Sample records for aquatic toxicity studies

  1. Modeling Aquatic Toxicity through Chromatographic Systems.

    PubMed

    Fernández-Pumarega, Alejandro; Amézqueta, Susana; Farré, Sandra; Muñoz-Pascual, Laura; Abraham, Michael H; Fuguet, Elisabet; Rosés, Martí

    2017-08-01

    Environmental risk assessment requires information about the toxicity of the growing number of chemical products coming from different origins that can contaminate water and become toxicants to aquatic species or other living beings via the trophic chain. Direct toxicity measurements using sensitive aquatic species can be carried out but they may become expensive and ethically questionable. Literature refers to the use of chromatographic measurements that correlate to the toxic effect of a compound over a specific aquatic species as an alternative to get toxicity information. In this work, we have studied the similarity in the response of the toxicity to different species and we have selected eight representative aquatic species (including tadpoles, fish, water fleas, protozoan, and bacteria) with known nonspecific toxicity to chemical substances. Next, we have selected four chromatographic systems offering good perspectives for surrogation of the eight selected aquatic systems, and thus prediction of toxicity from the chromatographic measurement. Then toxicity has been correlated to the chromatographic retention factor. Satisfactory correlation results have been obtained to emulate toxicity in five of the selected aquatic species through some of the chromatographic systems. Other aquatic species with similar characteristics to these five representative ones could also be emulated by using the same chromatographic systems. The final aim of this study is to model chemical products toxicity to aquatic species by means of chromatographic systems to reduce in vivo testing.

  2. Aquatic versus mammalian toxicology: applications of the comparative approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guarino, A.M.

    1987-04-01

    The large body of literature and techniques generated by mammalian toxicity studies provides a conceptual and technical framework within which the absorption, fate, and disposition of xenobiotics in aquatic organisms can be studied. This review emphasizes the similarities and differences between mammalian and aquatic systems, e.g., lung vs. gill as site of absorption and toxicity. These must be taken into consideration when designing aquatic toxicity studies. Studies of phenol red in dogfish shark as an example show physiologic-based pharmacokinetic modeling to be a useful tool for investigating and eventually predicting species differences in xenobiotic disposition and drug differences within themore » same species. This discussion demonstrates that both laboratory and modeling procedures are now available to carry out sophisticated studies of xenobiotic fate and disposition in fish. Such studies are needed to pinpoint sites and mechanisms of pollutant toxicity in aquatic organisms.« less

  3. Acute aquatic toxicity and biodegradation potential of biodiesel fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haws, R.A.; Zhang, X.; Marshall, E.A.

    1995-12-31

    Recent studies on the biodegradation potential and aquatic toxicity of biodiesel fuels are reviewed. Biodegradation data were obtained using the shaker flask method observing the appearance of CO{sub 2} and by observing the disappearance of test substance with gas chromatography. Additional BOD{sub 5} and COD data were obtained. The results indicate the ready biodegradability of biodiesel fuels as well as the enhanced co-metabolic biodegradation of biodiesel and petroleum diesel fuel mixtures. The study examined reference diesel, neat soy oil, neat rape oil, and the methyl and ethyl esters of these vegetable oils as well as various fuel blends. Acute toxicitymore » tests on biodiesel fuels and blends were performed using Oncorhynchus mykiss (Rainbow Trout) in a static non-renewal system and in a proportional dilution flow replacement system. The study is intended to develop data on the acute aquatic toxicity of biodiesel fuels and blends under US EPA Good Laboratory Practice Standards. The test procedure is designed from the guidelines outlined in Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms and the Fish Acute Aquatic Toxicity Test guideline used to develop aquatic toxicity data for substances subject to environmental effects test regulations under TSCA. The acute aquatic toxicity is estimated by an LC50, a lethal concentration effecting mortality in 50% of the test population.« less

  4. METHOD FOR TESTING THE AQUATIC TOXICITY OF SEDIMENT EXTRACTS FOR USE IN IDENTIFYING ORGANIC TOXICANTS IN SEDIMENTS

    EPA Science Inventory

    Biologically-directed fractionation techniques are a fundamental tool for identifying the cause of toxicity in environmental samples, but few are available for studying mixtures of organic chemicals in aquatic sediments. This paper describes a method for extracting organic chemic...

  5. An Eco-Safety Assessment of Glyoxal-Containing Cellulose Ether on Freeze-Dried Microbial Strain, Cyanobacteria, Daphnia, and Zebrafish

    PubMed Central

    Park, Chang-Beom; Song, Min Ju; Choi, Nak Woon; Kim, Sunghoon; Jeon, Hyun Pyo; Kim, Sanghun; Kim, Youngjun

    2017-01-01

    The objective of this study was to investigate the aquatic-toxic effects of glyoxal-containing cellulose ether with four different glyoxal concentrations (0%, 1.4%, 2.3%, and 6.3%) in response to global chemical regulations, e.g., European Union Classification, Labeling and Packaging (EU CLP). Toxicity tests of glyoxal-containing cellulose ether on 11 different microbial strains, Microcystis aeruginosa, Daphnia magna, and zebrafish embryos were designed as an initial stage of toxicity screening and performed in accordance with standardized toxicity test guidelines. Glyoxal-containing cellulose ether showed no significant toxic effects in the toxicity tests of the 11 freeze-dried microbial strains, Daphnia magna, and zebrafish embryos. Alternatively, 6.3% glyoxal-containing cellulose ether led to a more than 60% reduction in Microcystis aeruginosa growth after 7 days of exposure. Approximately 10% of the developmental abnormalities (e.g., bent spine) in zebrafish embryos were also observed in the group exposed to 6.3% glyoxal-containing cellulose ether after 6 days of exposure. These results show that 6.3% less glyoxal-containing cellulose ether has no acute toxic effects on aquatic organisms. However, 6.3% less glyoxal-containing cellulose ether may affect the health of aquatic organisms with long-term exposure. In order to better evaluate the eco-safety of cellulosic products containing glyoxal, further studies regarding the toxic effects of glyoxal-containing cellulose ether with long-term exposure are required. The results from this study allow us to evaluate the aquatic-toxic effects of glyoxal-containing cellulosic products, under EU chemical regulations, on the health of aquatic organisms. PMID:28335565

  6. Toxic effects of Hydrilla verticillata exposed to toluene, ethylbenzene and xylene and safety assessment for protecting aquatic macrophytes.

    PubMed

    Yan, Sha; Zhou, Qixing

    2011-10-01

    Little information is available about the toxicity of toluene, ethylbenzene and xylene acting on macrophytes, and their toxicity data are rarely used in regulation and criteria decisions. The results extended the knowledge on toxic effects of toluene, ethylbenzene and xylene on aquatic plants. The responses of Hydrilla verticillata to these pollutants were investigated. Chlorophyll levels, lipid peroxidation, and antioxidant enzymes (superoxide dismutase and guaiacol peroxidase) showed diverse responses at different concentrations of toluene, ethylbenzene and xylene. The linear regression analyses were performed respectively, suggesting the concentrations of toluene, ethylbenzene and xylene expected to protect aquatic macrophytes were 7.30 mg L⁻¹, 1.15 mg L⁻¹ and 2.36 mg L⁻¹, respectively. This study emphasized that aquatic plants are also sensitive to organic pollutants as fishes and zooplanktons, indicating that macrophytes could be helpful in predicting the toxicity of these pollutants and should be considered in regulation and criteria decisions for aquatic environment protection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Establishment of quality assurance procedures for aquatic toxicity testing with the nematode Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, M.N.; Marse, T.J.; Williams, P.L.

    1998-12-31

    In this study initial data were generated to develop laboratory control charts for aquatic toxicity testing using the nematode Caenorhabditis elegans. Tests were performed using two reference toxicants: CdCl{sub 2} and CuCl{sub 2}. All tests were performed for 24 h without a food source and of 48 h with a food source in a commonly used nematode aquatic medium. Each test was replicated 6 times with each replicate having 6 wells per concentration with 10 {+-} 1 worms per well. Probit analysis was used to estimate LC{sub 50} values for each test. The data were used to construct a meanmore » ({bar x}) laboratory control chart for each reference toxicant. The coefficient of variation (CV) for three of the four reference toxicant tests was less than 20%, which demonstrates an excellent degree of reproducibility. These CV values are well within suggested standards for determination of organism sensitivity and overall test system credibility. A standardized procedure for performing 24 h and 48 h aquatic toxicity studies with C. elegans is proposed.« less

  8. Risk screening of pharmaceutical compounds in Romanian aquatic environment.

    PubMed

    Gheorghe, Stefania; Petre, Jana; Lucaciu, Irina; Stoica, Catalina; Nita-Lazar, Mihai

    2016-06-01

    The aquatic environment is under increased pressure by pharmaceutically active compounds (PhACs) due to anthropogenic activities. In spite of being found at very low concentrations (ng/L to μg/L) in the environment, PhACs represent a real danger to aquatic ecosystems due to their bioaccumulation and long-term effects. In this study, the presence in the aquatic environment of six non-steroidal anti-inflammatory drugs (ibuprofen, diclofenac, acetaminophen, naproxen, indomethacin, and ketoprofen), caffeine, and carbamazepine were monitored. Moreover, their aquatic risk and ecotoxicity by three biological models were evaluated. The monitoring studies performed in Romania showed that all studied PhACs were naturally present at concentrations >0.01 μg/L, pointing out the necessity to perform further toxicity tests for environmental risk assessment. The toxicity studies were carried out on aquatic organisms or bacteria and they indicated, for most of the tested PhACs, an insignificant or low toxicity effects: lethal concentrations (LC50) on fish Cyprinus carpio ranged from 42.60 mg/L to more than 100 mg/L; effective concentrations (EC50) on planktonic crustacean Daphnia magna ranged from 11.02 mg/L to more than 100 mg/L; inhibitory concentrations (IC50)/microbial toxic concentrations (MTC) on Vibrio fischeri and other bacterial strains ranged from 7.02 mg/L to more than 100 mg/L. The PhAC aquatic risk was assessed by using the ratio between measured environmental concentration (MEC) and predicted no effect concentration (PNEC) calculated for each type of organism. The average of quotient risks (RQs) revealed that the presence of these compounds in Romania's aquatic environment induced a lower or moderate aquatic risk.

  9. Aquatic toxicity testing for aquatic life impact assessments and recent scientific advancements

    EPA Science Inventory

    The focus of this presentation is to provide an overview of the use of aquatic toxicity testing for assessing possible impacts to aquatic life and how new scientific approaches are being researched. Toxicity testing of both ambient and effluent monitoring samples will be discusse...

  10. Quantitative structure-toxicity relationship of the aquatic toxicity for various narcotic pollutants using the norm indexes.

    PubMed

    Wang, Qiang; Jia, Qingzhu; Yan, Lihong; Xia, Shuqian; Ma, Peisheng

    2014-08-01

    The aquatic toxicity value of hazardous contaminants plays an important role in the risk assessments of aquatic ecosystems. The following study presents a stable and accurate structure-toxicity relationship model based on the norm indexes for the prediction of toxicity value (log(LC50)) for 190 diverse narcotic pollutants (96 h LC50 data for Poecilia reticulata). Research indicates that this new model is very efficient and provides satisfactory results. The suggested prediction model is evidenced by R(2) (square correlation coefficient) and ARD (average relative difference) values of 0.9376 and 10.45%, respectively, for the training set, and 0.9264 and 13.90% for the testing set. Comparison results with reference models demonstrate that this new method, based on the norm indexes proposed in this work, results in significant improvements, both in accuracy and stability for predicting aquatic toxicity values of narcotic pollutants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The Toxicity of Guanidine Nitrate to Freshwater Aquatic Organisms.

    DTIC Science & Technology

    1985-06-01

    RD-Ri58 822 THE TOXICITY OF GUANIDINE NITRATE TO FRESHWATER AQUATIC i/1 ORGANISMS(U) ARMY MEDICAL BIOENGINEERING RESEARCH AND DEVELOPMENT LAB FORT...4. . ... AD-A158 822 A TECHNICAL REPORT 8504 THE TOXICITY OF GUJANIDINE NITRATE TO FRESHWATER AQUATIC ORGANISMS* WILLIAM H. van...TITLE (and Subtitle) 5. TYPE OF REPORT &PERIOD COVERED THE TOXICITY OF GUANIDINE NITRATE Technical Report TO FRESHWATER AQUATIC ORGANISMS Feb 1984 - Nov

  12. An Embryonic Field of Study: The Aquatic Fate and Toxicity of Diluted Bitumen.

    PubMed

    Alsaadi, Ftoon; Hodson, Peter V; Langlois, Valerie S

    2018-01-01

    Canada has experienced a significant increase in the transport of diluted bitumen (dilbit), a predominant oil sands product that combines bitumen with diluents derived from oil-gas condensates and other proprietary compounds. The proportion of diluent and the chemical composition of dilbit vary to meet seasonal transport requirements. While the toxic effects of a variety of crude and refined oils are well-studied, the toxicity of dilbit to aquatic species is less well known. This focused review summarizes dilbit production, chemistry, and the few data on toxicity to aquatic species. These data suggest that un-weathered dilbit would cause effects on fish equivalent to those of conventional oils, but its toxicity may be lower, depending on interactions among test conditions, the behavior of dilbit added to water and the species tested.

  13. Aquatic Toxicity Screening of Fire Fighting Agents; 2003 Report

    DTIC Science & Technology

    2003-06-02

    Aqueous Film Forming Foam ( AFFF ), the reference toxicant. The aquatic toxicity screening consisted of an acute, static, range-finding...five concentrations of 3M Light Water Brand Aqueous Film Forming Foam ( AFFF ), the reference toxicant. The aquatic toxicity screening consisted of an...experimental foam concentrates against current Military Specification MIL-F-24385F Fire Extinguishing Agent, Aqueous Film Forming Foam

  14. Aquatic information and retrieval (AQUIRE) database system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, R.; Niemi, G.; Pilli, A.

    The AQUIRE database system is one of the foremost international resources for finding aquatic toxicity information. Information in the system is organized around the concept of an 'aquatic toxicity test.' A toxicity test record contains information about the chemical, species, endpoint, endpoint concentrations, and test conditions under which the toxicity test was conducted. For the past 10 years aquatic literature has been reviewed and entered into the system. Currently, the AQUIRE database system contains data on more than 2,400 species, 160 endpoints, 5,000 chemicals, 6,000 references, and 104,000 toxicity tests.

  15. Global warming and environmental contaminants in aquatic organisms: the need of the etho-toxicology approach.

    PubMed

    Manciocco, Arianna; Calamandrei, Gemma; Alleva, Enrico

    2014-04-01

    Environmental contaminants are associated with a wide spectrum of pathological effects. Temperature increase affects ambient distribution and toxicity of these chemicals in the water environment, representing a potentially emerging problem for aquatic species with short-, medium- and long-term repercussions on human health through the food chain. We assessed peer-reviewed literature, including primary studies, review articles and organizational reports available. We focused on studies concerning toxicity of environmental pollutants within a global warming scenario. Existing knowledge on the effects that the increase of water temperature in a contaminated situation has on physiological mechanisms of aquatic organisms is presented. Altogether we consider the potential consequences for the human beings due to fish and shellfish consumption. Finally, we propose an etho-toxicological approach to study the effects of toxicants in conditions of thermal increase, using aquatic organisms as experimental models under laboratory controlled conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Evaluating the aquatic toxicity of complex organic chemical mixtures: lessons learned from polycyclic aromatic hydrocarbon and petroleum hydrocarbon case studies.

    PubMed

    Landrum, Peter F; Chapman, Peter M; Neff, Jerry; Page, David S

    2012-04-01

    Experimental designs for evaluating complex mixture toxicity in aquatic environments can be highly variable and, if not appropriate, can produce and have produced data that are difficult or impossible to interpret accurately. We build on and synthesize recent critical reviews of mixture toxicity using lessons learned from 4 case studies, ranging from binary to more complex mixtures of primarily polycyclic aromatic hydrocarbons and petroleum hydrocarbons, to provide guidance for evaluating the aquatic toxicity of complex mixtures of organic chemicals. Two fundamental requirements include establishing a dose-response relationship and determining the causative agent (or agents) of any observed toxicity. Meeting these 2 requirements involves ensuring appropriate exposure conditions and measurement endpoints, considering modifying factors (e.g., test conditions, test organism life stages and feeding behavior, chemical transformations, mixture dilutions, sorbing phases), and correctly interpreting dose-response relationships. Specific recommendations are provided. Copyright © 2011 SETAC.

  17. Chapter 6: Selenium Toxicity to Aquatic Organisms

    EPA Science Inventory

    This chapter addresses the characteristics and nature of organic selenium (Se) toxicity to aquatic organisms, based on the most current state of scientific knowledge. As such, the information contained in this chapter relates to the 'toxicity assessment' phase of aquatic ecologi...

  18. Tulane/Xavier University Hazardous Materials in Aquatic Environments of the Mississippi River Basin. Quarterly progress report, January 1, 1995--March 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-05-01

    This progress report covers activities for the period January 1 - March 31, 1995 on project concerning `Hazardous Materials in Aquatic Environments of the Mississippi River Basin.` The following activities are each summarized by bullets denoting significant experiments/findings: biotic and abiotic studies on the biological fate, transport and ecotoxicity of toxic and hazardous waste in the Mississippi River Basin; assessment of mechanisms of metal-induced reproductive toxicity in quatic species as a biomarker of exposure; hazardous wastes in aquatic environments: biological uptake and metabolism studies; ecological sentinels of aquatic contamination in the lower Mississippi River system; bioremediation of selected contaminants inmore » aquatic environments of the Mississippi River Basin; a sensitive rapid on-sit immunoassay for heavy metal contamination; pore-level flow, transport, agglomeration and reaction kinetics of microorganism; biomarkers of exposure and ecotoxicity in the Mississippi River Basin; natural and active chemical remediation of toxic metals, organics and radionuclides in the aquatic environment; expert geographical information systems for assessing hazardous wastes in aquatic environments; enhancement of environmental education; and a number of just initiated projects including fate and transport of contaminants in aquatic environments; photocatalytic remediation; radionuclide fate and modeling from Chernobyl.« less

  19. A Bayesian network model for predicting aquatic toxicity mode of action using two dimensional theoretical molecular descriptors

    EPA Science Inventory

    The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity, but development of predictive MoA classification models in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity MoA using a recently pu...

  20. A Bayesian network model for predicting aquatic toxicity mode of action using two dimensional theoretical molecular descriptors-abstract

    EPA Science Inventory

    The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity but MoA classification in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity mode of action using a recently published dataset contain...

  1. Toxicity of Water Accommodated Fractions of Estonian Shale Fuel Oils to Aquatic Organisms.

    PubMed

    Blinova, Irina; Kanarbik, Liina; Sihtmäe, Mariliis; Kahru, Anne

    2016-02-01

    Estonia is the worldwide leading producer of the fuel oils from the oil shale. We evaluated the ecotoxicity of water accommodated fraction (WAF) of two Estonian shale fuel oils ("VKG D" and "VKG sweet") to aquatic species belonging to different trophic levels (marine bacteria, freshwater crustaceans and aquatic plants). Artificial fresh water and natural lake water were used to prepare WAFs. "VKG sweet" (lower density) proved more toxic to aquatic species than "VKG D" (higher density). Our data indicate that though shale oils were very toxic to crustaceans, the short-term exposure of Daphnia magna to sub-lethal concentrations of shale fuel oils WAFs may increase the reproductive potential of survived organisms. The weak correlation between measured chemical parameters (C10-C40 hydrocarbons and sum of 16 PAHs) and WAF's toxicity to studied species indicates that such integrated chemical parameters are not very informative for prediction of shale fuel oils ecotoxicity.

  2. Effects of antibacterial agents, levofloxacin and clarithromycin, on aquatic organisms.

    PubMed

    Yamashita, N; Yasojima, M; Nakada, N; Miyajima, K; Komori, K; Suzuki, Y; Tanaka, H

    2006-01-01

    Contamination of surface waters by pharmaceutical chemicals is an emerging environmental problem. This study evaluated the toxic effects of the antibacterial agents levofloxacin (LVFX) and clarithromycin (CAM), which are widely used in Japan, on aquatic organisms. Ecotoxicity tests using a bacterium, alga and crustacean were conducted. Microtox test using a marine fluorescent bacterium showed that LVFX and CAM have no acute toxicity to the bacterium. From the results of the Daphnia immobilisation test, LVFX and CAM did not show acute toxicity to the crustacean. Meanwhile, an algal growth inhibition test revealed that LVFX and CAM have high toxicity to the microalga. The phytotoxicity of CAM was about 100-fold higher than that of LVFX from a comparison of EC50 (median effective concentration) value. From the Daphnia reproduction test, LVFX and CAM also showed chronic toxicity to the crustacean. Concentrations of LVFX and CAM in the aquatic environment were compared with PNEC (predicted no effect concentration) to evaluate the ecological risk. As a result, the ecological risk of LVFX is considered to be low, but that of CAM is higher, suggesting that CAM discharged into an aquatic environment after therapeutic use may affect organisms in the aquatic environment.

  3. Response Characteristics of an Aquatic Biomonitor Used for Rapid Toxicity Detection

    DTIC Science & Technology

    2004-05-15

    for drinking water protection. 14. SUBJECT TERMS 15. NUMBER OF PAGES biological early warning system; Lepomis macrochirus; bluegill; aquatic toxicity...Fort Detrick, MD 21702-5010, USA Key words: biomonitor; biological early warning system; Lepomis macrochirus; bluegill; aquatic toxicity; water ...narcosis are most likely to cause rapid aquatic biomonitor depth related to variations in water quality (primarily responses. Other modes of action may

  4. Meeting in China: Differential Toxicity and Accumulation of Fipronil Enantiomers in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Fipronil is a chiral insecticide applied as a racemate with two enantiomers. Because of its high log KOC, fipronil will be found primarily in sediments of aquatic environments. Although a number of studies have examined toxicity in aquatic invertebrates, data on enantioselective...

  5. Differential Toxicity and Accumulation of Fipronil Enantiomers in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Fipronil is a chiral insecticide applied as a racemate of two enantiomers. Because of its high log Koc, fipronil will be found primarily in sediments of aquatic environments. Although a number of studies have examined toxicity in aquatic invertebrates, data on enantioselective t...

  6. Evaluation of Time- and Concentration-dependent Toxic Effect Models for use in Aquatic Risk Assessments, Oral Presentation

    EPA Science Inventory

    Various models have been proposed for describing the time- and concentration-dependence of toxic effects to aquatic organisms, which would improve characterization of risks in natural systems. Selected models were evaluated using results from a study on the lethality of copper t...

  7. Relationships between aquatic toxicity, chemical hydrophobicity and mode of action: log kow QSARs revisited

    EPA Science Inventory

    Relationships between chemical hydrophobicity and toxicity have been shown for nearly 100 years in both mammals and fish, typically using the log of the octanol:water partition coefficient (kow). The current study reassessed the influence of mode of action (MOA) on aquatic toxici...

  8. Toxicity of trifluoroacetate to aquatic organisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berends, A.G.; Rooij, C.G. de; Boutonnet, J.C.

    1999-05-01

    As a result of the atmospheric degradation of several hydrofluorocarbons and hydrochlorofluorocarbons, trifluoroacetate (TFA) will be formed. Through precipitation, TFA will enter aquatic ecosystems. To evaluate the impact on the aquatic environment, an aquatic toxicity testing program was carried out with sodium trifluoroacetate (NaTFA). During acute toxicity tests, no effects of NaTFA on water fleas (Daphnia magna) and zebra fish (Danio retrio) were found at a concentration of 1,200 mg/L. A 7-d study with duckweed (Lemna gibba Ge) revealed a NOEC of 300 mg/L. On the basis of the results of five toxicity tests with Selenastrum capricornutum, they determined amore » NOEC of 0.12 mg/L. However, algal toxicity tests with NaTFA and Chlorella vulgaris, Scenedesmus subspicatus, Chlamydomonas reinhardtii, Dunaliella tertiolecta, Eugelan gracilis, Phaeodactylum tricornutum, Navicula pelliculosa, Skeletonema costatum, Anabaena flos-aquae, and Microcystis aeruginosa resulted in EC50 values that were all higher than 100 mg/L. The toxicity of TFA to S. capricornutum could be due to metabolic defluorination to monofluoroacetate (MFA), which is known to inhibit the citric acid cycle. A toxicity test with MFA and S. capricornutum revealed it to be about three orders of magnitude more toxic than TFA. However, a bioactivation study revealed that defluorination of TFA was less than 4%. On the other hand, S. capricornutum exposed to a toxic concentration of NaTFA showed a recovery of growth when citric acid was added, suggesting that TFA (or a metabolite of TFA) interferes with the citric acid cycle. A recovery of the growth of S. capricornutum was also found when TFA was removed from the test solutions. Therefore, TFA should be considered algistatic and not algicidic for S. capricornutum. On the basis of the combined results of the laboratory tests and a previously reported semi-field study, they can consider a TFA concentration of 0.10 mg/L as safe for the aquatic ecosystem.« less

  9. Complex mixtures of dissolved pesticides show potential aquatic toxicity in a synoptic study of Midwestern U.S. streams

    USGS Publications Warehouse

    Nowell, Lisa H.; Moran, Patrick W.; Schmidt, Travis S.; Norman, Julia E.; Nakagaki, Naomi; Shoda, Megan E.; Mahler, Barbara J.; Van Metre, Peter C.; Stone, Wesley W.; Sandstrom, Mark W.; Hladik, Michelle L.

    2018-01-01

    Aquatic organisms in streams are exposed to pesticide mixtures that vary in composition over time in response to changes in flow conditions, pesticide inputs to the stream, and pesticide fate and degradation within the stream. To characterize mixtures of dissolved-phase pesticides and degradates in Midwestern streams, a synoptic study was conducted at 100 streams during May–August 2013. In weekly water samples, 94 pesticides and 89 degradates were detected, with a median of 25 compounds detected per sample and 54 detected per site. In a screening-level assessment using aquatic-life benchmarks and the Pesticide Toxicity Index (PTI), potential effects on fish were unlikely in most streams. For invertebrates, potential chronic toxicity was predicted in 53% of streams, punctuated in 12% of streams by acutely toxic exposures. For aquatic plants, acute but likely reversible effects on biomass were predicted in 75% of streams, with potential longer-term effects on plant communities in 9% of streams. Relatively few pesticides in water—atrazine, acetochlor, metolachlor, imidacloprid, fipronil, organophosphate insecticides, and carbendazim—were predicted to be major contributors to potential toxicity. Agricultural streams had the highest potential for effects on plants, especially in May–June, corresponding to high spring-flush herbicide concentrations. Urban streams had higher detection frequencies and concentrations of insecticides and most fungicides than in agricultural streams, and higher potential for invertebrate toxicity, which peaked during July–August. Toxicity-screening predictions for invertebrates were supported by quantile regressions showing significant associations for the Benthic Invertebrate-PTI and imidacloprid concentrations with invertebrate community metrics for MSQA streams, and by mesocosm toxicity testing with imidacloprid showing effects on invertebrate communities at environmentally relevant concentrations. This study documents the most complex pesticide mixtures yet reported in discrete water samples in the U.S. and, using multiple lines of evidence, predicts that pesticides were potentially toxic to nontarget aquatic life in about half of the sampled streams.

  10. RELATIONSHIPS AMONG EXCEEDENCES OF CHEMICAL CRITERIA OR GUIDELINES, THE RESULTS OF AMBIENT TOXICITY TESTS AND COMMUNITY METRICS IN AQUATIC ECOSYSTEMS (FINAL)

    EPA Science Inventory

    The EPA document, Relationships Among Exceedances of Chemical Criteria or Guidelines, the Results of Ambient Toxicity Tests, and Community Metrics in Aquatic Ecosystems, presents two studies where the three general approaches for the ecological assessment of contaminant ex...

  11. Toxicity of Military Unique Compounds in Aquatic Organisms: An Annotated Bibliography (Studies Published Through 1996)

    DTIC Science & Technology

    1998-04-01

    containing zinc, cadmium , arsenic, lead, aluminum, carbon tetrachloride, perchloroethylene, hexachloroethane, hexachlorobenzene, and hydrochloric...Siphonaptera/Solvent Dyes/Toxicity/Trout/Water/Zinc/SmokeMunitions/Propellants/Water Pollution/ Cadmium /Lead(Metal)/Carbon Tetrachloride/Aquatic Biology...combustion products that are a complex mixture containing zinc, cadmium , arsenic, lead, aluminum, carbon tetrachloride, perchloroethylene

  12. Design and Analysis of Chronic Aquatic Tests of Toxicity with Daphnia magna.

    DTIC Science & Technology

    1981-12-01

    surface waters. From that need evolved numerous standard toxicity tests. Aquatic toxicologists and biologists developed, refine,, and standard- ized many...experimental categorization summary sheets prepared by Dr. William van der Schalie, which is shown in Table I.I. 7 j-. " .’?, i...partial solution to this dilema can be obtained by studying the effects of the solvent alone. If the solvent by itself produces no toxic responses at

  13. Potential effects of coalbed natural gas development on fish and aquatic resources

    USGS Publications Warehouse

    Farag, Aïda M.; Harper, David D.; Senecal, Anna C.; Hubert, Arthur E.; Reddy, K.J.

    2010-01-01

    The purpose of this chapter is to provide a summary of issues and findings related to the potential effects of coalbed natural gas (CBNG) development on fish and other aquatic resources. We reviewed CBNG issues from across the United States and used the Powder River Basin of Wyoming as a case study to exemplify some pertinent issues. The quality of water produced during CBNG extraction is quite variable. High total dissolved solids in many CBNG produced waters are of concern relative to fish and other aquatic organisms. Untreated CBNG produced water has the potential to be toxic to fish and aquatic organisms. Of particular concern at some locations in the Powder River basin are elevated concentrations of sodium bicarbonate which have been shown to be toxic to some species of larval fish and aquatic invertebrates. The areas affected by direct toxicity were limited to headwaters and small tributaries studied in the basin. The potential effects of organic compounds used during well drilling and CBNG production on water quality, fish, and aquatic organisms are not well defined. Water produced from CBNG wells that is low in salts or has been treated to remove salts may be discharged into ephemeral or perennially-flowing streams. Higher flows in small streams can enhance erosion and affect habitat for fish and aquatic organisms. In Great Plains rivers, such as the Powder River, fish and aquatic invertebrate communities are structured by extreme environmental conditions. Direct discharge of CBNG produced water during periods of very low or no surface flow may cause shifts in the aquatic community structure. Additional effects of CBNG development on fish and aquatic organisms may stem from road building and pipeline construction, roads crossing streams and ephemeral water courses, the possible spread of invasive organisms, potential spills of toxic substances, and increased harvest of sport fish. 

  14. Toxic effects of selenium and copper on the planarian, Dugesia dorotocephala

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauscher, J.D.

    1988-01-01

    Aquatic toxicologists have become increasingly concerned with the effects of sublethal concentrations of toxicants on aquatic organisms. Sublethal effects of toxicants on freshwater invertebrates were reviewed. Selenium (Se) and copper (Cu) are both essential trace elements and toxicants. Se has been reported to alter the toxicity of heavy metals. Planarians, Dugesia dorotocephala, were used as test animals. The objectives of this study were to determine: (1) acute toxicity of Se on planarians and the effect of the number of planarians per test chamber, (2) interaction of the acute toxicity of Se and Cu on planarians, and (3) sublethal effects ofmore » Se and Cu on planarians.« less

  15. Ecotoxicological assessment of flocculant modified soil for lake restoration using an integrated biotic toxicity index.

    PubMed

    Wang, Zhibin; Zhang, Honggang; Pan, Gang

    2016-06-15

    Flocculant modified soils/clays are being increasingly studied as geo-engineering materials for lake restoration and harmful algal bloom control. However, the potential impacts of adding these materials in aquatic ecological systems remain unclear. This study investigated the potential effects of chitosan, cationic starch, chitosan modified soils (MS-C) and cationic starch modified soils (MS-S) on the aquatic organisms by using a bioassay battery. The toxicity potential of these four flocculants was quantitatively assessed using an integrated biotic toxicity index (BTI). The test system includes four aquatic species, namely Chlorella vulgaris, Daphnia magna, Cyprinus carpio and Limnodrilus hoffmeisteri, which represent four trophic levels in the freshwater ecosystem. Results showed that median effect concentrations (EC50) of the MS-C and MS-S were 31-124 times higher than chitosan and cationic starch, respectively. D. magna was the most sensitive species to the four flocculants. Histological examination of C. carpio showed that significant pathological changes were found in gills. Different from chitosan and cationic starch, MS-C and MS-S significantly alleviated the acute toxicities of chitosan and cationic starch. The toxicity order of the four flocculants based on BTI were cationic starch > chitosan > MS-S > MS-C. The results suggested that BTI can be used as a quantitative and comparable indicator to assess biotic toxicity for aquatic geo-engineering materials. Chitosan or cationic starch modified soil/clay materials can be used at their optimal dosage without causing substantial adverse effects to the bioassay battery in aquatic ecosystem. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Biotic ligand modeling approach: Synthesis of the effect of major cations on the toxicity of metals to soil and aquatic organisms.

    PubMed

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2015-10-01

    The biotic ligand model (BLM) approach is used to assess metal toxicity, taking into account the competition of other cations with the free metal ions for binding to the biotic ligand sites of aquatic and soil organisms. The bioavailable fraction of metals, represented by the free metal ion, is a better measure than the total concentration for assessing their potential risk to the environment. Because BLMs are relating toxicity to the fraction of biotic ligands occupied by the metal, they can be useful for investigating factors affecting metal bioaccumulation and toxicity. In the present review, the effects of major cations on the toxicity of metals to soil and aquatic organisms were comprehensively studied by performing a meta-analysis of BLM literature data. Interactions at the binding sites were shown to be species- and metal-specific. The main factors affecting the relationships between toxicity and conditional binding constants for metal binding at the biotic ligand appeared to be Ca(2+) , Mg(2+) , and protons. Other important characteristics of the exposure medium, such as levels of dissolved organic carbon and concentrations of other cations, should also be considered to obtain a proper assessment of metal toxicity to soil and aquatic organisms. © 2015 SETAC.

  17. Development of aquatic life criteria for triclosan and comparison of the sensitivity between native and non-native species.

    PubMed

    Wang, Xiao-Nan; Liu, Zheng-Tao; Yan, Zhen-Guang; Zhang, Cong; Wang, Wei-Li; Zhou, Jun-Li; Pei, Shu-Wei

    2013-09-15

    Triclosan (TCS) is an antimicrobial agent which is used as a broad-spectrum bacteriostatic and found in personal care products, and due to this it is widely spread in the aquatic environment. However, there is no paper dealing with the aquatic life criteria of TCS, mainly result from the shortage of toxicity data of different taxonomic levels. In the present study, toxicity data were obtained from 9 acute toxicity tests and 3 chronic toxicity tests using 9 Chinese native aquatic species from different taxonomic levels, and the aquatic life criteria was derived using 3 methods. Furthermore, differences of species sensitivity distributions (SSD) between native and non-native species were compared. Among the tested species, demersal fish Misgurnus anguillicaudatus was the most sensitive species, and the fishes were more sensitive than the aquatic invertebrates of Annelid and insect, and the insect was the least sensitive species. The comparison showed that there was no significant difference between SSDs constructed from native and non-native taxa. Finally, a criterion maximum concentration of 0.009 mg/L and a criterion continuous concentration of 0.002 mg/L were developed based on different taxa, according to the U.S. Environmental Protection Agency guidelines. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. The relationship between metal toxicity and biotic ligand binding affinities in aquatic and soil organisms: a review.

    PubMed

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2014-12-01

    The biotic ligand model (BLM) is a theoretical, potentially mechanistic approach to assess metal bioavailability in soil and aquatic systems. In a BLM, toxicity is linked to the fraction of biotic ligand occupied, which in turn, depends on the various components of the solution, including activity of the metal. Bioavailability is a key factor in determining toxicity and uptake of metals in organisms. In this study, the present status of BLM development for soil and aquatic organisms is summarized. For all species and all metals, toxicity was correlated with the conditional biotic ligand binding constants. For almost all organisms, values for Ag, Cu, and Cd were higher than those for Zn and Ni. The constants derived for aquatic systems seem to be equally valid for soil organisms, but in the case of soils, bioavailability from the soil solution is greatly influenced by the presence of the soil solid phase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Acute aquatic toxicity of biodiesel fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, B.; Haws, R.; Little, D.

    1995-12-31

    This study develops data on the acute aquatic toxicity of selected biodiesel fuels which may become subject to environmental effects test regulations under the US Toxic Substances Control Act (TSCA). The test substances are Rape Methyl Ester (RME), Rape Ethyl Ester (REE), Methyl Soyate (MS), a biodiesel mixture of 20% REE and 80% Diesel, a biodiesel mixture of 50% REE and diesel, and a reference substance of Phillips D-2 Reference Diesel. The test procedure follows the Daphnid Acute Toxicity Test outlined in 40 CFR {section} 797.1300 of the TSCA regulations. Daphnia Magna are exposed to the test substance in amore » flow-through system consisting of a mixing chamber, a proportional diluter, and duplicate test chambers. Novel system modifications are described that accommodate the testing of oil-based test substances with Daphnia. The acute aquatic toxicity is estimated by an EC50, an effective concentration producing immobility in 50% of the test specimen.« less

  20. Acute Toxicity and Environmental Risks of Five Veterinary Pharmaceuticals for Aquatic Macroinvertebrates.

    PubMed

    Bundschuh, Mirco; Hahn, Torsten; Ehrlich, Bert; Höltge, Sibylla; Kreuzig, Robert; Schulz, Ralf

    2016-02-01

    Due to the high use of antibiotics and antiparasitics for the treatment of livestock, there is concern about the potential impacts of the release of these compounds into freshwater ecosystems. In this context, the present study quantified the acute toxicity of two antibiotics (sulfadiazine and sulfadimidine), and three antiparasitic agents (flubendazole, fenbendazole, ivermectin) for nine freshwater invertebrate species. These experiments revealed a low degree of toxicity for the sulfonamide antibiotics, with limited implications in the survival of all test species at the highest test concentrations (50 and 100 mg/L). In contrast, all three antiparasitic agents indicated on the basis of their acute toxicity risks for the aquatic environment. Moreover, chronic toxicity data from the literature for antiparasitics, including effects on reproduction in daphnids, support the concern about the integrity of aquatic ecosystems posed by releases of these compounds. Thus, these pharmaceuticals warrant further careful consideration by environmental risk managers.

  1. Assessment of toxicity of selenium and cadmium selenium quantum dots: A review.

    PubMed

    Sharma, Virender K; McDonald, Thomas J; Sohn, Mary; Anquandah, George A K; Pettine, Maurizio; Zboril, Radek

    2017-12-01

    This paper reviews the current understanding of the toxicity of selenium (Se) to terrestrial mammalian and aquatic organisms. Adverse biological effects occur in the case of Se deficiencies, associated with this element having essential biological functions and a narrow window between essentiality and toxicity. Several inorganic species of Se (-2, 0, +4, and +6) and organic species (monomethylated and dimethylated) have been reported in aquatic systems. The toxicity of Se in any given sample depends not only on its speciation and concentration, but also on the concomitant presence of other compounds that may have synergistic or antagonistic effects, affecting the target organism as well, usually spanning 2 or 3 orders of magnitude for inorganic Se species. In aquatic ecosystems, indirect toxic effects, linked to the trophic transfer of excess Se, are usually of much more concern than direct Se toxicity. Studies on the toxicity of selenium nanoparticles indicate the greater toxicity of chemically generated selenium nanoparticles relative to selenium oxyanions for fish and fish embryos while oxyanions of selenium have been found to be more highly toxic to rats as compared to nano-Se. Studies on polymer coated Cd/Se quantum dots suggest significant differences in toxicity of weathered vs. non-weathered QD's as well as a significant role for cadmium with respect to toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Mixture Toxicity of Nickel and Microplastics with Different Functional Groups on Daphnia magna.

    PubMed

    Kim, Dokyung; Chae, Yooeun; An, Youn-Joo

    2017-11-07

    In recent years, discarded plastic has become an increasingly prevalent pollutant in aquatic ecosystems. These plastic wastes decompose into microplastics, which pose not only a direct threat to aquatic organisms but also an indirect threat via adsorption of other aquatic pollutants. In this study, we investigated the toxicities of variable and fixed combinations of two types of microplastics [one coated with a carboxyl group (PS-COOH) and the other lacking this functional group (PS)] with the heavy metal nickel (Ni) on Daphnia magna and calculated mixture toxicity using a toxic unit model. We found that toxicity of Ni in combination with either of the two microplastics differed from that of Ni alone. Furthermore, in general, we observed that immobilization of D. magna exposed to Ni combined with PS-COOH was higher than that of D. magna exposed to Ni combined with PS. Collectively, the results of our study indicate that the toxic effects of microplastics and pollutants may vary depending on the specific properties of the pollutant and microplastic functional groups, and further research on the mixture toxicity of various combinations of microplastics and pollutants is warranted.

  3. Proactive aquatic ecotoxicological assessment of room-temperature ionic liquids

    USGS Publications Warehouse

    Kulacki, K.J.; Chaloner, D.T.; Larson, J.H.; Costello, D.M.; Evans-White, M. A.; Docherty, K.M.; Bernot, R.J.; Brueseke, M.A.; Kulpa, C.F.; Lamberti, G.A.

    2011-01-01

    Aquatic environments are being contaminated with a myriad of anthropogenic chemicals, a problem likely to continue due to both unintentional and intentional releases. To protect valuable natural resources, novel chemicals should be shown to be environmentally safe prior to use and potential release into the environment. Such proactive assessment is currently being applied to room-temperature ionic liquids (ILs). Because most ILs are water-soluble, their effects are likely to manifest in aquatic ecosystems. Information on the impacts of ILs on numerous aquatic organisms, focused primarily on acute LC50 and EC50 endpoints, is now available, and trends in toxicity are emerging. Cation structure tends to influence IL toxicity more so than anion structure, and within a cation class, the length of alkyl chain substituents is positively correlated with toxicity. While the effects of ILs on several aquatic organisms have been studied, the challenge for aquatic toxicology is now to predict the effects of ILs in complex natural environments that often include diverse mixtures of organisms, abiotic conditions, and additional stressors. To make robust predictions about ILs will require coupling of ecologically realistic laboratory and field experiments with standard toxicity bioassays and models. Such assessments would likely discourage the development of especially toxic ILs while shifting focus to those that are more environmentally benign. Understanding the broader ecological effects of emerging chemicals, incorporating that information into predictive models, and conveying the conclusions to those who develop, regulate, and use those chemicals, should help avoid future environmental degradation. ?? 2011 Bentham Science Publishers Ltd.

  4. Accuracy of Chronic Aquatic Toxicity Estimates Determined from Acute Toxicity Data and Two Time–Response Models.

    EPA Science Inventory

    Traditionally, chronic toxicity in aquatic organisms and wildlife has been determined from either toxicity test data, acute to chronic ratios, or application of safety factors. A more recent alternative approach has been to estimate chronic toxicity by modeling the time course of...

  5. AQUIRE: Aquatic Toxicity Information Retrieval data base. Data file

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, E.; Pilli, A.

    The purpose of Aquatic Toxicity Information Retrieval (AQUIRE) data base is to provide scientists and managers quick access to a comprehensive, systematic, computerized compilation of aquatic toxicity data. Scientific papers published both nationally and internationally on the toxicity of chemicals to aquatic organisms and plants are collected and reviewed for AQUIRE. Independently compiled data files that meet AQUIRE parameter and quality assurance criteria are also included. Selected toxicity-test results and related testing information for any individual chemical from laboratory and field aquatic toxicity tests are extracted and added to AQUIRE. Acute, sublethal, and bioconcentration effects are included for tests withmore » freshwater and marine organisms. The total number of data records in AQUIRE now equals 104,500. This includes data from 6000 references, for 5200 chemicals and 2400 test species. A major data file, Acute Toxicity of Organic Chemicals (ATOC), has been incorporated into AQUIRE. The ATOC file contains laboratory acute test data on 525 organic chemicals using juvenile fathead minnows. The complete data file can be accessed by requesting review code 5 as a search parameter.« less

  6. Effects of triclosan on aquatic invertebrates in tropics and the influence of pH on its toxicity on microalgae.

    PubMed

    Khatikarn, Jidapa; Satapornvanit, Kriengkrai; Price, Oliver R; Van den Brink, Paul J

    2018-05-01

    The antimicrobial triclosan (TCS) has been detected in household wastewaters (untreated and treated) and receiving environments across the globe. The toxic effects of TCS on temperate standard aquatic test organisms have been widely reported with microalgae being the most sensitive. However, environmental differences between tropical and temperate regions may have selected different trait compositions between these two regions, which in turn may lead to a difference in species sensitivity. Therefore, additional information is required to better characterize risks to organisms in tropics and ensure biodiversity in these regions is not adversely impacted. This study aims to supplement existing TCS toxicity data with five aquatic invertebrates found in tropics and to compare the sensitivity between aquatic invertebrate species from tropical and temperate regions. In addition, the effect of pH on the toxicity of neutral and ionized forms of TCS to microalgae (Chlorella ellipsoidea) was investigated. The reported 96-h LC50 values for the studied invertebrate species ranged from 72 to 962 μg/L. There was no significant difference between the sensitivity of aquatic invertebrate species from tropical and temperate regions. EC50 values for C. ellipsoidea, with and without pH buffer, were significantly different. The findings of this study can be used to support site-specific water quality criteria and environmental risk assessment for TCS in tropical regions. However, further chronic and semi-field experiments with TCS could potentially enable a refined assessment of direct and indirect effects on tropical aquatic communities and further explore functional endpoints of tropical ecosystems.

  7. Framework for Optimizing Selection of Interspecies Correlation Estimation Models to Address Species Diversity and Toxicity Gaps in an Aquatic Database

    EPA Science Inventory

    The Chemical Aquatic Fate and Effects (CAFE) database is a tool that facilitates assessments of accidental chemical releases into aquatic environments. CAFE contains aquatic toxicity data used in the development of species sensitivity distributions (SSDs) and the estimation of ha...

  8. Assessing Toxicity of Obscurant Grade Pan-Based Carbon Fiber Aquatic Species Chronic Tests

    DTIC Science & Technology

    2004-12-01

    ASSESSING TOXICITY OF OBSCURANT GRADE PAN-BASED CARBON FIBER: AQUATIC SPECIES CHRONIC TESTS N. A. Chester, M. V. Haley, C. W. Kurnas and R. T...with minimal restrictions. To this end we are investigating the toxicity of PAN-based carbon fibers to the aquatic species Ceriodaphnia dubia (water... toxicity methods to provide ecotoxicological results for both lethal and sub-lethal parameters, including LC50 (24-, 48- and 96-h), IC50, EC20, and

  9. Application of the Activity Framework for Assessing Aquatic Ecotoxicology Data for Organic Chemicals.

    PubMed

    Thomas, Paul; Dawick, James; Lampi, Mark; Lemaire, Philippe; Presow, Shaun; van Egmond, Roger; Arnot, Jon A; Mackay, Donald; Mayer, Philipp; Galay Burgos, Malyka

    2015-10-20

    Toxicological research in the 1930s gave the first indications of the link between narcotic toxicity and the chemical activity of organic chemicals. More recently, chemical activity has been proposed as a novel exposure parameter that describes the fraction of saturation and that quantifies the potential for partitioning and diffusive uptake. In the present study, more than 2000 acute and chronic algal, aquatic invertebrates and fish toxicity data, as well as water solubility and melting point values, were collected from a series of sources. The data were critically reviewed and grouped by mode of action (MoA). We considered 660 toxicity data to be of acceptable quality. The 328 data which applied to the 72 substances identified as MoA 1 were then evaluated within the activity-toxicity framework: EC50 and LC50 values for all three taxa correlated generally well with (subcooled) liquid solubilities. Acute toxicity was typically exerted within the chemical activity range of 0.01-0.1, whereas chronic toxicity was exerted in the range of 0.001-0.01. These results confirm that chemical activity has the potential to contribute to the determination, interpretation and prediction of toxicity to aquatic organisms. It also has the potential to enhance regulation of organic chemicals by linking results from laboratory tests, monitoring and modeling programs. The framework can provide an additional line of evidence for assessing aquatic toxicity, for improving the design of toxicity tests, reducing animal usage and addressing chemical mixtures.

  10. Aquatic toxicity information retrieval data base (aquire for non-vms) (on magnetic tape). Data file

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The AQUIRE-AQUatic toxicity information REtrieval-data base was established in 1981 by the United States Environmental Protection Agency (US EPA), Office of Pesticide and Toxic Substances. AQUIRE continues to be updated and maintained at the US EPA Environmental Research Laboratory-Duluth. The purpose of AQUIRE is to provide scientists and managers quick access to a comprehensive, systematic, computerized compilation of aquatic toxic effects data for freshwater and marine organisms. The AQUIRE system is one of the foremost resources for the location of aquatic toxicity information and is commonly used to evaluate and prioritize the hazards of industrial chemicals and pesticides in themore » USA and abroad. Scientific papers published both nationally and internationally on the toxicity of chemicals to aquatic organisms and plants are collected and reviewed for AQUIRE. Independently compiled data files that meet AQUIRE parameter and quality assurance criteria are also included. Relevant toxicity test results and related test information for any individual chemicals analyzed using freshwater and marine organisms in laboratory and field conditions, are included in the database. Since 1994, nine data updates were made to the AQUIRE system. AQUIRE now contains 129,740 individual aquatic toxicity test results for 5,679 chemicals, 2,827 organisms, and over 160 endpoints reviewed from 7,517 publications. Over 16,000 of the AQUIRE records represent aquatic toxicity data reported in the literature for the publication years 1989-1991. AQUIRE offers data contributed through an international data exchange clearinghouse with the Organization for Economic Cooperation and Development (OECD) and the Borok Institute in Russia. The current release of AQUIRE delivers data submitted from Germany, The Netherlands, and Russia.« less

  11. Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor

    USGS Publications Warehouse

    Fairchild, James F.; Ruessler, Shane; Carlson, A. Ron

    1998-01-01

    This study determined the relative sensitivity of five species of aquatic macrophytes and six species of algae to four commonly used herbicides (atrazine, metribuzin, alachlor, and metolachlor). Toxicity tests consisted of 96-h (duckweed and algae) or 14-d (submerged macrophytes) static exposures. The triazine herbicides (atrazine and metribuzin) were significantly more toxic to aquatic plants than were the acetanilide herbicides (alachlor and metolachlor). Toxicity studies ranked metribuzin > atrazine > alachlor > metolachlor in decreasing order of overall toxicity to aquatic plants. Relative sensitivities of macrophytes to these herbicides decreased in the order of Ceratophyllum > Najas > Elodea > Lemna > Myriophyllum. Relative sensitivities of algae to herbicides decreased in the order of Selenastrum > Chlorella > Chlamydomonas > Microcystis > Scenedesmus > Anabaena. Algae and macrophytes were of similar overall sensitivities to herbicides. Data indicated that Selenastrum, a commonly tested green alga, was generally more sensitive compared to other plant species. Lemna minor, a commonly tested floating vascular plant, was of intermediate sensitivity, and was fivefold less sensitive than Ceratophyllum, which was the most sensitive species tested. The results indicated that no species was consistently most sensitive, and that a suite of aquatic plant test species may be needed to perform accurate risk assessments of herbicides.

  12. Aquatic toxicity information retrieval data base (AQUIRE). Data file

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The purpose of AQUIRE is to provide scientists and managers quick access to a comprehensive, systematic, computerized compilation of aquatic toxicity data. Scientific papers published both nationally and internationally on the toxicity of chemicals to aquatic organisms and plants are collected and reviewed for AQUIRE. Independently compiled data files that meet AQUIRE parameter and quality assurance criteria are also included. Relevant toxicity test results and related test information for any individual chemicals analyzed using freshwater and marine organisms in laboratory and field conditions, are included in the database. During 1992 and early 1993, nine data updates were made to themore » AQUIRE system. AQUIRE now contains 109,338 individual aquatic toxicity test results for 5,159 chemicals, 2,429 organisms, and over 160 endpoints reviewed from 7,517 publications.« less

  13. Acute aquatic toxicity of tire and road wear particles to alga, daphnid, and fish.

    PubMed

    Marwood, Christopher; McAtee, Britt; Kreider, Marisa; Ogle, R Scott; Finley, Brent; Sweet, Len; Panko, Julie

    2011-11-01

    Previous studies have indicated that tire tread particles are toxic to aquatic species, but few studies have evaluated the toxicity of such particles using sediment, the likely reservoir of tire wear particles in the environment. In this study, the acute toxicity of tire and road wear particles (TRWP) was assessed in Pseudokirchneriella subcapita, Daphnia magna, and Pimephales promelas using a sediment elutriate (100, 500, 1000 or 10000 mg/l TRWP). Under standard test temperature conditions, no concentration response was observed and EC/LC(50) values were greater than 10,000 mg/l. Additional tests using D. magna were performed both with and without sediment in elutriates collected under heated conditions designed to promote the release of chemicals from the rubber matrix to understand what environmental factors may influence the toxicity of TRWP. Toxicity was only observed for elutriates generated from TRWP leached under high-temperature conditions and the lowest EC/LC(50) value was 5,000 mg/l. In an effort to identify potential toxic chemical constituent(s) in the heated leachates, toxicity identification evaluation (TIE) studies and chemical analysis of the leachate were conducted. The TIE coupled with chemical analysis (liquid chromatography/mass spectrometry/mass spectrometry [LC/MS/MS] and inductively coupled plasma/mass spectrometry [ICP/MS]) of the leachate identified zinc and aniline as candidate toxicants. However, based on the high EC/LC(50) values and the limited conditions under which toxicity was observed, TRWP should be considered a low risk to aquatic ecosystems under acute exposure scenarios.

  14. Toxicity of fluoride to aquatic species and evaluation of toxicity modifying factors.

    PubMed

    Pearcy, Krysta; Elphick, James; Burnett-Seidel, Charlene

    2015-07-01

    The present study was performed to investigate the toxicity of fluoride to a variety of freshwater aquatic organisms and to establish whether water quality variables contribute substantively to modifying its toxicity. Water hardness, chloride, and alkalinity were tested as possible toxicity modifying factors for fluoride using acute toxicity tests with Hyalella azteca and Oncorhynchus mykiss. Chloride appeared to be the major toxicity modifying factor for fluoride in these acute toxicity tests. The chronic toxicity of fluoride was evaluated with a variety of species, including 3 fish (Pimephales promelas, O. mykiss, and Salvelinus namaycush), 3 invertebrates (Ceriodaphnia dubia, H. azteca, and Chironomus dilutus), 1 plant (Lemna minor), and 1 alga (Pseudokirchneriella subcapitata). Hyalella azteca was the most sensitive species overall, and O. mykiss was the most sensitive species of fish. The role of chloride as a toxicity modifying factor was inconsistent between species in the chronic toxicity tests. © 2015 SETAC.

  15. Use of the Biotic Ligand Model to predict metal toxicity to aquatic biota in areas of differing geology

    USGS Publications Warehouse

    Smith, Kathleen S.

    2005-01-01

    This work evaluates the use of the biotic ligand model (BLM), an aquatic toxicity model, to predict toxic effects of metals on aquatic biota in areas underlain by different rock types. The chemical composition of water, soil, and sediment is largely derived from the composition of the underlying rock. Geologic source materials control key attributes of water chemistry that affect metal toxicity to aquatic biota, including: 1) potentially toxic elements, 2) alkalinity, 3) total dissolved solids, and 4) soluble major elements, such as Ca and Mg, which contribute to water hardness. Miller (2002) compiled chemical data for water samples collected in watersheds underlain by ten different rock types, and in a mineralized area in western Colorado. He found that each rock type has a unique range of water chemistry. In this study, the ten rock types were grouped into two general categories, igneous and sedimentary. Water collected in watersheds underlain by sedimentary rock has higher mean pH, alkalinity, and calcium concentrations than water collected in watersheds underlain by igneous rock. Water collected in the mineralized area had elevated concentrations of calcium and sulfate in addition to other chemical constituents. Miller's water-chemistry data were used in the BLM (computer program) to determine copper and zinc toxicity to Daphnia magna. Modeling results show that waters from watersheds underlain by different rock types have characteristic ranges of predicted LC 50 values (a measurement of aquatic toxicity) for copper and zinc, with watersheds underlain by igneous rock having lower predicted LC 50 values than watersheds underlain by sedimentary rock. Lower predicted LC 50 values suggest that aquatic biota in watersheds underlain by igneous rock may be more vulnerable to copper and zinc inputs than aquatic biota in watersheds underlain by sedimentary rock. For both copper and zinc, there is a trend of increasing predicted LC 50 values with increasing dissolved organic carbon (DOC) concentrations. Predicted copper LC 50 values are extremely sensitive to DOC concentrations, whereas alkalinity appears to have an influence on zinc toxicity at alkalinities in excess of about 100 mg/L CaCO 3 . These findings show promise for coupling the BLM (computer program) with measured water-chemistry data to predict metal toxicity to aquatic biota in different geologic settings and under different scenarios. This approach may ultimately be a useful tool for mine-site planning, mitigation and remediation strategies, and ecological risk assessment.

  16. Review of the photo-induced toxicity of environmental contaminants.

    PubMed

    Roberts, Aaron P; Alloy, Matthew M; Oris, James T

    2017-01-01

    Solar radiation is a vital component of ecosystem function. However, sunlight can also interact with certain xenobiotic compounds in a phenomenon known as photo-induced, photo-enhanced, photo-activated, or photo-toxicity. This phenomenon broadly refers to an interaction between a chemical and sunlight resulting in increased toxicity. Because most aquatic ecosystems receive some amount of sunlight, co-exposure to xenobiotic chemicals and solar radiation is likely to occur in the environment, and photo-induced toxicity may be an important factor impacting aquatic ecosystems. However, photo-induced toxicity is not likely to be relevant in all aquatic systems or exposure scenarios due to variation in important ecological factors as well as physiological adaptations of the species that reside there. Here, we provide an updated review of the state of the science of photo-induced toxicity in aquatic ecosystems. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Aquatic Toxicity Information Retrieval Data Base (ACQUIRE). Data file

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The purpose of Acquire is to provide scientists and managers quick access to a comprehensive, systematic, computerized compilation of aquatic toxicity data. Scientific papers published both nationally and internationally on the toxicity of chemicals to aquatic organisms and plants are collected and reviewed for ACQUIRE. Independently compiled data files that meet ACQUIRE parameter and quality assurance criteria are also included. Selected toxicity test results and related testing information for any individual chemical from laboratory and field aquatic toxicity effects are included for tests with freshwater and marine organisms. The total number of data records in ACQUIRE is now over 105,300.more » This includes data from 6000 references, for 5200 chemicals and 2400 test species. A major data file, Acute Toxicity of Organic Chemicals (ATOC), has been incorporated into ACQUIRE. The ATOC file contains laboratory acute test data on 525 organic chemicals using juvenile fathead minnows.« less

  18. Ecotoxicity literature review of selected Hanford Site contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Driver, C.J.

    1994-03-01

    Available information on the toxicity, food chain transport, and bioconcentration of several Hanford Site contaminants were reviewed. The contaminants included cesium-137, cobalt-60, europium, nitrate, plutonium, strontium-90, technetium, tritium, uranium, and chromium (III and VI). Toxicity and mobility in both aquatic and terrestrial systems were considered. For aquatic systems, considerable information was available on the chemical and/or radiological toxicity of most of the contaminants in invertebrate animals and fish. Little information was available on aquatic macrophyte response to the contaminants. Terrestrial animals such as waterfowl and amphibians that have high exposure potential in aquatic systems were also largely unrepresented in themore » toxicity literature. The preponderance of toxicity data for terrestrial biota was for laboratory mammals. Bioconcentration factors and transfer coefficients were obtained for primary producers and consumers in representative aquatic and terrestrial systems; however, little data were available for upper trophic level transfer, particularly for terrestrial predators. Food chain transport and toxicity information for the contaminants were generally lacking for desert or sage brush-steppe organisms, particularly plants and reptiles« less

  19. Using biodynamic models to reconcile differences between laboratory toxicity tests and field biomonitoring with aquatic insects

    USGS Publications Warehouse

    Buchwalter, D.B.; Cain, D.J.; Clements, W.H.; Luoma, S.N.

    2007-01-01

    Aquatic insects often dominate lotic ecosystems, yet these organisms are under-represented in trace metal toxicity databases. Furthermore, toxicity data for aquatic insects do not appear to reflect their actual sensitivities to metals in nature, because the concentrations required to elicit toxicity in the laboratory are considerably higher than those found to impact insect communities in the field. New approaches are therefore needed to better understand how and why insects are differentially susceptible to metal exposures. Biodynamic modeling is a powerful tool for understanding interspecific differences in trace metal bioaccumulation. Because bioaccumulation alone does not necessarily correlate with toxicity, we combined biokinetic parameters associated with dissolved cadmium exposures with studies of the subcellular compartmentalization of accumulated Cd. This combination of physiological traits allowed us to make predictions of susceptibility differences to dissolved Cd in three aquatic insect taxa: Ephemerella excrucians, Rhithrogena morrisoni, and Rhyacophila sp. We compared these predictions with long-term field monitoring data and toxicity tests with closely related taxa: Ephemerella infrequens, Rhithrogena hageni, and Rhyacophila brunea. Kinetic parameters allowed us to estimate steady-state concentrations, the time required to reach steady state, and the concentrations of Cd projected to be in potentially toxic compartments for different species. Species-specific physiological traits identified using biodynamic models provided a means for better understanding why toxicity assays with insects have failed to provide meaningful estimates for metal concentrations that would be expected to be protective in nature. ?? 2007 American Chemical Society.

  20. DETERMINANTS OF VARIABILITY IN ACUTE TO CHRONIC TOXICITY RATIOS IN AQUATIC INVERTEBRATES AND FISH

    EPA Science Inventory

    Variability in acute to chronic ratios (ACRs; LC50/chronic value) has been a continuing interest in aquatic toxicology because of the reliance on ACRs to estimate chronic toxicity for chemicals and species with known acute toxicity but limited or no information on sublethal toxic...

  1. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment.

    PubMed

    Annett, Robert; Habibi, Hamid R; Hontela, Alice

    2014-05-01

    Glyphosate [N-(phosphonomethyl) glycine] is a broad spectrum, post emergent herbicide and is among the most widely used agricultural chemicals globally. Initially developed to control the growth of weed species in agriculture, this herbicide also plays an important role in both modern silviculture and domestic weed control. The creation of glyphosate tolerant crop species has significantly increased the demand and use of this herbicide and has also increased the risk of exposure to non-target species. Commercially available glyphosate-based herbicides are comprised of multiple, often proprietary, constituents, each with a unique level of toxicity. Surfactants used to increase herbicide efficacy have been identified in some studies as the chemicals responsible for toxicity of glyphosate-based herbicides to non-target species, yet they are often difficult to chemically identify. Most glyphosate-based herbicides are not approved for use in the aquatic environment; however, measurable quantities of the active ingredient and surfactants are detected in surface waters, giving them the potential to alter the physiology of aquatic organisms. Acute toxicity is highly species dependant across all taxa, with toxicity depending on the timing, magnitude, and route of exposure. The toxicity of glyphosate to amphibians has been a major focus of recent research, which has suggested increased sensitivity compared with other vertebrates due to their life history traits and reliance on both the aquatic and terrestrial environments. This review is designed to update previous reviews of glyphosate-based herbicide toxicity, with a focus on recent studies of the aquatic toxicity of this class of chemicals. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Relative toxicities of pure propylene and ethylene glycol and formulated deicers on plant species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuFresne, D.L.; Pillard, D.A.

    1994-12-31

    Propylene and ethylene glycol deicers are commonly used at airports in the US and other countries to remove and retard the accumulation of snow and ice on aircraft. Deicers may not only enter water bodies without treatment, due to excessive storm-related flow, but also may expose terrestrial organisms to high concentrations through surface runoff. Most available toxicity data are for aquatic vertebrates and invertebrate species; this study examined effects on terrestrial and aquatic plants. Terrestrial plant species included both a monocot (rye grass, Lolium perenne) and a dicot (lettuce, Lactuca saliva). Aquatic species included a single cell alga (Selenastrum capricomutum),more » and an aquatic macrophyte (duckweed, Lemna minor). Glycol deicers were obtained in the formulated mixtures used on aircraft. Pure ethylene and propylene glycol were obtained from Sigma{reg_sign}. Parameters measured included germination, root and shoot length, survival, and growth. Formulated deicers, like those used at airports, were generally more toxic than pure chemicals, based on glycol concentration. This greater toxicity of formulated deicers is consistent with results of tests using animal species.« less

  3. IMPROVED RISK CHARACTERIZATION METHODS FOR DEVELOPING AQUATIC LIFE CRITERIA FOR NON-BIOACCUMULATIVE TOXICANTS

    EPA Science Inventory

    This project will use existing and developing information to evaluate and demonstrate procedures for more fully characterizing risks of non-bioaccumulative toxicants to aquatic organisms, and for incorporating these risks into aquatic life criteria. These efforts will address a v...

  4. Improving the quality of aquatic toxicity tests: Lessons learned and proficiency needs

    EPA Science Inventory

    Aquatic toxicity testing methodologies have been widely used to assess potential adverse effects of chemicals and wastewater discharges on aquatic life in the United States since the 1970’s. Over the years, continued method modifications, increased training, and technical r...

  5. ESTIMATION OF AQUATIC SPECIES SENSITIVITY USING INTERSPECIES CORRELATION AND ACUTE TO CHRONIC TOXICITY MODELS

    EPA Science Inventory

    Abstract for presentation

    Estimation of aquatic species sensitivity using interspecies correlation and acute to chronic toxicity models

    Determining species sensitivity of aquatic organisms to contaminants is a critical component of criteria development and ecolog...

  6. INTER-SPECIES MODELS FOR ACUTE AQUATIC TOXICITY BASED ON MECHANISM OF ACTION

    EPA Science Inventory

    This presentation will provide interspecies QSARs for acute toxicity to 17 aquatic species, such as fish, snail, tadpole, hydrozoan, crustacean, insect larvae, and bacteria developed using 5,000 toxic effect results for approximately 2400 chemicals.

  7. A REVIEW OF SINGLE SPECIES TOXICITY TESTS: ARE THE TESTS RELIABLE PREDICTORS OF AQUATIC ECOSYSTEM COMMUNITY RESPONSES?

    EPA Science Inventory

    This document provides a comprehensive review to evaluate the reliability of indicator species toxicity test results in predicting aquatic ecosystem impacts, also called the ecological relevance of laboratory single species toxicity tests.

  8. Toxicity of volcanic-ash leachate to a blue-green alga. Results of a preliminary bioassay experiment

    USGS Publications Warehouse

    McKnight, Diane M.; Feder, G.L.; Stiles, E.A.

    1981-01-01

    To assess the possible effects of volcanic ash from the May 18,1980, eruption of Mt. St. Helens, Washington, on aquatic ecosystems, we conducted a bioassay experiment with a blue-green alga, Anabaena flos-aquae. Results showed that leachate (obtained by leaching 151 g of ash with 130 mL of simulated freshwater) was lethal to Anabaena flos-aquae cultures when diluted as much as 1:100 with culture medium. Cultures exposed to a 1:500 dilution grew, but a toxic effect was indicated by abnormalities in the Anabaena filaments. This study indicates that ash from the Mt. St. Helens volcano could have an effect on aquatic ecosystems in the areas of significant ashfall. Further study is needed to determine the toxic chemical constituents in the ash and also its possible effects on other aquatic organisms.

  9. Contrasting sensitivities to fluoride toxicity between juveniles and adults of the aquatic snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca).

    PubMed

    Aguirre-Sierra, Aránzazu; Alonso, Alvaro; Camargo, Julio A

    2011-05-01

    In contrast to aquatic vertebrates, there is scarce available information on the contrasting tolerance to fluoride of different life stages and/or sizes of aquatic invertebrates. The purpose of this study was to assess the likely differences in sensitivity between juveniles and adults of the aquatic snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca) to short-term (4 days) toxicity of fluoride ion (F(-)). LC50 and EC50 values for juveniles were significantly lower than those for adults at 24, 48, 72 and 96 h. Based on our results, the use of fluoride data of bioassays with juveniles should provide more protective water quality criteria than data from adult stage. © Springer Science+Business Media, LLC 2011

  10. Integrated ecological risk assessment of pesticides in tropical ecosystems: a case study with carbofuran in Brazil.

    PubMed

    Chelinho, Sónia; Lopes, Isabel; Natal-da-Luz, Tiago; Domene, Xaxier; Nunes, Maria Edna Tenorio; Espíndola, Evaldo L G; Ribeiro, Rui; Sousa, Jose P

    2012-02-01

    The aim of the present study is to contribute an ecologically relevant assessment of the ecotoxicological effects of pesticide applications in agricultural areas in the tropics, using an integrated approach with information gathered from soil and aquatic compartments. Carbofuran, an insecticide/nematicide used widely on sugarcane crops, was selected as a model substance. To evaluate the toxic effects of pesticide spraying for soil biota, as well as the potential indirect effects on aquatic biota resulting from surface runoff and/or leaching, field and laboratory (using a cost-effective simulator of pesticide applications) trials were performed. Standard ecotoxicological tests were performed with soil (Eisenia andrei, Folsomia candida, and Enchytraeus crypticus) and aquatic (Ceriodaphnia silvestrii) organisms, using serial dilutions of soil, eluate, leachate, and runoff samples. Among soil organisms, sensitivity was found to be E. crypticus < E. andrei < F. candida. Among the aqueous extracts, mortality of C. silvestrii was extreme in runoff samples, whereas eluates were by far the least toxic samples. A generally higher toxicity was found in the bioassays performed with samples from the field trial, indicating the need for improvements in the laboratory simulator. However, the tool developed proved to be valuable in evaluating the toxic effects of pesticide spraying in soils and the potential risks for aquatic compartments. Copyright © 2011 SETAC.

  11. Aquatic toxicity of acrylates and methacrylates: quantitative structure-activity relationships based on Kow and LC50

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinert, K.H.

    1987-12-01

    Recent EPA scrutiny of acrylate and methacrylate monomers has resulted in restrictive consent orders and Significant New Use Rules under the Toxic Substances Control Act, based on structure-activity relationships using mouse skin painting studies. The concern is centered on human health issues regarding worker and consumer exposure. Environmental issues, such as aquatic toxicity, are still of concern. Understanding the relationships and environmental risks to aquatic organisms may improve the understanding of the potential risks to human health. This study evaluates the quantitative structure-activity relationships from measured log Kow's and log LC50's for Pimephales promelas (fathead minnow) and Carassius auratus (goldfish).more » Scientific support of the current regulations is also addressed. Two monomer classes were designated: acrylates and methacrylates. Spearman rank correlation and linear regression were run. Based on this study, an ecotoxicological difference exists between acrylates and methacrylates. Regulatory activities and scientific study should reflect this difference.« less

  12. Bioavailability of cyanide and metal-cyanide mixtures to aquatic life.

    PubMed

    Redman, Aaron; Santore, Robert

    2012-08-01

    Cyanide can be toxic to aquatic organisms, and the U.S. Environmental Protection Agency has developed ambient water-quality criteria to protect aquatic life. Recent work suggests that considering free, rather than total, cyanide provides a more accurate measure of the biological effects of cyanides and provides a basis for water-quality criteria. Aquatic organisms are sensitive to free cyanide, although certain metals can form stable complexes and reduce the amount of free cyanide. As a result, total cyanide is less toxic when complexing metals are present. Cyanide is often present in complex effluents, which requires understanding how other components within these complex effluents can affect cyanide speciation and bioavailability. The authors have developed a model to predict the aqueous speciation of cyanide and have shown that this model can predict the toxicity of metal-cyanide complexes in terms of free cyanide in solutions with varying water chemistry. Toxicity endpoints based on total cyanide ranged over several orders of magnitude for various metal-cyanide mixtures. However, predicted free cyanide concentrations among these same tests described the observed toxicity data to within a factor of 2. Aquatic toxicity can be well-described using free cyanide, and under certain conditions the toxicity was jointly described by free cyanide and elevated levels of bioavailable metals. Copyright © 2012 SETAC.

  13. 40 CFR 158.243 - Experimental use permit data requirements for terrestrial and aquatic nontarget organisms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... toxicity R R R NR NR NR TGAI, TEP 1, 2, 5, 6, 11 850.1010 Acute toxicity freshwater invertebrates R R R NR NR NR TGAI, TEP 1, 2, 6, 7, 11 850.1300 Aquatic invertebrate life cycle (freshwater) NR R R NR NR NR... aquatic organisms. 7. Data are required on one freshwater aquatic invertebrate species. 8. Data are...

  14. New Rotifer Bioassays for Aquatic Toxicology

    DTIC Science & Technology

    1991-07-01

    Acute toxicity tests using rotifers. II. A freshwater test with Brachionus rubens. Aquatic Toxicology. 14: 81-92. Snell, T. W., B. D. Moffat, C. Janssen...24 hours with a sensitivity comparable to that of other aquatic invertebrates. 1. Standard Freshwater Medium Preparation: Carefully add 96 mg NaHCO3,60...rubens. Aquatic Toxicology. 14: 81-92. US Environmental Protection Agency 1985. Methods for measuring the acute toxicity of effluents to freshwater

  15. Toxicity of Cúspide 480SL® spray mixture formulation of glyphosate to aquatic organisms.

    PubMed

    Currie, Zachary; Prosser, Ryan S; Rodriguez-Gil, Jose Luis; Mahon, Kim; Poirier, Dave; Solomon, Keith R

    2015-05-01

    In 2011, an alternative formulation of glyphosate (Cúspide 480SL®) was chosen to replace Roundup-SL®, Fuete-SL®, and Gly-41® for the control of Erythroxylum coca, the source of cocaine, in Colombia. Cúspide 480SL contains the active ingredient glyphosate isopropylamine (IPA) salt, which is the same active ingredient used in previous formulations. However, Cúspide 480SL contains an alkyl polyglycoside surfactant rather than the polyethoxylated tallow amine (POEA) surfactant used in other formulations and known to be more toxic to nonprimary producing aquatic organisms than glyphosate itself. An adjuvant, Cosmo-Flux F411, and water also are added to the spray mixture before application. Aquatic ecosystems adjacent to the target coca fields might be exposed to the spray mix, placing aquatic organisms at risk. Because no toxicity data were available for spray mixture on aquatic organisms, acute toxicity tests were conducted on aquatic plants, invertebrates, and fish, by using the Cúspide 480SL spray mix as described on the label. Based on the median effective concentration (EC50) values for similar organisms, the spray mixture was less toxic to aquatic organisms than formulations previously used for the control of coca (i.e., Roundup-SL, Fuete-SL, and Gly-41). A physical effect induced by Cosmo-Flux F411 was observed in Daphnia magna, Ceriodaphnia dubia, and Hyalella azteca, causing the invertebrates to be trapped in an oily film that was present at the surface of the water. However, a hazard assessment for the Cúspide 480SL spray mix, using estimated worst-case exposure scenario concentrations and EC50 values from the toxicity tests, indicated de minimis hazard for the tested aquatic animals, with hazard quotients all <1. © 2015 SETAC.

  16. 75 FR 35805 - Pesticide Product Registrations; Conditional Approvals

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    .../or Cry1A.105 must be submitted by April 1, 2009. 2. Aquatic Invertebrate Acute Toxicity Testing.... Alternatively, a dietary study of the effects on an aquatic invertebrate, representing the functional group of a...

  17. Biodegradability and aquatic toxicity of quaternary ammonium-based gemini surfactants: Effect of the spacer on their ecological properties.

    PubMed

    Garcia, M Teresa; Kaczerewska, Olga; Ribosa, Isabel; Brycki, Bogumił; Materna, Paulina; Drgas, Małgorzata

    2016-07-01

    Aerobic biodegradability and aquatic toxicity of five types of quaternary ammonium-based gemini surfactants have been examined. The effect of the spacer structure and the head group polarity on the ecological properties of a series of dimeric dodecyl ammonium surfactants has been investigated. Standard tests for ready biodegradability assessment (OECD 310) were conducted for C12 alkyl chain gemini surfactants containing oxygen, nitrogen or a benzene ring in the spacer linkage and/or a hydroxyethyl group attached to the nitrogen atom of the head groups. According to the results obtained, the gemini surfactants examined cannot be considered as readily biodegradable compounds. The negligible biotransformation of the gemini surfactants under the standard biodegradation test conditions was found to be due to their toxic effects on the microbial population responsible for aerobic biodegradation. Aquatic toxicity of gemini surfactants was evaluated against Daphnia magna. The acute toxicity values to Daphnia magna, IC50 at 48 h exposure, ranged from 0.6 to 1 mg/L. On the basis of these values, the gemini surfactants tested should be classified as toxic or very toxic to the aquatic environment. However, the dimeric quaternary ammonium-based surfactants examined result to be less toxic than their corresponding monomeric analogs. Nevertheless the aquatic toxicity of these gemini surfactants can be reduced by increasing the molecule hydrophilicity by adding a heteroatom to the spacer or a hydroxyethyl group to the polar head groups. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Amphibians at risk? Susceptibility of terrestrial amphibian life stages to pesticides.

    PubMed

    Brühl, Carsten A; Pieper, Silvia; Weber, Brigitte

    2011-11-01

    Current pesticide risk assessment does not specifically consider amphibians. Amphibians in the aquatic environment (aquatic life stages or postmetamorphic aquatic amphibians) and terrestrial living juvenile or adult amphibians are assumed to be covered by the risk assessment for aquatic invertebrates and fish, or mammals and birds, respectively. This procedure has been evaluated as being sufficiently protective regarding the acute risk posed by a number of pesticides to aquatic amphibian life stages (eggs, larvae). However, it is unknown whether the exposure and sensitivity of terrestrial living amphibians are comparable to mammalian and avian exposure and sensitivity. We reviewed the literature on dermal pesticide absorption and toxicity studies for terrestrial life stages of amphibians, focusing on the dermal exposure pathway, that is, through treated soil or direct overspray. In vitro studies demonstrated that cutaneous absorption of chemicals is significant and that chemical percutaneous passage, P (cm/h), is higher in amphibians than in mammals. In vivo, the rapid and substantial uptake of the herbicide atrazine from treated soil by toads (Bufo americanus) has been described. Severe toxic effects on various amphibian species have been reported for field-relevant application rates of different pesticides. In general, exposure and toxicity studies for terrestrial amphibian life stages are scarce, and the reported data indicate the need for further research, especially in light of the global amphibian decline. Copyright © 2011 SETAC.

  19. Toxicities of oils, dispersants and dispersed oils to algae and aquatic plants: review and database value to resource sustainability

    EPA Science Inventory

    Published toxicity results are reviewed for oils, dispersants and dispersed oils and aquatic plants. The historical phytotoxicity database consists largely of results from a patchwork of research conducted after oil spills to marine waters. Toxicity information is available for ...

  20. Comparison of bulk sediment and sediment elutriate toxicity testing methods

    EPA Science Inventory

    Elutriate bioassays are among numerous methods that exist for assessing the potential toxicity of sediments in aquatic systems. In this study, interlaboratory results were compared from 96-hour Ceriodaphnia dubia and Pimephales promelas static-renewal acute toxicity tests conduct...

  1. 75 FR 41106 - Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan to Update Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... (also called water quality criteria) for human health and aquatic life for toxic pollutants in the... Commission in 1996 adopted water quality criteria for human health and aquatic life for Water Quality Zones 2... Objectives for Toxic Pollutants for the Protection of Aquatic Life'', Table 6, ``Stream Quality Objectives...

  2. An interlaboratory comparison of sediment elutriate preparation and toxicity test methods

    EPA Science Inventory

    Elutriate bioassays are among numerous methods that exist for assessing the potential toxicity of sediments in aquatic systems. In this study, interlaboratory results were compared from 96-hour Ceriodaphnia dubia and Pimephales promelas static-renewal acute toxicity tests conduct...

  3. Oxidative Stress and Nano-Toxicity Induced by TiO2 and ZnO on WAG Cell Line

    PubMed Central

    Dubey, Akhilesh; Goswami, Mukunda; Yadav, Kamalendra; Chaudhary, Dharmendra

    2015-01-01

    Metallic nanoparticles are widely used in cosmetics, food products and textile industry. These particles are known to cause respiratory toxicity and epithelial inflammation. They are eventually released to aquatic environment necessitating toxicity studies in cells from respiratory organs of aquatic organisms. Hence, we have developed and characterized a new cell line, WAG, from gill tissue of Wallago attu for toxicity assessment of TiO2 and ZnO nanoparticles. The efficacy of the cell line as an in vitro system for nanoparticles toxicity studies was established using electron microscopy, cytotoxicity assays, genotoxicity assays and oxidative stress biomarkers. Results obtained with MTT assay, neutral red uptake assay and lactate dehydrogenase assay showed acute toxicity to WAG cells with IC50 values of 25.29±0.12, 34.99±0.09 and 35.06±0.09 mg/l for TiO2 and 5.716±0.1, 3.160±0.1 and 5.57±0.12 mg/l for ZnO treatment respectively. The physicochemical properties and size distribution of nanoparticles were characterized using electron microscopy with integrated energy dispersive X-ray spectroscopy and Zetasizer. Dose dependent increase in DNA damage, lipid peroxidation and protein carbonylation along with a significant decrease in activity of Superoxide Dismutase, Catalase, total Glutathione levels and total antioxidant capacity with increasing concentration of exposed nanoparticles indicated that the cells were under oxidative stress. The study established WAG cell line as an in vitro system to study toxicity mechanisms of nanoparticles on aquatic organisms. PMID:26011447

  4. Acute toxicity of anionic and non-ionic surfactants to aquatic organisms.

    PubMed

    Lechuga, M; Fernández-Serrano, M; Jurado, E; Núñez-Olea, J; Ríos, F

    2016-03-01

    The environmental risk of surfactants requires toxicity measurements. As different test organisms have different sensitivity to the toxics, it is necessary to establish the most appropriate organism to classify the surfactant as very toxic, toxic, harmful or safe, in order to establish the maximum permissible concentrations in aquatic ecosystems. We have determined the toxicity values of various anionic surfactants ether carboxylic derivatives using four test organisms: the freshwater crustacean Daphnia magna, the luminescent bacterium Vibrio fischeri, the microalgae Selenastrum capricornutum (freshwater algae) and Phaeodactylum tricornutum (seawater algae). In addition, in order to compare and classify the different families of surfactants, we have included a compilation of toxicity data of surfactants collected from literature. The results indicated that V. fischeri was more sensitive to the toxic effects of the surfactants than was D. magna or the microalgae, which was the least sensitive. This result shows that the most suitable toxicity assay for surfactants may be the one using V. fischeri. The toxicity data revealed considerable variation in toxicity responses with the structure of the surfactants regardless of the species tested. The toxicity data have been related to the structure of the surfactants, giving a mathematical relationship that helps to predict the toxic potential of a surfactant from its structure. Model-predicted toxicity agreed well with toxicity values reported in the literature for several surfactants previously studied. Predictive models of toxicity is a handy tool for providing a risk assessment that can be useful to establish the toxicity range for each surfactant and the different test organisms in order to select efficient surfactants with a lower impact on the aquatic environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Acute toxicity of 6 neonicotinoid insecticides to freshwater invertebrates.

    PubMed

    Raby, Melanie; Nowierski, Monica; Perlov, Dmitri; Zhao, Xiaoming; Hao, Chunyan; Poirier, David G; Sibley, Paul K

    2018-05-01

    Neonicotinoids are a group of insecticides commonly used in agriculture. Due to their high water solubility, neonicotinoids can be transported to surface waters and have the potential to be toxic to aquatic life. The present study assessed and compared the acute (48- or 96-h) toxicity of 6 neonicotinoids (acetamiprid, clothianidin, dinotefuran, imidacloprid, thiacloprid, and thiamethoxam) to 21 laboratory-cultured and field-collected aquatic invertebrates spanning 10 aquatic arthropod orders. Test conditions mimicked species' habitat, with lentic taxa exposed under static conditions, and lotic taxa exposed under recirculating systems. Median lethal concentrations (LC50s) and median effect concentrations (EC50s; immobility) were calculated and used to construct separate lethal- and immobilization-derived species sensitivity distributions for each neonicotinoid, from which 5th percentile hazard concentrations (HC5s) were calculated. The results showed that the most sensitive invertebrates were insects from the orders Ephemeroptera (Neocloeon triangulifer) and Diptera (Chironomus dilutus), whereas cladocerans (Daphnia magna, Ceriodaphnia dubia) were the least sensitive. The HC5s were compared with neonicotinoid environmental concentrations from Ontario (Canada) monitoring studies. For all neonicotinoids except imidacloprid, the resulting hazard quotients indicated little to no hazard in terms of acute toxicity to aquatic communities in Ontario freshwater streams. For the neonicotinoid imidacloprid, a moderate hazard was found when only invertebrate immobilization, and not lethality, data were considered. Environ Toxicol Chem 2018;37:1430-1445. © 2018 SETAC. © 2018 SETAC.

  6. The biotic ligand model approach for addressing effects of exposure water chemistry on aquatic toxicity of metals: Genesis and challenges

    EPA Science Inventory

    A major uncertainty in many aquatic risk assessments for toxic chemicals is the aggregate effect of the physicochemical characteristics of exposure media on toxicity, and how this affects extrapolation of laboratory test results to natural systems. A notable example of this is h...

  7. Aquatic Toxicity Screening of Fire Fighting Agents

    DTIC Science & Technology

    2005-09-21

    Aqueous Film Forming Foam ( AFFF ), the reference toxicant. The aquatic toxicity...Specification MIL-F-24385F Fire Extinguishing Agent, Aqueous Film Forming Foam ( AFFF ) Liquid Concentrate, For Fresh and Sea Water (MIL SPEC AFFF ). This...extinguish liquid hydrocarbon fuel fires involving aircraft operations. Several types of foam exist including protein, fluoroprotein and aqueous film

  8. Aquatic arsenic: phytoremediation using floating macrophytes.

    PubMed

    Rahman, M Azizur; Hasegawa, H

    2011-04-01

    Phytoremediation, a plant based green technology, has received increasing attention after the discovery of hyperaccumulating plants which are able to accumulate, translocate, and concentrate high amount of certain toxic elements in their above-ground/harvestable parts. Phytoremediation includes several processes namely, phytoextraction, phytodegradation, rhizofiltration, phytostabilization and phytovolatilization. Both terrestrial and aquatic plants have been tested to remediate contaminated soils and waters, respectively. A number of aquatic plant species have been investigated for the remediation of toxic contaminants such as As, Zn, Cd, Cu, Pb, Cr, Hg, etc. Arsenic, one of the deadly toxic elements, is widely distributed in the aquatic systems as a result of mineral dissolution from volcanic or sedimentary rocks as well as from the dilution of geothermal waters. In addition, the agricultural and industrial effluent discharges are also considered for arsenic contamination in natural waters. Some aquatic plants have been reported to accumulate high level of arsenic from contaminated water. Water hyacinth (Eichhornia crassipes), duckweeds (Lemna gibba, Lemna minor, Spirodela polyrhiza), water spinach (Ipomoea aquatica), water ferns (Azolla caroliniana, Azolla filiculoides, and Azolla pinnata), water cabbage (Pistia stratiotes), hydrilla (Hydrilla verticillata) and watercress (Lepidium sativum) have been studied to investigate their arsenic uptake ability and mechanisms, and to evaluate their potential in phytoremediation technology. It has been suggested that the aquatic macrophytes would be potential for arsenic phytoremediation, and this paper reviews up to date knowledge on arsenic phytoremediation by common aquatic macrophytes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms.

    PubMed

    Kang, Jeong-Hun; Asai, Daisuke; Aasi, Daisuke; Katayama, Yoshiki

    2007-01-01

    Bisphenol A [BPA; 2,2-bis(4-hydroxyphenyl)propane], which is mainly used in the production of epoxy resins and polycarbonate plastics, is a known endocrine disruptor and is acutely toxic to aquatic organisms. Due to intensified usage of these products, exposure of organisms to BPA via several routes, such as the environment and food, has increased. The aquatic environment is an important area for the study of BPA. This report reviews the literature concerning contamination routes and degradation of BPA in the aquatic environment and its endocrine-disruptive effects on aquatic organisms.

  10. Evaluation of aquatic toxicities of chromium and chromium-containing effluents in reference to chromium electroplating industries.

    PubMed

    Baral, A; Engelken, R; Stephens, W; Farris, J; Hannigan, R

    2006-05-01

    This study evaluated aquatic toxicities of chromium and chromium-containing laboratory samples representative of effluents from chromium electroplating industries, and compared the aquatic environmental risks of hexavalent and trivalent chromium electroplating operations. Trivalent chromium electroplating has emerged as an acceptable alternative to hazardous hexavalent chromium electroplating. This process substitution has reduced the human health impact in the workplace and minimized the production of hazardous sludge regulated under the Resource Conservation and Recovery Act (RCRA). The thrust behind this research was to investigate whether trivalent chromium electroplating operations have lower adverse impacts on standardized toxicity test organisms. Ceriodaphnia dubia and Pimephales promelas were used to investigate toxicities of trivalent chromium (Cr (III)), hexavalent chromium (Cr (VI)), and industrial effluents. In agreement with previous studies, Cr (III) was found to be less toxic than Cr (VI). Despite having several organic and inorganic constituents in the effluents obtained from trivalent chromium plating baths, they exhibited less adverse effects to C. dubia than effluents obtained from hexavalent chromium electroplating baths. Thus, transition from hexavalent to trivalent chromium electroplating processes may be justified. However, because of the presence of organic constituents such as formate, oxalate, and triethylene glycol in effluents, trivalent chromium electroplating operations may face additional regulatory requirements for removal of total organic carbon.

  11. Toxicity of sediment-associated pesticides to Chironomus dilutus and Hyalella azteca.

    PubMed

    Ding, Yuping; Weston, Donald P; You, Jing; Rothert, Amanda K; Lydy, Michael J

    2011-07-01

    Two hundred sediment samples were collected and their toxicity evaluated to aquatic species in a previous study in the agriculturally dominated Central Valley of California, United States. Pyrethroid insecticides were the main contributors to the observed toxicity. However, mortality in approximately one third of the toxic samples could not be explained solely by the presence of pyrethroids in the matrices. Hundreds of pesticides are currently used in the Central Valley of California, but only a few dozen are analyzed in standard environmental monitoring. A significant amount of unexplained sediment toxicity may be due to pesticides that are in widespread use that but have not been routinely monitored in the environment, and even if some of them were, the concentrations harmful to aquatic organisms are unknown. In this study, toxicity thresholds for nine sediment-associated pesticides including abamectin, diazinon, dicofol, fenpropathrin, indoxacarb, methyl parathion, oxyfluorfen, propargite, and pyraclostrobin were established for two aquatic species, the midge Chironomus dilutus and the amphipod Hyalella azteca. For midges, the median lethal concentration (LC₅₀) of the pesticides ranged from 0.18 to 964 μg/g organic carbon (OC), with abamectin being the most toxic and propargite being the least toxic pesticide. A sublethal growth endpoint using average individual ash-free dry mass was also measured for the midges. The no-observable effect concentration values for growth ranged from 0.10 to 633 μg/g OC for the nine pesticides. For the amphipods, fenpropathrin was the most toxic, with an LC₅₀ of 1-2 μg/g OC. Abamectin, diazinon, and methyl parathion were all moderately toxic (LC₅₀s 2.8-26 μg/g OC). Dicofol, indoxacarb, oxyfluorfen, propargite, and pyraclostrobin were all relatively nontoxic, with LC₅₀s greater than the highest concentrations tested. The toxicity information collected in the present study will be helpful in decreasing the frequency of unexplained sediment toxicity in agricultural waterways.

  12. Ecological bioavailability of permethrin and p,p'-DDT: toxicity depends on type of organic matter resource.

    PubMed

    de Perre, Chloé; Trimble, Andrew J; Maul, Jonathan D; Lydy, Michael J

    2014-02-01

    Hydrophobic organic contaminants readily partition from aqueous to organic phases in aquatic systems with past research largely focusing on sediment. However, within many aquatic systems, matrices such as leaf material and detritus are abundant and ecologically important, as they may represent a primary exposure route for aquatic invertebrates. The objectives of the present study were to examine partitioning and toxicity to Hyalella azteca among permethrin and p,p'-DDT contaminated sediment, leaf, and a sediment-leaf mixture. Log organic carbon-water partitioning coefficients ranged from 4.21 to 5.82 for both insecticides, and were greatest within sediment and lowest in coarse leaf material. H. azteca lethal concentrations for 50% of the population (LC50s) ranged from 0.5 to 111μgg(-1) organic carbon, and were dependent on the matrix composition. The variation in sorption and toxicity among matrices common within stream ecosystems suggests that the ecological niche of aquatic organisms may be important for estimating risk of hydrophobic pesticides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Aquatic Life Benchmarks and Ecological Risk Assessments for Registered Pesticides

    EPA Pesticide Factsheets

    Each Aquatic Life Benchmark is based on the most sensitive, scientifically acceptable toxicity endpoint available to EPA for a given taxon (for example, freshwater fish) of all scientifically acceptable toxicity data available to EPA.

  14. Acute toxicity and synergism of cadmium and zinc in white shrimp, Penaeus setiferus, Juveniles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanegas, C.; Espina, S.; Botello, A.V.

    1997-01-01

    Toxic effects of individual heavy metals on decapod crustaceans have been reported frequently, but little information exists concerning interactions. Among the non-essential heavy metals, cadmium is one of the most hazardous elements in the aquatic environment; on the other hand, zinc is an essential element, but toxic when present in greater than trace amounts. Biological effects of cadmium in aquatic organisms are complex due to the interactions with both environmental variables and other toxic agents. In decapod crustaceans, the toxicity of cadmium and zinc is modified by salinity, temperature, hypoxia, calcium ion concentrations and life-cycle stage. Heavy metal pollution hasmore » increased in the coastal waters of the Gulf of Mexico, particularly in shrimp habitat. This study examined the toxicity of cadmium and zinc to white shrimp juveniles and looked at the interaction of the metals. 16 refs., 2 tabs.« less

  15. Potential toxicity of pesticides measured in midwestern streams to aquatic organisms

    USGS Publications Warehouse

    Battaglin, W.; Fairchild, J.

    2002-01-01

    Society is becoming increasingly aware of the value of healthy aquatic ecosystems as well as the effects that man’s activities have on those ecosystems. In recent years, many urban and industrial sources of contamination have been reduced or eliminated. The agricultural community also has worked towards reducing off-site movement of agricultural chemicals, but their use in farming is still growing. A small fraction, estimated at <1 to 2% of the pesticides applied to crops are lost from fields and enter nearby streams during rainfall events. In many cases aquatic organisms are exposed to mixtures of chemicals, which may lead to greater non-target risk than that predicted based on traditional risk assessments for single chemicals. We evaluated the potential toxicity of environmental mixtures of 5 classes of pesticides using concentrations from water samples collected from ∼50 sites on midwestern streams during late spring or early summer runoff events in 1989 and 1998. Toxicity index values are calculated as the concentration of the compound in the sample divided by the EC50 or LC50 of an aquatic organism. These index values are summed within a pesticide class and for all classes to determine additive pesticide class and total pesticide toxicity indices. Toxicity index values greater than 1.0 indicate probable toxicity of a class of pesticides measured in a water sample to aquatic organisms. Results indicate that some samples had probable toxicity to duckweed and green algae, but few are suspected of having significant toxicity to bluegill sunfish or chorus frogs.

  16. Aquatic concentrations of chemical analytes compared to ecotoxicity estimates

    EPA Science Inventory

    We describe screening level estimates of potential aquatic toxicity posed by 227 chemical analytes that were measured in 25 ambient water samples collected as part of a joint USGS/USEPA drinking water plant study. Measured concentrations were compared to biological effect concent...

  17. PHOTOACTIVATED TOXICITY IN AQUATIC ENVIRONMENTS

    EPA Science Inventory

    Most aquatic organisms have evolved mechanisms to minimize damage by ultraviolet (UV) radiation. Many terrestrial species have additionally had to adapt to plant compounds (e.g. furanocoumarins) that are extremely toxic when activated by UV radiation. Over evolutionary time, it i...

  18. Aquatic toxicity of airfield-pavement deicer materials and implications for airport runoff.

    PubMed

    Corsi, Steven R; Geis, Steven W; Bowman, George; Failey, Greg G; Rutter, Troy D

    2009-01-01

    Concentrations of airfield-pavement deicer materials (PDM) in a study of airport runoff often exceeded levels of concern regarding aquatic toxicity. Toxicity tests on Vibrio fischeri, Pimephales promelas, Ceriodaphnia dubia, and Pseudokirchneriella subcapitata (commonly known as Selenastrum capricornutum) were performed with potassium acetate (K-Ac) PDM, sodium formate (Na-For) PDM, and with freezing-point depressants (K-Ac and Na-For). Results indicate that toxicity in PDM is driven by the freezing-point depressants in all tests except the Vibrio fisheri test for Na-For PDM which is influenced by an additive. Acute toxicity end points for different organisms ranged from 298 to 6560 mg/L (as acetate) for K-Ac PDM and from 1780 to 4130 mg/L (as formate) for Na-For PDM. Chronic toxicity end points ranged from 19.9 to 336 mg/L (as acetate) for K-Ac PDM and from 584 to 1670 mg/L (as formate) for Na-For PDM. Sample results from outfalls at General Mitchell International Airport in Milwaukee, WI (GMIA) indicated that 40% of samples had concentrations greater thanthe aquatic-life benchmarkfor K-Ac PDM. K-Ac has replaced urea during the 1990s as the most widely used PDM at GMIA and in the United States. Results of ammonia samples from airport outfalls during periods when urea-based PDM was used at GMIA indicated that 41% of samples had concentrations exceeding the U.S. Environmental Protection Agency (USEPA) 1-h water-quality criterion. The USEPA 1-h water-quality criterion for chloride was exceeded in 68% of samples collected in the receiving stream, a result of road-salt runoff from urban influence near the airport. Results demonstrate that PDM must be considered to comprehensively evaluate the impact of chemical deicers on aquatic toxicity in water containing airport runoff.

  19. Risk assessment of lambda-cyhalothrin on aquatic organisms in paddy field in China.

    PubMed

    Gu, Bao G; Wang, Hui M; Chen, William L; Cai, Dao J; Shan, Zheng J

    2007-06-01

    This study was carried out to assess the risk of lambda-cyhalothrin to aquatic organisms used in paddy field, and to provide assistance in the ecological risk management of lambda-cyhalothrin. The acute toxicities of five individual formulations of lambda-cyhalothrin to four aquatic species were investigated in the laboratory, as well as in a simulated paddy field-pond ecosystem, and the results implicated that lambda-cyhalothrin is highly toxic to fish, and to a greater extent to shrimp. There were differences in the toxicities to each aquatic organisms among different formulations. lambda-Cyhalothrin degraded rapidly in the environment, with half-lives of different formulations in paddy field water (0.23-0.53 days), pond water (0.38-0.63 days), and paddy field soil (0.96-7.35 days), respectively. The water overflow from the paddy field following a simulated rainstorm 12h after application of lambda-cyhalothrin did not cause injury to fish, clam or crab, but was severely hazardous to shrimp. Additionally, no injury to shrimp was found when simulated overflow occurred 4 days after application. These results suggest that the environmental risk of lambda-cyhalothrin to aquatic organisms can be reduced by (1) developing a relatively safe formulation such as a suspension concentrate, and/or (2) controlling the drainage time of the paddy field.

  20. Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents.

    PubMed

    Patange, Apurva; Boehm, Daniela; Giltrap, Michelle; Lu, Peng; Cullen, P J; Bourke, Paula

    2018-08-01

    Generation of wastewater is one of the main environmental sustainability issues across food sector industries. The constituents of food process effluents are often complex and require high energy and processing for regulatory compliance. Wastewater streams are the subject of microbiological and chemical criteria, and can have a significant eco-toxicological impact on the aquatic life. Thus, innovative treatment approaches are required to mitigate environmental impact in an energy efficient manner. Here, dielectric barrier discharge atmospheric cold plasma (ACP) was evaluated for control of key microbial indicators encountered in food industry effluent. This study also investigated the eco-toxicological impact of cold plasma treatment of the effluents using a range of aquatic bioassays. Continuous ACP treatment was applied to synthetic dairy and meat effluents. Microbial inactivation showed treatment time dependence with significant reduction in microbial populations within 120 s, and to undetectable levels after 300 s. Post treatment retention time emerged as critical control parameter which promoted ACP bacterial inactivation efficiency. Moreover, ACP treatment for 20 min achieved significant reduction (≥2 Log 10 ) in Bacillus megaterium endospores in wastewater effluent. Acute aquatic toxicity was assessed using two fish cell lines (PLHC-1 and RTG-2) and a crustacean model (Daphnia magna). Untreated effluents were toxic to the aquatic models, however, plasma treatment limited the toxic effects. Differing sensitivities were observed to ACP treated effluents across the different test bio-assays in the following order: PLHC-1 > RTG-2 ≥ D. magna; with greater sensitivity retained to plasma treated meat effluent than dairy effluent. The toxic effects were dependent on concentration and treatment time of the ACP treated effluent; with 30% cytotoxicity in D. magna and fish cells observed after 24 h of exposure to ACP treated effluent for concentrations up to 5%. The findings suggest the need to employ wider variety of aquatic organisms for better understanding and complete toxicity evaluation of long-term effects. The study demonstrates the potential to tailor ACP system parameters to control pertinent microbial targets (mono/poly-microbial, vegetative or spore form) found in complex and nutritious wastewater effluents whilst maintaining a safe eco-toxicity profile for aquatic species. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Toxic potential of the emerging contaminant nicotine to the aquatic ecosystem.

    PubMed

    Oropesa, Ana Lourdes; Floro, António Miguel; Palma, Patrícia

    2017-07-01

    Nicotine is a "life-style compound" widely consumed by human populations and, consequently, often found in surface waters. This fact presents a concern for possible effects in the aquatic ecosystems. The objective of this study was to assess the potential lethal and sublethal toxicity of nicotine in aquatic organisms from different trophic levels (Vibrio fischeri, Pseudokirchneriella subcapitata, Thamnocephalus platyurus, and Daphnia magna). The bioassays were performed by exposing the organisms to concentrations of nicotine in a range of 0.5-1000 μg/L. Results showed that nicotine, at tested concentration, was not acutely toxic to V. fischeri and T. platyurus. On the contrary, this substance exhibited toxicity to P. subcapitata and Daphnia magna. Thus, concentrations of nicotine of 100 and 200 μg/L promoted an inhibition in the growth of P. subcapitata. In addition, a concentration of 100 μg/L nicotine acted on the reproduction of the crustacean D. magna, by decreasing the number of juveniles produced by female. On the other hand, the results showed that concentrations equal to or greater than 10 μg/L induced the production of daphnids male offspring, which may indicate that nicotine is a weak juvenoid compound of the D. magna endocrine system. Furthermore, the result showed that concentrations tested of this chemical have the capacity to revert the effect of fenoxycarb, a strong juvenoid chemical insecticide. The results of the study revealed that nicotine can induce several changes in some of the most important key groups of the aquatic compartment, which can compromise, in a short time, the balance of aquatic ecosystem. Finally, a preliminary environmental risk assessment of this stimulant was performed from the highest measured concentration in surface water and the no observable effect concentration value in the most sensitive species, i.e., D. magna. This process revealed that nicotine can produce an important risk to aquatic organisms.

  2. The acute toxic effects of 1-alkyl-3-methylimidazolium nitrate ionic liquids on Chlorella vulgaris and Daphnia magna.

    PubMed

    Zhang, Cheng; Zhang, Shuai; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Zhou, Tongtong

    2017-10-01

    Given their increasingly widespread application, the toxic effects of ionic liquids (ILs) have become the subject of significant attention in recent years. Therefore, the present study assessed the acute toxic effects of 1-alkyl-3-methylimidazolium nitrate ([C n mim]NO 3 (n = 2, 4, 6, 8, 10, 12)) on Chlorella vulgaris and Daphnia magna. The sensitivity of the tested organism Daphnia magna and the investigated IL concentrations in water using high-performance liquid chromatography (HPLC) were also evaluated to demonstrate the reliability of the present study. The results illustrated that Daphnia magna is indeed sensitive to the reference toxicant and the investigated ILs were stable in the aquatic environment. The 50% effect concentration (EC 50 ) was used to represent the acute toxic effects on Chlorella vulgaris and Daphnia magna. With the increasing alkyl-chain lengths, the toxicity of the investigated ILs increased in both the test organisms. Accordingly, the alkyl-chain lengths can cause significantly toxic effects on aquatic organisms, and Daphnia magna are much more sensitive than Chlorella vulgaris to the imidazolium-based ILs used in the present study. Furthermore, the present study provides more information on the acute toxic effects of 1-alkyl-3-methylimidazolium nitrate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Montmorillonite clay alters toxicity of silver nanoparticles in zebrafish (Danio rerio) eleutheroembryo.

    PubMed

    Gupta, Govind Sharan; Dhawan, Alok; Shanker, Rishi

    2016-11-01

    An exponential development in the use of silver nanoparticles (AgNPs) in consumer products has accelerated their release in aquatic environment. As the AgNPs enters into the aquatic systems, their fate may change due to interactions with abiotic (e.g. clay particles) or biotic factors. The abundantly present clay particles are expected to more prone for interaction with nanoparticles in aquatic systems. In the present study, it is demonstrated that AgNPs interacts with clay particles and forms heteroagglomerates. Furthermore, an impact on toxicity potential of AgNPs after interactions with clay particles was assessed by using zebrafish eleutheroembryos (72 h post hatching) as an in vivo model. The mortality rate of zebrafish eleutheroembryos was higher in case of exposure to AgNPs-clay complexes (pH 4.0 and 7.0) as compared to bare AgNPs. In addition, at earlier time points, the eleutheroembryos expressed higher levels of morphological changes in tail, yolk and pericardia, but the edema in yolk sac was followed by cell death. It can be concluded from the observations made in the present study that the inorganic colloids in the aquatic matrices can alter the fate and toxicity potential of nanoparticles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Aquatic Animal Models – Not Just for Ecotox Anymore

    EPA Science Inventory

    A wide range of internationally harmonized toxicity test guidelines employing aquatic animal models have been established for regulatory use. For fish alone, there are over a dozen internationally harmonized toxicity test guidelines that have been, or are being, validated. To dat...

  5. Cross-taxa distinctions in aquatic toxicity between representative species for risk assessment

    EPA Science Inventory

    Standard ecological risk assessment practices often rely on larval and juvenile fish toxicity data as representative of the amphibian aquatic stage. Although empirical evidence suggests fish early life stage tests frequently are sufficiently sensitive to protect larval amphibian...

  6. Aquatic toxicity and biodegradability of advanced cationic surfactant APA-22 compatible with the aquatic environment.

    PubMed

    Yamane, Masayuki; Toyo, Takamasa; Inoue, Katsuhisa; Sakai, Takaya; Kaneko, Youhei; Nishiyama, Naohiro

    2008-01-01

    Cationic surfactant is a chemical substance used in hair conditioner, fabric softener and other household products. By investigating the relationship between the aquatic toxicity and the chemical structures of two types of mono alkyl cationic surfactants, alkyl trimethylammonium salts and alkyl dimethylamine salts, we have found that the C22 alkyl chain length is effective to reduce the toxicity. Besides, we have recognized that the amidopropyl functional group contributes to the enhanced biodegradability by investigating the biodegradation trend of (alkylamidopropyl)dimethylamine salt (alkyl chain length: C18). Based on these findings, we have developed mono alkyl cationic surfactant called APA-22, N-[3-(dimethylamino)propyl]docosanamide salt. APA-22 is formed by the C22 alkyl chain, amidopropyl functional group and di-methyltertiary amine group. We evaluated the aerobic and anaerobic biodegradability of APA-22 by two standard methods (OECD Test Guideline 301B and ECETOC technical document No.28) and found that this substance was degraded rapidly in both conditions. The toxicity to algae, invertebrate and fish of this substance are evaluated by using OECD Test Guideline 201, 202 and 203, respectively. All acute toxicity values are >1 mg/L, which indicates that environmental toxicity of this substance is relatively less toxic to aquatic organism. In addition, we estimated the biodegradation pathway of APA-22 and observed the complete disappearance of APA-22 and its intermediates during the test periods. Based on the environmental data provided above, we concluded that APA22 is more compatible with the aquatic environment compared to other cationic surfactants with mono long alkyl chain.

  7. Toxicity assessment of pesticide triclosan by aquatic organisms and degradation studies.

    PubMed

    Taştan, Burcu Ertit; Tekinay, Turgay; Çelik, Hatice Sena; Özdemir, Caner; Cakir, Dilara Nur

    2017-12-01

    Triclosan is considered as an important contaminant and is widely used in personal care products as an antimicrobial agent. This study demonstrates the biodegradation of triclosan by two freshwater microalgae and the acute toxicity of triclosan and 2,4-dichlorophenol. The effects of culture media and light on biodegradation of triclosan and the changing morphology of microalgae were systematically studied. Geitlerinema sp. and Chlorella sp. degraded 82.10% and 92.83% of 3.99 mg/L of triclosan at 10 days, respectively. The microalgal growth inhibition assay confirmed absence of toxic effects of triclosan on Chlorella sp., even at higher concentration (50 mg/L) after 72 h exposure. HPLC analysis showed that 2,4-dichlorophenol was produced as degradation product of triclosan by Geitlerinema sp. and Chlorella sp. This study proved to be beneficial to understand biodegradation and acute toxicity of triclosan by microalgae in order to provide aquatic environmental protection. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Responses of aquatic insects to Cu and Zn in stream microcosms: understanding differences between single species tests and field responses.

    PubMed

    Clements, William H; Cadmus, Pete; Brinkman, Stephen F

    2013-07-02

    Field surveys of metal-contaminated streams suggest that some aquatic insects, particularly mayflies (Ephemeroptera) and stoneflies (Plecoptera), are highly sensitive to metals. However, results of single species toxicity tests indicate these organisms are quite tolerant, with LC50 values often several orders of magnitude greater than those obtained using standard test organisms (e.g., cladocerans and fathead minnows). Reconciling these differences is a critical research need, particularly since water quality criteria for metals are based primarily on results of single species toxicity tests. In this research we provide evidence based on community-level microcosm experiments to support the hypothesis that some aquatic insects are highly sensitive to metals. We present results of three experiments that quantified effects of Cu and Zn, alone and in combination, on stream insect communities. EC50 values, defined as the metal concentration that reduced abundance of aquatic insects by 50%, were several orders of magnitude lower than previously published values obtained from single species tests. We hypothesize that the short duration of laboratory toxicity tests and the failure to evaluate effects of metals on sensitive early life stages are the primary factors responsible for unrealistically high LC50 values in the literature. We also observed that Cu alone was significantly more toxic to aquatic insects than the combination of Cu and Zn, despite the fact that exposure concentrations represented theoretically similar toxicity levels. Our results suggest that water quality criteria for Zn were protective of most aquatic insects, whereas Cu was highly toxic to some species at concentrations near water quality criteria. Because of the functional significance of aquatic insects in stream ecosystems and their well-established importance as indicators of water quality, reconciling differences between field and laboratory responses and understanding the mechanisms responsible for variation in sensitivity among metals and metal mixtures is of critical importance.

  9. Toxic effect of silver and platinum nanoparticles toward the freshwater microalga Pseudokirchneriella subcapitata.

    PubMed

    Książyk, Małgorzata; Asztemborska, Monika; Stęborowski, Romuald; Bystrzejewska-Piotrowska, Grażyna

    2015-05-01

    The growing use of nanoparticles in a wide range of products has resulted in their release into the aquatic environment; therefore, an understanding of the toxic effects of nanoparticles on aquatic organisms is of permanent importance. The aim of this study was to evaluate the toxicity of silver and platinum nanoparticles toward the freshwater microalga, Pseudokirchneriella subcapitata. Algal growth and photosynthetic pigments were determined to quantitate the effects of varying concentrations of Ag and Pt nanoparticles. The silver nanoparticles were much more toxic than the platinum ones. The concentrations causing total inhibition of algal growth were 5.0 and 22.2 mg L(-1), respectively. Similar results were obtained by analyzing the concentration of photosynthetic pigments in P. subcapitata exposed to nanoparticles. Thus, simple spectrophotometric determination of chlorophyll is a convenient tool for the analysis of nanoparticle toxicity to algae.

  10. Aquatic predicted no-effect concentrations of 16 polycyclic aromatic hydrocarbons and their ecological risks in surface seawater of Liaodong Bay, China.

    PubMed

    Wang, Ying; Wang, Juying; Mu, Jingli; Wang, Zhen; Cong, Yi; Yao, Ziwei; Lin, Zhongsheng

    2016-06-01

    Polycyclic aromatic hydrocarbons (PAHs), a class of ubiquitous pollutants in marine environments, exhibit moderate to high adverse effects on aquatic organisms and humans. However, the lack of PAH toxicity data for aquatic organism has limited evaluation of their ecological risks. In the present study, aquatic predicted no-effect concentrations (PNECs) of 16 priority PAHs were derived based on species sensitivity distribution models, and their probabilistic ecological risks in seawater of Liaodong Bay, Bohai Sea, China, were assessed. A quantitative structure-activity relationship method was adopted to achieve the predicted chronic toxicity data for the PNEC derivation. Good agreement for aquatic PNECs of 8 PAHs based on predicted and experimental chronic toxicity data was observed (R(2)  = 0.746), and the calculated PNECs ranged from 0.011 µg/L to 205.3 µg/L. A significant log-linear relationship also existed between the octanol-water partition coefficient and PNECs derived from experimental toxicity data (R(2)  = 0.757). A similar order of ecological risks for the 16 PAH species in seawater of Liaodong Bay was found by probabilistic risk quotient and joint probability curve methods. The individual high ecological risk of benzo[a]pyrene, benzo[b]fluoranthene, and benz[a]anthracene needs to be determined. The combined ecological risk of PAHs in seawater of Liaodong Bay calculated by the joint probability curve method was 13.9%, indicating a high risk as a result of co-exposure to PAHs. Environ Toxicol Chem 2016;35:1587-1593. © 2015 SETAC. © 2015 SETAC.

  11. Assessment of mechanisms of metal-induced reproductive toxicity in aquatic species as a biomarker of exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, M.; George, W.; Preslan, J.

    1996-05-02

    This project discusses the following studies: identification and quantitation of heavy metals and petroleum products present in Bayou Trepagnier relative to control sites; assessment of the uptake and bioaccumulation of metals and organic contaminants of interest in aquatic species; establishment and use of polarographic methods for use in metal speciation studies to identify specific chemical forms present in sediments, waters and organism; and evaluation of contaminants on reproductive function of aquatic species as potential biomarkers of exposure. 14 refs.

  12. Comparative Toxicity of Eight Oil Dispersants, Louisiana Sweet Crude Oil (LSC) and Chemically Dispersed LSC to Two Aquatic Test Species

    EPA Science Inventory

    This study describes the acute toxicity of eight commercial oil dispersants, Louisiana sweet crude oil (LSC), and chemically dispersed LSC. The approach utilized consistent test methodologies within a single laboratory in assessing the relative acute toxicity of the eight dispers...

  13. Toxicity and Fate Comparison between Several Brass and Titanium Dioxide Powders

    DTIC Science & Technology

    1993-07-01

    the entire gut without showing any apparent effects . 14. UBJET TEMS1I. NUMBER OF PAGES 27 Daphnia Algae EC50 Aquatic toxicity 11T.PRICE CODE 9...levels of soluble copper and zinc in solution. 3. RESULTS The titanium dioxide ( TiO2 ) materials did not show any apparent toxic effects to daphnia up to...The extended exposure did not show any apparent toxic effects . Long term effects on aquatic org.rnisms exposed to TiO2 are not known. It is apparent

  14. Pesticide Toxicity Index: a tool for assessing potential toxicity of pesticide mixtures to freshwater aquatic organisms

    USGS Publications Warehouse

    Nowell, Lisa H.; Norman, Julia E.; Moran, Patrick W.; Martin, Jeffrey D.; Stone, Wesley W.

    2014-01-01

    Pesticide mixtures are common in streams with agricultural or urban influence in the watershed. The Pesticide Toxicity Index (PTI) is a screening tool to assess potential aquatic toxicity of complex pesticide mixtures by combining measures of pesticide exposure and acute toxicity in an additive toxic-unit model. The PTI is determined separately for fish, cladocerans, and benthic invertebrates. This study expands the number of pesticides and degradates included in previous editions of the PTI from 124 to 492 pesticides and degradates, and includes two types of PTI for use in different applications, depending on study objectives. The Median-PTI was calculated from median toxicity values for individual pesticides, so is robust to outliers and is appropriate for comparing relative potential toxicity among samples, sites, or pesticides. The Sensitive-PTI uses the 5th percentile of available toxicity values, so is a more sensitive screening-level indicator of potential toxicity. PTI predictions of toxicity in environmental samples were tested using data aggregated from published field studies that measured pesticide concentrations and toxicity to Ceriodaphnia dubia in ambient stream water. C. dubia survival was reduced to ≤ 50% of controls in 44% of samples with Median-PTI values of 0.1–1, and to 0% in 96% of samples with Median-PTI values > 1. The PTI is a relative, but quantitative, indicator of potential toxicity that can be used to evaluate relationships between pesticide exposure and biological condition.

  15. Probabilistic risk assessment of cotton pyrethroids: I. Distributional analyses of laboratory aquatic toxicity data.

    PubMed

    Solomon, K R; Giddings, J M; Maund, S J

    2001-03-01

    This is the first in a series of five papers that assess the risk of the cotton pyrethroids in aquatic ecosystems in a series of steps ranging from the analysis of effects data through modeling exposures in the landscape. Pyrethroid insecticides used on cotton have the potential to contaminate aquatic systems. The objectives of this study were to develop probabilistic estimates of toxicity distributions, to compare these among the pyrethroids, and to evaluate cypermethrin as a representative pyrethroid for the purposes of a class risk assessment of the pyrethroids. The distribution of cypermethrin acute toxicity data gave 10th centile values of 10 ng/L for all organisms, 6.4 ng/L for arthropods, and 380 ng/L for vertebrates. For bifenthrin, cyfluthrin, lambda-cyhalothrin, and deltamethrin, the 10th centile values for all organisms were 15, 12, 10, and 9 ng/L, respectively, indicating similar or somewhat lower toxicity than cypermethrin. For tralomethrin and fenpropathrin, the 10th centiles were <310 and 240 ng/L, respectively. The distribution of permethrin toxicity to all organisms, arthropods, and vertebrates gave 10th centiles of 180, 76, and 1600 ng/L, respectively, whereas those for fenvalerate were 37, 8, and 150 ng/L. With the exception of tralomethrin, the distributions of acute toxicity values had similar slopes, suggesting that the variation of sensitivity in a range of aquatic nontarget species is similar. The pyrethroids have different recommended field rates of application that are related to their efficacy, and the relationship between field rate and 10th centiles showed a trend. These results support the use of cypermethrin as a reasonable worst-case surrogate for the other pyrethroids for the purposes of risk assessment of pyrethroids as a class.

  16. [Use of dinoflagellates as a metal toxicity assessment tool in aquatic system].

    PubMed

    Yuan, Li-juan; He, Meng-chang

    2009-10-15

    Although dinoflagellates have been used to assess biological toxicity of contaminants, this method still lacks of corresponding toxicity assessment standard. This study appraised the toxicity of selected heavy metals to dinoflagellates based on the dinoflagellates bioluminescence with QwikLite developed by the United States Navy. The results show that single heavy metal biological toxicity is in the order: Hg2+ > Cu2+ > Cd2+ > As5+ > Pb2+ > Cr6+; Two, three and four heavy metal mixture experiments show synergism primarily, antagonism is in minority. pH has not remarkable effect on dinoflagellates, they can be applied directly in natural water, but pH influence Hg2+ and Cu2+ toxicity greatly, eliminating the influence of pH is essential when doing these two kind of ions measurements. The nutrients has little influence on dinoflagellates, change in COD has obvious effect on the response relationships between dinoflagellates and Hg2+ or CU2+. Metal toxicity assessment using dinoflagellates shows great sensitivity, narrow response scope and high stability. Dinoflagellates are good species for heavy metal biological toxicity test in aquatic system.

  17. EVALUATION OF MINIMUM DATA REQUIREMENTS FOR ACUTE TOXICITY VALUE EXTRAPOLATION WITH AQUATIC ORGANISMS

    EPA Science Inventory

    Buckler, Denny R., Foster L. Mayer, Mark R. Ellersieck and Amha Asfaw. 2003. Evaluation of Minimum Data Requirements for Acute Toxicity Value Extrapolation with Aquatic Organisms. EPA/600/R-03/104. U.S. Environmental Protection Agency, National Health and Environmental Effects Re...

  18. Comparison of Global and Mode of Action-Based Models for Aquatic Toxicity

    EPA Science Inventory

    The ability to estimate aquatic toxicity for a wide variety of chemicals is a critical need for ecological risk assessment and chemical regulation. The consensus in the literature is that mode of action (MOA) based QSAR (Quantitative Structure Activity Relationship) models yield ...

  19. Water quality criteria for hexachloroethane: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, K.A.; Hovatter, P.S.; Ross, R.H.

    1988-03-01

    The available data regarding the environmental fate, aquatic toxicity, and mammalian toxicity of hexachloroethane, which is used in military screening smokes, were reviewed. The USEPA guidelines were used to generate water quality criteria for the protection of aquatic life and its uses and of human health. 16 tabs.

  20. Pesticide toxicity index for freshwater aquatic organisms, 2nd edition

    USGS Publications Warehouse

    Munn, Mark D.; Gilliom, Robert J.; Moran, Patrick W.; Nowell, Lisa H.

    2006-01-01

    The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program is designed to assess current water-quality conditions, changes in water quality over time, and the effects of natural and human factors on water quality for the Nation's streams and ground-water resources. For streams, one of the most difficult parts of the assessment is to link chemical conditions to effects on aquatic biota, particularly for pesticides, which tend to occur in streams as complex mixtures with strong seasonal patterns. A Pesticide Toxicity Index (PTI) was developed that combines pesticide exposure of aquatic biota (measured concentrations of pesticides in stream water) with acute toxicity estimates (standard endpoints from laboratory bioassays) to produce a single index value for a sample or site. The development of the PTI was limited to pesticide compounds routinely measured in NAWQA studies and to toxicity data readily available from existing databases. Qualifying toxicity data were found for one or more types of test organisms for 124 of the 185 pesticide compounds measured in NAWQA samples, but with a wide range of available bioassays per compound (1 to 232). In the databases examined, there were a total of 3,669 bioassays for the 124 compounds, including 398 48-hour EC50 values (concentration at which 50 percent of test organisms exhibit a sublethal response) for freshwater cladocerans, 699 96-hour LC50 values (concentration lethal to 50 percent of test organisms) for freshwater benthic invertebrates, and 2,572 96-hour LC50 values for freshwater fish. The PTI for a particular sample is the sum of toxicity quotients (measured concentration divided by the median toxicity concentration from bioassays) for each detected pesticide, and thus, is based on the concentration addition model of pesticide toxicity. The PTI can be calculated for specific groups of pesticides and for specific taxonomic groups. Although the PTI does not determine whether water in a sample is toxic to aquatic organisms, its values can be used to rank or compare the toxicity of samples or sites on a relative basis for use in further analysis or additional assessments. The PTI approach may be useful as a basis for comparing the potential significance of pesticides in different streams on a common basis, for evaluating relations between pesticide exposure and observed biological conditions, and for prioritizing where further studies are most needed.

  1. Studies on the toxic elements and organic degradation products in aquatic bodies and sediments around Kennedy Space Center (KSC) South Mosquito lagoon

    NASA Technical Reports Server (NTRS)

    Ghuman, G. S.; Menon, M. P.; Emeh, C. O.

    1978-01-01

    A compilation was put together of research work performed on the aquatic systems around Kennedy Space Center (KSC). The report includes a brief description of the study area, field data and analytical results of all the samples collected during the five visits to KSC up to December 17, 1977. The aquatic area selected for the study is the Southern part of Mosquito Lagoon which extends from the Haulover Canal to the dead end boundary of this lagoon southwards.

  2. Toxic and feeding deterrent effects of native aquatic macrophytes on exotic grass carp (Ctenopharyngodon idella).

    PubMed

    Murphy, Joseph E; Beckmen, Kimberlee B; Johnson, Julie K; Cope, Rhian B; Lawmaster, Todd; Beasley, Val R

    2002-08-01

    Declines of amphibians have been attributed to many factors including habitat degradation. The introduction of grass carp (Ctenopharyngodon idella) as a biological agent for aquatic plant control in ponds and lakes managed narrowly for human recreation has likely contributed to amphibian declines through massive plant removal and associated habitat simplification and thus degradation. This research examined the interactions among grass carp and three Midwestern aquatic plants (Jussiaea repens, Ranunculus longirostris, and R. flabellaris) that may be of value in rehabilitation of habitats needed by amphibians. The feeding preference study found that C. idella avoided eating both J. repens and R. longirostris. Ranunculus species studied to date contain a vesicant toxin called ranunculin that is released upon mastication. The study that compared the effects of R. flabellaris, J. repens and a control food administered by tube feeding to C. idella found significant lesions only in the mucosal epithelium of the individuals exposed to R.flabellaris. The avoidance by C. idella of J. repens and R. longirostris in the feeding preference study, and the significant toxicity of R. flabellaris demonstrated by the dosing study, indicate these plants warrant further examination as to their potential effectiveness in aquatic amphibian habitat rehabilitation.

  3. Validation of the AOP network “Thyroperoxidase and/or deiodinase inhibition leading to impaired swim bladder inflation”

    EPA Science Inventory

    Industrial chemicals released in the aquatic environment can pose risks for both environmental and human health. Fish are widely used sentinels for evaluating aquatic toxicity to vertebrates in order to set environmental quality standards, However, chronic toxicity testing with f...

  4. INTERSPECIES CORRELATION ESTIMATION (ICE) FOR ACUTE TOXICITY TO AQUATIC ORGANISMS AND WILDLIFE. II. USER MANUAL AND SOFTWARE

    EPA Science Inventory

    Asfaw, Amha, Mark R. Ellersieck and Foster L. Mayer. 2003. Interspecies Correlation Estimations (ICE) for Acute Toxicity to Aquatic Organisms and Wildlife. II. User Manual and Software. EPA/600/R-03/106. U.S. Environmental Protection Agency, National Health and Environmental Effe...

  5. Toxicities of Oils, Dispersants and Dispersed Oils to Aquatic Plants: Summary and Database Value to Resource Sustainability

    EPA Science Inventory

    Understanding the phytotoxicities of crude and dispersed oils is important for near-shore ecosystem management, particularly post-oil spills. One source of information is toxicity data summaries which are scattered and outdated for aquatic plants and petrochemicals. As a resu...

  6. Bioassays with terrestrial and aquatic species as monitoring tools of hydrocarbon degradation.

    PubMed

    Bori, Jaume; Vallès, Bettina; Ortega, Lina; Riva, Maria Carme

    2016-09-01

    In this study chemical analyses and ecotoxicity tests were applied for the assessment of a heavily hydrocarbon-contaminated soil prior and after the application of a remediation procedure that consisted in the stimulation of soil autochthonous populations of hydrocarbon degraders in static-ventilated biopiles. Terrestrial bioassays were applied in mixtures of test soils and artificial control soil and studied the survival and reproduction of Eisenia fetida and the avoidance response of E. fetida and Folsomia candida. Effects on aquatic organisms were studied by means of acute tests with Vibrio fischeri, Raphidocelis subcapitata, and Daphnia magna performed on aqueous elutriates from test soils. The bioremediation procedure led to a significant reduction in the concentration of hydrocarbons (from 34264 to 3074 mg kg(-1), i.e., 91 % decrease) and toxicity although bioassays were not able to report a percentage decrease of toxicity as high as the percentage reduction. Sublethal tests proved the most sensitive terrestrial bioassays and avoidance tests with earthworms and springtails showed potential as monitoring tools of hydrocarbon remediation due to their high sensitivity and short duration. The concentrations of hydrocarbons in water extracts from test soils were 130 and 100 μg L(-1) before and after remediation, respectively. Similarly to terrestrial tests, most aquatic bioassays detected a significant reduction in toxicity, which was almost negligible at the end of the treatment. D. magna survival was the most affected by soil elutriates although toxicity to the crustacean was associated to the salinity of the samples rather than to the concentration of hydrocarbons. Ecotoxicity tests with aqueous soil elutriates proved less relevant in the assessment of hydrocarbon-contaminated soils due to the low hydrosolubility of hydrocarbons and the influence of the physicochemical parameters of the aquatic medium.

  7. Mitigating with macrophytes: submersed plants reduce the toxicity of pesticide-contaminated water to zooplankton.

    PubMed

    Brogan, William R; Relyea, Rick A

    2013-03-01

    In ecotoxicology, appreciation is growing for the influence that ecological interactions have on the toxicity of contaminants, such as insecticides, to sensitive species. Most previous studies, however, have focused on factors that exacerbate insecticide effects on species, while factors that may mitigate these effects have been relatively ignored. In aquatic habitats, a small number of studies have shown that submersed macrophytes can remove some insecticides from the water column via sorption. Although examining sorption dynamics is important for understanding the environmental fate of insecticides, whether and to what extent macrophytes actually mitigate insecticide effects on aquatic species remains unknown. In the present study, the authors examined how much and how quickly several realistic densities of the macrophyte Elodea canadensis decreased the toxicity of the insecticide malathion to Daphnia magna, a keystone aquatic herbivore. To do this, the authors quantified Daphnia survival in outdoor test systems (0.95 L) exposed to a factorial combination of five Elodea densities crossed with five malathion concentrations. The authors discovered that malathion's lethality to Daphnia decreased with increasing Elodea density. Furthermore, the rate at which Elodea reduced malathion's toxicity in the water column increased with macrophyte density. These results provide strong evidence that submersed macrophytes can mitigate the ecological impacts of a popular insecticide and further support that ecological interactions can strongly influence contaminant environmental effects. Copyright © 2013 SETAC.

  8. Rubber tire leachates in the aquatic environment.

    PubMed

    Evans, J J

    1997-01-01

    Tires have a deleterious effect on the environment. This review discusses the background of scrap tires discarded in the environment, including tire composition, adverse environmental effects, threats to public health and safety, and solid waste management. Despite the widespread use of scrap tires in environmental applications, both land-based and aquatic, data on the indicators of environmental degradation are extremely scarce. Indicators of environmental degradation include analysis of chemicals within the water and sediment, analysis of contaminants within organisms, and analysis of the biological effects of these compounds on plants, animals, microbes, and organelles. Although these indicators are most useful when used in parallel, a review of the available information on chemical characterization of tire leachate from tire storage facilities, manufacturing, usage in recycling applications, and toxicity exposure studies, of vegetation surveys from waste tire areas and reviews of mammalian tire product toxicity, and of toxicity, mutagenicity, and carcinogenicity of tire exposure in experimental aquatic animals, microbes, and organelles is presented. The major characteristics of these studies are discussed in specific sections. The "Discussion and Conclusions" section discusses and summarizes the biological effects and chemical characterization of tire leachates. A global environmental perspective is included to improve our understanding of the deficiency of the current knowledge of tire leachate toxicity from various sources and to encourage interdisciplinary studies to establish the pattern of pollution associated with waste tire management.

  9. METHODS FOR DEVELOPING THE NEXT GENERATION OF AQUATIC LIFE CRITERIA

    EPA Science Inventory

    New experiments and studies are being conducted on selected criteria uncertainties that cannot be addressed with current knowledge, including the importance of dietary metal exposure to toxic response and the significance of increased toxicity from photo-activation of PAHs in nat...

  10. Estimation of Carcinogenicity using Hierarchical Clustering and Nearest Neighbor Methodologies

    EPA Science Inventory

    Previously a hierarchical clustering (HC) approach and a nearest neighbor (NN) approach were developed to model acute aquatic toxicity end points. These approaches were developed to correlate the toxicity for large, noncongeneric data sets. In this study these approaches applie...

  11. Evaluation of in silico development of aquatic toxicity species sensitivity distributions

    EPA Science Inventory

    Determining the sensitivity of a diversity of species to environmental contaminants continues to be a significant challenge in ecological risk assessment because toxicity data are generally limited to a few standard test species. This study assessed whether species sensitivity d...

  12. Urban stormwater runoff negatively impacts lateral line development in larval zebrafish and salmon embryos.

    PubMed

    Young, Alexander; Kochenkov, Valentin; McIntyre, Jenifer K; Stark, John D; Coffin, Allison B

    2018-02-12

    After a storm, water often runs off of impervious urban surfaces directly into aquatic ecosystems. This stormwater runoff is a cocktail of toxicants that have serious effects on the ecological integrity of aquatic habitats. Zebrafish that develop in stormwater runoff suffer from cardiovascular toxicity and impaired growth, but the effects of stormwater on fish sensory systems are not understood. Our study investigated the effect of stormwater on hair cells of the lateral line in larval zebrafish and coho salmon. Our results showed that although toxicants in stormwater did not kill zebrafish hair cells, these cells did experience damage. Zebrafish developing in stormwater also experienced impaired growth, fewer neuromasts in the lateral line, and fewer hair cells per neuromast. A similar reduction in neuromast number was observed in coho salmon reared in stormwater. Bioretention treatment, intended to filter out harmful constituents of stormwater, rescued the lateral line defects in zebrafish but not in coho salmon, suggesting that not all of the harmful constituents were removed by the filtration media and that salmonids are particularly sensitive to aquatic toxicants. Collectively, these data demonstrate that sub-lethal exposure to stormwater runoff negatively impacts a fish sensory system, which may have consequences for organismal fitness.

  13. Programmatic Life Cycle Environmental Assessment for Smoke/Obscurants. Volume 2. Red, White, and Plasticized White Phosphorus

    DTIC Science & Technology

    1983-07-01

    data on toxic effects of unreacted P4 on soil systems are available. (3) Aquatic systems . Aquatic toxicity data on WP are presented in section IV.f...elevated phosphorus levels in aquatic systems will cause adverse effects . Phosphoric acids may lower water pH in systems with low water hardness. A pH...eutrophication of the system , will cause detrimental effects on the fish population. Fish kills can occur over the winter due to low oxygen levels. The

  14. Mercury toxicity in the aquatic oligochaete Sparganophilus pearsei: I. Variation in resistance among populations.

    PubMed

    Vidal, D E; Horne, A J

    2003-08-01

    Mercury contamination has become a problem in many San Francisco Bay Area watersheds due to its elevated presence in sediments and aquatic organisms. The present study used laboratory lethal toxicity (LC50) tests to examine the mercury tolerance of aquatic oligochaete worms, Sparganophilus pearsei, from contaminated and uncontaminated areas. The oligochaetes were collected in the following fresh water reservoirs: Sandy Wool (reference area), San Pablo, Lake Anza, Lake Herman, and Guadalupe. These last four reservoirs were contaminated with levels of mercury that ranged from 1.5 to 2 mg/kg (wet weight). Mercury concentrations in sediment and tissue from Sandy Wool were below detection limits and worms from this site were the least tolerant of mercury in laboratory exposures (LC50 = 0.22 mg/L). Worms from the other, more contaminated, reservoirs contained elevated tissue mercury concentrations and were more tolerant in laboratory tests (LC50 = 1.48-2.19 mg/L). The present study demonstrates that different populations of the aquatic oligochaete S. pearsei have developed different tolerances to mercury depending on their previous history of exposure to mercury contamination.

  15. Embryonic exposure to model naphthenic acids delays growth and hatching in the pond snail Lymnaea stagnalis.

    PubMed

    Johnston, Christina U; Clothier, Lindsay N; Quesnel, Dean M; Gieg, Lisa M; Chua, Gordon; Hermann, Petra M; Wildering, Willem C

    2017-02-01

    Naphthenic acids (NAs), a class of structurally diverse carboxylic acids with often complex ring structures and large aliphatic tail groups, are important by-products of many petrochemical processes including the oil sands mining activity of Northern Alberta. While it is evident that NAs have both acute and chronic harmful effects on many organisms, many aspects of their toxicity remain to be clarified. Particularly, while substantive data sets have been collected on NA toxicity in aquatic prokaryote and vertebrate model systems, to date, nothing is known about the toxic effects of these compounds on the embryonic development of aquatic invertebrate taxa, including freshwater mollusks. This study examines under laboratory conditions the toxicity of NAs extracted from oil sands process water (OSPW) and the low-molecular weight model NAs cyclohexylsuccinic acid (CHSA), cyclohexanebutyric acid (CHBA), and 4-tert-butylcyclohexane carboxylic acid (4-TBCA) on embryonic development of the snail Lymnaea stagnalis, a common freshwater gastropod with a broad Palearctic distribution. Evidence is provided for concentration-dependent teratogenic effects of both OSPW-derived and model NAs with remarkably similar nominal threshold concentrations between 15 and 20 mg/L and 28d EC 50 of 31 mg/L. In addition, the data provide evidence for substantial toxicokinetic differences between CHSA, CHBA and 4-TBCA. Together, our study introduces Lymnaea stagnalis embryonic development as an effective model to assay NA-toxicity and identifies molecular architecture as a potentially important toxicokinetic parameter in the toxicity of low-molecular weight NA in embryonic development of aquatic gastropods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Aquatic toxicity of airfield-pavement deicer materials and implications for airport runoff

    USGS Publications Warehouse

    Corsi, S.R.; Geis, S.W.; Bowman, G.; Failey, G.G.; Rutter, T.D.

    2009-01-01

    Concentrations of airfield-pavement deicer materials (PDM) in a study of airport runoff often exceeded levels of concern regarding aquatic toxicity. Toxicity tests on Vibrio fischeri, Pimephales promelas, Ceriodaphnia dubia, and Pseudokirchneriella subcapitata (commonly known as Selenastrum capricornutum) were performed with potassium acetate (K-Ac) PDM, sodium formate (Na-For) PDM, and with freezing- point depressants (K-Ac and Na-For). Results indicate that toxicity in PDM is driven by the freezing-point depressants in all tests except the Vibrio fisheri test for Na-For PDM which is influenced by an additive. Acute toxicity end points for different organisms ranged from 298 to 6560 mg/L (as acetate) for K-Ac PDM and from 1780 to 4130 mg/L (as formate) for Na- For PDM. Chronic toxicity end points ranged from 19.9 to 336 mg/L (as acetate) for K-Ac PDM and from 584 to 1670 mg/L (as formate) for Na-For PDM. Sample results from outfalls at General Mitchell International Airport in Milwaukee, Wl (GMIA) indicated that 40% of samples had concentrations greater than the aquatic-life benchmark for K-Ac PDM. K-Ac has replaced urea during the 1990s as the most widely used PDM at GMIA and in the United States. Results of ammonia samples from airport outfalls during periods when urea-based PDM was used at GMIA indicated that41% of samples had concentrations exceeding the U.S. Environmental Protection Agency (USEPA) 1 -h water-quality criterion. The USEPA 1-h water-quality criterion for chloride was exceeded in 68% of samples collected in the receiving stream, a result of road-salt runoff from urban influence near the airport. Results demonstrate that PDM must be considered to comprehensively evaluate the impact of chemical deicers on aquatic toxicity in water containing airport runoff. ?? 2009 American Chemical Society.

  17. Selected streambed sediment compounds and water toxicity results for Westside Creeks, San Antonio, Texas, 2014

    USGS Publications Warehouse

    Crow, Cassi L.; Wilson, Jennifer T.; Kunz, James L.

    2016-12-01

    IntroductionThe Alazán, Apache, Martínez, and San Pedro Creeks in San Antonio, Texas, are part of a network of urban tributaries to the San Antonio River, known locally as the Westside Creeks. The Westside Creeks flow through some of the oldest neighborhoods in San Antonio. The disruption of streambed sediment is anticipated during a planned restoration to improve and restore the environmental condition of 14 miles of channelized sections of the Westside Creeks in San Antonio. These construction activities can create the potential to reintroduce chemicals found in the sediments into the ecosystem where, depending on hydrologic and environmental conditions, they could become bioavailable and toxic to aquatic life. Elevated concentrations of sediment-associated contaminants often are measured in urban areas such as San Antonio, Tex. Contaminants found in sediment can affect the health of aquatic organisms that ingest sediment. The gradual accumulation of trace elements and organic compounds in aquatic organisms can cause various physiological issues and can ultimately result in death of the aquatic organisms; in addition, subsequent ingestion of aquatic organisms can transfer the accumulated contaminants upward through the food chain (a process called biomagnification).The U.S. Geological Survey, in cooperation with the San Antonio River Authority, collected sediment samples and water samples for toxicity testing from sites on the Westside Creeks as part of an initial characterization of selected contaminants in the study area. Samples were collected in January 2014 during base-flow conditions and again in May 2104 after a period of stormwater runoff (poststorm conditions). Sediment samples were analyzed for selected constituents, including trace elements and organic contaminants such as pesticides, brominated flame retardants, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). In addition, as an indicator of ecological health (and possibly bioavailability of contaminants in disturbed streambed sediments), the toxicity of water samples to the indicator species Pimephales promelas (fathead minnow) was evaluated by using standard 7-day water-toxicity testing.

  18. Aquatic toxicity information retrieval data base: A technical support document. (Revised July 1992)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The AQUIRE (AQUatic toxicity Information REtrieval) database was established in 1981 by the United States Environmental Protection Agency (US EPA), Environmental Research Laboratory-Duluth (ERL-D). The purpose of AQUIRE is to provide quick access to a comprehensive, systematic, computerized compilation of aquatic toxic effects data. As of July 1992, AQUIRE consists of over 98,300 individual test results on computer file. These tests contain information for 5,500 chemicals and 2,300 organisms, extracted from over 6,300 publications. In addition, the ERL-D data file, prepared by the University of Wisconsin-Superior is now included in AQUIRE. The data file consists of acute toxicity test resultsmore » for the effects of 525 organic chemicals to fathead minnow. All AQUIRE data entries have been subjected to established quality assurance procedures.« less

  19. Acute and chronic toxicity of six anticancer drugs on rotifers and crustaceans.

    PubMed

    Parrella, Alfredo; Lavorgna, Margherita; Criscuolo, Emma; Russo, Chiara; Fiumano, Vittorio; Isidori, Marina

    2014-11-01

    The growing use of cytostatic drugs is gaining relevance as an environmental concern. Environmental and distribution studies are increasing due to the development of accurate analytical methods, whereas ecotoxicological studies are still lacking. The aim of the present study was to investigate the acute and chronic toxicity of six cytostatics (5-fluorouracil, capecitabine, cisplatin, doxorubicin, etoposide, and imatinib) belonging to five classes of Anatomical Therapeutic Classification (ATC) on primary consumers of the aquatic chain (Daphnia magna, Ceriodaphnia dubia, Brachionus calyciflorus, and Thamnocephalus platyurus). Acute ecotoxicological effects occurred at concentrations in the order of mgL(-)(1), higher than those predicted in the environment, and the most acutely toxic drugs among those tested were cisplatin and doxorubicin for most aquatic organisms. For chronic toxicity, cisplatin and 5-fluorouracil showed the highest toxic potential in all test organisms, inducing 50% reproduction inhibition in crustaceans at concentrations on the order of μgL(-)(1). Rotifers were less susceptible to these pharmaceuticals. On the basis of chronic results, the low effective concentrations suggest a potential environmental risk of cytostatics. Thus, this study could be an important starting point for establishing the real environmental impact of these substances. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Toxicity of ferric chloride sludge to aquatic organisms.

    PubMed

    Sotero-Santos, Rosana B; Rocha, Odete; Povinelli, Jurandyr

    2007-06-01

    Iron-rich sludge from a drinking water treatment plant (DWTP) was investigated regarding its toxicity to aquatic organisms and physical and chemical composition. In addition, the water quality of the receiving stream near the DWTP was evaluated. Experiments were carried out in August 1998, February 1999 and May 1999. Acute toxicity tests were carried out on a cladoceran (Daphnia similis), a midge (Chironomus xanthus) and a fish (Hyphessobrycon eques). Chronic tests were conducted only on D. similis. Acute sludge toxicity was not detected using any of the aquatic organisms, but chronic effects were observed upon the fecundity of D. similis. Although there were relatively few sample dates, the results suggested that the DWTP sludge had a negative effect on the receiving body as here was increased suspended matter, turbidity, conductivity, chemical oxygen demand (COD) and hardness in the water downstream of the DWTP effluent discharge. The ferric chloride sludge also exhibited high heavy metal concentrations revealing a further potential for pollution and harmful chronic effects on the aquatic biota when the sludge is disposed of without previous treatment.

  1. Phosphate alleviation of glyphosate-induced toxicity in Hydrocharis dubia (Bl.) Backer.

    PubMed

    Zhong, Guidi; Wu, Zhonghua; Liu, Nian; Yin, Jun

    2018-05-30

    Glyphosate, as a broad-spectrum herbicide, is frequently detected in water, and phosphorus widely enters the water due to the extensive use of phosphorus-containing substances in agriculture, industries and daily life. Thus, aquatic ecosystems are exposed to both glyphosate and phosphorus, which may affect aquatic organisms. In the present research, we studied the physiological responses of the floating aquatic plant species H. dubia to different concentrations of glyphosate (0, 1, 5, 15 mg/L) with different levels of phosphate (0, 50, 100 mg/L) after 14 days (d) of treatment. We explored glyphosate toxicity in H. dubia and investigated whether phosphate addition mitigates glyphosate toxicity in this species, which will provide a theoretical basis for the ecotoxicological study of aquatic plants. The results show that glyphosate significantly reduced the chlorophyll content, leaf number and root length of H. dubia, while it significantly increased the malondialdehyde (MDA), hydrogen peroxide (H 2 O 2 ), shikimate, proline, and soluble protein content and enzyme activities (superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX) and polyphenol oxidase (PPO)) in H. dubia. After phosphate supplement, the MDA, H 2 O 2 , proline, and soluble protein contents and enzyme activities in the plants treated with glyphosate decreased. These results indicate that the concentration of glyphosate investigated in our study can cause oxidative stress and affect the growth of H. dubia. Phosphate can alleviate glyphosate-induced oxidative stress in H. dubia. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Toxicity of plant extracts containing pyrrolizidine alkaloids using alternative invertebrate models.

    PubMed

    Seremet, Oana Cristina; Olaru, Octavian Tudorel; Gutu, Claudia Maria; Nitulescu, George Mihai; Ilie, Mihaela; Negres, Simona; Zbarcea, Cristina Elena; Purdel, Carmen Nicoleta; Spandidos, Demetrios A; Tsatsakis, Aristides M; Coleman, Michael D; Margina, Denisa Marilena

    2018-06-01

    Pyrrolizidine alkaloids (PAs) are a widespread class of hepatotoxic heterocyclic organic compounds found in approximately 3% of world flora. Some PAs have been shown to have genotoxic and carcinogenic effects. The present study focuses on the toxicity effects of four dry extracts obtained from medicinal plants (Senecio vernalis, Symphytum officinale, Petasites hybridus and Tussilago farfara), on two aquatic organisms, Artemia salina and Daphnia magna, and the correlation with their PAs content. A new GC‑MS method, using a retention time (TR)‑5MS type capillary column was developed. PAs Kovats retention indices, for this type of column were computed for the first time. The lethal dose 50% (LC50) values for the two invertebrate models were correlated (Pearson 's coefficient, >0.9) and the toxicity was PA concentration-dependent, for three of the four extracts. All tested extracts were found to be toxic in both aquatic organism models. The results can be used to develop a GC‑MS validated method for the assay of PAs in medicinal plants with a further potential application in the risk assessment study of PAs toxicity in humans.

  3. Toxicity of plant extracts containing pyrrolizidine alkaloids using alternative invertebrate models

    PubMed Central

    Seremet, Oana Cristina; Olaru, Octavian Tudorel; Gutu, Claudia Maria; Nitulescu, George Mihai; Ilie, Mihaela; Negres, Simona; Zbarcea, Cristina Elena; Purdel, Carmen Nicoleta; Spandidos, Demetrios A.; Tsatsakis, Aristides M.; Coleman, Michael D.; Margina, Denisa Marilena

    2018-01-01

    Pyrrolizidine alkaloids (PAs) are a widespread class of hepatotoxic heterocyclic organic compounds found in approximately 3% of world flora. Some PAs have been shown to have genotoxic and carcinogenic effects. The present study focuses on the toxicity effects of four dry extracts obtained from medicinal plants (Senecio vernalis, Symphytum officinale, Petasites hybridus and Tussilago farfara), on two aquatic organisms, Artemia salina and Daphnia magna, and the correlation with their PAs content. A new GC-MS method, using a retention time (TR)-5MS type capillary column was developed. PAs Kovats retention indices, for this type of column were computed for the first time. The lethal dose 50% (LC50) values for the two invertebrate models were correlated (Pearson's coefficient, >0.9) and the toxicity was PA concentration-dependent, for three of the four extracts. All tested extracts were found to be toxic in both aquatic organism models. The results can be used to develop a GC-MS validated method for the assay of PAs in medicinal plants with a further potential application in the risk assessment study of PAs toxicity in humans. PMID:29620235

  4. AQUATIC TOXICITY MODE OF ACTION STUDIES APPLIED TO QSAR DEVELOPMENT

    EPA Science Inventory

    A series of QSAR models for predicting fish acute lethality were developed using systematically collected data on more than 600 chemicals. These models were developed based on the assumption that chemicals producing toxicity through a common mechanism will have commonality in the...

  5. Evaluation of in silico development of aquatic toxicity species sensitivity distributions (SSDs)

    EPA Science Inventory

    Determining the sensitivity of a diversity of species to environmental contaminants continues to be a significant challenge in ecological risk assessment because toxicity data are generally limited to a few standard test species. This study assessed whether species sensitivity di...

  6. STUDIES ON BIOREMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBON-CONTAMINATED SEDIMENTS: BIOAVAILABILITY, BIODEGRADABILITY, AND TOXICITY ISSUES

    EPA Science Inventory

    The widespread contamination of aquatic sediments by polycyclic aromatic hydrocarbons (PAHs) has created a need for cost-effective bioremediation processes, on which the bioavailability and the toxicity of PAHs often have a significant impact. This research investigated the biode...

  7. Literature review on duckweed toxicity testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, W.

    1990-06-01

    Duckweed commonly refers to a group of floating, flowering plants of the family Lemnaceae. Duckweed plants are fast growing and widely distributed. They are easy to culture and to test. Some reports suggest that duckweed plants are tolerant to environmental toxicity. Other studies, however, indicate that duckweed plants are as sensitive to toxicity as other aquatic species. Duckweed plants are especially suitable for use in complex effluent bioassays, and for testing herbicide pollution in the aquatic environment, lake and river pollution, sediment toxicity, and the like. Duckweed and algae represent different levels of complexity in the plant kingdom. They complementmore » each other as phytotoxicity test organisms, instead of mutually excluding each other. Many duckweed species have been studied, primarily of the Lemna and Spirodela genera. Lemna minor and L. gibba have been recommended as standard test species. Differences in duckweed test methodology occur with regard to test types, test vessels, control tests, nutrient media, end points, and applications. 76 references.« less

  8. Studying toxicity

    USGS Publications Warehouse

    Elkus, A.; LeBlanc, L.; Kim, C.; Van Beneden, R.; Mayer, G.

    2006-01-01

    With funding from the George Mitchell Center for the Environment at the University of Maine, a team of scientists used a simple laboratory-based sediment resuspension design, and two well-established aquatic toxicology models, fathead minnows (Pimephales promelas) and zebrafish (Danio rerio), to evaluate if resuspension of Penobscot river sediment significantly elevates the toxicity of river water and to provide preliminary information on the types of chemicals likely to desorb during resuspension. The group collected sediments from two sites with known chemical contamination downstream of the Great Works and Veazie dams. The sediments were examined to determine the dynamics of PAH desorption and degradation under different resuspension frequencies. The scientists used clarified water from resuspension experiments for toxicity tests with the water-flea Ceriodaphnia dubia, and other aquatic test organisms to infer toxicity from sediments from northern California rivers. Data from the study will help ascertain whether metals and/or xenoestrogens are present in the desorption water and give insight into possible avenues of sediment remediation.

  9. PHOTO-INDUCED POLYCYCLIC AROMATIC HYDROCARBON TOXIC POTENTIALS OF NEAR SHORE LARVAL FISH HABITAT IN THE GREAT LAKES, USA

    EPA Science Inventory

    Photo-induced toxicity (PIT) of polycyclic aromatic hydrocarbons (PAH) has been documented in laboratory studies for both invertebrate and vertebrate aquatic organisms. PIT has not been verified in field studies for larval fish to date. Filtered water samples and larval fish were...

  10. A fluorescence-based bioassay for aquatic macrophytes and its suitability for effect analysis of non-photosystem II inhibitors.

    PubMed

    Küster, Anette; Pohl, Korinna; Altenburger, Rolf

    2007-09-01

    BACKGROUND, GOALS AND SCOPE: During the last years the miniaturization of toxicity test systems for rapid and parallel measurements of large quantities of samples has often been discussed. For unicellular algae as well as for aquatic macrophytes, fluorescence-based miniaturized test systems have been introduced to analyze photosystem II (PSII) inhibitors. Nevertheless, high-throughput screening should also guarantee the effect detection of a broad range of toxicants in order to ensure routinely applicable, high-throughput measuring device experiments which can cover a broad range of toxicants and modes of action others than PSII inhibition. Thus, the aim of this study was to establish a fast and reproducible measuring system for non-PSII inhibitors for aquatic macrophyte species to overcome major limitations for use. A newly developed imaging pulse-amplitude-modulated chlorophyll fluorometer (I-PAM) was applied as an effect detector in short-term bioassays with the aquatic macrophyte species Lemna minor. This multiwell-plate based measuring device enabled the incubation and measurement of up to 24 samples in parallel. The chemicals paraquat-dichloride, alizarine and triclosan were chosen as representatives for the toxicant groups of non-PSII herbicides, polycyclic aromatic hydrocarbons (PAHs) and pharmaceuticals and personal care products (PPCPs), which are often detected in the aquatic environment. The I-PAM was used (i) to establish and validate the sensitivity of the test system to the three non-PSII inhibitors, (ii) to compare the test systems with standardized and established biotests for aquatic macrophytes, and (iii) to define necessary time scales in aquatic macrophyte testing. For validation of the fluorescence-based assay, the standard growth test with L. minor (ISO/DIS 20079) was performed in parallel for each chemical. The results revealed that fluorescence-based measurements with the I-PAM allow rapid and parallel analysis of large amounts of aquatic macrophyte samples. The I-PAM enabled the recording of concentration-effect-curves with L. minor samples on a 24-well plate with single measurements. Fluorescence-based concentration-effect-curves could be detected for all three chemicals after only 1 h of incubation. After 4-5 h incubation time, the maximum inhibition of fluorescence showed an 80-100% effect for the chemicals tested. The EC50 after 24 h incubation were estimated to be 0.06 mg/L, 0.84 mg/L and 1.69 mg/L for paraquat-dichloride, alizarine and triclosan, respectively. The results obtained with the I-PAM after 24 h for the herbicide paraquat-dichloride and the polycyclic aromatic hydrocarbon alizarine were in good accordance with median effective concentrations (EC50s) obtained by the standardized growth test for L. minor after 7 d incubation (0.09 mg/L and 0.79 mg/L for paraquat-dichloride and alizarine, respectively). Those results were in accordance with literature findings for the two chemicals. In contrast, fluorescence-based EC50 of the antimicrobial agent triclosan proved to be two orders of magnitude greater when compared to the standard growth test with 7 d incubation time (0.026 mg/L) as well as with literature findings. Typically, aquatic macrophyte testing is very time consuming and relies on laborious experimental set-ups. The I-PAM measuring device enabled fast effect screening for the three chemicals tested. While established test systems for aquatic macrophytes need incubation times of > or = 7 d, the I-PAM can detect inhibitory effects much earlier (24 h), even if inhibition of chemicals is not specifically associated with PSII. Thus, the fluorescence-based bioassay with the I-PAM offers a promising approach for the miniaturization and high-throughput testing of chemicals with aquatic macrophytes. For the chemical triclosan, however, the short-term effect prediction with the I-PAM has been shown to be less sensitive than with long-term bioassays, which might be due to physicochemical substance properties such as lipophilicity. The results of this study show that the I-PAM represents a promising tool for decreasing the incubation times of aquatic macrophyte toxicity testing to about 24 h as a supplement to existing test batteries. The applicability of this I-PAM bioassay on emergent and submerged aquatic macrophyte species should be investigated in further studies. Regarding considerations that physicochemical properties of the tested substances might play an important role in microplate bioassays, the I-PAM bioassay should either be accompanied by evaluating physicochemical properties modeled from structural information prior to an experimental investigation, or by intensified chemical analyses to identify and determine nominal concentrations of the toxicants tested. The chemicals paraquat-dichloride, alizarine and triclosan were chosen as representatives for the toxicant groups of non-PSII herbicides, PAHs and PPCPs which are often detected in the aquatic environment. Nevertheless, in order to ensure a routinely applicable measuring device, experiments with a broader range of toxicants and samples of surface and/or waste waters are necessary.

  11. Acute photo-induced toxicity and toxicokinetics of single compounds and mixtures of polycyclic aromatic hydrocarbons in zebrafish.

    PubMed

    Willis, Alison M; Oris, James T

    2014-09-01

    The present study examined photo-induced toxicity and toxicokinetics for acute exposure to selected polycyclic aromatic hydrocarbons (PAHs) in zebrafish. Photo-enhanced toxicity from co-exposure to ultraviolet (UV) radiation and PAHs enhanced the toxicity and exhibited toxic effects at PAH concentrations orders of magnitude below effects observed in the absence of UV. Because environmental exposure to PAHs is usually in the form of complex mixtures, the present study examined the photo-induced toxicity of both single compounds and mixtures of PAHs. In a sensitive larval life stage of zebrafish, acute photo-induced median lethal concentrations (LC50s) were derived for 4 PAHs (anthracene, pyrene, carbazole, and phenanthrene) to examine the hypothesis that phototoxic (anthracene and pyrene) and nonphototoxic (carbazole and phenanthrene) pathways of mixtures could be predicted from single exposures. Anthracene and pyrene were phototoxic as predicted; however, carbazole exhibited moderate photo-induced toxicity and phenanthrene exhibited weak photo-induced toxicity. The toxicity of each chemical alone was used to compare the toxicity of mixtures in binary, tertiary, and quaternary combinations of these PAHs, and a predictive model for environmental mixtures was generated. The results indicated that the acute toxicity of PAH mixtures was additive in phototoxic scenarios, regardless of the magnitude of photo-enhancement. Based on PAH concentrations found in water and circumstances of high UV dose to aquatic systems, there exists potential risk of photo-induced toxicity to aquatic organisms. © 2014 SETAC.

  12. Characteristics of suspended solids affect bifenthrin toxicity to the calanoid copepods Eurytemora affinis and Pseudodiaptomus forbesi.

    PubMed

    Parry, Emily; Lesmeister, Sarah; Teh, Swee; Young, Thomas M

    2015-10-01

    Bifenthrin is a pyrethroid pesticide that is highly toxic to aquatic invertebrates. The dissolved concentration is generally thought to be the best predictor of acute toxicity. However, for the filter-feeding calanoid copepods Eurytemora affinis and Pseudodiaptomus forbesi, ingestion of pesticide-bound particles could prove to be another route of exposure. The present study investigated bifenthrin toxicity to E. affinis and P. forbesi in the presence of suspended solids from municipal wastewater effluent and surface water of the San Francisco (CA, USA) Estuary. Suspended solids mitigated the toxicity of total bifenthrin to E. affinis and P. forbesi, but mortality was higher than what would be predicted from dissolved concentrations alone. The results indicate that the toxicity and bioavailability of particle-associated bifenthrin was significantly correlated with counts of 0.5-µm to 2-µm particle sizes. Potential explanations could include direct ingestion of bifenthrin-bound particles, changes in food consumption and feeding behavior, and physical contact with small particles. The complex interactions between pesticides and particles of different types and sizes demonstrate a need for future ecotoxicological studies to investigate the role of particle sizes on aquatic organisms. © 2015 SETAC.

  13. Is there a risk associated with the insect repellent DEET (N,N-diethyl-m-toluamide) commonly found in aquatic environments?

    USGS Publications Warehouse

    Costanzo, S.D.; Watkinson, A.J.; Murby, E.J.; Kolpin, D.W.; Sandstrom, M.W.

    2007-01-01

    DEET (N,N-diethyl-m-toluamide) is the active ingredient of most commercial insect repellents. This compound has commonly been detected in aquatic water samples from around the world indicating that DEET is both mobile and persistent, despite earlier assumptions that DEET was unlikely to enter aquatic ecosystems. DEET's registration category does not require an ecological risk assessment, thus information on the ecological toxicity of DEET is sparse. This paper reviews the presence of DEET in aqueous samples from around the world (e.g. drinking water, streams, open seawater, groundwater and treated effluent) with reported DEET concentrations ranging from 40–3000 ng L− 1. In addition, new DEET data collected from 36 sites in coastal waterways from eastern Australia (detections ranging from 8 to 1500 ng L− 1) are examined. A summary of new and existing toxicity data are discussed with an emphasis on preparing a preliminary risk assessment for DEET in the aquatic environment. Collated information on DEET in the aquatic environment suggests risk to aquatic biota at observed environmental concentrations is minimal. However, the information available was not sufficient to conduct a full risk assessment due to data deficiencies in source characterisation, transport mechanisms, fate, and ecotoxicity studies. These risks warrant further investigation due to the high frequency that this organic contaminant is detected in aquatic environments around the world.

  14. Soil bioretention protects juvenile salmon and their prey from the toxic impacts of urban stormwater runoff.

    PubMed

    McIntyre, J K; Davis, J W; Hinman, C; Macneale, K H; Anulacion, B F; Scholz, N L; Stark, J D

    2015-08-01

    Green stormwater infrastructure (GSI), or low impact development, encompasses a diverse and expanding portfolio of strategies to reduce the impacts of stormwater runoff on natural systems. Benchmarks for GSI success are usually framed in terms of hydrology and water chemistry, with reduced flow and loadings of toxic chemical contaminants as primary metrics. Despite the central goal of protecting aquatic species abundance and diversity, the effectiveness of GSI treatments in maintaining diverse assemblages of sensitive aquatic taxa has not been widely evaluated. In the present study we characterized the baseline toxicity of untreated urban runoff from a highway in Seattle, WA, across six storm events. For all storms, first flush runoff was toxic to the daphniid Ceriodaphnia dubia, causing up to 100% mortality or impairing reproduction among survivors. We then evaluated whether soil media used in bioretention, a conventional GSI method, could reduce or eliminate toxicity to juvenile coho salmon (Oncorhynchus kisutch) as well as their macroinvertebrate prey, including cultured C. dubia and wild-collected mayfly nymphs (Baetis spp.). Untreated highway runoff was generally lethal to salmon and invertebrates, and this acute mortality was eliminated when the runoff was filtered through soil media in bioretention columns. Soil treatment also protected against sublethal reproductive toxicity in C. dubia. Thus, a relatively inexpensive GSI technology can be highly effective at reversing the acutely lethal and sublethal effects of urban runoff on multiple aquatic species. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Ecotoxicological risks of the abandoned F-Ba-Pb-Zn mining area of Osor (Spain).

    PubMed

    Bori, Jaume; Vallès, Bettina; Navarro, Andrés; Riva, Maria Carme

    2017-06-01

    Due to its potential toxic properties, metal mobilization is of major concern in areas surrounding Pb-Zn mines. In the present study, metal contents and toxicity of soils, aqueous extracts from soils and mine drainage waters from an abandoned F-Ba-Pb-Zn mining area in Osor (Girona, NE Spain) were evaluated through chemical extractions and ecotoxicity bioassays. Toxicity assessment in the terrestrial compartment included lethal and sublethal endpoints on earthworms Eisenia fetida, arthropods Folsomia candida and several plant species, whereas aquatic tests involved bacteria Vibrio fischeri, microalgae Raphidocelis subcapitata and crustaceans Daphnia magna. Total concentrations of Ba (250-5110 mg kg -1 ), Pb (940 to >5000 mg kg -1 ) and Zn (2370-11,300 mg kg -1 ) in soils exceeded intervention values to protect human health. Risks for the aquatic compartment were identified in the release of drainage waters and in the potential leaching and runoff of metals from contaminated soils, with Cd (1.98-9.15 µg L -1 ), Pb (2.11-326 µg L -1 ) and Zn (280-2900 µg L -1 ) concentrations in filtered water samples surpassing US EPA Water Quality Criteria (2016a, b). Terrestrial ecotoxicity tests were in accordance with metal quantifications and identified the most polluted soil as the most toxic. Avoidance and reproduction tests with earthworms showed the highest sensitivity to metal contamination. Aquatic bioassays performed in aqueous extracts from soils confirmed the results from terrestrial tests and also detected toxic effects caused by the mine drainage waters. Algal growth inhibition was the most sensitive aquatic endpoint. In view of the results, the application of a containment or remediative procedure in the area is encouraged.

  16. Development of a biopolymer nanoparticle-based method of oral toxicity testing in aquatic invertebrates.

    PubMed

    Gott, Ryan C; Luo, Yangchao; Wang, Qin; Lamp, William O

    2014-06-01

    Aquatic toxicity testing generally focuses on the water absorption/dermal route of exposure to potential toxic chemicals, while much less work has been done on the oral route of exposure. This is due in part to the difficulties of applying traditional oral toxicity testing to aquatic environments, including the tendency for test chemicals to dissolve into water. The use of biopolymer nanoparticles to encapsulate test chemicals onto food to prevent dissolution is one solution presented herein. The biopolymers zein and chitosan were explored for their previously known nanoparticle-forming abilities. Nanoparticles containing the test chemical rhodamine B were formed, applied as films to coat food, and then fed to the test organism, the freshwater amphipod Hyalella azteca. In feeding trials both zein and chitosan nanoparticles showed a significantly lower release rate of rhodamine B into water than food dyed with rhodamine B without biopolymer nanoparticles. Zein nanoparticles also showed better retention ability than chitosan nanoparticles. Both kinds of nanoparticles showed no significant effect on the survival, growth, or feeding behavior of H. azteca. Thus these biopolymers may be an effective system to encapsulate and deliver chemicals to aquatic invertebrates without interfering with common toxicity assessment endpoints like survival and growth. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. APPARATUS FOR EXPOSING ESTUARINE AQUATIC ORGANISMS TO TOXICANTS IN CONSTANT AND FLUCTUATING SALINITY REGIMES

    EPA Science Inventory

    A programmable control system for salinity has been developed and coupled with a flow-through toxicant exposure system. The resulting apparatus allow study of influences of constant and fluctuating salinity regimes on responses of One organisms exposed to selected pollutants. Con...

  18. 40 CFR 158.243 - Experimental use permit data requirements for terrestrial and aquatic nontarget organisms.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Use Permit Terrestrial and Aquatic Nontarget Organism Data Requirements Guideline No. Data Requirement... Avian dietary toxicity R R R R NR NR TGAI 1, 4 Aquatic Organisms Testing 850.1075 Freshwater fish...

  19. 40 CFR 158.243 - Experimental use permit data requirements for terrestrial and aquatic nontarget organisms.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Use Permit Terrestrial and Aquatic Nontarget Organism Data Requirements Guideline No. Data Requirement... Avian dietary toxicity R R R R NR NR TGAI 1, 4 Aquatic Organisms Testing 850.1075 Freshwater fish...

  20. 40 CFR 158.243 - Experimental use permit data requirements for terrestrial and aquatic nontarget organisms.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Use Permit Terrestrial and Aquatic Nontarget Organism Data Requirements Guideline No. Data Requirement... Avian dietary toxicity R R R R NR NR TGAI 1, 4 Aquatic Organisms Testing 850.1075 Freshwater fish...

  1. 40 CFR 158.243 - Experimental use permit data requirements for terrestrial and aquatic nontarget organisms.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Use Permit Terrestrial and Aquatic Nontarget Organism Data Requirements Guideline No. Data Requirement... Avian dietary toxicity R R R R NR NR TGAI 1, 4 Aquatic Organisms Testing 850.1075 Freshwater fish...

  2. Cross-species evaluation of molecular target sequence and structural conservation as a line of evidence for identification of susceptible taxa to inform toxicity testing

    EPA Science Inventory

    The 1985 U.S. Environmental Protection Agency Guidelines for Deriving Aquatic Life Criteria require acute and chronic toxicity testing with a fixed list of taxa that cover a broad spectrum of aquatic organisms from vertebrate, invertebrate, and plant families. In considering revi...

  3. Acute aquatic toxicity of western juniper (Juniperus occidentalis) foliage and Port Orford cedar (Chamaecyparis lawsoniana) heartwood oils.

    PubMed

    Duringer, Jennifer M; Swan, Laurence R; Walker, Douglas B; Craig, A Morrie

    2010-11-01

    Recently, interest has developed for using essential oils from Western juniper (Juniperus occidentalis) foliage and Port Orford cedar (Chamaecyparis lawsoniana) heartwood in commercial products such as pest repellents and cosmetics. In order to gauge the relative toxicological risk that these oils pose to freshwater and marine organisms, the acute aquatic toxicity of these oils was evaluated using OPPTS guidelines to the cladoceran Daphnia magna, the rainbow trout Oncorhynchus mykiss and the green alga Selenastrum capricornutum. For western juniper foliage oil, no toxicity was exhibited toward D. magna or O. mykiss, even at 5.0 mg/L (the highest concentration tested and limit of solubility). For toxicity to S. capricornutum using algal cell density, the 72 and 96 h EC50 value was 1.7 mg/L and the no observable effect concentration (NOEC) was 0.63 mg/L. For Port Orford cedar heartwood oil, no toxicity was exhibited toward O. mykiss or S. capricornutum, even at 5.0 mg/L (the highest concentration tested and limit of solubility). The 48-h D. magna EC50 value was 1.9 mg/L; the NOEC values for algal cell density were 1.25 mg/L (72 h) and 0.63 mg/L (96 h). In summary, this study shows that western juniper foliage and Port Orford cedar heartwood oils demonstrate little to no risk to aquatic organisms.

  4. Novel approach for evaluating pharmaceuticals toxicity using Daphnia model: analysis of the mode of cytochrome P450-generated metabolite action after acetaminophen exposure.

    PubMed

    Kim, Ryeo-Ok; Jo, Min-A; Song, Jinhaeng; Kim, Il-Chan; Yoon, Seokjoo; Kim, Woo-Keun

    2018-03-01

    Because of its widespread use, the pharmaceutical acetaminophen (APAP) is frequently detected in aquatic environments. APAP can have serious physiological effects, such as reduced reproduction, low growth rates, and abnormal behavior, in aquatic organisms. However, the methods available for evaluation of the aquatic toxicity of APAP are of limited usefulness. The present study aimed to develop reliable and sensitive markers for evaluation of APAP toxicity using Daphnia as a model organism. We focused on N-acetyl-p-benzoquinoneimine (NAPQI) production from APAP via cytochrome P450 metabolism because NAPQI causes APAP toxicity. Daphnia magna were exposed to APAP (0, 50, or 100 mg/L for 12 h or 24 h), and the total metabolites were extracted and analyzed for NAPQI. Direct detection of NAPQI was difficult because of its high reactivity, and its peak was close to that for APAP. Therefore, we tried to identify molecular and biochemical indicators associated with NAPQI generation, elimination, and its interactions with macromolecules. We identified changes in CYP370A13 gene expression, glutathione depletion, inhibition of thioredoxin reductase activity, and production of reactive oxygen species as indicators of D. magna exposure to APAP. These indicators could be used to develop sensitive and accurate techniques to evaluate the environmental toxicity of APAP. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. 76 FR 67437 - Draft Aquatic Life Ambient Water Quality Criteria for Carbaryl-2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OW-2011-0787; FRL-9483-8] Draft Aquatic Life Ambient Water... criteria for the protection of aquatic life from effects of carbaryl (EPA-820-D-11-001). The draft criteria document incorporates the latest scientific knowledge on the toxicity of carbaryl to aquatic life. The...

  6. Sediment Toxicity Identification Evaluation

    EPA Science Inventory

    Approach combining chemical manipulations and aquatic toxicity testing, generally with whole organisms, to systematically characterize, identify and confirm toxic substances causing toxicity in whole sediments and sediment interstitial waters. The approach is divided into thre...

  7. Ecotoxicity of naproxen and its phototransformation products.

    PubMed

    Isidori, Marina; Lavorgna, Margherita; Nardelli, Angela; Parrella, Alfredo; Previtera, Lucio; Rubino, Maria

    2005-09-15

    The occurrence of pharmaceuticals in the environment is of great concern and only few data are available about the adverse effects of such molecules and their derivatives on non-target aquatic organisms. This study was designed to assess the toxic potential of Naproxen, a nonsteroidal anti-inflammatory, Naproxen Na, its freely water soluble sodium salt and their photoproducts in the aquatic environment. Bioassays were performed on algae, rotifers and microcrustaceans to assess acute and chronic toxicity. Furthermore, possible genotoxic effects of photoderivatives were investigated using SOS chromotest and Ames fluctuation test. The results showed that photoproducts were more toxic than the parent compounds both for acute and chronic values, while genotoxic and mutagenic effects were not found. These findings suggested the opportunity to consider derivatives in ecotoxicology assessment of drugs.

  8. Sampling and Analysis Plan for Supplemental Environmental Project: Aquatic Life Surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berryhill, Jesse Tobias; Gaukler, Shannon Marie

    As part of a settlement agreement for nuclear waste incidents in 2014, several supplemental environment projects (SEPs) were initiated at Los Alamos National Laboratory (LANL or the Laboratory) between the U.S. Department of Energy and the state of New Mexico. One SEP from this agreement consists of performing aquatic life surveys and will be used to assess the applicability of using generic ambient water-quality criteria (AWQC) for aquatic life. AWQC are generic criteria developed by the U.S. Environmental Protection Agency (EPA) to cover a broad range of aquatic species and are not unique to a specific region or state. AWQCmore » are established by a composition of toxicity data, called species sensitivity distributions (SSDs), and are determined by LC50 (lethal concentration of 50% of the organisms studied) acute toxicity experiments for chemicals of interest. It is of interest to determine whether aquatic species inhabiting waters on the Pajarito Plateau are adequately protected using the current generic AWQC. The focus of this study will determine which aquatic species are present in ephemeral, intermittent, and perennial waters within LANL boundaries and from reference waters adjacent to LANL. If the species identified from these waters do not generally represent species used in the SSDs, then SSDs may need to be modified and AWQC may need to be updated. This sampling and analysis plan details the sampling methodology, surveillance locations, temporal scheduling, and analytical approaches that will be used to complete aquatic life surveys. A significant portion of this sampling and analysis plan was formalized by referring to Appendix E: SEP Aquatic Life Surveys DQO (Data Quality Objectives).« less

  9. Comparative studies on ecotoxicology of synthetic detergents.

    PubMed

    Lal, H; Misra, V; Viswanathan, P N; Krishna Murti, C R

    1983-12-01

    To predict the comparative toxicological response of synthetic detergents on aquatic ecosystems, the effects of various concentrations of neutralized alkyl benzene sulfonate were studied. The median tolerance limit at 48 hr, 95% confidence limit, slope function, presumable harmless concentration, and rate of survival of different species of aquatic fauna such as water fleas (Daphnia magna), mosquito larvae (Culex pipiens), slug worms (Tubifex rivulorum), snails (Lymnaea vulgaris), tadpoles (Rana cyanophlyctis), and fish fingerlings (Cirrhina mrigala) were followed at 0, 24, 48, 72, and 96 hr. Any effect on quality of the water was also tested after the addition of various concentrations of detergents. The results showed that water fleas are more susceptible to detergent toxicity than fish fingerlings, tadpoles, slug worms, snails, and mosquito larvae. Behavioral changes were also observed as an index for detergent toxicity. The relative toxicity of the detergents to various species is discussed in relation to selective ecotoxicological response.

  10. Cu toxicity on growth and chlorophyll-a of Chaetoceros sp.

    NASA Astrophysics Data System (ADS)

    Puspitasari, R.; Suratno; Purbonegoro, T.; Agustin, A. T.

    2018-02-01

    Phytoplankton is a primary producer in marine aquatic ecosystem. Their sensitivity to metal makes them important to study to predict the environmental impact of pollution. Copper is an essential nutrient for aquatic life as micronutrients on an organism but toxic at high levels. The focus of this study was to assess the toxicity of copper to Chaetoceros sp. on growth and chlorophyll-a content. The result shows that inhibition concentration (IC50) of copper on the microalgae, Chaetoceros sp. was 30.25 μg L-1. Growth of Chaetoceros sp. decreased 16.84% in 16 μg L-1 and 81.97% in 44 μg L-1. Chlorophyll-a content decreased dramatically at 44 μg L-1 compared to control. Increase of the cell size, deformation of cell wall and loss of setae were observed at higher concentration of copper.

  11. The effect of chronic silver nanoparticles on aquatic system in microcosms.

    PubMed

    Jiang, Hong Sheng; Yin, Liyan; Ren, Na Na; Xian, Ling; Zhao, Suting; Li, Wei; Gontero, Brigitte

    2017-04-01

    Silver nanoparticles (AgNPs) inevitably discharge into aquatic environments due to their abundant use in antibacterial products. It was reported that in laboratory conditions, AgNPs display dose-dependent toxicity to aquatic organisms, such as bacteria, algae, macrophytes, snails and fishes. However, AgNPs could behave differently in natural complex environments. In the present study, a series of microcosms were established to investigate the distribution and toxicity of AgNPs at approximately 500 μg L -1 in aquatic systems. As a comparison, the distribution and toxicity of the same concentration of AgNO 3 were also determined. The results showed that the surface layer of sediment was the main sink of Ag element for both AgNPs and AgNO 3 . Both aquatic plant (Hydrilla verticillata) and animals (Gambusia affinis and Radix spp) significantly accumulated Ag. With short-term treatment, phytoplankton biomass was affected by AgNO 3 but not by AgNPs. Chlorophyll content of H. verticillata increased with both AgNPs and AgNO 3 short-term exposure. However, the biomass of phytoplankton, aquatic plant and animals was not significantly different between control and samples treated with AgNPs or AgNO 3 for 90 d. The communities, diversity and richness of microbes were not significantly affected by AgNPs and AgNO 3 ; in contrast, the nitrification rate and its related microbe (Nitrospira) abundance significantly decreased. AgNPs and AgNO 3 may affect the nitrogen cycle and affect the environment and, since they might be also transferred to food web, they represent a risk for health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Migration of nonylphenol from food-grade plastic is toxic to the coral reef fish species Pseudochromis fridmani.

    PubMed

    Hamlin, Heather J; Marciano, Kathleen; Downs, Craig A

    2015-11-01

    Nonylphenol (NP) is a non-ionic surfactant used extensively in industrial applications, personal care products, and many plastics. We exposed marine orchid dottybacks (Pseudochromis fridmani) for 48h to either glass, Teflon, or two bags labeled as FDA food-grade polyethylene (PE1 and PE2) from different manufacturers. The PE2 bags leached high levels of NP into the contact water, which were taken up by the fish, and decreased short and long-term survival. Concentrations of NP that leached from the bags were consistent with 96h LC50 values determined in this study, indicating NP is the likely toxic agent. Despite being similarly labeled, the NP concentrations that leached from the bags and the resultant toxicity to the fish varied dramatically between manufacturers. This study highlights that some plastics, labeled as food-safe, can be highly toxic to aquatic animals, and could pose a greater threat to humans than previously realized. This study also highlights risks for aquatic animals exposed to increasing quantities of plastic waste. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. FROM ORGANISMS TO POPULATIONS: MODELING AQUATIC TOXICITY DATA ACROSS TWO LEVELS OF BIOLOGICAL ORGANIZATION.

    EPA Science Inventory

    A critical step in estimating the ecological effects of a toxicant is extrapolating organism-level response data across higher levels of biological organization. In the present study, the organism-to-population link is made for the mysid, Americamysis bahia, exposed to a range of...

  14. Assessment of the Phototoxicity of Weathered Alaska North Slope Crude Oil to Juvenile Pink Salmon

    EPA Science Inventory

    Petroleum products are known to have greater toxicity to the translucent embryos and larvae of aquatic organisms in the presence of ultraviolet radiation (UV) compared to toxicity determined in tests performed under standard laboratory lighting with minimal UV. This study assesse...

  15. Derivation of guideline values for gold (III) ion toxicity limits to protect aquatic ecosystems.

    PubMed

    Nam, Sun-Hwa; Lee, Woo-Mi; Shin, Yu-Jin; Yoon, Sung-Ji; Kim, Shin Woong; Kwak, Jin Il; An, Youn-Joo

    2014-01-01

    This study focused on estimating the toxicity values of various aquatic organisms exposed to gold (III) ion (Au(3+)), and to propose maximum guideline values for Au(3+) toxicity that protect the aquatic ecosystem. A comparative assessment of methods developed in Australia and New Zealand versus the European Community (EC) was conducted. The test species used in this study included two bacteria (Escherichia coli and Bacillus subtilis), one alga (Pseudokirchneriella subcapitata), one euglena (Euglena gracilis), three cladocerans (Daphnia magna, Moina macrocopa, and Simocephalus mixtus), and two fish (Danio rerio and Oryzias latipes). Au(3+) induced growth inhibition, mortality, immobilization, and/or developmental malformations in all test species, with responses being concentration-dependent. According to the moderate reliability method of Australia and New Zealand, 0.006 and 0.075 mg/L of guideline values for Au(3+) were obtained by dividing 0.33 and 4.46 mg/L of HC5 and HC50 species sensitivity distributions (SSD) with an FACR (Final Acute to Chronic Ratio) of 59.09. In contrast, the EC method uses an assessment factor (AF), with the 0.0006 mg/L guideline value for Au(3+) being divided with the 48-h EC50 value for 0.60 mg/L (the lowest toxicity value obtained from short term results) by an AF of 1000. The Au(3+) guideline value derived using an AF was more stringent than the SSD. We recommend that more toxicity data using various bioassays are required to develop more accurate ecological risk assessments. More chronic/long-term exposure studies on sensitive endpoints using additional fish species and invertebrates not included in the current dataset will be needed to use other derivation methods (e.g., US EPA and Canadian Type A) or the "High Reliability Method" from Australia/New Zealand. Such research would facilitate the establishment of guideline values for various pollutants that reflect the universal effects of various pollutants in aquatic ecosystems. To the best of our knowledge, this is the first study to suggest guideline values for Au(3+) levels permitted to enter freshwater environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Identification of tire leachate toxicants and a risk assessment of water quality effects using tire reefs in canals

    USGS Publications Warehouse

    Nelson, S. M.; Mueller, G.; Hemphill, D. C.

    1994-01-01

    Cover is an important component of aquatic habitat and fisheries management. Fisheries biologists often try to improve habitats through the addition of natural and artificial material to improve cover diversity and complexity. Habitat-improvement programs range from submerging used Christmas trees to more complex programs using sophisticated artificial habitat modules. Used automobile tires have been employed in the large scale construction of reefs and fish attractors in marine environments (D'Itri 1985) and to a lesser extent in freshwater (Johnson and Stein 1979) and have been recognized as a durable, inexpensive and long-lasting material which benefits fishery communities. Recent studies by the U.S. Bureau of Reclamation (Mueller and Liston 1991) have quantified the importance of tire reeds to enhancing freshwater canal fisheries in the southwestern United States. These studies have demonstrated that fisheries and aquatic macroinvertebrates are attracted to these structures, increasing species diversity, densities and biomass where reefs are places in canals. Potential benefits to fishermen are great in the form of recreational fishing. However, the use of tire reefs in aquatic environments which have relatively small volumes compared to marine or reservoir environments has raised water quality concerns. Effects of tires on water quality have not typically been studied in the part because of the obvious presence of fishes and other aquatic organisms that make use of tire reefs; the implication being that tires are intert and non-toxic. Little information on effects of tires on water quality is contained in the literature. Stone et al. (1975) demonstrated that tire exposure had no detrimental effects on two species of marine fish while results of Kellough's (1991) freshwater tests were inconclusive, but suggested that some factor in tire leachate was toxic to rainbow trout (Oncorhynchus mykiss). Nozaka et al. (1973) found no harmful substances leached from tire material soaked in fresh water. Because there are few data on toxicity associated with tires, this became the focus of our study. Toxicity Identification Evaluation (TUE) procedures developed by the EPA (1991) were used to evaluate water quality impacted by tires.

  17. Comparative analysis of pharmaceuticals versus industrial chemicals acute aquatic toxicity classification according to the United Nations classification system for chemicals. Assessment of the (Q)SAR predictability of pharmaceuticals acute aquatic toxicity and their predominant acute toxic mode-of-action.

    PubMed

    Sanderson, Hans; Thomsen, Marianne

    2009-06-01

    Pharmaceuticals have been reported to be ubiquitously present in surface waters prompting concerns of effects of these bioactive substances. Meanwhile, there is a general scarcity of publicly available ecotoxicological data concerning pharmaceuticals. The aim of this paper was to compile a comprehensive database based on OECD's standardized measured ecotoxicological data and to evaluate if there is generally cause of greater concern with regards to pharmaceutical aquatic toxicological profiles relative to industrial chemicals. Comparisons were based upon aquatic ecotoxicity classification under the United Nations Global Harmonized System for classification and labeling of chemicals (GHS). Moreover, we statistically explored whether the predominant mode-of-action (MOA) for pharmaceuticals is narcosis. We found 275 pharmaceuticals with 569 acute aquatic effect data; 23 pharmaceuticals had chronic data. Pharmaceuticals were found to be more frequent than industrial chemicals in GHS category III. Acute toxicity was predictable (>92%) using a generic (Q)SAR ((Quantitative) Structure Activity Relationship) suggesting a narcotic MOA. Analysis of model prediction error suggests that 68% of the pharmaceuticals have a non-specific MOA. Additionally, the acute-to-chronic ratio (ACR) for 70% of the analyzed pharmaceuticals was below 25 further suggesting a non-specific MOA. Sub-lethal receptor-mediated effects may however have a more specific MOA.

  18. Reducing aquatic hazards of industrial chemicals: probabilistic assessment of sustainable molecular design guidelines.

    PubMed

    Connors, Kristin A; Voutchkova-Kostal, Adelina M; Kostal, Jakub; Anastas, Paul; Zimmerman, Julie B; Brooks, Bryan W

    2014-08-01

    Basic toxicological information is lacking for the majority of industrial chemicals. In addition to increasing empirical toxicity data through additional testing, prospective computational approaches to drug development aim to serve as a rational basis for the design of chemicals with reduced toxicity. Recent work has resulted in the derivation of a "rule of 2," wherein chemicals with an octanol-water partition coefficient (log P) less than 2 and a difference between the lowest unoccupied molecular orbital and the highest occupied molecular orbital (ΔE) greater than 9 (log P<2 and ΔE >9 eV) are predicted to be 4 to 5 times less likely to elicit acute or chronic toxicity to model aquatic organisms. The present study examines potential reduction of aquatic toxicity hazards from industrial chemicals if these 2 molecular design guidelines were employed. Probabilistic hazard assessment approaches were used to model the likelihood of encountering industrial chemicals exceeding toxicological categories of concern both with and without the rule of 2. Modeling predicted that utilization of these molecular design guidelines for log P and ΔE would appreciably decrease the number of chemicals that would be designated to be of "high" and "very high" concern for acute and chronic toxicity to standard model aquatic organisms and end points as defined by the US Environmental Protection Agency. For example, 14.5% of chemicals were categorized as having high and very high acute toxicity to the fathead minnow model, whereas only 3.3% of chemicals conforming to the design guidelines were predicted to be in these categories. Considerations of specific chemical classes (e.g., aldehydes), chemical attributes (e.g., ionization), and adverse outcome pathways in representative species (e.g., receptor-mediated responses) could be used to derive future property guidelines for broader classes of contaminants. © 2014 SETAC.

  19. Hospital and urban effluent waters as a source of accumulation of toxic metals in the sediment receiving system of the Cauvery River, Tiruchirappalli, Tamil Nadu, India.

    PubMed

    Devarajan, Naresh; Laffite, Amandine; Ngelikoto, Patience; Elongo, Vicky; Prabakar, Kandasamy; Mubedi, Josué I; Piana, Pius T M; Wildi, Walter; Poté, John

    2015-09-01

    Hospital and urban effluents contain a variety of toxic and/or persistent substances in a wide range of concentrations, and most of these compounds belong to the group of emerging contaminants. The release of these substances into the aquatic ecosystem can lead to the pollution of water resources and may place aquatic organisms and human health at risk. Sediments receiving untreated and urban effluent waters from the city of Tiruchirappalli in the state of Tamil Nadu, India, are analyzed for potential environmental and human health risks. The sediment samples were collected from five hospital outlet pipes (HOP) and from the Cauvery River Basin (CRB) both of which receive untreated municipal effluent waters (Tiruchirappalli, Tamil Nadu, India). The samples were characterized for grain size, organic matter, toxic metals, and ecotoxicity. The results highlight the high concentration of toxic metals in HOP, reaching values (mg kg(-1)) of 1851 (Cr), 210 (Cu), 986 (Zn), 82 (Pb), and 17 (Hg). In contrast, the metal concentrations in sediments from CRB were lower than the values found in the HOP (except for Cu, Pb), with maximum values (mg kg(-1)) of 75 (Cr), 906 (Cu), 649 (Zn), 111 (Pb), and 0.99 (Hg). The metal concentrations in all sampling sites largely exceed the Sediment Quality Guidelines (SQGs) and the Probable Effect Concentration (PEC) for the Protection of Aquatic Life recommendation. The ecotoxicity test with ostracods exposed to the sediment samples presents a mortality rate ranging from 22 to 100 % (in sediments from HOP) and 18-87 % (in sediments from CRB). The results of this study show the variation of toxic metal levels as well as toxicity in sediment composition related to both the type of hospital and the sampling period. The method of elimination of hospital and urban effluents leads to the pollution of water resources and may place aquatic organisms and human health at risk.

  20. Response characteristics of an aquatic biomonitor used for rapid toxicity detection.

    PubMed

    van der Schalie, W H; Shedd, T R; Widder, M W; Brennan, L M

    2004-01-01

    The response characteristics of an aquatic biomonitor that detects toxicity by monitoring changes in bluegill (Lepomis macrochirus Rafinesque) ventilatory and movement patterns were evaluated in single chemical laboratory studies at concentrations near the 96-h LC(50) concentration and at the EILATox-Oregon Workshop in sequential tests of multiple unknown samples. Baseline data collected prior to exposure allows each fish to serve as its own control. When at least 70% of exposed fish exhibit ventilatory or movement parameters significantly different from baseline observations, a group alarm is declared. In the laboratory studies, the aquatic biomonitor responded to the majority of chemicals at the 96-h lc(50) within an hour or less, although substantially higher response times were found for malathion and pentachlorophenol. Workshop tests of single chemical concentrations presented as blind samples were consistent with the laboratory test results. There were no alarms under control conditions in any test. Although data are limited, the aquatic biomonitor appears to respond more rapidly to chemicals causing membrane irritation, narcosis or polar narcosis than to acetylcholinesterase inhibitors or oxidative phosphorylation uncouplers. All four monitored parameters (ventilatory rate, cough rate, ventilatory depth and movement) contributed to identification of first alarms at acutely toxic levels. Understanding these response patterns can be useful in data interpretation for biomonitor applications such as surface water monitoring for watershed protection, wastewater treatment plant effluent monitoring or source water monitoring for drinking water protection. Copyright (c) 2004 John Wiley & Sons, Ltd.

  1. Assessment of the ecotoxicological risk of combined sewer overflows for an aquatic system using a coupled "substance and bioassay" approach.

    PubMed

    Gooré Bi, Eustache; Monette, Frederic; Gasperi, Johnny; Perrodin, Yves

    2015-03-01

    Very few tools are available for assessing the impact of combined sewer overflows (CSOs) on receiving aquatic environments. The main goal of the study was to assess the ecotoxicological risk of CSOs for a surface aquatic ecosystem using a coupled "substance and bioassay" approach. Wastewater samples from the city of Longueuil, Canada CSO were collected for various rainfall events during one summer season and analyzed for a large panel of substances (n = 116). Four bioassays were also conducted on representative organisms of surface aquatic systems (Pimephales promelas, Ceriodaphnia dubia, Daphnia magna, and Oncorhynchus mykiss). The analytical data did not reveal any ecotoxicological risk for St. Lawrence River organisms, mainly due to strong effluent dilution. However, the substance approach showed that, because of their contribution to the ecotoxicological hazard posed by the effluent, total phosphorus (Ptot), aluminum (Al), total residual chlorine, chromium (Cr), copper (Cu), pyrene, ammonia (N-NH4 (+)), lead (Pb), and zinc (Zn) require more targeted monitoring. While chronic ecotoxicity tests revealed a potential impact of CSO discharges on P. promelas and C. dubia, acute toxicity tests did not show any effect on D. magna or O. mykiss, thus underscoring the importance of chronic toxicity tests as part of efforts aimed at characterizing effluent toxicity. Ultimately, the study leads to the conclusion that the coupled "substance and bioassay" approach is a reliable and robust method for assessing the ecotoxicological risk associated with complex discharges such as CSOs.

  2. Environmental risk and toxicology of human and veterinary waste pharmaceutical exposure to wild aquatic host-parasite relationships.

    PubMed

    Morley, Neil J

    2009-03-01

    Pollution of the aquatic environment by human and veterinary waste pharmaceuticals is an increasing area of concern but little is known about their ecotoxicological effects on wildlife. In particular the interactions between pharmaceuticals and natural stressors of aquatic communities remains to be elucidated. A common natural stressor of freshwater and marine organisms are protozoan and metazoan parasites, which can have significant effects on host physiology and population structure, especially under the influence of many traditional kinds of toxic pollutants. However, little is known about the effects of waste pharmaceuticals to host-parasite dynamics. In order to assess the risk waste pharmaceuticals pose to aquatic wildlife it has been suggested the use of toxicological data derived from mammals during the product development of pharmaceuticals may be useful for predicting toxic effects. An additional similar source of information is the extensive clinical studies undertaken with numerous classes of drugs against parasites of human and veterinary importance. These studies may form the basis of preliminary risk assessments to aquatic populations and their interactions with parasitic diseases in pharmaceutical-exposed habitats. The present article reviews the effects of the most common classes of pharmaceutical medicines to host-parasite relationships and assesses the risk they may pose to wild aquatic organisms. In addition the effects of pharmaceutical mixtures, the importance of sewage treatment, and the risk of developing resistant strains of parasites are also assessed. Copyright © 2008 Elsevier B.V. All rights reserved.

  3. Acute toxicity value extrapolation with fish and aquatic invertebrates

    USGS Publications Warehouse

    Buckler, Denny R.; Mayer, Foster L.; Ellersieck, Mark R.; Asfaw, Amha

    2005-01-01

    Assessment of risk posed by an environmental contaminant to an aquatic community requires estimation of both its magnitude of occurrence (exposure) and its ability to cause harm (effects). Our ability to estimate effects is often hindered by limited toxicological information. As a result, resource managers and environmental regulators are often faced with the need to extrapolate across taxonomic groups in order to protect the more sensitive members of the aquatic community. The goals of this effort were to 1) compile and organize an extensive body of acute toxicity data, 2) characterize the distribution of toxicant sensitivity across taxa and species, and 3) evaluate the utility of toxicity extrapolation methods based upon sensitivity relations among species and chemicals. Although the analysis encompassed a wide range of toxicants and species, pesticides and freshwater fish and invertebrates were emphasized as a reflection of available data. Although it is obviously desirable to have high-quality acute toxicity values for as many species as possible, the results of this effort allow for better use of available information for predicting the sensitivity of untested species to environmental contaminants. A software program entitled “Ecological Risk Analysis” (ERA) was developed that predicts toxicity values for sensitive members of the aquatic community using species sensitivity distributions. Of several methods evaluated, the ERA program used with minimum data sets comprising acute toxicity values for rainbow trout, bluegill, daphnia, and mysids provided the most satisfactory predictions with the least amount of data. However, if predictions must be made using data for a single species, the most satisfactory results were obtained with extrapolation factors developed for rainbow trout (0.412), bluegill (0.331), or scud (0.041). Although many specific exceptions occur, our results also support the conventional wisdom that invertebrates are generally more sensitive to contaminants than fish are.

  4. Identifying and designing chemicals with minimal acute aquatic toxicity

    PubMed Central

    Kostal, Jakub; Voutchkova-Kostal, Adelina; Anastas, Paul T.; Zimmerman, Julie Beth

    2015-01-01

    Industrial ecology has revolutionized our understanding of material stocks and flows in our economy and society. For this important discipline to have even deeper impact, we must understand the inherent nature of these materials in terms of human health and the environment. This paper focuses on methods to design synthetic chemicals to reduce their intrinsic ability to cause adverse consequence to the biosphere. Advances in the fields of computational chemistry and molecular toxicology in recent decades allow the development of predictive models that inform the design of molecules with reduced potential to be toxic to humans or the environment. The approach presented herein builds on the important work in quantitative structure–activity relationships by linking toxicological and chemical mechanistic insights to the identification of critical physical–chemical properties needed to be modified. This in silico approach yields design guidelines using boundary values for physiochemical properties. Acute aquatic toxicity serves as a model endpoint in this study. Defining value ranges for properties related to bioavailability and reactivity eliminates 99% of the chemicals in the highest concern for acute aquatic toxicity category. This approach and its future implementations are expected to yield very powerful tools for life cycle assessment practitioners and molecular designers that allow rapid assessment of multiple environmental and human health endpoints and inform modifications to minimize hazard. PMID:24639521

  5. Identifying and designing chemicals with minimal acute aquatic toxicity.

    PubMed

    Kostal, Jakub; Voutchkova-Kostal, Adelina; Anastas, Paul T; Zimmerman, Julie Beth

    2015-05-19

    Industrial ecology has revolutionized our understanding of material stocks and flows in our economy and society. For this important discipline to have even deeper impact, we must understand the inherent nature of these materials in terms of human health and the environment. This paper focuses on methods to design synthetic chemicals to reduce their intrinsic ability to cause adverse consequence to the biosphere. Advances in the fields of computational chemistry and molecular toxicology in recent decades allow the development of predictive models that inform the design of molecules with reduced potential to be toxic to humans or the environment. The approach presented herein builds on the important work in quantitative structure-activity relationships by linking toxicological and chemical mechanistic insights to the identification of critical physical-chemical properties needed to be modified. This in silico approach yields design guidelines using boundary values for physiochemical properties. Acute aquatic toxicity serves as a model endpoint in this study. Defining value ranges for properties related to bioavailability and reactivity eliminates 99% of the chemicals in the highest concern for acute aquatic toxicity category. This approach and its future implementations are expected to yield very powerful tools for life cycle assessment practitioners and molecular designers that allow rapid assessment of multiple environmental and human health endpoints and inform modifications to minimize hazard.

  6. Toxic Effects of Nickel Oxide Bulk and Nanoparticles on the Aquatic Plant Lemna gibba L.

    PubMed Central

    Oukarroum, Abdallah; Barhoumi, Lotfi; Samadani, Mahshid

    2015-01-01

    The aquatic plant Lemna gibba L. was used to investigate and compare the toxicity induced by 30 nm nickel oxide nanoparticles (NiO-NPs) and nickel(II) oxide as bulk (NiO-Bulk). Plants were exposed during 24 h to 0–1000 mg/L of NiO-NPs or NiO-Bulk. Analysis of physicochemical characteristics of nanoparticles in solution indicated agglomerations of NiO-NPs in culture medium and a wide size distribution was observed. Both NiO-NPs and NiO-Bulk caused a strong increase in reactive oxygen species (ROS) formation, especially at high concentration (1000 mg/L). These results showed a strong evidence of a cellular oxidative stress induction caused by the exposure to NiO. Under this condition, NiO-NPs and NiO-Bulk induced a strong inhibitory effect on the PSII quantum yield, indicating an alteration of the photosynthetic electron transport performance. Under the experimental conditions used, it is clear that the observed toxicity impact was mainly due to NiO particles effect. Therefore, results of this study permitted determining the use of ROS production as an early biomarker of NiO exposure on the aquatic plant model L. gibba used in toxicity testing. PMID:26075242

  7. Assessment of the acute toxicity of triclosan and methyl triclosan in wastewater based on the bioluminescence inhibition of Vibrio fischeri.

    PubMed

    Farré, Marinella; Asperger, Daniela; Kantiani, Lina; González, Susana; Petrovic, Mira; Barceló, Damià

    2008-04-01

    In this work, the contributions of triclosan and its metabolite methyl triclosan to the overall acute toxicity of wastewater were studied using Vibrio fischeri. The protocol used in this paper involved various steps. First, the aquatic toxicities of triclosan and methyl triclosan were determined for standard substances, and the 50% effective concentrations (EC(50)) were determined for these compounds. Second, the toxic responses to different mixtures of triclosan, methyl triclosan, and surfactants were studied in different water matrices, i.e., Milli-Q water, groundwater and wastewater, in order to evaluate (i) the antagonistic or synergistic effects, and (ii) the influence of the water matrices. Finally, chemical analysis was used in conjunction with the toxicity results in order to assess the aquatic toxicities of triclosan and its derivative in wastewaters. In this study, the toxicities of 45 real samples corresponding to the influents and effluents from eight wastewater treatment works (WWTW) were analyzed. Thirty-one samples were from a wastewater treatment plant (WWTP) equipped with two pilot-scale membrane bioreactors (MBR), and the influent and the effluent samples after various treatments were characterized via different chromatographic approaches, including solid-phase extraction (SPE), liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), and SPE coupled to gas chromatography-mass spectrometry (GC-MS). The toxicity was determined by measuring the bioluminescence inhibition of Vibrio fischeri. In order to complete the study and to extrapolate the results to different WWTPs, the toxicity to V. fischeri of samples from seven more plants was analyzed, as were their triclosan and methyl triclosan concentrations. Good agreement was established between the overall toxicity values and concentrations of the biocides, indicating that triclosan is one of the major toxic organic pollutants currently found in domestic wastewaters.

  8. OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing.

    PubMed

    Busquet, François; Strecker, Ruben; Rawlings, Jane M; Belanger, Scott E; Braunbeck, Thomas; Carr, Gregory J; Cenijn, Peter; Fochtman, Przemyslaw; Gourmelon, Anne; Hübler, Nicole; Kleensang, André; Knöbel, Melanie; Kussatz, Carola; Legler, Juliette; Lillicrap, Adam; Martínez-Jerónimo, Fernando; Polleichtner, Christian; Rzodeczko, Helena; Salinas, Edward; Schneider, Katharina E; Scholz, Stefan; van den Brandhof, Evert-Jan; van der Ven, Leo T M; Walter-Rohde, Susanne; Weigt, Stefan; Witters, Hilda; Halder, Marlies

    2014-08-01

    The OECD validation study of the zebrafish embryo acute toxicity test (ZFET) for acute aquatic toxicity testing evaluated the ZFET reproducibility by testing 20 chemicals at 5 different concentrations in 3 independent runs in at least 3 laboratories. Stock solutions and test concentrations were analytically confirmed for 11 chemicals. Newly fertilised zebrafish eggs (20/concentration and control) were exposed for 96h to chemicals. Four apical endpoints were recorded daily as indicators of acute lethality: coagulation of the embryo, lack of somite formation, non-detachment of the tail bud from the yolk sac and lack of heartbeat. Results (LC50 values for 48/96h exposure) show that the ZFET is a robust method with a good intra- and inter-laboratory reproducibility (CV<30%) for most chemicals and laboratories. The reproducibility was lower (CV>30%) for some very toxic or volatile chemicals, and chemicals tested close to their limit of solubility. The ZFET is now available as OECD Test Guideline 236. Considering the high predictive capacity of the ZFET demonstrated by Belanger et al. (2013) in their retrospective analysis of acute fish toxicity and fish embryo acute toxicity data, the ZFET is ready to be considered for acute fish toxicity for regulatory purposes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Acute toxicity of chlorantraniliprole to non-target crayfish (Procambarus clarkii) associated with rice-crayfish cropping systems.

    PubMed

    Barbee, Gary C; McClain, W Ray; Lanka, Srinivas K; Stout, Michael J

    2010-09-01

    Chlorantraniliprole, a novel anthranilic diamide insecticide, was recently introduced into the United States where rice-crayfish crop rotations are practiced to control rice water weevil (Lissorhoptrus oryzophilus Kuschel) infestations. Chlorantraniliprole has high margins of mammalian safety and excellent insecticidal efficacy, but its toxicity to non-target crayfish is uncertain. In this study, the acute toxicity of chlorantraniliprole to the red swamp crayfish Procambarus clarkii Girard was determined using aquatic and feeding assays. The aquatic 96 h median lethal toxicity (LC(50)) data indicate that technical-grade chlorantraniliprole is highly toxic (US EPA category) to crayfish with an LC(50) of 951 microg L(-1) (95% CL = 741-1118 microg L(-1)). A no observed effect concentration (NOEC) of 480 microg L(-1) was recorded. Neither the 36 day chronic feeding study, where crayfish fed on chlorantraniliprole-treated rice seed in aquaria, nor the 144 h acute feeding test, where crayfish fed on rice seeds treated with chlorantraniliprole, produced mortality or abnormal behavior. Chlorantraniliprole is three orders of magnitude less acutely toxic to P. clarkii than lambda-cyhalothrin and etofenprox, two pyrethroid insecticides also used in rice, and is less likely to cause acute crayfish toxicity in rice pond ecosystems. Based on acute toxicity data, the use of chlorantraniliprole should be more compatible with rice-crayfish crop rotations than pyrethroids. (c) 2010 Society of Chemical Industry.

  10. TOXICITY TESTS FOR SEDIMENT QUALITY ASSESSMENTS

    EPA Science Inventory

    Toxic sediments have contributed to a wide-variety of environmental problems around the world. The observed effects include direct toxic effects to aquatic life, bio-magnification of toxicants in the food chain, and economic impacts. This chapter discusses the use of toxicity...

  11. A relationship between avian carcasses and living invertebrates in the epizootiology of avian botulism

    USGS Publications Warehouse

    Duncan, Ruth M.; Jensen, Wayne I.

    1976-01-01

    A survey of the sources of Clostridium botulinum type C toxin possibly utilized as food by aquatic birds in an epizootic area of avian botulism in northern Utah showed that living aquatic and terrestrial invertebrates normally found in close association with dead, decomposing birds commonly carried the toxin. Of 461 samples associated with 21 species of avian carcasses, 198 were toxin-positive. Invertebrate species not normally scavengers of vertebrate tissues were less commonly and less highly toxic, particularly when captured 30 cm or more from a carcass; six of 237 samples of such aquatic invertebrates contained low-level toxin. Of the species tested, blow fly larvae (Calliphoridae) were the most consistently and highly toxic, although others, particularly adult and larval stages of several species of beetles (Coleoptera), contained toxin at levels probably significant in the epizootiology of the disease. An estimated 0.05 to 0.25 g of the most toxic fly larvae or 15 g of the most toxic beetles tested carried a mediam lethal dose for an adult mallard duck. Examination of stomach contents of aquatic birds dead of botulism showed that some had consumed invertebrates.

  12. A Bayesian network model for predicting aquatic toxicity mode ...

    EPA Pesticide Factsheets

    The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity, but development of predictive MoA classification models in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity MoA using a recently published dataset containing over one thousand chemicals with MoA assignments for aquatic animal toxicity. Two dimensional theoretical chemical descriptors were generated for each chemical using the Toxicity Estimation Software Tool. The model was developed through augmented Markov blanket discovery from the dataset of 1098 chemicals with the MoA broad classifications as a target node. From cross validation, the overall precision for the model was 80.2%. The best precision was for the AChEI MoA (93.5%) where 257 chemicals out of 275 were correctly classified. Model precision was poorest for the reactivity MoA (48.5%) where 48 out of 99 reactive chemicals were correctly classified. Narcosis represented the largest class within the MoA dataset and had a precision and reliability of 80.0%, reflecting the global precision across all of the MoAs. False negatives for narcosis most often fell into electron transport inhibition, neurotoxicity or reactivity MoAs. False negatives for all other MoAs were most often narcosis. A probabilistic sensitivity analysis was undertaken for each MoA to examine the sensitivity to individual and multiple descriptor findings. The results show that the Markov blank

  13. Aquatic hazard and biodegradability of light and middle atmospheric distillate petroleum streams.

    PubMed

    Swigert, James P; Lee, Carol; Wong, Diana C L; Podhasky, Paula

    2014-08-01

    Light and middle atmospheric distillate petroleum substances are blended to produce fuels used in transportation and heating. These substances represent the majority by volume of crude oil refined products in the United States. The goal of this research was to develop biodegradability and aquatic toxicity data for four substances; heavy, straight-run naphtha (HSRN), hydro-desulfurized kerosene (HDK), hydro-cracked gas oil (HCGO), and catalytic-cracked gas oil (CCGO). Ready biodegradability tests demonstrated rapid and extensive microbial oxidation of these test substances, indicating a lack of persistence in the aquatic environment. Differences in biodegradation patterns reflected compositional differences in the constituent hydrocarbons. Results of aquatic toxicity tests on alga, cladocera, and fish demonstrated that toxicity was greatest for catalytic-cracked gas oil, which contained a high proportion of aromatic hydrocarbons. Aromatic hydrocarbons are more soluble, and hence more bioavailable, resulting in higher toxicity. When expressed on the basis of loading rates, acute toxicity values (LL/EL50) ranged between 0.3 and 5.5 mg L(-1) for all three species, while chronic no-observed-effect loading rates (NOELR) ranged between 0.05 and 0.64 mg L(-1). PETROTOX estimates for acute and chronic toxicity ranged from 0.18 to 2.3 mg L(-1) and 0.06 to 0.14 mg L(-1), respectively, which were generally more conservative than experimental data. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. A Bayesian network model for predicting aquatic toxicity mode ...

    EPA Pesticide Factsheets

    The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity but MoA classification in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity mode of action using a recently published dataset containing over one thousand chemicals with MoA assignments for aquatic animal toxicity. Two dimensional theoretical chemical descriptors were generated for each chemical using the Toxicity Estimation Software Tool. The model was developed through augmented Markov blanket discovery from the data set with the MoA broad classifications as a target node. From cross validation, the overall precision for the model was 80.2% with a R2 of 0.959. The best precision was for the AChEI MoA (93.5%) where 257 chemicals out of 275 were correctly classified. Model precision was poorest for the reactivity MoA (48.5%) where 48 out of 99 reactive chemicals were correctly classified. Narcosis represented the largest class within the MoA dataset and had a precision and reliability of 80.0%, reflecting the global precision across all of the MoAs. False negatives for narcosis most often fell into electron transport inhibition, neurotoxicity or reactivity MoAs. False negatives for all other MoAs were most often narcosis. A probabilistic sensitivity analysis was undertaken for each MoA to examine the sensitivity to individual and multiple descriptor findings. The results show that the Markov blanket of a structurally

  15. Aquatic plants for removal of mevinphos from the aquatic environment

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1975-01-01

    Fragrant waterlily (Nymphaea odorata, Ait.), joint-grass (Paspalum distichum L.), and rush (Juncus repens, Michx.) were used to evaluate the effectiveness of vascular aquatic plants in removing the insecticide mevinphos (dimethyl-1-carbomethoxy-1propen-2-yl phosphate) from waters contaminated with this chemical. The emersed aquatic plants fragrant waterlily and joint-grass removed 87 and 93 ppm of mevinphos from water test systems in less than 2 weeks without apparent damage to the plants; whereas rush, a submersed plant, removed less insecticide than the water-soil controls. Water-soil control still contained toxic levels of this insecticide, as demonstrated by fish bioassay studies, after 35 days.

  16. Survival, reproduction, growth, and parasite resistance of aquatic organisms exposed on-site to wastewater treated by advanced treatment processes.

    PubMed

    Schlüter-Vorberg, Lisa; Knopp, Gregor; Cornel, Peter; Ternes, Thomas; Coors, Anja

    2017-05-01

    Advanced wastewater treatment technologies are generally known to be an effective tool for reducing micropollutant discharge into the aquatic environment. Nevertheless, some processes such as ozonation result in stable transformation products with often unknown toxicity. In the present study, whole effluents originating from nine different steps of advanced treatment combinations were compared for their aquatic toxicity. Assessed endpoints were survival, growth and reproduction of Lumbriculus variegatus, Daphnia magna and Lemna minor chronically exposed in on-site flow-through tests based on standard guidelines. The treatment combinations were activated sludge treatment followed by ozonation with subsequent filtration by granular activated carbon or biofilters and membrane bioreactor treatment of raw wastewater followed by ozonation. Additionally, the impact of treated wastewater on the immune response of invertebrates was investigated by challenging D. magna with a bacterial endoparasite. Conventionally treated wastewater reduced reproduction of L. variegatus by up to 46%, but did not affect D. magna and L. minor with regard to survival, growth, reproduction and parasite resistance. Instead, parasite susceptibility was significantly reduced in D. magna exposed to conventionally treated as well as ozonated wastewater in comparison to D. magna exposed to the medium control. None of the three test organisms provided clear evidence that wastewater ozonation leads to increased aquatic toxicity. Rather than to the presence of toxic transformation products, the affected performance of L. variegatus could be linked to elevated concentrations of ammonium and nitrite that likely resulted from treatment failures. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Influence of Exposure and Toxicokinetics on Measures of Aquatic Toxicity for Organic Contaminants: A Case Study Review

    PubMed Central

    Landrum, Peter F; Chapman, Peter M; Neff, Jerry; Page, David S

    2013-01-01

    This theoretical and case study review of dynamic exposures of aquatic organisms to organic contaminants examines variables important for interpreting exposure and therefore toxicity. The timing and magnitude of the absorbed dose change when the dynamics of exposure change. Thus, the dose metric for interpreting toxic responses observed during such exposure conditions is generally limited to the specific experiment and cannot be extrapolated to either other experiments with different exposure dynamics or to field exposures where exposure dynamics usually are different. This is particularly true for mixture exposures, for which the concentration and composition and, therefore, the timing and magnitude of exposure to individual components of different potency and potentially different mechanisms of action can vary. Aquatic toxicology needs studies that develop temporal thresholds for absorbed toxicant doses to allow for better extrapolation between conditions of dynamic exposure. Improved experimental designs are required that include high-quality temporal measures of both the exposure and the absorbed dose to allow better interpretation of data. For the short term, initial water concentration can be considered a conservative measure of exposure, although the extent to which this is true cannot be estimated specifically unless the dynamics of exposure as well as the toxicokinetics of the chemicals in the exposure scenario for the organism of interest are known. A better, but still limited, metric for interpreting the exposure and, therefore, toxicity is the peak absorbed dose, although this neglects toxicodynamics, requires appropriate temporal measures of accumulated dose to determine the peak concentration, and requires temporal thresholds for critical body residue for each component of the mixture. Integr Environ Assess Manag 2013; 9: 196–210. © 2012 SETAC PMID:23229376

  18. Molt-related susceptibility and regenerative limb growth as sensitive indicators of aquatic pollutant toxicity to crustaceans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, K.R.; Conklin, P.J.

    1986-01-01

    The study evaluated the comparative toxicity of various pollutants to intermolt and molting grass shrimp (Palaemonetes pugio). Most of the tested materials (pentachlorophenol, tetrachlorophenols, trichlorophenols, methylenebis dichlorophenol, dibutyl phthalate, chromium, and drilling mud) were more toxic to molting shrimp than to intermolt shrimp. Radio-tracer studies with 2,4,5-trichlorophenol and pentachlorophenol indicated that the increased susceptibility of newly molted shrimp is linked to increased pollutant uptake.

  19. Ceriodaphnia dubia as a Potential Bio-Indicator for Assessing Acute Aluminum Oxide Nanoparticle Toxicity in Fresh Water Environment

    PubMed Central

    Pakrashi, Sunandan; Dalai, Swayamprava; Humayun, Ahmed; Chakravarty, Sujay; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2013-01-01

    Growing nanomaterials based consumer applications have raised concerns about their potential release into the aquatic ecosystems and the consequent toxicological impacts. So environmental monitoring of the nanomaterials in aqueous systems becomes imperative. The current study reveals the potential of Ceriodaphnia dubia (C. dubia) as a bio-indicator for aluminum oxide nanoparticles in a fresh water aquatic ecosystem where it occupies an important ecological niche as a primary consumer. This study aims to investigate the aluminium oxide nanoparticle induced acute toxicity on Ceriodaphnia dubia in a freshwater system. The bioavailability of the aluminum oxide nanoparticles has been studied with respect to their aggregation behavior in the system and correlated with the toxicity endpoints. The oxidative stress generated by the particles contributed greatly toward their toxicity. The crucial role of leached aluminium ion mediated toxicity in the later phases (48 h and 72 h) in conjunction with the effects from the nano-sized particles in the initial phases (24 h) puts forth the dynamics of nanotoxicity in the test system. The internalization of nanoparticles (both gross and systemic uptake) as substantiated through the transmission electron microscopy (TEM) and inductively coupled plasma optical emission spectral (ICP-OES) analysis was another major contributor toward acute toxicity. Concluding the present study, Ceriodaphnia dubia can be a promising candidate for bio-monitoring the aluminium oxide nanoparticles in a fresh water system. PMID:24040143

  20. Ceriodaphnia dubia as a potential bio-indicator for assessing acute aluminum oxide nanoparticle toxicity in fresh water environment.

    PubMed

    Pakrashi, Sunandan; Dalai, Swayamprava; Humayun, Ahmed; Chakravarty, Sujay; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2013-01-01

    Growing nanomaterials based consumer applications have raised concerns about their potential release into the aquatic ecosystems and the consequent toxicological impacts. So environmental monitoring of the nanomaterials in aqueous systems becomes imperative. The current study reveals the potential of Ceriodaphnia dubia (C. dubia) as a bio-indicator for aluminum oxide nanoparticles in a fresh water aquatic ecosystem where it occupies an important ecological niche as a primary consumer. This study aims to investigate the aluminium oxide nanoparticle induced acute toxicity on Ceriodaphnia dubia in a freshwater system. The bioavailability of the aluminum oxide nanoparticles has been studied with respect to their aggregation behavior in the system and correlated with the toxicity endpoints. The oxidative stress generated by the particles contributed greatly toward their toxicity. The crucial role of leached aluminium ion mediated toxicity in the later phases (48 h and 72 h) in conjunction with the effects from the nano-sized particles in the initial phases (24 h) puts forth the dynamics of nanotoxicity in the test system. The internalization of nanoparticles (both gross and systemic uptake) as substantiated through the transmission electron microscopy (TEM) and inductively coupled plasma optical emission spectral (ICP-OES) analysis was another major contributor toward acute toxicity. Concluding the present study, Ceriodaphnia dubia can be a promising candidate for bio-monitoring the aluminium oxide nanoparticles in a fresh water system.

  1. Effects of Fungicides on Aquatic Fungi and Bacteria

    NASA Astrophysics Data System (ADS)

    Conners, D. E.; Rosemond, A. D.; Black, M. C.

    2005-05-01

    Aquatic microorganisms play an important role in conditioning leaf litter that enters streams and serves as an important base of production for consumers. Contamination of streams by fungicides may adversely affect microorganisms and alter leaf litter processing rates. Unfortunately, microorganisms are rarely used in acute toxicity tests for fungicide evaluation and registration. We adapted the resazurin reduction assay, which is used in medical microbiology, to assess the acute toxicity of four fungicides (azoxystrobin, trifloxystrobin, kresoxim-methyl and chlorothalonil) to aquatic fungi (Articulospora tetracladia) and bacteria (Cytophaga spp.), and investigated the ability of the toxicants to inhibit leaf breakdown in microcosms. Fungi were more sensitive to fungicides than many standard test organisms (cladocerans, green algae, trout), while bacteria were often the least sensitive. All of the fungicides except kresoxim-methyl, when added to microcosms at concentrations that inhibited the fungi by 90 percent in acute tests, reduced leaf breakdown rates by an average of 14.7 percent. Thus, aquatic fungi and their associated functions in streams may be relatively sensitive to fungicides applied terrestrially that enter streams through non-point sources. These data highlight the importance of including aquatic fungi in safety assessments of pesticides for protection of microbial function.

  2. Acute lethal toxicity of environmental pollutants to aquatic organisms.

    PubMed

    Yen, Jui-Hung; Lin, Kuo-Hsiung; Wang, Yei-Shung

    2002-06-01

    The acute lethal toxicity of environment pollutants including chlorophenol, haloalkane, quinone, and substituted nitrobenzene (i.e., nitrophenol, nitrobenzene, nitrotoluene, and aniline) compounds to aquatic organisms was determined. Determination of toxicity of chemicals was performed with chlorella, daphnia, carp, and tilapia. The toxicity of chlorophenols had no relation to the number of chlorine atoms on the benzene ring, but monochlorophenol had lower activity than more chlorine-substituted compounds. The tolerance levels of daphnia and carp to haloalkanes was found to be higher than that of chlorella; toxicity to chlorella was several hundred times higher than to daphnia. The toxicity of naphthoquinone compounds to chlorella and carp was higher than that of anthraquinone. A compound with a monochloride substitution on anthraquinone ring was less toxic to carp than those substituted with amine, hydroxyl, and dichlorine groups. Nitrobenzene compounds with an additional substitution group on the p position were extremely toxic to daphnia and carp. (c) 2002 Elsevier Science (USA).

  3. Mercury toxicity in the aquatic oligochaete Sparganophilus pearsei. II: Autotomy as a novel form of protection.

    PubMed

    Vidal, D E; Horne, A J

    2003-11-01

    Aquatic oligochaetes are commonly used for toxicity testing and for assessment of sediment impairment; some species can be relatively tolerant of sediment contaminants. However, there have been few studies of tolerance mechanisms; most work has focused on behavioral changes. The aquatic oligochaete worm, Sparganophilus pearsei, can be extremely tolerant to mercury in sediments depending on its prior history of exposure. Three S. pearsei populations, differing in their history of mercury exposure and in their tolerance to mercury, were assessed to determine tolerance mechanisms. In mercury-contaminated sediments, tolerant worms accumulated this contaminant in their caudal segments (i.e., their tails), which were then jettisoned via the process of autotomy, thus providing a mechanism of detoxification. This detoxification process appears to require a certain level of tolerance and may represent a novel exposure route for other organisms via feeding on discarded tails or release of accumulated contaminants as the tails decompose. Measurements of tissue mercury concentrations as contaminant body residues for this species (CBRs) are compared to other aquatic invertebrates.

  4. The evaluation of endocrine disrupting effects of tert-butylphenols towards estrogenic receptor α, androgen receptor and thyroid hormone receptor β and aquatic toxicities towards freshwater organisms.

    PubMed

    Wang, Jiaying; Wang, Jingpeng; Liu, Jinsong; Li, Jianzhi; Zhou, Lihong; Zhang, Huanxin; Sun, Jianteng; Zhuang, Shulin

    2018-05-09

    The phenolic compounds have posed public concern for potential threats to human health and ecosystem. Tert-butylphenols (TBPs), as one group of emerging contaminants, showed potential endocrine disrupting effects and aquatic toxicities. In the present study, we detected concentrations of 2,4-DTBP ranging from <0.001 to 0.057 μg/L (detection limit: 0.001 μg/L) in drinking water source from the Qiantang River in East China in April 2016. The endocrine disrupting effects of 2-TBP, 2,4-DTBP and 2,6-DTBP toward human estrogen receptor α (ERα), androgen receptor (AR) and thyroid hormone receptor β (TRβ) were evaluated using human recombinant two-hybrid yeast bioassay. Their aquatic toxicities were investigated with indicator organisms including Photobacterium phosphoreum, Vibrio fischeri and freshwater green alga Chlamydomonas reinhardtii. 2-TBP and 2,4-DTBP exhibited moderate antagonistic effects toward human ERα and AR in a concentration-dependent manner. 2-TBP significantly inhibited the light emission of P. phosphoreum. 2-TBP, 2,4-DTBP and 2,6-DTBP significantly inhibited the growth of C. reinhardtii and reduced the chlorophyll content. Our results suggest the potential adverse effects of TBPs on human health and aquatic organisms. The data will facilitate further risk assessment of TBPs and related contaminants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Individual and mixture effects of five agricultural pesticides on zebrafish (Danio rerio) larvae.

    PubMed

    Wang, Yanhua; Yang, Guiling; Dai, Dejiang; Xu, Zhenlan; Cai, Leiming; Wang, Qiang; Yu, Yijun

    2017-02-01

    In the present study, we evaluated the individual and mixture toxicities of imidacloprid and other four pesticides (atrazine, chlorpyrifos, butachlor, and λ-cyhalothrin) to the zebrafish (Danio rerio) larvae in order to clarify the interactive effects of pesticides on aquatic organisms. Results from the 96-h semi-static toxicity test indicated that chlorpyrifos, λ-cyhalothrin, and butachlor had the highest toxicities to D. rerio with an LC 50 value ranging from 0.28 (0.13∼0.38) to 0.45 (0.31∼0.59) mg AI L -1 , followed by atrazine with an LC 50 value of 15.63 (10.71∼25.76) mg AI L -1 , while imidacloprid exhibited the least toxicity to the organisms with an LC 50 value of 143.7 (99.98∼221.6) mg AI L -1 . Seven pesticide mixtures (two binary mixtures of imidacloprid + atrazine and imidacloprid + λ-cyhalothrin, two ternary mixtures of imidacloprid + atrazine + λ-cyhalothrin and imidacloprid + butachlor + λ-cyhalothrin, two quaternary mixtures of imidacloprid + atrazine + chlorpyrifos + λ-cyhalothrin and imidacloprid + chlorpyrifos + butachlor + λ-cyhalothrin, and one quinquenary mixture of imidacloprid + atrazine + chlorpyrifos + butachlor + λ-cyhalothrin) exhibited synergistic effects with equitoxic ratio and equivalent concentration on the zebrafish. Our results highlighted that the simultaneous presence of several pesticides in the aquatic environment might lead to increased toxicity, causing serious damage to the aquatic ecosystems compared with their individual toxicities. Therefore, the toxic effects of both individual pesticides and their mixtures should be incorporated into the environmental risk evaluation of pesticides.

  6. Risk assessment of an abandoned pyrite mine in Spain based on direct toxicity assays.

    PubMed

    García-Gómez, Concepción; Sánchez-Pardo, Beatriz; Esteban, Elvira; Peñalosa, Jesús Manuel; Fernández, María Dolores

    2014-02-01

    This research reports the risk assessment of an abandoned pyrite mine using direct toxicity assays of soil and groundwater samples taken at the site. The toxicity of As and heavy metals from mining soils to soil and aquatic organisms was studied using the Multispecies Soil System (MS-3) in soil columns. Ecotoxicological assessment was performed with soil samples diluted with a control soil at concentrations of 12.5, 25, 50 and 100% test soil/soil (w/w). In this way, changes in the mobility and bioavailability of soil contaminants due to changes in geochemical soil properties via soil dilution were studied. The toxicity of water samples was tested on algae and Daphnia magna. The assessment of the mining area indicated that the current presence of As and heavy metals at the site may cause injuries to soil and aquatic organisms in the entire research area. Moreover, this investigation demonstrated that changes in geochemical conditions can increase the availability of arsenic and, consequently, the environmental risk of these soils. A good correlation was not found between toxicity parameters and the concentrations of soil contaminants based on total and extracted element concentrations. This finding reinforces the usefulness of direct toxicity assays for evaluating environmental risk. © 2013.

  7. Toxicity of two imidazolium ionic liquids, [bmim][BF4] and [omim][BF4], to standard aquatic test organisms: Role of acetone in the induced toxicity.

    PubMed

    Tsarpali, Vasiliki; Dailianis, Stefanos

    2015-07-01

    The main goal of this study was to investigate the toxicity of the imidazolium-based ionic liquids (ILs), [bmim][BF4] (1-butyl-3-methylimidazolium tetrafluoroborate) and [omim][BF4] (1-octyl-3-methylimidazolium tetrafluoroborate), in battery of standard aquatic toxicity test organisms. Specifically, exposure of the algae Scenedesmus rubescens, crustaceans Thamnocephalus platyurus and Artemia franciscana, rotifers Brachionus calyciflorus and Brachionus plicatilis and bivalve Mytilus galloprovincialis to different concentrations of [bmim][BF4], [omim][BF4] and/or a binary mixture of [bmim][BF4]-[omim][BF4] (1:1) with or without acetone (carrier solvent), revealed that solvent can differentially mediate ILs' toxic profile. Acetone's ability to differentially affect ILs' cation's alkyl chain length, as well as the hydrolysis of [BF4(-)] anions was evident. Given that the toxic potency of the tested ILs seemed to be equal or even higher (in some cases) than those of conventional organic solvents, the present study revealed that the characterization of imidazolium-based ILs as "green solvents" should not be generalized, at least in case of their natural occurrence in mixtures with organic solvents, such as acetone. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Metal release from contaminated leaf litter and leachate toxicity for the freshwater crustacean Gammarus fossarum.

    PubMed

    Maunoury-Danger, Florence; Felten, Vincent; Bojic, Clément; Fraysse, Fabrice; Cosin Ponce, Mar; Dedourge-Geffard, Odile; Geffard, Alain; Guérold, François; Danger, Michael

    2018-04-01

    Industrialization has left large surfaces of contaminated soils, which may act as a source of pollution for contiguous ecosystems, either terrestrial or aquatic. When polluted sites are recolonized by plants, dispersion of leaf litter might represent a non-negligible source of contaminants, especially metals. To evaluate the risks associated to contaminated leaf litter dispersion in aquatic ecosystems, we first measured the dynamics of metal loss from leaf litter during a 48-h experimental leaching. We used aspen (Populus tremula L.), a common tree species on these polluted sites, and collected leaf litter on three polluted sites (settling pond of a former steel mill) and three control sites situated in the same geographic area. Then, toxicity tests were carried out on individuals of a key detritivore species widely used in ecotoxicology tests, Gammarus fossarum (Crustacea, Amphipoda), with uncontaminated and contaminated leaf litter leachates, using a battery of biomarkers selected for their sensitivity to metallic stress. Leaf litters collected on polluted sites exhibited not only significantly higher cadmium and zinc concentrations but also lower lignin contents. All leaf litters released high amounts of chemical elements during the leaching process, especially potassium and magnesium, and, in a lesser extent, phosphorus, calcium, and trace metals (copper, cadmium, and zinc but not lead). Toxicity tests revealed that the most important toxic effects measured on G. fossarum were due to leaf litter leachates by themselves, whatever the origin of litter (from polluted or control sites), confirming the toxicity of such substances, probably due to their high content in phenolic compounds. Small additional toxic effects of leachates from contaminated leaf litters were only evidenced on gammarid lipid peroxidation, indicating that contaminated leaf litter leachates might be slightly more toxic than uncontaminated ones, but in a very reduced manner. Further studies will be required to verify if these patterns are generalizable to other species and to investigate the effects of contaminated leaf litter ingestion by consumers on aquatic food webs. Nevertheless, our results do not permit to exclude potential chronic effects of an exposure to contaminated leaf litter leachates in aquatic ecosystems.

  9. Water quality criteria for colored smokes: Solvent Yellow 33, Final report. [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, K.A.; Hovatter, P.S.

    1987-11-01

    The available data on the environmental fate, aquatic toxicity, and mammalian toxicity of Solvent Yellow 33, a quinoline dye used in colored smoke grenades, were reviewed. The US Environmental Protection Agency (USEPA) guidelines were used in an attempt to generate water quality criteria for the protection of aquatic life and its use and of human health. 87 refs., 2 figs., 13 tabs.

  10. The history and development of FETAX (ASTM standard guide, E-1439 on conducting the frog embryo teratogenesis Assay-Xenopus)

    USGS Publications Warehouse

    Dumont, J.N.; Bantle, J.A.; Linder, G.; ,

    2003-01-01

    The energy crisis of the 1970's and 1980's prompted the search for alternative sources of fuel. With development of alternate sources of energy, concerns for biological resources potentially adversely impacted by these alternative technologies also heightened. For example, few biological tests were available at the time to study toxic effects of effluents on surface waters likely to serve as receiving streams for energy-production facilities; hence, we began to use Xenopus laevis embryos as test organisms to examine potential toxic effects associated with these effluents upon entering aquatic systems. As studies focused on potential adverse effects on aquatic systems continued, a test procedure was developed that led to the initial standardization of FETAX. Other .than a limited number of aquatic toxicity tests that used fathead minnows and cold-water fishes such as rainbow trout, X. laevis represented the only other aquatic vertebrate test system readily available to evaluate complex effluents. With numerous laboratories collaborating, the test with X. laevis was refined, improved, and developed as ASTM E-1439, Standard Guide for the Conducting Frog Embryo Teratogenesis Assay-Xenopus (FETAX). Collabrative work in the 1990s yielded procedural enhancements, for example, development of standard test solutions and exposure methods to handle volatile organics and hydrophobic compounds. As part of the ASTM process, a collaborative interlaboratory study was performed to determine the repeatability and reliability of FETAX. Parallel to these efforts, methods were also developed to test sediments and soils, and in situ test methods were developed to address "lab-to-field extrapolation errors" that could influence the method's use in ecological risk assessments. Additionally, a metabolic activation system composed of rat liver microsomes was developed which made FETAX more relevant to mammalian studies.

  11. Aquatic ecotoxicity of ashes from Brazilian savanna wildfires.

    PubMed

    Brito, Darlan Q; Passos, Carlos José S; Muniz, Daphne H F; Oliveira-Filho, Eduardo C

    2017-08-01

    In a global scenario of climate change, several studies have predicted an increase in fires in different parts of the world. With the occurrence of rains following the fires in the Brazilian savanna (Cerrado biome), the compounds present in ashes may enter aquatic environments and cause adverse effects to these ecosystems. In this context, this study evaluated the potential toxicity of ashes from two areas of Cerrado and an area of pasture, through ecotoxicological bioassays and using three aquatic species from distinct trophic levels, which were exposed to different dilutions of ashes: the microcrustacean Ceriodaphnia dubia, the fish Danio rerio and the mollusc Biomphalaria glabrata. The ashes from the three sampled areas showed higher concentrations of some elements in relation to the soil samples (B, Ca, K, Mg, Mn, P, S, Si, Sr, Zn), but only a small quantity of these compounds was solubilised. Our data showed that all ash samples caused acute toxicity to C. dubia (48hs-LC 50  = 13.4 g L -1 ; 48hs-LC 50  = 6.33 g L -1 ; 48hs-LC 50  = 9.73 g L -1 respectively for transition area, pasture, typical cerrado areas), while in relation to D. rerio and B. glabrata, no acute toxicity was observed when they were exposed to ashes from native Cerrado vegetation and pasture areas. Ashes from a transition area showed toxicity for D. rerio (48hs-LC 50  = 25.0 g L -1 ); possibly, this was due to the combination of multiple preponderant inorganic elements of ashes with other organic compounds not analysed, such as polycyclic aromatic hydrocarbons (PAHs). In summary, these results suggest that wildfires may pose risks to zooplankton communities and emphasize the need for more studies to better understand the complexity of the ecological effects of fire on aquatic ecosystems.

  12. Influence of Taxonomic Relatedness and Chemical Mode of Action in Acute Interspecies Estimation Models for Aquatic species

    EPA Science Inventory

    Ecological risks to aquatic organisms are typically assessed using toxicity data for relatively few species and with limited understanding of relative species sensitivity. We developed a comprehensive set of interspecies correlation estimation (ICE) models for aquatic organisms a...

  13. Occurrence, fate and effects of azoxystrobin in aquatic ecosystems: a review.

    PubMed

    Rodrigues, Elsa Teresa; Lopes, Isabel; Pardal, Miguel Ângelo

    2013-03-01

    The use of pesticides for crop protection may result in the presence of toxic residues in environmental matrices. In the aquatic environment, pesticides might freely dissolve in the water or bind to suspended matter and to the sediments, and might be transferred to the organisms' tissues during bioaccumulation processes, resulting in adverse consequences to non-target species. One such group of synthetic organic pesticides widely used worldwide to combat pathogenic fungi affecting plants is the strobilurin chemical group. Whereas they are designed to control fungal pathogens, their general modes of action are not specific to fungi. Consequently, they can be potentially toxic to a wide range of non-target organisms. The present work had the intent to conduct an extensive literature review to find relevant research on the occurrence, fate and effects of azoxystrobin, the first patent of the strobilurin compounds, in aquatic ecosystems in order to identify strengths and gaps in the scientific database. Analytical procedures and existing legislation and regulations were also assessed. Data gathered in the present review revealed that analytical reference standards for the most relevant environmental metabolites of azoxystrobin are needed. Validated confirmatory methods for complex matrices, like sediment and aquatic organisms' tissues, are very limited. Important knowledge of base-line values of azoxystrobin and its metabolites in natural tropical and estuarine/marine ecosystems is lacking. Moreover, some environmental concentrations of azoxystrobin found in the present review are above the Regulatory Acceptable Concentration (RAC) in what concerns risk to aquatic invertebrates and the No Observed Ecologically Adverse Effect Concentration (NOEAEC) reported for freshwater communities. The present review also showed that there are very few data on azoxystrobin toxicity to different aquatic organisms, especially in what concerns estuarine/marine organisms. Besides, toxicity studies mostly address azoxystrobin and usually neglect the more relevant environmental metabolites. Further work is also required in what concerns effects of exposure to multi-stressors, e.g. pesticide mixtures. Even though Log K(ow) for azoxystrobin and R234886, the main metabolite of azoxystrobin in water, are below 3, the bio-concentration factor and the bioaccumulation potential for azoxystrobin are absent in the literature. Moreover, no single study on bioaccumulation and biomagnification processes was found in the present review. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. NAPL migration and ecotoxicity of conventional and renewable fuels in accidental spill scenarios.

    PubMed

    Malk, Vuokko; Barreto Tejera, Eduardo; Simpanen, Suvi; Dahl, Mari; Mäkelä, Riikka; Häkkinen, Jani; Kiiski, Anna; Penttinen, Olli-Pekka

    2014-01-01

    Fuels derived from non-petroleum renewable resources have raised interest due to their potential in replacing petroleum-based fuels, but information on their fate and effects in the terrestrial and aquatic environments in accidental spill scenario is limited. In this study, migration of four fuels (conventional diesel, conventional gasoline, renewable diesel NExBTL, and ethanol-blended gasoline RE85 containing maximum 85% ethanol) as non-aqueous phase liquids (NAPL) in soil was demonstrated in a laboratory-scale experiment. Ecotoxicity data was produced for the same fuels. There was no significant difference in migration of conventional and renewable diesel, but gasoline migrated 1.5 times deeper and 7-9 times faster in sand than diesel. RE85 spread horizontally wider but not as deep (p < 0.05) as conventional gasoline. Conventional gasoline was the most toxic (lethal concentration [LC50] 20 mg/kg total hydrocarbon content [THC]) among the studied fuels in soil toxicity test with earthworm Eisenia fetida followed by ethanol-blended gasoline (LC50 1,643 mg/kg THC) and conventional diesel (LC50 2,432 mg/kg THC), although gasoline evaporated fast from soil. For comparison, the toxicity of the water-accommodated fractions (WAF) of the fuels was tested with water flea Daphnia magna and Vibrio fischeri, also demonstrating groundwater toxicity. The WAF of conventional gasoline and RE85 showed almost similar toxicity to both the aquatic test species. EC50 values of 1:10 (by volume) WAF were 9.9 %WAF (gasoline) and 9.3 %WAF (RE85) to D. magna and 9.3 %WAF (gasoline) and 12.3 %WAF (RE85) to V. fischeri. Low solubility decreased toxicity potential of conventional diesel in aquatic environment, but direct physical effects of oil phase pose a threat to organisms in nature. Renewable diesel NExBTL did not show clear toxicity to any test species.

  15. The chemical exposure toxicity space (CETS) model: Displaying exposure time, aqueous and organic concentration, activity, and onset of toxicity.

    PubMed

    Mackay, Donald; Celsie, Alena K D; Parnis, J Mark; McCarty, Lynn S; Arnot, Jon A; Powell, David E

    2017-05-01

    A 1-compartment toxicokinetic model is used to characterize the chemical exposure toxicity space (CETS), providing a novel graphic tool that can aid in the design of aquatic toxicity tests for fish and for interpreting their results. The graph depicts the solution to the differential equation describing the uptake kinetics of a chemical by a modeled fish under conventional bioassay conditions. The model relates the exposure concentration in the water to a dimensionless time and the onset of toxicity as determined by an estimated or assumed critical body residue or incipient lethal aqueous concentration. These concentration graphs are specific to each chemical and exposure and organism parameters and clearly demonstrate differences in toxicity between chemicals and how factors such as hydrophobicity influence the toxic endpoint. The CETS plots can also be used to assess bioconcentration test conditions to ensure that concentrations are well below toxic levels. Illustrative applications are presented using a recent set of high-quality toxicity data. Conversion of concentrations to chemical activities in the plots enables results for different baseline toxicants to be superimposed. For chemicals that have different modes of toxic action, the increased toxicity then becomes apparent. Implications for design and interpretation of aquatic toxicity tests are discussed. The model, and pictorial visualization of the time-course of aquatic toxicity tests, may contribute to improvements in test design, implementation, and interpretation, and to reduced animal usage. Environ Toxicol Chem 2017;36:1389-1396. © 2016 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC. © 2016 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.

  16. Industrial wastewater treatment using higher aquatic vegetation in the former mining company of the Far Eastern Federal district

    NASA Astrophysics Data System (ADS)

    Krupskaya, L. T.; Zvereva, V. P.; Gula, K. E.; Gul', L. P.; Golubev, D. A.; Filatova, M. Yu.

    2017-09-01

    The article describes the results of studying the problems of industrial wastewater treatment using higher aquatic vegetation (hydrophytes) in the former mining enterprise of the Far Eastern Federal District (FEFD). They are aimed at reducing the negative environment impact of toxic tin ore wastes. The material of research were drainage, mine and slime waters as well as Lemna minor and Common reed grass (Phragmites communis). In the work conventional modern physico-chemical, chemical, biological and mathematical-statistical methods were used, as well as in the process of research the methods of atomic absorption spectrophotometry for AAS and mass spectrometry with inductively coupled plasma on ISP-MS ELASN DRS II PerkinElmer was applied. The data obtained in the course of the experiment (2015-2016), indicate that a degree of wastewater treatment, using Lemna minor, is high. Virtually, all compounds of toxic chemical elements contained in industrial wastewater (zinc, cobalt, nickel, cadmium, iron, manganese, lead, etc.) were fully absorbed by a hydrophyte. Pollutant extraction was almost 95%. The obtained results of the study in laboratory conditions proved the possibility of effective use of the Lemna minor for the purification of drainage and mine waters. A key contribution of this paper is the relationship between possible toxic metals contained in industrial wastewater and a higher degree of absorption by their higher aquatic vegetation. These hydrophytes absorb these possible toxic metals in an aqueous medium and are contaminated with these heavy metals.

  17. Aquatic ecosystems in Central Colorado are influenced by mineral forming processes and historical mining

    USGS Publications Warehouse

    Schmidt, T.S.; Church, S.E.; Clements, W.H.; Mitchell, K.A.; Fey, D. L.; Wanty, R.B.; Verplanck, P.L.; San, Juan C.A.; Klein, T.L.; deWitt, E.H.; Rockwell, B.W.

    2009-01-01

    Stream water and sediment toxicity to aquatic insects were quantified from central Colorado catchments to distinguish the effect of geologic processes which result in high background metals concentrations from historical mining. Our sampling design targeted small catchments underlain by rocks of a single lithology, which allowed the development of biological and geochemical baselines without the complication of multiple rock types exposed in the catchment. By accounting for geologic sources of metals to the environment, we were able to distinguish between the environmental effects caused by mining and the weathering of different mineralized areas. Elevated metal concentrations in water and sediment were not restricted to mined catchments. Impairment of aquatic communities also occurred in unmined catchments influenced by hydrothermal alteration. Hydrothermal alteration style, deposit type, and mining were important determinants of water and sediment quality and aquatic community structure. Weathering of unmined porphyry Cu-Mo occurrences resulted in water (median toxic unit (TU) = 108) and sediment quality (TU = 1.9) that exceeded concentrations thought to be safe for aquatic ecosystems (TU = 1). Metalsensitive aquatic insects were virtually absent from streams draining catchments with porphyry Cu-Mo occurrences (1.1 individuals/0.1 m2 ). However, water and sediment quality (TU = 0.1, 0.5 water and sediment, respectively) and presence of metalsensitive aquatic insects (204 individuals/0.1 m2 ) for unmined polymetallic vein occurrences were indistinguishable from that for unmined and unaltered streams (TU = 0.1, 0.5 water and sediment, respectively; 201 individuals/0.1 m2 ). In catchments with mined quartz-sericite-pyrite altered polymetallic vein deposits, water (TU = 8.4) and sediment quality (TU = 3.1) were degraded and more toxic to aquatic insects (36 individuals/0.1 m2 ) than water (TU = 0.4) and sediment quality (TU = 1.7) from mined propylitically altered polymetallic vein deposits. The sampling approach taken in this study distinguishes the effects of different mineral deposits on ecosystems and can be used to more accurately quantify the effect of mining on the environment. 

  18. Assessing acute toxicity of effluent from a textile industry and nearby river waters using sulfur-oxidizing bacteria in continuous mode.

    PubMed

    Gurung, Anup; Hassan, Sedky H A; Oh, Sang-Eun

    2011-10-01

    Bioassays are becoming an important tool for assessing the toxicity of complex mixtures of substances in aquatic environments in which Daphnia magna is routinely used as a test organism. Bioassays outweigh physicochemical analyses and are valuable in the decision-making process pertaining to the final discharge of effluents from wastewater treatment plants as they measure the total effect of the discharge which is ecologically relevant. In this study, the aquatic toxicity of a textile plant effluent and river water downstream from the plant were evaluated with sulfur-oxidizing bacterial biosensors in continuous mode. Collected samples were analysed for different physicochemical parameters and 1,4-dioxane was detected in the effluent. The effluent contained a relatively high chemical oxygen demand of 60 mg L(-1), which exceeded the limit set by the Korean government for industrial effluent discharges. Results showed that both the effluent and river waters were toxic to sulfur-oxidizing bacteria. These results show the importance of incorporating bioassays to detect toxicity in wastewater effluents for the sustainable management of water resources.

  19. Metal-Polycyclic Aromatic Hydrocarbon Mixture Toxicity in Hyalella azteca. 1. Response Surfaces and Isoboles To Measure Non-additive Mixture Toxicity and Ecological Risk.

    PubMed

    Gauthier, Patrick T; Norwood, Warren P; Prepas, Ellie E; Pyle, Greg G

    2015-10-06

    Mixtures of metals and polycyclic aromatic hydrocarbons (PAHs) occur ubiquitously in aquatic environments, yet relatively little is known regarding their potential to produce non-additive toxicity (i.e., antagonism or potentiation). A review of the lethality of metal-PAH mixtures in aquatic biota revealed that more-than-additive lethality is as common as strictly additive effects. Approaches to ecological risk assessment do not consider non-additive toxicity of metal-PAH mixtures. Forty-eight-hour water-only binary mixture toxicity experiments were conducted to determine the additive toxic nature of mixtures of Cu, Cd, V, or Ni with phenanthrene (PHE) or phenanthrenequinone (PHQ) using the aquatic amphipod Hyalella azteca. In cases where more-than-additive toxicity was observed, we calculated the possible mortality rates at Canada's environmental water quality guideline concentrations. We used a three-dimensional response surface isobole model-based approach to compare the observed co-toxicity in juvenile amphipods to predicted outcomes based on concentration addition or effects addition mixtures models. More-than-additive lethality was observed for all Cu-PHE, Cu-PHQ, and several Cd-PHE, Cd-PHQ, and Ni-PHE mixtures. Our analysis predicts Cu-PHE, Cu-PHQ, Cd-PHE, and Cd-PHQ mixtures at the Canadian Water Quality Guideline concentrations would produce 7.5%, 3.7%, 4.4% and 1.4% mortality, respectively.

  20. Aquatic Toxic Analysis by Monitoring Fish Behavior Using Computer Vision: A Recent Progress

    PubMed Central

    Fu, Longwen; Liu, Zuoyi

    2018-01-01

    Video tracking based biological early warning system achieved a great progress with advanced computer vision and machine learning methods. Ability of video tracking of multiple biological organisms has been largely improved in recent years. Video based behavioral monitoring has become a common tool for acquiring quantified behavioral data for aquatic risk assessment. Investigation of behavioral responses under chemical and environmental stress has been boosted by rapidly developed machine learning and artificial intelligence. In this paper, we introduce the fundamental of video tracking and present the pioneer works in precise tracking of a group of individuals in 2D and 3D space. Technical and practical issues suffered in video tracking are explained. Subsequently, the toxic analysis based on fish behavioral data is summarized. Frequently used computational methods and machine learning are explained with their applications in aquatic toxicity detection and abnormal pattern analysis. Finally, advantages of recent developed deep learning approach in toxic prediction are presented. PMID:29849612

  1. Toxicity of silver and gold nanoparticles on marine microalgae.

    PubMed

    Moreno-Garrido, Ignacio; Pérez, Sara; Blasco, Julián

    2015-10-01

    The increased use of nanomaterials in several novel industrial applications during the last decade has led to a rise in concerns about the potential toxic effects of released engineered nanoparticles (NPs) into the environment, as their potential toxicity to aquatic organisms is just beginning to be recognised. Toxicity of metallic nanoparticles to aquatic organisms, including microalgae, seems to be related to their physical and chemical properties, as well as their behaviour in the aquatic media where processes of dissolution, aggregation and agglomeration can occur. Although the production of these particles has increased considerably in recent years, data on their toxicity on microalgae, especially those belonging to marine or estuarine environments remain scarce and scattered. The literature shows a wide variation of results on toxicity, mainly due to the different methodology used in bioassays involving microalgae. These can range for up to EC50 data, in the case of AgNPs, representing five orders of magnitude. The importance of initial cellular density is also addressed in the text, as well as the need for keeping test conditions as close as possible to environmental conditions, in order to increase their environmental relevance. This review focuses on the fate and toxicity of silver, gold, and gold-silver alloy nanoparticles on microalgae, as key organisms in aquatic ecosystems. It is prompted by their increased production and use, and taking into account that oceans and estuaries are the final sink for those NPs. The design of bioassays and further research in the field of microalgae nanoecotoxicology is discussed, with a brief survey on newly developed technology of green (algae mediated) production of Ag, Au and Ag-Au bimetallic NPs, as well as some final considerations about future research on this field. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Parking lot sealcoat: a major source of polycyclic aromatic hydrocarbons (PAHs) in urban and suburban environments

    USGS Publications Warehouse

    Van Metre, Peter C.; Mahler, Barbara J.; Scoggins, Mateo; Hamilton, Pixie A.

    2005-01-01

    Collaborative studies by the City of Austin and the U. S. Geological Survey (USGS) have identified coal-tar based sealcoat—the black, shiny emulsion painted or sprayed on asphalt pavement such as parking lots—as a major and previously unrecognized source of polycyclic aromatic hydrocarbon (PAH) contamination. Several PAHs are suspected human carcinogens and are toxic to aquatic life. Studies in Austin, Texas, showed that particles in runoff from coal-tar based sealcoated parking lots had concentrations of PAHs that were about 65 times higher than concentrations in particles washed off parking lots that had not been sealcoated. Biological studies, conducted by the City of Austin in the field and in the laboratory, indicated that PAH levels in sediment contaminated with abraded sealcoat were toxic to aquatic life and were degrading aquatic communities, as indicated by loss of species and decreased numbers of organisms. Identification of this source of PAHs may help to improve future strategies for controlling these compounds in urban water bodies across the Nation where parking lot sealcoat is used.

  3. Interactions of metal-based engineered nanoparticles with aquatic higher plants: A review of the state of current knowledge.

    PubMed

    Thwala, Melusi; Klaine, Stephen J; Musee, Ndeke

    2016-07-01

    The rising potential for the release of engineered nanoparticles (ENPs) into aquatic environments requires evaluation of risks to protect ecological health. The present review examines knowledge pertaining to the interactions of metal-based ENPs with aquatic higher plants, identifies information gaps, and raises considerations for future research to advance knowledge on the subject. The discussion focuses on ENPs' bioaccessibility; uptake, adsorption, translocation, and bioaccumulation; and toxicity effects on aquatic higher plants. An information deficit surrounds the uptake of ENPs and associated dynamics, because the influence of ENP characteristics and water quality conditions has not been well documented. Dissolution appears to be a key mechanism driving bioaccumulation of ENPs, whereas nanoparticulates often adsorb to plant surfaces with minimal internalization. However, few reports document the internalization of ENPs by plants; thus, the role of nanoparticulates' internalization in bioaccumulation and toxicity remains unclear, requiring further investigation. The toxicities of metal-based ENPs mainly have been associated with dissolution as a predominant mechanism, although nano toxicity has also been reported. To advance knowledge in this domain, future investigations need to integrate the influence of ENP characteristics and water physicochemical parameters, as their interplay determines ENP bioaccessibility and influences their risk to health of aquatic higher plants. Furthermore, harmonization of test protocols is recommended for fast tracking the generation of comparable data. Environ Toxicol Chem 2016;35:1677-1694. © 2016 SETAC. © 2016 SETAC.

  4. Pesticide toxicity index for freshwater aquatic organisms

    USGS Publications Warehouse

    Munn, Mark D.; Gilliom, Robert J.

    2001-01-01

    The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program is designed to assess current water-quality conditions, changes in water quality over time, and the effects of natural and human factors on water quality for the Nation's streams and ground-water resources. For streams, one of the most difficult parts of the assessment is to link chemical conditions to effects on aquatic biota, particularly for pesticides, which tend to occur in streams as complex mixtures with strong seasonal patterns. A Pesticide Toxicity Index (PTI) was developed that combines pesticide exposure of aquatic biota (measured concentrations of pesticides in stream water) with toxicity estimates (standard endpoints from laboratory bioassays) to produce a single index value for a sample or site. The development of the PTI was limited to pesticide compounds routinely measured in NAWQA studies and to toxicity data readily available from existing databases. Qualifying toxicity data were found for one or more types of test organisms for 75 of the 83 pesticide compounds measured in NAWQA samples, but with a wide range of bioassays per compound (1 to 65). There were a total of 2,824 bioassays for the 75 compounds, including 287 48-hour EC50 values (concentration at which 50 percent of test organisms exhibit a nonlethal response) for freshwater cladocerans, 585 96-hour LC50 values (concentration lethal to 50 percent of test organisms) for freshwater benthic invertebrates, and 1,952 96-hour LC50 values for freshwater fish. The PTI for a particular sample is the sum of toxicity quotients (measured concentration divided by the median toxicity concentration from bioassays) for each detected pesticide. The PTI can be calculated for specific groups of pesticides and for specific taxonomic groups.While the PTI does not determine whether water in a sample is toxic, its values can be used to rank or compare the toxicity of samples or sites on a relative basis for use in further analysis or additional assessments. The PTI approach may be useful as a basis for comparing the potential significance of pesticides in different streams on a common basis, for evaluating relations between pesticide exposure and observed biological conditions, and for prioritizing where further studies are most needed.

  5. Toxicity reference values for protecting aquatic birds in China from the effects of polychlorinated biphenyls.

    PubMed

    Su, Hailei; Wu, Fengchang; Zhang, Ruiqing; Zhao, Xiaoli; Mu, Yunsong; Feng, Chenglian; Giesy, John P

    2014-01-01

    PCBs are typical of persistent, bioaccumulative and toxic compounds (PBTs) that are widely distributed in the environment and can biomagnify through aquatic food webs, because of their stability and lipophilic properties. Fish-eating birds are top predators in the aquatic food chain and may suffer adverse effects from exposure to PCB concentrations. In this review, we address the toxicity of PCBs to birds and have derived tissue residue guidelines (TRGs) and toxic reference values (TRVs) for PCBs for protecting birds in China. In deriving these protective indices, we utilized available data and three approaches, to wit: species sensitivity distribution (SSD), critical study approach (CSA) and toxicity percentile rank method (TPRM). The TRGs and TRVs arrived at by using these methods were 42.3, I 0. 7, 4.3 pg TEQs/g diet wm and 16.7, 15.5, and 5.5 pg TEQs/g tissue wm for the CSA SSD and TPRM approaches, respectively. These criteria values were analyzed and compared with those derived by others. The following TRG and TRY, derived by SSD, were recommended as avian criteria for protecting avian species in China: 10.7 pg TEQs/g diet wm and 15.5 pg TEQs/g tissue wm, respectively. The hazard of PCBs to birds was assessed by comparing the TRVs and TRGs derived in this study with actual PCB concentrations detected in birds or fish. The criteria values derived in this study can be used to evaluate the risk of PCBs to birds in China, and to provide indices that are more reasonable for protecting Chinese avian species. However, several sources of uncertainty exists when deriving TRGs and TRVs for the PCBs in birds, such as lack of adequate toxicity data for birds and need to use uncertainty factors. Clearly, relevant work on PCBs and birds in China are needed in the future. For example, PCB toxicity data for resident avian species in China are needed. In addition, studies are needed on the actual PCB levels in birds and fish in China. Such information is needed to serve as a more firm foundation for future risk assessments.

  6. Estimation of vanadium water quality benchmarks for the protection of aquatic life with relevance to the Athabasca Oil Sands region using species sensitivity distributions.

    PubMed

    Schiffer, Stephanie; Liber, Karsten

    2017-11-01

    Elevated vanadium (V) concentrations in oil sands coke, which is produced and stored on site of some major Athabasca Oil Sands companies, could pose a risk to aquatic ecosystems in northern Alberta, Canada, depending on its future storage and utilization. In the present study, V toxicity was determined in reconstituted Athabasca River water to various freshwater organisms, including 2 midge species (Chironomus dilutus and Chironomus riparius; 4-d and 30-d to 40-d exposures) and 2 freshwater fish species (Oncorhynchus mykiss and Pimephales promelas; 4-d and 28-d exposures) to facilitate estimation of water quality benchmarks. The acute toxicity of V was 52.0 and 63.2 mg/L for C. dilutus and C. riparius, respectively, and 4.0 and 14.8 mg V/L for P. promelas and O. mykiss, respectively. Vanadium exposure significantly impaired adult emergence of C. dilutus and C. riparius at concentrations ≥16.7 (31.6% reduction) and 8.3 (18.0% reduction) mg/L, respectively. Chronic toxicity in fish presented as lethality, with chronic 28-d LC50s of 0.5 and 4.3 mg/L for P. promelas and O. mykiss, respectively. These data were combined with data from the peer-reviewed literature, and separate acute and chronic species sensitivity distributions (SSDs) were constructed. The acute and chronic hazardous concentrations endangering only 5% of species (HC5) were estimated as 0.64 and 0.05 mg V/L, respectively. These new data for V toxicity to aquatic organisms ensure that there are now adequate data available for regulatory agencies to develop appropriate water quality guidelines for use in the Athabasca Oil Sands region and elsewhere. Until then, the HC5 values presented in the present study could serve as interim benchmarks for the protection of aquatic life from exposure to hazardous levels of V in local aquatic environments. Environ Toxicol Chem 2017;36:3034-3044. © 2017 SETAC. © 2017 SETAC.

  7. A simple scheme to determine potential aquatic metal toxicity from mining wastes

    USGS Publications Warehouse

    Wildeman, T.R.; Smith, K.S.; Ranville, J.F.

    2007-01-01

    A decision tree (mining waste decision tree) that uses simple physical and chemical tests has been developed to determine whether effluent from mine waste material poses a potential toxicity threat to the aquatic environment. For the chemical portion of the tree, leaching tests developed by the United States Geological Survey, the Colorado Division of Minerals and Geology (Denver, CO), and a modified 1311 toxicity characteristic leaching procedure (TCLP) test of the United States Environmental Protection Agency have been extensively used as a surrogate for readily available metals that can be released into the environment from mining wastes. To assist in the assessment, element concentration pattern graphs (ECPG) are produced that compare concentrations of selected groups of elements from the three leachates and any water associated with the mining waste. The MWDT makes a distinction between leachates or waters with pH less than or greater than 5. Generally, when the pH values are below 5, the ECPG of the solutions are quite similar, and potential aquatic toxicity from cationic metals, such as Pb, Cu, Zn, Cd, and Al, is assumed. Below pH 5, these metals are mostly dissolved, generally are not complexed with organic or inorganic ligands, and hence are more bioavailable. Furthermore, there is virtually no carbonate alkalinity at pH less than 5. All of these factors promote metal toxicity to aquatic organisms. On the other hand, when the pH value of the water or the leachates is above 5, the ECPG from the solutions are variable, and inferred aquatic toxicity depends on factors in addition to the metals released from the leaching tests. Hence, leachates and waters with pH above 5 warrant further examination of their chemical composition. Physical ranking criteria provide additional information, particularly in areas where waste piles exhibit similar chemical rankings. Rankings from physical and chemical criteria generally are not correlated. Examples of how this decision tree has been applied in assessing mine sites are discussed. Copyright ?? Taylor & Francis Group, LLC.

  8. A review of environmental impacts of salts from produced waters on aquatic resources

    USGS Publications Warehouse

    Farag, Aïda M.; Harper, David D.

    2014-01-01

    Salts are frequently a major constituent of waste waters produced during oil and gas production. These produced waters or brines must be treated and/or disposed and provide a daily challenge for operators and resource managers. Some elements of salts are regulated with water quality criteria established for the protection of aquatic wildlife, e.g. chloride (Cl−), which has an acute standard of 860 mg/L and a chronic standard of 230 mg/L. However, data for establishing such standards has only recently been studied for other components of produced water, such as bicarbonate (HCO3−), which has acute median lethal concentrations (LC50s) ranging from 699 to > 8000 mg/L and effects on chronic toxicity from 430 to 657 mg/L. While Cl− is an ion of considerable importance in multiple geographical regions, knowledge about the effects of hardness (calcium and magnesium) on its toxicity and about mechanisms of toxicity is not well understood. A multiple-approach design that combines studies of both individuals and populations, conducted both in the laboratory and the field, was used to study toxic effects of bicarbonate (as NaHCO3). This approach allowed interpretations about mechanisms related to growth effects at the individual level that could affect populations in the wild. However, additional mechanistic data for HCO3−, related to the interactions of calcium (Ca2 +) precipitation at the microenvironment of the gill would dramatically increase the scientific knowledge base about how NaHCO3 might affect aquatic life. Studies of the effects of mixtures of multiple salts present in produced waters and more chronic effect studies would give a better picture of the overall potential toxicity of these ions. Organic constituents in hydraulic fracturing fluids, flowback waters, etc. are a concern because of their carcinogenic properties and this paper is not meant to minimize the importance of maintaining vigilance with respect to potential organic contamination.

  9. Acute and chronic toxicity of effluent water from an abandoned uranium mine.

    PubMed

    Antunes, S C; Pereira, R; Gonçalves, F

    2007-08-01

    Inactive or abandoned mines represent a significant source of environmental, chemical, physical, and aesthetic impact. Among concerning situations, the occurrence of abandoned or semi-abandoned mine-associated ponds (for sedimentation of solids, for effluent neutralization, or for washing the ore) is a common feature in this type of system. These ponds are a source of contamination for the groundwater resources and adjacent soils, because they lack appropriate impermeabilization. The use of this water for agriculture may also pose chronic risks to humans. In Portugal, these problems have been diagnosed and some remediation projects have been developed. The purpose of our study was to evaluate the acute and chronic toxicity of water samples collected from the aquatic system surrounding an abandoned uranium mine (Cunha Baixa, Mangualde, Central Portugal). The present study focuses on the water compartment, whose toxicity was evaluated by means of standard toxicity assays using two Daphnia species (D. longispina and D. magna). Three different ponds were used in the characterization of the aquatic system from Cunha Baixa mine: a reference pond (Ref), a mine effluent treatment pond (T), and a mine pit pond (M). Metal analyses performed in the water samples from these ponds showed values that, in some cases, were much higher than maximum recommendable values established (especially Al, Mn) by Portuguese legislation for waters for crop irrigation. Acute toxicity was only observed in the mine pit pond, with EC(50) values of 28.4% and 50.4% for D. longispina and D. magna, respectively. The significant impairment of chronic endpoints, translated in reductions in the population growth rate for both species, gives rise to concerns regarding the potential risks for aquatic zooplanktonic communities, from local receiving waters, potentially exposed to point source discharges of the treated and nontreated effluent from Cunha Baixa uranium mine.

  10. Cell culture-based biosensing techniques for detecting toxicity in water.

    PubMed

    Tan, Lu; Schirmer, Kristin

    2017-06-01

    The significant increase of contaminants entering fresh water bodies calls for the development of rapid and reliable methods to monitor the aquatic environment and to detect water toxicity. Cell culture-based biosensing techniques utilise the overall cytotoxic response to external stimuli, mediated by a transduced signal, to specify the toxicity of aqueous samples. These biosensing techniques can effectively indicate water toxicity for human safety and aquatic organism health. In this review we account for the recent developments of the mainstream cell culture-based biosensing techniques for water quality evaluation, discuss their key features, potentials and limitations, and outline the future prospects of their development. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Assessing time-integrated dissolved concentrations and predicting toxicity of metals during diel cycling in streams

    USGS Publications Warehouse

    Balistrieri, Laurie S.; Nimick, David A.; Mebane, Christopher A.

    2012-01-01

    Evaluating water quality and the health of aquatic organisms is challenging in systems with systematic diel (24 hour) or less predictable runoff-induced changes in water composition. To advance our understanding of how to evaluate environmental health in these dynamic systems, field studies of diel cycling were conducted in two streams (Silver Bow Creek and High Ore Creek) affected by historical mining activities in southwestern Montana. A combination of sampling and modeling tools were used to assess the toxicity of metals in these systems. Diffusive Gradients in Thin Films (DGT) samplers were deployed at multiple time intervals during diel sampling to confirm that DGT integrates time-varying concentrations of dissolved metals. Thermodynamic speciation calculations using site specific water compositions, including time-integrated dissolved metal concentrations determined from DGT, and a competitive, multiple-metal biotic ligand model incorporated into the Windemere Humic Aqueous Model Version 6.0 (WHAM VI) were used to determine the chemical speciation of dissolved metals and biotic ligands. The model results were combined with previously collected toxicity data on cutthroat trout to derive a relationship that predicts the relative survivability of these fish at a given site. This integrative approach may prove useful for assessing water quality and toxicity of metals to aquatic organisms in dynamic systems and evaluating whether potential changes in environmental health of aquatic systems are due to anthropogenic activities or natural variability.

  12. Linkage of genomic biomarkers to whole organism endpoints in a Toxicity Identification Evaluation (TIE).

    EPA Science Inventory

    Aquatic organisms are exposed to many toxic chemicals and interpreting the cause and effect relationships between occurrence and impairment is difficult. Toxicity Identification Evaluation (TIE) provides a systematic approach for identifying responsible toxicants. TIE relies on ...

  13. Photoenhanced Toxicity of Petroleum to Aquatic Invertebrates and Fish

    EPA Science Inventory

    Photoenhanced toxicity is a distinct mechanism of petroleum toxicity that is mediated by the interaction of solar radiation with specific polycyclic aromatic compounds in oil. Phototoxicity is observed as a twofold to greater than 1000-fold increase in chemical toxicity to aquati...

  14. Toxicity of carbon nanotubes to freshwater aquatic invertebrates

    USGS Publications Warehouse

    Mwangi, Joseph N.; Wang, Ning; Ingersoll, Christopher G.; Hardesty, Doug K.; Brunson, Eric L.; Li, Hao; Deng, Baolin

    2012-01-01

    Carbon nanotubes (CNTs) are hydrophobic in nature and thus tend to accumulate in sediments if released into aquatic environments. As part of our overall effort to examine the toxicity of carbon-based nanomaterials to sediment-dwelling invertebrates, we have evaluated the toxicity of different types of CNTs in 14-d water-only exposures to an amphipod (Hyalella azteca), a midge (Chironomus dilutus), an oligochaete (Lumbriculus variegatus), and a mussel (Villosa iris) in advance of conducting whole-sediment toxicity tests with CNTs. The results of these toxicity tests conducted with CNTs added to water showed that 1.00g/L (dry wt) of commercial sources of CNTs significantly reduced the survival or growth of the invertebrates. Toxicity was influenced by the type and source of the CNTs, by whether the materials were precleaned by acid, by whether sonication was used to disperse the materials, and by species of the test organisms. Light and electron microscope imaging of the surviving test organisms showed the presence of CNTs in the gut as well as on the outer surface of the test organisms, although no evidence was observed to show penetration of CNTs through cell membranes. The present study demonstrated that both the metals solubilized from CNTs such as nickel and the "metal-free" CNTs contributed to the toxicity.

  15. Use of statistical and neural net approaches in predicting toxicity of chemicals.

    PubMed

    Basak, S C; Grunwald, G D; Gute, B D; Balasubramanian, K; Opitz, D

    2000-01-01

    Hierarchical quantitative structure-activity relationships (H-QSAR) have been developed as a new approach in constructing models for estimating physicochemical, biomedicinal, and toxicological properties of interest. This approach uses increasingly more complex molecular descriptors in a graduated approach to model building. In this study, statistical and neural network methods have been applied to the development of H-QSAR models for estimating the acute aquatic toxicity (LC50) of 69 benzene derivatives to Pimephales promelas (fathead minnow). Topostructural, topochemical, geometrical, and quantum chemical indices were used as the four levels of the hierarchical method. It is clear from both the statistical and neural network models that topostructural indices alone cannot adequately model this set of congeneric chemicals. Not surprisingly, topochemical indices greatly increase the predictive power of both statistical and neural network models. Quantum chemical indices also add significantly to the modeling of this set of acute aquatic toxicity data.

  16. Stronger effects of Roundup than its active ingredient glyphosate in damselfly larvae.

    PubMed

    Janssens, Lizanne; Stoks, Robby

    2017-12-01

    Pesticides are causing strong decreases in aquatic biodiversity at concentrations assumed safe by legislation. One reason for the failing risk assessment may be strong differences in the toxicity of the active ingredient of pesticides and their commercial formulations. Sublethal effects, especially those on behaviour, have been largely ignored in this context, yet can be equally important as lethal effects at the population and ecosystem levels. Here, we compared the toxicity of the herbicide Roundup and its active ingredient glyphosate on survival, but also on ecologically relevant sublethal traits (life history, behaviour and physiology) in damselfly larvae. Roundup was more toxic than glyphosate with negative effects on survival, behaviour and most of the physiological traits being present at lower concentrations (food intake, escape swimming speed) or even only present (survival, sugar and total energy content and muscle mass) following Roundup exposure. This confirms the toxicity of the surfactant POEA. Notably, also glyphosate was not harmless: a realistic concentration of 2mg/l resulted in reduced growth rate, escape swimming speed and fat content. Our results therefore indicate that the toxicity of Roundup cannot be fully attributed to its surfactant, thereby suggesting that also the new generation of glyphosate-based herbicides with other mixtures of surfactants likely will have adverse effects on non-target aquatic organisms. Ecotoxicological studies comparing the toxicity of active ingredients and their commercial formulations typically ignore behaviour while the here observed differential effects on behaviour likely will negatively impact damselfly populations. Our data highlight that risk assessment of pesticides ignoring sublethal effects may contribute to the negative effects of pesticides on aquatic biodiversity. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Suitability of a Saccharomyces cerevisiae-based assay to assess the toxicity of pyrimethanil sprayed soils via surface runoff: comparison with standard aquatic and soil toxicity assays.

    PubMed

    Gil, Fátima N; Moreira-Santos, Matilde; Chelinho, Sónia; Pereira, Carla; Feliciano, Joana R; Leitão, Jorge H; Sousa, José P; Ribeiro, Rui; Viegas, Cristina A

    2015-02-01

    The present study is aimed at evaluating whether a gene expression assay with the microbial eukaryotic model Saccharomyces cerevisiae could be used as a suitable warning tool for the rapid preliminary screening of potential toxic effects on organisms due to scenarios of soil and water contamination with pyrimethanil. The assay consisted of measuring changes in the expression of the selected pyrimethanil-responsive genes ARG3 and ARG5,6 in a standardized yeast population. Evaluation was held by assessing the toxicity of surface runoff, a major route of pesticide exposure in aquatic systems due to non-point-source pollution, which was simulated with a pyrimethanil formulation at a semifield scale mimicking worst-case scenarios of soil contamination (e.g. accident or improper disposal). Yeast cells 2-h exposure to the runoff samples led to a significant 2-fold increase in the expression of both indicator genes. These results were compared with those from assays with organisms relevant for the aquatic and soil compartments, namely the nematode Caenorhabditis elegans (reproduction), the freshwater cladoceran Daphnia magna (survival and reproduction), the benthic midge Chironomus riparius (growth), and the soil invertebrates Folsomia candida and Enchytraeus crypticus (survival and reproduction). Under the experimental conditions used to simulate accidental discharges into soil, runoff waters were highly toxic to the standard test organisms, except for C. elegans. Overall, results point out the usefulness of the yeast assay to provide a rapid preview of the toxicity level in preliminary screenings of environmental samples in situations of inadvertent high pesticide contamination. Advantages and limitations of this novel method are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Developmental toxicity, oxidative stress and immunotoxicity induced by three strobilurins (pyraclostrobin, trifloxystrobin and picoxystrobin) in zebrafish embryos.

    PubMed

    Li, Hui; Cao, Fangjie; Zhao, Feng; Yang, Yang; Teng, Miaomiao; Wang, Chengju; Qiu, Lihong

    2018-05-25

    Strobilurins is the most widely used class of fungicides, but is reported highly toxic to some aquatic organisms. In this study, zebrafish embryos were exposed to a range concentrations of three strobilurins (pyraclostrobin, trifloxystrobin and picoxystrobin) for 96 h post-fertilization (hpf) to assess their aquatic toxicity. The 96-h LC 50 values of pyraclostrobin, trifloxystrobin and picoxystrobin to embryos were 61, 55, 86 μg/L, respectively. A series of symptoms were observed in developmental embryos during acute exposure, including decreased heartbeat, hatching inhibition, growth regression, and morphological deformities. Moreover, the three fungicides induced oxidative stress in embryos through increasing reactive oxygen species (ROS) and malonaldehyde (MDA) contents, inhibiting superoxide dismutase (SOD) activity and glutathione (GSH) content as well as differently changing catalase (CAT) activity and mRNA levels of genes related to antioxidant system (Mn-sod, Cu/Zn-sod, Cat, Nrf2, Ucp2 and Bcl2). In addition, exposure to the three strobilurins resulted in significant upregulation of IFN and CC-chem as well as differently changed expressions of TNFa, IL-1b, C1C and IL-8, which related to the innate immune system, suggesting that these fungicides caused immunotoxicity during zebrafish embryo development. The different response of enzymes and genes in embryos exposed to the three fungicides might be the cause that leads to the difference of their toxicity. This work made a comparison of the toxicity of three strobilurins to zebrafish embryos on multi-levels and would provide a better understanding of the toxic effects of strobilurins on aquatic organisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. The Applicability of Oxidative Stress Biomarkers in Assessing Chromium Induced Toxicity in the Fish Labeo rohita

    PubMed Central

    Khare, Ankur; Dange, Swati

    2014-01-01

    The evaluation of metal's toxicity in freshwater is one of the imperative areas of research and there is an emergent concern on the development of techniques for detecting toxic effects in aquatic animals. Oxidative stress biomarkers are very useful in assessing the health of aquatic life and more in depth studies are necessary to establish an exact cause effect relationship. Therefore, to study the effectiveness of this approach, a laboratory study was conducted in the fish Labeo rohita as a function of hexavalent chromium and the toxicity indices using a battery of oxidative stress biomarkers such as catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR) in the liver, muscle, gills, and brain have been studied along with biometric parameters, behavioral changes, and Cr bioaccumulation. A significant increased HSI was observed in contrast to CF which reduced significantly. SOD, CAT, and GR activity increased significantly in all the tissues of treated fishes. The bioaccumulation of Cr was highest in liver followed by gills, muscle, and brain. This study highlights the significance of using a set of integrated biomarker and advocate to include these parameters in National Water Quality Monitoring Program in areas potentially polluted with metals to assess the health of the ecosystem. PMID:25302308

  20. Environmental Quality Research. Use of Unicellular Algae for Evaluation of Potential Aquatic Contaminants

    DTIC Science & Technology

    1977-11-01

    Potential Aquatic Contaminants." Research was conducted by the Water Resources Laboratory, School of Engineering, University of California, Irvine...hydrazine concentration is 10 PZ/Z . This level of copper is not toxic to most aquatic organisms. In oligotrophic freshwater environments hydrazine will...AMRL-TR-77-53 ENVIRONMENTAL QUALITY RESEARCH Use of Unicellular Algae for Evaluation of Potential Aquatic Contaminants Second Annual Report JAN SCII

  1. Predicting the aquatic toxicity mode of action using logistic regression and linear discriminant analysis.

    PubMed

    Ren, Y Y; Zhou, L C; Yang, L; Liu, P Y; Zhao, B W; Liu, H X

    2016-09-01

    The paper highlights the use of the logistic regression (LR) method in the construction of acceptable statistically significant, robust and predictive models for the classification of chemicals according to their aquatic toxic modes of action. Essentials accounting for a reliable model were all considered carefully. The model predictors were selected by stepwise forward discriminant analysis (LDA) from a combined pool of experimental data and chemical structure-based descriptors calculated by the CODESSA and DRAGON software packages. Model predictive ability was validated both internally and externally. The applicability domain was checked by the leverage approach to verify prediction reliability. The obtained models are simple and easy to interpret. In general, LR performs much better than LDA and seems to be more attractive for the prediction of the more toxic compounds, i.e. compounds that exhibit excess toxicity versus non-polar narcotic compounds and more reactive compounds versus less reactive compounds. In addition, model fit and regression diagnostics was done through the influence plot which reflects the hat-values, studentized residuals, and Cook's distance statistics of each sample. Overdispersion was also checked for the LR model. The relationships between the descriptors and the aquatic toxic behaviour of compounds are also discussed.

  2. Hazard identification and risk characterization of bisphenols A, F and AF to aquatic organisms.

    PubMed

    Tišler, Tatjana; Krel, Alja; Gerželj, Urška; Erjavec, Boštjan; Dolenc, Marija Sollner; Pintar, Albin

    2016-05-01

    Production of bisphenol A (BPA) analogues such as bisphenol F (BPF) and bisphenol AF (BPAF) has recently increased, due to clear evidence of adverse effects of BPA on humans and wildlife. Bisphenols (BPs) have already been released into aquatic environment without previous available information about potential adverse effects of BPs and their potential risk to aquatic ecosystems. In this study, lethal and sublethal effects of BPF and BPAF to bacteria, algae, crustacea and fish embryos were investigated and the results were compared to the adverse effects obtained for BPA. We found that BPAF was the most toxic compound to Daphnia magna, Danio rerio and Desmodesmus subspicatus; the lowest 72 h EC50 (median effective concentration) and 21 d NOEC (no observed effect concentration) values were determined at 2.2 mg/L regarding zebrafish hatching success and 0.23 mg/L of BPAF obtained for growth and reproduction of water fleas, respectively. In most cases, BPA was more toxic to D. magna, D. rerio and D. subspicatus in comparison to BPF, but pigmentation of zebrafish embryos after 48 h of exposure and reproduction of water fleas after 21-day D. magna reproductive test exposure to BPF were much more impaired. Risk quotients (measured environmental concentration/21 d NOEC) showed that BPA, BPF and BPAF are recently not chronically hazardous to the survival, reproduction and growth of water fleas in surface waters. On the other hand, we importantly show that currently present BPAF concentrations in surface waters could cause a potential ecological risk to aquatic organisms. In the near future, higher concentrations of BPF and BPAF in surface waters are anticipated and for this reason further testing using test systems with various aquatic species and endpoints are needed to provide additional information about toxic impacts of BPF and BPAF on aquatic biota. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Applying adverse outcome pathways and species sensitivity-weighted distribution to predicted-no-effect concentration derivation and quantitative ecological risk assessment for bisphenol A and 4-nonylphenol in aquatic environments: A case study on Tianjin City, China.

    PubMed

    Wang, Ying; Na, Guangshui; Zong, Humin; Ma, Xindong; Yang, Xianhai; Mu, Jingli; Wang, Lijun; Lin, Zhongsheng; Zhang, Zhifeng; Wang, Juying; Zhao, Jinsong

    2018-02-01

    Adverse outcome pathways (AOPs) are a novel concept that effectively considers the toxic modes of action and guides the ecological risk assessment of chemicals. To better use toxicity data including biochemical or molecular responses and mechanistic data, we further developed a species sensitivity-weighted distribution (SSWD) method for bisphenol A and 4-nonylphenol. Their aquatic predicted-no-effect concentrations (PNECs) were derived using the log-normal statistical extrapolation method. We calculated aquatic PNECs of bisphenol A and 4-nonylphenol with values of 4.01 and 0.721 µg/L, respectively. The ecological risk of each chemical in different aquatic environments near Tianjin, China, a coastal municipality along the Bohai Sea, was characterized by hazard quotient and probabilistic risk quotient assessment techniques. Hazard quotients of 7.02 and 5.99 at 2 municipal sewage sites using all of the endpoints were observed for 4-nonylphenol, which indicated high ecological risks posed by 4-nonylphenol to aquatic organisms, especially endocrine-disrupting effects. Moreover, a high ecological risk of 4-nonylphenol was indicated based on the probabilistic risk quotient method. The present results show that combining the SSWD method and the AOP concept could better protect aquatic organisms from adverse effects such as endocrine disruption and could decrease uncertainty in ecological risk assessment. Environ Toxicol Chem 2018;37:551-562. © 2017 SETAC. © 2017 SETAC.

  4. Effects of the herbicide imazapyr on juvenile Oregon spotted frogs

    USGS Publications Warehouse

    Yahnke, Amy E.; Grue, Christian E.; Hayes, Marc P.; Troiano, Alexandra T.

    2013-01-01

    Conflict between native amphibians and aquatic weed management in the Pacific Northwest is rarely recognized because most native stillwater-breeding amphibian species move upland during summer, when herbicide application to control weeds in aquatic habitats typically occurs. However, aquatic weed management may pose a risk for aquatic species present in wetlands through the summer, such as the Oregon spotted frog (OSF, Rana pretiosa), a state endangered species in Washington. Acute toxicity of herbicides used to control aquatic weeds tends to be low, but the direct effects of herbicide tank mixes on OSFs have remained unexamined. We exposed juvenile OSFs to tank mixes of the herbicide imazapyr, a surfactant, and a marker dye in a 96-h static-renewal test. The tank mix was chosen because of its low toxicity to fish and its effectiveness in aquatic weed control. Concentrations were those associated with low-volume (3.5 L/ha) and high-volume (7.0 L/ha) applications of imazapyr and a clean-water control. Following exposure, frogs were reared for two months in clean water to identify potential latent effects on growth. Endpoints evaluated included feeding behavior, growth, and body and liver condition indices. We recorded no mortalities and found no significant differences for any end point between the herbicide-exposed and clean-water control frogs. The results suggest that imazapyr use in wetland restoration poses a low risk of direct toxic effects on juvenile OSFs.

  5. Deriving Sediment Interstitial Water Remediation Goals ...

    EPA Pesticide Factsheets

    This document contains a methodology for developing interstitial water remediation goals (IWRGs) for nonionic organic pollutants (toxicants) in sediments for the protection of benthic organisms. The document provides the basis for using the final chronic values (FCVs) from EPA’s aquatic water quality criteria (AWQC) for the protection of aquatic life to set the IWRGs for toxicants in sediments. Concentrations of the toxicants in the sediment interstitial water are measured using passive sampling. This document also discusses how to evaluate the consistency between passive sampling measurements and sediment toxicity test results. When these data are consistent, one can be reasonably assured that the causes of toxicity to benthic organisms in the sediment have been correctly identified and that the developed IWRGs for the toxicants will be protective of the benthic organisms at the site. The consistency evaluation is an important step in developing defensible IWRGs. To assist in developing defensible IWRGs.

  6. Are we in the dark ages of environmental toxicology?

    PubMed

    McCarty, L S

    2013-12-01

    Environmental toxicity is judged to be in a "dark ages" period due to longstanding limitations in the implementation of the simple conceptual model that is the basis of current aquatic toxicity testing protocols. Fortunately, the environmental regulatory revolution of the last half-century is not substantially compromised as development of past regulatory guidance was designed to deal with limited amounts of relatively poor quality toxicity data. However, as regulatory objectives have substantially increased in breadth and depth, aquatic toxicity data derived with old testing methods are no longer adequate. In the near-term explicit model description and routine assumption validation should be mandatory. Updated testing methods could provide some improvements in toxicological data quality. A thorough reevaluation of toxicity testing objectives and methods resulting in substantially revised standard testing methods, plus a comprehensive scheme for classification of modes/mechanisms of toxic action, should be the long-term objective. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Metabolomic Approaches for Characterizing Aquatic Ecosystems

    EPA Science Inventory

    Metabolomics is becoming a well-established tool for studying how organisms, such as fish, respond to various stressors. For example, the literature is rich with laboratory studies involving analysis of samples from organisms exposed to individual chemical toxicants. These studie...

  8. Toxicity of Sodium Bicarbonate to Fish from Coal-Bed Natural Gas Production in the Tongue and Powder River Drainages, Montana and Wyoming

    USGS Publications Warehouse

    ,

    2006-01-01

    This study evaluates the sensitivity of aquatic life to sodium bicarbonate (NaHCO3), a major constituent of coal-bed natural gas-produced water. Excessive amounts of sodium bicarbonate in the wastewater from coal-bed methane natural gas production released to freshwater streams and rivers may adversely affect the ability of fish to regulate their ion uptake. The collaborative study focuses on the acute and chronic toxicity of sodium bicarbonate on select fish species in the Tongue and Powder River drainages in southeastern Montana and northeastern Wyoming. Sodium bicarbonate is not naturally present in appreciable concentrations within the surface waters of the Tongue and Powder River drainages; however, the coal-bed natural gas wastewater can reach levels over 1,000 milligrams per liter. Large concentrations have been shown to be acutely toxic to native fish (Mount and others, 1997). In 2003, with funding and guidance provided by the U.S. Environmental Protection Agency, the Montana Fish, Wildlife, and Parks and the U.S. Geological Survey initiated a collaborative study on the potential effects of coal-bed natural gas wastewater on aquatic life. A major goal of the study is to provide information to the State of Montana Water Quality Program needed to develop an aquatic life standard for sodium bicarbonate. The standard would allow the State, if necessary, to establish targets for sodium bicarbonate load reductions.

  9. Photolysis and cellular toxicities of the organic ultraviolet filter chemical octyl methoxycinnamate and its photoproducts.

    PubMed

    Stein, Hannah V; Berg, Courtney J; Maung, Jessica N; O'Connor, Lauren E; Pagano, Alexandra E; MacManus-Spencer, Laura A; Paulick, Margot G

    2017-06-21

    Organic ultraviolet filter chemicals (UVFCs) are the active ingredients used in many sunscreens to protect the skin from UV light; these chemicals have been detected in numerous aquatic environments leading to concerns about how they might affect aquatic organisms and humans. One commonly used organic UVFC is octyl methoxycinnamate (OMC), better known by its commercial name, octinoxate. Upon exposure to UV light, OMC degrades rapidly, forming numerous photoproducts, some of which have been previously identified. In this study, we isolated and completely characterized the major products of OMC photolysis, including the two major stable OMC cyclodimers. One of these cyclodimers is a δ-truxinate, resulting from a head-to-head dimerization of two OMC molecules, and the other cyclodimer is an α-truxillate, resulting from a head-to-tail dimerization of two OMC molecules. Additionally, the cellular toxicities of the individual photoproducts were determined; it was found that the parent UVFC, OMC, 4-methoxybenzaldehyde, and two cyclodimers are significantly toxic to cells. The photoproduct 2-ethylhexanol is not cytotoxic, demonstrating that different components of OMC photolysate contribute differently to its cellular toxicity. This study thus provides an enhanced understanding of OMC photolysis and gives toxicity data that can be used to better evaluate OMC as a sunscreen agent.

  10. Metal toxicity differently affects the Iris pseudacorus-arbuscular mycorrhiza fungi symbiosis in terrestrial and semi-aquatic habitats.

    PubMed

    Wężowicz, K; Turnau, K; Anielska, T; Zhebrak, I; Gołuszka, K; Błaszkowski, J; Rozpądek, P

    2015-12-01

    Phytoremediation offers an environmental friendly alternative to conventional cleanup techniques. In this study, mycorrhizal fungi isolated from the roots of Mentha longifolia grown in the basin of the Centuria River (S Poland) were used. Iris pseudacorus was grown in substratum from an industrial waste, enriched in Pb, Fe, Zn, and Cd in a terrestrial and water-logged habitat. Plant yield and photosynthetic performance was the highest in the aquatic environment; however, the presence of toxic metals (TM) negatively affected photosystem II (PSII) photochemistry as shown by the JIP test. Fungi colonization and Cd accumulation within plant tissues was decreased. In the terrestrial habitat, neither arbuscular mycorrhizal fungi (AMF) nor metal toxicity affected plant growth, although metal uptake, Cd in particular, as well as photosynthesis were affected. Inoculated plants accumulated significantly more Cd, and photosynthesis was downregulated. The results presented in this study clearly indicate that the I. pseudacorus-AMF symbiosis adapts itself to the presence of toxic metals in the environment, optimizing resource supply, energy fluxes, and possibly stress tolerance mechanisms. Plant/AMF consortia grown in terrestrial and water-logged habitats utilize different strategies to cope with metal toxicity. The use of AMF in improving the phytoremediation potential of I. pseudacorus needs, however, further research.

  11. Theoretical investigation on the kinetics and mechanisms of hydroxyl radical-induced transformation of parabens and its consequences for toxicity: Influence of alkyl-chain length.

    PubMed

    Gao, Yanpeng; Ji, Yuemeng; Li, Guiying; An, Taicheng

    2016-03-15

    As emerging organic contaminants (EOCs), the ubiquitous presence of preservative parabens in water causes a serious environmental concern. Hydroxyl radical ((•)OH) is a strong oxidant that can degrade EOCs through photochemistry in surface water environments as well as in advanced oxidation processes (AOPs). To better understand the degradation mechanisms, kinetics, and products toxicity of the preservative parabens in aquatic environments and AOPs, the (•)OH-initiated degradation reactions of the four parabens were investigated systematically using a computational approach. The four studied parabens with increase of alkyl-chain length were methylparaben (MPB), ethylparaben (EPB), propylparaben (PPB), and dibutylparaben (BPB). Results showed that the four parabens can be initially attacked by (•)OH through (•)OH-addition and H-abstraction routes. The (•)OH-addition route was more important for the degradation of shorter alkyl-chain parabens like MPB and EPB, while the H-abstraction route was predominant for the degradation of parabens with longer alkyl-chain for example PPB and BPB. In assessing the aquatic toxicity of parabens and their degradation products using the model calculations, the products of the (•)OH-addition route were found to be more toxic to green algae than original parabens. Although all degradation products were less toxic to daphnia and fish than corresponding parental parabens, they could be still harmful to these aquatic organisms. Furthermore, as alkyl-chain length increased, the ecotoxicity of parabens and their degradation products was found to be also increased. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The influence of particles on bioavailability and toxicity of pesticides in surface water.

    PubMed

    Knauer, Katja; Homazava, Nadzeya; Junghans, Marion; Werner, Inge

    2017-07-01

    Environmental risk assessment is an essential part of the approval process for pesticides. Exposure concentrations are compared with ecotoxicological data obtained from standardized laboratory studies and, if available, from field studies to determine the risk of a substance or formulation for aquatic communities. Predicted concentrations in surface waters are derived using, for example, the European FOrum for the Co-ordination of pesticide fate models and their USe (FOCUS) or the German Exposit models, which distinguish between exposure to dissolved and particle-associated pesticide concentrations, because the dissolved concentration is thought to be the best predictor of bioavailability and toxicity. Water and particle-associated concentrations are estimated based on the organic carbon-water partitioning coefficient (K OC ). This review summarizes published information on the influence of natural suspended solids on bioavailability and toxicity of pesticides to aquatic organisms (algae, invertebrates and fish), and the value of log K OC and log K OW (octanol-water coefficient) as sole predictors of the bioavailable fraction is discussed. The information showed that: 1) the quality and origin of suspended solids played an important role in influencing pesticide bioavailability and toxicity; 2) a decrease in toxicity due to the presence of suspended solids was shown only for pyrethroid insecticides with log K OW greater than 5, but the extent of this reduction depended on particle concentration and size, and potentially also on the ecotoxicological endpoint; 3) for pesticides with a log K OW less than 3 (e.g., triazines, carbamates, and organophosphates), the impact of particles on bioavailability and toxicity is small and species dependent; and 4) pesticide bioavailability is greatly influenced by the test species and their physiology (e.g., feeding behavior or digestion). We conclude that exposure of aquatic organisms to pesticides and environmental risk of many pesticides might be underestimated in prospective risk assessment, when predicted environmental concentration is estimated based on the K OC of a compound. Integr Environ Assess Manag 2017;13:585-600. © 2016 SETAC. © 2016 SETAC.

  13. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    PubMed Central

    Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A. C.

    2014-01-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review. PMID:25356733

  14. Chemical compounds toxic to invertebrates isolated from marine cyanobacteria of potential relevance to the agricultural industry.

    PubMed

    Essack, Magbubah; Alzubaidy, Hanin S; Bajic, Vladimir B; Archer, John A C

    2014-10-29

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  15. Acute and chronic toxicity of boron to a variety of freshwater organisms.

    PubMed

    Soucek, David J; Dickinson, Amy; Koch, Brian T

    2011-08-01

    Boron enters the aquatic environment from various sources, including weathering of borates, sewage effluents, coal combustion, use of cleaning compounds, and agrochemicals. The present study was designed to generate data on acute and chronic boron toxicity in support of an update of water quality standards in Illinois, USA. We examined the acute toxicity of boron to eight different freshwater organisms including a fish, an insect, two crustaceans, and four bivalve mollusks. To our knowledge, this is the first study to present data on the toxicity of boron to freshwater mollusks. We also sought to clarify whether hardness or pH affect boron toxicity to aquatic life, and to quantify chronic effect levels in two freshwater species. Sensitivity among the various species ranged widely, with the fathead minnow (Pimephales promelas) being the most sensitive. Neither pH nor hardness had a consistent effect on acute boron toxicity to two crustaceans (Ceriodaphnia dubia and Hyalella azteca), but we observed evidence that chloride reduces boron toxicity to H. azteca. The fathead minnow, while more acutely sensitive than the other species, had a lower acute to chronic ratio than did H. azteca, which had reduced reproduction at 13 mg/L. While we do not know the extent to which the eight tested species represent the range of sensitivities of native but untested species in Illinois, the current water quality standard for Illinois (1 mg/L) is conservative with regard to the native species tested thus far. Copyright © 2011 SETAC.

  16. 40 CFR 158.2060 - Biochemical pesticides nontarget organisms and environmental fate data requirements table.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., one avian dietary, one acute freshwater fish, one acute freshwater invertebrate study, plant toxicity... R R CR R CR TGAI, EP 2, 3, 4, 5 850.1010 Aquatic invertebrate acute toxicity, freshwater R R CR R CR....1500 Freshwater fish/invertebrate testing CR CR NR CR NR TGAI 10 850.1025850.1035 850.1045 850.1055 850...

  17. The sensitivity of aquatic insects to divalent metals: a comparative analysis of laboratory and field data.

    PubMed

    Brix, Kevin V; DeForest, David K; Adams, William J

    2011-09-15

    Laboratory studies have traditionally indicated that aquatic insects are relatively insensitive to metals while field studies have suggested them to be among the most sensitive aquatic invertebrate taxa. We reviewed and synthesized available studies in the literature to critically assess why this discrepancy exists. Despite the intense effort to study the effects of metals on aquatic biota over the past several decades, we found studies specific to insects to still be relatively limited. In general, the discrepancy between laboratory and field studies continues with few efforts having been made to elucidate the ecological and physiological mechanisms that underlie the relative sensitivity (or insensitivity) of aquatic insects to metals. However, given the limited data available, it appears that aquatic insects are indeed relatively insensitive to acute metal exposures. In contrast, we suggest that some aquatic insect taxa may be quite sensitive to chronic metal exposure and in some cases may not be protected by existing water quality criteria for metals. The discrepancy between laboratory and field studies with respect to chronic sensitivity appears to largely be driven by the relatively short exposure periods in laboratory studies as compared to field studies. It also appears that, in some cases, the sensitivity of aquatic insects in field studies may be the result of direct effects on primary producers, which lead to indirect effects via the food chain on aquatic insects. Finally, available evidence suggests that diet is an important source of metal accumulation in insects, but to date there have been no conclusive studies evaluating whether dietary metal accumulation causes toxicity. There is a clear need for developing a more mechanistic understanding of aquatic insect sensitivity to metals in long-term laboratory and field studies. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Water Quality Criteria for Copper Based on the BLM Approach in the Freshwater in China

    PubMed Central

    Zhang, Yahui; Zang, Wenchao; Qin, Lumei; Zheng, Lei; Cao, Ying; Yan, Zhenguang; Yi, Xianliang; Zeng, Honghu; Liu, Zhengtao

    2017-01-01

    The bioavailability and toxicity of metals to aquatic organisms are highly dependent on water quality parameters in freshwaters. The biotic ligand model (BLM) for copper is an approach to generate the water quality criteria (WQC) with water chemistry in the ambient environment. However, few studies were carried out on the WQCs for copper based on the BLM approach in China. In the present study, the toxicity for copper to native Chinese aquatic organisms was conducted and the published toxicity data with water quality parameters to Chinese aquatic species were collected to derive the WQCs for copper by the BLM approach. The BLM-based WQCs (the criterion maximum criteria (CMC) and the criterion continuous concentration (CCC)) for copper in the freshwater for the nation and in the Taihu Lake were obtained. The CMC and CCC values for copper in China were derived to be 1.391 μg/L and 0.495 μg/L, respectively, and the CMC and CCC in the Taihu Lake were 32.194 μg/L and 9.697 μg/L. The high concentration of dissolved organic carbon might be a main reason which resulted in the higher WQC values in the Taihu Lake. The WQC of copper in the freshwater would provide a scientific foundation for water quality standards and the environment risk assessment in China. PMID:28166229

  19. Impacts of low-molecular-weight organic acids on aquatic behavior of graphene nanoplatelets and their induced algal toxicity and antioxidant capacity.

    PubMed

    Wang, Zhuang; Gao, Yucheng; Wang, Se; Fang, Hao; Xu, Defu; Zhang, Fan

    2016-06-01

    Knowledge of the interaction between graphene-based materials and low-molecular-weight organic acids (LOAs) is essential to understand fate and effects of graphene-based materials in the aquatic environment, but this interaction remains poorly elucidated. In this study, the effects of LOAs on the physicochemical properties of graphene nanoplatelets (GNPs) in an aqueous medium and on the GNP toxicity to algae were studied. The unicellular green alga Scenedesmus obliquus was exposed to GNP suspensions in the presence of benzoic acid or gallic acid at various concentrations. The GNPs had smaller hydrodynamic sizes and the GNP suspensions were more stable and had higher or lower surface zeta potentials in the presence of LOAs than when LOAs were not present. The toxic effects in S. obliquus cultures incubated with GNP suspensions containing LOAs were related to the LOA concentration, and the presence of LOAs caused three effects: stimulation, alleviation, and synergistic inhibition. The intensities of the effects mainly correlated with the LOA concentration, the extent of agglomeration, and particle-induced oxidative stress. The results indicate that the environmental fates and toxicities of GNPs are strongly affected by the binding of GNPs to LOAs.

  20. Augmenting aquatic species sensitivity distributions with interspecies toxicity estimation models

    EPA Science Inventory

    Species sensitivity distributions (SSD) are cumulative distribution functions of species toxicity values. The SSD approach is increasingly being used in ecological risk assessment, but is often limited by available toxicity data necessary for diverse species representation. In ...

  1. PHOTOTOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS IN COASTAL GREAT LAKES WATERS

    EPA Science Inventory

    Photoinduced toxicity is the exacerbated toxicity of environmental contaminants by UV radiation. Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) has been well established in the laboratory for numerous aquatic species including larval fish. The contaminants sub-p...

  2. Towards Mechanistic Understanding of Mercury Availability and Toxicity to Aquatic Primary Producers.

    PubMed

    Dranguet, Perrine; Flück, Rebecca; Regier, Nicole; Cosio, Claudia; Le Faucheur, Séverine; Slaveykova, Vera I

    2014-11-01

    The present article reviews current knowledge and recent progress on the bioavailability and toxicity of mercury to aquatic primary producers. Mercury is a ubiquitous toxic trace element of global concern. At the base of the food web, primary producers are central for mercury incorporation into the food web. Here, the emphasis is on key, but still poorly understood, processes governing the interactions between mercury species and phytoplankton, and macrophytes, two representatives of primary producers. Mass transfer to biota surface, adsorption to cell wall, internalization and release from cells, as well as underlying toxicity mechanisms of both inorganic mercury and methylmercury are discussed critically. In addition, the intracellular distribution and transformation processes, their importance for mercury toxicity, species-sensitivity differences and trophic transfer are presented. The mini-review is illustrated with examples of our own research.

  3. The influence of mechanochemical modification on prevention of toxic ability of humic acids towards phenanthrene in aquatic environment

    NASA Astrophysics Data System (ADS)

    Shekhovtsova, N. S.; Maltseva, E. V.; Glyzina, T. S.; Ovchinnikova, I. S.

    2015-11-01

    The aim of the research work is to quantify interaction between phenanthrene with modified humic acids in aquatic environment. The changes in the structure and properties of humic acids after modifications were studied with 1H NMR spectroscopy and potentiometric titration methods. Our research demonstrates that the application of thiourea as a modified agent increases the binding capacity of humic acids towards phenanthrene.

  4. 40 CFR 158.660 - Nontarget plant protection data requirements table.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vigor R R R TEP 1, 2, 3, 7 850.4400850.5400 Aquatic plant growth (algal and aquatic vascular plant... plant growth (algal and aquatic vascular plant toxicity) CR CR CR TEP or TGAI 1, 4, 6, 7 Nontarget Area... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Nontarget plant protection data...

  5. 40 CFR 158.660 - Nontarget plant protection data requirements table.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... vigor R R R TEP 1, 2, 3, 7 850.4400850.5400 Aquatic plant growth (algal and aquatic vascular plant... plant growth (algal and aquatic vascular plant toxicity) CR CR CR TEP or TGAI 1, 4, 6, 7 Nontarget Area... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Nontarget plant protection data...

  6. 40 CFR 158.660 - Nontarget plant protection data requirements table.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vigor R R R TEP 1, 2, 3, 7 850.4400850.5400 Aquatic plant growth (algal and aquatic vascular plant... plant growth (algal and aquatic vascular plant toxicity) CR CR CR TEP or TGAI 1, 4, 6, 7 Nontarget Area... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Nontarget plant protection data...

  7. 40 CFR 158.660 - Nontarget plant protection data requirements table.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vigor R R R TEP 1, 2, 3, 7 850.4400850.5400 Aquatic plant growth (algal and aquatic vascular plant... plant growth (algal and aquatic vascular plant toxicity) CR CR CR TEP or TGAI 1, 4, 6, 7 Nontarget Area... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Nontarget plant protection data...

  8. 40 CFR 131.38 - Establishment of numeric criteria for priority toxic pollutants for the State of California.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Great Lakes Water Quality Initiative Criteria Documents for the Protection of Aquatic Life in Ambient... water quality criteria to protect against acute effects in aquatic life and is the highest instream... any aquatic life or human health use classifications in the Water Quality Control Plans for the...

  9. Cross-species evaluation of molecular target sequence and structural conservation as a line of evidence for identification of susceptible taxa to inform derivation of aquatic life criteria

    EPA Science Inventory

    The 1985 U.S. Environmental Protection Agency (EPA) Guidelines for Deriving Aquatic Life Criteria (ALC) require acute and chronic toxicity testing with a fixed list of taxa that cover aquatic organisms from vertebrates, invertebrates, and plants. In considering Guideline revision...

  10. Aquatic plants: Test species sensitivity and minimum data requirement evaluations for chemical risk assessments and aquatic life criteria development for the USA

    EPA Science Inventory

    Phytotoxicity results from the publicly-available ECOTOX database were summarized for 20 chemicals and 188 aquatic plants to determine species sensitivities and the ability of a species-limited toxicity data set to serve as a surrogate for a larger data set. The lowest effect con...

  11. 40 CFR 158.660 - Nontarget plant protection data requirements table.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vigor R R R TEP 1, 2, 3, 7 850.4400850.5400 Aquatic plant growth (algal and aquatic vascular plant... plant growth (algal and aquatic vascular plant toxicity) CR CR CR TEP or TGAI 1, 4, 6, 7 Nontarget Area... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Nontarget plant protection data...

  12. Can't take the heat: Temperature-enhanced toxicity in the mayfly Isonychia bicolor exposed to the neonicotinoid insecticide imidacloprid.

    PubMed

    Camp, A A; Buchwalter, D B

    2016-09-01

    Neonicotinoid insecticide usage has increased globally in recent decades. Neonicotinoids, such as imidacloprid, are potent insect neurotoxicants that may pose a threat to non-target aquatic organisms, such as aquatic insects. In nature, insects typically live in thermally fluctuating conditions, which may significantly alter both contaminant exposures and affects. Here we investigate the relationship between temperature and time-to-effect for imidacloprid toxicity with the aquatic insect Isonychia bicolor, a lotic mayfly. Additionally, we examined the mechanisms driving temperature-enhanced toxicity including metabolic rate, imidacloprid uptake rate, and tissue bioconcentration. Experiments included acute toxicity tests utilizing sublethal endpoints and mortality, as well as respirometry and radiotracer assays with [(14)C] imidacloprid. Further, we conducted additional uptake experiments with a suite of aquatic invertebrates (including I. bicolor, Neocloeon triangulifer, Macaffertium modestum, Pteronarcys proteus, Acroneuria carolinensis, and Pleuroceridae sp) to confirm and contextualize our findings from initial experiments. The 96h EC50 (immobility) for I. bicolor at 15°C was 5.81μg/L which was approximately 3.2 fold lower than concentrations associated with 50% mortality. Assays examining the impact of temperature were conducted at 15, 18, 21, and 24°C and demonstrated that time-to-effect for sublethal impairment and immobility was significantly decreased with increasing temperature. Uptake experiments with [(14)C] imidacloprid revealed that initial uptake rates were significantly increased with increasing temperature for I. bicolor, as were oxygen consumption rates. Further, in the separate experiment with multiple species across temperatures 15, 20, and 25°C, we found that all the aquatic insects tested had significantly increased imidacloprid uptake with increasing temperatures, with N. triangulifer accumulating the most imidacloprid on a mass-specific basis. Our acute toxicity results highlight the importance of evaluating sublethal endpoints, as profound impairments of motor function were evident far before mortality. Further, we demonstrate that temperature is a powerful modulator of sublethal toxicity within a range of environmentally relevant temperatures, impacting both uptake rates and metabolic rates of I. bicolor. Finally, we show that temperature alters imidacloprid uptake across a range of species, highlighting the physiological variation present within aquatic invertebrate communities and the challenge associated with relying solely on surrogate species. Taken together, this research points to the need to consider the role of temperature in toxicity assessments. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Using semipermeable membrane devices (SPMDs) to assess the toxicity and teratogenicity of aquatic amphibian habitats

    USGS Publications Warehouse

    Bridges, C.M.; Little, E.E.; Linder, Gregory L.; Krest, S.; Sparling, Don; Little, Edward

    2003-01-01

    Environmental contamination has been suspected of being partially responsible for recent declines in amphibian populations. It is often not feasible to identify all of the compounds in an environment, nor the concentrations in which they are present. SPMDs are passive sampling devices that uptake lipophilic compounds from the environment in a manner similar to aquatic organisms. The extracts from the SPMDs, therefore, contain a composite sample of the compounds that are present in the environment. In this paper, we outline the methods from studies in which we have used extracts from SPMDs in toxicity tests on amphibian larvae. Using SPMD extracts makes it possible to establish potential links between amphibian deformities and declines and environmental contamination by lipophilic compounds.

  14. Toxicity of diesel water accommodated fraction toward microalgae, Pseudokirchneriella subcapitata and Chlorella sp. MM3.

    PubMed

    Ramadass, Kavitha; Megharaj, Mallavarapu; Venkateswarlu, Kadiyala; Naidu, Ravi

    2017-08-01

    Diesel is a commonly used fuel and a key pollutant on water surface through leaks and accidental spills, thus creating risk directly to planktons as well as other aquatic organisms. We assessed the toxicty of diesel and its water accommodated fraction (WAF) towards two microalgal species, Pseudokirchneriella subcapitata and Chlorella sp. MM3. The toxicity criteria included were: chlorophyll a content as a growth parameter and induction of enzyme activities linked to oxidative stress. Increase in concentrations of diesel or its WAF significantly increased toxicity towards growth, measured in terms of chlorophyll a content in both the algae. Activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) in response to addition of diesel or diesel WAF to the microalgal cultures were dose-dependent. Diesel WAF was more toxic than diesel itself, suggesting that use of WAF may be more relevant for environmental risk assessment of diesel. The overall response of the antioxidant enzymes to toxicants' stress followed the order: POX≥SOD>CAT. The present study clearly demonstrated the use of SOD, POX and CAT as suitable biomarkers for assessing diesel pollution in aquatic ecosystem. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Photoenhanced Toxicity of Petroleum to Aquatic Invertebrates and Fish: Review of State of the Science

    EPA Science Inventory

    Photoenhanced toxicity is a distinct mechanism of petroleum toxicity that is mediated by the interaction of solar radiation with specific polycyclic aromatic compounds (PACs) in oil. Phototoxicity is observed as a 2 to greater than 1000 fold increase in chemical toxicity to aqua...

  16. MOAtox: A comprehensive mode of action and acute aquatic toxicity database for predictive model development (SETAC abstract)

    EPA Science Inventory

    The mode of toxic action (MOA) has been recognized as a key determinant of chemical toxicity and as an alternative to chemical class-based predictive toxicity modeling. However, the development of quantitative structure activity relationship (QSAR) and other models has been limit...

  17. MOAtox: A Comprehensive Mode of Action and Acute Aquatic Toxicity Database for Predictive Model Development

    EPA Science Inventory

    tThe mode of toxic action (MOA) has been recognized as a key determinant of chemical toxicity andas an alternative to chemical class-based predictive toxicity modeling. However, the development ofquantitative structure activity relationship (QSAR) and other models has been limite...

  18. A Novel Approach for Predicting Sublethal Effects of Toxicants to Aquatic Organisms

    DTIC Science & Technology

    1984-11-30

    sublethal levels of copper. Overall, WSF P JP-4 appears to affect osmoregulation and liver function. These effects were much more pronounced in fish...i "-’p WOSR.TR. .0 8 Lfl SA NOVEL APPROACH FOR PREDICTING SUBLETHAL EFFECTS OF SI TOXICANTS TO AQUATIC ORGANISMS FINAL SCIENTIFIC REPORT GRANT AFOSR...alan A Novel Approach for �F 2312 AS JPredicting Sublethal Effects of Tbxicants to Aymtic- 12. PERIISONAL AUTHORIS) OrganISMS -Cairns, J.,-Jr

  19. Preliminary Evaluation of the Acute Toxicity of Desensitized Primer Compounds and Primer Waste Effluents to Representative Aquatic Organisims

    DTIC Science & Technology

    1975-11-01

    WASHINGTON, D.C. 20314 CONTRACT NO. DAMD-17-75-C-5050 ,E G & G, Bionomics 790 Main Street Wareham, Massachusetts APPROVED FOR PUBLIC RELEASE...were conducted at the Aquatic Toxicology Laboratory of E G & G, Bionomics , Wareham, Massachusetts, to provide the U.S. Army Medical Research. and...desensitized at the Frankford Arsenal, Philadelphia, Pa., prior to shipment to Bionomics , for use in toxicity tests. Desensitization involved boiling

  20. Photodegradation of pharmaceuticals in the aquatic environment by sunlight and UV-A, -B and -C irradiation.

    PubMed

    Kawabata, Kohei; Sugihara, Kazumi; Sanoh, Seigo; Kitamura, Shigeyuki; Ohta, Shigeru

    2013-01-01

    In order to investigate the effect of sunlight on the persistence and ecotoxicity of pharmaceuticals contaminating the aquatic environment, we exposed nine pharmaceuticals (acetaminophen (AA), amiodarone (AM), dapsone (DP), dexamethasone (DX), indomethacin (IM), naproxen (NP), phenytoin (PH), raloxifene (RL), and sulindac (SL)) in aqueous media to sunlight and to ultraviolet (UV) irradiation at 254, 302 or 365 nm (UV-C, UV-B or UV-A, respectively). Degradation of the pharmaceuticals was monitored by means of high-performance liquid chromatography (HPLC). Sunlight completely degraded AM, DP and DX within 6 hr, and partly degraded the other pharmaceuticals, except AA and PH, which were not degraded. Similar results were obtained with UV-B, while UV-A was less effective (both UV-A and -B are components of sunlight). All the pharmaceuticals were photodegraded by UV-C, which is used for sterilization in sewage treatment plants. Thus, the photodegradation rates of pharmaceuticals are dependent on both chemical structure and the wavelength of UV exposure. Toxicity assay using the luminescent bacteria test (ISO11348) indicated that UV irradiation reduced the toxicity of some pharmaceuticals to aquatic organisms by decreasing their amount (photodegradation) and increased the toxicity of others by generating toxic photoproduct(s). These results indicate the importance of investigating not only parent compounds, but also photoproducts in the risk assessment of pharmaceuticals in aquatic environments.

  1. Effects of intra- and interspecific competition on the sensitivity of aquatic macroinvertebrates to carbendazim.

    PubMed

    Del Arco, Ana Isabel; Parra, Gema; Rico, Andreu; Van den Brink, Paul J

    2015-10-01

    The Ecological Risk Assessment of pesticides and other potentially toxic chemicals is generally based on toxicity data obtained from single-species laboratory experiments. In the field, however, contaminant effects are ubiquitously co-occurring with ecological interactions such as species competition and predation, which might influence the sensitivity of the individuals exposed to toxicants. The present experimental study investigated how intra- and interspecific competition influence the response of sensitive aquatic organisms to a pesticide. For this, the effects of the fungicide carbendazim were assessed on the mortality and growth of the snail Bithynia tentaculata and the crustacean Gammarus pulex under different levels of intraspecific and interspecific competition for a food resource. Interspecific competition was created by adding individuals of Radix peregra and Asellus aquaticus, respectively. The interaction of competition and carbendazim exposure significantly influenced B. tentaculata growth, however, combined effects on survival and immobility were considered transient and were less easily demonstrated. Positive influence of competition on G. pulex survival was observed under low-medium carbendazim concentrations and under medium-high density pressures, being partly related to cannibalistic and predation compensatory mechanisms, enhanced under food limiting conditions. This study shows that intra- and interspecific competition pressure may influence the response of sensitive aquatic organisms in a more complex way (positive, non-significant and negative effects were observed) than just increasing the sensitivity of the studied species, as has generally been hypothesized. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. AN OVERVIEW OF TOXICANT IDENTIFICATION IN SEDIMENTS AND DREDGED MATERIALS

    EPA Science Inventory

    The identification of toxicants affecting aquatic benthic systems is critical to sound assessment and management of our nation?s waterways. Identification of toxicants can be useful in designing effective sediment remediation plans and reasonable options for sediment disposal. K...

  3. POREWATER TOXICITY TESTING: AN OVERVIEW

    EPA Science Inventory

    Sediments act as sinks for contaminants, where they may build up to toxic levels. Sediments containing toxic levels of contaminants pose a risk to aquatic life, human health, and wildlife. There is an overwhelming amount of evidence that demonstrates chemicals in sediments are re...

  4. USE OF MERCENARIA MERCENARIA IN MULTIPLE SPECIES TESTING

    EPA Science Inventory

    The Toxicity Identification Evaluation (TIE) approach was first developed for determining the causes of toxicity in effluents discharged into the aquatic environment. Soon, TIEs were being used for assessing the causes of toxicity in sediment interstitial waters. Now, both fres...

  5. Feeding Behavior of an Aquatic Snail as a Simple Endpoint to Assess the Exposure to Cadmium.

    PubMed

    Alonso, Álvaro; Valle-Torres, Guillermo

    2018-01-01

    One of the aims of ecotoxicology is the assessment of the effects of chemicals on the ecosystems. Bioassays assessing lethality are frequently used in ecotoxicology, however they usually employ supra-environmental toxic concentrations. Toxicity tests employing behavioral endpoints may present a balance between simplicity (i.e., laboratory bioassays) and complexity (i.e., relevant ecological effects). The aim of this study was to develop a feeding behavioral bioassay with the aquatic snail, Potamopyrgus antipodarum, which included a 2 days exposure to cadmium, followed by a 9 days post-exposure observational period. Several behavioral feeding endpoints were monitored, including percentage of actively feeding animals, percentage of animals in food quadrants and a mobility index. The percentage of actively feeding animals was reduced by the four cadmium treatments (0.009, 0.026, 0.091 and 0.230 mg Cd/L) with the stronger effect in the highest concentration. The two highest cadmium concentrations significantly reduced the percentage of animals in food quadrants and the mobility index. Therefore, the percentage of actively feeding animals was the most sensitive endpoint to cadmium toxicity as the four cadmium concentrations caused a significant decrease in this endpoint. It is concluded that feeding behavior is a useful endpoint to detect the exposure of aquatic snails to cadmium.

  6. Evaluation of triclosan in Minnesota lakes and rivers: Part I - ecological risk assessment.

    PubMed

    Lyndall, Jennifer; Barber, Timothy; Mahaney, Wendy; Bock, Michael; Capdevielle, Marie

    2017-08-01

    Triclosan, an antimicrobial compound found in consumer products, may be introduced into the aquatic environment via residual concentrations in municipal wastewater treatment effluent. We conducted an aquatic risk assessment that incorporated the available measured triclosan data from Minnesota lakes and rivers. Although only data reported from Minnesota were considered in the risk assessment, the developed toxicity benchmarks can be applied to other environments. The data were evaluated using a series of environmental fate models to ensure the data were internally consistent and to fill any data gaps. Triclosan was not detected in over 75% of the 567 surface water and sediment samples. Measured environmental data were used to model the predicted environmental exposures to triclosan in surface water, surface sediment, and biota tissues. Toxicity benchmarks based on fatty acid synthesis inhibition and narcosis were determined for aquatic organisms based, in part, on a species sensitivity distribution of chronic toxicity thresholds from the available literature. Predicted and measured environmental concentrations for surface water, sediment, and tissue were below the effects benchmarks, indicating that exposure to triclosan in Minnesota lakes and rivers would not pose an unacceptable risk to aquatic organisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Using biotic ligand models to predict metal toxicity in mineralized systems

    USGS Publications Warehouse

    Smith, Kathleen S.; Balistrieri, Laurie S.; Todd, Andrew S.

    2015-01-01

    The biotic ligand model (BLM) is a numerical approach that couples chemical speciation calculations with toxicological information to predict the toxicity of aquatic metals. This approach was proposed as an alternative to expensive toxicological testing, and the U.S. Environmental Protection Agency incorporated the BLM into the 2007 revised aquatic life ambient freshwater quality criteria for Cu. Research BLMs for Ag, Ni, Pb, and Zn are also available, and many other BLMs are under development. Current BLMs are limited to ‘one metal, one organism’ considerations. Although the BLM generally is an improvement over previous approaches to determining water quality criteria, there are several challenges in implementing the BLM, particularly at mined and mineralized sites. These challenges include: (1) historically incomplete datasets for BLM input parameters, especially dissolved organic carbon (DOC), (2) several concerns about DOC, such as DOC fractionation in Fe- and Al-rich systems and differences in DOC quality that result in variations in metal-binding affinities, (3) water-quality parameters and resulting metal-toxicity predictions that are temporally and spatially dependent, (4) additional influences on metal bioavailability, such as multiple metal toxicity, dietary metal toxicity, and competition among organisms or metals, (5) potential importance of metal interactions with solid or gas phases and/or kinetically controlled reactions, and (6) tolerance to metal toxicity observed for aquatic organisms living in areas with elevated metal concentrations.

  8. AMEG: the new SETAC advisory group on aquatic macrophyte ecotoxicology

    PubMed Central

    Davies, Jo; Dobbs, Michael; Ebke, Peter; Hanson, Mark; Hommen, Udo; Knauer, Katja; Loutseti, Stefania; Maltby, Lorraine; Mohr, Silvia; Poovey, Angela; Poulsen, Véronique

    2010-01-01

    Introduction and background Primary producers play critical structural and functional roles in aquatic ecosystems; therefore, it is imperative that the potential risks of toxicants to aquatic plants are adequately assessed in the risk assessment of chemicals. The standard required macrophyte test species is the floating (non-sediment-rooted) duckweed Lemna spp. This macrophyte species might not be representative of all floating, rooted, emergent, and submerged macrophyte species because of differences in the duration and mode of exposure; sensitivity to the specific toxic mode of action of the chemical; and species-specific traits (e.g., duckweed's very short generation time). Discussion and perspectives These topics were addressed during the workshop entitled “Aquatic Macrophyte Risk Assessment for Pesticides” (AMRAP) where a risk assessment scheme for aquatic macrophytes was proposed. Four working groups evolved from this workshop and were charged with the task of developing Tier 1 and higher-tier aquatic macrophyte risk assessment procedures. Subsequently, a SETAC Advisory Group, the Macrophyte Ecotoxicology Group (AMEG) was formed as an umbrella organization for various macrophyte working groups. The purpose of AMEG is to provide scientifically based guidance in all aspects of aquatic macrophyte testing in the laboratory and field, including prospective as well as retrospective risk assessments for chemicals. As AMEG expands, it will begin to address new topics including bioremediation and sustainable management of aquatic macrophytes in the context of ecosystem services. PMID:20191396

  9. AMEG: the new SETAC advisory group on aquatic macrophyte ecotoxicology.

    PubMed

    Arts, Gertie; Davies, Jo; Dobbs, Michael; Ebke, Peter; Hanson, Mark; Hommen, Udo; Knauer, Katja; Loutseti, Stefania; Maltby, Lorraine; Mohr, Silvia; Poovey, Angela; Poulsen, Véronique

    2010-05-01

    Primary producers play critical structural and functional roles in aquatic ecosystems; therefore, it is imperative that the potential risks of toxicants to aquatic plants are adequately assessed in the risk assessment of chemicals. The standard required macrophyte test species is the floating (non-sediment-rooted) duckweed Lemna spp. This macrophyte species might not be representative of all floating, rooted, emergent, and submerged macrophyte species because of differences in the duration and mode of exposure; sensitivity to the specific toxic mode of action of the chemical; and species-specific traits (e.g., duckweed's very short generation time). These topics were addressed during the workshop entitled "Aquatic Macrophyte Risk Assessment for Pesticides" (AMRAP) where a risk assessment scheme for aquatic macrophytes was proposed. Four working groups evolved from this workshop and were charged with the task of developing Tier 1 and higher-tier aquatic macrophyte risk assessment procedures. Subsequently, a SETAC Advisory Group, the Macrophyte Ecotoxicology Group (AMEG) was formed as an umbrella organization for various macrophyte working groups. The purpose of AMEG is to provide scientifically based guidance in all aspects of aquatic macrophyte testing in the laboratory and field, including prospective as well as retrospective risk assessments for chemicals. As AMEG expands, it will begin to address new topics including bioremediation and sustainable management of aquatic macrophytes in the context of ecosystem services.

  10. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review.

    PubMed

    Morrissey, Christy A; Mineau, Pierre; Devries, James H; Sanchez-Bayo, Francisco; Liess, Matthias; Cavallaro, Michael C; Liber, Karsten

    2015-01-01

    Neonicotinoids, broad-spectrum systemic insecticides, are the fastest growing class of insecticides worldwide and are now registered for use on hundreds of field crops in over 120 different countries. The environmental profile of this class of pesticides indicate that they are persistent, have high leaching and runoff potential, and are highly toxic to a wide range of invertebrates. Therefore, neonicotinoids represent a significant risk to surface waters and the diverse aquatic and terrestrial fauna that these ecosystems support. This review synthesizes the current state of knowledge on the reported concentrations of neonicotinoids in surface waters from 29 studies in 9 countries world-wide in tandem with published data on their acute and chronic toxicity to 49 species of aquatic insects and crustaceans spanning 12 invertebrate orders. Strong evidence exists that water-borne neonicotinoid exposures are frequent, long-term and at levels (geometric means=0.13μg/L (averages) and 0.63μg/L (maxima)) which commonly exceed several existing water quality guidelines. Imidacloprid is by far the most widely studied neonicotinoid (66% of the 214 toxicity tests reviewed) with differences in sensitivity among aquatic invertebrate species ranging several orders of magnitude; other neonicotinoids display analogous modes of action and similar toxicities, although comparative data are limited. Of the species evaluated, insects belonging to the orders Ephemeroptera, Trichoptera and Diptera appear to be the most sensitive, while those of Crustacea (although not universally so) are less sensitive. In particular, the standard test species Daphnia magna appears to be very tolerant, with 24-96hour LC50 values exceeding 100,000μg/L (geometric mean>44,000μg/L), which is at least 2-3 orders of magnitude higher than the geometric mean of all other invertebrate species tested. Overall, neonicotinoids can exert adverse effects on survival, growth, emergence, mobility, and behavior of many sensitive aquatic invertebrate taxa at concentrations at or below 1μg/L under acute exposure and 0.1μg/L for chronic exposure. Using probabilistic approaches (species sensitivity distributions), we recommend here that ecological thresholds for neonicotinoid water concentrations need to be below 0.2μg/L (short-term acute) or 0.035μg/L (long-term chronic) to avoid lasting effects on aquatic invertebrate communities. The application of safety factors may still be warranted considering potential issues of slow recovery, additive or synergistic effects and multiple stressors that can occur in the field. Our analysis revealed that 81% (22/27) and 74% (14/19) of global surface water studies reporting maximum and average individual neonicotinoid concentrations respectively, exceeded these thresholds of 0.2 and 0.035μg/L. Therefore, it appears that environmentally relevant concentrations of neonicotinoids in surface waters worldwide are well within the range where both short- and long-term impacts on aquatic invertebrate species are possible over broad spatial scales. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Predicting toxic effects of copper on aquatic biota in mineralized areas by using the Biotic Ligand Model

    USGS Publications Warehouse

    Smith, Kathleen S.; Ranville, James F.; Adams, M.; Choate, LaDonna M.; Church, Stan E.; Fey, David L.; Wanty, Richard B.; Crock, James G.

    2006-01-01

    The chemical speciation of metals influences their biological effects. The Biotic Ligand Model (BLM) is a computational approach to predict chemical speciation and acute toxicological effects of metals on aquatic biota. Recently, the U.S. Environmental Protection Agency incorporated the BLM into their regulatory water-quality criteria for copper. Results from three different laboratory copper toxicity tests were compared with BLM predictions for simulated test-waters. This was done to evaluate the ability of the BLM to accurately predict the effects of hardness and concentrations of dissolved organic carbon (DOC) and iron on aquatic toxicity. In addition, we evaluated whether the BLM and the three toxicity tests provide consistent results. Comparison of BLM predictions with two types of Ceriodaphnia dubia toxicity tests shows that there is fairly good agreement between predicted LC50 values computed by the BLM and LC50 values determined from the two toxicity tests. Specifically, the effect of increasing calcium concentration (and hardness) on copper toxicity appears to be minimal. Also, there is fairly good agreement between the BLM and the two toxicity tests for test solutions containing elevated DOC, for which the LC50 is 3-to-5 times greater (less toxic) than the LC50 for the lower-DOC test water. This illustrates the protective effects of DOC on copper toxicity and demonstrates the ability of the BLM to predict these protective effects. In contrast, for test solutions with added iron there is a decrease in LC50 values (increase in toxicity) in results from the two C. dubia toxicity tests, and the agreement between BLM LC50 predictions and results from these toxicity tests is poor. The inability of the BLM to account for competitive iron binding to DOC or DOC fractionation may be a significant shortcoming of the BLM for predicting site- specific water-quality criteria in streams affected by iron-rich acidic drainage in mined and mineralized areas.

  12. Ecotoxicology of aluminum to fish and wildlife

    USGS Publications Warehouse

    Sparling, D.W.; Lowe, T.P.; Campbell, P.G.C.; Yokel, Robert A.; Golub, Mari S.

    1997-01-01

    The toxicity of aluminum has been studied extensively in fish, less so in invertebrates, amphibians, and birds, and not at all in reptiles and free-ranging mammals. For aquatic organisms, Al bioavailability and toxicity are intimately related to ambient pH; changes in ambient acidity may affect Al solubility, dissolved Al speciation, and organism sensitivity to Al. At moderate acidity (pH 5.5 to 7.0), fish and invertebrates may be stressed due to Al adsorption onto gill surfaces and subsequent asphyxiation. At pH 4.5 to 5.5, Al can impair ion regulation and augment the toxicity of H+. At lower pH, elevated Al can temporarily ameliorate the toxic effects of acidity by competing for binding sites with H+. Aluminum toxicity in aquatic environments is further affected by the concentration of ligands such as dissolved organic matter, fluoride, or sulfate, and of other cations such as Ca and Mg which compete for cellular binding sites. Although risk of Al toxicity is often based on a model of free-ion (Al3+) activity, recent evidence suggests that factors determining Al toxicity may be more complex. In general, aquatic invertebrates are less sensitive to Al toxicity and acidity than fish; thus acidified, Al-rich waters may actually reduce predation pressure. Fish may be affected by asphyxiation at moderate acidic conditions or electrolyte imbalances at lower pH. In amphibians, embryos and young larvae are typically more sensitive than older larvae. Early breeding amphibians, which lay eggs in ephemeral ponds and streams subject to spring runoff, are most at risk from Al and acidification; those that breed later in the year in lakes or rivers are least vulnerable. Birds and mammals are most likely exposed through dietary ingestion of soil or Al-contaminated foods. Concentrations > 1000 mg.kg-1 in food may be toxic to young birds and mammals. Clinical signs in these animals are consistent with rickets because Al precipitates with P in the gut. Suggestions for additional research on the ecotoxicology of Al to wild animals are provided.

  13. Can thiol compounds be used as biomarkers of aquatic ecosystem contamination by cadmium?

    PubMed Central

    Kovářová, Jana; Svobodová, Zdeňka

    2009-01-01

    Due to anthropogenic activities, heavy metals still represent a threat for various trophic levels. If aquatic animals are exposed to heavy metals we can obviously observe considerable toxicity. It is well known that an organism affected by cadmium (Cd) synthesize low molecular mass thiol compounds rich in cysteine (Cys), such as metallothioneins (MT) and glutathione (GSH/GSSG). The aim of this study was to summarize the effect of Cd on level of thiol compounds in aquatic organisms, and evaluate that the concentrations of thiol compounds are effective indicators of Cd water pollution and explain their potential use in biomonitoring applications. PMID:21217850

  14. Effects of COREXIT (registered trademark) EC9500A on Bacteria from a Beach Oiled by the Deepwater Horizon Spill

    DTIC Science & Technology

    2011-01-01

    AQUATIC MICROBIAL ECOLOGY Aquat Microb Ecol Vol. 63: 101–109, 2011 doi: 10.3354/ame01482 Published online March 31 INTRODUCTION The mobile offshore...toxicity tests confirm that COREXIT® EC9500A does not pose a significant threat to invertebrate and adult fish pop- ulations, there is limited information on...Deepwater Horizon incident. Although toxicity tests confirm that COREXIT? EC9500A does not pose a significant threat to invertebrate and adult fish

  15. Alternative aircraft anti-icing formulations with reduced aquatic toxicity and biochemical oxygen demand

    USGS Publications Warehouse

    Gold, Harris; Joback, Kevin; Geis, Steven; Bowman, George; Mericas, Dean; Corsi, Steven R.; Ferguson, Lee

    2010-01-01

    The current research was conducted to identify alternative aircraft and pavement deicer and anti-icer formulations with improved environmental characteristics compared to currently used commercial products (2007). The environmental characteristics of primary concern are the biochemical oxygen demand (BOD) and aquatic toxicity of the fully formulated products. Except when the distinction among products is necessary for clarity, “deicer” will refer to aircraft-deicing fluids (ADFs), aircraft anti-icing fluids (AAFs), and pavementdeicing materials (PDMs).

  16. ASSESSING RISKS FROM PHOTOACTIVATED TOXICITY OF PAHS TO AQUATIC ORGANISMS

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) are one of the most ubiquitous classes of environmental contaminants. Although most PAHs are toxic only at concentrations large enough to cause narcosis, the toxicity of some can be greatly enhanced through mechanisms that involve molecul...

  17. Sediment Toxicity Identification Evaluations (TIEs): Manipulating Bioavailability to Whole Organisms to Identify Environmental Toxins

    EPA Science Inventory

    Toxicity tests are a common method for determining whether sediment contaminants represent an environmental risk. Toxicity tests indicate if contaminants in sediments are bioavailable and capable of causing adverse biological effects to whole aquatic organisms. Several environmen...

  18. USE OF ZEOLITE FOR REMOVING AMMONIA AND AMMONIA-CAUSED TOXCITY IN MARINE TOXICITY IDENTIFCATION EVALUATIONS (TIES)

    EPA Science Inventory

    Ammonia occurs in marine waters including effluents, receiving waters, and sediment interstitial waters. At sufficiently high concentrations, ammonia can be toxic to aquatic species. Toxicity identification evaluation (TIE) methods provide researchers with tools for identifyi...

  19. 40 CFR 158.630 - Terrestrial and aquatic nontarget organisms data requirements table.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... toxicity R CR R R NR NR TGAI 1 850.3030 Honey bee toxicity of residues on foliage CR CR CR CR NR NR TEP 24... LD50 of bee as determined in the honey bee acute contact study and the use pattern(s) indicate(s) that honey bees may be exposed to the pesticide. 25. Required if any of the following...

  20. 40 CFR 158.630 - Terrestrial and aquatic nontarget organisms data requirements table.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... toxicity R CR R R NR NR TGAI 1 850.3030 Honey bee toxicity of residues on foliage CR CR CR CR NR NR TEP 24... LD50 of bee as determined in the honey bee acute contact study and the use pattern(s) indicate(s) that honey bees may be exposed to the pesticide. 25. Required if any of the following...

  1. 40 CFR 158.630 - Terrestrial and aquatic nontarget organisms data requirements table.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... toxicity R CR R R NR NR TGAI 1 850.3030 Honey bee toxicity of residues on foliage CR CR CR CR NR NR TEP 24... LD50 of bee as determined in the honey bee acute contact study and the use pattern(s) indicate(s) that honey bees may be exposed to the pesticide. 25. Required if any of the following...

  2. 40 CFR 158.630 - Terrestrial and aquatic nontarget organisms data requirements table.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... toxicity R CR R R NR NR TGAI 1 850.3030 Honey bee toxicity of residues on foliage CR CR CR CR NR NR TEP 24... contains one or more active ingredients having an acute LD50 of bee as determined in the honey bee acute contact study and the use pattern(s) indicate(s) that honey bees may be exposed to the...

  3. Release of Metal Impurities from Carbon Nanomaterials Influences Aquatic Toxicity

    DTIC Science & Technology

    2009-01-01

    nanoparticles were more acutely toxic to zebrafish than could be explained by dissolution alone. Derfus et al. (12) reported that oxidation of CdSe...extracts that are generated during some nanomanufacturing processes (21). Metals-laden wastes are of particular concern given the known toxicological ...that researchers continue to evaluate the toxicological behavior of engineered nanomaterials, our results emphasize the need for studies to evaluate

  4. Contrasting effects of hypoxia on copper toxicity during development in the three-spined stickleback (Gasterosteus aculeatus).

    PubMed

    Fitzgerald, Jennifer A; Katsiadaki, Ioanna; Santos, Eduarda M

    2017-03-01

    Hypoxia is a global problem in aquatic systems and often co-occurs with pollutants. Despite this, little is known about the combined effects of these stressors on aquatic organisms. The objective of this study was to investigate the combined effects of hypoxia and copper, a toxic metal widespread in the aquatic environment. We used the three-spined stickleback (Gasterosteus aculeatus) as a model because of its environmental relevance and amenability for environmental toxicology studies. We focused on embryonic development as this is considered to be a sensitive life stage to environmental pollution. We first investigated the effects of hypoxia alone on stickleback development to generate the information required to design subsequent studies. Our data showed that exposure to low oxygen concentrations (24.7 ± 0.9% air saturation; AS) resulted in strong developmental delays and increased mortalities, whereas a small decrease in oxygen (75.0 ± 0.5%AS) resulted in premature hatching. Stickleback embryos were then exposed to a range of copper concentrations under hypoxia (56.1 ± 0.2%AS) or normoxia (97.6 ± 0.1%AS), continuously, from fertilisation to free swimming larvae. Hypoxia caused significant changes in copper toxicity throughout embryonic development. Prior to hatching, hypoxia suppressed the occurrence of mortalities, but after hatching hypoxia significantly increased copper toxicity. Interestingly, when exposures were conducted only after hatching, the onset of copper-induced mortalities was delayed under hypoxia compared to normoxia, but after 48 h, copper was more toxic to hatched embryos under hypoxia. This is the second species for which the protective effect of hypoxia on copper toxicity prior to hatching, followed by its exacerbating effect after hatching is demonstrated, suggesting the hypothesis that this pattern may be common for teleost species. Our research highlights the importance of considering the interactions between multiple stressors, as understanding these interactions is essential to facilitate the accurate prediction of the consequences of exposure to complex stressors in a rapidly changing environment. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Long-term (30 days) toxicity of NiO nanoparticles for adult zebrafish Danio rerio

    PubMed Central

    Kovrižnych, Jevgenij A.; Zeljenková, Dagmar; Rollerová, Eva; Szabová, Elena

    2014-01-01

    Nickel oxide in the form of nanoparticles (NiO NPs) is extensively used in different industrial branches. In a test on adult zebrafish, the acute toxicity of NiO NPs was shown to be low, however longlasting contact with this compound can lead to its accumulation in the tissues and to increased toxicity. In this work we determined the 30-day toxicity of NiO NPs using a static test for zebrafish Danio rerio. We found the 30-day LC50 value to be 45.0 mg/L, LC100 (minimum concentration causing 100% mortality) was 100.0 mg/L, and LC0 (maximum concentration causing no mortality) was 6.25 mg/L for adult individuals of zebrafish. Considering a broad use of Ni in the industry, NiO NPs chronic toxicity may have a negative impact on the population of aquatic organisms and on food web dynamics in aquatic systems. PMID:26038672

  6. Long-term (30 days) toxicity of NiO nanoparticles for adult zebrafish Danio rerio.

    PubMed

    Kovrižnych, Jevgenij A; Sotníková, Ružena; Zeljenková, Dagmar; Rollerová, Eva; Szabová, Elena

    2014-03-01

    Nickel oxide in the form of nanoparticles (NiO NPs) is extensively used in different industrial branches. In a test on adult zebrafish, the acute toxicity of NiO NPs was shown to be low, however longlasting contact with this compound can lead to its accumulation in the tissues and to increased toxicity. In this work we determined the 30-day toxicity of NiO NPs using a static test for zebrafish Danio rerio. We found the 30-day LC50 value to be 45.0 mg/L, LC100 (minimum concentration causing 100% mortality) was 100.0 mg/L, and LC0 (maximum concentration causing no mortality) was 6.25 mg/L for adult individuals of zebrafish. Considering a broad use of Ni in the industry, NiO NPs chronic toxicity may have a negative impact on the population of aquatic organisms and on food web dynamics in aquatic systems.

  7. Ecological risk assessment of bisphenol A in surface waters of China based on both traditional and reproductive endpoints.

    PubMed

    Guo, Lei; Li, Zhengyan; Gao, Pei; Hu, Hong; Gibson, Mark

    2015-11-01

    Bisphenol A (BPA) occurs widely in natural waters with both traditional and reproductive toxicity to various aquatic species. The water quality criteria (WQC), however, have not been established in China, which hinders the ecological risk assessment for the pollutant. This study therefore aims to derive the water quality criteria for BPA based on both acute and chronic toxicity endpoints and to assess the ecological risk in surface waters of China. A total of 15 acute toxicity values tested with aquatic species resident in China were found in published literature, which were simulated with the species sensitivity distribution (SSD) model for the derivation of criterion maximum concentration (CMC). 18 chronic toxicity values with traditional endpoints were simulated for the derivation of traditional criterion continuous concentration (CCC) and 12 chronic toxicity values with reproductive endpoints were for reproductive CCC. Based on the derived WQC, the ecological risk of BPA in surface waters of China was assessed with risk quotient (RQ) method. The results showed that the CMC, traditional CCC and reproductive CCC were 1518μgL(-1), 2.19μgL(-1) and 0.86μgL(-1), respectively. The acute risk of BPA was negligible with RQ values much lower than 0.1. The chronic risk was however much higher with RQ values of between 0.01-3.76 and 0.03-9.57 based on traditional and reproductive CCC, respectively. The chronic RQ values on reproductive endpoints were about threefold as high as those on traditional endpoints, indicating that ecological risk assessment based on traditional effects may not guarantee the safety of aquatic biota. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The toxic effects of l-Cysteine-capped cadmium sulfide nanoparticles on the aquatic plant Spirodela polyrrhiza

    NASA Astrophysics Data System (ADS)

    Khataee, Alireza; Movafeghi, Ali; Nazari, Fatemeh; Vafaei, Fatemeh; Dadpour, Mohammad Reza; Hanifehpour, Younes; Joo, Sang Woo

    2014-12-01

    Plants play an important role in the fate of nanoparticles in the environment through their uptake, bioaccumulation, and transfer to trophic chains. However, the impacts of nanoparticles on plants as essential components of all ecosystems are not well documented. In the present study, the toxic effects of l-Cysteine-capped CdS nanoparticles on Spirodela polyrrhiza as an aquatic higher plant species were studied. l-Cysteine-capped CdS nanoparticles were synthesized using hydrothermal method and their characteristics were determined by XRD, SEM, HR-TEM, and FT-IR techniques. The diameter of majority of synthesized nanoparticles was about 15-20 nm. Subsequently, the uptake of l-Cysteine-capped CdS nanoparticles by the plant species was confirmed using epifluorescence microscopy. The activity of peroxidase and superoxide dismutase as antioxidant enzymes was assayed and the relative frond number was calculated in the presence of different concentrations of l-Cysteine-capped CdS nanoparticles. The obtained results revealed the toxic effects of the synthesized nanoparticles on S. polyrrhiza, leading to growth reduction and significant changes in antioxidant enzymes' activity.

  9. In vitro bioassays reveal that additives are significant contributors to the toxicity of commercial household pesticides.

    PubMed

    van de Merwe, Jason P; Neale, Peta A; Melvin, Steven D; Leusch, Frederic D L

    2018-06-01

    Pesticides commonly used around households can contain additives of unknown concentrations and toxicity. Given the likelihood of these chemicals washing into urban waterways, it is important to understand the effects that these additives may have on aquatic organisms. The aim of this study was to compare the toxicity of commercially available household pesticides to that of the active ingredient(s) alone. The toxicity of five household pesticides (three herbicides and two insecticides) was investigated using a bacterial cytotoxicity bioassay and an algal photosynthesis bioassay. The commercial products were up to an order of magnitude more toxic than the active ingredient(s) alone. In addition, two commercial products with the same listed active ingredients in the same ratio had a 600× difference in potency. These results clearly demonstrate that additives in commercial formulations are significant contributors to the toxicity of household pesticides. The toxicity of pesticides in aquatic systems is therefore likely underestimated by conventional chemical monitoring and risk assessment when only the active ingredients are considered. Regulators and customers should require more clarity from pesticide manufacturers about the nature and concentrations of not only the active ingredients, but also additives used in commercial formulations. In addition, monitoring programmes and chemical risk assessments schemes should develop a structured approach to assessing the toxic effects of commercial formulations, including additives, rather than simply those of the listed active ingredients. Copyright © 2018. Published by Elsevier B.V.

  10. Ecotoxicological evaluation of two anti-dandruff hair shampoos using Lemna minor.

    PubMed

    Azizullah, Azizullah; Shakir, Shakirullah Khan; Shoaib, Shahana; Bangash, Halima; Taimur, Nadia; Murad, Waheed; Daud, Muhammad Khan

    2018-04-04

    Hair shampoos, a mixture of various organic and organic compounds, are commonly used personnel care products. Since shampoos are used in almost every household and beauty shop, their ingredients are common components of domestic and municipal wastewater. However, studies on the effect of shampoos to aquatic plants can hardly be found in literature. Therefore, the present study was conducted to investigate the phytotoxic effects of two commonly used anti-dandruff shampoos (named here AD 1 and AD 2) using Lemna minor as a biotest organism. For toxicity assessment, frond number, fresh and dry biomass, and light-harvesting pigments (chlorophyll a, b and total carotenoids) of Lemna were used as end points. Five different concentrations (0.001, 0.01, 0.1, 1, and 5%) of each shampoo were tested in comparison to the control. At lower concentrations of shampoos, some minor and non-significant stimulatory effects were observed in some parameters, but at concentrations above 0.01% both the shampoos significantly inhibited almost all parameters in Lemna. The EC 50 values obtained for frond number were 0.034 and 0.11% for AD 1 and AD 2, respectively. The fresh biomass gave EC 50 values of 0.07 and 0.066% for AD 1 and AD 2, respectively. Based on the preset study, it can be speculated that shampoo contamination at higher concentrations in water bodies can be a threat to aquatic organisms. This study can be used as a baseline to further investigate shampoo toxicity using other species and to explore the mechanism of shampoo toxicity in aquatic plants.

  11. Evaluation of ionic contribution to the toxicity of a coal-mine effluent using Ceriodaphnia dubia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, A.J.; Cherry, D.S.; Zipper, C.E.

    2005-08-01

    The United States Environmental Protection Agency has defined national in-stream water-quality criteria (WQC) for 157 pollutants. No WQC to protect aquatic life exist for total dissolved solids (TDS). Some water-treatment processes (e.g., pH modifications) discharge wastewaters of potentially adverse TDS into freshwater systems. Strong correlations between specific conductivity, a TDS surrogate, and several biotic indices in a previous study suggested that TDS caused by a coal-mine effluent was the primary stressor. Further acute and chronic testing in the current study with Ceriodaphnia dubia in laboratory-manipulated media indicated that the majority of the effluent toxicity could be attributed to the mostmore » abundant ions in the discharge, sodium (1952 mg/L) and/or sulfate (3672 mg/L), although the hardness of the effluent (792 43 mg/L as CaCO{sub 3}) ameliorated some toxicity. Based on laboratory testing of several effluent-mimicking media, sodium- and sulfate-dominated TDS was acutely toxic at approximately 7000 {mu} S/cm (5143 mg TDS/L), and chronic toxicity occurred at approximately 3200 {mu} S/cm (2331 mg TDS/L). At a lower hardness (88 mg/L as CaCO{sub 3}), acute and chronic toxicity end-points were decreased to approximately 5000 {mu} S/cm (3663 mg TDS/L) and approximately 2000 {mu} S/cm (1443 mg TDS/L), respectively. Point-source discharges causing in-stream TDS concentrations to exceed these levels may risk impairment to aquatic life.« less

  12. Coal-tar-based pavement sealcoat—Potential concerns for human health and aquatic life

    USGS Publications Warehouse

    Mahler, Barbara J.; Woodside, Michael D.; Van Metre, Peter C.

    2016-04-20

    Aquatic Life Concerns—Runoff from coal-tar-sealcoated pavement, even runoff collected more than 3 months after sealcoat application, is acutely toxic to fathead minnows and water fleas, two species commonly used to assess toxicity to aquatic life. Exposure to even highly diluted runoff from coal-tar-sealcoated pavement can cause DNA damage and impair DNA repair. These findings demonstrate that coal-tar-sealcoat runoff can remain a risk to aquatic life for months after application.

  13. Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae--state of the art and knowledge gaps.

    PubMed

    von Moos, Nadia; Slaveykova, Vera I

    2014-09-01

    Nanotechnology has revolutionised many areas of modern life, technology and research, which is reflected in the steadily increasing global demand for and consumption of engineered nanomaterials and the inevitable increase of their release into the environment by human activity. The overall long-term impact of engineered nanomaterials on ecosystems is still unknown. Various inorganic nanoparticles have been found to exhibit bactericidal properties and cause growth inhibition in model aquatic microalgae, but the mechanisms of toxicity are not yet fully understood. The causal link between particle properties and biological effects or reactive oxygen species generation is not well established and represents the most eminent quest of nanoecotoxicological investigation. In this review, the current mechanistic understanding of the toxicity of inorganic metal and metal oxide engineered nanomaterials towards bacterial and aquatic microalgal model organisms based on the paradigm of oxidative stress is presented along with a detailed compilation of available literature on the major toxicity factors and research methods.

  14. Aquatic toxicity information retrieval data base (AQUIRE for non-vms) (1600 bpi). Data file

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The purpose of AQUIRE is to provide scientists and managers quick access to a comprehensive, systematic, computerized compilation of aquatic toxicity data. During 1992 and early 1993, nine data updates were made to the AQUIRE system. AQUIRE now contains 109,338 individual aquatic toxicity test results for 5,159 chemicals, 2,429 organisms, and over 160 endpoints reviewed from 7,517 publications. New features include a data selection option that permits searches that are restricted to data added or modified through any of the eight most recent updates, and a report generation (Full Record Detail) that displays the entire AQUIRE record for each testmore » identified in a search. Selection of the Full Record Detail feature allows the user to peruse all AQUIRE fields for a given test, including the information stored in the remarks section, while the standard AQUIRE output format presents selected data fields in a concise table. The standard report remains an available option for rapid viewing of system output.« less

  15. Aquatic toxicity information retrieval data base (AQUIRE for non-vms) (6250 bpi). Data file

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The purpose of AQUIRE is to provide scientists and managers quick access to a comprehensive, systematic, computerized compilation of aquatic toxicity data. During 1992 and early 1993, nine data updates were made to the AQUIRE system. AQUIRE now contains 109,338 individual aquatic toxicity test results for 5,159 chemicals, 2,429 organisms, and over 160 endpoints reviewed from 7,517 publications. New features include a data selection option that permits searches that are restricted to data added or modified through any of the eight most recent updates, and a report generation (Full Record Detail) that displays the entire AQUIRE record for each testmore » identified in a search. Selection of the Full Record Detail feature allows the user to peruse all AQUIRE fields for a given test, including the information stored in the remarks section, while the standard AQUIRE output format presents selected data fields in a concise table. The standard report remains an available option for rapid viewing of system output.« less

  16. Photoenhanced toxicity of weathered crude oil in sediment and water to larval zebrafish

    EPA Science Inventory

    Solar radiation exposure can increase the toxicity of bioaccumulated oil compounds in a diversity of aquatic species. We investigated the photoenhanced toxicity of weathered South Louisiana crude oil in sediment and water accommodated fractions (WAF) to larval zebrafish. Larvae w...

  17. ToxPredictor: a Toxicity Estimation Software Tool

    EPA Science Inventory

    The Computational Toxicology Team within the National Risk Management Research Laboratory has developed a software tool that will allow the user to estimate the toxicity for a variety of endpoints (such as acute aquatic toxicity). The software tool is coded in Java and can be ac...

  18. Deriving freshwater safety thresholds for hexabromocyclododecane and comparison of toxicity of brominated flame retardants.

    PubMed

    Dong, Liang; Zheng, Lei; Yang, Suwen; Yan, Zhenguang; Jin, Weidong; Yan, Yuhong

    2017-05-01

    Hexabromocyclododecane (HBCD) is a brominated flame retardant used throughout the world. It has been detected in various environmental media and has been shown toxic to aquatic life. The toxic effects of HBCD to aquatic organisms in Chinese freshwater ecosystems are discussed here. Experiments were conducted with nine types of acute toxicity testing and three types of chronic toxicity testing. After comparing a range of species sensitivity distribution models, the optimal model of Bull III was used to derive the safety thresholds for HBCD. The acute safety threshold and the chronic safety threshold of HBCD for Chinese freshwater organisms were found to be 2.32mg/L and 0.128mg/L, respectively. Both values were verified by the methods of the Netherlands and the United States. HBCD was found to be less toxic compared to other widely used brominated flame retardants. The present results provide valuable information for revision of the water quality standard of HBCD in China. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Eco- and genotoxicity profiling of a rapeseed biodiesel using a battery of bioassays.

    PubMed

    Eck-Varanka, Bettina; Kováts, Nora; Horváth, Eszter; Ferincz, Árpád; Kakasi, Balázs; Nagy, Szabolcs Tamás; Imre, Kornélia; Paulovits, Gábor

    2018-04-30

    Biodiesel is considered an important renewable energy source but still there is some controversy about its environmental toxicity, especially to aquatic life. In our study, the toxicity of water soluble fraction of biodiesel was evaluated in relatively low concentrations using a battery of bioassays: Vibrio fischeri bioluminescence inhibition, Sinapis alba root growth inhibition, Daphnia magna immobilization, boar semen live/dead ratio and DNA fragmentation and Unio pictorum micronucleus test. While the S. alba test indicated nutritive (stimulating) effect of the sample, the biodiesel exerted toxic effect in the aquatic tests. D. magna was the most sensitive with EC 50 value of 0.0226%. For genotoxicity assessment, the mussel micronucleus test (MNT) was applied, detecting considerable genotoxic potential of the biodiesel sample: it elucidated micronuclei formation already at low concentration of 3.3%. Although this test has never been employed in biodiesel eco/genotoxicity assessments, it seems a promising tool, based on its appropriate sensitivity, and representativity. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Global occurrence of pyrethroid insecticides in sediment and the associated toxicological effects on benthic invertebrates: An overview.

    PubMed

    Li, Huizhen; Cheng, Fei; Wei, Yanli; Lydy, Michael J; You, Jing

    2017-02-15

    Pyrethroids are the third most applied group of insecticides worldwide and are extensively used in agricultural and non-agricultural applications. Pyrethroids exhibit low toxicity to mammals, but have extremely high toxicity to fish and non-target invertebrates. Their high hydrophobicity, along with pseudo-persistence due to continuous input, indicates that pyrethroids will accumulate in sediment, pose long-term exposure concerns to benthic invertebrates and ultimately cause significant risk to benthic communities and aquatic ecosystems. The current review synthesizes the reported sediment concentrations of pyrethroids and associated toxicity to benthic invertebrates on a global scale. Geographically, the most studied area was North America, followed by Asia, Europe, Australia and Africa. Pyrethroids were frequently detected in both agricultural and urban sediments, and bifenthrin and cypermethrin were identified as the main contributors to toxicity in benthic invertebrates. Simulated hazard quotients (HQ) for sediment-associated pyrethroids to benthic organisms ranged from 10.5±31.1 (bifenthrin) to 41.7±204 (cypermethrin), suggesting significant risk. The current study has provided evidence that pyrethroids are not only commonly detected in the aquatic environment, but also can cause toxic effects to benthic invertebrates, and calls for better development of accurate sediment quality criteria and effective ecological risk assessment methods for this emerging class of insecticides. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The interactive effects of microcystin-LR and cylindrospermopsin on the growth rate of the freshwater algae Chlorella vulgaris.

    PubMed

    Pinheiro, Carlos; Azevedo, Joana; Campos, Alexandre; Vasconcelos, Vítor; Loureiro, Susana

    2016-05-01

    Microcystin-LR (MC-LR) and cylindrospermopsin (CYN) are the most representative cyanobacterial cyanotoxins. They have been simultaneously detected in aquatic systems, but their combined ecotoxicological effects to aquatic organisms, especially microalgae, is unknown. In this study, we examined the effects of these cyanotoxins individually and as a binary mixture on the growth rate of the freshwater algae Chlorella vulgaris. Using the MIXTOX tool, the reference model concentration addition (CA) was selected to evaluate the combined effects of MC-LR and CYN on the growth of the freshwater green algae due to its conservative prediction of mixture effect for putative similar or dissimilar acting chemicals. Deviations from the CA model such as synergism/antagonism, dose-ratio and dose-level dependency were also assessed. In single exposures, our results demonstrated that MC-LR and CYN had different impacts on the growth rates of C. vulgaris at the highest tested concentrations, being CYN the most toxic. In the mixture exposure trial, MC-LR and CYN showed a synergistic deviation from the conceptual model CA as the best descriptive model. MC-LR individually was not toxic even at high concentrations (37 mg L(-1)); however, the presence of MC-LR at much lower concentrations (0.4-16.7 mg L(-1)) increased the CYN toxicity. From these results, the combined exposure of MC-LR and CYN should be considered for risk assessment of mixtures as the toxicity may be underestimated when looking only at the single cyanotoxins and not their combination. This study also represents an important step to understand the interactions among MC-LR and CYN detected previously in aquatic systems.

  2. SEDIMENT ASSOCIATED PHOTOTOXICITY TO AQUATIC ORGANISMS

    EPA Science Inventory

    Phototoxicity is a two to greater than 1000-fold increase in chemical toxicity caused by ultraviolet radation (UV), which has been demonstrated in a broad range of marine and freshwater fish, invertebrates, and other aquatic organisms in water column exposures. Field collected s...

  3. Neurobehavioral toxicity of cadmium sulfate to the planarian Dugesia dorotocephala

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grebe, E.; Schaeffer, D.J.

    1991-05-01

    The authors are developing bioassays which use planarians (free-living platyhelminthes) for the rapid determination of various types of toxicity, including acute mortality, tumorigenicity, and short-term neurobehavioral responses. Their motivation for using these animals is due to their importance as components of the aquatic ecology of unpolluted streams their sensitivity to low concentrations of environmental toxicants and the presence of a sensitive neurological system with a true brain which allows for complex social behavior. A previous paper described the results of a neurobehavioral bioassay using phenol in a crossover study. This paper reports a similar crossover study using cadmium sulfate.

  4. Toxicity of naproxen sodium and its mixture with tramadol hydrochloride on fish early life stages.

    PubMed

    Sehonova, Pavla; Plhalova, Lucie; Blahova, Jana; Doubkova, Veronika; Prokes, Miroslav; Tichy, Frantisek; Fiorino, Emma; Faggio, Caterina; Svobodova, Zdenka

    2017-12-01

    Pharmaceuticals occur in water bodies as a consequence of their incomplete removal during waste water treatment processes. The occurence of pharmaceuticals in surface waters as well as their possible impact on aquatic vertebrates have received considerable attention in recent years. However, there is still a lack of informations on the chronic effects of widely used drugs as well as their possible mixture toxicity on non-target aquatic vertebrates as well as their possible mixture toxicity. The aim of this study was to assess the effects of naproxen sodium on early life stages of fish and evaluate its mixture toxicity with tramadol hydrochloride, which was assessed in our earlier study as a single substance. Two embryo-larval toxicity tests with common carp (Cyprinus carpio) were performed according to the OECD guideline 210 (Fish, Early-life Stage Toxicity Test) in order to assess the subchronic toxicity of naproxen sodium and tramadol hydrochlorid-naproxen sodium mixture at the concentrations of 10; 50; 100 and 200 μg/L. These experiments were conducted for 32 days. The subchronic exposure to naproxen sodium and naproxen sodium and tramadol hydrochloride mixture had a strong effect on the early life stages of common carp. Hatching, developmental rate, morphology, histopathology and, in the case of the naproxen sodium and tramadol hydrochloride mixture, mortality were influenced. The bioindicators of oxidative stress were also influenced. The LOEC was determined at 10 μg/L for both naproxen sodium and naproxen sodium and tramadol hydrochloride mixture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment.

    PubMed

    Camargo, Julio A; Alonso, Alvaro

    2006-08-01

    We provide a global assessment, with detailed multi-scale data, of the ecological and toxicological effects generated by inorganic nitrogen pollution in aquatic ecosystems. Our synthesis of the published scientific literature shows three major environmental problems: (1) it can increase the concentration of hydrogen ions in freshwater ecosystems without much acid-neutralizing capacity, resulting in acidification of those systems; (2) it can stimulate or enhance the development, maintenance and proliferation of primary producers, resulting in eutrophication of aquatic ecosystems; (3) it can reach toxic levels that impair the ability of aquatic animals to survive, grow and reproduce. Inorganic nitrogen pollution of ground and surface waters can also induce adverse effects on human health and economy. Because reductions in SO2 emissions have reduced the atmospheric deposition of H2SO4 across large portions of North America and Europe, while emissions of NOx have gone unchecked, HNO3 is now playing an increasing role in the acidification of freshwater ecosystems. This acidification process has caused several adverse effects on primary and secondary producers, with significant biotic impoverishments, particularly concerning invertebrates and fishes, in many atmospherically acidified lakes and streams. The cultural eutrophication of freshwater, estuarine, and coastal marine ecosystems can cause ecological and toxicological effects that are either directly or indirectly related to the proliferation of primary producers. Extensive kills of both invertebrates and fishes are probably the most dramatic manifestation of hypoxia (or anoxia) in eutrophic and hypereutrophic aquatic ecosystems with low water turnover rates. The decline in dissolved oxygen concentrations can also promote the formation of reduced compounds, such as hydrogen sulphide, resulting in higher adverse (toxic) effects on aquatic animals. Additionally, the occurrence of toxic algae can significantly contribute to the extensive kills of aquatic animals. Cyanobacteria, dinoflagellates and diatoms appear to be major responsible that may be stimulated by inorganic nitrogen pollution. Among the different inorganic nitrogenous compounds (NH4+, NH3, NO2-, HNO2NO3-) that aquatic animals can take up directly from the ambient water, unionized ammonia is the most toxic, while ammonium and nitrate ions are the least toxic. In general, seawater animals seem to be more tolerant to the toxicity of inorganic nitrogenous compounds than freshwater animals, probably because of the ameliorating effect of water salinity (sodium, chloride, calcium and other ions) on the tolerance of aquatic animals. Ingested nitrites and nitrates from polluted drinking waters can induce methemoglobinemia in humans, particularly in young infants, by blocking the oxygen-carrying capacity of hemoglobin. Ingested nitrites and nitrates also have a potential role in developing cancers of the digestive tract through their contribution to the formation of nitrosamines. In addition, some scientific evidences suggest that ingested nitrites and nitrates might result in mutagenicity, teratogenicity and birth defects, contribute to the risks of non-Hodgkin's lymphoma and bladder and ovarian cancers, play a role in the etiology of insulin-dependent diabetes mellitus and in the development of thyroid hypertrophy, or cause spontaneous abortions and respiratory tract infections. Indirect health hazards can occur as a consequence of algal toxins, causing nausea, vomiting, diarrhoea, pneumonia, gastroenteritis, hepatoenteritis, muscular cramps, and several poisoning syndromes (paralytic shellfish poisoning, neurotoxic shellfish poisoning, amnesic shellfish poisoning). Other indirect health hazards can also come from the potential relationship between inorganic nitrogen pollution and human infectious diseases (malaria, cholera). Human sickness and death, extensive kills of aquatic animals, and other negative effects, can have elevated costs on human economy, with the recreation and tourism industry suffering the most important economic impacts, at least locally. It is concluded that levels of total nitrogen lower than 0.5-1.0 mg TN/L could prevent aquatic ecosystems (excluding those ecosystems with naturally high N levels) from developing acidification and eutrophication, at least by inorganic nitrogen pollution. Those relatively low TN levels could also protect aquatic animals against the toxicity of inorganic nitrogenous compounds since, in the absence of eutrophication, surface waters usually present relatively high concentrations of dissolved oxygen, most inorganic reactive nitrogen being in the form of nitrate. Additionally, human health and economy would be safer from the adverse effects of inorganic nitrogen pollution.

  6. Low Frequency Vibrations Induce Malformations in Two Aquatic Species in a Frequency-, Waveform-, and Direction-Specific Manner

    PubMed Central

    Vandenberg, Laura N.; Stevenson, Claire; Levin, Michael

    2012-01-01

    Environmental toxicants such as industrial wastes, air particulates from machinery and transportation vehicles, and pesticide run-offs, as well as many chemicals, have been widely studied for their effects on human and wildlife populations. Yet other potentially harmful environmental pollutants such as electromagnetic pulses, noise and vibrations have remained incompletely understood. Because developing embryos undergo complex morphological changes that can be affected detrimentally by alterations in physical forces, they may be particularly susceptible to exposure to these types of pollutants. We investigated the effects of low frequency vibrations on early embryonic development of two aquatic species, Xenopus laevis (frogs) and Danio rerio (zebrafish), specifically focusing on the effects of varying frequencies, waveforms, and applied direction. We observed treatment-specific effects on the incidence of neural tube defects, left-right patterning defects and abnormal tail morphogenesis in Xenopus tadpoles. Additionally, we found that low frequency vibrations altered left-right patterning and tail morphogenesis, but did not induce neural tube defects, in zebrafish. The results of this study support the conclusion that low frequency vibrations are toxic to aquatic vertebrates, with detrimental effects observed in two important model species with very different embryonic architectures. PMID:23251546

  7. Net acidity indicates the whole effluent toxicity of pH and dissolved metals in metalliferous saline waters.

    PubMed

    Degens, Bradley P; Krassoi, Rick; Galvin, Lynette; Reynolds, Brad; Micevska, Tina

    2018-05-01

    Measurements of potential acidity in water are used to manage aquatic toxicity risks of discharge from acid sulfate soils or acid mine drainage. Net acidity calculated from pH, dissolved metals and alkalinity is a common measurement of potential acidity but the relevance of current risk thresholds to aquatic organisms are unclear. Aquatic toxicity testing was carried out using four halophytic organisms with water from four saline sources in southern Western Australia (3 acidic drains and one alkaline river; 39-40 g TDS/L) where acidity was varied by adjusting pH to 4.5-6.5. The test species were brine shrimps (Artemia salina), locally sourced ostracods (Platycypris baueri), microalgae (Dunaliella salina) and amphipods (Allorchestes compressa). Testing found the EC 10 and IC 10 of net acidity ranged from -7.8 to 10.5 mg CaCO 3 /L with no survival or growth of any species at >47 mg CaCO 3 /L. Reduced net acidity indicated reduced whole effluent toxicity more reliably than increased pH alone with organisms tolerating pH up to 1.1 units lower in the absence of dissolved metals. Variation in toxicity indicated by net acidity was mostly attributed to reduced concentrations of dissolved Al and Fe combined with higher pH and alkalinity and some changes in speciation of Al and Fe with pH. These results indicate that rapid in-field assessments of net acidity in acidic, Al dominated waters may be an indicator of potential acute and sub-chronic impacts on aquatic organisms. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  8. A full evaluation for the enantiomeric impacts of lactofen and its metabolites on aquatic macrophyte Lemna minor.

    PubMed

    Wang, Fang; Liu, Donghui; Qu, Han; Chen, Li; Zhou, Zhiqiang; Wang, Peng

    2016-09-15

    Pesticide pollution of surface water represents a considerable danger for the aquatic plants which play very crucial roles in aquatic system such as oxygen production, nutrient cycling, water quality controlling and sediment stabilization. In this work, the toxic effects of the chiral herbicide lactofen and its three metabolites (desethyl lactofen, acifluorfene and amino acifluorfene) to the aquatic plant Lemna minor (L. minor) on enantiomeric level were evaluated. The influences on growth rate, fresh weight, content of photosynthetic pigment, protein and malondialdehyde (MDA) and the activities of antioxidant defense enzymes (catalase (CAT) and superoxide dismutase (SOD)) were measured after 7 days of exposure. L. minor growth was inhibited in the order of (S)-desethyl lactofen > racemic-desethyl lactofen > (R)-desethyl lactofen > racemic-lactofen > (S)-lactofen > (R)-lactofen > acifluorfene > amino acifluorfene, and the IC50 (7d) values showed desethyl lactofen was the most powerful compound which was about twice as toxic as lactofen. The contents of chlorophylls (Chl) and carotenoids (Car) were significantly reduced by the chemicals, while, the levels of protein, MDA and the activity of CAT and SOD enzymes increased in most cases. The obtained results revealed that lactofen and its metabolites had an undesirable effect on L. minor, in terms of physiological and biochemical aspects. Besides, enantioselective toxicity of lactofen and desethyl lactofen to L. minor was observed. The S-enantiomer of desethyl lactofen was more toxic than the corresponding R-enantiomer. Furthermore, racemic lactofen was more toxic than the individual enantiomers. The side effects of pesticide metabolites and the enantioselectivity should be considered in developing optically pure products and risk assessment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Web-based Interspecies Correlation Estimation

    EPA Science Inventory

    Web-ICE estimates acute toxicity (LC50/LD50) of a chemical to a species, genus, or family from the known toxicity of the chemical to a surrogate species. Web-ICE has modules to predict acute toxicity to aquatic (fish and invertebrates) and wildlife (birds and mammals) taxa for us...

  10. Sulfate transport kinetics and toxicity are modulated by sodium in aquatic insects.

    PubMed

    Scheibener, Shane; Conley, Justin M; Buchwalter, David

    2017-09-01

    The salinization of freshwater ecosystems is emerging as a major ecological issue. Several anthropogenic causes of salinization (e.g. surface coal mining, hydro-fracking, road de-icing, irrigation of arid lands, etc.) are associated with biodiversity losses in freshwater ecosystems. Because insects tend to dominate freshwater ecology, it is important that we develop a better understanding of how and why different species respond to salinity matrices dominated by different major ions. This study builds upon previous work demonstrating that major ion toxicity to the mayfly Neocloeon triangulifer was apparently due to the ionic composition of water rather than specific conductance. Synthetic waters with low Ca:Mg ratios and high SO 4 :Na ratios produced toxicity, whereas waters with higher Ca:Mg ratios and lower SO 4 :Na ratios were not toxic to mayflies at comparable conductivities. Here we used a radiotracer approach to show that Mg did not competitively exclude Ca uptake at environmentally realistic ratios in 4 aquatic insect species. We characterized SO 4 uptake kinetics in 5 mayflies and assessed the influence of different ions on SO 4 uptake. Dual label experiments show an inverse relationship between SO 4 and Na transport rates as SO 4 was held constant and Na was increased, suggesting that Na (and not Cl or HCO 3 ) is antagonistic to SO 4 transport. Based on this observation, we tested the hypothesis that increasing Na would protect against SO 4 induced toxicity in a Na-dependent manner. Increasing Na from 0.7 to 10.9mM improved 96-h survivorship associated with 20.8mM SO 4 from 44% to 73% in a concentration dependent manner. However, when Na reached 21.8mM, survivorship decreased to 16%, suggesting that other interactive effects of major ions caused toxicity under those conditions. Thus, the combination of elevated sulfate and low sodium commonly observed in streams affected by mountaintop coal mining has the potential to cause toxicity in sensitive aquatic insects. Overall, it is important that we develop a better understanding of major ion toxicity to effectively mitigate and protect freshwater biodiversity from salinization. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The effect of pH on the toxicity of fatty acids and fatty acid amides to rainbow trout gill cells.

    PubMed

    Bertin, Matthew J; Voronca, Delia C; Chapman, Robert W; Moeller, Peter D R

    2014-01-01

    Harmful algal blooms (HABs) expose aquatic organisms to multiple physical and chemical stressors during an acute time period. Algal toxins themselves may be altered by water chemistry parameters affecting their bioavailability and resultant toxicity. The purpose of this study was to determine the effects of two abiotic parameters (pH, inorganic metal salts) on the toxicity of fatty acid amides and fatty acids, two classes of lipids produced by harmful algae, including the golden alga, Prymnesium parvum, that are toxic to aquatic organisms. Rainbow trout gill cells were used as a model of the fish gill and exposed to single compounds and mixtures of compounds along with variations in pH level and concentration of inorganic metal salts. We employed artificial neural networks (ANNs) and standard ANOVA statistical analysis to examine and predict the effects of these abiotic parameters on the toxicity of fatty acid amides and fatty acids. Our results demonstrate that increasing pH levels increases the toxicity of fatty acid amides and inhibits the toxicity of fatty acids. This phenomenon is reversed at lower pH levels. Exposing gill cells to complex mixtures of chemical factors resulted in dramatic increases in toxicity compared to tests of single compounds for both the fatty acid amides and fatty acids. These findings highlight the potential of physicochemical factors to affect the toxicity of chemicals released during algal blooms and demonstrate drastic differences in the effect of pH on fatty acid amides and fatty acids. Published by Elsevier B.V.

  12. Fractionation of fulvic acid by iron and aluminum oxides: influence on copper toxicity to Ceriodaphnia dubia

    USGS Publications Warehouse

    Smith, Kathleen S.; Ranville, James F.; Lesher, Emily K.; Diedrich, Daniel J.; McKnight, Diane M.; Sofield, Ruth M.

    2014-01-01

    This study examines the effect on aquatic copper toxicity of the chemical fractionation of fulvic acid (FA) that results from its association with iron and aluminum oxyhydroxide precipitates. Fractionated and unfractionated FAs obtained from streamwater and suspended sediment were utilized in acute Cu toxicity tests on ,i>Ceriodaphnia dubia. Toxicity test results with equal FA concentrations (6 mg FA/L) show that the fractionated dissolved FA was 3 times less effective at reducing Cu toxicity (EC50 13 ± 0.6 μg Cu/L) than were the unfractionated dissolved FAs (EC50 39 ± 0.4 and 41 ± 1.2 μg Cu/L). The fractionation is a consequence of preferential sorption of molecules having strong metal-binding (more aromatic) moieties to precipitating Fe- and Al-rich oxyhydroxides, causing the remaining dissolved FA to be depleted in these functional groups. As a result, there is more bioavailable dissolved Cu in the water and hence greater potential for Cu toxicity to aquatic organisms. In predicting Cu toxicity, biotic ligand models (BLMs) take into account dissolved organic carbon (DOC) concentration; however, unless DOC characteristics are accounted for, model predictions can underestimate acute Cu toxicity for water containing fractionated dissolved FA. This may have implications for water-quality criteria in systems containing Fe- and Al-rich sediment, and in mined and mineralized areas in particular. Optical measurements, such as specific ultraviolet absorbance at 254 nm (SUVA254), show promise for use as spectral indicators of DOC chemical fractionation and inferred increased Cu toxicity.

  13. Deriving a water quality guideline for protection of aquatic communities exposed to triclosan in the Canadian environment.

    PubMed

    Hill, Katie L; Breton, Roger L; Manning, Gillian E; Teed, R Scott; Capdevielle, Marie; Slezak, Brian

    2018-07-01

    Triclosan is an antibacterial and antifungal chemical used in a variety of consumer products, including soaps, detergents, moisturizers, and cosmetics. Aquatic ecosystems may be exposed to triclosan following the release of remaining residues in wastewater effluents and biosolids. In December 2017, Environment and Climate Change Canada (ECCC) released a federal environmental quality guideline (FEQG) report that contained a federal water quality guideline (FWQG) for triclosan. This guideline will be used as an adjunct to the risk assessment and risk management of priority chemicals identified under the Government of Canada's Chemicals Management Plan (CMP). The FWQG value for triclosan (0.47 μg/L) was derived by ECCC using a hazardous concentration for 5% of species (HC5) from a species sensitivity distribution (SSD). We recalculated the FWQG after performing an independent analysis and evaluation of the available aquatic toxicity data for triclosan and compared our results with the ECCC FWQG value. Our independent analysis of the available aquatic toxicity data entailed conducting a literature search of all available and relevant studies, evaluating the quality and reliability of all studies considered using thorough and consistent study evaluation criteria, and thereby generating a data set of high-quality toxicity values. The selected data set includes 22 species spanning 5 taxonomic groups. An SSD was developed using this data set following the ECCC approaches. The HC5 from the SSD derived based on our validated data set is 0.76 μg/L. This HC5 value is slightly greater (i.e., less sensitive) than the value presented in ECCC's final FWQG. Integr Environ Assess Manag 2018;14:437-441. © 2018 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2018 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  14. Effect of low-purity Fenton reagents on toxicity of textile dyeing effluent to Daphnia magna.

    PubMed

    Na, Joorim; Yoo, Jisu; Nam, Gwiwoong; Jung, Jinho

    2017-09-20

    This study aimed to identify the source of toxicity in textile dyeing effluent collected from February to July 2016, using Daphnia magna as a test organism. Toxicity identification evaluation (TIE) procedures were used to identify the toxicants in textile dyeing effluent, and Jar testing to simulate the Fenton process was conducted to identify the source of toxicants. Textile dyeing effluent was acutely toxic to D. magna [from 1.5 to 9.7 toxic units (TU)] during the study period. TIE results showed that Zn derived from the Fenton process was a key toxicant in textile dyeing effluent. Additionally, Jar testing revealed that low-purity Fenton reagents (FeCl 2 and FeSO 4 ), which contained large amounts of Zn (89 838 and 610 mg L -1 , respectively), were the source of toxicity. Although we were unable to conclusively identify the residual toxicity (approx. 1.4 TU of 9.71 TU) attributable to unknown toxicants in textile dyeing effluent, the findings of this study suggest that careful operation of the Fenton treatment process could contribute to eliminating its unintended toxic effects on aquatic organisms.

  15. Derivation of predicted no-effect concentration and ecological risk for atrazine better based on reproductive fitness.

    PubMed

    Zheng, Lei; Zhang, Yizhang; Yan, Zhenguang; Zhang, Juan; Li, Linlin; Zhu, Yan; Zhang, Yahui; Zheng, Xin; Wu, Jiangyue; Liu, Zhengtao

    2017-08-01

    Atrazine (ATZ) is an herbicide most commonly used in China and other regions of the world. It is reported toxic to aquatic organisms, and frequently occurs at relatively high concentrations. Currently, ATZ has been proved to affect reproduction of aquatic species at much lower levels. So it is controversial to perform ecological risk assessment using predicted no-effect concentrations (PENCs) derived from traditional endpoints, which fail to provide adequate protection to aquatic organisms. In this study, PNECs of ATZ were derived based on six endpoints of survival, growth, behavior, biochemistry, genetics and reproduction. The PNEC derived from reproductive lesion was 0.044μg ATZ L -1 , which was obviously lower than that derived from other endpoints. In addition, a tiered ecological risk assessment was conducted in the Taizi River based on six PNECs derived from six categories of toxicity endpoints. Results of these two methods of ecological risk assessment were consistent with each other, and the risk level of ATZ to aquatic organisms reached highest as taking reproductive fitness into account. The joint probability indicated that severe ecological risk rooting in reproduction might exist 93.9% and 99.9% of surface water in the Taizi River, while 5% threshold (HC 5 ) and 1% threshold (HC 1 ) were set up to protect aquatic organisms, respectively. We hope the present work could provide valuable information to manage and control ATZ pollution. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. 40 CFR 131.38 - Establishment of numeric criteria for priority toxic pollutants for the State of California.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... biology of the water body is dominated by freshwater aquatic life and that freshwater criteria are more appropriate; or conversely, the biology of the water body is dominated by saltwater aquatic life and that...

  17. 40 CFR 131.38 - Establishment of numeric criteria for priority toxic pollutants for the State of California.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... biology of the water body is dominated by freshwater aquatic life and that freshwater criteria are more appropriate; or conversely, the biology of the water body is dominated by saltwater aquatic life and that...

  18. GROUP REPORT: PHYSIOLOGICAL AND ECOLOGICAL EFFECTS OF ACIDIFICATION ON AQUATIC BIOTA

    EPA Science Inventory

    Acidification affects all components of biological communities in lakes and streams: microbes, algae, macrophytes, invertebrates, fish, amphibians, and other vertebrates that rely on aquatic ecosystems for habitat or food. echanisms of effect are both direct (toxic responses to c...

  19. Enantiomer Specific Measurements of Current-Use Pesticides in Aquatic Systems.

    EPA Science Inventory

    Research has shown that current-use pesticides can enter urban and agricultural watersheds and adversely affect aquatic organisms. A potential cause may be higher concentrations of the more toxic pesticide enantiomer present in the pesticide mixture. The presence of pesticide ena...

  20. 40 CFR 131.38 - Establishment of numeric criteria for priority toxic pollutants for the State of California.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... biology of the water body is dominated by freshwater aquatic life and that freshwater criteria are more appropriate; or conversely, the biology of the water body is dominated by saltwater aquatic life and that...

  1. PATHOLOGICAL EFFECTS OF DIETARY METHYL MERCURY IN AMERICAN KESTRELS (FALCO SPARVERIUS)

    EPA Science Inventory

    This manuscript describes the development of ecological risk assessment methods to evaluate the relative and cumulative risks from toxic chemicals, with respect to risks from non-chemical stressors, on populations of aquatic life and aquatic-dependent wildlife at various spatial ...

  2. Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. Aggregation and dissolution.

    PubMed

    Unrine, Jason M; Colman, Benjamin P; Bone, Audrey J; Gondikas, Andreas P; Matson, Cole W

    2012-07-03

    To better understand their fate and toxicity in aquatic environments, we compared the aggregation and dissolution behavior of gum arabic (GA) and polyvinylpyrrolidone (PVP) coated Ag nanoparticles (NPs) in aquatic microcosms. There were four microcosm types: surface water; water and sediment; water and aquatic plants; or water, sediment, and aquatic plants. Dissolution and aggregation behavior of AgNPs were examined using ultracentrifugation, ultrafiltration, and asymmetrical flow field flow fractionation coupled to ultraviolet-visible spectroscopy, dynamic and static laser light scattering, and inductively coupled plasma mass spectrometry. Plants released dissolved organic matter (DOM) into the water column either through active or passive processes in response to Ag exposure. This organic matter fraction readily bound Ag ions. The plant-derived DOM had the effect of stabilizing PVP-AgNPs as primary particles, but caused GA-AgNPs to be removed from the water column, likely by dissolution and binding of released Ag ions on sediment and plant surfaces. The destabilization of the GA-AgNPs also corresponded with X-ray absorption near edge spectroscopy results which suggest that 22-28% of the particulate Ag was associated with thiols and 5-14% was present as oxides. The results highlight the potential complexities of nanomaterial behavior in response to biotic and abiotic modifications in ecosystems, and may help to explain differences in toxicity of Ag observed in realistic exposure media compared to simplified laboratory exposures.

  3. Studies on the toxic elements and organic degradation products in aquatic bodies and sediments around Kennedy Space Center (KSC) Haulover Canal and Mosquito Lagoon

    NASA Technical Reports Server (NTRS)

    Ghuman, G. S.; Menon, M. P.; Emeh, C. O.

    1975-01-01

    The work during the first year ending September, 1975, is reported. Indian River, Haulover Canal, Mosquito Lagoon, and other aquatic areas of discharge around Kennedy Space Center (KSC) were studied. The presentation and interpretation of data on water and sediment samples collected from Haulover Canal and Mosquito Lagoon are included. The field and laboratory data are presented and tentative conclusions were drawn in the various aspects of the study. An attempt was made to correlate the physical, chemical, and biological parameters.

  4. Defining the baseline for inhibition concentration calculations for hormetic hazards.

    PubMed

    Bailer, A J; Oris, J T

    2000-01-01

    The use of endpoint estimates based on modeling inhibition of test organism response relative to a baseline response is an important tool in the testing and evaluation of aquatic hazards. In the presence of a hormetic hazard, the definition of the baseline response is not clear because non-zero levels of the hazard stimulate an enhanced response prior to inhibition. In the present study, the methodology and implications of how one defines a baseline response for inhibition concentration estimation in aquatic toxicity tests was evaluated. Three possible baselines were considered: the control response level; the pooling of responses, including controls and all concentration conditions with responses enhanced relative to controls; and, finally, the maximal response. The statistical methods associated with estimating inhibition relative to the first two baseline definitions were described and a method for estimating inhibition relative to the third baseline definition was derived. These methods were illustrated with data from a standard aquatic zooplankton reproductive toxicity test in which the number of young produced in three broods of a cladoceran exposed to effluent was modeled as a function of effluent concentration. Copyright 2000 John Wiley & Sons, Ltd.

  5. Initial evaluation of developmental malformation as an end point in mixture toxicity hazard assessment for aquatic vertebrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, D.A.; Wilke, T.S.

    1991-04-01

    The joint toxic action of three binary mixtures was determined for the embryo malformation endpoint of the aquatic FETAX (frog embryo teratogenesis assay: Xenopus) test system. Osteolathyrogenic compounds and short-chain carboxylic acids, representing separate, distinct modes of action for induction of malformation, were selected for testing in 96-hr, static-renewal tests. Three mixtures were tested for each combination, with each combination being tested on three separate occasions. Using toxic unit analysis, the combination of osteolathyrogens and the combination of carboxylic acids produced strictly additive (concentration addition) rates of malformation, while the combination of an osteolathyrogen and a carboxylic acid was less-than-additivemore » (response addition) for induction of malformation. Therefore, developmental malformation may have value as an endpoint in mixture toxicity hazard assessment.« less

  6. Technical basis for using passive sampling as a biomimetic extraction procedure to assess bioavailability and predict toxicity of petroleum substances.

    PubMed

    Redman, A D; Butler, J D; Letinski, D J; Di Toro, D M; Leon Paumen, M; Parkerton, T F

    2018-05-01

    Solid-phase microextraction fibers coated with polydimethylsiloxane (PDMS) provide a convenient passive sampling format to characterize bioavailability of petroleum substances. Hydrocarbons absorb onto PDMS in proportion to both freely dissolved concentrations and partitioning properties of the individual constituents, which parallels the mechanistic basis used to predict aquatic toxicity in the PETROTOX model. When deployed in a non-depletive manner, combining SPME with thermal desorption and quantification using gas chromatography-flame ionization creates a biomimetic extraction (BE) procedure that has the potential to simplify aquatic hazard assessments of petroleum substances since the total moles of all hydrocarbons sorbed to the fiber can be related to toxic thresholds in target lipid of aquatic organisms. The objective of this work is to describe the technical basis for applying BE measurements to predict toxicity of petroleum substances. Critical BE-based PDMS concentrations corresponding to adverse effects were empirically derived from toxicity tests on different petroleum substances with multiple test species. The resulting species sensitivity distribution (SSD) of PDMS effect concentrations was then compared and found consistent with the previously reported target lipid-based SSD. Further, BE data collected on samples of aqueous media dosed with a wide range of petroleum substances were highly correlated to predicted toxic units derived using the PETROTOX model. These findings provide justification for applying BE in environmental hazard and risk evaluations of petroleum substances and related mixtures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Effects of chromium, copper, nickel, and zinc on survival and feeding of the cladoceran Moina macrocopa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, C.K.

    1992-10-01

    Heavy metals are widely recognized as highly toxic and dangerous. Past research activities on heavy metal pollution in Hong Kong have emphasized coastal environmentals. Since the main sources of heavy metals are the discharge and spillage of wastewater from electroplating factories, concentrations of heavy metals in streams and pools near industrial areas may be higher than those in coastal waters. Electroplating wastewater in Hong Kong contains high levels of chromium, copper, nickel and zinc. The toxicity of these heavy metals to the aquatic organisms has been extensively reviewed. Toxicity information for invertebrates shows that crustaceans are among the most sensitivemore » organisms. Of the crustacean species tested, cladocerans appear to be the most susceptibile. Cladocerans are important components of many aquatic ecosystems. Despite their importance in many freshwater communities and their sensitivity to heavy metal toxicity, information on the toxicity of heavy metals to cladocerans is limited except for several Daphnia species. In Hong Kong the freshwater cladoceran Moina macrocopa occurs in small ponds and rice paddies and is mass cultured by some farmers as a high quality fish food. The objectives of this study are to determine the effects of various heavy metals on the survival and feeding of M. macrocopa. 12 refs., 2 figs., 1 tab.« less

  8. Influence of developmental stage, salts and food presence on various end points using Caenorhabditis elegans for aquatic toxicity testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donkin, S.G.; Williams, P.L.

    1995-12-01

    This study used a randomized block design to investigate the importance of several variables in using the free-living soil nematode, Caenorhabditis elegans, for aquatic toxicity testing. Concentration-response data were obtained on nematodes of various developmental stages exposed to four metals (Cd, Pb, Cu, and Hg) and a water-soluble organic toxicant, sodium pentachlorophenate (PCP), under conditions of varied solvent medium (with or without salts and with or without a bacterial food source). The end points measured were 24- and 96-h mortality LC50 value, as well as development of larval stages to adulthood and evidence of reproduction. The results suggest that nematodesmore » of various ages respond similarity to a given toxicant for all end points measured, although adults cultured from eggs appeared more sensitive than adults cultured from dauer larvae. The most important environmental variable in determining toxicity was the medium in which the tests were conducted. The presence of potassium and sodium salts in the medium significantly (p < 0.05) reduced the toxicity of many test samples. The presence of bacteria had little effect on 24-h tests with salts, but was important in 96-h survival and development. Based on sensitivity and ease of handling, adults cultured from eggs are recommended in both 24h and 96-h tests.« less

  9. Toxicological assessment of green petroleum coke.

    PubMed

    McKee, Richard H; Herron, Deborah; Beatty, Patrick; Podhasky, Paula; Hoffman, Gary M; Swigert, James; Lee, Carol; Wong, Diana

    2014-01-01

    Green petroleum coke is primarily inorganic carbon with some entrained volatile hydrocarbon material. As part of the petroleum industry response to the high production volume challenge program, the potential for reproductive effects was assessed in a subchronic toxicity/reproductive toxicity screening test in rats (OECD 421). The repeated-dose portion of the study provided evidence for dust accumulation and inflammatory responses in rats exposed to 100 and 300 mg/m(3) but there were no effects at 30 mg/m(3). In the reproductive toxicity screen, the frequency of successful matings was reduced in the high exposure group (300 mg/m(3)) and was not significantly different from control values but was outside the historical experience of the laboratory. The postnatal observations (external macroscopic examination, body weight, and survival) did not indicate any treatment-related differences. Additional tests conducted to assess the potential hazards to aquatic (fish, invertebrates, and algae) and soil dwelling organisms (earthworms and vascular plants) showed few effects at the maximum loading rates of 1000 mg coke/L in aquatic studies and 1000 mg coke/kg soil in terrestrial studies. The only statistically significant finding was an inhibition of algal growth measured as either biomass or growth rate.

  10. Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects.

    PubMed

    Anderson, J C; Dubetz, C; Palace, V P

    2015-02-01

    Developed to replace organophosphate and carbamate insecticides, neonicotinoids are structurally similar to nicotine. The three main neonicotinoid insecticides, imidacloprid, clothianidin, and thiamethoxam, are being re-evaluated by Health Canada's Pest Management Regulatory Agency (PMRA). An important aspect of the re-evaluation is the potential for effects in non-target organisms, including aquatic organisms. Leaching into surface waters is one of the major concerns surrounding extensive use of neonicotinoids, especially in close proximity to water bodies. The PMRA has classified IMI as 'persistent' with a 'high' leaching potential. Globally, neonicotinoids have been detected in a variety of water bodies, typically at concentrations in the low μg/L range. While IMI has been included in some monitoring exercises, there are currently very few published data for the presence of CLO and THM in Canadian water bodies. The majority of neonicotinoid toxicity studies have been conducted with IMI due to its longer presence on the market and high prevalence of use. Aquatic insects are particularly vulnerable to neonicotinoids and chronic toxicity has been observed at concentrations of IMI below 1 μg/L. Acute toxicity has been reported at concentrations below 20 μg/L for the most sensitive species, including Hyalella azteca, ostracods, and Chironomus riparius. Fish, algae, amphibians, and molluscs are relatively insensitive to IMI. However, the biological effects of THM and CLO have not been as well explored. The Canadian interim water quality guideline for IMI is 0.23 μg/L, but there is currently insufficient use, fate, and toxicological information available to establish guidelines for CLO and THM. Based on concentrations of neonicotinoids reported in surface waters in Canada and globally, there is potential for aquatic invertebrates to be negatively impacted by neonicotinoids. Therefore, it is necessary to address knowledge gaps to inform decisions around guidelines and registration status for neonicotinoid insecticides in Canada to protect our aquatic ecosystems. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Combination of aquatic species and safeners improves the remediation of copper polluted water.

    PubMed

    Panfili, Ivan; Bartucca, Maria Luce; Ballerini, Eleonora; Del Buono, Daniele

    2017-12-01

    In the last decades, many anthropogenic activities have resulted in heavy metal contamination of freshwaters and surrounding environments. This poses serious threats to human health. Phytoremediation is a cost-effective technology which is useful for remediating polluted soils and water. Recently, the use of aquatic free-floating plants has been proposed to remediate polluted water. In this context, a study on the capacity of two aquatic plants, Lemna minor (duckweed) and Salvinia auriculata (salvinia), to remediate Cu +2 (Cu) polluted water was carried out. Initially, the species were exposed to different copper concentrations (1, 5, 10, 20 and 50μmolL -1 ) in order to assess Cu +2 toxicity to the plants. In addition, plants were treated with two safeners (benoxacor and dichlormid), with the aim of pointing out any safening effect of these compounds on the aquatic species. Toxicity tests showed that safened plants had a greater Cu resistance, especially at the higher Cu doses. Finally, unsafened and safened plants were tested in the decontamination of water polluted by copper (1.2mgL -1 ). In general, duckweed removed higher amounts of Cu from polluted water than salvinia, and, surprisingly, for both the species the safeners significantly increased the plants' capacity to remove the metal from the polluted waters. Lastly, an HPLC-based method was developed and standardized to monitor the residual amounts of the two safeners in the water. While dichlormid was completely absorbed by duckweed within few days after the treatments, some residual amounts of both safeners were found in salvinia vegetated water after two weeks. In conclusion, the results of this research show that the use of aquatic species in combination with safeners is an attractive and reliable tool to make plants more effective in phytoremediation of water polluted with metals (or other toxic compounds). Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Toxicity of cypermethrin and deltamethrin insecticides on embryos and larvae of Physalaemus gracilis (Anura: Leptodactylidae).

    PubMed

    Macagnan, Natani; Rutkoski, Camila F; Kolcenti, Cassiane; Vanzetto, Guilherme V; Macagnan, Luan P; Sturza, Paola F; Hartmann, Paulo A; Hartmann, Marilia T

    2017-09-01

    It is important to establish the toxicity pesticides against non-target species, especially those pesticides used in commercial formulations. Pyrethroid insecticides are widely used in agriculture despite their toxicity to aquatic animals. In this study, we determine the toxicity of commercial formulation of two pyrethroid insecticides, cypermethrin and deltamethrin, in two life stages of Physalaemus gracilis, a frog that breeds in agricultural ecosystems and has potential contact with pyrethroid pesticides. The acute toxicity test (96 h) was carried out with embryos of stage 17:18 and larvae of stages 24:25. Embryos were more resistant to both pesticides than larvae. In embryo mobility assays, we found that both pesticides caused spasmodic contractions, suggestive of neurological effects. In acute toxicity assays, we found that P. gracilis is more resistant to these insecticides than other studied species.

  13. Single- and mixture toxicity of three organic UV-filters, ethylhexyl methoxycinnamate, octocrylene, and avobenzone on Daphnia magna.

    PubMed

    Park, Chang-Beom; Jang, Jiyi; Kim, Sanghun; Kim, Young Jun

    2017-03-01

    In freshwater environments, aquatic organisms are generally exposed to mixtures of various chemical substances. In this study, we tested the toxicity of three organic UV-filters (ethylhexyl methoxycinnamate, octocrylene, and avobenzone) to Daphnia magna in order to evaluate the combined toxicity of these substances when in they occur in a mixture. The values of effective concentrations (ECx) for each UV-filter were calculated by concentration-response curves; concentration-combinations of three different UV-filters in a mixture were determined by the fraction of components based on EC 25 values predicted by concentration addition (CA) model. The interaction between the UV-filters were also assessed by model deviation ratio (MDR) using observed and predicted toxicity values obtained from mixture-exposure tests and CA model. The results from this study indicated that observed ECx mix (e.g., EC 10mix , EC 25mix , or EC 50mix ) values obtained from mixture-exposure tests were higher than predicted ECx mix (e.g., EC 10mix , EC 25mix , or EC 50mix ) values calculated by CA model. MDR values were also less than a factor of 1.0 in a mixtures of three different UV-filters. Based on these results, we suggest for the first time a reduction of toxic effects in the mixtures of three UV-filters, caused by antagonistic action of the components. Our findings from this study will provide important information for hazard or risk assessment of organic UV-filters, when they existed together in the aquatic environment. To better understand the mixture toxicity and the interaction of components in a mixture, further studies for various combinations of mixture components are also required. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Toxicity of Cold Lake Blend and Western Canadian Select dilbits to standard aquatic test species

    EPA Science Inventory

    Dilbits are blends of bitumen and natural gas condensates or crude oils with only limited toxicity data. Two dilbits, Cold Lake Blend and Western Canadian Select, were tested as either unweathered or weathered oils for acute and chronic toxicity to standard freshwater and estuari...

  15. Bioavailability Assessment of a Contaminated Field Sediment from Patrick Bayou, Texas, USA: Toxicity Identification Evaluation and Equilibrium Partitioning

    EPA Science Inventory

    Contaminated sediments are commonly found in urbanized harbors. At sufficiently high contaminant levels, sediments can cause toxicity to aquatic organisms and impair benthic communities. As a result, remediation is necessary and diagnosing the cause of sediment toxicity become...

  16. A NEW APPROACH FOR CULTURING LEMNA MINOR (DUCKWEED) AND STANDARDIZED METHOD FOR USING ATRAZINE AS A REFERENCE TOXICANT

    EPA Science Inventory

    Lemna minor (Duckweed) is commonly used in aquatic toxicity investigations. Methods for culturing and testing with reference toxicants, such as atrazine, are somewhat variable among researchers. Our goal was to develop standardized methods of culturing and testing for use with L....

  17. Estimation of toxicity using a Java based software tool

    EPA Science Inventory

    A software tool has been developed that will allow a user to estimate the toxicity for a variety of endpoints (such as acute aquatic toxicity). The software tool is coded in Java and can be accessed using a web browser (or alternatively downloaded and ran as a stand alone applic...

  18. THE EVOLUTION OF ATOMIC SPECTROSCOPY IN MEASURING TOXIC CONTAMINANTS

    EPA Science Inventory

    Three decades of study of environmental conditions necessary for the protection of freshwater
    aquatic life have been limited by the development and application of analytical methodology utilizing atomic adsorption, atomic fluorescence, and atomic emission spectroscopy.
    The...

  19. Environmental Fate and Transport of a New Energetic Material CL-20

    DTIC Science & Technology

    2006-02-01

    toxicity of metabolic byproducts of energetic soil contaminants was demonstrated by Lachance et al. (2004) in a study investigating the effects on... Soil ..................................................................................................................................... 7 5.2 Test...Preparation of Soil ..................................................................................................................... 9 5.4 Aquatic Test

  20. Ecotoxicological effect of ketamine: Evidence of acute, chronic and photolysis toxicity to Daphnia magna.

    PubMed

    Li, Shih-Wei; Wang, Yu-Hsiang; Lin, Angela Yu-Chen

    2017-09-01

    Ketamine has been increasingly used in medicine and has the potential for abuse or illicit use around the world. Ketamine cannot be removed by conventional wastewater treatment plants. Although ketamine and its metabolite norketamine have been detected to a significant degree in effluents and aquatic environments, their ecotoxicity effects in aquatic organisms remain undefined. In this study, we investigated the acute toxicity of ketamine and its metabolite, along with the chronic reproductive toxicity of ketamine (5-100μg/L) to Daphnia magna. Multiple environmental scenarios were also evaluated, including drug mixtures and sunlight irradiation toxicity. Ketamine and norketamine caused acute toxicity to D. magna, with half lethal concentration (LC 50 ) values of 30.93 and 25.35mg/L, respectively, after 48h of exposure. Irradiated solutions of ketamine (20mg/L) significantly increased the mortality of D. magna; pre-irradiation durations up to 2h rapidly increased the death rate to 100%. A new photolysis byproduct (M.W. 241) of norketamine that accumulates during irradiation was identified for the first time. The relevant environmental concentration of ketamine produced significant reproductive toxicity effects in D. magna, as revealed by the reduction of the number of total live offspring by 33.6-49.8% (p < 0.05). The toxicity results indicate that the environmental hazardous risks of the relevant ketamine concentration cannot be ignored and warrant further examination. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Metal-PAH mixtures in the aquatic environment: a review of co-toxic mechanisms leading to more-than-additive outcomes.

    PubMed

    Gauthier, Patrick T; Norwood, Warren P; Prepas, Ellie E; Pyle, Greg G

    2014-09-01

    Mixtures of metals and polycyclic aromatic hydrocarbons (PAHs) occur ubiquitously in aquatic environments, yet relatively little is known regarding their combined toxicities. Emerging reports investigating the additive mortality in metal-PAH mixtures have indicated that more-than-additive effects are equally as common as strictly-additive effects, raising concern for ecological risk assessment typically based on the summation of individual toxicities. Moreover, the current separation of focus between in vivo and in vitro studies, and fine- and coarse-scale endpoints, creates uncertainty regarding the mechanisms of co-toxicity involved in more-than-additive effects on whole organisms. Drawing from literature on metal and PAH toxicity in bacteria, protozoa, invertebrates, fish, and mammalian models, this review outlines several key mechanistic interactions likely to promote more-than-additive toxicity in metal-PAH mixtures. Namely, the deleterious effects of PAHs on membrane integrity and permeability to metals, the potential for metal-PAH complexation, the inhibitory nature of metals to the detoxification of PAHs via the cytochrome P450 pathway, the inhibitory nature of PAHs towards the detoxification of metals via metallothionein, and the potentiated production of reactive oxygenated species (ROS) in certain metal (e.g. Cu) and PAH (e.g., phenanthrenequinone) mixtures. Moreover, the mutual inhibition of detoxification suggests the possibility of positive feedback among these mechanisms. The individual toxicities and interactive aspects of contaminant transport, detoxification, and the production of ROS are herein discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Environmental Quality Research, Use of Unicellular Algae for Evaluation of Potential Aquatic Contaminants

    DTIC Science & Technology

    1978-11-01

    bioassays to determine the toxic and/or biostimulating effects of hydrazine and methylated hydrazines in various freshwater and marine aquatic environments...Table 2. TABLE 2 COMPOUNDS TESTED AND TEST CONDITIONS OF 1976/77 BIOASSAYS COMPOUND TEST CONDITIONS Type of Water Nutrient Level Hydrazine Freshwater ...AMRL-TR-78-86 ENVIRONMENTAL QUALITY RESEARCH, USE OF UNICELLULAR ALGAE FOR EVALUATION OF POTENTIAL AQUATIC CONTAMINANTS Third Annual Report JAN

  3. Effects of Humic and Fulvic Acids on Silver Nanoparticle Stability, Dissolution, and Toxicity

    PubMed Central

    Gunsolus, Ian L.; Mousavi, Maral P. S.; Hussein, Kadir; Bühlmann, Philippe; Haynes, Christy L.

    2015-01-01

    The colloidal stability of silver nanoparticles (AgNPs) in natural aquatic environments influences their transport and environmental persistence, while their dissolution to Ag+ influences their toxicity to organisms. Here, we characterize the colloidal stability, dissolution behavior, and toxicity of two industrially relevant classes of AgNPs (i.e., AgNPs stabilized by citrate or polyvinylpyrrolidone) after exposure to natural organic matter (NOM, i.e., Suwannee River Humic and Fulvic Acid Standards and Pony Lake Fulvic Acid Reference). We show that NOM interaction with the nanoparticle surface depends on (i) the NOM’s chemical composition, where sulfur- and nitrogen-rich NOM more significantly increases colloidal stability, and (ii) the affinity of the capping agent for the AgNP surface, where nanoparticles with loosely bound capping agents are more effectively stabilized by NOM. Adsorption of NOM is shown to have little effect on AgNP dissolution under most experimental conditions, the exception being when the NOM is rich in sulfur and nitrogen. Similarly, the toxicity of AgNPs to a bacterial model (Shewanella oneidensis MR-1) decreases most significantly in the presence of sulfur- and nitrogen-rich NOM. Our data suggest that the rate of AgNP aggregation and dissolution in aquatic environments containing NOM will depend on the chemical composition of the NOM, and that the toxicity of AgNPs to aquatic microorganisms is controlled primarily by the extent of nanoparticle dissolution. PMID:26047330

  4. Does water chemistry affect the dietary uptake and toxicity of silver nanoparticles by the freshwater snail Lymnaea stagnalis?

    USGS Publications Warehouse

    López-Serrano Oliver, Ana; Croteau, Marie-Noële; Stoiber, Tasha L.; Tejamaya, Mila; Römer, Isabella; Lead, Jamie R.; Luoma, Samuel N.

    2014-01-01

    Silver nanoparticles (AgNPs) are widely used in many applications and likely released into the aquatic environment. There is increasing evidence that Ag is efficiently delivered to aquatic organisms from AgNPs after aqueous and dietary exposures. Accumulation of AgNPs through the diet can damage digestion and adversely affect growth. It is well recognized that aspects of water quality, such as hardness, affect the bioavailability and toxicity of waterborne Ag. However, the influence of water chemistry on the bioavailability and toxicity of dietborne AgNPs to aquatic invertebrates is largely unknown. Here we characterize for the first time the effects of water hardness and humic acids on the bioaccumulation and toxicity of AgNPs coated with polyvinyl pyrrolidone (PVP) to the freshwater snail Lymnaea stagnalis after dietary exposures. Our results indicate that bioaccumulation and toxicity of Ag from PVP-AgNPs ingested with food are not affected by water hardness and by humic acids, although both could affect interactions with the biological membrane and trigger nanoparticle transformations. Snails efficiently assimilated Ag from the PVP-AgNPs mixed with diatoms (Ag assimilation efficiencies ranged from 82 to 93%). Rate constants of Ag uptake from food were similar across the entire range of water hardness and humic acid concentrations. These results suggest that correcting regulations for water quality could be irrelevant and ineffective where dietary exposure is important.

  5. Apparatus Induces And Fixes Small Aquatic Organisms

    NASA Technical Reports Server (NTRS)

    Todd, Christopher

    1992-01-01

    Syringe-and-bag assembly compact, lightweight self-contained, portable apparatus introducing liquids to aquatic organisms. Isolates organisms from toxic substances until time of introduction. Includes plastic syringes, each containing inner, sealed, burstable bag. Adaptable to use in biological tests and experiments at remote locations on Earth.

  6. FACTORS AFFECTING COLORED DISSOLVED ORGANIC MATTER IN AQUATIC ENVIRONMENTS OF THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    The sunlight-absorbing (colored) component of dissolved organic matter (CDOM) in aquatic environments is widely distributed in freshwaters and coastal regions where it influences the fate and transport of toxic organic substances and biologically-important metals such as mercury,...

  7. #2) Enantiomer Specific Measurements of Current-use Pesticides in Aquatic Systems

    EPA Science Inventory

    Research has shown that current-use pesticides can enter urban and agricultural watersheds and adversely affect aquatic organisms. A potential cause may be higher concentrations of the more toxic pesticide enantiomer present in the pesticide mixture. The presence of pesticide ena...

  8. Enantiomer Specific Measurements of Current-use Pesticides in Aquatic Systems (#2)

    EPA Science Inventory

    Research has shown that current-use pesticides can enter urban and agricultural watersheds and adversely affect aquatic organisms. A potential cause may be higher concentrations of the more toxic pesticide enantiomer present in the pesticide mixture. The presence of pesticide ena...

  9. Development and Practical Application of Petroleum and Dispersant Interspecies Correlation Models for Aquatic Species

    EPA Science Inventory

    Assessing the acute toxicity of physically and chemically dispersed oil following an oil spill has generally relied on existing toxicological data for a relatively limited number of aquatic species. Recognition of differences in species sensitivities to contaminants has facilitat...

  10. The Toxicity Estimation Software Tool (T.E.S.T.)

    EPA Science Inventory

    The Toxicity Estimation Software Tool (T.E.S.T.) has been developed to estimate toxicological values for aquatic and mammalian species considering acute and chronic endpoints for screening purposes within TSCA and REACH programs.

  11. Environmental factors affecting contaminant toxicity in aquatic and terrestrial vertebrates

    USGS Publications Warehouse

    Rattner, Barnett A.; Heath, Alan G.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John

    2003-01-01

    Physical and natural factors have long been known to influence the toxicity of environmental contaminants to vertebrates. The majority of data that address this topic have been derived from studies on fish, highly inbred laboratory rodents, and man.' The degree to which these factors modify toxicity has principally been elucidated by controlled laboratory experiments. Until recently, the significance of such effects to free-ranging vertebrates Figure 23.1 was frequently overlooked in ecological risk assessments.' Drawing upon controlled experiments and observational science, we overview environmental factors that influence pollutant toxicity in fish and wildlife, and present some perspective on their ecotoxicological significance.

  12. User’s Guide for T.E.S.T. (version 4.2) (Toxicity Estimation Software Tool) A Program to Estimate Toxicity from Molecular Structure

    EPA Science Inventory

    The user's guide describes the methods used by TEST to predict toxicity and physical properties (including the new mode of action based method used to predict acute aquatic toxicity). It describes all of the experimental data sets included in the tool. It gives the prediction res...

  13. Toxicological effects of pyrethroids on non-target aquatic insects.

    PubMed

    Antwi, Frank B; Reddy, Gadi V P

    2015-11-01

    The toxicological effects of pyrethroids on non-target aquatic insects are mediated by several modes of entry of pyrethroids into aquatic ecosystems, as well as the toxicological characteristics of particular pyrethroids under field conditions. Toxicokinetics, movement across the integument of aquatic insects, and the toxicodynamics of pyrethroids are discussed, and their physiological, symptomatic and ecological effects evaluated. The relationship between pyrethroid toxicity and insecticide uptake is not fully defined. Based on laboratory and field data, it is likely that the susceptibility of aquatic insects (vector and non-vector) is related to biochemical and physiological constraints associated with life in aquatic ecosystems. Understanding factors that influence aquatic insects susceptibility to pyrethroids is critical for the effective and safe use of these compounds in areas adjacent to aquatic environments. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  14. The aquatic animals' transcriptome resource for comparative functional analysis.

    PubMed

    Chou, Chih-Hung; Huang, Hsi-Yuan; Huang, Wei-Chih; Hsu, Sheng-Da; Hsiao, Chung-Der; Liu, Chia-Yu; Chen, Yu-Hung; Liu, Yu-Chen; Huang, Wei-Yun; Lee, Meng-Lin; Chen, Yi-Chang; Huang, Hsien-Da

    2018-05-09

    Aquatic animals have great economic and ecological importance. Among them, non-model organisms have been studied regarding eco-toxicity, stress biology, and environmental adaptation. Due to recent advances in next-generation sequencing techniques, large amounts of RNA-seq data for aquatic animals are publicly available. However, currently there is no comprehensive resource exist for the analysis, unification, and integration of these datasets. This study utilizes computational approaches to build a new resource of transcriptomic maps for aquatic animals. This aquatic animal transcriptome map database dbATM provides de novo assembly of transcriptome, gene annotation and comparative analysis of more than twenty aquatic organisms without draft genome. To improve the assembly quality, three computational tools (Trinity, Oases and SOAPdenovo-Trans) were employed to enhance individual transcriptome assembly, and CAP3 and CD-HIT-EST software were then used to merge these three assembled transcriptomes. In addition, functional annotation analysis provides valuable clues to gene characteristics, including full-length transcript coding regions, conserved domains, gene ontology and KEGG pathways. Furthermore, all aquatic animal genes are essential for comparative genomics tasks such as constructing homologous gene groups and blast databases and phylogenetic analysis. In conclusion, we establish a resource for non model organism aquatic animals, which is great economic and ecological importance and provide transcriptomic information including functional annotation and comparative transcriptome analysis. The database is now publically accessible through the URL http://dbATM.mbc.nctu.edu.tw/ .

  15. Aquatic toxicity of ivermectin in cattle dung assessed using microcosms.

    PubMed

    Mesa, Leticia M; Lindt, I; Negro, L; Gutierrez, M F; Mayora, G; Montalto, L; Ballent, M; Lifschitz, A

    2017-10-01

    Ivermectin (IVM) is a parasiticide widely used for livestock. It is a semisynthetic derivative of avermectin, a macrocyclic lactone produced by Streptomyces avermitilis. This drug is only partly metabolized by livestock; considerable amounts of parent drug are excreted mostly via feces. To simulate exposure of aquatic invertebrates and macrophytes to direct excretion of cattle dung into surface waters, a microcosm experiment with IVM spiked in cattle dung was conducted. The objectives of this study were to characterize accumulation of IVM in water, sediment+dung, roots of the floating fern Salvinia and the zooplankton Ceriodaphnia dubia, the amphipod Hyalella and the apple snail Pomacea; to determine the effect of this drug spiked in cattle dung on life-history traits of these invertebrates; and to evaluate the influence of IVM on aquatic nutrient cycling. Dung was spiked with IVM to attain concentrations of 1150, 458, 50 and 22µgkg -1 dung fresh weight, approximating those found in cattle dung at days 3, 7, 16 and 29 following subcutaneous injection. Concentrations found in dung during the first week of excretion were lethally toxic to Ceriodaphnia dubia and Hyalella, whereas no mortality was observed in Pomacea. Concentrations of IVM in roots, sediment + dung and Pomacea increased significantly from the lowest to the highest treatment level. The effect of this drug on decomposition and release of nutrients from dung would have negative consequences for nutrient cycling in water. Increasing concentrations in sediment + dung with days of the experiment suggested that toxic concentrations would persist for an extended period in the water-sediment system. IVM represents an ecological risk for aquatic ecosystems, underscoring the need for livestock management strategies to limit its entry into water bodies. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Use of mesocosm data to predict effects in aquatic ecosystems: Limits to interpretation: Chapter 16

    USGS Publications Warehouse

    La Point, Thomas W.; Fairchild, James F.; Graney, Robert L.; Kennedy, James H.; Rodgers, John H.

    1993-01-01

    Aquatic mesocosm studies are being used to refute a presumption of risk derived from laboratory toxicity tests conducted under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). Mesocosm studies incorporate many biological, chemical and physical characteristics of natural ecosystems. Hence, they serve as realistic surrogates of natural ecosystems and allow tests of pesticide effect at the population, community, and ecosystem level. We discuss two factors, ecosystem trophic status and organism life history, which influence the results derived from aquatic mesocosm studies.  Trophic status influences the fat and effects of chemicals which strongly sorb or biologically degrade, yet may not be as important in the fate and effects of more water soluble chemicals.  Life history traits of organisms and the intensity, frequency, and duration of the pesticide disturbance also determine the mesocosm response pattern.

  17. Photo-enhanced toxicity of fluoranthene to Gulf of Mexico marine organisms at different larval ages and ultraviolet light intensities.

    PubMed

    Finch, Bryson E; Stubblefield, William A

    2016-05-01

    Significant increases in toxicity have been observed as a result of polycyclic aromatic hydrocarbon (PAH) absorption of ultraviolet (UV) radiation in aquatic organisms. Early life stage aquatic organisms are predicted to be more susceptible to PAH photo-enhanced toxicity as a result of their translucence and tendency to inhabit shallow littoral or surface waters. The objective of the present study was to evaluate the sensitivity of varying ages of larval mysid shrimp (Americamysis bahia), inland silverside (Menidia beryllina), sheepshead minnow (Cyprinodon variegatus), and Gulf killifish (Fundulus grandis) to photo-enhanced toxicity and to examine the correlation between photo-enhanced toxicity and organism pigmentation. Organisms were exposed to fluoranthene and artificial UV light at different larval ages and results were compared using median lethal concentrations (LC50s) and the lethal time-to-death (LT50s). In addition, a high UV light intensity, short-duration (4-h) experiment was conducted at approximately 24 W/m(2) of ultraviolet radiation A (UV-A) and compared with a low-intensity, long-duration (12-h) experiment at approximately 8 W/m(2) of UV-A. The results indicated decreased toxicity with increasing age for all larval organisms. The amount of organism pigmentation was correlated with observed LC50 and LT50 values. High-intensity short-duration exposure resulted in greater toxicity than low-intensity long-duration UV treatments for mysid shrimp, inland silverside, and sheepshead minnow. Data from these experiments suggest that toxicity is dependent on age, pigmentation, UV light intensity, and fluoranthene concentration. © 2015 SETAC.

  18. Sensitivity of midge larvae of Chironomus tentans Fabricius (Diptera Chironomidae) to heavy metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khangarot, B.S.; Ray, P.K.

    1989-03-01

    The discharge of heavy metals into the natural waters has numerous obvious impacts on physical, chemical and biological parameters of aquatic ecosystem. Bioassay tests are important steps in establishing appropriate water quality criteria and standards for diverse use of ponds, lakes, streams and river waters. Therefore, the acute toxicities of various heavy metals to water flea Daphnia magna, and snail Lymnaea acuminata, and toad tadpoles Bufo mentanostictus have been reported from the authors' laboratory. Chironomid larvae might be particularly useful as indicators of water quality because they are widely distributed in freshwater systems and often from diverse communities within particularmore » habitat. The aim of this study was to determine the acute toxicity of ten heavy metals to the midge larvae Chironomus tentans Fabricius, which forms an important link in aquatic food chain(s).« less

  19. Toxicity of platinum, palladium and rhodium to Daphnia magna in single and binary metal exposure experiments.

    PubMed

    Zimmermann, Sonja; Wolff, Carolina; Sures, Bernd

    2017-05-01

    Mainly due to automobile traffic, but also due to other sources, the platinum group elements (PGE) platinum (Pt), palladium (Pd) and rhodium (Rh) are introduced into aquatic biotopes where they accumulate in sediments of lakes and rivers. However, the toxicity of these noble metals to aquatic organisms is not well understood and especially toxicity studies under standardized condition are lacking. Thus, the toxicity of Pt, Pd and Rh to Daphnia magna was tested in single metal exposure experiments according to OECD guideline 202. Immobility and lethality was recorded after 24 h and 48 h of exposure and EC 50 and LC 50 , respectively, were determined. As the nominal exposure concentration of Pd differed significantly from the quantified concentration, the control of the real exposure concentration by chemical analysis is mandatory, especially for Pd. The toxicity decreased in the order Pd > Pt ≫ Rh with e.g. LC 50 (48 h) values of 14 μg/L for Pd, 157 μg/L for Pt and 56,800 μg/L for Rh. The exposure period had a clear effect on the toxicity of Pt, Pd and Rh. For Pt and Rh the endpoint immobility was more sensitive than the endpoint lethality whereas Pd toxicity was similar for both endpoints. The Hill slopes, which are a measure for the steepness of the concentration-response curves, showed no significant discrepancies between the different metals. The binary metal exposure to Pt and Pd revealed a more-than-additive, i.e. a synergistic toxicity using the toxic unit approach. The present study is a start to understand the toxicity of interacting PGE. The modes of action behind the synergistic effect are unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. EARLY LIFE STAGE TOXICITY OF COPPER TO ENDANGERED AND SURROGATE FISH SPECIES

    EPA Science Inventory

    Water quality criteria (WQC) for the protection of aquatic life have not explicitly considered the degree of protection afforded to aquatic species listed as endangered or threatened under the U.S. Endangered Species Act (listed species) . Most WQCs are based primarily on respon...

  1. THE ECOTOX DATABASE AND ECOLOGICAL SOIL SCREENING LEVEL (ECO-SSL) WEB SITES

    EPA Science Inventory

    The EPA's ECOTOX database (http://www.epa.gov/ecotox/) provides a web browser search interface for locating aquatic and terrestrial toxic effects information. Data on more than 8100 chemicals and 5700 terrestrial and aquatic species are included in the database. Information is ...

  2. Incorporating Aquatic Interspecies Toxicity Estimates into Large Databases: Model Evaluations and Data Gains

    EPA Science Inventory

    The Chemical Aquatic Fate and Effects (CAFE) database, developed by NOAA’s Emergency Response Division (ERD), is a centralized data repository that allows for unrestricted access to fate and effects data. While this database was originally designed to help support decisions...

  3. Toxicity of fire retardant chemicals to aquatic organisms: Progress report

    USGS Publications Warehouse

    Hamilton, Steven J.; McDonald, Susan F.; Gaikowski, Mark P.; Buhl, Kevin J.; Ramsey, G.S.

    1996-01-01

    Fire retardants and suppressants used extensively in North America are often applied in environmentally sensitive areas that may contain endangered, threatened, or economically important plant and animal species. We conducted laboratory acute toxicity tests in both hard and soft waters with five commonly used fire control chemicals (Fire Trol LCG-R, Fire-Trol GTS-R, Phos-Chek D-75-F, Phos-Chek WD-881, and Silv-Ex). Organisms used in the tests included two fish (rainbow trout and fathead minnow), two aquatic invertebrates (Daphnia magna and Hyalella azteca), and a green algae (Selenastrum capricornutum). In general, the green algae was substantially more sensitive to the three non-foam fire chemicals than the animals, the Daphnia were the most sensitive test organism in exposures with foams. The two foams (Silv-Ex and Phos-Chek WD-881) had similar toxicity and were more toxic than the three non-foams. Water quality did not seem to modify the toxicity of the five fire chemicals in a consistent manner.

  4. ADAPTIONS OF WILD POPULATIONS OF THE ESTUARINE FISH FUNDULUS HETEROCLITUS TO PERSISTENT ENVIRONMENTAL CONTAMINANTS

    EPA Science Inventory

    Many aquatic species, including the estuarine fish Fundulus heteroclitus (mummichogs), adapt to local environmental conditions. We conducted studies to evaluate whether highly exposed populations of mummichogs adapt to toxic environmental contaminants. These fish populations are ...

  5. Toxicity of methanol to fish, crustacean, oligochaete worm, and aquatic ecosystem.

    PubMed

    Kaviraj, A; Bhunia, F; Saha, N C

    2004-01-01

    Static renewal bioassays were conducted in the laboratory and in outdoor artificial enclosures to evaluate toxic effects of methanol to one teleost fish and two aquatic invertebrates and to limnological variables of aquatic ecosystem. Ninety-six-hour acute toxicity tests revealed cladoceran crustacea Moina micrura as the most sensitive to methanol (LC50, 4.82 g/L), followed by freshwater teleost Oreochromis mossambicus (LC50, 15.32 g/L) and oligochaete worm Branchiura sowerbyi (LC50, 54.89 g/L). The fish, when exposed to lethal concentrations of methanol, showed difficulties in respiration and swimming. The oligochaete body wrinkled and fragmented under lethal exposure of methanol. Effects of five sublethal concentrations of methanol (0, 23.75, 47.49, 736.10, and 1527.60 mg/L) on the feeding rate of the fish and on its growth and reproduction were evaluated by separate bioassays. Ninety-six-hour bioassays in the laboratory showed significant reduction in the appetite of fish when exposed to 736.10 mg/L or higher concentrations of methanol. Chronic toxicity bioassays (90 days) in outdoor enclosures showed a reduction in growth, maturity index and fecundity of fish at 47.49 mg/L or higher concentrations of methanol. Primary productivity, phytoplankton population, and alkalinity of water were also reduced at these concentrations. Chronic exposure to 1527.60 mg/L methanol resulted in damages of the epithelium of primary and secondary gill lamellae of the fish. The results revealed 23.75 mg/L as the no-observed-effect concentration (NOEC) of methanol to freshwater aquatic ecosystem.

  6. The Structure of Algal Population in the Presence of Toxicants

    NASA Astrophysics Data System (ADS)

    Ipatova, Valentina; Prokhotskaya, Valeria; Dmitrieva, Aida

    Algal bioassays are routinely employed as part of a battery of toxicity tests to assess the environmental impacts of contaminants on aquatic ecosystems. This estimation is an essential component of the ecological risk assessment.

  7. Toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine to larval zebrafish (Danio rerio)

    USGS Publications Warehouse

    Mukhi, S.; Pan, X.; Cobb, G.P.; Patino, R.

    2005-01-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine, a cyclonitramine commonly known as RDX, is used in the production of military munitions. Contamination of soil, sediment, and ground and surface waters with RDX has been reported in different places around the world. Acute and subacute toxicities of RDX have been relatively well documented in terrestrial vertebrates, but among aquatic vertebrates the information available is limited. The objective of this study was to characterize the acute toxicity of RDX to larval zebrafish. Mortality (LC50) and incidence of vertebral column deformities (EC50) were two of the end points measured in this study. The 96-h LC50 was estimated at 22.98 and 25.64 mg l-1 in two different tests. The estimated no-observed-effective- concentration (NOEC) values of RDX on lethality were 13.27 ?? 0.05 and 15.32 ?? 0.30 mg l-1; and the lowest-observed-effective- concentration (LOEC) values were 16.52 ?? 0.05 and 19.09 ?? 0.23 mg l-1 in these two tests, respectively. The 96-h EC50 for vertebral deformities on survivors from one of the acute lethality tests was estimated at 20.84 mg l-1, with NOEC and LOEC of 9.75 ?? 0.34 and 12.84 ?? 0.34 mg l-1, respectively. Behavioral aberrations were also noted in this acute toxicity study, including the occurrence of whirling movement and lethargic behavior. The acute effects of RDX on survival, incidence of deformities, and behavior of larval zebrafish occurred at the high end of the most frequently reported concentrations of RDX in aquatic environments. The chronic effects of RDX in aquatic vertebrates need to be determined for an adequate assessment of the ecological risk of environmental RDX. ?? 2005 Elsevier Ltd. All rights reserved.

  8. Consideration Of The Toxicity of Manufactured Nanoparticles

    NASA Astrophysics Data System (ADS)

    Haasch, Mary L.; McClellan-Green, Patricia; Oberdörster, Eva

    2005-09-01

    Fullerene (C60 and single- and multi-wall carbon nanotubes, SWCNT and MWCNT, respectively) is engineered to be redox active and it is thought that the potential toxicity of fullerene exposure is related to the formation of reactive oxygen species. During manufacture, transport or during scientific investigation, there is a potential for human or environmental exposure to nanoparticles. Several studies regarding human exposure have indicated reasons for concern. There is a lack of studies addressing the toxicity of engineered nanoparticles in aquatic species but one study using the fish, largemouth bass, exposed to fullerene has shown increased (10-17-fold) lipid peroxidation (LPO) in the brain. It is likely that repair enzymes or anti-oxidants may have been induced in gill and liver tissues that had reduced LPO compared to control tissues (Oberdörster, 2004). In support of that hypothesis, suppressive subtractive hybridization was used with liver tissue and the biotransformation enzyme, cytochrome P450, specifically CYP2K4, and other oxidoreductases related to metabolism, along with repair enzymes, were increased while proteins related to normal physiological homeostasis were decreased in fullerene-exposed fish. In a new study involving the exposure of a toxicological model fish species, the fathead minnow (Pimephales promelas) to water-soluble fullerene (nC60), uptake and distribution indicated that nC60 elevated LPO in the brain and induced expression of CYP2 family isozymes in the liver. In an in vitro study, BSA-coated SWCNT interfered with biotransformation enzyme activity. These studies taken together provide support to the hypothesis that the toxicity of manufactured nanoparticles is related to oxidative stress and provide insight into possible mechanisms of toxicity as well as providing information for evaluating the risk to aquatic organisms exposed to manufactured nanoparticles.

  9. USING STRUCTURAL EFFECTS ON THE ORGANIZATION OF THE CYTOSKELETON OF RAINBOW TROUT HEPATOCYTES TO SORT PATHWAYS OF REACTIVE TOXICITY

    EPA Science Inventory

    Quinones have been shown to be more acutely toxic to aquatic organisms than chemicals that are not capable of either direct interaction with cellular nucleophiles or potentially metabolized free radicals. For the development of accurate QSAR models, in vitro toxicity assays are n...

  10. Are PAHS the Right Metric for Assessing Toxicity Related to Oils, Tars, Creosote and Similar Contaminants in Sediments?

    EPA Science Inventory

    Oils, tars, and other non-aqueous phase hydrocarbon liquids (NAPLs) are common sources of contamination in aquatic sediments, and the toxicity of such contamination has generally been attributed to component chemicals, particularly PAHs. While there is no doubt PAHs can be toxic ...

  11. The Acute Toxicity of Major Ion Salts to Ceriodaphnia Dubia. Ii. Empirical Relationships in Binary Salt Mixtures

    EPA Science Inventory

    Many human activities increase concentrations of major geochemical ions (Na+, K+, Ca+2, Mg+2, Cl, SO42, and HCO3/CO32) in fresh water systems, and can thereby adversely affect aquatic life. Such effects involve several toxicants, multiple mechanisms of toxicity, various ion inte...

  12. Effects of triclosan on marine benthic and epibenthic organisms.

    PubMed

    Perron, Monique M; Ho, Kay T; Cantwell, Mark G; Burgess, Robert M; Pelletier, Marguerite C

    2012-08-01

    Triclosan is an antimicrobial compound that has been widely used in consumer products such as toothpaste, deodorant, and shampoo. Because of its widespread use, triclosan has been detected in various environmental media, including wastewater, sewage sludge, surface waters, and sediments. Triclosan is acutely toxic to numerous aquatic organisms, but very few studies have been performed on estuarine and marine benthic organisms. For whole sediment toxicity tests, the sediment-dwelling estuarine amphipod, Ampelisca abdita, and the epibenthic mysid shrimp, Americamysis bahia, are commonly used organisms. In the present study, median lethal concentration values (LC50) were obtained for both of these organisms using water-only and whole sediment exposures. Acute 96-h water-only toxicity tests resulted in LC50 values of 73.4 and 74.3 µg/L for the amphipod and mysid, respectively. For the 7-d whole sediment toxicity test, LC50 values were 303 and 257 mg/kg (dry wt) for the amphipod and mysid, respectively. Using equilibrium partitioning theory, these whole sediment values are equivalent to interstitial water LC50 values of 230 and 190 µg/L for the amphipod and mysid, respectively, which are within a threefold difference of the observed 96-h LC50 water-only values. Triclosan was found to accumulate in polychaete tissue in a 28-d bioaccumulation study with a biota-sediment accumulation factor of 0.23 kg organic carbon/kg lipid. These data provide some of the first toxicity data for triclosan with marine benthic and epibenthic species while also indicating a need to better understand the effects of other forms of sediment carbon, triclosan ionization, and organism metabolism of triclosan on the chemical's behavior and toxicity in the aquatic environment. Copyright © 2012 SETAC.

  13. Toxicity of Co nanoparticles on three species of marine microalgae.

    PubMed

    Chen, Xiaohua; Zhang, Cai; Tan, Liju; Wang, Jiangtao

    2018-05-01

    Cobalt nanoparticles (CoNPs) are being used in wide range of applications and may enter aquatic environments where they pose a potential threat to aquatic organisms. Algal growth inhibition tests were conducted to explore the potential toxicity of CoNPs on marine microalgae, Platymonas subcordiforus, Chaetoceros curvisetus and Skeletonema costatum. This is one of the first time to explore toxicity of CoNPs on marine algae systematically. The results showed that CoNPs induced toxicity on the three algae. The CoNP toxicity on three species microalgae was partly attributed to the Co 2+ released by CoNPs in the f/2 seawater medium. The particle size distribution of CoNPs in seawater revealed that CoNPs were agglomerated in the seawater. The shading effect of CoNPs and scanning electron microscope (SEM) images also showed the aggregating of CoNPs and microalgae, which influenced the photosynthetic utilization and inhibited the growth of the three algae. The order of toxic sensitivity of CoNPs on the three algae was as follows: Platymonas subcordiforus < Chaetoceros curvisetus < Skeletonema costatum. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Toxicity of the fluoroquinolone antibiotics enrofloxacin and ciprofloxacin to photoautotrophic aquatic organisms.

    PubMed

    Ebert, Ina; Bachmann, Jean; Kühnen, Ute; Küster, Anette; Kussatz, Carola; Maletzki, Dirk; Schlüter, Christoph

    2011-12-01

    The present study investigated the growth inhibition effect of the fluoroquinolone antibiotics enrofloxacin and ciprofloxacin on four photoautotrophic aquatic species: the freshwater microalga Desmodesmus subspicatus, the cyanobacterium Anabaena flos-aquae, the monocotyledonous macrophyte Lemna minor, and the dicotyledonous macrophyte Myriophyllum spicatum. Both antibiotics, which act by inhibiting the bacterial DNA gyrase, demonstrated high toxicity to A. flos-aquae and L. minor and moderate to slight toxicity to D. subspicatus and M. spicatum. The cyanobacterium was the most sensitive species with median effective concentration (EC50) values of 173 and 10.2 µg/L for enrofloxacin and ciprofloxacin, respectively. Lemna minor proved to be similarly sensitive, with EC50 values of 107 and 62.5 µg/L for enrofloxacin and ciprofloxacin, respectively. While enrofloxacin was more toxic to green algae, ciprofloxacin was more toxic to cyanobacteria. Calculated EC50s for D. subspicatus were 5,568 µg/L and >8,042 µg/L for enrofloxacin and ciprofloxacin, respectively. These data, as well as effect data from the literature, were compared with predicted and reported environmental concentrations. For two of the four species, a risk was identified at ciprofloxacin concentrations found in surface waters, sewage treatment plant influents and effluents, as well as in hospital effluents. For ciprofloxacin the results of the present study indicate a risk even at the predicted environmental concentration. In contrast, for enrofloxacin no risk was identified at predicted and measured concentrations. Copyright © 2011 SETAC.

  15. An Evaluation of Molybdenum Toxicity to the Oligochaete, Tubifex tubifex, and Early-Life Stages of Brown Trout, Salmo trutta.

    PubMed

    Lucas, Brett T; Quinteros, Claudio; Burnett-Seidel, Charlene; Elphick, James R

    2017-06-01

    Limited data are available describing the aquatic toxicity of molybdenum in freshwater environments, making it difficult to assess the aquatic risk to freshwater organisms. In order to increase available information on the aquatic toxicity of molybdenum, a 96-h LC50 test with the oligochaete Tubifex tubifex and an 85-day development test using brown trout, Salmo trutta, were conducted. The T. tubifex test resulted in an LC50 value of 2782 mg/L. No adverse effects were observed on brown trout survival or length in the concentrations tested, however an IC10 value for growth (wet weight) was determined to be 202 mg/L. Whole body fish tissue concentrations for molybdenum increased in all treatment concentrations tested, although bioconcentration factors decreased at greater exposure concentrations, and ranged from 0.13 at an exposure concentration of 20 mg/L to 0.04 at an exposure of 1247 mg/L. A body burden of 26.0 mg/kg was associated with reduced wet weight.

  16. Application of the criteria for classification of existing chemicals as dangerous for the environment.

    PubMed

    Knacker, T; Schallnaß, H J; Klaschka, U; Ahlers, J

    1995-11-01

    The criteria for classification and labelling of substances as "dangerous for the environment" agreed upon within the European Union (EU) were applied to two sets of existing chemicals. One set (sample A) consisted of 41 randomly selected compounds listed in the European Inventory of Existing Chemical Substances (EINECS). The other set (sample B) comprised 115 substances listed in Annex I of Directive 67/548/EEC which were classified by the EU Working Group on Classification and Labelling of Existing Chemicals. The aquatic toxicity (fish mortality,Daphnia immobilisation, algal growth inhibition), ready biodegradability and n-octanol/water partition coefficient were measured for sample A by one and the same laboratory. For sample B, the available ecotoxicological data originated from many different sources and therefore was rather heterogeneous. In both samples, algal toxicity was the most sensitive effect parameter for most substances. Furthermore, it was found that, classification based on a single aquatic test result differs in many cases from classification based on a complete data set, although a correlation exists between the biological end-points of the aquatic toxicity test systems.

  17. Acute toxicity of zinc to several aquatic species native to the Rocky Mountains.

    PubMed

    Brinkman, Stephen F; Johnston, Walter D

    2012-02-01

    National water-quality criteria for the protection of aquatic life are based on toxicity tests, often using organisms that are easy to culture in the laboratory. Species native to the Rocky Mountains are poorly represented in data sets used to derive national water-quality criteria. To provide additional data on the toxicity of zinc, several laboratory acute-toxicity tests were conducted with a diverse assortment of fish, benthic invertebrates, and an amphibian native to the Rocky Mountains. Tests with fish were conducted using three subspecies of cutthroat trout (Colorado River cutthroat trout Oncorhynchus clarkii pleuriticus, greenback cutthroat trout O. clarkii stomias, and Rio Grande cutthroat trout O. clarkii virginalis), mountain whitefish (Prosopium williamsoni), mottled sculpin (Cottus bairdi), longnose dace (Rhinichthys cataractae), and flathead chub (Platygobio gracilis). Aquatic invertebrate tests were conducted with mayflies (Baetis tricaudatus, Drunella doddsi, Cinygmula sp. and Ephemerella sp.), a stonefly (Chloroperlidae), and a caddis fly (Lepidostoma sp.). The amphibian test was conducted with tadpoles of the boreal toad (Bufo boreas). Median lethal concentrations (LC(50)s) ranged more than three orders of magnitude from 166 μg/L for Rio Grande cutthroat trout to >67,000 μg/L for several benthic invertebrates. Of the organisms tested, vertebrates were the most sensitive, and benthic invertebrates were the most tolerant.

  18. Nickel has biochemical, physiological, and structural effects on the green microalga Ankistrodesmus falcatus: An integrative study.

    PubMed

    Martínez-Ruiz, Erika Berenice; Martínez-Jerónimo, Fernando

    2015-12-01

    In recent years, the release of chemical pollutants to water bodies has increased due to anthropogenic activities. Ni(2+) is an essential metal that causes damage to aquatic biota at high concentrations. Phytoplankton are photosynthesizing microscopic organisms that constitute a fundamental community in aquatic environments because they are primary producers that sustain the aquatic food web. Nickel toxicity has not been characterized in all of the affected levels of biological organization. For this reason, the present study evaluated the toxic effects of nickel on the growth of a primary producer, the green microalga Ankistrodesmus falcatus, and on its biochemical, enzymatic, and structural levels. The IC50 (96h) was determined for Ni(2+). Based on this result, five concentrations were determined for additional tests, in which cell density was evaluated daily. At the end of the assay, pigments and six biomarkers, including antioxidant enzymes (catalase [CAT], glutathione peroxidase [GPx], superoxide dismutase [SOD]), and macromolecules (proteins, carbohydrates and lipids), were quantified; the integrated biomarker response (IBR) was determined also. The microalgae were observed by SEM and TEM. Population growth was affected starting at 7.5 μg L(-1) (0.028 μM), and at 120 μg L(-1) (0.450 μM), growth was inhibited completely; the determined IC50 was 17 μg L(-1). Exposure to nickel reduced the concentration of pigments, decreased the content of all of the macromolecules, inhibited of SOD activity, and increased CAT and GPx activities. The IBR revealed that Ni(2+) increased the antioxidant response and diminished the macromolecules concentration. A. falcatus was affected by nickel at very low concentrations; negative effects were observed at the macromolecular, enzymatic, cytoplasmic, and morphological levels, as well as in population growth. Ni(2+) toxicity could result in environmental impacts with consequences on the entire aquatic community. Current regulations should be revised to protect primary producers. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Genotoxic effects of environmental endocrine disruptors on the aquatic insect Chironomus riparius evaluated using the comet assay.

    PubMed

    Martínez-Paz, Pedro; Morales, Mónica; Martínez-Guitarte, José Luis; Morcillo, Gloria

    2013-12-12

    Genotoxicity is one of the most important toxic endpoints in chemical toxicity testing and environmental risk assessment. The aim of this study was to evaluate the genotoxic potential of various environmental pollutants frequently found in aquatic environments and characterized by their endocrine disrupting activity. Monitoring of DNA damage was undertaken after in vivo exposures of the aquatic larvae of the midge Chironomus riparius, a model organism that represents an abundant and ecologically relevant macroinvertebrate, widely used in freshwater toxicology. DNA-induced damage, resulting in DNA fragmentation, was quantified by the comet assay after short (24 h) and long (96 h) exposures to different concentrations of the selected toxicants: bisphenol A (BPA), nonylphenol (NP), pentachlorophenol (PCP), tributyltin (TBT) and triclosan (TCS). All five compounds were found to have genotoxic activity as demonstrated by significant increases in all the comet parameters (%DNA in tail, tail length, tail moment and Olive tail moment) at all tested concentrations. Persistent exposure did not increase the extent of DNA damage, except for TCS at the highest concentration, but generally there was a reduction in DNA damage thought to be associated with the induction of the detoxification processes and repairing mechanisms. Comparative analysis showed differences in the genotoxic potential between the chemicals, as well as significant time and concentration-dependent variations, which most likely reflect differences in the ability to repair DNA damage under the different treatments. The present report demonstrates the sensitivity of the benthic larvae of C. riparius to these environmental genotoxins suggesting its potential as biomonitor organism in freshwater ecosystems. The results obtained about the DNA-damaging potential of these environmental pollutants reinforce the need for additional studies on the genotoxicity of endocrine active substances that, by linking genotoxic activity to other biological responses, could provide further understanding of adverse effects in aquatic environments. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Development of biotic ligand models for chronic manganese toxicity to fish, invertebrates, and algae.

    PubMed

    Peters, Adam; Lofts, Stephen; Merrington, Graham; Brown, Bruce; Stubblefield, William; Harlow, Keven

    2011-11-01

    Ecotoxicity tests were performed with fish, invertebrates, and algae to investigate the effect of water quality parameters on Mn toxicity. Models were developed to describe the effects of Mn as a function of water quality. Calcium (Ca) has a protective effect on Mn toxicity for both fish and invertebrates, and magnesium (Mg) also provides a protective effect for invertebrates. Protons have a protective effect on Mn toxicity to algae. The models derived are consistent with models of the toxicity of other metals to aquatic organisms in that divalent cations can act as competitors to Mn toxicity in fish and invertebrates, and protons act as competitors to Mn toxicity in algae. The selected models are able to predict Mn toxicity to the test organisms to within a factor of 2 in most cases. Under low-pH conditions invertebrates are the most sensitive taxa, and under high-pH conditions algae are most sensitive. The point at which algae become more sensitive than invertebrates depends on the Ca concentration and occurs at higher pH when Ca concentrations are low, because of the sensitivity of invertebrates under these conditions. Dissolved organic carbon concentrations have very little effect on the toxicity of Mn to aquatic organisms. Copyright © 2011 SETAC.

  1. Determination and validation of an aquatic Maximum Acceptable Concentration-Environmental Quality Standard (MAC-EQS) value for the agricultural fungicide azoxystrobin.

    PubMed

    Rodrigues, Elsa Teresa; Pardal, Miguel Ângelo; Gante, Cristiano; Loureiro, João; Lopes, Isabel

    2017-02-01

    The main goal of the present study was to determine and validate an aquatic Maximum Acceptable Concentration-Environmental Quality Standard (MAC-EQS) value for the agricultural fungicide azoxystrobin (AZX). Assessment factors were applied to short-term toxicity data using the lowest EC 50 and after the Species Sensitivity Distribution (SSD) method. Both ways of EQS generation were applied to a freshwater toxicity dataset for AZX based on available data, and to marine toxicity datasets for AZX and Ortiva ® (a commercial formulation of AZX) obtained by the present study. A high interspecific variability in AZX sensitivity was observed in all datasets, being the copepoda Eudiaptomus graciloides (LC 50,48h  = 38 μg L -1 ) and the gastropod Gibbula umbilicalis (LC 50,96h  = 13 μg L -1 ) the most sensitive freshwater and marine species, respectively. MAC-EQS values derived using the lowest EC 50 (≤0.38 μg L -1 ) were more protective than those derived using the SSD method (≤3.2 μg L -1 ). After comparing the MAC-EQS values estimated in the present study to the smallest AA-EQS available, which protect against the occurrence of prolonged exposure of AZX, the MAC-EQS values derived using the lowest EC 50 were considered overprotective and a MAC-EQS of 1.8 μg L -1 was validated and recommended for AZX for the water column. This value was derived from marine toxicity data, which highlights the importance of testing marine organisms. Moreover, Ortiva affects the most sensitive marine species to a greater extent than AZX, and marine species are more sensitive than freshwater species to AZX. A risk characterization ratio higher than one allowed to conclude that AZX might pose a high risk to the aquatic environment. Also, in a wider conclusion, before new pesticides are approved, we suggest to improve the Tier 1 prospective Ecological Risk Assessment by increasing the number of short-term data, and apply the SSD approach, in order to ensure the safety of aquatic organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. TOXICITY OF DIETBOURNE METALS IN AQUATIC BIOTA: EMERGING SCIENCE AND REGULATORY IMPLICATIONS

    EPA Science Inventory

    A Pellston Workshop entitled "The Role of Dietborne Exposures in the Evaluation of Risk of Metals to Aquatic Organisms" was held in July 2002. The workshop was organized by SETAC, with funding from several government and industry organizations. The objective was to examine key ...

  3. CORMIX1: AN EXPERT SYSTEM FOR MIXING ZONE ANALYSIS OF TOXIC AND CONVENTIONAL, SINGLE PORT AQUATIC DISCHARGES

    EPA Science Inventory

    An expert system, CORMIX1, was developed to predict the dilution and trajectory of a single buoyant discharge into an unstratified aquatic environment with and without crossflow. The system uses knowledge and inference rules obtained from hydrodynamic experts to classify and pred...

  4. 40 CFR 160.43 - Test system care facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (1) In tests with plants or aquatic animals, proper separation of species can be accomplished within..., aquarium, or housing unit. (2) Aquatic toxicity tests for individual projects shall be isolated to the... protocol. (h) For plants, an adequate supply of soil of the appropriate composition, as specified in the...

  5. Selenium toxicity: cause and effects in aquatic birds

    USGS Publications Warehouse

    Spallholz, J.E.; Hoffman, D.J.

    2002-01-01

    There are several manners in which selenium may express its toxicity: (1) an important mechanism appears to involve the formation of CH3Se- which either enters a redox cycle and generates superoxide and oxidative stress, or forms free radicals that bind to and inhibit important enzymes and proteins. (2) Excess selenium as selenocysteine results in inhibition of selenium methylation metabolism. As a consequence, concentrations of hydrogen selenide, an intermediate metabolite, accumulate in animals and are hepatotoxic, possibly causing other selenium-related adverse effects. (3) It is also possible that the presence of excess selenium analogs of sulfur-containing enzymes and structural proteins play a role in avian teratogenesis. l-selenomethionine is the most likely major dietary form of selenium encountered by aquatic birds, with lesser amounts of l-selenocysteine ingested from aquatic animal foods. The literature is suggestive that l-selenomethionine is not any more toxic to adult birds than other animals. l-Selenomethionine accumulates in tissue protein of adult birds and in the protein of egg white as would be expected to occur in animals. There is no suggestion from the literature that the levels of l-selenomethionine that would be expected to accumulate in eggs in the absence of environmental concentration of selenium pose harm to the developing embryo. For several species of aquatic birds, levels of Se as selenomethionine in the egg above 3 ppm on a wet weight basis result in reduced hatchability and deformed embryos. The toxicity of l-selenomethionine injected directly into eggs is greater than that found from the entry of l-selenomethionine into the egg from the normal adult diet. This suggests that there is unusual if not abnormal metabolism of l-selenomethionine in the embryo not seen when l-selenomethionine is present in egg white protein where it likely serves as a source of selenium for glutathione peroxidase synthesis in the developing aquatic chick.

  6. Pesticide body burden of the crustacean Gammarus pulex as a measure of toxic pressure in agricultural streams.

    PubMed

    Shahid, Naeem; Becker, Jeremias Martin; Krauss, Martin; Brack, Werner; Liess, Matthias

    2018-06-22

    Risk assessments of toxicants in aquatic environments are typically based on the evaluation of concentrations in water or sediment. However, concentrations in water are highly variable, while the body burden may provide a better time-integrated measure of pesticide exposure and potential effects in aquatic organisms. Here, we quantified pesticide body burdens in a dominant invertebrate species from agricultural streams, Gammarus pulex, compared them pesticide concentrations in water samples, and linked the pesticide contamination with observed ecological effects on macroinvertebrate communities. In total, 19 of 61 targeted analytes were found in the organisms, ranging from 0.037 to 93.94 ng g-1 (wet weight). Neonicotinoids caused the highest toxic pressure among the pesticides detected in G. pulex. Using linear solvation energy relationships (LSERs), we derived equivalent pesticide concentrations in stream water based on the body burden. These equivalent concentrations correlated with the concentrations in water samples collected after run-off (65% of variance explained). Pesticide pressure significantly affected the aquatic macroinvertebrate community structure, expressed as SPEARpesticides, and caused, on average, threefold increased insecticide tolerance in G. pulex as a result of adaptation. The toxic pressure derived from body burden and from water samples similarly explained the change in community structure (68% and 64%). However, the increased tolerance of G. pulex to pesticides was better explained by the toxicity derived from body burden (70%) than by the toxicity from water samples (53%). We conclude that the internal body burden of macroinvertebrates is suitable to assess the overall pesticide exposure and effects in agricultural streams.

  7. Green synthesis of gold nanoparticles using a cheap Sphaeranthus indicus extract: Impact on plant cells and the aquatic crustacean Artemia nauplii.

    PubMed

    Balalakshmi, Chinnasamy; Gopinath, Kasi; Govindarajan, Marimuthu; Lokesh, Ravi; Arumugam, Ayyakannu; Alharbi, Naiyf S; Kadaikunnan, Shine; Khaled, Jamal M; Benelli, Giovanni

    2017-08-01

    The impact of green-fabricated gold nanoparticles on plant cells and non-target aquatic species is scarcely studied. In this research, we reported an environment friendly technique for the synthesis of gold nanoparticles (Au NPs) using the Sphaeranthus indicus leaf extract. The formation of the metal NPs was characterized by UV-Visible and FT-IR spectroscopy, XRD, SEM and TEM analyses. The UV-Visible spectra of Au NPs showed a surface plasmon resonance peak at 531nm. FT-IR analysis indicated functional bio-molecules associated with Au NPs formation. The crystalline nature of Au nanoparticles was confirmed by their XRD diffraction pattern. TEM revealed the spherical shape with a mean particle size of 25nm. Au NPs was tested at 0, 1, 3, 5, 7 and 10% doses in mitotic cell division assays, pollen germination experiments, and in vivo toxicity trials against the aquatic crustacean Artemia nauplii. Au NPs did not show any toxic effects on plant cells and aquatic invertebrates. Notably, Au NPs promoted mitotic cell division in Allium cepa root tip cells and germination of Gloriosa superba pollen grains. Au NPs showed no mortality on A. nauplii, all the tested animals showed 100% survivability. Therefore, these Au NPs have potential applications in the development of pollen germination media and plant tissue culture. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Acute toxicity of polybrominated diphenyl ethers (PBDEs) for turbot (Psetta maxima) early life stages (ELS).

    PubMed

    Mhadhbi, Lazhar; Fumega, José; Boumaiza, Moncef; Beiras, Ricardo

    2012-03-01

    The environmental presence of polybrominated diphenyl ethers (PBDEs), among which BDE-47 and BDE-99 are particularly abundant, makes toxicity data necessary to assess the hazard risk posed by PBDE to aquatic organisms. This study examines the effects of BDE-47 and BDE-99 on embryo-larval stages of the marine flatfish turbot. The turbot embryos were exposed at nominal concentrations of BDE-47 and BDE-99 for 6 days. Selected dose levels were relevant for investigating sublethal and lethal effects. Both tested compounds caused lethal toxicity as well as non-lethal malformations during embryo development. We found a high toxic potency of BDE-47 compared to BDE-99 (LC₅₀ values for embryos and larvae, respectively, BDE-47: 27.35 and 14.13 μg L⁻¹; BDE-99: 38.28 and 29.64 μg L⁻¹). The present study shows high sensitivity of fish early life stages (ELS) to PBDE compounds. Based on environmental concentrations of dissolved PBDEs from various aquatic ecosystems, waterborne BDE-47 and BDE-99 pose little risk of acute toxicity to marine fish at relevant environmental concentrations. Turbot fish ELS proved to be an excellent model for the study of ecotoxicity of contaminants in seawater. The results demonstrate harmful effects of PBDE on turbot ELS at concentrations in the range of parts per billion units. In the perspective of risk assessment, ELS endpoints provide rapid, cost-effective and ecologically relevant information, and links should be sought between these short-term tests and effects of long-term exposures in more realistic scenarios.

  9. MODULATING STORM DRAIN FLOWS TO REDUCE STREAM POLLUTANT CONCENTRATIONS

    EPA Science Inventory

    Pathogen and toxic chemical concentrations above the chemical and toxicity water quality standards in creeks and rivers pose risks to human health and aquatic ecosystems. Storm drains discharging into these watercourses often contribute significantly to elevating pollutant concen...

  10. Assessing Contaminant Sensitivity of Endangered and Threatened Aquatic Species: Part III. Effluent Toxicity Tests

    EPA Science Inventory

    This paper reports on the results of chronic toxicity tests conducted with common surrogate species, and several threatened and endangered species for which there were excess artificially propagated stock to allow direct testing.

  11. ABILITY OF ECOSAR, TOPKAT, NEURAL NETWORKS, AND ASTER TO PREDICT TOXICITY OF CHEMICALS TO AQUATIC BIOTA

    EPA Science Inventory

    The Canadian Environmental Protection Act (CEPA) which provides the basis for assessing and managing toxic substances in Canada, is being revised. Several new mandates have been introduced in the Act...

  12. Role of selenium toxicity and oxidative stress in aquatic birds

    USGS Publications Warehouse

    Hoffman, D.J.

    2002-01-01

    Adverse effects of selenium (Se) in wild aquatic birds have been documented as a consequence of pollution of the aquatic environment by subsurface agricultural drainwater and other sources. These effects include mortality, impaired reproduction with teratogenesis, reduced growth, histopathological lesions and alterations in hepatic glutathione metabolism. A review is provided, relating adverse biological effects of Se in aquatic birds to altered glutathione metabolism and oxidative stress. Laboratory studies, mainly with an organic form of Se, selenomethionine, have revealed oxidative stress in different stages of the mallard (Anas platyrhynchos) life cycle. As dietary and tissue concentrations of Se increase, increases in plasma and hepatic GSH peroxidase activities occur, followed by dose-dependent increases in the ratio of hepatic oxidized to reduced glutathione (GSSG:GSH) and ultimately hepatic lipid peroxidation measured as an increase in thiobarbituric acid reactive substances (TBARS). One or more of these oxidative effects were associated with teratogenesis (4.6 ppm wet weight Se in eggs), reduced growth in ducklings (15 ppm Se in liver), diminished immune function (5 ppm Se in liver) and histopathological lesions (29 ppm Se in liver) in adults. Manifestations of Serelated effects on glutathione metabolism were also apparent in field studies in seven species of aquatic birds. Reduced growth and possibly immune function but increased liver:body weight and hepatic GSSG:GSH ratios were apparent in American avocet (Recurvirostra americana) hatchlings from eggs containing 9 ppm Se. In blacknecked stilts (Himantopus mexicanus), which contained somewhat lower Se concentrations, a decrease in hepatic GSH was apparent with few other effects. In adult American coots (Fulica americana), signs of Se toxicosis included emaciation, abnormal feather loss and histopathological lesions. Mean liver concentrations of 28 ppm Se (ww) in the coots were associated with elevated hepatic GSH peroxidase, depletion of hepatic protein bound thiols and total thiols, but a small increase in GSH. Diving ducks in the San Francisco Bay area exhibited a positive correlation between hepatic Se concentration and GSH peroxidase activity (r=0.63, P<0.05), but a negative correlation between hepatic Se and GSH concentration (r=0.740, P<0.05). In willets (Catoptrophorus semipalmatus) from the San Diego area, positive correlations occurred between hepatic Se concentration and GSSG (r=0.70, P<0.001), GSSG:GSH ratio, and TBARS. In emperor geese (Chen canagica) from western Alaska, blood levels of up to 9.4 ppm occurred and were associated with increased plasma GSH peroxidase activity (r=0.62, P<0.001), but with decreased plasma GSSG reductase activity. When evaluating Se toxicity, interactive nutritional factors, including other elements and dietary protein, should also be taken into consideration. Further studies are needed to examine the relationship between different forms of environmentally occurring selenium, arsenic and mercury on reproduction, hepatotoxicity and immune function of aquatic birds. Further selenium nutritional interaction studies may also help to illucidate the mechanism of selenium induced teratogenesis, by optimizing GSH and other antioxidant defense mechanisms in a manner that would stabilize or raise the cell's threshold for susceptibility to toxic attack from excess selenium. It is concluded that Se-related manifestations of oxidative stress may serve as useful bioindicators of Se exposure and toxicity in wild aquatic birds.

  13. ENHANCED CORRISION-BASED PD/MG BIMETALLIC SYSTEMS FOR DECHLORINATION OF PCBS

    EPA Science Inventory

    Polychlorinated biphenyls (PCBs) are toxic pollutants notorious for their aquatic and sedimentary prevalence and recalcitrant nature. Bimetallic systems like Pd/Fe have been widely studied for degrading them. Mg, with oxidation potential higher than Fe, has been reported to dechl...

  14. USE OF MODELS TO SUPPORT WATER QUALTIY CRITERIA - A CASE STUDY

    EPA Science Inventory

    In the United States, current methods for deriving chemical criteria protective of aquatic life depend on acute and chronic toxicity test results involving several species. These results are analyzed statistically to identify chemical concentrations that protect the majority of ...

  15. Environmental hazard of oil shale combustion fly ash.

    PubMed

    Blinova, Irina; Bityukova, Liidia; Kasemets, Kaja; Ivask, Angela; Käkinen, Aleksandr; Kurvet, Imbi; Bondarenko, Olesja; Kanarbik, Liina; Sihtmäe, Mariliis; Aruoja, Villem; Schvede, Hedi; Kahru, Anne

    2012-08-30

    The combined chemical and ecotoxicological characterization of oil shale combustion fly ash was performed. Ash was sampled from the most distant point of the ash-separation systems of the Balti and Eesti Thermal Power Plants in North-Eastern Estonia. The fly ash proved potentially hazardous for tested aquatic organisms and high alkalinity of the leachates (pH>10) is apparently the key factor determining its toxicity. The leachates were not genotoxic in the Ames assay. Also, the analysis showed that despite long-term intensive oil-shale combustion accompanied by considerable fly ash emissions has not led to significant soil contamination by hazardous trace elements in North-Eastern Estonia. Comparative study of the fly ash originating from the 'new' circulating fluidized bed (CFB) combustion technology and the 'old' pulverized-fired (PF) one showed that CFB fly ash was less toxic than PF fly ash. Thus, complete transfer to the 'new' technology will reduce (i) atmospheric emission of hazardous trace elements and (ii) fly ash toxicity to aquatic organisms as compared with the 'old' technology. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Toxicity of fluoranthene to Daphnia magna, Hyalella azteca, Chironomus tentans, and Stylaria lacustris in water-only and whole sediment exposures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suedel, B.C.; Rodgers, J.H. Jr.

    1996-07-01

    Fluoranthene is a polycyclic aromatic hydrocarbon (PAH) with a hydrophobic nature (water solubility = 265 {mu}g/L; U.S. EPA 1980) and a propensity to sorb to sediments. Fluoranthene has a K{sub oc} of 4.65, an intermediate value for PAHs. Fluoranthene can be toxic to some aquatic organisms at concentrations lower than its aqueous solubility. Therefore, desorption from sediments could produce aqueous concentrations that are harmful to aquatic organisms. Very few studies have examined the toxicity of fluoranthene to freshwater organisms. Data for other PAHs show that crustaceans are the most sensitive species, followed by polychaete worms and fish. Effects of fluoranthene-amendedmore » sediments on selected marine benthic organisms were examined. The objectives of this research were to (1) determine the relative sensitivities of Daphnia magna Straus, Hyalella azteca Saussure, Chironomus tentans Fabricius, and Stylaria lacustris Linnaeus in 48-hr and 10-d aqueous phase exposures to fluoranthene; and (2) determine the relative responses of these organisms in 10-d fluoranthene-amended sediment exposures. 12 refs., 3 tabs.« less

  17. Toxic effects of acid rain on aquatic and terrestrial ecosystems.

    PubMed

    Rutherford, G K

    1984-08-01

    The historical perspective as well as the nature and causes of acid precipitation are presented. The toxicological effects of acid precipitation on lakes, other water bodies, fish, and invertebrate fauna are reviewed. In addition, the effects of this phenomenon on soil productivity and forest growth are examined. It appears that grave toxic effects have been and are being experienced by aquatic systems, but there is little reliable evidence of economic damage to crops, natural vegetation, and soil and biological processes. There may be insidious long-term effects on terrestrial ecosystems, particularly in the more susceptible areas.

  18. Fate and effects of the triazinone herbicide metribuzin in experimental pond mesocosms

    USGS Publications Warehouse

    Fairchild, J.F.; Sappington, L.C.

    2002-01-01

    Metribuzin is a triazinone herbicide that is widely used for the control of grasses and broad-leaved weeds in soybeans, sugarcane, and numerous other crops. Metribuzin is highly toxic to freshwater macrophytes and algae under laboratory conditions (median plant EC50 = 31 ??g/L; n = 11 species) but has not been studied under controlled outdoor conditions. We conducted a 6-week study to examine the aquatic fate and effects of metribuzin in 0.1-ha outdoor aquatic mesocosms. Mesocosms (n = 2 per treatment) were treated with metribuzin at one of five concentrations: 0, 9, 19, 38, or 75 ??g/L. Concentrations were selected to bracket known laboratory effect concentrations and to reflect calculated edge-of-field concentrations. The dissipation half-life of metribuzin in water was 5 days. Metribuzin had no statistically significant effects on water quality, periphyton biomass, macrophyte biomass, macrophyte species composition, fish survival, or fish growth at treatment levels ranging up to and including 75 ??g/L. Although metribuzin is highly toxic to freshwater macrophytes and algae under laboratory conditions, it poses little risk to nontarget aquatic plants due to the short aqueous dissipation half-life. The findings also demonstrate that current herbicide risk assessment procedures used in the registration process could benefit from empirical assessments of the fate of chemicals under realistic environmental conditions.

  19. Single and joint toxicity assessment of four currently used pesticides to zebrafish (Danio rerio) using traditional and molecular endpoints.

    PubMed

    Wang, Yanhua; Wu, Shenggan; Chen, Jine; Zhang, Changpeng; Xu, Zhenlan; Li, Gang; Cai, Leiming; Shen, Weifeng; Wang, Qiang

    2018-02-01

    Pesticides usually present in mixtures in surface waters, although they are traditionally regulated on an individual basis in aquatic ecosystems. In this study, we aimed to investigate the lethal and transcriptional responses of individual and combined pesticides (iprodione, pyrimethanil, pyraclostrobin and acetamiprid) on zebrafish (Danio rerio). Semi-static toxicity test indicated that the greatest toxicity to the four life stages (embryonic, larval, juvenile and adult stages) of D. rerio was detected from pyraclostrobin, followed by iprodione and pyrimethanil. In contrast, the lowest toxicity to the organisms was found from acetamiprid. Most of the selected pesticides exerted greater toxicities to D. rerio of embryonic stage compared with other life stages. Synergistic responses were observed from all binary mixtures of iprodione in combination with pyrimethanil or acetamiprid and ternary mixtures of iprodione+pyraclostrobin in combination with pyrimethanil or acetamiprid. The expressions of 16 genes related to cell apoptosis pathway, oxidative stress response, innate immunity and endocrine disruption at the mRNA level showed that zebrafish embryos were affected by the individual or combined pesticides. The expressions of P53, Tnf, TRβ, Tsh and Cyp19a exhibited greater changes upon exposure to combined pesticides compared with individual pesticides. Taken together, increased toxicity might be triggered by the simultaneous presence of several pesticides in the aquatic environment, which seriously damaged the non-target organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effects of zinc and copper on growth and metal accumulation in duckweed, Lemna minor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirilgen, N.; Inel, Y.

    1994-09-01

    Heavy metal pollutants are known to be quite toxic to a wide variety of aquatic plants. Lemna (duckweed), due to its special feature, is sought as a test organism for aquatic pollutant studies and for wastewater treatment. Lemna grows rapidly and reproduces vegetatively; its biomass is measured easily. It is adaptable to various aquatic conditions; it extacts and also accumulates metals in its frond bodies. Among the metals, Cu is classified as extremely toxic and Zn is classified as moderately toxic to Lemna. It is reported that both Cu and Zn concentrations in the medium have a great impact onmore » the growth responses and the physiological processes in Lemna. Deficiencies in Cu and Zn resulted in chlorosis of L.minor fronds and low concentrations of CU interfered with the floral induction in L.minor and L.gibba. Excess Cu inhibited both frond growth and frond multiplication of L. paucicostata and it decreased the content of chlorophyll [alpha] and photosynthetic CO[sub 2] uptake in L.minor. In water bodies, metals always are present in combination. Consequently, metal pair interaction is a factor to be considered. However, there are few studies on the effects of metal pair interactions on duckweed growth and metal accumulation. The purpose of this study was to investigate the effects of increased concentrations of Zn and Cu in combination on growth and metal accumulation by Lemna minor L. under controlled laboratory conditions. Zn and Cu were chosen since they are known as essential trace elements for duckweed up to a certain concentration; above that growth inhibition might occur. 16 refs., 3 figs., 6 tabs.« less

  1. Recommended Water Quality Criteria for Octahydro-1,3,5,7-Tentranitro-1, 3,5,7-Tetrazocin (HMX).

    DTIC Science & Technology

    1989-03-27

    possible to derive water quality criteria for protection of aquatic life following USEPA guidelines. Based on the NOAEL of 50 mg/kg/day from the 13-week...special reference to those on human, mammalian, and aquatic health effects, and to generate water quality criteria for drinking water and for the...and discussed below. Aquatic Invertebrates Bentley et al. (1977) performed static acute toxicity tests on four species of freshwater invertebrates

  2. Cypermethrin induced toxicities in fish and adverse health outcomes: Its prevention and control measure adaptation.

    PubMed

    Ullah, Sana; Zuberi, Amina; Alagawany, Mahmoud; Farag, Mayada Ragab; Dadar, Maryam; Karthik, Kumaragurubaran; Tiwari, Ruchi; Dhama, Kuldeep; Iqbal, Hafiz M N

    2018-01-15

    Pesticides are being widely employed in the modern agriculture, though in different quantities, across the globe. Although it is useful for crops yield enhancement, however, there are the serious environment, health and safety related concerns for aquatic and terrestrial living biomes that include humans, animals, and plants. Various in practice and emerging pesticides adversely affect the survival, development and biological systems stability. Several research efforts have been made to highlight the bio-safety and toxicological features of toxicants through risk assessment studies using different animal models, e.g., different fish species. Among several pesticides, cypermethrin is extensively used in agriculture and households, and the reported concentrations of this pesticide in different water bodies including rivers and streams, soil and even in rainwater are threatening. Consequently, cypermethrin is considered for risk assessment studies to know about its deep and different level of toxicological effects subject to its dose, exposure time and route. The cypermethrin existence/persistence in the environment is posing a severe threat to humans as well as another non-target terrestrial and aquatic organism. Herein, the toxic effects of pesticides, with special reference to cypermethrin, on fish, the mode of toxicity, concerns regarding public health and harmful impacts on human beings are comprehensively reviewed. The information is also given on their appropriate control and prevention strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A short-term swimming speed alteration test with nauplii of Artemia franciscana.

    PubMed

    Morgana, Silvia; Estévez-Calvar, Noelia; Gambardella, Chiara; Faimali, Marco; Garaventa, Francesca

    2018-01-01

    The presence of toxicant needs to be assessed within short time in order to effectively protect the aquatic environment from serious threat. Based on the observation that at high temperatures aquatic organisms become more vulnerable to stressors than those maintained at room temperature, a new test was developed. The proposed bioassay consisted in the evaluation of the swimming speed alteration (SSA) of nauplii of Artemia franciscana incubated at 39°C (± 1) for 6h, using a Swimming Behavior Recorder system (SBR). A comparative ecotoxicological study between the 6h SSA test and the 24h mortality test was carried out in order to validate the new method in terms of sensitivity by means of EC 50 values. The bioassay was applied to screen different toxicants: K 2 Cr 2 O 7 , Cu(SO 4 ) 2 , NaClO, SDS and Sertraline hydrochloride. The EC 50s calculated for the short-term SSA test and those of the mortality test showed comparable values. For all toxicants, the 6h SSA test was proved to be as sensitive as the 24h mortality test. The method developed in this study is the first temperature-based toxicity test with nauplii of Artemia franciscana and it represents an attractive assay in ecotoxicology because of its convenience in terms of time and costs, feasibility and sensitivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A risk-based approach for identifying constituents of concern in oil sands process-affected water from the Athabasca Oil Sands region.

    PubMed

    McQueen, Andrew D; Kinley, Ciera M; Hendrikse, Maas; Gaspari, Daniel P; Calomeni, Alyssa J; Iwinski, Kyla J; Castle, James W; Haakensen, Monique C; Peru, Kerry M; Headley, John V; Rodgers, John H

    2017-04-01

    Mining leases in the Athabasca Oil Sands (AOS) region produce large volumes of oil sands process-affected water (OSPW) containing constituents that limit beneficial uses and discharge into receiving systems. The aim of this research is to identify constituents of concern (COCs) in OSPW sourced from an active settling basin with the goal of providing a sound rational for developing mitigation strategies for using constructed treatment wetlands for COCs contained in OSPW. COCs were identified through several lines of evidence: 1) chemical and physical characterization of OSPW and comparisons with numeric water quality guidelines and toxicity endpoints, 2) measuring toxicity of OSPW using a taxonomic range of sentinel organisms (i.e. fish, aquatic invertebrates, and a macrophyte), 3) conducting process-based manipulations (PBMs) of OSPW to alter toxicity and inform treatment processes, and 4) discerning potential treatment pathways to mitigate ecological risks of OSPW based on identification of COCs, toxicological analyses, and PBM results. COCs identified in OSPW included organics (naphthenic acids [NAs], oil and grease [O/G]), metals/metalloids, and suspended solids. In terms of species sensitivities to undiluted OSPW, fish ≥ aquatic invertebrates > macrophytes. Bench-scale manipulations of the organic fractions of OSPW via PBMs (i.e. H 2 O 2 +UV 254 and granular activated charcoal treatments) eliminated toxicity to Ceriodaphnia dubia (7-8 d), in terms of mortality and reproduction. Results from this study provide critical information to inform mitigation strategies using passive or semi-passive treatment processes (e.g., constructed treatment wetlands) to mitigate ecological risks of OSPW to aquatic organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Evaluation of new aquatic toxicity test methods for oil dispersants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, C.B.; Clark, J.R.; Bragin, G.E.

    1994-12-31

    Current aquatic toxicity test methods used for dispersant registration do not address real world exposure scenarios. Current test methods require 48 or 96 hour constant exposure conditions. In contrast, environmentally realistic exposures can be described as a pulse in which the initial concentration declines over time. Recent research using a specially designed testing apparatus (the California system) has demonstrated that exposure to Corexit 9527{reg_sign} under pulsed exposure conditions may be 3 to 22 times less toxic compared to continuous exposure scenarios. The objectives of this study were to compare results of toxicity tests using the California test system to resultsmore » from standardized tests, evaluate sensitivity of regional (Holmesimysis cast and Atherinops affinis) vs. standard test species (Mysidopsis bahia and Menidia beryllina) and determine if tests using the California test system and method are reproducible. All tests were conducted using Corexit 9527{reg_sign} as the test material. Standard toxicity tests conducted with M. bahia and H. cast resulted in LC50s similar to those from tests using the California apparatus. LC50s from tests conducted in the authors` laboratory with the California system and standard test species were within a factor of 2 to 6 of data previously reported for west coast species. Results of tests conducted with H. cast in the laboratory compared favorably to data reported by Singer et al. 1991.« less

  6. Using a holistic approach to assess the impact of engineered nanomaterials inducing toxicity in aquatic systems.

    PubMed

    He, Xiaojia; Aker, Winfred G; Leszczynski, Jerzy; Hwang, Huey-Min

    2014-03-01

    In this report, we critically reviewed selected intrinsic physicochemical properties of engineered nanomaterials (ENMs) and their role in the interaction of the ENMs with the immediate surroundings in representative aquatic environments. The behavior of ENMs with respect to dynamic microenvironments at the nano-bio-eco interface level, and the resulting impact on their toxicity, fate, and exposure potential are elaborated. Based on this literature review, we conclude that a holistic approach is urgently needed to fulfill our knowledge gap regarding the safety of discharged ENMs. This comparative approach affords the capability to recognize and understand the potential hazards of ENMs and their toxicity mechanisms, and ultimately to establish a quantitative and reliable system to predict such outcomes. Copyright © 2014. Published by Elsevier B.V.

  7. Acute toxicity of leachates of tire wear material to Daphnia magna--variability and toxic components.

    PubMed

    Wik, Anna; Dave, Göran

    2006-09-01

    Large amounts of tire rubber are deposited along the roads due to tread wear. Several compounds may leach from the rubber and cause toxicity to aquatic organisms. To investigate the toxic effects of tire wear material from different tires, rubber was abraded from the treads of twenty-five tires. Leachates were prepared by allowing the rubber to equilibrate with dilution water at 44 degrees C for 72 h. Then the rubber was filtered from the leachates, and test organisms (Daphnia magna) were added. Forty-eight hour EC50s ranged from 0.5 to >10.0 g l(-1). The toxicity identification evaluation (TIE) indicated that non-polar organic compounds caused most of the toxicity. UV exposure of the filtered tire leachates caused no significant increase in toxicity. However, when tested as unfiltered leachates (the rubber was not filtered from the leachates before addition of D. magna) photo-enhanced toxicity was considerable for some tires, which means that test procedures are important when testing tire leachates for aquatic (photo) toxicity. The acute toxicity of tire wear for Daphnia magna was found to be <40 times a predicted environmental concentration based on reports on the concentration of a tire component found in environmental samples, which emphasizes the need for a more extensive risk assessment of tire wear for the environment.

  8. THE ROLE OF IONORGANIC ION IMBALANCE IN AQUATIC TOXICITY TESTING

    EPA Science Inventory

    This paper assessess the issue of ion imbalance, provides summary of applicable data, presents several successful technical tools to address toxicity resulting from salinity and ion imbalances, and discusses regulatory/compliance options to manage discharges with salinity/ion imb...

  9. Uptake and toxicity of organic compounds: studies with an aquatic macrophyte (Lemna minor)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockhart, W.L.; de March, B.G.F.; Billeck, B.N.

    1981-10-01

    Aquatic macrophytes have been the subjects of relatively little research attention, either for their ability to accumulate pollutants or for their susceptibility to any toxic action of pollutants. Duckweed (Lemna minor) clones were maintained in axenic culture and were exposed to several carbon-14 (/sup 14/C) labeled compounds added to the culture medium. Transfer of radioactivity from media to plants (bioconcentration) was described empirically with regression equations incorporating exposure times and concentrations, partition coefficients, and types of water used to make the culture media. In separate experiments, the growth of cultures in terms of frond numbers was described as a functionmore » of exposure time for several concentrations of the herbicides terbutryn, ethalfluralin, and fluridone. Bioconcentration and growth equations were then used to estimate those herbicide residues that should be associated with reductions in culture growth.« less

  10. Aquatic concentrations of chemical analytes compared to ...

    EPA Pesticide Factsheets

    We describe screening level estimates of potential aquatic toxicity posed by 227 chemical analytes that were measured in 25 ambient water samples collected as part of a joint USGS/USEPA drinking water plant study. Measured concentrations were compared to biological effect concentration (EC) estimates, including USEPA aquatic life criteria, effective plasma concentrations of pharmaceuticals, published toxicity data summarized in the USEPA ECOTOX database, and chemical structure-based predictions. Potential dietary exposures were estimated using a generic 3-tiered food web accumulation scenario. For many analytes, few or no measured effect data were found, and for some analytes, reporting limits exceeded EC estimates, limiting the scope of conclusions. Results suggest occasional occurrence above ECs for copper, aluminum, strontium, lead, uranium, and nitrate. Sparse effect data for manganese, antimony, and vanadium suggest that these analytes may occur above ECs, but additional effect data would be desirable to corroborate EC estimates. These conclusions were not affected by bioaccumulation estimates. No organic analyte concentrations were found to exceed EC estimates, but ten analytes had concentrations in excess of 1/10th of their respective EC: triclocarban, norverapamil, progesterone, atrazine, metolachlor, triclosan, para-nonylphenol, ibuprofen, venlafaxine, and amitriptyline, suggesting more detailed characterization of these analytes. Purpose: to provide sc

  11. Aquatic concentrations of chemical analytes compared to ecotoxicity estimates

    USGS Publications Warehouse

    Kostich, Mitchell S.; Flick, Robert W.; Angela L. Batt,; Mash, Heath E.; Boone, J. Scott; Furlong, Edward T.; Kolpin, Dana W.; Glassmeyer, Susan T.

    2017-01-01

    We describe screening level estimates of potential aquatic toxicity posed by 227 chemical analytes that were measured in 25 ambient water samples collected as part of a joint USGS/USEPA drinking water plant study. Measured concentrations were compared to biological effect concentration (EC) estimates, including USEPA aquatic life criteria, effective plasma concentrations of pharmaceuticals, published toxicity data summarized in the USEPA ECOTOX database, and chemical structure-based predictions. Potential dietary exposures were estimated using a generic 3-tiered food web accumulation scenario. For many analytes, few or no measured effect data were found, and for some analytes, reporting limits exceeded EC estimates, limiting the scope of conclusions. Results suggest occasional occurrence above ECs for copper, aluminum, strontium, lead, uranium, and nitrate. Sparse effect data for manganese, antimony, and vanadium suggest that these analytes may occur above ECs, but additional effect data would be desirable to corroborate EC estimates. These conclusions were not affected by bioaccumulation estimates. No organic analyte concentrations were found to exceed EC estimates, but ten analytes had concentrations in excess of 1/10th of their respective EC: triclocarban, norverapamil, progesterone, atrazine, metolachlor, triclosan, para-nonylphenol, ibuprofen, venlafaxine, and amitriptyline, suggesting more detailed characterization of these analytes.

  12. Aquatic concentrations of chemical analytes compared to ecotoxicity estimates.

    PubMed

    Kostich, Mitchell S; Flick, Robert W; Batt, Angela L; Mash, Heath E; Boone, J Scott; Furlong, Edward T; Kolpin, Dana W; Glassmeyer, Susan T

    2017-02-01

    We describe screening level estimates of potential aquatic toxicity posed by 227 chemical analytes that were measured in 25 ambient water samples collected as part of a joint USGS/USEPA drinking water plant study. Measured concentrations were compared to biological effect concentration (EC) estimates, including USEPA aquatic life criteria, effective plasma concentrations of pharmaceuticals, published toxicity data summarized in the USEPA ECOTOX database, and chemical structure-based predictions. Potential dietary exposures were estimated using a generic 3-tiered food web accumulation scenario. For many analytes, few or no measured effect data were found, and for some analytes, reporting limits exceeded EC estimates, limiting the scope of conclusions. Results suggest occasional occurrence above ECs for copper, aluminum, strontium, lead, uranium, and nitrate. Sparse effect data for manganese, antimony, and vanadium suggest that these analytes may occur above ECs, but additional effect data would be desirable to corroborate EC estimates. These conclusions were not affected by bioaccumulation estimates. No organic analyte concentrations were found to exceed EC estimates, but ten analytes had concentrations in excess of 1/10th of their respective EC: triclocarban, norverapamil, progesterone, atrazine, metolachlor, triclosan, para-nonylphenol, ibuprofen, venlafaxine, and amitriptyline, suggesting more detailed characterization of these analytes. Published by Elsevier B.V.

  13. Classifying environmental pollutants: Part 3. External validation of the classification system.

    PubMed

    Verhaar, H J; Solbé, J; Speksnijder, J; van Leeuwen, C J; Hermens, J L

    2000-04-01

    In order to validate a classification system for the prediction of the toxic effect concentrations of organic environmental pollutants to fish, all available fish acute toxicity data were retrieved from the ECETOC database, a database of quality-evaluated aquatic toxicity measurements created and maintained by the European Centre for the Ecotoxicology and Toxicology of Chemicals. The individual chemicals for which these data were available were classified according to the rulebase under consideration and predictions of effect concentrations or ranges of possible effect concentrations were generated. These predictions were compared to the actual toxicity data retrieved from the database. The results of this comparison show that generally, the classification system provides adequate predictions of either the aquatic toxicity (class 1) or the possible range of toxicity (other classes) of organic compounds. A slight underestimation of effect concentrations occurs for some highly water soluble, reactive chemicals with low log K(ow) values. On the other end of the scale, some compounds that are classified as belonging to a relatively toxic class appear to belong to the so-called baseline toxicity compounds. For some of these, additional classification rules are proposed. Furthermore, some groups of compounds cannot be classified, although they should be amenable to predictions. For these compounds additional research as to class membership and associated prediction rules is proposed.

  14. Dissolved Pesticide and Organic Carbon Concentrations Detected in Surface Waters, Northern Central Valley, California, 2001-2002

    USGS Publications Warehouse

    Orlando, James L.; Jacobson, Lisa A.; Kuivila, Kathryn

    2004-01-01

    Field and laboratory studies were conducted to determine the effects of pesticide mixtures on Chinook salmon under various environmental conditions in surface waters of the northern Central Valley of California. This project was a collaborative effort between the U.S. Geological Survey (USGS) and the University of California. The project focused on understanding the environmental factors that influence the toxicity of pesticides to juvenile salmon and their prey. During the periods January through March 2001 and January through May 2002, water samples were collected at eight surface water sites in the northern Central Valley of California and analyzed by the USGS for dissolved pesticide and dissolved organic carbon concentrations. Water samples were also collected by the USGS at the same sites for aquatic toxicity testing by the Aquatic Toxicity Laboratory at the University of California Davis; however, presentation of the results of these toxicity tests is beyond the scope of this report. Samples were collected to characterize dissolved pesticide and dissolved organic carbon concentrations, and aquatic toxicity, associated with winter storm runoff concurrent with winter run Chinook salmon out-migration. Sites were selected that represented the primary habitat of juvenile Chinook salmon and included major tributaries within the Sacramento and San Joaquin River Basins and the Sacramento?San Joaquin Delta. Water samples were collected daily for a period of seven days during two winter storm events in each year. Additional samples were collected weekly during January through April or May in both years. Concentrations of 31 currently used pesticides were measured in filtered water samples using solid-phase extraction and gas chromatography-mass spectrometry at the U.S. Geological Survey's organic chemistry laboratory in Sacramento, California. Dissolved organic carbon concentrations were analyzed in filtered water samples using a Shimadzu TOC-5000A total organic carbon analyzer.

  15. Metallic nanoparticle production and consumption in China between 2000 and 2010 and associative aquatic environmental risk assessment

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Luo, Zhuanxi; He, Nianpeng; Wang, Ming K.

    2013-06-01

    With rapid advances in nanotechnology and nanomaterials, metallic nanoparticles (MNPs) have become widely used in many different products and industrial processes. Water is an important medium in the transfer and fate of MNPs. Accordingly, the potential for the inadvertent and incidental release of MNPs into aquatic environments through direct release and waste disposal has increased considerably in China in recent years. Environmental health and human safety are two of the greatest challenges facing the expanding nanomaterial field. However, existing knowledge on MNP toxicity is currently insufficient to carry out a comprehensive risk assessment due to a general lack of data related to the environmental distribution of MNPs within aquatic environments. This study provides a summary of MNP production and consumption trends in China by means of statistical changes in MNP discharge and deposition between 2000 and 2010. China was used as a model for aquatic environmental risks associated with MNP consumption and production. MNP pollution of aquatic environments is discussed as well as the challenges that China will face in the future with increasing nanomaterial consumption and pollution. The study concludes with a discussion on managing MNP exposure of aquatic environments in China and its subsequent risks, if any, which may require greater attention.

  16. Effects of Nanosilver on Daphnia magna and Pimephales promelas

    EPA Science Inventory

    The increasing use of nanosilver in consumer products warrants investigation into its toxicity to aquatic organisms. A series of studies were conducted comparing the potency of nanosilver to ionic silver (Ag+) at acute and sublethal levels and to evaluate the likelihood that the ...

  17. SEDIMENT ANALYSIS - LANDSCAPE INDICATORS FOR PESTICIDES STUDY FOR MID-ATLANTIC COASTAL STREAMS (LIPS-MACS)

    EPA Science Inventory

    Nonpoint-source pollution, including pesticides and toxics, is the largest threat facing aquatic resources today. Understanding how pesticides applied to agricultural fields and suburban lawns reach and influence stream water quality is the focus of the Landscape Indicators for ...

  18. Draft Test Guideline: Special Considerations for Conducting Aquatic Laboratory Studies

    EPA Pesticide Factsheets

    The following draft test guideline is part of a series of test guidelines that have been developed by EPA for use in the testing of pesticides and toxic substances, and the development of test data for submission to the Agency for review.

  19. Environmental fate and effects of nicotine released during cigarette production.

    PubMed

    Seckar, Joel A; Stavanja, Mari S; Harp, Paul R; Yi, Yongsheng; Garner, Charles D; Doi, Jon

    2008-07-01

    A variety of test methods were used to study the gradation, bioaccumulation, and toxicity of nicotine. Studies included determination of the octanol-water partition coefficient, conversion to CO2 in soil and activated sludge, and evaluation of the effects on microbiological and algal inhibition as well as plant germination and root elongation. The partitioning of nicotine between octanol and water indicated that nicotine will not bioaccumulate regardless of the pH of the medium. The aqueous and soil-based biodegradation studies indicated that nicotine is readily biodegradable in both types of media. The microbiological inhibition and aquatic and terrestrial toxicity tests indicated that nicotine has low toxicity. The U.S. Environmental Protection Agency Persistence, Bioaccumulation, and Toxicity Profiler model, based on the structure of nicotine and the predictive rates of hydroxyl radical and ozone reactions, estimated an atmospheric half-life of less than 5.0 h. Using this value in the Canadian Environmental Modeling Center level III model, the half-life of nicotine was estimated as 3.0 d in water and 0.5 d in soil. This model also estimated nicotine discharge into the environment; nicotine would be expected to be found predominantly in water (93%), followed by soil (4%), air (3%), and sediment (0.4%). Using the estimated nicotine concentrations in water, soil, and sediment and the proper median effective concentrations derived from the algal growth, biomass inhibition, and buttercrunch lettuce (Lactuca sativa) seed germination and root elongation studies, hazard quotients of between 10(-7) and 10(-8) were calculated, providing further support for the conclusion that the potential for nicotine toxicity to aquatic and terrestrial species in the environment is extremely low.

  20. Presence, fate and effects of the intense sweetener sucralose in the aquatic environment.

    PubMed

    Tollefsen, Knut Erik; Nizzetto, Luca; Huggett, Duane B

    2012-11-01

    Sucralose (1,6-dichloro-1,6-dideoxy-b-D-fructo-furanosyl 4-chloro-4-deoxy-a-D-galactopyranoside), sold under the trade name Splenda, has been detected in municipal effluents and surface waters in the United States and Europe. The environmental presence of sucralose has led to interest in the possibility of toxic effects in non-target species. This review presents an environmental risk assessment of sucralose based on available data concerning its presence, fate and effects in the environment. Sucralose, which is made by selective chlorination of sucrose, is a highly stable compound, which undergoes negligible metabolism in mammals, including humans, and displays a low biodegradation potential in the environment. This intense sweetener is highly soluble in water, displays a low bioaccumulation potential and a low sorption potential to soil and organic matter, and thus is predominantly present in the water column. The predicted environmental concentration (PEC) for sucralose, based on measured data in surface waters, was determined to be 10 μg/L. Aquatic toxicity studies using standardized, validated protocols used in regulatory decision making indicate that sucralose does not alter survival, growth and reproduction of aquatic organisms (such as plants, algae, crustaceans and fish) at concentrations >9000 times higher than those detected in the environment. Some studies, using non-standardized protocols, have reported behavioral and other non-traditional responses in aquatic organisms, but the relevance of these findings for assessing adverse effects on individuals and populations will require further investigation. In terms of traditional risk assessment, the proposed predicted no effect concentration for aquatic organisms (PNEC) was determined to be 0.93 mg/L, based on the lowest no effect concentration (NOEC) from a validated chronic study with mysid shrimp and an application factor of 100. The resultant PEC/PNEC quotient was determined to be well below 1 (PEC/PNEC=0.08), thus indicating a limited risk to the environment using traditional ecological risk assessment approaches. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Similarities and differences in acute response to major ions among several aquatic species: Implications for guideline development

    EPA Science Inventory

    Adverse effects from increased concentrations of major geochemical ions (Na, K, Ca, Mg, Cl, SO4, HCO3) to aquatic organisms have been demonstrated or implied in many settings. However, experimental work has shown that the toxicity of ion mixtures is dependent on the specific mix...

  2. An "assemblage toxicity index" to improve characterization of effects of atrazine on aquatic plant communities

    EPA Science Inventory

    Aquatic risk assessments are made uncertain by the use of measures of effect for only one level of effect and by the use of only one percentile in sensitivity distributions for the variation of this measure of effect across an assemblage of taxa. This leaves undefined the severi...

  3. AN OVERVIEW OF THE AQUATIC ECOLOGICAL RISKS POSED BY DIOXIN-LIKE CHEMICALS

    EPA Science Inventory

    This seminar will provide a basic overview of how 2,3,7,8-tetrachlorodibenzo-p-dioxin (a.k.a. TCDD or "dioxin") and dioxin-like chemicals (e.g., certain PCBs) bioaccumulate and affect non-human receptors in aquatic food webs; the latest on applications of the toxicity equivalence...

  4. Three dimensional quantitative structure-toxicity relationship modeling and prediction of acute toxicity for organic contaminants to algae.

    PubMed

    Jin, Xiangqin; Jin, Minghao; Sheng, Lianxi

    2014-08-01

    Although numerous chemicals have been identified to have significant toxicological effect on aquatic organisms, there is still lack of a reliable, high-throughput approach to evaluate, screen and monitor the presence of organic contaminants in aquatic system. In the current study, we proposed a synthetic pipeline to automatically model and predict the acute toxicity of chemicals to algae. In the procedure, a new alignment-free three dimensional (3D) structure characterization method was described and, with this method, several 3D-quantitative structure-toxicity relationship (3D-QSTR) models were developed, from which two were found to exhibit strong internal fitting ability and high external predictive power. The best model was established by Gaussian process (GP), which was further employed to perform extrapolation on a random compound library consisting of 1014 virtually generated substituted benzenes. It was found that (i) substitution number can only exert slight influence on chemical׳s toxicity, but low-substituted benzenes seem to have higher toxicity than those of high-substituted entities, and (ii) benzenes substituted by nitro group and halogens exhibit high acute toxicity as compared to other substituents such as methyl and carboxyl groups. Subsequently, several promising candidates suggested by computational prediction were assayed by using a standard algal growth inhibition test. Consequently, four substituted benzenes, namely 2,3-dinitrophenol, 2-chloro-4-nitroaniline, 1,2,3-trinitrobenzene and 3-bromophenol, were determined to have high acute toxicity to Scenedesmus obliquus, with their EC50 values of 2.5±0.8, 10.5±2.1, 1.4±0.2 and 42.7±5.4μmol/L, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Cumulative toxicity of neonicotinoid insecticide mixtures to Chironomus dilutus under acute exposure scenarios.

    PubMed

    Maloney, Erin M; Morrissey, Christy A; Headley, John V; Peru, Kerry M; Liber, Karsten

    2017-11-01

    Extensive agricultural use of neonicotinoid insecticide products has resulted in the presence of neonicotinoid mixtures in surface waters worldwide. Although many aquatic insect species are known to be sensitive to neonicotinoids, the impact of neonicotinoid mixtures is poorly understood. In the present study, the cumulative toxicities of binary and ternary mixtures of select neonicotinoids (imidacloprid, clothianidin, and thiamethoxam) were characterized under acute (96-h) exposure scenarios using the larval midge Chironomus dilutus as a representative aquatic insect species. Using the MIXTOX approach, predictive parametric models were fitted and statistically compared with observed toxicity in subsequent mixture tests. Single-compound toxicity tests yielded median lethal concentration (LC50) values of 4.63, 5.93, and 55.34 μg/L for imidacloprid, clothianidin, and thiamethoxam, respectively. Because of the similar modes of action of neonicotinoids, concentration-additive cumulative mixture toxicity was the predicted model. However, we found that imidacloprid-clothianidin mixtures demonstrated response-additive dose-level-dependent synergism, clothianidin-thiamethoxam mixtures demonstrated concentration-additive synergism, and imidacloprid-thiamethoxam mixtures demonstrated response-additive dose-ratio-dependent synergism, with toxicity shifting from antagonism to synergism as the relative concentration of thiamethoxam increased. Imidacloprid-clothianidin-thiamethoxam ternary mixtures demonstrated response-additive synergism. These results indicate that, under acute exposure scenarios, the toxicity of neonicotinoid mixtures to C. dilutus cannot be predicted using the common assumption of additive joint activity. Indeed, the overarching trend of synergistic deviation emphasizes the need for further research into the ecotoxicological effects of neonicotinoid insecticide mixtures in field settings, the development of better toxicity models for neonicotinoid mixture exposures, and the consideration of mixture effects when setting water quality guidelines for this class of pesticides. Environ Toxicol Chem 2017;36:3091-3101. © 2017 SETAC. © 2017 SETAC.

  6. Uptake and effect of highly fluorescent silver nanoclusters on Scenedesmus obliquus.

    PubMed

    Zhang, Li; He, Yiliang; Goswami, Nirmal; Xie, Jianping; Zhang, Bo; Tao, Xianji

    2016-06-01

    The release of silver nanoparticles (Ag NPs) in aquatic environment has caused wide public concern about their effects on living organisms (e.g., algae). However, how these small NPs exert cytotoxicity in the living organisms has always been under heated debate. In this study, the uptake and toxicity effects of strongly red-emitting fluorescent silver nanoclusters (r-Ag NCs) exposed to the green algae Scenedesmus obliquus was investigated. Upon exposure to pure r-Ag NCs and r-Ag NCs containing l-cysteine, the algae growth inhibition test showed that Ag(+) ions released from r-Ag NCs played an important role in the toxicity of r-Ag NCs along with the toxicity of intact r-Ag NCs. Furthermore, no signals of intracellular reactive oxygen species (ROS) were observed indicating that r-Ag NCs or released Ag(+) ions - mediated growth inhibition of algae cells was independent of ROS production. Transmission electron microscopy (TEM) and laser scanning confocal microscopy (LSCM) were employed to study cellular uptake and cytotoxicity. Furthermore, analysis of differential expressed gene demonstrated that r-Ag NCs as well as the released Ag(+) ions can simultaneously exist inside the algae cells, and inhibit the transcriptomic process of genes by their "joint-toxicity" mechanism. Taken together, our study provides a new insight into the molecular mechanisms of r-Ag NCs and Ag(+) ions exposure to the aquatic organism and can be applied to early diagnosis of ecologic risk mediated by others metal-based NPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Influence of container adsorption upon observed pyrethroid toxicity to Ceriodaphnia dubia and Hyalella azteca

    PubMed Central

    Wheelock, Craig E.; Miller, Jeff L.; Miller, Mike J.; Phillips, Bryn M.; Gee, Shirley J.; Tjeerdema, Ronald S.; Hammock, Bruce D.

    2006-01-01

    Pyrethroid insecticides are known for their potential toxicity to aquatic invertebrates and many fish species. A significant problem in the study of pyrethroid toxicity is their extreme hydrophobicity. They can adsorb to test container surfaces and many studies, therefore, report pyrethroid levels as nominal water concentrations. In this study, pyrethroid adsorption to sampling and test containers was measured and several container treatments were examined for their ability to decrease pyrethroid adsorption. None of the chemical treatments were successful at preventing pyrethroid loss from aqueous samples, but vortexing of containers served to resuspend pyrethroids. The effects of the observed adsorption on Ceriodaphnia dubia and Hyalella azteca permethrin toxicity were examined. Species-specific results showed a time-dependent decrease in toxicity following pyrethroid adsorption to test containers for C. dubia, but not for H. azteca. These results demonstrate that pyrethroid adsorption to containers can significantly affect the observed outcome in toxicity-testing and serves as a caution for researchers and testing laboratories. PMID:15951033

  8. Organic waste compounds in streams: Occurrence and aquatic toxicity in different stream compartments, flow regimes, and land uses in southeast Wisconsin, 2006–9

    USGS Publications Warehouse

    Baldwin, Austin K.; Corsi, Steven R.; Richards, Kevin D.; Geis, Steven W.; Magruder, Christopher

    2013-01-01

    An assessment of organic chemicals and aquatic toxicity in streams located near Milwaukee, Wisconsin, indicated high potential for adverse impacts on aquatic organisms that could be related to organic waste compounds (OWCs). OWCs used in agriculture, industry, and households make their way into surface waters through runoff, leaking septic-conveyance systems, regulated and unregulated discharges, and combined sewage overflows, among other sources. Many of these compounds are toxic at elevated concentrations and (or) known to have endocrine-disrupting potential, and often they occur as complex mixtures. There is still much to be learned about the chronic exposure effects of these compounds on aquatic populations. During 2006–9, the U.S. Geological Survey, in cooperation with the Milwaukee Metropolitan Sewerage District (MMSD), conducted a study to determine the occurrence and potential toxicity of OWCs in different stream compartments and flow regimes for streams in the Milwaukee area. Samples were collected at 17 sites and analyzed for a suite of 69 OWCs. Three types of stream compartments were represented: water column, streambed pore water, and streambed sediment. Water-column samples were subdivided by flow regime into stormflow and base-flow samples. One or more compounds were detected in all 196 samples collected, and 64 of the 69 compounds were detected at least once. Base-flow samples had the lowest detection rates, with a median of 12 compounds detected per sample. Median detection rates for stormflow, pore-water, and sediment samples were more than double that of base-flow samples. Compounds with the highest detection rates include polycyclic aromatic hydrocarbons (PAHs), insecticides, herbicides, and dyes/pigments. Elevated occurrence and concentrations of some compounds were detected in samples from urban sites, as compared with more rural sites, especially during stormflow conditions. These include the PAHs and the domestic waste-water-indicator compounds, among others. Urban runoff and storm-related leaks of sanitary sewers and (or) septic systems may be important sources of these and other compounds to the streams. The Kinnickinnic River, a highly urbanized site, had the highest detection rates and concentrations of compounds of all the sampled sites. The Milwaukee River near Cedarburg—one of the least urban sites—and the Outer Milwaukee Harbor site had the lowest detection rates and concentrations. Aquatic-toxicity benchmarks were exceeded for 12 of the 25 compounds with known benchmarks. The compounds with the greatest benchmark exceedances were the PAHs, both in terms of exceedance frequency (up to 93 percent for some compounds in sediment samples) and magnitude (concentrations up to 1,024 times greater than the benchmark value). Other compounds with toxicity-benchmark exceedances include Bis(2-ethylhexyl) phthalate (a plasticizer), 2-Methylnapthalene (a component of fuel and oil), phenol (an antimicrobial disinfectant with diverse uses), and 4-Nonylphenol (sum of all isomers; a detergent metabolite, among other uses). Analyzed as a mixture, the suite of PAH compounds were found to be potentially toxic for most non-base-flow samples. Bioassay tests were conducted on samples from 14 streams: Ceriodaphnia dubia in base-flow samples, Ceriodaphnia dubia and Hyallela azteca in pore-water samples, and Hyallela azteca and Chironomus tentans in sediment samples. The greatest adverse effect was observed in tests with Chironomus tentans from sediment samples. The weight of Chironomus tentans after exposure to sediments decreased with increased OWC concentrations. This was most evident in the relation between PAH results and Chironomus tentans bioassay results for the majority of samples; however, solvents and flame retardants appeared to be important for one site each. These results for PAHs were consistent with assessment of PAH potency factors for sediment, indicating that PAHs were likely to have adverse effects on aquatic organisms in many of the streams studied.

  9. Inheritance of mercury tolerance in the aquatic oligochaete Tubifex tubifex.

    PubMed

    Vidal, Dora Elva; Horne, Alex John

    2003-09-01

    Resistance to contaminants is an important yet unmeasured factor in sediment toxicity tests. The rate at which mercury resistance develops and its genetic persistence in the oligochaete worm Tubifex tubifex were studied under laboratory conditions. Worms were raised for four generations under two different sediment treatments, one reference clean sediment, the other contaminated with mercury. Worms raised in mercury-contaminated sediment developed mercury tolerance that persisted even when the worms were raised for three subsequent generations in clean sediment. Mercury tolerance was determined by comparative water-only toxicity tests with mercury as the only stressor. Control worms had a mean lethal concentration (LC50) of 0.18 mg/L(-1). Worms exposed to high levels of mercury in sediment had high mercury tolerance with a mean LC50 of 1.40 mg/L(-1). When mercury-tolerant and control mercury-intolerant worms were crossed, their descendants also demonstrated mercury tolerance during lethal toxicity tests. The LC50 for worm descendants resulting from this cross was 1.39 mg/L(-1). Adaptation to mercury exposures occurred rapidly in this group of worms and appears to be due to both phenotypic and genotypic mechanisms. Development of contaminant resistance and adaptation may be common phenomena in aquatic benthic invertebrates, which should be considered during the design and interpretation of toxicity tests.

  10. Toxic effects of indoxacarb enantiomers on the embryonic development and induction of apoptosis in zebrafish larvae (Danio rerio).

    PubMed

    Fan, Yongmei; Feng, Qing; Lai, Kehua; Huang, Weikang; Zhang, Chenghui; Li, Qing X

    2017-01-01

    Indoxacarb is a highly potent insecticide widely used to control Lepidoptera insects in vegetable, tea, cotton, and rice fields. It can run off into aquatic environments. It is consisted of two enantiomers. Environmental risks and aquatic toxicity of indoxacarb enantiomers have not been fully investigated. In this study, zebrafish (Danio rerio) embryos were exposed to varying concentrations of (-)-R-indoxacarb and (+)-S-indoxacarb until 96-h post-fertilization (hpf) to assess the embryonic toxicity. (-)-R-indoxacarb was 1.3-fold more toxic than (+)-S-isomer to zebrafish embryos at 96 hpf. (-)-R-indoxacarb exhibited reduction in body length and pericardial edema compared with (+)-S-indoxacarb. (-)-R-indoxacarb decreased the hatching rate sixfold greater than (+)-S-indoxacarb. The rate of pericardial edema induced by (-)-R-indoxacarb was 2.5 times greater than that by (+)-S-indoxacarb. The heart rate of the larvae exposed to (-)-R-indoxacarb was 30% lower than that to (+)-S-indoxacarb. In addition, exposure to the chiral isomers resulted in significant increases in apoptosis; interestingly (-)-R-indoxacarb induced apoptosis in the heart area, whereas (+)-S-indoxacarb induced apoptosis in the head area. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 7-16, 2017. © 2015 Wiley Periodicals, Inc.

  11. Toxicity on aquatic organisms exposed to secondary effluent disinfected with chlorine, peracetic acid, ozone and UV radiation.

    PubMed

    da Costa, Juliana Berninger; Rodgher, Suzelei; Daniel, Luiz Antonio; Espíndola, Evaldo Luiz Gaeta

    2014-11-01

    The toxic potential of four disinfectant agents (chlorine, ozone, peracetic acid and UV radiation), used in the disinfection of urban wastewater, was evaluated with respect to four aquatic organisms. Disinfection assays were carried out with wastewater from the city of Araraquara (São Paulo State, Brazil), and subsequently, toxicity bioassays were applied in order to verify possible adverse effects to the cladocerans (Ceriodaphnia silvestrii and Daphnia similis), midge larvae Chironomus xanthus and fish (Danio rerio). Under the experimental conditions tested, all the disinfectants were capable of producing harmful effects on the test organisms, except for C. xanthus. The toxicity of the effluent to C. silvestrii was observed to increase significantly as a result of disinfection using 2.5 mg L(-1) chlorine and 29.9 mg L(-1) ozone. Ozonation and chlorination significantly affected the survival of D. similis and D. rerio, causing mortality of 60 to 100 % in comparison to the non-disinfected effluent. In experiments with effluent treated with peracetic acid (PAA) and UV radiation, a statistically significant decrease in survival was only detected for D. rerio. This investigation suggested that the study of the ideal concentrations of disinfectants is a research need for ecologically safe options for the treatment of wastewater.

  12. Assessing the risk associated with the presence of emerging organic contaminants in sludge-amended soil: A country-level analysis.

    PubMed

    Thomaidi, Vasiliki S; Stasinakis, Athanasios S; Borova, Viola L; Thomaidis, Nikolaos S

    2016-04-01

    Greece was used as case study and the environmental risk associated with the existence of 99 emerging organic contaminants (EOCs) in sludge-amended soil was estimated using risk quotient (RQ) approach. Data on the concentration levels of EOCs in sewage sludge was collected after literature review. Chemical analyses were also conducted for 50 pharmaceuticals and illicit drugs in sludge samples from Athens Sewage Treatment Plant. Risk assessment was based on both terrestrial and aquatic acute toxicity data, using both the maximum and the average measured concentrations of the target compounds. EC50/LC50 values were collected through literature review or using the ECOSAR program in cases that experimental values were not available. Triclosan seems to pose an environmental risk on the soil environment, as its RQ values exceeded 1, both in terrestrial and aquatic toxicity data based risk assessment. Calculations based on aquatic toxicity data showed that another eleven compounds had RQs higher than 1, most of them belonging to the classes of synthetic phenolic compounds and siloxanes. Tetradecamethylhexasiloxane presented the highest RQ, while high RQs were also calculated for decamethylcyclopentasiloxane and caffeine. No environmental risk for the terrestrial environment is expected due to the individual action of illicit drugs, perfluorinated compounds and benzotriazoles. The sludge source and the day of sampling affected the estimated threat due to nonylphenolic compounds; however these factors did not affect the estimated risk for siloxanes, caffeine and ofloxacin. Calculation of RQ values for the mixture of EOCs, using either the maximum or the average concentrations, far exceeded 1 (253 and 209, respectively), indicating a presumable threat for the terrestrial environment due to the baseline toxicity of these compounds. Countries that reuse sludge for agricultural purposes should include specific EOCs in national monitoring campaigns and study more thoroughly on their effects to the terrestrial environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Agricultural Chemical Concentrations and Loads in Rivers Draining the Central Valley, California, to the San Francisco Bay-Delta Estuary: Before and During an Extended Drought

    NASA Astrophysics Data System (ADS)

    Domagalski, J. L.

    2016-12-01

    Drought or near drought conditions have occurred in California since 2012. Although some parts of the State received near normal precipitation in water year 2016, other locations were still below average. Extended drought can impact aquatic organisms in a variety of ways because of decreased flows and elevated water temperature. However, lower precipitation and availability of irrigation water may limit subsequent runoff, resulting in reduced concentrations and loads of certain environmental toxicants, such as pesticides and ammonia, thereby limiting their toxic effects. In this study, funded by the U.S. Geological Survey National Water Quality Program, the occurrence of 227 pesticides and degradation products, and nutrients was assessed before and during this current drought in the two largest rivers draining to the San Francisco Bay: the Sacramento and San Joaquin Rivers. The watersheds of both rivers include substantial agricultural and urban land use. Herbicides, insecticides, fungicides, and ammonia were detected throughout the study (2010 to 2016) and models of daily concentration using the seasonal wave model (rloadest) were formulated to assess the amount of time that concentrations may have exceeded benchmark levels known to be toxic to aquatic organisms. Frequently detected pesticides included the fungicide azoxystrobin, herbicides or their degradation products such as diuron, glyphosate, and metolachlor, and insecticides such as imidacloprid. Compounds that are transported primarily by surface runoff generally showed decreasing concentrations as the drought progressed, especially in the San Joaquin River. Compounds mainly transported by groundwater, as indicated by seasonal concentration profiles, had more stable concentrations in the rivers. Mass loads to the Bay all decreased, as expected, because of the lower river discharge. When compared to aquatic-life benchmarks, modeled concentrations indicated that individual compounds were not contributing to toxicity to zooplankton, non-vascular plants, or fish at these two locations where most of the fresh water inputs to this estuary occurs.

  14. Using growth measures in the freshwater shrimp Caridina nilotica as biomarkers of Roundup® pollution of South African freshwater systems

    NASA Astrophysics Data System (ADS)

    Mensah, P. K.; Muller, W. J.; Palmer, C. G.

    There has been global concern about the effect of toxic chemicals on aquatic biota due to the upsurge in contamination of aquatic ecosystems by these chemicals, which includes pesticides. Roundup® and other glyphosate-based herbicides are frequently used in the chemical control of weeds and invading alien plant species in South Africa. These bio-active chemicals ultimately get into water courses directly or indirectly through processes such as drifting, leaching, surface runoff and foliar spray of aquatic nuisance plants. However, there is no South African water quality guideline to protect indigenous freshwater non-target organisms from the toxic effects of glyphosate-based herbicides. This study evaluated the possible use of growth measures in Caridina nilotica as biomarkers of Roundup® pollution as part of developing glyphosate water quality guideline for the protection of aquatic life in South Africa. Using static-renewal methods in a 25-day growth toxicity test, 40 days post hatch shrimps were exposed to different sub-lethal Roundup® concentrations of 0.0 (control), 2.2, 2.8, 3.4, 4.3 and 5.4 mg/L. Shrimps were fed daily with TetraMin® flake food and test solutions changed every third day. Shrimp total lengths and wet weights were measured every fifth day. These data were used to determine the shrimp’s growth performance and feed utilization in terms of percent weight gain (PWG), percent length gain (PLG), specific growth rate (SGR), condition factor (CF), feed intake (FI), feed conversion ratio (FCR) and feed conversion efficiency (FCE). Moulting was observed for 14 days and the data used to determine the daily moult rate for each concentration. Results of growth performance and food utilization indices showed that growth was significantly impaired in all exposed groups compared to control (p < 0.05). Moulting frequency was also higher in all exposed groups than in control (p < 0.05). Although all the tested growth measures proved to be possible biomarkers of Roundup® pollution, moulting frequency gives a clearer indication of the sub-lethal effects of Roundup® toxicity.

  15. RELEVANCE OF ROOTED VASCULAR PLANTS AS INDICATORS OF ESTUARINE SEDIMENT QUALITY

    EPA Science Inventory

    Toxicity assessments and numerical quality assessment guidelines for estuarine sediments are rarely based on information for aquatic plants. The effect of this lack of information on contaminated sediment evaluations is largely unknown. For this reason, the toxicities of whole se...

  16. LINKING EFFECTS OF PERSISTENT BIOACCUMULATIVE TOXICANTS TO CHEMICAL EXPOSURES IN AQUATIC ECOSYSTEMS

    EPA Science Inventory

    The critical step in characterization of ecological risks associated with exposures of fish and wildlife to persistent bioaccumulative toxicants (PBTs) is linking chemical residue based toxicological data to concentrations of PBTs in sediments, water, and biota. This is necessary...

  17. Assessing Contaminant Sensitivity of Endangered and Threatened Aquatic Species: Part I. Acute Toxicity of Five Chemicals

    EPA Science Inventory

    This paper reports on the results of acute toxicity tests conducted with common surrogate species, and several species of threatened and endangered species for which there were excess artificially propagated stock to allow direct testing.

  18. Meta-analysis of aquatic chronic chemical toxicity data

    EPA Science Inventory

    Chronic toxicity data from the open literature and from tests submitted for pesticide registration were extracted and assembled into a database, AquaChronTox, with a flexible search interface. Data were captured at a treatment and, when available, replicate level to support conc...

  19. ACUTE TOXICITY OF PARA-NONYLPHENOL TO SALTWATER ANIMALS

    EPA Science Inventory

    ?para-Nonylphenol (PNP), a mixture of alkylphenols used in producing nonionic surfactants, is distributed widely in surface waters and aquatic sediments, where it can affect saltwater species. This article describes a database for acute toxicity of PNP derived for calculating a n...

  20. Behavioural and physical effects of arsenic exposure in fish are aggravated by aquatic algae.

    PubMed

    Magellan, Kit; Barral-Fraga, Laura; Rovira, Marona; Srean, Pao; Urrea, Gemma; García-Berthou, Emili; Guasch, Helena

    2014-11-01

    Arsenic contamination has global impacts and freshwaters are major arsenic repositories. Arsenic toxicity depends on numerous interacting factors which makes effects difficult to estimate. The use of aquatic algae is often advocated for bioremediation of arsenic contaminated waters as they absorb arsenate and transform it into arsenite and methylated chemical species. Fish are another key constituent of aquatic ecosystems. Contamination in natural systems is often too low to cause mortality but sufficient to interfere with normal functioning. Alteration of complex, naturally occurring fish behaviours such as foraging and aggression are ecologically relevant indicators of toxicity and ideal for assessing sublethal impacts. We examined the effects of arsenic exposure in the invasive mosquitofish, Gambusia holbrooki, in a laboratory experiment incorporating some of the complexity of natural systems by including the interacting effects of aquatic algae. Our aims were to quantify the effects of arsenic on some complex behaviours and physical parameters in mosquitofish, and to assess whether the detoxifying mechanisms of algae would ameliorate any effects of arsenic exposure. Aggression increased significantly with arsenic whereas operculum movement decreased non-significantly and neither food capture efficiency nor consumption were notably affected. Bioaccumulation increased with arsenic and unexpectedly so did fish biomass. Possibly increased aggression facilitated food resource defence allowing fish to gain weight. The presence of algae aggravated the effects of arsenic exposure. For increase in fish biomass, algae acted antagonistically with arsenic, resulting in a disadvantageous reduction in weight gained. For bioaccumulation the effects were even more severe, as algae operated additively with arsenic to increase arsenic uptake and/or assimilation. Aggression was also highest in the presence of both algae and arsenic. Bioremediation of arsenic contaminated waters using aquatic algae should therefore be carried out with consideration of entire ecosystem effects. We highlight that multidisciplinary, cross-taxon research, particularly integrating behavioural and other effects, is crucial for understanding the impacts of arsenic toxicity and thus restoration of aquatic ecosystems. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Biodegradation of pesticides using fungi species found in the aquatic environment.

    PubMed

    Oliveira, B R; Penetra, A; Cardoso, V V; Benoliel, M J; Barreto Crespo, M T; Samson, R A; Pereira, V J

    2015-08-01

    Relatively limited attention has been given to the presence of fungi in the aquatic environment compared to their occurrence in other matrices. Taking advantage and recognizing the biodegradable capabilities of fungi is important, since these organisms may produce many potent enzymes capable of degrading toxic pollutants. Therefore, the aim of this study was to evaluate the potential ability of some species of filamentous fungi that occur in the aquatic environment to degrade pesticides in untreated surface water. Several laboratory-scale experiments were performed using the natural microbial population present in the aquatic environment as well as spiked fungi isolates that were found to occur in different water matrices, to test the ability of fungi to degrade several pesticides of current concern (atrazine, diuron, isoproturon and chlorfenvinphos). The results obtained in this study showed that, when spiked in sterile natural water, fungi were able to degrade chlorfenvinphos to levels below detection and unable to degrade atrazine, diuron and isoproturon. Penicillium citrinum, Aspergillus fumigatus, Aspergillus terreus and Trichoderma harzianum were found to be able to resist and degrade chlorfenvinphos. These fungi are therefore expected to play an important role in the degradation of this and other pollutants present in the aquatic environment.

  2. Hazardous materials in aquatic environments of the Mississippi River Basin. Annual technical report, December 30, 1992--December 29, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-31

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and by the year 2000. In December, 1992, the Tulane/Xavier CBR was awarded a five year grant to study pollution in the Mississippi River system. The ``Hazardous Materials in Aquatic Environments of the Mississippi River Basin`` project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potentialmore » impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. These research and education projects are particularly relevant to the US Department of Energy`s programs aimed at addressing aquatic pollution problems associated with DOE National Laboratories. First year funding supported seven collaborative cluster projects and twelve initiation projects. This report summarizes research results for period December 1992--December 1993.« less

  3. Toxicological impact of cadmium-based quantum dots towards aquatic biota: Effect of natural sunlight exposure.

    PubMed

    Silva, B F; Andreani, T; Gavina, A; Vieira, M N; Pereira, C M; Rocha-Santos, T; Pereira, R

    2016-07-01

    Cadmium-based quantum dots (QDs) are increasingly applied in existent and emerging technologies, especially in biological applications due to their exceptional photophysical and functionalization properties. However, they are very toxic compounds due to the high reactive and toxic cadmium core. The present study aimed to determine the toxicity of three different QDs (CdS 380, CdS 480 and CdSeS/ZnS) before and after the exposure of suspensions to sunlight, in order to assess the effect of environmentally relevant irradiation levels in their toxicity, which will act after their release to the environment. Therefore, a battery of ecotoxicological tests was performed with organisms that cover different functional and trophic levels, such as Vibrio fischeri, Raphidocelis subcapitata, Chlorella vulgaris and Daphnia magna. The results showed that core-shell type QDs showed lower toxic effects to V. fischeri in comparison to core type QDs before sunlight exposure. However, after sunlight exposure, there was a decrease of CdS 380 and CdS 480 QD toxicity to bacterium. Also, after sunlight exposure, an effective decrease of CdSeS/ZnS and CdS 480 toxicity for D. magna and R. subcapitata, and an evident increase in CdS 380 QD toxicity, at least for D. magna, were observed. The results of this study suggest that sunlight exposure has an effect in the aggregation and precipitation reactions of larger QDs, causing the degradation of functional groups and formation of larger bulks which may be less prone to photo-oxidation due to their diminished surface area. The same aggregation behaviour after sunlight exposure was observed for bare QDs. These results further emphasize that the shell of QDs seems to make them less harmful to aquatic biota, both under standard environmental conditions and after the exposure to a relevant abiotic factor like sunlight. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Development of a strontium chronic effects benchmark for aquatic life in freshwater.

    PubMed

    McPherson, Cathy A; Lawrence, Gary S; Elphick, James R; Chapman, Peter M

    2014-11-01

    There are no national water-quality guidelines for strontium for the protection of freshwater aquatic life in North America or elsewhere. Available data on the acute and chronic toxicity of strontium to freshwater aquatic life were compiled and reviewed. Acute toxicity was reported to occur at concentrations ranging from 75 mg/L to 15 000 mg/L. The majority of chronic effects occurred at concentrations above 11 mg/L; however, calculation of a representative benchmark was confounded by results from 4 studies indicating that chronic effects occurred at lower concentrations than all other studies, in 2 cases below background concentrations reported for US and European streams. Two of these studies, including 1 reporting effects below background concentrations, were repeated and found not to be reproducible; chronic effects occurred at considerably higher strontium concentrations than in the original studies. Studies with narrow-mouthed toad and goldfish were not repeated; both studies reported chronic effects below background concentrations, and both studies had been conducted by the authors of 1 of the 2 studies that were repeated and shown to be nonreproducible. Studies by these authors (3 of the 4 confounding studies), conducted over 30 yr ago, lacked detail in reporting of methods and results. It is thus likely that repeating the toad and goldfish studies would also have resulted in a higher strontium effects concentration. A strontium chronic effects benchmark of 10.7 mg/L that incorporates the results of additional testing summarized in the present study is proposed for freshwater environments. © 2014 SETAC.

  5. A Literature Review - Problem Definition Studies on Selected Toxic Chemicals

    DTIC Science & Technology

    1978-06-16

    2 III. Recommendations and Hazard Analysis 6 IV. Physical and Chemical Properties 8 V. Human Toxicity A. Conditions and Extent of Exposure - 16 B...40 H. Coral 41 I. Phytoplankton and Algae 42 J. Bacteria 44 K. Plants 46 1. Fruit Trees 46 2. Foliage 49 3. Vegetables 51 4. Aquatic Plants 52 j PACE...breathe may result. The lung condition may clear up or death may occur, especially in accidents when children drink and choke on diesel fuel. The

  6. Summary of biological investigations relating to water quality in the Western Lake Michigan Drainages, Wisconsin and Michigan

    USGS Publications Warehouse

    Scudder, B.C.; Rheaume, S.J.; Parsons, S.R.; Lenz, B.N.

    1996-01-01

    Most biological studies related to waterquality conditions in the Western Lake Michigan Drainages have focused on populations and community structure of aquatic biota. Chemical concentrations in tissues of aquatic biota have been the next most common area of research. Our review suggests a paucity of data related to the health of all types of aquatic biota, especially amphibians, invertebrates, and reptiles; toxicity studies also were relatively uncommon. Overall, organisms primarily studied have been fish and invertebrates, although birds are most frequently examined in studies of organism health. The Fox/ Wolf Subbasin has been the focus of many more studies than the other subbasins, most likely because of the greater extent and severity of known water-quality problems in the Lower Fox River/Green Bay area over the past several decades and because it is the largest subbasin. Studies in the other subbasins are needed to adequately assess the water quality of these areas.

  7. Surfactant toxicity to Artemia Franciscana and the influence of humic acid and chemical composition

    PubMed Central

    Deese, Rachel D.; LeBlanc, Madeline R.

    2016-01-01

    Surfactants can be extremely toxic to aquatic species and are introduced to the environment in a variety of ways. It is thus important to understand how other environmental constituents, in this case humic acids (HAs), may alter the toxicity of anthropogenic surfactants. Hatching and mortality assays of Artemia Franciscana were performed for three different toxic surfactants: Triton X-100 (Tx-100, non-ionic), cetylpyridinium chloride (CPC, cationic), and sodium dodecyl sulfate (SDS, anionic). Humic acids of varying composition and concentrations were added to the assays to determine the toxicity mitigating ability of the HAs. Tx-100 had a significant toxic effect on Artemia mortality rates and HAs from terrestrial sources were able to mitigate the toxicity, but an aquatic HA did not. CPC and SDS limited hatching success of the Artemia and, as HAs were added, the hatching percentages increased for all HA sources, indicating toxicity mitigation. In order to determine which functional groups within HAs were responsible for the interaction with the surfactants, the HAs were chemically modified by: (i) bleaching to reduce aromatics, (ii) Soxhlet extraction to reduce lipids, and (iii) acid hydrolysis to reduce O- and N-alkyl groups. Although most of the modified HAs had some toxicity mitigating ability for each of the surfactants, there were two notable differences: 1) the lipid-extracted HA did not reduce the toxicity of Tx-100 and 2) the bleached HA had a lower toxicity mitigating ability for CPC than the other modified HAs. PMID:27453688

  8. DEVELOPMENT OF MARKERS OF EXPOSURE TO COPPER, NONYLPHENOL AND ATRAZINE USING SUTRACTIVE HYBRIDIZATION

    EPA Science Inventory

    Daphnia have been among the most commonly used test organisms for aquatic toxicity studies due to their sensitivity to contaminants. This sensitivity makes them excellent candidates for development as sentinels to monitor the occurrence of chemicals in the environment. The sequen...

  9. Toxicity assessment of boron (B) by Lemna minor L. and Lemna gibba L. and their possible use as model plants for ecological risk assessment of aquatic ecosystems with boron pollution.

    PubMed

    Gür, Nurcan; Türker, Onur Can; Böcük, Harun

    2016-08-01

    As many of the metalloid-based pollutants, the boron (B) toxicity issues have aroused more and more global attentions, especially concerning drinking water sources which flow through boron-rich areas. Therefore, feasible and innovative approaches are required in order to assess B toxicity in aquatic ecosystems. In this study, the toxic effects of B on Lemna minor L. and Lemna gibba L. were investigated using various endpoints including number of fronds, growth rates, dry biomass and antioxidants enzymatic activities. Lemna species were exposed to B concentrations of 2 (control), 4, 8, 16, 32, 64 and 128 mg L(-1) for a test period of 7 days. The results demonstrated that plant growth was significantly reduced when the B concentration reached 16 mg L(-1). Furthermore, our results also concluded that among the antioxidative enzymes, SOD, APX and GPX can serve as important biomarkers for B-rich environment. The present results suggested that L. minor and L. gibba are very useful model plants for phytoremediation of low-B contaminated wastewater and they are also suitable options for B biomonitoring due to high phototoxic sensitivity against B. In this respect, the scientific insight of the present study is to fill the gaps in the research about the use of L. minor and L. gibba in ecotoxicological research associated with B toxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Rapid toxicity assessment using an in vivo enzyme test for Brachionus plicatilis (Rotifera).

    PubMed

    Moffat, B D; Snell, T W

    1995-02-01

    A 1-hr in vivo enzyme inhibition assay based on esterase activity has good potential for marine toxicity assessment. A test was developed for the rotifer Brachionus plicatilis based on the nonfluorescent substrate fluorescein diacetate (FDA), which is metabolized by esterases to a fluorescent product. Enzyme inhibition, as determined by reduced fluorescence, can be scored visually or quantified using a fluorometer. Quantification of fluorescence permits the calculation of NOEC, LOEC, chronic value, and IC20. The 1-hr esterase inhibition test has sensitivity comparable to that of 24-hr rotifer acute tests for several compounds. The toxicity of six compounds was examined using the quantified assay. The resulting IC20s were within a factor of 3 of the 24-hour LC50s. IC20 values ranged from 0.017 mg/l for tributyltin to 3.1 mg/l for zinc, with an average coefficient of variation of 17.8%. Electrophoretic analysis of rotifer homogenates suggested that a single C esterase (acetylesterase) was responsible for FDA metabolism in B. plicatilis. Several other aquatic species are capable of metabolizing FDA, including Brachionus calyciflorus, Mysidopsis bahia, Menidia beryllina, Pimephales promelas, Ceriodaphnia dubia, Daphnia pulex, Artemia salina, and Ophryotrocha sp. The esterase inhibition test is an attractive tool for assessing aquatic toxicity because of its speed, simplicity, sensitivity, and applicability to a broad range of aquatic species.

  11. Behavioural alterations from exposure to Cu, phenanthrene, and Cu-phenanthrene mixtures: linking behaviour to acute toxic mechanisms in the aquatic amphipod, Hyalella azteca.

    PubMed

    Gauthier, Patrick T; Norwood, Warren P; Prepas, Ellie E; Pyle, Greg G

    2016-01-01

    Phenanthrene (PHE) and Cu are two contaminants commonly co-occurring in marine and freshwater environments. Mixtures of PHE and Cu have been reported to induce more-than-additive lethality in the amphipod, Hyalella azteca, a keystone aquatic invertebrate, yet little is understood regarding the interactive toxic mechanisms that mediate more-than-additive toxicity. Understanding the interactions among toxic mechanisms among Cu and PHE will allow for better predictive power in assessing the ecological risks of Cu-PHE mixtures in aquatic environments. Here we use behavioural impairment to help understand the toxic mechanisms of Cu, PHE, and Cu-PHE mixture toxicity in the aquatic amphipod crustacean, Hyalella azteca. Our principal objective was to link alterations in activity and ventilation with respiratory rates, oxidative stress, and neurotoxicity in adult H. azteca. Adult amphipods were used for all toxicity tests. Amphipods were tested at sublethal exposures of 91.8- and 195-μgL(-1) Cu and PHE, respectively, and a Cu-PHE mixture at the same concentrations for 24h. Neurotoxicity was measured as acetylcholinesterase (AChE) activity, where malathion was used as a positive control. Oxidative stress was measured as reactive oxygen species (ROS) production. Phenanthrene-exposed amphipods exhibited severe behavioural impairment, being hyperstimulated to the extent that they were incapable of coordinating muscle movements. In addition, respiration and AChE activity in PHE-exposed amphipods were increased and reduced by 51% and 23% respectively. However, ROS did not increase following exposure to phenanthrene. In contrast, Cu had no effect on amphipod behaviour, respiration or AChE activity, but did lead to an increase in ROS. However, co-exposure to Cu antagonized the PHE-induced reduction in ventilation and negated any increase in respiration. The results suggest that PHE acts like an organophosphate pesticide (e.g., malathion) in H. azteca following 24h sublethal exposures, and that AChE inhibition is the likely mechanism by which PHE alters H. azteca behaviour. However, interactive aspects of neurotoxicity do not account for the previously observed more-than-additive mortality in H. azteca following exposure to Cu-PHE mixtures. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Reviews of the toxicity behavior of five potential engineered nanomaterials (ENMs) into the aquatic ecosystem.

    PubMed

    Jahan, Shanaz; Yusoff, Ismail Bin; Alias, Yatimah Binti; Bakar, Ahmad Farid Bin Abu

    2017-01-01

    Presently, engineered nanomaterials (ENMs) are used in a wide variety of commercial applications, resulting in an uncontrolled introduction into the aquatic environment. The purpose of this review is to summarize the pathways and factors that controlling the transport and toxicity of five extensively used ENMs. These toxicological pathways are of great importance and need to be addressed for sustainable implications of ENMs without environmental liabilities. Here we discuss five potentially utilized ENMs with their possible toxicological risk factors to aquatic plants, vertebrates model and microbes. Moreover, the key effect of ENMs surface transformations by significant reaction with environmental objects such as dissolved natural organic matter (DOM) and the effect of ENMs surface coating and surface charge will also be debated. The transformations of ENMs are subsequently facing a major ecological transition that is expected to create a substantial toxicological effect towards the ecosystem. These transformations largely involve chemical and physical processes, which depend on the properties of both ENMs and the receiving medium. In this review article, the critical issues that controlling the transport and toxicity of ENMs are reviewed by exploiting the latest reports and future directions and targets are keenly discussed to minimize the pessimistic effects of ENMs.

  13. TARGET ORGAN TOXICITY IN MARINE AND FRESHWATER TELEOSTS: VOLUME 1 - ORGANS

    EPA Science Inventory

    In any given aquatic ecosystem, fish serve a multitude of critical functions and so, are typically included in the risk assessment of various chemicals in waterways. However, uncertainties in toxicity evaluation can arise since these assessments are usually based solely on acute ...

  14. TARGET ORGAN TOXICITY IN MARINE AND FRESHWATER TELEOSTS: VOLUME 2 - SYSTEMS

    EPA Science Inventory

    In any given aquatic ecosystem, fish serve a multitude of critical functions and so, are typically included in the risk assessment of various chemicals in waterways. However, uncertainties in toxicity evaluation can arise since these assessments are usually based solely on acute ...

  15. Draft Test Guideline: Aquatic Invetebrate Acute Toxicity, Test, Freshwater Daphnids

    EPA Pesticide Factsheets

    The following draft test guideline is part of a series of test guidelines that have been developed by EPA for use in the testing of pesticides and toxic substances, and the development of test data for submission to the Agency for review.

  16. Quantification of Toxic Effects for Water Concentration-based Aquatic Life Criteria -Part B

    EPA Science Inventory

    Erickson et al. (1991) conducted a series of experiments on the toxicity of pentachloroethane (PCE) to juvenile fathead minnows. These experiments included evaluations of bioaccumulation kinetics, the time-course of mortality under both constant and time-variable exposures, the r...

  17. GENETIC VARIATION FOR COPPER RESISTANCE IN FATHEAD MINNOW TOXICITY TESTS

    EPA Science Inventory

    Unexplained variation in the results of aquatic organism toxicity tests is a consistently observed and troubling phenomenon. Possible sources of variation include differences in condition or nutritional status of the population prior to the test, as well as age, density and hand...

  18. IDENTIFICATION AND EVALUATION OF STRESSORS IN TOXIC SEDIMENTS AND DREDGED MATERIALS

    EPA Science Inventory

    Identification of stressors in aquatic systems is critical to sound assessment and management of our nation's waterways for a number of reasons. Identification of specific classes of toxicants (or stressors) can be useful in designing effective sediment remediation methods and re...

  19. A new sum parameter to estimate the bioconcentration and baseline-toxicity of hydrophobic compounds in river water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loon, W.M.G.M. van; Hermens, J.L.M.

    1994-12-31

    A large part of all aquatic pollutants can be classified as narcosis-type (baseline toxicity) chemicals. Many chemicals contribute to a joint baseline aquatic toxicity even at trace concentrations. A novel surrogate parameter, which simulated bioconcentration of hydrophobic substances from water and estimates internal molar concentrations, has been explored by Verhaar et al.. These estimated biological concentrations can be used to predict narcosis-type toxic effects, using the Lethal Body Burden (LBB) concept. The authors applied this toxicological-analytical concept to river water, and some recent technological developments and field results are pointed out. The simulation of bioconcentration is performed by extracting watermore » samples with empore{trademark} disks. The authors developed two extraction procedures; i.e., laboratory extraction and field extraction. Molar concentrations measurements are performed using vapor pressure osmometry, GC-FID and GC-MS. Results on the molar concentrations of hydrophobic compounds which can be bioaccumulated from several Dutch river systems will be presented.« less

  20. Comparative acute toxicity of gallium(III), antimony(III), indium(III), cadmium(II), and copper(II) on freshwater swamp shrimp (Macrobrachium nipponense).

    PubMed

    Yang, Jen-Lee

    2014-04-01

    Acute toxicity testing were carried out the freshwater swamp shrimp, Macrobrachium nipponense, as the model animal for the semiconductor applied metals (gallium, antimony, indium, cadmium, and copper) to evaluate if the species is an suitable experimental animal of pollution in aquatic ecosystem. The static renewal test method of acute lethal concentrations determination was used, and water temperature was maintained at 24.0 ± 0.5°C. Data of individual metal obtained from acute toxicity tests were determined using probit analysis method. The median lethal concentration (96-h LC50) of gallium, antimony, indium, cadmium, and copper for M. nipponense were estimated as 2.7742, 1.9626, 6.8938, 0.0539, and 0.0313 mg/L, respectively. Comparing the toxicity tolerance of M. nipponense with other species which exposed to these metals, it is obviously that the M. nipponense is more sensitive than that of various other aquatic animals.

  1. An index of effluent aquatic toxicity designed by partial least squares regression, using acute and chronic tests and expert judgements.

    PubMed

    Vindimian, Éric; Garric, Jeanne; Flammarion, Patrick; Thybaud, Éric; Babut, Marc

    1999-10-01

    The evaluation of the ecotoxicity of effluents requires a battery of biological tests on several species. In order to derive a summary parameter from such a battery, a single endpoint was calculated for all the tests: the EC10, obtained by nonlinear regression, with bootstrap evaluation of the confidence intervals. Principal component analysis was used to characterize and visualize the correlation between the tests. The table of the toxicity of the effluents was then submitted to a panel of experts, who classified the effluents according to the test results. Partial least squares (PLS) regression was used to fit the average value of the experts' judgements to the toxicity data, using a simple equation. Furthermore, PLS regression on partial data sets and other considerations resulted in an optimum battery, with two chronic tests and one acute test. The index is intended to be used for the classification of effluents based on their toxicity to aquatic species. Copyright © 1999 SETAC.

  2. An index of effluent aquatic toxicity designed by partial least squares regression, using acute and chronic tests and expert judgments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vindimian, E.; Garric, J.; Flammarion, P.

    1999-10-01

    The evaluation of the ecotoxicity of effluents requires a battery of biological tests on several species. In order to derive a summary parameter from such a battery, a single endpoint was calculated for all the tests: the EC10, obtained by nonlinear regression, with bootstrap evaluation of the confidence intervals. Principal component analysis was used to characterize and visualize the correlation between the tests. The table of the toxicity of the effluents was then submitted to a panel of experts, who classified the effluents according to the test results. Partial least squares (PLS) regression was used to fit the average valuemore » of the experts' judgments to the toxicity data, using a simple equation. Furthermore, PLS regression on partial data sets and other considerations resulted in an optimum battery, with two chronic tests and one acute test. The index is intended to be used for the classification of effluents based on their toxicity to aquatic species.« less

  3. Estimating chemical ecotoxicity in EU ecolabel and in EU product environmental footprint.

    PubMed

    Saouter, Erwan; De Schryver, An; Pant, Rana; Sala, Serenella

    2018-05-21

    The EU Commission Ecolabel and the Product and Environmental Footprint (PEF) aim at promoting the development and consumption of greener products. The product aquatic toxicity score from these 2 methods may lead in some circumstances to opposite conclusions. Although this could be interpreted as an inconsistency, the score should not be compared to each other but used in a complementary way. In short, CDV provided a "full" product formula aquatic toxicity score, even if some chemicals may never reach or persist in freshwater ecosystems. The USEtox® score, by integrating fate and exposure, focuses on the potential toxicity of persistent-water-soluble chemicals at steady state. Since no risk or safety assessment can be conducted with USEtox® nor with the CDV, both are a hazard-based scoring system. This short communication clarifies the difference between approaches underpinning the toxicity scores used in Ecolabel and PEF, providing guidance on how to interpret the results. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Occurrence and risk assessment of an azo dye - The case of Disperse Red 1.

    PubMed

    Vacchi, Francine Inforçato; Von der Ohe, Peter Carsten; Albuquerque, Anjaína Fernandes de; Vendemiatti, Josiane Aparecida de Souza; Azevedo, Carina Cristina Jesus; Honório, Jaqueline Gonçalves; Silva, Bianca Ferreira da; Zanoni, Maria Valnice Boldrin; Henry, Theodore B; Nogueira, Antonio J; Umbuzeiro, Gisela de Aragão

    2016-08-01

    Water quality criteria to protect aquatic life are not available for most disperse dyes which are often used as commercial mixtures in textile coloration. In this study, the acute and chronic toxicity of the commercial dye Disperse Red 1 (DR1) to eight aquatic organisms from four trophic levels was evaluated. A safety threshold, i.e. Predicted No-Effect Concentration (PNEC), was derived based on the toxicity information of the commercial product and the purified dye. This approach was possible because the toxicity of DR1 was accounting for most of the toxicity of the commercial mixture. A long-term PNEC of 60 ng L(-1) was proposed, based on the most sensitive chronic endpoint for Daphnia similis. A short-term PNEC of 1800 ng L(-1) was proposed based on the most sensitive acute endpoint also for Daphnia similis. Both key studies have been evaluated with the new "Criteria for Reporting and Evaluating ecotoxicity Data" (CRED) methodology, applying more objective criteria to assess the quality of toxicity tests, resulting in two reliable and relevant endpoints with only minor restrictions. HPLC-MS/MS was used to quantify the occurrence of DR1 in river waters of three sites, influenced by textile industry discharges, resulting in a concentration range of 50-500 ng L(-1). The risk quotients for DR1 obtained in this work suggest that this dye can pose a potential risk to freshwater biota. To reduce uncertainty of the derived PNEC, a fish partial or full lifecycle study should be performed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Pharmaceuticals and personal care products in waters: occurrence, toxicity, and risk.

    PubMed

    Cizmas, Leslie; Sharma, Virender K; Gray, Cole M; McDonald, Thomas J

    2015-12-01

    Pharmaceuticals and personal care products (PPCP) are compounds with special physical and chemical properties that address the care of animal and human health. PPCP have been detected in surface water and wastewater in the ng/L to µg/L concentration range worldwide. PPCP ecotoxicity has been studied in a variety of organisms, and multiple methods have been used to assess the risk of PPCP in the environment to ecological health. Here we review the occurrence, effects, and risk assessment of PPCP in aquatic systems, as well as the sustainability of current methods for managing PPCP contamination in aquatic systems. The major points are the following: (1) a number of PPCP present potential concerns at environmentally relevant concentrations. PPCP mixtures may produce synergistic toxicity. (2) Various methods have been used for the ecological risk assessment of PPCP in aquatic systems. There are similarities in these methods, but no consensus has emerged regarding best practices for the ecological risk assessment of these compounds. (3) Human health risk assessments of PPCP contamination in aquatic systems have generally indicated little cause for concern. However, there is a lack of information regarding whether antibiotic contamination in wastewater and aquatic systems could lead to an increase in clinically relevant antibiotic-resistant bacteria and antibiotic-resistant genes. (4) Over the next century, the combination of increasing global population size and potential droughts may result in reduced water availability, increased need for water reuse, and increasing concentrations of PPCP in wastewaters. The current wastewater treatment methods do not remove all PPCP effectively. This, coupled with the possibility that antibiotics may promote the development of antibiotic-resistant bacteria and antibiotic-resistant genes, leads to concerns about the sustainability of global water supplies.

  6. Pharmaceuticals and personal care products in waters: occurrence, toxicity, and risk

    PubMed Central

    Sharma, Virender K.; Gray, Cole M.; McDonald, Thomas J.

    2016-01-01

    Pharmaceuticals and personal care products (PPCP) are compounds with special physical and chemical properties that address the care of animal and human health. PPCP have been detected in surface water and wastewater in the ng/L to µg/L concentration range worldwide. PPCP ecotoxicity has been studied in a variety of organisms, and multiple methods have been used to assess the risk of PPCP in the environment to ecological health. Here we review the occurrence, effects, and risk assessment of PPCP in aquatic systems, as well as the sustainability of current methods for managing PPCP contamination in aquatic systems. The major points are the following: (1) a number of PPCP present potential concerns at environmentally relevant concentrations. PPCP mixtures may produce synergistic toxicity. (2) Various methods have been used for the ecological risk assessment of PPCP in aquatic systems. There are similarities in these methods, but no consensus has emerged regarding best practices for the ecological risk assessment of these compounds. (3) Human health risk assessments of PPCP contamination in aquatic systems have generally indicated little cause for concern. However, there is a lack of information regarding whether antibiotic contamination in wastewater and aquatic systems could lead to an increase in clinically relevant antibiotic-resistant bacteria and antibiotic-resistant genes. (4) Over the next century, the combination of increasing global population size and potential droughts may result in reduced water availability, increased need for water reuse, and increasing concentrations of PPCP in wastewaters. The current wastewater treatment methods do not remove all PPCP effectively. This, coupled with the possibility that antibiotics may promote the development of antibiotic-resistant bacteria and antibiotic-resistant genes, leads to concerns about the sustainability of global water supplies. PMID:28592954

  7. Interactions of carbon nanotubes with aqueous/aquatic media containing organic/inorganic contaminants and selected organisms of aquatic ecosystems--A review.

    PubMed

    Boncel, Sławomir; Kyzioł-Komosińska, Joanna; Krzyżewska, Iwona; Czupioł, Justyna

    2015-10-01

    Due to their unique molecular architecture translating into numerous every-day applications, carbon nanotubes (CNTs) will be ultimately an increasingly significant environmental contaminant. This work reviews qualitative/quantitative analyses of interactions of various types of CNTs and their chemically modified analogues with aqueous/aquatic media containing organic and inorganic contaminants and selected organisms of aquatic ecosystems. A special emphasis was placed on physicochemical interactions between CNTs as adsorbents of heavy metal cations and aromatic compounds (dyes) with its environmental consequences. The studies revealed CNTs as more powerful adsorbents of aromatic compounds (an order of magnitude higher adsorption capacity) than metal cations. Depending on the presence of natural organic matter (NOM) and/or co-contaminants, CNTs may act as Trojan horse while passing through biological membranes (in the absence of NOM coordinating metal ions). Nanotubes, depending on flow conditions and their morphology/surface chemistry, may travel with natural waters or sediment with immobilized PAHs or metals and/or increase cyto- and ecotoxicity of PAHs/metal ions by their release via competitive complexation, or cause synergic ecotoxicity while adsorbing nutrients. Additionally, toxicity of CNTs against exemplary aquatic microorganisms was reviewed. It was found for Daphnia magna that longer exposures to CNTs led to higher ecotoxicity with a prolonged CNTs excretion. SWCNTs were more toxic than MWCNTs, while hydrophilization of CNTs via oxidation or anchoring thereto polar/positively charged polymer chains enhanced stability of nanotubes dispersion in aqueous media. On the other hand, bioavailability of functionalized CNTs was improved leading to more complex both mechanisms of uptake and cytotoxic effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Application of in-situ bioassays with macrophytes in aquatic mesocosm studies.

    PubMed

    Coors, Anja; Kuckelkorn, Jochen; Hammers-Wirtz, Monika; Strauss, Tido

    2006-10-01

    Aquatic mesocosm studies assess ecotoxicological effects of chemicals by using small artificial ponds as models of lentic ecosystems. In this study, methods of controlled insertion of macrophytes within an outdoor mesocosm study were explored. Although analytically confirmed concentrations of the model herbicide terbuthylazine were high enough to expect direct effects on phytoplankton, functional parameters and dominant taxa abundance indicated only minor and transient effects. In-situ assays with Lemna minor, Myriophyllum spicatum, Potamogeton lucens and Chara globularis revealed adverse effects at concentrations in accordance with literature data. Complex interactions such as nutrient limitation and competition were possible reasons for the observed growth promotion at the lower concentration of about 5 microg/l terbuthylazine. The approach of macrophyte in-situ bioassays within a mesocosm study proved to be applicable. Presumed advantages are simultaneous acquisition of toxicity data for several species of aquatic plants under more realistic conditions compared to laboratory tests and inclusion of macrophytes as important structural and functional components in mesocosms while limiting their domination of the model ecosystem.

  9. Handbook of acute toxicity of chemicals to fish and aquatic invertebrates : summaries of toxicity tests conducted at Columbia National Fisheries Research Laboratory, 1965-78

    USGS Publications Warehouse

    Johnson, W. Waynon; Finley, Mack T.

    1980-01-01

    Acute toxicity is a major subject of research at Columbia National Fisheries Research Laboratory for evaluating the impact of toxic chemicals on fishery resources. The Laboratory has played a leading role in developing research technology for toxicity testing and data interpretation. In 1965-78, more than 400 chemicals were tested against a variety of invertebrates and fish species representative of both cold- and warm-water climates.The use of acute toxicity tests for assessing the potential hazard of chemical contaminants to aquatic organisms is well documented (Boyd 1957; Henderson et al. 1960; Sanders and Cope 1966; Macek and McAllister 1970). Static acute toxicity tests provide rapid and (within limits) reproducible concentration-response curves for estimating toxic effects of chemicals on aquatic organisms. These tests provide a database for determining relative toxicity of a large number of chemicals to a variety of species and for estimating acute effects of chemical spills on natural aquatic systems; they also assist in determining priority and design of additional toxicity studies.Acute toxicity tests usually provide estimates of the exposure concentration causing 50% mortality (LC50) to test organisms during a specified period of time. For certain invertebrates, the effective concentration is based on immobilization, or some other identifiable endpoint, rather than on lethality. The application of the LC50 has gained acceptance among toxicologists and is generally the most highly rated test for assessing potential adverse effects of chemical contaminants to aquatic life (Brungs and Mount 1978; American Institute for Biological Sciences 1978a).The literature contains numerous papers dealing with the acute toxicity of chemicals to freshwater organisms. However, there is a tremendous need for a concise compendium of toxicity data covering a large variety of chemicals and test species. This Handbook is a compilation of a large volume of acute toxicity data from the Columbia Laboratory and its field laboratories. It presents definitive acute toxicity data on 271 chemicals tested against a variety of freshwater invertebrates and fishes. The chemicals represent all major groups of pesticides, as well as numerous industrial chemicals. This compilation should serve as a useful database for the many agencies and organizations dealing with research and management programs concerned with the impact of chemicals on aquatic resources.The Columbia Laboratory has played a major role in developing currently used standard methodology for static acute toxicity testing. The use of standardized methodology greatly reduces variation in results. The data presented here have been carefully scrutinized to eliminate tests that failed to follow acceptable procedures. Handling of test organisms and procedures for static toxicity tests followed those described by Lennon and Walker (1964) and Macek and McAllister (1970), and conform well with those recommended by Brauhn and Schoettger (1975) and the Committee on Methods for Toxicity Tests with Aquatic Organisms (1975).The species of fish and invertebrates that were tested are listed in phylogenetic order in Tables 1 and 2. Fish were obtained from Federal and State hatcheries as either eggs or fry. Original stocks of invertebrates were collected and cultured from wild populations with no known source of contamination; these populations were replenished regularly. The invertebrates were cultured in the Laboratory by methods similar to those described by Sanders and Cope (1966).Test chemicals usually consisted of technical or analytical grade samples of known purity. Formulations of the chemicals were also tested when available. When purity of test chemicals was known, all calculated concentrations were based on percent active ingredients. Stock solutions were prepared immediately before each test, with commercial grade acetone as the carrier solvent. Occasionally, ethanol or dimethyl-formamide was substituted. Solvent concentrations did not exceed 0.5 mL/L in final dilution water.Test water (dilution water) was reconstituted from deionized water of at least 106 ohms resistivity by the addition of appropriate reagent grade chemicals (Marking 1969). Water was buffered to maintain a pH of 7.2 to 7.5, an alkalinity of 30 to 35 mg/L, and a hardness of 40 to 50 mg/L as CaCO3. Test water was mixed thoroughly and aerated before transfer into test chambers. Fish were acclimated to dilution water by gradually changing the water in acclimated tanks from 100% well water to 100% reconstituted water over a 1- to 3-day period at the desired testing temperature. Invertebrates were acclimated from well water to dilution water over a 4- to 6-h period. Toxicity tests were conducted under static conditions without aeration, and the organisms were not fed during acclimation or testing. Temperature of test solutions was maintained within ± 1°C of that required for a given test.Toxicity tests with fish were conducted in 18.9-liter (5-gal) wide-mouthed jars containing 15 liters of test solution. Fingerling fish weighing 0.2 to 1.5 g were tested at each concentration. Caution was taken not to exceed 0.8 g of test organisms per liter of solution. Duplicate test chambers were used to accommodate larger fish. Test chambers varied in size for invertebrates, depending on the species used; volume of test solution ranged from 0.25 to 4 liters. At least 10 organisms were exposed to each concentration for all definitive tests. At least six concentrations were used per toxicity test.The tests began upon initial exposure to the toxicant and continued for 96 h. Immobilization tests with invertebrates were conducted for only 48 h. The number of dead or affected organisms in each test chamber were recorded and the dead organisms were removed every 24 h; general observations on the condition of test organisms were also recorded at these times.Toxicity data were analyzed by a statistical method described by Litchfield and Wilcoxon (1949) to determine LC50 (theoretical estimate of the concentration lethal to 50% of the test animals) and 95% confidence intervals. This method is recommended by the American Public Health Association (1971) and by Sprague (1969) for determining median lethal concentrations. The procedure is easily modified for computing a single LC50 when replicate tests are performed.

  10. EVALUATING THE EXTENT AND RELATIVE RISK OF AQUATIC STRESSORS IN WADEABLE STREAMS THROUGHOUT THE U.S.A.

    EPA Science Inventory

    Aquatic stressors such as toxic chemicals, excess sediment, and non-native species threaten the biointegrity of stream ecosystems. The relative importance of a stressor depends both on the number of streams in which it is elevated, and on the severity of its effect when it is ele...

  11. Development of an Aquatic Bioassay for Carcinogenicity and Toxicity Testing Using the Medaka (Oryzias latipes) as a Model

    DTIC Science & Technology

    1990-08-15

    carcinoma . In: Hepatocellular Carcinoma . K. Okuda, R Peters, eds. John Wiley and Sons, NY, pp. 3-22, 1976. 2. Harshbarger JC: Testimony for the U.S. House of...will increase the predictive ability of the aquatic bioassay. 22 V. References 1. Farber E: On the pathogenesis of experimental hepatocellular

  12. Toxicity of anthelmintic drugs (fenbendazole and flubendazole) to aquatic organisms.

    PubMed

    Wagil, Marta; Białk-Bielińska, Anna; Puckowski, Alan; Wychodnik, Katarzyna; Maszkowska, Joanna; Mulkiewicz, Ewa; Kumirska, Jolanta; Stepnowski, Piotr; Stolte, Stefan

    2015-02-01

    Flubendazole (FLU) and fenbendazole (FEN) belong to benzimidazoles-pharmaceuticals widely used in veterinary and human medicine for the treatment of intestinal parasites as well as for the treatment of systemic worm infections. In recent years, usage of these drugs increased, which resulted in a larger contamination of the environment and possible negative effects on biota. Hence, in our research, we investigated an aquatic ecotoxicity of these pharmaceuticals towards: marine bacteria (Vibrio fischeri), green algae (Scenedesmus vacuolatus), duckweed (Lemna minor) and crustacean (Daphnia magna). Ecotoxicity tests were combined with chemical analysis in order to investigate the actual exposure concentration of the compounds used in the experiment as well as to stability and adsorption studies. As a result, study evaluating sensitivity of different aquatic organisms to these compounds and new ecotoxicological data is presented. The strongest negative impact of FLU and FEN was observed to D. magna.

  13. Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Llaneza, Verónica; Rodea-Palomares, Ismael; Zhou, Zuo; Rosal, Roberto; Fernández-Pina, Francisca; Bonzongo, Jean-Claude J.

    2016-08-01

    The efficiency of zero-valent iron particles used in the remediation of contaminated groundwater has, with the emergence of nanotechnology, stimulated interest on the use of nano-size particles to take advantage of high-specific surface area and reactivity characteristics of nanoparticles (NPs). Accordingly, engineered iron-NPs are among the most widely used nanomaterials for in situ remediation. However, while several ecotoxicity studies have been conducted to investigate the adverse impacts of these NPs on aquatic organisms, research on the implications of spent iron-based NPs is lacking. In this study, a comparative approach is used, in which the biological effects of three iron-based NPs (Fe3O4 and γ-Fe2O3 NPs with particle sizes ranging from 20 to 50 nm, and Fe0-NPs with an average particle size of 40 nm) on Raphidocelis subcapitata (formely known as Pseudokirchneriella subcapitata) and Daphnia magna were investigated using both as-prepared and pollutant-doped Fe-based NPs. For the latter, arsenic (As) was used as example sorbed pollutant. The results show that improved degree of NP dispersion by use of polyvinylpyrrolidone overlapped with both increased arsenic adsorption capacity and toxicity to the tested organisms. For R. subcapitata, Fe-oxide NPs were more toxic than Fe0-NPs, due primarily to differences in the degree of NPs aggregation and ability to produce reactive oxygen species. For the invertebrate D. magna, a similar trend of biological responses was observed, except that sorption of As to Fe0-NPs significantly increased the toxic response when compared to R. subcapitata. Overall, these findings point to the need for research on downstream implications of NP-pollutant complexes generated during water treatment by injection of NPs into aquatic systems.

  14. Acute toxicity and associated mechanisms of four strobilurins in algae.

    PubMed

    Liu, Xiaoxu; Wang, Yu; Chen, Hao; Zhang, Junli; Wang, Chengju; Li, Xuefeng; Pang, Sen

    2018-06-01

    Strobilurins have been reported highly toxic to non-target aquatic organisms but few illustrated how they cause toxic effects on algae. This study investigated the acute toxicity of Kresoxim-methy (KRE), Pyraclostrobin (PYR), Trifloxystrobin (TRI) and Picoxystrobin (PIC) on two algae and their toxicity mechanisms. Four strobilurins showed lower toxic effects on Chlorella pyrenoidsa but higher on Chlorella vulgaris. bc1 complex activities in C. vulgaris were significantly inhibited by all strobilurins, suggesting bc 1 complex might be the target of strobilurin toxicity in algae. Moreover, SOD, CAT and POD activities were significantly up-regulated by all doses of KRE, PYR and PIC. In contrast, low concentrations of TRI stimulated SOD and POD activities but highest concentration significantly inhibited those activities. Comet assays showed damaged DNA in C. vulgaris by four strobulirins, suggesting their potential genotoxic threats to algae. The results illustrated acute toxicity by strobulirins on algae and their possible toxicity mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Effects of diquat and fomesafen applied alone and in combination with a nonylphenol polyethoxylate adjuvant on Lemna minor in aquatic indoor microcosms.

    PubMed

    Gorzerino, Caroline; Quemeneur, Alphonse; Hillenweck, Anne; Baradat, Maryse; Delous, Georges; Ollitrault, Martine; Azam, Didier; Caquet, Thierry; Lagadic, Laurent

    2009-03-01

    The influence of tank-mix adjuvants on pesticide toxicity remains largely unknown. Agral 90, a nonylphenol polyethoxylated tank-mix adjuvant, has been used with diquat (bipyridylium herbicide) and fomesafen (diphenyl-ether herbicide) in aquatic indoor microcosms in order to compare the toxicity of the single compounds and of binary herbicide-adjuvant mixtures to Lemna minor. Twenty-four microcosms were used and treatments were performed with substances alone or with herbicide-adjuvant binary mixtures, at two concentrations levels (44.4 and 222.2 microg/L for the herbicides, and 100 and 500 microg/L for Agral 90). Toxicity was assessed weekly for 1 month through growth measurements, as inferred from the relative frond number (RFN) and relative frond area (RFA). Concentrations of diquat and fomesafen in water and sediments were measured weekly. The herbicides showed very different behaviour in microcosms, with a rapid disappearance of diquat from the aqueous phase whereas fomesafen levels remained almost constant over time. Diquat strongly inhibited the growth of L. minor whereas fomesafen had no effect on plant growth. Presence of the adjuvant only slightly reduced the effect of the lowest concentration of diquat, probably as a result of dispersion of the herbicide at the water surface. It is concluded that tank-mix adjuvant designed to improve herbicide efficiency in the terrestrial environment did not have any effect on aquatic plants when applied to the aquatic environment.

  16. Comparative chronic toxicity of imidacloprid, clothianidin, and thiamethoxam to Chironomus dilutus and estimation of toxic equivalency factors.

    PubMed

    Cavallaro, Michael C; Morrissey, Christy A; Headley, John V; Peru, Kerry M; Liber, Karsten

    2017-02-01

    Nontarget aquatic insects are susceptible to chronic neonicotinoid insecticide exposure during the early stages of development from repeated runoff events and prolonged persistence of these chemicals. Investigations on the chronic toxicity of neonicotinoids to aquatic invertebrates have been limited to a few species and under different laboratory conditions that often preclude direct comparisons of the relative toxicity of different compounds. In the present study, full life-cycle toxicity tests using Chironomus dilutus were performed to compare the toxicity of 3 commonly used neonicotinoids: imidacloprid, clothianidin, and thiamethoxam. Test conditions followed a static-renewal exposure protocol in which lethal and sublethal endpoints were assessed on days 14 and 40. Reduced emergence success, advanced emergence timing, and male-biased sex ratios were sensitive responses to low-level neonicotinoid exposure. The 14-d median lethal concentrations for imidacloprid, clothianidin, and thiamethoxam were 1.52 μg/L, 2.41 μg/L, and 23.60 μg/L, respectively. The 40-d median effect concentrations (emergence) for imidacloprid, clothianidin, and thiamethoxam were 0.39 μg/L, 0.28 μg/L, and 4.13 μg/L, respectively. Toxic equivalence relative to imidacloprid was estimated through a 3-point response average of equivalencies calculated at 20%, 50%, and 90% lethal and effect concentrations. Relative to imidacloprid (toxic equivalency factor [TEF] = 1.0), chronic (lethality) 14-d TEFs for clothianidin and thiamethoxam were 1.05 and 0.14, respectively, and chronic (emergence inhibition) 40-d TEFs were 1.62 and 0.11, respectively. These population-relevant endpoints and TEFs suggest that imidacloprid and clothianidin exert comparable chronic toxicity to C. dilutus, whereas thiamethoxam induced comparable effects only at concentrations an order of magnitude higher. However, the authors caution that under field conditions, thiamethoxam readily degrades to clothianidin, thereby likely enhancing toxicity. Environ Toxicol Chem 2017;36:372-382. © 2016 SETAC. © 2016 SETAC.

  17. Freshwater molluscs as indicators of bioavailability and toxicity of metals in surface-water systems

    USGS Publications Warehouse

    Elder, John F.; Collins, Jerilyn J.; Ware, George W.

    1991-01-01

    During the past several decades, studies from a variety of locations have demonstrated widespread occurrence of metals in surface waters at concentrations significantly higher than background levels. Elevated concentrations are not limited to certain water types or polluted areas; they appear in all types of systems and in all geographic areas. It is clear that metals enter the aquatic systems from diverse sources, both point and nonpoint, and they can be readily transported from one system to another. Transport routes include atmospheric, terrestrial, subterranean, aquatic, and biological pathways (Elder 1988; Salomons and Forstner 1984).

  18. Aquatic toxicity of four alkylphenols (3-tert-butylphenol, 2-isopropylphenol, 3-isopropylphenol, and 4-isopropylphenol) and their binary mixtures to microbes, invertebrates, and fish.

    PubMed

    Choi, Kyungho; Sweet, Leonard I; Meier, Peter G; Kim, Pan-Gyi

    2004-02-01

    The acute and chronic toxicity of four simple alkylphenols with butyl and propyl substitutions was evaluated with aquatic microbes, invertebrates, and fish. These alkylphenols-3-tert-butylphenol, 2-isopropylphenol, 3-isopropylphenol, and 4-isopropylphenol-have been detected in various environmental media, but their impact on aquatic fauna has seldom been evaluated. Relative susceptibility to each phenolic varied by test species. The marine bacterium Vibrio fischeri was the most susceptible to the alkylphenols, up to 3 orders of magnitude more sensitive than species of higher trophic levels. For 4-isopropylphenol, the 5-min Microtox EC(50) value was 0.01 mg/L, whereas the EC(50) for Ceriodaphnia after a 48-h exposure was 10.1 mg/L. Notable differences in sensitivity to the alkylphenols was also observed with the Microtox assay: 4-isopropylphenol was > 200 times more toxic to V. fischeri than was 2-isopropylphenol (EC(50) = 2.72 mg/L). For V. fischeri, the mixture toxicity of the alkylphenols was additive in nature and was predicted by a concentration addition model. The energy of the lowest unoccupied molecular orbital (ELUMO) explained the observed toxicity of the individual alkylphenols to V. fischeri (r(2) = 0.92, p < 0.05). These results suggest that the mode of action of polar narcotic alkylphenols to V. fischeri is different than that of other test organisms, possibly because of the differences in the cell structure of the prokaryotic V. fischeri. Copyright 2004 Wiley Periodicals, Inc. Environ Toxicol 19: 45-50, 2004.

  19. Aquatic toxicity of four veterinary drugs commonly applied in fish farming and animal husbandry.

    PubMed

    Kołodziejska, Marta; Maszkowska, Joanna; Białk-Bielińska, Anna; Steudte, Stephanie; Kumirska, Jolanta; Stepnowski, Piotr; Stolte, Stefan

    2013-08-01

    Doramectin (DOR), metronidazole (MET), florfenicol (FLO), and oxytetracycline (OXT) are among the most widely used veterinary drugs in animal husbandry or in aquaculture. Contamination of the environment by these pharmaceuticals has given cause for concern in recent years. Even though their toxicity has been thoroughly analyzed, knowledge of their ecotoxicity is still limited. We investigated their aquatic toxicity using tests with marine bacteria (Vibrio fischeri), green algae (Scenedesmus vacuolatus), duckweed (Lemna minor) and crustaceans (Daphnia magna). All the ecotoxicological tests were supported by chemical analyses to confirm the exposure concentrations of the pharmaceuticals used in the toxicity experiments, since deviations from the nominal concentration can result in underestimation of biological effects. It was found that OXT and FLO have a stronger adverse effect on duckweed (EC50=3.26 and 2.96mgL(-1) respectively) and green algae (EC50=40.4 and 18.0mgL(-1)) than on bacteria (EC50=108 and 29.4mgL(-1)) and crustaceans (EC50=114 and 337mgL(-1)), whereas MET did not exhibit any adverse effect in the tested concentration range. For DOR a very low EC50 of 6.37×10(-5)mgL(-1) towards D. magna was determined, which is five orders of magnitude lower than values known for the toxic reference compound K2Cr2O7. Our data show the strong influence of certain veterinary drugs on aquatic organisms and contribute to a sound assessment of the environmental hazards posed by commonly used pharmaceuticals. Copyright © 2013. Published by Elsevier Ltd.

  20. LC/MS study of the UV filter hexyl 2-[4-(diethylamino)-2-hydroxybenzoyl]-benzoate (DHHB) aquatic chlorination with sodium hypochlorite.

    PubMed

    Grbović, G; Trebše, P; Dolenc, D; Lebedev, A T; Sarakha, M

    2013-11-01

    The fate of modern personal care products in the environment is becoming a matter of increasing concern because of the growing production and assortment of these compounds. More and more chemicals of this class are treated as emerging contaminants. Transformation of commercially available products in the environment may result in the formation of a wide array of their metabolites. Personal care products in swimming pools and in drinking water reservoirs may undergo oxidation or chlorination. There is much data on the formation of more toxic metabolites from original low toxicity commercial products. Therefore, reliable identification of all possible transformation products and a thorough study of their physicochemical and biological properties are of high priority. The present study deals with the identification of the products of the aquatic chlorination of the hexyl 2-[4-(diethylamino)-2-hydroxybenzoyl]-benzoate ultraviolet filter. High-performance liquid chromatography/mass spectrometry (HPLC/MS) and HPLC/MS/MS with accurate mass measurements were used for this purpose. As a result, three chlorinated transformation products were identified. Copyright © 2013 John Wiley & Sons, Ltd.

Top