organic S in humic substance extracts is nearly double that of early industrial times at identical SO2 emission loads. The significant and persistent structural changes of organic S in humic substances as a response to SO2 emissions and S deposition may have effects on recuperation of soils and surface waters from acidification.

  8. Atmospheric SO2 emissions since the late 1800s change organic sulfur forms in humic substance extracts of soils.

    PubMed

    Lehmann, Johannes; Solomon, Dawit; Zhao, Fang-Jie; McGrath, Steve P

    2008-05-15

    Atmospheric SO2 emissions in the UK and globally increased 6- and 20-fold, respectively, from the mid-1800s to the 1960s resulting in increased S deposition, acid rain, and concurrent acidification of terrestrial and aquatic ecosystems. Structural analyses using synchrotron-based X-ray near-edge spectroscopy (XANES) on humic substance extracts of archived samples from the Rothamsted Park Grass Experiment reveal a significant (R2 = -0.58; P < 0.05; N = 7) shift in soil organic sulfur (S) forms, from reduced to more oxidized organic S between 1876 and 1981, even though soil total S contents remained relatively constant. Over the last 30 years, a decrease in emissions and consequent S deposition has again corresponded with a change of organic S structures of humic extracts-reverting in the direction of their early industrial composition. However, the observed reversal lagged behind reductions in emissions by 19 years, which was computed using cross correlations between time series data (R2 = 0.66; P = 0.0024; N = 11). Presently, the ratio of oxidized-to-reduced organic S in humic substance extracts is nearly double that of early industrial times at identical SO2 emission loads. The significant and persistent structural changes of organic S in humic substances as a response to SO2 emissions and S deposition may have effects on recuperation of soils and surface waters from acidification. PMID:18546688

  9. The contribution of humic substances to the acidity of colored natural waters

    USGS Publications Warehouse

    Oliver, B.G.; Thurman, E.M.; Malcolm, R.L.

    1983-01-01

    An operationally defined carboxyl content of humic substances extracted from rivers, streams, lakes, wetlands, and groundwaters throughout the United States and Canada is reported. Despite the diversity of the samples, only small variations were observed in this humic carboxyl content. The dissociation behavior of two combined fulvic/humic acid extracts was studied and it was found that the dissociation of the humics varied in a predictable manner with pH. Using a carboxyl content of 10 ??eq/ mg humic organic carbon, and mass action quotient calculated from sample pH, the ionic balances of three highly colored Nova Scotia rivers were estimated. ?? 1983.

  10. Natural carbon-based dots from humic substances

    PubMed Central

    Dong, Yongqiang; Wan, Lisi; Cai, Jianhua; Fang, Qingqing; Chi, Yuwu; Chen, Guonan

    2015-01-01

    For the first time, abundant natural carbon-based dots were found and studied in humic substances (HS). Four soluble HS including three humic acids (HA) from different sources and one fulvic acids (FA) were synthetically studied. Investigation results indicate that all the four HS contain large quantities of Carbon-based dots. Carbon-based dots are mainly small-sized graphene oxide nano-sheets or oxygen-containing functional group-modified graphene nano-sheets with heights less than 1 nm and lateral sizes less than 100 nm. Carbon-based nanomaterials not only contain abundant sp2-clusters but also a large quantity of surface states, exhibiting unique optical and electric properties, such as excitation-dependent fluorescence, surface states-originated electrochemiluminescence, and strong electron paramagnetic resonance. Optical and electric properties of these natural carbon-based dots have no obvious relationship to their morphologies, but affected greatly by their surface states. Carbon-based dots in the three HS have relative high densities of surface states whereas the FA has the lowest density of surface states, resulting in their different fluorescence properties. The finding of carbon-based dots in HS provides us new insight into HS, and the unique optical properties of these natural carbon-based dots may give HS potential applications in areas such as bio-imaging, bio-medicine, sensing and optoelectronics. PMID:25944302

  11. Electrocoagulation treatment of peat bog drainage water containing humic substances.

    PubMed

    Kuokkanen, V; Kuokkanen, T; Rämö, J; Lassi, U

    2015-08-01

    Electrocoagulation (EC) treatment of 100 mg/L synthetic wastewater (SWW) containing humic acids was optimized (achieving 90% CODMn and 80% DOC removal efficiencies), after which real peat bog drainage waters (PBDWs) from three northern Finnish peat bogs were also treated. High pollutant removal efficiencies were achieved: Ptot, TS, and color could be removed completely, while Ntot, CODMn, and DOC/TOC removal efficiencies were in the range of 33-41%, 75-90%, and 62-75%, respectively. Al and Fe performed similarly as the anode material. Large scale experiments (1 m(3)) using cold (T = 10-11 °C) PBDWs were also conducted successfully, with optimal treatment times of 60-120 min (applying current densities of 60-75 A/m(2)). Residual values of Al and Fe (complete removal) were lower than their initial values in the EC-treated PBDWs. Electricity consumption and operational costs in optimum conditions were found to be low and similar for all the waters studied: 0.94 kWh/m(3) and 0.15 €/m(3) for SWW and 0.35-0.70 kWh/m(3) and 0.06-0.12 €/m(3) for the PBDWs (large-scale). Thus, e.g. solar cells could be considered as a power source for this EC application. In conclusion, EC treatment of PBDW containing humic substances was shown to be feasible.

  12. Production of humic substances through coal-solubilizing bacteria

    PubMed Central

    Valero, Nelson; Gómez, Liliana; Pantoja, Manuel; Ramírez, Ramiro

    2014-01-01

    In this paper, the production of humic substances (HS) through the bacterial solubilization of low rank coal (LRC) was evaluated. The evaluation was carried out by 19 bacterial strains isolated in microenvironments with high contents of coal wastes. The biotransformed LRC and the HS produced were quantified in vitro in a liquid growth medium. The humic acids (HA) obtained from the most active bacterial strain were characterized via elemental composition (C, H, N, O), IR analyses, and the E4/E6 ratio; they were then compared with the HA extracted chemically using NaOH. There was LRC biotransformation ranged from 25 to 37%, and HS production ranged from 127 to 3100 mg.L−1. More activity was detected in the isolated strains of Bacillus mycoides, Microbacterium sp, Acinetobacter sp, and Enterobacter aerogenes. The HA produced by B. mycoides had an IR spectrum and an E4/E6 ratio similar to those of the HA extracted with NAOH, but their elemental composition and their degree of aromatic condensation was different. Results suggest that these bacteria can be used to exploit the LRC resulting from coal mining activities and thus produce HS in order to improve the content of humified organic matter in soils. PMID:25477925

  13. Electrocoagulation treatment of peat bog drainage water containing humic substances.

    PubMed

    Kuokkanen, V; Kuokkanen, T; Rämö, J; Lassi, U

    2015-08-01

    Electrocoagulation (EC) treatment of 100 mg/L synthetic wastewater (SWW) containing humic acids was optimized (achieving 90% CODMn and 80% DOC removal efficiencies), after which real peat bog drainage waters (PBDWs) from three northern Finnish peat bogs were also treated. High pollutant removal efficiencies were achieved: Ptot, TS, and color could be removed completely, while Ntot, CODMn, and DOC/TOC removal efficiencies were in the range of 33-41%, 75-90%, and 62-75%, respectively. Al and Fe performed similarly as the anode material. Large scale experiments (1 m(3)) using cold (T = 10-11 °C) PBDWs were also conducted successfully, with optimal treatment times of 60-120 min (applying current densities of 60-75 A/m(2)). Residual values of Al and Fe (complete removal) were lower than their initial values in the EC-treated PBDWs. Electricity consumption and operational costs in optimum conditions were found to be low and similar for all the waters studied: 0.94 kWh/m(3) and 0.15 €/m(3) for SWW and 0.35-0.70 kWh/m(3) and 0.06-0.12 €/m(3) for the PBDWs (large-scale). Thus, e.g. solar cells could be considered as a power source for this EC application. In conclusion, EC treatment of PBDW containing humic substances was shown to be feasible. PMID:25973580

  14. Humic substances-enhanced electroremediation of heavy metals contaminated soil.

    PubMed

    Bahemmat, Mahdi; Farahbakhsh, Mohsen; Kianirad, Mehran

    2016-07-15

    The effects of catholyte conditioning and the use of humic acids (HAs) and fulvic acids (FAs) as chelating agents to improve electrokinetic (EK) remediation efficiency were investigated using a real and highly contaminated soil. By applying a constant voltage (2.0V/cm) to the soil, pH and current changes and heavy metals (HMs) concentration were investigated through a range of durations and positions. The observations demonstrated that both catholyte conditioning with 0.1N HNO3 and using humic substances (HSs) enhance remediation efficiency. After 20 days of EK treatment, the removal efficiency of HMs in HS-enhanced EK remediation was about 2.0-3.0 times greater than when unenhanced. The quantity of HMs moving toward the cathode exceeded the anode, from which it could be reasonably inferred that most negatively charged HM-HS complexes were moved by electroosmotic forces. Further, free HM cations and positively charged complexed HMs migrated to the catholyte compartment by electromigration. The results obtained in this study, demonstrate the suitability of HS-enhanced EK remediation in HMs contaminated soil. PMID:27058638

  15. NMR characterization and sorption behavior of agricultural and forest soil humic substances

    NASA Astrophysics Data System (ADS)

    Li, Chengliang; Berns, Anne E.; Séquaris, Jean-Marie; Klumpp, Erwin

    2010-05-01

    Humic substances are the predominant components of the organic matter in the terrestrial system, which are not only important for the physicochemical properties of soil but are also dominant factors for controlling the environmental behaviors and fates of some organic contaminants, such as hydrophobic compounds. Nonylphenol [4-(1-ethyl-1, 3 dimethylpentyl) phenol] (NP), a ubiquitous hydrophobic pollutant, has recently focused the attention owing to its endocrine disruptors property. Sorption behavior of NP on humic substances, which were isolated from agricultural and forest soils, was investigated by using the dialysis technique at room temperature. 14C-labeled NP was used to quantify the partitioning behavior. Humic substances were characterized by 13C Cross-Polarization/Magic-Angle-Spinning Nuclear Magnetic Resonance (CP/MAS NMR). The results showed that the partition parameters of NP on various humic acids were slightly different. Relationships between partition coefficients and the functional groups of humic substances identified by CP/MAS NMR were analyzed.

  16. Soil humic substances hinder the propagation of prions

    NASA Astrophysics Data System (ADS)

    Leita, Liviana; Giachin, Gabriele; Margon, Alja; Narkiewicz, Joanna; Legname, Giuseppe

    2013-04-01

    capacity of clay minerals; however the contribution of soil organic components in adsorption has so far been neglected, as they represent a minor soil fraction on a weight basis. Among organic molecules, humic substances (HSs) are natural polyanions that result among the most reactive compounds in the soil and possess the largest specific surface area. Humic substances make up a large portion of the dark matter in humus and consist of heterogeneous mixtures of transformed biomolecules exhibiting a supramolecular structure. HSs are classified as humic acids (HAs), which are soluble only in alkaline solutions, and fulvic acids (FAs), which are soluble in both alkaline and acid solutions. The amphiphilic characteristics confer to HAs and FAs great versatility to interact with xenobiotics and reasonably also with prion proteins and/or prions too, leading to the formation of adducts with peculiar chemical and biophysical characteristics, thus affecting the transport, fixation and toxicity of prion. Results from our chemical, biophysical and biochemical investigation will be presented and results on anti-prion activity exerted by HAs and FAs will be provided, thus suggesting that amendment of contaminated soil with humic substances could be a strategy to contrast prion diffusion.

  17. Measurement of humic-like substances in aerosols: a review.

    PubMed

    Zheng, Guangjie; He, Kebin; Duan, Fengkui; Cheng, Yuan; Ma, Yongliang

    2013-10-01

    Aerosol-phase humic-like substances (HULIS) have received increasingly attention due to their universal ambient presence, active participation in atmospheric chemistry and important environmental and health effects. In last decade, intensive field works have promoted development of quantification and analysis method, unearthed spatio-temporal variation, and proved evidence for source identification of HULIS. These important developments were summarized in this review to provide a global perspective of HULIS. The diverse operational HULIS definitions were gradually focused onto several versions. Although found globally in Europe, Asia, Australasia and North America, HULIS are far more typical in continental and near-ground aerosols. HULIS concentrations varied from <1 μg/m(3) to >13 μg/m(3), with their carbon fraction making up 9%-72% of water soluble organic carbon. Dominant HULIS source was suggested as secondary processes and biomass burning, with the detailed formation pathways suggested and verified in laboratory works.

  18. Humic substances biological activity at the plant-soil interface: from environmental aspects to molecular factors.

    PubMed

    Trevisan, Sara; Francioso, Ornella; Quaggiotti, Silvia; Nardi, Serenella

    2010-06-01

    Humic substances (HS) represent the organic material mainly widespread in nature. HS have positive effects on plant physiology by improving soil structure and fertility and by influencing nutrient uptake and root architecture. The biochemical and molecular mechanisms underlying these events are only partially known. HS have been shown to contain auxin and an "auxin-like" activity of humic substances has been proposed, but support to this hypothesis is fragmentary. In this review article, we are giving an overview of available data concerning molecular structures and biological activities of humic substances, with special emphasis on their hormone-like activities. PMID:20495384

  19. Distinguishing Black Carbon from Biogenic Humic Substances in Soil Clay Fractions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most models of soil humic substances include a substantial component of aromatic carbon (C) either as the backbone of humic heteropolymers or as a significant component of supramolecular aggregates of degraded biopolymers. Here we report that most of the aromatic C in the clay fraction of three stud...

  20. River-derived humic substances as iron chelators in seawater

    PubMed Central

    Krachler, Regina; Krachler, Rudolf F.; Wallner, Gabriele; Hann, Stephan; Laux, Monika; Cervantes Recalde, Maria F.; Jirsa, Franz; Neubauer, Elisabeth; von der Kammer, Frank; Hofmann, Thilo; Keppler, Bernhard K.

    2015-01-01

    The speciation of iron(III) in oxic seawater is dominated by its hydrolysis and sedimentation of insoluble iron(III)-oxyhydroxide. As a consequence, many oceanic areas have very low iron levels in surface seawater which leads to iron deficiency since phytoplankton require iron as a micronutrient in order to grow. Fortunately, iron solubility is not truly as low as Fe(III) solubility measurements in inorganic seawater would suggest, since oceanic waters contain organic molecules which tend to bind the iron and keep it in solution. Various iron-binding organic ligands which combine to stabilize dissolved iron have been detected and thoroughly investigated in recent years. However, the role of iron-binding ligands from terrestrial sources remains poorly constrained. Blackwater rivers supply large amounts of natural organic material (NOM) to the ocean. This NOM (which consists mainly of vascular plant-derived humic substances) is able to greatly enhance iron bioavailability in estuaries and coastal regions, however, breakdown processes lead to a rapid decrease of river-derived NOM concentrations with increasing distance from land. It has therefore been argued that the influence of river-derived NOM on iron biogeochemistry in offshore seawater does not seem to be significant. Here we used a standard method based on 59Fe as a radiotracer to study the solubility of Fe(III)-oxyhydroxide in seawater in the presence of riverine NOM. We aimed to address the question how effective is freshwater NOM as an iron chelator under open ocean conditions where the concentration of land-derived organic material is about 3 orders of magnitude smaller than in coastal regions, and does this iron chelating ability vary between NOM from different sources and between different size fractions of the river-borne NOM. Our results show that the investigated NOM fractions were able to substantially enhance Fe(III)-oxyhydroxide solubility in seawater at concentrations of the NOM ≥ 5

  1. CAPILLARY ELECTROPHORESIS IN THE ANALYSIS OF HUMIC SUBSTANCES FACTS AND ARTIFACTS

    EPA Science Inventory

    Humic substances, extracted as mixtures from soil and surface waters according to their solubility in acids and bases, are relatively high-molecular-mass polyelectrolytes containing aromatic, aliphatic and heterocyclic subunits. The degree of ionization of their phenolic and carb...

  2. Comparative studies of the reduction behavior of chromium(VI) by humic substances and their precursors

    SciTech Connect

    Nakayasu, Ken; Sasaki, Keiko; Tanaka, Shunitz; Nakamura, Hiroshi ); Fukushima, Masami )

    1999-06-01

    Hexavalent chromium (Cr[VI]) is reduced by dissolved organic carbons (DOCs) such as humic substances, tannic acid (TA), and gallic acid (GA). The kinetic constants and the resulting chemical species after the reduction were compared with each other. The kinetic constants for GA and TA, which are model precursors of humic substances, were two to three orders of magnitude larger than those for the humic substances when these kinetic constants were expressed as a function of the molar concentration of the reductive functional group (F[sub red]) in various DOCs. After the reduction of Cr(VI), the percentages of the species complexed with GA and TA were higher than those with the humic substances. This appears to be due to the formation of high molecular weight compounds by polymerization during the reduction of Cr(VI) and complexation of Cr(III) with the polymerized compounds. The UV-vis spectrophotometric data and gel permeation chromatography support this view.

  3. The role of the characteristics of humic substances in binding with benzo[h]quinoline.

    PubMed

    Hsieh, Ping-Chieh; Brimblecombe, Peter; Lee, Chon-Lin; Hsu, Shih-Han

    2012-02-01

    The binding constants (K(DOC)) of the mixture of benzo[h]quinoline and its protonated analog, benzo[h]quinolinium, to four types of humic substances obtained from the International Humic Substances Society were determined by the fluorescence quenching method. A simple mixing model was used to eliminate the fluorescent interference from the minor analog in the solution and to deduce K(mix), which represents the overall binding as the sum of that for the individual analogs. The characteristics of humic substances, especially their hydrophobicity and aromaticity, established by principal component analysis of structural and elemental compositions, were the main determinants of the binding affinity with both benzo[h]quinoline and benzo[h]quinolinium (K(BQ) and K (BQH+) across a range of pH values. The strongest overall affinity of benzo[h]quinoline for humic substances is observed near pH 4 and with more hydrophobic humic substances, which suggests possible choices in attempts at remediation of benzo[h]quinoline containing particles with humic substances. PMID:22065405

  4. Role of humic substances in promoting autotrophic growth in nitrate-dependent iron-oxidizing bacteria.

    PubMed

    Kanaparthi, Dheeraj; Conrad, Ralf

    2015-05-01

    Nitrate-dependent iron oxidation was discovered in 1996 and has been reported from various environments ever since. To date, despite the widespread nature of this process, all attempts to cultivate chemolithoautotrophic nitrate-dependent iron oxidizers have been unsuccessful. The present study was focused on understanding the influence of natural chelating agents of iron, like humic substances, on the culturability, activity, and enumeration, of these microorganisms. Pure culture studies conducted with Thiobacillus denitrificans showed a constant increase in cell mass with a corresponding nitrate-dependent iron oxidation activity only when Fe(II) was provided together with humic substances, compared to no growth in control incubations without humic substances. The presence of a relatively strong chelating agent, such as EDTA, inhibited the growth of Thiobacillus denitrificans. It was concluded that complex formation between humic substances and iron was required for chemolithoautotrophic nitrate-dependent iron oxidation. Most probable number enumerations showed that numbers of chemolithoautotrophic nitrate-dependent iron-oxidizing bacteria were one to three orders of magnitude higher in the presence of humic substances compared to media without. Similar results were obtained when potential nitrate-dependent iron oxidation activity was determined in soil samples. In summary, this study showed that humic substances significantly enhanced the growth and activity of autotrophic nitrate-dependent iron-oxidizing microorganisms, probably by chelation of iron.

  5. Effects of mineral surfaces on pyrene partitioning to well-characterized humic substances.

    PubMed

    Hur, Jin; Schlautman, Mark A

    2004-01-01

    Mineral surfaces can alter the ability of humic substances (HS) to bind hydrophobic organic contaminants. In this study, complete adsorption (i.e., to avoid HS adsorptive fractionation effects) of a small subset of well-characterized terrestrial and aquatic HS on kaolinite and hematite significantly changed their subsequent organic carbon-normalized partition coefficients K(ads)(oc) for pyrene relative to their original respective dissolved organic carbon-normalized partition coefficients K(dis)(oc). Parallel experiments with ultrafiltration (UF) fractions obtained from purified Aldrich humic acid (PAHA) (Aldrich Chemical, Milwaukee, WI) gave similar results. The heterogeneity among the PAHA UF fractions was examined via their mineral surface adsorption characteristics and their subsequent ability to bind pyrene. As expected, variations in maximum adsorption densities (q(max)), Langmuir adsorption constants (K(q)), and pyrene K(ads)(oc) values were observed among the PAHA UF fractions. However, general trends of q(max), K(q), and pyrene log K(ads)(oc) values for the PAHA UF fractions versus the logarithm of their weight-average molecular weights (MW(w)) did not typically match the corresponding trends obtained with the four aquatic and terrestrial HS. In general, an ideal mixture competitive adsorption model gave reasonable predictions for PAHA sorption to kaolinite and hematite based on their corresponding UF isotherm parameters. Ideal mixture predictions of pyrene partitioning to adsorbed PAHA from the corresponding UF fraction results were better for kaolinite versus hematite, indicating that the underlying mineral surface can alter the effects of HS heterogeneity on hydrophobic organic contaminant sorption.

  6. Effect of humic substances on phosphorus removal by struvite precipitation.

    PubMed

    Zhou, Zhen; Hu, Dalong; Ren, Weichao; Zhao, Yuzeng; Jiang, Lu-Man; Wang, Luochun

    2015-12-01

    Humic substances (HS) are a major fraction of dissolved organic matters in wastewater. The effect of HS on phosphorus removal by struvite precipitation was investigated using synthetic wastewater under different initial pH values, Mg/P molar ratios and HS concentrations. The composition, morphology and thermal properties of harvested precipitates were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM) and thermo-gravimetric analysis (TGA), respectively. It showed that inhibition effect of HS reached its maximum value of 48.9% at pH 8.0, and decreased to below 10% at pH>9.0. The increase of Mg/P ratio enhanced phosphorus removal efficiency, and thus reduced the influence of HS on struvite precipitation. At pH 9.0, the inhibitory effect of initial HS concentration matched the modified Monod model with half maximum inhibition concentration of 356mgL(-1), and 29% HS was removed in conjunction with struvite crystallisation. XRD analysis revealed that the crystal form of struvite precipitates was changed in the presence of HS. The morphology of harvested struvite was transformed from prismatic to pyramid owing to the coprecipitation of HS on crystal surface. TGA results revealed that the presence of HS could compromise struvite purity. PMID:26151483

  7. Separation methods in the chemistry of humic substances.

    PubMed

    Janos, Pavel

    2003-01-01

    Separation methods are widely used to isolate humic substances (HSs), to fractionate them before further investigation, and to obtain information about their structure and properties. Among the chromatographic methods, techniques based on a size-exclusion effect appear to be most useful, as they allow us to relate elution data to the molecular mass distribution of HSs. The limitations of this approach are discussed in this review. Gas chromatography with mass spectrometric detection is typically used to identify the products of pyrolysis or thermochemolysis of HSs; this technique is considered most important in the structural investigation of HSs. Electrophoretic methods (especially capillary zone electrophoresis) provide detailed characterization of HSs, but it is very difficult to relate the electrophoretic data to any specific subfraction, structure or properties of HSs. The electrophoretic patterns are often called "fingerprints" and can potentially be used for the identification and classification of HSs. This is limited, however, by the great diversity of the procedures employed and by the low degree of harmonization--no data on reproducibility and between-laboratory comparability are available. The same holds true, to a certain degree, for most methods utilized for the characterization of HSs. Separation methods play an important role in the examination of the interactions of HSs with heavy metals and other chemical pollutants. They allow us to determine binding constants and other data necessary to predict the mobility of chemical pollutants in the environment.

  8. The Humic Like Substances in biomass burning emissions

    NASA Astrophysics Data System (ADS)

    Baduel, C.; Voisin, D.; Jaffrezo, J. L.; Legrand, M.

    2009-04-01

    Several studies have shown that "HUmic LIke Substances" (HULIS) may represent a significant fraction (15 and 40 % in mass) of the organic carbon (OC) of atmospheric aerosols. Concentrations indicate seasonal variations with one maximum in summer and another one in winter. This last maximum is tentatively linked to emissions from bimoass combustion, with HULIS coming from the incomplete breakdown of polymeric carbohydrates and lignin products. A second way for HULIS formation can be the transformation of pyrogenic semi-volatile organic compounds through condensation reactions with other molecules. It is also proposed that HULIS can derive from the reaction of soot particles with atmospheric oxidants. This last process can be important for any combustion-generated aerosol. This work is focused on HULIS in samples impacted by combustion processes. It presents results obtained for two HULIS fractions: water soluble HULIS and "Total" HULIS, the fraction extracted in alkali media to extract the more hydrophobic compounds. Samplings were carried out in very close proximity to combustion-generated aerosol activity: in a tunnel and nearby garden fires; in cities during burning season etc. The results indicate some variability in the characteristics of HULIS obtained from these different sources.

  9. Supporting the process of removing humic substances on activated carbon.

    PubMed

    Olesiak, Paulina; Stępniak, Longina

    2014-01-01

    This study is focused on biosorption process used in water treatment. The process has a number of advantages and a lot of research has been done into its intensification by means of ultrasonic modification of solutions. The study carried out by the authors leads to the conclusion that sonication of organic solutions allows for extension of the time of operation of carbon beds. For the analysis of the results obtained during the sorption of humic substances (HS) from the solution dependencies UV/UV₀ or DOC/DOC₀ were used. In comparative studies the effectiveness of sorption and sonosorption (UV/UV₀) shows that the share of ultrasounds (US) is beneficial for extension of time deposit, both at a flow rate HS solution equal to 1 m/h and 5 m/h. Analysis of the US impact sorption on HS sorption in a biological fluidized bed, both prepared from biopreparat and the activated sludge confirms the higher efficiency compared to sonobiosorption than biosorption. These results confirm the degree of reduction UV₂₅₄/UV₀ and DOC/DOC₀ for the same processes. EMS index also confirms the improvement of HSbiodegradation by sludge microorganisms.

  10. Hyphal growth and mycorrhiza formation by the arbuscular mycorrhizal fungus Glomus claroideum BEG 23 is stimulated by humic substances.

    PubMed

    Gryndler, M; Hrselová, H; Sudová, R; Gryndlerová, H; Rezácová, V; Merhautová, V

    2005-11-01

    Effects of humic substances (humic acid or fulvic soil extract) or saprophytic microorganisms (Paecilomyces lilacinus and an unidentified actinomycete) on growth of mycelium and mycorrhiza formation by Glomus claroideum BEG23 were studied in a hydroponic system. Humic substances stimulated root colonization and production of extraradical mycelium by the mycorrhizal fungus. Both humic and fulvic acids tended to decrease populations of culturable bacteria and fungi in the cultivation system, indicating a moderately antibiotic activity. The addition of saprophytic microorganisms able to use humic substances to the cultivation system further stimulated the development of the mycorrhizal fungus. However, stimulation of G. claroideum was also observed when the saprophytic microorganisms were heat-killed, suggesting that their effect was not linked to a specific action on humic substances. The results indicate that humic substances may represent a stimulatory component of the soil environment with respect to arbuscular mycorrhizal fungi.

  11. Effects of humic substance on precipitation and aggregation of zinc sulfide nanoparticles

    USGS Publications Warehouse

    Deonarine, Amrika; Lau, Boris L.T.; Aiken, George R.; Ryan, Joseph N.; Hsu-Kim, Heileen

    2011-01-01

    Nanoparticulate metal sulfides such as ZnS can influence the transport and bioavailability of pollutant metals in anaerobic environments. The aim of this work was to investigate how the composition of dissolved natural organic matter (NOM) influences the stability of zinc sulfide nanoparticles as they nucleate and aggregate in water with dissolved NOM. We compared NOM fractions that were isolated from several surface waters and represented a range of characteristics including molecular weight, type of carbon, and ligand density. Dynamic light scattering was employed to monitor the growth and aggregation of Zn-S-NOM nanoparticles in supersaturated solutions containing dissolved aquatic humic substances. The NOM was observed to reduce particle growth rates, depending on solution variables such as type and concentration of NOM, monovalent electrolyte concentration, and pH. The rates of growth increased with increasing ionic strength, indicating that observed growth rates primarily represented aggregation of charged Zn-S-NOM particles. Furthermore, the observed rates decreased with increasing molecular weight and aromatic content of the NOM fractions, while carboxylate and reduced sulfur content had little effect. Differences between NOM were likely due to properties that increased electrosteric hindrances for aggregation. Overall, results of this study suggest that the composition and source of NOM are key factors that contribute to the stabilization and persistence of zinc sulfide nanoparticles in the aquatic environment.

  12. Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles

    USGS Publications Warehouse

    Deonarine, A.; Lau, B.L.T.; Aiken, G.R.; Ryan, J.N.; Hsu-Kim, H.

    2011-01-01

    Nanoparticulate metal sulfides such as ZnS can influence the transport and bioavailability of pollutant metals in anaerobic environments. The aim of this work was to investigate how the composition of dissolved natural organic matter (NOM) influences the stability of zinc sulfide nanoparticles as they nucleate and aggregate in water with dissolved NOM. We compared NOM fractions that were isolated from several surface waters and represented a range of characteristics including molecular weight, type of carbon, and ligand density. Dynamic light scattering was employed to monitor the growth and aggregation of Zn-S-NOM nanoparticles in supersaturated solutions containing dissolved aquatic humic substances. The NOM was observed to reduce particle growth rates, depending on solution variables such as type and concentration of NOM, monovalent electrolyte concentration, and pH. The rates of growth increased with increasing ionic strength, indicating that observed growth rates primarily represented aggregation of charged Zn-S-NOM particles. Furthermore, the observed rates decreased with increasing molecular weight and aromatic content of the NOM fractions, while carboxylate and reduced sulfur content had little effect. Differences between NOM were likely due to properties that increased electrosteric hindrances for aggregation. Overall, results of this study suggest that the composition and source of NOM are key factors that contribute to the stabilization and persistence of zinc sulfide nanoparticles in the aquatic environment. ?? 2011 American Chemical Society.

  13. Synthetic humic substances and their use for remediation of contaminated environments

    NASA Astrophysics Data System (ADS)

    Dudare, Diana; Klavins, Maris

    2014-05-01

    Soils are increasingly subjected to different chemical stresses, because of increasing industrialization process and other factors. Different anthropogenic compounds (organic or inorganic in nature) upon entering the soil, may not only influence its productivity potential, but may also affect the quality of groundwater and food chain. Consequently, soils of different environments contain a complex mixture of contaminants, such as oil products, metals, organic solvents, acids, bases and radionuclides. Thereby greater focus should be paid to risk assessment and evaluation of remedial techniques in order to restore the quality of the soil and groundwater. The treatment technologies presently used to remove contaminants are physical, chemical and biological technologies. Many functional groups in the structure of humic substances determine their ability to interact with metal ions forming stable complexes and influencing speciation of metal ions in the environment, as well mobility, behaviour and speciation forms in the environment. Humic substances are suggested for use in the remediation of environments contaminated with metals, owing to complex forming properties. Several efforts have been undertaken with respect to synthesize humic substances for their structural studies. At the same time the real number of methods suggested for synthesis of humic substances is highly limited and their synthesis in general has been used mostly for their structural analysis. The present study deals with development of approaches for synthesis of humic substances with increased complex forming ability in respect to metal ions. Industrially produced humic substances (TEHUM) were used for comparison and after their modification their properties were analyzed for their elemental composition; functional group content changes in spectral characteristics. Synthetic humic substances showed significant differences in the number of functional groups and in ability to interact with the metal

  14. Role of humic substances in the degradation pathways and residual antibacterial activity during the photodecomposition of the antibiotic ciprofloxacin in water.

    PubMed

    Porras, Jazmín; Bedoya, Cristina; Silva-Agredo, Javier; Santamaría, Alexander; Fernández, Jhon J; Torres-Palma, Ricardo A

    2016-05-01

    This study focuses on the photo-transformation, in presence of humic substances (HSs), of ciprofloxacin (CIP), a commonly-used fluoroquinolone antibiotic whose presence in aquatic ecosystems is a health hazard for humans and other living organisms. HSs from the International Humic Substances Society (Elliott humic acid and fulvic acid, Pahokee peat humic acid and Nordic lake) and a humic acid extracted from modified coal (HACM) were tested for their ability to photodegrade CIP. Based on kinetic and analytical studies, it was possible to establish an accelerating effect on the rate of CIP decomposition caused by the humic substances. This effect was associated with the photosensitized capacity of the HSs to facilitate energy transfer from an excited humic state to the ground state of ciprofloxacin. Except for Nordic lake, which experienced a lower positive effect, no significant differences in the CIP transformation were found among the different humic acids examined. The photochemistry of CIP can be modified by parameters such as pH, CIP or oxygen concentration. The irradiation of this antibiotic in the presence of HACM showed that antimicrobial activity was negligible after 14 h for E. coli and 24 h for S. aureus. In contrast, the antimicrobial activity was only slightly decreased after 24 h of irradiation by direct photolysis. Although mineralization of CIP irradiation in the presence of a HACM solution was not achieved, biodegradability was achieved after 12 h of irradiation, indicating that microorganisms within the environment can easily degrade CIP photochemical by-products. PMID:26921708

  15. Role of humic substances in the degradation pathways and residual antibacterial activity during the photodecomposition of the antibiotic ciprofloxacin in water.

    PubMed

    Porras, Jazmín; Bedoya, Cristina; Silva-Agredo, Javier; Santamaría, Alexander; Fernández, Jhon J; Torres-Palma, Ricardo A

    2016-05-01

    This study focuses on the photo-transformation, in presence of humic substances (HSs), of ciprofloxacin (CIP), a commonly-used fluoroquinolone antibiotic whose presence in aquatic ecosystems is a health hazard for humans and other living organisms. HSs from the International Humic Substances Society (Elliott humic acid and fulvic acid, Pahokee peat humic acid and Nordic lake) and a humic acid extracted from modified coal (HACM) were tested for their ability to photodegrade CIP. Based on kinetic and analytical studies, it was possible to establish an accelerating effect on the rate of CIP decomposition caused by the humic substances. This effect was associated with the photosensitized capacity of the HSs to facilitate energy transfer from an excited humic state to the ground state of ciprofloxacin. Except for Nordic lake, which experienced a lower positive effect, no significant differences in the CIP transformation were found among the different humic acids examined. The photochemistry of CIP can be modified by parameters such as pH, CIP or oxygen concentration. The irradiation of this antibiotic in the presence of HACM showed that antimicrobial activity was negligible after 14 h for E. coli and 24 h for S. aureus. In contrast, the antimicrobial activity was only slightly decreased after 24 h of irradiation by direct photolysis. Although mineralization of CIP irradiation in the presence of a HACM solution was not achieved, biodegradability was achieved after 12 h of irradiation, indicating that microorganisms within the environment can easily degrade CIP photochemical by-products.

  16. Determination of the phenolic-group capacities of humic substances by non-aqueous titration technique.

    PubMed

    Kirishima, Akira; Ohnishi, Takashi; Sato, Nobuaki; Tochiyama, Osamu

    2009-07-15

    The phenolic-group capacities of five humic substances, such as, the Aldrich humic acid, the humic and fulvic acids extracted from a soil, the humic and fulvic acids extracted from a peat have been precisely determined by the non-aqueous potentiometric titration technique. The titration by KOH in the mixed solvent of DMSO:2-propanol:water=80:19.3:0.7 at [K(+)]=0.02 M enabled to measure the potential change in a wide range of pOH (=-log[OH(-)]), and thus to determine the capacities of phenolic groups which could not be precisely determined in the aqueous titration. The results of the titration revealed that the mean protonation constants of the phenolic groups were nearly the same for all humic substances and close to that of phenol in the same medium, indicating that each phenolic-group in the humic substances is rather isolated and is not electronically affected by other affecting groups in the humic macromolecule.

  17. Humic substances-mediated microbial reductive dehalogenation of triclosan

    NASA Astrophysics Data System (ADS)

    Wang, L.; Xu, S.; Yang, Y.

    2015-12-01

    The role of natural organic matter in regulating the redox reactions as an electron shuttle has received lots of attention, because it can significantly affect the environmental degradation of contaminants and biogeochemical cycles of major elements. However, up to date, limited studies examined the role of natural organic matter in affecting the microbial dehalogenation of emergent organohalides, a critical detoxification process. In this study, we investigated the humic substance (HS)-mediated microbial dehalogenation of triclosan, a widely used antimicrobial agent. We found that the presence of HS stimulated the microbial degradation of triclosan by Shewanella putrefaciens CN-32. In the absence of HS, the triclosan was degraded gradually, achieving 8.6% residual at 8 days. With HS, the residual triclosan was below 2% after 4 days. Cl- was confirmed by ion chromatography analysis, but the dehalogenation processes and other byproducts warrant further investigations. The impact of HS on the degradation of triclosan was highly dependent on the concentration of HS. When the HS was below 15 mg/L, the degradation rate constant for triclosan increased with the organic carbon concentration. Beyond that point, the increased organic carbon concentration decreased the degradation of triclosan. Microbially pre-reduced HS abiotically reduced triclosan, testifying the electron shuttling processes. These results indicate that dissolved organic matter plays a dual role in regulating the degradation of triclosan: it mediates electron transport and inhibits the bioavailability through complexation. Such novel organic matter-mediated reactions for organohalides are important for evaluating the natural attenuation of emergent contaminants and designing cost-effective engineering treatment.

  18. Humic substances interfere with phosphate removal by Lanthanum modified clay in controlling eutrophication.

    PubMed

    Lürling, Miquel; Waajen, Guido; van Oosterhout, Frank

    2014-05-01

    The lanthanum (La) modified bentonite Phoslock(®) has been proposed as dephosphatisation technique aiming at removing Filterable Reactive Phosphorus (FRP) from the water and blocking the release of FRP from the sediment. In the modified clay La is expected the active ingredient. We conducted controlled laboratory experiments to measure the FRP removal by Phoslock(®) in the presence and absence of humic substances, as La complexation with humic substances might lower the effectiveness of La (Phoslock(®)) to bind FRP. The results of our study support the hypothesis that the presence of humic substances can interfere with the FRP removal by the La-modified bentonite. Both a short-term (1 d) and long-term (42 d) experiment were in agreement with predictions derived from chemical equilibrium modelling and showed lower FRP removal in presence of humic substances. This implies that in DOC-rich inland waters the applicability of exclusively Phoslock(®) as FRP binder should be met critically. In addition, we observed a strong increase of filterable La in presence of humic substances reaching in a week more than 270 μg La l(-1) that would infer a violation of the Dutch La standard for surface water, which is 10.1 μg La l(-1). Hence, humic substances are an important factor that should be given attention when considering chemical FRP inactivation as they might play a substantial role in lowering the efficacy of metal-based FRP-sorbents, which makes measurements of humic substances (DOC) as well as controlled experiments vital. PMID:24565799

  19. Humic substances interfere with phosphate removal by Lanthanum modified clay in controlling eutrophication.

    PubMed

    Lürling, Miquel; Waajen, Guido; van Oosterhout, Frank

    2014-05-01

    The lanthanum (La) modified bentonite Phoslock(®) has been proposed as dephosphatisation technique aiming at removing Filterable Reactive Phosphorus (FRP) from the water and blocking the release of FRP from the sediment. In the modified clay La is expected the active ingredient. We conducted controlled laboratory experiments to measure the FRP removal by Phoslock(®) in the presence and absence of humic substances, as La complexation with humic substances might lower the effectiveness of La (Phoslock(®)) to bind FRP. The results of our study support the hypothesis that the presence of humic substances can interfere with the FRP removal by the La-modified bentonite. Both a short-term (1 d) and long-term (42 d) experiment were in agreement with predictions derived from chemical equilibrium modelling and showed lower FRP removal in presence of humic substances. This implies that in DOC-rich inland waters the applicability of exclusively Phoslock(®) as FRP binder should be met critically. In addition, we observed a strong increase of filterable La in presence of humic substances reaching in a week more than 270 μg La l(-1) that would infer a violation of the Dutch La standard for surface water, which is 10.1 μg La l(-1). Hence, humic substances are an important factor that should be given attention when considering chemical FRP inactivation as they might play a substantial role in lowering the efficacy of metal-based FRP-sorbents, which makes measurements of humic substances (DOC) as well as controlled experiments vital.

  20. Humic substances in drinking water and the epidemiology of thyroid disease.

    PubMed

    Laurberg, Peter; Andersen, Stig; Pedersen, Inge Bülow; Ovesen, Lars; Knudsen, Nils

    2003-01-01

    Thyroid diseases are common in all populations but the type and frequency depends on environmental factors. In Denmark geographical differences in iodine intake are caused by different iodine contents of drinking water, which varies from < 1 to 139 microg iodine per litre. Comparative epidemiologic studies have demonstrated considerable differences in type and occurrence of thyroid disease with more goitre and hyperthyroidism in Aalborg with water iodine content around 5 microg/L, and more hypothyroidism in Copenhagen with water iodine around 20 microg/L. In Denmark, iodine in ground water is bound in humic substances, which have probably leached from marine sediments in the aquifers. Interestingly, humic substances in water from other parts of the world have goitrogenic properties, especially humic substances from coal and shale. Humic substances are heterogeneous mixtures of naturally occurring molecules, produced by decomposition of plant and animal tissues. The effect of humic substances in drinking water on the epidemiology of thyroid disease probably depends on the source of aquifer sediments.

  1. Identification and characterization of humic substances-degrading bacterial isolates from an estuarine environment.

    PubMed

    Esham; Ye; Moran

    2000-12-01

    Bacterial isolates were obtained from enrichment cultures containing humic substances extracted from estuarine water using an XAD-8 resin. Eighteen isolates were chosen for phylogenetic and physiological characterization based on numerical importance in serial dilutions of the enrichment culture and unique colony morphology. Partial sequences of the 16S rRNA genes indicated that six of the isolates were associated with the alpha subclass of Proteobacteria, three with the gamma-Proteobacteria, and nine with the Gram-positive bacteria. Ten isolates degraded at least one (and up to six) selected aromatic single-ring compounds. Six isolates showed ability to degrade [(14)C]humic substances derived from the dominant salt marsh grass in the estuary from which they were isolated (Spartina alterniflora), mineralizing 0.4-1.1% of the humic substances over 4 weeks. A mixture of all 18 isolates did not degrade humic substances significantly faster than any of the individual strains, however, and no isolate degraded humic substances to the same extent as the natural marine bacterial community (3.0%). Similar studies with a radiolabeled synthetic lignin ([beta-(14)C]dehydropolymerisate) showed measurable levels of degradation by all 18 bacteria (3.0-8.8% in 4 weeks), but mineralization levels were again lower than that observed for the natural marine bacterial community (28.2%). Metabolic capabilities of the 18 isolates were highly variable and generally did not map to phylogenetic affiliation.

  2. Effect of humic substance photodegradation on bacterial growth and respiration in lake water

    USGS Publications Warehouse

    Anesio, A.M.; Graneli, W.; Aiken, G.R.; Kieber, D.J.; Mopper, K.

    2005-01-01

    This study addresses how humic substance (HS) chemical composition and photoreactivity affect bacterial growth, respiration, and growth efficiency (BGE) in lake water. Aqueous solutions of HSs from diverse aquatic environments representing different dissolved organic matter sources (autochthonous and allochthonous) were exposed to artificial solar UV radiation. These solutions were added to lake water passed through a 0.7-??m-pore-size filter (containing grazer-free lake bacteria) followed by dark incubation for 5, 43, and 65 h. For the 5-h incubation, several irradiated HSs inhibited bacterial carbon production (BCP) and this inhibition was highly correlated with H 2O2 photoproduction. The H2O2 decayed in the dark, and after 43 h, nearly all irradiated HSs enhanced BCP (average 39% increase relative to nonirradiated controls, standard error = 7.5%, n = 16). UV exposure of HSs also increased bacterial respiration (by ???18%, standard error = 5%, n = 4), but less than BCP, resulting in an average increase in BGE of 32% (standard error = 10%, n = 4). Photoenhancement of BCP did not correlate to HS bulk properties (i.e., elemental and chemical composition). However, when the photoenhancement of BCP was normalized to absorbance, several trends with HS origin and extraction method emerged. Absorbance-normalized hydrophilic acid and humic acid samples showed greater enhancement of BCP than hydrophobic acid and fulvic acid samples. Furthermore, absorbance-normalized autochthonous samples showed ???10-fold greater enhancement of BCP than allochthonous-dominated samples, indicating that the former are more efficient photoproducers of biological substrates. Copyright ?? 2005, American Society for Microbiology. All Rights Reserved.

  3. Physicochemical and ion-binding properties of highly aliphatic humic substances extracted from deep sedimentary groundwater.

    PubMed

    Saito, Takumi; Terashima, Motoki; Aoyagi, Noboru; Nagao, Seiya; Fujitake, Nobuhide; Ohnuki, Toshihiko

    2015-08-01

    Humic substances (HSs) are ubiquitous in various aquatic systems and play important roles in many geochemical processes. There is increasing evidence of the presence of HSs in deep groundwater; nevertheless, their ion binding properties are largely unknown. In this study we investigated the physicochemical and ion-binding properties of humic and fulvic acids extracted from deep sedimentary groundwater. The binding isotherms of protons (H(+)) and copper (Cu(2+)) were measured by potentiometry and fitted to the NICA-Donnan model, and the obtained parameters were compared with the generic parameters of the model, which are the average parameters for HSs from surface environments. The deep groundwater HSs were different from surface HSs, having high aliphaticities, high sulfur contents, and small molecular sizes. Their amounts of acidic functional groups were comparable to or slightly larger than those of surface HSs; however, the magnitude of Cu(2+) binding to the deep groundwater HSs was smaller. The NICA-Donnan model attributed this to the binding of Cu(2+) to chemically homogeneous low affinity sites, which presumably consist of carboxylic groups, via mono-dentate coordination at relatively low pH. The binding mode tended to shift to multi-dentate coordination with carboxylic groups and more heterogeneous alcoholic/phenolic groups at higher pH. X-ray absorption spectroscopy also revealed that Cu(2+) binds to O/N containing functional groups and to a lesser extent S containing functional groups as its divalent from. This study shows the particularity of the deep groundwater HSs in terms of their physicochemical and ion-binding properties, compared with surface HSs. PMID:26166584

  4. Humic substances increase survival of freshwater shrimp Caridina sp. D to acid mine drainage.

    PubMed

    Holland, Aleicia; Duivenvoorden, Leo J; Kinnear, Susan H W

    2013-02-01

    Humic substances (HS) are known to decrease the toxicity of heavy metals to aquatic organisms, and it has been suggested that they can provide buffering protection in low pH conditions. Despite this, little is known about the ability for HS to increase survival to acid mine drainage (AMD). In this study, the ability of HS to increase survival of the freshwater shrimp (Caridina sp. D sensu Page et al. in Biol Lett 1:139-142, 2005) to acid mine drainage was investigated using test waters collected from the Mount Morgan open pit in Central Queensland with the addition of Aldrich humic acid (AHA). The AMD water from the Mount Morgan open pit is highly acidic (pH 2.67) as well as contaminated with heavy metals (1780 mg/L aluminum, 101 mg/L copper [Cu], 173 mg/L manganese, 51.8 mg/L zinc [Zn], and 51.8 mg/L iron). Freshwater shrimp were exposed to dilutions in the range of 0.5 % to 5 % AMD water with and without the addition of 10 or 20 mg/L AHA. In the absence of HS, all shrimp died in the 2.5 % AMD treatment. In contrast, addition of HS increased survival in the 2.5 % AMD treatment by ≤66 % as well as significantly decreased the concentration of dissolved Cu, cobalt, cadmium, and Zn. The decreased toxicity of AMD in the presence of HS is likely to be due to complexation and precipitation of heavy metals with the HS; it is also possible that HS caused changes to the physiological condition of the shrimp, thus increasing their survival. These results are valuable in contributing to an improved understanding of potential role of HS in ameliorating the toxicity of AMD environments. PMID:23135152

  5. Persistent toxic substances in Mediterranean aquatic species.

    PubMed

    Miniero, Roberto; Abate, Vittorio; Brambilla, Gianfranco; Davoli, Enrico; De Felip, Elena; De Filippis, Stefania P; Dellatte, Elena; De Luca, Silvia; Fanelli, Roberto; Fattore, Elena; Ferri, Fabiola; Fochi, Igor; Rita Fulgenzi, Anna; Iacovella, Nicola; Iamiceli, Anna Laura; Lucchetti, Dario; Melotti, Paolo; Moret, Ivo; Piazza, Rossano; Roncarati, Alessandra; Ubaldi, Alessandro; Zambon, Stefano; di Domenico, Alessandro

    2014-10-01

    Fish and fishery products may represent one of the main sources of dietary exposure to persistent toxic substances (PTSs) such as polychlorinated dibenzodioxins, dibenzofurans, and biphenyls; polybromodiphenyl ethers; organochlorine pesticides; perfluorooctanoic acid and perfluorooctane sulfonate; and inorganic mercury and methyl mercury. In this study, PTS contamination of Mediterranean fish and crustaceans caught in Italian coastal waters was investigated in order to increase the representativeness of the occurrence database for wild species. The objectives were to verify the suitability of regulatory limits for PTSs, identify background concentrations values, if any, and examine the possible sources of variability when assessing the chemical body burdens of aquatic species. Twelve wild species of commercial interest and two farmed fish species were chosen. Excluding methyl mercury, chemical concentrations found in wild species fell generally towards the low ends of the concentration ranges found in Europe according to EFSA database and were quite lower than the tolerable maximum levels established in the European Union; farmed fish always showed contamination levels quite lower than those detected in wild species. The data obtained for wild species seemed to confirm the absence of local sources of contamination in the chosen sampling areas; however, species contamination could exceed regulatory levels even in the absence of specific local sources of contamination as a result of the position in the food web and natural variability in species' lifestyle. A species-specific approach to the management of contamination in aquatic organisms is therefore suggested as an alternative to a general approach based only on contaminant body burden. A chemical-specific analysis performed according to organism position in the food chain strengthened the need to develop this approach. PMID:25020099

  6. Persistent toxic substances in Mediterranean aquatic species.

    PubMed

    Miniero, Roberto; Abate, Vittorio; Brambilla, Gianfranco; Davoli, Enrico; De Felip, Elena; De Filippis, Stefania P; Dellatte, Elena; De Luca, Silvia; Fanelli, Roberto; Fattore, Elena; Ferri, Fabiola; Fochi, Igor; Rita Fulgenzi, Anna; Iacovella, Nicola; Iamiceli, Anna Laura; Lucchetti, Dario; Melotti, Paolo; Moret, Ivo; Piazza, Rossano; Roncarati, Alessandra; Ubaldi, Alessandro; Zambon, Stefano; di Domenico, Alessandro

    2014-10-01

    Fish and fishery products may represent one of the main sources of dietary exposure to persistent toxic substances (PTSs) such as polychlorinated dibenzodioxins, dibenzofurans, and biphenyls; polybromodiphenyl ethers; organochlorine pesticides; perfluorooctanoic acid and perfluorooctane sulfonate; and inorganic mercury and methyl mercury. In this study, PTS contamination of Mediterranean fish and crustaceans caught in Italian coastal waters was investigated in order to increase the representativeness of the occurrence database for wild species. The objectives were to verify the suitability of regulatory limits for PTSs, identify background concentrations values, if any, and examine the possible sources of variability when assessing the chemical body burdens of aquatic species. Twelve wild species of commercial interest and two farmed fish species were chosen. Excluding methyl mercury, chemical concentrations found in wild species fell generally towards the low ends of the concentration ranges found in Europe according to EFSA database and were quite lower than the tolerable maximum levels established in the European Union; farmed fish always showed contamination levels quite lower than those detected in wild species. The data obtained for wild species seemed to confirm the absence of local sources of contamination in the chosen sampling areas; however, species contamination could exceed regulatory levels even in the absence of specific local sources of contamination as a result of the position in the food web and natural variability in species' lifestyle. A species-specific approach to the management of contamination in aquatic organisms is therefore suggested as an alternative to a general approach based only on contaminant body burden. A chemical-specific analysis performed according to organism position in the food chain strengthened the need to develop this approach.

  7. Arsenic and Humic Substances in Alluvial Aquifers of Bangladesh and Taiwan: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Reza, A.; Jean, J.; Lee, M.

    2007-12-01

    Humic substances in groundwater samples from the arsenicosis area in Bangladesh, northern Taiwan and the Blackfoot disease (BFD) area in southwestern Taiwan were characterized by Fluorescence Spectroscopy (FS), and Fourier Transform Infrared Spectroscopy (FTIR) analyses. As, Mn, Fe, Sr, Se levels in these groundwaters were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). Major ions and selected water parameters including pH, electrical conductivity (EC), oxidation reduction potential (ORP), and dissolved oxygen (DO) were also determined. Groundwater As concentration ranges from 1.4 to 140 μg/L in the alluvial aquifers located in the Chapai-Nawabganj district of Bangladesh. As levels in groundwater ranges from 0.5 to 560 μg/L in the Ilan Plain of northern Taiwan. Geothermal waters in the Beitou hot springs contain high concentrations of inorganic As (up to 3,975 μg/L); geothermal activity is likely responsible for the significant discharge of arsenic to the downstream Kwandu Plain. As levels in the BFD area of southwestern Taiwan ranges from 25 μg/L to 967 μg/L. Interestingly, groundwater arsenic in the BFD area of southwestern Taiwan correlates positively with strong fluorescence (maximum relative fluorescence intensity upto 495) and the content of humic substances. In contrast, As-rich groundwaters from Chapai-Nawabganj district of Bangladesh and northern part of Taiwan generally have relatively low content of humic substances with weak fluorescence (maximum relative fluorescence intensity upto 65 and 121, respectively). Moreover, results of FTIR analysis show that humic substances extracted from water samples of the Taiwan BFD area contain phenolic and amines groups of humic substances, which tend to form organo-metal complexes with As and other trace elements. High levels of As and humic substances probably play a critical role in causing the Black foot disease in Chia-Nan plain of southwestern Taiwan.

  8. Organic Geochemistry and Sources of Natural Aquatic Foams

    USGS Publications Warehouse

    Mills, M.S.; Thurman, E.M.; Ertel, J.; Thorn, K.A.

    1996-01-01

    Aquatic foams and stream-water samples were collected from two pristine sites for humic substances isolation and characterization. Biomarker compounds identified in foam and stream humic substances included phospholipid fatty acids, steroids, and lignin. Results showed that foams had a 10 to 20 fold greater DOC concentration and were enriched in humic substances (90% by weight of DOC) that showed increased hydrophobicity, aliphatic character, and compositional complexity compared to host stream humic substances (55 to 81% by weight of DOC). Foam humic substances also were enriched in humic acid (36 to 83% by weight) compared to host stream humic substances (10 to 14% by weight). Biomarkers, which contributed less than 5% by weight to the DOC pool, indicated higher plants, bacteria, algae, fungi, and diatoms as DOC sources. It is proposed that aquatic foams may be important media for the concentration and transport of organic substances in the aquatic environment.

  9. Fluorescence spectroscopy as a means of distinguishing fulvic and humic acids from dissolved and sedimentary aquatic sources and terrestrial sources

    NASA Astrophysics Data System (ADS)

    Senesi, Nicola; Miano, Teodoro M.; Provenzano, Maria Rosaria

    Thirteen fulvic acids (FA) and humic acids (HA) isolated from river waters and sediment, marine sediments, leonardite, soils, and paleosol, have been investigated by fluorescence spectroscopy in the emission, excitation and, partly, synchronous scan excitation modes. Emission spectra are generally characterized by a unique broad band, whereas excitation spectra exhibit a variable number of peaks or shoulders of various intensity; these peaks are particularly well-resolved for sedimentary HA samples. A decrease in the relative intensity of fluorescence, which is associated with a red-shift (longer wavelengths) of both the emission maximum and the main excitation peaks, is observed when passing from dissolved aquatic and soil FA to river and marine sedimentary HA, to leonardite and soil HA, and, finally, to paleosol HA. Evident differences are shown in the relative intensity and wavelength maxima, measured in any mode, between soil FA and HA from the same source. For FA and HA of various nature and origin, the fluorescence is suggested to be caused by chemically different structural units. These units fluoresce from the blue-violet to the green and consist of variously extended, condensed, aromatic and/or heterocyclic ring systems, with a high degree of electronic conjugation and bearing suitable hydroxyl, alkoxyl and carbonyl groups (e.g. salicyl, cinnamic and hydroxybenzoic derivatives, naphtols, naphtoquinones, coumarin), and quinoline-derivatives, flavonoids and Schiffbase derivatives. Fluorescence properties of humic substances may represent an additional diagnostic criterium useful in distinguishing between FA and HA from the same or various natural sources.

  10. UV-induced changes in humic acid and its effects on PAH phototoxicity to aquatic macrophytes

    SciTech Connect

    Gensemer, R.W.; Caggiano, M.

    1995-12-31

    The authors are using both photosynthetic biomarkers and population-level endpoints to examine the extent and mechanisms by which humic acid ameliorates the toxicity of the polycyclic aromatic hydrocarbon (PAH) anthracene to the aquatic macrophyte Lemna gibba. Toxicity bioassays using anthracene were run in the presence of 0, 2.5, 5 and 10 mg{center_dot}L{sup {minus}1} of a commercial humic acid which was pretreated to remove insoluble materials. Because UV light significantly affects both PAH toxicity and, potentially, the protective effects of humic acid, plants were incubated both under visible light and under simulate solar radiation (SSR) which mimics the relative UV levels found in natural sunlight. Population-level responses from static-renewal toxicity bioassays were compared to physiological responses determined using plant chlorophyll content and chlorophyll fluorescence induction assays performed at various times throughout the exposure period. Results suggested that humic acid ameliorated the inhibitory effects of anthracene by significantly increasing population growth- and chlorophyll-based EC50 values. This was true both when experiments were performed in visible and SSR, although the inhibitory effects of the PAHs were more pronounced in the presence of UV light. UV also tended to diminish the capability of HA to ameliorate PAH toxicity, presumably owing to photooxidized changes in the ability of HA to control bioavailability.

  11. Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades

    USGS Publications Warehouse

    Hoch, A.R.; Reddy, M.M.; Aiken, G.R.

    2000-01-01

    The crystallization of calcium carbonate minerals plays an integral role in the water chemistry of terrestrial ecosystems. Humic substances, which are ubiquitous in natural waters, have been shown to reduce or inhibit calcite crystal growth in experiments. The purpose of this study is to quantify and understand the kinetic effects of hydrophobic organic acids isolated from the Florida Everglades and a fulvic acid from Lake Fryxell, Antarctica, on the crystal growth of calcite (CaCO3). Highly reproducible calcite growth experiments were performed in a sealed reactor at constant pH, temperature, supersaturation (?? = 4.5), P(CO2) (10-3.5atm), and ionic strength (0.1 M) with various concentrations of organic acids. Higher plant-derived aquatic hydrophobic acids from the Everglades were more effective growth inhibitors than microbially derived fulvic acid from Lake Fryxell. Organic acid aromaticity correlated strongly with growth inhibition. Molecular weight and heteroatom content correlated well with growth inhibition, whereas carboxyl content and aliphatic nature did not. Copyright (C) 1999 Elsevier Science Ltd.

  12. Photoreduction of Terrigenous Fe-Humic Substances Leads to Bioavailable Iron in Oceans.

    PubMed

    Blazevic, Amir; Orlowska, Ewelina; Kandioller, Wolfgang; Jirsa, Franz; Keppler, Bernhard K; Tafili-Kryeziu, Myrvete; Linert, Wolfgang; Krachler, Rudolf F; Krachler, Regina; Rompel, Annette

    2016-05-23

    Humic substances (HS) are important iron chelators responsible for the transport of iron from freshwater systems to the open sea, where iron is essential for marine organisms. Evidence suggests that iron complexed to HS comprises the bulk of the iron ligand pool in near-coastal waters and shelf seas. River-derived HS have been investigated to study their transport to, and dwell in oceanic waters. A library of iron model compounds and river-derived Fe-HS samples were probed in a combined X-ray absorption spectroscopy (XAS) and valence-to-core X-ray emission spectroscopy (VtC-XES) study at the Fe K-edge. The analyses performed revealed that iron complexation in HS samples is only dependent on oxygen-containing HS functional groups, such as carboxyl and phenol. The photoreduction mechanism of Fe(III) -HS in oceanic conditions into bioavailable aquatic Fe(II) forms, highlights the importance of river-derived HS as an iron source for marine organisms. Consequently, such mechanisms are a vital component of the upper-ocean iron biogeochemistry cycle.

  13. Formation and loss of humic substances during decomposition in a pine forest floor

    USGS Publications Warehouse

    Qualls, R.G.; Takiyama, A.; Wershaw, R. L.

    2003-01-01

    Since twice as much C is sequestered in soils as is contained in the atmosphere, the factors controlling the decomposition rate of soil C are important to the assessment of the effects of climatic change. The formation of chemically resistant humic substances might be an important process controlling recycling of CO2 to the atmosphere. Our objectives were to measure the rate of formation and loss of humic substances during 13 yr of litter decomposition. We placed nets on the floor of a white pine (Pinus strobus) forest to separate each annual layer of litter for 13 yr and measured humic substance concentration using NaOH extraction followed by chromatographic fractionation. The humic acid fraction increased from 2.1% of the C in litterfall to 15.7% after 1 yr. On a grams per square meter (g m-2) basis the humic substance fraction increased during the first year and then declined, with a half decay time (t1/2) of 5.1 yr, which was significantly slower than the bulk litter (t1/2 = 3.9 yr). The carboxylic C concentration estimated from 13C nuclear magnetic resonance (NMR) increased in the litter over time, though total mass of carboxylic acid C in the forest floor also declined over the 13-yr period (t1/2 = 4.6 yr). While humic substances in the forest floor decomposed at a somewhat slower rate than bulk litter during Years 1 to 13, they decomposed much faster than has been calculated from 14C dating of the refractory fraction of organic matter in the mineral soil.

  14. Fouling of enhanced biological phosphorus removal-membrane bioreactors by humic-like substances.

    PubMed

    Poorasgari, Eskandar; König, Katja; Fojan, Peter; Keiding, Kristian; Christensen, Morten Lykkegaard

    2014-12-01

    Fouling by free extracellular polymeric substances was studied in an enhanced biological phosphorus removal-membrane bioreactor. It was demonstrated that the free extracellular polymeric substances, primarily consisting of humic-like substances, were adsorbed to the membrane used in the enhanced biological phosphorus removal-membrane bioreactor plant. Infrared analyses indicated the presence of the humic-like substances on the membrane's active surface after filtration of the free extracellular polymeric substances suspension. Scanning electron microscopy showed the presence of a gel layer on the membrane surface after filtration of the free extracellular polymeric substances suspension. The gel layer caused a significant decline in water flux. This layer was not entirely removed by a backwashing, and the membrane's water flux could not be re-established. The membrane used in the enhanced biological phosphorus removal-membrane bioreactor plant showed infrared spectra similar to that fouled by the free extracellular polymeric substances suspension in the laboratory. Thus, the results of this study show the importance of humic-like substances in irreversible fouling of enhanced biological phosphorus removal-membrane bioreactor systems.

  15. Fouling of enhanced biological phosphorus removal-membrane bioreactors by humic-like substances.

    PubMed

    Poorasgari, Eskandar; König, Katja; Fojan, Peter; Keiding, Kristian; Christensen, Morten Lykkegaard

    2014-12-01

    Fouling by free extracellular polymeric substances was studied in an enhanced biological phosphorus removal-membrane bioreactor. It was demonstrated that the free extracellular polymeric substances, primarily consisting of humic-like substances, were adsorbed to the membrane used in the enhanced biological phosphorus removal-membrane bioreactor plant. Infrared analyses indicated the presence of the humic-like substances on the membrane's active surface after filtration of the free extracellular polymeric substances suspension. Scanning electron microscopy showed the presence of a gel layer on the membrane surface after filtration of the free extracellular polymeric substances suspension. The gel layer caused a significant decline in water flux. This layer was not entirely removed by a backwashing, and the membrane's water flux could not be re-established. The membrane used in the enhanced biological phosphorus removal-membrane bioreactor plant showed infrared spectra similar to that fouled by the free extracellular polymeric substances suspension in the laboratory. Thus, the results of this study show the importance of humic-like substances in irreversible fouling of enhanced biological phosphorus removal-membrane bioreactor systems. PMID:25014564

  16. Mechanisms for the suppression of methane production in peatland soils by a humic substance analog

    NASA Astrophysics Data System (ADS)

    Ye, R.; Keller, J. K.; Jin, Q.; Bohannan, B. J. M.; Bridgham, S. D.

    2014-01-01

    Methane (CH4) production is often impeded in many northern peatland soils, although inorganic terminal electron acceptors (TEAs) are usually present in low concentrations in these soils. Recent studies suggest that humic substances in wetland soils can be utilized as organic TEAs for anaerobic respiration and may directly inhibit CH4 production. Here we utilize the humic analog anthraquinone-2, 6-disulfonate (AQDS) to explore the importance of humic substances, and their effects on the temperature sensitivity of anaerobic decomposition, in two peatland soils. In a bog peat, AQDS was not instantly utilized as a TEA, but greatly inhibited the fermentative production of acetate, carbon dioxide (CO2), and hydrogen (H2), as well as CH4 production. When added together with glucose, AQDS was partially reduced after a lag period of 5 to 10 days. In contrast, no inhibitory effect of AQDS on fermentation was found in a fen peat and AQDS was readily reduced as an organic TEA. The addition of glucose and AQDS to both bog and fen peats caused complicated temporal dynamics in the temperature sensitivity of CH4 production, reflecting temporal changes in the temperature responses of other carbon processes with effects on methanogenesis. Our results show that the humic analog AQDS can act both as an inhibitory agent and a TEA in peatland soils. The high concentrations of humic substances in northern peatlands may greatly influence the effect of climate change on soil carbon cycling in these ecosystems.

  17. Modeling electrostatic and heterogeneity effects on proton dissociation from humic substances

    USGS Publications Warehouse

    Tipping, E.; Reddy, M.M.; Hurley, M.A.

    1990-01-01

    The apparent acid dissociation constant of humic substances increases by 2-4 pK units as ionization of the humic carboxylate groups proceeds. This change in apparent acid strength is due in part to the increase in electrical charge on the humic molecules as protons are shed. In addition, proton dissociation reactions are complicated because humic substances are heterogeneous with respect to proton dissociating groups and molecular size. In this paper, we use the Debye-Hu??ckel theory to describe the effects of electrostatic interactions on proton dissociation of humic substances. Simulations show that, for a size-heterogeneous system of molecules, the weight-average molecular weight is preferable to the number-average value for averaging the effects of electrostatic interactions. Analysis of published data on the proton dissociation of fulvic acid from the Suwannee River shows that the electrostatic interactions can be satisfactorily described by a hypothetical homogeneous compound having a molecular weight of 1000 (similar to the experimentally determined weight-average value). Titration data at three ionic strengths, for several fulvic acid concentrations, and in the pH range from 2.9 to 6.4 can be fitted with three adjustable parameters (pK??int values), given information on molecular size and carboxylate group content. ?? 1990 American Chemical Society.

  18. Covalent binding of aniline to humic substances. 1. Kinetic studies

    USGS Publications Warehouse

    Weber, E.J.; Spidle, D.L.; Thorn, K.A.

    1996-01-01

    The reaction kinetics for the covalent binding of aniline with reconstituted IHSS humic and fulvic acids, unfractionated DOM isolated from Suwannee River water, and whole samples of Suwannee River water have been investigated. The reaction kinetics in each of these systems can be adequately described by a simple second-order rate expression. The effect of varying the initial concentration of aniline on reaction kinetics suggested that approximately 10% of the covalent binding sites associated with Suwannee River fulvic acid are highly reactive sites that are quickly saturated. Based on the kinetic parameters determined for the binding of aniline with the Suwannee River fulvic and humic acid isolates, it was estimated that 50% of the aniline concentration decrease in a Suwannee River water sample could be attributed to reaction with the fulvic and humic acid components of the whole water sample. Studies with Suwannee River fulvic acid demonstrated that the rate of binding decreased with decreasing pH, which parallels the decrease in the effective concentration of the neutral form, or reactive nucleophilic species of aniline. The covalent binding of aniline with Suwannee River fulvic acid was inhibited by prior treatment of the fulvic acid with hydrogen sulfide, sodium borohydride, or hydroxylamine. These observations are consistent with a reaction pathway involving nucleophilic addition of aniline to carbonyl moieties present in the fulvic acid.

  19. Influence of humic substances on plant-microbes interactions in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Puglisi, Edoardo; Pascazio, Silvia; Spaccini, Riccardo; Crecchio, Carmine; Trevisan, Marco; Piccolo, Alessandro

    2013-04-01

    Humic substances are known to play a wide range of effects on the physiology of plant and microbes. This is of particular relevance in the rhizosphere of terrestrial environments, where the reciprocal interactions between plants roots, soil constituents and microorganisms strongly influence the plants acquisition of nutrients. Chemical advances are constantly improving our knowledge on humic substances: their supra-molecular architecture, as well as the moltitude of their chemical constituents, many of which are biologically active. An approach for linking the structure of humic substances with their biological activity in the rhizosphere is the use of rhizoboxes, which allow applying a treatment (e.g., an amendment with humic substances) in an upper soil-plant compartment and take measurements in a lower isolated rhizosphere compartment that can be sampled at desired distances from the rhizoplane. This approach can be adopted to assess the effects of several humic substances, as well as composted materials, on maize plants rhizodeposition of carbon, and in turn on the structure and activity of rhizosphere microbial communities. In order to gain a complete understanding of processes occurring in the complex soil-plant-microorganisms tripartite system, rhizobox experiments can be coupled with bacterial biosensors for the detection and quantification of bioavailable nutrients, chemical analyses of main rhizodeposits constituents, advanced chemical characterizations of humic substances, DNA-fingerprinting of microbial communities, and multivariate statistical approaches to manage the dataset produced and to infer general conclusions. By such an approach it was found that humic substances are significantly affecting the amount of carbon deposited by plant roots. This induction effect is more evident for substances with more hydrophobic and complex structure, thus supporting the scientific hypothesis of the "microbial loop model", which assumes that plants feed

  20. EFFECTS OF HUMIC SUBSTANCES ON ATTENUATION OF METALS: BIOAVAILABILITY AND MOBILITY IN SOIL

    EPA Science Inventory

    Humic substances play vastly important roles in metal behavior in a wide variety of environments. They can affect the mobility and bioavailability of metals by binding and sequestration thereby decreasing the mobility of a metal. They can also transport metals into solution or ...

  1. TRICHLOROETHYLENE ADSORPTION BY ACTIVATED CARBON PRELOADED WITH HUMIC SUBSTANCES: EFFECTS OF SOLUTION CHEMISTRY. (R828157)

    EPA Science Inventory

    Abstract

    Trichloroethylene (TCE) adsorption by activated carbon previously loaded ("preloaded") with humic substances was found to decrease with increasing concentrations of monovalent ions (NaCl), calcium (until solubility was exceeded), or dissolved oxygen in...

  2. Clay surface catalysis of formation of humic substances: potential role of maillard reactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mechanisms of the formation of humic substances are poorly understood, especially the condensation of amino acids and reducing sugars products (Maillard reaction) in soil environments. Clay minerals behave as Lewis and Brönsted acids and catalyze several reactions and likely to catalyze the Mai...

  3. Coating of AFM probes with aquatic humic and non-humic NOM to study their adhesion properties.

    PubMed

    Aubry, Cyril; Gutierrez, Leonardo; Croue, Jean Philippe

    2013-06-01

    Atomic force microscopy (AFM) was used to study interaction forces between four Natural Organic Matter (NOM) samples of different physicochemical characteristics and origins and mica surface at a wide range of ionic strength. All NOM samples were strongly adsorbed on positively charged iron oxide-coated silica colloidal probe. Cross-sectioning by focused ion beam milling technique and elemental mapping by energy-filtered transmission electron microscopy indicated coating completeness of the NOM-coated colloidal probes. AFM-generated force-distance curves were analyzed to elucidate the nature and mechanisms of these interacting forces. Electrostatics and steric interactions were important contributors to repulsive forces during approach, although the latter became more influential with increasing ionic strength. Retracting force profiles showed a NOM adhesion behavior on mica consistent with its physicochemical characteristics. Humic-like substances, referred as the least hydrophilic NOM fraction, i.e., so called hydrophobic NOM, poorly adsorbed on hydrophilic mica due to their high content of ionized carboxyl groups and aromatic/hydrophobic character. However, adhesion force increased with increasing ionic strength, suggesting double layer compression. Conversely, polysaccharide-like substances showed high adhesion to mica. Hydrogen-bonding between hydroxyl groups on polysaccharide-like substances and highly electronegative elements on mica was suggested as the main adsorption mechanism, where the adhesion force decreased with increasing ionic strength. Results from this investigation indicated that all NOM samples retained their characteristics after the coating procedure. The experimental approach followed in this study can potentially be extended to investigate interactions between NOM and clean or fouled membranes as a function of NOM physicochemical characteristics and solution chemistry.

  4. Degradation of carbofuran and carbofuran-derivatives in presence of humic substances under basic conditions.

    PubMed

    Morales, Jorge; Manso, José A; Cid, Antonio; Mejuto, Juan C

    2012-11-01

    The influence of humic aggregates in water solution upon the chemical stability of carbofuran (CF) and the carbofuran-derivatives, 3-hydroxy-carbofuran (HCF) and 3-keto-carbofuran (KCF), has been investigated in basic media. An inhibition upon the basic hydrolysis of 3-hydroxy-carbofuran and 3-keto-carbofuran (≈ 1.7 and ≈ 1.5-fold, respectively) was observed and it was rationalized in terms of the micellar pseudophase model. Nevertheless, non-significant effect upon the carbofuran stability was found in the presence of humic substances. These behaviors have been compared with the corresponding ones in other synthetic colloidal aggregates.

  5. Mechanisms regulating bioavailability of phenanthrene sorbed on a peat soil-origin humic substance.

    PubMed

    Yang, Yu; Shu, Liang; Wang, Xilong; Xing, Baoshan; Tao, Shu

    2012-07-01

    The organic matter-mineral complex plays an important role in regulating the fate of hydrophobic organic compounds (HOCs) in the environment. In the present study, the authors investigated the microbial bioavailability of phenanthrene (PHE) sorbed on the original and demineralized humic acids (HAs) and humin (HM) that were sequentially extracted from a peat soil. Demineralization treatment dramatically decreased the 720-h mineralized percentage of HM-sorbed PHE from 42.5 ± 2.6% to 3.4 ± 1.3%, whereas the influence of this treatment on the biodegradability of HA-associated PHE was much lower. Degradation kinetics of HA- and HM-sorbed PHE showed that its initial degradation rate was negatively correlated with the aromatic carbon content of humic substances (p<0.05). This was attributed to the strong interactions between PHE and the aromatic components of humic substances, which hampered its release and subsequent biodegradation. The 720-h mineralized percentage of PHE was inversely correlated with the estimated thickness of the organic matter layer at the surfaces of HAs and HMs. Therefore, in a relatively long term, diffusion of PHE within the organic matter layer could be an important factor that may limit the bioavailability of PHE to bacteria. Results of the present study highlight the molecular-scaled mechanisms governing bioavailability of PHE sorbed on humic substances.

  6. [Variation characteristics and mathematical model of humic substances in landfill leachates with different landfill ages].

    PubMed

    Huang, You-Fu; Xu, Xin-Ya; Fan, Liang-Xin; Fang, Yi-Min

    2014-07-01

    The influence of municipal landfill age on the characteristics of humic substances in leachate on the basis of investigating 12 different kinds of leachates from landfills in Fujian province is presented in this study. It was shown that the concentration and percentage of fulvic acid (FA) were obviously higher than those of humic acid (HA). As the landfill age increased, the concentrations of HA, FA and humic substances (HS) increased, moreover, the percentage of HA first increased and then decreased. While the percentages of FA and HS first increased and then fluctuated with the landfill age. The UV-Vis analytical results of HA and FA through E280, E300/E400 and E465/E665 revealed that HA had a relatively higher content of aromatic compounds and higher molecular weight than FA. The humification of FA had a tendency to increase as the landfill age increased, while HA had opposite result. The E300/E400 and E465/E665 of HA and FA fluctuated with increasing landfill age. A mathematical model simulating the concentration of humic substances varied with the landfill age was presented and demonstrated based on degradation kinetics. The simulated results were close to the measured values with a correlation coefficient R2 of 0.820, 0.932 and 0.946, respectively, indicating that the concentrations of HA, FA and HS could be accurately forecasted.

  7. Structure-Property-Function Relationship in Humic Substances to Explain the Biological Activity in Plants

    PubMed Central

    García, Andrés Calderín; de Souza, Luiz Gilberto Ambrosio; Pereira, Marcos Gervasio; Castro, Rosane Nora; García-Mina, José María; Zonta, Everaldo; Lisboa, Francy Junior Gonçalves; Berbara, Ricardo Luis Louro

    2016-01-01

    Knowledge of the structure-property-function relationship of humic substances (HSs) is key for understanding their role in soil. Despite progress, studies on this topic are still under discussion. We analyzed 37 humic fractions with respect to their isotopic composition, structural characteristics, and properties responsible for stimulating plant root parameters. We showed that regardless of the source of origin of the carbon (C3 or C4), soil-extracted HSs and humic acids (HAs) are structurally similar to each other. The more labile and functionalized HS fraction is responsible for root emission, whereas the more recalcitrant and less functionalized HA fraction is related to root growth. Labile structures promote root stimulation at lower concentrations, while recalcitrant structures require higher concentrations to promote a similar stimulus. These findings show that lability and recalcitrance, which are derived properties of humic fractions, are related to the type and intensity of their bioactivity. In summary, the comparison of humic fractions allowed a better understanding of the relationship between the source of origin of plant carbon and the structure, properties, and type and intensity of the bioactivity of HSs in plants. In this study, scientific concepts are unified and the basis for the agronomic use of HSs is established. PMID:26862010

  8. Structure-Property-Function Relationship in Humic Substances to Explain the Biological Activity in Plants

    NASA Astrophysics Data System (ADS)

    García, Andrés Calderín; de Souza, Luiz Gilberto Ambrosio; Pereira, Marcos Gervasio; Castro, Rosane Nora; García-Mina, José María; Zonta, Everaldo; Lisboa, Francy Junior Gonçalves; Berbara, Ricardo Luis Louro

    2016-02-01

    Knowledge of the structure-property-function relationship of humic substances (HSs) is key for understanding their role in soil. Despite progress, studies on this topic are still under discussion. We analyzed 37 humic fractions with respect to their isotopic composition, structural characteristics, and properties responsible for stimulating plant root parameters. We showed that regardless of the source of origin of the carbon (C3 or C4), soil-extracted HSs and humic acids (HAs) are structurally similar to each other. The more labile and functionalized HS fraction is responsible for root emission, whereas the more recalcitrant and less functionalized HA fraction is related to root growth. Labile structures promote root stimulation at lower concentrations, while recalcitrant structures require higher concentrations to promote a similar stimulus. These findings show that lability and recalcitrance, which are derived properties of humic fractions, are related to the type and intensity of their bioactivity. In summary, the comparison of humic fractions allowed a better understanding of the relationship between the source of origin of plant carbon and the structure, properties, and type and intensity of the bioactivity of HSs in plants. In this study, scientific concepts are unified and the basis for the agronomic use of HSs is established.

  9. Effect of humic substances on P sorption capacity of three different soils

    NASA Astrophysics Data System (ADS)

    Delgado, Antonio

    2010-05-01

    Organic matter decreases P sorption by soils. It has been demonstrated the effect of low molecular weight compounds decreasing P adsorption on active surfaces and the effect of humic and fulvic acids inhibiting the precipitation of hydroxyapatite and favouring the formation of more soluble phosphates. This contributes to increase the recovery of applied P fertilizer. The objective of this work was to study the effect of 4 different humic substances (commercially available and provided by Tradecorp Internacional S.A.) on the sorption capacity of three soils differing widely in chemical properties (two calcareous from south Spain, pH 8 and 8.5, and other acidic from Brazil, pH 5.9 and 50 % of exchangeable basic cations). To this end, sorption isotherms were performed at a soil:0.01 M CaCl2 ratio of 1:10 at 6, 30 and 90 days. 2.5 mg of humic substances per g of soil were added to the solution. Data were fitted to the best model and linearized sorption curves for each humic substance were compared with the linearized sorption curve for the control without humic substances application (intersection point and slopes). Soil from Brazil showed a much higher sorption capacity (400 mg P kg-1 soil sorbed at 1 mg L-1 of P in the solution at 1 day) than the other two soils (50 and 100 mg P kg-1). Slow reactions significantly contributed to P sorption in the three soils, amounts sorbed at 90 days being twice than those sorbed at 1 day. Two of the products increased P sorption in the soil from Brazil at 1 day. At 90 days all the products increased P sorption significantly. This increased P sorption can be only explained by metal complexation by the substances applied, which may result in organo-metallic compounds with a high P sorption capacity. This effect was independent of the proportion of humic and fulvic acids in the applied products because the amounts of metal complexed by these compouds depend on the amount of functional groups to coordinate with metals. In the Spanish

  10. PETROTOX: an aquatic toxicity model for petroleum substances.

    PubMed

    Redman, Aaron D; Parkerton, Thomas F; McGrath, Joy A; Di Toro, Dominic M

    2012-11-01

    A spreadsheet model (PETROTOX) is described that predicts the aquatic toxicity of complex petroleum substances from petroleum substance composition. Substance composition is characterized by specifying mass fractions in constituent hydrocarbon blocks (HBs) based on available analytical information. The HBs are defined by their mass fractions within a defined carbon number range or boiling point interval. Physicochemical properties of the HBs are approximated by assigning representative hydrocarbons from a database of individual hydrocarbons with associated physicochemical properties. A three-phase fate model is used to simulate the distribution of each structure among the water-, air-, and oil-phase liquid in the laboratory test system. Toxicity is then computed based on the predicted aqueous concentrations and aquatic toxicity of each structure and the target lipid model. The toxicity of the complex substance is computed assuming additivity of the contribution of the individual assigned hydrocarbons. Model performance was evaluated by using direct comparisons with measured toxicity data for petroleum substances with sufficient analytical characterization to run the model. Indirect evaluations were made by comparing predicted toxicity distributions using analytical data on petroleum substances from different product categories with independent, empirical distributions of toxicity data available for the same categories. Predictions compared favorably with measured aquatic toxicity data across different petroleum substance categories. These findings demonstrate the utility of PETROTOX for assessing environmental hazards of petroleum substances given knowledge of substance composition.

  11. How humic substances dominate mercury geochemistry in contaminated floodplain soils and sediments

    SciTech Connect

    Wallschlaeger, D.; Desai, M.V.M.; Spengler, M.; Windmoeller, C.C.; Wilken, R.D.

    1998-09-01

    The interaction of mercury (Hg) and humic substances (hs) was studied in floodplain topsoils and surface sediments of the contaminated German river Elbe. An intimate coupling exists between the geochemical cycles of Hg and organic carbon (OC) in this ecosystem. Humic substances exert a dominant influence on several important parallel geochemical pathways of Hg, including binding, transformation, and transport processes. Significant differences exist between the Hg-hs associations in floodplains and sediments. Both humic acids (ha) and fulvic acids (fa) contribute to Hg binding in the sediments. In contrast, ultrafiltration experiments proved that Hg in the floodplain soils is almost exclusively bound to very large humic acids (ha) with a nominal molecular weight (MW) > 300,000. Successive cation and anion exchange experiments demonstrated that those Hg-ha complexes are inert toward competition by other cations, and also apparently predominantly electroneutral. Speciation transformation reactions in the solid phase were investigated by sequential extraction and thermal release experiments. Upon addition of Hg model compounds to a sediment matrix, all species were transformed to the same new speciation pattern, regardless of their original speciation. The accompanying alterations in availability and solubility were partially due to interconversion between the different Hg redox states, including Hg(I). Simultaneously, partial transformation of added Hg{sup 2+} into volatile Hg compounds (35% in 10 d) was observed. Finally, Hg association with water-soluble ha continuously increased downstream, indicating that hs play a key role in both lateral and longitudinal Hg transport in the Elbe ecosystem.

  12. Distinguishing black carbon from biogenic humic substances in soil clay fractions

    USGS Publications Warehouse

    Laird, D.A.; Chappell, M.A.; Martens, D.A.; Wershaw, R. L.; Thompson, M.

    2008-01-01

    Most models of soil humic substances include a substantial component of aromatic C either as the backbone of humic heteropolymers or as a significant component of supramolecular aggregates of degraded biopolymers. We physically separated coarse (0.2-2.0????m e.s.d.), medium (0.02-0.2????m e.s.d.), and fine (> 0.02????m e.s.d.) clay subfractions from three Midwestern soils and characterized the organic material associated with these subfractions using 13C-CPMAS-NMR, DTG, SEM-EDX, incubations, and radiocarbon age. Most of the C in the coarse clay subfraction was present as discrete particles (0.2-5????m as seen in SEM images) of black carbon (BC) and consisted of approximately 60% aromatic C, with the remainder being a mixture of aliphatic, anomeric and carboxylic C. We hypothesize that BC particles were originally charcoal formed during prairie fires. As the BC particles aged in soil their surfaces were oxidized to form carboxylic groups and anomeric and aliphatic C accumulated in the BC particles either by adsorption of dissolved biogenic compounds from the soil solution or by direct deposition of biogenic materials from microbes living within the BC particles. The biogenic soil organic matter was physically separated with the medium and fine clay subfractions and was dominated by aliphatic, anomeric, and carboxylic C. The results indicate that the biogenic humic materials in our soils have little aromatic C, which is inconsistent with the traditional heteropolymer model of humic substances.

  13. Comparative evaluation of humic substances in oral drug delivery.

    PubMed

    Mirza, Mohd Aamir; Ahmad, Niyaz; Agarwal, Suraj Prakash; Mahmood, Danish; Khalid Anwer, M; Iqbal, Z

    2011-05-01

    Major and biologically most explored components of natural organic matter (NOM) are humic acid (HA) and fulvic acid (FA). We have explored rock shilajit as a source of NOM. On the other hand carbamazepine (CBZ) is a well known anticonvulsant drug and has a limited accessibility to brain. Bioavailability and pharmacokinetic profiles of CBZ have been improved by complexation and different techniques also. Present study has assessed the comparative abilities of FA and HA as complexing agent for CBZ in order to enhance pharmacokinetic profile of CBZ and accessibility to the brain. These two complexing agents have been compared on various indices such as their abilities to cause complexation and enhance solubility, permeability and dissolution. The present study also compared pharmacodynamic and biochemical profiles after oral administration of complexes. With the help of various pharmaceutical techniques such as freeze drying, physical mixture, kneading and solvent evaporation, two molar ratios (1:1 and 1:2) were selected for complexation and evaluated for conformational analysis (molecular modeling). Complex formed was further characterized by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), mass spectroscopy and X-ray diffraction (XRD). Preclinical study on rodents with CBZ-HA and CBZ-FA has yielded appreciable results in terms of their anticonvulsant and antioxidants activities. However, CBZ-HA (1:2) demonstrated better result than any other complex. PMID:25755978

  14. The influence of humic substance on Cd accumulation of phytostabilizer Athyrium wardii (Hook.) grown in Cd-contaminated soils.

    PubMed

    Zhan, Juan; Li, Tingxuan; Yu, Haiying; Zhang, Xizhou; Zhao, Li

    2016-09-01

    The application of organic amendments into heavy metal contaminated soil is considered as an environmentally friendly technique to promote the potential of phytoremediation. A pot experiment was carried out to evaluate the effect of humic substances on growth, cadmium (Cd) accumulation and phytostabilization potential of the mining ecotype (ME) and the corresponding non-mining ecotype (NME) of Athyrium wardii (Hook.) grown in Cd-contaminated soils. The addition of the humic substances demonstrated great promotion for the growth and Cd uptake of ME. Both plant biomass and Cd concentration significantly increased with the increasing application of the humic substances up to 100 g kg(-1), beyond which no significant change of underground part biomass and Cd concentrations in underground part of A. wardii was observed. The maximum Cd concentration in underground part of ME was 180 mg kg(-1) when 150 g kg(-1) humic substances were applied. The ME showed greater Cd accumulation capability in underground part (0.47-0.68 mg plant(-1)) than that of NME (0.27-0.45 mg plant(-1)). Increasing bioaccumulation coefficient (BCF) values of A. wardii was observed with increasing application of the humic substances. The BCF values of ME were higher than those of NME. However, the use of the humic substances exhibited little impact on translocation factors (TFs) of ME, and the TF values of ME were less than NME. Furthermore, the application of the humic substances improved the remediation factors (RFs) of A. wardii. The RF values in underground part of ME ranging from 0.73 to 0.91 % were apparently higher than those of NME. These results indicated that the humic substances can be a potential candidate for enhancing the phytostabilization of A. wardii grown in Cd-contaminated soils.

  15. Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique.

    PubMed

    Martínez Gil, Pablo; Laguarda-Miro, Nicolas; Camino, Juan Soto; Peris, Rafael Masot

    2013-10-15

    Pulsed voltammetry has been used to detect and quantify glyphosate on buffered water in presence of ammonium nitrate and humic substances. Glyphosate is the most widely used herbicide active ingredient in the world. It is a non-selective broad spectrum herbicide but some of its health and environmental effects are still being discussed. Nowadays, glyphosate pollution in water is being monitored but quantification techniques are slow and expensive. Glyphosate wastes are often detected in countryside water bodies where organic substances and fertilizers (commonly based on ammonium nitrate) may also be present. Glyphosate also forms complexes with humic acids so these compounds have also been taken into consideration. The objective of this research is to study the interference of these common pollutants in glyphosate measurements by pulsed voltammetry. The statistical treatment of the voltammetric data obtained lets us discriminate glyphosate from the other studied compounds and a mathematical model has been built to quantify glyphosate concentrations in a buffer despite the presence of humic substances and ammonium nitrate. In this model, the coefficient of determination (R(2)) is 0.977 and the RMSEP value is 2.96 × 10(-5) so the model is considered statistically valid.

  16. The effects of polymer characteristics on nano particle separation in humic substances removal by cationic polymer coagulation.

    PubMed

    Kvinnesland, T; Odegaard, H

    2004-01-01

    Removal of humic substances by coagulation involves nano- and microparticle transport processes. The objective of this paper has been to describe the effects of polymer characteristics on the initial coagulation of nano-sized humic substances and on the aggregates' ability to form larger flocs. The study offers a direct comparison of four different low molecular weight polycations, with charge densities ranging from 4.0 to 7.0 meq/g, as well as of a low and medium molecular weight cationic polyacrylamide with practically equal charge densities. The extent of coagulation of humic substances, determined as the percentage removal of humic substances after filtration through 0.1 microm, could, regardless of the polymer type, be explained by the amount of cationic charge equivalents added per mg TOC of humic substances. The optimal polymer dosage with respect to the extent of flocculation, determined as the percentage removal after filtration through 11 microm could not be explained by this, but the maximum extent of flocculation obtained with each polymer type increased with increasing polyelectrolyte charge density. However, the weak polycation chitosan showed a significantly higher maximum extent of flocculation than would be predicted from its charge density. Polyelectrolyte molecular weight did not show any significant effect on the coagulation of humic substances, nor did it increase the extent of floc separability at 11 microm.

  17. Chemistry and potential mutagenicity of humic substances in waters from different watersheds in Britain and Ireland

    USGS Publications Warehouse

    Watt, B.E.; Malcolm, R.L.; Hayes, M.H.B.; Clark, N.W.E.; Chipman, J.K.

    1996-01-01

    Humic substances are amorphous organic macromolecules responsible for the hue of natural waters. They are also known to be precursors of mutagens formed on chlorination prior to distribution of drinking water. In this study humic substances from the waters of primary streams, from major rivers, and from reservoirs were isolated and fractionated into humic acids (HA), fulvic acids (FA) and XAD-4 acids using columns of XAD-8 and of XAD-4 resins in tandem, and the fractions from the different sources were chlorinated and assayed for mutagenicity. CPMAS 13C NMR spectroscopy showed marked differences in compositions not only between HA, FA, and XAD-4 acids from the same water samples, but also between the same fractions from water samples from different watersheds. There were found to be strong similarities between the fractions from watersheds which had closely related soil types. Aromaticity was greatest in HAs, and lowest in XAD-4 acids, and carboxyl contents and aliphatic character were greatest in the XAD-4 acids. Carbon content decreased in the order HA > FA > XAD-4 acids, and amino acids and neutral sugars contents decreased in the order HA > XAD-4 > FA. Titration data complemented aspects of the NMR data, demonstrating that carboxyl content decreased in the order XAD-4 acids > FA > HA, and indicated that phenolic character was highest in HAs and lowest in the XAD-4 acids. All samples tested gave rise to bacterial mutagens on chlorination. Although the mutagenicities were of the same order of magnitude for the chlorinated humic samples from the different sources, the samples which showed the greatest number of revertant bacterial colonies were from the Thames and Trent, large rivers with humic materials from diverse environments, and relatively high in amino acid contents.

  18. Copper(II) binding by free and kaolinite-sorbed humic substances

    NASA Astrophysics Data System (ADS)

    Kholodov, V. A.; Kiryushin, A. V.; Yaroslavtseva, N. V.; Frid, A. S.

    2014-07-01

    Humic preparations isolated from different sources—soils (a soddy-podzolic soil and a typical chernozem), high-moor peat, and brown coal—have been used. To analyze the binding of copper ions by humic substances (HSs), the preparations were obtained in two forms: solutions and humic-clay complexes (HSs irreversibly sorbed on kaolinite). With this approach, the binding of copper(II) ions by HSs has been studied in different systems: (1) Cu(II)-HSs irreversibly sorbed on kaolinite, (2) Cu(II)-dissolved HSs, and (3) Cu(II)-dissolved HSs-HSs irreversibly sorbed on kaolinite. In the systems containing both dissolved HSs and humic-clay complexes, HSs of similar structure isolated from the same source were used. The quantitative estimation of the copper binding was based on the constant of sorption ( K) for HSs in humic-kaolinite complexes and the stability constant (β) of complexes for free (dissolved) substances. Both parameters were expressed in similar units: L/kg. The values of log K = 3.31—3.33 are independent of the quantity and quality of the HSs in the sorption complexes but reliably exceed the K value for pure kaolinite (2.92). The value of β is not affected by the presence of insoluble HSs together with their soluble forms, but it depends on the source of HSs. The value of logβ varies in the range from 5.62 to 6.93, which significantly exceeds K and indicates a significantly higher affinity of dissolved HSs for copper ions than that of irreversibly sorbed HSs. The revealed regularities have shown that the content of HSs in the soil solution can significantly affect the mobility of a heavy metal bound to the soil organic matter.

  19. Reactions of chlorine with selected aromatic models of aquatic humic material

    SciTech Connect

    Norwood, D.L.; Johnson, J.D.; Christman, R.F.; Hass, J.R.; Bobenrieth, M.J.

    1980-02-01

    A series of compounds designed to model the monomeric components of aquatic humic material was reacted with aqueous chlorine at pH 7. Chloroform production and chlorine demand were measured for each compound over varied time periods. All compounds studied produced measurable amounts of chloroform with resorcinol derivatives showing the greatest yields. In addition, the chlorination reactions of resorcinol and 3-methoxy-4-hydroxycinnamic acid were studied in depth with gas chromatography/mass spectrometry (GC/MS). The resorcinol reaction was found to proceed through several chlorinated intermediates, of which the most abundant was 3,5,5-trichlorocyclopent-3-ene-1,2-dione, to chloroform and chlorinated acids. Chlorination of the cinnamic acid derivative produced chlorinated substitution products and chlorophenols, which broke down upon further reaction to chloroacetic acids.

  20. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration.

    PubMed

    Coates, John D; Cole, Kimberly A; Chakraborty, Romy; O'Connor, Susan M; Achenbach, Laurie A

    2002-05-01

    Previous studies have demonstrated that reduced humic substances (HS) can be reoxidized by anaerobic bacteria such as Geobacter, Geothrix, and Wolinella species with a suitable electron acceptor; however, little is known of the importance of this metabolism in the environment. Recently we investigated this metabolism in a diversity of environments including marine and aquatic sediments, forest soils, and drainage ditch soils. Most-probable-number enumeration studies were performed using 2,6-anthrahydroquinone disulfonate (AHDS), an analog for reduced HS, as the electron donor with nitrate as the electron acceptor. Anaerobic organisms capable of utilizing reduced HS as an electron donor were found in all environments tested and ranged from a low of 2.31 x 10(1) in aquifer sediments to a high of 9.33 x 10(6) in lake sediments. As part of this study we isolated six novel organisms capable of anaerobic AHDS oxidation. All of the isolates coupled the oxidation of AHDS to the reduction of nitrate with acetate (0.1 mM) as the carbon source. In the absence of cells, no AHDS oxidation was apparent, and in the absence of AHDS, no cell density increase was observed. Generally, nitrate was reduced to N(2). Analysis of the AHDS and its oxidized form, 2,6-anthraquinone disulfonate (AQDS), in the medium during growth revealed that the anthraquinone was not being biodegraded as a carbon source and was simply being oxidized as an energy source. Determination of the AHDS oxidized and nitrate reduced accounted for 109% of the theoretical electron transfer. In addition to AHDS, all of these isolates could also couple the oxidation of reduced humic substances to the reduction of nitrate. No HS oxidation occurred in the absence of cells and in the absence of a suitable electron acceptor, demonstrating that these organisms were capable of utilizing natural HS as an energy source and that AHDS serves as a suitable analog for studying this metabolism. Alternative electron donors included

  1. Methanogenesis affected by the co-occurrence of iron(III) oxides and humic substances.

    PubMed

    Zhou, Shungui; Xu, Jielong; Yang, Guiqin; Zhuang, Li

    2014-04-01

    Iron oxides and humic substances (humics) have substantial effects on biochemical processes, such as methanogenesis, due to their redox reactivity and ubiquitous presence. This study aimed to investigate how methanogenesis is affected by the common occurrence of these compounds, which has not been considered to date. The experiment was conducted with anoxic paddy soil microcosms receiving a humics surrogate compound (anthraquinone-2,6-disulfonate, AQDS) and three iron(III) oxides (ferrihydrite, hematite, and magnetite) differing in crystallinity and conductivity. Ferrihydrite suppressed methanogenesis, whereas AQDS, hematite, and magnetite facilitated methanogenesis. CH4 production in co-occurring ferrihydrite + AQDS, hematite + AQDS, and magnetite + AQDS cultures was 4.1, 1.3, and 0.9 times greater than the corresponding cultures without AQDS, respectively. Syntrophic cooperation between Geobacter and Methanosarcina occurred in the methanogenesis-facilitated cultures. Experimental results suggested that the conductive characteristics of iron(III) oxides was an important factor determining the methanogenic response to the co-occurrence of iron(III) oxides and humics in anaerobic paddy soil. This work indicated that the type of iron(III) oxides may significantly affect carbon cycling under anoxic conditions in natural wetlands.

  2. Metal distribution and spectroscopic analysis after soil washing with chelating agents and humic substances.

    PubMed

    Tsang, Daniel C W; Hartley, Neil R

    2014-03-01

    Biodegradable chelating agents ([S,S]-ethylenediamine-N,N-disuccinic acid (EDDS) and glutamic-N,N-diacetic acid (GLDA)) and natural humic substances (lignite-derived, standard, and commercially available humic acids) are potentially useful for enhancing soil remediation of timber treatment sites. This study integrated macroscopic and spectroscopic analyses to assess their influence on the distribution and chemical speciation of the remaining metals as well as their interaction with the soil surface after 48-h washing of a field-contaminated soil. The results demonstrated that EDDS and GLDA were an appealing alternative to non-biodegradable ethylenediamine-tetraacetic acid, but the three humic substances were less effective. As shown by sequential extractions, Cu was primarily extracted from the carbonate fraction while Cr and As extraction resulted from (co-)dissolution of the oxide fraction. As a result, the relative proportion of strongly bound organic matter and residual fractions increased by 7-16 %. However, it was noteworthy that the exchangeable fraction also increased by 5-11 %, signifying that a portion of the remaining metals was destabilized by chelating agents and transformed to be more labile in the treated soil. The X-ray photoelectron spectroscopy spectra confirmed the substantial removal of readily accessible Cu from the soil surface, but Cr maintained its original chemical forms of trivalent chromium oxides and iron-chromium coprecipitates, whereas As remained as arsenic trioxide/pentoxide and copper arsenate precipitates. On the other hand, the absence of characteristic peaks of adsorbed carboxylate groups in the Fourier-transform infrared (FTIR) spectra inferred that the extent of adsorption of chelating agents and humic substances on the bulk soil was insufficient to be characterized by FTIR analysis. These results suggested that attention should be paid to the exchangeable fraction of Cu and oxides/coprecipitates of As prior to possible on

  3. A comparison of dissolved humic substances from seawater with Amazon River counterparts by sup 13 C-NMR spectrometry

    SciTech Connect

    Hedges, J.I. ); Hatcher, P.G. ); Ertel, J.R. ); Meyers-Schulte, K.J. )

    1992-04-01

    Although dissolved organic matter (DOM) in seawater constitutes one of the major reservoirs of reduced carbon on earth, the biochemical and geographic origins of this material and its hydrophobic humic component remain unclear. Rivers have been suggested as a potentially important source of marine DOM, but this implication has not yet been systematically tested by direct comparisons of the bulk structural characteristics of DOM isolated from representative ocean reservoirs and their major river sources. The authors report here such a comparison and find that dissolved humic substances isolated from surface and deep seawater in the East Equatorial and north Central Pacific are enriched in nitrogen and {sup 13}C and depleted in unsaturated carbon with respect to counterparts from the Amazon River system. Based on these observations, riverine dissolved humic substances appear to comprise a small fraction of seawater humic substances and therefore must be efficiently and rapidly removed from the ocean.

  4. [FTIR Spectroscopic Analysis of Humic-Like Substances Extracted from the Microbial Residues].

    PubMed

    Wang, Shuai; Dou, Sen; Zhang, Xi; Cui, Yan-jie; Wang, Ting

    2015-12-01

    Drived by the soil microorganisms, the decomposition and transformation of cellulose plays an important role in the formation of humic substances. The techniques of infrared spectrum combining with element analysis were adopted to compare the structural differences of humic-like substances (HLA, humic-like acid; Hu, humin) extracted from the microbial residues formed in the liquid shake-flask culture (70 days), in which the single fungi (Trichoderma viride, Penicillium and Aspergillus niger) and mixed strains participated. The results showed that: (1) The combination of two techniques could clarify the molecu- lar structure of HLA extracted from the microbial residues, however, it remained to be further discussed in terms of analyzing the structures of Hu; (2) Trichoderma viride was beneficial to the condensation of HLA extracted from its microbial residue, but Penicillium was more favorable to the degradation of HLA. (3) The oxidative degradation of HLA fractions extracted the microbial residues was implemented by Penicillium and mixed strains. Both of the mixed strains and Aspergillus niger were helpful to transfer the inorganic N compounds from the culture media into the organic N components of HLA and Hu extracted from the microbial residues, simultaneously increase their amino C contents and then provide the indispensable N source for the humification process. PMID:26964217

  5. Covalent binding of aniline to humic substances. 2. 15N NMR studies of nucleophilic addition reactions

    USGS Publications Warehouse

    Thorn, K.A.; Pettigrew, P.J.; Goldenberg, W.S.; Weber, E.J.

    1996-01-01

    Aromatic amines are known to undergo covalent binding with humic substances in the environment. Although previous studies have examined reaction conditions and proposed mechanisms, there has been no direct spectroscopic evidence for the covalent binding of the amines to the functional groups in humic substances. In order to further elucidate the reaction mechanisms, the Suwannee River and IHSS soil fulvic and humic acids were reacted with 15N-labeled aniline at pH 6 and analyzed using 15N NMR spectrometry. Aniline underwent nucleophilic addition reactions with the quinone and other carbonyl groups in the samples and became incorporated in the form of anilinohydroquinone, anilinoquinone, anilide, imine, and heterocyclic nitrogen, the latter comprising 50% or more of the bound amine. The anilide and anilinohydroquinone nitrogens were determined to be susceptible to chemical exchange by ammonia. In the case of Suwannee River fulvic acid, reaction under anoxic conditions and pretreatment with sodium borohydride or hydroxylamine prior to reaction under oxic conditions resulted in a decrease in the proportion of anilinohydroquinone nitrogen incorporated. The relative decrease in the incorporation of anilinohydroquinone nitrogen with respect to anilinoquinone nitrogen under anoxic conditions suggested that inter- or intramolecular redox reactions accompanied the nucleophilic addition reactions.

  6. Influence of biochar addition on the humic substances of composting manures.

    PubMed

    Jindo, Keiji; Sonoki, Tomonori; Matsumoto, Kazuhiro; Canellas, Luciano; Roig, Asunción; Sanchez-Monedero, Miguel A

    2016-03-01

    Application of biochar (10% v/v) to a manure composting matrix was investigated to evaluate its effect on the chemical composition of humic substances during the composting process. The characteristics of the humic acid (HA) and fulvic acid (FA) fractions were analyzed in compost mixtures originating from two different manures (poultry manure (PM) and cow manure (CM)). The C contents of HA and FA from the manure compost/biochar blends (PM+B and CM+B) were higher than those from PM and CM, with an enhanced recalcitrant fraction, as determined by thermogravimetric analysis. Spectroscopic analysis showed that enrichment of aromatic-C and carboxylic-C occurred in the FA fractions of PM+B and CM+B to a greater extent than in PM and CM. Biochar addition into the composting mixture improved the final compost quality, especially for the light humified fraction (FA).

  7. Use of solid-state 13C NMR in structural studies of humic acids and humin from Holocene sediments

    USGS Publications Warehouse

    Hatcher, P.G.; VanderHart, D.L.; Earl, W.L.

    1980-01-01

    13C NMR spectra of solid humic substances in Holocene sediments have been obtained using cross polarization with magic-angle sample spinning techniques. The results demonstrate that this technique holds great promise for structural characterizations of complex macromolecular substances such as humin and humic acids. Quantifiable distinctions can be made between structural features of aquatic and terrestrial humic substances. The aliphatic carbons of the humic substances are dominant components suggestive of input from lipid-like materials. An interesting resemblance is also noted between terrestrial humic acid and humin spectra. ?? 1980.

  8. Investigating Nitrate-Dependent Humic Substance Oxidation and In-Service K-12 Teachers' Understanding of Microbiology

    ERIC Educational Resources Information Center

    Jones, Nastassia N.

    2011-01-01

    Humic substances (HS) are the humified portions of totally decomposed soil organic matter that are ubiquitous in nature. Although these substances have been studied for more than 200 years, neither their metabolic capabilities nor a specific chemical structure has yet to be determined. HS have been studied as a carbon source in many environments…

  9. Comparison of humic substances isolated from peatbog water by sorption on DEAE-cellulose and amberlite XAD-2

    USGS Publications Warehouse

    Hejzlar, J.; Szpakowska, B.; Wershaw, R. L.

    1994-01-01

    Aquatic humic substances (AHS) were isolated from peatbog water by adsorption (1) on diethylaminoethyl cellulose (DEAE-C) and (2) on Amberlite XAD-2 (XAD) to compare yields of the methods and the composition of the isolated AHS. To provide a detailed comparison, the isolates were fractionated using size-exclusion and hydrophobic-interaction chromatography on Sephadex G-50. The fractions were characterized by ultraviolet-visible, infrared and 13C-nuclear magnetic spectroscopies and analyzed for elemental, functional-group, carbohydrate and amino acid compositions. More AHS adsorbed onto DEAE-C than onto XAD-2 (94 and 74%, respectively). However, only 76% of the AHS adsorbed onto DEAE-C was recovered using 0.1 M NaOH, whereas 98% of the AHS adsorbed onto XAD was released by consecutive elution with 1 M NH4OH (91%) and methanol (7%). Four main fractions of different composition were obtained from each of the alkali-desorbed AHS samples by Sephadex-gel chromatography. General agreement was found in relative amounts, spectroscopic characteristics and composition of corresponding fractions of both isolates except nitrogen content, which was significantly higher in AHS isolated with XAD, apparently due to the reaction of AHS with NH4OH used for the desorption from the resin.Aquatic humic substances (AHS) were isolated from peatbog water by adsorption (1) on diethylaminoethyl cellulose (DEAE-C) and (2) on Amberlite XAD-2 (XAD) to compare yields of the methods and the composition of the isolated AHS. To provide a detailed comparison, the isolates were fractionated using size-exclusion and hydrophobic-interaction chromatography on Sephadex G-50. The fractions were characterized by ultraviolet-visible, infrared and 13C-nuclear magnetic spectroscopies and analyzed for elemental, functional-group, carbohydrate and amino acid compositions. More AHS adsorbed onto DEAE-C than onto XAD-2 (94 and 74%, respectively). However, only 76% of the AHS adsorbed onto DEAE-C was recovered

  10. Some theoretical and practical aspects in the separation of humic substances by combined liquid chromatography methods.

    PubMed

    Hutta, Milan; Góra, Róbert; Halko, Radoslav; Chalányová, Mária

    2011-12-01

    Permanent need to understand nature, structure and properties of humic substances influences also separation methods that are in a wide scope used for fractionation, characterization and analysis of humic substances (HS). At the first glance techniques based on size-exclusion phenomena are the most useful and utilized for relating elution data to the molecular mass distribution of HS, however, with some limitations and exceptions, respectively, in the structural investigation of HS. The second most abundant separation mechanism is reversed-phase based on weak hydrophobic interactions beneficially combined with the step gradients inducing distinct features in rather featureless analytical signal of HS. Relatively great effort is invested to the developments of immobilized-metal affinity chromatography mimicking chelate-forming properties of HS as ligands in the environment. Surprisingly, relatively less attention is given to the ion-ion interactions based ion-exchange chromatography of HS. Chromatographic separation methods play also an important role in the examination of interactions of HS with pesticides. They allow us to determine binding constants and the other data necessary to predict the mobility of chemical pollutants in the environment. HS is frequently adversely acting in analytical procedures as interfering substance, so more detailed information is desired on manifestation of its numerous properties in analytical procedures. The article topic is covered by the review emphasizing advances in the field done in the period of last 10 years from 2000 till 2010.

  11. Anaerobic decomposition of humic substances by Clostridium from the deep subsurface.

    PubMed

    Ueno, Akio; Shimizu, Satoru; Tamamura, Shuji; Okuyama, Hidetoshi; Naganuma, Takeshi; Kaneko, Katsuhiko

    2016-01-08

    Decomposition of humic substances (HSs) is a slow and cryptic but non-negligible component of carbon cycling in sediments. Aerobic decomposition of HSs by microorganisms in the surface environment has been well documented; however, the mechanism of anaerobic microbial decomposition of HSs is not completely understood. Moreover, no microorganisms capable of anaerobic decomposition of HSs have been isolated. Here, we report the anaerobic decomposition of humic acids (HAs) by the anaerobic bacterium Clostridium sp. HSAI-1 isolated from the deep terrestrial subsurface. The use of (14)C-labelled polycatechol as an HA analogue demonstrated that the bacterium decomposed this substance up to 7.4% over 14 days. The decomposition of commercial and natural HAs by the bacterium yielded lower molecular mass fractions, as determined using high-performance size-exclusion chromatography. Fourier transform infrared spectroscopy revealed the removal of carboxyl groups and polysaccharide-related substances, as well as the generation of aliphatic components, amide and aromatic groups. Therefore, our results suggest that Clostridium sp. HSAI-1 anaerobically decomposes and transforms HSs. This study improves our understanding of the anaerobic decomposition of HSs in the hidden carbon cycling in the Earth's subsurface.

  12. Anaerobic decomposition of humic substances by Clostridium from the deep subsurface

    PubMed Central

    Ueno, Akio; Shimizu, Satoru; Tamamura, Shuji; Okuyama, Hidetoshi; Naganuma, Takeshi; Kaneko, Katsuhiko

    2016-01-01

    Decomposition of humic substances (HSs) is a slow and cryptic but non-negligible component of carbon cycling in sediments. Aerobic decomposition of HSs by microorganisms in the surface environment has been well documented; however, the mechanism of anaerobic microbial decomposition of HSs is not completely understood. Moreover, no microorganisms capable of anaerobic decomposition of HSs have been isolated. Here, we report the anaerobic decomposition of humic acids (HAs) by the anaerobic bacterium Clostridium sp. HSAI-1 isolated from the deep terrestrial subsurface. The use of 14C-labelled polycatechol as an HA analogue demonstrated that the bacterium decomposed this substance up to 7.4% over 14 days. The decomposition of commercial and natural HAs by the bacterium yielded lower molecular mass fractions, as determined using high-performance size-exclusion chromatography. Fourier transform infrared spectroscopy revealed the removal of carboxyl groups and polysaccharide-related substances, as well as the generation of aliphatic components, amide and aromatic groups. Therefore, our results suggest that Clostridium sp. HSAI-1 anaerobically decomposes and transforms HSs. This study improves our understanding of the anaerobic decomposition of HSs in the hidden carbon cycling in the Earth’s subsurface. PMID:26743007

  13. The physico-chemical properties and biostimulative activities of humic substances regenerated from lignite.

    PubMed

    David, Jan; Smejkalová, Daniela; Hudecová, Sárka; Zmeškal, Oldřich; von Wandruszka, Ray; Gregor, Tomáš; Kučerík, Jiří

    2014-01-01

    The positive effect of humic acids on the growth of plant roots is well known, however, the mechanisms and role of their physical structure in these processes have not been fully explained yet. In this work, South-Moravian lignite was oxidized by means of nitric acid and hydrogen peroxide to produce a set of regenerated humic acids. The elemental composition, solid state stability and solution characteristics were determined and correlated in vitro with their biological activity. A modified hydroponic method was applied to determine the effects of their potassium salts on Zea mays seedlings roots with respect to the plant weight, root length, root division, and starch and protein content. The relations between the determined parameters were evaluated through Principal Component Analysis and Pearson's correlation coefficients. The results indicated that the most important factor determining the biological activity of South-Moravian lignite potassium humates is related to the nature of self-assemblies, while the chemical composition had no direct connection with the root growth of Zea mays seedlings. It was demonstrated a controlled processing that provided humic substances with different chemical and physicochemical properties and variable biological activity.

  14. The physico-chemical properties and biostimulative activities of humic substances regenerated from lignite.

    PubMed

    David, Jan; Smejkalová, Daniela; Hudecová, Sárka; Zmeškal, Oldřich; von Wandruszka, Ray; Gregor, Tomáš; Kučerík, Jiří

    2014-01-01

    The positive effect of humic acids on the growth of plant roots is well known, however, the mechanisms and role of their physical structure in these processes have not been fully explained yet. In this work, South-Moravian lignite was oxidized by means of nitric acid and hydrogen peroxide to produce a set of regenerated humic acids. The elemental composition, solid state stability and solution characteristics were determined and correlated in vitro with their biological activity. A modified hydroponic method was applied to determine the effects of their potassium salts on Zea mays seedlings roots with respect to the plant weight, root length, root division, and starch and protein content. The relations between the determined parameters were evaluated through Principal Component Analysis and Pearson's correlation coefficients. The results indicated that the most important factor determining the biological activity of South-Moravian lignite potassium humates is related to the nature of self-assemblies, while the chemical composition had no direct connection with the root growth of Zea mays seedlings. It was demonstrated a controlled processing that provided humic substances with different chemical and physicochemical properties and variable biological activity. PMID:24790812

  15. Fouling of a microfiltration membrane by humic-like substances: a mathematical approach to modelling permeate flux and membrane retention.

    PubMed

    Poorasgari, Eskandar; Farsi, Ali; Christensen, Morten Lykkegaard

    2016-01-01

    Membrane retention of the humic-like substances present in a soluble microbial products (SMP) suspension was studied by using a dead-end filtration system. The SMP suspension was extracted from the sludge of an enhanced biological phosphorus removal-membrane bioreactor. Our results showed that both adsorption and steric retention of the humic-like substances governed their transport through the membrane during the filtration. The adsorption, which followed pseudo-first order kinetics, did not cause substantial decline of permeate flux. The steric retention, on the other hand, formed a gel layer, which in turn led to a major decrease in the flux. The reduction of permeate flux was well predicted by cake filtration theory. Based on the adsorption and the steric retention, a new model was developed for predicting the overall membrane retention of the humic-like substances. The general trend of the modelled overall retention was in partial agreement with the experimental results. PMID:27332850

  16. Soft X-Ray Spectromicroscopy Investigation of the Interaction of Aquatic Humic Acid and Clay Colloids.

    PubMed

    Rothe; Denecke; Dardenne

    2000-11-01

    Soft X-ray spectromicroscopy investigations of the interaction of aquatic humic acid (HA) and montmorillonite colloids have been performed in situ at the NSLS X1-A STXM endstation. Images have been recorded of montmorillonite particles, HA aggregates, and mixed suspensions of both montmorillonite + HA and montmorillonite + carboxyl polystyrene microspheres, as reference organic colloids. Special emphasis has been placed on the sample preparation technique in order to keep the colloid particles hydrated during all measurements. C 1s near edge absorption fine structure extracted from STXM image stacks reveals electronic transitions corresponding to functional -COOH and -C(6)H(5) groups present in HA and polystyrene. XANES peak intensities reflect the relative amounts of these two carbon functional groups in the organic particles. For example, the greater amount of carboxyl groups in HA compared to the latex reference particles affects a larger 1s-->pi* transition intensity. A specific form of montmorillonite-HA particle agglomeration at near-neutral pH has been observed. Under these conditions, we found no separate clustering of HA. Instead, STXM images show the HA to coat the clay mineral surface, leading to nearly a fractal manner of aggregation. Copyright 2000 Academic Press.

  17. Study the properties of activated carbon and oxyhydroxide aluminum as sorbents for removal humic substances from natural waters

    NASA Astrophysics Data System (ADS)

    Shiyan, L. N.; Machekhina, K. I.; Gryaznova, E. N.

    2016-02-01

    The present work relates to the problem of high-quality drinking water supply using processes of adsorption on activated carbon and aluminum oxyhydroxide for removal humic- type organic substances. Also the paper reports on sorbtion properties of the activeted carbon Norit SA UF and oxyhydroxide aluminum for removal humic substances. It was found out that the maximum adsorption capacity of activated carbon to organic substances is equal to 0.25 mg/mg and aluminum oxyhydroxide is equal to 0.3 mg/mg. It is shown that the maximum adsorption capacity of activated carbon Norit SA UF to iron (III) ions is equal to 0.0045 mg/mg and to silicon ions is equal to 0.024 mg/mg. Consequently, the aluminum oxyhydroxide has better adsorption characteristics in comparison with the activated carbon for removal of humic substances, iron and silicon ions. It is associated with the fact that activated carbon has a large adsorption surface, and this is due to its porous structure, but not all molecules can enter into these pores. Therefore, the fibrous structure of aluminum oxyhydroxide promotes better sorption capacity. The presented results suggest that activated carbon Norit SA UF and aluminum oxyhydroxide can be used as sorbents for removal humic substances or other organic substances from groundwater and natural waters.

  18. Vienna Soil-Organic-Matter Modeler--Generating condensed-phase models of humic substances.

    PubMed

    Sündermann, Axel; Solc, Roland; Tunega, Daniel; Haberhauer, Georg; Gerzabek, Martin H; Oostenbrink, Chris

    2015-11-01

    Humic substances are ubiquitous in the environment and have manifold functions. While their composition is well known, information on the chemical structure and three-dimensional conformation is scarce. Here we describe the Vienna Soil-Organic-Matter Modeler, which is an online tool to generate condensed phase computer models of humic substances (http://somm.boku.ac.at). Many different models can be created that reflect the diversity in composition and conformations of the constituting molecules. To exemplify the modeler, 18 different models are generated based on two experimentally determined compositions, to explicitly study the effect of varying e.g. the amount of water molecules in the models or the pH. Molecular dynamics simulations were performed on the models, which were subsequently analyzed in terms of structure, interactions and dynamics, linking macroscopic observables to the microscopic composition of the systems. We are convinced that this new tool opens the way for a wide range of in silico studies on soil organic matter. PMID:26521208

  19. Characterization and diagenesis of strong-acid carboxyl groups in humic substances

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Brown, G.K.; Reddy, M.M.

    2003-01-01

    A small fraction of carboxylic acid functional groups in humic substances are exceptionally acidic with pKa values as low as 0.5. A review of acid-group theory eliminated most models and explanations for these exceptionally acidic carboxyl groups. These acidic carboxyl groups in Suwannee River fulvic acid were enriched by a 2-stage fractionation process and the fractions were characterized by elemental, molecular-weight, and titrimetric analyses, and by infrared and 13C- and 1H-nuclear magnetic resonance spectrometry. An average structural model of the most acidic fraction derived from the characterization data indicated a high density of carboxyl groups clustered on oxygen-heterocycle alicyclic rings. Intramolecular H-bonding between adjacent carboxyl groups in these ring structures enhanced stabilization of the carboxylate anion which results in low pKa1 values. The standard, tetrahydrofuran tetracarboxylic acid, was shown to have similar acidity characteristics to the highly acidic fulvic acid fraction. The end products of 3 known diagenetic pathways for the formation of humic substances were shown to result in carboxyl groups clustered on oxygen-heterocycle alicyclic rings.

  20. Influence of humic substances on electrochemical degradation of trichloroethylene in limestone aquifers

    PubMed Central

    Rajic, Ljiljana; Fallahpour, Noushin; Nazari, Roya; Alshawabkeh, Akram N.

    2015-01-01

    In this study we investigate the influence of humic substances (HS) on electrochemical transformation of trichloroethylene (TCE) in groundwater from limestone aquifers. A laboratory flow-through column with an electrochemical reactor that consists of a palladized iron foam cathode followed by a MMO anode was used to induce TCE electro-reduction in groundwater. Up to 82.9% TCE removal was achieved in the absence of HS. Presence of 1, 2, 5, and 10 mgTOC L−1 reduced TCE removal to 70.9%, 61.4%, 51.8% and 19.5%, respectively. The inverse correlation between HS content and TCE removal was linear. Total organic carbon (TOC), dissolved organic carbon (DOC) and absorption properties (A=254 nm, 365 nm and 436 nm) normalized to DOC, were monitored during treatment to understand the behavior and impacts of HS under electrochemical processes. Changes in all parameters occurred mainly after contact with the cathode, which implies that the HS are reacting either directly with electrons from the cathode or with H2 formed at the cathode surface. Since hydrodechlorination is the primary TCE reduction mechanism in this setup, reactions of the HS with the cathode limit transformation of TCE. The presence of limestone gravel reduced the impact of HS on TCE removal. The study concludes that presence of humic substances adversely affects TCE removal from contaminated groundwater by electrochemical reduction using palladized cathodes. PMID:26549889

  1. Vienna Soil-Organic-Matter Modeler--Generating condensed-phase models of humic substances.

    PubMed

    Sündermann, Axel; Solc, Roland; Tunega, Daniel; Haberhauer, Georg; Gerzabek, Martin H; Oostenbrink, Chris

    2015-11-01

    Humic substances are ubiquitous in the environment and have manifold functions. While their composition is well known, information on the chemical structure and three-dimensional conformation is scarce. Here we describe the Vienna Soil-Organic-Matter Modeler, which is an online tool to generate condensed phase computer models of humic substances (http://somm.boku.ac.at). Many different models can be created that reflect the diversity in composition and conformations of the constituting molecules. To exemplify the modeler, 18 different models are generated based on two experimentally determined compositions, to explicitly study the effect of varying e.g. the amount of water molecules in the models or the pH. Molecular dynamics simulations were performed on the models, which were subsequently analyzed in terms of structure, interactions and dynamics, linking macroscopic observables to the microscopic composition of the systems. We are convinced that this new tool opens the way for a wide range of in silico studies on soil organic matter.

  2. Fluorescence spectroscopy as a tool for quality assessment of humic substances

    NASA Astrophysics Data System (ADS)

    Boguta, Patrycja

    2016-04-01

    *The studies were partly carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545. Fluorescence spectroscopy belongs to modern, non-destructive, rapid and relatively cheap methods, as well as for many years it was successfully used in studies of organic compounds in the fields of medicine, biology and chemistry. On the other hand, soil organic matter is a group of compounds with a complex spatial structure showing a large number of groups with different kinds of fluorophores. This could suggest the possibility of application of fluorescence spectroscopy in assessing the quality of humic substances as well as in monitoring of their chemical transformations. The aim of study was chemical description of humic and fulvic acids based on fluorescence spectra, as well as an attempt of evaluation of changes occurring under the influence of different pH and during interactions with various concentrations of metal. The humic and fulvic acids were isolated from chemically different soils. The measurements were carried out on Hitachi fluorescence spectrometer in solutions with a concentration of humic acids 40mg dm-3, at pH from 3 to 7, and for the evaluation of the metal impact: with increasing Zn concentrations (0-50mg dm-3). The fluorescence spectra were recorded in the form of synchronous and emission-excitation matrices (EEM). Studies have shown the presence of different groups of fluorophores. Synchronous spectra were characterized by a well-separated bands showing fluorescence in the area of low, medium and high wavelengths, suggesting the presence of structures, both weakly and strongly humified. EEM spectra revealed map of fluorophores within wide ranges of emission and excitation. Fluorophores differed in both position and intensity. The highest intensity was observed for compounds with the lowest humification degree which might be due to high amount

  3. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances.

    PubMed

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot(-1)). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot(-1)) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot(-1)) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.

  4. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances

    PubMed Central

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot−1). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot−1) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot−1) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials. PMID:25977938

  5. X-ray absorption spectroscopic evidence for the complexation of Hg(II) by reduced sulfur in soil humic substances

    SciTech Connect

    Xia, K.; Skyllberg, U.L.; Bleam, W.F.; Helmke, P.A.; Bloom, P.R.; Nater, E.A.

    1999-01-15

    Analysis of Hg(II) complexed by a soil humic acid (HA) using synchrotron-based X-ray absorption spectroscopy (XAS) revealed the importance of reduces sulfur functional groups (thiol (R-SH) and disulfide (R-SS-R)/disulfane (R-SSH)) in humic substances in the complexation of Hg(II). A two-coordinate binding environment with one oxygen atom and one sulfur atom at distances of 2.02 and 2.38 {angstrom}, respectively, was found in the first coordination shell of Hg(II) complexed by humic acid. Model calculations show that a second coordination sphere could contain one carbon atom and a second sulfur atom at 2.78 and 2.93 {angstrom}, respectively. This suggests that in addition to thiol S, disulfide/disulfane S may be involved with the complexation of Hg(II) in soil organic matter. The appearance of carbon atom in the second coordination shell suggests that one O-containing ligand such as carboxyl and phenol ligands rather than H{sub 2}O molecule is bound to the Hg(II). The involvement of oxygen ligand in addition to the reduced S ligands in the complexation of Hg(II) is due to the low density of reduced S ligands in humic substances. The XAS results from this experiment provided direct molecular level evidence for the preference of reduced S functional groups over oxygen ligands by Hg(II) in the complexation with humic substances.

  6. Humic substances in natural waters and their complexation with trace metals and radionuclides: a review. [129 references

    SciTech Connect

    Boggs, S. Jr.; Livermore, D.; Seitz, M.G.

    1985-07-01

    Dissolved humic substances (humic and fulvic acids) occur in surface waters and groundwaters in concentrations ranging from less than 1 mg(C)/L to more than 100 mg(C)/L. Humic substances are strong complexing agents for many trace metals in the environment and are also capable of forming stable soluble complexes or chelates with radionuclides. Concentrations of humic materials as low as 1 mg(C)/L can produce a detectable increase in the mobility of some actinide elements by forming soluble complexes that inhibit sorption of the radionuclides onto rock materials. The stability of trace metal- or radionuclide-organic complexes is commonly measured by an empirically determined conditional stability constant (K'), which is based on the ratio of complexed metal (radionuclide) in solution to the product concentration of uncomplexed metal and humic complexant. Larger values of stability constants indicate greater complex stability. The stability of radionuclide-organic complexes is affected both by concentration variables and envionmental factors. In general, complexing is favored by increased of radionuclide, increased pH, and decreased ionic strength. Actinide elements are generally most soluble in their higher oxidation states. Radionuclides can also form stable, insoluble complexes with humic materials that tend to reduce radionuclide mobility. These insoluble complexes may be radionuclide-humate colloids that subsequently precipitate from solution, or complexes of radionuclides and humic substances that sorb to clay minerals or other soil particulates strongly enough to immobilize the radionuclides. Colloid formation appears to be favored by increased radionuclide concentration and lowered pH; however, the conditions that favor formation of insoluble complexes that sorb to particulates are still poorly understood. 129 refs., 25 figs., 19 tabs.

  7. Measuring and modeling the hygroscopic growth of two humic substances in mixed aerosol particles of atmospheric relevance

    NASA Astrophysics Data System (ADS)

    Zamora, I. R.; Jacobson, M. Z.

    2013-09-01

    The hygroscopic growth of atmospheric particles affects atmospheric chemistry and Earth's climate. Water-soluble organic carbon (WSOC) constitutes a significant fraction of the dry submicron mass of atmospheric aerosols, thus affecting their water uptake properties. Although the WSOC fraction is comprised of many compounds, a set of model substances can be used to describe its behavior. For this study, mixtures of Nordic aquatic fulvic acid reference (NAFA) and Fluka humic acid (HA), with various combinations of inorganic salts (sodium chloride and ammonium sulfate) and other representative organic compounds (levoglucosan and succinic acid), were studied. We measured the equilibrium water vapor pressure over bulk solutions of these mixtures as a function of temperature and solute concentration. New water activity (aw) parameterizations and hygroscopic growth curves at 25 °C were calculated from these data for particles of equivalent composition. We examined the effect of temperature on the water activity and found a maximum variation of 9% in the 0-30 °C range, and 2% in the 20-30 °C range. Five two-component mixtures were studied to understand the effect of adding a humic substance (HS), such as NAFA and HA, to an inorganic salt or a saccharide. The deliquescence point at 25 °C for HS-inorganic mixtures did not change significantly from that of the pure inorganic species. However, the hygroscopic growth of HA / inorganic mixtures was lower than that exhibited by the pure salt, in proportion to the added mass of HA. The addition of NAFA to a highly soluble solute (ammonium sulfate, sodium chloride or levoglucosan) in water had the same effect as the addition of HA to the inorganic species for most of the water activity range studied. Yet, the water uptake of these NAFA mixtures transitioned to match the growth of the pure salt or saccharide at high aw values. The remaining four mixtures were based on chemical composition data for different aerosol types. As

  8. Decreasing toxic and mutagenic activity of soils through the application of humic substances

    NASA Astrophysics Data System (ADS)

    Gorova Alla, I.; Pavlichenko Artem, 2.; Klimkina Iryna, 3.

    2009-04-01

    Based on an example of conditions on mining industry land adjacent to the Dnepr River in the Dnepropetrovsk Region (Ukraine), the ecological quality of the soils was evaluated by cytogenetic methods and, in parallel, the efficiency of using humates obtained from brown coal of the Alexandria deposit was also researched. During an ecological monitoring programme from 1997 to 2007, the genetic characteristics of soils at 12 locations in Dnepropetrovsk, and at 33 locations in four other industrial mining areas in the region, was studied. A theoretical basis for the use of humic substances for blocking the migration paths of ecological toxic-matter within a soil-to-plant system was reasoned, namely that introducing natrium humate into the soil would promote a normalization of the cell division processes and a reduction in the chromosome aberration rate in the root meristem of the biological indicators. Laboratory tests involved growing seeds of an indicator plant (Pisum sativum L.) in the different soils, to some of which humic substances had been added. The data showed evidence that the soils of the region display a rather patchy picture in terms of toxic and mutagen features. This was obvious from the variety of levels on the mitotic index, as well as from the increase of 5 to 24 times the frequency of aberrant chromosomes. Introducing 0.01per cent of a Christecol water solution into a substratum for growing the indicator plant apparently reduced (P<0,01) the level of the chromosome aberrations in the meristem cells of the test material. The mutagenic rates of the soils during the test was reduced by 1.5 to 4 times and, at the same time, a reduction of the soil toxic rates was also observed. The reduction in chromosome aberration levels in the cells of the tested materials for the soils in the different city districts, varied from 2.9 to 12.4 times. Importantly, a reliable reduction in the genetic damage under the influence of humic substances was observed in all test

  9. Monitoring transitory profiles of leachate humic substances in landfill aeration reactors in mesophilic and thermophilic conditions.

    PubMed

    Tong, Huanhuan; Yin, Ke; Ge, Liya; Giannis, Apostolos; Chuan, Valerie W L; Wang, Jing-Yuan

    2015-04-28

    The presence of humic substances (HS) in landfill leachate is of great interest because of their structural stability and potential toxicity. This study examined the effects of temperature and waste age on the transformation of HS during in situ aeration of bioreactor landfills. By establishing aerobic conditions, dissolved organic carbon (DOC) rapidly accumulated in the bioreactor leachate. Fractional analysis showed that the elevated concentration of humic acids (HAs) was primarily responsible for the increment of leachate strength. Further structural characterization indicated that the molecular weight (MW) and aromacity of HS were enhanced by aeration in conjunction with thermophilic temperature. Interestingly, elevation of HAs concentration was not observed in the aeration reactor with a prolonged waste age, as the mobility of HAs was lowered by the high MW derived from extended waste age. Based on these results, aeration may be more favorable in aged landfills, since dissolution of HAs could be minimized by the evolution to larger MW compared to young landfills. Moreover, increased operation temperature during aeration likely offers benefits for the rapid maturation of HS.

  10. Humic substances cause fluorescence inhibition in real-time polymerase chain reaction.

    PubMed

    Sidstedt, Maja; Jansson, Linda; Nilsson, Elin; Noppa, Laila; Forsman, Mats; Rådström, Peter; Hedman, Johannes

    2015-10-15

    Real-time polymerase chain reaction (qPCR) is the cornerstone of DNA analysis, enabling detection and quantification of minute nucleic acid amounts. However, PCR-based analysis is limited, in part, by the presence of inhibitors in the samples. PCR inhibition has been viewed solely as failure to efficiently generate amplicons, that is, amplification inhibition. Humic substances (HS) are well-known inhibitors of PCR amplification. Here we show that HS from environmental samples, specifically humic acid (HA), are very potent detection inhibitors, that is, quench the fluorescence signal of double-stranded DNA (dsDNA) binding dyes. HA quenched the fluorescence of the commonly used qPCR dyes EvaGreen, ResoLight, SYBR Green I, and SYTO 82, generating lowered amplification plots, although amplicon production was unaffected. For EvaGreen, 500 ng of HA quenched nearly all fluorescence, whereas 1000 ng of HA completely inhibited amplification when applying Immolase DNA polymerase with bovine serum albumin (BSA). Fluorescence spectroscopy measurements showed that HA quenching was either static or collisional and indicated that HA bound directly to the dye. Fulvic acid did not act as a qPCR detection inhibitor but inhibited amplification similarly to HA. Hydrolysis probe fluorescence was not quenched by HA. Detection inhibition is an overlooked phenomenon that needs to be considered to allow for development of optimal qPCR assays.

  11. Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York

    NASA Astrophysics Data System (ADS)

    Cronan, Christopher S.; Aiken, George R.

    1985-08-01

    Studies were conducted in conjunction with the Integrated Lake-Watershed Acidification Study (ILWAS) to examine the chemistry and leaching patterns of soluble humic substances in forested watersheds of the Adirondack region. During the summer growing season, mean dissolved organic carbon (DOC) concentrations in the ILWAS watersheds ranged from 21-32 mg C l-1 in O/A horizon leachates, from 5-7 mg C l-1 in B horizon leachates, from 2-4 mg C l-1 in groundwater solutions, from 6-8 mg C l-1 in first order streams, from 3-8 mg C l-1 in lake inlets, and from 2-7 mg C l-1 in lake outlets. During the winter, mean DOC concentrations dropped significantly in the upper soil profile. Soil solutions from mixed and coniferous stands contained as much as twice the DOC concentration of lysimeter samples from hardwood stands. Results of DOC fractionation analysis showed that hydrophobia and hydrophilic acids dominate the organic solute composition of natural waters in these watersheds. Charge balance and titration results indicated that the general acid-base characteristics of the dissolved humic mixture in these natural waters can be accounted for by a model organic acid having an averagepKa of 3.85, an average charge density of 4-5 μeq mg-1 C at ambient pH, and a total of 6-7 meq COOH per gram carbon.

  12. Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York

    USGS Publications Warehouse

    Cronan, C.S.; Aiken, G.R.

    1985-01-01

    Studies were conducted in conjunction with the Integrated Lake-Watershed Acidification Study (ILWAS) to examine the chemistry and leaching patterns of soluble humic substances in forested watersheds of the Adirondack region. During the summer growing season, mean dissolved organic carbon (DOC) concentrations in the ILWAS watersheds ranged from 21-32 mg C l-1 in O/A horizon leachates, from 5-7 mg C l-1 in B horizon leachates, from 2-4 mg C l-1 in groundwater solutions, from 6-8 mg C l-1 in first order streams, from 3-8 mg C l-1 in lake inlets, and from 2-7 mg C l-1 in lake outlets. During the winter, mean DOC concentrations dropped significantly in the upper soil profile. Soil solutions from mixed and coniferous stands contained as much as twice the DOC concentration of lysimeter samples from hardwood stands. Results of DOC fractionation analysis showed that hydrophobia and hydrophilic acids dominate the organic solute composition of natural waters in these watersheds. Charge balance and titration results indicated that the general acid-base characteristics of the dissolved humic mixture in these natural waters can be accounted for by a model organic acid having an averagepKa of 3.85, an average charge density of 4-5 ??eq mg-1 C at ambient pH, and a total of 6-7 meq COOH per gram carbon. ?? 1985.

  13. Effects of humic substances on the heavy metal removal and the phytotoxicity of pesticide

    SciTech Connect

    Yang, J.E.; Shin, Y.K.; Rhee, H.I.; Kim, J.J.

    1995-12-31

    Efficiency of humic (HA) or fulvic acid (FA) on the removal of Cu or Pb from aqueous solution and phytotoxicity of Paraquat were assessed using the principle of contaminant-ligand complexation. Increasing HA concentrations enhanced the efficiency of Cu or Pb removal, up to a critical ligand concentration capable of forming a maximum HA-metal complex. Removal efficiency ranged from 70 to 95% for Pb, but only 13 to 65% for Cu. HA of 100mg was estimated to complex with 7.5 mg of Cu and 34.1 mg of Pb. Fulvic acid removed nearly 100% of Pb, but only 13 to 29% of Cu. The reactions followed the first- or multiple first-order kinetics depending on the concentrations of metal and ligand, pH and temperature. Paraquat alone exerted a high degree of phytotoxicity at low concentration to the hydroponically grown rye (Secale cereale L.), but the presence of HA or FA decreased the Paraquat toxicity up to 40% and enhanced the yield and growth of rye up to 20% indicating that humic substances reduced the bioavailability of paraquat to rye due to the complexation.

  14. Electron transfer from humic substances to biogenic and abiogenic Fe(III) oxyhydroxide minerals.

    PubMed

    Piepenbrock, Annette; Schröder, Christian; Kappler, Andreas

    2014-01-01

    Microbial humic substance (HS) reduction and subsequent abiotic electron transfer from reduced HS to poorly soluble Fe(III) (oxyhydr)oxides, a process named electron shuttling, significantly increases microbial Fe(III) mineral reduction rates. However, the importance of electron shuttling in nature and notably the electron transfer from HS to biogenic Fe(III) (oxyhydr)oxides have thus far not been determined. In this study, we have quantified the rate and extent of electron transfer from reduced and nonreduced Pahokee Peat humic acids (PPHA) and fresh soil organic matter (SOM) extracts to both synthetic and environmentally relevant biogenic Fe(III) (oxyhydr)oxides. We found that biogenic Fe(III) minerals were reduced faster and to an equal or higher degree than their abiogenic counterparts. Differences were attributed to differences in crystallinity and the association of bacterial biomass with biogenic minerals. Compared to purified PPHA, SOM extract transferred fewer electrons per milligram of carbon and electron transfer was observed only to poorly crystalline ferrihydrite but not to more crystalline goethite. This indicates a difference in redox potential distribution of the redox-active functional groups in extracted SOM relative to the purified PPHA. Our results suggest that HS electron shuttling can also contribute to iron redox processes in environments where biogenic Fe(III) minerals are present.

  15. Reducing capacities and redox potentials of humic substances extracted from sewage sludge.

    PubMed

    Yang, Zhen; Du, Mengchan; Jiang, Jie

    2016-02-01

    Humic substances (HS) are redox active organic materials that can be extracted from sewage sludge generated in wastewater treatment processes. Due to the poor understanding of reducing capacity, redox potentials and redox active functional groups of HS in sewage sludge, the potential contribution of sludge HS in transformation of wastewater contaminants is unclear. In the present study, the number of electrons donated or accepted by sewage sludge HS were quantified before and after reduction by iron compounds that possess different redox potentials and defined as the reducing capacity of the sewage sludge. In contrast to previous studies of soil and commercial humic acids (HA), reduced sludge HA showed a lower reducing capacity than that of native HA, which implies formation of semiquinone radicals since the semiquinone radical/hydroquinone pair has a much higher redox potential than the quinone/hydroquinone pair. It is novel that reducing capacities of sludge HA were determined in the redox potential range from -314 to 430 mV. The formation of semiquinone radicals formed during the reduction of quinone moieties in sludge HA is shown by three-dimensional excitation/emission matrix fluorescence spectroscopies information, increasing fluorescence intensities and blue-shifting of the excitation/emission peak of reduced sludge HA. Knowledge of sludge HS redox potentials and corresponding reducing capacities makes it possible to predict the transformation of redox active pollutants and facilitate manipulation and optimization of sludge loading wastewater treatment processes.

  16. Multidimensional fluorescence studies of the phenolic content of dissolved organic carbon in humic substances.

    PubMed

    Pagano, Todd; Ross, Annemarie D; Chiarelli, Joseph; Kenny, Jonathan E

    2012-03-01

    Indicators suggest that the amount of dissolved organic carbon (DOC) in natural waters may be increasing. Climate change has been proposed as a potential contributor to the trend, and under such a mechanism, the phenolic content of DOC may also be increasing. This study explores the assessment of the phenolic character of DOC using multidimensional fluorescence spectroscopy as a more convenient alternative to traditional wet chemistry methods. Parallel factor analysis (PARAFAC) is applied to fluorescence excitation emission matrices (EEMs) of humic samples to analyze inherent phenolic content. The PARAFAC results are correlated with phenol concentrations derived from the Folin-Ciocalteau reagent-based method. The reagent-based method reveals that the phenolic content of five International Humic Substance Society (IHSS) samples varies from approximately 5.2 to 22 ppm Tannic Acid Equivalents (TAE). A four-component PARAFAC fit is applied to the EEMs of the IHSS sample dataset and it is determined by PARAFAC score correlations with phenol concentrations from the reagent-based method that components C2, C3, and C4 have the highest probability of containing phenolic groups. The results show the potential for PARAFAC analysis of multidimensional fluorescence data for monitoring the phenolic content of DOC.

  17. Mitigation of Fe(0) nanoparticles toxicity to Trichosporon cutaneum by humic substances.

    PubMed

    Pádrová, Karolína; Maťátková, Olga; Šiková, Michaela; Füzik, Tibor; Masák, Jan; Čejková, Alena; Jirků, Vladimír

    2016-01-25

    Zero-valent iron nanoparticles (nZVI) are a relatively new option for the treatment of contaminated soil and groundwater. However, because of their apparent toxicity, nZVI in high concentrations are known to interfere with many autochthonous microorganisms and, thus, impact their participation in the remediation process. The effect of two commercially available nZVI products, Nanofer 25 (non-stabilized) and Nanofer 25S (stabilized), was examined. Considerable toxicity to the soil yeast Trichosporon cutaneum was observed. Two chemically different humic substances (HSs) were studied as a possible protection agent that mitigates nZVI toxicity: oxidized oxyhumolite X6 and humic acid X3A. The effect of addition of HSs was studied in different phases of the experiment to establish the effect on cells and nZVI. SEM and TEM images revealed an ability of both types of nZVI and HSs to adsorb on surface of the cells. Changes in cell surface properties were also observed by zeta potential measurements. Our results indicate that HSs can act as an electrosteric barrier, which hinders mutual interaction between nZVI and treated cell. Thus, the application of HS seems to be a promising solution to mitigating the toxic action of nZVI.

  18. MODELING OF METAL BINDING ON HUMIC SUBSTANCES USING THE NIST DATABASE: AN A PRIORI FUNCTIONAL GROUP APPROACH

    EPA Science Inventory

    Various modeling approaches have been developed for metal binding on humic substances. However, most of these models are still curve-fitting exercises-- the resulting set of parameters such as affinity constants (or the distribution of them) is found to depend on pH, ionic stren...

  19. PREDICTING CHEMICAL REACTIVITY OF HUMIC SUBSTANCES FOR MINERALS AND XENOBIOTICS: USE OF COMPUTATIONAL CHEMISTRY, SCANNING PROBE MICROSCOPY AND VIRTUAL REALITY

    EPA Science Inventory

    In this chapter we review the literature on scanning probe microscopy (SPM), virtual reality (VR), and computational chemistry and our earlier work dealing with modeling lignin, lignin-carbohydrate complexes (LCC), humic substances (HSs) and non-bonded organo-mineral interactions...

  20. A humic substance analogue AQDS stimulates Geobacter sp. abundance and enhances pentachlorophenol transformation in a paddy soil.

    PubMed

    Chen, Manjia; Tong, Hui; Liu, Chengshuai; Chen, Dandan; Li, Fangbai; Qiao, Jiangtao

    2016-10-01

    Soil humic substances can be used as redox mediators in accelerating the biotransformation of organic pollutants, and humus-respiring bacteria are widely distributed in soils. However, the impact of humic substances on the soil microbial community during the biotransformation of organic pollutants is expected to be crucial while remains to be unclear. In this study, the biostimulation of indigenous microbial communities and the consequent effects on anaerobic transformation of pentachlorophenol (PCP) by a model humic substance, anthraquinone-2,6-disulfonate (AQDS), were systematically investigated in a paddy soil. The addition of AQDS was observed to increase the production of HCl-extractable Fe(II) and enhance the PCP transformation rates consequently. The pseudo-first-order rate constants of the PCP transformation showed a positive exponential relationship with the AQDS dosage. The terminal restriction fragment length polymorphism (T-RFLP) results indicated the substantial effect of added AQDS on soil microbial community. The enhanced abundance of Geobacter sp. was disclosed to be most critical for accelerated PCP transformation when with AQDS, in which Geobacter sp. functioned for promoting the generation of active Fe(II) and consequently enhancing the PCP transformation rates. The transformation rates of PCP were exponentially correlated with the abundance of Geobacter sp. positively. The findings are expected to improve the understanding of diversity and ubiquity of microorganisms in humic substances-rich soils for accelerating the transformations of soil chlorinated pollutants. PMID:27372263

  1. Influence of humic substances on bioavailability of Cu and Zn during sewage sludge composting.

    PubMed

    Kang, Jun; Zhang, Zengqiang; Wang, Jim J

    2011-09-01

    Influence of humic substances (HS) on bioavailability of Cu and Zn was characterized during 120 days co-composting of sewage sludge and maize straw. At the initial stage of composting, Cu and Zn in sewage sludge were released as organic matter was degraded, and water soluble Cu and Zn increased markedly. Water soluble Cu and FA content decreased after 21 days whereas water soluble Zn increased during the whole process. Both HA-Cu and HA-Zn were significantly and positively correlated with HA and H/F, respectively. At the end of composting, the distribution coefficients of HA-Cu and HA-Zn reached 27.50% and 3.33% respectively with HA-Cu/HA-Zn ratio increased from 1.29 to 2.73. The results suggest that Cu combined with HA more strongly than Zn, and composting treatment could decrease bioavailability of Cu markedly. PMID:21742487

  2. Biogeochemical interactions among the arsenic, iron, humic substances, and microbes in mud volcanoes in southern Taiwan.

    PubMed

    Liu, Chia-Chuan; Maity, Jyoti Prakash; Jean, Jiin-Shuh; Sracek, Ondra; Kar, Sandeep; Li, Zhaohui; Bundschuh, Jochen; Chen, Chien-Yen; Lu, Hsueh-Yu

    2011-01-01

    Fluid and mud samples collected from Hsiaokunshui (HKS), Wushanting (WST), Yenshuikeng (YSK), Kunshuiping (KSP), Liyushan (LYS), and Sinyangnyuhu (SYNH) mud volcanoes of southwestern Taiwan were characterized for major ions, humic substances (HS) and trace elements concentrations. The relationship between the release of arsenic (As) and activities of sulfate-reducing bacteria has been assessed to understand relevant geochemical processes in the mud volcanoes. Arsenic (0.02-0.06 mg/L) and humic substances (4.13 × 10(-4) to 1.64 × 10(-3) mM) in the fluids of mud volcanoes showed a positive correlation (r = 0.99, p < 0.05) except in Liyushan mud volcano. Arsenic and iron in mud sediments formed two separate groups i) high As, but low Fe in HKS, WST, and SYNH; and ii) low As, but high Fe in the YSK, KSP, and LYS mud volcanoes. The Eh(S.H.E.) values of the mud volcano liquids were characterized by mild to strongly reducing conditions. The HKS, SYNH, and WST mud volcanoes (near the Chishan Fault) belongs to strong reducing environment (-33 to -116 mV), whereas the LYS, YSK, and KSP mud volcanoes located near the coastal plain are under mild reducing environment (-11 to 172 mV). At low Eh values mud volcanoes, saturation index (SI) values of poorly crystalline phases such as amorphous ferric hydroxide indicate understaturation, whereas saturation is reached in relatively high Eh(S.H.E.) values mud volcanoes. Arsenic contents in sediments are low, presumably due to its release to fluids (As/Fe ratio in YSK, KSP, and LYS sediment: 4.86 × 10(-4)-6.20 × 10(-4)). At low Eh(S.H.E.) values (mild to strong reducing environment), arsenic may co-precipitate with sulfides as a consequence of sulfate reduction (As/Fe ratios in WST, HKS, and SYNH sediments: 0.42-0.69).

  3. INFLUENCE OF BORATE BUFFERS ON THE ELECTROPHORETIC BEHAVIOR OF HUMIC SUBSTANCES IN CAPILLARY ZONE ELECTROPHORESIS

    EPA Science Inventory

    The influence of tetrahydroxyborate ions on the electrophoretic mobility of humic acids was evaluated by capillary electrophoresis (CE). Depending on the molarity of borate ions in the separation buffer, the humic acids exhibit electropherograms with sharp peaks consistently exte...

  4. Evaluation of the transformation of organic matter to humic substances in compost by coupling sec-page.

    PubMed

    Trubetskaya, O E; Trubetskoj, O A; Ciavatta, C

    2001-03-01

    Humic acids (HAs) from soil and compost at the beginning (S0) and at the end of the stabilization process after 130 days (S130) have been fractionated by coupling size exclusion chromatography (SEC) and polyacrylamide gel electrophoresis (PAGE). Preparative quantities of HA fractions (HAFs) with different molecular sizes (MSs) and exactly defined electrophoretic mobility (EMs) have been obtained from all samples and the HAFs weight content has been studied. A high degree of similarity in HAFs weight content between soil HA and a stabilized compost HAs130 has been observed. Such data seem to be reliable for monitoring the evolution of the compost organic matter to humic substances for their agricultural uses.

  5. A meta-analysis of plant-growth response to humic substance applications

    NASA Astrophysics Data System (ADS)

    Patti, Antonio; Rose, Michael; Little, Karen; Jackson, Roy; Cavagnaro, Tim

    2013-04-01

    Humic substances (HS) are a category of naturally occurring organic compounds that arise from the decomposition and transformation of plant, animal and microbial residues (Maccarthy 2001). The loss of humic material, together with overall reductions in soil organic matter, is of concern because they play important roles in maintaining key soil functions and plant productivity (Lal 2004). Consequently, there is interest in the application of HS-based amendments, often derived from agricultural wastes (e.g composts) to remediate and/or maintain soil health (Quilty and Cattle 2011). In light of the potential benefits of HS, together with their inconsistent performance under field conditions, we sought to quantitatively review the effects of HS on plant growth, by undertaking a meta-analysis of the literature. A total of 390 papers were originally selected from the current literature. A number of criteria were applied to reduce this number to 81, from which the meta-analysis was undertaken. The 81 papers comprised 57 studies presenting data on shoot (or total) dry weight and 39 studies reporting root dry weight. As part of the meta-analysis we attempted: (i) to quantify the magnitude and likelihood of plant growth promotion, in terms of shoot and root biomass, resulting from HS application, (ii) to determine the influence of environmental conditions, plant type, humic substance properties, and the manner of application on plant growth response to HS, (iii) to identify gaps in our understanding of the interaction of HS with plants, and (iv) to provide some general recommendations for the practical use of HS in agronomic systems and suggestions for future work. Some of the key findings from this meta-analysis included: Many papers lack details on HS chemical characteristics The application of HS needs to be tailored to the environmental conditions in which they will be used. The effect of HS on shoot biomass was not only dependent on the source and rate of application

  6. Photochemical effect of humic acid components separated using molecular imprinting method applying porphyrin-like substances as templates in aqueous solution.

    PubMed

    Yu, Chunyan; Zhang, Yaobin; Quan, Xie; Chen, Shuo; Han, Jianbo; Ou, Xiaoxia; Zhao, Jincai

    2010-08-01

    To elucidate the relationship between photochemical functions with the structure of humic acids (HA), we developed a molecular imprinting method to separate the substances with given structure and investigated their photochemical behavior in aqueous solution. The substances with porphyrin-like core structure, such as chlorophyll or heme, were employed as template substances for preparing molecular imprinting polymers (MIP). The polymers were used to separate the substances with porphyrin-like structure from HA. Photochemical experiments were conducted to evaluate effects of the separated HA fractions on the photodegradation of coexisting organic pollutant. The results showed that all fractions bound by MIP accelerated photochemical degradation of coexisting 2,4-dichlorophenoxyacetic acid (2,4-D) under simulated sunlight (lambda>290 nm) irradiation, indicating that HA with porphyrin-like structure possesses better photoactivity than ones without the structure. The photochemical degradation of 2,4-D was enhanced when Fe(III), the ubiquitous element in natural aquatic systems, was added owing to the formation of Fe(III) complex with the HA. Electron paramagnetic resonance (EPR) spectra indicated that OH* and 1O2 radicals were generated in the solutions of HA fractions bound by MIP under simulated sunlight irradiation, implying that 2,4-D degradation could be related to oxidation reactions caused by reactive oxygen species (ROS).

  7. Humic substances from sewage sludge compost as washing agent effectively remove Cu and Cd from soil.

    PubMed

    Kulikowska, Dorota; Gusiatin, Zygmunt Mariusz; Bułkowska, Katarzyna; Kierklo, Katarzyna

    2015-10-01

    Although commercially available biosurfactants are environmentally friendly and effectively remove heavy metals from soil, they are costly. Therefore, this study investigated whether inexpensive humic substances (HS) from sewage sludge compost could effectively remove copper (Cu) and cadmium (Cd) from highly contaminated sandy clay loam (S1) and clay (S2). The optimum HS concentration and pH were determined, as well process kinetics. Under optimum conditions, a single washing removed 80.7% of Cu and 69.1% of Cd from S1, and 53.2% and 36.5%, respectively, from S2. Triple washing increased removal from S1 to almost 100% for both metals, and to 83.2% of Cu and 88.9% of Cd from S2. Triple washing lowered the potential ecological risk (Er(i)) of the soils, especially the risk from Cd. HS substances show potential for treating soils highly contaminated with heavy metals, and HS from other sources should be tested with these and other contaminants.

  8. Hydrogeochemical and mineralogical investigations of arsenic- and humic substance-enriched aquifers

    NASA Astrophysics Data System (ADS)

    Liu, Chen-Wuing; Lai, Chih-Chieh; Chen, Yen-Yu; Lu, Kuang-Liang

    2013-08-01

    This study investigated the hydrogeochemical and mineralogical characteristics of arsenic-contaminated and humic-substance-enriched aquifers in the Chianan Plain, Taiwan, which is an endemic area for blackfoot disease (BFD). Factorial analysis (FA) was used to evaluate the hydrochemical characteristics of 83 groundwater samples in the Chianan Plain, and 462 geological core samples obtained from 9 drilling wells were collected to analyze their arsenic and iron contents. The major mineral phases and chemical components were determined using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy and energy dispersive spectrometry (SEM-EDS). Partition of arsenic among various hosting solids in sediments was determined by sequential extraction. The results of FA showed that the hydrochemical characteristics of the groundwater samples could be grouped by 4 factors: salinization, arsenic, sulfide, and iron. Arsenic was positively correlated with alkalinity, dissolved organic/inorganic carbon, and fluorescence intensity [humic acids, (HAs)]. As(V) has a higher chelating affinity with HAs than does As(III), resulting in higher As(V) concentrations distributed throughout the reducing environment. High levels and correlations of As and HAs may cause BFD in the Chianan Plain. No correlation was found between the measured and calculated redox potentials of the various redox couples. The As(III)/As(V) was under a chemical non-equilibrium condition. The vertical distribution of the sedimentary As (solid phase) typically increased with depth, but the aqueous As concentrations were higher in the second aquifer (depth of 80-120 m). Arsenic content (solid phase) was higher in the clay/silt sediments and marine formations. The major minerals identified by XPS and SEM-EDS were goethite, hematite, magnetite, pyrite, and siderite, agreeing with the SI values calculated by PHREEQC. Arsenic content was strongly correlated with sulfur (weight%; R2

  9. NEW APPROACHES TO ESTIMATING INDIRECT PHOTOLYSIS RATES IN AQUATIC ENVIRONMENTS

    EPA Science Inventory

    Indirect photoreactions in aquatic environments are driven by reactive species, most of which are oxygen centered. Humic substances play an important role in photosensitizing the production of these reactive species, which include singlet molecular oxygen, superoxide ions, hydrog...

  10. Humic substances of varying types increase survivorship of the freshwater shrimp Caridina sp. D to acid mine drainage.

    PubMed

    Holland, Aleicia; Duivenvoorden, Leo J; Kinnear, Susan H W

    2014-07-01

    Differences relating to the ability of various types of humic substances (HS) to influence toxicity of pollutants have been reported in the literature, but there still remains a gap in understanding whether various HS will have the same influence on the toxicity of acid mine drainage (AMD). This study investigated differences in the ability of Aldrich humic acid (AHA), Suwannee River humic acid and Suwannee River fulvic acid to decrease toxicity of AMD to the freshwater shrimp (Caridina sp. D). Toxicity tests were conducted over 96 h and used Mount Morgan open pit water as source of AMD and Dee River water as control/diluents. Concentrations of 0-4 % AMD at 0 mg/L HS, 10 mg/L AHA, 10 mg/L Suwannee River humic acid and 10 mg/L Suwannee River fulvic acid were used. Significantly higher survival of shrimp was recorded in the HS treatments compared with the treatment containing no HS. No significant differences were found among HS type. HS considerably increased LC50 values irrespective of type, from 1.29 (0 mg/L HS) to 2.12 % (AHA); 2.19 (Suwannee River humic acid) and 2.22 % (Suwannee River fulvic acid). These results support previous work that HS decrease the toxicity of AMD to freshwater organisms, but with the novel finding that this ability occurs irrespective of HS type. These results increase the stock of knowledge regarding HS and may contribute to a possible remediation option for AMD environments. PMID:24715599

  11. Comprehensive characterization of oil refinery effluent-derived humic substances using various spectroscopic approaches.

    PubMed

    Lingbo, Li; Song, Yan; Congbi, Han; Guangbo, Shan

    2005-07-01

    Refinery effluent-derived humic substances (HS) are important for developing refinery effluent reclamation techniques and studying the environmental chemistry of wastewater effluents. In this study, dissolved organic matter (DOM) from refinery effluent was concentrated using a portable reverse osmosis (RO) system. HS were isolated from RO retentates with XAD-8 resin. A variety of approaches such as specific UV absorbance at 254nm (SUV(254)), elemental analysis, size exclusion chromatography (SEC), solid-state cross polarization magic angle spinning (13)C nuclear magnetic resonance spectrometry ((13)C CPMAS NMR), Fourier transform infrared spectrometry (FTIR), and electrospray ionization/ion trap/mass spectrometry (ESI/ion trap/MS) were employed for characterization of HS. The portable RO system exhibited high yield and recovery of DOM for concentrating refinery effluent. The concentration of dissolved organic carbon (DOC) in the refinery effluent was 9.9mg/l, in which humic acids (HA) and fulvic acids (FA) accounted for 2.3% and 34.6%, respectively. Elemental and SUV(254) analyses indicated relative high amounts of aliphatic structures and low amounts of aromatic structures in refinery effluent-derived HS. Refinery effluent-derived HS displayed lower molecular weight than natural HS. The number-average molecular weight (M(n)) and the weight-average molecular weight (M(w)) of HA were 1069 and 2934, and those of FA were 679 and 1212 by SEC, respectively. By ESI/ion trap/MS, the M(n) and the M(w) of FA were 330 and 383. Four kinds of carbon structures (aliphatic, aromatic, heteroaliphatic, and carboxylic carbons) were found in refinery effluent-derived HS by (13)C NMR analysis. The quantitative results support the interpretation that these HS are rich in aliphatic carbons and poor in aromatic carbons. Proteinaceous materials were identified by FTIR analysis in refinery effluent-derived HS. PMID:15950039

  12. Temporal changes in soil bacterial diversity and humic substances degradation in subarctic tundra soil.

    PubMed

    Park, Ha Ju; Chae, Namyi; Sul, Woo Jun; Lee, Bang Yong; Lee, Yoo Kyung; Kim, Dockyu

    2015-04-01

    Humic substances (HS), primarily humic acids (HA) and fulvic acids (FA), are the largest constituent of soil organic matter. In microcosm systems with subarctic HS-rich tundra soil (site AK 1-75; approximately 5.6 °C during the thawing period) from Council, Alaska, the HA content significantly decreased to 48% after a 99-day incubation at 5 °C as part of a biologically mediated process. Accordingly, levels of FA, a putative byproduct of HA degradation, consistently increased to 172% during an identical incubation process. Culture-independent microbial community analysis showed that during the microcosm experiments, the relative abundance of phyla Proteobacteria (bacteria) and Euryarchaeota (archaea) largely increased, indicating their involvement in HS degradation. When the indigenous bacteria in AK 1-75 were enriched in an artificial mineral medium spiked with HA, the changes in relative abundance were most conspicuous in Proteobacteria (from 60.2 to 79.0%), specifically Betaproteobacteria-related bacteria. One hundred twenty-two HA-degrading bacterial strains, primarily from the genera Paenibacillus (phylum Firmicutes) and Pseudomonas (class Gammaproteobacteria), were cultivated from AK 1-75 and nearby sites. Through culture-dependent analysis with these bacterial isolates, we observed increasing HS-degradation rates in parallel with rising temperatures in a range of 0 °C to 20 °C, with the most notable increase occurring at 8 °C compared to 6 °C. Our results indicate that, although microbial-mediated HS degradation occurs at temperature as low as 5 °C in tundra ecosystems, increasing soil temperature caused by global climate change could enhance HS degradation rates. Extending the thawing period could also increase degradation activity, thereby directly affecting nearby microbial communities and rhizosphere environments.

  13. DRIFT and HR MAS NMR characterization of humic substances from a soil treated with different organic and mineral fertilizers

    NASA Astrophysics Data System (ADS)

    Ferrari, Erika; Francioso, Ornella; Nardi, Serenella; Saladini, Monica; Ferro, Nicola Dal; Morari, Francesco

    2011-07-01

    In this study, using DRIFT and HR MAS NMR, we analyzed the humic substances isolated from a soil treated, over 40 years, with different organic, mineral and organic plus mineral treatments and cultivated with maize as the main crop. As expected, the structure of humic substances was very complex but by combining both techniques (DRIFT and HR MAS NMR) additional information was obtained on aromatic and aliphatic components, the most recalcitrant parts of these macromolecules. In so doing we wanted to investigate the relationship between HS structure and long-term management practices. An elevated content of lignin, aminoacids, peptides and proteins was observed mainly for farmyard manure treatments with respect to mineral or liquid manure amendments; this supports how the different management practices have greatly influenced the humification process of cultivated soils.

  14. Comparisons of sorption of aquatic humic matter by DAX-8 and XAD-8 resins from solid-state (13)C NMR spectroscopy's point of view.

    PubMed

    Peuravuori, J; Ingman, P; Pihlaja, K; Koivikko, R

    2001-10-31

    Aquatic humic solutes were separated in parallel by the non-ionic macroporous DAX-8 and XAD-8 resins from four different fresh water sources. On average, the sorptive power of the DAX-8 resin does not differ systematically from that of the XAD-8 resin. The DAX-8 resin seems to have more precise column characteristics compared with the XAD-8 resin. There was no significant difference between the major elemental compositions of the parallel humic-solute bulks obtained by these two resins. According to the (13)C NMR spectroscopy the content and quality of aliphatic carbons, especially those representing terminal methyl groups or methylene carbons, were the most systematic and powerful discriminating factors between the humic extracts obtained by these two resins. Generally speaking the DAX-8 and XAD-8 resins seem to isolate humic-solute bulks almost equally, although the content of aliphatics is slightly greater for the former, producing mixtures with similar structural compositions for general purposes. The structural composition and quantity of the humic-solute mixture isolable with a weakly basic DEAE-cellulose anion exchange resin differs partially from any humic fraction obtained by non-ionic sorbing solids. The environmental impact was also visible on the quality of the structural fine-chemistry of the different humic isolates obtained both by the DAX-8 and XAD-8 resins. PMID:18968420

  15. Effects of pH and natural humic substances on the accumulation of organic pollutants in two freshwater invertebrates

    NASA Astrophysics Data System (ADS)

    Kukkonen, Jussi

    The present study focused on the accumulation of benzo(a)pyrene (BaP), hexachlorocyclohexane (lindane), pentachlorophenol (PCP) and dehydroabietic acid (DHAA), from a natural humic water (DOC 18 mg/l) and a humus-free reference water, in Daphnia magna (Cladocera) and nymphs of the mayfly Heptagenia fuscogrisea (Ephemeroptera). Effects of water pH ranging from 3.5 to 8.5 was examined. The partition coefficients (Kp) of BaP and PCP to organic material were measured by equilibrium dialysis, and in both cases increases in Kp values were noticed with decreasing pH. For neutral compounds (BaP and lindane), the bioconcentration factor (BCF) was the highest at pH 6.5 in the control water. Humic substances significantly lowered the accumulation of BaP, but had no effect on the accumulation of lindane. The lowest test pH gave the highest BCF value, and increasing pH decreased the BCF values of weak organic acids (PCP and DHAA) in the control experiments. This was because the unionized forms of these compounds accumulate better than the more hydrophilic ionized forms. The presence of dissolved organic substances lowered the accumulation of PCP in H. fuscogrisea between pH 4.5 and 7.5 and had no effect at pHs 3.5 and 8.5. Humic substances lowered the accumulation of DHAA in D. magna between pH 5.5 and 6.5 and had no effect when pH was over 7. In experiments with H. fuscogrisea humic substances had no effect on the accumulation of DHAA.

  16. Investigating nitrate-dependent humic substance oxidation and in-service K-12 teachers' understanding of microbiology

    NASA Astrophysics Data System (ADS)

    Jones, Nastassia N.

    2011-12-01

    Humic substances (HS) are the humified portions of totally decomposed soil organic matter that are ubiquitous in nature. Although these substances have been studied for more than 200 years, neither their metabolic capabilities nor a specific chemical structure has yet to be determined. HS have been studied as a carbon source in many environments where they are degraded; however, previous studies have shown that some microorganisms are capable of utilizing humic substances as electron acceptors and electron donors in anaerobic respiration. Even though there have been humic-reducing and humic-oxidizing microorganisms isolated and studied in recent years, the mechanism of humics metabolism and its interaction in the natural environment are not well understood. However, it is known that the continuous change in the redox state of HS is important to the cycling of iron, stability of nitrogen and carbon, and the mobility and bioavailability of inorganic and organic environmental pollutants. In this study, microbial communities were examined to evaluate the community dynamics of nitrate-dependent HS-oxidizing populations and to provide a snapshot of the phylogenetic diversity of these microorganisms. Column studies were performed using nitrate as the sole electron acceptor and the following as the electron donors in different columns: reduced humic acids, oxidized humic acids, and acetate as the control. Liquid buffered media was added to a separate column to serve as an additional control. Polymerase chain reactions of the 16S rRNA genes using DNA from the column studies were performed and analyzed by constructing 16S rDNA clone libraries and by performing denaturing gradient gel electrophoresis (DGGE). Clones from the library have been sequenced and analyzed to paint a phylogenetic picture of the microbial community under the various conditions. Results indicate that the majority of the clones were assigned to four well-characterized divisions, the Acidobacteria, the

  17. Photocatalytic degradation of humic substances in aqueous solution using Cu-doped ZnO nanoparticles under natural sunlight irradiation.

    PubMed

    Maleki, Afshin; Safari, Mahdi; Shahmoradi, Behzad; Zandsalimi, Yahya; Daraei, Hiua; Gharibi, Fardin

    2015-11-01

    In this study, Cu-doped ZnO nanoparticles were investigated as an efficient synthesized catalyst for photodegradation of humic substances in aqueous solution under natural sunlight irradiation. Cu-doped ZnO nanocatalyst was prepared through mild hydrothermal method and was characterized using FT-IR, powder XRD and SEM techniques. The effect of operating parameters such as doping ratio, initial pH, catalyst dosage, initial concentrations of humic substances and sunlight illuminance were studied on humic substances degradation efficiency. The results of characterization analyses of samples confirmed the proper synthesis of Cu-doped ZnO nanocatalyst. The experimental results indicated the highest degradation efficiency of HS (99.2%) observed using 1.5% Cu-doped ZnO nanoparticles at reaction time of 120 min. Photocatalytic degradation efficiency of HS in a neutral and acidic pH was much higher than that at alkaline pH. Photocatalytic degradation of HS was enhanced with increasing the catalyst dosage and sunlight illuminance, while increasing the initial HS concentration led to decrease in the degradation efficiency of HS. Conclusively, Cu-doped ZnO nanoparticles can be used as a promising and efficient catalyst for degradation of HS under natural sunlight irradiation. PMID:26104905

  18. Study of humic-like substances in fog and interstitial aerosol by size-exclusion chromatography and capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Krivácsy, Z.; Kiss, Gy; Varga, B.; Galambos, I.; Sárvári, Zs; Gelencsér, A.; Molnár, Á.; Fuzzi, S.; Facchini, M. C.; Zappoli, S.; Andracchio, A.; Alsberg, T.; Hansson, H. C.; Persson, L.

    Recently, there have been implications that the bulk of the organic carbon in the atmospheric aerosol and fog is contained in an "air polymer" whose chemical nature is poorly understood. Since several properties (e.g. acidity, UV-VIS absorbance, fluorescence) of this polymer were found to be very similar to those of humic substances the term humic-like substances (HULIS) was proposed. In this work size-exclusion chromatography and capillary electrophoresis are used to obtain new information about some properties of the HULIS found in fog water and aqueous extract of interstitial aerosol. Retention and migration behaviour as well as mass spectra are investigated and compared to those of reference humic substances. The capillary electrophoresis is applied for the determination of the range of protonation constants of the HULIS, as well. Scavenging ratio for the HULIS is calculated and found to be about the same as those of ammonium and sulphate. The results imply that such compounds may play a role in cloud condensation.

  19. Photocatalytic degradation of humic substances in aqueous solution using Cu-doped ZnO nanoparticles under natural sunlight irradiation.

    PubMed

    Maleki, Afshin; Safari, Mahdi; Shahmoradi, Behzad; Zandsalimi, Yahya; Daraei, Hiua; Gharibi, Fardin

    2015-11-01

    In this study, Cu-doped ZnO nanoparticles were investigated as an efficient synthesized catalyst for photodegradation of humic substances in aqueous solution under natural sunlight irradiation. Cu-doped ZnO nanocatalyst was prepared through mild hydrothermal method and was characterized using FT-IR, powder XRD and SEM techniques. The effect of operating parameters such as doping ratio, initial pH, catalyst dosage, initial concentrations of humic substances and sunlight illuminance were studied on humic substances degradation efficiency. The results of characterization analyses of samples confirmed the proper synthesis of Cu-doped ZnO nanocatalyst. The experimental results indicated the highest degradation efficiency of HS (99.2%) observed using 1.5% Cu-doped ZnO nanoparticles at reaction time of 120 min. Photocatalytic degradation efficiency of HS in a neutral and acidic pH was much higher than that at alkaline pH. Photocatalytic degradation of HS was enhanced with increasing the catalyst dosage and sunlight illuminance, while increasing the initial HS concentration led to decrease in the degradation efficiency of HS. Conclusively, Cu-doped ZnO nanoparticles can be used as a promising and efficient catalyst for degradation of HS under natural sunlight irradiation.

  20. Contribution of capillary electrophoresis to an integrated vision of humic substances size and charge characterizations

    SciTech Connect

    D'Orlye, Fanny; Reiller, Pascal E.

    2014-02-15

    The physicochemical properties of three different humic substances (HS) are probed using capillary zone electrophoresis in alkaline carbonate buffers, pH 10. Special attention is drawn to the impact of the electrolyte ionic strength and counter-ion nature, chosen within the alkali-metal series, on HS electrophoretic mobility. Taylor-Aris dispersion analysis provides insights into the hydrodynamic radius (R-H) distributions of HS. The smallest characterized entities are of nano-metric dimensions, showing neither ionic strength- nor alkali-metal-induced aggregation. These results are compared with the entities evidenced in dynamic light scattering measurements, the size of which is two order of magnitude higher, ca. 100 nm. The extended Onsager model provides a reasonable description of measured electrophoretic mobilities in the ionic strength range 1-50 mM, thus allowing the estimation of limiting mobilities and ionic charge numbers for the different HS samples. An unexpected HS electrophoretic mobility increase (in absolute value) is observed in the order Li{sup +} ≤ Na{sup +} ≤ K{sup +} ≤ Cs{sup +} and discussed either in terms of retarding forces or in terms of ion-ion interactions. (authors)

  1. Terrestrial humic substances in Daliao River and its estuary: optical signatures and photoreactivity to UVA light.

    PubMed

    Chen, Hao; Lei, Kun; Wang, Xuechun

    2016-04-01

    Fluorescent dissolved organic matter (FDOM) components were identified by Parallel Factor Analysis (PARAFAC) in surface water of Daliao River and its estuary with a focus on terrestrial humic substance-(HS)-like FDOM identified under two contrasting hydrological conditions. The hydrological conditions did not have noticeable effect on the spectral features of the terrestrial HS-like FDOM, but did affect the components' intensities and photoreactivity: (1) the intensities of terrestrial HS-like components were higher in the normal flow period than in the high flow period, and (2) a spectrally similar terrestrial HS-like FDOM identified under the two contrasting hydrological conditions showed distinct photoreactivity to the same dose of UVA illumination. The findings indicated that terrestrial HS was generated at lower intensities at the terrestrial sources during the high flow period than during the normal flow period and that the transport of terrestrial HS material through the river-estuary system was affected dominantly by seawater dilution along the salinity gradient while fine-tuned by solar UVA illumination. This study exemplifies the effect of hydrological conditions on optical signatures of terrestrial HS-like FDOM and their photoreactivity towards UVA illumination, improving our understanding of the dynamics of terrestrial HS material in river-estuary systems in the framework of the currently proposed new conceptual model for terrestrial organic matter. PMID:26627698

  2. Enhanced photoproduction of hydrogen peroxide by humic substances in the presence of phenol electron donors.

    PubMed

    Zhang, Yi; Simon, Kelli A; Andrew, Andrea A; Del Vecchio, Rossana; Blough, Neil V

    2014-11-01

    Addition of a series of phenol electron donors to solutions of humic substances (HS) enhanced substantially the initial rates of hydrogen peroxide (H2O2) photoproduction (RH2O2), with enhancement factors (EF) ranging from a low of ∼3 for 2,4,6-trimethylphenol (TMP) to a high of ∼15 for 3,4-dimethoxyphenol (DMOP). The substantial inhibition of the enhanced RH2O2 following borohydride reduction of the HS, as well as the dependence of RH2O2 on phenol and dioxygen concentrations are consistent with a mechanism in which the phenols react with the triplet excited states of (aromatic) ketones within the HS to form initially a phenoxy and ketyl radical. The ketyl radical then reacts rapidly with dioxygen to regenerate the ketone and form superoxide (O2-), which subsequently dismutates to H2O2. However, as was previously noted for the photosensitized loss of TMP, the incomplete inhibition of the enhanced RH2O2 following borohydride reduction suggests that there may remain another pool of oxidizing triplets. The results demonstrate that H2O2 can be generated through an additional pathway in the presence of sufficiently high concentrations of appropriate electron donors through reaction with the excited triplet states of aromatic ketones and possibly of other species such as quinones. However, in some cases, the much lower ratio of H2O2 produced to phenol consumed suggests that secondary reactions could alter this ratio significantly.

  3. Carbon-specific analysis of humic-like substances in atmospheric aerosol and precipitation samples.

    PubMed

    Limbeck, Andreas; Handler, Markus; Neuberger, Bernhard; Klatzer, Barbara; Puxbaum, Hans

    2005-11-15

    A new approach for the carbon-specific determination of humic-like substances (HULIS) in atmospheric aerosols is presented. The method is based on a two-step isolation procedure of HULIS and the determination of HULIS carbon with a dissolved organic carbon analyzer. In the first step, a C18 solid-phase extraction is performed to separate HULIS from inorganic and hydrophilic organic sample constituents in aqueous sample solutions. The second isolation step is conducted on a strong anion exchanger to separate HULIS from remaining carbonaceous compounds. This ion chromatographic separation step including the subsequent on-line detection of HULIS carbon was performed fully automated to avoid the risk of sample contamination and to enhance the reproducibility of the method. With a 5-mL sample volume, a limit of detection of 1.0 mg C/L was obtained; this corresponds to an absolute amount of 5 microg of HULIS carbon. The reproducibility of the method given as the relative standard deviation was 4.3% (n = 10). The method was applied for the determination of water-soluble HULIS in airborne particulate matter. PM10 concentrations at an urban site in Vienna, Austria, ranged from around 0.1 to 1.8 microg of C/m(3) (n = 49); the fraction of water-soluble HULIS in OC was 12.1 +/- 7.2% (n = 49).

  4. Maillard Chemistry in Clouds and Aqueous Aerosol As a Source of Atmospheric Humic-Like Substances.

    PubMed

    Hawkins, Lelia N; Lemire, Amanda N; Galloway, Melissa M; Corrigan, Ashley L; Turley, Jacob J; Espelien, Brenna M; De Haan, David O

    2016-07-19

    The reported optical, physical, and chemical properties of aqueous Maillard reaction mixtures of small aldehydes (glyoxal, methylglyoxal, and glycolaldehyde) with ammonium sulfate and amines are compared with those of aqueous extracts of ambient aerosol (water-soluble organic carbon, WSOC) and the humic-like substances (HULIS) fraction of WSOC. Using a combination of new and previously published measurements, we examine fluorescence, X-ray absorbance, UV/vis, and IR spectra, complex refractive indices, (1)H and (13)C NMR spectra, thermograms, aerosol and electrospray ionization mass spectra, surface activity, and hygroscopicity. Atmospheric WSOC and HULIS encompass a range of properties, but in almost every case aqueous aldehyde-amine reaction mixtures are squarely within this range. Notable exceptions are the higher UV/visible absorbance wavelength dependence (Angström coefficients) observed for methylglyoxal reaction mixtures, the lack of surface activity of glyoxal reaction mixtures, and the higher N/C ratios of aldehyde-amine reaction products relative to atmospheric WSOC and HULIS extracts. The overall optical, physical, and chemical similarities are consistent with, but not demonstrative of, Maillard chemistry being a significant secondary source of atmospheric HULIS. However, the higher N/C ratios of aldehyde-amine reaction products limits the source strength to ≤50% of atmospheric HULIS, assuming that other sources of HULIS incorporate only negligible quantities of nitrogen.

  5. An improved electroelution method for separation of DNA from humic substances in marine sediment DNA extracts.

    PubMed

    Kallmeyer, Jens; Smith, David C

    2009-07-01

    We present a method for the rapid and simple extraction of DNA from marine sediments using electroelution. It effectively separates DNA from compounds, including humic substances, that interfere with subsequent DNA quantification and amplification. After extraction of the DNA from the sediment into an aqueous solution, the crude sample is encased in 2% agarose gel and exposed to an electrical current, which draws the DNA out of the gel into a centrifugal filter vial. After electroelution, the sample is centrifuged to remove contaminants

  6. Annual cycle of humic substances in a temperate estuarine system affected by agricultural practices

    NASA Astrophysics Data System (ADS)

    Waeles, Matthieu; Riso, Ricardo; Pernet-Coudrier, Benoît; Quentel, François; Durrieu, Gaël; Tissot, Cyril

    2013-04-01

    Although widely studied for their chemical structures and properties (e.g., metal complexation, growth stimulation of planktonic species), humic substances (HS) have been very poorly quantified in fluvial and estuarine waters. In this monthly basis study, we determined HS concentrations (by Adsorptive Square Wave Cathodic Stripping Voltammetry) along the entire river-seawater gradient of the Penzé estuary (NW France), with the aim to characterize the export of these compounds. In this watershed where agricultural activities are predominant, manuring activities were identified as being the main source of dissolved organic carbon (DOC) and HS. HS concentrations varied usually within a narrow range in fluvial waters, i.e., 1.8 ± 0.4 mgC L-1 (150 ± 40 μM), but increased significantly as the first flood of autumn occurred (>4 mgC L-1 in river and upper estuary). At this time, HS accounted for a very high proportion of DOC (>80%). As evidenced by the increasing contribution of HS to DOC, and by the increasing contribution of small colloidal HS species; this autumnal flood increase should be attributed to a greater retention and transformation of organic matter on soils over the hotter, drier, and lighter period preceding the first autumnal flood. In the mixing zone, HS displayed mostly conservative behaviour, although some removals were occasionally observed. Overall, our study suggests that preservation of HS could be relatively important during their transfer across macrotidal temperate estuaries, at least in systems affected by agricultural practices.

  7. The role of humic substances in the formation of marble patinas under soil burial conditions

    NASA Astrophysics Data System (ADS)

    Polikreti, K.; Christofides, C.

    2009-05-01

    The present work aim to study the effect of burial on the photoluminescnece (PL) spectra of white, crystalline marble surfaces and the physicochemical processes that take place at the marble—soil interface. The PL was studied by an argon ion laser beam, focused through a microscope objective onto the sample, offering a spatial resolution of 3 μm. Long-buried (time scale of 1,000 years) surfaces show a red (at 610 nm) emission due to Mn2+, which is also shown on fresh marble spectra and an additional broadband blue-green (380-530 nm) one. Electron paramagnetic resonance (EPR) spectroscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) indicate that the latter emission originates from humate complexes. The complexes are most probably Ca-humates, the humic substances found in the soil and the divalent calcium cations released by the dissolution of marble calcite. Finally, the examination of recently (time scale of 50 years) buried surfaces shows that the blue-green emission and consequently the presence of humates in marble patinas are not affected by the soil organic matter content. Soil acidity however, is a critical factor, with a total absence of the blue-green emission at pH values lower than 6.

  8. Maillard Chemistry in Clouds and Aqueous Aerosol As a Source of Atmospheric Humic-Like Substances.

    PubMed

    Hawkins, Lelia N; Lemire, Amanda N; Galloway, Melissa M; Corrigan, Ashley L; Turley, Jacob J; Espelien, Brenna M; De Haan, David O

    2016-07-19

    The reported optical, physical, and chemical properties of aqueous Maillard reaction mixtures of small aldehydes (glyoxal, methylglyoxal, and glycolaldehyde) with ammonium sulfate and amines are compared with those of aqueous extracts of ambient aerosol (water-soluble organic carbon, WSOC) and the humic-like substances (HULIS) fraction of WSOC. Using a combination of new and previously published measurements, we examine fluorescence, X-ray absorbance, UV/vis, and IR spectra, complex refractive indices, (1)H and (13)C NMR spectra, thermograms, aerosol and electrospray ionization mass spectra, surface activity, and hygroscopicity. Atmospheric WSOC and HULIS encompass a range of properties, but in almost every case aqueous aldehyde-amine reaction mixtures are squarely within this range. Notable exceptions are the higher UV/visible absorbance wavelength dependence (Angström coefficients) observed for methylglyoxal reaction mixtures, the lack of surface activity of glyoxal reaction mixtures, and the higher N/C ratios of aldehyde-amine reaction products relative to atmospheric WSOC and HULIS extracts. The overall optical, physical, and chemical similarities are consistent with, but not demonstrative of, Maillard chemistry being a significant secondary source of atmospheric HULIS. However, the higher N/C ratios of aldehyde-amine reaction products limits the source strength to ≤50% of atmospheric HULIS, assuming that other sources of HULIS incorporate only negligible quantities of nitrogen. PMID:27227348

  9. Quantitative evaluation of noncovalent interactions between glyphosate and dissolved humic substances by NMR spectroscopy.

    PubMed

    Mazzei, Pierluigi; Piccolo, Alessandro

    2012-06-01

    Interactions of glyphosate (N-phosphonomethylglycine) herbicide (GLY) with soluble fulvic acids (FAs) and humic acids (HAs) at pH 5.2 and 7 were studied by (1)H and (31)P NMR spectroscopy. Increasing concentrations of soluble humic matter determined broadening and chemical shift drifts of proton and phosphorus GLY signals, thereby indicating the occurrence of weak interactions between GLY and humic superstructures. Binding was larger for FAs and pH 5.2 than for HAs and pH 7, thus suggesting formation of hydrogen bonds between GLY carboxyl and phosphonate groups and protonated oxygen functions in humic matter. Changes in relaxation and correlation times of (1)H and (31)P signals and saturation transfer difference NMR experiments confirmed the noncovalent nature of GLY-humic interactions. Diffusion-ordered NMR spectra allowed calculation of the glyphosate fraction bound to humic superstructures and association constants (K(a)) and Gibbs free energies of transfer for GLY-humic complex formation at both pH values. These values showed that noncovalent interactions occurred most effectively with FAs and at pH 5.2. Our findings indicated that glyphosate may spontaneously and significantly bind to soluble humic matter by noncovalent interactions at slightly acidic pH and, thus, potentially pollute natural water bodies by moving through soil profiles in complexes with dissolved humus. PMID:22591574

  10. A simple method for quantifying the humic content of commercial products.

    PubMed

    Quentel, François; Filella, Montserrat

    2011-12-01

    A method based on an analytical technique, initially developed for quantifying aquatic refractory organic matter (often called humics), has been applied to commercial samples claiming to contain humic-type substances. At present, no method exists for quantifying the humic content on this type of sample. The analytical method is based on measuring the peak current obtained by adsorptive stripping voltammetry of the complex formed by refractory organic matter in the presence of trace amounts of Mo(VI). The quantification procedure requires the response obtained for the unknown sample to be compared with the response obtained with International Humic Substance Society (IHSS) reference humic substances. A very simple procedure that enables the humic content of any sample to be expressed as IHSS standard equivalents is described in detail. The method is highly selective, reproducible and suitable for routine analysis.

  11. A solid-phase extraction procedure for the clean-up of thiram from aqueous solutions containing high concentrations of humic substances.

    PubMed

    Filipe, O M S; Vidal, M M; Duarte, A C; Santos, E B H

    2007-05-15

    A simple solid-phase extraction (SPE) procedure with an octadecyl bonded phase silica (C(18)) was developed for clean-up of the fungicide thiram from aqueous solutions containing high concentrations of humic substances, for future studies of thiram adsorption onto solid humic substances or soils. Suspensions of humic acids and soil, in aqueous 0.01M CaCl(2) solution, were prepared and used as samples. These extracts were spiked with thiram and immediately applied to a C(18)-SPE cartridge. Thiram was eluted with chloroform and its concentration measured by spectrophotometry at 283nm. Non-spiked aqueous extracts (blanks) and a control sample of thiram in 0.01M CaCl(2) aqueous solution were also prepared and submitted to the same SPE procedure. The results show that humic substances are extensively retained by the C(18) cartridge but are not eluted with CHCl(3). Recoveries of 100-104% were obtained for thiram in the presence of humic substances. The SPE procedure described in this work is an efficient clean-up step to remove the interference of humic substances absorbance and to be coupled to any spectrophotometric or HPLC-UV method, usually used for thiram analysis in food extracts.

  12. Influence of mineral colloids and humic substances on uranium(VI) transport in water-saturated geologic porous media.

    PubMed

    Wang, Qing; Cheng, Tao; Wu, Yang

    2014-12-01

    Mineral colloids and humic substances often co-exist in subsurface environment and substantially influence uranium (U) transport. However, the combined effects of mineral colloids and humic substances on U transport are not clear. This study is aimed at quantifying U transport and elucidating geochemical processes that control U transport when both mineral colloids and humic acid (HA) are present. U-spiked solutions/suspensions were injected into water-saturated sand columns, and U and colloid concentrations in column effluent were monitored. We found that HA promoted U transport via (i) formation of aqueous U-HA complexes, and (ii) competition against aqueous U for surface sites on transport media. Illite colloids had no influence on U transport at pH5 in the absence of HA due to low mobility of the colloids. At pH9, U desorbed from mobile illite and the presence of illite decreased U transport. At pH5, high U transport occurred when both illite colloids and HA were present, which was attributed to enhanced U adsorption to illite colloids via formation of ternary illite-HA-U surface complexes, and enhanced illite transport due to HA attachment to illite and transport media. This study demonstrates that the combined effects of mineral colloids and HA on contaminant transport is different from simple addition of the individual effect.

  13. Electropulse treatment of water solution of humic substances in a layer iron granules in process of water treatment

    NASA Astrophysics Data System (ADS)

    Lobanova, G. L.; Yurmazova, T. A.; Shiyan, L. N.; Machekhina, K. I.

    2016-02-01

    The present work is a part of a continuations study of the physical and chemical processes complex in natural waters containing humic-type organic substances at the influence of pulsed electrical discharges in a layer of iron pellets. The study of humic substances processing in the iron granules layer by means of pulsed electric discharge for the purpose of water purification from organic compounds humic origin from natural water of the northern regions of Russia is relevant for the water treatment technologies. In case of molar humate sodium - iron ions (II) at the ratio 2:3, reduction of solution colour and chemical oxygen demand occur due to the humate sodium ions and iron (II) participation in oxidation-reduction reactions followed by coagulation insoluble compounds formation at a pH of 6.5. In order to achieve this molar ratio and the time of pulsed electric discharge, equal to 10 seconds is experimentally identified. The role of secondary processes that occur after disconnection of the discharge is shown. The time of contact in active erosion products with sodium humate, equal to 1 hour is established. During this time, the value of permanganate oxidation and iron concentration in solution achieves the value of maximum permissible concentrations and further contact time increase does not lead to the controlled parameters change.

  14. Waste Load Allocation for Conservative Substances to Protect Aquatic Organisms

    NASA Astrophysics Data System (ADS)

    Hutcheson, M. R.

    1992-01-01

    A waste load allocation process is developed to determine the maximum effluent concentration of a conservative substance that will not harm fish and wildlife propagation. If this concentration is not exceeded in the effluent, the acute toxicity criterion will not be violated in the receiving stream, and the chronic criterion will not be exceeded in the zone of passage, defined in many state water quality standards to allow the movement of aquatic organisms past a discharge. Considerable simplification of the concentration equation, which is the heart of any waste load allocation, is achieved because it is based on the concentration in the receiving stream when the concentration gradient on the zone of passage boundary is zero. Consequently, the expression obtained for effluent concentration is independent of source location or stream morphology. Only five independent variables, which are routinely available to regulatory agencies, are required to perform this allocation. It aids in developing permit limits which are protective without being unduly restrictive or requiring large expenditures of money and manpower on field investigations.

  15. Linking fluorescence spectroscopy to diffuse soil source for dissolved humic substances in the Daning River, China.

    PubMed

    Chen, Hao; Zheng, Bing-Hui; Zhang, Lei

    2013-02-01

    Dissolved organic matter collected in Daning River (China) in July 2009 was investigated with parallel factor analysis (PARAFAC) and fluorescence spectroscopy with the aim of identifying the origin of dissolved humic substance (HS) components. Two HS-like fluorescence components (peak M and C) with excitation/emission (ex/em) maxima at 305/406 nm and 360/464 nm showed relatively uniform distribution in the vertical direction for each sampling site but a trend of accumulation down the river, independent of the highly heterogeneous water environment as implicated by water quality parameters (i.e., water temperature, algae density, chlorophyll a, dissolved oxygen, dissolved organic carbon, pH, conductivity and turbidity), while an amino acid/protein-like component (peak T; ex/em = 280/334 nm) was quite variable in its spatial distribution, implying strong influence from point sources (e.g. sewage discharge) and local microbial activities. The fluorescence intensity (F max in Raman units) at these ex/em wavelength pairs fell in the range of 0.031-0.358, 0.051-0.224 and 0.026-0.115 for peak T, M and C, respectively. In addition, the F max values of peak C covaried with M (i.e. C = 0.503 ×M, p < 0.01, R (2) = 0.973). Taken together, these results indicate that peak M and C originated primarily and directly from the same soil sources that were diffusive in the catchment, but peak T was more influenced by local point sources (e.g. wastewater discharge) and in situ microbial activities. This study presents new insights into the currently controversial origin of some HS components (e.g."peak M", as commonly referred to in the literature). This study highlights that natural water samples should be collected at various depths in addition to along a river/stream flow path so as to better evaluate the origin of HS fluorescence components.

  16. On the control of copper colloidal distribution by humic substances in the Penzé estuary.

    PubMed

    Waeles, Matthieu; Tanguy, Virginie; Riso, Ricardo D

    2015-01-01

    In this study, we investigated the variations of colloidal Cu in a temperate macrotidal estuarine system (Penzé, NW France). The originality of this work resides on examining seven colloidal/dissolved fractions at seven different periods of the year whereas previous studies on estuaries generally considered two or three fractions and were focused on a unique survey. A high proportion of Cu (∼90%) was generally found as colloids (5 kDa-0.45 μm) throughout the salinity gradient with divergent size distributions being observed over the seasonal cycle. This consisted essentially in two contrasted periods, i.e. winter-spring with a greater association of Cu with high molecular weight (HMW) compounds (50 kDa-0.45 μm) and summer-autumn with Cu being found mainly as low molecular weight (LMW) forms (5-50 kDa). The comparison of Cu with humic substances (HS) data allowed to us to highlight the importance of the pedogenic refractory organic matter in controlling the concentrations and the size distribution of Cu in the estuary. In the mixing zone, Cu behaved conservative in autumn and winter but important additions of HMW compounds were observed in spring in the lower estuary as the result of particulate organic matter degradation in the sediment. Although HS appears to be the background chelators of Cu in the systems, the strong benthic inputs occurring in spring may be of different (biotic) origin and may be in part responsible for the higher association of Cu with HMW compounds.

  17. Carbonaceous species and humic like substances (HULIS) in Arctic snowpack during OASIS field campaign in Barrow

    NASA Astrophysics Data System (ADS)

    Voisin, Didier; Jaffrezo, Jean-Luc; Houdier, StéPhan; Barret, Manuel; Cozic, Julie; King, Martin D.; France, James L.; Reay, Holly J.; Grannas, Amanda; Kos, Gregor; Ariya, Parisa A.; Beine, Harry J.; Domine, Florent

    2012-07-01

    Snowpacks contain many carbonaceous species that can potentially impact on snow albedo and arctic atmospheric chemistry. During the OASIS field campaign, in March and April 2009, Elemental Carbon (EC), Water insoluble Organic Carbon (WinOC) and Dissolved Organic Carbon (DOC) were investigated in various types of snow: precipitating snows, remobilized snows, wind slabs and depth hoars. EC was found to represent less than 5% of the Total Carbon Content (TCC = EC + WinOC + DOC), whereas WinOC was found to represent an unusual 28 to 42% of TCC. Snow type was used to infer physical processes influencing the evolution of different fractions of DOC. DOC is highest in soil influenced indurated depth hoar layers due to specific wind related formation mechanisms in the early season. Apart from this specific snow type, DOC is found to decrease from precipitating snow to remobilized snow to regular depth hoar. This decrease is interpreted as due to cleaving photochemistry and physical equilibration of the most volatile fraction of DOC. Depending on the relative proportions of diamond dust and fresh snow in the deposition of the seasonal snowpack, we estimate that 31 to 76% of DOC deposited to the snowpack is reemitted back to the boundary layer. Under the assumption that this reemission is purely photochemical, we estimate an average flux of VOC out of the snowpack of 20 to 170 μgC m-2 h-1. Humic like substances (HULIS), short chain diacids and aldehydes are quantified, and showed to represent altogether a modest (<20%) proportion of DOC, and less than 10% of DOC + WinOC. HULIS optical properties are measured and could be consistent with aged biomass burning or a possible marine source.

  18. Factors influencing inapplicability of cosolvency-induced model on organic acid sorption onto humic substance from methanol mixture.

    PubMed

    Kim, Minhee; Kim, Juhee; Kim, Jeong-Gyu; Hyun, Seunghun

    2015-10-01

    Applicability of cosolvency model for describing the sorption of organic acids to humic substance was investigated by analyzing dataset of sorption (K m) and solubility (S m) of selected solutes (benzoic acid, 1-naphthoic acid, 2,4-dichlorophenoxyacetic acid, and 2,4,6-trichlorophenol (2,4,6-TCP)) as a function of pH(appCME) (apparent pH of liquid phase) and f c (methanol volume fractions). For all solutes, the K m decreased with f c with the K m reduction being less than the S m-based prediction. The slope of log K m-f c plot in the three organic carboxylic acids was well correlated with their cosolvency power, whereas the data of organic phenolic acid (2,4,6-TCP) was placed above the trend, indicating the different actions of functional groups. The occurrence of Ca(2+) bridge between carboxylate and negatively charged humic surface may explain this phenomenon. Normalizing the K m to the corresponding S m (α' = K m/S m) was not in unity over the pH(app)-f c range but decreased with f c, indicating a possible structural modification of sorption domain favoring extra sorption. For a given solute, the α' of neutral species was always greater than that of anionic species, showing that extra interaction will be likely at pH(app) humic substance in methanol/water mixtures. Modification of humic structure and hydrophilic interaction (such as Ca(2+) bridge and same-charge repulsion) is considered a relevant process that possibly restricts the applicability of the cosolvency model.

  19. SEC-ICP-MS studies for elements binding to different molecular weight fractions of humic substances in compost extract obtained from urban solid waste.

    PubMed

    Sadi, Baki B M; Wrobel, Kazimierz; Wrobel, Katarzyna; Kannamkumarath, Sasi S; Castillo, J R; Caruso, J A

    2002-12-01

    In this work, the speciation of elements in compost was studied with emphasis on their binding to humic substances. In order to assess the distribution of As, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, U, Th and Zn among molecular weight fractions of humic substances, the compost extract (extracted by 0.1 mol l(-1) sodium pyrophosphate) was analyzed by size exclusion chromatography coupled on-line with UV-Vis spectrophotometric and ICP-MS detection. Similar chromatograms were obtained for standard humic acid (Fluka) and for compost extract (254 nm, 400 nm) and three size fractions were operationally defined that corresponded to the apparent molecular weight ranges > 15 kDa, 1-15 kDa and < 1 kDa. The percentage of total element content in compost that was leached to the extract ranged from 30% up to 100% for different elements. The elution profiles of Co, Cr, Cu, Ni and Pb (ICP-MS) followed that of humic substances, while for other elements the bulk elution peak matched the retention time observed for the element in the absence of compost extract. Spiking experiments were carried out to confirm elements' binding and to estimate the affinity of individual elements for humic substances derived from compost. The results obtained indicated the following order of decreasing affinity: Cu > Ni > Co > Pb > Cd > (Cr, U, Th) > (As, Mn, Mo, Zn). After standard addition, further binding of Cu, Ni and Co with the two molecular weight fractions of humic substances was observed, indicating that humic substances derived from compost were not saturated with these elements.

  20. Humic substance charge determination by titration with a flexible cationic polyelectrolyte

    NASA Astrophysics Data System (ADS)

    Tan, Wen-Feng; Norde, Willem; Koopal, Luuk K.

    2011-10-01

    The anionic charge of humic substances (HS) plays a major role in the interaction of HS with other components. Therefore, the potential of the polyelectrolyte titration technique to obtain the charge density of HS in simple 1-1 electrolyte solutions has been investigated. Titrations are carried out with an automatic titrator combined with the "Mütek particle charge detector" which allows determination of the Mütek potential and the pH as a function of the added amount of titrant which is a solution of poly-diallyldimethylammonium chloride (polyDADMAC), a cationic strong polyelectrolyte. When the Mütek potential reverses its sign the iso-electric point (IEP) of the polyDADMAC-HS complex is reached. The polyDADMAC/HS mass ratio at the IEP gives information on the HS charge density and from the pH changes in solution an estimate of the charge regulation in the HS-polyDADMAC complex can be obtained. In general, for polyDADMAC-HS complexes an increase in the dissociation of the acid groups of HS is found (charge regulation). The charge regulation decreases with increasing concentration of 1-1 background electrolyte. Cation incorporation can be neglected at 1-1 electrolyte concentrations ⩽ 1 mmol L -1 and a 1-1 stoichiometry exists between the polyDADMAC and HS charge. However, at these low salt concentrations the charge regulation is substantial. A detailed analysis of purified Aldrich humic acid (PAHA) at pH 5 and a range of KCl concentrations reveals that the anionic charge of PAHA in the complex increases at 5 mmol L -1 KCl by 30% and at 150 mmol L -1 KCl by 12%. On the other hand, increasing amounts of K + become incorporated in the complex: at 5 mmol L -1 KCl 5% and at 150 mmol L -1 KCl 24% of the PAHA charge is balanced by K +. By comparing at pH 5 the mass ratios polyDADMAC/PAHA in the complex at the IEP with the theoretical mass ratios of polyDADMAC/PAHA required to neutralize PAHA in the absence of charge regulation and K + incorporation, it is found that

  1. Perspectives of humic substances application in remediation of highly heavy metals contaminated soils in Kola Subarctic

    NASA Astrophysics Data System (ADS)

    Tregubova, Polina; Turbaevskaya, Valeria; Zakharenko, Andrey; Kadulin, Maksim; Smirnova, Irina; Stepanov, Andrey; Koptsik, Galina

    2016-04-01

    Northwestern part of Russia, the Kola Peninsula, is one of the most heavy metals (HM) contaminated areas in the northern hemisphere. The main polluters, mining-and-metallurgical integrated works "Pechenganikel" and "Severonikel", are surrounded by heavily damaged barren lands that require remediation. The main contaminating metals are Ni and Cu. Using of exogenous humic substances could be possible effective and cost-efficient solution of HM contamination problem. Rational application of humates (Na-K salts of humic acids) can result in improvement of soil properties, localization of contamination and decreasing bioavailability through binding HM in relatively immobile organic complexes. Our research aim was to evaluate the influence of increasing doses of different origin humates on i) basic properties of contaminated soils; ii) mobility and bioavailability of HMs; iii) vegetation state and chemistry. In summer 2013 a model field experiment was provided in natural conditions of the Kola Peninsula. We investigated the Al-Fe-humus abrazem, soil type that dominates in technogenic barren lands around the "Severonikel" work. These soils are strongly acid: pHH2O was 3.7-4.1; pHKCl was 3.4-4.0. The exchangeable acidity is low (0.8-1.6 cmol(+)/kg) due to the depletion of fine particles and organic matter, being the carriers of exchange positions. The abrazems of barrens had lost organic horizon. 12 sites were created in 1 km from the work. In those sites, except 2 controls, various amendments were added: i) two different by it's origin types of humates: peat-humates and coal-humates, the last were in concentrations 0.5% and 1%; ii) lime; iii) NPK-fertilizer; iv) biomates (organic degradable cover for saving warm and erosion protection). As a test-culture a grass mixture with predominance of Festuca rubra and Festuca ovina was sowed. As a result we concluded that humates of different origin have unequal influence on soil properties and cause decreasing as well as

  2. Source indicators of humic substances and proto-kerogen - Stable isotope ratios, elemental compositions and electron spin resonance spectra

    NASA Technical Reports Server (NTRS)

    Stuermer, D. H.; Peters, K. E.; Kaplan, I. R.

    1978-01-01

    Stable isotope ratios of C, N and H, elemental compositions, and electron spin resonance (ESR) data of humic acids and proto-kerogens from twelve widely varying sampling locations are presented. Humic acids and proto-kerogens from algal sources are more aliphatic and higher in N than those from higher plant sources. Oxygen content appears to represent a measure of maturation, even in Recent sediments, and S content may reflect redox conditions in the environment of deposition. The ESR data indicate that the transformation of humic substances to proto-kerogens in Recent sediments is accompanied by an increase in aromatic character. A combination of stable carbon isotope ratio and H/C ratio may be a simple but reliable source indicator which allows differentiation of marine-derived from terrestrially-derived organic matter. The stable nitrogen isotope ratios are useful indicators of nitrogen nutrient source. Deuterium/hydrogen isotope ratios appear to reflect variations in meteoric waters and are not reliable source indicators.

  3. Influence of low molecular weight fractions of humic substances on reducing capacities and distribution of redox functional groups

    NASA Astrophysics Data System (ADS)

    Yang, Zhen; Jiang, Jie

    2016-04-01

    Humic substances (HS) are redox-active organic compounds and their reducing capacities depend on their molecule structure and distribution of redox functional groups (RFG). During dialysis experiments, bulk humic acids (HA) were separated into low molecular weight fractions (LMWF) and retentate. LMWF account for only 2% of the total organic carbon content of HA molecules, however, their reducing capacities are up to 33 times greater than either those of the bulk HA or retentate. Furthermore, the total reducing capacity of the bulk HA accounts for less than 15% of the total reducing capacity of bulk HA, retentate and LMWF combined, suggesting that releasing of LMWF cannot reduce the number of RFG. RFG are neither in fixed amounts nor in uniformly distributed in bulk HA. LWMF have great fluorescence intensities for humic-like fluorophores (quinone-like functional groups), where quinonoid π-π* transition is responsible for the great reducing capacities of LMWF, and protein-like fluorophores. The 3,500 Da molecules (1.25 nm diameter) of HS could stimulate transformation of redox-active metals or potential pollutants trapped in soil micropores (< 2 nm diameter). A development of relationship between reducing capacity and Ex/Em position provides a possibility to predicate relative reducing capacities of HS in environmental samples.

  4. Influence of dissolved humic substances on the mass transfer of organic compounds across the air-water interface.

    PubMed

    Ramus, Ksenia; Kopinke, Frank-Dieter; Georgi, Anett

    2012-01-01

    The effect of dissolved humic substances (DHS) on the rate of water-gas exchange of two volatile organic compounds was studied under various conditions of agitation intensity, solution pH and ionic strength. Mass-transfer coefficients were determined from the rate of depletion of model compounds from an apparatus containing a stirred aqueous solution with continuous purging of the headspace above the solution (dynamic system). Under these conditions, the overall transfer rate is controlled by the mass-transfer resistance on the water side of the water-gas interface. The experimental results show that the presence of DHS hinders the transport of the organic molecules from the water into the gas phase under all investigated conditions. Mass-transfer coefficients were significantly reduced even by low, environmentally relevant concentrations of DHS. The retardation effect increased with increasing DHS concentration. The magnitude of the retardation effect on water-gas exchange was compared for Suwannee River fulvic and humic acids, a commercially available leonardite humic acid and two synthetic surfactants. The observed results are in accordance with the concept of hydrodynamic effects. Surface pressure forces due to surface film formation change the hydrodynamic characteristics of water motion at the water-air interface and thus impede surface renewal.

  5. Complexation humic substances of soils with metal ions as the main way migration of matals from soil to water

    NASA Astrophysics Data System (ADS)

    Dinu, Marina

    2013-04-01

    Organic matter (OM) of natural waters can bind with the ions metals (IM) entering the system, thus reducing their toxic properties. OM in water consists predominantly (up to 80%) of humic acids (HA), represented by highmolecular, dyed, polyfunctional compounds. The natural-climatic zones feature various ratios of fulvic (FA) and humic acids. An important specific feature of metals as contamination elements is the fact that when they occur in the environment, their potential toxicity and bioavailability depend significantly on their speciation. In recent years, lakes have been continuously enriched in hazardous elements such as Pb, Cd, Al, and Cr on a global (regional) basis. The most important organic ligands are humic matter (HM) washed out from soils in water and metals occur in natural waters as free ions, simple complexes with inorganic and organic ligands, and mineral and organic particles of molecules and ions sorbed on the surface. The occurrence of soluble metal forms in natural waters depends on the presence of organic and inorganic anions. However, direct determinations are rather difficult. The goal was the calculation and analysis of the forms of metals in the system catchment basin, based on the chemical composition of the water body and the structural features of soil humic substances (HS).We used the following analytical techniques - leaching of humic substances from soil and sample preparation (Orlov DS, 1985), the functional characteristics of humic substances - spectral analysis methods, the definition of conditional stability constants of complexes - electrochemical methods of analysis. Our results show thet HAs of selected soil types are different in functions, and these differences effect substantially the complexing process. When analyzing the results obtained in the course of spectrometric investigation of HMs in selected soil types, we determined the following main HA characteristics: (1) predominance of oxygen bearing groups in HM of the

  6. Dependence of microbial magnetite formation on humic substance and ferrihydrite concentrations

    NASA Astrophysics Data System (ADS)

    Piepenbrock, Annette; Dippon, Urs; Porsch, Katharina; Appel, Erwin; Kappler, Andreas

    2011-11-01

    Iron mineral (trans)formation during microbial Fe(III) reduction is of environmental relevance as it can influence the fate of pollutants such as toxic metal ions or hydrocarbons. Magnetite is an important biomineralization product of microbial iron reduction and influences soil magnetic properties that are used for paleoclimate reconstruction and were suggested to assist in the localization of organic and inorganic pollutants. However, it is not well understood how different concentrations of Fe(III) minerals and humic substances (HS) affect magnetite formation during microbial Fe(III) reduction. We therefore used wet-chemical extractions, magnetic susceptibility measurements and X-ray diffraction analyses to determine systematically how (i) different initial ferrihydrite (FH) concentrations and (ii) different concentrations of HS (i.e. the presence of either only adsorbed HS or adsorbed and dissolved HS) affect magnetite formation during FH reduction by Shewanella oneidensis MR-1. In our experiments magnetite formation did not occur at FH concentrations lower than 5 mM, even though rapid iron reduction took place. At higher FH concentrations a minimum fraction of Fe(II) of 25-30% of the total iron present was necessary to initiate magnetite formation. The Fe(II) fraction at which magnetite formation started decreased with increasing FH concentration, which might be due to aggregation of the FH particles reducing the FH surface area at higher FH concentrations. HS concentrations of 215-393 mg HS/g FH slowed down (at partial FH surface coverage with sorbed HS) or even completely inhibited (at complete FH surface coverage with sorbed HS) magnetite formation due to blocking of surface sites by adsorbed HS. These results indicate the requirement of Fe(II) adsorption to, and subsequent interaction with, the FH surface for the transformation of FH into magnetite. Additionally, we found that the microbially formed magnetite was further reduced by strain MR-1 leading to

  7. Conductometric measurement of the changes in humic substances caused by ozone oxidation.

    PubMed

    Martín-Domínguez, Alejandra; Lara-Sánchez, Abigail; Hansen-Hansen, Anne M; Alarcón-Herrera, M Teresa

    2016-06-01

    Humic substances (HS), a broad category of organic compounds and a major constituent of soil, are responsible for serious problems during water purification processes. In particular, HS react with chlorine during disinfection processes to produce a variety of organochlorine compounds such as trihalomethanes (THMs), which are potentially carcinogenic to humans. The use of ozone as a disinfection method represents a potential solution to this problem; however, HS that are not completely oxidized may form by-products more reactive than the original molecules. The structural changes of HS during oxidation with ozone were evaluated through a replicated 2(2) design, where concentrations of 5 and 30 mg/L of two commercial HS (Aldrich and Fluka) were ozonized over different time intervals (0, 10, and 20 min). The ozone-treated HS were titrated with acid and base solutions, and the shifts of the slopes were then analyzed and finally related to the ionic alterations of the HS. The Aldrich HS (AHS) showed only protonated functional groups; the Fluka HS (FHS) showed only ionized groups; and in both cases, the amount of functional groups increased with increasing ozonation. For AHS and FHA, respectively, the maximum ozone exposure time (20 min) and the highest concentration of HS (30 mg/L) produced the greatest reductions in total organic carbon (TOC) (39 and 34 %), UV254 (50 and 60.8 %), and color (16.4 and 19.6 %). As for aromaticity, AHS showed removals of 39.6 % (from a starting concentration of 5 mg/L) and 17.2 % (from a starting concentration of 30 mg/L). FHS showed the opposite effect, with removals of 33.3 % (starting at 5 mg/L) and 40.1 % (starting at 30 mg/L). In this study, the structural changes of HS submitted to ozonation were inferred in a relatively quick and easy way by using a conductometric titration, thus demonstrating the applicability of the technique. PMID:26965279

  8. The impact of interactions between algal organic matter and humic substances on coagulation.

    PubMed

    Pivokonsky, Martin; Naceradska, Jana; Brabenec, Tomas; Novotna, Katerina; Baresova, Magdalena; Janda, Vaclav

    2015-11-01

    This study focuses on the effects of molecular interactions between two natural organic matter (NOM) fractions, peptides/proteins derived from cyanobacterium Microcystis aeruginosa (MA proteins) and peat humic substances (HS), on their removal by coagulation. Coagulation behaviour was studied by the jar tests with MA protein/HS mixtures and with single compounds (MA proteins or HS). Aluminium sulphate was used as a coagulant. Besides MA proteins, bovine serum albumin (BSA) was used as a model protein. For the MA protein/HS mixture, the removal rates were higher (80% versus 65%) and the dose of coagulant substantially lower (2.8 versus 5.5 mg L(-1) Al) than for coagulation of single HS, indicating the positive effect of protein-HS interactions on the coagulation process. The optimum coagulation pH was 5.2-6.7 for MA proteins and 5.5-6 for HS by alum. The optimum pH for the removal of MA protein/HS mixture ranged between pH 5.5-6.2, where the charge neutralization of negatively charged acidic functional groups of organic molecules by positively charged coagulant hydroxopolymers lead to coagulation. MA proteins interacted with HS, probably through hydrophobic, dipole-dipole and electrostatic interactions, even in the absence the coagulant. These interactions are likely to occur within a wide pH range, but they result in coagulation only at low pH values (pH < 4). At this pH, the negative charge of both MA proteins and HS was suppressed due to the protonation of acidic functional groups and thus the molecules could approach and combine forming aggregates. Virtually the same trends were observed in the experiments with HS and BSA, indicating that BSA is a suitable model for MA proteins under experimental conditions used in this study. The study showed that increases in organic content in source water due to the release of algae products may not necessarily entail deterioration of the coagulation process and a rise in coagulant demand.

  9. Measurement of associations of pharmaceuticals with dissolved humic substances using solid phase extraction.

    PubMed

    Ding, Yunjie; Teppen, Brian J; Boyd, Stephen A; Li, Hui

    2013-04-01

    An innovative method was developed to determine association of carbadox, lincomycin and tetracycline with dissolved humic acids using solid phase extraction (SPE). Dissolved organic matter (DOM) and DOM-bound pharmaceuticals passed through the SPE cartridge while the cartridge retained freely dissolved pharmaceuticals from water. This method was validated by comparison with the results measured using the common equilibrium dialysis technique. For the SPE method pharmaceutical interaction with DOM required ∼30h to approach the equilibration, whereas 50-120h was needed for the equilibrium dialysis technique. The uneven distributions of freely membrane-penetrating pharmaceuticals and protons inside vs. outside of the dialysis cell due to the Donnan effect resulted in overestimates of pharmaceutical affinity with DOM for the equilibrium dialysis method. The SPE technique eliminates the Donnan effect, and demonstrates itself as a more efficient, less laborious and more accurate method. The measured binding coefficients with DOM followed the order of carbadoxhumic acid were greater than those with Aldrich humic acid due to more interaction sites, i.e. carboxylic and phenolic functional moieties, present in the Leonardite humic acid. The results obtained suggest that many pharmaceuticals could be significantly bound to DOM, which alters their fate and mobility in the environment. PMID:23260244

  10. Surfactant-Wrapped Multiwalled Carbon Nanotubes in Aquatic Systems: Surfactant Displacement in the Presence of Humic Acid.

    PubMed

    Chang, Xiaojun; Bouchard, Dermont C

    2016-09-01

    Sodium dodecyl sulfate (SDS) facilitates multiwalled carbon nanotube (MWCNT) debundling and enhances nanotube stability in the aqueous environment by adsorbing on the nanotube surfaces, thereby increasing repulsive electrostatic forces and steric effects. The resulting SDS-wrapped MWCNTs are utilized in industrial applications and have been widely employed in environmental studies. In the present study, MWCNTs adsorbed SDS during ultrasonication to form stable MWCNTs suspensions. Desorption of SDS from MWCNTs surfaces was then investigated as a function of Suwannee River Humic Acid (SRHA) and background electrolyte concentrations. Due to hydrophobic effects and π-π interactions, MWCNTs exhibit higher affinity for SRHA than SDS. In the presence of SRHA, SDS adsorbed on MWCNTs was displaced. Cations (Na(+), Ca(2+)) decreased SDS desorption from MWCNTs due to charge screening effects. Interestingly, the presence of the divalent calcium cation facilitated multilayered SRHA adsorption on MWCNTs through bridging effects, while monovalent sodium reduced SRHA adsorption. Results of the present study suggest that properties of MWCNTs wrapped with commercial surfactants will be altered when these materials are released to surface waters and the surfactant coating will be displaced by natural organic matter (NOM). Changes on their surfaces will significantly affect MWCNTs fate in aquatic environments. PMID:27500910

  11. Characterization of humic substances isolated from clay- and silt-sized fractions of a corn residue-amended agricultural soil

    SciTech Connect

    Clapp, C.E.; Hayes, M.H.B.

    1999-12-01

    In a small-plot field study on a Waukegan silt loam soil, annual applications of 20 g N m{sup {minus}2} were made each May for 8 years before planting corn (Zea mays L.). Subplots were fertilized with 0.8 g {sup 15}N m{sup {minus}2}. Soil treatment in the fall either incorporated the chopped corn stover after grain harvest, using a rototiller, or the stover was removed from the plots. Soil samples taken in the fall were ultrasonicated, separated into clay- and silt-sized fractions, and extracted exhaustively with 0.1 mol L{sup {minus}1} sodium pyrophosphate (Na{sub 4}P{sub 2}O{sub 7}) + 0.1 mol L{sup {minus}1} NaOH (pH 12.6). Humic (HA) and fulvic (FA) acids were isolated using the International Humic Substances Society (IHSS) procedures. A variety of analytical methods were employed. The most useful information was obtained from amino acid (AA) and neutral sugar (NS) analyses, and from cross polarization magic angle spinning (CPMAS) {sup 13}C-NMR and {delta}{sup 13}C data. Overall, the corn residue amendments did not have a large effect on the composition of the humic substances (HS) from the different sized separates, but there were differences in the relative abundance of some AA and NS in the HAs and FAs. The NMR and {delta}{sup 13}C data provided evidence of some compositional differences and extent of humification between the HS from the clay- and silt-sized separates. The conclusion reached is, therefore, that the silt-sized particles were microaggregates of clay-sized particles, and the HS in these microaggregates were partially protected from bioalteration. These HS bore greater resemblance to the plants of origin than did those associated with the clays. The composition of the HAs and that of the FAs were similar to that of the Mollisol soil standard of the IHSS, but they were different from humic samples from other non-Mollisol soil types.

  12. Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids.

    PubMed

    Pignatello, Joseph J; Kwon, Seokjoon; Lu, Yufeung

    2006-12-15

    Black carbon (BC) plays a potentially important role in the availability of pollutants in soils and sediments. Recent evidence points to the possible attenuation of the high surface activity of raw BC by natural substances. We studied the effects of soil humic (HA) and fulvic (FA) acids on the surface properties and affinity for organic compounds of synthesized wood charcoal. Char powder suspended in a solution of HA or FA was loaded with organic matter via adsorption, evaporation of the water, or coflocculation with Al3+. These treatments were chosen to simulate initial and more advanced stages of environmental exposure. Coevaporation dramatically reduced the N2 Brunauer-Emmett-Teller total surface area of the char, but only moderately the CO2 cumulative surface area up to 1.4 nm. Organic compound adsorption was suppressed in proportion to molecular size, benzene < naphthalene < phenanthrene and 1,2,4-trichlorobenzene < phenanthrene, for humics in the adsorbed and coflocculated states, respectively. Humic substances also increased the linearity of the isotherms. The model we propose assumes that humic substances are restricted to the external surface where they act as pore blocking agents or competitive adsorbates, depending on the temperature and adsorbate size. Nitrogen is blocked from the internal pore space due to stiffness at 77 K of humic strands extending into pore throats, giving an artificially low surface area. Together with previous results, this finding indicates that N2 may not detect BC microporosity in geosorbents. At higher temperatures (CO2, 273 K; organics, 293 K), humic strands are more flexible, allowing access to interior pores. The counterintuitive molecular size dependence of adsorption suppression by humics is due to a molecular sieving effect in pores in which the adsorption space available to the organic compound is more and more restricted to external sites. PMID:17256524

  13. Remediation of Hydrocarbon-Contaminated Soil by Washing with Novel Chemically Modified Humic Substances.

    PubMed

    García-Díaz, César; Nebbioso, Antonio; Piccolo, Alessandro; Barrera-Cortés, Josefina; Martínez-Palou, Rafael

    2015-11-01

    In this work, humic (HA) and fulvic acid (FA) were chemically modified by esterification and etherification with alkanes under microwave (MW) irradiation to improve their surfactant properties for the remediation of total petroleum hydrocarbons (TPHs)-contaminated soil. Humic acid and FA were evaluated as surfactant for the remediation of soil by means of washing an aged highly TPH-contaminated soil (50,000 mg TPH kg) sampled from a Mexican petrochemical area. The efficiency of chemical modification of HA and FA was increased and accelerated under MW irradiation with respect to that of conventional heating. Results showed that modified HA and FA were able to considerably reduce the contamination of TPH-polluted soils. The best results were obtained with HA modified by esterification with -dodecanol and FA modified with -decanol, which increased the hydrocarbon removal by 24 and 18%, respectively, with respect to amounts removed by the unmodified derivatives.

  14. Comparative study for differentiation of aquatic humic-type organic constituents by capillary zone electrophoresis using polyvinyl alcohol-coated capillary.

    PubMed

    Peuravuori, Juhani; Lehtonen, Tero; Lepane, Viia; Pihlaja, Kalevi

    2005-07-15

    Capillary zone electrophoresis (CZE) with UV detection (254nm) was applied to characterize aquatic dissolved humic matter (DHM) from different environmental sources (lake, river and sea waters, in all 15 different samples). A series of separation examples of DHMs using a polyvinyl alcohol (PVA)-coated silica open tubular capillary were carried out in a phosphate buffer (40mM) as a background electrolyte at neutral acidity (pH 6.8). The separative power of electropherograms was reasonable and the reproducibility was above the mark. Each electropherogram was characteristic of the corresponding humic sample. Special functional fulvic and humic acids or their overall mixtures separated with XAD, DAX and DEAE sorbing solids as well as the original dissolved organic matter (DOM) were nicely differentiated according to their environmental sources. The PVA coating of open tubular silica capillaries seems to be very potential in electrophoretic characterization and separation of different humic solutes at neutral acidities with low sample concentrations thus permitting a workable technique, in a growing series of CZE studies, for better compared results from different studies. PMID:18970143

  15. Colloidal α-Al2O3 Europium(III) and humic substances interactions: a macroscopic and spectroscopic study.

    PubMed

    Janot, Noémie; Benedetti, Marc F; Reiller, Pascal E

    2011-04-15

    Eu(III) sorption onto α-Al(2)O(3) in the presence of purified Aldrich humic acid (PAHA) is studied by batch experiments and time-resolved laser-induced luminescence spectroscopy of Eu(III). Experiments are conducted at varying pH, at 0.1 mol/L NaClO(4), 10(-6) mol/L Eu(III), 1 g/L α-Al(2)O(3) and 28 mg/L PAHA, which assured a complete Eu(III)-PAHA complexation. Adsorption of Eu(III) presents the expected pH-edge at 7, which is modified by addition of PAHA. Presence of Eu(III) slightly increases PAHA sorption throughout the pH range. The evolutions of luminescence spectra and decay times of the binary systems, that is, Eu(III)/α-Al(2)O(3) and Eu(III)/PAHA, indicate a progressive surface- and humic-complexation with increasing pH. The typical biexponential luminescence decay in Eu(III)/PAHA system is also recorded; the fastest deactivation depending barely on pH. In ternary Eu(III)/PAHA/α-Al(2)O(3) system, the existence of a luminescence biexponential decay for all pH means that Eu(III) is always in the direct neighborhood of the humic substance. Below pH 7, the spectra of the ternary system (Eu(III)/PAHA/α-Al(2)O(3)) are not different from the ones of Eu(III)/PAHA system, implying the same complex symmetry. Nevertheless, the increase of luminescence decay time points to a change in PAHA conformation onto the surface.

  16. Addition of a Worm Leachate as Source of Humic Substances in the Drinking Water of Broiler Chickens

    PubMed Central

    Gomez-Rosales, S.; de L. Angeles, M.

    2015-01-01

    The objective of this research was to evaluate the growth performance, the apparent ileal digestibility of nitrogen and energy, the retention of nutrients and the apparent metabolizable energy corrected to zero nitrogen retention (AMEn) in broiler chickens supplemented with increasing doses of a worm leachate (WL) as a source of humic substances (HS) in the drinking water. In Exp. 1, 140 male broilers were penned individually and assigned to four WL levels (0%, 10%, 20%, and 30%) mixed in the drinking water from 21 to 49 days of age. Water was offered in plastic bottles tied to the cage. In Exp. 2, 600 male broilers from 21 to 49 days of age housed in floor pens were assigned to three levels of WL (0%, 10%, and 20%) mixed in the drinking water. The WL was mixed with tap water in plastic containers connected by plastic tubing to bell drinkers. The results of both experiments were subjected to analysis of variance and polynomial contrasts. In Exp. 1, the daily water consumption was similar among treatments but the consumption of humic, fulvic, and total humic acids increased linearly (p<0.01) as the WL increased in the drinking water. The feed conversion (p<0.01) and the ileal digestibility of energy, the excretion of dry matter and energy, the retention of dry matter, ash and nitrogen and the AMEn showed quadratic responses (p<0.05) relative to the WL levels in drinking water. In Exp. 2, the increasing level of WL in the drinking water had quadratic effects on the final body weight, daily weight gain and feed conversion ratio (p<0.05). The addition of WL as a source of HS in the drinking water had beneficial effects on the growth performance, ileal digestibility of energy, the retention of nutrients as well on the AMEn in broiler chickens; the best results were observed when the WL was mixed at levels of 20% to 30% in the drinking water. PMID:25557817

  17. Stability and mobility of cerium oxide nanoparticles in soils: effects of humic substances, pH and ionic strength

    NASA Astrophysics Data System (ADS)

    Chen, Yirui; Mu, Linlin; Li, Chunyan; Bai, Lingyun; Jacobson, Astrid; Darnault, Christophe

    2015-04-01

    Among the large number of types of nanomaterials used in the field of nanotechnology, cerium oxide nanoparticles (CeO2 NPs) are among the top five most commonly utilized by industry, agriculture and nanomedicine for their unique physico-chemical properties. They are used, for example, in the production of catalysts, as fuel additives, and as polishing agents. Therefore, the release and encounter of CeO2 NPs in the environment following their application, waste disposal, life-cycle and accidents is inevitable. It is critical to examine the behavior of CeO2 NPs released in the environment to assess the risk they pose to the environmental and public health. In particular, little is known about the fate and transport of CeO2 NPs in soils and groundwater. To assess the behavior of CeO2 NPs, it is important to investigate the factors that affect their stability and mobility. Humic substances are a major component of soils and have been shown to have the potential to impact the transport and retention of nanoparticles in soils. Consequently, our study characterizes the impacts of humic and fulvic acids on the stability and mobility of cerium oxides in model porous media under various pH and ionic strength conditions. Batch experiments conducted at various concentrations of humic and fulvic acids coupled with a wide range of pHs and ionic strengths were investigated. Selected parameters from these batch studies were then used as experimental conditions representative of environmental systems to perform column transport experiments to assess of the mobility of CeO2 NPs in saturated porous media, which is the first step in simulating their behavior in soil and groundwater systems.

  18. Influence of humic substances on Co[sup 2+] sorption by a subsurface mineral separate and its mineralogic components

    SciTech Connect

    Zachara, J.M.; Resch, C.T.; Smith, S.C. )

    1994-01-01

    The sorption of Co[sup 2+] (10[sup [minus]6] mol/L) was measured on subsurface mineral materials in the absence and presence of a sorbed leonardite humic acid (LHA) to (1) evaluate the sorptive role of mineral-bound humic substances, and (2) establish approaches to model metal ion binding in composite materials. The subsurface materials were a <2.0 [mu]m size fraction of an ultisol saprolite (CP) and this same material treated with dithonite-citrate-bicarbonate (DCB) to remove Fe-oxides (DCP). Comparable experiments (with and without LHA) were also performed with mineral sorbents representing dominant phases in the CP separate (gibbsite, Al-geothite, and kalonite) to evaluate their potential contributions to Co sorption. The mineral-bound LHA ranged in concentration between 0.1-0.4 mg-C/m[sup 2], representing approximately 0.7% of the subsurface isolate by mass. In solid-free suspensions, the affinity of LHA for Co increased with pH and decreasing I (K[sub d] ranging 20-450 L/g). Mineral-bound LHA increased Co sorption on all the sorbents by factors of 10-60%, with the greatest augmentation noted at pH values (4.5-6.5) where (1) maximum LHA sorption occurred, and (2) Co sorption to the mineral phase was weak and dominated by ion exchange. The LHA appeared simply to augment, rather than to change the intrinsic adsorption behavior of the mineral sorbents. Accordingly, predictions of the K[sub d] for Co on the LHA-coated subsurface materials (DCP, CP) based on a linear additivity model agreed well with the experimental data, suggesting that the complex humic-mineral association acted as a noninterative sorbent mixture at low aqueous Co concentrations.

  19. Addition of a worm leachate as source of humic substances in the drinking water of broiler chickens.

    PubMed

    Gomez-Rosales, S; de L Angeles, M

    2015-02-01

    The objective of this research was to evaluate the growth performance, the apparent ileal digestibility of nitrogen and energy, the retention of nutrients and the apparent metabolizable energy corrected to zero nitrogen retention (AMEn) in broiler chickens supplemented with increasing doses of a worm leachate (WL) as a source of humic substances (HS) in the drinking water. In Exp. 1, 140 male broilers were penned individually and assigned to four WL levels (0%, 10%, 20%, and 30%) mixed in the drinking water from 21 to 49 days of age. Water was offered in plastic bottles tied to the cage. In Exp. 2, 600 male broilers from 21 to 49 days of age housed in floor pens were assigned to three levels of WL (0%, 10%, and 20%) mixed in the drinking water. The WL was mixed with tap water in plastic containers connected by plastic tubing to bell drinkers. The results of both experiments were subjected to analysis of variance and polynomial contrasts. In Exp. 1, the daily water consumption was similar among treatments but the consumption of humic, fulvic, and total humic acids increased linearly (p<0.01) as the WL increased in the drinking water. The feed conversion (p<0.01) and the ileal digestibility of energy, the excretion of dry matter and energy, the retention of dry matter, ash and nitrogen and the AMEn showed quadratic responses (p<0.05) relative to the WL levels in drinking water. In Exp. 2, the increasing level of WL in the drinking water had quadratic effects on the final body weight, daily weight gain and feed conversion ratio (p<0.05). The addition of WL as a source of HS in the drinking water had beneficial effects on the growth performance, ileal digestibility of energy, the retention of nutrients as well on the AMEn in broiler chickens; the best results were observed when the WL was mixed at levels of 20% to 30% in the drinking water.

  20. Rapid changes in dissolved humic substances in Spirit Lake and South Fork Castle Lake, Washington

    USGS Publications Warehouse

    McKnight, Diane M.; Thorn, K.A.; Wershaw, R. L.; Bracewell, J.M.; Robertson, G.W.

    1988-01-01

    One major effect of the eruption of Mount St. Helens, Washington, was a large increase of dissolved organic material in the lakes of the area devastated near the volcano. Much of this material was aquatic fulvic acid derived from plants and soils from the surrounding watershed. During the 3 yr after the eruption, substantial chemical changes occurred in the aquatic fulvic acid. -from Authors

  1. Influence of Low Molecular Weight Fractions of Humic Substances on Their Reducing Capacities and Distribution of Redox Functional Groups.

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Jiang, J.

    2015-12-01

    Humic substances (HS) are redox-active organic compounds and their reducing capacities depend on molecule structure and distribution of redox functional groups (RFG). During dialysis experiments, initial HS were separated into low molecular weight fractions (LMWF, molecular weight <3,500 Da or <14,000 Da) and retentate. LMWF accounts for only 2% in TOC contents of HS molecules, while their reducing capacities are up to 33 times greater than those of initial HA. However, great amount of reducing capacities of LMWF does not cause decreasing reducing capacities of retentate relative to those of initial HA. Total reducing capacities of whole dialysis device were calculated for initial HA, retentate and LMWF in native and reduced state, and result suggests that releasing of LMWF leads to production and explosion of RFG. LWMF have great fluorescence intensities for protein-like fluorophores and humic acids-like fluorophores (quinone-like functional groups), where quinonoid π-π* transition is responsible for the great reducing capacities of LMWF. The 3,500 Da molecules (0.25 nm diameter) of HS are capable of stimulating transformation of redox-active metals or potential pollutants trapped in soil micropores (< 2 nm diameter). A development of relationship between reducing capacity and Ex / Em position provides a possibility to predicate relative reducing capacities of HS in treated raw water sample.

  2. Effect of humic substances aggregation on the determination of fluoride in water using an ion selective electrode.

    PubMed

    Shen, Junjie; Gagliardi, Simona; McCoustra, Martin R S; Arrighi, Valeria

    2016-09-01

    The control of drinking water quality is critical in preventing fluorosis. In this study humic substances (HS) are considered as representative of natural organic matter (NOM) in water. We show that when HS aggregate the response of fluoride ion selective electrodes (ISE) may be perturbed. Dynamic light scattering (DLS) results of both synthetic solutions and natural water sample suggest that low pH and high ionic strength induce HS aggregation. In the presence of HS aggregates, fluoride concentration measured by ISE has a reduction up to 19%. A new "open cage" concept has been developed to explain this reversible phenomenon. The interference of HS aggregation on fluoride measurement can be effectively removed by centrifugation pretreatment. PMID:27276164

  3. Interfacial reactions between humic-like substances and lateritic clay: application to the preparation of "geomimetic" materials.

    PubMed

    Goure-Doubi, Herve; Martias, Céline; Lecomte-Nana, Gisèle Laure; Nait-Ali, Benoît; Smith, Agnès; Thune, Elsa; Villandier, Nicolas; Gloaguen, Vincent; Soubrand, Marilyne; Konan, Léon koffi

    2014-11-15

    The aim of this study was to understand the mechanisms responsible for the strengthening of "geomimetic" materials, especially the chemical bonding between clay and humic substances. The mineral matter is lateritic clay which mainly consists in kaolinite, goethite, hematite and quartz. The other starting products are fulvic acid (FA) and lime. The preparation of these geomimetic materials is inspired from the natural stabilization of soils by humic substances occurring over thousands of years. The present process involves acidic and alkaline reactions followed by a curing period of 18days at 60°C under a water saturated atmosphere. The acceleration of the strengthening process usually observed in soils makes this an original process for treatment of soils. The consolidation of the "geomimetic" materials could result from two major phenomena: (i) chemical bonding at the interface between the clay particles and iron compounds and the functional groups of the fulvic acid, (ii) a partial dissolution of the clay grains followed by the precipitation of the cementitious phases, namely calcium silicate hydrates, calcium aluminate hydrates and mixed calcium silicum and aluminum hydrates. Indeed, the decrease of the BET specific area of the lateritic clay after 24 h of reaction with FA added to the structural reorganization observed between 900 and 1000°C in the "geomimetic" material, and to the results of adsorption measurements, confirm the formation of organo-ferric complexes. The presence of iron oxides in clay, in the form of goethite, appears to be another parameter in favor of a ligand exchange process and the creation of binding bridges between FA and the mineral matter. Indeed all faces of goethite are likely to be involved in complexation reactions whereas in lateritic clay only lateral faces could be involved. The results of the adsorption experiments realized at a local scale will improve our understandings about the process of adsorption of FA on lateritic

  4. Characterization of the humic substances isolated from postfire soils of scotch pine forest in Togljatty city, Samara region by the 13C-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Maksimova, Ekaterina; Abakumov, Evgeny

    2016-04-01

    Postpyrogenic soil dynamics is an informative tool for studying of soil elementary processes in extreme temperature conditions and for predicting of short time environmental changes in conditions of catastrophic landscape changes. Soil organic matter (SOM) system evolution is the most rapid process of postpyrogenic soil development. In this relation the evaluation of humus accumulation rates and humification trend were conducted with use of the classical chemical and modern spectroscopy methods. Soil restoration after spontaneous forest fires near Togljatty city (Samara region, Russia) was abandoned in 2010, and further monitoring over the next four years was organized to evaluate the speed of biogenic processes and humus accumulation dynamics. Three key soil plots were studied for estimating SOM quality changes under the forest fire effect: surface forest fire, crown forest fire and control. Total carbon and nitrogen content as well as Cha/Cfa ratios (content of humic acids/ content of fulvic acids), were estimated to assess the dynamics of soil restoration. Humic acid powders were extracted and analyzed by elemental composition and 13C-NMR spectroscopy to assess changes in humic substance structure and composition. The data obtained indicate that burning of a forest floor and sod (humic) horizon led to humus losses and decreases in total carbon stocks. As a result of the fires, the content of humic acids in the pyrogenic horizon increased, leading alterations of humus type. Greater increases in the degree of organic matter humification were observed for surface fires than crown fires. It was shown that the humus molecular composition was substantially affected by the wildfires. The data show an increase in aromaticity, a loss of oxygen-containing groups and dehydrogenation of humic acids. Humic acids in the soils of the control plots and after wildfires were significantly different, especially in the ratios of hydrogen, oxygen and carbon. The increase in the

  5. Involvement of Hormone- and ROS-Signaling Pathways in the Beneficial Action of Humic Substances on Plants Growing under Normal and Stressing Conditions.

    PubMed

    García, Andrés Calderín; Olaetxea, Maite; Santos, Leandro Azevedo; Mora, Verónica; Baigorri, Roberto; Fuentes, Marta; Zamarreño, Angel Maria; Berbara, Ricardo Luis Louro; Garcia-Mina, José María

    2016-01-01

    The importance of soil humus in soil fertility has been well established many years ago. However, the knowledge about the whole mechanisms by which humic molecules in the rhizosphere improve plant growth remains partial and rather fragmentary. In this review we discuss the relationships between two main signaling pathway families that are affected by humic substances within the plant: one directly related to hormonal action and the other related to reactive oxygen species (ROS). In this sense, our aims are to try the integration of all these events in a more comprehensive model and underline some points in the model that remain unclear and deserve further research. PMID:27366744

  6. Involvement of Hormone- and ROS-Signaling Pathways in the Beneficial Action of Humic Substances on Plants Growing under Normal and Stressing Conditions

    PubMed Central

    García, Andrés Calderín; Olaetxea, Maite; Santos, Leandro Azevedo; Mora, Verónica; Baigorri, Roberto; Fuentes, Marta; Zamarreño, Angel Maria; Berbara, Ricardo Luis Louro; Garcia-Mina, José María

    2016-01-01

    The importance of soil humus in soil fertility has been well established many years ago. However, the knowledge about the whole mechanisms by which humic molecules in the rhizosphere improve plant growth remains partial and rather fragmentary. In this review we discuss the relationships between two main signaling pathway families that are affected by humic substances within the plant: one directly related to hormonal action and the other related to reactive oxygen species (ROS). In this sense, our aims are to try the integration of all these events in a more comprehensive model and underline some points in the model that remain unclear and deserve further research. PMID:27366744

  7. Ammonia fixation by humic substances: A nitrogen-15 and carbon-13 NMR study

    USGS Publications Warehouse

    Thorn, K.A.; Mikita, M.A.

    1992-01-01

    The process of ammonia fixation has been studied in three well characterized and structurally diverse fulvic and humic acid samples. The Suwannee River fulvic acid, and the IHSS peat and leonardite humic acids, were reacted with 15N-labelled ammonium hydroxide, and analyzed by liquid phase 15N NMR spectrometry. Elemental analyses and liquid phase 13C NMR spectra also were recorded on the samples before and after reaction with ammonium hydroxide. The largest increase in percent nitrogen occurred with the Suwannee River fulvic acid, which had a nitrogen content of 0.88% before fixation and 3.17% after fixation. The 15N NMR spectra revealed that ammonia reacted similarly with all three samples, indicating that the functional groups which react with ammonia exist in structural configurations common to all three samples. The majority of nitrogcn incorporated into the samples appears to be in the form of indole and pyrrole nitrogen, followed by pyridine, pyrazine, amide and aminohydroquinone nitrogen. Chemical changes in the individual samples upon fixation could not be discerned from the 13C NMR spectra.

  8. Number of independent parameters in the potentiometric titration of humic substances.

    PubMed

    Lenoir, Thomas; Manceau, Alain

    2010-03-16

    With the advent of high-precision automatic titrators operating in pH stat mode, measuring the mass balance of protons in solid-solution mixtures against the pH of natural and synthetic polyelectrolytes is now routine. However, titration curves of complex molecules typically lack obvious inflection points, which complicates their analysis despite the high-precision measurements. The calculation of site densities and median proton affinity constants (pK) from such data can lead to considerable covariance between fit parameters. Knowing the number of independent parameters that can be freely varied during the least-squares minimization of a model fit to titration data is necessary to improve the model's applicability. This number was calculated for natural organic matter by applying principal component analysis (PCA) to a reference data set of 47 independent titration curves from fulvic and humic acids measured at I = 0.1 M. The complete data set was reconstructed statistically from pH 3.5 to 9.8 with only six parameters, compared to seven or eight generally adjusted with common semi-empirical speciation models for organic matter, and explains correlations that occur with the higher number of parameters. Existing proton-binding models are not necessarily overparametrized, but instead titration data lack the sensitivity needed to quantify the full set of binding properties of humic materials. Model-independent conditional pK values can be obtained directly from the derivative of titration data, and this approach is the most conservative. The apparent proton-binding constants of the 23 fulvic acids (FA) and 24 humic acids (HA) derived from a high-quality polynomial parametrization of the data set are pK(H,COOH)(FA) = 4.18 +/- 0.21, pK(H,Ph-OH)(FA) = 9.29 +/- 0.33, pK(H,COOH)(HA) = 4.49 +/- 0.18, and pK(H,Ph-OH)(HA) = 9.29 +/- 0.38. Their values at other ionic strengths are more reliably calculated with the empirical Davies equation than any existing model fit. PMID

  9. Enhanced humification by carbonated basic oxygen furnace steel slag--II. Process characterization and the role of inorganic components in the formation of humic-like substances.

    PubMed

    Qi, Guangxia; Yue, Dongbei; Fukushima, Masami; Fukuchi, Shigeki; Nishimoto, Ryo; Nie, Yongfeng

    2012-06-01

    Enhanced humification by abiotic catalysts is a potentially promising supplementary composting method for stabilizing organic carbon from biowastes. In this study, the role of steel slag in the transformation of humic precursors was directly characterized by measuring the variance in dissolved organic carbon (DOC), spectroscopic parameters (E(600)), and the concentration and molecular weight change of humic-like substances (HLS) during the process. In addition, a mechanistic study of the process was explored. The results directly showed that steel slag greatly accelerated the formation of HLS. The findings indicate that Fe(III)-and Mn(IV)-oxides in steel slag act as oxidants and substantially enhance the polycondensation of humic precursors. Moreover, the reaction appears to suppress the release of metals from steel slag to a certain extent under acidic conditions. This can be attributed to the cover of HLS on the external surface of steel slag, which is significant for its environmentally sound reuse.

  10. 15N and13C NMR investigation of hydroxylamine-derivatized humic substances

    USGS Publications Warehouse

    Thorn, K.A.; Arterburn, J.B.; Mikita, M.A.

    1992-01-01

    Five fulvic and humic acid samples of diverse origins were derivatized with 15N-labeled hydroxylamine and analyzed by liquid-phase 15N NMR spectrometry. The 15N NMR spectra indicated that hydroxylamine reacted similarly with all samples and could discriminate among carbonyl functional groups. Oximes were the major derivatives; resonances attributable to hydroxamic acids, the reaction products of hydroxylamine with esters, and resonances attributable to the tautomeric equilibrium position between the nitrosophenol and monoxime derivatives of quinones, the first direct spectroscopic evidence for quinones, also were evident. The 15N NMR spectra also suggested the presence of nitriles, oxazoles, oxazolines, isocyanides, amides, and lactams, which may all be explained in terms of Beckmann reactions of the initial oxime derivatives. INEPT and ACOUSTIC 15N NMR spectra provided complementary information on the derivatized samples. 13C NMR spectra of derivatized samples indicated that the ketone/quinone functionality is incompletely derivatized with hydroxylamine. ?? 1991 American Chemical Society.

  11. Compost and Crude Humic Substances Produced from Selected Wastes and Their Effects on Zea mays L. Nutrient Uptake and Growth

    PubMed Central

    Palanivell, Perumal; Susilawati, Kasim; Ahmed, Osumanu Haruna; Majid, Nik Muhamad

    2013-01-01

    Production of agriculture and timber commodities leads generation of enormous quantity of wastes. Improper disposal of these agroindustrial wastes pollutes the environment. This problem could be reduced by adding value to them. Therefore, a study was carried out to analyse and compare the nutrients content of RS, RH, SD, and EFB of composts and crude humic substances; furthermore, their effect on growth, dry matter production, and nutrient uptake for Zea mays L., and selected soil chemical properties were evaluated. Standard procedures were used to analyze humic acids (HA), crude fulvic acids (CFA), crude humin (CH), soil, dry matter production and nutrient uptake. Sawdust and RS compost matured at 42 and 47 days, respectively, while RH and EFB composts were less matured at 49th day of composting. Rice straw compost had higher ash, N, P, CEC, HA, K, and Fe contents with lower organic matter, total organic carbon, and C/N and C/P ratios. The HA of sawdust compost showed higher carbon, carboxylic, K, and Ca contents compared to those of RS, RH, and EFB. Crude FA of RS compost showed highest pH, total K, Ca, Mg, and Na contents. Crude humin from RS compost had higher contents of ash, N, P, and CEC. Rice straw was superior in compost, CFA, and CH, while sawdust compost was superior in HA. Application of sawdust compost significantly increased maize plants' diameter, height, dry matter production, N, P, and cations uptake. It also reduced N, P, and K based chemical fertilizer use by 90%. Application of CH and the composts evaluated in this study could be used as an alternative for chemical fertilizers in maize cultivation. PMID:24319353

  12. Humic substance-mediated Fe(III) reduction by a fermenting Bacillus strain from the alkaline gut of a humus-feeding scarab beetle larva.

    PubMed

    Hobbie, Sven N; Li, Xiangzhen; Basen, Mirko; Stingl, Ulrich; Brune, Andreas

    2012-06-01

    Humus-feeding macroinvertebrates play an important role in the transformation of soil organic matter. Their diet contains significant amounts of redox-active components such as iron minerals and humic substances. In soil-feeding termites, acid-soluble Fe(III) and humic acids are almost completely reduced during gut passage. Here, we show that the reduction of Fe(III) and humic acids takes place also in the alkaline guts of scarab beetle larvae. Sterilized gut homogenates of Pachnoda ephippiata no longer converted Fe(III) to Fe(II), indicating an essential role of the gut microbiota in the process. From Fe(III)-reducing enrichment cultures inoculated with highly diluted gut homogenates, we isolated several facultatively anaerobic, alkali-tolerant bacteria that were closely related to metal-reducing isolates in the Bacillus thioparans group. Strain PeC11 showed a remarkable capacity for dissimilatory Fe(III) reduction, both at pH 7 and 10. Rates were strongly stimulated by the addition of the redox mediator 2,6-antraquinone disulfonate and by redox-active components in the fulvic-acid fraction of humus. Although the contribution of strain PeC11 to intestinal Fe(III) reduction in P. ephippiata remains to be further elucidated, our results corroborate the hypothesis that the lack of oxygen and the solubilization of humic substances in the extremely alkaline guts of humivorous soil fauna provide favorable conditions for the efficient reduction of Fe(III) and humic substances by a primarily fermentative microbiota.

  13. Physico-chemical characterization of secondary organic aerosol derived from catechol and guaiacol as a model substance for atmospheric humic-like substances

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Krüger, H.-U.; Grothe, H.; Schmitt-Kopplin, P.; Whitmore, K.; Zetzsch, C.

    2010-07-01

    Secondary organic aerosol was produced from the aromatic precursors catechol and guaiacol by reaction with ozone in the presence and absence of simulated sunlight and humidity and investigated for its properties as a proxy for humic-like substances (HULIS). Beside a small particle size, a relatively low molecular weight and typical optical features in the UV/VIS spectral range, HULIS contain a typical aromatic and/or olefinic chemical structure and highly oxidized functional groups within a high chemical diversity. Various methods were used to characterize the secondary organic aerosols obtained: Fourier transform infrared spectroscopy (FTIR) demonstrated the formation of different carbonyl containing functional groups as well as structural and functional differences between aerosols formed at different environmental conditions. UV/VIS spectroscopy of filter samples showed that the particulate matter absorbs far into the visible range up to more than 500 nm. Ultrahigh resolved mass spectroscopy (ICR-FT/MS) determined O/C-ratios between 0.3 and 1 and main molecular weights between 200 and 500 Da. Temperature-programmed-pyrolysis mass spectroscopy identified carboxylic acids and lactones as major functional groups. Particle sizing using CNC-DMPS demonstrated the formation of small particles during a secondary organic aerosol formation process. Particle imaging using field-emission-gun scanning electron microscopy (FEG-SEM) showed spherical particles, forming clusters and chains. Hence, secondary organic aerosols from catechol and guaiacol are appropriate model substances for studies of the processing of aromatic secondary organic aerosols and atmospheric HULIS on the laboratory scale.

  14. Short-column anion-exchange chromatography for soil and peat humic substances profiling by step-wise gradient of high pH aqueous sodium ethylenediaminetetraacetate.

    PubMed

    Hutta, Milan; Ráczová, Janka; Góra, Róbert; Pessl, Juraj

    2015-08-21

    Novel anion-exchange liquid chromatographic method with step gradient of aqueous EDTA(4-) based mobile phase elution has been developed to profile available Slovak soil humic substances and alkaline extracts of various soils. The method utilize short glass column (30mm×3mm) filled in with hydrolytically stable particles (60μm diameter) Separon HEMA-BIO 1000 having (diethylamino)ethyl functional groups. Step gradient was programmed by mixing mobile phase composed of aqueous solution of sodium EDTA (pH 12.0; 5mmolL(-1)) and mobile phase constituted of aqueous solution of sodium EDTA (pH 12.0, 500mmolL(-1)). The FLD of HSs was set to excitation wavelength 480nm and emission wavelength 530nm (λem). Separation mechanism was studied by use of selected aromatic acids related to humic acids with the aid of UV spectrophotometric detection at 280nm. The proposed method benefits from high ionic strength (I=5molL(-1)) of the end mobile phase buffer and provides high recovery of humic acids (98%). Accurate and reproducible profiling of studied humic substances, alkaline extracts of various types of soils enables straightforward characterization and differentiation of HSs in arable and forest soils. Selected model aromatic acids were used for separation mechanism elucidation.

  15. Effect of Humic Substances on the Trapping and Transformations of U(VI) by Ferrihydrite

    NASA Astrophysics Data System (ADS)

    Dublet, G.; Brown, G. E.; Bargar, J.; Fendorf, S. E.; Janot, N.

    2013-12-01

    The Old Rifle DOE site in Colorado was a major site for milling uranium ore. U concentrations up to 1.8 uM persist in the Rifle aquifer, even after 'cleaning' the waste source of contaminations [1]. Understanding the behavior of U(VI) in this anthropogenically perturbed system is crucial for controlling the level of U contamination. Direct investigations of U speciation at this site have shown that U is associated with a wide variety of minerals as well as with natural organic matter (NOM) [2]. NOM has multiple functional groups which can be highly reactive with respect to aqueous metal ions, including actinides. Such interactions result in the formation of organo-mineral-metal (ternary) complexes and catalyze redox transformations; in addition, they can enhance mineral dissolution and metal transport [3,4,5]. In the complex soil/sediment system, aqueous, mineral, and organic phases are intimately mixed and their interactions are difficult to characterize by direct investigation [1]. The nanoparticulate iron hydroxide ferrihydrite (Fh), which is ubiquitous in many natural soils and highly reactive toward metal ions, is expected to significantly influence the fate of U in natural soils and is abundant in the subsurface at the Rifle site. NOM is also abundant at this site; however, little is known about the effect of NOM associated with ferrihydrite on the fate of U in such subsurface environments. To date, simple model systems composed mainly of two components (Fh and NOM) [6], (U and NOM or simple organic molecules) [7], or (Fh and U) [8,9], and more rarely composed of three components [10,11] have been studied in an effort to understand interactions among these components. In order to extend this earlier work to ternary systems, we have carried out batch reactions of U, a humic acid standard - Eliott soil humic acid (ESHA), and Fh under conditions that mimic those in the subsurface at Rifle. We have used U L3- and Fe K-edge XANES and EXAFS spectroscopy coupled

  16. Aggregation kinetics of manganese dioxide colloids in aqueous solution: influence of humic substances and biomacromolecules.

    PubMed

    Huangfu, Xiaoliu; Jiang, Jin; Ma, Jun; Liu, Yongze; Yang, Jing

    2013-09-17

    In this work, the early stage aggregation kinetics of manganese dioxide (MnO2) colloids in aqueous solution and the effects of constituents of natural organic matter (i.e., Suwannee River fulvic acid (SRFA), Suwannee River humic acid (SRHA), alginate, and bovine serum albumin (BSA)) were investigated by time-resolved dynamic light scattering. MnO2 colloids were significantly aggregated in the presence of monovalent and divalent cations. The critical coagulation concentrations were 28, 0.8, and 0.45 mM for NaNO3, Mg(NO3)2, and Ca(NO3)2, respectively. The Hamaker constant of MnO2 colloids in aqueous solution was 7.84 × 10(-20) J. All the macromolecules tested slowed MnO2 colloidal aggregation rates greatly. The steric repulsive forces, originated from organic layers adsorbed on MnO2 colloidal surfaces, may be mainly responsible for their stabilizing effects. However, the complexes formed by alginate and Ca(2+) (>5 mM) might play a bridging role and thus enhanced MnO2 colloidal aggregation instead. These results may be important for assessing the fate and transport of MnO2 colloids and associated contaminants.

  17. Humic substances and the biogeochemical arsenic cycle in groundwater of the Blackfoot Disease endemic area, southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Kulp, T. R.; Jean, J.

    2009-12-01

    (V) reduction in these sediments was not stimulated by amendment with lactate, or when hydrogen was supplied as a possible electron donor. However, As(V)-reduction was stimulated by the addition of the reduced humics analogue AHQDS, demonstrating that reduced humic substances in the aquifer can serve as electron donors for biological As(V) reduction. These findings suggest that the population of As(V) reducing bacteria in the aquifer are well suited to use endogenous organic compounds as heterotrophic electron donors and that this process is not electron-donor limited at in-situ conditions. The potential for reduced humic compounds to serve as electron donors for microbiological As(V) reduction may have considerable environmental significance with respect to the mobilization of adsorbed As from sediments in aquifers that are rich in dissolved organic matter. Further work should focus on identifying the precise nature of arsenic-organic matter interaction in the aquifer and the predominant As species that is associated with these compounds.

  18. Carbon-13 nuclear magnetic resonance analysis, lignin content and carbohydrate composition of humic substances from salt marsh estuaries

    NASA Astrophysics Data System (ADS)

    Alberts, James J.; Hatcher, Patrick G.; Price, Mary T.; Filip, Zdenek

    13C nuclear magnetic resonance spectroscopy, CuO oxidation products of lignin and hydrolyzable carbohydrates were measured for fulvic and humic acids extracted from living and dead Spartina alterniflora and salt marsh sediments. With these methods, there was little evidence for early diagenetic alteration of the humic materials. No trends consistent for fulvic and humic acids were observed for either hydrolyzable carbohydrates or lignin derived phenols, and chemical measurements of these fractions did not agree with spectral estimates. Humic acids appear to contain secondary amide linkages typical of proteins and peptides.

  19. Humic substance-mediated reduction of iron(III) oxides and degradation of 2,4-D by an alkaliphilic bacterium, Corynebacterium humireducens MFC-5

    PubMed Central

    Wu, Chun-yuan; Zhuang, Li; Zhou, Shun-gui; Yuan, Yong; Yuan, Tian; Li, Fang-bai

    2013-01-01

    With the use of an alkaliphilic bacterium, Corynebacterium humireducens MFC-5, this study investigated the reduction of goethite (α-FeOOH) and degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) mediated by different humic substances (humics) and quinones in alkaline conditions (pH of 9.0). The results indicated that (i) using sucrose as the electron donor, the strain MFC-5 was capable of reducing anthraquinone-2,6-disulfonic acid (AQDS), anthraquinone-2-disulfonic acid (AQS), anthraquinone-2-carboxylic acid (AQC), humic acid (HA) and fulvic acid (FA), and its reducing capability ranked as AQC > AQS > AQDS > FA > HA; (ii) the anaerobic reduction of α-FeOOH and 2,4-D by the strain was insignificant, while the reductions were greatly enhanced by the addition of quinones/humics serving as redox mediators; (iii) the Fe(III) reduction rate was positively related to the content of quinone functional groups and the electron-accepting capacities (EAC) of quinones/humics based on fourier-transform infrared spectroscopy (FT-IR) and electrochemical analyses; however, such a relationship was not found in 2,4-D degradation probably because quinone reduction was not the rate-limiting step of quinone-mediated reduction of 2,4-D. Using the example of α-FeOOH and 2,4-D, this study well demonstrated the important role of humics reduction on the Fe(III)/Fe(II) biogeochemical cycle and chlorinated organic compounds degradation in alkaline reducing environments. Funding Information This study was supported by the National Natural Science Foundation of China (Nos 41101211, 31070460, 41101477), and The Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry. PMID:23217085

  20. Polyphenolic compounds progress during olive mill wastewater sludge and poultry manure co-composting, and humic substances building (Southeastern Tunisia).

    PubMed

    Rigane, Hafedh; Chtourou, Mohamed; Ben Mahmoud, Imen; Medhioub, Khaled; Ammar, Emna

    2015-01-01

    In Mediterranean areas, olive mill wastes pose a major environmental problem owing to their important production and their high polyphenolic compounds and organic acids concentrations. In this work, the evolution of polyphenolic compounds was studied during co-composting of olive mill wastewater sludge and poultry manure, based on qualitative (G-50 sephadex) and quantitative (Folin-Ciocalteu), as well as high pressure liquid chromatography analyses. Results showed a significant polyphenolic content decrease of 99% and a noticeable transformation of low to high molecular weight fraction during the compost maturation period. During this step, polyphenols disappearance suggested their assimilation by thermophilic bacteria as a carbon and energy source, and contributed to humic substances synthesis. Polyphenolic compounds, identified initially by high pressure liquid chromatography, disappeared by composting and only traces of caffeic, coumaric and ferulic acids were detected in the compost. In the soil, the produced compost application improved the chemical and physico-chemical soil properties, mainly fertilising elements such as calcium, magnesium, nitrogen, potassium and phosphorus. Consequently, a higher potato production was harvested in comparison with manure amendment. PMID:25502693

  1. Interaction of metal ions with acid sites of biosorbents peat moss and Vaucheria and model substances alginic and humic acids

    SciTech Connect

    Crist, R.H.; Martin, J.R.; Crist, D.R.

    1999-07-01

    The interaction between added metal ions and acid sites of two biosorbents, peat moss and the alga Vaucheria, was studied. Results were interpreted in terms of two model substances, alginic acid, a copolymer of guluronic and mannuronic acids present in marine algae, and humic acid in peat moss. For peat moss and Vaucheria at pH 4--6, two protons were displaced per Cd sorbed, after correction for sorbed metals also displaced by the heavy metal. The frequent neglect of exchange of heavy metals for metals either sorbed on the native material or added for pH adjustment leads to erroneous conclusions about proton displacement stoichiometry. Proton displacement constants K{sub ex}{sup H} decreased logarithmically with pH and had similar slopes for alginic acid and biosorbents. This pH effect was interpreted as an electrostatic effect of increasing anionic charge making proton removal less favorable. The maximum number of exchangeable acid sites (capacity C{sub H}) decreased with pH for alginic acid but increased with pH for biosorbents. Consistent with titration behavior, this difference was explained in terms of more weak acid sites in the biosorbents.

  2. Polyphenolic compounds progress during olive mill wastewater sludge and poultry manure co-composting, and humic substances building (Southeastern Tunisia).

    PubMed

    Rigane, Hafedh; Chtourou, Mohamed; Ben Mahmoud, Imen; Medhioub, Khaled; Ammar, Emna

    2015-01-01

    In Mediterranean areas, olive mill wastes pose a major environmental problem owing to their important production and their high polyphenolic compounds and organic acids concentrations. In this work, the evolution of polyphenolic compounds was studied during co-composting of olive mill wastewater sludge and poultry manure, based on qualitative (G-50 sephadex) and quantitative (Folin-Ciocalteu), as well as high pressure liquid chromatography analyses. Results showed a significant polyphenolic content decrease of 99% and a noticeable transformation of low to high molecular weight fraction during the compost maturation period. During this step, polyphenols disappearance suggested their assimilation by thermophilic bacteria as a carbon and energy source, and contributed to humic substances synthesis. Polyphenolic compounds, identified initially by high pressure liquid chromatography, disappeared by composting and only traces of caffeic, coumaric and ferulic acids were detected in the compost. In the soil, the produced compost application improved the chemical and physico-chemical soil properties, mainly fertilising elements such as calcium, magnesium, nitrogen, potassium and phosphorus. Consequently, a higher potato production was harvested in comparison with manure amendment.

  3. Colloid facilitated transport of humic substances in soil: laboratory experiment and modeling calculation.

    NASA Astrophysics Data System (ADS)

    Dinu, Marina; Moiseenko, Tatyana

    2016-04-01

    An understanding of ability to predict the fate and transport of colloids in soil systems are of great importance in many environmental and industrial applications. Especially, in the case study sizes and zeta potentials of lignin and humus components (as a parameter reflecting the mobility and tread of organic substances). The objects of investigation were water extracts of gleepodzolic soil of European territory of Russia and Western Siberia, as well as humus substances extracted from this soil. In this study, evaluation of size, molecular weight distribution and zeta potential were used to predict the mobility of the organic component fractions of the soil. Fractionation was performed using multistage filtration plant (100 Da) and measuring physic-chemical parameters measured with the Malvern Zetasizer Nano ZSP. Significant differences in the distribution of organic matter on the molecular weight, charge (sign) of the zeta potential and the size of the sample of European Russia in comparison with samples of Western Siberia have been found. Also, laboratory studies have demonstrated of any differences in physicochemical parameters as infrared spectra, ultraviolet spectra, complexing ability of samples of the same soil type but different areas of Russia. The results can be used in the prediction of the migration ability of fractions humus substances and their stability at change physic-chemical conditions (the coefficient of mobility of the organic components by calculated in MathCad). This work was supported by the grant № 14-17-00460 RSF from 07.11.2014

  4. Aquatic toxicity of forty industrial chemicals: Testing in support of hazardous substance spill prevention regulation

    NASA Astrophysics Data System (ADS)

    Curtis, M. W.; Ward, C. H.

    1981-05-01

    The U.S. Environmental Protection Agency is presently developing hazardous substance spill regulations to help prevent water pollution. Aquatic animal toxicity data are used as criteria for the designation and categorization of substances as hazardous, even though this type of data is not available for many industrial chemicals. Static 96-hr. toxicity tests were conducted with 40 such chemicals to provide basic toxicity data for regulatory decision making. Thirty-two of the 40 chemicals tested were hazardous to aquatic life as determined by 96-hr. LC 50's less than or equal to 500 mg/l. All 40 chemicals were tested with the fresh-water fathead minnow, Pimephales promelas, and ten chemicals were also tested with the salt-water grass shrimp, Palaemonetes pugio.

  5. Removal of humic substances from reverse osmosis (RO) and nanofiltration (NF) concentrated leachate using continuously ozone generation-reaction treatment equipment.

    PubMed

    Wang, Huawei; Wang, Ya-Nan; Li, Xiaoyue; Sun, Yingjie; Wu, Hao; Chen, Dali

    2016-10-01

    Concentrated leachate from membrane treatment process, which contains large amount of difficult-to-degrade humic substances, can induce potential hazards to ecological environment. In this study, the concentrated leachates from reverse osmosis (RO) and nanofiltration (NF) were treated by continuous ozone generating-reaction integrated equipment, and the removal characteristics of humic substances were analyzed using gel filtration chromatography (GFC), excitation-emission matrix fluorescence spectroscopy (EEM), XAD-8 resin fractionation, and Fourier transform infrared spectroscopy (FTIR). The results of XRD-8 fractionation and SUVA254 showed that the humic substances including humic acid (HA) and fulvic acid (FA), were effectively removed along with the breakdown of aromatic hydrocarbons and decrease in the degree of humification during the ozonation process. After 110min of reaction, HA in both concentrated leachates was completely removed. GFC analysis indicated that both concentrated leachates had much broader distribution after the degradation. The high molecular weight (MW) organic matter was transformed into low molecular weight of <10kDa. The majority of high MW organics in NF concentrate were converted to low MW molecules of 10kDa-1kDa, while those in RO concentrate were decomposed to small MW molecules of <1kDa. The results of EEM analysis implied that the degradation of HA and FA led to a significant decrease in the fluorescence intensity. Though the effluent of two concentrated leachate did not meet the maximum allowable criterion for leachate direct or indirect discharge standard in China, the composition and properties of organic matters in concentrated leachate were changed significantly after entire ozonation reaction, which would be conducive to the further biological treatment or other advanced treatment. PMID:27478023

  6. Silver(I) Binding Properties of Organic Soil Materials Are Different from Those of Isolated Humic Substances.

    PubMed

    B Kleja, Dan; Nakata, Satomi; Persson, Ingmar; Gustafsson, Jon Petter

    2016-07-19

    The solubility of silver(I) in many soils is controlled by complexation reactions with organic matter. In this work we have compared the ability of isolated humic and fulvic acids to bind silver(I) with that of mor and peat materials. One new data set for Suwannee River Fulvic Acid was produced, which was consistent with published data sets for isolated fulvic and humic acids. The ability of soil materials to bind silver(I) was studied as a function of pH in the range 2.5-5.0, at a wide range of silver(I)-to-soil ratios (10(-4.2) - 10(-1.9) mol kg(-1)). By calibrating the Stockholm Humic Model on the humic and fulvic acids data sets, we showed that binding of silver(I) to both types of soil materials was much stronger (up to 2 orders of magnitude) than predicted from the silver(I) binding properties of the isolated humic materials. Thus, the approach taken for many other metals, that is, to model solubility in soils by using metal and proton binding parameters derived from isolated humic and fulvic acids, cannot be used for silver(I). One possible explanation for the discrepancy could be that silver(I) predominately interacted with various biomolecules in the soil samples, instead of humic- and fulvic-acid type materials. PMID:27305455

  7. Altering the characteristics of a leaf litter-derived humic substance by adsorptive fractionation versus simulated solar irradiation.

    PubMed

    Hur, Jin; Jung, Ka-Young; Schlautman, Mark A

    2011-11-15

    Changes in the characteristics of a leaf litter-derived humic substance (LLHS) that resulted from its adsorption onto kaolinite or exposure to simulated solar irradiation were tracked using selected spectroscopic descriptors, apparent weight-average molecular weight (MW(w)) and pyrene binding. Heterogeneity within the original bulk LLHS was confirmed by a range of different characteristics obtained from ultrafiltration-based size fractions. In general, trends of some changing LLHS characteristics were similar for the adsorption and irradiation processes when tracked against percent carbon removal. For example, the overall values of specific ultraviolet absorbance (SUVA), MW(w), and humification index (HIX) all decreased with increasing irradiation time and with increasing concentration of mineral adsorbent in the respective experiments, indicating that both processes resulted in less aromatic and smaller-sized LLHS components remaining in solution. In addition, both the adsorption and irradiation experiments resulted in enrichment of the relative distribution of protein-like fluorescence (PLF), implying the PLF-related components had low affinities for phototransformation and mineral surface adsorption. Despite these apparently similar overall trends in LLHS characteristics caused by the adsorption and irradiation processes, closer examination revealed considerable differences in how the two processes altered the original material. Net production of intermediate-sized constituents was observed only with the irradiation experiments. In addition, residual LLHS resulting from the adsorptive fractionation experiments exhibited consistently higher pyrene binding versus the irradiated LLHS despite having comparable MW(w) values. Changes in LLHS characteristics due to adsorption by kaolinite were likely caused by physical mechanisms (primarily hydrophobic interactions between LLHS components and the kaolinite surface) whereas the irradiation-induced changes appear to have

  8. Effects of americium-241 and humic substances on Photobacterium phosphoreum: Bioluminescence and diffuse reflectance FTIR spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Kamnev, Alexander A.; Tugarova, Anna V.; Selivanova, Maria A.; Tarantilis, Petros A.; Polissiou, Moschos G.; Kudryasheva, Nadezhda S.

    The integral bioluminescence (BL) intensity of live Photobacterium phosphoreum cells (strain 1883 IBSO), sampled at the stationary growth stage (20 h), was monitored for further 300 h in the absence (control) and presence of 241Am (an α-emitting radionuclide of a high specific activity) in the growth medium. The activity concentration of 241Am was 2 kBq l-1; [241Am] = 6.5 × 10-11 M. Parallel experiments were also performed with water-soluble humic substances (HS, 2.5 mg l-1; containing over 70% potassium humate) added to the culture medium as a possible detoxifying agent. The BL spectra of all the bacterial samples were very similar (λmax = 481 ± 3 nm; FWHM = 83 ± 3 nm) showing that 241Am (also with HS) influenced the bacterial BL system at stages prior to the formation of electronically excited states. The HS added per se virtually did not influence the integral BL intensity. In the presence of 241Am, BL was initially activated but inhibited after 180 h, while the system 241Am + HS showed an effective activation of BL up to 300 h which slowly decreased with time. Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, applied to dry cell biomass sampled at the stationary growth phase, was used to control possible metabolic responses of the bacteria to the α-radioactivity stress (observed earlier for other bacteria under other stresses). The DRIFT spectra were all very similar showing a low content of intracellular poly-3-hydroxybutyrate (at the level of a few percent of dry biomass) and no or negligible spectroscopic changes in the presence of 241Am and/or HS. This assumes the α-radioactivity effect to be transmitted by live cells mainly to the bacterial BL enzyme system, with negligible structural or compositional changes in cellular macrocomponents at the stationary growth phase.

  9. Performance, meat quality, meat mineral contents and caecal microbial population responses to humic substances administered in drinking water in broilers.

    PubMed

    Ozturk, E; Coskun, I; Ocak, N; Erener, G; Dervisoglu, M; Turhan, S

    2014-01-01

    This study was conducted to examine the effect of different levels of humic substances (HS) administered in drinking water on caecal microflora and mineral composition and colour characteristics of breast and thigh meats and the growth performance, carcass and gastrointestinal tract (GIT) traits of broiler chicks. A total of 480 3-d-old broiler chickens were randomly allocated to 4 treatments with 4 cages per treatment and 30 bird (15 males and 15 females) chicks per cage. All birds were fed on commercial basal diet. The control birds (HS0) received drinking water with no additions, whereas birds in the other treatment groups received a drinking water with 7.5 (HS7.5), 15.0 (HS15.0) and 22.5 (HS22.5) g/kg HS. Mush feed were provided on an ad libitum basis. Body weight and feed intake of broilers were determined at d 0, 21, and 42, and feed conversion ratio was calculated. On d 42, 4 broilers (2 males and 2 females) from each cage were slaughtered and the breast and thigh meats were collected for mineral composition and quality measurements. Performance, carcass and GIT traits and caecal microbial population of broiler chicks at d 42 were not affected by the dietary treatments. The lightness (L*) of breast and thigh meat decreased in broilers supplemented with 15 and 22.5 g/kg HS in drinking water. Although the redness (a*) of breast meat increased, yellowness of thigh meat decreased in broilers supplemented with 15 and 22.5 g/kg HS in drinking water (P < 0.05). In conclusion, the 15 and 22.5 g/kg HS administration in drinking water can be applied for broiler chicks to maintain growth performance and improve meat quality without changing caecal microflora.

  10. Application of Spectroscopic Techniques (FT-IR, 13C NMR) to the analysis of humic substances in volcanic soils along an environmental gradient (Tenerife, Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Rodriguez Rodriguez, Antonio; María Armas Herrera, Cecilia; González Pérez, José Antonio; González-Vila, Francisco Javier; Arbelo Rodríguez, Carmen Dolores; Mora Hernández, Juan Luis; Polvillo Polo, Oliva

    2010-05-01

    Andosols and andic soils are considered as efficient C-sinks in terms of C sequestration. These soils are usually developed from volcanic materials, and are characterized by a predominance of short-range ordered minerals like allophanes, imogolite and other Fe and Al oxyhydroxides. Such materials occur commonly associated with organic compounds, thus generating highly stable organo-mineral complexes and leading to the accumulation of a high amount of organic carbon. Spectroscopic methods like FT-IR and 13C NMR are suitable for the analysis of the chemical structure of soil humic substances, and allow identifying distinct functional groups and protein, lipids, lignin, carbohydrate-derived fragments. In this work we study the structural features of four soils developed on Pleistocene basaltic lavae in Tenerife (Canary Island, Spain), distributed along an altitudinal climatic gradient. The soil sequence comprises soils with different degree of geochemical evolution and andic character, including a mineral ‘Hypersalic Solonchak' (Tabaibal de Rasca), a slightly vitric ‘Luvic Phaeozem' (Los Frailes), a degraded and shallow ‘Endoleptic, fulvic, silandic Andosol' (Siete Lomas), and a well-developed and deep ‘Fulvic, silandic, Andosol' (Ravelo). Samples of the raw soil and humic and fulvic acids isolated from the surface horizons were analyzed. The results show a low content of organic carbon in the mineral soil, the inherited humin predominating, and a very high content of humic and fulvic acids in Andosols. The FT-IR and 13C NMR spectra of the raw soil samples show a low resolution, related to interferences from mineral complexes signals, particularly in soils with lower organic carbon content. 13C NMR shows a predominance of O-alkyl carbon (derived of carbohydrates) in andic soils, whereas O-alkyl and aromatic fractions are most evident in the mineral soil. The humic acids spectra are characterized by a dominance of alkyl and aromatic fractions with a high degree

  11. Chemical and spectroscopic characterization of dissolved humic substances in a mangrove-fringed estuary in the eastern coast of Hainan Island, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yaoling; Du, Jinzhou; Peng, Bo; Zhang, Fenfen; Zhao, Xin; Zhang, Jing

    2013-03-01

    Mangrove-derived dissolved organic matter (DOM) has an important effect on estuarine and coastal area on a large scale. In order to improve the understanding of origin, composition, and fate of DOM in mangrove-fringed estuarine and coastal areas, dissolved humic substances (DHS) were isolated from one mangrove pore-water sample and one near-shore seawater sample downstream the mangrove pore-water site in the eastern coast of Hainan Island, South China. Fulvic acids, humic acids and XAD-4 fractions were obtained from the two water samples by using a two-column array of XAD-8 and XAD-4 resins. Chemical and spectroscopic methods were used to analyze the features of these DHS. Compared to the mangrove pore-water DHS, the near-shore seawater DHS were found rich in 13C with lower C/N ratios and more aliphatic compounds and carbohydrates, but less aromatic structures and carboxyl groups. As for the three fractions of the two DHS, XAD-4 fractions contain more aliphatics, carbohydrates, carboxyl groups, and enrich in 13C with respect to both fulvic and humic acids. Photo-oxidation transformation and contribution from marine-derived DOM were considered as the main reasons resulted in the difference in compositional features for these DHS in this study.

  12. Partitioning of hydrophobic CdSe quantum dots into aqueous dispersions of humic substances: influence of capping-group functionality on the phase-transfer mechanism.

    PubMed

    Navarro, Divina A; Banerjee, Sarbajit; Aga, Diana S; Watson, David F

    2010-08-01

    Studies of the fate and transport of engineered nanomaterials are invaluable in predicting environmental impact, bioavailability, and toxicity. We report on the influence of humic and fulvic acids (models of natural organic matter) on the phase transfer of organic-capped CdSe quantum dots (QDs) from hexane to water. QDs capped with tri-n-octylphosphine oxide, tetradecylphosphonic acid, and oleic acid, which were otherwise insoluble in water, were transferred into aqueous solutions of humic substances (HS) (Suwannee River humic acid and fulvic acid standards) within 1-10 days after mixing. Phase transfer was characterized by infrared and UV/Vis absorption spectroscopy, emission spectroscopy, dynamic light scattering, electron microscopy, and inductively coupled plasma mass spectrometry. Phase-transferred QDs were intact and temporarily stabilized by HS. On longer timescales, Cd(2+) leached into aqueous solution. Our data suggest that two mechanisms promote the phase transfer of QD-HS agglomerates: (1) an overcoating mechanism involving dispersion interactions between non-polar moieties of HS and hydrocarbon chains of organic capping groups and (2) a coordinative mechanism involving displacement of capping groups by Lewis basic functionalities of HS. The structure of the capping group of QDs influenced the relative contributions of the two mechanisms and the extent to which Cd(2+) leached into water.

  13. Silica gel as a particulate carrier of poorly water-soluble substances in aquatic toxicity testing.

    PubMed

    Breitholtz, Magnus; Ricklund, Niklas; Bengtsson, Bengt-Erik; Persson, N Johan

    2007-05-31

    Aquatic toxicity tests were originally developed for water-soluble substances. However, many substances are hydrophobic and thus poorly water-soluble, resulting in at least two major implications. Firstly, toxicity may not be reached within the range of water solubility of the tested compound(s), which may result in the formation of solids or droplets of the tested substance and consequently an uneven exposure. Secondly, because of multi-phase distribution of the tested substance it may be complicated to keep exposure concentrations constant. To overcome such problems, we have introduced silica gel as a particulate carrier in a toxicity test with the benthic copepod Nitocra spinipes. The main objective of the current study was to evaluate whether a controlled exposure could be achieved with the help of silica gel for testing single poorly water-soluble substances. A secondary objective was to evaluate whether an equilibrium mass balance model could predict internal concentrations that were consistent with the toxicity data and measured internal concentrations of two model hydrophobic substances, i.e., the polybrominated diphenyl ethers BDE-47 and BDE-99. Larval N. spinipes were exposed for 6 days to BDE-47 and BDE-99, respectively, in the silica gel test system and, for comparative reasons, in a similar and more traditional semi-static water test system. Via single initial amounts of the model substances administered on the silica gel, effects on both larval development and mortality resulted in higher and more concentration-related toxicity than in the water test system. We conclude that the silica gel test system enables a more controlled exposure of poorly water-soluble substances than the traditional water test system since the concentration-response relationship becomes distinct and there is no carrier solvent present during testing. Also, the single amount of added substance given in the silica gel test system limits the artefacts (e.g., increased chemical

  14. Influence of pH, Oxygen, and Humic Substances on Ability of Sunlight To Damage Fecal Coliforms in Waste Stabilization Pond Water

    PubMed Central

    Curtis, Thomas P.; Mara, D. Duncan; Silva, Salomao A.

    1992-01-01

    Simple beaker experiments established that light damages fecal coliforms in waste stabilization ponds by an oxygen-mediated exogenous photosensitization. Wavelengths of up to 700 nm were able to damage bacteria. The ability of wavelengths of >425 nm to damage fecal coliforms was dependent on the presence of dissolved sensitizers. The sensitizers were ubiquitous in raw sewage, unaffected by sewage treatment, not derivatives of bacteriochlorophyll or chlorophyll, absorbed well in UV light, and had a slight yellowish color; they are therefore believed to be humic substances. The ability of light to damage fecal coliforms was highly sensitive to, and completely dependent on, oxygen. Scavengers of H2O2 and singlet oxygen could protect the bacteria from the effects of sunlight, but scavengers of hydroxyl radicals and superoxides could not. Light-mediated damage of fecal coliforms was highly sensitive to elevated pH values, which also enabled light with wavelengths of >425 nm (in the presence of the sensitizer) to damage the bacteria. We conclude that humic substances, pH, and dissolved oxygen are important variables in the process by which light damages microorganisms in this and other environments and that these variables should be considered in future research on, and models of, the effects of light. PMID:16348698

  15. Enzymatic transformation and binding of labeled 2,4,6-trinitrotoluene to humic substances during an anaerobic/aerobic incubation.

    PubMed

    Thiele, S; Fernandes, E; Bollag, J M

    2002-01-01

    Organic pollutants are degraded in soil and simultaneously nonextractable residues are formed. However, proof is lacking that this fixation has a detoxifying effect. We investigated the transformation and binding of 2,4,6-trinitrotoluene (TNT) with catechol or soil humic acid as cosubstrates. Carbon-14-labeled TNT and its reaction products were quantified by radiocounting; extractable compounds were identified by high performance liquid chromatography (HPLC). Bound and extractable residues of 15N-labeled TNT and metabolites were studied by 15N nuclear magnetic resonance spectroscopy (15N NMR). Since TNT is not easily transformed under oxidizing conditions an anaerobic/aerobic treatment was used. Anaerobic microorganisms from cow manure were used to reduce TNT during the anaerobic phase and subsequently, a laccase from Trametes villosa was used in the aerobic phase to oxidatively couple the metabolites to humic matter. Seventy-four percent of TNT was immobilized with catechol as cosubstrate, but only 25% with humic acid. With catechol the main extractable component was TNT, while with humic acid it was mostly the metabolite 4-aminodinitrotoluene. For both co-substrates, the spectra of immobilized metabolites obtained by solid-state 15N-cross polarization magic angle spinning (CPMAS) NMR spectroscopy showed signals in the chemical shift region for protonated aromatic amino compounds. However, in the presence of catechol, an additional signal from nonextractable nitro groups was found, which could represent sequestered TNT. The partially reduced metabolites of TNT that formed nonextractable residues in humic acid are not likely to be remobilized easily and are thus regarded as detoxified.

  16. Chemical and light absorption properties of humic-like substances from biomass burning emissions under controlled combustion experiments

    NASA Astrophysics Data System (ADS)

    Park, Seung Shik; Yu, Jaemyeong

    2016-07-01

    PM2.5 samples from biomass burning (BB) emissions of three types - rice straw (RS), pine needles (PN), and sesame stems (SS) - were collected through laboratory-controlled combustion experiments and analyzed for the mass, organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), humic-like substances (HULIS), and water soluble inorganic species (Na+, NH4+, K+, Ca2+, Mg2+, Cl-, NO3-, SO42-, and oxalate). The combustion experiments were carried out at smoldering conditions. Water-soluble HULIS in BB samples was isolated using a one-step solid phase extraction method, followed by quantification with a total organic carbon analyzer. This study aims to explore chemical and light absorption characteristics of HULIS from BB emissions. The contributions of HULIS (=1.94 × HULIS-C) to PM2.5 emissions were observed to be 29.5 ± 2.0, 15.3 ± 3.1, and 25.8 ± 4.0%, respectively, for RS, PN, and SS smoke samples. Contributions of HULIS-C to OC and WSOC for the RS, PN, and SS burning emissions were 0.26 ± 0.03 and 0.63 ± 0.05, 0.15 ± 0.04 and 0.36 ± 0.08, and 0.29 ± 0.08 and 0.51 ± 0.08, respectively. Light absorption by the water extracts from BB aerosols exhibited strong wavelength dependence, which is characteristic of brown carbon spectra with a sharply increasing absorption as wavelength decreases. The average absorption Ångström exponents (AAE) of the water extracts (WSOC) fitted between wavelengths of 300-400 nm were 8.3 (7.4-9.0), 7.4 (6.2-8.5), and 8.0 (7.1-9.3) for the RS, PN, and SS burning samples, which are comparable to the AAE values of BB samples reported in previous publications (e.g., field and laboratory chamber studies). The average mass absorption efficiencies of WSOC measured at 365 nm (MAE365) were 1.37 ± 0.23, 0.86 ± 0.09, and 1.38 ± 0.21 m2/gṡC for RS, PN, and SS burning aerosols, respectively. Correlations of total WSOC, hydrophilic WSOC (= total WSOC-HULIS-C), and HULIS-C concentrations in solution with the light

  17. Size distribution and sources of humic-like substances in particulate matter at an urban site during winter.

    PubMed

    Park, Seungshik; Son, Se-Chang

    2016-01-01

    This study investigates the size distribution and possible sources of humic-like substances (HULIS) in ambient aerosol particles collected at an urban site in Gwangju, Korea during the winter of 2015. A total of 10 sets of size-segregated aerosol samples were collected using a 10-stage Micro-Orifice Uniform Deposit Impactor (MOUDI), and the samples were analyzed to determine the mass as well as the presence of ionic species (Na(+), NH4(+), K(+), Ca(2+), Mg(2+), Cl(-), NO3(-), and SO4(2-)), water-soluble organic carbon (WSOC) and HULIS. The separation and quantification of the size-resolved HULIS components from the MOUDI samples was accomplished using a Hydrophilic-Lipophilic Balanced (HLB) solid phase extraction method and a total organic carbon analyzer, respectively. The entire sampling period was divided into two periods: non-Asian dust (NAD) and Asian dust (AD) periods. The contributions of water-soluble organic mass (WSOM = 1.9 × WSOC) and HULIS (=1.9 × HULIS-C) to fine particles (PM1.8) were approximately two times higher in the NAD samples (23.2 and 8.0%) than in the AD samples (12.8 and 4.2%). However, the HULIS-C/WSOC ratio in PM1.8 showed little difference between the NAD (0.35 ± 0.07) and AD (0.35 ± 0.05) samples. The HULIS exhibited a uni-modal size distribution (@0.55 μm) during NAD and a bimodal distribution (@0.32 and 1.8 μm) during AD, which was quite similar to the mass size distributions of particulate matter, WSOC, NO3(-), SO4(2-), and NH4(+) in both the NAD and AD samples. The size distribution characteristics and the results of the correlation analyses indicate that the sources of HULIS varied according to the particle size. In the fine mode (≤1.8 μm), the HULIS composition during the NAD period was strongly associated with secondary organic aerosol (SOA) formation processes similar to those of secondary ionic species (cloud processing and/or heterogeneous reactions) and primary emissions during the biomass burning period, and during

  18. Humic Substances-dependent Aggregation and Transport of Cerium Oxide Nanoparticles in Porous Media at Different pHs and Ionic Strengths

    NASA Astrophysics Data System (ADS)

    Mu, L.; Jacobson, A. R.; Darnault, C. J. G.

    2015-12-01

    Cerium oxide nanoparticles (CeO2 NPs) are commonly used in several fields and industries, such as chemical and pharmaceutical, due to both their physical and chemical properties. For example, they are employed in the manufacturing of catalysts, as fuel additives, and as polishing agents. The release and exposure to CeO2 NPs can occur during their fabrication, application, and waste disposal, as well as through their life-cycle and accidents. Therefore, the assessment of the dynamic nature of CeO2 NPs stability and mobilty in the environment is of paramount importance to establish the environmental and public health risks associated with their inevitable release in the environment. Humic substances are a key element of soils and have been revealed to possibly affect the fate and transport of nanoparticles in soils. Consequently, our present research aims at investigating the influence that different pHs, monovalent and divalent cations, Suwannee River humic acid, and Suwanee River fulvic acid have on the aggregation, transport, and deposition of CeO2 NPs. Batch studies performed with different concentrations of humic and fulvic acids associated with a wide spectrum of pHs and ionic strengths were examined. Key variables from these batch studies were then examined to simulate experimental conditions commonly encountered in the soil-water system to conduct column transport experiments in order to establish the fate and transport of CeO2 NPs in saturated porous media, which is a critical phase in characterizing the behavior of CeO2 NPs in subsurface environmental systems.

  19. Structural characterization of aquatic humic material. 2. Phenolic content and its relationship to chlorination mechanism in an isolated aquatic fulvi acid

    USGS Publications Warehouse

    Norwood, D.L.; Christman, R.F.; Hatcher, P.G.

    1987-01-01

    The complementary techniques of solid-state 13G nuclear magnetic resonance spectroscopy and chemical degradation were utilized to examine the lignin/phenolic substructure of an isolated aquatic fulvic acid capable of producing upon aqueous chlorination a number of organohalides typically found in municipal drinking water. Results indicate that while phenolic moieties are present in the fulvic acid, they account for only a minor fraction of the total carbon. A sequential chemical degradation experiment utilizing aqueous chlorine and CuO demonstrated that the lignin/phenolic substructure was attacked by the chlorine. It is concluded that while phenolic ring rupture mechanisms appear to be important in organohalide generation, other aqueous chlorination mechanisms involving aliphatic and other types of aromatic structures should also be considered. ?? 1987 American Chemical Society.

  20. Complexation-flocculation combined with microwave-assisted headspace solid-phase microextraction in determining the binding constants of hydrophobic organic pollutants to dissolved humic substances.

    PubMed

    Hsieh, Ping-Chieh; Lee, Chon-Lin; Jen, Jen-Fon; Chang, Kuei-Chen

    2015-02-21

    The binding constants, KDOC, of selected polycyclic aromatic hydrocarbons (PAHs)-phenanthrene, anthracene, fluoranthene, and pyrene-to dissolved humic substances (DHS) were determined by complexation-flocculation combined with microwave-assisted headspace solid-phase microextraction (CF-MA-HS-SPME). The results obtained are comparable with KDOC data reported in the literature. No disruption of the PAH to DHS binding equilibrium was observed during the complexation-flocculation process. The present study, which is the first to determine KDOC by CF-MA-HS-SPME, provides an alternative approach to determine the KDOC of PAHs. CF-MA-HS-SPME provides some advantages over other methods, such as no limitation of fluorescent compounds, greater determination speed, and the capability of measuring various compounds simultaneously.

  1. Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter

    NASA Astrophysics Data System (ADS)

    Ritchie, Jason D.; Perdue, E. Michael

    2003-01-01

    The acid-base properties of 14 standard and reference materials from the International Humic Substances Society (IHSS) were investigated by potentiometric titration. Titrations were conducted in 0.1 M NaCl under a nitrogen atmosphere, averaging 30 min from start to finish. Concentrations of carboxyl groups and phenolic groups were estimated directly from titration curves. Titration data were also fit to a modified Henderson-Hasselbalch model for two classes of proton-binding sites to obtain "best fit" parameters that describe proton-binding curves for the samples. The model was chosen for its simplicity, its ease of implementation in computer spreadsheets, and its excellent ability to describe the shapes of the titration curves. The carboxyl contents of the IHSS samples are in the general order: terrestrial fulvic acids > aquatic fulvic acids > Suwannee River natural organic matter (NOM) > aquatic humic acids > terrestrial humic acids. Overall, fulvic acids and humic acids have similar phenolic contents; however, all of the aquatically derived samples have higher phenolic contents than the terrestrially derived samples. The acid-base properties of reference Suwannee River NOM are surprisingly similar to those of standard Suwannee River humic acid. Results from titrations in this study were compared with other published results from both direct and indirect titrations. Typically, carboxyl contents for the IHSS samples were in agreement with the results from both methods of titration. Phenolic contents for the IHSS samples were comparable to those determined by direct titrations, but were significantly less than estimates of phenolic content that were based on indirect titrations with Ba(OH) 2 and Ca(OAc) 2. The average phenolic-to-carboxylic ratio of the IHSS samples is approximately 1:4. Models that assume a 1:2 ratio of phenolic-to-carboxylic groups may overestimate the relative contribution of phenolic groups to the acid-base chemistry of humic substances.

  2. Characterisation of humic substances formed during co-composting of grass and wood wastes with animal grease.

    PubMed

    Bikovens, Oskars; Dizhbite, Tatiana; Telysheva, Galina

    2012-06-01

    Meat processing grease wastes were composted with lignocellulosic material. Judging by the reduction in the yield of compost lipophilic extract, grease was degraded during the first 20 days of composting. Compost humic acids (HA) and fulvic acids (FA) were characterized by elemental analysis, Fourier transform infrared (FT-IR) spectroscopy and analytical pyrolysis. The compost HA and FA fractions contained a ligno-protein complex. The presence of grease (6.7% dry weight) during composting had a slight influence on the chemical composition of HA and FA. Analytical pyrolysis indicated that, during composting, major changes were observed in the FA fraction, namely, the proportion of nitrogen-bearing compounds increased and carbohydrate-derived products decreased drastically in the final compost. In addition, the shortening of the aliphatic chains of lignin-derived compounds was observed with an increase in the C6C(0-2)/C6C3 ratio in pyrolysates. PMID:22856318

  3. Binding of polychlorinated biphenyls to aquatic humic substances: The role of substrate and sorbate properties on partitioning

    SciTech Connect

    Uhle, M.E.; Chin, Y.P.; Aiken, G.R.; McKnight, D.M.

    1999-08-15

    Two ortho- (2,2{prime},5 and 2,2{prime}5,6{prime}) and a non-ortho- (3,3{prime},4,4{prime}) substituted polychlorinated biphenyl (PCB) congeners were used to study the effects of sorbate structure in binding processes to two lacustrine fulvic acids. Binding constants were determined by solubility enhancement of the solutes by the fulvic acids. The binding of the ortho-trichlorobiphenyl was significantly less than the non-ortho-substituted tetrachlorobiphenyl to both fulvic acids. Surprisingly, the measured ortho-trichlorobiphenyl binding constant to both fulvic acids was approximately the same as the ortho-substituted tetrachlorobiphenyl. The effect of the chlorines in the ortho position inhibits free rotation around the 1,1{prime} carbon bond, thereby making the molecule less able to interact effectively with the fulvic acid substrate relative to its non-ortho-substituted congeners. Finally, binding of all three PCBs to the Great Dismal Swamp fulvic acid was significantly higher than for the Pony Lake sample. This observation is attributable to the former substrate`s higher degree of aromaticity and polarizability, which can potentially interact more favorably with the PCBs through an increase in van der Waals type interactions.

  4. Binding of polychlorinated biphenyls to aquatic humic substances: The role of substrate and sorbate properties on partitioning

    USGS Publications Warehouse

    Uhle, M.E.; Chin, Y.-P.; Aiken, G.R.; McKnight, Diane M.

    1999-01-01

    Two ortho- (2,2',5 and 2,2',5,6') and a non-ortho- (3,3',4,4') substituted polychlorinated biphenyl (PCB) congeners were used to study the effects of sorbate structure in binding processes to two lacustrine fulvic acids. Binding constants were determined by solubility enhancement of the solutes by the fulvic acids. The binding of the ortho-trichlorobiphenyl was significantly less than the non-ortho-substituted tetrachlorobiphenyl to both fulvic acids. Surprisingly, the measured ortho-trichlorobiphenyl binding constant to both fulvic acids was approximately the same as the ortho- substituted tetrachlorobiphenyl. The effect of the chlorines in the ortho position inhibits free rotation around the 1,1' carbon bond, thereby making the molecule less able to interact effectively with the fulvic acid substrate relative to its non-ortho-substituted congeners. Finally, binding of all three PCBs to the Great Dismal Swamp fulvic acid was significantly higher than for the Pony Lake sample. This observation is attributable to the former substrate's higher degree of aromaticity and polarizability, which can potentially interact more favorably with the PCBs through an increase in van der Waals type interactions.Two ortho- (2,2???,5 and 2,2???,5,6???) and a non-ortho- (3,3???,4,4???) substituted polychlorinated biphenyl (PCB) congeners were used to study the effects of sorbate structure in binding processes to two lacustrine fulvic acids. Binding constants were determined by solubility enhancement of the solutes by the fulvic acids. The binding of the ortho-trichlorobiphenyl was significantly less than the non-ortho-substituted tetrachlorobiphenyl to both fulvic acids. Surprisingly, the measured ortho-trichlorobiphenyl binding constant to both fulvic acids was approximately the same as the ortho-substituted tetrachlorobiphenyl. The effect of the chlorines in the ortho position inhibits free rotation around the 1,1??? carbon bond, thereby making the molecule less able to interact effectively with the fulvic acid substrate relative to its non-ortho-substituted congeners. Finally, binding of all three PCBs to the Great Dismal Swamp fulvic acid was significantly higher than for the Pony Lake sample. This observation is attributable to the former substrate's higher degree of aromaticity and polarizability, which can potentially interact more favorably with the PCBs through an increase in van der Waals type interactions.

  5. Reappraisal of soil C storage processes. The controversy on structural diversity of humic substances as biogeochemical driver for soil C fluxes

    NASA Astrophysics Data System (ADS)

    Almendros, Gonzalo; Gonzalez-Vila, Francisco J.; Gonzalez-Perez, Jose Antonio; Knicker, Heike

    2016-04-01

    The functional relationships between the macromolecular structure of the humic substances (HS) and a series of biogeochemical processes related with the C sequestration performance in soils have been recently questioned. In this communication we collect recent data from a wide array of different ecosystems where the C storage in soils has been studied and explained as a possible cause-to-effect relationship or has been found significantly correlated (multivariate statistical models) with a series of structural characteristics of humic materials. The study of humic materials has methodological analytical limitations that are derived from its complex, chaotic and not completely understood structure, that reflects its manifold precursors as well as the local impact of environmental/depositional factors. In this work we attempt to design an exploratory, multiomic approach based on the information provided by the molecular characterization of the soil organic matter (SOM). Massive data harvesting was carried out of statistical variables, to infer biogeochemical proxies (spectroscopic, chromatographic, mass spectrometric quantitative descriptors). The experimental data were acquired from advanced instrumental methodologies, viz, analytical pyrolysis, compound-specific stable isotope analysis (CSIA), derivative infrared (FTIR) spectroscopy, solid-state C-13 and N-15 nuclear magnetic resonance (NMR) and mass spectrometry (MS) data after direct injection (thermoevaporation), previous pyrolysis, or ion averaging of specific m/z ranges from classical GC/MS chromatograms. In the transversal exploratory analysis of the multianalytical information, the data were coded for on-line processing in a stage in which there is no need for interpretation, in molecular or structural terms, of the quantitative data consisting of e.g., peak intensities, signal areas, chromatographic (GC) total abundances, etc. A series of forecasting chemometric approaches (aiming to express SOM

  6. Off-line TMAH-GC/MS and NMR characterization of humic substances extracted from river sediments of northwestern São Paulo under different soil uses.

    PubMed

    Tadini, Amanda Maria; Pantano, Glaucia; de Toffoli, Ana Lúcia; Fontaine, Barbara; Spaccini, Riccardo; Piccolo, Alessandro; Moreira, Altair Benedito; Bisinoti, Márcia Cristina

    2015-02-15

    Humic substances (HS) vary according to the physical and chemical factors present in the environment. Thus, the characterization of HS is very important because it improves the understanding of the groups that comprise the chemical structure. Sediment HS were extracted from four locations representative of sugar cane cultivation, pasture, urban area and the impoundment of the Água Vermelha Hydroelectric Power Plant. Characterization using nuclear magnetic resonance (NMR) allowed us to infer that the HS from an area predominantly characterized by sugar cane cultivation (41.9%) and a typical rural area (35.0%) showed the highest aromaticity percentage. Using the off-line TMAH-thermochemolysis-GC-MS, we inferred that the HS of a typical rural area had a structure rich in plant waxes, plant biopolyester and a large amount of fatty acid methyl ester, which are related to the large amount of humic acid in the structure. The HS samples from the sugar cane cultivation area and the impoundment receiving all of the pollution load from the Turvo/Grande Hydrographic Basin (Bacia Hidrográfica do Turvo/Grande-BHTG) contained contributions from compounds rich in lipids and fatty acid methyl esters, highlighting the presence of the breakdown of petroleum-derived hydrocarbons in the area receiving the entire pollution load. We conclude that the HS extracted from the sediments of the Preto, Turvo and Grande rivers showed well-defined characteristics that varied depending on soil use and occupation, especially the HS extracted from sediments sampled in areas typically planted with sugar cane and rural areas, whose structures contained more aromatic groups.

  7. Speciation of Eu3+ bound to humic substances by time-resolved laser fluorescence spectroscopy (TRLFS) and parallel factor analysis (PARAFAC)

    NASA Astrophysics Data System (ADS)

    Lukman, Steven; Saito, Takumi; Aoyagi, Noboru; Kimura, Takaumi; Nagasaki, Shinya

    2012-07-01

    The bioavailability and toxicity of metal ions including radionuclides in the biosphere are greatly influenced by their speciation. Humic substances (HSs) are important constituents of various soil and water systems and have significant impact on the speciation and mobility of metal ions because of their high affinity to metal ions. In this study, the speciation of europium (Eu3+), a chemical homologue of trivalent actinides, with HSs collected from various origins was investigated by time-resolved laser fluorescence spectroscopy (TRLFS). The difficulties associated with the separation of the contribution of different Eu3+ species due to overlapping spectra or similar fluorescence lifetimes were addressed and mitigated by applying a multi-mode factor analysis, parallel factor analysis (PARAFAC), which resulted in the number, spectra, decay curves and relative fluorescence intensity profiles of different Eu3+ species. Subsequently, the interpretation of the Eu3+ species, was tackled by principal component analysis (PCA) and partial linear square (PLS) regression to deduce the nature of the Eu3+ species by taking into account the physicochemical properties of the HSs. Three factors corresponding to different Eu3+ species were obtained at 70 μM Eu3+ for all HSs investigated except for one humic acid. One of the factors corresponded to free Eu3+ ion interacting with HSs via diffusion. The remaining two factors were thought to be Eu3+ bound to HSs: one bound to acidic functional groups of HSs and the other to the sites of HSs influenced by the carbon backbone structures. It was also found that the latter factor exhibited strong energy transfer from the excited Eu3+ center to HSs. At lower Eu3+ concentration (10 μM), two factors having similar fluorescent characteristics to those of the second and third factors were obtained.

  8. Off-line TMAH-GC/MS and NMR characterization of humic substances extracted from river sediments of northwestern São Paulo under different soil uses.

    PubMed

    Tadini, Amanda Maria; Pantano, Glaucia; de Toffoli, Ana Lúcia; Fontaine, Barbara; Spaccini, Riccardo; Piccolo, Alessandro; Moreira, Altair Benedito; Bisinoti, Márcia Cristina

    2015-02-15

    Humic substances (HS) vary according to the physical and chemical factors present in the environment. Thus, the characterization of HS is very important because it improves the understanding of the groups that comprise the chemical structure. Sediment HS were extracted from four locations representative of sugar cane cultivation, pasture, urban area and the impoundment of the Água Vermelha Hydroelectric Power Plant. Characterization using nuclear magnetic resonance (NMR) allowed us to infer that the HS from an area predominantly characterized by sugar cane cultivation (41.9%) and a typical rural area (35.0%) showed the highest aromaticity percentage. Using the off-line TMAH-thermochemolysis-GC-MS, we inferred that the HS of a typical rural area had a structure rich in plant waxes, plant biopolyester and a large amount of fatty acid methyl ester, which are related to the large amount of humic acid in the structure. The HS samples from the sugar cane cultivation area and the impoundment receiving all of the pollution load from the Turvo/Grande Hydrographic Basin (Bacia Hidrográfica do Turvo/Grande-BHTG) contained contributions from compounds rich in lipids and fatty acid methyl esters, highlighting the presence of the breakdown of petroleum-derived hydrocarbons in the area receiving the entire pollution load. We conclude that the HS extracted from the sediments of the Preto, Turvo and Grande rivers showed well-defined characteristics that varied depending on soil use and occupation, especially the HS extracted from sediments sampled in areas typically planted with sugar cane and rural areas, whose structures contained more aromatic groups. PMID:25460956

  9. Effect of organic amendments on the mobility of trace elements in phytoremediated techno-soils: role of the humic substances.

    PubMed

    Hattab, N; Soubrand, M; Guégan, R; Motelica-Heino, M; Bourrat, X; Faure, O; Bouchardon, J L

    2014-09-01

    The efficiency of aided phytostabilization using organic amendments such as ramial chipped wood (RCW) and composted sewage sludge (CSS) was studied on contaminated techno-soils, on nine experimental plots. The objective was to characterize the role of fulvic (FA) and humic acids (HA) on the mobilization of trace elements, specifically As, Cu, Mo, Pb and Zn. Results showed that the addition of CSS increased the total organic carbon and nitrogen content more than with RCW and as a result, the C/N ratio in the CSS soil was higher than in the RCW and non-amended (NE) soil, reflecting the high decomposition of soil organic matter in the CSS soil compared with the other soils. The RCW and CSS amendments increased the hydrogen index (HI) values and the oxygen index (OI) values compared with the NE soil, especially for the soil treated with CSS which contained more aliphatic than aromatic compounds. The addition of CSS to the techno-soil significantly increased the percentage of C org associated with the HA fractions compared with the RCW and NE soils. The soil amended with CSS showed the highest E 4/E 6 ratio and the lowest E 2/E 3 ratio of FA. Zn and As were more abundant in the FA fraction than in the HA fraction, whereas Pb, Cu and Mo were more associated to HA than to FA in the treated and untreated soils, which may explain the difference in their mobility and availability. PMID:24854499

  10. Convergence-optimized procedure for applying the NICA-Donnan model to potentiometric titrations of humic substances.

    PubMed

    Lenoir, Thomas; Matynia, Anthony; Manceau, Alain

    2010-08-15

    Despite the high success of the NICA-Donnan (N-D) model to describe the interaction of protons and metal ions with natural organic matter, the large number of fit parameters is a major hindrance to its capacity to provide unique numerical solutions. This well-known difficulty is reflected in the unusually low value of the generic proton binding constant for carboxylic-type groups of fulvic acid (pK(H1) = 2.34), and to some extent of humic acid (2.93), and by the considerable covariance of the other generic N-D parameters. In some studies, the number of parameters obtained by regression is reduced by estimating some values independently with other techniques. Alternatively, the applicability of the model can be improved by devising a rigorous simulation procedure, which constrains the model-fit to converge toward chemically and physically realistic values. A procedure based on three successive iterations is proposed, and the solution is shown to be stable and invariant with the initial set of parameter values. The new generic parameters, in particular pK(H1)(FA) = 3.54 and pK(H1)(HA) = 3.87, derived from the same data set as the previous generic parameters, are in better agreement with literature data.

  11. Evaluation of humic substances during co-composting of food waste, sawdust and Chinese medicinal herbal residues.

    PubMed

    Zhou, Ying; Selvam, Ammaiyappan; Wong, Jonathan W C

    2014-09-01

    Humification during co-composting of food waste, sawdust and Chinese medicinal herbal residues (CMHRs) was investigated to reveal its correlation with compost maturity. Food waste, sawdust and CMHRs were mixed at 5:5:1 and 1:1:1 (dry weight basis) while food waste:sawdust at 1:1 (dry wt. basis) served as control. Lime at 2.25% was added to all the treatments to alleviate low pH, and composted for 56 days. Humic acid/fulvic acid (HA/FA) ratio increased to 0.5, 2.0 and 3.6 in the control and treatment at 5:5:1, and 1:1:1 mixing ratio, respectively at the end of composting. The decrease in aliphatic organics in HA demonstrated the degradation of the readily available organics, while an increase in aromatic functional groups indicated the maturity of compost. Disappearance of hemicellulose and weak intensity of lignin in the CMHRs treatments indicated that the lignin provided the nucleus for HA formation; and the CMHRs accelerated the compost maturity.

  12. Evaluation of humic substances during co-composting of food waste, sawdust and Chinese medicinal herbal residues.

    PubMed

    Zhou, Ying; Selvam, Ammaiyappan; Wong, Jonathan W C

    2014-09-01

    Humification during co-composting of food waste, sawdust and Chinese medicinal herbal residues (CMHRs) was investigated to reveal its correlation with compost maturity. Food waste, sawdust and CMHRs were mixed at 5:5:1 and 1:1:1 (dry weight basis) while food waste:sawdust at 1:1 (dry wt. basis) served as control. Lime at 2.25% was added to all the treatments to alleviate low pH, and composted for 56 days. Humic acid/fulvic acid (HA/FA) ratio increased to 0.5, 2.0 and 3.6 in the control and treatment at 5:5:1, and 1:1:1 mixing ratio, respectively at the end of composting. The decrease in aliphatic organics in HA demonstrated the degradation of the readily available organics, while an increase in aromatic functional groups indicated the maturity of compost. Disappearance of hemicellulose and weak intensity of lignin in the CMHRs treatments indicated that the lignin provided the nucleus for HA formation; and the CMHRs accelerated the compost maturity. PMID:24951275

  13. Stimulation of Tetrabromobisphenol A Binding to Soil Humic Substances by Birnessite and the Chemical Structure of the Bound Residues.

    PubMed

    Tong, Fei; Gu, Xueyuan; Gu, Cheng; Xie, Jinyu; Xie, Xianchuan; Jiang, Bingqi; Wang, Yongfeng; Ertunc, Tanya; Schäffer, Andreas; Ji, Rong

    2016-06-21

    Studies have shown the main fate of the flame retardant tetrabromobisphenol A (TBBPA) in soils is the formation of bound residues, and mechanisms on it are less-understood. This study investigated the effect of birnessite (δ-MnO2), a naturally occurring oxidant in soils, on the formation of bound residues. (14)C-labeled TBBPA was used to investigate the pH dependency of TBBPA bound-residue formation to two soil humic acids (HAs), Elliott soil HA and Steinkreuz soil HA, in the presence of δ-MnO2. The binding of TBBPA and its transformation products to both HAs was markedly increased (3- to 17-fold) at all pH values in the presence of δ-MnO2. More bound residues were formed with the more aromatic Elliott soil HA than with Steinkreuz soil HA. Gel-permeation chromatography revealed a uniform distribution of the bound residues within Steinkreuz soil HA and a nonuniform distribution within Elliott soil HA. (13)C NMR spectroscopy of (13)C-TBBPA residues bound to (13)C-depleted HA suggested that in the presence of δ-MnO2, binding occurred via ester and ether and other types of covalent bonds besides HA sequestration. The insights gained in this study contribute to an understanding of the formation of TBBPA bound residues facilitated by δ-MnO2. PMID:27223831

  14. Variation in sensitivity of aquatic species to toxicants: Practical consequences for effect assessment of chemical substances

    SciTech Connect

    Vaal, M.A.; Van Leeuwen, C.J.; Hoekstra, J.A.; Hermens, J.L.M.

    2000-04-01

    This study addresses the relation between the sensitivity of aquatic species and mode of action of different classes or organic chemicals. The authors analyzed large data sets of ecotoxicological information to reveal the interspecies variation in sensitivity, to relate this variation to the compounds' mode of action, and to explain the observed patterns using general biological information. Here the authors present a general framework and recommendations for risk assessment procedures. The authors recommend the use of toxicologically based classification schemes at an early stage of the risk assessment procedure. Screening programs are most efficiently run when only one species per compound is tested to prioritize substances. The toxicity of compounds belonging to the class of nonpolar narcotics is highly predictable and shows little interspecies variation. For these compounds quantitative structure-activity relationships (WSARs) can be used to estimate effect levels. Most effort should be put into testing reactive compounds and compounds with a specific mode of action as toxicity to some species can be 10{sup 5}--10{sup 6} times higher compared with less sensitive species. The use of assessment factors in effect assessment procedures may lead to an underestimation of effects on the more sensitive species. For many priority pollutants there is little information on their ecotoxicity. Predictive techniques are needed to compensate for this lack of data. Knowledge of the relation between modes of action of compounds and interspecies variation in sensitivity should be integrated in risk assessment procedures in order to make more efficient use of the limited financial resources available.

  15. Sorption-induced effects of humic substances on mass transfer of organic pollutants through aqueous diffusion boundary layers: the example of water/air exchange.

    PubMed

    Ramus, Ksenia; Kopinke, Frank-Dieter; Georgi, Anett

    2012-02-21

    This study examines the effect of dissolved humic substances (DHS) on the rate of water-gas exchange of organic compounds under conditions where diffusion through the aqueous boundary layer is rate-determining. A synthetic surfactant was applied for comparison. Mass-transfer coefficients were determined from the rate of depletion of the model compounds by means of an apparatus containing a stirred aqueous solution with continuous purging of the headspace above the solution. In addition, experiments with continuous passive dosing of analytes into the water phase were conducted to simulate a system where thermodynamic activity of the chemical in the aqueous phase is identical in the presence and absence of DHS. The experimental results show that DHS and surfactants can affect water-gas exchange rates by the superposition of two mechanisms: (1) hydrodynamic effects due to surface film formation ("surface smoothing"), and (2) sorption-induced effects. Whether sorption accelerates or retards mass transfer depends on its effect on the thermodynamic activity of the pollutant in the aqueous phase. Mass transfer will be retarded if the activity (or freely dissolved concentration) of the pollutant is decreased due to sorption. If it remains unchanged (e.g., due to fast equilibration with a sediment acting as a large source phase), then DHS and surfactant micelles can act as an additional shuttle for the pollutants, enhancing the flux through the boundary layer.

  16. The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS).

    PubMed

    Dinar, E; Riziq, A Abo; Spindler, C; Erlick, C; Kiss, G; Rudich, Y

    2008-01-01

    Atmospheric aerosols absorb and reflect solar radiation causing surface cooling and heating of the atmosphere. The interaction between aerosols and radiation depends on their complex index of refraction, which is related to the particles' chemical composition. The contribution of light absorbing organic compounds, such as HUmic-LIke Substances (HULIS) to aerosol scattering and absorption is among the largest uncertainties in assessing the direct effect of aerosols on climate. Using a Cavity Ring Down Aerosol Spectrometer (CRD-AS), the complex index of refraction of aerosols containing HULIS extracted from pollution, smoke, and rural continental aerosols, and molecular weight-fractionated fulvic acid was measured at 390 nm and 532 nm. The imaginary part of the refractive index (absorption) substantially increases towards the UV range with increasing molecular weight and aromaticity. At both wavelengths, HULIS extracted from pollution and smoke particles absorb more than HULIS from the rural aerosol. Sensitivity calculations for a pollution-type aerosol containing ammonium sulfate, organic carbon (HULIS), and soot suggests that accounting for absorption by HULIS leads in most cases to a significant decrease in the single scattering albedo and to a significant increase in aerosol radiative forcing efficiency, towards more atmospheric absorption and heating. This indicates that HULIS in biomass smoke and pollution aerosols, in addition to black carbon, can contribute significantly to light absorption in the ultraviolet and visible spectral regions.

  17. The influence of flue gas desulphurization gypsum additive on characteristics and evolution of humic substance during co-composting of dairy manure and sugarcane pressmud.

    PubMed

    Guo, Xiaobo; Huang, Junhao; Lu, Yanyu; Shan, Guangchun; Li, Qunliang

    2016-11-01

    For the purpose of evaluating the effect of flue gas desulphurization gypsum (FGDG) additive on characteristics and evolution of humic substance (HS) during composting, HS from composts with FGDG (CPG) and without FGDG (CP) were extracted and assessed with respect to their particle size, elemental analysis, FTIR and UV-vis spectroscopy, and the molecular composition of HS was characterized via pyrolysis-GC/MS as well. The particle size of HS ranged between 300 and 600nm, representing a bimodal distribution. As composting proceeded, the C/H of HS increased, and C/N decreased. The FTIR and UV-vis spectroscopy indicated that the aromatization of HS was promoted over the composting process. Adding FGDG increased the unsaturated degree and aromatization of HS. Pyrolysis-GC/MS showed the level of alkane decreased, and the level of benzene and nitrogen compounds increased upon the addition of FGDG. The nitrogen compounds of HS in CPG was significantly higher than that in CP. PMID:27490442

  18. Major 20th century changes of water-soluble humic-like substances (HULISWS) aerosol over Europe inferred from Alpine ice cores

    NASA Astrophysics Data System (ADS)

    Guilhermet, J.; Preunkert, S.; Voisin, D.; Baduel, C.; Legrand, M.

    2013-05-01

    Using a newly developed method dedicated to measurements of water-soluble humic-like substances (HULISWS) in atmospheric aerosol samples, the carbon mass quantification of HULISWS in an Alpine ice core is achieved for the first time. The method is based on the extraction of HULISWS with a weak anion-exchanger resin and the subsequent quantification of the extracted carbon fraction with a total organic carbon (TOC) analyzer. Measurements were performed along a Col du Dôme (4250 m above sea level, French Alps) ice core covering the 1920-2004 time period. The HULISWS concentrations exhibit a well-marked seasonal cycle with winter minima close to 7 ppbC and summer maxima ranging between 10 and 50 ppbC. Whereas the winter HULISWS concentrations remained unchanged over the twentieth century, the summer concentrations increased from 20 ppbC prior to the Second World War to 35 ppbC in the 1970-1990s. These different trends reflect the different types of HULISWS sources in winter and summer. HULISWS are mainly primarily emitted by domestic wood burning in winter and secondary in summer being produced from biogenic precursors. For unknown reason, the HULISWS signal is found to be unusual in ice samples corresponding to World War II.

  19. Detection of endocrine active substances in the aquatic environment in southern Taiwan using bioassays and LC-MS/MS.

    PubMed

    Chen, Kuang-Yu; Chou, Pei-Hsin

    2016-06-01

    Endocrine active substances, including naturally occurring hormones and various synthetic chemicals have received much concern owing to their endocrine disrupting potencies. It is essential to monitor their environmental occurrence since these compounds may pose potential threats to biota and human health. In this study, yeast-based reporter assays were carried out to investigate the presence of (anti-)androgenic, (anti-)estrogenic, and (anti-)thyroid compounds in the aquatic environment in southern Taiwan. Liquid chromatography tandem mass spectrometry (LC-MS/MS) was also used to measure the environmental concentrations of selected endocrine active substances for assessing potential ecological risks and characterizing contributions to the endocrine disrupting activities. Bioassay results showed that anti-androgenic (ND-7489 μg L(-1) flutamide equivalent), estrogenic (ND-347 ng L(-1) 17β-estradiol equivalent), and anti-thyroid activities were detected in the dissolved and particulate phases of river water samples, while anti-estrogenic activities (ND-10 μg L(-1) 4-hydroxytamoxifen equivalent) were less often found. LC-MS/MS analysis revealed that anti-androgenic and estrogenic contaminants, such as bisphenol A, triclosan, and estrone were frequently detected in Taiwanese rivers. In addition, their risk quotient values were often higher than 1, suggesting that they may pose an ecological risk to the aquatic biota. Further identification of unknown anti-androgenic and estrogenic contaminants in Taiwanese rivers may be necessary to protect Taiwan's aquatic environment. PMID:26971174

  20. Dynamics and sources of reduced sulfur, humic substances and dissolved organic carbon in a temperate river system affected by agricultural practices.

    PubMed

    Marie, Lauriane; Pernet-Coudrier, Benoît; Waeles, Matthieu; Gabon, Marine; Riso, Ricardo

    2015-12-15

    Although reduced organic sulfur substances (RSS) as well as humic substances (HS) are widely suspected to play a role in, for example, metal speciation or used as a model of dissolved organic carbon (DOC) in laboratory studies, reports of their quantification in natural waters are scarce. We have examined the dynamics and sources of reduced sulfur, HS and DOC over an annual cycle in a river system affected by agricultural practices. The new differential pulse cathodic stripping voltammetry was successfully applied to measure glutathione-like compounds (GSHs), thioacetamide-like compounds (TAs) and the liquid chromatography coupled to organic detector to analyze HS and DOC at high frequency in the Penzé River (NW France). The streamflow-concentration patterns, principal components analysis and flux analysis allowed discrimination of the source of each organic compound type. Surprisingly, the two RSS and HS detected in all samples, displayed different behavior. As previously shown, manuring practice is the main source of DOC and HS in this watershed where agricultural activity is predominant. The HS were then transferred to the river systems via runoff, particularly during the spring and autumn floods, which are responsible of >60% of the annual flux. TAs had a clear groundwater source and may be formed underground, whereas GSHs displayed two sources: one aquagenic in spring and summer probably linked to the primary productivity and a second, which may be related to bacterial degradation. High sampling frequency allowed a more accurate assessment of the flux values which were 280 tC y(-1) for DOC representing 20 kg C ha(-1) y(-1). HS, TAs and GSHs fluxes represented 60, 13, and 4% of the total annual DOC export, respectively.

  1. Dynamics and sources of reduced sulfur, humic substances and dissolved organic carbon in a temperate river system affected by agricultural practices.

    PubMed

    Marie, Lauriane; Pernet-Coudrier, Benoît; Waeles, Matthieu; Gabon, Marine; Riso, Ricardo

    2015-12-15

    Although reduced organic sulfur substances (RSS) as well as humic substances (HS) are widely suspected to play a role in, for example, metal speciation or used as a model of dissolved organic carbon (DOC) in laboratory studies, reports of their quantification in natural waters are scarce. We have examined the dynamics and sources of reduced sulfur, HS and DOC over an annual cycle in a river system affected by agricultural practices. The new differential pulse cathodic stripping voltammetry was successfully applied to measure glutathione-like compounds (GSHs), thioacetamide-like compounds (TAs) and the liquid chromatography coupled to organic detector to analyze HS and DOC at high frequency in the Penzé River (NW France). The streamflow-concentration patterns, principal components analysis and flux analysis allowed discrimination of the source of each organic compound type. Surprisingly, the two RSS and HS detected in all samples, displayed different behavior. As previously shown, manuring practice is the main source of DOC and HS in this watershed where agricultural activity is predominant. The HS were then transferred to the river systems via runoff, particularly during the spring and autumn floods, which are responsible of >60% of the annual flux. TAs had a clear groundwater source and may be formed underground, whereas GSHs displayed two sources: one aquagenic in spring and summer probably linked to the primary productivity and a second, which may be related to bacterial degradation. High sampling frequency allowed a more accurate assessment of the flux values which were 280 tC y(-1) for DOC representing 20 kg C ha(-1) y(-1). HS, TAs and GSHs fluxes represented 60, 13, and 4% of the total annual DOC export, respectively. PMID:26278374

  2. Soluble Iron as an In Situ Indicator of the Redox State of Humic Substances in Arctic Soil: Implications for Seasonal Regeneration of Oxidized Terminal Electron Acceptors

    NASA Astrophysics Data System (ADS)

    Lipson, D.; Zlamal, J. E.; Srinivas, A. J.; Raab, T. K.

    2014-12-01

    Ferric iron (Fe(III)) and humic substances (HS) are important terminal electron acceptors for anaerobic respiration in wet tundra soils of the Arctic Coastal Plain near Barrow, Alaska. These soils are rich in both solid phase Fe minerals (including oxides such as ferrihydrite and goethite and other minerals with reduced or mixed valence such as siderite and magnetite) and soluble Fe, chelated by siderophores and other small organic molecules. This latter pool may also include nanocolloidal Fe: extremely fine-grained minerals that pass through a 0.2 micron filter. Both the solid phase and aqueous Fe pools undergo seasonal changes in redox state as a result of biological reduction by Fe-reducing microorganisms and oxidation by a variety of potential mechanisms, both abiotic and biotic. These redox cycles of solid and aqueous pools are not in phase: solid phase Fe became progressively more reduced from mid- to late summer, while aqueous phase Fe became reduced over the first half of the summer. It is well-known that HS interact with Fe, and that HS can act as electron shuttles in the reduction of Fe oxides. In other ecosystems chelated Fe(III) has been incubated with soil samples and the resulting Fe(II) produced is used as an indicator of the reducing power of HS. In these Fe-rich Arctic soils, HS are continuously in contact with chelated Fe, and therefore we interpret the redox state of this pool as an indicator of HS redox status. To verify this we conducted redox titrations of extracted HS with both reduced and oxidized Fe chelates and showed that chelated Fe could interact with HS both as electron acceptor and donator. In a field experiment, the addition of oxidized humic acids to soils resulted in an immediate oxidation of the aqueous Fe pool within 24 hours, which we attribute to abiotic oxidation of Fe by HS, followed by a slow reduction of this pool over the next week, presumably due to biological Fe reduction of the HS/aqueous Fe pool. At the end of summer

  3. Conformational behaviour of humic substances at different depths along a profile of a Lithosol under loblolly (Pinus taeda) plantation

    NASA Astrophysics Data System (ADS)

    Conte, P.; Maia, C. M. B. F.; de Pasquale, C.; Alonzo, G.

    2009-04-01

    The conformation of natural organic matter (NOM) plays a key role in many physical and chemical processes including interactions with organic and inorganic pollutants and soil aggregates stability thus directly influencing soil quality. NOM conformation can be studied by solid state NMR spectroscopy with cross polarization and magic angle spinning (CPMAS NMR). In the present study we applied CPMAS 13C NMR spectroscopy on three humic acid fractions (HA) each extracted from a different horizon in a Lithosol profile under Pinus taeda. Results showed that the most superficial HA was also the most aliphatic in character. Amount of aromatic moieties and hydrophilic HA constituents increased along the profile. Cross polarization (TCH) and longitudinal relaxation protons times in the rotating frame (T1rho(H)) were measured and compared only for the NMR signals generated by carboxyls and alkyls. This because the signal intensity for the aromatic, C-O and C-N systems was very low, thereby preventing suitable evaluation of TCH and T1rho(H) values for such systems. The cross polarization times of carboxyls decreased, whereas those of the alkyl moieties increased with depth. Conversely, T1rho(H) values increased for both COOH and alkyl groups along the profile. Polarization transfer from protons to carbons is affected by the dipolar interactions among the nuclei. The stronger the H-C dipolar interaction, the faster is the rate of the energy exchange. All the factors affecting the dipolar interaction strength also influence the rate of magnetization transfer. Among the others, fast molecular tumbling and poor proton density around the carbons are responsible for long TCH values. Molecular tumbling and proton density also affect T1rho(H) values. Namely, the larger the molecular tumbling and the proton density, the faster is the proton longitudinal relaxation rate in the rotating frame (shorter T1rho(H) values). The decrease of TCH values of COOH groups along the profile was

  4. Change in ATP-binding cassette B1/19, glutamine synthetase and alcohol dehydrogenase gene expression during root elongation in Betula pendula Roth and Alnus glutinosa L. Gaertn in response to leachate and leonardite humic substances.

    PubMed

    Tahiri, Abdelghani; Delporte, Fabienne; Muhovski, Yordan; Ongena, Marc; Thonart, Philippe; Druart, Philippe

    2016-01-01

    Humic substances (HS) are complex and heterogeneous compounds of humified organic matter resulting from the chemical and microbiological decomposition of organic residues. HS have a positive effect on plant growth and development by improving soil structure and fertility. They have long been recognized as plant growth-promoting substances, particularly with regard to influencing nutrient uptake, root growth and architecture. The biochemical and molecular mechanisms through which HS influence plant physiology are not well understood. This study evaluated the bioactivity of landfill leachate and leonardite HS on alder (Alnus glutinosa L. Gaertn) and birch (Betula pendula Roth) during root elongation in vitro. Changes in root development were studied in relation to auxin, carbon and nitrogen metabolisms, as well as to the stress adaptive response. The cDNA fragments of putative genes encoding two ATP-binding cassette (ABC) transporters (ABCB1 and ABCB19) belonging to the B subfamily of plant ABC auxin transporters were cloned and sequenced. Molecular data indicate that HS and their humic acid (HA) fractions induce root growth by influencing polar auxin transport (PAT), as illustrated by the modulation of the ABCB transporter transcript levels (ABCB1 and ABCB19). There were also changes in alcohol dehydrogenase (ADH) and glutamine synthetase (GS) gene transcript levels in response to HS exposure. These findings confirmed that humic matter affects plant growth and development through various metabolic pathways, including hormonal, carbon and nitrogen metabolisms and stress response or signalization.

  5. Change in ATP-binding cassette B1/19, glutamine synthetase and alcohol dehydrogenase gene expression during root elongation in Betula pendula Roth and Alnus glutinosa L. Gaertn in response to leachate and leonardite humic substances.

    PubMed

    Tahiri, Abdelghani; Delporte, Fabienne; Muhovski, Yordan; Ongena, Marc; Thonart, Philippe; Druart, Philippe

    2016-01-01

    Humic substances (HS) are complex and heterogeneous compounds of humified organic matter resulting from the chemical and microbiological decomposition of organic residues. HS have a positive effect on plant growth and development by improving soil structure and fertility. They have long been recognized as plant growth-promoting substances, particularly with regard to influencing nutrient uptake, root growth and architecture. The biochemical and molecular mechanisms through which HS influence plant physiology are not well understood. This study evaluated the bioactivity of landfill leachate and leonardite HS on alder (Alnus glutinosa L. Gaertn) and birch (Betula pendula Roth) during root elongation in vitro. Changes in root development were studied in relation to auxin, carbon and nitrogen metabolisms, as well as to the stress adaptive response. The cDNA fragments of putative genes encoding two ATP-binding cassette (ABC) transporters (ABCB1 and ABCB19) belonging to the B subfamily of plant ABC auxin transporters were cloned and sequenced. Molecular data indicate that HS and their humic acid (HA) fractions induce root growth by influencing polar auxin transport (PAT), as illustrated by the modulation of the ABCB transporter transcript levels (ABCB1 and ABCB19). There were also changes in alcohol dehydrogenase (ADH) and glutamine synthetase (GS) gene transcript levels in response to HS exposure. These findings confirmed that humic matter affects plant growth and development through various metabolic pathways, including hormonal, carbon and nitrogen metabolisms and stress response or signalization. PMID:26595095

  6. 13C-NMR spectra and contact time experiment for Skjervatjern fulvic and humic acids

    USGS Publications Warehouse

    Malcolm, R.L.

    1992-01-01

    The T(CP) and T(1p) time constants for Skjervatjern fulvic and humic acids were determined to be short with T(CP) values ranging from 0.14 ms to 0.53 ms and T(1p) values ranging from 3.3 ms to 5.9 ms. T(CP) or T(1p) time constants at a contact time of 1 ms are favorable for quantification of 13C-NMR spectra. Because of the short T(CP) values, correction factors for signal intensity for various regions of the 13C-NMR spectra would be necessary at contact times greater than 1.1 ms or less than 0.9 ms. T(CP) and T(1p) values have a limited non-homogeneity within Skjervatjern fulvic and humic acids. A pulse delay or repeat time of 700 ms is more than adequate for quantification of these 13C-NMR spectra. Paramagnetic effects in these humic substances are precluded due to low inorganic ash contents, low contents of Fe, Mn, and Co, and low organic free-radical contents. The observed T(CP) values suggest that all the carbon types in Skjervatjern fulvic and humic acids are fully cross-polarized before significant proton relaxation occurs. The 13C-NMR spectra for Skjervatjern fulvic acid is similar to most aquatic fulvic acids as it is predominantly aliphatic, low in aromaticity (fa1 = 24), low in phenolic content, high in carboxyl content, and has no resolution of a methoxyl peak. The 13C-NMR spectra for Skjervatjern humic acid is also similar to most other aquatic humic acids in that it is also predominantly aliphatic, high in aromaticity (fa1 = 38), moderate in phenolic content, moderate in carboxyl content, and has a clear resolution of a methoxyl carbon region. After the consideration of the necessary 13C-NMR experimental conditions, these spectra are considered to be quantitative. With careful consideration of the previously determined 13C-NMR experimental conditions, quantitative spectra can be obtained for humic substances in the future from the HUMEX site. Possible changes in humic substances due to acidification should be determined from 13C-NMR data.

  7. Fluorescence of aqueous solutions of commercial humic products

    NASA Astrophysics Data System (ADS)

    Gosteva, O. Yu.; Izosimov, A. A.; Patsaeva, S. V.; Yuzhakov, V. I.; Yakimenko, O. S.

    2012-01-01

    We have studied the spectral luminescence characteristics of aqueous solutions of humic products obtained from different raw material sources, and their behavior as the excitation wavelength increases from 270 nm to 355 nm. We have identified differences in the spectral properties of industrial humic products from coalified materials, lignin-containing organic waste, and humic products from plant raw material (peat, sapropel, vermicompost). We have shown that humic products from plant raw material have spectral properties closer to those for humic substances in natural water or soil than humic products from coalified materials.

  8. Humic Acid Effects on the Transport of Colloidal Particles in Unsaturated Porous Media: Humic Acid Dosage, pH, and Ionic Strength Dependence

    NASA Astrophysics Data System (ADS)

    Morales, V. L.; Gao, B.; Steenhuis, T. S.

    2008-12-01

    Soil colloids and biocolloids can facilitate contaminant transport within the soil profile through the complexation of pollutants previously thought to have limited mobility. Dissolved organic substances are qualitatively known to alter the behavior of colloids and surface chemistry of soil particles in aquatic environments when adsorbed to their surfaces. Specifically, it has been observed that even small amounts of adsorbed humic acids result in a pronounced increase in colloid mobility in saturated porous systems, presumably by a combination of electrostatic and steric stabilization. However, the degree to which adsorbed humic acids stabilize colloidal suspension is highly sensitive to the system's solution chemistry; mainly in terms of pH, ionic strength, and metal ions present. The objective of this study is to expound quantitatively on the role that combined stabilizing and destabilizing solution chemistry components have on humic acid-colloid transport in unsaturated media by isolating experimentally some underlying mechanisms that regulate colloid transport in realistic aquatic systems. We hypothesize that in chemically heterogeneous porous media, with ionic strength values above 0 and pH ranges from 4 to 9, the effect of humic acid on colloid suspensions cannot be simply characterized by increased stability and mobility. That a critical salt concentration must exists for a given humic acid concentration and pH, above which the network of humic acid collapses by forming coordination complexes with other suspended or adsorbed humic acids, thus increasing greatly the retention of colloids in the porous medium by sweep flocculation. In addition, capillary forces in unsaturated media may contribute further to overcome repulsive forces that prevent flocculation of humic acid-colloid complexes. The experimental work in this study will include: jar tests to determine critical solution concentration combinations for desired coagulation/flocculation rates, column

  9. Determination of humic and fulvic acids in commercial solid and liquid humic products by alkaline extraction and gravimetric determination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased use of humic substances in agriculture has generated intense interest among producers, consumers, and regulators for an accurate and reliable method for quantification of humic (HA) and fulvic acids (FA) in raw ores and products. Here we present a thoroughly validated method, the Humic Pro...

  10. Synthesis of model humic substances: a mechanistic study using controllable H/D exchange and Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Zherebker, Alexander Ya; Airapetyan, David; Konstantinov, Andrey I; Kostyukevich, Yury I; Kononikhin, Alexey S; Popov, Igor A; Zaitsev, Kirill V; Nikolaev, Eugene N; Perminova, Irina V

    2015-07-01

    The products of the oxidative coupling of phenols are frequently used as synthetic analogues to natural humic substances (HS) for biomedical research. However, their molecular compositions and exact structures remain largely unknown. The objective of this study was to develop a novel approach for the molecular-level analysis of phenolic polymerisates that is capable of inventorying molecular constituents and resolving their distinct structural formulas. For this purpose, we have synthesized the model HS using the oxidative coupling of a specifically designed phenylpropanoic monomer, 3-(4-hydroxy-3-methoxyphenyl)-3-oxopropionic acid, to hydroquinone. We have characterized the synthesized model HS using high resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS), (1)H NMR spectroscopy, and controllable hydrogen/deuterium (H/D) exchange. We succeeded in the molecular inventory of the model HS. The assigned molecular formulas occupied the substantial space of CHO compositions in the Van Krevelen diagram with a maximum density found in the regions of tannins and lignins, resembling those of natural HS. To identify the exact structural formulas of the individual constituents in the model HS, we have applied selective H/D exchange of non-labile backbone protons by a choice of basic or acidic catalytic conditions followed by FTICR MS. The determined formulas allowed us to verify the proposed pathways of hydroxylation and carboxylation in the course of the phenolic coupling and to identify the acetylation of aromatic rings as an important side reaction. We conclude that the proposed analytical approach may be used to identify the molecular carriers of biological activity within the phenolic polymerisates and eventually within natural HS.

  11. Determination of water and alkaline extractable atmospheric humic-like substances with the TU Vienna HULIS analyzer in samples from six background sites in Europe

    NASA Astrophysics Data System (ADS)

    Feczko, T.; Puxbaum, H.; Kasper-Giebl, A.; Handler, M.; Limbeck, A.; GelencséR, A.; Pio, C.; Preunkert, S.; Legrand, M.

    2007-12-01

    With a newly developed method based on the combination of two separation steps (by polarity and by acidity) with a universal detector for organic carbon, efficient isolation of humic-like substances (HULIS) from the matrix and quantitative determination of the isolated organic carbon is achieved. This new method was applied to determine the water extractable (HULISWS) and, in sequence, the 0.1 M NaOH alkaline extractable HULIS (HULISAS) fractions in aerosol from six sites situated at a transect from west to east across Europe. The sum of the two HULIS fractions is here defined as total HULIS (HULIST). The lowest 12-month average concentrations of HULIST ranged from 0.075 μgC/m3 the Azores (Portugal) to 1.7 μgC/m3 at the continental background site K-puszta (Hungary). On the continent, the HULIST concentration decreases exponentially with elevation. The relative amounts of water extractable and alkaline soluble HULIS were relatively similar at the six sites. Dramatic differences were observed for the seasonal variations of the HULIS fractions at the different sites. At the Azores, as well as at the higher mountain sites (1450 and 3100 m), a summer maximum of the HULIST concentration was observed, while at the continental low-level sites (Aveiro and K-puszta), winter maxima dominated the seasonal variation. The summer/winter ratio of the HULIST concentration varied from 7.1 at Sonnblick to 0.36 at Aveiro. The seasonal variation at the two continental lower-level sites with winter maxima might be explained by overlapping of a weaker summer source and a stronger winter source.

  12. Temporal variations of the abundance and optical properties of water soluble Humic-Like Substances (HULIS) in PM2.5 at Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Fan, Xingjun; Song, Jianzhong; Peng, Ping'an

    2016-05-01

    Humic-Like Substances (HULIS) are important macromolecular compounds that are present in PM2.5 and play significant roles in the atmospheric environment. In this study, 48 PM2.5 samples were collected from February 2010 to January 2011 at an urban site in Guangzhou, southern China. The water soluble HULIS fractions in PM2.5 were analyzed to explore the temporal variation of abundance and optical properties and to identify their possible sources. The HULIS concentrations were in the range of 0.4 to 8.2 μg C m- 3, with a mean of 2.4 μg C m- 3. HULIS are important components in organic aerosols, accounting for 17 ± 5% of the organic carbon (OC), and 49 ± 6 and 68 ± 5% of water soluble organic carbon (WSOC) as determined with a total organic carbon (TOC) analyzer and UV absorbance at 250 nm, respectively. The special UV absorbance (SUVA) at 254 nm and 280 nm and the E250/E365 ratio of HULIS were 3.2 ± 0.5 L (m mg C)- 1, 2.2 ± 0.4 L (m mg C)- 1, and 5.9 ± 0.9, respectively. The HULIS fractions had higher concentrations, slightly higher SUVA values, and lower E250/E365 ratios from November to January, indicating the important contribution of aromatic compounds to HULIS in the dry season. The concentrations of HULIS were positively correlated with water soluble K+, secondary organic carbon (SOC), and secondary inorganic ions (NH4+, NO3-, and SO42 -). These results suggest that biomass burning and secondary photochemical formation are both sources of HULIS in our study area. In addition, the SUVA280 of HULIS was strongly correlated with K+ and SOC, suggesting that HULIS properties were also influenced by their primary source of biomass burning and secondary atmospheric formation.

  13. Reactive Oxygen Species Production Mediated by Humic-like Substances in Atmospheric Aerosols: Enhancement Effects by Pyridine, Imidazole, and Their Derivatives.

    PubMed

    Dou, Jing; Lin, Peng; Kuang, Bin-Yu; Yu, Jian Zhen

    2015-06-01

    Ambient particulate matter (PM) can cause adverse health effects via their ability to produce reactive oxygen species (ROS). Humic-like substances (HULIS), a complex mixture of amphiphilic organic compounds, have been demonstrated to contain the majority of redox activity in the water-extractable organic fraction of PM. Reduced organic nitrogen compounds, such as alkaloids resulting from biomass burning emissions, are among HULIS constituents. In this study, we examined the redox activities of pyridine, imidazole and their alkyl derivatives using a cell-free dithiothreitol (DTT) assay under simulated physiological conditions (37 °C, pH = 7.40). These compounds were found to have little redox activity on their own as measured by the DTT assay, but they enhanced ROS generation catalyzed by 1,4-naphthoquinone (as a model quinone compound) and HULIS isolated from multiple aerosol samples. The enhancement effect by the individual nitrogen-containing bases was determined to be proportional to their amount in the assay solutions. It is postulated that the underlying mechanism involves the unprotonated N atom acting as a H-bonding acceptor to facilitate hydrogen-atom transfer in the ROS generation cycle. The enhancement capability was found to increase with their basicity (i.e., pKa of their conjugated acids, BH(+)), consistent with the proposed mechanism for enhancement. Among the imidazole homologues, a linear relationship was observed between the enhancement factors (in log scale) of the unprotonated form of the imidazole compounds (B) and the pKa of their conjugated acids (BH(+)). This relationship predicts that the range of alkylimidazole homologues (C6-C13) observed in atmospheric HULIS would be 1.5-4.4 times more effective than imidazole in facilitating HULIS-mediated ROS generation. Our work reveals that the ability of atmospheric PM organics to catalyze generation of ROS in cells could be affected by coexisting redox inactive organic constituents and suggests

  14. Sources of humic-like substances in the Pearl River Delta, China: positive matrix factorization analysis of PM2.5 major components and source markers

    NASA Astrophysics Data System (ADS)

    Kuang, B. Y.; Lin, P.; Huang, X. H. H.; Yu, J. Z.

    2015-02-01

    Humic-like substances (HULIS), the hydrophobic part of water-soluble organic carbon (WSOC), account for a significant fraction of PM2.5 mass. Their source studies are so far largely qualitative. In this study, HULIS and WSOC were determined in 100 PM2.5 samples collected in 2009 at an urban site (Guangzhou) and a suburban site (Nansha) in the Pearl River Delta in South China. The annual average concentration of HULIS was 4.83 and 4.71 μg m-3, constituting 8.5 and 10.2% of the PM2.5 mass, while HULIS-C (the carbon component of HULIS) contributed 48 and 57% of WSOC at the two sites, respectively. HULIS were found to correlate with biomass burning (BB) tracers (i.e., levoglucosan and K) and secondary species (e.g., SO42- and NH4+), suggesting its association with BB emissions and secondary formation processes. Sources of HULIS were investigated using positive matrix factorization analysis of PM2.5 chemical composition data, including major components and source markers. In addition to secondary formation process and BB emissions, residual oil combustion related to shipping was identified for the first time as a significant source of HULIS. Secondary formation process contributed the most, accounting for 49-82% of ambient HULIS at the two sites in different seasons. BB emissions contributed a seasonal average of 8-28%, with more contributions observed in the winter months (November-February) due to crop residue burning during harvest season. Residual oil combustion was revealed to be an important source at the suburban site in summer (44% of HULIS-C) due to its proximity to one of the ports and the shipping lane in the region. Vehicle emissions were found to contribute little to HULIS, but had contributions to the hydrophilic WSOC fraction. The contrast in contributions from different combustion sources to HULIS and hydrophilic WSOC suggests that primary sources of HULIS are linked to inefficient combustion. This source analysis suggests further study of HULIS be

  15. Fractionating ambient humic-like substances (HULIS) for their reactive oxygen species activity - Assessing the importance of quinones and atmospheric aging

    NASA Astrophysics Data System (ADS)

    Verma, Vishal; Wang, Ying; El-Afifi, Rawan; Fang, Ting; Rowland, Janessa; Russell, Armistead G.; Weber, Rodney J.

    2015-11-01

    In this paper, we present a technique to identify the redox-active components of fine organic aerosols by fractionating humic-like substances (HULIS). We applied this technique to a dithiothreitol (DTT) assay - a measure of the capability of PM to generate reactive oxygen species (ROS), and assessed the contribution of quinones to the DTT activity of ambient water-soluble PM. Filter samples from the Southeastern Center for Air Pollution & Epidemiology (SCAPE) were extracted in water and then passed-through a C-18 column to isolate the HULIS fraction by retention on the column. The HULIS was then eluted with a sequence of solvents of increasing polarity, i.e., hexane, dichloromethane (DCM) and then methanol. Each of these eluted fractions was analyzed for DTT activity. The methanol fraction was found to possess most of the DTT activity (>70%), while the hexane fraction had the least activity (<5%), suggesting that the ROS-active compounds of ambient water-soluble PM2.5 HULIS are mostly polar in nature. A number of quinones thought to contribute to ambient PM DTT activity were also tested. 1,4 Naphthoquinone (1,4 NQ), 1,2 Naphthoquinone (1,2 NQ), 9,10 Phenanthrenequinone (PQ), and 5-hydroxy-1,4 NQ were analyzed by the same protocol. The hexane fraction of two quinones (PQ, and 1,4 NQ) was the most-DTT active, while methanol was the least, confirming that PQ, 1,4 NQ, and 1,2 NQ (which could not be recovered from the column) do not contribute significantly to the water-soluble DTT activity of ambient PM2.5. However, an oxygenated derivative of 1,4 NQ, (5-hydroxy-1,4 NQ), which is also intrinsically more DTT-active than 1,4 NQ, was mostly (>60%) eluted in methanol. The results demonstrate the importance of atmospheric aging (oxidation) of organic aerosols in enhancing the ROS activity of ambient PM.

  16. Toxic Effect of a Marine Bacterium on Aquatic Organisms and Its Algicidal Substances against Phaeocystis globosa

    PubMed Central

    Yang, Qiuchan; Chen, Lina; Hu, Xiaoli; Zhao, Ling; Yin, Pinghe; Li, Qiang

    2015-01-01

    Harmful algal blooms have caused enormous damage to the marine ecosystem and the coastal economy in China. In this paper, a bacterial strain B1, which had strong algicidal activity against Phaeocystis globosa, was isolated from the coastal waters of Zhuhai in China. The strain B1 was identified as Bacillus sp. on the basis of 16S rDNA gene sequence and morphological characteristics. To evaluate the ecological safety of the algicidal substances produced by strain B1, their toxic effects on marine organisms were tested. Results showed that there were no adverse effects observed in the growth of Chlorella vulgaris, Chaetoceros muelleri, and Isochrystis galbana after exposure to the algicidal substances at a concentration of 1.0% (v/v) for 96 h. The 48h LC50 values for Brachionus plicatilis, Moina mongolica Daday and Paralichthys olivaceus were 5.7, 9.0 and 12.1% (v/v), respectively. Subsequently, the algicidal substances from strain B1 culture were isolated and purified by silica gel column, Sephadex G-15 column and high-performance liquid chromatography. Based on quadrupole time-of-flight mass spectrometry and PeakView Software, the purified substances were identified as prolyl-methionine and hypoxanthine. Algicidal mechanism indicated that prolyl-methionine and hypoxanthine inhibited the growth of P. globosa by disrupting the antioxidant systems. In the acute toxicity assessment using M. mongolica, 24h LC50 values of prolyl-methionine and hypoxanthine were 7.0 and 13.8 g/L, respectively. The active substances produced by strain B1 can be considered as ecologically and environmentally biological agents for controlling harmful algal blooms. PMID:25646807

  17. Toxic effect of a marine bacterium on aquatic organisms and its algicidal substances against Phaeocystis globosa.

    PubMed

    Yang, Qiuchan; Chen, Lina; Hu, Xiaoli; Zhao, Ling; Yin, Pinghe; Li, Qiang

    2015-01-01

    Harmful algal blooms have caused enormous damage to the marine ecosystem and the coastal economy in China. In this paper, a bacterial strain B1, which had strong algicidal activity against Phaeocystis globosa, was isolated from the coastal waters of Zhuhai in China. The strain B1 was identified as Bacillus sp. on the basis of 16S rDNA gene sequence and morphological characteristics. To evaluate the ecological safety of the algicidal substances produced by strain B1, their toxic effects on marine organisms were tested. Results showed that there were no adverse effects observed in the growth of Chlorella vulgaris, Chaetoceros muelleri, and Isochrystis galbana after exposure to the algicidal substances at a concentration of 1.0% (v/v) for 96 h. The 48h LC50 values for Brachionus plicatilis, Moina mongolica Daday and Paralichthys olivaceus were 5.7, 9.0 and 12.1% (v/v), respectively. Subsequently, the algicidal substances from strain B1 culture were isolated and purified by silica gel column, Sephadex G-15 column and high-performance liquid chromatography. Based on quadrupole time-of-flight mass spectrometry and PeakView Software, the purified substances were identified as prolyl-methionine and hypoxanthine. Algicidal mechanism indicated that prolyl-methionine and hypoxanthine inhibited the growth of P. globosa by disrupting the antioxidant systems. In the acute toxicity assessment using M. mongolica, 24h LC50 values of prolyl-methionine and hypoxanthine were 7.0 and 13.8 g/L, respectively. The active substances produced by strain B1 can be considered as ecologically and environmentally biological agents for controlling harmful algal blooms.

  18. Toxic effect of a marine bacterium on aquatic organisms and its algicidal substances against Phaeocystis globosa.

    PubMed

    Yang, Qiuchan; Chen, Lina; Hu, Xiaoli; Zhao, Ling; Yin, Pinghe; Li, Qiang

    2015-01-01

    Harmful algal blooms have caused enormous damage to the marine ecosystem and the coastal economy in China. In this paper, a bacterial strain B1, which had strong algicidal activity against Phaeocystis globosa, was isolated from the coastal waters of Zhuhai in China. The strain B1 was identified as Bacillus sp. on the basis of 16S rDNA gene sequence and morphological characteristics. To evaluate the ecological safety of the algicidal substances produced by strain B1, their toxic effects on marine organisms were tested. Results showed that there were no adverse effects observed in the growth of Chlorella vulgaris, Chaetoceros muelleri, and Isochrystis galbana after exposure to the algicidal substances at a concentration of 1.0% (v/v) for 96 h. The 48h LC50 values for Brachionus plicatilis, Moina mongolica Daday and Paralichthys olivaceus were 5.7, 9.0 and 12.1% (v/v), respectively. Subsequently, the algicidal substances from strain B1 culture were isolated and purified by silica gel column, Sephadex G-15 column and high-performance liquid chromatography. Based on quadrupole time-of-flight mass spectrometry and PeakView Software, the purified substances were identified as prolyl-methionine and hypoxanthine. Algicidal mechanism indicated that prolyl-methionine and hypoxanthine inhibited the growth of P. globosa by disrupting the antioxidant systems. In the acute toxicity assessment using M. mongolica, 24h LC50 values of prolyl-methionine and hypoxanthine were 7.0 and 13.8 g/L, respectively. The active substances produced by strain B1 can be considered as ecologically and environmentally biological agents for controlling harmful algal blooms. PMID:25646807

  19. Toxic substances in submerged aquatic vegetation beds. Rept. for Dec 87-Jun 88

    SciTech Connect

    Cornwell, J.C.; Stevenson, J.C.

    1990-01-01

    The widespread decline of Submerged Aquatic Vegetation (SAV) in the Chesapeake Bay has been well documented. In order to better understand the relative importance of toxic contaminants on SAV occurrence, the authors collected sediments from SAV beds in Chesapeake Bay for the analysis of herbicides, pesticides and trace metals. The central question of the research was whether the input of toxics to Chesapeake Bay sediments may have been a causative factor in SAV loss. A comparison of contaminant concentrations in vegetated and unvegetated sites was the basis for the study.

  20. Yields of potato and alternative crops impacted by humic product application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humic substance (HA—humic acid, fulvic acid, and humin) are a family of organic molecules made up of long carbon chains and numerous active functional groups such as phenols and other aromatics. Humic substances play dynamic roles in soil physical, chemical biological functions essential to soil he...

  1. Capillary Electrophoresis Profiles and Fluorophore Components of Humic Acids in Nebraska Corn and Philippine Rice Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As humic substances represent relatively high molecular mass polyelectrolytes containing aromatic, aliphatic and heterocyclic subunits, capillary electrophoresis (CE) has become an attractive method for “finger-print” characterization of humic acids. In addition, fluorescence excitation-emission ma...

  2. Immersion Freezing of Water and Aqueous Ammonium Sulfate Droplets Initiated by Humic-Like Substances as a Function of Water Activity

    NASA Astrophysics Data System (ADS)

    Rigg, Y.; Alpert, P. A.; Knopf, D. A.

    2013-12-01

    Immersion freezing of water and aqueous (NH4)2SO4 droplets containing leonardite (LEO) and pahokee peat (PP) serving as surrogates for humic-like substances (HULIS) has been investigated. Organic aerosol containing HULIS are ubiquitous in the atmosphere; however, their potential for ice cloud formation is uncertain. Immersion freezing has been studied for temperatures as low as 215 K and solution water activity, aw, from 0.85 to 1.0. The freezing temperatures of water and aqueous solution droplets containing LEO and PP are 5-15 K warmer than homogeneous ice nucleation temperatures. Heterogeneous freezing temperatures can be represented by a horizontal shift of the ice melting curve as a function of solution aw and Δaw by 0.2703 and 0.2466, respectively. Corresponding heterogeneous ice nucleation rate coefficients, Jhet, are (9.6×2.5)x104 and (5.4×1.4)x104 cm-2 s-1 for LEO and PP containing droplets, respectively, and remain constant along freezing curves characterized by Δaw. Consequently predictions of freezing temperatures and kinetics can be made without knowledge of the solute type when relative humidity and ice nuclei (IN) surface areas are known. The acquired ice nucleation data are applied to evaluate different approaches to fit and reproduce experimentally derived frozen fractions. In addition, we apply a basic formulation of classical nucleation theory (α(T)-model) to calculate contact angles and frozen fractions. Contact angles calculated for each ice nucleus as a function of temperature, α(T)-model, reproduce exactly experimentally derived frozen fractions without involving free-fit parameters. However, assigning the IN a single contact angle for the entire population (single-α model) is not suited to represent the frozen fractions. Application of α-PDF, active sites, and deterministic model approaches to measured frozen fractions yield similar good representations. Furthermore, when using a single parameterization of α-PDF or active sites

  3. Characteristics of extracellular polymeric substances of phototrophic biofilms at different aquatic habitats.

    PubMed

    Fang, Fang; Lu, Wen-Tao; Shan, Qi; Cao, Jia-Shun

    2014-06-15

    Three different phototrophic biofilms obtained from a natural lake (Sample 1), drinking water plant (Sample 2) and wastewater treatment plant (Sample 3) were investigated. Diatoms and green algae were the dominant algae of three biofilms, and the biomass was highest in biofilm of Sample 2. The three phototrophic biofilms also had variable extracellular polymeric substances (EPS) concentrations and compositions. Total EPS concentration of 14.80 mg/g DW was highest in biofilm of Sample 2, followed by biofilms of Samples 3 and 1 (13.11 and 12.29 mg/g DW). Tightly bound EPS (TB-EPS) were the main fraction, and polysaccharides and protein were the main components of total EPS in all three biofilms. However, the compositions of loosely bound EPS (LB-EPS) and TB-EPS were different in three biofilms. Fourier-transform infrared and fluorescence spectra indicated different structure and compositions of LB-EPS and TB-EPS. These results demonstrated the characteristics of EPS produced by phototrophic biofilms varied and had compact relation to their growth environmental conditions.

  4. Distribution of perfluoroalkyl substances (PFASs) with isomer analysis among the tissues of aquatic organisms in Taihu Lake, China.

    PubMed

    Fang, Shuhong; Zhao, Shuyan; Zhang, Yifeng; Zhong, Wenjue; Zhu, Lingyan

    2014-10-01

    The distribution of perfluoroalkyl substances (PFASs) and the isomers of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) was investigated among various tissues (including muscle, gill, kidney, liver) and eggs, in aquatic organisms in Taihu Lake, China. Highest concentration of ΣPFASs was mostly found in liver (278-685 ng/g ww) and eggs (66.0-467 ng/g ww) while the lowest was in muscle (40.6-165 ng/g ww). n-PFOS was the predominant PFOS isomer in most of the tissues with a proportion of 46.3-96.5%. Ratios of PFAS concentrations in eggs to those in liver (E/L) increased positively with the protein-water partition coefficient. The E/L of PFOS isomers descended in the order: linear > monomethyl > diperfluoromethyl isomers. The liver/muscle and kidney/muscle ratios of n-PFOS were higher than branched isomers, suggesting that n-PFOS has higher binding affinity with hepatic proteins or branched isomers are preferentially excreted though liver and kidney.

  5. Investigating humic substances interactions with Th4+, UO22+, and NpO2+ at high pH: Relevance to cementitious disposal of radioactive wastes

    NASA Astrophysics Data System (ADS)

    Stockdale, Anthony; Bryan, Nick D.; Lofts, Stephen; Tipping, Edward

    2013-11-01

    A number of geodisposal concepts for intermediate level radioactive waste involve geological emplacement within cementitious repositories. Such facilities, once rehydrated with groundwater, will create high pH environments due to aqueous phase reaction of the cements. This work focuses on the interactions of several important long-lived radionuclide cations with dissolved organic matter (DOM) constituents (humic and fulvic acids) under high pH conditions. We also sought to test the comprehensive speciation model WHAM/Humic Ion Binding Model VII for these specific conditions. Results for Th demonstrate high fractions present as organic complexes at all pH values. Binding of neptunyl to DOM shows a maximum over the pH range expected within an evolving repository. Uranyl exhibits decreasing binding with pH, however, the majority of metal in solution is present as organic complexes under the lower pH conditions investigated (10-10.5). We have updated the WHAM/Model VII binding values for UO22+, and have for the first time added NpO2+ values to the database. These updates now allow application of the model for more complex mixtures across the entire repository pH range. Calculations for three simulated cement interstitial waters (representing different degradation phases) suggest U(VI) and Np(V) are not likely to be significantly bound to DOM under these conditions.

  6. Properties and structure of raised bog peat humic acids

    NASA Astrophysics Data System (ADS)

    Klavins, Maris; Purmalis, Oskars

    2013-10-01

    Humic substances form most of the organic components of soil, peat and natural waters, and their structure and properties differ very much depending on their source. The aims of this study are to characterize humic acids (HAs) from raised bog peat, to evaluate the homogeneity of peat HAs within peat profiles, and to study peat humification impact on properties of HAs. A major impact on the structure of peat HAs have lignin-free raised bog biota (dominantly represented by bryophytes of different origin). On diagenesis scale, peat HAs have an intermediate position between the living organic matter and coal organic matter, and their structure is formed in a process in which more labile structures (carbohydrates, amino acids, etc.) are destroyed, while thermodynamically more stable aromatic and polyaromatic structures emerge as a result of abiotic synthesis. However, in comparison with soil, aquatic and other HAs, aromaticity of peat HAs is much lower. Comparatively, the raised bog peat HAs are at the beginning of the transformation process of living organic matter. Concentrations of carboxyl and phenolic hydroxyl groups change depending on the peat age and decomposition degree from where HAs have been isolated, and carboxylic acidity of peat HAs increases with peat depth and humification degree.

  7. Comparison of Antibiotic Resistance Removal Efficiencies Using Ozone Disinfection under Different pH and Suspended Solids and Humic Substance Concentrations.

    PubMed

    Pak, Gijung; Salcedo, Dennis Espineli; Lee, Hansaem; Oh, Junsik; Maeng, Sung Kyu; Song, Kyung Guen; Hong, Seok Won; Kim, Hyun-Chul; Chandran, Kartik; Kim, Sungpyo

    2016-07-19

    This study mainly evaluated the effectiveness of ozonation toward the enhancement of the removal efficiencies of antibiotic-resistant bacteria (ARB), pB10 plasmid transfer, and pB10 plasmids under different pH and suspended solids (SS) and humic acid concentrations. First, chlorination was tested as a reference disinfection process. Chlorination at a very high dose concentration of Cl2 (75 mg L(-1)) and a long contact time (10 min) were required to achieve approximately 90% ARB and pB10 plasmid transfer removal efficiencies. However, even these stringent conditions only resulted in a 78.8% reduction of pB10 plasmid concentrations. In case of ozonation, the estimated CT (concentration × contact time) value (at C0 = 7 mg L(-1)) for achieving 4-log pB10 plasmid removal efficiency was 127.15 mg·min L(-1), which was 1.04- and 1.25-fold higher than those required for ARB (122.73 mg·min L(-1)) and a model nonantibiotic resistant bacterial strain, E. coli K-12, (101.4 mg·min L(-1)), respectively. In preventing pB10 plasmid transfer, ozonation achieved better performance under conditions of higher concentrations of humic acid and lower pH. Our study results demonstrated that the applicability of CT concept in practice, conventionally used for disinfection, might not be appropriate for antibiotic resistance control in the wastewater treatment process. Further studies should be conducted in wastewater engineering on how to implement multiple barriers including disinfection to prevent ARB and ARG discharge into the environment. PMID:27389869

  8. Composition of Humic Acids of the Lake Baikal Sediments

    NASA Astrophysics Data System (ADS)

    Vishnyakova, O.; Chimitdorzhieva, G.; Andreeva, D.

    2012-04-01

    Humic substances are the final stage of the biogeochemical transformation of organic matter in the biosphere. Its natural compounds are found not only in soil, peat, coal, and sediments of basins. Chemical composition and properties of humic substances are determined by the functioning of the ecosystem as a whole. Therefore the study of the unique Lake Baikal sediments can provide information about their genesis, as well as the processes of organic matter transformation. For this purpose, preparations of humic acids (HA) were isolated by alkaline extraction method. The composition of HA was investigated by the elemental analyzer CHNS/O PerkinElmer Series II. Various located sediments of the Lake Baikal were the objects of the study: 1 - Chivyrkuisky Bay, 2 - Kotovo Bay, 3 - Selenga river delta near Dubinino village, 4 - Selenga river delta near Murzino village. Data on the elemental composition of HA in terms of ash-free portion show that the carbon content (CC) is of 50-53% with a maximum value in a sample 3, and minimum - in a sample 2. Such values are characteristic also for the soils with low biochemical activity. The hydrogen content is of 4,2-5,3%, a maximum value is in a sample 1. Data recalculation to the atomic percentages identified following regularities. The CC of HA is of 35-39 at. %. Hydrogen content is of 37-43 at. %. According to the content of these elements investigated substances are clearly divided into two groups: HA of the sediments of the Lake Baikal and river Selenga delta. The magnitude of the atomic ratio H/C can be seen varying degrees of condensation of the molecules of humic acids. The high atomic ratio H/C in HA of the former group indicates the predominance of aliphatic structures in the molecules. Humic acids of the later group are characterized by a low value H/C (<1), suggesting a large proportion of aromatic components in HA composition. In sediments of the Selenga river delta there is an addition of organic matter of terrigenous

  9. - and Cross-Polarization 13C NMR Evidence of Alterations in Molecular Composition of Humic Substances Following Afforestation with Eucalypt in Distinct Brazilian Biomes

    NASA Astrophysics Data System (ADS)

    Silva, I. R.; Soares, E. M.; Schmidt-Rohr, K.; Novais, R.; Barros, N.; Fernandes, S.

    2010-12-01

    The effect of planting fast growing tree species on SOM quality in tropical regions has been overlooked. In the present study 13C-NMR approaches were used to evaluate the impact of eucalypt cultivation on humic and fulvic acids molecular composition. The results indicate that the replacement of native vegetation by eucalypt plantations increased the relative contribution of aliphatic groups in HA from soils previously under Atlantic Forest, Grassland, and the Cerrado (Curvelo site only). The same trend was observed for FA, except in the Curvelo site. A trend for degradation and smaller contribution of O-alkyl C (carbohydrates) in HA was observed in soils under eucalyptus in Atlantic Forest and Cerrado. For FA such decreases were seen in Cerrado and Grassland biomes after eucalypt planting. In the area cultivated with pasture in the Atlantic Forest biome and in the Grassland soil, the largest contributions of lignin-derived compounds were detected in HA. The HA from the Cerrado at the Curvelo site, where the woody vegetation is virtually devoid of grassy species, showed the lowest intensity of lignin signal then those from the Cerrado sensu stricto in Itacambira, where grass species are more abundant. At our study sites, charred material are most likely derived from burning of the native vegetation, as naturally occurs in the Cerrado region, or anthropogenic fires in the Grassland biome. Burning of harvest residues in eucalypt fields was also a common practice in the early rotations. The replacement of native vegetation by eucalypt plantations increases the relative contribution of nonpolar alkyl groups in HA from soils previously under Atlantic Forest, Grassland, and the Cerrado (Curvelo site only) biomes. There is evidence of substantial contribution of lignin-derived C to HA and FA, especially in sites planted with Brachiaria sp pastures. Eucalypt introduction decreases the relative contribution of carbohydrates in HA and FA. 13C DP/MAS NMR functional groups in

  10. Aliphatic structure of humic acids; a clue to their origin

    USGS Publications Warehouse

    Hatcher, P.G.; Maciel, G.E.; Dennis, L.W.

    1981-01-01

    Nuclear magnetic resonance spectra (both 1H and 13C) of humic acids from diverse depositional environments indicate the presence of aromatic chemical structures, most likely derived from lignin of vascular plants, and complex, paraffinic structures, most likely derived from algal or microbial sources. The latter components account for a major fraction of humic acid structures in both terrestrial and aquatic environments, suggesting that algae or microbes play a large role in humification of organic remains from both systems. ?? 1981.

  11. Potential function of added minerals as nucleation sites and effect of humic substances on mineral formation by the nitrate-reducing Fe(II)-oxidizer Acidovorax sp. BoFeN1.

    PubMed

    Dippon, Urs; Pantke, Claudia; Porsch, Katharina; Larese-Casanova, Phil; Kappler, Andreas

    2012-06-19

    The mobility of toxic metals and the transformation of organic pollutants in the environment are influenced and in many cases even controlled by iron minerals. Therefore knowing the factors influencing iron mineral formation and transformation by Fe(II)-oxidizing and Fe(III)-reducing bacteria is crucial for understanding the fate of contaminants and for the development of remediation technologies. In this study we followed mineral formation by the nitrate-reducing Fe(II)-oxidizing strain Acidovorax sp. BoFeN1 in the presence of the crystalline Fe(III) (oxyhydr)oxides goethite, magnetite and hematite added as potential nucleation sites. Mössbauer spectroscopy analysis of minerals precipitated by BoFeN1 in (57)Fe(II)-spiked microbial growth medium showed that goethite was formed in the absence of mineral additions as well as in the presence of goethite or hematite. The presence of magnetite minerals during Fe(II) oxidation induced the formation of magnetite in addition to goethite, while the addition of humic substances along with magnetite also led to goethite but no magnetite. This study showed that mineral formation not only depends on the aqueous geochemical conditions but can also be affected by the presence of mineral nucleation sites that initiate precipitation of the same underlying mineral phases.

  12. A Source of Terrestrial Organic Carbon to Investigate the Browning of Aquatic Ecosystems

    PubMed Central

    Lennon, Jay T.; Hamilton, Stephen K.; Muscarella, Mario E.; Grandy, A. Stuart; Wickings, Kyle; Jones, Stuart E.

    2013-01-01

    There is growing evidence that terrestrial ecosystems are exporting more dissolved organic carbon (DOC) to aquatic ecosystems than they did just a few decades ago. This “browning” phenomenon will alter the chemistry, physics, and biology of inland water bodies in complex and difficult-to-predict ways. Experiments provide an opportunity to elucidate how browning will affect the stability and functioning of aquatic ecosystems. However, it is challenging to obtain sources of DOC that can be used for manipulations at ecologically relevant scales. In this study, we evaluated a commercially available source of humic substances (“Super Hume”) as an analog for natural sources of terrestrial DOC. Based on chemical characterizations, comparative surveys, and whole-ecosystem manipulations, we found that the physical and chemical properties of Super Hume are similar to those of natural DOC in aquatic and terrestrial ecosystems. For example, Super Hume attenuated solar radiation in ways that will not only influence the physiology of aquatic taxa but also the metabolism of entire ecosystems. Based on its chemical properties (high lignin content, high quinone content, and low C:N and C:P ratios), Super Hume is a fairly recalcitrant, low-quality resource for aquatic consumers. Nevertheless, we demonstrate that Super Hume can subsidize aquatic food webs through 1) the uptake of dissolved organic constituents by microorganisms, and 2) the consumption of particulate fractions by larger organisms (i.e., Daphnia). After discussing some of the caveats of Super Hume, we conclude that commercial sources of humic substances can be used to help address pressing ecological questions concerning the increased export of terrestrial DOC to aquatic ecosystems. PMID:24124511

  13. Combination of a Copper-Ion Selective Electrode and Fluorometric Titration for the Determination of Copper(II) Ion Conditional Stability Constants of Humic Substances.

    PubMed

    Chen, Juan; Chen, Hao; Zhang, Xing-wen; Lei, Kun; Kenny, Jonathan E

    2015-11-01

    A fluorescence quenching model using copper(II) ion (Cu(2+)) ion selective electrode (Cu-ISE) is developed. It uses parallel factor analysis (PARAFAC) to model fluorescence excitation-emission matrices (EEMs) of humic acid (HA) samples titrated with Cu(2+) to resolve fluorescence response of fluorescent components to Cu(2+) titration. Meanwhile, Cu-ISE is employed to monitor free Cu(2+) concentration ([Cu]) at each titration step. The fluorescence response of each component is fit individually to a nonlinear function of [Cu] to find the Cu(2+) conditional stability constant for that component. This approach differs from other fluorescence quenching models, including the most up-to-date multi-response model that has a problematic assumption on Cu(2+) speciation, i.e., an assumption that total Cu(2+) present in samples is a sum of [Cu] and those bound by fluorescent components without taking into consideration the contribution of non-fluorescent organic ligands and inorganic ligands to speciation of Cu(2+). This paper employs the new approach to investigate Cu(2+) binding by Pahokee peat HA (PPHA) at pH values of 6.0, 7.0, and 8.0 buffered by phosphate or without buffer. Two fluorescent components (C1 and C2) were identified by PARAFAC. For the new quenching model, the conditional stability constants (logK1 and logK2) of the two components all increased with increasing pH. In buffered solutions, the new quenching model reported logK1 = 7.11, 7.89, 8.04 for C1 and logK2 = 7.04, 7.64, 8.11 for C2 at pH 6.0, 7.0, and 8.0, respectively, nearly two log units higher than the results of the multi-response model. Without buffer, logK1 and logK2 decreased but were still high (>7) at pH 8.0 (logK1 = 7.54, logK2 = 7.95), and all the values were at least 0.5 log unit higher than those (4.83 ~ 5.55) of the multi-response model. These observations indicate that the new quenching model is more intrinsically sensitive than the multi-response model in revealing strong fluorescent

  14. Comparative study for separation of atmospheric humic-like substance (HULIS) by ENVI-18, HLB, XAD-8 and DEAE sorbents: elemental composition, FT-IR, 1H NMR and off-line thermochemolysis with tetramethylammonium hydroxide (TMAH).

    PubMed

    Fan, Xingjun; Song, Jianzhong; Peng, Ping'an

    2013-11-01

    Humic-like substances (HULIS) are significant constituents of aerosols, and the isolation and characterization of HULIS by solid-phase extraction methods are dependent on the sorbents used. In this study, we used the following five methods: ENVI-18, HLB-M, HLB-N, XAD-8 and DEAE, to isolate atmospheric HULIS at an urban site. Then we conducted a comparative investigation of the HULIS chemical characteristics by means of elemental analysis, Fourier transform infrared spectroscopy, (1)H nuclear magnetic resonance spectroscopy and off-line thermochemolysis with tetramethylammonium hydroxide. The results indicate that HULIS isolated using different methods show many similarities in chemical composition and structure. Some differences were however also observed between the five isolated HULIS: HULISHLB-M contains a relatively high content of OCH group, compared to HULISENVI-18 and HULISXAD-8; HULISXAD-8 contains a relatively high content of hydrophobic and aromatic components, compared to HULISENVI-18 and HULISHLB-M; HULISDEAE contains the highest content of aromatic functional groups, as inferred by (1)H NMR spectra, but a great amount of salts generally present in the HULISDEAE and thereby limited the choices for characterizing the materials (i.e., elemental analysis and TMAH thermochemolysis); HULISHLB-N has relatively high levels of H and N, a high N/C atomic ratio, and includes N-containing functional groups, which suggests that it has been altered by 2% ammonia introduced in the eluents. In summary, we found that ENVI-18, HLB-M, and XAD-8 are preferable methods for isolation and characterization of HULIS in atmospheric aerosols. These results also suggest that caution is required when applying DEAE and HLB-N isolating methods for characterizing atmospheric HULIS.

  15. Molecular characteristics of humic acids isolated from vermicomposts and their relationship to bioactivity.

    PubMed

    Martinez-Balmori, Dariellys; Spaccini, Riccardo; Aguiar, Natália Oliveira; Novotny, Etelvino Henrique; Olivares, Fábio Lopes; Canellas, Luciano Pasqualoto

    2014-11-26

    Vermitechnology is an effective composting method, which transforms biomass into nutrient-rich organic fertilizer. Mature vermicompost is a renewable organic product containing humic substances with high biological activity. The aim of this study was to assess the chemical characteristics and the bioactivity of humic acids isolated from different vermicomposts produced with either cattle manure, sugar cane bagasse, sunflower cake from seed oil extraction, or filter cake from a sugar cane factory. More than 200 different molecules were found, and it was possible to identify chemical markers on humic acids according to the nature of the organic source. The large hydrophobic character of humic extracts and the preservation of altered lignin derivatives confer to humic acids the ability to induce lateral root emergence in maize seedlings. Humic acid-like substances extracted from plant biomass residues represent an additional valuable product of vermicomposting that can be used as a plant growth promoter. PMID:25379603

  16. Molecular characteristics of humic acids isolated from vermicomposts and their relationship to bioactivity.

    PubMed

    Martinez-Balmori, Dariellys; Spaccini, Riccardo; Aguiar, Natália Oliveira; Novotny, Etelvino Henrique; Olivares, Fábio Lopes; Canellas, Luciano Pasqualoto

    2014-11-26

    Vermitechnology is an effective composting method, which transforms biomass into nutrient-rich organic fertilizer. Mature vermicompost is a renewable organic product containing humic substances with high biological activity. The aim of this study was to assess the chemical characteristics and the bioactivity of humic acids isolated from different vermicomposts produced with either cattle manure, sugar cane bagasse, sunflower cake from seed oil extraction, or filter cake from a sugar cane factory. More than 200 different molecules were found, and it was possible to identify chemical markers on humic acids according to the nature of the organic source. The large hydrophobic character of humic extracts and the preservation of altered lignin derivatives confer to humic acids the ability to induce lateral root emergence in maize seedlings. Humic acid-like substances extracted from plant biomass residues represent an additional valuable product of vermicomposting that can be used as a plant growth promoter.

  17. Root-Shoot Signaling crosstalk involved in the shoot growth promoting action of rhizospheric humic acids.

    PubMed

    Olaetxea, Maite; Mora, Verónica; García, Andrés Calderin; Santos, Leandro Azevedo; Baigorri, Roberto; Fuentes, Marta; Garnica, María; Berbara, Ricardo Luis Louro; Zamarreño, Angel Maria; Garcia-Mina, Jose M

    2016-01-01

    Numerous studies have shown the ability of humic substances to improve plant development. This action is normally reflected in an enhancement of crop yields and quality. However, the mechanisms responsible for this action of humic substances remain rather unknown. Our studies have shown that the shoot promoting action of sedimentary humic acids is dependent of its ability to increase root hydraulic conductivity through signaling pathways related to ABA, which in turn is affected in roots by humic acids in an IAA-NO dependent way. Furthermore, these studies also indicate that the primary action of humic acids in roots might also be physical, resulting from a transient mild stress caused by humic acids associated with a fouling-cleaning cycle of wall cell pores. Finally the role of alternative signal molecules, such as ROS, and corresponding signaling pathways are also discussed and modeled in the context of the above-mentioned framework. PMID:26966789

  18. Root-Shoot Signaling crosstalk involved in the shoot growth promoting action of rhizospheric humic acids

    PubMed Central

    Olaetxea, Maite; Mora, Verónica; García, Andrés Calderin; Santos, Leandro Azevedo; Baigorri, Roberto; Fuentes, Marta; Garnica, María; Berbara, Ricardo Luis Louro; Zamarreño, Angel Maria; Garcia-Mina, Jose M.

    2016-01-01

    ABSTRACT Numerous studies have shown the ability of humic substances to improve plant development. This action is normally reflected in an enhancement of crop yields and quality. However, the mechanisms responsible for this action of humic substances remain rather unknown. Our studies have shown that the shoot promoting action of sedimentary humic acids is dependent of its ability to increase root hydraulic conductivity through signaling pathways related to ABA, which in turn is affected in roots by humic acids in an IAA-NO dependent way. Furthermore, these studies also indicate that the primary action of humic acids in roots might also be physical, resulting from a transient mild stress caused by humic acids associated with a fouling-cleaning cycle of wall cell pores. Finally the role of alternative signal molecules, such as ROS, and corresponding signaling pathways are also discussed and modeled in the context of the above-mentioned framework. PMID:26966789

  19. New priority substances of the European Water Framework Directive: biocides, pesticides and brominated flame retardants in the aquatic environment of Denmark.

    PubMed

    Vorkamp, Katrin; Bossi, Rossana; Bester, Kai; Bollmann, Ulla E; Boutrup, Susanne

    2014-02-01

    The biocides cybutryn (Irgarol) and terbutryn, the herbicides aclonifen and bifenox, the insecticides cypermethrin and heptachlor/heptachlor epoxide and the brominated flame retardant hexabromocyclododecane (HBCD) are new priority substances of the Water Framework Directive of the European Union. In order to gain knowledge about their presence in the aquatic environment in an off-season situation with regard to pesticide and biocide applications, these substances were analysed in freshwater, seawater and fish samples from Denmark. Aclonifen, bifenox, cypermethrin and heptachlor were below the limits of detection (LODs) in all samples. However, the LODs for cypermethrin and heptachlor exceeded the annual average environmental quality standards (AA-EQSs). Cybutryn, terbutryn, heptachlor epoxide and HBCD were detected in the majority of samples, with detection frequencies of 100% for heptachlor epoxide and HBCD in water and 90% in fish. No concentration was above maximum allowable concentration (MAC)-EQS values, but AA-EQS values were exceeded for all four compounds by several samples, including 100% of the water samples with regard to heptachlor epoxide. Methodological issues remain for cypermethrin, and to a certain extent for heptachlor/heptachlor epoxide, for which water LODs were above AA-EQSs although a water volume of 12L was combined with very sensitive high resolution mass spectrometry.

  20. Influence of different kind of peats on some physic-chemical properties, biochemical activity, the content of different forms of nitrogen and fractions of humic substances of The Great Vasyugan Mire

    NASA Astrophysics Data System (ADS)

    Inisheva, L. I.; Szajdak, L.

    2009-04-01

    Mires, or peatlands belong to the wetlands ecosystems where carbon is bounded in primary production and deposited as peat in water saturated, anoxic conditions. In those conditions, the rate of the supply of new organic matter has exceeded that the decomposition, resulting in carbon accumulation. Place of sampling belongs to an oligotrophic landscapes of the river Klyuch basin in spurs of Vasyugan mire. The catchment represents reference system for Bokchar swampy area (political district of Tomsk region). Landscape profile crosses main kinds of swampy biogeocoenosis (BGC) toward the mire center: paludal tall mixed forest, pine undershrub Sphagnum (high riam, trans-accumulative part of a profile, P2), pine-undershrub Sphagnum (low riam, transit part, P3), sedge-moss swamp (eluvial part, P5). The latter represents an eluvial part of a slope of watershed massif where it is accomplished discharge of excess, surface, soil-mire waters. The depth of peat deposit of sedge-moss swamp reaches 2,5m. To the depth of 0,6m there is a layer of Sphagnum raised bog peat, then it is a mesotrophic Scheuchzeria Sphagnum layer and at the bottom there is a thick layer of low-mire horsetail peat. The samples of peats were taken from two places (P2 and P3), both from the depth 0-75 cm of the great Vasyugan Mire. These materials represent (P2) Sphagnum fuscum peat (ash content ranged from 10.8 to 15.1%), but samples P3 belong to low-moor sedge peat (ash content ranged from 4.5-4.8%). The differences in water level, redox potential, pH, degree of degradation, bulk density, number of microorganisms, activity of enzymes, different kinds of nitrogen and humic substances were studied in two different peat soils characterized by different type of peat. In general in P2 the redox potential changed from 858 to /-140/ mV, higher activity of xanthine oxidase and peroxidase, different kinds of microorganisms (ammonifing bacteria and cellulose decomposing microorganisms) and different kinds of

  1. Influence of humic acid on the toxicity of copper, cadmium and lead to the unicellular alga, Synechosystis aquatilis

    SciTech Connect

    Shanmukhappa, H.; Neelakantan, K. )

    1990-06-01

    Humic acids are known to play a significant role in phytoplankton productivity by regulating the trace metals required for plant growth. Although few attempts have been made to evaluate the influence of humic acids on heavy metal toxicity to aquatic organisms, their interaction in natural waters is well documented. The present study was undertaken to evaluate the influence of humic acids (HA) extracted from mangrove sediments on Cu, Cd and Pb toxicity to the unicellular alga, Synechosystis aquatilis.

  2. Low molecular weight species in humic and fulvic fractions

    USGS Publications Warehouse

    Wilson, M.A.; Collin, P.J.; Malcolm, R.L.; Perdue, E.M.; Cresswell, P.

    1988-01-01

    Fourier transform solution 1H nuclear magnetic resonance (NMR) spectrometry with homogated water peak irradiation is a useful method for detecting low molecular weight substances in humic extracts. Succinate, acetate, methanol, formate, lactate and some aryl methoxyl compounds have been detected in extracts from a wide range of sources. In view of the controversy over whether low molecular weight substances are contaminants in humic extracts introduced by the concentration procedure, we report that some of these materials are not contaminants since 1H-NMR can be used to follow their formation from higher molecular weight species. ?? 1988.

  3. Effect of soil sorption and aquatic natural organic matter on the antibacterial activity of a fullerene water suspension.

    PubMed

    Li, Dong; Lyon, Delina Y; Li, Qilin; Alvarez, Pedro J J

    2008-09-01

    The present study investigated the association of a C60 water suspension (nC6) with natural organic matter, present as a soil constituent or dissolved in the water column, and its effect on the antibacterial activity of nC60. Sorption of nC60 to soil reduced its bioavailability and antibacterial activity, and the sorption capacity strongly depended on the organic content of the soil. Adsorption of aquatic dissolved humic substances onto nC60 and possible subsequent reactions also were found to eliminate nC60 toxicity at humic acid concentrations as low as 0.05 mg/L. These findings indicate that natural organic matter in the environment can mitigate significantly the potential impacts of nC60 on microbial activities that are important to ecosystem health.

  4. Characterization of the interaction of uranyl ions with humic acids by x-ray absorption spectroscopy

    SciTech Connect

    Reich, T.; Denecke, M.A.; Pompe, S.

    1995-11-01

    Humic substances are present throughout the environment in soil and natural water. They are organic macromolecules with a variable structural formula, molecular weight, and a wide variety of functional groups depending on their origin. In natural waters, humic substances represent the main component of the {open_quotes}dissolved organic carbon{close_quotes} (DOC). The DOC may vary considerably from 1 mg/L at sea water surfaces to 50 mg/L at the surface in dark water swamps. There is strong evidence that all actinides form complexes with humic substances in natural waters. Therefore, humic substances can play an important role in the environmental migration of radionuclides by enhancing their transport. Retardation through humic substance interaction may be also possible due to formation of precipitating agglomerates. For remediation and restoration of contaminated environmental sites and risk assessment of future nuclear waste repositories, it is important to improve the predictive capabilities for radionuclide migration through a better understanding of the interaction of radionuclides with humic substances.

  5. Ozonization of humic acids in brown coal oxidized in situ

    SciTech Connect

    S.A. Semenova; Yu.F. Patrakov; M.V. Batina

    2008-10-15

    The effect of the ozonization of humic acids in chloroform and glacial acetic acid media on the yield and component composition of the resulting products was studied. The high efficiency of ozonization in acetic acid was found. Water-soluble low-molecular-weight substances were predominant among the ozonization products.

  6. Chlorination of humic materials: Byproduct formation and chemical interpretations

    USGS Publications Warehouse

    Reckhow, D.A.; Singer, P.C.; Malcolm, R.L.

    1990-01-01

    Ten aquatic humic and fulvic acids were isolated and studied with respect to their reaction with chlorine. Yields of TOX, chloroform, trichloroacetic acid, dichloroacetic acid, dichloroacetonitrile, and 1,1,1-trichloropropanone were measured at pH 7 and 12. Humic acids produced higher concentrations than their corresponding fulvic acids of all byproducts except 1,1,1-trichloropropanone. Chlorine consumption and byproduct formation were related to fundamental chemical characteristics of the humic materials. A statistical model was proposed for activated aromatic content based on 13C NMR and base titration data. The values estimated from this model were found to be well correlated with chlorine consumption. Specific byproduct formation was related to UV absorbance, nitrogen content, or the activated aromatic content. ?? 1990 American Chemical Society.

  7. Charge characteristics of humic and fulvic acids: comparative analysis by colloid titration and potentiometric titration with continuous pK-distribution function model.

    PubMed

    Bratskaya, S; Golikov, A; Lutsenko, T; Nesterova, O; Dudarchik, V

    2008-09-01

    Charge characteristics of humic and fulvic acids of a different origin (inshore soils, peat, marine sediments, and soil (lysimetric) waters) were evaluated by means of two alternative methods - colloid titration and potentiometric titration. In order to elucidate possible limitations of the colloid titration as an express method of analysis of low content of humic substances we monitored changes in acid-base properties and charge densities of humic substances with soil depth, fractionation, and origin. We have shown that both factors - strength of acidic groups and molecular weight distribution in humic and fulvic acids - can affect the reliability of colloid titration. Due to deviations from 1:1 stoichiometry in interactions of humic substances with polymeric cationic titrant, the colloid titration can underestimate total acidity (charge density) of humic substances with domination of weak acidic functional groups (pK>6) and high content of the fractions with molecular weight below 1kDa.

  8. A log-normal distribution model for the molecular weight of aquatic fulvic acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Zhou, Q.; Maurice, P.A.; Chin, Y.-P.; Aiken, G.R.

    2000-01-01

    The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a lognormal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured M(n) and M(w) and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several types of molecular weight data, including the shapes of high- pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a log-normal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured Mn and Mw and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several type's of molecular weight data, including the shapes of high-pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.

  9. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Lovley, D.R.

    1998-01-01

    Anaerobic oxidation of [1,2-14C]vinyl chloride and [1,2- 14C]dichloroethene to 14CO2 under humic acid-reducing conditions was demonstrated. The results indicate that waterborne contaminants can be oxidized by using humic acid compounds as electron acceptors and suggest that natural aquatic systems have a much larger capacity for contaminant oxidation than previously thought.

  10. The interaction between humic acid and naphthalene after exposure to visible and UV light

    NASA Astrophysics Data System (ADS)

    Nechaev, L. V.; Tchaikovskaya, O. N.

    2015-12-01

    Dissolved organic matter plays an important role in pollution migration from human waste to aquatic environments. In this study, the effect of humic acid (HA) on the photo-chemical transformation of naphthalene by irradiation model solar and UV light was reported using fluorescence quenching titrations. It was calculated the interactions between naphthalene and humic acids. It is found that the molecular complex of humic acid and naphthalene is more stable to UV irradiation, compared with the model solar radiation. The application of molecular fluorescence spectrometry is a useful sensitive tool evaluate intermolecular HA and naphthalene interactions.

  11. Pyrolysis-mass spectrometry/pattern recognition on a well-characterized suite of humic samples

    USGS Publications Warehouse

    MacCarthy, P.; DeLuca, S.J.; Voorhees, K.J.; Malcolm, R.L.; Thurman, E.M.

    1985-01-01

    A suite of well-characterized humic and fulvic acids of freshwater, soil and plant origin was subjected to pyrolysis-mass spectrometry and the resulting data were analyzed by pattern recognition and factor analysis. A factor analysis plot of the data shows that the humic acids and fulvic acids can be segregated into two distinct classes. Carbohydrate and phenolic components are more pronounced in the pyrolysis products of the fulvic acids, and saturated and unsaturated hydrocarbons contribute more to the humic acid pyrolysis products. A second factor analysis plot shows a separation which appears to be based primarily on whether the samples are of aquatic or soil origin. ?? 1985.

  12. [Electrochemical purification of natural waters from humic compounds].

    PubMed

    Malysheva, A G; Abramov, E G; Rastiannikov, E G

    2006-01-01

    The article presents a comparative analysis of chemical substances which are formed in natural waters with different concentrations of humic and fulvic acids under the influence of ozone and chlorine, as a result of electrochemical processing. The authors present thermodynamic evaluation of the probability of the formation of transformation products under the influence of oxidizing reagents and during anode oxidation, and demonstrate the effectiveness of electrochemical purification of natural waters from humic compounds by cathode activated carbon. The scheme of a device to perform this process has been developed.

  13. Interaction of Humic Acids with Organic Toxicants

    NASA Astrophysics Data System (ADS)

    Tchaikovskaya, O. N.; Yudina, N. V.; Maltseva, E. V.; Nechaev, L. V.; Svetlichnyi, V. A.

    2016-08-01

    Interaction of humic acids with polyaromatic hydrocarbons (PAH) (naphthalene and anthracene) and triazole series fungicides (cyproconazole (CC) and tebuconazole (TC)) is investigated by the method of fluorescence quenching depending on the concentration of substances in solutions and their structural features. Humic acids were modified by mechanochemical activation in a planetary mill. The complex character of intermolecular interactions between PAH and fungicides with humic acids, including donor-acceptor and hydrophobic binding, is established. Thermodynamically stable conformations of biocide molecules were estimated using ChemOffice CS Chem3D 8.0 by methods of molecular mechanics (MM2) and molecular dynamics. Biocide molecules with pH 7 are in energetically favorable position when the benzene and triazole rings are almost parallel to each other. After acidification of solutions to pH 4.5, the CC molecule retains the geometry for which donor-acceptor interactions are possible: the benzene ring in the molecule represents the electron donor, and triazole is the acceptor. In this case, the electron density in CC is redistributed easier, which is explained by a smaller number of carbon atoms between the triazole and benzene rings, unlike TC. As a result, the TC triazole ring is protonated to a greater degree, acquiring a positive charge, and enters into donoracceptor interactions with humic acid (HA) samples. The above-indicated bond types allow HA to participate actively in sorption processes and to provide their interaction with biocides and PAH and hence, to act as detoxifying agents for recultivation of the polluted environment.

  14. Effects of peat fires on the characteristics of humic acid extracted from peat soil in Central Kalimantan, Indonesia.

    PubMed

    Yustiawati; Kihara, Yusuke; Sazawa, Kazuto; Kuramitz, Hideki; Kurasaki, Masaaki; Saito, Takeshi; Hosokawa, Toshiyuki; Syawal, M Suhaemi; Wulandari, Linda; Hendri I; Tanaka, Shunitz

    2015-02-01

    When peat forest fires happen, it leads to burn soil and also humic acids as a dominant organic matter contained in peat soil as well as the forest. The structure and properties of humic acids vary depending on their origin and environment, therefore the transformation of humic acid is also diverse. The impacts of the peat fires on peat soil from Central Kalimantan, Indonesia were investigated through the characterization of humic acids, extracted from soil in burnt and unburnt sites. The characterization of humic acids was performed by elemental composition, functional groups, molecular weight by HPSEC, pyrolysate compounds by pyrolysis-GC/MS, fluorescence spectrum by 3DEEM spectrofluorometer, and thermogravimetry. The elemental composition of each humic substance indicated that the value of H/C and O/C of humic acids from burnt sites were lower than that from unburnt sites. The molecular weight of humic acids from burnt sites was also lower than that from unburnt sites. Pyrolysate compounds of humic acids from unburnt sites differed from those of humic acids from burnt soil. The heating experiment showed that burning process caused the significant change in the properties of humic acids such as increasing the aromaticity and decreasing the molecular weight.

  15. Recovery of humic-reducing bacteria from a diversity of environments.

    PubMed

    Coates, J D; Ellis, D J; Blunt-Harris, E L; Gaw, C V; Roden, E E; Lovley, D R

    1998-04-01

    To evaluate which microorganisms might be responsible for microbial reduction of humic substances in sedimentary environments, humic-reducing bacteria were isolated from a variety of sediment types. These included lake sediments, pristine and contaminated wetland sediments, and marine sediments. In each of the sediment types, all of the humic reducers recovered with acetate as the electron donor and the humic substance analog, 2,6-anthraquinone disulfonate (AQDS), as the electron acceptor were members of the family Geobacteraceae. This was true whether the AQDS-reducing bacteria were enriched prior to isolation on solid media or were recovered from the highest positive dilutions of sediments in liquid media. All of the isolates tested not only conserved energy to support growth from acetate oxidation coupled to AQDS reduction but also could oxidize acetate with highly purified soil humic acids as the sole electron acceptor. All of the isolates tested were also able to grow with Fe(III) serving as the sole electron acceptor. This is consistent with previous studies that have suggested that the capacity for Fe(III) reduction is a common feature of all members of the Geobacteraceae. These studies demonstrate that the potential for microbial humic substance reduction can be found in a wide variety of sediment types and suggest that Geobacteraceae species might be important humic-reducing organisms in sediments.

  16. Study on the effects of humic and fulvic acids on quantum dot nanoparticles using capillary electrophoresis with laser-induced fluorescence detection.

    PubMed

    Celiz, Mary Dawn; Colón, Luis A; Watson, David F; Aga, Diana S

    2011-04-01

    The increasing production and use of quantum dot (QD) nanoparticles have caused concerns on the possibility of contaminating the aquatic and terrestrial ecosystems with wastes that may contain QDs. Therefore, studies on the behavior of QDs upon interaction with components of the natural environment have become of interest. This study investigated the fluorescence and electrophoretic mobility of carboxylic or amine polyethylene glycol (PEG)-functionalized CdSe/ZnS QDs in the presence of two aquatic humic substances (HS), Suwannee River humic and fulvic acids, using capillary electrophoresis with laser-induced fluorescence detection. Results showed initial enhancement in fluorescence of QDs at the onset of the interaction with HS, followed by fluorescence quenching at longer exposure with HS (>30 min). It was also observed that the electrophoretic mobility of QDs increases with increasing concentration of HS, suggesting an increase in the ratio in charge to hydrodynamic size of the nanoparticles. To determine if the QDs degraded upon interaction with HS, the QD-HS mixtures were dialyzed to separate free Cd2+ from intact QDs, followed by analysis of the solutions using inductively coupled plasma-mass spectrometry. Results suggested that degradation of QDs in the presence of HS did not occur within the period of incubation.

  17. Humic first, A new theory on the origin of life

    NASA Astrophysics Data System (ADS)

    Daei, Mohammad Ali; Daei, Manijeh

    2016-04-01

    In 1953, Miller &Urey through a brilliant experiment demonstrated that the building blocks of life could evolve in primitive earth conditions1. In recent years scientists revealed that organic matters are not very rare compounds in comets, asteroids, and meteorites2. These facts show simple organic molecules on early earth could be quite enough to start development of life. But, how? Many theorists have tried to explain how life emerged from non life, but failed2. There is a huge gap between the simple building blocks, like amino acid, sugar, and lipid molecules, to a living cell with a very sophisticated structure and organization. Obviously, creation of a cell needed a qualified production line which had to be durable and active, can gather all biochemical ingredients, protect them from degradation, have catalyzing ability, provide numerous opportunities for interaction between basic molecules, and above all, have capability to react to different sources of energy. We are sure this perfect factory was available on primitive earth and is nothing except humic substance! At the moment, HS, are doing nearly all of these duties, among the others, under your feet in agricultural soils4. What are humic substances? According to IHSS definition "Humic substances (HS) are major components of the natural organic matter (NOM) in soil and water as well as in geological organic deposits such as lake sediments, peats, brown coals, and shales5." They come from polymerization of organic molecules, but looking at them like a simple aggregation of different organic molecules, is a huge mistake6! It seems they do not come together except for making a capable structure! HS are the first organic machinery which appeared in proplanetary disk, more than four billion years ago. Derived from simple inorganic molecules, humic substances construct a firm intermediate structure which connects none life to life. In other word, life road pass over the humic bridge. This does not mean that

  18. A spectroscopic study of possible mechanism of flubendiamide sorption onto humic acids

    NASA Astrophysics Data System (ADS)

    Cavoski, I.; D'Orazio, V.; Caboni, P.; Miano, T.

    2009-04-01

    Flubendiamide,N'-[1,1-dimethyl-2-(methylsulfonyl)ethyl]-3-iodo-N-{4-[2,2,2 tetrafluoro-1-(trifluoromethyl)ethyl]-0-tolyl} phthalimide is a potent insecticide widely used against lepidopteran pests on a large variety of annual and perennial crops, and belonging to a new chemical class, the phthalic acid diamides. Residues of flubendiamide and its metabolite, the desiodo flubendiamide, were determined in a number of crops. It is stable both under aerobic-anaerobic soil conditions and aerobic-aquatic laboratory conditions whereas it degrades in field condition very slowly. Flubendiamide is almost insoluble in water. Because soils exhibit a marked affinity for hydrophobic organic compounds, they exert an essential role in controlling the environmental fate of these chemicals. There are numerous physical, physico-chemical and chemical binding mechanisms between organic pollutants and soil organic matter. However, the nature and the extent of these binding mechanisms for highly hydrophobic contaminants are not yet fully understood. Humic substances play a major role in the sorption of hydrophobic organic compounds in soils. Adsorption of hydrophobic, non-polar organic compounds can be considered as a non-specific, partitioning process between soil water and soil organic phase, such as the mechanism for retention of nonionic, non-polar organic pollutant that weakly interact with water. The sensitive and nondestructive nature of fluorescence spectroscopy renders this technique well suitable in analysing the physico-chemical properties of organic matter of various origin, as well as a powerful approach both to carry out studies on the structural and functional properties of HA and to investigate their interaction with metals and/or organic contaminants. Fourier-transform infrared (FT-IR) and fluorescence spectroscopies were used to obtain specific information about the mechanisms involved in flubendiamide sorption onto HAs. The HA-flubendiamide interaction products were

  19. Possible mechanism of flubendiamide sorption onto humic acids: a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Cavoski, I.; D'Orazio, V.; Caboni, P.; Miano, T.

    2009-04-01

    Flubendiamide,N'-[1,1-dimethyl-2-(methylsulfonyl)ethyl]-3-iodo-N-{4-[2,2,2 tetrafluoro-1-(trifluoromethyl)ethyl]-0-tolyl} phthalimide is a potent insecticide widely used against lepidopteran pests on a large variety of annual and perennial crops, and belonging to a new chemical class, the phthalic acid diamides. Residues of flubendiamide and its metabolite, the desiodo flubendiamide, were determined in a number of crops. It is stable both under aerobic-anaerobic soil conditions and aerobic-aquatic laboratory conditions whereas it degrades in field condition very slowly. Flubendiamide is almost insoluble in water. Because soils exhibit a marked affinity for hydrophobic organic compounds, they exert an essential role in controlling the environmental fate of these chemicals. There are numerous physical, physico-chemical and chemical binding mechanisms between organic pollutants and soil organic matter. However, the nature and the extent of these binding mechanisms for highly hydrophobic contaminants are not yet fully understood. Humic substances play a major role in the sorption of hydrophobic organic compounds in soils. Adsorption of hydrophobic, non-polar organic compounds can be considered as a non-specific, partitioning process between soil water and soil organic phase, such as the mechanism for retention of nonionic, non-polar organic pollutant that weakly interact with water. The sensitive and nondestructive nature of fluorescence spectroscopy renders this technique well suitable in analysing the physico-chemical properties of organic matter of various origin, as well as a powerful approach both to carry out studies on the structural and functional properties of HA and to investigate their interaction with metals and/or organic contaminants. Fourier-transform infrared (FT-IR) and fluorescence spectroscopies were used to obtain specific information about the mechanisms involved in flubendiamide sorption onto HAs. The HA-flubendiamide interaction products were

  20. Potentiometric titration and equivalent weight of humic acid

    USGS Publications Warehouse

    Pommer, A.M.; Breger, I.A.

    1960-01-01

    The "acid nature" of humic acid has been controversial for many years. Some investigators claim that humic acid is a true weak acid, while others feel that its behaviour during potentiometric titration can be accounted for by colloidal adsorption of hydrogen ions. The acid character of humic acid has been reinvestigated using newly-derived relationships for the titration of weak acids with strong base. Re-interpreting the potentiometric titration data published by Thiele and Kettner in 1953, it was found that Merck humic acid behaves as a weak polyelectrolytic acid having an equivalent weight of 150, a pKa of 6.8 to 7.0, and a titration exponent of about 4.8. Interdretation of similar data pertaining to the titration of phenol-formaldehyde and pyrogallol-formaldehyde resins, considered to be analogs for humic acid by Thiele and Kettner, leads to the conclusion that it is not possible to differentiate between adsorption and acid-base reaction for these substances. ?? 1960.

  1. Humic first, A new theory on the origin of life

    NASA Astrophysics Data System (ADS)

    Daei, Mohammad Ali; Daei, Manijeh

    2016-04-01

    In 1953, Miller &Urey through a brilliant experiment demonstrated that the building blocks of life could evolve in primitive earth conditions1. In recent years scientists revealed that organic matters are not very rare compounds in comets, asteroids, and meteorites2. These facts show simple organic molecules on early earth could be quite enough to start development of life. But, how? Many theorists have tried to explain how life emerged from non life, but failed2. There is a huge gap between the simple building blocks, like amino acid, sugar, and lipid molecules, to a living cell with a very sophisticated structure and organization. Obviously, creation of a cell needed a qualified production line which had to be durable and active, can gather all biochemical ingredients, protect them from degradation, have catalyzing ability, provide numerous opportunities for interaction between basic molecules, and above all, have capability to react to different sources of energy. We are sure this perfect factory was available on primitive earth and is nothing except humic substance! At the moment, HS, are doing nearly all of these duties, among the others, under your feet in agricultural soils4. What are humic substances? According to IHSS definition "Humic substances (HS) are major components of the natural organic matter (NOM) in soil and water as well as in geological organic deposits such as lake sediments, peats, brown coals, and shales5." They come from polymerization of organic molecules, but looking at them like a simple aggregation of different organic molecules, is a huge mistake6! It seems they do not come together except for making a capable structure! HS are the first organic machinery which appeared in proplanetary disk, more than four billion years ago. Derived from simple inorganic molecules, humic substances construct a firm intermediate structure which connects none life to life. In other word, life road pass over the humic bridge. This does not mean that

  2. Evaluation of humic fractions potential to produce bio-oil through catalytic hydroliquefaction.

    PubMed

    Lemée, L; Pinard, L; Beauchet, R; Kpogbemabou, D

    2013-12-01

    Humic substances were extracted from biodegraded lignocellulosic biomass (LCBb) and submitted to catalytic hydroliquefaction. The resulting bio-oils were compared with those of the initial biomass. Compared to fulvic and humic acids, humin presented a high conversion rate (74 wt.%) and the highest amount of liquid fraction (66 wt.%). Moreover it represented 78% of LCBb. Humin produced 43 wt.% of crude oil and 33 wt.% of hexane soluble fraction containing hydrocarbons which is a higher yield than those from other humic substances as well as from the initial biomass. Hydrocarbons were mainly aromatics, but humin produces the highest amount of aliphatics. Considering the quantity, the quality and the molecular composition of the humic fractions, a classification of the potential of the latter to produce fuel using hydroliquefaction process can be assess: Hu>AF>AH. The higher heating value (HHV) and oxygen content of HSF from humin were fully compatible with biofuel characteristics. PMID:24140851

  3. Limitations in the use of commercial humic acids in water and soil research

    USGS Publications Warehouse

    Malcolm, R.L.; MacCarthy, P.

    1986-01-01

    Seven samples of commercial "humic acids", purchased from five different suppliers, were studied, and their characteristics were compared with humic and fulvic acids isolated from streams, soils, peat, leonardite, and a dopplerite sample. Cross-polarization and magic-angle spinning 13C NMR spectroscopy clearly shows pronounced differences between the commercial materials and all other samples. Elemental and infrared spectroscopic data do not show such clear-cut differences but can be used as supportive evidence, with the 13C NMR data, to substantiate the above distinctions. As a result of these differences and due to the general lack of information relating to the source, method of isolation, or other pretreatment of the commercial materials, these commercial products are not considered to be appropriate for use as analogues of true soil and water humic substances, in experiments designed to evaluate the nature and reactivity of humic substances in natural waters and soils.

  4. On the acid-base properties of humic acid in soil.

    PubMed

    Cooke, James D; Hamilton-Taylor, John; Tipping, Edward

    2007-01-15

    Humic acid was isolated from three contrasting organic-rich soils and acid-base titrations performed over a range of ionic strengths. Results obtained were unlike most humic acid data sets; they showed a greater ionic strength dependency at low pH than at high pH. Forward- and back-titrations with the base and acid revealed hysteresis, particularly at low pH. Previous authors attributed this type of hysteresis to humic acid aggregates-created during the isolation procedure-being redissolved during titration as the pH increased and regarded the results as artificial. However, forward- and back-titrations with organic-rich soils also demonstrated a similar hysteretic behavior. These observations indicate (i) that titrations of humic acid in aggregated form (as opposed to the more usual dissolved form) are more representative of the acid-base properties of humic acid in soil and (ii) that the ionic strength dependency of proton binding in humic acid is related to its degree of aggregation. Thus, the current use of models based on data from dissolved humic substances to predictthe acid-base properties of humic acid in soil under environmental conditions may be flawed and could substantially overestimate their acid buffering capacity.

  5. Reduction and Reoxidation of Humic Acid: Influence on Spectroscopic Properties and Proton Binding

    SciTech Connect

    Maurer, F.; Christl, I; Kretzschmar, R

    2010-01-01

    Previous studies on proton and metal binding to humic substances have not considered a potential influence of reduction and oxidation of functional groups. Therefore, we investigated how proton binding of a purified soil humic acid was affected by reduction. Reduction of the humic acid was carried out using an electrochemical cell that allowed us to measure the amounts of electrons and protons involved in reduction reactions. We further applied spectroscopic methods (UV-vis, fluorescence, FT-IR, C-1s NEXAFS) to detect possible chemical changes in the humic acid induced by reduction and reoxidation. The effect of reduction on proton binding was determined with acid-base titrations in the pH range 4-10 under controlled redox conditions. During reduction, 0.54 mol kg{sup -1} protons and 0.55 mol kg{sup -1} electrons were transferred to humic acid. NICA-Donnan modeling revealed an equivalent increase in proton-reactive sites (0.52 mol kg{sup -1}) in the alkaline pH-range. Our results indicate that reduction of humic acid increased the amount of proton-reactive sites by 15% compared to the untreated state. Spectroscopic differences between the untreated and reduced humic acid were minor, apart from a lower UV-vis absorption of the reduced humic acid between 400 and 700 nm.

  6. Humic and fluvic acids and organic colloidal materials in the environment

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.; Clark, S.B.

    1996-04-01

    Humic substances are ubiquitous in the environment, occurring in all soils, waters, and sediments of the ecosphere. Humic substances arise from the decomposition of plant and animal tissues yet are more stable than their precursors. Their size, molecular weight, elemental composition, structure, and the number and position of functional groups vary, depending on the origin and age of the material. Humic and fulvic substances have been studied extensively for more than 200 years; however, much remains unknown regarding their structure and properties. Humic substances are those organic compounds found in the environment that cannot be classified as any other chemical class of compounds. They are traditionally defined according to their solubilities. Fulvic acids are those organic materials that are soluble in water at all pH values. Humic acids are those materials that are insoluble at acidic pH values (pH < 2) but are soluble at higher pH values. Humin is the fraction of natural organic materials that is insoluble in water at all pH values. These definitions reflect the traditional methods for separating the different fractions from the original mixture. The humic content of soils varies from 0 to almost 10%. In surface waters, the humic content, expressed as dissolved organic carbon (DOC), varies from 0.1 to 50 ppm in dark-water swamps. In ocean waters, the DOC varies from 0.5 to 1.2 ppm at the surface, and the DOC in samples from deep groundwaters varies from 0.1 to 10 ppm. In addition, about 10% of the DOC in surface waters is found in suspended matter, either as organic or organically coated inorganic particulates. Humic materials function as surfactants, with the ability to bind both hydrophobic and hydrophyllic materials, making numic and fluvic materials effective agents in transporting both organic and inorganic contaminants in the environment.

  7. Acid-base properties of humic substances from composted and thermally-dried sewage sludges and amended soils as determined by potentiometric titration and the NICA-Donnan model.

    PubMed

    Fernández, José M; Plaza, César; Senesi, Nicola; Polo, Alfredo

    2007-09-01

    The acid-base properties of humic acids (HAs) and fulvic acids (FAs) isolated from composted sewage sludge (CS), thermally-dried sewage sludge (TS), soils amended with either CS or TS at a rate of 80 t ha(-1)y(-1) for 3y and the corresponding unamended soil were investigated by use of potentiometric titrations. The non-ideal competitive adsorption (NICA)-Donnan model for a bimodal distribution of proton binding sites was fitted to titration data by use of a least-squares minimization method. The main fitting parameters of the NICA-Donnan model obtained for each HA and FA sample included site densities, median affinity constants and widths of affinity distributions for proton binding to low and high affinity sites, which were assumed to be, respectively, carboxylic- and phenolic-type groups. With respect to unamended soil HA and FA, the HAs and FAs from CS, and especially TS, were characterized by smaller acidic functional group contents, larger proton binding affinities of both carboxylic- and phenolic-type groups, and smaller heterogeneity of carboxylic and phenolic-type groups. Amendment with CS or TS led to a decrease of acidic functional group contents and a slight increase of proton binding affinities of carboxylic- and phenolic-type groups of soil HAs and FAs. These effects were more evident in the HA and FA fractions from CS-amended soil than in those from TS-amended soil.

  8. Interaction of humic acids and humic-acid-like polymers with herpes simplex virus type 1

    NASA Astrophysics Data System (ADS)

    Klöcking, Renate; Helbig, Björn

    The study was performed in order to compare the antiviral activity against herpes simplex virus type 1 (HSV-1) of synthetic humic-acid-like polymers to that of their low-molecular-weight basic compounds and naturally occurring humic acids (HA) in vitro. HA from peat water showed a moderate antiviral activity at a minimum effective concentration (MEC) of 20 µg/ml. HA-like polymers, i.e. the oxidation products of caffeic acid (KOP), hydrocaffeic acid (HYKOP), chlorogenic acid (CHOP), 3,4-dihydroxyphenylacetic acid (3,4-DHPOP), nordihydroguaretic acid (NOROP), gentisinic acid (GENOP), pyrogallol (PYROP) and gallic acid (GALOP), generally inhibit virus multiplication, although with different potency and selectivity. Of the substances tested, GENOP, KOP, 3,4-DHPOP and HYKOP with MEC values in the range of 2 to 10 µg/ml, proved to be the most potent HSV-1 inhibitors. Despite its lower antiviral potency (MEC 40 µg/ml), CHOP has a remarkable selectivity due to the high concentration of this polymer that is tolerated by the host cells (>640 µg/ml). As a rule, the antiviral activity of the synthetic compounds was restricted to the polymers and was not preformed in the low-molecular-weight basic compounds. This finding speaks in favour of the formation of antivirally active structures during the oxidative polymerization of phenolic compounds and, indirectly, of corresponding structural parts in different HA-type substances.

  9. Pyrolysis GC-MS and NMR studies of humics in contaminated sediments

    SciTech Connect

    Higashi, R.M.; Fan, T.W.M.; Lane, A.N.

    1994-12-31

    Sediment ``humics`` play a major role in sorption and chemical reactions of organic and metal pollutants, as well as of nutrients, detritus, and other naturally-occurring chemicals. Not surprisingly, the chemical structure of humics is very important in this regard. The problem is, humics are among the most complex and least-understood substances in the world. This is because the primary structure is heterologous, unlike most other macromolecules which are polymeric; thus, researchers could not obtain coherent structures to identify with properties. However, recent advances in NMR spectroscopy and pyrolysis GC-MS have enabled researchers to begin relating primary and higher order structural motifs germane to the chemistry of the refractory humics. The authors have explored various means of sediment extraction for humics analysis by these techniques, including direct analysis of unextracted sediments. Marine sediments from near produced water discharges, salt marshes, and dredge material were surveyed. The study has revealed interpretive pitfalls, depending on the method of humic extraction. These difficulties are expected since the approach is at its infancy, but the overall approach is clearly useful in probing the humic structure profile of marine sediments.

  10. Different Resistance to UV-B Radiation of Extracellular Polymeric Substances of Two Cyanobacteria from Contrasting Habitats.

    PubMed

    Song, Wenjuan; Zhao, Chenxi; Zhang, Daoyong; Mu, Shuyong; Pan, Xiangliang

    2016-01-01

    The effects of UV-B radiation (UVBR) on photosynthetic activity (Fv/Fm) of aquatic Synechocystis sp. and desert Chroococcus minutus and effects on composition and fluorescence property of extracellular polymeric substances (EPSs) from Synechocystis sp. and C. minutus were comparatively investigated. The desert cyanobacterium species C. minutus showed higher tolerance of PSII activity (Fv/Fm) to UVBR than the aquatic Synechocystis sp., and the inhibited PSII activity of C. minutus could be fully recovered while that of Synechocystis sp. could be partly recovered. UVBR had significant effect on the yield and biochemical composition of EPS of both species. Protein-like and humic acid-like substances were detected in EPS from Synechocystis sp., and protein-like and phenol-like fluorescent compounds were detected in EPS from C. minutus. Proteins in EPS of desert and aquatic species were significantly decomposed under UVBR, and the latter was more easily decomposed. The polysaccharides were much more resistant to UVBR than the proteins for both species. Polysaccharides of Synechocystis sp. was degraded slightly but those of C. minutus was little decomposed. The higher tolerance to UVBR of the desert cyanobacterium can be attributed to the higher resistance of its EPS to photodegradation induced by UVBR in comparison with the aquatic species. PMID:27597841

  11. Different Resistance to UV-B Radiation of Extracellular Polymeric Substances of Two Cyanobacteria from Contrasting Habitats

    PubMed Central

    Song, Wenjuan; Zhao, Chenxi; Zhang, Daoyong; Mu, Shuyong; Pan, Xiangliang

    2016-01-01

    The effects of UV-B radiation (UVBR) on photosynthetic activity (Fv/Fm) of aquatic Synechocystis sp. and desert Chroococcus minutus and effects on composition and fluorescence property of extracellular polymeric substances (EPSs) from Synechocystis sp. and C. minutus were comparatively investigated. The desert cyanobacterium species C. minutus showed higher tolerance of PSII activity (Fv/Fm) to UVBR than the aquatic Synechocystis sp., and the inhibited PSII activity of C. minutus could be fully recovered while that of Synechocystis sp. could be partly recovered. UVBR had significant effect on the yield and biochemical composition of EPS of both species. Protein-like and humic acid-like substances were detected in EPS from Synechocystis sp., and protein-like and phenol-like fluorescent compounds were detected in EPS from C. minutus. Proteins in EPS of desert and aquatic species were significantly decomposed under UVBR, and the latter was more easily decomposed. The polysaccharides were much more resistant to UVBR than the proteins for both species. Polysaccharides of Synechocystis sp. was degraded slightly but those of C. minutus was little decomposed. The higher tolerance to UVBR of the desert cyanobacterium can be attributed to the higher resistance of its EPS to photodegradation induced by UVBR in comparison with the aquatic species.

  12. Different Resistance to UV-B Radiation of Extracellular Polymeric Substances of Two Cyanobacteria from Contrasting Habitats

    PubMed Central

    Song, Wenjuan; Zhao, Chenxi; Zhang, Daoyong; Mu, Shuyong; Pan, Xiangliang

    2016-01-01

    The effects of UV-B radiation (UVBR) on photosynthetic activity (Fv/Fm) of aquatic Synechocystis sp. and desert Chroococcus minutus and effects on composition and fluorescence property of extracellular polymeric substances (EPSs) from Synechocystis sp. and C. minutus were comparatively investigated. The desert cyanobacterium species C. minutus showed higher tolerance of PSII activity (Fv/Fm) to UVBR than the aquatic Synechocystis sp., and the inhibited PSII activity of C. minutus could be fully recovered while that of Synechocystis sp. could be partly recovered. UVBR had significant effect on the yield and biochemical composition of EPS of both species. Protein-like and humic acid-like substances were detected in EPS from Synechocystis sp., and protein-like and phenol-like fluorescent compounds were detected in EPS from C. minutus. Proteins in EPS of desert and aquatic species were significantly decomposed under UVBR, and the latter was more easily decomposed. The polysaccharides were much more resistant to UVBR than the proteins for both species. Polysaccharides of Synechocystis sp. was degraded slightly but those of C. minutus was little decomposed. The higher tolerance to UVBR of the desert cyanobacterium can be attributed to the higher resistance of its EPS to photodegradation induced by UVBR in comparison with the aquatic species. PMID:27597841

  13. Adsorption of phenanthrene, 2-naphthol, and 1-naphthylamine to colloidal oxidized multiwalled carbon nanotubes: effects of humic acid and surfactant modification.

    PubMed

    Hou, Lei; Zhu, Dongqiang; Wang, Ximeng; Wang, Lilin; Zhang, Chengdong; Chen, Wei

    2013-03-01

    Carbon nanotubes (CNTs) can exist in the form of colloidal suspension in aquatic environments, particularly in the presence of natural organic matter or surfactants, and may significantly affect the fate and transport of organic contaminants. In the present study, the authors examined the adsorption of phenanthrene, 2-naphthol, and 1-naphthylamine to three colloidal CNTs, including a stable suspension of oxidized multiwalled carbon nanotubes (O-MWNT), a humic acid (HA)-modified colloidal O-MWNT, and a sodium dodecyl sulfate (SDS)-modified colloidal O-MWNT. All three colloidal O-MWNTs exhibit strong adsorption affinities to the three test compounds (with K(OC) values orders of magnitude greater than those of natural organic matter), likely resulting from strong nonhydrophobic interactions such as π-π electron donor-acceptor interactions and Lewis acid-base interactions. When thoroughly mixed, HA (at ∼310 mg HA/g CNT) and SDS (at ∼750 mg SDS/g CNT) significantly affected the aggregation properties of O-MWNT, causing individually dispersed tubes to form a loosely entangled network. The effects of HA or SDS modification on adsorption are twofold. Adsorption of HA/SDS significantly reduces surface areas of O-MWNT; however, the entangled network allows adsorbate molecules to interact simultaneously with multiple tubes. An important implication is that humic substances and surfactant-like materials not only facilitate the formation of colloidal carbon nanoparticles but also affect how these colloidal carbon nanoparticles adsorb organic contaminants.

  14. Photo-transformation of pedogenic humic acid and consequences for Cd(II), Cu(II) and Pb(II) speciation and bioavailability to green microalga.

    PubMed

    Worms, Isabelle A M; Adenmatten, David; Miéville, Pascal; Traber, Jacqueline; Slaveykova, Vera I

    2015-11-01

    Humic substances (HS) play key role in toxic metal binding and protecting aquatic microorganisms from metal-induced stress. Any environmental changes that could alter HS concentration and reactivity can be expected to modify metal complexation and thus affect metal speciation and bioavailability to microalgae. The present study explores the influence of increased solar irradiance on the chemical structures and molecular weight of Elliott soil humic acid (EHA) and the associated consequences for Cd(II), Cu(II) and Pb(II) complexation and intracellular metal content in microalga. The results demonstrate that high radiance doses induce an oxidation of EHA with a formation of low molecular weight acids, an increase of -OH and -COOH group abundance, and a drop in EHA hydrodynamic size and molecular weight. The photo-induced structural changes are accompanied with a release of metal from M-EHA complexes and narrowing their size distribution, which in turn results in an increase of the intracellular Cd, Cu and Pb contents in microalga Chlamydomonas reinhardtii in agreement with the measured free metal ions concentrations. PMID:25563161

  15. Effects of heating on composition, degree of darkness, and stacking nanostructure of soil humic acids.

    PubMed

    Katsumi, Naoya; Yonebayashi, Koyo; Okazaki, Masanori

    2016-01-15

    Wildfires and prescribed burning can affect both the quality and the quantity of organic matter in soils. In this study, we investigated qualitative and quantitative changes of soil humic substances in two different soils (an Entisol from a paddy field and an Inceptisol from a cedar forest) under several controlled heating conditions. Soil samples were heated in a muffle furnace at 200, 250, or 300 °C for 1, 3, 5, or 12h. The humic acid and fulvic acid contents of the soil samples prior to and after heating were determined. The degree of darkness, elemental composition, carbon and nitrogen stable isotope ratios, (13)C nuclear magnetic resonance spectra, and X-ray diffraction patterns of humic acids extracted from the soils before and after heating were measured. The proportion of humic acids in total carbon decreased with increasing heating time at high temperature (300 °C), but increased with increasing heating time at ≤ 250 °C. The degree of darkness of the humic acids increased with increasing heating time and temperature. During darkening, the H/C atomic ratios, the proportion of aromatic C, and the carbon and nitrogen stable isotope ratios increased, whereas the proportions of alkyl C and O-alkyl C decreased. X-ray diffraction analysis verified that a stacking nanostructure developed by heating. Changes in the chemical structure of the humic acids from the heated soils depended on the type of soil. The major structural components of the humic acids from the heated Entisol were aromatic C and carboxylic C, whereas aliphatic C, aromatic C, and carboxylic C structural components were found in the humic acids from the heated Inceptisol. These results suggest that the heat-induced changes in the chemical structure of the humic acids depended on the source plant.

  16. Effects of heating on composition, degree of darkness, and stacking nanostructure of soil humic acids.

    PubMed

    Katsumi, Naoya; Yonebayashi, Koyo; Okazaki, Masanori

    2016-01-15

    Wildfires and prescribed burning can affect both the quality and the quantity of organic matter in soils. In this study, we investigated qualitative and quantitative changes of soil humic substances in two different soils (an Entisol from a paddy field and an Inceptisol from a cedar forest) under several controlled heating conditions. Soil samples were heated in a muffle furnace at 200, 250, or 300 °C for 1, 3, 5, or 12h. The humic acid and fulvic acid contents of the soil samples prior to and after heating were determined. The degree of darkness, elemental composition, carbon and nitrogen stable isotope ratios, (13)C nuclear magnetic resonance spectra, and X-ray diffraction patterns of humic acids extracted from the soils before and after heating were measured. The proportion of humic acids in total carbon decreased with increasing heating time at high temperature (300 °C), but increased with increasing heating time at ≤ 250 °C. The degree of darkness of the humic acids increased with increasing heating time and temperature. During darkening, the H/C atomic ratios, the proportion of aromatic C, and the carbon and nitrogen stable isotope ratios increased, whereas the proportions of alkyl C and O-alkyl C decreased. X-ray diffraction analysis verified that a stacking nanostructure developed by heating. Changes in the chemical structure of the humic acids from the heated soils depended on the type of soil. The major structural components of the humic acids from the heated Entisol were aromatic C and carboxylic C, whereas aliphatic C, aromatic C, and carboxylic C structural components were found in the humic acids from the heated Inceptisol. These results suggest that the heat-induced changes in the chemical structure of the humic acids depended on the source plant. PMID:26398447

  17. Properties and structure of peat humic acids depending on humification and precursor biota in bogs

    NASA Astrophysics Data System (ADS)

    Klavins, Maris; Purmalis, Oskars

    2013-04-01

    Humic substances form most of the organic component of soil, peat and natural waters, but their structure and properties very much differs depending on their source. The aim of this study is to characterize humic acids from raised bog peat profiles to evaluate the homogeneity of humic acids isolated from the bog bodies and study peat humification impact on properties of humic acids. A major impact on the structure of peat humic acids have raised bog biota (dominantly represented by bryophytes of different origin) void of lignin. For characterization of peat humic acids their elemental (CHNOS), functional (-COOH, phenolic OH) analysis, spectroscopic characterization (UV, fluorescence, FTIR, 1H NMR, CP/MAS 13C NMR, ESR) and degradation studies (Py-GC/MS) were done. Peat humic acids (HA) have an intermediate position between the living organic matter and coal organic matter and their structure is formed in a process in which more labile structures (carbohydrates, amino acids, etc.) are destroyed, but thermodynamically more stable aromatic and polyaromatic structures emerge. Comparatively, the studied peat HAs are at the start of the transformation process of living organic matter. Concentrations of carboxyl and phenolic hydroxyl groups changes depending on the depth of peat from which HAs have been isolated: and carboxylic acidity is increasing with depth of peat location and the humification degree. The ability to influence the surface tension of peat humic acids isolated from a well-characterized bog profile demonstrates dependence on age and humification degree. With increase of the humification degree and age of humic acids, their molecular complexity and ability to influence surface tension decreases; even so, the impact of the biological precursor (peat-forming bryophytes and plants) can be identified.

  18. Triad method for assessing the remediation effect of humic preparations on urbanozems

    NASA Astrophysics Data System (ADS)

    Pukalchik, M. A.; Terekhova, V. A.; Yakimenko, O. S.; Kydralieva, K. A.; Akulova, M. I.

    2015-06-01

    The data on the pollutant content, ecological toxicity, and structural and functional specifics of soil microbial communities in urbanozem sampled in the city of Kirov were used to describe the remediation effect of humic substances (lignohumate and nanomagnetitohumate). The integral index of environmental risk on contaminated and background soil sites was calculated using the triad method. Based on varying Chemical Risk Index, Ecotoxicological Risk Index, and Ecological Risk Index, this method proved that humic substances are able to reduce ecological toxicity and transform the ecophysiological indices of biota in urban soils. The most vivid effect of humic products has been revealed on introduction of 0.0025 and 0.01% mass. The biological activity of nanomagnetitohumate and lignohumate, rather than their ability to bind toxicants, is apparently the principal factor controlling their remediating effect.

  19. Natural organic matter-mediated phase transfer of quantum dots in the aquatic environment.

    PubMed

    Navarro, Divina A G; Watson, David F; Aga, Diana S; Banerjee, Sarbajit

    2009-02-01

    Imminent commercialization of semiconductor quantum dots (QDs) has raised concerns regarding the potential environmental impact of these materials. Understanding the partitioning behavior and obtaining information on the mobility and persistence of QDs in water is key to evaluating potential ecological hazards posed by QDs in the environment The role of natural organic matter (NOM) in the phase transfer of trioctylphosphine oxide-capped CdSe QDs from an organic solvent to water has been investigated. Results show that humic and fulvic acids, which have been used as model NOM, facilitate the stabilization of organic-capped QDs in water in less than 24 h. Spectroscopic studies indicate that some or all of the organic ligands of QDs are conserved during the phase transfer. The displacement of organic ligands by NOM also appears to play a role in phase transfer. This NOM-mediated phase transfer has also been demonstrated using two natural surface water samples. This study presents the first evidence of the stabilization of QDs in water by humic substances in real environmental samples, illustrating that interactions with NOM will play a significant role in the fate and transport of QDs in natural aquatic systems.

  20. Speciation of sulfur in humic and fulvic acids using X-ray absorption near-edge structure (XANES) spectroscopy

    NASA Astrophysics Data System (ADS)

    Morra, Matthew J.; Fendorf, Scott E.; Brown, Paul D.

    1997-02-01

    Sulfur species in soils and sediments have previously been determined indirectly using destructive techniques. A direct and more accurate method for S speciation would improve our understanding of S biogeochemistry. X-ray absorption near edge structure (XANES) spectroscopy was performed on purified humic and fulvic acids from terrestrial and aquatic environments. This methodology allows direct determination of S species using the relationship that exists with the energy required for core electron transitions and in some cases, correlation with additional spectral features. Soil, peat, and aquatic humic acids were dominated by sulfonates with an oxidation state of +5, but also contained ester-bonded sulfates with an oxidation state of +6. Leonardite humic acid contained ester-bonded sulfate and an unidentified S compound with an oxidation state of +4.0. In contrast, high-valent S in soil, peat, and aquatic fulvic acids was exclusively in the form of sulfonic acids. Reduced S species were also present in both humic and fulvic acids. XANES is a valuable method for the speciation of S in humic materials and of potential use in S speciation of unfractionated soils.

  1. 40 CFR 795.70 - Indirect photolysis screening test: Sunlight photolysis in waters containing dissolved humic...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the indirect (or sensitized) photoreaction of dissolved organic chemicals. This reactivity is imparted by dissolved organic material (DOM) in the form of humic substances. These materials absorb sunlight... can be diluted to a dissolved organic carbon (DOC) content and uv-visible absorbance typical of...

  2. 40 CFR 795.70 - Indirect photolysis screening test: Sunlight photolysis in waters containing dissolved humic...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the indirect (or sensitized) photoreaction of dissolved organic chemicals. This reactivity is imparted by dissolved organic material (DOM) in the form of humic substances. These materials absorb sunlight... can be diluted to a dissolved organic carbon (DOC) content and uv-visible absorbance typical of...

  3. 40 CFR 795.70 - Indirect photolysis screening test: Sunlight photolysis in waters containing dissolved humic...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the indirect (or sensitized) photoreaction of dissolved organic chemicals. This reactivity is imparted by dissolved organic material (DOM) in the form of humic substances. These materials absorb sunlight... can be diluted to a dissolved organic carbon (DOC) content and uv-visible absorbance typical of...

  4. 40 CFR 795.70 - Indirect photolysis screening test: Sunlight photolysis in waters containing dissolved humic...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the indirect (or sensitized) photoreaction of dissolved organic chemicals. This reactivity is imparted by dissolved organic material (DOM) in the form of humic substances. These materials absorb sunlight... can be diluted to a dissolved organic carbon (DOC) content and uv-visible absorbance typical of...

  5. 40 CFR 795.70 - Indirect photolysis screening test: Sunlight photolysis in waters containing dissolved humic...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the indirect (or sensitized) photoreaction of dissolved organic chemicals. This reactivity is imparted by dissolved organic material (DOM) in the form of humic substances. These materials absorb sunlight... can be diluted to a dissolved organic carbon (DOC) content and uv-visible absorbance typical of...

  6. Humic analog AQDS and AQS as an electron mediator can enhance chromate reduction by Bacillus sp. strain 3C3.

    PubMed

    Hong, Yiguo; Wu, Peng; Li, Wenru; Gu, Jiguang; Duan, Shunshan

    2012-03-01

    Humus as an electron mediator is recognized as an effective strategy to improve the biological transformation and degradation of toxic substances, yet the action of humus in microbial detoxification of chromate is still unknown. In this study, a humus-reducing strain 3C(3) was isolated from mangrove sediment. Based on the analyses of morphology, physiobiochemical characteristics, and 16S rRNA gene sequence, this strain was identified Bacillus sp. Strain 3C(3) can effectively reduce humic analog anthraquinone-2,6-disulfonate (AQDS) and anthraquinone-2-sulfonate (AQS) with lactate, formate, or glucose as electron donors. When the cells were killed by incubation at 95°C for 30 min or an electron donor was absent, the humic reduction did not occur, showing that the humic reduction was a biochemical process. However, strain 3C(3) had low capability of chromate reduction under anaerobic conditions, despite of having strong tolerance of the toxic metal. But in the presence of humic substances AQDS or AQS, we found that chromate reduction by strain 3C(3) was enhanced greatly. Because strain 3C(3) is an effective humus-reducing bacterium, it is proposed that humic substances could serve as electron mediator to interact with chromate and accelerate chromate reduction. Our results suggest that chromate contaminations can be detoxified by adding humic analog (low to 0.1 mM) as an electron mediator in the microbial incubation.

  7. Bioactivity of chemically transformed humic matter from vermicompost on plant root growth.

    PubMed

    Dobbss, Leonardo Barros; Pasqualoto Canellas, Luciano; Lopes Olivares, Fábio; Oliveira Aguiar, Natália; Peres, Lázaro Eustáquio Pereira; Azevedo, Mariana; Spaccini, Riccardo; Piccolo, Alessandro; Façanha, Arnoldo R

    2010-03-24

    Chemical reactions (hydrolysis, oxidation, reduction, methylation, alkyl compounds detachment) were applied to modify the structure of humic substances (HS) isolated from vermicompost. Structural and conformational changes of these humic derivatives were assessed by elemental analyses, size exclusion chromatography (HPSEC), solid-state nuclear magnetic resonance ((13)C CPMAS-NMR), and diffusion ordered spectroscopy (DOSY-NMR), whereas their bioactivity was evaluated by changes in root architecture and proton pump activation of tomato and maize. All humic derivatives exhibited a large bioactivity compared to original HS, both KMnO(4)-oxidized and methylated materials being the most effective. Whereas no general relationship was found between bioactivity and humic molecular sizes, the hydrophobicity index was significantly related with proton pump stimulation. It is suggested that the hydrophobic domain can preserve bioactive molecules such as auxins in the humic matter. In contact with root-exuded organic acids the hydrophobic weak forces could be disrupted, releasing bioactive compounds from humic aggregates. These findings were further supported by the fact that HS and all derivatives used in this study activated the auxin synthetic reporter DR5::GUS. PMID:20232906

  8. Bioactivity of chemically transformed humic matter from vermicompost on plant root growth.

    PubMed

    Dobbss, Leonardo Barros; Pasqualoto Canellas, Luciano; Lopes Olivares, Fábio; Oliveira Aguiar, Natália; Peres, Lázaro Eustáquio Pereira; Azevedo, Mariana; Spaccini, Riccardo; Piccolo, Alessandro; Façanha, Arnoldo R

    2010-03-24

    Chemical reactions (hydrolysis, oxidation, reduction, methylation, alkyl compounds detachment) were applied to modify the structure of humic substances (HS) isolated from vermicompost. Structural and conformational changes of these humic derivatives were assessed by elemental analyses, size exclusion chromatography (HPSEC), solid-state nuclear magnetic resonance ((13)C CPMAS-NMR), and diffusion ordered spectroscopy (DOSY-NMR), whereas their bioactivity was evaluated by changes in root architecture and proton pump activation of tomato and maize. All humic derivatives exhibited a large bioactivity compared to original HS, both KMnO(4)-oxidized and methylated materials being the most effective. Whereas no general relationship was found between bioactivity and humic molecular sizes, the hydrophobicity index was significantly related with proton pump stimulation. It is suggested that the hydrophobic domain can preserve bioactive molecules such as auxins in the humic matter. In contact with root-exuded organic acids the hydrophobic weak forces could be disrupted, releasing bioactive compounds from humic aggregates. These findings were further supported by the fact that HS and all derivatives used in this study activated the auxin synthetic reporter DR5::GUS.

  9. Aquatic Environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquatic microbiology can be defined as the study of microorganisms and microbial communities in water environments. Aquatic environments occupy more than 70% of the earth’s surface including oceans, estuaries, rivers, lakes, wetlands, streams, springs, and aquifers. Water is essential for life and m...

  10. AQUATIC ECOSYSTEMS,

    EPA Science Inventory

    Aquatic ecosystems are a vital part of the urban water cycle (and of urban areas more broadly), and, if healthy, provide a range of goods and services valued by humans (Meyer 1997). For example, aquatic ecosystems (e.g., rivers, lakes, wetlands) provide potable water, food resou...

  11. Use of humic acids derived from peat and lignite as phenanthrene sorbents

    NASA Astrophysics Data System (ADS)

    Sofikitis, Elias; Giannouli, Andriana; Kalaitzidis, Stavros; Christanis, Kimon; Karapanagioti, Hrissi K.; Papanicolaou, Cassiani

    2015-04-01

    A broad range of materials is being applied for environmental remediation of water, among them sorbents such as humic acids. Being natural substances, the extraction and purification of humic acids might be cheaper than the production of synthetic sorbents. Having higher absorbing capacity than most of the sorbents used to date, humic acids have a competitive advantage against commonly used sorbents such as active charcoals and biochar. Humic acids are "complex colloidal super-mixtures" that are characterized by their functional groups. Therefore, composition and molecular formula can vary depending on the properties of the parent material. The aim of this project was (a) to study the sorption capacity of humic acids derived from peat and lignite samples picked up from deposits spread throughout Greece and (b) to compare the results with these of the parent materials. This comparison provides an insight to which matrix samples are suitable for further chemical treatment for the isolation of humic acids to be used as sorbents. The selected model pollutant was phenanthrene, which is a PAH that consists of three fused benzene rings. Humic acids were extracted according to the methodology proposed by the IHSS, slightly modified, in order to fit better to the properties of organic sediments. Sorption experiments were conducted by mixing 0.004 g of the sorbent (peat or lignite or humic acid) with aqueous solutions of phenanthrene at different concentrations of 30, 50, 100, 300, and 500 μg/L. The results show that phenanthrene sorption is higher for the humic acid than for the original lignite and peat samples. The original samples display higher sorption at the lower phenanthere solutions (30 μg/L; Kd ranges from 15,000 to 47,000 L/kg) than at the higher one (500 μg/L; Kd ranges from 4,100 to 13,000 L/Kg) suggesting non-linear sorption. The humic acids display mainly linear isotherms with Kd ranges from 6,600 to 120,000 L/kg. Concerning the suitability of the studied

  12. [Apply fourier transform infrared spectra coupled with two-dimensional correlation analysis to study the evolution of humic acids during composting].

    PubMed

    Bu, Gui-jun; Yu, Jing; Di, Hui-hui; Luo, Shi-jia; Zhou, Da-zhai; Xiao, Qiang

    2015-02-01

    The composition and structure of humic acids formed during composting play an important influence on the quality and mature of compost. In order to explore the composition and evolution mechanism, municipal solid wastes were collected to compost and humic and fulvic acids were obtained from these composted municipal solid wastes. Furthermore, fourier transform infrared spectra and two-dimensional correlation analysis were applied to study the composition and transformation of humic and fulvic acids during composting. The results from fourier transform infrared spectra showed that, the composition of humic acids was complex, and several absorbance peaks were observed at 2917-2924, 2844-2852, 2549, 1662, 1622, 1566, 1454, 1398, 1351, 990-1063, 839 and 711 cm(-1). Compared to humic acids, the composition of fulvci acids was simple, and only three peaks were detected at 1725, 1637 and 990 cm(-1). The appearance of these peaks showed that both humic and fulvic acids comprised the benzene originated from lignin and the polysaccharide. In addition, humic acids comprised a large number of aliphatic and protein which were hardly detected in fulvic acids. Aliphatic, polysaccharide, protein and lignin all were degraded during composting, however, the order of degradation was different between humic and fulvci acids. The result from two-dimensional correlation analysis showed that, organic compounds in humic acids were degraded in the following sequence: aliphatic> protein> polysaccharide and lignin, while that in fulvic acids was as following: protein> polysaccharide and aliphatic. A large number of carboxyl, alcohols and ethers were formed during the degradation process, and the carboxyl was transformed into carbonates. It can be concluded that, fourier transform infrared spectra coupled with two-dimensional correlation analysis not only can analyze the function group composition of humic substances, but also can characterize effectively the degradation sequence of these

  13. The impact of photodestruction of metal-organic complexes on transport of metals from terrestrial to aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Biryukov, Mikhail; Vladimir, Demin; Yuliya, Zavgorodnyaya; Sergey, Lapitskiy

    2014-05-01

    Biological cycles of terrestrial ecosystems involve large amounts of different metal ions from minerals composing soil and from the pools of anthropogenic origin. They are an inherent part of different energetic pathways, and constitute reactive centers of different enzymes complexes. In different cases they can play role of toxins and inhibitors and perform danger while distributing across the trophic networks. The high activity of metal ion turnover devoted to plant litter, where the autotrophic biomass is extensively decomposed by microbes. Diverse rearrangements lead to the saturated flux of intact biomolecules and complexes of metals with organic ligands (e.g. humic substances) from the plant litter to the surface waters, streams, bogs and result in their deposition and distribution in the aquatic area. In the aquatic ecosystems metal-organic complexes are involved in a new broad spectrum of biotic and abiotic pathways and interactions. Our preliminary studies have shown remarkable variation in the ferrum isotopes composition in the size fractions obtained with cascade filtration, which testifies about intensive turnover of this substances. Our study aims to study the processes occurring in the euphotic zone of the aquatic systems, predominantly the processes of photodestruction and rearrangements of metal-organic complexes under the impact of solar radiation. According to our working hypothesis, in the cascade of sequential reactions of complexe rearrangements and organic molecules degradation the metal distributes between different pools: free ions, which are available for the autotrophic and heterotrophic biota metabolism (they are highly significant for regulating the biogeochemical activity and bioproductivity of aquatic ecosystems); thermodynamically stable metal-organic complexes; precipitation and sedimentation from the solution in form of indissoluble newborn fractions. The research design is based on the laboratory-scale studies of photodestruction

  14. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids

    USGS Publications Warehouse

    Chiou, C.T.; Malcolm, R.L.; Brinton, T.I.; Kile, D.E.

    1986-01-01

    Water solubility enhancements by dissolved humic and fulvic acids from soil and aquatic origins and by synthetic organic polymers have been determined for selected organic pollutants and pesticides (p,p???-DDT, 2,4,5,2???,5???-PCB, 2,4,4???-PCB, 1,2,3-trichlorobenzene, and lindane). Significant solubility enhancements of relatively water-insoluble solutes by dissolved organic matter (DOM) of soil and aquatic origins may be described in terms of a partition-like interaction of the the solutes with the microscopic organic environment of the high-molecular-weight DOM species; the apparent solute solubilities increase linearly with DOM concentration and show no competitive effect between solutes. With a given DOM sample, the solute partition coefficient (Kdom) increases with a decrease of solute solubility (Sw) or with an increase of the solute's octanol-water partition coefficient (Kow). The Kdom values of solutes with soil-derived humic acid are approximately 4 times greater than with soil fulvic acid and 5-7 times greater than with aquatic humic and fulvic acids. The effectiveness of DOM in enhancing solute solubility appears to be largely controlled by the DOM molecular size and polarity. The relative inability of high-molecular-weight poly(acrylic acids) to enhance solute solubility is attributed to their high polarities and extended chain structures that do not permit the formation of a sizable intramolecular nonpolar environment.

  15. Equivalent weight of humic acid from peat

    USGS Publications Warehouse

    Pommer, A.M.; Breger, I.A.

    1960-01-01

    By means of discontinuous titration, the equivalent weight of humic acid isolated from a peat was found to increase from 144 to 183 between the third and fifty-second day after the humic acid was dissolved. Infra-red studies showed that the material had probably condensed with loss of carbonyl groups. ?? 1960.

  16. Structural transition in the humic matrix of soil gels and the electrical resistivity of soils

    NASA Astrophysics Data System (ADS)

    Fedotov, G. N.; Shoba, S. A.

    2015-11-01

    The structural organization of the organic matrix of humic substances in soils has been analyzed, and the conclusion has been drawn that the existence of humic matrix is determined by contacts between the hydrophilic sites of humic particles in dry soils and between their hydrophobic sites in wet soils. It follows from the advanced supposition that the wetting-drying process should cause a structural transition (reorganization of the humic matrix), which should affect the properties of soils. To verify this supposition, the effect of soil moisture on the electrical resistivity of soil-water extracts, suspensions, and pastes has been studied. It follows from the studies performed that soil electrolytes are fixed in dry soils during drying and are gradually released into solution. However, beginning from a specific soil water content, the release of electrolytes occurs almost immediately after their contact with water. The obtained data suggest that an energy barrier should be overcome for the release of electrolytes from the soils with water content below the specific limit. There is no energy barrier for the soils with water content higher than this limit. The existence of structural transition in the humic matrix of soil gels well explains these results. The effect of energetic impacts on the structural transition has been studied. It has been shown that the study of structural transition should avoid operations that increase the number and amplitude of energy fluctuations in the systems.

  17. Relevant role of dissolved humic matter in phosphorus bioavailability in natural and agronomical ecosystems through the formation of Humic-(Metal)-Phosphate complexes

    NASA Astrophysics Data System (ADS)

    Baigorri, Roberto; Urrutia, Óscar; Erro, Javier; Pazos-Pérez, Nicolás; María García-Mina, José

    2016-04-01

    Natural Organic Matter (NOM) and the NOM fraction present in soil solution (dissolved organic matter: DOM) are currently considered as fundamental actors in soil fertility and crop mineral nutrition. Indeed, decreases in crop yields as well as soil erosion are closely related to low values of NOM and, in fact, the use of organic amendments as both soil improvers and plant growth enhancers is very usual in countries with soils poor in NOM. This role of NOM (and DOM) seems to be associated with the presence of bio-transformed organic molecules (humic substances) with high cation chelating-complexing ability. In fact, bioavailable micronutrients with metallic character in soil solutions of alkaline and calcareous soils are forming stable complexes with DOM. This beneficial action of DOM also concerns other plant nutrients such as inorganic phosphate (Pi). Among the different mechanisms involved in the beneficial action of DOM on P bioavailability, the possible formation of poly-nuclear complexes including stable chemical bonds between negative binding sites in humic substances and Pi through metal bridges in soil solution might be relevant, especially in acidic soils. In fact, several studies have proven that these complexes can be obtained in the laboratory and are very efficient in prevent Pi soil fixation and improve Pi root uptake. However, clear experimental evidence about their presence in soil solutions of natural and agronomical soil ecosystems has not published yet. We present here experimental results supporting the real presence of stable Pi-metal-Humic (PMH) complexes in the soil solution of several acidic soils. The study is based on the physico-chemical characterization (31P-NMR, FTIR, TEM-EDAX, ICP-OES) of the DOM fraction isolated by ultrafiltration from the soil solution of several representative acidic soils. In average, more than 60 % of Pi was found in the soil solution humic fraction forming stable humic-metal (Fe, Al) complexes.

  18. Interaction of some metals between marine-origin humic acids and aqueous solutions

    SciTech Connect

    Huljev, D.J.

    1986-08-01

    The interaction of metal ions (carrier-free form) in aquatic medium with humic acids is a complicated process depending on the properties of humic acids (elementary, chemical, and trace element composition), metals studied (valence, charge, chemical form, concentration), and medium used (pH, ionic strength). The use of radionuclides was found to be very suitable for a rapid and precise determination of the distribution coefficient K/sub d/ (ratio of the concentration of a certain trace metal association with a gram of humic acid over the concentration of the same trace metal per milliliter of solution) of the investigated system. Isolated humic acids from offshore sediments from the North Adriatic (Lim channel, near Rovinj, Yugoslavia) were characterized according to their elementary composition, the amount of products of hydrolysis, and the trace elements bound. All experiments were carried out between pH 3 and 5. It was found that conditions usually present at the site where humic acid interacts with metal ions (anaerobic conditions, H/sub 2/S) in brackish (21% S) and standard seawater (38% S) are determined in the pH range 3 to 5. The results of the pick-up (uptake) and replacement (release) experiments are presented as a distribution coefficient (K/sub d/), as a function of contact time. Processes of pick-up and replacement of a number of metals under various physicochemical conditions were investigated and special attention was paid to the influence of salinity. With the increase in NaCl concentration and pH in the system, the fixation of ruthenium, zinc, cobalt, and mercury by humic acids decreased.

  19. ROLE OF HUMIC SUBSTANCES ON THE PHOTOCHEMICAL REDUCTION OF MERCURY

    EPA Science Inventory

    Solutions containing mercury and fulvic acids (isolated from the Florida Everglades) were exposed to simulated sunlight from a 1000-W Xenon lamp. In the ensuing reaction, ionic mercury was reduced to elemental mercury, which was collected on a gold trap and measured on a cold va...

  20. Properties of the humic-like material arising from the photo-transformation of L-tyrosine.

    PubMed

    Berto, Silvia; De Laurentiis, Elisa; Tota, Tiziana; Chiavazza, Enrico; Daniele, Pier Giuseppe; Minella, Marco; Isaia, Marco; Brigante, Marcello; Vione, Davide

    2016-03-01

    The UVB photolysis of L-tyrosine yields species with fluorescence and absorption spectra that are very similar to those of humic substances. By potentiometric measurements, chemical modeling and the application of NMR, mass spectrometry and laser flash photolysis, it was possible to get insights into the structural and chemical properties of the compounds derived by the L-tyrosine phototransformation. The photolytic process follows aromatic-ring hydroxylation and dimerization. The latter is presumably linked with the photoinduced generation of tyrosyl (phenoxy-type) radicals, which have a marked tendency to dimerize and possibly oligomerize. Interestingly, photoinduced transformation gives compounds with protogenic and complexation capabilities similar to those of the humic substances that occur naturally in surface waters. This finding substantiates a new and potentially important abiotic (photolytic) pathway for the formation of humic compounds in surface-water environments.

  1. Aquatic Sediments.

    ERIC Educational Resources Information Center

    Sanville, W. D.; And Others

    1978-01-01

    Presents a literature review of aquatic sediments and its effect upon water quality, covering publications of 1976-77. This review includes: (1) sediment water interchange; (2) chemical and physical characterization; and (3) heavy water in sediments. A list of 129 references is also presented. (HM)

  2. The flocculation mechanism of humic acid hydrosol

    SciTech Connect

    Xuo Xiaofen; Yu Hui

    1997-12-31

    Humic acid solution obtained by extraction from weathered coal, brown coal, and peat is a high molecular hydrosol. It can be flocculated by electrolytes. It is discovered that for monochloride and dichloride or trichloride, the flocculation value variation with humic acid hydrosol concentration has a different curve and different mechanism. For monochloride, the hydrosol is a hydrophilic colloid; it is flocculated by salting out of monochloride. For dichloride or trichloride, the hydrosol is converted into a hydrophilic colloid, and flocculated by compressing the electric double layer of the micellae. The flocculation value variation with humic acid hydrosol pH value is also discussed. The research is valuable for theory and application.

  3. Potential origin and formation for molecular components of humic acids in soils

    NASA Astrophysics Data System (ADS)

    Hatcher, Patrick; DiDonato, Nicole; Waggoner, Derek

    2016-04-01

    Humification is defined as the process by which plant and microbial debris are transformed in to humic substances. Proposed pathways for the formation of humic substances, include the lignin and lignin decomposition theories, the lignin-polyphenol theory as well as the melanoidin pathway. It is generally accepted that a combination of several of these pathways with some modifications may be responsible for producing humic substances. The current study examines humic acids from numerous soil samples to demonstrate their molecular composition. In addition we provide an explanation for the formation of these molecules that introduces a new perspective of the humification process. Our work utilizes advanced analytical techniques such as ESI-FTICR-MS and solid state NMR to more completely characterize humic acids at the molecular level. Methods Humic acids were extracted from soils using 0.5 M NaOH followed by treatment with a Dowex™ ion-exchange resin to remove sodium ions. Solid State 13C NMR spectra were obtained on a Bruker 400 MHz Avance II spectrometer equipped with a 4 mm solid state MAS probe. ESI-FTICR-MS analysis was conducted in the negative ion mode on a Bruker Daltonics 12 Tesla Apex Qe FTICR-MS instrument equipped with an Apollo II ESI source. Results: Soil humic acids from numerous soils were investigated in this study. The molecular formulas calculated from ultrahigh resolution mass spectra of well humified soils fall clearly into two predominant regions consisting of condensed aromatic molecules as well as high H/C, low O/C carboxyl-containing aliphatic molecules (CCAM). In contrast, the spectral data for humic acids from a poorly humified spodosol soil show a less dramatic separation of these regions, with relatively more molecular formula plotting in the lignin-like region and relatively fewer condensed aromatic molecules. From the mass spectral observations made for the humic acids, we can readily discern a relationship based on degree of

  4. Immunomodulative properties of humic peat preparations

    NASA Astrophysics Data System (ADS)

    Stepchenko, L. M.; Syedykh, N. J.

    2010-05-01

    It is proved, that the humic peat preparations promote the resistance of plants, animals and poultry to the influence of both abyotyc and byotyc extreme factors of external environment, to action. It was shown by us before, that biologically active compounds from peat promote stability against different diseases of agricultural animals and poultry. We conducted researches of humic preparations influence (hydrohumate and oxyhumate) on several indexes of immunoreactivity of the organisms of chickens broilers, ostriches, cows and laboratory rats. It is found out, that adding of humic preparations to forage or drinking water results in the normalization of immunity indexes; in particular, leucocytes level, in the increase of the level of some classes of immunoglobuline in blood, of haemoglobin level, T- and B-lymphocytes level, as well as common unspecific resistance - lyzocymic, phagocytic and bactericidic activity. These results allow to suggest that the peat humic preparations show immunomodulative activity, influencing both on humoral and cel immunity links.

  5. Simple method of isolating humic acids from organic soils

    NASA Astrophysics Data System (ADS)

    Ahmed, O.

    2009-04-01

    Humic substances particularly humic acids (HA) play a major role in soil conditioning e.g. erosion control, soil cation exchange capacity, complexation of heavy metal ions and pesticides, carbon and nitrogen cycles, plant growth and reduction of ammonia volatilization from urea. Humified substances such as coal, composts, and peat soils have substantial amounts of HA but the isolation of these acids is expensive, laborious, and time consuming. Factors that affect the quality and yield of HA isolated from these materials include extraction, fractionation, and purification periods. This work developed a simple, rapid, and cost effective method of isolating HA from peat soils. There was a quadratic relationship between extraction period and HA yield. Optimum extraction period was estimated at 4 h instead of the usual range of 12 to 48 h. There was no relationship between fractionation period and HA yield. As such 2 h instead of the usual range of 12 to 24 h fractionation period could be considered optimum. Low ash content (5%), remarkable reduction in K, coupled with the fact that organic C, E4/E6, carboxylic COOH, phenolic OH, and total acidity values of the HA were consistent with those reported by other authors suggest that the HA dealt with were free from mineral matter. This was possible because the distilled water used to purify the HA served as Bronsted-Lowry acid during the purification process of the HA. Optimum purification period using distilled waster was 1 h instead of the usual range of 1 and 7 days (uses HF and HCl and dialysis). Humic acids could be isolated from tropical peat soils within 7 h (i.e. 4 h extraction, 2 h fractionation, and 1 h purification) instead of the existing period of 2 and 7 days. This could facilitate the idea of producing organic fertilizers such as ammonium-humate and potassium-humate from humified substances since techniques devised in this study did not alter the true nature of the HA. Besides, the technique is rapid, simple

  6. Acute aquatic toxicity of biodiesel fuels

    SciTech Connect

    Wright, B.; Haws, R.; Little, D.; Reese, D.; Peterson, C.; Moeller, G.

    1995-12-31

    This study develops data on the acute aquatic toxicity of selected biodiesel fuels which may become subject to environmental effects test regulations under the US Toxic Substances Control Act (TSCA). The test substances are Rape Methyl Ester (RME), Rape Ethyl Ester (REE), Methyl Soyate (MS), a biodiesel mixture of 20% REE and 80% Diesel, a biodiesel mixture of 50% REE and diesel, and a reference substance of Phillips D-2 Reference Diesel. The test procedure follows the Daphnid Acute Toxicity Test outlined in 40 CFR {section} 797.1300 of the TSCA regulations. Daphnia Magna are exposed to the test substance in a flow-through system consisting of a mixing chamber, a proportional diluter, and duplicate test chambers. Novel system modifications are described that accommodate the testing of oil-based test substances with Daphnia. The acute aquatic toxicity is estimated by an EC50, an effective concentration producing immobility in 50% of the test specimen.

  7. Artificial recharge of humic ground water.

    PubMed

    Alborzfar, M; Villumsen, A; Grøn, C

    2001-01-01

    The purpose of this study was to investigate the efficiency of soil in removing natural organic matter from humic ground waters using artificial recharge. The study site, in western Denmark, was a 10,000 ml football field of which 2,000 m2 served as an infiltration field. The impact of the artificial recharge was studied by monitoring the water level and the quality of the underlying shallow aquifer. The humic ground water contained mainly humic adds with an organic carbon (OC) concentration of 100 to 200 mg C L(-1). A total of 5,000 mS of humic ground water were sprinkled onto the infiltration field at an average rate of 4.25 mm h(-1). This resulted in a rise in the water table of the shallow aquifer. The organic matter concentration of the water in the shallow aquifer, however, remained below 2.7 mg C L(-1). The organic matter concentration of the pore water in the unsaturated zone was measured at the end of the experiment. The organic matter concentration of the pore water decreased from 105 mg C L(-1) at 0.5 m to 20 mg C L(-1) at 2.5 m under the infiltration field indicating that the soil removed the organic matter from the humic ground water. From these results we conclude that artificial recharge is a possible method for humic ground water treatment.

  8. Using solid-phase microextraction to determine partition coefficients to humic acids and bioavailable concentrations of hydrophobic chemicals

    SciTech Connect

    Ramos, E.U.; Meijer, S.N.; Vaes, W.H.J.; Verhaar, H.J.M.; Hermens, J.L.M.

    1998-11-01

    In the current study, the suitability of negligible depletion solid-phase microextraction (nd-SPME) to determine free fractions of chemicals in aquatic environments was explored. The potential interferences of the dissolved matrix (i.e., humic acids) with the SPME measurements were tested. Results show that nd-SPME measures only the freely dissolved fraction and that the measurements are not disturbed by the humic acids. In addition, nd-SPME was used to determine partition coefficients between dissolved organic carbon and water for four hydrophobic chemicals. Obtained values are in excellent agreement with previously reported data. Finally, the bioaccumulation of hexachlorobenzene and PCB 77 to Daphnia magna was determined in the presence and absence of humic acids. The bioconcentration factors (BCF) were calculated based on total as well as on free concentration. Lower BCF values are obtained in the presence of humic acids using total concentrations, whereas equal BCFs are found using free concentrations measured with nd-SPME. Therefore, the authors can conclude that negligible depletion SPME is a good technique to determine bioavailable concentrations of hydrophobic chemicals in aquatic environments.

  9. Influence of trivalent electrolytes on the humic colloid-borne transport of contaminant metals: competition and flocculation effects

    NASA Astrophysics Data System (ADS)

    Lippold, H.; Mansel, A.; Kupsch, H.

    2005-02-01

    With the objective to assess the relevance of competitive effects in respect of the humic colloid-borne migration of actinides in case of release, the influence of Al(III) on humate complexation of La(III) as an analogue of trivalent actinides was investigated for various humic materials by using 140La as a radioactive tracer, allowing measurements in very dilute systems to simulate realistic settings. Generally, competition by aluminium is not detectable unless the metal-loading capacity of the humic colloids is nearly exhausted. For average contents of organic carbon, a threshold value of 10 -6 M Al(III) can be specified. The metal exchange turned out to be kinetically hindered. Effects on co-adsorption of La(III) and humic acid were found to be less important. Immobilization by the concomitantly induced flocculation process outweighs the role of displacement effects. Comparative studies on complexation and flocculation of humic acid with Al(III), Ga(III), In(III), Sc(III), Y(III), and La(III) were undertaken in order to evaluate the influence of specific properties apart from ion charge and to characterize the mechanism of flocculation. In spite of considerable variations in the binding affinities among these metals, it can be inferred that the possibility of significant competitive effects in natural aquatic systems is confined to Al(III). Complex stabilities and flocculation efficiencies proved to be interrelated. Precipitation is thus attributed to homocoagulation of humic colloids induced by charge compensation, which is further supported by flocculation experiments with Al(III) depending on pH, ionic strength, and humic acid concentration.

  10. Usage of humic materials for formulation of stable microbial inoculants

    NASA Astrophysics Data System (ADS)

    Kydralieva, K. A.; Khudaibergenova, B. M.; Elchin, A. A.; Gorbunova, N. V.; Muratov, V. S.; Jorobekova, Sh. J.

    2009-04-01

    of the product. It is known that humic substances can increase of live organism resistance to stress loads, in particular to chemical stress, low and high temperature. Spray- and fluidized-bed drying and addition of humate-based drying protectants were evaluated for the development of dry formulations of biocontrol and plant growth promoting rhizobacteria. The drying protectants - humic acids and sodium humate gave the highest initial survival rates and the most stable formulations, without significant losses of viability after storage for 1 month at 30oC. As a result, the specific plant growth promoting effect is retained. Thus, humic materials have an unfulfilled potential for biotechnology industries based on such applications. Acknowledgement. This research was supported by the grant of ISTC KR-993.2.

  11. Cd(II) Sorption on Montmorillonite-Humic acid-Bacteria Composites

    PubMed Central

    Du, Huihui; Chen, Wenli; Cai, Peng; Rong, Xingmin; Dai, Ke; Peacock, Caroline L.; Huang, Qiaoyun

    2016-01-01

    Soil components (e.g., clays, bacteria and humic substances) are known to produce mineral-organic composites in natural systems. Herein, batch sorption isotherms, isothermal titration calorimetry (ITC), and Cd K-edge EXAFS spectroscopy were applied to investigate the binding characteristics of Cd on montmorillonite(Mont)-humic acid(HA)-bacteria composites. Additive sorption and non-additive Cd(II) sorption behaviour is observed for the binary Mont-bacteria and ternary Mont-HA-bacteria composite, respectively. Specifically, in the ternary composite, the coexistence of HA and bacteria inhibits Cd adsorption, suggesting a “blocking effect” between humic acid and bacterial cells. Large positive entropies (68.1 ~ 114.4 J/mol/K), and linear combination fitting of the EXAFS spectra for Cd adsorbed onto Mont-bacteria and Mont-HA-bacteria composites, demonstrate that Cd is mostly bound to bacterial surface functional groups by forming inner-sphere complexes. All our results together support the assertion that there is a degree of site masking in the ternary clay mineral-humic acid-bacteria composite. Because of this, in the ternary composite, Cd preferentially binds to the higher affinity components-i.e., the bacteria. PMID:26792640

  12. Iron and humic-type fluorescent dissolved organic matter in the Chukchi Sea and Canada Basin of the western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Nakayama, Yuta; Fujita, Satoshi; Kuma, Kenshi; Shimada, Koji

    2011-07-01

    The concentrations of dissolved Fe ([D-Fe]), total dissolvable Fe ([T-Fe]), humic-type fluorescence intensity (humic F intensity) as humic-type fluorescent dissolved organic matter, and nutrients were vertically determined in the shelf, slope, and basin regions (Chukchi Sea and Canada Basin) of the western Arctic Ocean during 1-27 September 2008. In all stations, the remarkably high [D-Fe] and humic F intensity were found at depths between 25 and 200 m with the subsurface maxima of [D-Fe] (1.0-3.2 nM) and humic F intensity (4-5 quinine sulfate units) in the upper halocline layer (upper HL), being associated with a prominent nutrient maximum. The high [D-Fe] and humic F intensity within the upper HL are probably attributed to the Fe(III) complexation with natural organic ligands, such as marine dissolved humic substances, resulting from main processes of the brine rejection during sea ice formation and interactions with sediments on the shelves. However, subsurface maxima (10-50 nM) of [T-Fe] were found in the lower halocline layer, beneath the upper HL, of all slope and basin regions and are mainly attributed to the resuspension of sedimentary particles in the shelf region. The finding of subsurface iron maxima in the halocline water of all regions may be the first confirmation for the lateral iron transport into the halocline layer from the shelves to the Arctic Basin.

  13. Separation of Gd-humic complexes and Gd-based magnetic resonance imaging contrast agent in river water with QAE-Sephadex A-25 for the fractionation analysis.

    PubMed

    Matsumiya, Hiroaki; Inoue, Hiroto; Hiraide, Masataka

    2014-10-01

    Gadolinium complexed with naturally occurring, negatively charged humic substances (humic and fulvic acids) was collected from 500 mL of sample solution onto a column packed with 150 mg of a strongly basic anion-exchanger (QAE-Sephadex A-25). A Gd-based magnetic resonance imaging contrast agent (diethylenetriamine-N,N,N',N″,N″-pentaacetato aquo gadolinium(III), Gd-DTPA(2-)) was simultaneously collected on the same column. The Gd-DTPA complex was desorbed by anion-exchange with 50mM tetramethylammonium sulfate, leaving the Gd-humic complexes on the column. The Gd-humic complexes were subsequently dissociated with 1M nitric acid to desorb the humic fraction of Gd. The two-step desorption with small volumes of the eluting agents allowed the 100-fold preconcentration for the fractionation analysis of Gd at low ng L(-1) levels by inductively coupled plasma-mass spectrometry (ICP-MS). On the other hand, Gd(III) neither complexed with humic substances nor DTPA, i.e., free species, was not sorbed on the column. The free Gd in the effluent was preconcentrated 100-fold by a conventional solid-phase extraction with an iminodiacetic acid-type chelating resin and determined by ICP-MS. The proposed analytical fractionation method was applied to river water samples.

  14. Bacterial consumption of humic and non-humic low and high molecular weight DOM and the effect of solar irradiation on the turnover of labile DOM in the Southern Ocean.

    PubMed

    Rosenstock, Bernd; Zwisler, Walter; Simon, Meinhard

    2005-07-01

    The decomposition of dissolved organic matter (DOM) in pelagic ecosystems is mediated primarily by heterotrophic bacteria, but transformation by short-wave solar radiation may play an important role in surface waters, in particular when humic substances constitute a substantial fraction of the DOM pool. Most of the studies examining bacterial decomposition and photochemical transformation of DOM stem from limnetic and coastal marine systems and much less information is available from oceanic environments. To examine the bacterial decomposition of humic and non-humic DOM in the Southern Ocean we carried out microcosm experiments in which we measured bacterial growth on isolated fractions of humic and non-humic DOM of the size classes <3 kDa and >3 kDa. Experiments carried out at the Polar Front showed a preferential bacterial growth on non-humic DOM and in particular on the size fraction <3 kDa. Bacterial growth, measured as bacterial biomass production, on non-humic DOM accounted for 74% to 88% of the total growth on all four DOM fractions. In experiments in the Antarctic circumpolar current and the coastal current under pack ice, bacterial growth was 6x lower than at the Polar Front, and humic and non-humic DOM was consumed to equal amounts. The size fraction <3 kDa was always preferred. Experiments examining the effect of solar radiation on the release of dissolved amino acids (DAA) and carbohydrates (DCHO) and their subsequent bacterial utilization showed a stimulating effect on glucose uptake and the release of DAA at the Polar Front but an inhibition in the eastern Weddell Sea. Ultraviolet-B was the most effective component of the solar radiation spectrum tested. Effects of UV-B on glucose uptake and release of DAA were positively correlated with concentrations of humic-bound DAA. The data imply that at low concentrations, e.g., <100 nM (amino acid equivalent), UV-irradiation reduces, whereas at concentrations >100 nM UV-irradiation stimulates glucose uptake

  15. Humic derivatives as promising hormone-like materials

    NASA Astrophysics Data System (ADS)

    Koroleva, R. P.; Khudaibergenova, E. M.; Kydralieva, K. A.; Jorobekova, Sh. J.

    2009-04-01

    The aim of this research is to prepare novel bio-inoculants derived from coal humic substances (HS) using bio-solubilization technique. This approach can be considered to some extent as model for supply plants with available nutrients throw the mineralisation of organic matter in soils by bacteria and fungi. Screening for the stable and active microorganisms' strains possessing ability to degrade humic substances was performed. The following subjects were examined using different isolation methods: natural microbial population from city soil, wood rot of Ulmis Pamila and biohumus of vermiculture of Eisenia foetida. Approaches for monitoring the humics-solubilizing fungi growth under liquid surface conditions in the presence of HS, proper conditions of bio-solubilization technique were elaborated. Coal humic acids (HA) from oxidized brown coal (Kyrgyz deposits) were isolated and added to a Czapek nutrient broth which was used either in full strength or without nitrogen source. The individual flasks were inoculated with natural microbial populations of corresponding cultivated soil, biohumus and wood rot samples for 12 months. Evaluation of phyto-hormonal activity of the produced HS and their derivatives in respect to higher plants with auxine and gibberellic tests was performed. To characterize structure of the biopreparations obtained, an experimental approach was undertaken that implies application of different complementary techniques for the structural analysis of biopreparations. As those were used: elemental and functional analysis, FTIR and 1H, 13C NMR spectroscopy and size-exclusion chromatography. According to the elemental composition of HS recovered from microbial cultures, a decrease in carbon and a significant increase of nitrogen in HS reisolated from the full strength broth inoculated with wood-decay microorganisms has been found. If biohumus microorganisms were used as inoculum, only minor changes were detected in the elemental composition of HS. A

  16. Iodine binding to humic acid.

    PubMed

    Bowley, H E; Young, S D; Ander, E L; Crout, N M J; Watts, M J; Bailey, E H

    2016-08-01

    The rate of reactions between humic acid (HA) and iodide (I(-)) and iodate (IO3(-)) have been investigated in suspensions spiked with (129)I at concentrations of 22, 44 and 88 μg L(-1) and stored at 10 °C. Changes in the speciation of (129)I(-), (129)IO3(-) and mixed ((129)I(-) + (129)IO3(-)) spikes were monitored over 77 days using liquid chromatography inductively coupled plasma mass spectrometry (LC-ICP-MS). In suspensions spiked with (129)I(-) 25% of the added I(-) was transformed into organic iodine (Org-(129)I) within 77 days and there was no evidence of (129)IO3(-) formation. By contrast, rapid loss of (129)IO3(-) and increase in both (129)I(-) and Org-(129)I was observed in (129)IO3(-)-spiked suspensions. However, the rate of Org-(129)I production was greater in mixed systems compared to (129)IO3(-)-spiked suspensions with the same total (129)I concentration, possibly indicating IO3(-)I(-) redox coupling. Size exclusion chromatography (SEC) demonstrated that Org-(129)I was present in both high and low molecular weight fractions of the HA although a slight preference to bond with the lower molecular weight fractions was observed indicating that, after 77 days, the spiked isotope had not fully mixed with the native (127)I pool. Iodine transformations were modelled using first order rate equations and fitted rate coefficients determined. However, extrapolation of the model to 250 days indicated that a pseudo-steady state would be attained after ∼200 days but that the proportion of (129)I incorporated into HA was less than that of (127)I indicating the presence of a recalcitrant pool of (127)I that was unavailable for isotopic mixing. PMID:27231879

  17. Quantitative evaluation of noncovalent interactions between polyphosphate and dissolved humic acids in aqueous conditions.

    PubMed

    Fang, Wei; Sheng, Guo-Ping; Wang, Long-Fei; Ye, Xiao-Dong; Yu, Han-Qing

    2015-12-01

    As one kind of phosphorus species, polyphosphate (poly-P) is ubiquitous in natural environments, and the potential interactions between poly-P and humic substances in the sediments or natural waters would influence the fate of poly-P in the environments. However, the mechanism of the interactions has not yet been understood clearly. In this work, the characteristics and mechanisms of the interactions between humic acids (HA) and two model poly-P compounds with various chain lengths have been investigated. Results show that a stable polyphosphate-HA complex would be formed through the noncovalent interactions, and hydrogen bond might be the main driving force for the binding process, which might be formed between the proton-accepting groups of poly-P (e.g., PO and P-O(-)) and the oxygen containing functional groups in HA. Our findings implied that the presence of humic substances in natural waters, soils and sediments would influence the potential transport and/or mobility of environmental poly-P. PMID:26367705

  18. Quantitative evaluation of noncovalent interactions between polyphosphate and dissolved humic acids in aqueous conditions.

    PubMed

    Fang, Wei; Sheng, Guo-Ping; Wang, Long-Fei; Ye, Xiao-Dong; Yu, Han-Qing

    2015-12-01

    As one kind of phosphorus species, polyphosphate (poly-P) is ubiquitous in natural environments, and the potential interactions between poly-P and humic substances in the sediments or natural waters would influence the fate of poly-P in the environments. However, the mechanism of the interactions has not yet been understood clearly. In this work, the characteristics and mechanisms of the interactions between humic acids (HA) and two model poly-P compounds with various chain lengths have been investigated. Results show that a stable polyphosphate-HA complex would be formed through the noncovalent interactions, and hydrogen bond might be the main driving force for the binding process, which might be formed between the proton-accepting groups of poly-P (e.g., PO and P-O(-)) and the oxygen containing functional groups in HA. Our findings implied that the presence of humic substances in natural waters, soils and sediments would influence the potential transport and/or mobility of environmental poly-P.

  19. Assessment of relative accuracy in the determination of organic matter concentrations in aquatic systems

    USGS Publications Warehouse

    Aiken, G.; Kaplan, L.A.; Weishaar, J.

    2002-01-01

    Accurate determinations of total (TOC), dissolved (DOC) and particulate (POC) organic carbon concentrations are critical for understanding the geochemical, environmental, and ecological roles of aquatic organic matter. Of particular significance for the drinking water industry, TOC measurements are the basis for compliance with US EPA regulations. The results of an interlaboratory comparison designed to identify problems associated with the determination of organic matter concentrations in drinking water supplies are presented. The study involved 31 laboratories and a variety of commercially available analytical instruments. All participating laboratories performed well on samples of potassium hydrogen phthalate (KHP), a compound commonly used as a standard in carbon analysis. However, problems associated with the oxidation of difficult to oxidize compounds, such as dodecylbenzene sulfonic acid and caffeine, were noted. Humic substances posed fewer problems for analysts. Particulate organic matter (POM) in the form of polystyrene beads, freeze-dried bacteria and pulverized leaf material were the most difficult for all analysts, with a wide range of performances reported. The POM results indicate that the methods surveyed in this study are inappropriate for the accurate determination of POC and TOC concentration. Finally, several analysts had difficulty in efficiently separating inorganic carbon from KHP solutions, thereby biasing DOC results.

  20. Impacts of Humic Injection Experiments on the South Oyster Field Research Site

    SciTech Connect

    John F. McCarthy

    2004-04-27

    A closure plan for the South Oyster Focus Area (SOFA) is being implemented to assess the impacts of a series of experimental injections of microorganisms, tracers and chemical amendments on the chemical and physical properties of the aquifer. The proposed research addresses environmental monitoring of humic substances injected into the aquifer, as described in the Site Closure Plan for the South Oyster Field Research Site. The goal of the research is to demonstrate that the dissolved organic matter (DOM) in the groundwater at and downgradient from the injection site has returned to a pre-injection �baseline� conditions with respect to either the concentration or chemical composition of the DOM. For clarity, the humic solution injected during the experiment will be referred to as �humic injectate.� The term �DOM� will refer to the organic material recovered in the groundwater, which includes the autochthonous groundwater DOM as well as any of the humic injectate remaining in the groundwater. Specific objectives include: � Estimate the amount of humic material remaining in the aquifer at the completion of the push-pull experiment and the potential for environmental impacts due to release of humics retained on the sediments. � Monitor the DOM concentrations in groundwater over time at the injection well and at sampling locations within the potential downgradient plume of the injected tracers. � Evaluate the chemical composition of the DOM to determine whether the injection experiment had an impact of the chemical properties of the aquifer. The product of this research will be a contribution to the Site Closure Report documenting the impact of the humic experiments on the aquifer. Return of the aquifer to a �baseline� conditions will be achieved if the DOM concentrations in the groundwater are determined over the course of the research to have decreased to the pre-injection level, or if the chemical properties of

  1. Apparatus Induces And Fixes Small Aquatic Organisms

    NASA Technical Reports Server (NTRS)

    Todd, Christopher

    1992-01-01

    Syringe-and-bag assembly compact, lightweight self-contained, portable apparatus introducing liquids to aquatic organisms. Isolates organisms from toxic substances until time of introduction. Includes plastic syringes, each containing inner, sealed, burstable bag. Adaptable to use in biological tests and experiments at remote locations on Earth.

  2. XPS analysis of humic and fulvic acids

    SciTech Connect

    Desbene, P.L.; Silly, L.; Morizur, J.P.; Delamar, M.

    1986-01-01

    The composition of humic and fulvic acids is examined using X-ray Photoelectron Spectroscopy (XPS). The XPS results are compared to that of elemental analyses. XPS permits an easy detection of the different chemical forms of carbon and sulfur that exist in these complex compounds.

  3. Humic Acid Complexation of Th, Hf and Zr in Ligand Competition Experiments: Metal Loading and Ph Effects

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Foustoukos, Dionysis I.; Sonke, Jeroen E.; Salters, Vincent J. M.

    2014-01-01

    The mobility of metals in soils and subsurface aquifers is strongly affected by sorption and complexation with dissolved organic matter, oxyhydroxides, clay minerals, and inorganic ligands. Humic substances (HS) are organic macromolecules with functional groups that have a strong affinity for binding metals, such as actinides. Thorium, often studied as an analog for tetravalent actinides, has also been shown to strongly associate with dissolved and colloidal HS in natural waters. The effects of HS on the mobilization dynamics of actinides are of particular interest in risk assessment of nuclear waste repositories. Here, we present conditional equilibrium binding constants (Kc, MHA) of thorium, hafnium, and zirconium-humic acid complexes from ligand competition experiments using capillary electrophoresis coupled with ICP-MS (CE- ICP-MS). Equilibrium dialysis ligand exchange (EDLE) experiments using size exclusion via a 1000 Damembrane were also performed to validate the CE-ICP-MS analysis. Experiments were performed at pH 3.5-7 with solutions containing one tetravalent metal (Th, Hf, or Zr), Elliot soil humic acid (EHA) or Pahokee peat humic acid (PHA), and EDTA. CE-ICP-MS and EDLE experiments yielded nearly identical binding constants for the metal- humic acid complexes, indicating that both methods are appropriate for examining metal speciation at conditions lower than neutral pH. We find that tetravalent metals form strong complexes with humic acids, with Kc, MHA several orders of magnitude above REE-humic complexes. Experiments were conducted at a range of dissolved HA concentrations to examine the effect of [HA]/[Th] molar ratio on Kc, MHA. At low metal loading conditions (i.e. elevated [HA]/[Th] ratios) the ThHA binding constant reached values that were not affected by the relative abundance of humic acid and thorium. The importance of [HA]/[Th] molar ratios on constraining the equilibrium of MHA complexation is apparent when our estimated Kc, MHA values

  4. Simulation of the influence of EDTA on the sorption of heavy metals by humic acids

    NASA Astrophysics Data System (ADS)

    Kropacheva, T. N.; Didik, M. V.; Kornev, V. I.

    2015-04-01

    The results of mathematical simulation of sorption equilibria with the participation of divalent cations of heavy metals (HMs), chelant (EDTA), and insoluble forms of humic acids (HAs) are discussed. It is shown that the formation of chelates of metals with EDTA in solutions results in the decreasing sorption of the metals by humic acids. We also analyzed the effect of the acidity of the medium and the HM: EDTA: HA ratio (in a wide range) on the desorption of metals. The desorbing effect of EDTA on the metals is the highest at pH 3-5 and increases with an increase in the concentration of EDTA and a decrease in the concentration of HAs. With respect to the remobilization of metals under the impact of EDTA, the metal cations can be arranged into the following sequence: Cu(II) > Ni(II) > Pb(II) ≫ Cd(II) > Co(II) > Zn(II). The obtained data have been used to analyze the remobilization / extraction of HMs from soils with a high content of humic substances.

  5. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability.

    PubMed

    Loosli, Frédéric; Le Coustumer, Philippe; Stoll, Serge

    2013-10-15

    The behavior of manufactured TiO2 nanoparticles is studied in a systematic way in presence of alginate and Suwannee River humic acids at variable concentrations. TiO2 nanoparticles aggregation, disaggregation and stabilization are investigated using dynamic light scattering and electrophoretic experiments allowing the measurement of z-average hydrodynamic diameters and zeta potential values. Stability of the TiO2 nanoparticles is discussed by considering three pH-dependent electrostatic scenarios. In the first scenario, when pH is below the TiO2 nanoparticle point of zero charge, nanoparticles exhibit a positively charged surface whereas alginate and Suwannee River humic acids are negatively charged. Fast adsorption at the TiO2 nanoparticles occurs, promotes surface charge neutralization and aggregation. By increasing further alginate and Suwannee River humic acids concentrations charge inversion and stabilization of TiO2 nanoparticles are obtained. In the second electrostatic scenario, at the surface charge neutralization pH, TiO2 nanoparticles are rapidly forming aggregates. Adsorption of alginate and Suwannee River humic acids on aggregates leads to their partial fragmentation. In the third electrostatic scenario, when nanoparticles, alginate and Suwannee River humic acids are negatively charged, only a small amount of Suwannee River humic acids is adsorbed on TiO2 nanoparticles surface. It is found that the fate and behavior of individual and aggregated TiO2 nanoparticles in presence of environmental compounds are mainly driven by the complex interplay between electrostatic attractive and repulsive interactions, steric and van der Waals interactions, as well as concentration ratio. Results also suggest that environmental aquatic concentration ranges of humic acids and biopolymers largely modify the stability of aggregated or dispersed TiO2 nanoparticles.

  6. Copper dissociation from estuarine humic materials

    NASA Astrophysics Data System (ADS)

    Olson, Dean L.; Shuman, Mark S.

    1985-06-01

    Dissolved humic material from three locations on the Ogeechee River Estuary near Savannah, GA, was ultrafiltered into three size fractions and used for kinetic experiments with Cu(II). A Cu(II)-humic mixture was reacted with a colorimetric reagent for Cu(II) and absorbance observed from 50 msec to at least 1835 sec corresponding to rate constants from 0.001-40 sec -1. The apparent dissociation rate constants were distributed over a wide range, with most bound Cu(II) having k > 1 sec-1 ( t 1/2 < 0.7 sec ). Nearly all the variation seen in the kinetic distribution was among size fractions; as size fraction decreased, the distribution of bound Cu(II) shifted to larger rate constants. Location of sampling stations on the estuary had little effect on results.

  7. Static and dynamic removal of aquatic natural organic matter by carbon nanotubes.

    PubMed

    Ajmani, Gaurav S; Cho, Hyun-Hee; Abbott Chalew, Talia E; Schwab, Kellogg J; Jacangelo, Joseph G; Huang, Haiou

    2014-08-01

    Carbon nanotubes (CNTs) were investigated for their capability and mechanisms to simultaneously remove colloidal natural organic matter (NOM) and humic substances from natural surface water. Static removal testing was conducted via adsorption experiments while dynamic removal was evaluated by layering CNTs onto substrate membranes and filtering natural water through the CNT-layered membranes. Analyses of treated water samples showed that removal of humic substances occurred via adsorption under both static and dynamic conditions. Removal of colloidal NOM occurred at a moderate level of 36-66% in static conditions, independent of the specific surface area (SSA) of CNTs. Dynamic removal of colloidal NOM increased from approximately 15% with the unmodified membrane to 80-100% with the CNT-modified membranes. Depth filtration played an important role in colloidal NOM removal. A comparison of the static and dynamic removal of humic substances showed that equilibrium static removal was higher than dynamic (p < 0.01), but there was also a significant linear relationship between static and dynamic removal (p < 0.05). Accounting for contact time of CNTs with NOM during filtration, it appeared that CNT mat structure was an important determinant of removal efficiencies for colloidal NOM and humic substances during CNT membrane filtration.

  8. Static and dynamic removal of aquatic natural organic matter by carbon nanotubes.

    PubMed

    Ajmani, Gaurav S; Cho, Hyun-Hee; Abbott Chalew, Talia E; Schwab, Kellogg J; Jacangelo, Joseph G; Huang, Haiou

    2014-08-01

    Carbon nanotubes (CNTs) were investigated for their capability and mechanisms to simultaneously remove colloidal natural organic matter (NOM) and humic substances from natural surface water. Static removal testing was conducted via adsorption experiments while dynamic removal was evaluated by layering CNTs onto substrate membranes and filtering natural water through the CNT-layered membranes. Analyses of treated water samples showed that removal of humic substances occurred via adsorption under both static and dynamic conditions. Removal of colloidal NOM occurred at a moderate level of 36-66% in static conditions, independent of the specific surface area (SSA) of CNTs. Dynamic removal of colloidal NOM increased from approximately 15% with the unmodified membrane to 80-100% with the CNT-modified membranes. Depth filtration played an important role in colloidal NOM removal. A comparison of the static and dynamic removal of humic substances showed that equilibrium static removal was higher than dynamic (p < 0.01), but there was also a significant linear relationship between static and dynamic removal (p < 0.05). Accounting for contact time of CNTs with NOM during filtration, it appeared that CNT mat structure was an important determinant of removal efficiencies for colloidal NOM and humic substances during CNT membrane filtration. PMID:24810742

  9. Effect of humic acid on sorption of technetium by alumina.

    PubMed

    Kumar, S; Rawat, N; Kar, A S; Tomar, B S; Manchanda, V K

    2011-09-15

    Sorption of technetium by alumina has been studied in absence as well as in presence of humic acid using (95)Tc(m) as a tracer. Measurements were carried out at fixed ionic strength (0.1M NaClO(4)) under varying pH (3-10) as well as redox (aerobic and reducing anaerobic) conditions. Under aerobic conditions, negligible sorption of technetium was observed onto alumina both in absence and in presence of humic acid. However, under reducing conditions (simulated with [Sn(II)] = 10(-6)M), presence of humic acid enhanced the sorption of technetium in the low pH region significantly and decreased at higher pH with respect to that in absence of humic acid. Linear additive as well as surface complexation modeling of Tc(IV) sorption in presence of humic acid indicated the predominant role of sorbed humic acid in deciding technetium sorption onto alumina.

  10. Aquatic Therapy for Children

    ERIC Educational Resources Information Center

    Kucher, Greta; Moore, Kelsey; Rodia, Rachel; Moser, Christy Szczech

    2015-01-01

    Aquatic therapy has long been highlighted in the literature as a potentially powerful therapeutic intervention. This review will highlight basic definitions of aquatic therapy, review salient research, and identify specific diagnoses that may benefit from aquatic therapy. Online resources, blogs, and books that occupational therapists may find…

  11. Endocrine disruption in aquatic vertebrates.

    PubMed

    Kloas, Werner; Urbatzka, Ralph; Opitz, Robert; Würtz, Sven; Behrends, Thomas; Hermelink, Björn; Hofmann, Frauke; Jagnytsch, Oana; Kroupova, Hana; Lorenz, Claudia; Neumann, Nadja; Pietsch, Constanze; Trubiroha, Achim; Van Ballegooy, Christoph; Wiedemann, Caterina; Lutz, Ilka

    2009-04-01

    Environmental compounds can interfere with endocrine systems of wildlife and humans. The main sink of such substances, called endocrine disrupters (ED), are surface waters. Thus, aquatic vertebrates, such as fish and amphibians, are most endangered. ED can adversely affect reproductive biology and the thyroid system. ED act by (anti)estrogenic and (anti)androgenic modes of action, resulting in abnormal sexual differentiation and impaired reproduction. These effects are mainly driven by direct interferences of ED with sex steroid receptors rather than indirectly by impacting synthesis and bioavailability of sex steroids, which in turn might affect the hypothalamic-pituitary-gonadal axis. Recent findings reveal that, in addition to the human-produced waste of ED, natural sources, such as parasites and decomposition of leaves, also might act as ED, markedly affecting sexual differentiation and reproduction in fish and amphibians. Although the thyroid system has essential functions in both fish and amphibians, amphibian metamorphosis has been introduced as the most sensitive model to detect thyroidal ED; no suitable fish model exists. Whereas ED may act primarily on only one specific endocrine target, all endocrine systems will eventually be deregulated as they are intimately connected to each other. The recent ecotoxicological issue of pharmaceutically active compounds (PhACs) present in the aquatic environment indicates a high potential for further endocrine modes of action on aquatic vertebrates by ED derived from PhACs, such as glucocorticoids, progestins, and beta-agonists.

  12. Effects of Standard Humic Materials on Relative Bioavailability of NDL-PCBs in Juvenile Swine

    PubMed Central

    Delannoy, Matthieu; Schwarz, Jessica; Fournier, Agnès; Rychen, Guido; Feidt, Cyril

    2014-01-01

    Young children with their hand-to-mouth activity may be exposed to contaminated soils. However few studies assessing exposure of organic compounds sequestrated in soil were realized. The present study explores the impact of different organic matters on retention of NDL-PCBs during digestive processes using commercial humic substances in a close digestive model of children: the piglet. Six artificial soils were used. One standard soil, devoid of organic matter, and five amended versions of this standard soil with either fulvic acid, humic acid, Sphagnum peat, activated carbon or a mix of Sphagnum peat and activated carbon (95∶5) (SPAC) were prepared. In order to compare the different treatments, we use spiked oil and negative control animals. Forty male piglets were randomly distributed in 7 contaminated and one control groups (n  = 5 for each group). During 10 days, the piglets were fed artificial soil or a corn oil spiked with 19 200 ng of Aroclor 1254 per g of dry matter (6 000 ng.g−1 of NDL-PCBs) to achieve an exposure dose of 1 200 ng NDL-PCBs.Kg−1 of body weight per day. NDL-PCBs in adipose tissue were analyzed by GC-MS. Fulvic acid reduced slightly the bioavailability of NDL-PCBs compared to oil. Humic acid and Sphagnum peat reduced it significantly higher whereas activated carbon reduced the most. Piglets exposed to soil containing both activated carbon and Shagnum peat exhibited a lower reduction than soil with only activated carbon. Therefore, treatment groups are ordered by decreasing value of relative bioavailability as following: oil ≥ fulvic acid>Sphagnum peat ≥ Sphagnum peat and activated carbon ≥ Humic acid>>activated carbon. This suggests competition between Sphagnum peat and activated carbon. The present study highlights that quality of organic matter does have a significant effect on bioavailability of sequestrated organic compounds. PMID:25549096

  13. Reactivity of partially reduced arylhydroxylamine and nitrosoarene metabolites of 2,4,6-trinitrotoluene (TNT) toward biomass and humic acids.

    PubMed

    Ahmad, Farrukh; Hughes, Joseph B

    2002-10-15

    Sequential anaerobic/aerobic treatment of 2,4,6-trinitrotoluene (TNT) generally results in the incorporation of residues into biomass and natural organic matter fractions of a system. To better understand the potential contribution of hydroxylamine and nitroso moieties in these reactions, studies were conducted using model systems taking advantage of the biocatalytic-activity of Clostridium acetobutylicum that does not produce aminated TNT derivatives. To evaluate binding to biomass only, systems containing cell-free extracts of C. acetobutylicum and molecular hydrogen as a reductant were employed. At the end of treatment, mass balance studies showed that 10% of the total 14C was associated with an insoluble protein-containing precipitate that could not be extracted with organic solvents. Model reactions were conducted between a mixture of 2,4-dihydroxylamino-6-nitrotoluene (DHA6NT) and 4-hydroxylamino-2,6-dinitrotoluene (4HADNT) and 1-thioglycerol to test the involvement of the nitroso-thiol reaction in binding to biomass. It was demonstrated that DHA6NT formed a new and relatively polar product with 1-thioglycerol only in the presence of oxygen. The oxygen requirement confirmed that the nitroso functionality was responsible for the binding reaction. The reactivity of arylhydroxylamino and nitrosoarene functionalities toward International Humic Substance Society (IHSS) peat humic acid was evaluated under anaerobic and aerobic conditions, respectively. 4HADNT showed no appreciable reactivity toward peat humic acid. Conversely, the nitrosoarene compound, nitrosobenzene, showed rapid reactivity with peat humic acid (50% removal in 48 h). When tested with two other humic acids (selected on the basis of their protein content), it became apparent that the proteinaceous fraction was responsible at least in part for the nitrosoarene's removal from solution. Furthermore, the pretreatment of the humic acids with a selective thiol derivatizing agent had a considerable effect

  14. Chemical structure of humic acids - Part 2, the molecular aggregation of some humic acid fractions in N, N-dimethylformamide

    USGS Publications Warehouse

    Wershaw, R. L.; Pinckney, D.J.

    1977-01-01

    Humic acid fractions form molecular aggregates in solution. In previous studies we have shown by small angle X-ray scattering that the size of these aggregates is a function of pH. In this study we have found that the size of the aggregates of two humic acid fractions in water and buffers and in dimethylformamide solutions can be changed by oxidation with molecular oxygen and air. These results cast new light on the bonding mechanisms that cause aggregation of the humic acid particles in solution. We have interpreted the changes in aggregation sizes as being brought about by changes in intermolecular and intramolecular hydrogen bonding of the humic particles. Solvation of the humic molecules by dimethylformamide interferes with some of the hydrogen bonding reactions between proton donor and acceptor groups on the same humic acid molecules or on different molecules.

  15. Basin scale survey of marine humic fluorescence in the Atlantic: Relationship to iron solubility and H2O2

    NASA Astrophysics Data System (ADS)

    Heller, M. I.; Gaiero, D. M.; Croot, P. L.

    2013-01-01

    Iron (Fe) is a limiting nutrient for phytoplankton productivity in many different oceanic regions. A critical aspect underlying iron limitation is its low solubility in seawater as this controls the distribution and transport of iron through the ocean. Processes which enhance the solubility of iron in seawater, either through redox reactions or organic complexation, are central to understanding the biogeochemical cycling of iron. In this work we combined iron solubility measurements with parallel factor (PARAFAC) data analysis of Coloured Dissolved Organic Matter (CDOM) fluorescence along a meridional transect through the Atlantic (PS ANT XXVI-4) to examine the hypothesis that marine humic fluorescence is a potential proxy for iron solubility in the surface ocean. PARAFAC analysis revealed 4 components (C1-4), two humic like substances (C2&4) and two protein-like (C1&3). Overall none of the 4 components were significantly correlated with iron solubility, though humic-like components were weakly correlated with iron solubility in iron replete waters. Our analysis suggests that the ligands responsible for maintaining iron in solution in the euphotic zone are sourced from both remineralisation processes and specific ligands produced in response to iron stress and are not easily related to bulk CDOM properties. The humic fluorescence signal was sharply attenuated in surface waters presumably most likely due to photo bleaching, though there was only a weak correlation with the transient photo product H2O2, suggesting longer lifetimes in the photic zone for the fluorescent components identified here.

  16. Spin Labeling ESR Investigation of a Role of Humic Acids at Covalent Binding of Xenobiotics to Soil

    NASA Astrophysics Data System (ADS)

    Aleksandrova, Olga

    2014-05-01

    The environmental risk of organic xenobiotic chemicals released into soils is controlled by their sorption and binding processes. However, the molecular mechanisms of reversible and irreversible interactions of xenobiotics with soil constituents and an influence of humic substances on this interaction are only partly understood. New methods and approaches aimed at understanding of molecular mechanisms in the soil environment and a role of humic substances in the sorption and binding processes are today required to manage and keep the quality of soil used and fertilized in agricultural industry. The paper presents a new approach of using stable ESR spin labels to investigate a role of humic substances in the interactions of organic xenobiotic chemicals with constituents of natural soil via the typical functional groups of xenobiotics, such as Amines. At the experiment, the nitroxide spin labels, such as TEMPO (2,2,6,6-Tetramethylpiperidin-1-oxyl), Amino-TEMPO (4-amino-2,2,6,6-Tetramethylpiperidin-1-oxyl) and Aniline spin labels (2,5,5-Trimethyl-2-(3-aminophenyl)pyrrolidin-1-oxyl), were added to samples of different natural soils, such luvisol, cambisol and chernozem. Amino-TEMPO and Aniline spin labels include the aliphatic amino and aromatic amino functional groups, respectively. A significant broadening of the ESR spectrum of Aniline spin labels incubated in different soils indicated a stable effect of covalent binding of the spin labels to soil constituents via the aromatic amino, whereas the ESR spectra of the other two spin labels were not broadened that pointed at the absence of covalent binding of spin labels via the aliphatic amino. As shown, a part of bound spin labels via the aromatic amino increased with increasing of the concentration of humic acids in soil. The same broadened signals were also be detected with the humic acids extracted from the investigated soils. A strong covalent binding of spin labels to humic substances via the aromatic amines was

  17. Substance use

    MedlinePlus

    Substance abuse; Illicit drug abuse; Narcotic abuse; Hallucinogen abuse ... Arlington, VA: American Psychiatric Publishing. 2013. Weiss RD. Drugs of abuse. In: Goldman L, Schafer AI, eds. Goldman's Cecil ...

  18. Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications.

    PubMed

    Saleh, Navid B; Pfefferle, Lisa D; Elimelech, Menachem

    2008-11-01

    The initial aggregation kinetics of multiwalled carbon nanotubes (MWNTs) were examined through time-resolved dynamic light scattering. Aggregation of MWNTs was evaluated by varying solution pH and the concentration of monovalent (NaCl) and divalent (CaCl2 and MgCl2) salts. Suwannee River humic acid (SRHA) was used to study the effect of background natural organic matter on MWNT aggregation kinetics, Increasing salt concentration and addition of divalent calcium and magnesium ions induced MWNT aggregation by suppressing electrostatic repulsion, similar to observations with aquatic colloidal particles. The critical coagulation concentration (CCC) values for MWNTs were estimated as 25 mM NaCI, 2.6 mM CaCl2, and 1.5 mM MgCl2. An increase in solution pH from acidic (pH 3) to basic (pH 11) conditions resulted in a substantial (over 2 orders of magnitude) decrease in MWNT aggregation kinetics, suggesting the presence of ionizable functional groups on the MWNT carbon scaffold. The presence of humic acid in solution markedly enhanced the colloidal stability of MWNTs, reducing the aggregation rate by nearly 2 orders of magnitude. The enhanced MWNT stability in the presence of humic acid is attributable to steric repulsion imparted by adsorbed humic acid macromolecules. Our results suggest that MWNTs are relatively stable at solution pH and electrolyte conditions typical of aquatic environments.

  19. Aquatic chemistry of flood events

    NASA Astrophysics Data System (ADS)

    Klavins, Maris; Rodinov, Valery

    2015-04-01

    During flood events a major discharge of water and dissolved substances happens. However flood waters very much differs from water composition during low-water events. Aquatic chemistry of flood waters also is of importance at the calculation of loadings as well as they might have major impact on water quality in receiving water bodies (lakes, coastal waters and seas). Further flood regime of rivers is subjected to changes due to climate change and growing impact of human activities. The aim of this study is to analyse water chemical composition changes during flood events in respect to low water periods, character of high-water events and characteristics of the corresponding basin. Within this study, the concentrations of major dissolved substances in the major rivers of Latvia have been studied using monitoring data as well as field studies during high water/ low water events. As territories of studies flows of substances in river basins/subbasins with different land-use character and different anthropogenic impacts has been studied to calculate export values depending on the land-use character. Impact of relations between dissolved substances and relations in respect to budgets has been calculated. The dynamics of DOC, nutrient and major dissolved substance flows depending on landuse pattern and soil properties in Latvia has been described, including emissions by industrial and agricultural production. In these changes evidently climate change signals can be identified. The water chemistry of a large number of rivers during flood events has been determined and the possible impact of water chemical composition on DOC and nutrient flows has been evaluated. Long-term changes (1977-2013) of concentrations of dissolved substances do not follow linear trends but rather show oscillating patterns, indicating impact of natural factors, e.g. changing hydrological and climatic conditions. There is a positive correlation between content of inert dissolved substances and

  20. Sampling Odor Substances by Mist-Cyclone System

    NASA Astrophysics Data System (ADS)

    Matsubara, Osamu; Jiang, Zhiheng; Toyama, Shigeki

    2009-05-01

    Many techniques have been developed to measure odor substances. However most of those methods are based on using aquatic solutions(1),(2). Many odor substances specifically at low density situation, are difficult to dissolve into water. To absorb odor substances and obtain highest concentration solutions are key problems for olfactory systems. By blowing odor substances contained air mixture through mist of water and then separating the liquid from two-phases fluid with a cyclone unit a high concentration solution was obtained.

  1. Analytical determination of the microbial utilization and transformation of humic acids extracted from municipal refuse.

    PubMed

    Filip, Z; Berthelin, J

    2001-11-01

    Humic substances are usually the refractory part of natural organic matter, and in a landfill they can retain inorganic and organic micropollutants. This study has investigated analytically whether humic acids (HA) extracted by use of alkali from either fresh municipal refuse or from refuse disposed of in a landfill for up to 12 months can resist microbial degradation under aerobic conditions. When added as a supplementary nutrient source, up to 63.6% of HA was utilized and this percentage was enhanced to a mean value of 88.5% when different HA preparations were used as the sole source of carbon. In cultures of a soil microbial community containing the same preparations as sole sources of nitrogen, HA was usually completely utilized. The remaining HA re-isolated from some microbial cultures were highly depleted in carbon and, simultaneously, the nitrogen content was enhanced. The FTIR spectra were indicative of strong participation of aliphatic structural units in the refuse-related HA preparations. Because of the microbial activity, different carbonaceous substances were primarily removed from the HA structure, and an increase in nitrogenous molecular groups became apparent. The structural transformations brought about by soil microorganisms "in vitro" corresponded to those occurring naturally in HA obtained from refuse aged for 12 months in a landfill.

  2. Surface-active properties of humic and sulfochlorohumic acids

    SciTech Connect

    Ryabova, I.N.; Mustafina, G.A.; Akkulova, Z.G.; Satymbaeva, A.S.

    2009-10-15

    The surface tension of alkaline solutions of humic acids and their sulfochloroderivatives, which are synthesized by sulfonation of chlorohumic acids isolated from coal chlorinated by the electrochemical method, is investigated. It is established that humic compounds possess weak surface activity. Basic adsorption parameters are calculated.

  3. Copper redox transformation and complexation by reduced and oxidized soil humic Acid. 2. Potentiometric titrations and dialysis cell experiments.

    PubMed

    Maurer, Felix; Christl, Iso; Fulda, Beate; Voegelin, Andreas; Kretzschmar, Ruben

    2013-10-01

    Cation binding and electron transfer reactions of humic substances determine copper speciation in redox-dynamic systems, but quantitative studies for Cu+ binding to humic substances are lacking. We investigated reduction of Cu2+ and binding of Cu+ at pH 7.0 in a dialysis cell experiment using reduced and reoxidized soil humic acid (HA) as reductant and sorbent at copper loadings of 9.5-600 mmol kg(-1). The data were used to quantitatively explain the interaction between cation binding and electron transfer processes that determine copper speciation in the presence of HA under anoxic and oxic conditions. Addition of Cu2+ to reduced HA resulted in almost complete reduction to Cu(I) within 1 h. Reduction was also significant under oxic conditions. The slow decrease of the Cu(I) fraction was attributed to formation of Cu(0) based on thermodynamic consideration. Cu+ binding to HA was found to be strong compared to other chalcophile cations like Ag+ or Cd2+. Our results indicate that Cu+ and Cu2+ isotherms exhibit a redox potential-dependent intersection point. According to the differences in Cu+ and Cu2+ binding, the presence of HA was found to extend the stability field of Cu(II) to moderately reducing conditions and to reduce the stability field of Cu(0) due to the formation of Cu(I) complexes.

  4. Pyrrolidone - a new solvent for the methylation of humic acid

    USGS Publications Warehouse

    Wershaw, R. L.; Pinckney, D.J.; Booker, S.E.

    1975-01-01

    In the past, humic acid has been methylated by suspending it in a solution of diazomethane in diethyl ether, and degrading the partly methylated humic acid to release those parts of the molecule that were methylated. Only small fragments of the molecule have been identified by this technique. In the procedure described here the humic acid is dissolved in 2-pyrrolidone and methylated by the addition of diazomethane in diethyl ether and ethanol to the solution. Because the humic acid is completely dissolved in the reaction medium, disaggregation of the humic acid particles takes place and much more complete methylation is obtained. The methylated products may be fractionated by countercurrent distribution and analyzed by mass spectrometry.

  5. Effects of Humic and Fulvic Acids on Silver Nanoparticle Stability, Dissolution, and Toxicity.

    PubMed

    Gunsolus, Ian L; Mousavi, Maral P S; Hussein, Kadir; Bühlmann, Philippe; Haynes, Christy L

    2015-07-01

    The colloidal stability of silver nanoparticles (AgNPs) in natural aquatic environments influences their transport and environmental persistence, while their dissolution to Ag(+) influences their toxicity to organisms. Here, we characterize the colloidal stability, dissolution behavior, and toxicity of two industrially relevant classes of AgNPs (i.e., AgNPs stabilized by citrate or polyvinylpyrrolidone) after exposure to natural organic matter (NOM, i.e., Suwannee River Humic and Fulvic Acid Standards and Pony Lake Fulvic Acid Reference). We show that NOM interaction with the nanoparticle surface depends on (i) the NOM's chemical composition, where sulfur- and nitrogen-rich NOM more significantly increases colloidal stability, and (ii) the affinity of the capping agent for the AgNP surface, where nanoparticles with loosely bound capping agents are more effectively stabilized by NOM. Adsorption of NOM is shown to have little effect on AgNP dissolution under most experimental conditions, the exception being when the NOM is rich in sulfur and nitrogen. Similarly, the toxicity of AgNPs to a bacterial model (Shewanella oneidensis MR-1) decreases most significantly in the presence of sulfur- and nitrogen-rich NOM. Our data suggest that the rate of AgNP aggregation and dissolution in aquatic environments containing NOM will depend on the chemical composition of the NOM, and that the toxicity of AgNPs to aquatic microorganisms is controlled primarily by the extent of nanoparticle dissolution.

  6. Effects of Humic and Fulvic Acids on Silver Nanoparticle Stability, Dissolution, and Toxicity

    PubMed Central

    Gunsolus, Ian L.; Mousavi, Maral P. S.; Hussein, Kadir; Bühlmann, Philippe; Haynes, Christy L.

    2015-01-01

    The colloidal stability of silver nanoparticles (AgNPs) in natural aquatic environments influences their transport and environmental persistence, while their dissolution to Ag+ influences their toxicity to organisms. Here, we characterize the colloidal stability, dissolution behavior, and toxicity of two industrially relevant classes of AgNPs (i.e., AgNPs stabilized by citrate or polyvinylpyrrolidone) after exposure to natural organic matter (NOM, i.e., Suwannee River Humic and Fulvic Acid Standards and Pony Lake Fulvic Acid Reference). We show that NOM interaction with the nanoparticle surface depends on (i) the NOM’s chemical composition, where sulfur- and nitrogen-rich NOM more significantly increases colloidal stability, and (ii) the affinity of the capping agent for the AgNP surface, where nanoparticles with loosely bound capping agents are more effectively stabilized by NOM. Adsorption of NOM is shown to have little effect on AgNP dissolution under most experimental conditions, the exception being when the NOM is rich in sulfur and nitrogen. Similarly, the toxicity of AgNPs to a bacterial model (Shewanella oneidensis MR-1) decreases most significantly in the presence of sulfur- and nitrogen-rich NOM. Our data suggest that the rate of AgNP aggregation and dissolution in aquatic environments containing NOM will depend on the chemical composition of the NOM, and that the toxicity of AgNPs to aquatic microorganisms is controlled primarily by the extent of nanoparticle dissolution. PMID:26047330

  7. Toxicities of selected substances to freshwater biota

    SciTech Connect

    Hohreiter, D.W.

    1980-05-01

    The amount of data available concerning the toxicity of various substances to freshwater biota is so large that it is difficult to use in a practical situation, such as environmental impact assessment. In this document, summary tables are presented showing acute and/or chronic toxicity of selected substances for various groups of aquatic biota. Each entry is referenced to its original source so that details concerning experimental conditions may be consulted. In addition, general information concerning factors modifying toxicity, synergisms, evidence of bioaccumulation, and water quality standards and criteria for the selected substances is given. The final table is a general toxicity table designed to provide an easily accessible and general indication of toxicity of selected substances in aquatic systems.

  8. Photographing Aquatic Organisms

    ERIC Educational Resources Information Center

    Olsen, Sigurd

    1977-01-01

    Techniques for effective photography of aquatic organisms in the field and laboratory are described. Photography of microscopic organisms and construction techniques of photoaquaria are described. (CS)

  9. Increase in complexation ability of humic acids with the addition of ligneous bulking agents during sewage sludge composting.

    PubMed

    Xiong, Xiong; Yan-Xia, Li; Ming, Yang; Feng-Song, Zhang; Wei, Li

    2010-12-01

    Wood sawdust and maize straw were selected to co-compost sewage sludge to investigate the effects of organic bulking agents on the formation and molecular transformation of humic substances. The results showed that composting process increased humic acids (HA) while decreased fulvic acids (FA), and the wood sawdust and maize straw promoted the formation of HA by 25.6% and 16.1%, respectively. Results from fluorescence titration demonstrated that organic bulking agents also increased the binding ability of HA with the heavy metal ions, Cu(II) and Cd(II), but had little influence on that of FA. These findings indicate that organic materials especially wood sawdust may be used as bulking agents to reduce the mobility and bioavailability of toxic metals in solid waste composts.

  10. Successions and diversity of humic-reducing microorganisms and their association with physical-chemical parameters during composting.

    PubMed

    Xi, Beidou; Zhao, Xinyu; He, Xiaosong; Huang, Caihong; Tan, Wenbing; Gao, Rutai; Zhang, Hui; Li, Dan

    2016-11-01

    Humic-reducing microorganisms (HRMs) could utilize humic substances (HS) as terminal electron mediator to promote the biodegradation of recalcitrant pollutants. However, the dynamics of HRMs during composting has not been explored. Here, high throughput sequencing technology was applied to investigate the patterns of HRMs during three composting systems. A total of 30 main genera of HRMs were identified in three composts, with Proteobacteria being the largest phylum. HRMs were detected with increased diversity and abundance and distinct patterns during composting, which were significantly associated with dissolved organic carbon, dissolved organic nitrogen and germination index. Regulating key physical-chemical parameters is a process control of HRMs community composition, thus promoting the redox capability of the compost. The redox capability of HRMs were strengthened during composting, suggesting that HRMs of the compost may play an important role on pollutant degradation of the compost or when they are applied to the contaminated soils. PMID:27494101

  11. The impact of humic and fulvic acids on the dynamic properties of liposome membranes: the ESR method.

    PubMed

    Man, Dariusz; Pisarek, Izabella; Braczkowski, Michał; Pytel, Barbara; Olchawa, Ryszard

    2014-06-01

    This paper presents the results of research on the influence of two fractions of humic substances (HS): fulvic acids (FA) and humic acids (HA), as a function of concentration, on the liposome membranes formed from egg yolk lecithin (EYL). The concentration of HS in relation to EYL changed from 0% to 10% by weight. The influence of HS on various areas of membranes: interphase water-lipid, in the lipid layer just below the polar part of the membrane and in the middle of the lipid bilayer, was investigated by different spin labels (TEMPO, DOXYL 5, DOXYL 16). The study showed that HA slightly decreased the fluidity of the analyzed membranes on the surface layer, while FA significantly liquidated the center of the lipid bilayer. The strong effect of both fractions of HS on the concentration of free radicals as a function of time was also described.

  12. Effects of humic acids on the aggregation and sorption of nano-TiO2.

    PubMed

    Li, Yanjie; Yang, Chen; Guo, Xuetao; Dang, Zhi; Li, Xiaoqin; Zhang, Qian

    2015-01-01

    In this study, humic acids (HAs) from three sources, peat, sediment and straw, used to coat nano-TiO2 were investigated. The results indicated that HAs isolated from peat were aromatic-rich, whereas those isolated from sediment and straw were aliphatic-rich. The nano-TiO2 sedimentation experiments indicated that the presence of aromatic-rich HAs was more capable of stabilizing nano-TiO2 particles than was the presence of aliphatic-rich HAs. This result is because the deionized phenolic groups in the HAs were preferentially adsorbed on the nano-TiO2 surfaces, which generated a higher charge density on the nano-TiO2 surfaces and caused stronger repulsive forces among particles. Furthermore, the aromatic-rich TiO2-HA complexes exhibited a greater sorption capacity than the aliphatic-rich TiO2-HAs complexes and nonlinear phenanthrene sorption because of their higher affinity and the condensed state of aromatic fractions. Note that natural organic matters, such as humic acids, in aquatic environments can not only increase the stability of nanoparticles but can also influence the mobility of hydrophobic organic compounds (HOCs).

  13. Interactions between polycyclic aromatic hydrocarbons and dissolved humic material: binding and dissociation

    SciTech Connect

    McCarthy, J.F.; Jimenez, B.D.

    1985-11-01

    Binding of polycyclic aromatic hydrocarbons (PAH's) to dissolved humic material (DHM) was examined by using equilibrium dialysis and fluorescence techniques. There was a direct relationship between the hydrophobicity of the PAH and the affinity for binding to DHM. The binding affinity P/sub a/ for benzo(a)pyrene (BaP), benzanthracene, and anthracene decreased slightly as the concentration of DHM increased. The binding of BaP to DHM was completely reversible and the extent of reversibility was unrelated to the sorption time. The rate of binding of BaP to DHM, measured by the quenching to BaP fluorescence, was very rapid and was completed within 5-10 min. The results suggest that the presence of DHM, or other sorptive components of the dissolved organic pool, may affect binding to sediment or suspended particles and thus alter the fate and transport of organic contaminants in aquatic systems.

  14. The relationship between dissolved humic acids and soluble iron in estuaries

    NASA Technical Reports Server (NTRS)

    Fox, L. E.

    1984-01-01

    Dissolved humic acid and soluble iron appear to be chemically unassociated in estuaries despite their coincident removal. This conclusion is supported by differences in the aggregation kinetics of soluble iron and dissolved humic acid, the inability of extracted humic acid to stabilize laboratory preparations of ferric hydroxide, and decreasing ratios of humic acid carbon to soluble iron along the axes of some estuaries.

  15. The stabilization of tannery sludge and the character of humic acid-like during low temperature pyrolysis.

    PubMed

    Ma, Hongrui; Gao, Mao; Hua, Li; Chao, Hao; Xu, Jing

    2015-11-01

    Tannery sludge contained plenty of organic matter, and the organic substance stability had direct impact on its derived chars' utilization. In this paper, the stabilization of tannery sludge and the variation of humic acid-like (HAL) extracted by different methods were investigated in a magnetic stirring reactor under low temperature pyrolysis of 100-400 °C. Results showed that the aromatic structure of pyrolysis chars increased with the increase of temperature and time. The char contained highly aromatic structure and relatively small dissolved organic matters (DOM) at 300 °C. The similar behaviors appeared in two HAL series by different extraction methods. The N content, H/C value, and aliphatic structures of HAL decreased with the increase of pyrolysis temperature, while the C/N value and aromatic structures increased with the rise of pyrolysis temperature. The composition and functional groups of HAL were similar with the purchased humic acid (HA). The fluorescence spectra revealed that two main peaks were found at Ex/Em = 239/363-368 nm and 283/359-368 nm in each HAL series from raw and 100 °C pyrolysis tannery sludge, representing a protein-like matter. The new peak appeared at Ex/Em = 263-283/388 nm in each HAL series from 200 °C pyrolysis tannery sludge-represented humic acid-like matter. The fluorescence intensity increased strongly compared to the other two peak intensity. Therefore, the humification of organic matter was increased by pyrolyzing. Notably, the HAL from 200 °C pyrolysis tannery sludge contained simple molecular structure, and the polycondensation increased but with a relative lower humification degree compared to soil HAL and purchased HA. Therefore, the sludge needs further oxidation. The humic substance was negligible by direct extraction when the temperature was 300 and 400 °C. PMID:26092361

  16. Generation of hydroxyl radicals from metal-loaded humic acids

    SciTech Connect

    Paciolla, M.D.; Jansen, S.A.; Davies, G.

    1999-06-01

    Humic acids (HAs) are naturally occurring biopolymers that are ubiquitous in the environment. They are most commonly found in the soil, drinking water, and a variety of plants. Pharmacological and therapeutic studies involving humic acids have been reported to some extent. However, when certain transition metals are bound to humic acids, e.g., iron and copper, they can be harmful to biological organisms. For this study, humic acids were extracted from German, Irish, and New Hampshire soils that were selectively chosen because of their reich abundance in humic material. Each sample was treated at room temperature with 0.1 M ferric and cupric solutions for 48 h. The amount of iron and copper adsorbed by humic acid was accurately quantitated using atomic absorption spectroscopy. The authors further demonstrate that these metal-loaded humic acids can produce deleterious oxidizing species such as the hydroxyl radical (HO*) through the metal-driven Fenton reaction. Electron paramagnetic resonance (EPR) employing spin trapping techniques with 5,5-dimethylpyrroline N-oxide (DMPO) is used to confirm the generation of hydroxyl radicals. The DMPO-OH adduct with hyperfine splitting constants A{sub N} = A{sub H} = 14.9 G is observed upon the addition of exogenous hydrogen peroxide. The concentration of hydroxyl radical was determined using 4-hydroxytempo (TEMPO-OH) as a spin standard. The presence of another oxidizing species, Fe{double_bond}O{sup 2+}, is also proposed in the absence of hydrogen peroxide.

  17. Aquatic Activities for Youth.

    ERIC Educational Resources Information Center

    Greene, H. David; And Others

    Designed to meet the diverse educational needs of youth groups, this aquatic program consists of eight individual lesson units, each devoted to one aspect of the aquatic world. Unit topics include: fish aquariums; raising earthworms; simulation of coastal planning; entomology and water; rope; calculating stream flow; saltwater aquariums; and fish…

  18. Study of different Chemcatcher configurations in the monitoring of nonylphenol ethoxylates and nonylphenol in aquatic environment.

    PubMed

    Ahkola, Heidi; Herve, Sirpa; Knuutinen, Juha

    2014-01-01

    The main aim of the European Union Water Framework Directive (WFD) (2000/60/EC) is to protect rivers, lakes, coastal waters and groundwaters (EC 2000). The implementation of the WFD requires monitoring the concentration levels of several priority pollutants such as nonylphenol ethoxylates (NPEOs) and nonylphenol (NP) in the area of EU. The present practices for determining the concentration levels of various pollutants are, in many respects, insufficient, and there is an urgent need to develop more cost-effective sampling methods. A passive sampling tool named Chemcatcher was tested for monitoring NPEOs and NP in aqueous media. These environmentally harmful substances have been widely used in different household and industrial applications, and they affect aquatic ecosystems, for example, by acting as endocrine disrupting compounds. The suitability of different receiving phases which were sulfonated styrene-divinylbenzene reversed phase polymer (SDB-RPS), standard styrene-divinyl benzene polymer (SDB-XC) and C-18 (octadecyl) was assessed in laboratory and field trials. The effect of a diffusion membrane on the accumulation of studied compounds was also investigated. The SDB-XC and C-18 receiving phases collected the NPEOs and NP most effectively. The water flow affected the accumulation factor of the studied substances in the field trials, and the water concentrations calculated using sampling rates were tenfold lower than those measured with conventional spot sampling. The concentration of the analytes in spot samples taken from the sampling sites might be higher because in that case, the particle-bound fraction is also measured. The NPEOs readily attach to suspended matter, and therefore, the total concentration of such compounds in water is much higher. Also, the spot samples were not taken daily but once a week, while the passive samplers collected the compounds continuously for 2- or 4-week time periods. This may cause differences when comparing the results of

  19. Study of different Chemcatcher configurations in the monitoring of nonylphenol ethoxylates and nonylphenol in aquatic environment.

    PubMed

    Ahkola, Heidi; Herve, Sirpa; Knuutinen, Juha

    2014-01-01

    The main aim of the European Union Water Framework Directive (WFD) (2000/60/EC) is to protect rivers, lakes, coastal waters and groundwaters (EC 2000). The implementation of the WFD requires monitoring the concentration levels of several priority pollutants such as nonylphenol ethoxylates (NPEOs) and nonylphenol (NP) in the area of EU. The present practices for determining the concentration levels of various pollutants are, in many respects, insufficient, and there is an urgent need to develop more cost-effective sampling methods. A passive sampling tool named Chemcatcher was tested for monitoring NPEOs and NP in aqueous media. These environmentally harmful substances have been widely used in different household and industrial applications, and they affect aquatic ecosystems, for example, by acting as endocrine disrupting compounds. The suitability of different receiving phases which were sulfonated styrene-divinylbenzene reversed phase polymer (SDB-RPS), standard styrene-divinyl benzene polymer (SDB-XC) and C-18 (octadecyl) was assessed in laboratory and field trials. The effect of a diffusion membrane on the accumulation of studied compounds was also investigated. The SDB-XC and C-18 receiving phases collected the NPEOs and NP most effectively. The water flow affected the accumulation factor of the studied substances in the field trials, and the water concentrations calculated using sampling rates were tenfold lower than those measured with conventional spot sampling. The concentration of the analytes in spot samples taken from the sampling sites might be higher because in that case, the particle-bound fraction is also measured. The NPEOs readily attach to suspended matter, and therefore, the total concentration of such compounds in water is much higher. Also, the spot samples were not taken daily but once a week, while the passive samplers collected the compounds continuously for 2- or 4-week time periods. This may cause differences when comparing the results of

  20. Effects of aeration intensity on formation of phenol-fed aerobic granules and extracellular polymeric substances.

    PubMed

    Adav, Sunil S; Lee, Duu-Jong; Lai, J Y

    2007-11-01

    Effect of air aeration intensities on granule formation and extracellular polymeric substances content in three identical sequential batch reactors were investigated. The excitation-emission-matrix spectra and multiple staining and confocal laser scanning microscope revealed proteins, polysaccharides, lipids, and humic substances in the sludge and granule samples. Seed sludge flocs were compacted at low aeration rate, with produced extracellular polymeric substances of 50.2-76.7 mg g(-1) of proteins, 50.2-77.3 mg g(-1) carbohydrates and 74 mg g(-1) humic substances. High aeration rate accelerated formation of 1.0-1.5 mm granules with smooth outer surface. The corresponding quantities of extracellular polymeric substances were 309-537 mg g(-1) of proteins, 61-109 mg g(-1) carbohydrates, 49-92 mg g(-1) humic substances, and 49-68 mg g(-1) lipids. Intermediate aeration rate produced 3.0-3.5 mm granules with surface filaments. Reactor failure occurred with overgrowth of filaments, probably owing to the deficiency of nutrient in liquid phase. No correlation was noted between extracellular polymeric substances composition and the proliferation of filamentous microorganisms on granule surface.

  1. Contrasting Effects of Singlet Oxygen and Hydrogen Peroxide on Bacterial Community Composition in a Humic Lake

    PubMed Central

    Glaeser, Stefanie P.; Berghoff, Bork A.; Stratmann, Verena; Grossart, Hans-Peter; Glaeser, Jens

    2014-01-01

    Light excitation of humic matter generates reactive oxygen species (ROS) in surface waters of aquatic ecosystems. Abundant ROS generated in humic matter rich lakes include singlet oxygen (1O2) and hydrogen peroxide (H2O2). Because these ROS differ in half-life time and toxicity, we compared their effects on microbial activity (14C-Leucine incorporation) and bacterial community composition (BCC) in surface waters of humic Lake Grosse Fuchskuhle (North-eastern Germany). For this purpose, experiments with water samples collected from the lake were conducted in July 2006, September 2008 and August 2009. Artificially increased 1O2 and H2O2 concentrations inhibited microbial activity in water samples to a similar extent, but the effect of the respective ROS on BCC varied strongly. BCC analysis by 16S rRNA gene clone libraries and RT-PCR DGGE revealed ROS specific changes in relative abundance and activity of major bacterial groups and composition of dominating phylotypes. These changes were consistent in the three experiments performed in different years. The relative abundance of Polynucleobacter necessarius, Limnohabitans-related phylotypes (Betaproteobacteria), and Novosphingobium acidiphilum (Alphaproteobacteria) increased or was not affected by photo-sensitized 1O2 exposure, but decreased after H2O2 exposure. The opposite pattern was found for Actinobacteria of the freshwater AcI-B cluster which were highly sensitive to 1O2 but not to H2O2 exposure. Furthermore, group-specific RT-PCR DGGE analysis revealed that particle-attached P. necessarius and Limnohabitans-related phylotypes exhibit higher resistance to 1O2 exposure compared to free-living populations. These results imply that 1O2 acts as a factor in niche separation of closely affiliated Polynucleobacter and Limnohabitans-related phylotypes. Consequently, oxidative stress caused by photochemical ROS generation should be regarded as an environmental variable determining abundance, activity, and phylotype

  2. Application of humic compounds for remediation of soils contaminated with heavy metals: the benefits and risks

    NASA Astrophysics Data System (ADS)

    Motuzova, Galina; Barsova, Natalia; Stepanov, Andrey; Kiseleva, Violetta; Kolchanova, Ksenia; Starkova, Irina; Karpukhin, Mikhail

    2015-04-01

    Applicability of humic compound (HC) "Extra" (potassium humate produced from coal) was studied to remediate soils contaminated with copper in model experiments. Field experiments were carried out in 10-litter plastic containers. The upper layer was prepared as a mixture of loam (pH=5.3), sand (pH=7.4) and peat(pH=5.5). It was underlain consequently by loam and gravel. To study water migration we installed lysimeters. The experiment was conducted in 3 variants: 1) control, 2) control+Cu, 3) control+Cu+HC. Copper was applied in the form of dry powder (CuSO4*5H2O) over the upper layer of the soil column in a concentration of copper equaling to 1000 mg/kg. Total concentration of copper was determined by ICP AAS, its free ions was measured with the help of ion-selective electrode. Humic compound was sprayed on the surface in liquid form. The vessels stayed outdoors from July to October 2014 with additional watering in dry periods. Analysis of lysimetric waters obtained from this model field experiment revealed significant impact of pH. Application of the humic compound produces almost 5 times higher content of soluble organic substances than in the variant without it, and in the first portions of lysimetric waters the difference is 20-fold. Generation of extra organic content in soluble form was accompanied by the 2-6 times increase of the water soluble copper yield. However the content of the free copper ions in lysimetric waters in case of addition of the potassium humate was negligible, because almost all copper was bounded with water-soluble organic substances. The copper content in water extract from the top layer of soil in the variant with HC was about 1 mg/l, that was 2 times higher than without HC. The content of water-soluble organic carbon in HC variant was 100 mg/L, and without HC was 10 times lower (10 mg/l). The water extract from soils enriched in HC was passed through a column filled with weakly basic anion exchange resin DEAE (Cl-form), the eluate was

  3. Acid-base properties of humic and fulvic acids formed during composting.

    PubMed

    Plaza, César; Senesi, Nicola; Polo, Alfredo; Brunetti, Gennaro

    2005-09-15

    The soil acid-base buffering capacity and the biological availability, mobilization, and transport of macro- and micronutrients, toxic metal ions, and xenobiotic organic cations in soil are strongly influenced by the acid-base properties of humic substances, of which humic and fulvic acids are the major fractions. For these reasons, the proton binding behavior of the humic acid-like (HA) and fulvic acid-like (FA) fractions contained in a compost are believed to be instrumental in its successful performance in soil. In this work, the acid-base properties of the HAs and FAs isolated from a mixture of the sludge residue obtained from olive oil mill wastewater (OMW) evaporated in an open-air pond and tree cuttings (TC) at different stages of composting were investigated by a current potentiometric titration method and the nonideal competitive adsorption (NICA)-Donnan model. The NICA-Donnan model provided an excellent description of the acid-base titration data, and pointed out substantial differences in site density and proton-binding affinity between the HAs and FAs examined. With respect to FAs, HAs were characterized by a smaller content of carboxylic- and phenolic-type groups and their larger affinities for proton binding. Further, HAs featured a greater heterogeneity in carboxylic-type groups than FAs. The composting process increased the content and decreased the proton affinity of carboxylic- and phenolic-type groups of HAs and FAs, and increased the heterogeneity of phenolic-type groups of HAs. As a whole, these effects indicated that the composting process could produce HA and FA fractions with greater cation binding capacities. These results suggest that composting of organic materials improves their agronomic and environmental value by increasing their potential to retain and exchange macro- and micronutrients, and to reduce the bioavailability of organic and inorganic pollutants.

  4. Substance use - prescription drugs

    MedlinePlus

    ... substance use; Oxycodone - substance use; Hydrocodone - substance use; Morphine - substance use; Fentanyl - substance use ... fluff, hydros, v-itamin, vic, vike, Watson-387. Morphine. Drugs include Avinza, Duramorph, Kadian, Ormorph, Roxanol. Street ...

  5. Adsorption of humic acids and trace metals in natural waters

    NASA Technical Reports Server (NTRS)

    Leung, W. H.

    1982-01-01

    Studies concerning the interactions between suspended hydrous iron oxide and dissolved humic acids and trace metals are reported. As a major component of dissolved organic matters and its readiness for adsorption at the solid/water interface, humic acids may play a very important role in the organometallic geochemistry of suspended sediments and in determining the fate and distribution of trace metals, pesticides and anions in natural water systems. Most of the solid phases in natural waters contain oxides and hydroxides. The most simple promising theory to describe the interactions of hydrous iron oxide interface is the surface complex formation model. In this model, the adsorptions of humic acids on hydrous iron oxide may be interpreted as complex formation of the organic bases (humic acid oxyanions) with surface Fe ions. Measurements on adsorptions were made in both fresh water and seawater. Attempts have been made to fit our data to Langmuir adsorption isotherm. Adsorption equilibrium constants were determined.

  6. Plasma polymerized allylamine coated quartz particles for humic acid removal.

    PubMed

    Jarvis, Karyn L; Majewski, Peter

    2012-08-15

    Allylamine plasma polymerization has been used to modify the surface of quartz particles for humic acid removal via an inductively coupled rotating barrel plasma reactor. Plasma polymerized allylamine (ppAA) films were deposited at a power of 25 W, allylamine flow rate of 4.4 sccm and polymerization times of 5-60 min. The influence of polymerization time on surface chemistry was investigated via X-ray photoelectron spectroscopy (XPS), time of flight secondary ion mass spectrometry (ToF-SIMS) and electrokinetic analysis. Acid orange 7 adsorption/desorption quantified the number of surface amine groups. Humic acid removal via ppAA quartz particles was examined by varying pH, removal time, humic acid concentration, and particle mass. Increasing the polymerization time increased the concentration of amine groups on the ppAA quartz surface, thus also increasing the isoelectric point. ToF-SIMS demonstrated uniform distribution of amine groups across the particle surface. Greatest humic acid removal was observed at pH 5 due to electrostatic attraction. At higher pH values, for longer polymerization times, humic acid removal was also observed due to hydrogen bonding. Increasing the initial humic acid concentration increased the mass of humic acid removed, with longer polymerization times exhibiting the greatest increases. Plasma polymerization using a rotating plasma reactor has shown to be a successful method for modifying quartz particles for the removal of humic acid. Further development of the plasma polymerization process and investigation of additional contaminants will aid in the development of a low cost water treatment system.

  7. Label Distribution in Tissues of Wheat Seedlings Cultivated with Tritium-Labeled Leonardite Humic Acid

    NASA Astrophysics Data System (ADS)

    Kulikova, Natalia A.; Abroskin, Dmitry P.; Badun, Gennady A.; Chernysheva, Maria G.; Korobkov, Viktor I.; Beer, Anton S.; Tsvetkova, Eugenia A.; Senik, Svetlana V.; Klein, Olga I.; Perminova, Irina V.

    2016-06-01

    Humic substances (HS) play important roles in the biotic-abiotic interactions of the root plant and soil contributing to plant adaptation to external environments. However, their mode of action on plants remains largely unknown. In this study the HS distribution in tissues of wheat seedlings was examined using tritium-labeled humic acid (HA) derived from leonardite (a variety of lignites) and microautoradiography (MAR). Preferential accumulation of labeled products from tritiated HA was found in the roots as compared to the shoots, and endodermis was shown to be the major control point for radial transport of label into vascular system of plant. Tritium was also found in the stele and xylem tissues indicating that labeled products from tritiated HA could be transported to shoot tissues via the transpiration stream. Treatment with HA lead to an increase in the content of polar lipids of photosynthetic membranes. The observed accumulation of labeled HA products in root endodermis and positive impact on lipid synthesis are consistent with prior reported observations on physiological effects of HS on plants such as enhanced growth and development of lateral roots and improvement/repairs of the photosynthetic status of plants under stress conditions.

  8. Label Distribution in Tissues of Wheat Seedlings Cultivated with Tritium-Labeled Leonardite Humic Acid.

    PubMed

    Kulikova, Natalia A; Abroskin, Dmitry P; Badun, Gennady A; Chernysheva, Maria G; Korobkov, Viktor I; Beer, Anton S; Tsvetkova, Eugenia A; Senik, Svetlana V; Klein, Olga I; Perminova, Irina V

    2016-01-01

    Humic substances (HS) play important roles in the biotic-abiotic interactions of the root plant and soil contributing to plant adaptation to external environments. However, their mode of action on plants remains largely unknown. In this study the HS distribution in tissues of wheat seedlings was examined using tritium-labeled humic acid (HA) derived from leonardite (a variety of lignites) and microautoradiography (MAR). Preferential accumulation of labeled products from tritiated HA was found in the roots as compared to the shoots, and endodermis was shown to be the major control point for radial transport of label into vascular system of plant. Tritium was also found in the stele and xylem tissues indicating that labeled products from tritiated HA could be transported to shoot tissues via the transpiration stream. Treatment with HA lead to an increase in the content of polar lipids of photosynthetic membranes. The observed accumulation of labeled HA products in root endodermis and positive impact on lipid synthesis are consistent with prior reported observations on physiological effects of HS on plants such as enhanced growth and development of lateral roots and improvement/repairs of the photosynthetic status of plants under stress conditions. PMID:27350412

  9. Label Distribution in Tissues of Wheat Seedlings Cultivated with Tritium-Labeled Leonardite Humic Acid

    PubMed Central

    Kulikova, Natalia A.; Abroskin, Dmitry P.; Badun, Gennady A.; Chernysheva, Maria G.; Korobkov, Viktor I.; Beer, Anton S.; Tsvetkova, Eugenia A.; Senik, Svetlana V.; Klein, Olga I.; Perminova, Irina V.

    2016-01-01

    Humic substances (HS) play important roles in the biotic-abiotic interactions of the root plant and soil contributing to plant adaptation to external environments. However, their mode of action on plants remains largely unknown. In this study the HS distribution in tissues of wheat seedlings was examined using tritium-labeled humic acid (HA) derived from leonardite (a variety of lignites) and microautoradiography (MAR). Preferential accumulation of labeled products from tritiated HA was found in the roots as compared to the shoots, and endodermis was shown to be the major control point for radial transport of label into vascular system of plant. Tritium was also found in the stele and xylem tissues indicating that labeled products from tritiated HA could be transported to shoot tissues via the transpiration stream. Treatment with HA lead to an increase in the content of polar lipids of photosynthetic membranes. The observed accumulation of labeled HA products in root endodermis and positive impact on lipid synthesis are consistent with prior reported observations on physiological effects of HS on plants such as enhanced growth and development of lateral roots and improvement/repairs of the photosynthetic status of plants under stress conditions. PMID:27350412

  10. Spectroscopic study of humic acids fractionated by means of tangential ultrafiltration

    NASA Astrophysics Data System (ADS)

    Francioso, O.; Sánchez-Cortés, S.; Casarini, D.; Garcia-Ramos, J. V.; Ciavatta, C.; Gessa, C.

    2002-05-01

    Different chemical and spectroscopic techniques—diffuse reflectance infrared Fourier transform (DRIFT), surface-enhanced Raman spectroscopy (SERS), and 1H, 13C nuclear magnetic resonance (NMR) have been applied to investigate a peat humic acid (HA) separated by tangential ultrafiltration into different nominal molecular weight (NMW) fractions. Each fraction analyzed showed a characteristic DRIFT and NMR pattern. High nominal molecular weight fractions were mainly characterized by long chains of methyl and methylene groups and poorly substituted aromatic rings, while in low nominal molecular weight fractions (L-NMW), phenolic and oxygen-containing groups were predominant. A comparative study on fractions before and after treatment with 0.5 M HCl was carried out. Purified fractions showed either an increase in the carboxylate and phenolic OH groups or an improvement in signal-to-noise ratio of their NMR spectra. The SERS study of NMW fractions allowed significative information on structure and conformation of these fractions. In particular, L-NMW fractions showed a great structural modification, when different alkaline extractants or treatment with HCl were used. Humic-like substances obtained by catechol and gallic acid polymerization on metal surface were investigated using SERS. The SERS spectra of these polymers were compared and discussed with those of NMW HA fractions.

  11. Humic acids: Structural properties and multiple functionalities for novel technological developments.

    PubMed

    de Melo, Bruna Alice Gomes; Motta, Fernanda Lopes; Santana, Maria Helena Andrade

    2016-05-01

    Humic acids (HAs) are macromolecules that comprise humic substances (HS), which are organic matter distributed in terrestrial soil, natural water, and sediment. HAs differ from the other HS fractions (fulvic acid and humins) in that they are soluble in alkaline media, partially soluble in water, and insoluble in acidic media. Due to their amphiphilic character, HAs form micelle-like structures in neutral to acidic conditions, which are useful in agriculture, pollution remediation, medicine and pharmaceuticals. HAs have undefined compositions that vary according to the origin, process of obtainment, and functional groups present in their structures, such as quinones, phenols, and carboxylic acids. Quinones are responsible for the formation of reactive oxygen species (ROS) in HAs, which are useful for wound healing and have fungicidal/bactericidal properties. Phenols and carboxylic acids deprotonate in neutral and alkaline media and are responsible for various other functions, such as the antioxidant and anti-inflammatory properties of HAs. In particular, the presence of phenolic groups in HAs provides antioxidant properties due to their free radical scavenging capacity. This paper describes the main multifunctionalities of HAs associated with their structures and properties, focusing on human health applications, and we note perspectives that may lead to novel technological developments. To the best of our knowledge, this is the first review to address this topic from this approach. PMID:26952503

  12. Comprehensive comparison of the chemical and structural characterization of landfill leachate and leonardite humic fractions.

    PubMed

    Tahiri, Abdelghani; Richel, Aurore; Destain, Jacqueline; Druart, Philippe; Thonart, Philippe; Ongena, Marc

    2016-03-01

    Humic substances (HS) are complex and heterogeneous mixtures of organic compounds that occur everywhere in the environment. They represent most of the dissolved organic matter in soils, sediments (fossil), water, and landfills. The exact structure of HS macromolecules has not yet been determined because of their complexity and heterogeneity. Various descriptions of HS are used depending on specific environments of origin and research interests. In order to improve the understanding of the structure of HS extracted from landfill leachate (LHS) and commercial HS from leonardite (HHS), this study sought to compare the composition and characterization of the structure of LHS and HHS using elemental composition, chromatographic (high-performance liquid chromatography (HPLC)), and spectroscopic techniques (UV-vis, FTIR, NMR, and MALDI-TOF). The results showed that LHS molecules have a lower molecular weight and less aromatic structure than HHS molecules. The characteristics of functional groups of both LHS and HHS, however, were basically similar, but there was some differences in absorbance intensity. There were also less aliphatic and acidic functional groups and more aromatic and polyphenolic compounds in the humic acid (HA) fraction than in the fulvic acid (FA) and other molecules (OM) fractions of both origins. The differences between LHS and HHS might be due to the time course of humification. Combining the results obtained from these analytical techniques cold improve our understanding of the structure of HS of different origins and thus enhance their potential use.

  13. Respiration in Aquatic Insects.

    ERIC Educational Resources Information Center

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  14. Kinetics of rapid covalent bond formation of aniline with humic acid: ESR investigations with nitroxide spin labels

    NASA Astrophysics Data System (ADS)

    Glinka, Kevin; Matthies, Michael; Theiling, Marius; Hideg, Kalman; Steinhoff, Heinz-Jürgen

    2016-04-01

    Sulfonamide antibiotics used in livestock farming are distributed to farmland by application of slurry as fertilizer. Previous work suggests rapid covalent binding of the aniline moiety to humic acids found in soil. In the current work, kinetics of this binding were measured in X-band EPR spectroscopy by incubating Leonardite humic acid (LHA) with a paramagnetic aniline spin label (anilino-NO (2,5,5-Trimethyl-2-(3-aminophenyl)pyrrolidin-1-oxyl)). Binding was detected by a pronounced broadening of the spectral lines after incubation of LHA with anilino-NO. The time evolution of the amplitude of this feature was used for determining the reaction kinetics. Single- and double-exponential models were fitted to the data obtained for modelling one