Science.gov

Sample records for aquecimento solar para

  1. Perfil de temperatura dos funis magnetosféricos de estrelas T Tauri com aquecimento alfvênico

    NASA Astrophysics Data System (ADS)

    Vasconcelos, M. J.

    2003-08-01

    Estrelas T Tauri Clássicas são objetos jovens circundados por discos de gás e poeira e que apresentam uma intensa atividade magnética. Seu espectro mostra linhas de emissão alargadas que são razoavelmente reproduzidas nos modelos de acresção magnetosférica. No entanto, o perfil de temperatura dos funis magnéticos é desconhecido. Aquecimento magnético compressional e difusão ambipolar foram considerados para estas estruturas, porém as temperaturas obtidas não são suficientes para explicar as observações. Neste trabalho, examinamos o aquecimento gerado pelo amortecimento de ondas Alfvén através de quatro mecanismos, os amortecimentos não-linear, turbulento, viscoso-resistivo e colisional como função da freqüência da onda. Inicialmente, a temperatura é ajustada para reproduzir as observações e o grau de turbulência requerido para que o mecanismo seja viável é calculado. Os resultados mostram que este é compatível com os dados observacionais. Apresentam-se, também, resultados preliminares do cálculo auto-consistente do perfil de temperatura dos funis, levando-se em conta fontes de aquecimento Alfvênica e fontes de resfriamento.

  2. Aquecimento alfvênico viscoso-resistivo em discos de acresção ao redor de estrelas T Tauri clássicas

    NASA Astrophysics Data System (ADS)

    Santana, W. M.; Vasconcelos, M. J.

    2003-08-01

    Com a crescente disponibilidade de dados observacionais sobre estrelas T Tauri, a busca por modelos mais precisos vem se tornando cada vez maior. Estes modelos devem explicar, entre outras coisas, o mecanismo dissipativo responsável pelo transporte de momento angular no disco de acresção que acredita-se, circunda estas estrelas. O mecanismo mais viável, do ponto de vista teórico, é uma instabilidade MHD conhecida como "instabilidade magnetorotacional ou Balbus-Hawley" (IBH). Esta instabilidade veio mostrar que o campo magnético desempenha um papel importante na evolução destes objetos mas requer, no entanto, um acoplamento mínimo entre o gás e o campo magnético no disco que não é atingido para os valores de temperatura obtidos do modelo padrão. Contudo, alguns mecanismos de aquecimento para o disco precisam ser examinados. Neste trabalho, propomos a dissipação de ondas Alfvén como uma fonte de aquecimento para o disco. Se o gás apresentar uma condutividade elétrica finita e viscosidade, teremos um tipo de amortecimento para as ondas denominado amortecimento viscoso-resistivo que será aqui considerado. Este mecanismo é aplicado ao modelo de disco em camadas. Calculam-se as taxas de aquecimento Alfvênico, a temperatura efetiva do disco bem como as taxas de ionização decorrentes deste aquecimento e do aquecimento gerado pela absorção de raios cósmicos. Comparações com os dados observacionais de Kitamura et. al. (2001) são efetuadas, ressaltando-se os pontos comuns entre suas observações e nossos dados teóricos.

  3. BSSDATA - um programa otimizado para filtragem de dados em radioastronomia solar

    NASA Astrophysics Data System (ADS)

    Martinon, A. R. F.; Sawant, H. S.; Fernandes, F. C. R.; Stephany, S.; Preto, A. J.; Dobrowolski, K. M.

    2003-08-01

    A partir de 1998, entrou em operação regular no INPE, em São José dos Campos, o Brazilian Solar Spectroscope (BSS). O BSS é dedicado às observações de explosões solares decimétricas com alta resolução temporal e espectral, com a principal finalidade de investigar fenômenos associados com a liberação de energia dos "flares" solares. Entre os anos de 1999 e 2002, foram catalogadas, aproximadamente 340 explosões solares classificadas em 8 tipos distintos, de acordo com suas características morfológicas. Na análise detalhada de cada tipo, ou grupo, de explosões solares deve-se considerar a variação do fluxo do sol calmo ("background"), em função da freqüência e a variação temporal, além da complexidade das explosões e estruturas finas registradas superpostas ao fundo variável. Com o intuito de realizar tal análise foi desenvolvido o programa BSSData. Este programa, desenvolvido em linguagem C++, é constituído de várias ferramentas que auxiliam no tratamento e análise dos dados registrados pelo BSS. Neste trabalho iremos abordar as ferramentas referentes à filtragem do ruído de fundo. As rotinas do BSSData para filtragem de ruído foram testadas nos diversos grupos de explosões solares ("dots", "fibra", "lace", "patch", "spikes", "tipo III" e "zebra") alcançando um bom resultado na diminuição do ruído de fundo e obtendo, em conseqüência, dados onde o sinal torna-se mais homogêneo ressaltando as áreas onde existem explosões solares e tornando mais precisas as determinações dos parâmetros observacionais de cada explosão. Estes resultados serão apresentados e discutidos.

  4. Um satélite brasileiro para observação do diâmetro solar

    NASA Astrophysics Data System (ADS)

    Emilio, M.; Leister, N. V.; Benevides Soares, P.; Teixeira, R.; Kuhn, J.

    2003-08-01

    Propomos uma missão espacial para medir a forma e o diâmetro solar com o objetivo de ajudar a determinar o potencial gravitacional do Sol e a sua rotação com precisão, testar modelos teóricos de variação de energia e pela primeira vez medir os modos g de oscilação. As observações serão obtidas através do instrumento denominado APT (Astrometric and Photometric Telescope) descrito por Kuhn(1983). A sensibilidade do instrumento é de 0,2 mas em 27 dias para as observações do diâmetro solar feitas a cada minuto. Esta é uma missão de três anos de duração e pode complementar as medidas que serão feitas pelo satélite PICARD (a ser lançado em 2007). Outros parâmetros físicos podem ser obtidos com as mesmas imagens o que certamente interessará à comunidade de física solar. Um primeiro contato foi realizado com a agência espacial brasileira que pretende lançar um satélite científico a cada dois anos.

  5. Effects of number and position of meta and para carboxyphenyl groups of zinc porphyrins in dye-sensitized solar cells: structure-performance relationship.

    PubMed

    Ambre, Ram B; Mane, Sandeep B; Chang, Gao-Fong; Hung, Chen-Hsiung

    2015-01-28

    Porphyrin sensitizers containing meta- and para-carboxyphenyl groups in their meso positions have been synthesized and investigated for their performance in dye-sensitized solar cells (DSSCs). The superior performance of para-derivative compared to meta-derivative porphyrins was revealed by optical spectroscopy, electrochemical property measurements, density functional theory (DFT) calculations, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, incident photon-to-current conversion efficiency (IPCE), electrochemical impedance spectroscopy (EIS), and stability performance. Absorption spectra of para-carboxyphenyl-substituted porphyrins on TiO2 show a broader Soret band compared to meta-carboxyphenyl-substituted porphyrins. ATR-FTIR spectra of the studied porphyrins on TiO2 were applied to investigate the number and mode of carboxyl groups attached to TiO2. The VOC, JSC, and IPCE values of para-series porphyrins were distinctly superior to those of meta-series porphyrins. The Nyquist plots of the studied porphyrins show that charge injection in para-series porphyrins is superior to that in meta-series porphyrins. The orthogonally positioned para derivatives have more efficient charge injection and charge transfer over charge recombination, whereas the efficiencies of flat-oriented meta derivatives are retarded by rapid charge recombination. Photovoltaic measurements of the studied meta- and para-carboxyphenyl-functionalized porphyrins show that the number and position of carboxyphenyl groups play a crucial role in the performance of the DSSC. Our results indicate that para-carboxyphenyl derivatives outperform meta-carboxyphenyl derivatives to give better device performance. This study will serve as a guideline for the design and development of organic, porphyrin, and ruthenium dyes in DSSCs.

  6. Telescopio prototipo complementario de HASTA para observaciones de la cromósfera y fotósfera solares

    NASA Astrophysics Data System (ADS)

    Francile, C.; Luoni, M. L.; López, C. E.; Castro, J. I.; Costa, A.

    2016-08-01

    We report the design of a prototype refractor telescope oriented to complement the functionality of the H-Alpha Solar Telescope for Argentine (HASTA). It will allow to make photospheric observations in white light and chromospheric ones in the most intense lines, such as Ca ii K. This new instrument will observe the full solar disk or into regions of interest with a maximum pixel spatial-resolution of 0.57, and will allow the study of the sunspots, the faculae, the evolution of active regions and sporadically the most energetic flares in white light by utilizing high speed image acquisition cadences and exposure times of 1--5 ms.

  7. Solar collection

    NASA Astrophysics Data System (ADS)

    Cole, S. I.

    1984-08-01

    Solar dishes, photovoltaics, passive solar building and solar hot water systems, Trombe walls, hot air panels, hybrid solar heating systems, solar grain dryers, solar greenhouses, solar hot water worhshops, and solar workshops are discussed. These solar technologies are applied to residential situations.

  8. Solar Physics Topics in High School: Analysis of a Course with Practical Activities at Dietrich Schiel Observatory. (Spanish Title: Temas de Física Solar Para Estudiantes de Escuelas Secundarias: un Análisis de un Curso con Enfoque Práctico en el Observatorio Dietrich Schiel.) Tópicos de Física Solar no Ensino Médio: Análise de um Curso com Atividades Práticas no Observatório Dietrich Schiel

    NASA Astrophysics Data System (ADS)

    Calbo Aroca, Silvia; Donizete Colombo, Pedro, Jr.; Celestino Silva, Cibelle

    2012-12-01

    This work analyses results obtained in a solar physics course for high school students promoted at the Dietrich Schiel Observatory of the University of São Paulo (USP). The course was elaborated by the authors with the intention of investigating student's concepts about the Sun, teaching topics of modern physics related to the Sun and providing students with knowledge about our star as well. The methodology of data gathering consisted of audio and video records of classes and of semi-structured interviews, and analysis of answers to written questionnaires. The results showed that most high school students conceived the Sun as made of fire, while sunspots were thought to be holes in the Sun. Even though some students did know that a spectrum is formed using a prism or diffraction grating, most of them ignored the nature of the observed spectral lines. Through the course, this topic was developed by means of a practical approach with solar and lamp spectra observations. The results obtained in the course point to the importance of science centers as partners in formal education. In this specific case, the Solar Room at the Dietrich Schiel Observatory is as a favorable environment for teaching modern physics in high school. Este artículo analiza los resultados obtenidos en un curso sobre la física solar, auspiciado por el Observatorio Dietrich Schiel de la USP para estudiantes de las escuelas secundarias. El curso fue diseñado por los autores con la intención de investigar las concepciones sobre el sol, enseñar temas relacionados con la física moderna del Sol y conocimientos generales sobre el astro rey. La metodología utilizada para la recolección de datos consistió en grabar, en audio y video, las clases, las entrevistas semi-estructuradas y las respuestas a los cuestionarios escritos. Los resultados mostraron que la mayoría de los participantes conciben el Sol como constituido por fuego y las manchas solares en la superficie solar como agujeros. Aunque

  9. Solar astronomy

    NASA Technical Reports Server (NTRS)

    Rosner, Robert; Noyes, Robert; Antiochos, Spiro K.; Canfield, Richard C.; Chupp, Edward L.; Deming, Drake; Doschek, George A.; Dulk, George A.; Foukal, Peter V.; Gilliland, Ronald L.

    1991-01-01

    An overview is given of modern solar physics. Topics covered include the solar interior, the solar surface, the solar atmosphere, the Large Earth-based Solar Telescope (LEST), the Orbiting Solar Laboratory, the High Energy Solar Physics mission, the Space Exploration Initiative, solar-terrestrial physics, and adaptive optics. Policy and related programmatic recommendations are given for university research and education, facilitating solar research, and integrated support for solar research.

  10. Solar Energy.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  11. Solar energy

    NASA Technical Reports Server (NTRS)

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  12. Solar Systems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar collectors shown are elements of domestic solar hot water systems produced by Solar One Ltd., Virginia Beach, Virginia. Design of these systems benefited from technical expertise provided Solar One by NASA's Langley Research Center. The company obtained a NASA technical support package describing the d e sign and operation of solar heating equipment in NASA's Tech House, a demonstration project in which aerospace and commercial building technology are combined in an energy- efficient home. Solar One received further assistance through personal contact with Langley solar experts. The company reports that the technical information provided by NASA influenced Solar One's panel design, its selection of a long-life panel coating which increases solar collection efficiency, and the method adopted for protecting solar collectors from freezing conditions.

  13. Solar Collectors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Solar Energy's solar panels are collectors for a solar energy system which provides heating for a drive-in bank in Akron, OH. Collectors were designed and manufactured by Solar Energy Products, a firm established by three former NASA employees. Company President, Frank Rom, an example of a personnel-type technology transfer, was a Research Director at Lewis Research Center, which conducts extensive solar heating and cooling research, including development and testing of high-efficiency flat-plate collectors. Rom acquired solar energy expertise which helped the company develop two types of collectors, one for use in domestic/commercial heating systems and the other for drying grain.

  14. Solar collectors

    SciTech Connect

    Cassidy, V.M.

    1981-11-01

    Practical applications of solar energy in commercial, industrial and institutional buildings are considered. Two main types of solar collectors are described: flat plate collectors and concentrating collectors. Efficiency of air and hydronic collectors among the flat plate types are compared. Also several concentrators are described, including their sun tracking mechanisms. Descriptions of some recent solar installations are presented and a list representing the cross section of solar collector manufacturers is furnished.

  15. Solar Equipment

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A medical refrigeration and a water pump both powered by solar cells that convert sunlight directly into electricity are among the line of solar powered equipment manufactured by IUS (Independent Utility Systems) for use in areas where conventional power is not available. IUS benefited from NASA technology incorporated in the solar panel design and from assistance provided by Kerr Industrial Applications Center.

  16. Solar reflector

    SciTech Connect

    Stone, D. C.

    1981-02-17

    A solar reflector having a flexible triangular reflective sheet or membrane for receiving and reflecting solar energy therefrom. The reflector is characterized by the triangular reflective sheet which is placed under tension thereby defining a smooth planar surface eliminating surface deflection which heretofore has reduced the efficiency of reflectors or heliostats used in combination for receiving and transmitting solar energy to an absorber tower.

  17. Buying Solar.

    ERIC Educational Resources Information Center

    Dawson, Joe

    Presented are guidelines for buying solar systems for the individual consumer. This is intended to help the consumer reduce many of the risks associated with the purchase of solar systems, particularly the risks of fraud and deception. Engineering terms associated with solar technology are presented and described to enable the consumer to discuss…

  18. Solar flair.

    PubMed Central

    Manuel, John S

    2003-01-01

    Design innovations and government-sponsored financial incentives are making solar energy increasingly attractive to homeowners and institutional customers such as school districts. In particular, the passive solar design concept of daylighting is gaining favor among educators due to evidence of improved performance by students working in daylit classrooms. Electricity-generating photovoltaic systems are also becoming more popular, especially in states such as California that have high electric rates and frequent power shortages. To help spread the word about solar power, the U.S. Department of Energy staged its first-ever Solar Decathlon in October 2002. This event featured solar-savvy homes designed by 14 college teams. PMID:12573926

  19. Solar Meter

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The instrument pictured is an inexpensive solar meter which is finding wide acceptance among architects, engineers and others engaged in construction of solar energy facilities. It detects the amount of solar energy available at a building site, information necessary to design the most efficient type of solar system for a particular location. Incorporating technology developed by NASA's Lewis Research Center, the device is based upon the solar cell, which provides power for spacecraft by converting the sun's energy to electricity. The meter is produced by Dodge Products, Inc., Houston, Texas, a company formed to bring the technology to the commercial marketplace.

  20. Solar flair.

    PubMed

    Manuel, John S

    2003-02-01

    Design innovations and government-sponsored financial incentives are making solar energy increasingly attractive to homeowners and institutional customers such as school districts. In particular, the passive solar design concept of daylighting is gaining favor among educators due to evidence of improved performance by students working in daylit classrooms. Electricity-generating photovoltaic systems are also becoming more popular, especially in states such as California that have high electric rates and frequent power shortages. To help spread the word about solar power, the U.S. Department of Energy staged its first-ever Solar Decathlon in October 2002. This event featured solar-savvy homes designed by 14 college teams.

  1. Solar Energy: Solar System Economics.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system economics is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  2. Solar Sailing

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2009-01-01

    Solar sailing is a topic of growing technical and popular interest. Solar sail propulsion will make space exploration more affordable and offer access to destinations within (and beyond) the solar system that are currently beyond our technical reach. The lecture will describe solar sails, how they work, and what they will be used for in the exploration of space. It will include a discussion of current plans for solar sails and how advanced technology, such as nanotechnology, might enhance their performance. Much has been accomplished recently to make solar sail technology very close to becoming an engineering reality and it will soon be used by the world s space agencies in the exploration of the solar system and beyond. The first part of the lecture will summarize state-of-the-art space propulsion systems and technologies. Though these other technologies are the key to any deep space exploration by humans, robots, or both, solar-sail propulsion will make space exploration more affordable and offer access to distant and difficult destinations. The second part of the lecture will describe the fundamentals of space solar sail propulsion and will describe the near-, mid- and far-term missions that might use solar sails as a propulsion system. The third part of the lecture will describe solar sail technology and the construction of current and future sailcraft, including the work of both government and private space organizations.

  3. Solar Simulator

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Oriel Corporation's simulators have a high pressure xenon lamp whose reflected light is processed by an optical system to produce a uniform solar beam. Because of many different types of applications, the simulators must be adjustable to replicate many different areas of the solar radiation spectrum. Simulators are laboratory tools for such purposes as testing and calibrating solar cells, or other solar energy systems, testing dyes, paints and pigments, pharmaceuticals and cosmetic preparations, plant and animal studies, food and agriculture studies and oceanographic research.

  4. Solar Physics

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The areas of emphasis are: (1) develop theoretical models of the transient release of magnetic energy in the solar atmosphere, e.g., in solar flares, eruptive prominences, coronal mass ejections, etc.; (2) investigate the role of the Sun's magnetic field in the structuring of solar corona by the development of three-dimensional numerical models that describe the field configuration at various heights in the solar atmosphere by extrapolating the field at the photospheric level; (3) develop numerical models to investigate the physical parameters obtained by the ULYSSES mission; (4) develop numerical and theoretical models to investigate solar activity effects on the solar wind characteristics for the establishment of the solar-interplanetary transmission line; and (5) develop new instruments to measure solar magnetic fields and other features in the photosphere, chromosphere transition region and corona. We focused our investigation on the fundamental physical processes in solar atmosphere which directly effect our Planet Earth. The overall goal is to establish the physical process for the Sun-Earth connections.

  5. Solar Eclipse

    Atmospheric Science Data Center

    2013-04-16

    ... a solar eclipse where an observer on Earth can watch the Moon's shadow obscure more than 90% the Sun's disk, the Multiangle Imaging ... total solar eclipse of November 23, 2003. The path of the Moon's umbral shadow began in the Indian Ocean in the far Southern Hemisphere, ...

  6. Solar Eclipse

    Atmospheric Science Data Center

    2013-04-19

    ...   View Larger Image On June 10, 2002 the Moon obscured the central portion of the solar disk in a phenomenon known as an ... in which 99.6 percent of the solar disk was shadowed by the Moon, was situated in the central Pacific Ocean. Since there are no populated ...

  7. Solar Sprint

    ERIC Educational Resources Information Center

    Tabor, Richard; Anderson, Stephen

    2007-01-01

    In the "Solar Sprint" activity, students design, test, and race a solar-powered car built with Legos. The use of ratios is incorporated to simulate the actual work of scientists and engineers. This method encourages fourth-grade students to think about multiple variables and stimulates their curiosity when an activity doesn't come out as…

  8. Solar Technologies

    ERIC Educational Resources Information Center

    von Hippel, Frank; Williams, Robert H.

    1975-01-01

    As fossil fuels decrease in availability and environmental concerns increase, soalr energy is becoming a potential major energy source. Already solar energy is used for space heating in homes. Proposals for solar-electric generating systems include land-based or ocean-based collectors and harnessing wind and wave power. Photosynthesis can also…

  9. Solar ponds

    SciTech Connect

    Jayadev, T.S.; Edesess, M.

    1980-04-01

    This report first describes the different types of solar ponds including the nonconvecting salt gradient pond and various saltless pond designs. It then discusses the availability and cost of salts for salt gradient ponds, and compares the economics of salty and saltless ponds as a function of salt cost. A simple computational model is developed to approximate solar pond performance. This model is later used to size solar ponds for district heating and industrial process heat applications. For district heating, ponds are sized to provide space conditioning for a group of homes, in different regions of the United States. Size requirements is on the order of one acre for a group of 25 to 50 homes. An economic analysis is performed of solar ponds used in two industrial process heat applications. The analysis finds that solar ponds are competitive when conventional heat sources are priced at $5 per million Btu and expected to rise in price at a rate of 10% per year. The application of solar ponds to the generation of electricity is also discussed. Total solar pond potential for displacing conventional energy sources is estimated in the range of from one to six quadrillion Btu per year in the near and intermediate future.

  10. Solar sail

    SciTech Connect

    Drexler, K.E.

    1986-09-30

    This patent describes a solar sail propulsion system comprising: solar sail means for intercepting light pressure to produce thrust, the solar sail means being a thin metal film; tension truss means having two ends attached at one end to the solar sail means for transferring the thrust from the solar sail and for preventing gross deformation of the solar sail under light pressure, the solar sail means being a plurality of separate generally two-dimensional pieces joined by springs to the tension truss means; a payload attached to the other end of the tension truss means, the tension truss means comprising a plurality of attachment means for attaching shroud lines to the top of the tension truss means and a plurality of the shroud lines attached to the attachment means at one of their ends and the payload at the other; a plurality of reel means attached to the shroud lines for controllably varying the length of the lines; and a plurality of reflective panel means attached to the sail means for controlling the orientation of the system.

  11. Solar pruritus.

    PubMed

    Bech-Thomsen, N; Thomsen, K

    1995-11-01

    A case of solar pruritus is reported. Severe pruritus of the back, shoulders and upper lateral aspects of the arms, without any eruption, developed in a 28-year-old outdoor worker during 4 to 6 weeks of intensive solar exposure. The pruritus was intense and described as a burning sensation deep in the skin. Only a few excoriations and slight xerosis were found. Solar pruritus or brachioradial pruritus is a condition primarily seen in Caucasian people living in the tropics or subtropics. Previously the disease has only been reported once outside these areas.

  12. Solar Two

    SciTech Connect

    Not Available

    1998-04-01

    Solar Two is a concentrating solar power plant that can supply electric power on demand to the local utility, Southern California Edison Company. It can do so because it operates not only during sunny parts of the day, but it can store enough thermal energy from the sun to operate during cloudy periods and after dark, for up to three hours, at its rated output of 10 megawatts (MW). For the first time ever, a utility scale solar power plant can supply electricity when the utility needs it most, to satisfy the energy requirements of its customers.

  13. Solar fuels

    NASA Astrophysics Data System (ADS)

    Viitanen, M.

    1990-12-01

    The aim of this paper is to give a review concerning the storage of solar energy by converting it to chemical energy. This is based on several articles published during the last fifteen years. The methods to convert solar energy to chemical energy, e.g., to produce hydrogen, can be divided into three different methods. The most common one is probably the usage of solar cells; thus the solar energy is first converted into electrical energy and further the water is split electrochemically to produce hydrogen. It could be also done in a photoelectrochemical cell, or simply photochemically. A photobiological system can also be considered as a photochemical system, although it is discussed separately from the photochemical systems. These three last mentioned methods will be discussed in this paper.

  14. Solar Nexus.

    ERIC Educational Resources Information Center

    Murphy, Jim

    1980-01-01

    The design team for the Solar Energy Research Institute (SERI) has pushed the state of the energy art to its current limits for the initial phase, with provisions for foreseeable and even speculative future applications. (Author/MLF)

  15. Solar chulha

    NASA Astrophysics Data System (ADS)

    Jadhao, P. H.; Patrikar, S. R.

    2016-05-01

    The main goal of the proposed system is to transfer energy from sun to the cooking load that is located in the kitchen. The energy is first collected by the solar collector lens system and two curve bars of same radius of curvature are mounted parallel and adjacent to each other at different height the solar collector is clamed on this two bars such that solar collector is exactly perpendicular to sunlight. The topology includes an additional feature which is window in the wall through which the beam is collimated is directed in the of kitchen. The solar energy that is collected is directed by the mirror system into the kitchen, where it is redirected to cooking platform located in the kitchen. The special feature in this system full Indian meal can be made since cooking platform is indoors.

  16. Solar Pump

    NASA Technical Reports Server (NTRS)

    Pique, Charles

    1987-01-01

    Proposed pump moves liquid by action of bubbles formed by heat of sun. Tube of liquid having boiling point of 100 to 200 degrees F placed at focal axis of cylindrical reflector. Concentrated sunlight boils liquid at focus, and bubbles of vapor rise in tube, carrying liquid along with them. Pressure difference in hot tube sufficient to produce flow in large loop. Used with conventional flat solar heating panel in completely solar-powered heat-storage system.

  17. Solar Cells

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Heat Exchanger Method (HEM) produces high efficiency crystal ingots in an automated well-insulated furnace offering low equipment, labor and energy costs. The "grown" silicon crystals are used to make solar cells, or photovoltaic cells which convert sunlight directly into electricity. The HEM method is used by Crystal Systems, Inc. and was developed under a NASA/Jet Propulsion Laboratory contract. The square wafers which are the result of the process are sold to companies manufacturing solar panels.

  18. Solar Schematic

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The home shown at right is specially designed to accommodate solar heating units; it has roof planes in four directions, allowing placement of solar collectors for best exposure to the sun. Plans (bottom) and complete working blueprints for the solar-heated house are being marketed by Home Building Plan Service, Portland, Oregon. The company also offers an inexpensive schematic (center) showing how a homeowner only moderately skilled in the use of tools can build his own solar energy system, applicable to new or existing structures. The schematic is based upon the design of a low-cost solar home heating system built and tested by NASA's Langley Research Center; used to supplement a warm-air heating system, it can save the homeowner about 40 percent of his annual heating bill for a modest investment in materials and components. Home Building Plan Service saved considerable research time by obtaining a NASA technical report which details the Langley work. The resulting schematic includes construction plans and simplified explanations of solar heat collection, collectors and other components, passive heat factors, domestic hot water supply and how to work with local heating engineers.

  19. Actividad Solar Desde EL Espacio

    NASA Astrophysics Data System (ADS)

    Rovira, M. G.

    1990-11-01

    RESUMEN. Se describen los principales descubrimientos realizados por los arti+iciales con instrumentos dedicados a la observaci6n del Sol, durante los dos ultimos ciclos de su acti vi dad. La observaci6n el espacio ha permitido cubrir todas las zonas del espectro no observables desde tierra1 desde el ultravioleta hasta la radiaci6n gamma. Se hace referencia, en particular, a los resultados producidos por los dos grandes observatorios: el Skylab y el SMM. Este ultimo incluy6 un conjunto de instrumentos especialmente coordinados para observar en detalle las fulguraciones solares. Es un resumen para astr6nomos no especializados en la fisica solar, en el que se muestra que la gran riqueza del material observacional acumulado ha resuelto problemas preexistentes y, al mismo tiempo, ha abierto numerosos interrogantes a los que se buscar respuesta con la instrumentaci6n en desarrollo. Finalmente, se mencionan las caracteristicas de los proyectados para la pr6xima decada. : The main discoveries performed by artificial satellites instrumented for the observation of the Sun, during the last two cycles of its activity, are described. The space observations allowed of almost all the spectral regions which are not observable from the ground, from the ultraviolet to the gamma radiation. In particular, we ref er' to the two large solar space observatories: the Skylab and the SMM. The last one included a set 0+ coordinated instruments to observe in detail the solar flares. This is a summary for astronomers not dedicated to solar physics, where we show that the of observational material have solv# d many of the preexistent problems but, at the ame time, it opened many new questions to which the improved instrumentation will try to answer. , the characteristics of the satellites planned the next decade are mentioned. Key : SUN-ACTIVITY - SUN-CORONA - SUN-X-RAYS

  20. Solar ponds

    NASA Astrophysics Data System (ADS)

    Tabor, H.

    1981-01-01

    The history and current status of salt-gradient non-convecting solar ponds are presented. These ponds are large-area collectors, capable of providing low-cost thermal, mechanical, or electrical energy using low-temperature turbo-generators. The basic theory of salt-gradient solar ponds is sketched; the effects of wind, leakage, and fouling and their constraints on location selection for solar ponds are discussed. The methods of building and filling the ponds, as well as extracting heat from them are explained in detail. Practical operating temperatures of 90 C can be obtained with collection efficiencies between 15% and 25%, demonstrating the practical use of the ponds for heating and cooling purposes, power production, and desalination. A condensed account of solar pond experience in several countries is given. This includes the 150 kW solar pond power station (SPPS) operating in Israel since December, 1979 and a 5000 kW unit currently under development. A study of the economics involved in using the ponds is presented: despite a low conversion efficiency, the SPPS is shown to have applications in many countries.

  1. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  2. Solar Minimum

    NASA Astrophysics Data System (ADS)

    Lopresto, James C.; Mathews, John; Manross, Kevin

    1995-12-01

    Calcium K plage, H alpha plage and sunspot area have been monitored daily on the INTERNET since November of 1992. The plage and sunspot area have been measured by image processing. The purpose of the project is to investigate the degree of correlation between plage area and solar irradiance. The plage variation shows the expected variation produced by solar rotation and the longer secular changes produced by the solar cycle. The H alpha and sunspot plage area reached a minimum in about late 1994 or early 1995. This is in agreement with the K2 spectral index obtained daily from Sacramento Peak Observatory. The Calcium K plage area minimum seems delayed with respect to the others mentioned above. The minimum of the K line plage area is projected to come within the last few months of 1995.

  3. Solar Neutrinos

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  4. Solar flare particle radiation

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.

    1972-01-01

    The characteristics of the solar particles accelerated by solar flares and subsequently observed near the orbit of the earth are studied. Considered are solar particle intensity-time profiles, the composition and spectra of solar flare events, and the propagation of solar particles in interplanetary space. The effects of solar particles at the earth, riometer observations of polar cap cosmic noise absorption events, and the production of solar cell damage at synchronous altitudes by solar protons are also discussed.

  5. Solar panel

    SciTech Connect

    Bayles, B.R.

    1981-09-29

    A solar panel includes a base within which are mounted transversely extending conduits. A heat collector plate in the base is in heat conductive relationship with the conduits for the heating of a fluid medium. The base additionally supports a transparent cover outwardly spaced from the heat collector plate to provide a protective insulative air space over the plate. A manifold communicates one series of panels with those of an adjacent series. A modified base dispenses with a collector plate and is formed so as to define integral lengthwise extending passageways for the solar heated medium. Inserted nipples interconnect the passageways of adjacent panels.

  6. Solar trap

    SciTech Connect

    Lew, H.S.

    1988-02-09

    A solar trap for collecting solar energy at a concentrated level is described comprising: (a) a compound light funnel including a pair of light reflecting substantially planar members arranged into a trough having a substantially V-shaped cross section; (b) a two dimensional Fresnel lens cover covering the opening of the compound light funnel, the opening being the open diverging end of the substantially V-shaped cross section of the compound light funnel; (c) at least one conduit for carrying a heat transfer fluid disposed substantially adjacent and substantially parallel to the apex line of the compound light funnel.

  7. Solar Energy and You.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    This booklet provides an introduction to solar energy by discussing: (1) how a home is heated; (2) how solar energy can help in the heating process; (3) the characteristics of passive solar houses; (4) the characteristics of active solar houses; (5) how solar heat is stored; and (6) other uses of solar energy. Also provided are 10 questions to…

  8. Solar maximum: Solar array degradation

    NASA Technical Reports Server (NTRS)

    Miller, T.

    1985-01-01

    The 5-year in-orbit power degradation of the silicon solar array aboard the Solar Maximum Satellite was evaluated. This was the first spacecraft to use Teflon R FEP as a coverglass adhesive, thus avoiding the necessity of an ultraviolet filter. The peak power tracking mode of the power regulator unit was employed to ensure consistent maximum power comparisons. Telemetry was normalized to account for the effects of illumination intensity, charged particle irradiation dosage, and solar array temperature. Reference conditions of 1.0 solar constant at air mass zero and 301 K (28 C) were used as a basis for normalization. Beginning-of-life array power was 2230 watts. Currently, the array output is 1830 watts. This corresponds to a 16 percent loss in array performance over 5 years. Comparison of Solar Maximum Telemetry and predicted power levels indicate that array output is 2 percent less than predictions based on an annual 1.0 MeV equivalent election fluence of 2.34 x ten to the 13th power square centimeters space environment.

  9. Telescopio Solar en Hα (HASTA)

    NASA Astrophysics Data System (ADS)

    Fernández Borda, R.; Francile, C.; Bagala, G.; Bauer, O.; Haerendel, G.; Rieger, E.; Rovira, M.

    El Telescopio Solar en Hα (Hα Solar Telescope for Argentina (-HASTA-) fue recientemente instalado en la Estación Astronómica de Altura Carlos Ulrrico Cesco (OAFA) en El Leoncito. Este instrumento estudiará la evolución de las fulguraciones solares desde tierra con alta resolución temporal y espacial. HASTA es un telescopio refractor de 110 mm con una distancia focal de 165 cm, un filtro Lyot sintonizable (±1Å) con un ancho de banda de 0.3 Å y una cámara CCD de alta resolución (1280×1024 pixels). Todo el conjunto es controlado en forma remota por una PC, la cual además adquiere datos del Sistema de Posicionamiento Global (GPS) y de la estación meteorológica. Diseñado para detectar fulguraciones, el instrumento trabaja en dos modos (patrullaje y fulguración) con una resolución espacial de 1.5 arcseg por pixel y una resolución temporal de 2 seg. HASTA comenzó a operar en Mayo de 1998 y, junto con otros tres instrumentos solares, que se están instalando o se instalaron, harán de El Leoncito un polo de observación solar importante en el Hemisferio Sur.

  10. Solar Power

    ERIC Educational Resources Information Center

    Ford, Norman C.; Kane, Joseph W.

    1971-01-01

    Proposes a method of collecting solar energy by using available plastics for Fresnel lenses to focus heat onto a converter where thermal dissociation of water would produce hydrogen. The hydrogen would be used as an efficient non-polluting fuel. Cost estimates are included. (AL)

  11. Solar Directory.

    ERIC Educational Resources Information Center

    Pesko, Carolyn, Ed.

    This directory is designed to help the researcher and developer, the manufacturer and distributor, and the general public communicate together on a mutually beneficial basis. Its content covers the wide scope of solar energy activity in the United States primarily, but also in other countries, at the academic, governmental, and industrial levels.…

  12. Solar cooker

    SciTech Connect

    Long, J. B.; Ware, R. R.

    1985-12-31

    A solar cooking device made of a flat array of concentric mirrors tilted to focus at a small area, the array being movable mounted on a stand to be movable around a ball joint and with a carrier for a cooking vessel held by a double crank to be at the focal area of the mirrors.

  13. Solar electric systems

    SciTech Connect

    Warfield, G.

    1984-01-01

    Electricity from solar sources is the subject. The state-of-the-art of photovoltaics, wind energy and solar thermal electric systems is presented and also a broad range of solar energy activities throughout the Arab world is covered. Contents, abridged: Solar radiation fundamentals. Basic theory solar cells. Solar thermal power plants. Solar energy activities at the scientific research council in Iraq. Solar energy program at Kuwait Institute for Scientific Research. Prospects of solar energy for Egypt. Non-conventional energy in Syria. Wind and solar energies in Sudan. Index.

  14. Collecting Solar Energy. Solar Energy Education Project.

    ERIC Educational Resources Information Center

    O'Brien, Alexander

    This solar energy learning module for use with junior high school students offers a list of activities, a pre-post test, job titles, basic solar energy vocabulary, and diagrams of solar energy collectors and installations. The purpose is to familiarize students with applications of solar energy and titles of jobs where this knowledge could be…

  15. Solar Impulse's Solar-Powered Plane

    ScienceCinema

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2016-07-12

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  16. Solar Impulse's Solar-Powered Plane

    SciTech Connect

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2013-07-08

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  17. Solar rotation.

    NASA Astrophysics Data System (ADS)

    Dziembowski, W.

    Sunspot observations made by Johannes Hevelius in 1642 - 1644 are the first ones providing significant information about the solar differential rotation. In modern astronomy the determination of the rotation rate is done in a routine way by measuring positions of various structures on the solar surface as well as by studying the Doppler shifts of spectral lines. In recent years a progress in helioseismology enabled determination of the rotation rate in the layers inaccessible for direct observations. There are still uncertainties concerning, especially, the temporal variations of the rotation rate and its behaviour in the radiative interior. We are far from understanding the observations. Theoretical works have not yet resulted in a satisfactory model for the angular momentum transport in the convective zone.

  18. Solar Flares

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina

    2013-01-01

    Because the Earth resides in the atmosphere of our nearest stellar neighbor, events occurring on the Sun's surface directly affect us by interfering with satellite operations and communications, astronaut safety, and, in extreme circumstances, power grid stability. Solar flares, the most energetic events in our solar system, are a substantial source of hazardous space weather affecting our increasingly technology-dependent society. While flares have been observed using ground-based telescopes for over 150 years, modern space-bourne observatories have provided nearly continuous multi-wavelength flare coverage that cannot be obtained from the ground. We can now probe the origins and evolution of flares by tracking particle acceleration, changes in ionized plasma, and the reorganization of magnetic fields. I will walk through our current understanding of why flares occur and how they affect the Earth and also show several examples of these fantastic explosions.

  19. Solar Interior

    NASA Astrophysics Data System (ADS)

    Zahn, J.; Murdin, P.

    2000-11-01

    The interior of the Sun is hidden from our sight, because it is opaque to electromagnetic waves: the radiation we receive from it on Earth is emitted in the outermost layers. Our knowledge of the solar interior is based solely on theoretical models which are built with some assumptions about the physical conditions and processes that are likely to prevail there, and on helioseismology, a very pow...

  20. Solar collectors

    SciTech Connect

    Uroshevich, M.

    1981-09-22

    The disclosure illustrates a solar collector of the focusing type comprising a trough like element with an interior reflective surface that faces a main reflector of the collector. A tubular receiver providing a passage for heat transfer fluid is positioned in the trough like element generally along the focal line of the main reflector. A flat glass plate covers the trough along a perimeter seal so that subatmospheric conditions may be maintained within the trough like element to minimize convection heat losses.

  1. Solar cooker

    SciTech Connect

    Zwach, D.M.

    1987-09-29

    A solar unit is described comprising a solar oven having an open end. A generally concave parabolic main reflector is joined to the oven to move therewith and reflect solar radiation away from the oven. The main reflector has a central opening to the oven open end, a generally parabolic convex secondary reflector for reflecting the radiation from the main reflector through the central opening to the open end of the oven, means for mounting the secondary reflector on the main reflector for movement, a frame, and means for mounting the oven on the frame for adjustable movement relative to the frame. This permits adjusting the angular position relative to the earth. The last mentioned means includes means for supporting the oven including first and second pairs of pivot members that respectively have a fist pivot axis and a second pivot axis that extends perpendicular to the first pivot axis. The oven extends between each of the first pivot members and each of the second pivot members.

  2. Solar Oscillations

    NASA Technical Reports Server (NTRS)

    Duvall, Thomas

    2004-01-01

    Oscillations were first detected in the solar photosphere in 1962 by Leighton and students. In 1970 it was calculated that these oscillations, with a period near five minutes, were the manifestations of acoustic waves trapped in the interior. The subsequent measurements of the frequencies of global oscillation modes from the spatio-temporal power spectrum of the waves made possible the refinement of solar interior models. Over the years, increased understanding of the nuclear reaction rates, the opacity, the equation of state, convection, and gravitational settling have resulted. Mass flows shift the frequencies of modes leading to very accurate measurements of the interior rotation as a function of radius and latitude. In recent years, analogues of terrestrial seismology have led to a tomography of the interior, including measurements of global north-south flows and flow and wave speed measurements below features such as sunspots. The future of helioseismology seems bright with the approval of NASA's Solar Dynamics Observatory mission, to be launched in 2008.

  3. Solar chameleons

    SciTech Connect

    Brax, Philippe

    2010-08-15

    We analyze the creation of chameleons deep inside the Sun (R{approx}0.7R{sub sun}) and their subsequent conversion to photons near the magnetized surface of the Sun. We find that the spectrum of the regenerated photons lies in the soft x-ray region, hence addressing the solar corona problem. Moreover, these back-converted photons originating from chameleons have an intrinsic difference with regenerated photons from axions: their relative polarizations are mutually orthogonal before Compton interacting with the surrounding plasma. Depending on the photon-chameleon coupling and working in the strong coupling regime of the chameleons to matter, we find that the induced photon flux, when regenerated resonantly with the surrounding plasma, coincides with the solar flux within the soft x-ray energy range. Moreover, using the soft x-ray solar flux as a prior, we find that with a strong enough photon-chameleon coupling, the chameleons emitted by the Sun could lead to a regenerated photon flux in the CAST magnetic pipes, which could be within the reach of CAST with upgraded detector performance. Then, axion helioscopes have thus the potential to detect and identify particle candidates for the ubiquitous dark energy in the Universe.

  4. Nanostructured Solar Cells.

    PubMed

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-08-09

    We are glad to announce the Special Issue "Nanostructured Solar Cells", published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  5. Solar Sail Spaceflight Simulation

    NASA Technical Reports Server (NTRS)

    Lisano, Michael; Evans, James; Ellis, Jordan; Schimmels, John; Roberts, Timothy; Rios-Reyes, Leonel; Scheeres, Daniel; Bladt, Jeff; Lawrence, Dale; Piggott, Scott

    2007-01-01

    The Solar Sail Spaceflight Simulation Software (S5) toolkit provides solar-sail designers with an integrated environment for designing optimal solar-sail trajectories, and then studying the attitude dynamics/control, navigation, and trajectory control/correction of sails during realistic mission simulations. Unique features include a high-fidelity solar radiation pressure model suitable for arbitrarily-shaped solar sails, a solar-sail trajectory optimizer, capability to develop solar-sail navigation filter simulations, solar-sail attitude control models, and solar-sail high-fidelity force models.

  6. Solar physics at APL.

    NASA Astrophysics Data System (ADS)

    Rust, D. M.

    1999-12-01

    Solar reserach at APL aims to understand the fundamental physics that govern solar activity. The tools are telescopes, models, and interplanetary sampling of solar ejecta. The work is relevant to APL's mission because solar energetic protons disable satellites and endanger astronauts. Solar activity also causes geomagnetic storms, which can lead to communications disruptions, electric power network problems, satellite orbit shifts and, sometimes, satellite failure. Predicting storm conditions requires understanding solar magnetism and its fluctuations. APL scientists have made major contributions to solar activity research and have taken the lead in developing a variety of new solar research tools. They are now starting work on the Solar Terrestrial Relations Observatory, a major space mission.

  7. Nanostructured Solar Cells

    PubMed Central

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-01-01

    We are glad to announce the Special Issue “Nanostructured Solar Cells”, published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  8. Solar Innovator | Alta Devices

    ScienceCinema

    Mattos, Laila; Le, Minh

    2016-07-12

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  9. Solar energy collector

    DOEpatents

    Brin, Raymond L.; Pace, Thomas L.

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  10. Solar Innovator | Alta Devices

    SciTech Connect

    Mattos, Laila; Le, Minh

    2012-01-01

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  11. Solar Sails

    NASA Technical Reports Server (NTRS)

    Young, Roy

    2006-01-01

    The Solar Sail Propulsion investment area has been one of the three highest priorities within the In-Space Propulsion Technology (ISPT) Project. In the fall of 2003, the NASA Headquarters' Science Mission Directorate provided funding and direction to mature the technology as far as possible through ground research and development from TRL 3 to 6 in three years. A group of experts from government, industry, and academia convened in Huntsville, Alabama to define technology gaps between what was needed for science missions to the inner solar system and the current state of the art in ultra1ightweight materials and gossamer structure design. This activity set the roadmap for development. The centerpiece of the development would be the ground demonstration of scalable solar sail systems including masts, sails, deployment mechanisms, and attitude control hardware and software. In addition, new materials would be subjected to anticipated space environments to quantify effects and assure mission life. Also, because solar sails are huge structures, and it is not feasible to validate the technology by ground test at full scale, a multi-discipline effort was established to develop highly reliable analytical models to serve as mission assurance evidence in future flight program decision-making. Two separate contractor teams were chosen to develop the SSP System Ground Demonstrator (SGD). After a three month conceptual mission/system design phase, the teams developed a ten meter diameter pathfinder set of hardware and subjected it to thermal vacuum tests to compare analytically predicted structural behavior with measured characteristics. This process developed manufacturing and handling techniques and refined the basic design. In 2005, both contractor teams delivered 20 meter, four quadrant sail systems to the largest thermal vacuum chamber in the world in Plum Brook, Ohio, and repeated the tests. Also demonstrated was the deployment and articulation of attitude control

  12. High solar intensity radiometer

    NASA Technical Reports Server (NTRS)

    Jack, J. R.; Spisz, E. W.

    1972-01-01

    Silicon solar cells are used to measure visible radiant energy and radiation intensities to 20 solar constants. Future investigations are planned for up to 100 solar constants. Radiometer is small, rugged, accurate and inexpensive.

  13. Solar Neutrino Problem

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Evans, J. C.; Cleveland, B. T.

    1978-04-28

    A summary of the results of the Brookhaven solar neutrino experiment is given and discussed in relation to solar model calculations. A review is given of the merits of various new solar neutrino detectors that were proposed.

  14. Solar greenhouses in Minnesota

    SciTech Connect

    Polich, M.

    1981-12-01

    After a discussion of solar greenhouse phenomena and the potential for heat collection and food production, design recommendations are provided for attached heat collecting solar sunspaces and for attached food producing solar greenhouses. Also, design of a single solar structure to maximize heat collection and food production is considered. A method of predicting the performance for attached heat collecting solar sunspaces is given in which the solar savings fraction is calculated. (LEW)

  15. Solar Electricity

    NASA Technical Reports Server (NTRS)

    1988-01-01

    ARCO Solar manufactures PV Systems tailored to a broad variety of applications. PV arrays are routinely used at remote communications installations to operate large microwave repeaters, TV and radio repeaters rural telephone, and small telemetry systems that monitor environmental conditions. Also used to power agricultural water pumping systems, to provide electricity for isolated villages and medical clinics, for corrosion protection for pipelines and bridges, to power railroad signals, air/sea navigational aids, and for many types of military systems. ARCO is now moving into large scale generation for utilities.

  16. Solar Generator

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Vanguard I dish-Stirling module program, initiated in 1982, produced the Vanguard I module, a commercial prototype erected by the Advanco Corporation. The module, which automatically tracks the sun, combines JPL mirrored concentrator technology, an advanced Stirling Solar II engine/generator, a low cost microprocessor-controlled parabolic dish. Vanguard I has a 28% sunlight to electricity conversion efficiency. If tests continue to prove the system effective, Advanco will construct a generating plant to sell electricity to local utilities. An agreement has also been signed with McDonnell Douglas to manufacture a similar module.

  17. Solar Heating and Cooling

    ERIC Educational Resources Information Center

    Duffie, John A.; Beckman, William A.

    1976-01-01

    Describes recent research that has made solar energy economically competitive with other energy sources. Includes solar energy building architecture, storage systems, and economic production data. (MLH)

  18. Solar Energy Systems

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  19. Solar radiation resource assessment

    SciTech Connect

    Not Available

    1990-11-01

    The bulletin discusses the following: introduction; Why is solar radiation resource assessment important Understanding the basics; the solar radiation resource assessment project; and future activities.

  20. Solar skylight

    DOEpatents

    Adamson, James C.

    1984-01-01

    A reflective shutter rotates within a skylight housing in such a fashion as to control solar energy thereby providing a combination of heating, lighting, and ventilation. The skylight housing has three faces: a glazed southern face, a glazed northern face, and an open downwardly oriented face to the interior of the structure. Counter-weighted pivot arms support the shutter at either end causing the center of rotation to pass through the center of gravity. The shutter has three basic positions: In the first position, during the winter day, the shutter closes off the northern face, allowing solar energy to enter directly into the supporting structure providing heat gain and daylighting. In the second position, during the winter night, the shutter closes off the open face to the interior, providing insulation between the structure and the skylight housing. In the third position, during the non-heating season, the shutter closes off the southern face blocking unwanted heat gain but allowing diffuse northern light to penetrate for daylighting. In this last position, a means is provided for ventilating by natural convection. The apparatus can be operated either manually or by motor.

  1. Solar collector

    DOEpatents

    Wilhelm, William G.

    1982-01-01

    The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  2. Solar Energy: Solar System Design Fundamentals.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system design fundamentals is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy…

  3. Solar Energy: Solar and the Weather.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar and the weather is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  4. ParaDIS_lib

    SciTech Connect

    Cook, Richard D.

    2016-05-25

    The ParaDIS_lib software is a project that is funded by the DOE ASC Program. Its purpose is to provide visualization and analysis capabilities for the existing ParaDIS parallel dislocation dynamics simulation code.

  5. EDITORIAL Solar harvest Solar harvest

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-12-01

    The first observations of the photoelectric effect date back to the early 19th century from work by Alexandre Edmond Becquerel, Heinrich Hertz, Wilhelm Hallwachs and J J Thomson. The theory behind the phenomena was clarified in a seminal paper by Einstein in 1905 and became an archetypical feature of the wave-particle description of light. A different manifestation of quantised electron excitation, whereby electrons are not emitted but excited into the valence band of the material, is what we call the photoconductive effect. As well as providing an extension to theories in fundamental physics, the phenomenon has spawned a field with enormous ramifications in the energy industry through the development of solar cells. Among advances in photovoltaic technology has been the development of organic photovoltaic technology. These devices have many benefits over their inorganic counterparts, such as light-weight, flexible material properties, as well as versatile materials' synthesis and low-cost large-scale production—all highly advantageous for manufacturing. The first organic photovoltaic systems were reported over 50 years ago [1], but the potential of the field has escalated in recent years in terms of efficiency, largely through band offsetting. Since then, great progress has been made in studies for optimising the efficiency of organic solar cells, such as the work by researchers in Germany and the Netherlands, where investigations were made into the percentage composition and annealing effects on composites of poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) [2]. Hybrid devices that aim to exploit the advantages of both inorganic and organic constituents have also proven promising. One example of this is the work reported by researchers in Tunisia and France on a systematic study for optimising the composition morphology of TiO2 nanoparticles in poly(N-vinylcarbazole) (PVK), which also led to insights

  6. Solar flares

    NASA Technical Reports Server (NTRS)

    Zirin, H.

    1974-01-01

    A review of the knowledge about solar flares which has been obtained through observations from the earth and from space by various methods. High-resolution cinematography is best carried out at H-alpha wavelengths to reveal the structure, time history, and location of flares. The classification flares in H alpha according to either physical or morphological criteria is discussed. The study of flare morphology, which shows where, when, and how flares occur, is important for evaluating theories of flares. Consideration is given to studies of flares by optical spectroscopy, radio emissions, and at X-ray and XUV wavelengths. Research has shown where and possibly why flares occur, but the physics of the instability involved, of the particle acceleration, and of the heating are still not understood.

  7. Solar neutrinos.

    NASA Astrophysics Data System (ADS)

    Cremonesi, O.

    1993-12-01

    The main purpose of this paper is to review the progress made in the field of solar-neutrino physics with the results of the last-generation experiments together with the new perspectives suggested by the future projects. An elementary introduction to energy production mechanisms and stellar models is given. Neutrino properties and oscillations are discussed with particular interest in matter effects. Present experiments and future projects are reviewed. Particular attention is devoted to the compelling background and low-statistics problems. Finally, presently available results from running experiments are discussed, in the framework of the SNP. Some conclusions on the possibilities of the new proposed projects to actually slove the problem are also given.

  8. Solar collector

    DOEpatents

    Wilhelm, W.G.

    The invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame. A thin film window is bonded to one planar side of the frame. An absorber of laminate construction is comprised of two thin film layers that are sealed perimetrically. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. Absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  9. Solar pond

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B. (Inventor)

    1978-01-01

    Shallow pools of liquid to collect low-temperature solar generated thermal energy are described. Narrow elongated trenches, grouped together over a wide area, are lined with a heat-absorbing black liner. The heat-absorbing liquid is kept separate from the thermal energy removing fluid by means such as clear polyethylene material. The covering for the pond may be a fluid or solid. If the covering is a fluid, fire fighting foam, continuously generated, or siloons are used to keep the surface covering clean and insulated. If the thermal energy removing fluid is a gas, a fluid insulation layer contained in a flat polyethlene tubing is used to cover the pond. The side of the tube directed towards the sun is treated to block out ultraviolet radiation and trap in infrared radiation.

  10. The solar neutrino problem.

    NASA Astrophysics Data System (ADS)

    Xu, Renxin; Luo, Xianhan

    1995-12-01

    The solar neutrino problem (SNP) is reviewed on the bases of neutrino physics, solar neutrino detection and standard solar model. It is interesting that the detected neutrino flux values of different solar neutrino detectors are lower than the values calculated by SMM in different degree. The studies on SNP in particle physics and in astrophysics are also discussed respectively.

  11. Solar heating and you

    NASA Astrophysics Data System (ADS)

    1994-08-01

    This fact sheet for use with primary school classes describes what solar collectors are and how they work, passive solar rooms, flat-plate collectors, and why one should use solar heating systems. Making a solar air heater is described step-by-step with illustrations. A resource list for both students and teachers is provided for further information.

  12. Solar Heating Equipment

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Solar Unlimited, Inc.'s suncatcher line includes a variety of solar arrays, derived from NASA's satellite program: water heating only, partial home heating, or water and whole house central heating. Solar Unlimited developed a set of vigorous requirements to avoid problems common to solar heating technologies.

  13. Toward a Solar Civilization

    ERIC Educational Resources Information Center

    Hippel, Frank von; Williams, Robert H.

    1977-01-01

    The future of solar energy is examined environmentally, socially, and economically. Coal and nuclear fission are discussed as long-range energy alternatives and U. S. regional strategies are suggested. Discussed in detail are low temperature solar heat, solar electricity, and chemical fuels from solar energy. (MA)

  14. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  15. Solar Structures Program

    DTIC Science & Technology

    2015-03-27

    charge, and the regulation output section. The solar array to battery section is responsible for taking in energy from the sun through the solar ...The team sought development of a means to collect and store the solar energy in a system that would most closely emulate a flight battery array...the students the ability to see how individual solar cells charge and distribute solar energy . They were also able to see how effects of external

  16. Development of Solar Research

    NASA Astrophysics Data System (ADS)

    Wittmann, Axel D.; Wolfschmidt, Gudrun; Duerbeck, Hilmar W.

    Originally based on a workshop on “Development of Solar Research”, held in Freiburg/Breisgau, this book contains articles on megalithic structures, the Nebra sky-disk, ancient sun cults, the observation of sunspots, the photography of the sun during eclipses, eclipse maps and expeditions, solar telescopes, solar physics during the Nazi era, archives of solar observations, scientific ballooning for solar research, site-testing on the Canary Islands, as well as on international cooperation.

  17. Solar collector array

    SciTech Connect

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  18. Photovoltaic solar concentrator module

    SciTech Connect

    Chiang, C.J.

    1991-05-16

    This invention consists of a planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation which includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  19. Solar trap

    SciTech Connect

    Lew, H.S.

    1990-01-09

    This patent describes a solar energy collecting apparatus. It comprises: a light funneling trough including two flat light reflecting surfaces disposed in a face-to-face arrangement having an oblique angle therebetween; a two dimensional Fresnel lens covering the opening of the light funneling trough at the diverging extremity thereof; a photovoltaic panel facing the two dimensional Fresnel lens disposed adjacent to the converging extremity of the light funneling trough; and at least one dual-sided light reflecting planar member disposed radially intermediate the two light reflecting surfaces. The dual-sided light reflecting planar member extending from the converging extremity of the light funneling trough towards the diverging extremity thereof and terminated at a substantial distance away from the plane including the opening of the light funneling trough. Wherein the sunlight entering the light funneling trough through the two-dimensional Fresnel lens is refracted by the two dimensional Fresnel lens and funneled by the light funneling trough towards the converging extremity of the light funneling trough and irradiates the photovoltaic panel.

  20. Solar Design Workbook

    SciTech Connect

    Franta, G.; Baylin, F.; Crowther, R.; Dubin, F.; Grace, A., Griffith, J.W.; Holtz, M.; Kutscher, C.; Nordham, D.; Selkowitz, S.; Villecco, M.

    1981-06-01

    This Solar Design Workbook presents solar building design applications for commercial buildir^s. The book is divided into four sections. The first section describes the variety of solar applications in buildings including conservation aspects, solar fundamentals, passive systems, active systems, daylighting, and other solar options. Solar system design evaluation techniques including considerations for building energy requirements, passive systems, active systems, and economics are presented in Section II. The third section attempts to assist the designer in the building design process for energy conservation and solar applications including options and considerations for pre-design, design, and post-design phases. The information required for the solar design proee^ has not been fully developed at this time. Therefore, Section III is incomplete, but an overview of the considerations with some of the design proces elements is presented. Section IV illustrates ease studies that utilize solar applications in the building design.

  1. Amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Konagai, M.

    The fabrication, performance, and applications of a-Si solar cells are discussed, summarizing the results of recent experimental investigations and trial installations. Topics examined include the fundamental principles and design strategies of solar power installations; the characteristics of monocrystalline-Si solar cells; techniques for reducing the cost of solar cells; independent, linked, and hybrid solar power systems; proposed satellite solar power systems; and the use of solar cells in consumer appliances. Consideration is given to the history of a-Si, a-Si fabrication techniques, quality criteria for a-Si films, solar cells based on a-Si, and techniques for increasing the efficiency and lowering the cost of a-Si solar cells. Graphs, diagrams, drawings, and black-and-white and color photographs are provided.

  2. Solar Adaptive Optics.

    PubMed

    Rimmele, Thomas R; Marino, Jose

    Adaptive optics (AO) has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO) and Ground-Layer AO (GLAO) will be given.

  3. SOLARES - A new hope for solar energy

    NASA Technical Reports Server (NTRS)

    Billman, K. W.; Gilbreath, W. P.; Bowen, S. W.

    1978-01-01

    A system of orbiting reflectors, SOLARES, has been studied as a possible means of reducing the diurnal variation and enhancing the average intensity of sunlight with a space system of minimum mass and complexity. The key impact that such a system makes on the economic viability of solar farming and other solar applications is demonstrated. The system is compatible with incremental implementation and continual expansion to meet the world's power needs. Key technology, environmental, and economic issues and payoffs are identified. SOLARES appears to be economically superior to other advanced, and even competitive with conventional, energy systems and could be scaled to completely abate our fossil fuel usage for power generation. Development of the terrestrial solar conversion technique, optimized for this new artificial source of solar radiation, yet remains.

  4. Solar synthetic fuel production

    NASA Astrophysics Data System (ADS)

    Bilgen, E.; Bilgen, C.

    In this paper, a thermodynamic study is presented on solar hydrogen production using concentrated solar energy. In the first part, the direct decomposition process has been studied. The temperature requirements at various partial pressures of H2O, H2 and H yields, thermal efficiency and separation of products are discussed. In the second part, using consistent costing bases, the cost of hydrogen is estimated for solar-direct decomposition process and solar-electrolysis process. It has been found that the solar-direct decomposition process concept provides hydrogen costs in the range of $22/GJ which are lower by $15-$26 than those provided by a solar electrolysis process.

  5. Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.

    2003-01-01

    This paper presents viewgraphs on Solar Thermal Propulsion (STP). Some of the topics include: 1) Ways to use Solar Energy for Propulsion; 2) Solar (fusion) Energy; 3) Operation in Orbit; 4) Propulsion Concepts; 5) Critical Equations; 6) Power Efficiency; 7) Major STP Projects; 8) Types of STP Engines; 9) Solar Thermal Propulsion Direct Gain Assembly; 10) Specific Impulse; 11) Thrust; 12) Temperature Distribution; 13) Pressure Loss; 14) Transient Startup; 15) Axial Heat Input; 16) Direct Gain Engine Design; 17) Direct Gain Engine Fabrication; 18) Solar Thermal Propulsion Direct Gain Components; 19) Solar Thermal Test Facility; and 20) Checkout Results.

  6. Solarization of heliostat glasses

    NASA Astrophysics Data System (ADS)

    Vitko, J., Jr.; Shelby, J. E.

    1980-09-01

    A solar-induced decrease in Fe(2+) absorption was observed in heliostat glasses from the solar furnace at Odeillo, France. This decrease occurs throughout the sample and is of sufficient magnitude to result in an increase of 2.5% in solar transmittance in a period of nine years. Optical and ESR studies did not detect a corresponding increase in Fe(3+) concentration. The effect of these results on a microscopic model for the observed solarization is discussed. Solar simulation studies produced changes of magnitude and sign similar to those observed in the field exposed samples, and offer attractive means for screening samples for solarization tendencies.

  7. Solar prominences

    NASA Astrophysics Data System (ADS)

    Schmieder, Brigitte; Aulanier, Guillaume; Török, Tibor

    2009-03-01

    Solar filaments (or prominences) are magnetic structures in the corona. They can be represented by twisted flux ropes in a bipolar magnetic environment. In such models, the dipped field lines of the flux rope carry the filament material and parasitic polarities in the filament channel are responsible for the existence of the lateral feet of prominences. Very simple laws do exist for the chirality of filaments, the so-called “filament chirality rules”: commonly dextral/sinistral filaments corresponding to left- (resp. right) hand magnetic twists are in the North/South hemisphere. Combining these rules with 3D weakly twisted flux tube models, the sign of the magnetic helicity in several filaments were identified. These rules were also applied to the 180° disambiguation of the direction of the photospheric transverse magnetic field around filaments using THEMIS vector magnetograph data (López Ariste et al. 2006). Consequently, an unprecedented evidence of horizontal magnetic support in filament feet has been observed, as predicted by former magnetostatic and recent MHD models. The second part of this review concerns the role of emerging flux in the vicinity of filament channels. It has been suggested that magnetic reconnection between the emerging flux and the pre-existing coronal field can trigger filament eruptions and CMEs. For a particular event, observed with Hinode/XRT, we observe signatures of such a reconnection, but no eruption of the filament. We present a 3D numerical simulation of emerging flux in the vicinity of a flux rope which was performed to reproduce this event and we briefly discuss, based on the simulation results, why the filament did not erupt.

  8. Solar power roof shingle

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Ratajczak, A. F.; Sidorak, L. G.

    1975-01-01

    Silicon solar cell module provides both all-weather protection and electrical power. Module consists of array of circular silicon solar cells bonded to fiberglass substrate roof shingle with fluorinated ethylene propylene encapsulant.

  9. Solar Neutral Particles

    NASA Video Gallery

    This animation shows a neutral solar particle's path leaving the sun, following the magnetic field lines out to the heliosheath. The solar particle hits a hydrogen atom, stealing its electron, and ...

  10. Solar Wind Five

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Editor)

    1983-01-01

    Topics of discussion were: solar corona, MHD waves and turbulence, acceleration of the solar wind, stellar coronae and winds, long term variations, energetic particles, plasma distribution functions and waves, spatial dependences, and minor ions.

  11. Solar Thermal Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Sercel, J. C.

    1986-01-01

    Paper analyzes potential of solar thermal rockets as means of propulsion for planetary spacecraft. Solar thermal rocket uses concentrated Sunlight to heat working fluid expelled through nozzle to produce thrust.

  12. Solar Resource Assessment

    SciTech Connect

    Renne, D.; George, R.; Wilcox, S.; Stoffel, T.; Myers, D.; Heimiller, D.

    2008-02-01

    This report covers the solar resource assessment aspects of the Renewable Systems Interconnection study. The status of solar resource assessment in the United States is described, and summaries of the availability of modeled data sets are provided.

  13. The global solar dynamo

    NASA Astrophysics Data System (ADS)

    Cameron, Robert

    2016-07-01

    I will review our understanding of the solar dynamo, concentrating on how observations constrain the theoretical possibilities. Possibilities for future progress, including understanding the Sun in the solar-stellar context will be outlined.

  14. Solar Control design package

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information used in the evaluation of design of Solar Control's solar heating and cooling system controller and the Solarstat is given. Some of the information includes system performance specifications, design data brochures, and detailed design drawings.

  15. Glory Solar Array Deployment

    NASA Video Gallery

    The Glory spacecraft uses Orbital Sciences Corporation Space Systems Group's LEOStar-1 bus design, with deployable, four-panel solar arrays. This conceptual animation reveals Glory's unique solar a...

  16. Purification of Solar Ponds

    NASA Technical Reports Server (NTRS)

    Carpenter, S.

    1985-01-01

    Flocculatory agents added to solar saltponds remove turbidity to increase solar-energy collection efficiency. Flocculating agent or bacteriocide used to remove micro-organisms sprayed onto pond from airplane and allowed to settle to bottom of pond.

  17. Solar Energy Technician/Installer

    ERIC Educational Resources Information Center

    Moore, Pam

    2007-01-01

    Solar power (also known as solar energy) is solar radiation emitted from the sun. Large panels that absorb the sun's energy as the sun beats down on them gather solar power. The energy in the rays can be used for heat (solar thermal energy) or converted to electricity (photovoltaic energy). Each solar energy project, from conception to…

  18. Solar Energy Project, Activities: General Solar Topics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of activities which introduce students to concepts and issues relating to solar energy. Lessons frequently presented in the context of solar energy as it relates to contemporary energy problems. Each unit presents an introduction; objectives; necessary skills and knowledge; materials; method;…

  19. Solar and Solar Wind Disturbance Predictions

    DTIC Science & Technology

    2007-10-11

    PPS), Journal of Atmospheric and Solar - Terrestrial Physics , 69, 43, 2007. Lockwood, M., R. Stamper, and M.N. Wild, A...doi:10.1029/2006JA011678, 2006. Kahler, S.W., E.W. Cliver, and A.G. Ling, Validating the proton prediction system (PPS), Journal of Atmospheric and Solar - Terrestrial Physics , 69

  20. Durable solar mirror films

    DOEpatents

    O'Neill, Mark B.; Henderson, Andrew J.; Hebrink, Timothy J.; Katare, Rajesh K.; Jing, Naiyong; North, Diane; Peterson, Eric M.

    2017-02-14

    The present disclosure generally relates to durable solar mirror films, methods of making durable solar mirror films, and constructions including durable solar mirror films. In one embodiment, the present disclosure relates to a solar mirror film comprising: a multilayer optical film layer including having a coefficient of hygroscopic expansion of less than about 30 ppm per percent relative humidity; and a reflective layer having a coefficient of hygroscopic expansion.

  1. Solar wind models

    NASA Technical Reports Server (NTRS)

    Leer, Egil; Sandbaek, Ornulf

    1991-01-01

    The understanding of the solar wind is based upon Parker's (1958) description of a thermally driven subsonic - supersonic outflow from a fully ionized electron-proton corona. The basic physical processes of thermally driven solar wind models are discussed. Also studied are the effect of alpha particles in the corona on the solar wind proton flux. The acceleration of the solar wind by Alfven waves is discussed.

  2. Solar Coronal Magneto- Seismology With Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Verth, G.; Erdéyi, R.

    2007-01-01

    MHD waves in solar coronal loops, which were previously only predicted by theory have now actually been detected with instruments such as TRACE and SUMER on-board SOHO. These observations have given the solar community an important and novel tool to measure fundamental parameters in the magnetically embedded solar corona. Theory has been developed to derive detailed diagnostic information, e.g., density, magnetic field look structure, geometry, and stratifications. In this paper we demonstrate through examples of case studies how the EUV imager on Solar Orbiter can be used for solar atmospheric (coronal) magneto-seismology. Possible methods will be discussed to determine (i) if magnetic field divergence or plasma density stratification is the dominating factor in transversal loop oscillations (ii) important parameters such as the density scale heigh and magnetic dipole depth of a loop.

  3. Experimenting with Solar Energy

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2004-01-01

    Over the past 25 years, the author has had the opportunity to study the subject of solar energy and to get involved with the installation, operation, and testing of solar energy systems. His work has taken him all over the United States and put him in contact with solar experts from around the world. He has also had the good fortune of seeing some…

  4. Cool Earth Solar

    SciTech Connect

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2013-04-22

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  5. Build a Solar Greenhouse.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    Attached solar greenhouses are relatively inexpensive and easy to build; they can provide additional heat to homes all winter as well as fresh vegetables and flowers. This bulletin: (1) describes the characteristics of a solar greenhouse; (2) provides a checklist of five items to consider before building a solar greenhouse; (3) describes the four…

  6. Solar tracking system

    DOEpatents

    Okandan, Murat; Nielson, Gregory N.

    2016-07-12

    Solar tracking systems, as well as methods of using such solar tracking systems, are disclosed. More particularly, embodiments of the solar tracking systems include lateral supports horizontally positioned between uprights to support photovoltaic modules. The lateral supports may be raised and lowered along the uprights or translated to cause the photovoltaic modules to track the moving sun.

  7. Inexpensive Photovoltaic Solar Radiometer.

    ERIC Educational Resources Information Center

    Kissner, Fritz

    1981-01-01

    Describes a low-cost instrument using a solar cell as a sensor to measure both instantaneous and integrated value of solar flux. Constructing and calibrating such an instrument constitutes an undergraduate experimental project, affording students an opportunity to examine a variety of aspects associated with solar energy measurements. (Author/SK)

  8. Solar Photovoltaic Cells.

    ERIC Educational Resources Information Center

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  9. (Solar dryer. Final report)

    SciTech Connect

    Scanlin, D.

    1985-01-01

    A small solar lumber dryer was designed and constructed with the involvement of junior high students. The dryer is a natural convection solar collector similar in shape to an attached solar greenhouse. The design of the kiln is described, modifications are proposed, and the performance is briefly discussed. (LEW)

  10. Solar Job Related Training.

    ERIC Educational Resources Information Center

    Lennox Industries, Inc., Dallas, TX.

    This book contains comprehensive instruction in design, installation, and service procedures for typical solar space heat and domestic hot water systems. The book is comprised of five major sections. Solar Systems: Past and Present presents a brief look at how far solar technology has advanced. Included in this section are descriptions of over…

  11. Alternatives in solar energy

    NASA Technical Reports Server (NTRS)

    Schueler, D. G.

    1978-01-01

    Although solar energy has the potential of providing a significant source of clean and renewable energy for a variety of applications, it is expected to penetrate the nation's energy economy very slowly. The alternative solar energy technologies which employ direct collection and conversion of solar radiation as briefly described.

  12. Solar disk sextant

    NASA Technical Reports Server (NTRS)

    Sofia, S.; Chiu, H.-Y.; Maier, E.; Schatten, K. H.; Minott, P.; Endal, A. S.

    1984-01-01

    This paper presents the conceptual design of an instrument, called the solar disk sextant, to be used in space to measure the shape and the size of the sun and their variations. The instrumental parameters required to produce sufficient sensitivity to address the problems of solar oblateness, solar pulsations, and global size changes of climatic importance are given.

  13. Solar Energy Usage.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with solar energy use. Its objective is for the student to be able to discuss the broad aspects of solar energy use and to explain the general operation of solar systems. Some topics covered are availability and economics of solar…

  14. Cool Earth Solar

    ScienceCinema

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2016-07-12

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  15. Solar Proton Events in Six Solar Cycles

    NASA Astrophysics Data System (ADS)

    Vitaly, Ishkov

    Based on materials the catalogs of solar proton events (SPE) in 1955 ‒ 2010 and list SPE for the current 24 solar cycle (SC) are examined confirmed SPE with E> 10 MeV proton flux in excess of 1 proton cm-2 s ster-1 (pfu) from Švestka and Simon’s (1955 - 1969) and 5 volumes Logachev’s (1970 - 2006) Catalogs of SPE. Historically thus it was formed, that the measurements of the proton fluxes began in the epoch “increased” solar activity (SC 18 ‒ 22), and includes transition period of the solar magnetic fields reconstruction from epoch “increased” to the epoch “lowered” solar activity (22 ‒ 23 SC). In current 24 SC ‒ first SC of the incipient epoch of “lowered” SA ‒ SPE realize under the new conditions, to that of previously not observed. As showed a study of five solar cycles with the reliable measurements of E> 10 MeV proton flux in excess of 1 pfu (1964 - 2013): ‒ a quantity of SPEs remained approximately identical in SC 20, 21, somewhat decreased in the initial solar cycle of the solar magnetic fields reconstruction period (22), but it returned to the same quantity in, the base for the period of reconstruction, SC 23. ‒ Into the first 5 years of the each solar cycle development the rate of the proton generation events noticeably increased in 22 cycles of solar activity and returned to the average in cycles 23 and 24. ‒ Extreme solar flare events are achieved, as a rule, in the solar magnetic fields reconstruction period (August - September 1859; June 1991; October ‒ November 2003.), it is confirmed also for SPE: the extreme fluxes of solar protons (S4) except one (August 1972) were occurred in period of perestroika (SC 22 and 23). This can speak, that inside the epochs SA, when the generation of magnetic field in the convective zone works in the steady-state regime, extreme SPE are improbable. ‒ The largest in the fluxes of protons (S3, S4) occur in the complexes of the active regions flare events, where magnetic field more

  16. Solar radiation absorbing material

    DOEpatents

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  17. The Solar Maximum Mission

    NASA Astrophysics Data System (ADS)

    Chipman, E. G.

    1981-03-01

    The Solar Maximum Mission spacecraft, launched on 1980 February 14, carries seven instruments for the study of solar flares and other aspects of solar activity. These instruments observe in spectral ranges from gamma-rays through the visible, using imaging, spectroscopy, and high-time-resolution light curves to study flare phenomena. In addition, one instrument incorporates an active cavity radiometer for accurate measurement of the total solar radiant output. This paper reviews some of the most important current observational and theoretical questions of solar flare physics and indicates the ways in which the experiments on SMM will be able to attack these questions. The SMM observing program is described.

  18. Solar-terrestrial interactions

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The effects of solar radiation on man's environment are discussed. It is solar radiation that is the basic energy source driving the circulations of the earth's atmosphere and oceans. Solar radiation is responsible for the ionization of the earth's upper atmosphere to form the ionosphere, which is important to our understanding of the magnetosphere and its interaction with the solar wind. The solar wind, which is the continuous (but not steady) flow of the sun's coronal plasma and magnetic field into interplanetary space, plays both an active and passive role in its interaction with the earth's environment.

  19. Solar power station

    SciTech Connect

    Wenzel, J.

    1982-11-30

    Solar power station with semiconductor solar cells for generating electric power is described, wherein the semiconductor solar cells are provided on a member such as a balloon or a kite which carries the solar cells into the air. The function of the balloon or kite can also be fulfilled by a glider or airship. The solar power station can be operated by allowing the system to ascend at sunrise and descend at sunset or when the wind is going to be too strong in order to avoid any demage.

  20. Experiences with solar power

    NASA Astrophysics Data System (ADS)

    Kesselring, P.

    1985-11-01

    Experience with solar thermal plants is reviewed. The component and subsystems development of the last decade and particularly the receiver, collector and heliostat field development is a technical success. Solar specific problems on the system and component level arose, when off the shelf solutions of fossile fired plants were transferred uncritically. It is shown that concentrated solar radiation is a relatively cheap high quality fuel. Other uses than electricity generation are high temperature processes and the production of solar fuels and chemicals. A technical and economic comparison of solar thermal and photovoltaic electricity generation is made.

  1. Solar Cycle #24 and the Solar Dynamo

    NASA Technical Reports Server (NTRS)

    Pesnell, W. Dean; Schatten, Kenneth

    2007-01-01

    We focus on two solar aspects related to flight dynamics. These are the solar dynamo and long-term solar activity predictions. The nature of the solar dynamo is central to solar activity predictions, and these predictions are important for orbital planning of satellites in low earth orbit (LEO). The reason is that the solar ultraviolet (UV) and extreme ultraviolet (EUV) spectral irradiances inflate the upper atmospheric layers of the Earth, forming the thermosphere and exosphere through which these satellites orbit. Concerning the dynamo, we discuss some recent novel approaches towards its understanding. For solar predictions we concentrate on a solar precursor method, in which the Sun s polar field plays a major role in forecasting the next cycle s activity based upon the Babcock- Leighton dynamo. With a current low value for the Sun s polar field, this method predicts that solar cycle #24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 130+ 30 (2 4, in the 2013 timeframe. One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. Concomitant effects of low solar activity upon satellites in LEO will need to be considered, such as enhancements in orbital debris. Support for our prediction of a low solar cycle #24 is borne out by the lack of new cycle sunspots at least through the first half of 2007. Usually at the present epoch in the solar cycle (-7+ years after the last solar maximum), for a normal size following cycle, new cycle sunspots would be seen. The lack of their appearance at this time is only consistent with a low cycle #24. Polar field observations of a weak magnitude are consistent with unusual structures seen in the Sun s corona. Polar coronal holes are the hallmarks of the Sun s open field structures. At present, it appears that the polar coronal holes are relatively weak, and there have been many equatorial coronal holes. This appears

  2. Solar Cycle #24 and the Solar Dynamo

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth; Pesnell, W. Dean

    2007-01-01

    We focus on two solar aspects related to flight dynamics. These are the solar dynamo and long-term solar activity predictions. The nature of the solar dynamo is central to solar activity predictions, and these predictions are important for orbital planning of satellites in low earth orbit (LEO). The reason is that the solar ultraviolet (UV) and extreme ultraviolet (EUV) spectral irradiances inflate the upper atmospheric layers of the Earth, forming the thermosphere and exosphere through which these satellites orbit. Concerning the dynamo, we discuss some recent novel approaches towards its understanding. For solar predictions we concentrate on a solar precursor method, in which the Sun's polar field plays a major role in forecasting the next cycle s activity based upon the Babcock-Leighton dynamo. With a current low value for the Sun s polar field, this method predicts that solar cycle #24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 130 plus or minus 30 (2 sigma), in the 2013 timeframe. One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. Concomitant effects of low solar activity upon satellites in LEO will need to be considered, such as enhancements in orbital debris. Support for our prediction of a low solar cycle #24 is borne out by the lack of new cycle sunspots at least through the first half of 2007. Usually at the present epoch in the solar cycle (approx. 7+ years after the last solar maximum), for a normal size following cycle, new cycle sunspots would be seen. The lack of their appearance at this time is only consistent with a low cycle #24. Polar field observations of a weak magnitude are consistent with unusual structures seen in the Sun s corona. Polar coronal holes are the hallmarks of the Sun's open field structures. At present, it appears that the polar coronal holes are relatively weak, and there have been many equatorial coronal holes

  3. Solar energy modulator

    NASA Technical Reports Server (NTRS)

    Hale, R. R. (Inventor); Mcdougal, A. R.

    1984-01-01

    A module is described with a receiver having a solar energy acceptance opening and supported by a mounting ring along the optic axis of a parabolic mirror in coaxial alignment for receiving solar energy from the mirror, and a solar flux modulator plate for varying the quantity of solar energy flux received by the acceptance opening of the module. The modulator plate is characterized by an annular, plate-like body, the internal diameter of which is equal to or slightly greater than the diameter of the solar energy acceptance opening of the receiver. Slave cylinders are connected to the modulator plate for supporting the plate for axial displacement along the axis of the mirror, therby shading the opening with respect to solar energy flux reflected from the surface of the mirror to the solar energy acceptance opening.

  4. Solar variability datalogger

    DOE PAGES

    Lave, Matthew; Stein, Joshua; Smith, Ryan

    2016-07-28

    To address the lack of knowledge of local solar variability, we have developed and deployed a low-cost solar variability datalogger (SVD). While most currently used solar irradiance sensors are expensive pyranometers with high accuracy (relevant for annual energy estimates), low-cost sensors display similar precision (relevant for solar variability) as high-cost pyranometers, even if they are not as accurate. In this work, we present evaluation of various low-cost irradiance sensor types, describe the SVD, and present validation and comparison of the SVD collected data. In conclusion, the low cost and ease of use of the SVD will enable a greater understandingmore » of local solar variability, which will reduce developer and utility uncertainty about the impact of solar photovoltaic (PV) installations and thus will encourage greater penetrations of solar energy.« less

  5. Solar variability datalogger

    SciTech Connect

    Lave, Matthew; Stein, Joshua; Smith, Ryan

    2016-07-28

    To address the lack of knowledge of local solar variability, we have developed and deployed a low-cost solar variability datalogger (SVD). While most currently used solar irradiance sensors are expensive pyranometers with high accuracy (relevant for annual energy estimates), low-cost sensors display similar precision (relevant for solar variability) as high-cost pyranometers, even if they are not as accurate. In this work, we present evaluation of various low-cost irradiance sensor types, describe the SVD, and present validation and comparison of the SVD collected data. In conclusion, the low cost and ease of use of the SVD will enable a greater understanding of local solar variability, which will reduce developer and utility uncertainty about the impact of solar photovoltaic (PV) installations and thus will encourage greater penetrations of solar energy.

  6. Thermochemical solar hydrogen generation.

    PubMed

    Licht, Stuart

    2005-10-07

    Solar direct, indirect and hybrid thermochemical processes are presented for the generation of hydrogen and compared to alternate solar hydrogen processes. A hybrid solar thermal/electrochemical process combines efficient photovoltaics and concentrated excess sub-bandgap heat into highly efficient elevated temperature solar electrolysis of water and generation of H2 fuel utilizing the thermodynamic temperature induced decrease of E(H2O) with increasing temperature. Theory and experiment is presented for this process using semiconductor bandgap restrictions and combining photodriven charge transfer, with excess sub-bandgap insolation to lower the water potential, and their combination into highly efficient solar generation of H2 is attainable. Fundamental water thermodynamics and solar photosensitizer constraints determine solar energy to hydrogen fuel conversion efficiencies in the 50% range over a wide range of insolation, temperature, pressure and photosensitizer bandgap conditions.

  7. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  8. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  9. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  10. Progress in solar engineering

    SciTech Connect

    Yogi Goswami, D.

    1987-01-01

    This book presents reviews of various areas of solar energy technology, including wind energy technology and ocean thermal energy conversion (OTEC). It also identifies and suggests needs and future directions of research and development. The subjects covered in this book include solar thermal power technology, solar thermal storage, solar ponds, industrial process heat, solar water heating, active and passive solar cooling methods, low-cost collector development, photovoltaic research and applications, wind energy technology, and OTEC. Also covered are the status of the technology, basic and applied research, design and analysis methods, and performance and operational experiences of various systems. The book will thus be helpful as a review of various solar, wind, and OTEC technologies.

  11. Mars Solar Power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Kerslake, Thomas W.; Jenkins, Phillip P.; Scheiman, David A.

    2004-01-01

    NASA missions to Mars, both robotic and human, rely on solar arrays for the primary power system. Mars presents a number of challenges for solar power system operation, including a dusty atmosphere which modifies the spectrum and intensity of the incident solar illumination as a function of time of day, degradation of the array performance by dust deposition, and low temperature operation. The environmental challenges to Mars solar array operation will be discussed and test results of solar cell technology operating under Mars conditions will be presented, along with modeling of solar cell performance under Mars conditions. The design implications for advanced solar arrays for future Mars missions is discussed, and an example case, a Martian polar rover, are analyzed.

  12. Ortho- and para-hydrogen in dense clouds, protoplanets, and planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Decampli, W. M.; Cameron, A. G. W.; Bodenheimer, P.; Black, D. C.

    1978-01-01

    If ortho- and para-hydrogen achieve a thermal ratio on dynamical time scales in a molecular hydrogen cloud, then the specific heat is high enough in the temperature range 35-70 K to possibly induce hydrodynamic collapse. The ortho-para ratio in many interstellar cloud fragments is expected to meet this condition. The same may have been true for the primitive solar nebula. Detailed hydrodynamic and hydrostatic calculations are presented that show the effects of the assumed ortho-para ratio on the evolution of Jupiter during its protoplanetary phase. Some possible consequences of a thermalized ortho-para ratio in the atmospheres of the giant planets are also discussed.

  13. Solar wind acceleration in the solar corona

    NASA Technical Reports Server (NTRS)

    Giordano, S.; Antonucci, E.; Benna, C.; Kohl, J. L.; Noci, G.; Michels, J.; Fineschi, S.

    1997-01-01

    The intensity ratio of the O VI doublet in the extended area is analyzed. The O VI intensity data were obtained with the ultraviolet coronagraph spectrometer (UVCS) during the SOHO campaign 'whole sun month'. The long term observations above the north pole of the sun were used for the polar coronal data. Using these measurements, the solar wind outflow velocity in the extended corona was determined. The 100 km/s level is running along the streamer borders. The acceleration of the solar wind is found to be high in regions between streamers. In the central part of streamers, the outflow velocity of the coronal plasma remains below 100 km/s at least within 3.8 solar radii. The regions at the north and south poles, characterized by a more rapid acceleration of the solar wind, correspond to regions where the UVCS observes enhanced O VI line broadenings.

  14. National Community Solar Platform

    SciTech Connect

    Rupert, Bart

    2016-06-30

    This project was created to provide a National Community Solar Platform (NCSP) portal known as Community Solar Hub, that is available to any entity or individual who wants to develop community solar. This has been done by providing a comprehensive portal to make CEC’s solutions, and other proven community solar solutions, externally available for everyone to access – making the process easy through proven platforms to protect subscribers, developers and utilities. The successful completion of this project provides these tools via a web platform and integration APIs, a wide spectrum of community solar projects included in the platform, multiple groups of customers (utilities, EPCs, and advocates) using the platform to develop community solar, and open access to anyone interested in community solar. CEC’s Incubator project includes web-based informational resources, integrated systems for project information and billing systems, and engagement with customers and users by community solar experts. The combined effort externalizes much of Clean Energy Collective’s industry-leading expertise, allowing third parties to develop community solar without duplicating expensive start-up efforts. The availability of this platform creates community solar projects that are cheaper to build and cheaper to participate in, furthering the goals of DOE’s SunShot Initiative. Final SF 425 Final SF 428 Final DOE F 2050.11 Final Report Narrative

  15. Solar Neutrino Spectroscopy

    NASA Astrophysics Data System (ADS)

    Feilitzsch, F. v.

    1999-01-01

    Since the pioneering experiment of R. Davis et al., which started neutrino astronomy by measuring the solar neutrinos via the inverse beta decay reaction on 37Cl, all solar neutrino experiments find a considerably lower flux than expected by standard solar models. This finding is generally called the solar neutrino problem. Many attempts have been made to explain this result by altering the solar models, or assuming different nuclear cross sections for fusion processes assumed to be the energy sources in the sun. There have been performed numerous experiments recently to investigate the different possibilities to explain the solar neutrino problem. These experiments covered solar physics with helioseismology, nuclear cross section measurements, and solar neutrino experiments. Up to now no convincing explanation based on "standard" physics was suggested. However, assuming nonstandard neutrino properties, i.e. neutrino masses and mixing as expected in most extensions of the standard theory of elementary particle physics, natural solutions for the solar neutrino problem can be found. It appears that with this newly invented neutrino astronomy fundamental information on astrophysics as well as elementary particle physics are tested uniquely. In this contribution an attempt is made to review the situation of the neutrino astronomy for solar neutrino spectroscopy and discuss the future prospects in this field.

  16. Solar Cycle 24 and the Solar Dynamo

    NASA Astrophysics Data System (ADS)

    Pesnell, W. D.; Schatten, K.

    2007-05-01

    We will discuss the polar field precursor method for solar activity prediction, which predicts cycle 24 will be significantly lower than recent activity cycles, and some new ideas rejuvenating Babcock's shallow surface dynamo. The polar field precursor method is based on Babcock and Leighton's dynamo models wherein the polar field at solar minimum plays a major role in generating the next cycle's toroidal field and sunspots. Thus, by examining the polar fields of the Sun near solar minimum, a forecast for the next cycle's activity is obtained. With the current low value for the Sun's polar fields, this method predicts solar cycle 24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 135 ± 35 (2 σ), in the 2012-2013 timeframe (equivalent to smoothed Rz near 80 ± 35 [2 σ]). One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. We discuss unusual behavior in the Sun's polar fields that support this prediction. Normally, the solar precursor method is consistent with the geomagnetic precursor method, wherein geomagnetic variations are thought to be a good measure of the Sun's polar field strength. Because of the unusual polar field, the Earth does not appear to be currently bathed in the Sun's extended polar field (the interplanetary field), hence negating the primal cause behind the geomagnetic precursor technique. We also discuss how percolation may support Babcock's original shallow solar dynamo. In this process ephemeral regions from the solar magnetic carpet, guided by shallow surface fields, may collect to form pores and sunspots.

  17. Solar Cycle 24 and the Solar Dynamo

    NASA Technical Reports Server (NTRS)

    Pesnell, W. D.; Schatten, K.

    2007-01-01

    We will discuss the polar field precursor method for solar activity prediction, which predicts cycle 24 will be significantly lower than recent activity cycles, and some new ideas rejuvenating Babcock's shallow surface dynamo. The polar field precursor method is based on Babcock and Leighton's dynamo models wherein the polar field at solar minimum plays a major role in generating the next cycle's toroidal field and sunspots. Thus, by examining the polar fields of the Sun near solar minimum, a forecast for the next cycle's activity is obtained. With the current low value for the Sun's polar fields, this method predicts solar cycle 24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 135 plus or minus 35 (2 sigma), in the 2012-2013 timeframe (equivalent to smoothed Rz near 80 plus or minus 35 [2 sigma]). One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. We discuss unusual behavior in the Sun's polar fields that support this prediction. Normally, the solar precursor method is consistent with the geomagnetic precursor method, wherein geomagnetic variations are thought to be a good measure of the Sun's polar field strength. Because of the unusual polar field, the Earth does not appear to be currently bathed in the Sun's extended polar field (the interplanetary field), hence negating the primal cause behind the geomagnetic precursor technique. We also discuss how percolation may support Babcock's original shallow solar dynamo. In this process ephemeral regions from the solar magnetic carpet, guided by shallow surface fields, may collect to form pores and sunspots.

  18. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  19. Solar Renewable Energy. Teaching Unit.

    ERIC Educational Resources Information Center

    Buchanan, Marion; And Others

    This unit develops the concept of solar energy as a renewable resource. It includes: (1) an introductory section (developing understandings of photosynthesis and impact of solar energy); (2) information on solar energy use (including applications and geographic limitations of solar energy use); and (3) future considerations of solar energy…

  20. Solar energy: Program summary document

    NASA Astrophysics Data System (ADS)

    1980-08-01

    Solar programs and the eight solar technologies are discussed, including biomass energy systems, photovoltaic energy systems, wind energy conversion systems, solar thermal power, ocean systems, agricultural and industrial process heat, active solar heating and cooling, passive and hybrid solar heating and cooling.

  1. Climate Fundamentals for Solar Heating.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    The design of any solar heating system is influenced heavily by climate; in this bulletin, information on climate as related to solar heating is as related to solar heating is provided. Topics discussed include: (1) solar radiation; (2) degree days; (3) climate and calculations which make use of solar radiation and degree days; and (4)…

  2. SOLAR EFFECTS ON BUILDING DESIGN.

    ERIC Educational Resources Information Center

    Building Research Inst., Inc., Washington, DC.

    A REPORT OF A PROGRAM HELD AS PART OF THE BUILDING RESEARCH INSTITUTE 1962 SPRING CONFERENCE ON THE SOLAR EFFECTS ON BUILDING DESIGN. TOPICS DISCUSSED ARE--(1) SOLAR ENERGY DATA APPLICABLE TO BUILDING DESIGN, (2) THERMAL EFFECTS OF SOLAR RADIATION ON MAN, (3) SOLAR EFFECTS ON ARCHITECTURE, (4) SOLAR EFFECTS ON BUILDING COSTS, (5) SELECTION OF…

  3. Solar thermal aircraft

    DOEpatents

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  4. The Solar Cycle.

    PubMed

    Hathaway, David H

    The solar cycle is reviewed. The 11-year cycle of solar activity is characterized by the rise and fall in the numbers and surface area of sunspots. A number of other solar activity indicators also vary in association with the sunspots including; the 10.7 cm radio flux, the total solar irradiance, the magnetic field, flares and coronal mass ejections, geomagnetic activity, galactic cosmic ray fluxes, and radioisotopes in tree rings and ice cores. Individual solar cycles are characterized by their maxima and minima, cycle periods and amplitudes, cycle shape, the equatorward drift of the active latitudes, hemispheric asymmetries, and active longitudes. Cycle-to-cycle variability includes the Maunder Minimum, the Gleissberg Cycle, and the Gnevyshev-Ohl (even-odd) Rule. Short-term variability includes the 154-day periodicity, quasi-biennial variations, and double-peaked maxima. We conclude with an examination of prediction techniques for the solar cycle and a closer look at cycles 23 and 24.

  5. Semiconductor Solar Superabsorbers

    PubMed Central

    Yu, Yiling; Huang, Lujun; Cao, Linyou

    2014-01-01

    Understanding the maximal enhancement of solar absorption in semiconductor materials by light trapping promises the development of affordable solar cells. However, the conventional Lambertian limit is only valid for idealized material systems with weak absorption, and cannot hold for the typical semiconductor materials used in solar cells due to the substantial absorption of these materials. Herein we theoretically demonstrate the maximal solar absorption enhancement for semiconductor materials and elucidate the general design principle for light trapping structures to approach the theoretical maximum. By following the principles, we design a practical light trapping structure that can enable an ultrathin layer of semiconductor materials, for instance, 10 nm thick a-Si, absorb > 90% sunlight above the bandgap. The design has active materials with one order of magnitude less volume than any of the existing solar light trapping designs in literature. This work points towards the development of ultimate solar light trapping techniques. PMID:24531211

  6. Report from solar physics

    NASA Technical Reports Server (NTRS)

    Walker, A. B. C.; Acton, L.; Brueckner, G.; Chupp, E. L.; Hudson, H. S.; Roberts, W.

    1989-01-01

    A discussion of the nature of solar physics is followed by a brief review of recent advances in the field. These advances include: the first direct experimental confirmation of the central role played by thermonuclear processes in stars; the discovery that the 5-minute oscillations of the Sun are a global seismic phenomenon that can be used as a probe of the structure and dynamical behavior of the solar interior; the discovery that the solar magnetic field is subdivided into individual flux tubes with field strength exceeding 1000 gauss. Also covered was a science strategy for pure solar physics. Brief discussions are given of solar-terrestrial physics, solar/stellar relationships, and suggested space missions.

  7. Solar energy systems cost

    SciTech Connect

    Lavender, J.A.

    1980-01-01

    Five major areas of work currently being pursued in the United States in solar energy which will have a significant impact on the world's energy situation in the future are addressed. The five significant areas discussed include a technical description of several solar technologies, current and projected cost of the selected solar systems, and cost methodologies which are under development. In addition, sensitivity considerations which are unique to solar energy systems and end user applications are included. A total of six solar technologies - biomass, photovoltaics, wind, ocean thermal energy conversion (OTEC), solar thermal, and industrial process heat (IPH) have been included in a brief technical description to present the variety of systems and their techncial status. System schematics have been included of systems which have been constructed, are currently in the detail design and test stage of development, or are of a conceptual nature.

  8. The Solar Cycle

    NASA Astrophysics Data System (ADS)

    Hathaway, David H.

    2015-12-01

    The solar cycle is reviewed. The 11-year cycle of solar activity is characterized by the rise and fall in the numbers and surface area of sunspots. A number of other solar activity indicators also vary in association with the sunspots including; the 10.7 cm radio flux, the total solar irradiance, the magnetic field, flares and coronal mass ejections, geomagnetic activity, galactic cosmic ray fluxes, and radioisotopes in tree rings and ice cores. Individual solar cycles are characterized by their maxima and minima, cycle periods and amplitudes, cycle shape, the equatorward drift of the active latitudes, hemispheric asymmetries, and active longitudes. Cycle-to-cycle variability includes the Maunder Minimum, the Gleissberg Cycle, and the Gnevyshev-Ohl (even-odd) Rule. Short-term variability includes the 154-day periodicity, quasi-biennial variations, and double-peaked maxima. We conclude with an examination of prediction techniques for the solar cycle and a closer look at cycles 23 and 24.

  9. Solar Filament Eruption, Solar Tsunami - Close-up

    NASA Video Gallery

    Close-up of magnetic solar filament erupting during the early hours of February 24, 2012. Notice closer to the surface the solar atmosphere splits and waves of solar material fan out in opposite di...

  10. Solar Asset Management Software

    SciTech Connect

    Iverson, Aaron; Zviagin, George

    2016-09-30

    Ra Power Management (RPM) has developed a cloud based software platform that manages the financial and operational functions of third party financed solar projects throughout their lifecycle. RPM’s software streamlines and automates the sales, financing, and management of a portfolio of solar assets. The software helps solar developers automate the most difficult aspects of asset management, leading to increased transparency, efficiency, and reduction in human error. More importantly, our platform will help developers save money by improving their operating margins.

  11. Solar energy emplacement developer

    NASA Technical Reports Server (NTRS)

    Mortensen, Michael; Sauls, Bob

    1991-01-01

    A preliminary design was developed for a Lunar Power System (LPS) composed of photovoltaic arrays and microwave reflectors fabricated from lunar materials. The LPS will collect solar energy on the surface of the Moon, transform it into microwave energy, and beam it back to Earth where it will be converted into usable energy. The Solar Energy Emplacement Developer (SEED) proposed will use a similar sort of solar energy collection and dispersement to power the systems that will construct the LPS.

  12. Heterojunction solar cell

    DOEpatents

    Olson, J.M.

    1994-08-30

    A high-efficiency single heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer. 1 fig.

  13. Heterojunction solar cell

    DOEpatents

    Olson, Jerry M.

    1994-01-01

    A high-efficiency single heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. The conversion effiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer.

  14. Solar-Terrestrial Interactions

    DTIC Science & Technology

    2008-01-01

    and an adjacent open field line that produces a large single kinked open field line and a small closed loop in the solar corona . An initiative...constant for all events during that period. Narrow Coronal Holes (NCHs) are channels of open magnetic fields in the solar corona that may be a source...driven by fast CMEs, the solar wind flow and Alfven speeds in a particular region of the corona /interplanetary medium are crucial for determining

  15. The solar dynamo.

    PubMed

    Tobias, S M

    2002-12-15

    In this article I review the fundamentals of solar-dynamo theory. I describe both historical and contemporary observations of the solar magnetic field before outlining why it is believed that the solar field is maintained by a hydromagnetic dynamo. Having explained the basic dynamo process and applications of the theory to the Sun, I shall conclude by speculating on future directions for the theory.

  16. Solar cell encapsulation

    NASA Technical Reports Server (NTRS)

    Gupta, Amitava (Inventor); Ingham, John D. (Inventor); Yavrouian, Andre H. (Inventor)

    1983-01-01

    A polymer syrup for encapsulating solar cell assemblies. The syrup includes uncrosslinked poly(n-butyl)acrylate dissolved in n-butyl acrylate monomer. Preparation of the poly(n-butyl)acrylate and preparation of the polymer syrup is disclosed. Methods for applying the polymer syrup to solar cell assemblies as an encapsulating pottant are described. Also included is a method for solar cell construction utilizing the polymer syrup as a dual purpose adhesive and encapsulating material.

  17. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  18. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  19. Solar coal gasification

    NASA Astrophysics Data System (ADS)

    Gregg, D. W.; Aiman, W. R.; Otsuki, H. H.; Thorsness, C. B.

    1980-01-01

    A preliminary evaluation of the technical and economic feasibility of solar coal gasification has been performed. The analysis indicates that the medium-Btu product gas from a solar coal-gasification plant would not only be less expensive than that from a Lurgi coal-gasification plant but also would need considerably less coal to produce the same amount of gas. A number of possible designs for solar coal-gasification reactors are presented. These designs allow solar energy to be chemically stored while at the same time coal is converted to a clean-burning medium-Btu gas.

  20. Long Island Solar Farm

    SciTech Connect

    Anders, R.

    2013-05-01

    The Long Island Solar Farm (LISF) is a remarkable success story, whereby very different interest groups found a way to capitalize on unusual circumstances to develop a mutually beneficial source of renewable energy. The uniqueness of the circumstances that were necessary to develop the Long Island Solar Farm make it very difficult to replicate. The project is, however, an unparalleled resource for solar energy research, which will greatly inform large-scale PV solar development in the East. Lastly, the LISF is a superb model for the process by which the project developed and the innovation and leadership shown by the different players.

  1. Solar Cycle Predictions

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean

    2012-01-01

    Solar cycle predictions are needed to plan long-term space missions; just like weather predictions are needed to plan the launch. Fleets of satellites circle the Earth collecting many types of science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less propellant can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory as you consume the reduced propellant load more rapidly. Energetic events at the Sun can produce crippling radiation storms that endanger all assets in space. Solar cycle predictions also anticipate the shortwave emissions that cause degradation of solar panels. Testing solar dynamo theories by quantitative predictions of what will happen in 5-20 years is the next arena for solar cycle predictions. A summary and analysis of 75 predictions of the amplitude of the upcoming Solar Cycle 24 is presented. The current state of solar cycle predictions and some anticipations how those predictions could be made more accurate in the future will be discussed.

  2. Tension solar mirror

    SciTech Connect

    Russo, W.P.

    1986-09-02

    A solar collector is described comprising a central tower having a solar receiver thereon; tension towers positioned concentrically about the central tower;a rigid inner ring disposed about the central tower and sized to permit vertical movement relative to the central tower; cables extending between the inner ring and the tops of each of the tension towers; and a reflectively-coated sheet of flexible material attached to the upper surface of the cables; whereby the action of gravity on the cables and the sheet form a concave reflector for focusing solar energy onto the solar receiver.

  3. Preface: Solar Dynamo Frontiers

    NASA Astrophysics Data System (ADS)

    Miesch, Mark S.

    2016-10-01

    The last six years have seen substantial progress in our understanding of the solar dynamo, fueled by continuing advances in observations and modeling. With the launch of NASAs Solar Dynamics Observatory (SDO) in 2010 came an unprecedented window on the evolving magnetic topology of the Sun, highlighting its intricate 3D structure and global connectivity. The Helioseismic Magnetic Imager (HMI) instrument on SDO in particular has provided potentially transformative yet enigmatic insights into the internal dynamics of the solar convection zone that underlie the dynamo. One of these enigmas is the amplitude and structure of deep solar convection.

  4. Passive solar technology

    SciTech Connect

    Watson, D

    1981-04-01

    The present status of passive solar technology is summarized, including passive solar heating, cooling and daylighting. The key roles of the passive solar system designer and of innovation in the building industry are described. After definitions of passive design and a summary of passive design principles are given, performance and costs of passive solar technology are discussed. Passive energy design concepts or methods are then considered in the context of the overall process by which building decisions are made to achieve the integration of new techniques into conventional design. (LEW).

  5. Solar corona and prediction of the solar cycle 24 amplitude..

    NASA Astrophysics Data System (ADS)

    Pishkalo, M.

    2012-12-01

    Investigation of the solar cycle amplitude dependence on such quantitative parameters of shape and structure of the solar corona as indexes of photometrical and geometrical flattening and extension of polar coronal rays along the solar limb have been made. Observation of the solar corona during total solar eclipses in solar cycles 11-23 were used. The amplitude of solar cycle 24 was predicted on the basis of the parameters values at the cycle minimum. Solar cycle 24 is expected to be weaker than previous cycle 23. The Wolf number in the cycle maximum will amount to 83-113.

  6. Make Your Own Solar Panel.

    ERIC Educational Resources Information Center

    Suzuki, David

    1992-01-01

    Presents an activity in which students make a simulated solar panel to learn about the principles behind energy production using solar panels. Provides information about how solar panels function to produce energy. (MCO)

  7. Tiempo para un cambio

    NASA Astrophysics Data System (ADS)

    Woltjer, L.

    1987-06-01

    En la reunion celebrada en diciembre dei ano pasado informe al Consejo de mi deseo de terminar mi contrato como Director General de la ESO una vez que fuera aprobado el proyecto dei VLT, que se espera sucedera hacia fines de este aAo. Cuando fue renovada mi designacion hace tres aAos, el Consejo conocia mi intencion de no completar los cinco aAos dei contrato debido a mi deseo de disponer de mas tiempo para otras actividades. Ahora, una vez terminada la fase preparatoria para el VLT, Y habiendose presentado el proyecto formalmente al Consejo el dia 31 de marzo, y esperando su muy probable aprobacion antes dei termino de este ano, me parece que el 10 de enero de 1988 presenta una excelente fecha para que se produzca un cambio en la administracion de la ESO.

  8. Solar Power System Design for the Solar Probe+ Mission

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Schmitz, Paul C.; Kinnison, James; Fraeman, Martin; Roufberg, Lew; Vernon, Steve; Wirzburger, Melissa

    2008-01-01

    Solar Probe+ is an ambitious mission proposed to the solar corona, designed to make a perihelion approach of 9 solar radii from the surface of the sun. The high temperature, high solar flux environment makes this mission a significant challenge for power system design. This paper summarizes the power system conceptual design for the solar probe mission. Power supplies considered included nuclear, solar thermoelectric generation, solar dynamic generation using Stirling engines, and solar photovoltaic generation. The solar probe mission ranges from a starting distance from the sun of 1 AU, to a minimum distance of about 9.5 solar radii, or 0.044 AU, from the center of the sun. During the mission, the solar intensity ranges from one to about 510 times AM0. This requires power systems that can operate over nearly three orders of magnitude of incident intensity.

  9. Radio observations of solar eclipse.

    NASA Astrophysics Data System (ADS)

    Liu, Yuying; Fu, Qijun

    1998-09-01

    For radio astronomy, a solar eclipse provides an opportunity for making solar radio observations with high one-dimension spatial resolution. The radio observation of a solar eclipse has played an important role in solar radio physics. Some important factors for radio observation of a solar eclipse are introduced and analysed. Solar eclipse radio observation has also played an important role in the progress of solar radio atronomy in China. The solar eclipses of 1958, 1968, 1980 and 1987, which were observed in China, are introduced, and the main results of these observations are briefly shown.

  10. Solar Radiation Research Laboratory (Poster)

    SciTech Connect

    Stoffel, T.; Andreas, A.; Reda, I.; Dooraghi, M.; Habte, A.; Kutchenreiter, M.; Wilcox, S.

    2012-07-01

    SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

  11. Foundational Solar Resource Research (Poster)

    SciTech Connect

    Orwig, K.; Wilcox, S.; Sengupta, M.; Habte, A.; Anderberg, M.; Stoffel, T.

    2012-07-01

    SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

  12. Solar ponds: a selected bibliography

    SciTech Connect

    Not Available

    1981-11-01

    This bibliography contains citations on: regular solar ponds; shallow solar ponds; and patents. Certain references are specifically recommended. The data bases searched for the bibliography are listed. (LEW)

  13. Solar electron source and thermionic solar cell

    NASA Astrophysics Data System (ADS)

    Yaghoobi, Parham; Vahdani Moghaddam, Mehran; Nojeh, Alireza

    2012-12-01

    Common solar technologies are either photovoltaic/thermophotovoltaic, or use indirect methods of electricity generation such as boiling water for a steam turbine. Thermionic energy conversion based on the emission of electrons from a hot cathode into vacuum and their collection by an anode is also a promising route. However, thermionic solar conversion is extremely challenging as the sunlight intensity is too low for heating a conventional cathode to thermionic emission temperatures in a practical manner. Therefore, compared to other technologies, little has been done in this area, and the devices have been mainly limited to large experimental apparatus investigated for space power applications. Based on a recently observed "Heat Trap" effect in carbon nanotube arrays, allowing their efficient heating with low-power light, we report the first compact thermionic solar cell. Even using a simple off-the-shelf focusing lens, the device delivered over 1 V across a load. The device also shows intrinsic storage capacity.

  14. Solar School House.

    ERIC Educational Resources Information Center

    Harrison, David

    The Solar Schoolhouse at the Lathrop E. Smith Environmental Education Center (Rockville, Maryland) is described. Background and construction information is given. Drawings of the Schoolhouse's four sides are provided, as well as drawings illustrating the greenhouse effect, a solar collector, the Schoolhouse's summer cooling and winter heating…

  15. Solar Electricity for Homes

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    Every day, the sun showers the Earth with millions of times more energy than its people use. The only problem is that energy is spread out over the entire Earth's surface and must be harvested. Engineers are learning to capture and use some of this energy to make electricity for homes. Solar panels make up the heart of a solar system. They can be…

  16. Leaves: Nature's Solar Collectors

    ERIC Educational Resources Information Center

    Isabelle, Aaron D.; de Groot, Cornelis

    2009-01-01

    One of the most captivating things about plants is the way they capture the Sun's energy, but this can be a difficult topic to cover with elementary students. Therefore, to help students to make a concrete connection to this abstract concept, this series of solar-energy lessons focuses on leaves and how they act as "solar collectors." As students…

  17. Million Solar Roofs

    SciTech Connect

    2003-11-01

    Since its announcement in June 1997, the Million Solar Roofs Initiative has generated a major buzz in communities, states, and throughout the nation. With more than 300,000 installations, the buzz is getting louder. This brochure describes Million Solar Roofs activities and partnerships.

  18. Solar System Dynamics

    NASA Astrophysics Data System (ADS)

    Murray, Carl D.; Dermott, Stanley F.

    2000-02-01

    Preface; 1. Structure of the solar system; 2. The two-body problem; 3. The restricted three-body problem; 4. Tides, rotation and shape; 5. Spin-orbit coupling; 6. The disturbing function; 7. Secular perturbations; 8. Resonant perturbations; 9. Chaos and long-term evolution; 10. Planetary rings; Appendix A. Solar system data; Appendix B. Expansion of the disturbing function; Index.

  19. Indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, Irving

    1991-01-01

    The direction for InP solar cell research; reduction of cell cost; increase of cell efficiency; measurements needed to better understand cell performance; n/p versus p/n; radiation effects; major problems in cell contacting; and whether the present level of InP solar cell research in the USA should be maintained, decreased, or increased were considered.

  20. Curriculum Reviews: Solar Energy.

    ERIC Educational Resources Information Center

    Riley, Joseph P.

    1982-01-01

    Reviews Solar Energy Education Project (SEEP), a set of 10 curriculum guides emphasizing process skills as well as content for grades K-9. Solar concepts are taught almost exclusively through process activities and, although developed in Australia, the curriculum is easily adaptable to American classrooms. (Author/JN)

  1. Solar heat pump

    NASA Astrophysics Data System (ADS)

    Hermanson, R.

    Brief discussions of the major components of a solar powered, chemical ground source heat pump are presented. The components discussed are the solar collectors and the chemical heat storage battery. Sodium sulfide is the medium used for heat storage. Catalog information which provides a description of all of the heat pump systems is included.

  2. Solar space vehicle

    SciTech Connect

    Lee, R.E.

    1982-10-19

    This invention relates to space vehicle where solar energy is used to generate steam, which in turn, propels the vehicle in space. A copper boiler is provided and a novel solar radiation condensing means is used to focus the sunlight on said boiler. Steam generated in said boiler is exhausted to the environment to provide a thrust for the vehicle.

  3. Solar Energy Systems

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A waste water treatment plant in Wilton, Maine, where sludge is converted to methane gas, and Monsanto Company's Environmental Health Laboratory in St. Louis Missouri, where more than 200 solar collectors provide preheating of boiler feed water for laboratory use are representative of Grumman's Sunstream line of solar energy equipment. This equipment was developed with technology from NASA's Apollo lunar module program.

  4. Pioneering with Solar Power.

    ERIC Educational Resources Information Center

    Pollack, George; Pollack, Mary

    1982-01-01

    Describes the development of Mississippi County Community College's (MCCC's) solar energy system. Explains the functioning of the campus's computer-controlled photovoltaic concentrator system, MCCC's cooperative agreement with the Arkansas-Missouri Power Company, program funding, the integration of the solar system with other building components,…

  5. Solar Energy Project: Text.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    The text is a compilation of background information which should be useful to teachers wishing to obtain some technical information on solar technology. Twenty sections are included which deal with topics ranging from discussion of the sun's composition to the legal implications of using solar energy. The text is intended to provide useful…

  6. Solar Energy Project: Reader.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This document is designed to give both teachers and students the opportunity to review a variety of representative articles on solar energy. Consideration is given to the sun's role in man's past, present, and future. The present state of solar technology is examined theoretically, economically, and comparatively in light of growing need for…

  7. Solar Energy: Home Heating.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on home heating is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  8. Solar Energy: Heat Transfer.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on heat transfer is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The…

  9. Solar Energy: Heat Storage.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on heat storage is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  10. Residential Solar Systems.

    ERIC Educational Resources Information Center

    Fulkerson, Dan

    This publication contains student and teacher instructional materials for a course in residential solar systems. The text is designed either as a basic solar course or as a supplement to extend student skills in areas such as architectural drafting, air conditioning and refrigeration, and plumbing. The materials are presented in four units…

  11. The Solar Energy Notebook.

    ERIC Educational Resources Information Center

    Rankins, William H., III; Wilson, David A.

    This publication is a handbook for the do-it-yourselfer or anyone else interested in solar space and water heating. Described are methods for calculating sun angles, available energy, heating requirements, and solar heat storage. Also described are collector and system designs with mention of some design problems to avoid. Climatological data for…

  12. Homemade Solar Systems

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Through the use of NASA Tech Briefs, Peter Kask, was able to build a solarized domestic hot water system. Also by applying NASA's solar energy design information, he was able to build a swimming pool heating system with minimal outlay for materials.

  13. Solar Technology Curriculum, 1980.

    ERIC Educational Resources Information Center

    Seward County Community Coll., Liberal, KS.

    This curriculum guide contains lecture outlines and handouts for training solar technicians in the installation, maintenance, and repair of solar energy hot water and space heating systems. The curriculum consists of four modular units developed to provide a model through which community colleges and area vocational/technical schools can respond…

  14. Solar batteries: a bibliography

    SciTech Connect

    Vance, M.

    1981-01-01

    A bibliography with 621 references is presented on solar batteries. Listings are alphabetical according to the author's name and all types of solar cells (organic and inorganic) are considered as well as articles of general interest in the area. In addition, an author index and a journal index are included. (MJJ)

  15. The SOLAR Alternative.

    ERIC Educational Resources Information Center

    Warren, E. H., Jr.; Walton, A. L.

    1984-01-01

    Only when the sun's energy can be captured at a comparable or lower opportunity cost than that of competing sources will solar energy systems become viable alternatives. Economic issues of solar energy are discussed. The legitimate role of government is also examined. (RM)

  16. Reliable solar cookers

    SciTech Connect

    Magney, G.K.

    1992-12-31

    The author describes the activities of SERVE, a Christian relief and development agency, to introduce solar ovens to the Afghan refugees in Pakistan. It has provided 5,000 solar cookers since 1984. The experience has demonstrated the potential of the technology and the need for a durable and reliable product. Common complaints about the cookers are discussed and the ideal cooker is described.

  17. Reinventing the solar panel

    SciTech Connect

    Scanlon, M.

    1995-08-01

    This article discusses new technology in solar panels. PowerSource is a solar collector which not only is less expensive than conventional panels to purchase and install, but also increases the electrical output by almost 20%. This article describes the results of testing this system.

  18. Solar array deployment mechanism

    NASA Technical Reports Server (NTRS)

    Calassa, Mark C.; Kackley, Russell

    1995-01-01

    This paper describes a Solar Array Deployment Mechanism (SADM) used to deploy a rigid solar array panel on a commercial spacecraft. The application required a deployment mechanism design that was not only lightweight, but also could be produced and installed at the lowest possible cost. This paper covers design, test, and analysis of a mechanism that meets these requirements.

  19. Solar oscillation frequency and solar neutrino predictions

    SciTech Connect

    Cox, A.N.

    1990-07-05

    The light and velocity variations of the Sun and solar-like stars are unique among intrinsic variable stars. Unlike all other standard classes, such as Cepheids, B stars, and white dwarfs, the pulsation driving is caused by coupling with the acoustic noise in the upper convection zone. Each global pulsation mode is just another degree of freedom for the turbulent convection, and energy is shared equally between these g{sup {minus}}-modes and the solar oscillation modes. This driving and damping, together with the normal stellar pulsation mechanisms produce extremely low amplitude solar oscillations. Actually, the surface layer radiative damping is strong, and the varying oscillation mode amplitudes manifest the stochastic convection driving and the steady damping. Thus stability calculations for solar-like pulsations are difficult and mostly inconclusive, but calculations of pulsation periods are as straightforward as for all the other classes of intrinsic variable stars. The issue that is important for the Sun is its internal structure, because the mass, radius, and luminosity are extremely well known. Conventionally, we need the pulsation constants for each of millions of modes. Unknown parameters for constructing solar models are the composition and its material pressure, energy, and opacity, as well as the convection mixing length. We treat the nuclear energy and neutrino production formulas as sufficiently well known. The presence of weakly interacting massive particles (WIMPs) orbiting the solar center affects the predicted oscillation frequencies so that they do not agree with observations as well as those for models without WIMPs. 34 refs., 4 figs.

  20. Solar cell shingle

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Ratajczak, A. F.; Sidorak, L. G. (Inventor)

    1977-01-01

    A solar cell shingle was made of an array of solar cells on a lower portion of a substantially rectangular shingle substrate made of fiberglass cloth or the like. The solar cells may be encapsulated in flourinated ethylene propylene or some other weatherproof translucent or transparent encapsulant to form a combined electrical module and a roof shingle. The interconnected solar cells were connected to connectors at the edge of the substrate through a connection to a common electrical bus or busses. An overlap area was arranged to receive the overlap of a cooperating similar shingle so that the cell portion of the cooperating shingle may overlie the overlap area of the roof shingle. Accordingly, the same shingle serves the double function of an ordinary roof shingle which may be applied in the usual way and an array of cooperating solar cells from which electrical energy may be collected.

  1. Contrasting Large Solar Events

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Louis J.

    2010-10-01

    After an unusually long solar minimum, solar cycle 24 is slowly beginning. A large coronal mass ejection (CME) from sunspot 1092 occurred on 1 August 2010, with effects reaching Earth on 3 August and 4 August, nearly 38 years to the day after the huge solar event of 4 August 1972. The prior event, which those of us engaged in space research at the time remember well, recorded some of the highest intensities of solar particles and rapid changes of the geomagnetic field measured to date. What can we learn from the comparisons of these two events, other than their essentially coincident dates? One lesson I took away from reading press coverage and Web reports of the August 2010 event is that the scientific community and the press are much more aware than they were nearly 4 decades ago that solar events can wreak havoc on space-based technologies.

  2. Parabolic solar systems

    NASA Astrophysics Data System (ADS)

    Parsons, W. L., IV; Goetchius, W.

    The further development of parabolic solar collectors to increase their efficiency and simplify their operation was the prime objective of this research project. Three primary objectives were pursued. The first of these was to investigate the simplest and most efficient techniques to build and mass-produce parabolic solar collectors. The second objective was to further develop and simplify absorber tubes used to collect and transfer the solar energy. Absorber tubes represented a significant area of this research project. The third objective was to develop accurate, low cost, and durable tracking systems for solar collectors. Solar tracking systems are covered including several schematic representations of various systems and designs. The testing systems and associated mechanisms for the designs discussed in this report are described.

  3. The solar optical telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Objectives of the Solar Optical Telescope are to study the physics of the Sun on the scale at which many of the important physical processes occur and to attain a resolution of 73km on the Sun or 0.1 arc seconds of angular resolution. Topics discussed in this overview of the Solar Optical Telescope include: why is the Solar Optical Telescope needed; current picture of the Sun's atmosphere and convection zone; scientific problems for the Solar Optical Telescope; a description of the telescope; the facility - science management, contamination control, and accessibility to the instruments; the scientific instruments - a coordinated instrument package for unlocking the Sun's secrets; parameters of the coordinated instrument package; science operations from the Space Shuttle; and the dynamic solar atmosphere.

  4. Solar energy collector

    SciTech Connect

    Penney, R.J.

    1980-09-02

    A sun tracking solar energy collector assembly having both a longitudinally extending flat plate absorber and a tube absorber spaced from and extending longitudinally generally parallel to the flat plate absorber. In one form a parabolic reflector focuses direct rays of solar radiation on the tube absorber and directs diffused rays of solar radiation onto the plate absorber. In another form a fresnel lens plate focuses direct rays of solar radiation on the tube absorber and flat reflector surfaces direct diffused solar radiation passing through the lens plate onto the plate absorber. In both forms a fluid is first heated as it circulates through passages in the flat plate absorber and then is further heated to a higher temperature as it passes through the tube absorber.

  5. Otimização de procedimento de manobra para indução de reentrada de um satélite retornável

    NASA Astrophysics Data System (ADS)

    Schulz, W.; Suarez, M.

    2003-08-01

    Veículos espaciais que retornam à Terra passam por regimes de velocidade e condições de vôo distintos. Estas diferenças dificultam sua concepção aerodinâmica e o planejamento de seu retorno. A partir de uma proposta de um veículo orbital retornável (satélite SARA, em desenvolvimento no IAE/CTA) para realização de experimentos científicos e tecnológicos em ambiente de baixa gravidade, surge a necessidade de realizarem-se estudos considerando-se os aspectos relativos à sua aerodinâmica. Após o lançamento, o veículo deve permanecer em órbita pelo tempo necessário para a condução de experimentos, sendo depois direcionado à Terra e recuperado em solo. A concepção aerodinâmica é de importância para o vôo em suas diversas fases e deve considerar aspectos relativos à estabilização Aerodinâmica e ao arrasto atmosférico, sendo este último de importância crucial na análise do aquecimento a ser enfrentado. A manobra de retorno inclui considerações sobre as condições atmosféricas e dinâmica de reentrada, devendo ser calculada de forma mais precisa possível. O trabalho proposto avalia estudos da dinâmica de vôo de um satélite recuperável considerando aspectos relativos à determinação orbital com GPS, técnica utilizada com sucesso na CONAE, e seu comportamento aerodinâmico em vôo balístico de retorno, com ênfase em sua fase de reentrada atmosférica. Busca-se otimizar a manobra de reentrada de tal forma que a utilização do sistema GPS garanta minimizar a área de impacto com o solo.

  6. Líneas metálicas en protuberancias solares

    NASA Astrophysics Data System (ADS)

    Stenborg, G.; Rovira, M. G.; Mauas, P.

    Para determinar cual de los modelos existentes de protuberancias solares explica mejor las observaciones, es necesario, no solo ajustar los perfiles de las líneas de hidrógeno, sino también utilizar perfiles de distintos metales. En este trabajo, utilizamos un código desarrollado especialmente para calcular el equilibrio estadístico de cualquier especie atómica, aplicándolo al cálculo de los perfiles de las líneas del Ca II, el Mg II y el He, para determinar cómo se comportan ante variaciones en los parámetros de los modelos de protuberancia (ancho, presión y temperatura centrales y número de hebras), y comparamos con las observaciones existentes para determinar que modelo las ajusta mejor.

  7. Preliminary design package for solar collector and solar pump

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A solar-operated pump using an existing solar collector, for use on solar heating and cooling and hot water systems is described. Preliminary design criteria of the collector and solar-powered pump is given including: design drawings, verification plans, and hazard analysis.

  8. Renewing Solar Science. The Solar Maximum Repair Mission.

    ERIC Educational Resources Information Center

    Neal, Valerie

    This publication describes the Solar Maximum Repair Mission for restoring the operational capability of the solar observatory in space by using the Space Shuttle. Major sections include: (1) "The Solar Maximum Mission" (describing the duties of the mission); (2) "Studying Solar Flares" (summarizing the major scientific…

  9. Solar '80s: A Teacher's Handbook for Solar Energy Education.

    ERIC Educational Resources Information Center

    LaHart, David E.

    This guide is intended to assist the teacher in exploring energy issues and the technology of solar energy conversion and associated technologies. Sections of the guide include: (1) Rationale; (2) Technology Overview; (3) Sun Day Suggestions for School; (4) Backyard Solar Water Heater; (5) Solar Tea; (6) Biogas; (7) Solar Cells; (8) Economics; (9)…

  10. Solar Simulator Represents the Mars Surface Solar Environment

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Dawson, Stephen F.; Mueller, Robert L.; Mardesich, Nick; Rapp, Donald

    2009-01-01

    A report discusses the development of a Mars surface, laboratory-based solar simulator to create solar cells that can function better on Mars. The Mars Optimized Solar cell Technology (MOST) required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and developing and testing commercial cells modified for the Mars surface spectrum.

  11. The solar UV related changes in total ozone from a solar rotation to a solar cycle

    SciTech Connect

    Chandra, S.

    1991-05-01

    The Nimbus-7 TOMS version 6 data, corrected for the instrument degradation, are analyzed to delineate the solar UV related changes in total ozone (TOZ) against background signals of dynamical origin. It is shown that the solar UV related change in TOZ over a solar cycle is about 1.5 percent that may be attributed to about 6 percent change in the solar UV flux near 200 nm. This estimate is also consistent with the solar UV related changes in TOZ over a time scale of a solar rotation. In the solar rotation case, ozone lags the solar UV by 3-4 days and its sensitivity to solar UV change is a factor of 203 less than for the solar cycle case. Both these effects are attributed to chemical time constants in the lower stratosphere that are comparable to the period of a solar rotation.

  12. The solar UV related changes in total ozone from a solar rotation to a solar cycle

    NASA Technical Reports Server (NTRS)

    Chandra, S.

    1991-01-01

    The Nimbus-7 TOMS version 6 data, corrected for the instrument degradation, are analyzed to delineate the solar UV related changes in total ozone (TOZ) against background signals of dynamical origin. It is shown that the solar UV related change in TOZ over a solar cycle is about 1.5 percent that may be attributed to about 6 percent change in the solar UV flux near 200 nm. This estimate is also consistent with the solar UV related changes in TOZ over a time scale of a solar rotation. In the solar rotation case, ozone lags the solar UV by 3-4 days and its sensitivity to solar UV change is a factor of 2-3 less than for the solar cycle case. Both these effects are attributed to chemical time constants in the lower stratosphere that are comparable to the period of a solar rotation.

  13. The solar flare myth

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.

    1993-01-01

    Many years of research have demonstrated that large, nonrecurrent geomagnetic storms, shock wave disturbances in the solar wind, and energetic particle events in interplanetary space often occur in close association with large solar flares. This result has led to a pradigm of cause and effect - that large solar flares are the fundamental cause of these events in the near-Earth space environmemt. This paradigm, which I call 'the solar flare myth,' dominates the popular perception of the relationship between solar activity and interplanetary and geomagnetic events and has provided much of the pragmatic rationale for the study of the solar flare phenomenon. Yet there is good evidence that this paradigm is wrong and that flares do not generally play a central role in producing major transient disturbances in the near-Earth space environment. In this paper I outline a different paradigm of cause and effect that removes solar flares from their central position in the chain of events leading from the Sun to near-Earth space. Instead, this central role is given to events known as coronal mass ejections.

  14. Solar flares: an overview.

    PubMed

    Rust, D M

    1992-01-01

    This is a survey of solar phenomena and physical models that may be useful for improving forecasts of solar flares and proton storms in interplanetary space. Knowledge of the physical processes that accelerate protons has advanced because of gamma-ray and X-ray observations from the Solar Maximum Mission telescopes. Protons are accelerated at the onset of flares, but the duration of any subsequent proton storm at 1 AU depends on the structure of the interplanetary fields. X-ray images of the solar corona show possible fast proton escape paths. Magnetographs and high-resolution visible-band images show the magnetic field structure near the acceleration region and the heating effects of sunward-directed protons. Preflare magnetic field growth and shear may be the most important clues to the physical processes that generate high energy solar particles. Any dramatic improvement in flare forecasts will require high resolution solar telescopes in space. Several possibilities for improvements in the art of flare forecasting are presented, among them: the use of acoustic tomography to probe for subsurface magnetic fields; a satellite-borne solar magnetograph; and an X-ray telescope to monitor the corona for eruptions.

  15. Anomalously Weak Solar Convection

    NASA Technical Reports Server (NTRS)

    Hanasoge, Shravan M.; Duvall, Thomas L.; Sreenivasan, Katepalli R.

    2012-01-01

    Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical- harmonic degree l..Within the wavenumber band l < 60, convective velocities are 20-100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers l < 60, with Rossby numbers smaller than approximately 10(exp -2) at r/R-solar = 0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.

  16. Ozark Mountain solar home

    SciTech Connect

    Miller, B.

    1998-03-01

    If seeing is believing, Kyle and Christine Sarratt are believers. The couple has been living in their passive solar custom home for almost two years, long enough to see a steady stream of eye-opening utility bills and to experience the quality and comfort of energy-efficient design. Skeptical of solar homes at first, the Sarratts found an energy-conscious designer that showed them how they could realize their home-building dreams and live in greater comfort while spending less money. As Kyle says, {open_quotes}We knew almost nothing about solar design and weren`t looking for it, but when we realized we could get everything we wanted in a home and more, we were sold.{close_quotes} Now the couple is enjoying the great feeling of solar and wood heat in the winter, natural cooling in the summer and heating/cooling bills that average less than $20/month. The Sarratts` home overlooks a large lake near the town of Rogers, tucked up in the northwest corner of Arkansas. It is one of three completed homes out of 29 planned for the South Sun Estates subdivision, where homes are required by covenant to incorporate passive solar design principles. Orlo Stitt, owner of Stitt Energy Systems and developer of the subdivision, has been designing passive solar, energy-efficient homes for twenty years. His passive solar custom home development is the first in Arkansas.

  17. Solar Hot Water Heater

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  18. Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Király, Péter

    Energetic particles recorded in the Earth environment and in interplanetary space have a multitude of origins, i.e. acceleration and propagation histories. At early days practically all sufficiently energetic particles were considered to have come either from solar flares or from interstellar space. Later on, co-rotating interplanetary shocks, the termination shock of the supersonic solar wind, planetary bow shocks and magnetospheres, and also coronal mass ejections (CME) were recognized as energetic particle sources. It was also recognized that less energetic (suprathermal) particles of solar origin and pick-up ions have also a vital role in giving rise to energetic particles in interplanetary disturbances. The meaning of the term "solar energetic particles" (SEP) is now somewhat vague, but essentially it refers to particles produced in disturbances fairly directly related to solar processes. Variation of intensity fluctuations with energy and with the phase of the solar cycle will be discussed. Particular attention will be given to extremes of time variation, i.e. to very quiet periods and to large events. While quiet-time fluxes are expected to shed light on some basic coronal processes, large events dominate the fluctuation characteristics of cumulated fluence, and the change of that fluctuation with energy and with the phase of the solar cycle may also provide important clues. Mainly ISEE-3 and long-term IMP-8 data will be invoked. Energetic and suprathermal particles that may never escape into interplanetary space may play an important part in heating the corona of the sun.

  19. Solar Eagle 2

    NASA Technical Reports Server (NTRS)

    Roberto, Richard D.

    1995-01-01

    During a 22-month period from February 1991 to December 1993, a dedicated group of students, faculty, and staff at California State University, Los Angeles completed a project to design, build, and race their second world class solar-powered electric vehicle, the Solar Eagle 2. This is the final report of that project. As a continuation of the momentum created by the success of the GM-sponsored Sunrayce USA in 1990, the U.S. Department of Energy (DOE) picked up the banner from General Motors as sponsors of Sunrayce 93. In February 1991, the DOE sent a request for proposals to all universities in North America inviting them to submit a proposal outlining how they would design, build, and test a solar-powered electric vehicle for a seven-day race from Arlington, Texas to Minneapolis, Minnesota, to be held in June 1993. Some 70 universities responded. At the end of a proposal evaluation process, 36 universities including CSLA were chosen to compete. This report documents the Solar Eagle 2 project--the approaches take, what was learned, and how our experience from the first Solar Eagle was incorporated into Solar Eagle 2. The intent is to provide a document that would assist those who may wish to take up the challenge to build Solar Eagle 3.

  20. Understanding Solar Flares

    NASA Astrophysics Data System (ADS)

    Antiochos, Spiro K.; Karpen, J. T.; DeVore, C. R.

    2012-05-01

    Solar flares and their associated coronal mass ejections are the most energetic explosions in the solar system. The largest events pose the greatest space weather dangers to life and civilization, and are of extreme importance to human space exploration. They also provide the best opportunity to study the universal processes of magnetic reconnection and particle acceleration that underlie most solar activity. The two great mysteries of solar flares are: how can so much energy be released so quickly, and how can such a large fraction (50% or more) end up in energetic particles. We present results from recent numerical modeling that sheds new light on these mysteries. These calculations use the highest spatial resolution yet achieved in order to resolve the flare dynamics as clearly as possible. We conclude from this work that magnetic island formation is the defining property of magnetic reconnection in the solar corona, at least, in the large-scale current sheet required for a solar flare. Furthermore, we discuss the types of future observations and modeling that will be required to solve definitively the solar flare mysteries. This work was supported, in part, by the NASA TR&T and SR&T Programs.

  1. Four-cell solar tracker

    NASA Technical Reports Server (NTRS)

    Berdahl, C. M.

    1981-01-01

    Forty cm Sun tracker, consisting of optical telescope and four solar cells, stays pointed at Sun throughout day for maximum energy collection. Each solar cell generates voltage proportional to part of solar image it receives; voltages drive servomotors that keep image centered. Mirrored portion of cylinder extends acquisition angle of device by reflecting Sun image back onto solar cells.

  2. Solar Water Heater

    NASA Technical Reports Server (NTRS)

    1993-01-01

    As a Jet Propulsion Laboratory (JPL) scientist Dr. Eldon Haines studied the solar energy source and solar water heating. He concluded he could build a superior solar water heating system using the geyser pumping principle. He resigned from JPL to develop his system and later form Sage Advance Corporation to market the technology. Haines' Copper Cricket residential system has no moving parts, is immune to freeze damage, needs no roof-mounted tanks, and features low maintenance. It provides 50-90 percent of average hot water requirements. A larger system, the Copper Dragon, has been developed for commercial installations.

  3. Solar Energy Demonstrations

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Solar energy furnishes all of the heating and hot water needs, plus 80 percent of the air conditioning, for the two-story Reedy Creek building. A unique feature of this installation is that the 16 semi-cylindrical solar collectors (center photo on opposite page with closeup of a single collector below it) are not mounted atop the roof as is customary, they actually are the roof. This arrangement eliminates the usual trusses, corrugated decking and insulating concrete in roof construction; that, in turn, reduces overall building costs and makes the solar installation more attractive economically. The Reedy Creek collectors were designed and manufactured by AAI Corporation of Baltimore, Maryland.

  4. Solar Electric System

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Heat Pipe Technology, Inc. undertook the development of a PV system that could bring solar electricity to the individual home at reasonable cost. His system employs high efficiency PV modules plus a set of polished reflectors that concentrate the solar energy and enhance the output of the modules. Dinh incorporated a sun tracking system derived from space tracking technology. It automatically follows the sun throughout the day and turns the modules so that they get maximum exposure to the solar radiation, further enhancing the system efficiency.

  5. Solar powered Stirling engine

    SciTech Connect

    Meijer, R.J.

    1987-11-24

    In a solar dish module which comprises a dish which receives incident solar rays and reflects them to a focus at which is located the combination of a receiver and a heat engine organized and arranged so that the heat energy of the reflected solar rays collected at the receiver powers the engine, and wherein the receiver and heat engine are supported from the dish by a framework, the improvement is described which comprises journal means for journaling at least the engine on the framework to maintain certain predetermined spatial orientation for the engine in relation to the direction of gravity irrespective of spatial orientation of the dish.

  6. The solar dynamo

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    1994-01-01

    The solar dynamo is the process by which the Sun's magnetic field is generated through the interaction of the field with convection and rotation. In this, it is kin to planetary dynamos and other stellar dynamos. Although the precise mechanism by which the Sun generates its field remains poorly understood in spite of decades of theoretical and observational work, recent advances suggest that solutions to this solar dynamo problem may be forthcoming. The two basic processes involved in dynamo activity are demonstrated and the Sun's activity effects are presented in this document, along with a historical perspective regarding solar dynamos and the efforts to understand and measure them.

  7. Dye sensitized solar cells.

    PubMed

    Wei, Di

    2010-03-16

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO(2), ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed.

  8. Solar cell radiation handbook

    NASA Technical Reports Server (NTRS)

    Tada, H. Y.; Carter, J. R., Jr.

    1977-01-01

    Solar cell theory cells are manufactured, and how they are modeled mathematically is reviewed. The interaction of energetic charged particle radiation with solar cells is discussed in detail and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Finally, an extensive body of data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence is presented.

  9. Can solar power deliver?

    PubMed

    Nelson, Jenny; Emmott, Christopher J M

    2013-08-13

    Solar power represents a vast resource which could, in principle, meet the world's needs for clean power generation. Recent growth in the use of photovoltaic (PV) technology has demonstrated the potential of solar power to deliver on a large scale. Whilst the dominant PV technology is based on crystalline silicon, a wide variety of alternative PV materials and device concepts have been explored in an attempt to decrease the cost of the photovoltaic electricity. This article explores the potential for such emerging technologies to deliver cost reductions, scalability of manufacture, rapid carbon mitigation and new science in order to accelerate the uptake of solar power technologies.

  10. Fixed solar energy concentrator

    SciTech Connect

    Houghton, A.J.; Knasel, T.M.

    1981-01-20

    An apparatus for the concentration of solar energy upon a fixed array of solar cells is disclosed. A transparent material is overlayed upon the cell array, and a diffuse reflective coating is applied to the surface area of the transparent medium in between cells. Radiant light, which reflects through the transparent layer and does not fall directly incident to a cell surface is reflected by the coating layer in an approximate cosine pattern. Thereafter, such light undergoes internal reflection and rediffusion until subsequently it either strikes a solar cell surface or is lost through the upper surface of the transparent material.

  11. Solar array welding developement

    NASA Technical Reports Server (NTRS)

    Elms, R. V., Jr.

    1974-01-01

    The present work describes parallel gap welding as used for joining solar cells to the cell interconnect system. Sample preparation, weldable cell parameter evaluation, bond scheduling, bond strength evaluation, and bonding and thermal shock tests are described. A range of weld schedule parameters - voltage, time, and force - can be identified for various cell/interconnect designs that will provide adequate bond strengths and acceptably small electrical degradation. Automation of solar array welding operations to a significant degree has been achieved in Europe and will be receiving increased attention in the U.S. to reduce solar array fabrication costs.

  12. Solar technologies and potential

    NASA Astrophysics Data System (ADS)

    Faninger, G.

    1982-11-01

    The rapid escalation of energy costs, the depletion of fossil fuel reserves and especially the increase of global energy requirements necessitate the utilization of all sources of energy, especially of renewables. With the present knowledge it could be expected that solar energy can play a significant role in rural areas in the form of decentralized applications. Many of the solar technologies are ready for immediate use in a multiplicity of applications. Other solar technologies are in an advanced stage of research and development and must be demonstrated, in various climatic zones, on a broad scale in order to prove their technical and economic viability.

  13. Your affordable solar home

    SciTech Connect

    Hibshman, D.

    1983-01-01

    The economy of solar principles can put home ownership within the reach of many more people. Featuring six designs that can be built for $20,000 or less, this illustrated guide outlines a variety of options. It includes a solar primer to explain the process and practice of solar heating and cooling systems; floor plans and cutaway drawings; prefabricated and kit houses; log and timber, domes, and post-and beam houses; the pros and cons of mobile homes; and the story of a small community that dealt creatively with the housing shortage. 26 references, 56 figures, 5 tables.

  14. Solar thermal power towers

    NASA Astrophysics Data System (ADS)

    Kreith, F.; Meyer, R. T.

    1984-07-01

    The solar thermal central receiver technology, known as solar power towers, is rapidly evolving to a state of near-term energy availability for electrical power generation and industrial process heat applications. The systems consist of field arrays of heliostat reflectors, a central receiver boiler, short term thermal storage devices, and either turbine-generators or heat exchangers. Fluid temperatures up to 550 C are currently achievable, and technology developments are underway to reach 1100 C. Six solar power towers are now under construction or in test operation in five countries around the world.

  15. Dye Sensitized Solar Cells

    PubMed Central

    Wei, Di

    2010-01-01

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed. PMID:20480003

  16. Infrared Solar Physics.

    PubMed

    Penn, Matthew J

    The infrared solar spectrum contains a wealth of physical data about our Sun, and is explored using modern detectors and technology with new ground-based solar telescopes. The scientific motivation behind exploring these wavelengths is presented, along with a brief look at the rich history of observations here. Several avenues of solar physics research exploiting and benefiting from observations at infrared wavelengths from roughly 1000 nm to 12 400 nm are discussed, and the instrument and detector technology driving this research is briefly summarized. Finally, goals for future work at infrared wavelengths are presented in conjunction with ground and space-based observations.

  17. Solar Thermal Conversion

    SciTech Connect

    Kreith, F.; Meyer, R. T.

    1982-11-01

    The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

  18. Solar powered aircraft

    SciTech Connect

    Phillips, W.H.

    1983-11-15

    A cruciform wing structure for a solar powered aircraft is disclosed. Solar cells are mounted on horizontal wing surfaces. Wing surfaces with spanwise axis perpendicular to surfaces maintain these surfaces normal to the sun's rays by allowing aircraft to be flown in a controlled pattern at a large bank angle. The solar airplane may be of conventional design with respect to fuselage, propeller and tail, or may be constructed around a core and driven by propeller mechanisms attached near the tips of the airfoils.

  19. Solar Installation Labor Market Analysis

    SciTech Connect

    Friedman, B.; Jordan, P.; Carrese, J.

    2011-12-01

    The potential economic benefits of the growing renewable energy sector have led to increased federal, state, and local investments in solar industries, including federal grants for expanded workforce training for U.S. solar installers. However, there remain gaps in the data required to understand the size and composition of the workforce needed to meet the demand for solar power. Through primary research on the U.S. solar installation employer base, this report seeks to address that gap, improving policymakers and other solar stakeholders understanding of both the evolving needs of these employers and the economic opportunity associated with solar market development. Included are labor market data covering current U.S. employment, expected industry growth, and employer skill preferences for solar installation-related occupations. This study offers an in-depth look at the solar installation sectors. A study published by the Solar Foundation in October 2011 provides a census of labor data across the entire solar value chain.

  20. The 3-D solar radioastronomy and the structure of the corona and the solar wind. [solar probes of solar activity

    NASA Technical Reports Server (NTRS)

    Steinberg, J. L.; Caroubalos, C.

    1976-01-01

    The mechanism causing solar radio bursts (1 and 111) is examined. It is proposed that a nonthermal energy source is responsible for the bursts; nonthermal energy is converted into electromagnetic energy. The advantages are examined for an out-of-the-ecliptic solar probe mission, which is proposed as a means of stereoscopically viewing solar radio bursts, solar magnetic fields, coronal structure, and the solar wind.

  1. Solar Electric Propulsion (SEP)

    NASA Video Gallery

    Future Human Exploration requires high power solar electric propulsion vehicles to move cargo and humans beyond Low Earth Orbit, which requires large light weight arrays, high power processing, and...

  2. Solar Eclipse from Space

    NASA Video Gallery

    While flying at about 240 statute miles above Earth, NASA Astronaut Don Pettit captured the rare solar eclipse as the moon casted its dark shadow across the planet below as it lined up between Eart...

  3. Commercializing solar hydrogen production

    SciTech Connect

    Holmes, J.T.; Prairie, M.R.

    1991-01-01

    This paper discusses the need for a government-supported program to commercialize hydrogen production methods which use solar energy as the main source of energy. Current methods use hydrocarbons and generate large amounts of carbon dioxide. The paper describes results from a literature survey performed to identify technologies using direct solar energy that were likely to succeed on an industrial scale in the near term. Critical parameters included calculated efficiencies, measured efficiencies, and development status. The cost of solar collectors is cited as the reason most promising solar hydrogen research is not taken to the pilot plant stage. The author recommends use of existing DOE facilities already in operation for pilot plant testing. 14 refs. (CK)

  4. Broad spectrum solar cell

    DOEpatents

    Walukiewicz, Wladyslaw; Yu, Kin Man; Wu, Junqiao; Schaff, William J.

    2007-05-15

    An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.

  5. The Solar Dynamo Zoo

    NASA Astrophysics Data System (ADS)

    Egeland, Ricky; Soon, Willie H.; Baliunas, Sallie L.; Hall, Jeffrey C.; Pevtsov, Alexei A.; Henry, Gregory W.

    2016-05-01

    We present composite time series of Ca II H & K line core emission indices of up to 50 years in length for a set of 27 solar-analog stars (spectral types G0-G5; within ~10% of the solar mass) and the Sun. These unique data are available thanks to the long-term dedicated efforts of the Mount Wilson Observatory HK project, the Lowell Observatory Solar-Stellar Spectrograph, and the National Solar Observatory/Air Force Research Laboratory/Sacremento Peak K-line monitoring program. The Ca II H & K emission originates in the lower chromosphere and is strongly correlated with the presence of magnetic plage regions in the Sun. These synoptic observations allow us to trace the patterns long-term magnetic variability and explore dynamo behavior over a wide range of rotation regimes and stellar evolution timescales.

  6. Energy 101: Solar PV

    ScienceCinema

    None

    2016-07-12

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  7. Solar system fault detection

    DOEpatents

    Farrington, Robert B.; Pruett, Jr., James C.

    1986-01-01

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  8. Solar system fault detection

    DOEpatents

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  9. Solar cell radiation handbook

    NASA Technical Reports Server (NTRS)

    Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

    1982-01-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  10. Welded solar cell interconnection

    NASA Technical Reports Server (NTRS)

    Stofel, E. J.; Browne, E. R.; Meese, R. A.; Vendura, G. J.

    1982-01-01

    The efficiency of the welding of solar-cell interconnects is compared with the efficiency of soldering such interconnects, and the cases in which welding may be superior are examined. Emphasis is placed on ultrasonic welding; attention is given to the solar-cell welding machine, the application of the welding process to different solar-cell configurations, producibility, and long-life performance of welded interconnects. Much of the present work has been directed toward providing increased confidence in the reliability of welding using conditions approximating those that would occur with large-scale array production. It is concluded that there is as yet insufficient data to determine which of three methods (soldering, parallel gap welding, and ultrasonic welding) provides the longest-duration solar panel life.

  11. Striking a Solar Balance

    NASA Video Gallery

    This short film explores the vital connection between Earth and the sun. NASA's Glory mission and the Total Irradiance Monitor will continue nearly three decades of solar irradiance measurements. T...

  12. Solar Data Hub (Presentation)

    SciTech Connect

    Orwig, K.

    2011-04-01

    As power grid integration of renewables becomes ever more important and detailed, the need for a centralized place for solar-related resource data is needed. This presentation describes such a place and website.

  13. Complex Solar Eruption

    NASA Video Gallery

    On August 1, 2010 around 0855 UT, Earth orbiting satellites detected a C3-class solar flare. The origin of the blast was sunspot 1092. At about the same time, an enormous magnetic filament stretchi...

  14. Solar Probe Plus

    NASA Technical Reports Server (NTRS)

    Szabo, Adam

    2011-01-01

    The NASA Solar Probe Plus mission is planned to be launched in 2018 to study the upper solar corona with both.in-situ and remote sensing instrumentation. The mission will utilize 6 Venus gravity assist maneuver to gradually lower its perihelion to 9.5 Rs below the expected Alfven pOint to study the sub-alfvenic solar wind that is still at least partially co-rotates with the Sun. The detailed science objectives of this mission will be discussed. SPP will have a strong synergy with The ESA/NASA Solar orbiter mission to be launched a year ahead. Both missions will focus on the inner heliosphere and will have complimentary instrumentations. Strategies to exploit this synergy will be also presented.

  15. Saltless solar pond

    NASA Technical Reports Server (NTRS)

    Lin, E. I. H. (Inventor)

    1984-01-01

    A solar pond adapted for efficiently trapping and storing radiant solar energy without the use of a salt concentration gradient in the pond is disclosed. A body of water which may be fresh, saline, relatively clear or turbid, is substantially covered by a plurality of floating honeycomb panels. The honeycomb panels are made of a material such as glass which is pervious to short wave solar radiation but impervious to infrared radiation. Each honeycomb panel includes a multitude of honeycomb cells. The honeycomb panels are divided into the elongated honeycomb cells by a multitude of intermediate plates disposed between a bottom plate and top plate of the panel. The solar pond is well suited for providing hot water of approximately 85 to 90 C temperature for direct heating applications, and for electrical power generation.

  16. An adjustable solar concentrator

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1980-01-01

    Fixed cylindrical converging lenses followed by movable parabolic mirror focus solar energy on conventional linear collector. System is low cost and accomodates daily and seasonal movements of the sun. Mirrors may be moved using simple, low-power electrical motors.

  17. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  18. Solar thermoelectric generator

    DOEpatents

    Toberer, Eric S.; Baranowski, Lauryn L.; Warren, Emily L.

    2016-05-03

    Solar thermoelectric generators (STEGs) are solid state heat engines that generate electricity from concentrated sunlight. A novel detailed balance model for STEGs is provided and applied to both state-of-the-art and idealized materials. STEGs can produce electricity by using sunlight to heat one side of a thermoelectric generator. While concentrated sunlight can be used to achieve extremely high temperatures (and thus improved generator efficiency), the solar absorber also emits a significant amount of black body radiation. This emitted light is the dominant loss mechanism in these generators. In this invention, we propose a solution to this problem that eliminates virtually all of the emitted black body radiation. This enables solar thermoelectric generators to operate at higher efficiency and achieve said efficient with lower levels of optical concentration. The solution is suitable for both single and dual axis solar thermoelectric generators.

  19. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  20. Solar Furnance Model

    ERIC Educational Resources Information Center

    Palmer, Dennis L.; Olsen, Richard W.

    1977-01-01

    Described is how to build a solar furnace model. A detailed list of materials and methods are included along with diagrams. This particular activity is part of an audiotutorial unit concerned with the energy crisis and energy alternatives. (MA)

  1. Solar and magnetospheric science

    NASA Technical Reports Server (NTRS)

    Timothy, A. F.; Schmerling, E. R.; Chapman, R. D.

    1976-01-01

    The current status of the Solar Physics Program and the Magnetospheric Physics Program is discussed. The scientific context for each of the programs is presented, then the current programs and future plans are outlined.

  2. Solar cell array interconnects

    DOEpatents

    Carey, P.G.; Thompson, J.B.; Colella, N.J.; Williams, K.A.

    1995-11-14

    Electrical interconnects are disclosed for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value. 4 figs.

  3. Solar cell array interconnects

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.; Colella, Nicolas J.; Williams, Kenneth A.

    1995-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  4. Electrostatically clean solar array

    NASA Technical Reports Server (NTRS)

    Stern, Theodore Garry (Inventor); Krumweide, Duane Eric (Inventor)

    2004-01-01

    Provided are methods of manufacturing an electrostatically clean solar array panel and the products resulting from the practice of these methods. The preferred method uses an array of solar cells, each with a coverglass where the method includes machining apertures into a flat, electrically conductive sheet so that each aperture is aligned with and undersized with respect to its matched coverglass sheet and thereby fashion a front side shield with apertures (FSA). The undersized portion about each aperture of the bottom side of the FSA shield is bonded to the topside portions nearest the edges of each aperture's matched coverglass. Edge clips are attached to the front side aperture shield edges with the edge clips electrically and mechanically connecting the tops of the coverglasses to the solar panel substrate. The FSA shield, edge clips and substrate edges are bonded so as to produce a conductively grounded electrostatically clean solar array panel.

  5. Flat plate solar oven

    SciTech Connect

    Parikh, M.

    1981-01-01

    The construction of an Indian Rs. 186 (US $20.33) flat-plate solar oven is described. Detailed drawings are provided and relevant information on cooking times and temperature for different foods is given.

  6. SDO Sees Solar Ballet

    NASA Video Gallery

    A solar eruption gracefully rose up from the sun on December 31, 2012, twisting and turning. Magnetic forces drove the flow of plasma, but without sufficient force to overcome the sun’s gravity m...

  7. Space solar power systems

    NASA Technical Reports Server (NTRS)

    Toliver, C.

    1977-01-01

    Studies were done on the feasibility of placing a solar power station called POwersat, in space. A general description of the engineering features are given as well as a brief discussion of the economic considerations.

  8. The Solar Eclipse

    ERIC Educational Resources Information Center

    Stern, David

    1970-01-01

    Instructions for observing the Solar Eclipse on Saturday, March 7, 1970, which will be total along a strip about 85 miles wide along the Atlantic Seaboard. Safety precautions and how to construct a pinhole camera to observe eclipse. (BR)

  9. Energy 101: Solar PV

    SciTech Connect

    2011-01-01

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  10. Lancaster Landfill Solar Facility

    SciTech Connect

    Pacheco, Orlando

    2014-06-12

    The Town of Lancaster constructed a 500KWH Solar Array on our landfill parcel, that using other financial mechanisms in the deregulated Massachusetts Electric Market would allow the Town to obtain free electricity.

  11. Triple Solar Eruption

    NASA Video Gallery

    Solar activity surged on the morning of Dec 12, 2010 when the sun erupted three times in quick succession, hurling a trio of bright coronal mass ejections (CMEs) into space. Coronagraphs onboard th...

  12. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B. (Inventor)

    1979-01-01

    A fixed, linear, ground-based primary reflector having an extended curved sawtooth-contoured surface covered with a metalized polymeric reflecting material, reflects solar energy to a movably supported collector that is kept at the concentrated line focus reflector primary. The primary reflector may be constructed by a process utilizing well known freeway paving machinery. The solar energy absorber is preferably a fluid transporting pipe. Efficient utilization leading to high temperatures from the reflected solar energy is obtained by cylindrical shaped secondary reflectors that direct off-angle energy to the absorber pipe. A seriatim arrangement of cylindrical secondary reflector stages and spot-forming reflector stages produces a high temperature solar energy collection system of greater efficiency.

  13. Hybrid Solar GHP Simulator

    SciTech Connect

    Yavuzturk, Cy; Chiasson, Andrew; Shonder, John

    2012-12-11

    This project provides an easy-to-use, menu-driven, software tool for designing hybrid solar-geothermal heat pump systems (GHP) for both heating- and cooling-dominated buildings. No such design tool currently exists. In heating-dominated buildings, the design approach takes advantage of glazed solar collectors to effectively balance the annual thermal loads on the ground with renewable solar energy. In cooling-dominated climates, the design approach takes advantage of relatively low-cost, unglazed solar collectors as the heat rejecting component. The primary benefit of hybrid GHPs is the reduced initial cost of the ground heat exchanger (GHX). Furthermore, solar thermal collectors can be used to balance the ground loads over the annual cycle, thus making the GHX fully sustainable; in heating-dominated buildings, the hybrid energy source (i.e., solar) is renewable, in contrast to a typical fossil fuel boiler or electric resistance as the hybrid component; in cooling-dominated buildings, use of unglazed solar collectors as a heat rejecter allows for passive heat rejection, in contrast to a cooling tower that consumes a significant amount of energy to operate, and hybrid GHPs can expand the market by allowing reduced GHX footprint in both heating- and cooling-dominated climates. The design tool allows for the straight-forward design of innovative GHP systems that currently pose a significant design challenge. The project lays the foundations for proper and reliable design of hybrid GHP systems, overcoming a series of difficult and cumbersome steps without the use of a system simulation approach, and without an automated optimization scheme. As new technologies and design concepts emerge, sophisticated design tools and methodologies must accompany them and be made usable for practitioners. Lack of reliable design tools results in reluctance of practitioners to implement more complex systems. A menu-driven software tool for the design of hybrid solar GHP systems is

  14. Solar Cycle Prediction.

    PubMed

    Petrovay, Kristóf

    A review of solar cycle prediction methods and their performance is given, including forecasts for cycle 24. The review focuses on those aspects of the solar cycle prediction problem that have a bearing on dynamo theory. The scope of the review is further restricted to the issue of predicting the amplitude (and optionally the epoch) of an upcoming solar maximum no later than right after the start of the given cycle. Prediction methods form three main groups. Precursor methods rely on the value of some measure of solar activity or magnetism at a specified time to predict the amplitude of the following solar maximum. Their implicit assumption is that each numbered solar cycle is a consistent unit in itself, while solar activity seems to consist of a series of much less tightly intercorrelated individual cycles. Extrapolation methods, in contrast, are based on the premise that the physical process giving rise to the sunspot number record is statistically homogeneous, i.e., the mathematical regularities underlying its variations are the same at any point of time and, therefore, it lends itself to analysis and forecasting by time series methods. Finally, instead of an analysis of observational data alone, model based predictions use physically (more or less) consistent dynamo models in their attempts to predict solar activity. In their overall performance during the course of the last few solar cycles, precursor methods have clearly been superior to extrapolation methods. Nevertheless, most precursor methods overpredicted cycle 23, while some extrapolation methods may still be worth further study. Model based forecasts have not yet had a chance to prove their skills. One method that has yielded predictions consistently in the right range during the past few solar cycles is that of K. Schatten et al., whose approach is mainly based on the polar field precursor. The incipient cycle 24 will probably mark the end of the Modern Maximum, with the Sun switching to a state of

  15. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  16. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, Clement J.

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  17. Solar fuels generator

    DOEpatents

    Lewis, Nathan S.; Spurgeon, Joshua M.

    2016-10-25

    The solar fuels generator includes an ionically conductive separator between a gaseous first phase and a second phase. A photoanode uses one or more components of the first phase to generate cations during operation of the solar fuels generator. A cation conduit is positioned provides a pathway along which the cations travel from the photoanode to the separator. The separator conducts the cations. A second solid cation conduit conducts the cations from the separator to a photocathode.

  18. Sea shell solar collector

    DOEpatents

    Rabl, Ari

    1976-01-01

    A device is provided for the collection and concentration of solar radiant energy including a longitudinally extending structure having a wall for directing radiant energy. The wall is parabolic with its focus along a line parallel to an extreme ray of the sun at one solstice and with its axis along a line parallel to an extreme ray of the sun at the other solstice. An energy absorber is positioned to receive the solar energy thereby collected.

  19. Fragmentary Solar System History

    NASA Technical Reports Server (NTRS)

    Marti, Kurt

    1997-01-01

    The objective of this research is an improved understanding of the early solar system environment and of the processes involved in the nebula and in the evolution of solid bodies. We present results of our studies on the isotopic signatures in selected primitive solar system objects and on the evaluation of the cosmic ray records and of inferred collisional events. Furthermore, we report data of trapped martian atmospheric gases in meteorites and the inferred early evolution of Mars' atmosphere.

  20. SPA: Solar Position Algorithm

    NASA Astrophysics Data System (ADS)

    Reda, Ibrahim; Andreas, Afshin

    2015-04-01

    The Solar Position Algorithm (SPA) calculates the solar zenith and azimuth angles in the period from the year -2000 to 6000, with uncertainties of +/- 0.0003 degrees based on the date, time, and location on Earth. SPA is implemented in C; in addition to being available for download, an online calculator using this code is available at http://www.nrel.gov/midc/solpos/spa.html.

  1. Solar Wind Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

  2. Solar Radiation Alert System

    DTIC Science & Technology

    2005-07-01

    the earth’s atmosphere at high geomagnetic latitudes were calculated for the solar proton event of 20 January 2005. The event started at 06:50...excluding them does not significantly affect the calculated dose rates. The data are available in near real-time from the file transfer protocol (ftp...form a com- plete spectrum used to calculate effective doses in Step 9. A piecewise-continuous spectrum is needed because during solar proton events

  3. Thin silicon solar cells

    SciTech Connect

    Hall, R.B.; Bacon, C.; DiReda, V.; Ford, D.H.; Ingram, A.E.; Cotter, J.; Hughes-Lampros, T.; Rand, J.A.; Ruffins, T.R.; Barnett, A.M.

    1992-12-01

    The silicon-film design achieves high performance by using a dun silicon layer and incorporating light trapping. Optimally designed thin crystalline solar cells (<50 microns thick) have performance advantages over conventional thick devices. The high-performance silicon-film design employs a metallurgical barrier between the low-cost substrate and the thin silicon layer. Light trapping properties of silicon-film on ceramic solar cells are presented and analyzed. Recent advances in process development are described here.

  4. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Inventor)

    1977-01-01

    An improved solar energy collection system, having enhanced energy collection and conversion capabilities, is delineated. The system is characterized by a plurality of receivers suspended above a heliostat field comprising a multiplicity of reflector surfaces, each being adapted to direct a concentrated beam of solar energy to illuminate a target surface for a given receiver. A magnitude of efficiency, suitable for effectively competing with systems employed in collecting and converting energy extracted from fossil fuels, is indicated.

  5. Solar Environmental Disturbances

    DTIC Science & Technology

    2007-11-02

    Mauna Kea and the Big Bear Solar Observatory that provided “ground truth” data for thermal and seeing models. For the site survey, effort included...Balasubramaniam, Louis Strous and Philip H. Wiborg. We recognize the following employees of the National Solar Observatory , without whose assistance we...observations of about 30 sunlike stars from Mount Wilson, Lowell, and Fairborn Observatories to extend our joint time series to more than 35 years. The full

  6. Space solar cell research

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1989-01-01

    A brief overview is given of the scope of the NASA space solar cell research and development program. Silicon cells, gallium arsenide cells, indium phosphide cells, and superlattice solar cells are addressed, indicating the state of the art of each type in outer space and their advantages and drawbacks for use in outer space. Contrasts between efficiency in space and on earth are pointed out.

  7. Solar Powered Classroom

    ScienceCinema

    none

    2016-07-12

    A group of fourth graders in Durham, North Carolina, are showing America the way to a clean energy future. They are installing solar panels on their classroom roof for a project that goes above and beyond a normal day in school. From researching solar panel installation, to generating funds for the project via Kickstarter, these are students who put their plans into action. Their accomplishments go beyond the classroom and stress the importance of getting people of all ages involved in renewable energy.

  8. Flank solar wind interaction

    NASA Technical Reports Server (NTRS)

    Moses, Stewart L.; Greenstadt, Eugene W.; Coroniti, Ferdinand V.

    1994-01-01

    In this report we will summarize the results of the work performed under the 'Flank Solar Wind Interaction' investigation in support of NASA's Space Physics Guest Investigator Program. While this investigation was focused on the interaction of the Earth's magnetosphere with the solar wind as observed by instruments on the International Sun-Earth Explorer (ISEE) 3 spacecraft, it also represents the culmination of decades of research performed by scientists at TRW on the rich phenomenology of collisionless shocks in space.

  9. Energy from solar balloons

    SciTech Connect

    Grena, Roberto

    2010-04-15

    Solar balloons are hot air balloons in which the air is heated directly by the sun, by means of a black absorber. The lift force of a tethered solar balloon can be used to produce energy by activating a generator during the ascending motion of the balloon. The hot air is then discharged when the balloon reaches a predefined maximum height. A preliminary study is presented, along with an efficiency estimation and some considerations on possible realistic configurations. (author)

  10. Solar Powered Classroom

    SciTech Connect

    2013-06-13

    A group of fourth graders in Durham, North Carolina, are showing America the way to a clean energy future. They are installing solar panels on their classroom roof for a project that goes above and beyond a normal day in school. From researching solar panel installation, to generating funds for the project via Kickstarter, these are students who put their plans into action. Their accomplishments go beyond the classroom and stress the importance of getting people of all ages involved in renewable energy.

  11. Solar education project workshop

    SciTech Connect

    Smith, J.B.

    1980-10-31

    A summary of proceedings of the Solar Education Project Workshop is presented. The workshop had as its focus the dissemination of curriculum materials developed by the Solar Energy Project of the New York State Department of Education under the sponsorship of the US Department of Energy. It includes, in addition to presentations by speakers and workshop leaders, specific comments from participants regarding materials available and energy-related activities underway in their respective states and suggested strategies from them for ongoing dissemination efforts.

  12. Solar photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Forney, R. G.

    1978-01-01

    The Department of Energy's photovoltaic program is outlined. The main objective of the program is the development of low cost reliable terrestrial photovoltaic systems. A second objective is to foster widespread use of the system in residential, industrial and commercial application. The system is reviewed by examining each component; silicon solar cell, silicon solar cell modules, advanced development modules and power systems. Cost and applications of the system are discussed.

  13. Solar Energy Reporting

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Last year the people of Cleveland, Ohio were troubled by natural gas shortages during one of the coldest winters on record. The severe winter generated a great deal of interest in solar energy as an alternative source of heat. Home owners, home builders and civic officials wanted to know just how much solar energy is available in Cleveland. Now they get a daily report through the city's news media, from information supplied as a community service by NASA's Lewis Research Center. Lewis routinely makes daily measurements of solar energy as part of its continuing research in behalf of the Department of Energy. The measuring device is a sun sensor called a pyranometer (upper photo) located atop a building at the NASA Center. To make the information conveniently available to news media, Lewis developed a Voice Output Integrating Insolometer, an automated system that acquires information from the sun sensor and translates it into a recorded telephone message. The Lewis pyranometer collects sun data for 15 hours daily and measures the total solar energy yield. For reporting to the public, the information is electronically converted to a specific reading. A media representative calling in gets a voice-synthesized announcement of a two or three digit number; the number corresponds to the kilowatt-hours of solar energy that would be available to a typical 500-square-foot solar collector system. Response in Cleveland has been favorable and interest is developing in other parts of the country.

  14. The Solar Maximum Mission

    NASA Astrophysics Data System (ADS)

    Sutton, C.

    1980-07-01

    The objectives, instruments, operation and spacecraft design for the Solar Maximum Mission are discussed. The satellite, first in a series of Multi-Mission Modular Spacecraft, was launched on February 14, 1980, to take advantage of the current maximum in the solar activity cycle to study solar flares at wavelengths from the visible to the gamma-ray. The satellite carries six instruments for the simultaneous study of solar flares, namely the coronagraph/polarimeter, X-ray polychromator, ultraviolet spectrometer and polarimeter, hard X-ray imaging spectrometer, hard X-ray burst spectrometer and gamma-ray spectrometer, and an active cavity radiometer for the accurate determination of the solar constant. In contrast to most satellite operations, Solar Maximum Mission investigators work together for the duration of the flight, comparing data obtained by the various instruments and planning observing programs daily on the basis of flare predictions and indicators. Thus far into the mission, over 50 data sets on reasonably large flares have been obtained, and important observations of coronal transients, magnetic fields in the transition region, flare time spectra, and material emitting X-rays between flares have been obtained.

  15. The solar terrestrial observatory

    NASA Technical Reports Server (NTRS)

    Chappell, C. R.

    1978-01-01

    The larger system of the earth environment is controlled externally by electromagnetic and particle energy from the sun. Recent studies have shown that the sun is a variable star with changes in its radiation which produce significant effects in the earth's climate and weather. The study of the solar-terrestrial system requires simultaneous, long-duration observations of the different elements or 'links' in the solar-terrestrial chain. Many investigations must be conducted in space from a vantage point above the earth's atmosphere where all of the sun's emissions can be observed free from atmospheric distortion, where the magnetospheric particles and fields can be measured directly, and where the atmosphere can be observed on a global scale. The extension of the Shuttle on-orbit capability in connection with the development of the power module will offer an important near-term step in an evolutionary process leading toward a permanent manned Solar Terrestrial Observatory capability in low-earth orbit. Attention is given to the required solar-terrestrial measurements, the operation of the Solar Terrestrial Observatory, and an evolutionary approach to the Solar Terrestrial Observatory.

  16. Anomalously weak solar convection.

    PubMed

    Hanasoge, Shravan M; Duvall, Thomas L; Sreenivasan, Katepalli R

    2012-07-24

    Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical-harmonic degree ℓ. Within the wavenumber band ℓ < 60, convective velocities are 20-100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers ℓ < 60, with Rossby numbers smaller than approximately 10(-2) at r/R([symbol: see text]) = 0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.

  17. Solar Thermal Propulsion Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. This image, taken during the test, depicts the light being concentrated into the focal point inside the vacuum chamber. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  18. Solar Atmosphere Models

    NASA Astrophysics Data System (ADS)

    Rutten, R. J.

    2002-12-01

    This contribution honoring Kees de Jager's 80th birthday is a review of "one-dimensional" solar atmosphere modeling that followed on the initial "Utrecht Reference Photosphere" of Heintze, Hubenet & de Jager (1964). My starting point is the Bilderberg conference, convened by de Jager in 1967 at the time when NLTE radiative transfer theory became mature. The resulting Bilderberg model was quickly superseded by the HSRA and later by the VAL-FAL sequence of increasingly sophisticated NLTE continuum-fitting models from Harvard. They became the "standard models" of solar atmosphere physics, but Holweger's relatively simple LTE line-fitting model still persists as a favorite of solar abundance determiners. After a brief model inventory I discuss subsequent work on the major modeling issues (coherency, NLTE, dynamics) listed as to-do items by de Jager in 1968. The present conclusion is that one-dimensional modeling recovers Schwarzschild's (1906) finding that the lower solar atmosphere is grosso modo in radiative equilibrium. This is a boon for applications regarding the solar atmosphere as one-dimensional stellar example - but the real sun, including all the intricate phenomena that now constitute the mainstay of solar physics, is vastly more interesting.

  19. Solar array flight experiment

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Emerging satellite designs require increasing amounts of electrical power to operate spacecraft instruments and to provide environments suitable for human habitation. In the past, electrical power was generated by covering rigid honeycomb panels with solar cells. This technology results in unacceptable weight and volume penalties when large amounts of power are required. To fill the need for large-area, lightweight solar arrays, a fabrication technique in which solar cells are attached to a copper printed circuit laminated to a plastic sheet was developed. The result is a flexible solar array with one-tenth the stowed volume and one-third the weight of comparably sized rigid arrays. An automated welding process developed to attack the cells to the printed circuit guarantees repeatable welds that are more tolerant of severe environments than conventional soldered connections. To demonstrate the flight readiness of this technology, the Solar Array Flight Experiment (SAFE) was developed and flown on the space shuttle Discovery in September 1984. The tests showed the modes and frequencies of the array to be very close to preflight predictions. Structural damping, however, was higher than anticipated. Electrical performance of the active solar panel was also tested. The flight performance and postflight data evaluation are described.

  20. Simulations of Solar Jets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    Formation of a coronal jet from twisted field lines that have reconnected with the ambient field. The colors show the radial velocity of the plasma. [Adapted from Szente et al. 2017]How do jets emitted from the Suns surface contribute to its corona and to the solar wind? In a recent study, a team of scientists performed complex three-dimensional simulations of coronal jets to answer these questions.Small ExplosionsCoronal jets are relatively small eruptions from the Suns surface, with heights of roughly 100 to 10,000 km, speeds of 10 to 1,000 km/s, and lifetimes of a few minutes to around ten hours. These jets are constantly present theyre emitted even from the quiet Sun, when activity is otherwise low and weve observed them with a fleet of Sun-watching space telescopes spanning the visible, extreme ultraviolet (EUV), and X-ray wavelength bands.A comparison of simulated observations based on the authors model (left panels) to actual EUV and X-ray observations of jets (right panels). [Szente et al. 2017]Due to their ubiquity, we speculate that these jets might contribute to heating the global solar corona (which is significantly hotter than the surface below it, a curiosity known as the coronal heating problem). We can also wonder what role these jets might play in driving the overall solar wind.Launching a JetLed by Judit Szente (University of Michigan), a team of scientists has explored the impact of coronal jets on the global corona and solar wind with a series of numerical simulations. Szente and collaborators used three-dimensional, magnetohydrodynamic simulations that provide realistic treatment of the solar atmosphere, the solar wind acceleration, and the complexities of heat transfer throughout the corona.In the authors simulations, a jet is initiated as a magnetic dipole rotates at the solar surface, winding up field lines. Magnetic reconnection between the twisted lines and the background field then launches the jet from the dense and hot solar

  1. Solar thermophotovoltaics: reshaping the solar spectrum

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiguang; Sakr, Enas; Sun, Yubo; Bermel, Peter

    2016-06-01

    Recently, there has been increasing interest in utilizing solar thermophotovoltaics (STPV) to convert sunlight into electricity, given their potential to exceed the Shockley-Queisser limit. Encouragingly, there have also been several recent demonstrations of improved system-level efficiency as high as 6.2%. In this work, we review prior work in the field, with particular emphasis on the role of several key principles in their experimental operation, performance, and reliability. In particular, for the problem of designing selective solar absorbers, we consider the trade-off between solar absorption and thermal losses, particularly radiative and convective mechanisms. For the selective thermal emitters, we consider the tradeoff between emission at critical wavelengths and parasitic losses. Then for the thermophotovoltaic (TPV) diodes, we consider the trade-off between increasing the potential short-circuit current, and maintaining a reasonable opencircuit voltage. This treatment parallels the historic development of the field, but also connects early insights with recent developments in adjacent fields.With these various components connecting in multiple ways, a system-level end-to-end modeling approach is necessary for a comprehensive understanding and appropriate improvement of STPV systems. This approach will ultimately allow researchers to design STPV systems capable of exceeding recently demonstrated efficiency values.

  2. Astroparticle physics with solar neutrinos.

    PubMed

    Nakahata, Masayuki

    2011-01-01

    Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the "solar neutrino problem". Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consistent with the prediction from the standard solar model. In this article, results of solar neutrino experiments are reviewed with detailed descriptions of what Kamiokande and Super-Kamiokande have contributed to the history of astroparticle physics with solar neutrino measurements. (Communicated by Toshimitsu Yamazaki, M.J.A.).

  3. Astroparticle physics with solar neutrinos

    PubMed Central

    NAKAHATA, Masayuki

    2011-01-01

    Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the “solar neutrino problem”. Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consistent with the prediction from the standard solar model. In this article, results of solar neutrino experiments are reviewed with detailed descriptions of what Kamiokande and Super-Kamiokande have contributed to the history of astroparticle physics with solar neutrino measurements. PMID:21558758

  4. The New Solar System

    NASA Astrophysics Data System (ADS)

    Beatty, J. Kelly; Collins Petersen, Carolyn; Chaikin, Andrew

    1999-01-01

    As the definitive guide for the armchair astronomer, The New Solar System has established itself as the leading book on planetary science and solar system studies. Incorporating the latest knowledge of the solar system, a distinguished team of researchers, many of them Principal Investigators on NASA missions, explain the solar system with expert ease. The completely-revised text includes the most recent findings on asteroids, comets, the Sun, and our neighboring planets. The book examines the latest research and thinking about the solar system; looks at how the Sun and planets formed; and discusses our search for other planetary systems and the search for life in the solar system. In full-color and heavily-illustrated, the book contains more than 500 photographs, portrayals, and diagrams. An extensive set of tables with the latest characteristics of the planets, their moon and ring systems, comets, asteroids, meteorites, and interplanetary space missions complete the text. New to this edition are descriptions of collisions in the solar system, full scientific results from Galileo's mission to Jupiter and its moons, and the Mars Pathfinder mission. For the curious observer as well as the student of planetary science, this book will be an important library acquisition. J. Kelly Beatty is the senior editor of Sky & Telescope, where for more than twenty years he has reported the latest in planetary science. A renowned science writer, he was among the first journalists to gain access to the Soviet space program. Asteroid 2925 Beatty was named on the occasion of his marriage in 1983. Carolyn Collins Petersen is an award-winning science writer and co-author of Hubble Vision (Cambridge 1995). She has also written planetarium programs seen at hundreds of facilities around the world. Andrew L. Chaikin is a Boston-based science writer. He served as a research geologist at the Smithsonian Institution's Center for Earth and Planetary Studies. He is a contributing editor to

  5. Discovering the Solar System

    NASA Astrophysics Data System (ADS)

    Jones, Barrie W.

    1999-04-01

    Discovering the Solar System Barrie W. Jones The Open University, Milton Keynes, UK Discovering the Solar System is a comprehensive, up-to-date account of the Solar System and of the ways in which the various bodies have been investigated and modelled. The approach is thematic, with sequences of chapters on the interiors of planetary bodies, on their surfaces, and on their atmospheres. Within each sequence there is a chapter on general principles and processes followed by one or two chapters on specific bodies. There is also an introductory chapter, a chapter on the origin of the Solar System, and a chapter on asteroids, comets and meteorites. Liberally illustrated with diagrams, black and white photographs and colour plates, Discovering the Solar System also features: * tables of essential data * question and answers within the text * end of section review questions with answers and comments Discovering the Solar System is essential reading for all undergraduate students for whom astronomy or planetary science are components of their degrees, and for those at a more advanced level approaching the subject for the first time. It will also be of great interest to non-specialists with a keen interest in astronomy. A small amount of scientific knowledge is assumed plus familiarity with basic algebra and graphs. There is no calculus. Praise for this book includes: ".certainly qualifies as an authoritative text. The author clearly has an encyclopedic knowledge of the subject." Meteorics and Planetary Science ".liberally doused with relevant graphs, tables, and black and white figures of good quality." EOS, Transactions of the American Geophysical Union ".one of the best books on the Solar System I have seen. The general accuracy and quality of the content is excellent." Journal of the British Astronomical Association

  6. Technical use of solar energy: Conversion from solar to thermal energy, solar cooling and thermal energy storage

    NASA Astrophysics Data System (ADS)

    Arafa, A.; Fisch, N.; Hahne, E.; Kraus, K.; Seemann, D.; Seifert, B.; Sohns, J.; Schetter, G.; Schweigerer, W.

    1983-12-01

    Experimental and theoretical studies in the field of solar energy utilization are reviewed. Specific topics considered are: flat plate water collectors, solar absorbers, air collectors, solar absorption cooling, solar simulators, aquifiers, latent heat stores, and space heating systems.

  7. Exploring Venus by Solar Airplane

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2001-01-01

    A solar-powered airplane is proposed to explore the atmospheric environment of Venus. Venus has several advantages for a solar airplane. At the top of the cloud level, the solar intensity is comparable to or greater than terrestrial solar intensities. The Earthlike atmospheric pressure means that the power required for flight is lower for Venus than that of Mars, and the slow rotation of Venus allows an airplane to be designed for continuous sunlight, with no energy storage needed for night-time flight. These factors mean that Venus is perhaps the easiest planet in the solar system for flight of a long-duration solar airplane.

  8. Estudio de distintos modelos de protuberancias solares

    NASA Astrophysics Data System (ADS)

    Cirigliano, D.; Rovira, M.; Mauas, P.

    En este trabajo presentamos perfiles de líneas del CaII, MgII y HeI calculados para distintos modelos de protuberancias, y los comparamos con observaciones obtenidas por los satélites OSO 8 y SOHO. Para obtener las poblaciones de los distintos niveles de los átomos, utilizamos un código numérico que combina las ecuaciones de transporte de radiación y equilibrio estadístico en un único sistema de ecuaciones no lineal. Los modelos básicos que consideramos para las protuberancias consisten en placas homogéneas y unidimensionales apoyadas sobre la superficie del Sol. Dichas placas se hallan estratificadas en hebras y los modelos difieren entre sí en la temperatura y ancho de la placa, en la presión a la cual se halla el plasma y en el número de hebras. A partir de estos modelos se investiga cada uno de estos parámetros libres y como influyen en la atmósfera de las protuberancias solares y en el perfil de línea de cada especie estudiada, con el objetivo de determinar las condiciones en las que se halla el material atmosférico de estas protuberancias.

  9. Workshop on Solar Activity, Solar Wind, Terrestrial Effects, and Solar Acceleration

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A summary of the proceedings from the workshop are presented. The areas covered were solar activity, solar wind, terrestrial effects, and solar acceleration. Specific topics addressed include: (1) solar cycle manifestations, both large and small scale, as well as long-term and short-term changes, including transients such as flares; (2) sources of solar wind, as identified by interplanetary observations including coronal mass ejections (CME's) or x-ray bright points, and the theory for and evolution of large-scale and small-scale structures; (3) magnetosphere responses, as observed by spacecraft, to variable solar wind and transient energetic particle emissions; and (4) origin and propagation of solar cosmic rays as related to solar activity and terrestrial effects, and solar wind coronal-hole relationships and dynamics.

  10. Solar neutrinos, solar flares, solar activity cycle and the proton decay

    NASA Technical Reports Server (NTRS)

    Raychaudhuri, P.

    1985-01-01

    It is shown that there may be a correlation between the galactic cosmic rays and the solar neutrino data, but it appears that the neutrino flux which may be generated during the large solar cosmic ray events cannot in any way effect the solar neutrino data in Davis experiment. Only initial stage of mixing between the solar core and solar outer layers after the sunspot maximum in the solar activity cycle can explain the higher (run number 27 and 71) of solar neutrino data in Davis experiment. But solar flare induced atmospheric neutrino flux may have effect in the nucleon decay detector on the underground. The neutrino flux from solar cosmic rays may be a useful guide to understand the background of nucleon decay, magnetic monopole search, and the detection of neutrino flux in sea water experiment.

  11. Helioseismology with Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Löptien, Björn; Birch, Aaron C.; Gizon, Laurent; Schou, Jesper; Appourchaux, Thierry; Blanco Rodríguez, Julián; Cally, Paul S.; Dominguez-Tagle, Carlos; Gandorfer, Achim; Hill, Frank; Hirzberger, Johann; Scherrer, Philip H.; Solanki, Sami K.

    2015-12-01

    The Solar Orbiter mission, to be launched in July 2017, will carry a suite of remote sensing and in-situ instruments, including the Polarimetric and Helioseismic Imager (PHI). PHI will deliver high-cadence images of the Sun in intensity and Doppler velocity suitable for carrying out novel helioseismic studies. The orbit of the Solar Orbiter spacecraft will reach a solar latitude of up to 21∘ (up to 34∘ by the end of the extended mission) and thus will enable the first local helioseismology studies of the polar regions. Here we consider an array of science objectives to be addressed by helioseismology within the baseline telemetry allocation (51 Gbit per orbit, current baseline) and within the science observing windows (baseline 3×10 days per orbit). A particularly important objective is the measurement of large-scale flows at high latitudes (rotation and meridional flow), which are largely unknown but play an important role in flux transport dynamos. For both helioseismology and feature tracking methods convection is a source of noise in the measurement of longitudinally averaged large-scale flows, which decreases as T -1/2 where T is the total duration of the observations. Therefore, the detection of small amplitude signals (e.g., meridional circulation, flows in the deep solar interior) requires long observation times. As an example, one hundred days of observations at lower spatial resolution would provide a noise level of about three m/s on the meridional flow at 80∘ latitude. Longer time-series are also needed to study temporal variations with the solar cycle. The full range of Earth-Sun-spacecraft angles provided by the orbit will enable helioseismology from two vantage points by combining PHI with another instrument: stereoscopic helioseismology will allow the study of the deep solar interior and a better understanding of the physics of solar oscillations in both quiet Sun and sunspots. We have used a model of the PHI instrument to study its

  12. Solar energy conversion.

    SciTech Connect

    Crabtree, G. W.; Lewis, N. S.

    2008-03-01

    If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience. The Sun has the enormous untapped potential to supply our growing energy needs. The barrier to greater use of the solar resource is its high cost relative to the cost of fossil fuels, although the disparity will decrease with the rising prices of fossil fuels and the rising costs of mitigating their impact on the environment and climate. The cost of solar energy is directly related to the low conversion efficiency, the modest energy density of solar radiation, and the costly materials currently required. The development of materials and methods to improve solar energy conversion is primarily a scientific challenge: Breakthroughs in fundamental understanding ought to enable marked progress. There is plenty of room for improvement, since photovoltaic conversion efficiencies for inexpensive organic and dye-sensitized solar cells are currently about 10% or less, the conversion efficiency of photosynthesis is less than 1%, and the best solar thermal efficiency is 30%. The theoretical limits suggest that we can do much better. Solar conversion is a young science. Its major growth began in the 1970s, spurred by the oil crisis that highlighted the pervasive importance of energy to our personal, social, economic, and political lives. In contrast, fossil-fuel science has developed over more than 250 years, stimulated by the Industrial Revolution and the promise of abundant fossil fuels. The science of thermodynamics, for example, is intimately intertwined with the development of the steam engine. The Carnot cycle, the mechanical equivalent of heat, and entropy all played starring roles in the development of thermodynamics and the technology of heat engines. Solar-energy science faces

  13. Site-specific solar resource measurements for industrial solar applications

    SciTech Connect

    Marion, W

    1994-06-01

    The solar industry can borrow solar radiation measuring equipment from the National Renewable Energy Laboratory (NREL) as part of NREL`s Solar Industrial Program. This program provides assistance to qualified parties in quantifying the solar radiation resource at prospective sites to reduce the risks of deploying industrial solar energy systems. Up-to-date solar radiation measurements permit comparisons of fresh data with existing data to verify established data bases and also provide data based on actual measurements instead of on less accurate models. This report outlines the responsibilities and obligations of NREL and the solar industry participant. It also describes the equipment for measuring solar radiation, the data quality assessment procedures, and the format of the data provided.

  14. Solar America Cities Awards: Solar America Initiative Fact Sheet

    SciTech Connect

    Not Available

    2008-03-01

    This fact sheet provides an overview of the Solar America Cities activities within the Solar America Initiative and lists the 25 cities that have received financial awards from the U.S. Department of Energy.

  15. Solar tomography adaptive optics.

    PubMed

    Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang

    2014-03-10

    Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.

  16. Solar thermal financing guidebook

    SciTech Connect

    Williams, T.A.; Cole, R.J.; Brown, D.R.; Dirks, J.A.; Edelhertz, H.; Holmlund, I.; Malhotra, S.; Smith, S.A.; Sommers, P.; Willke, T.L.

    1983-05-01

    This guidebook contains information on alternative financing methods that could be used to develop solar thermal systems. The financing arrangements discussed include several lease alternatives, joint venture financing, R and D partnerships, industrial revenue bonds, and ordinary sales. In many situations, alternative financing arrangements can significantly enhance the economic attractiveness of solar thermal investments by providing a means to efficiently allocate elements of risk, return on investment, required capital investment, and tax benefits. A net present value approach is an appropriate method that can be used to investigate the economic attractiveness of alternative financing methods. Although other methods are applicable, the net present value approach has advantages of accounting for the time value of money, yielding a single valued solution to the financial analysis, focusing attention on the opportunity cost of capital, and being a commonly understood concept that is relatively simple to apply. A personal computer model for quickly assessing the present value of investments in solar thermal plants with alternative financing methods is presented in this guidebook. General types of financing arrangements that may be desirable for an individual can be chosen based on an assessment of his goals in investing in solar thermal systems and knowledge of the individual's tax situation. Once general financing arrangements have been selected, a screening analysis can quickly determine if the solar investment is worthy of detailed study.

  17. Solar photovoltaic power stations

    NASA Technical Reports Server (NTRS)

    Chowaniec, C. R.; Pittman, P. F.; Ferber, R. R.; Marshall, B. W.

    1977-01-01

    The subsystems of a solar photovoltaic central power system are identified and the cost of major components are estimated. The central power system, which would have a peak power capability in the range of 50 to 1000 MW, utilizes two types of subsystems - a power conditioner and a solar array. Despite differences in costs of inverters, the overall cost of the total power conditioning subsystem is about the same for all approaches considered. A combination of two inverters operating from balanced dc buses as a pair of 6-pulse groups is recommended. A number of different solar cell modules and tracking array structures were analyzed. It is concluded that when solar cell costs are high (greater than $500/kW), high concentration modules are more cost effective than those with low concentration. Vertical-axis tracking is the most effective of the studied tracking modes. For less expensive solar cells (less than $400/kW), fixed tilt collector/reflector modules are more cost effective than those which track.

  18. Solar structure without computers

    NASA Astrophysics Data System (ADS)

    Clayton, Donald D.

    1986-04-01

    We derive succinctly the equations of solar structure. We first present models of objects in hydrostatic equilibrium that fail as models of the sun in order to illustrate important physical requirements. Then by arguing physically that the pressure gradient can be matched to the simple function dP/dr=-kre-(r/a)2, we derive a complete analytic representation of the solar interior in terms of a one-parameter family of models. Two different conditions are then used to select the appropriate value of the parameter specifying the best model within the family: (1) the solar luminosity is equated to the thermonuclear power generated near the center and/or (2) the solar luminosity is equated to the radiative diffusion of energy from a central region. The two methods of selecting the parameter agree to within a few percent. The central conditions of the sun are well calculated by these analytic formulas, all without aid of a computer. This is an original treatment, yielding much the best description of the solar center to be found by methods of differential and integral calculus, rendering it an excellent laboratory for applied calculus.

  19. Nanocrystal Solar Cells

    SciTech Connect

    Gur, Ilan

    2006-01-01

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  20. Solar coronal jets

    NASA Astrophysics Data System (ADS)

    Dobrzyck, D.

    The solar jets were first observed by SOHO instruments (EIT, LASCO, UVCS) during the previous solar minimum. They were small, fast ejections originating from flaring UV bright points within large polar coronal holes. The obtained data provided us with estimates of the jet plasma conditions, dynamics, evolution of the electron temperature and heating rate required to reproduce the observed ionization state. To follow the polar jets through the solar cycle a special SOHO Joint Observing Program (JOP 155) was designed. It involves a number of SOHO instruments (EIT, CDS, UVCS, LASCO) as well as TRACE. The coordinated observations have been carried out since April 2002. The data enabled to identify counterparts of the 1996-1998 solar minimum jets. Their frequency of several events per day appear comparable to the frequency from the previous solar minimum. The jets are believed to be triggered by field line reconnection between emerging magnetic dipole and pre-existing unipolar field. Existing models predict that the hot jet is formed together with another jet of a cool material. The particular goal of the coordinated SOHO and TRACE observations was to look for possible association of the hot and cool plasma ejections. Currently there is observational evidence that supports these models.

  1. Unconventional Solar Sailing

    NASA Astrophysics Data System (ADS)

    Ceriotti, Matteo

    The idea of exploiting solar radiation pressure for space travel, or solar sailing, is more than a 100 years old, and yet most of the research thus far has considered only a limited number of sail configurations. However solar sails do not have to be inertially-pointing squares, spin-stabilised discs or heliogyros: there is a range of different configurations and concepts that present some advantageous features. This chapter will show and discuss three non-conventional solar sail configurations and their applications. In the first, the sail is complemented by an electric thruster, resulting in a hybrid-propulsion spacecraft which is capable to hover above the Earth's Poles in a stationary position (pole-sitter). The second concept makes use of a variable-geometry pyramidal sail, naturally pointing towards the sun, to increase or decrease the orbit altitude without the need of propellant or attitude manoeuvres. Finally, the third concept shows that the orbit altitude can also be changed, without active manoeuvres or geometry change, if the sail naturally oscillates synchronously with the orbital motion. The main motivation behind these novel configurations is to overcome some of the engineering limitations of solar sailing; the resulting concepts pose some intriguing orbital and attitude dynamics problems, which will be discussed.

  2. COMPTEL solar flare observations

    NASA Technical Reports Server (NTRS)

    Ryan, J. M.; Aarts, H.; Bennett, K.; Debrunner, H.; Devries, C.; Denherder, J. W.; Eymann, G.; Forrest, D. J.; Diehl, R.; Hermsen, W.

    1992-01-01

    COMPTEL as part of a solar target of opportunity campaign observed the sun during the period of high solar activity from 7-15 Jun. 1991. Major flares were observed on 9 and 11 Jun. Although both flares were large GOES events (greater than or = X10), they were not extraordinary in terms of gamma-ray emission. Only the decay phase of the 15 Jun. flare was observed by COMPTEL. We report the preliminary analysis of data from these flares, including the first spectroscopic measurement of solar flare neutrons. The deuterium formation line at 2.223 MeV was present in both events and for at least the 9 Jun. event, was comparable to the flux in the nuclear line region of 4-8 MeV, consistent with Solar-Maximum Mission (SSM) Observations. A clear neutron signal was present in the flare of 9 Jun. with the spectrum extending up to 80 MeV and consistent in time with the emission of gamma-rays, confirming the utility of COMPTEL in measuring the solar neutron flux at low energies. The neutron flux below 100 MeV appears to be lower than that of the 3 Jun. 1982 flare by more than an order of magnitude. The neutron signal of the 11 Jun. event is under study. Severe dead time effects resulting from the intense thermal x-rays require significant corrections to the measured flux which increase the magnitude of the associated systematic uncertainties.

  3. SMART Solar Sail

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A.

    2005-01-01

    A report summarizes the design concept of a super miniaturized autonomous reconfigurable technology (SMART) solar sail a proposed deployable, fully autonomous solar sail for use in very fine station keeping of a spacecraft. The SMART solar sail would include a reflective film stretched among nodes of a SMART space frame made partly of nanotubule struts. A microelectromechanical system (MEMS) at each vertex of the frame would spool and unspool nanotubule struts between itself and neighboring nodes to vary the shape of the frame. The MEMSs would be linked, either wirelessly or by thin wires within the struts, to an evolvable neural software system (ENSS) that would control the MEMSs to reconfigure the sail as needed. The solar sail would be highly deformable from an initially highly compressed configuration, yet also capable of enabling very fine maneuvering of the spacecraft by means of small sail-surface deformations. The SMART Solar Sail would be connected to the main body of the spacecraft by a SMART multi-tether structure, which would include MEMS actuators like those of the frame plus tethers in the form of longer versions of the struts in the frame.

  4. Real World: Solar Power on Earth

    NASA Video Gallery

    Learn how NASA-inspired technologies produce solar power here on Earth. Go behind the scenes at the "Solar Decathlon," a competition to design a solar-powered house. Explore the benefits of solar e...

  5. Terrestrial solar thermionic energy conversion systems concept

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Swerdling, M.

    1975-01-01

    Results obtained from studies of a (1) solar concentrator, (2) solar energy receiver - thermionic converter system, and (3) solar thermionic topping system are described. Peripheral subsystems, which are required for any solar energy conversion system, are also discussed.

  6. Space Station Freedom solar dynamic power generation

    NASA Technical Reports Server (NTRS)

    Springer, T.; Friefeld, Jerry M.

    1990-01-01

    Viewgraphs on Space Station Freedom solar dynamic power generation are presented. Topics covered include: prime contract activity; key solar dynamic power module requirements; solar dynamic heat receiver technology; and solar concentrator advanced development.

  7. Fundamentals of solar energy conversion

    NASA Astrophysics Data System (ADS)

    Anderson, E. E.

    This textbook strives to strengthen a student's knowledge of the basic sciences as well as to provide a practical background in solar energy conversion. Particular consideration is given to solar geometry, the availability of solar energy, solar concentrators, elements of fluid mechanics and heat transfer in solar systems, flat-plate collectors, and thermal storage of solar energy. The use of solar energy for specific types of loads is then discussed. The application of active solar systems to space and hot-water heating is considered, and a description is given of the empirical f-chart method for thermal-performance analysis. The economics of solar systems is examined along with the application of solar energy to cooling and dehumidification loads as well as the application of solar energy to industrial and other thermal loads. The concept of passive systems is explained, and the evaluation of thermal performance on the basis of the empirical load/collector ratio method is described. Appendixes are presented with such information as solar-position charts, tables of solar radiation and climatic data, and programs for hand-held calculators.

  8. Solar sphere viewed through the Skylab solar physics experiment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The solar sphere viewed through the Skylab solar physics experiment (S082) Extreme Ultraviolet Spectroheliographis seen in this photographic reproduction taken from a color television transmission made by a TV camera aboard the Skylab space station in Earth orbit. The solar chromosphere and lower corona are much hotter than the surface of the Sun characterized by the white light emissions. This image was recorded during the huge solar prominence which occurred on August 21, 1973.

  9. Terrestrial solar spectra, solar simulation and solar cell short-circuit current calibration - A review

    NASA Astrophysics Data System (ADS)

    Matson, R. J.; Emery, K. A.; Bird, R. E.

    1984-03-01

    In this paper, the main issues in modeling and measuring terrestrial solar spectra and their relation to the short-circuit current of solar cells are addressed. These issues are (1) the measured and modeled terrestrial solar spectra, (2) the optimal light sources and their filtering for simulating the standard terrestrial solar irradiance spectrum and (3) the consequences of a mismatch between the chosen standard terrestrial solar spectrum and the actual irradiance conditions for the rated efficiency of a solar cell. In addition, this review provides the photovoltaics community with a tutorial document and a summary of the current activities and results in this field.

  10. Development of nonmetallic solar collector and solar-powered pump

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1979-01-01

    Design and building of two unique components for solar heating (1. flatplate solar collector using no metal components, and 2. solar powered pump for heating and cooling systems are outlined in report. Report also discusses hardware, deliverable end items, problems encountered during fabrication and testing, and performance certification.

  11. Solar Program Assessment: Environmental Factors - Solar Total Energy Systems.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    The purpose of this report is to present and prioritize the major environmental, safety, and social/institutional issues associated with the further development of Solar Total Energy Systems (STES). Solar total energy systems represent a specific application of the Federally-funded solar technologies. To provide a background for this analysis, the…

  12. Solar coronal non-thermal processes (Solar Maximum Mission)

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.

    1983-01-01

    The Solar Maximum Mission was used to study solar coronal phenomena in hard X-radiation, since its instrument complement included the first solar hard X-ray telescope. Phenomena related to those discovered from OSO-5 and OSO-7 observations were emphasized.

  13. Solar thermal energy receiver

    NASA Technical Reports Server (NTRS)

    Baker, Karl W. (Inventor); Dustin, Miles O. (Inventor)

    1992-01-01

    A plurality of heat pipes in a shell receive concentrated solar energy and transfer the energy to a heat activated system. To provide for even distribution of the energy despite uneven impingement of solar energy on the heat pipes, absence of solar energy at times, or failure of one or more of the heat pipes, energy storage means are disposed on the heat pipes which extend through a heat pipe thermal coupling means into the heat activated device. To enhance energy transfer to the heat activated device, the heat pipe coupling cavity means may be provided with extensions into the device. For use with a Stirling engine having passages for working gas, heat transfer members may be positioned to contact the gas and the heat pipes. The shell may be divided into sections by transverse walls. To prevent cavity working fluid from collecting in the extensions, a porous body is positioned in the cavity.

  14. Winnebago Tribe Solar Project

    SciTech Connect

    Nieman, Autumn

    2016-02-26

    The strategy of the Solar Project was to reduce fuel use within two years by a roof mounted photovoltaic system. The police/fire building is completely powered by electricity. The renewable energy system we have selected has a power capacity of 23kW and the ability to export 44.3 MWh. We anticipate 32.55% kWh energy savings, an excess of the required 30% reduction, in the building’s total fuel use based on the most current 12 months of data (2012). The solar electric system is a grid-tie, ballast mounted on a flat roof over the police/fire station. The solar electric system includes 280 Watt modules for a nominal total of 22.80 kW. Approximately 84 modules are ballast mounted to the flat roof facing south.

  15. Catalysis in solar energy

    NASA Astrophysics Data System (ADS)

    Maugh, T. H., II

    1983-09-01

    The progress of technologies to convert solar energy into useful work is reviewed, with particular attention given to the functional principles of solar cells and photoelectrochemical cells. The current in a solar cell is completely electronic, while in a photoelectric cell (PC) the current is partially ionic, i.e., the electrical contact between electrodes is accomplished chemically. The PC can be activated by photons to perform photoassisted electrolysis in the presence of an external potential, thus producing hydrogen fuel. Various materials are under study as photoanodes, with layered metal dichalcogenide semiconductors the best performers so far. The chalcogenides include MoS2, WS2, MoSe2, and WSe2, which could be applied to photochemical synthesis of redox products. Employment of Pt or Rh on the electrode surface has increased H2 production efficiency to 13.3 percent.

  16. Solar neutrino detection

    SciTech Connect

    Miramonti, Lino

    2009-04-30

    More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

  17. Comparing solar energy alternatives

    NASA Astrophysics Data System (ADS)

    White, J. R.

    1984-03-01

    This paper outlines a computational procedure for comparing the merits of alternative processes to convert solar radiation to heat, electrical power, or chemical energy. The procedure uses the ratio of equipment investment to useful work as an index. Comparisons with conversion counterparts based on conventional fuels are also facilitated by examining this index. The procedure is illustrated by comparisons of (1) photovoltaic converters of differing efficiencies; (2) photovoltaic converters with and without focusing concentrators; (3) photovoltaic conversion plus electrolysis vs photocatalysis for the production of hydrogen; (4) photovoltaic conversion plus plasma arcs vs photocatalysis for nitrogen fixation. Estimates for conventionally-fuelled processes are included for comparison. The reasons why solar-based concepts fare poorly in such comparisons are traced to the low energy density of solar radiation and its low stream time factor resulting from the limited number of daylight hours available and clouds obscuring the sun.

  18. Hydrogen from solar energy

    NASA Astrophysics Data System (ADS)

    Schnurnberger, W.; Seeger, W.; Steeb, H.

    1981-11-01

    It is expected that, at some time in the foreseeable future, processes for obtaining hydrogen on the basis of a use of nonfossil energy will be economically feasible. Nonfossil energy sources considered are related to water power, nuclear energy, and solar energy. The current status of various approaches for the decomposition of water is examined, taking into account a supply of the required energy in form of heat, electric power, or light energy. At the present time only the technology of water electrolysis is sufficiently advanced to provide hydrogen on a large scale. Considerable improvements regarding current electrolysis technology with respect to efficiency and required capital costs should be possible within the foreseeable future. Approaches are considered to obtain the required electric power for the electrolysis with the aid of processes based on the utilization of solar cells. Attention is given to improved procedures for water electrolysis, and approaches for achieving optimal operational relations between solar-cell generators and electrolysis equipment.

  19. Solar ventilation and tempering

    NASA Astrophysics Data System (ADS)

    Adámek, Karel; Pavlů, Miloš; Bandouch, Milan

    2014-08-01

    The paper presents basic information about solar panels, designed, realized and used for solar ventilation of rooms. Used method of numerical flow simulation gives good overview about warming and flowing of the air in several kinds of realized panels (window, facade, chimney). Yearlong measurements give a good base for calculations of economic return of invested capital. The operation of the system in transient period (spring, autumn) prolongs the period without classical heating of the room or building, in winter the classical heating is supported. In the summer period the system, furnished with chimney, can exhaust inner warm air together with necessary cooling of the system by gravity circulation, only. System needs not any invoiced energy source; it is supplied entirely by solar energy. Large building systems are supported by classical electric fan respectively.

  20. SOLAR PUMPED LASER MICROTHRUSTER

    SciTech Connect

    Rubenchik, A M; Beach, R; Dawson, J; Siders, C W

    2010-02-05

    The development of microsatellites requires the development of engines to modify their orbit. It is natural to use solar energy to drive such engines. For an unlimited energy source the optimal thruster must use a minimal amount of expendable material to minimize launch costs. This requires the ejected material to have the maximal velocity and, hence, the ejected atoms must be as light as possible and be ejected by as high an energy density source as possible. Such a propulsion can be induced by pulses from an ultra-short laser. The ultra-short laser provides the high-energy concentration and high-ejected velocity. We suggest a microthruster system comprised of an inflatable solar concentrator, a solar panel, and a diode-pumped fiber laser. We will describe the system design and give weight estimates.

  1. Understanding Solar Flare Statistics

    NASA Astrophysics Data System (ADS)

    Wheatland, M. S.

    2005-12-01

    A review is presented of work aimed at understanding solar flare statistics, with emphasis on the well known flare power-law size distribution. Although avalanche models are perhaps the favoured model to describe flare statistics, their physical basis is unclear, and they are divorced from developing ideas in large-scale reconnection theory. An alternative model, aimed at reconciling large-scale reconnection models with solar flare statistics, is revisited. The solar flare waiting-time distribution has also attracted recent attention. Observed waiting-time distributions are described, together with what they might tell us about the flare phenomenon. Finally, a practical application of flare statistics to flare prediction is described in detail, including the results of a year of automated (web-based) predictions from the method.

  2. Solar Pumped Laser Microthruster

    NASA Astrophysics Data System (ADS)

    Rubenchik, A. M.; Beach, R.; Dawson, J.; Siders, C. W.

    2010-10-01

    The development of microsatellites requires the development of engines to modify their orbit. It is natural to use solar energy to drive such engines. For an unlimited energy source the optimal thruster must use a minimal amount of expendable material to minimize launch costs. This requires the ejected material to have the maximal velocity and, hence, the ejected atoms must be as light as possible and be ejected by as high an energy density source as possible. Such a propulsion can be induced by pulses from an ultra-short laser. The ultra-short laser provides the high-energy concentration and high-ejected velocity. We suggest a microthruster system comprised of an inflatable solar concentrator, a solar panel, and a diode-pumped fiber laser. We will describe the system design and give weight estimates.

  3. Solar Pumped Laser Microthruster

    SciTech Connect

    Rubenchik, A. M.; Beach, R.; Dawson, J.; Siders, C. W.

    2010-10-08

    The development of microsatellites requires the development of engines to modify their orbit. It is natural to use solar energy to drive such engines. For an unlimited energy source the optimal thruster must use a minimal amount of expendable material to minimize launch costs. This requires the ejected material to have the maximal velocity and, hence, the ejected atoms must be as light as possible and be ejected by as high an energy density source as possible. Such a propulsion can be induced by pulses from an ultra-short laser. The ultra-short laser provides the high-energy concentration and high-ejected velocity. We suggest a microthruster system comprised of an inflatable solar concentrator, a solar panel, and a diode-pumped fiber laser. We will describe the system design and give weight estimates.

  4. Cadmium sulfide solar cells

    NASA Technical Reports Server (NTRS)

    Stanley, A. G.

    1975-01-01

    Development, fabrication and applications of CdS solar cells are reviewed in detail. The suitability of CdS cells for large solar panels and microcircuitry, and their low cost, are emphasized. Developments are reviewed by manufacturer-developer. Vapor phase deposition of thin-film solar cells, doping and co-evaporation, sputtering, chemical spray, and sintered layers are reviewed, in addition to spray deposition, monograin layer structures, and silk screening. Formation of junctions by electroplating, evaporation, brushing, CuCl dip, and chemiplating are discussed, along with counterelectrode fabrication, VPD film structures, the Cu2S barrier layer, and various photovoltaic effects (contact photovoltage, light intensity variation, optical enhancement), and various other CdS topics.

  5. Anomalously weak solar convection

    PubMed Central

    Hanasoge, Shravan M.; Duvall, Thomas L.

    2012-01-01

    Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical-harmonic degree ℓ. Within the wavenumber band ℓ < 60, convective velocities are 20–100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers ℓ < 60, with Rossby numbers smaller than approximately 10-2 at r/R⊙ = 0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient. PMID:22665774

  6. Solar Indices Forecasting Tool

    NASA Astrophysics Data System (ADS)

    Henney, Carl John; Shurkin, Kathleen; Arge, Charles; Hill, Frank

    2016-05-01

    Progress to forecast key space weather parameters using SIFT (Solar Indices Forecasting Tool) with the ADAPT (Air Force Data Assimilative Photospheric flux Transport) model is highlighted in this presentation. Using a magnetic flux transport model, ADAPT, we estimate the solar near-side field distribution that is used as input into empirical models for predicting F10.7(solar 10.7 cm, 2.8 GHz, radio flux), the Mg II core-to-wing ratio, and selected bands of solar far ultraviolet (FUV) and extreme ultraviolet (EUV) irradiance. Input to the ADAPT model includes the inferred photospheric magnetic field from the NISP ground-based instruments, GONG & VSM. Besides a status update regarding ADAPT and SIFT models, we will summarize the findings that: 1) the sum of the absolute value of strong magnetic fields, associated with sunspots, is shown to correlate well with the observed daily F10.7 variability (Henney et al. 2012); and 2) the sum of the absolute value of weak magnetic fields, associated with plage regions, is shown to correlate well with EUV and FUV irradiance variability (Henney et al. 2015). This work utilizes data produced collaboratively between Air Force Research Laboratory (AFRL) and the National Solar Observatory (NSO). The ADAPT model development is supported by AFRL. The input data utilized by ADAPT is obtained by NISP (NSO Integrated Synoptic Program). NSO is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under a cooperative agreement with the National Science Foundation (NSF). The 10.7 cm solar radio flux data service, utilized by the ADAPT/SIFT F10.7 forecasting model, is operated by the National Research Council of Canada and National Resources Canada, with the support of the Canadian Space Agency.

  7. Chicago's Solar-Powered Schools.

    ERIC Educational Resources Information Center

    Martin, Gabriela; O'Toole, Mary

    2002-01-01

    Introduces the Chicago Solar Schools Project which promotes solar energy and provides students the opportunity to develop an awareness of the environment. Implements an integrated curriculum approach with the cooperation of community and business. (YDS)

  8. 6Li from Solar Flares.

    PubMed

    Ramaty; Tatischeff; Thibaud; Kozlovsky; Mandzhavidze

    2000-05-10

    By introducing a hitherto ignored 6Li producing process, due to accelerated 3He reactions with 4He, we show that accelerated particle interactions in solar flares produce much more 6Li than 7Li. By normalizing our calculations to gamma-ray data, we demonstrate that the 6Li produced in solar flares, combined with photospheric 7Li, can account for the recently determined solar wind lithium isotopic ratio, obtained from measurements in lunar soil, provided that the bulk of the flare-produced lithium is evacuated by the solar wind. Further research in this area could provide unique information on a variety of problems, including solar atmospheric transport and mixing, solar convection and the lithium depletion issue, and solar wind and solar particle acceleration.

  9. Developing an Inflatable Solar Array

    NASA Technical Reports Server (NTRS)

    Malone, Patrick K.; Jankowski, Francis J.; Williams, Geoffery T.; Vendura, George J., Jr.

    1992-01-01

    Viewgraphs describing the development of an inflatable solar array as part of the Inflatable Torus Solar Array Technology (ITSAT) program are presented. Program phases, overall and subsystem designs, and array deployment are addressed.

  10. Concentrating Solar Power (Fact Sheet)

    SciTech Connect

    DOE Solar Energy Technologies Program

    2011-10-13

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade.

  11. Future Directions in Solar Physics

    NASA Technical Reports Server (NTRS)

    Rabin, Douglas

    2010-01-01

    I will discuss scientific opportunities for space-based solar physics instruments in the coming decade and their synergy with major new ground-based telescopes. l will also discuss ( pow small satellites may complement larger solar physics missions.

  12. NASA's Solar System Exploration Program

    NASA Technical Reports Server (NTRS)

    Robinson, James

    2005-01-01

    A viewgraph presentation describing NASA's Solar System Exploration Program is shown. The topics include: 1) Solar System Exploration with Highlights and Status of Programs; 2) Technology Drivers and Plans; and 3) Summary

  13. Solar Leasing Summary, Houston Texas

    SciTech Connect

    Hammer, Mary

    2013-02-14

    A relatively new option for homeowners looking to add solar to their home is the solar lease. At present, the solar lease option can be found in California, Arizona, Texas, Colorado, Hawaii, New York and Oregon. The most active companies currently offering solar leases are NRG Energy, Sungevity, Solar City and Sun Run. With the uncertainty and/or lack of subsidies the states participating in these programs have ebbed and flowed over the last few years. However, there is an expectation that in the current market solar leasing will make solar viable without the utility and federal subsidies. NRG Energy is currently testing this expectation in Houston, TX where currently no subsidies or incentives beyond the federal tax incentives, exist. Following is an explanation on the state of solar leasing in Houston, TX and explanation of the current financing options.

  14. Manhattan Solar Cannon

    NASA Astrophysics Data System (ADS)

    Treffers, Richard R.; Loisos, George; Ubbelohde, Susan; Douglas, Susanna; Pintos, Eduardo; Mulherin, James; Pasley, David

    2015-01-01

    We describe a 2.4 m hexagonal solar collector atop a Manhattan office building used for a solar / arts project. The collector uses an afocal design to concentrate the sunlight into a 0.6 m diameter beam which is directed by mirrors into a 80 m long fiber optic sculpture which descends an interior stairwell. The collector is fully steerable and follows the sun each day robotically. The control system and the optical design of the collector as well as the fiber optic sculpture will be discussed.

  15. Solar Decathlon 2013

    ScienceCinema

    Lewis, Chandra; Ouyang, Derek; Brown, Victoria; Ainsworth, Claire; Lee, Daniel; King, Richard

    2016-07-12

    The Solar Decathlon is a perfect example of how the Energy Department is training and inspiring the next generation of architects, engineers and entrepreneurs. The two-year competition challenges collegiate teams to build energy-efficient, solar-powered houses. Over the course of the competition, students gain hands-on experience in everything from fundraising and marketing to design and construction. Showcasing their houses to the general public allows students to get feedback on their designs and how they work in the real world -- something that many of them would never get in the classroom.

  16. Solar Neutrinos. II. Experimental

    DOE R&D Accomplishments Database

    Davis, Raymond Jr.

    1964-01-01

    A method is described for observing solar neutrinos from the reaction Cl{sup 37}(nu,e{sup -})Ar{sup 37} in C{sub 2}Cl{sub 4}. Two 5 00-gal tanks of C{sub 2}Cl{sub 4} were placed in a limestone mine (1800 m.w.e.) and the resulting Ar{sup 37} activity induced by cosmic mesons( mu ) was measured to determine the necessary conditions for solar neutrino observations. (R.E.U.)

  17. Variability of Solar Mesogranulation

    DTIC Science & Technology

    1988-01-01

    the method of local correlation tracking /2,3/.. These data show that solar granules mov~e like test particles ("corks") on top of larger-scale lne...distribution unlimited D T I C S ELECTEJUN& ZA 994 U 4 U From white--light photographs of solar granulation obtained with the SOUP instrument on Space...Shuttle Flioht STS-19 we have measured the motions of granules using local correlation tracking techniques. The cranules are or.anized into lar-er-gcale

  18. Optimized solar module design

    NASA Technical Reports Server (NTRS)

    Santala, T.; Sabol, R.; Carbajal, B. G.

    1978-01-01

    The minimum cost per unit of power output from flat plate solar modules can most likely be achieved through efficient packaging of higher efficiency solar cells. This paper outlines a module optimization method which is broadly applicable, and illustrates the potential results achievable from a specific high efficiency tandem junction (TJ) cell. A mathematical model is used to assess the impact of various factors influencing the encapsulated cell and packing efficiency. The optimization of the packing efficiency is demonstrated. The effect of encapsulated cell and packing efficiency on the module add-on cost is shown in a nomograph form.

  19. Physics of solar activity

    NASA Technical Reports Server (NTRS)

    Sturrock, Peter A.

    1993-01-01

    The aim of the research activity was to increase our understanding of solar activity through data analysis, theoretical analysis, and computer modeling. Because the research subjects were diverse and many researchers were supported by this grant, a select few key areas of research are described in detail. Areas of research include: (1) energy storage and force-free magnetic field; (2) energy release and particle acceleration; (3) radiation by nonthermal electrons; (4) coronal loops; (5) flare classification; (6) longitude distributions of flares; (7) periodicities detected in the solar activity; (8) coronal heating and related problems; and (9) plasma processes.

  20. Heterostructure solar cells

    NASA Technical Reports Server (NTRS)

    Chang, K. I.; Yeh, Y. C. M.; Iles, P. A.; Morris, R. K.

    1987-01-01

    The performance of gallium arsenide solar cells grown on Ge substrates is discussed. In some cases the substrate was thinned to reduce overall cell weight with good ruggedness. The conversion efficiency of 2 by 2 cm cells under AMO reached 17.1 percent with a cell thickness of 6 mils. The work described forms the basis for future cascade cell structures, where similar interconnecting problems between the top cell and the bottom cell must be solved. Applications of the GaAs/Ge solar cell in space and the expected payoffs are discussed.

  1. Solar cell radiation handbook

    NASA Technical Reports Server (NTRS)

    Carter, J. R., Jr.; Tada, H. Y.

    1973-01-01

    A method is presented for predicting the degradation of a solar array in a space radiation environment. Solar cell technology which emphasizes the cell parameters that degrade in a radiation environment, is discussed along with the experimental techniques used in the evaluation of radiation effects. Other topics discussed include: theoretical aspects of radiation damage, methods for developing relative damage coefficients, nature of the space radiation environment, method of calculating equivalent fluence from electron and proton energy spectrums and relative damage coefficients, and comparison of flight data with estimated degradation.

  2. Solar industrial process heat

    SciTech Connect

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  3. Solar terrestrial observatory

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Eight basic solar-terrestrial scientific objectives that benefit from the Shuttle/Platform approach and a program of measurements for each are discussed. The objectives are to understand: (1) solar variability, (2) wave-particle processes, (3) magnetosphere-ionosphere mass transport, (4) the global electric circuit, (5) upper atmospheric dynamics, (6) middle atmospheric chemistry and energetics, (7) lower atmospheric turbidity, and (8) planetary atmospheric waves. A two stage approach to a multidisciplinary payload is developed: an initial STO, that uses a single platform in a low-Earth orbit, and an advanced STO that uses two platforms in differing orbits.

  4. Solar Decathlon 2013

    SciTech Connect

    Lewis, Chandra; Ouyang, Derek; Brown, Victoria; Ainsworth, Claire; Lee, Daniel; King, Richard

    2013-10-22

    The Solar Decathlon is a perfect example of how the Energy Department is training and inspiring the next generation of architects, engineers and entrepreneurs. The two-year competition challenges collegiate teams to build energy-efficient, solar-powered houses. Over the course of the competition, students gain hands-on experience in everything from fundraising and marketing to design and construction. Showcasing their houses to the general public allows students to get feedback on their designs and how they work in the real world -- something that many of them would never get in the classroom.

  5. Solar heated rotary kiln

    SciTech Connect

    Shell, Pamela K.

    1984-01-01

    A solar heated rotary kiln utilized for decomposition of materials, such as zinc sulfate. The rotary kiln has an open end and is enclosed in a sealed container having a window positioned for directing solar energy into the open end of the kiln. The material to be decomposed is directed through the container into the kiln by a feed tube. The container is also provided with an outlet for exhaust gases and an outlet for spent solids, and rests on a tiltable base. The window may be cooled and kept clear of debris by coolant gases.

  6. Solar heated rotary kiln

    SciTech Connect

    Shell, P.K.

    1984-04-17

    A solar heated rotary kiln utilized for decomposition of materials, such as zinc sulfate. The rotary kiln has an open end and is enclosed in a sealed container having a window positioned for directing solar energy into the open end of the kiln. The material to be decomposed is directed through the container into the kiln by a feed tube. The container is also provided with an outlet for exhaust gases and an outlet for spent solids, and rests on a tiltable base. The window may be cooled and kept clear of debris by coolant gases.

  7. Solar reflection panels

    DOEpatents

    Diver, Jr., Richard B.; Grossman, James W.; Reshetnik, Michael

    2006-07-18

    A solar collector comprising a glass mirror, and a composite panel, wherein the back of the mirror is affixed to a front surface of the composite panel. The composite panel comprises a front sheet affixed to a surface of a core material, preferably a core material comprising a honeycomb structure, and a back sheet affixed to an opposite surface of the core material. The invention may further comprise a sealing strip, preferably comprising EPDM, positioned between the glass mirror and the front surface of the composite panel. The invention also is of methods of making such solar collectors.

  8. Corrosion resistant solar mirror

    DOEpatents

    Medwick, Paul A.; Abbott, Edward E.

    2016-07-19

    A reflective article includes a transparent substrate having a first major surface and a second major surface. A base coat is formed over at least a portion of the second major surface. A primary reflective coating having at least one metallic layer is formed over at least a portion of the base coat. A protective coating is formed over at least a portion of the primary reflective coating. The article further includes a solar cell and an anode, with the solar cell connected to the metallic layer and the anode.

  9. Monolithic tandem solar cell

    DOEpatents

    Wanlass, Mark W.

    1991-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, and (c) a second photoactive subcell on the first subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two-terminal device or a three-terminal device.

  10. Flank solar wind interaction

    NASA Technical Reports Server (NTRS)

    Moses, Stewart L.; Greenstadt, Eugene W.

    1992-01-01

    This report summarizes the results of the first 12 months of our program to study the interaction of the Earth's magnetosphere with the solar wind on the far flanks of the bow shock. This study employs data from the ISEE-3 spacecraft during its traversals of the Earth's magnetotail and correlative data from spacecraft monitoring the solar wind upstream. Our main effort to date has involved assembling data sets and developing new plotting programs. Two talks were given at the Spring Meeting of the American Geophysical Union describing our initial results from analyzing data from the far flank foreshock and magnetosheath. The following sections summarize our results.

  11. Quantum well solar cells

    NASA Astrophysics Data System (ADS)

    Barnham, K. W. J.; Ballard, I.; Connolly, J. P.; Ekins-Daukes, N. J.; Kluftinger, B. G.; Nelson, J.; Rohr, C.

    2002-04-01

    This paper reviews the experimental and theoretical studies of quantum well solar cells with an aim of providing the background to the more detailed papers on this subject in these proceedings. It discusses the way quantum wells enhance efficiency in real, lattice matched material systems and fundamental studies of radiative recombination relevant to the question of whether such enhancements are possible in ideal cells. A number of theoretical models for quantum well solar cells (QWSCs) are briefly reviewed and more detail is given of our own group's model of the dark-currents. The temperature and field dependence of QWSCs are all briefly reviewed.

  12. Solar radiation measurement project

    NASA Technical Reports Server (NTRS)

    Ioup, J. W.

    1981-01-01

    The Xavier solar radiation measurement project and station are described. Measurements of the total solar radiation on a horizontal surface from an Eppley pyranometer were collected into computer data files. Total radiation in watt hours was converted from ten minute intervals to hourly intervals. Graphs of this total radiation data are included. A computer program in Fortran was written to calculate the total extraterrestrial radiation on a horizontal surface for each day of the month. Educational and social benefits of the project are cited.

  13. Flexible Solar Cells

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Solar cell "modules" are plastic strips coated with thin films of photovoltaic silicon that collect solar energy for instant conversion into electricity. Lasers divide the thin film coating into smaller cells to build up voltage. Developed by Iowa Thin Film Technologies under NASA and DOE grants, the modules are used as electrical supply for advertising displays, battery rechargers for recreational vehicles, and to power model airplanes. The company is planning other applications both in consumer goods and as a power source in underdeveloped countries.

  14. Solar atmosphere neutrino oscillations

    SciTech Connect

    Fogli, G.L.; Lisi, E.; Mirizzi, A.; Montanino, D.; Serpico, P.D.; /Fermilab

    2007-02-01

    The Sun is a source of high energy neutrinos (E > 10 GeV) produced by cosmic ray interactions in the solar atmosphere. We study the impact of three-flavor oscillations on the solar atmosphere neutrino fluxes observable at Earth. We find that peculiar matter oscillation effects in the Sun do exist, but are significantly suppressed by averaging over the production region and over the neutrino and antineutrino components. In particular, the relation between the neutrino fluxes at the Sun and at the Earth can be approximately expressed in terms of phase-averaged ''vacuum'' oscillations, dominated by a single mixing parameter (the angle {theta}{sub 23}).

  15. Purdue Solar Energy Utilization Laboratory

    SciTech Connect

    Agrawal, Rakesh

    2014-01-21

    The objective of this project is to establish and set-up a laboratory that will facilitate research and development of new low-cost and high-efficiency solar energy utilization technologies at Purdue University. The outcome will help spur the creation of solar energy start-up companies and eventually a solar energy industry in Indiana that can help fulfill the growing national demand for solar energy.

  16. Solar thermal system engineering guidebook

    NASA Astrophysics Data System (ADS)

    Selcuk, M. K.; Bluhm, S. A.

    1983-05-01

    This report presents a graphical methodology for the preliminary evaluation of solar thermal energy plants by Air Force base civil engineers. The report is organized as a Guidebook with worksheets and nomograms provided for rapid estimation of solar collector area, land area, energy output, and thermal power output of a solar thermal plant. Flat plate, evacuated tube, parabolic trough, and parabolic dish solar thermal technologies are considered.

  17. Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia; Schrijver, Carolus J.; Klimchuk, James A.; Charbonneau, Paul; Fletcher, Lyndsay; Hasan, S. Sirajul; Hudson, Hugh S.; Kusano, Kanya; Mandrini, Cristina H.; Peter, Hardi; Vršnak, Bojan; Yan, Yihua

    2012-04-01

    Commission 10 of the International Astronomical Union has more than 650 members who study a wide range of activity phenomena produced by our nearest star, the Sun. Solar activity is intrinsically related to solar magnetic fields and encompasses events from the smallest energy releases (nano- or even picoflares) to the largest eruptions in the Solar System, coronal mass ejections (CMEs), which propagate into the Heliosphere reaching the Earth and beyond. Solar activity is manifested in the appearance of sunspot groups or active regions, which are the principal sources of activity phenomena from the emergence of their magnetic flux through their dispersion and decay. The period 2008-2009 saw an unanticipated extended solar cycle minimum and unprecedentedly weak polar-cap and heliospheric field. Associated with that was the 2009 historical maximum in galactic cosmic rays flux since measurements begun in the middle of the 20th Century. Since then Cycle 24 has re-started solar activity producing some spectacular eruptions observed with a fleet of spacecraft and ground-based facilities. In the last triennium major advances in our knowledge and understanding of solar activity were due to continuing success of space missions as SOHO, Hinode, RHESSI and the twin STEREO spacecraft, further enriched by the breathtaking images of the solar atmosphere produced by the Solar Dynamic Observatory (SDO) launched on 11 February 2010 in the framework of NASA's Living with a Star program. In August 2012, at the time of the IAU General Assembly in Beijing when the mandate of this Commission ends, we will be in the unique position to have for the first time a full 3-D view of the Sun and solar activity phenomena provided by the twin STEREO missions about 120 degrees behind and ahead of Earth and other spacecraft around the Earth and ground-based observatories. These new observational insights are continuously posing new questions, inspiring and advancing theoretical analysis and

  18. Advanced solar dynamic technology program

    NASA Technical Reports Server (NTRS)

    Calogeras, James

    1990-01-01

    Viewgraphs and discussion on Advanced Solar Dynamic Technology Program are presented. Topics covered include: advanced solar dynamic technology program; advanced concentrators; advanced heat receivers; power conversion systems; dished all metal honeycomb sandwich panels; Stirling cavity heat pipe receiver; Brayton solar receiver; and thermal energy storage technology.

  19. High Voltage Space Solar Arrays

    NASA Technical Reports Server (NTRS)

    Ferguson, D. C.; Hillard, G. B.; Vayner, B. V.; Galofaro, J. T.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Recent tests performed at the NASA Glenn Research Center and elsewhere have shown promise in the design and construction of high voltage (300-1000 V) solar arrays for space applications. Preliminary results and implications for solar array design will be discussed, with application to direct-drive electric propulsion and space solar power.

  20. 2010 Solar Technologies Market Report

    SciTech Connect

    Not Available

    2011-11-01

    The U.S. Department of Energy (DOE) 2010 Solar Technologies Market Report details the market conditions and trends for photovoltaic (PV) and concentrating solar power (CSP) technologies. Produced by the National Renewable Energy Laboratory (NREL), the report provides a comprehensive overview of the solar electricity market and identifies successes and trends within the market from both global and national perspectives.

  1. Solar powered model vehicle races

    NASA Astrophysics Data System (ADS)

    Yılmaz, Nazmi; Serpengüzel, Ali

    2014-09-01

    Koç University SPIE student chapter has been organizing the solar powered model vehicle race and outreaching K-12 students. The solar powered model vehicle race for car, boat, blimp, all solar panel boat, submarine, underwater rower, amphibian, and glider have been successfully organized.

  2. Solar energy for the hospital?

    PubMed

    1981-01-01

    You can't scrap your boiler and expect solar panels to provide steam for process and heating, but solar systems are cost-effective now for domestic hot water generation, according to a leading solar energy engineering/design/build firm.

  3. Composition of the Solar Wind

    NASA Technical Reports Server (NTRS)

    Suess, S. T.

    2007-01-01

    The solar wind reflects the composition of the Sun and physical processes in the corona. Analysis produces information on how the solar system was formed and on physical processes in the corona. The analysis can also produce information on the local interstellar medium, galactic evolution, comets in the solar wind, dust in the heliosphere, and matter escaping from planets.

  4. New Directions for Solar Energy

    ERIC Educational Resources Information Center

    Glaser, Peter E.; Burke, James C.

    1973-01-01

    Describes new applications being found for solar energy as a result of technical advances and a variety of economic and social forces. Discusses the basic requirements for a solar climate control system and outlines factors that should stimulate greater use of solar energy in the near future. (JR)

  5. Basics of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Meyer-Vernet, Nicole

    2012-09-01

    Preface; 1. The wind from the sun: an introduction; 2. Toolkit for space plasma physics; 3. Anatomy of the sun; 4. The outer solar atmosphere; 5. How does the solar wind blow?; 6. Structure and perturbations; 7. Bodies in the wind: dust, asteroids, planets and comets; 8. The solar wind in the universe; Index.

  6. Solar energy use in China

    SciTech Connect

    Butti, K.

    1982-01-01

    There are more passive solar-heated homes in Northern China than in any other place in the world, since from ancient times Chinese homes have been built and oriented to take advantage of the winter sun. Current solar energy research in China is described including the activities of the Beijing Solar Energy Research Institute and the Gansu Natural Energy Research Institute.

  7. Solar Hot Water Hourly Simulation

    SciTech Connect

    Walker, Howard Andrew

    2009-12-31

    The Software consists of a spreadsheet written in Microsoft Excel which provides an hourly simulation of a solar hot water heating system (including solar geometry, solar collector efficiency as a function of temperature, energy balance on storage tank and lifecycle cost analysis).

  8. Solar variability, weather, and climate

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Advances in the understanding of possible effects of solar variations on weather and climate are most likely to emerge by addressing the subject in terms of fundamental physical principles of atmospheric sciences and solar-terrestrial physis. The limits of variability of solar inputs to the atmosphere and the depth in the atmosphere to which these variations have significant effects are determined.

  9. Local leadership for solar energy

    SciTech Connect

    Pulliam, E.R.; Hedgecock, R.A.

    1980-05-01

    San Diego County is the first governmental unit in the US to mandate the use of solar energy. An ordinance requires the use of solar water heating in new housing. The process by which the ordinance was enacted is reviewed, including a Solar Ordinance Feasibility Analysis whose conclusions are reported. Arguments for and against the ordinance are reviewed. (LEW)

  10. Solar Water Heater Installation Package

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A 48-page report describes water-heating system, installation (covering collector orientation, mounting, plumbing and wiring), operating instructions and maintenance procedures. Commercial solar-powered water heater system consists of a solar collector, solar-heated-water tank, electrically heated water tank and controls. Analysis of possible hazards from pressure, electricity, toxicity, flammability, gas, hot water and steam are also included.

  11. NREL + SolarCity: Maximizing Solar Power on Electrical Grids

    SciTech Connect

    Hannegan, Bryan; Hanley, Ryan; Symko-Davies, Martha

    2015-06-03

    Learn how NREL is partnering with SolarCity to study how to better integrate rooftop solar onto the grid. The work includes collaboration with the Hawaiian Electric Companies (HECO) to analyze high-penetration solar scenarios using advanced modeling and inverter testing at the Energy Systems Integration Facility (ESIF) on NREL’s campus. Results to date have been so promising that HECO has more than doubled the amount of rooftop solar it allows on its grid, showing utilities across the country that distributed solar is not a liability for reliability—and can even be an asset.

  12. NREL + SolarCity: Maximizing Solar Power on Electrical Grids

    ScienceCinema

    Hannegan, Bryan; Hanley, Ryan; Symko-Davies, Martha

    2016-07-12

    Learn how NREL is partnering with SolarCity to study how to better integrate rooftop solar onto the grid. The work includes collaboration with the Hawaiian Electric Companies (HECO) to analyze high-penetration solar scenarios using advanced modeling and inverter testing at the Energy Systems Integration Facility (ESIF) on NREL’s campus. Results to date have been so promising that HECO has more than doubled the amount of rooftop solar it allows on its grid, showing utilities across the country that distributed solar is not a liability for reliability—and can even be an asset.

  13. Spectral coupling of fluorescent solar concentrators to plasmonic solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Shu-Yi; Borca-Tasciuc, Diana-Andra; Kaminski, Deborah A.

    2011-04-01

    Coupling luminescent solar concentrators (LSC) with plasmonic solar cells is a potential method to increase conversion efficiency while reducing cost associated with large-area photovoltaic and solar-tracking systems. Specifically, the emission spectrum of the fluorescent dye in the LSC can be matched to the absorption spectrum in the photovoltaic cell which can be tuned by surface plasmon resonance. Here we investigate this concept employing organic solar cells with plasmonic silver nanoparticles and polymethylmethacrylate-based solar concentrators with Lumogen Red dye. The absorption enhancement is predicted by Mie theory, taking size effect on dielectric properties into consideration. A factor of two increase of conversion efficiency is obtained when the absorption peak in the solar cell is tuned to match the emission peak of Lumogen Red dye. A similar approach could be employed to enhance the efficiency of other LSC-photovoltaic systems including those based on silicon solar cells with different surface plasmonic nanostructures.

  14. Solar-heating system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report describes solar modular domestic-hot-water and space-heating system intended for use in small single family dwelling where roof-mounted collectors are not feasible. Contents include design, performance, and hardware specifications for assembly, installation, operation, and maintenance of system.

  15. Solar Flare Physics

    NASA Technical Reports Server (NTRS)

    Schmahl, Edward J.; Kundu, Mukul R.

    2000-01-01

    During the past year we have been working with the HESSI (High Energy Solar Spectroscopic Imager) team in preparation for launch in early 2001. HESSI has as its primary scientific goal photometric imaging and spectroscopy of solar flares in hard X-rays and gamma-rays with an approx. 2 sec angular resolution, approx. keV energy resolution and approx. 2 s time resolution over the 6 keV to 15 MeV energy range. We have performed tests of the imager using a specially designed experiment which exploits the second-harmonic response of HESSI's sub-collimators to an artificial X-ray source at a distance of 1550 cm from its front grids. Figures show the response to X-rays at energies in the range where HESSI is expected to image solar flares. To prepare the team and the solar user community for imaging flares with HESSI, we have written a description of the major imaging concepts. This paper will be submitted for publication in a referred journal.

  16. Solar heated beehives

    SciTech Connect

    Hardin, B.

    1985-02-01

    A new translucent plastic cover for bee hives is described which will serve as a passive solar collector and insulator. Scientists at the USDA-ARS designed the cover to maintain bees in cold weather. It should be of interest to beekeepers in northern states who have had to destroy colonies to avoid overwintering costs.

  17. Hydrogen from solar energy

    SciTech Connect

    Nix, R.G.

    1984-07-01

    This paper describes those portions of the Photo/Thermochemical Research Program that possibly apply to the production of hydrogen from sources such as water or hydrogen sulfide. That research centers around understanding high flux solids decomposition reactions and how to best exploit photoreactions so the energy contained in the entire solar spectrum is used. 2 references, 4 figures.

  18. The Solar Dynamo Zoo

    NASA Astrophysics Data System (ADS)

    Egeland, Ricky; Soon, Willie; Baliunas, Sallie; Hall, Jeffrey C.; Pevtsov, Alexei A.; Henry, Gregory W.

    2016-07-01

    We present composite time series of Ca II H & K line core emission indices of up to 50 years in length for a set of 27 solar-analog stars (spectral types G0-G5; within 10% of the solar mass) and the Sun. These unique data are available thanks to the long-term dedicated efforts of the Mount Wilson Observatory HK project, the Lowell Observatory Solar-Stellar Spectrograph, and the National Solar Observatory/Air Force Research Laboratory/Sacramento Peak K-line monitoring program. The Ca II H & K emission originates in the lower chromosphere and is strongly correlated with the presence of magnetic plage regions in the Sun. These synoptic observations allow us to trace the patterns long-term magnetic variability and explore dynamo behavior over a wide range of rotation regimes and stellar evolution timescales.In this poster, the Ca HK observations are expressed using the Mount Wilson S-index. Each time series is accompanied by a Lomb-Scargle periodogram, fundemental stellar parameters derived from the Geneva-Copenhagen Survey, and statistics derived from the time series including the median S-index value and seasonal and long-term amplitudes. Statistically significant periodogram peaks are ranked according to a new cycle quality metric. We find that clear, simple, Sun-like cycles are the minority in this sample.

  19. Solar tracking apparatus

    DOEpatents

    Hammons, B.E.

    The invention relates to a solar tracking device which tracks the position of the sun using paired, partially-shaded photocells. Auxilliary photocells are used for initial acquisition of the sun and for the suppression of false tracking when the sun is obscured by clouds.

  20. Solar tracking apparatus

    DOEpatents

    Hammons, Burrell E.

    1980-01-01

    The invention relates to a solar tracking device which tracks the position of the sun using paired, partially-shaded photocells. Auxiliary photocells are used for initial acquisition of the sun and for the suppression of false tracking when the sun is obscured by clouds.

  1. Solar Sea Power

    ERIC Educational Resources Information Center

    Zener, Clarence

    1976-01-01

    In their preoccupation with highly complex new energy systems, scientists and statesmen may be overlooking the possibilities of Ocean Thermal Energy Conversion (OTEC). That is the view of a Carnegie-Mellon University physicist who is in the forefront of solar sea power investigation. (Author/BT)

  2. The New Solar System

    ERIC Educational Resources Information Center

    Wilkinson, John

    2009-01-01

    Since 2006, the details of bodies making up our solar system have been revised. This was largely as a result of new discoveries of a number of planet-like objects beyond the orbit of Pluto. The International Astronomical Union redefined what constituted a planet and established two new classifications--dwarf planets and plutoids. As a result, the…

  3. Probing the Solar System

    ERIC Educational Resources Information Center

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  4. Integrated solar collector

    DOEpatents

    Tchernev, Dimiter I.

    1985-01-01

    A solar collector having a copper panel in a contiguous space relationship with a condenser-evaporator heat exchanger located under the panel, the panel having a honeycomb-like structure on its interior defining individual cells which are filled with zeolite loaded, in its adsorbed condition, with 18 to 20% by weight of water. The interior of the panel and heat exchanger are maintained at subatmospheric pressure of about 0.1 to 1 psia. The panel and heat exchanger are insulated on their lateral sides and bottoms and on the top of the heat exchange. The panel has a black coating on its top which is exposed to and absorbs solar energy. Surrounding the insulation (which supports the panel) is an extruded aluminum framework which supports a pair of spaced-apart glass panels above the solar panel. Water in conduits from a system for heating or cooling or both is connected to flow into an inlet and discharge from outlet of a finned coil received within the heat exchanger. The collector panel provides heat during the day through desorption and condensing of water vapor from the heated solar panel in the heat exchanger and cools at night by the re-adsorption of the water vapor from the heat exchanger which lowers the absolute pressure within the system and cools the heat exchange coils by evaporation.

  5. Photoelectrochemical Solar Cells.

    ERIC Educational Resources Information Center

    McDevitt, John T.

    1984-01-01

    This introduction to photoelectrochemical (PEC) cells reviews topics pertaining to solar energy conversion and demonstrates the ease with which a working PEC cell can be prepared with n-type silicon as the photoanode and a platinum counter electrode (both immersed in ethanolic ferrocene/ferricenium solutions). Experiments using the cell are…

  6. NASA Facts, Solar Cells.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The design and function of solar cells as a source of electrical power for unmanned space vehicles is described in this pamphlet written for high school physical science students. The pamphlet is one of the NASA Facts Science Series (each of which consists of four pages) and is designed to fit in the standard size three-ring notebook. Review…

  7. The Solar Dynamo

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    1998-01-01

    The solar dynamo is the process by which the Sun's magnetic field is generated through the interaction of the field with convection and rotation. In this, it is kin to planetary dynamos and other stellar dynamos. Although the precise mechanism by which the Sun generates its field remains poorly understood despite decades of theoretical and observational work, recent advances suggest that solutions to this solar dynamo problem may be forthcoming. Two basic processes are involved in dynamo activity. When the fluid stresses dominate the magnetic stresses (high plasma beta = 8(pi)rho/B(sup 2)), shear flows can stretch magnetic field lines in the direction of the shear (the "alpha effect") and helical flows can lift and twist field lines into orthogonal planes (the "alpha effect"). These two processes can be active anywhere in the solar convection zone but with different results depending upon their relative strengths and signs. Little is known about how and where these processes occur. Other processes, such as magnetic diffusion and the effects of the fine scale structure of the solar magnetic field, pose additional problems.

  8. Nanoimprinted polymer solar cell.

    PubMed

    Yang, Yi; Mielczarek, Kamil; Aryal, Mukti; Zakhidov, Anvar; Hu, Walter

    2012-04-24

    Among the various organic photovoltaic devices, the conjugated polymer/fullerene approach has drawn the most research interest. The performance of these types of solar cells is greatly determined by the nanoscale morphology of the two components (donor/acceptor) and the molecular orientation/crystallinity in the photoactive layer. A vertically bicontinuous and interdigitized heterojunction between donor and acceptor has been regarded as one of the ideal structures to enable both efficient charge separation and transport. Synergistic control of polymer orientation in the nanostructured heterojunction is also critical to improve the performance of polymer solar cells. Nanoimprint lithography has emerged as a new approach to simultaneously control both the heterojunction morphology and polymer chains in organic photovoltaics. Currently, in the area of nanoimprinted polymer solar cells, much progress has been achieved in the fabrication of nanostructured morphology, control of molecular orientation/crystallinity, deposition of acceptor materials, patterned electrodes, understanding of structure-property correlations, and device performance. This review article summarizes the recent studies on nanoimprinted polymer solar cells and discusses the outstanding challenges and opportunities for future work.

  9. TJ Solar Cell

    SciTech Connect

    Friedman, Daniel

    2009-04-17

    This talk will discuss recent developments in III-V multijunction photovoltaic technology which have led to the highest-efficiency solar cells ever demonstrated. The relationship between the materials science of III-V semiconductors and the achievement of record solar cell efficiencies will be emphasized. For instance, epitaxially-grown GAInP has been found to form a spontaneously-ordered GaP/InP (111) superlattice. This ordering affects the band gap of the material, which in turn affects the design of solar cells which incorporate GaInP. For the next generation of ultrahigh-efficiency III-V solar cells, we need a new semiconductor which is lattice-matched to GaAs, has a band gap of 1 eV, and has long minority-carrier diffusion lengths. Out of a number of candidate materials, the recently-discovered alloy GaInNAs appears to have the greatest promise. This material satisfies the first two criteria, but has to date shown very low diffusion lengths, a problem which is our current focus in the development of these next-generation cells.

  10. Solar System Dynamics

    NASA Technical Reports Server (NTRS)

    Wisdom, Jack

    2002-01-01

    In these 18 years, the research has touched every major dynamical problem in the solar system, including: the effect of chaotic zones on the distribution of asteroids, the delivery of meteorites along chaotic pathways, the chaotic motion of Pluto, the chaotic motion of the outer planets and that of the whole solar system, the delivery of short period comets from the Kuiper belt, the tidal evolution of the Uranian arid Galilean satellites, the chaotic tumbling of Hyperion and other irregular satellites, the large chaotic variations of the obliquity of Mars, the evolution of the Earth-Moon system, and the resonant core- mantle dynamics of Earth and Venus. It has introduced new analytical and numerical tools that are in widespread use. Today, nearly every long-term integration of our solar system, its subsystems, and other solar systems uses algorithms that was invented. This research has all been primarily Supported by this sequence of PGG NASA grants. During this period published major investigations of tidal evolution of the Earth-Moon system and of the passage of the Earth and Venus through non-linear core-mantle resonances were completed. It has published a major innovation in symplectic algorithms: the symplectic corrector. A paper was completed on non-perturbative hydrostatic equilibrium.

  11. The Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Pesnell, William D.

    2008-01-01

    The Solar Dynamics Observatory (SDO) is the first Space Weather Mission in NASA's Living With a Star Program. SDO's main goal is to understand, driving towards a predictive capability, those solar variations that influence life on Earth and humanity's technological systems. The past decade has seen an increasing emphasis on understanding the entire Sun, from the nuclear reactions at the core to the development and loss of magnetic loops in the corona. SDO's three science investigations (HMI, AIA, and EVE) will determine how the Sun's magnetic field is generated and structured, how this stored magnetic energy is released into the heliosphere and geospace as the solar wind, energetic particles, and variations in the solar irradiance. SDO will return full-disk Dopplergrams, full-disk vector magnetograms, full-disk images at nine EIUV wavelengths, and EUV spectral irradiances, all taken at a rapid cadence. This means you can 'observe the database' to study events, but we can also move forward in producing quantitative models of what the Sun is doing today. SDO is scheduled to launch in 2008 on an Atlas V rocket from the Kennedy Space Center, Cape Canaveral, Florida. The satellite will fly in a 28 degree inclined geosynchronous orbit about the longitude of New Mexico, where a dedicated Ka-band ground station will receive the 150 Mbps data flow. How SDO data will transform the study of the Sun and its affect on Space Weather studies will be discussed.

  12. Solar water disinfection

    SciTech Connect

    Anderson, R.; Collier, R.

    1996-11-01

    Non-potable drinking water is a major problem for much of the world`s population. It has been estimated that from 15 to 20 million children under the age of 5 die from diarrheal conditions brought on by infected drinking water every year. This is equivalent to a fully-loaded DC-10 crashing every ten minutes of every day, 365 days a year. Heat is one of the most effective methods of disinfecting drinking water. Using conventional means of heating water (heating on an open-flamed stove) results in an extremely energy-intensive process. The main obstacle is that for areas of the world where potable water is a problem, fuel supplies are either too expensive, not available, or the source of devastating environmental problems (deforestation). The apparatus described is a solar-powered water disinfection device that can overcome most if not all of the barriers that presently limit technological solutions to drinking water problems. It uses a parabolic trough solar concentrator with a receiver tube that is also a counterflow heat exchanger. The system is totally self-contained utilizing a photovoltaic-powered water pump, and a standard automotive thermostat for water flow control. The system is designed for simplicity, reliability and the incorporation of technology readily accessible in most areas of the world. Experiments at the Florida Solar Energy Center have demonstrated up to 2,500 liters of safe drinking water per day with 28 square meters of solar concentrator.

  13. Solar concentrator/absorber

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G. F.

    1976-01-01

    Collector/energy converter, consisting of dual-slope optical concentrator and counterflow thermal energy absorber, is attached to multiaxis support structure. Efficient over wide range of illumination levels, device may be used to generate high temperature steam, serve as solar powered dryer, or power absorption cycle cooler.

  14. ISS Solar Array Management

    NASA Technical Reports Server (NTRS)

    Williams, James P.; Martin, Keith D.; Thomas, Justin R.; Caro, Samuel

    2010-01-01

    The International Space Station (ISS) Solar Array Management (SAM) software toolset provides the capabilities necessary to operate a spacecraft with complex solar array constraints. It monitors spacecraft telemetry and provides interpretations of solar array constraint data in an intuitive manner. The toolset provides extensive situational awareness to ensure mission success by analyzing power generation needs, array motion constraints, and structural loading situations. The software suite consists of several components including samCS (constraint set selector), samShadyTimers (array shadowing timers), samWin (visualization GUI), samLock (array motion constraint computation), and samJet (attitude control system configuration selector). It provides high availability and uptime for extended and continuous mission support. It is able to support two-degrees-of-freedom (DOF) array positioning and supports up to ten simultaneous constraints with intuitive 1D and 2D decision support visualizations of constraint data. Display synchronization is enabled across a networked control center and multiple methods for constraint data interpolation are supported. Use of this software toolset increases flight safety, reduces mission support effort, optimizes solar array operation for achieving mission goals, and has run for weeks at a time without issues. The SAM toolset is currently used in ISS real-time mission operations.

  15. Solar solids reactor

    DOEpatents

    Yudow, Bernard D.

    1987-01-01

    A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

  16. Solar solids reactor

    DOEpatents

    Yudow, B.D.

    1986-02-24

    A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

  17. Solar Fuel Generator

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor); West, William C. (Inventor)

    2017-01-01

    The disclosure provides conductive membranes for water splitting and solar fuel generation. The membranes comprise an embedded semiconductive/photoactive material and an oxygen or hydrogen evolution catalyst. Also provided are chassis and cassettes containing the membranes for use in fuel generation.

  18. Solar Curriculum Guides, 1980.

    ERIC Educational Resources Information Center

    Seward County Community Coll., Liberal, KS.

    This document contains an outline for a curriculum to train solar energy technicians in community colleges. The guide contains eight courses, each of which is divided into one to five modules. Modules, in turn, are divided into units, and units contain student handouts appropriate to the material. The following eight courses are included in this…

  19. Survey of Solar Buildings.

    ERIC Educational Resources Information Center

    Gray, Robert; Baker, Steven

    This survey brings together information concerning the growing number of buildings utilizing solar energy and is designed to facilitate the comparison of specific characteristics of the buildings. The 66 U.S. entries are divided into five regions, arranged by state, and roughly by date within each state. Seven entries are from other countries. A…

  20. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  1. Solar Energy Now.

    ERIC Educational Resources Information Center

    Rose, Harvey, Ed.

    Twenty articles addressing different aspects of solar energy are compiled in this book. They represent the views of different governmental and non-governmental organizations, members of congress, and other individuals including, for example, Barry Commoner and Amory Lovins. Topics discussed include the need for federal support, passive solar…

  2. Solar extreme events

    NASA Astrophysics Data System (ADS)

    Hudson, Hugh S.

    2015-08-01

    Solar flares and CMEs have a broad range of magnitudes. This review discusses the possibility of “extreme events,” defined as those with magnitudes greater than have been seen in the existing historical record. For most quantitative measures, this direct information does not extend more than a century and a half into the recent past. The magnitude distributions (occurrence frequencies) of solar events (flares/CMEs) typically decrease with the parameter measured or inferred (peak flux, mass, energy etc. Flare radiation fluxes tend to follow a power law slightly flatter than S-2, where S represents a peak flux; solar particle events (SPEs) follow a still flatter power law up to a limiting magnitude, and then appear to roll over to a steeper distribution, which may take an exponential form or follow a broken power law. This inference comes from the terrestrial 14C record and from the depth dependence of various radioisotope proxies in the lunar regolith and in meteorites. Recently major new observational results have impacted our use of the relatively limited historical record in new ways: the detection of actual events in the 14C tree-ring records, and the systematic observations of flares and “superflares” by the Kepler spacecraft. I discuss how these new findings may affect our understanding of the distribution function expected for extreme solar events.

  3. JPL solar power experiments

    NASA Technical Reports Server (NTRS)

    Yasui, R. K.

    1976-01-01

    Report describes evolution of photovoltaic power systems designed and built for terrestrial use. Discussion focuses on technological problems impeding further systems development. Experiments and test data on seven types of solar panels and six material test specimens are described in detail.

  4. The solar stereo mission

    NASA Astrophysics Data System (ADS)

    Rust, D. M.

    The principal scientific objective of the Solar-Terrestrial Relations Observatory (STEREO) is to understand the origin and consequences of coronal mass ejections (CMEs). CMEs are the most energetic eruptions on the Sun. They are responsible for essentially all of the largest solar energetic particle events and are the primary cause of major geomagnetic storms. They may be a critical element in the solar dynamo because they remove the dynamo-generated magnetic flux from the Sun. Two spacecraft at 1 AU from the Sun, one drifting ahead of Earth and one behind, will image CMEs. They will also map the distribution of magnetic fields and plasmas in the heliosphere and accomplish a variety of science goals described in the 1997 report of the NASA Science Definition Team for the STEREO Mission. Current plans call for the two STEREO launches in early 2003. Simultaneous image pairs will be obtained by the STEREO telescopes at gradually increasing spacecraft separations in the course of the mission. Additionally, in-situ measurements will provide accurate information about the state of the ambient solar wind and energetic particle populations ahead of and behind CMEs. These measurements will allow definitive tests of CME and interplanetary shock models. The mission will include a "beacon mode" to warn of either coronal or interplanetary conditions indicative of impending disturbances at Earth.

  5. Solar fuel generator

    DOEpatents

    Lewis, Nathan S.; West, William C.

    2017-01-17

    The disclosure provides conductive membranes for water splitting and solar fuel generation. The membranes comprise an embedded semiconductive/photoactive material and an oxygen or hydrogen evolution catalyst. Also provided are chassis and cassettes containing the membranes for use in fuel generation.

  6. The Solar Convection Spectrum

    NASA Technical Reports Server (NTRS)

    Bachmann, Kurt T.

    2000-01-01

    I helped to complete a research project with NASA scientists Dr. David Hathaway (my mentor), Rick Bogart, and John Beck from the SOHO/SOI collaboration. Our published paper in 'Solar Physics' was titled 'The Solar Convection Spectrum' (April 2000). Two of my undergraduate students were named on the paper--Gavrav Khutri and Josh Petitto. Gavrav also wrote a short paper for the National Conference of Undergraduate Research Proceedings in 1998 using a preliminary result. Our main result was that we show no evidence of a scale of convection named 'mesogranulation'. Instead, we see only direct evidence for the well-known scales of convection known as graduation and supergranulation. We are also completing work on vertical versus horizontal flow fluxes at the solar surface. I continue to work on phase relationships of solar activity indicators, but I have not yet written a paper with my students on this topic. Along with my research results, I have developed and augmented undergraduate courses at Birmingham-Southern College by myself and with other faculty. We have included new labs and observations, speakers from NASA and elsewhere, new subject material related to NASA and space science. I have done a great deal of work in outreach, mostly as President and other offices in the Birmingham Astronomical Society. My work includes speaking, attracting speakers, giving workshops, and governing.

  7. Solar Thermal Power.

    ERIC Educational Resources Information Center

    McDaniels, David K.

    The different approaches to the generation of power from solar energy may be roughly divided into five categories: distributed collectors; central receivers; biomass; ocean thermal energy conversion; and photovoltaic devices. The first approach (distributed collectors) is the subject of this module. The material presented is designed to…

  8. TRMM Solar Array Panels

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This final report presents conclusions/recommendations concerning the TRMM Solar Array; deliverable list and schedule summary; waivers and deviations; as-shipped performance data, including flight panel verification matrix, panel output detail, shadow test summary, humidity test summary, reverse bias test panel; and finally, quality assurance summary.

  9. Solar thermal repowering

    SciTech Connect

    1980-08-01

    Solar central receiver technology is developing steadily with a promise of becoming a real commercial alternative for energy generation in the late 1980s. Significant potential markets have been identified, research and development of important components is proceeding well, and the first full-system verification experiment at Barstow, California, is under construction. However, much work still lies ahead. A big step toward the realization of large-scale commercial use of solar energy was taken when the Department of Energy (DOE) issued a solicitation in March 1979 for utility repowering/industrial retrofit system conceptual design studies employing solar central receivers. Twenty-two responses were evaluated, and twelve were selected for funding. The results of the twelve studies, plus one study completed earlier and one privately funded, are sufficiently encouraging to warrant proceeding to the next stage of the program: cost-shared projects chosen through open competition. Eight of he fourteen studies are for electric utility repowering of existing oil or natural gas generating plants. The other six are the first site-specific studies of the use of solar central receiver systems for industrial process heat. The industrial processes include gypsum board drying, oil refining, enhanced oil recovery, uranium ore processing, natural gas processing, and ammonia production. Site descriptions, project summaries, conceptual designs, and functional descriptions are given for each of these 14 studies.

  10. Solar simulator mirror refurbishment

    NASA Technical Reports Server (NTRS)

    Leverton, W. R.

    1974-01-01

    Solar simulator mirrors were refurbished. Two different refurbishment methods were employed. In the first, the electroformed mirror replica was removed from the casting and replaced with a new mirror replica. In the second, only the aluminized surface, with its protective overcoat, was removed from the mirror and replaced after cleaning of the nickel surface.

  11. Solar System Remote Sensing

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This volume contains abstracts that have been accepted for presentation at the symposium on Solar System Remote Sensing, September 20-21, 2002, in Pittsburgh, Pennsylvania. Administration and publications support for this meeting were provided by the staff of the Publications and Program Services Departments at the Lunar and Planetary Institute.

  12. Solar Radiation Alert System

    DTIC Science & Technology

    2009-03-01

    th an effectve cutoff rgdty of ~0 MV (2)), the FAA’s Cvl Aerospace Medcal Insttute (CAMI) ssues a Solar Radaton Alert (SRA) to the Nat...fluences of other partcles are too small to be of sgnficance n dose calculatons (4, 11). Earth was modeled as a sphere of lqud water of rad

  13. Global Scale Solar Disturbances

    NASA Astrophysics Data System (ADS)

    Title, A. M.; Schrijver, C. J.; DeRosa, M. L.

    2013-12-01

    The combination of the STEREO and SDO missions have allowed for the first time imagery of the entire Sun. This coupled with the high cadence, broad thermal coverage, and the large dynamic range of the Atmospheric Imaging Assembly on SDO has allowed discovery of impulsive solar disturbances that can significantly affect a hemisphere or more of the solar volume. Such events are often, but not always, associated with M and X class flares. GOES C and even B class flares are also associated with these large scale disturbances. Key to the recognition of the large scale disturbances was the creation of log difference movies. By taking the log of images before differencing events in the corona become much more evident. Because such events cover such a large portion of the solar volume their passage can effect the dynamics of the entire corona as it adjusts to and recovers from their passage. In some cases this may lead to a another flare or filament ejection, but in general direct causal evidence of 'sympathetic' behavior is lacking. However, evidence is accumulating these large scale events create an environment that encourages other solar instabilities to occur. Understanding the source of these events and how the energy that drives them is built up, stored, and suddenly released is critical to understanding the origins of space weather. Example events and comments of their relevance will be presented.

  14. Solar lunar power

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1994-01-01

    Current and projected technology is assessed for photovoltaic power for a lunar base. The following topics are discussed: requirements for power during the lunar day and night; solar cell efficiencies, specific power, temperature sensitivity, and availability; storage options for the lunar night; array and system integration; the potential for in situ production of photovoltaic arrays and storage medium.

  15. Compact Solar Camera.

    ERIC Educational Resources Information Center

    Juergens, Albert

    1980-01-01

    Describes a compact solar camera built as a one-semester student project. This camera is used for taking pictures of the sun and moon and for direct observation of the image of the sun on a screen. (Author/HM)

  16. Solar success in Chicago

    SciTech Connect

    Miller, B.

    1996-09-01

    The Woods home is not only an example of sound basic passive solar design, but also of airtight construction combined with exceptional air quality. If you`ve every flown through Chicago in the winter and been delayed by snow or fog, you`ve seen first-hand the challenge to solar energy design this climate presents. It`s the kind of challenge that Naperville architect Ken Woods relishes, has risen to, and loves to talk about. Ken `s ranch-style 3-bedroom home in Naperville, a suburb of Chicago, is a living, {open_quotes}breathing{close_quotes} testament to the effectiveness of passive solar design, even in a cold, cloudy winter climate. The energy-saving, money-saving design of Woods` house is both figuratively and literally {open_quotes}a breath of fresh air{close_quotes}. The Woods home is not only an example of sound basic passive solar design, but also of airtight construction combined with exceptional air quality.

  17. Photocatalysis: Plasmonic solar desalination

    NASA Astrophysics Data System (ADS)

    Liu, Tianyu; Li, Yat

    2016-06-01

    The sustainability of many existing desalination technologies is questionable. Plasmon-mediated solar desalination has now been demonstrated for the first time, using an aluminium structure that absorbs photons spanning the 200 nm to 2,500 nm wavelength range, and is both cheap and 'clean'.

  18. Solar Photovoltaic Energy.

    ERIC Educational Resources Information Center

    Ehrenreich, Henry; Martin, John H.

    1979-01-01

    The goals of solar photovoltaic technology in contributing to America's future energy needs are presented in this study conducted by the American Physical Society. Although the time needed for photovoltaics to become popular is several decades away, according to the author, short-range applications are given. (Author/SA)

  19. Transparent solar cell module

    NASA Technical Reports Server (NTRS)

    Antonides, G. J.; Dillard, P. A.; Fritz, W. M.; Lott, D. P.

    1979-01-01

    Modified solar cell module uses high transmission glass and adhesives, and heat dissipation to boost power per unit area by 25% (9.84% efficiency based on cell area at 60 C and 100 mW/sq cm flux). Design is suited for automatic production and is potentially more cost effective.

  20. Junior Solar Sprint.

    ERIC Educational Resources Information Center

    O'Shea, Aisling

    1997-01-01

    Reports on a project sponsored by the United States Department of Energy (DOE) that engages students in building solar cars in groups with kits that include a three volt panel. The design and engineering decisions are made by the students using pertinent information. (DDR)

  1. Foamglass solar window collector

    NASA Astrophysics Data System (ADS)

    Grande, P. C.

    Solar heating of a living area by means of a foamglass window collector is reported. The collector was built with readily available materials available at most local hardware stores. The payback period was found to be 3.7 years, slightly longer than anticipated.

  2. Arkansas solar retrofit guide

    SciTech Connect

    Not Available

    1981-06-01

    An investigation of how solar retrofits should be designed to suit the climate and resources of Arkansas is reported. The retrofits examined were greenhouses, air heaters and water heaters. The design, construction, and performance of the retrofits are described, along with some information about sun motion and orientation and greenhouse gardening. Appended are maps, tables, and graphs of insolation in Arkansas. (LEW)

  3. Solar pumped laser

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.; Weaver, W. R. (Inventor)

    1984-01-01

    A solar pumped laser is described in which the lasant is a gas that will photodissociate and lase when subjected to sunrays. Sunrays are collected and directed onto the gas lasant to cause it to lase. Applications to laser propulsion and laser power transmission are discussed.

  4. Baby Solar System

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Grady, Carol

    2012-01-01

    What did our solar system look like in its infancy,...... when the planets were forming? We cannot travel back in time to take an image of the early solar system, but in principle we can have the next best thing: images of infant planetary systems around Sun-like stars with ages of 1 to 5 million years, the time we think it took for the giant planets to form. Infant exoplanetary systems are critically important because they can help us understand how our solar system fits within the context of planet formation in general. More than 80% of stars are born with gas- and dust-rich disks, and thus have the potential to form planets. Through many methods we have identified more than 760 planetary systems around middle-aged stars like the Sun, but many of these have architectures that look nothing like our solar system. Young planetary systems are important missing links between various endpoints and may help us understand how and when these differences emerge. Well-known star-forming regions in Taurus, Scorpius. and Orion contain stars that could have infant planetary systems. But these stars are much more distant than our nearest neighbors such as Alpha Centauri or Sirius, making it extremely challenging to produce clear images of systems that can reveal signs of recent planet formation, let alone reveal the planets themselves. Recently, a star with the unassuming name LkCa 15 may have given us our first detailed "baby picture" of a young planetary system similar to our solar system. Located about 450 light-years away in the Taurus starforming region. LkCa 15 has a mass comparable to the Sun (0.97 solar mass) and an age of l to 5 million years, comparable to the time at which Saturn and perhaps Jupiter formed. The star is surrounded by a gas-rich disk similar in structure to the one in our solar system from which the planets formed. With new technologies and observing strategies, we have confirmed suspicions that LkCa 15's disk harbors a young planetary system.

  5. Predicting Major Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    Coronal mass ejections (CMEs) and solar flares are two examples of major explosions from the surface of the Sun but theyre not the same thing, and they dont have to happen at the same time. A recent study examines whether we can predict which solar flares will be closely followed by larger-scale CMEs.Image of a solar flare from May 2013, as captured by NASAs Solar Dynamics Observatory. [NASA/SDO]Flares as a Precursor?A solar flare is a localized burst of energy and X-rays, whereas a CME is an enormous cloud of magnetic flux and plasma released from the Sun. We know that some magnetic activity on the surface of the Sun triggers both a flare and a CME, whereas other activity only triggers a confined flare with no CME.But what makes the difference? Understanding this can help us learn about the underlying physical drivers of flares and CMEs. It also might help us to better predict when a CME which can pose a risk to astronauts, disrupt radio transmissions, and cause damage to satellites might occur.In a recent study, Monica Bobra and Stathis Ilonidis (Stanford University) attempt to improve our ability to make these predictions by using a machine-learning algorithm.Classification by ComputerUsing a combination of 6 or more features results in a much better predictive success (measured by the True Skill Statistic; higher positive value = better prediction) for whether a flare will be accompanied by a CME. [Bobra Ilonidis 2016]Bobra and Ilonidis used magnetic-field data from an instrument on the Solar Dynamics Observatory to build a catalog of solar flares, 56 of which were accompanied by a CME and 364 of which were not. The catalog includes information about 18 different features associated with the photospheric magnetic field of each flaring active region (for example, the mean gradient of the horizontal magnetic field).The authors apply a machine-learning algorithm known as a binary classifier to this catalog. This algorithm tries to predict, given a set of features

  6. Solar imaging vector magnetograph

    NASA Technical Reports Server (NTRS)

    Canfield, Richard C.

    1993-01-01

    This report describes an instrument which has been constructed at the University of Hawaii to make observations of the magnetic field in solar active regions. Detailed knowledge of active region magnetic structures is crucial to understanding many solar phenomena, because the magnetic field both defines the morphology of structures seen in the solar atmosphere and is the apparent energy source for solar flares. The new vector magnetograph was conceived in response to a perceived discrepancy between the capabilities of X ray imaging telescopes to be operating during the current solar maximum and those of existing magnetographs. There were no space-based magnetographs planned for this period; the existing ground-based instruments variously suffered from lack of sensitivity, poor time resolution, inadequate spatial resolution or unreliable sites. Yet the studies of flares and their relationship to the solar corona planned for the 1991-1994 maximum absolutely required high quality vector magnetic field measurements. By 'vector' measurements we mean that the observation attempts to deduce the complete strength and direction of the field at the measurement site, rather than just the line of sight component as obtained by a traditional longitudinal magnetograph. Knowledge of the vector field permits one to calculate photospheric electric currents, which might play a part in heating the corona, and to calculate energy stored in coronal magnetic fields as the result of such currents. Information about the strength and direction of magnetic fields in the solar atmosphere can be obtained in a number of ways, but quantitative data is best obtained by observing Zeeman-effect polarization in solar spectral lines. The technique requires measuring the complete state of polarization at one or more wavelengths within a magnetically sensitive line of the solar spectrum. This measurement must be done for each independent spatial point for which one wants magnetic field data. All the

  7. Solar energy research and utilization

    NASA Technical Reports Server (NTRS)

    Cherry, W. R.

    1974-01-01

    The role of solar energy is visualized in the heating and cooling of buildings, in the production of renewable gaseous, liquid and solid fuels, and in the production of electric power over the next 45 years. Potential impacts of solar energy on various energy markets, and estimated costs of such solar energy systems are discussed. Some typical solar energy utilization processes are described in detail. It is expected that at least 20% of the U.S. total energy requirements by 2020 will be delivered from solar energy.

  8. Solar retorting of oil shale

    DOEpatents

    Gregg, David W.

    1983-01-01

    An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

  9. Implementing Solar Technologies at Airports

    SciTech Connect

    Kandt, A.; Romero, R.

    2014-07-01

    Federal agencies, such as the Department of Defense and Department of Homeland Security, as well as numerous private entities are actively pursuing the installation of solar technologies to help reduce fossil fuel energy use and associated emissions, meet sustainability goals, and create more robust or reliable operations. One potential approach identified for siting solar technologies is the installation of solar energy technologies at airports and airfields, which present a significant opportunity for hosting solar technologies due to large amounts of open land. This report focuses largely on the Federal Aviation Administration's (FAA's) policies toward siting solar technologies at airports.

  10. Energy 101: Concentrating Solar Power

    ScienceCinema

    None

    2016-07-12

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  11. Solar fuels: vision and concepts.

    PubMed

    Styring, Stenbjörn

    2012-01-01

    The world needs new, environmentally friendly and renewable fuels to allow an exchange from fossil fuels. The fuel must be made from cheap and 'endless' resources that are available everywhere. The new research area on solar fuels, which are made from solar energy and water, aims to meet this demand. The paper discusses why we need a solar fuel and why electricity is not enough; it proposes solar energy as the major renewable energy source to feed from. The present research strategies, involving direct, semi-direct and indirect approaches to produce solar fuels, are overviewed.

  12. Review of solar radiation utilizability

    NASA Astrophysics Data System (ADS)

    Klein, S. A.; Beckman, W. A.

    1984-11-01

    A development history is presented for the concept and methodology of solar radiation 'utilizability', which is defined as the fraction of solar radiation that is incident on a surface exceeding a specified threshold or critical level. The concept, which was initially applied to flat plate solar collector thermal performance calculations, has more recently been applied to systems with concentrating collectors as well as to passive and photovoltaic systems. The utilizability function also contains information about operating times through its derivative with respect to critical level. Existing utilizability correlations provide a simple and elegant means of estimating the long term effect of solar radiation on any solar process.

  13. Solar-Assisted Hemodialysis

    PubMed Central

    Agar, John W. M.; Perkins, Anthony; Tjipto, Alwie

    2012-01-01

    Summary Background and objectives Hemodialysis resource use—especially water and power, smarter processing and reuse of postdialysis waste, and improved ecosensitive building design, insulation, and space use—all need much closer attention. Regarding power, as supply diminishes and costs rise, alternative power augmentation for dialysis services becomes attractive. The first 12 months of a solar-assisted dialysis program in southeastern Australia is reported. Design, setting, participants, & measurements A 24-m2, 3-kWh rated solar array and inverter—total cost of A$16,219—has solar-assisted the dialysis-related power needs of a four-chair home hemodialysis training service. All array-created, grid-donated power and all grid-drawn power to the four hemodialysis machines and minireverse osmosis plant pairings are separately metered. After the grid-drawn and array-generated kilowatt hours have been billed and reimbursed at their respective commercial rates, financial viability, including capital repayment, can be assessed. Results From July of 2010 to July of 2011, the four combined equipment pairings used 4166.5 kWh, 9% more than the array-generated 3811.0 kWh. Power consumption at 26.7 c/kWh cost A$1145.79. Array-generated power reimbursements at 23.5 c/kWh were A$895.59. Power costs were, thus, reduced by 76.5%. As new reimbursement rates (60 c/kWh) take effect, system reimbursements will more than double, allowing both free power and potential capital pay down over 7.7 years. With expected array life of ∼30 years, free power and an income stream should accrue in the second and third operative decades. Conclusions Solar-assisted power is feasible and cost-effective. Dialysis services should assess their local solar conditions and determine whether this ecosensitive power option might suit their circumstance. PMID:22223614

  14. Radiochemical solar neutrino experiments

    NASA Astrophysics Data System (ADS)

    Gavrin, V. N.; Cleveland, B. T.

    2011-12-01

    Radiochemical experiments have been crucial to solar neutrino research. Even today, they provide the only direct measurement of the rate of the proton-proton fusion reaction, p+p→d+e++νe, which generates most of the Sun's energy. We first give a little history of radiochemical solar neutrino experiments with emphasis on the gallium experiment SAGE - the only currently operating detector of this type. The combined result of all data from the Ga experiments is a capture rate of 67.6±3.7 SNU. For comparison to theory, we use the calculated flux at the Sun from a standard solar model, take into account neutrino propagation from the Sun to the Earth and the results of neutrino source experiments with Ga, and obtain 67.3-3.5+3.9 SNU. Using the data from all solar neutrino experiments we calculate an electron neutrino pp flux of ϕpp♁=(3.41-0.77+0.76)×1010/(cm-s), which agrees well with the prediction from a detailed solar model of ϕpp♁=(3.30-0.14+0.13)×1010/(cm-s). Four tests of the Ga experiments have been carried out with very intense reactor-produced neutrino sources and the ratio of observed to calculated rates is 0.88±0.05. One explanation for this unexpectedly low result is that the cross section for neutrino capture by the two lowest-lying excited states in 71Ge has been overestimated. We end with consideration of possible time variation in the Ga experiments and an enumeration of other possible radiochemical experiments that might have been.

  15. Observaciones del disco solar y de una protuberancia quiescente en radiación ultravioleta

    NASA Astrophysics Data System (ADS)

    Cirigliano, D.; Vial, J.-C.; Rovira, M.

    Observaciones del disco solar y de una protuberancia quiescente en el rango de longitudes de onda ultravioleta fueron obtenidas con el instrumento CDS (Coronal Diagnostic Spectrograph) y SUMER (Solar Ultraviolet Measurements of emitted radiation) a bordo de la sonda SOHO. El propósito es investigar las velocidades macroscópicas de varias especies metálicas que se observan tanto en el disco solar como en el plasma de las protuberancias. Para calcular las velocidades del disco solar aplicamos una técnica mixta para modelar la distribución de estructuras en UV en el Sol quieto. Las velocidades macroscópicas en las protuberancias se calcularon a partir de los corrimientos Doppler en cada línea espectral y luego se tomaron las del disco solar como referencia. Obtuvimos valores absolutos para las velocidades macroscópicas entre 5 y 40 km/seg. También detectamos comportamientos diferentes en las velocidades de las protuberancias en el centro con respecto a los bordes.

  16. Exploración del Sistema Solar -- Una mirada hacia el futuro

    NASA Video Gallery

    ¿Piensas que ya sabemos todo acerca de nuestro sistema solar? La realidad es que apenas hemos comenzado con lo que hay para conocer. Únete a la NASA, en el envío de misiones a los confines del sist...

  17. The Physics and Technology of Solar Sail Spacecraft.

    ERIC Educational Resources Information Center

    Dwivedi, B. N.; McInnes, C. R.

    1991-01-01

    Various aspects of the solar sail spacecraft such as solar sailing, solar sail design, navigation with solar sails, solar sail mission applications and future prospects for solar sailing are described. Several possible student projects are suggested. (KR)

  18. [Analysis of the cumulative solar ultraviolet radiation in Mexico].

    PubMed

    Castanedo-Cázares, Juan Pablo; Torres-Álvarez, Bertha; Portales-González, Bárbara; Martínez-Rosales, Karla; Hernández-Blanco, Diana

    2016-01-01

    Introducción: La incidencia del cáncer de piel en México se ha incrementado en los últimos años. La radiación UV es el principal factor de riesgo asociado. Debido a la necesidad de desarrollar estrategias para evitarla, el objetivo del estudio fue estimar la intensidad UV en diversas regiones representativas del país, la dosis UV promedio anual de esas poblaciones y el beneficio potencial de la aplicación de un filtro solar a diferentes edades. Métodos: se cuantificó la intensidad de la radiación UV mediante radiometría terrestre y remota. La dosis de exposición UV se midió en dosis mínimas eritematógenas utilizando modelos validados para cara y brazos. El beneficio de realizar fotoprotección se calculó para el uso de un filtro con FPS 15 desde el nacimiento hasta los 70 años. Resultados: la radiación UV es menor en diciembre y máxima de mayo a julio. La localidad con menor dosis anual es Tijuana y la máxima el Distrito Federal. La diferencia anual entre estas regiones es de 58 %. Durante la vida, un filtro solar de baja potencia puede reducir hasta 66 % la dosis recibida. Conclusiones: la localización geográfica es un factor de riesgo para la acumulación de radiación UV en México. Desde la infancia, la población recibe dosis elevadas de radiación UV. La mayoría de esas dosis puede reducirse mediante cualquier filtro solar disponible en el comercio, si es aplicado de forma estratégica.

  19. Solar core homology, solar neutrinos and helioseismology

    SciTech Connect

    Bludman, S.A.; Kennedy, D.C.

    1995-12-31

    Precise numerical standard solar models (SSMs) now agree with one another and with helioseismological observations in the convective and outer radiative zones. Nevertheless these models obscure how luminosity, neutrino production and g-mode core helioseismology depend on such inputs as opacity and nuclear cross sections. Although the Sun is not homologous, its inner core by itself is chemically evolved and almost homologous, because of its compactness, radiative energy transport, and ppI-dominated luminosity production. We apply luminosity-fixed homology transformations to the core to estimate theoretical uncertainties in the SSM and to obtain a broad class of non-SSMs, parameterized by central temperature and density and purely radiative energy transport in the core. 25 refs., 3 figs., 3 tabs.

  20. Concentrating Solar Power (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade. The DOE SunShot Initiative is a collaborative national initiative to make solar energy technologies cost-competitive with other forms of energy by reducing the cost of solar energy systems by about 75% by the end of the decade. Reducing the total installed cost for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large-scale adoption of solar electricity across the United States. Reaching this goal will re-establish American technological leadership, improve the nation's energy security, and strengthen U.S. economic competitiveness in the global clean energy race. SunShot will work to bring down the full cost of solar - including the costs of solar cells and installation by focusing on four main pillars: (1) Technologies for solar cells and arrays that convert sunlight to energy; (2) Electronics that optimize the performance of the installation; (3) Improvements in the efficiency of solar manufacturing processes; and (4) Installation, design, and permitting for solar energy systems.

  1. Solar energy: Technology and applications

    NASA Technical Reports Server (NTRS)

    Williams, J. R.

    1974-01-01

    It is pointed out that in 1970 the total energy consumed in the U.S. was equal to the energy of sunlight received by only 0.15% of the land area of the continental U.S. The utilization of solar energy might, therefore, provide an approach for solving the energy crisis produced by the consumption of irreplaceable fossil fuels at a steadily increasing rate. Questions regarding the availability of solar energy are discussed along with the design of solar energy collectors and various approaches for heating houses and buildings by utilizing solar radiation. Other subjects considered are related to the heating of water partly or entirely with solar energy, the design of air conditioning systems based on the use of solar energy, electric power generation by a solar thermal and a photovoltaic approach, solar total energy systems, industrial and agricultural applications of solar energy, solar stills, the utilization of ocean thermal power, power systems based on the use of wind, and solar-energy power systems making use of geosynchronous power plants.

  2. Mars solar conjunction prediction modeling

    NASA Astrophysics Data System (ADS)

    Srivastava, Vineet K.; Kumar, Jai; Kulshrestha, Shivali; Kushvah, Badam Singh

    2016-01-01

    During the Mars solar conjunction, telecommunication and tracking between the spacecraft and the Earth degrades significantly. The radio signal degradation depends on the angular separation between the Sun, Earth and probe (SEP), the signal frequency band and the solar activity. All radiometric tracking data types display increased noise and signatures for smaller SEP angles. Due to scintillation, telemetry frame errors increase significantly when solar elongation becomes small enough. This degradation in telemetry data return starts at solar elongation angles of around 5° at S-band, around 2° at X-band and about 1° at Ka-band. This paper presents a mathematical model for predicting Mars superior solar conjunction for any Mars orbiting spacecraft. The described model is simulated for the Mars Orbiter Mission which experienced Mars solar conjunction during May-July 2015. Such a model may be useful to flight projects and design engineers in the planning of Mars solar conjunction operational scenarios.

  3. Spectral solar radiation: new data

    SciTech Connect

    Hulstrom, R

    1983-06-01

    Several areas of solar research require an accurate knowledge (data) of the spectral content of solar radiation at the earth's surface for various atmospheric conditions, times during the day (air masses), geographic locations, and for the various seasons (monthly). Areas of solar research include photovoltaics, biomass, materials studies, and solar simulation. As one of its major research thrusts, the Renewable Resource Assessment and Instrumentation Branch of the Solar Energy Research Institute, has been developing improved analytical models, instrumentation, and data sets to meet the various needs for such by the previously mentioned areas of solar energy conversion research. A brief summary of selected results of such research is presented. References are given for detailed descriptions of the various individual areas of effort/research and new spectral solar radiation data sets.

  4. Ion Acceleration in Solar Flares Determined by Solar Neutron Observations

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Solar Neutron Observation Group

    2013-05-01

    Large amounts of particles can be accelerated to relativistic energy in association with solar flares and/or accompanying phenomena (e.g., CME-driven shocks), and they sometimes reach very near the Earth and penetrate the Earth's atmosphere. These particles are observed by ground-based detectors (e.g., neutron monitors) as Ground Level Enhancements (GLEs). Some of the GLEs originate from high energy solar neutrons which are produced in association with solar flares. These neutrons are also observed by ground-based neutron monitors and solar neutron telescopes. Recently, some of the solar neutron detectors have also been operating in space. By observing these solar neutrons, we can obtain information about ion acceleration in solar flares. Such neutrons were observed in association with some X-class flares in solar cycle 23, and sometimes they were observed by two different types of detectors. For example, on 2005 September 7, large solar neutron signals were observed by the neutron monitor at Mt. Chacaltaya in Bolivia and Mexico City, and by the solar neutron telescopes at Chacaltaya and Mt. Sierra Negra in Mexico in association with an X17.0 flare. The neutron signal continued for more than 20 minutes with high statistical significance. Intense gamma-ray emission was also registered by INTEGRAL, and by RHESSI during the decay phase. We analyzed these data using the solar-flare magnetic-loop transport and interaction model of Hua et al. (2002), and found that the model could successfully fit the data with intermediate values of loop magnetic convergence and pitch angle scattering parameters. These results indicate that solar neutrons were produced at the same time as the gamma-ray line emission and that ions were continuously accelerated at the emission site. In this paper, we introduce some of the solar neutron observations in solar cycle 23, and discuss the tendencies of the physical parameters of solar neutron GLEs, and the energy spectrum and population of the

  5. Solar Eruptive Events

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2012-01-01

    It s long been known that the Sun plays host to the most energetic explosions in the solar system. But key insights into the forms that energy takes have only recently become available. Solar flares have been phenomena of both academic and practical interest since their discovery in 1859. From the academic point of view, they are the nearest events for studying the explosive release of energy in astrophysical magnetized plasmas. From the practical point of view, they disrupt communication channels on Earth, from telegraph communications in 1859 to radio and television signals today. Flares also wreak havoc on the electrical power grid, satellite operations, and GPS signals, and energetic charged particles and radiation are dangerous to passengers on high-altitude polar flights and to astronauts. Flares are not the only explosive phenomena on the Sun. More difficult to observe but equally energetic are the large coronal mass ejections (CMEs), the ejection of up to ten billion tons of magnetized plasma into the solar wind at speeds that can exceed 1000 km/s. CMEs are primarily observed from the side, with coronagraphs that block out the bright disk of the Sun and lower solar atmosphere so that light scattered from the ejected mass can be seen. Major geomagnetic storms are now known to arise from the interaction of CMEs with Earth's magnetosphere. Solar flares are observed without CMEs, and CMEs are observed without flares. The two phenomena often occur together, however, and almost always do in the case of large flares and fast CMEs. The term solar eruptive event refers to the combination of a flare and a CME. Solar eruptive events generate a lot of heat: They can heat plasma to temperatures as high at 50 million Kelvin, producing radiation across the electromagnetic spectrum. But that s not all. A fascinating aspect of solar eruptive events is the acceleration of electrons and ions to suprathermal often relativistic energies. The accelerated particles are primarily

  6. Modelo de atmosfera solar ajustado às observações do raio solar em 17GHz

    NASA Astrophysics Data System (ADS)

    Selhorst, C. L.; Silva, A. V. R.; Costa, J. E. R.

    2003-08-01

    O estudo das variações do raio solar durante o ciclo de atividades do Sol e das diferenças em relação à sua distribuição angular nos fornece informações importantes sobre as mudanças na estrutura da atmosfera solar. Neste trabalho foram analisados mais de 3600 mapas do Sol em 17 GHz obtidos pelo Rádio Heliógrafo de Nobeyama (NoRH), durante 1 ciclo de atividade solar (1992-2003). O raio solar foi definido no ponto onde a temperatura de brilho do mapa era equivalente à metade da temperatura do Sol calmo (temperatura mais comum no mapa).Em relação à sua variação ao longo do ciclo solar, o estudo foi dividido em duas partes: a) ajuste de uma circunferência a pontos distribuídos ao redor do Sol todo. Este estudo mostrou uma variação correlacionada com o ciclo de atividade do Sol. b) ajuste da circunferência a pontos situados somente nas regiões polares. Neste caso os resultados mostraram que o raio polar sofre pouca variação durante o ciclo, com tendência à anticorrelação com este. Além disto, a média do raio polar, durante o período analisado, foi 1" menor que o raio medido no Sol todo. Para estudar a distribuição angular do raio solar, comparamos a média da distribuição de 10 mapas no período de mínima atividade solar com a média de 10 mapas no período de máximo, este estudo mostrou um grande aumento do raio na região equatorial no período de máxima atividade solar. As medidas do raio foram usadas como um dos parâmetros para a criação de um modelo atmosférico (além da temperatura de brilho do Sol e do abrilhantamento do limbo observado), onde mostramos que um modelo atmosférico com a região de transição situada a 3500 km fornece um raio 5" menor que as medidas observacionais. Esta incompatibilidade do modelo com os dados observacionais foi contornada com a inclusão de espículas, estas fazem com que o raio solar aumente proporcionalmente à altura que estas atingem na atmosfera solar. A anticorrelação do raio

  7. The SOLAR-C Mission

    NASA Astrophysics Data System (ADS)

    Hara, Hirohisa; JAXA SOLAR-C Working Group

    2009-05-01

    The JAXA SOLAR-C Working Group is planning the next solar observing satellite SOLAR-C that follows Hinode (SOLAR-B) in orbit. Two plans, Plan-A and Plan-B, are concurrently examined. Plan-A is a plan by a spacecraft that is in an out-of-ecliptic interplanetary orbit to observe the polar regions of the Sun. In the Plan-A mission, the solar dynamo and the dynamics of the solar interior by helioseismic and magnetic field observations from an unprecedented vantage point are the central topics. Plan-B is a plan by a spacecraft in a sun-synchronous low-earth orbit or a geostationary orbit. It is a high-spatial resolution mission by largely enhanced spectroscopic and spectro-polarimetric observations. With these new capabilities, the fundamental physical processes in the heating and the dynamics of solar atmosphere are explored in the Plan-B. The SOLAR-C Science Definition Meeting was held with the participation of foreign scientists under the support of JAXA and ESA last November, and the mission is highly anticipated by the solar physicists over the world. The SOLAR-C working group wishes to realize the launch of spacecraft slightly after the middle of the 2010's.

  8. A Solar Dynamic Power Option for Space Solar Power

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    1999-01-01

    A study was performed to determine the potential performance and related technology requirements of Solar Dynamic power systems for a Space Solar Power satellite. Space Solar Power is a concept where solar energy is collected in orbit and beamed to Earth receiving stations to supplement terrestrial electric power service. Solar Dynamic systems offer the benefits of high solar-to-electric efficiency, long life with minimal performance degradation, and high power scalability. System analyses indicate that with moderate component development, SD systems can exhibit excellent mass and deployed area characteristics. Using the analyses as a guide, a technology roadmap was -enerated which identifies the component advances necessary to make SD power generation a competitive option for the SSP mission.

  9. Solar-thermal experimental projects on the Spanish Plataforma Solar

    NASA Astrophysics Data System (ADS)

    Grasse, W.

    1981-11-01

    The Plataforma Solar with an area of 1,000,000 sq m is located in Spain at a distance of approximately 50 km from the Mediterranean. In May 1979, nine members of the International Energy Agency (IEA) decided to support the construction of Small Solar Power Systems (SSPS). The countries involved include West Germany, the U.S., Spain, and Italy. The SSPS are to demonstrate the operational feasibility of solar technologies which have been mainly developed in Germany and the U.S. In addition, data are to be obtained regarding the relative competitive position of two different operational concepts for SSPS. The concepts are related to the central receiver system (solar tower) and the distributed collector system. Attention is also given to the Spanish solar power station CESA-1 and the German-Spanish technology program GAST, which is to explore the technological limits of solar-energy systems.

  10. The Solar Flare Myth in solar-terrestrial physics

    SciTech Connect

    Gosling, J.T.

    1993-07-01

    Early observations of associations between solar flares and large non- recurrent geomagnetic storms, large {open_quote}solar{close_quote} energetic particle events, and transient shock wave disturbances in the solar wind led to a paradigm of cause and effect that gave flares a central position in the chain of events leading from solar activity to major transient disturbances in the near-earth space environment. However, research in the last two decades shows that this emphasis on flares is misplaced. In this paper the author outlines briefly the rationale for a different paradigm of cause and effect in solar- terrestrial physics that removes solar flares from their central position as the {open_quote}cause{close_quote} of major disturbances in the near-earth space environment. Instead, this central role of {open_quote}cause{close_quote} is played by events now known as coronal mass ejections, or CMEs.

  11. Solar-powered pump

    NASA Technical Reports Server (NTRS)

    Kirsten, C. C. (Inventor)

    1976-01-01

    A solar powered pump particularly suited for intermittently delivering a stream of water is reported. The pump is characterized by a housing adapted to be seated in a source of water having a water discharge port disposed above the water line of the source, a sump including a valved inlet port through which water is introduced to the sump, disposed beneath the water line, a displacer supported for vertical reciprocation in said housing, an air passageway extended between the vertically spaced faces of the displacer, and a tipple disposed adjacent to the water discharge port adapted to be filled in response to a discharge of water from the housing. Air above a displacer is expanded in response to solar energy impinging on the housing and transferred into pressurizing relation with the sump for forcing water from the sump.

  12. Peruvian villages go solar

    SciTech Connect

    Duffy, J.

    1999-12-01

    Students and faculty from an American University work with indigenous Peruvians to electrify their village and improve their quality of life. The remote village of Malvas in the Andes seems typical of many in Peru. The 500 Inca descendants have no electricity, no running water, one telephone and mud adobe houses. At a 10,000-foot (3,048 m) altitude, residents survive through subsistence farming. And this project might sound like a typical solar system installation--a system is donated, consultants install it, no one owns it and if something goes wrong, no one fixes it. The equipment ultimately helps no one and few learn from the experience. But two aspects of this project make it unique - the unusual level of communal sharing in the town and the design and installation of the solar system by students.

  13. To the solar foci

    NASA Technical Reports Server (NTRS)

    Sonnabend, D.

    1979-01-01

    Earlier authors showed that the sun is likely to act as a lens for gravitational radiation, with focui in the outer solar system. They suggested that missions to these foci have the potential of directly measuring the density structure of the sun. Other applications include gravitational wave astronomy and tests of general relativity. This idea is reexamined, concentrating on the engineering aspects of focal missions; primarily spacecraft design and performance. Other topics studied include solar optics, gravitational wave detectors, navigation, and the design of missions for different purposes. Specifically, it is shown that shuttle launched chemical rockets have a substantial capability for reaching some foci; and that all can be reached with large payloads using nuclear isotope-electric propulsion.

  14. Dot junction solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Crotty, G. T.

    1986-01-01

    A design of solar cells with reduced junction area on the cell surface is investigated for reduction of saturation current and increase in open-circuit voltage. Equidiameter dot junctions distributed across the surface of the cell offer an efficient alternative, with variations in dot diameter and in the spacing between dots giving the required variations in the ratio of junction area to total surface area. A simplified analysis for short-circuit current and other cell parameters, which enables cell design optimization, is presented. Experimental solar-cell performance results, as functions of different area ratios, are presented and compared with the model. It is shown that saturation current reduction is possible for achieving efficiencies as high as 18 percent in flat-plate terrestrial applications.

  15. Modern Solar Mysteries

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2004-01-01

    100 years ago we thought that the Sun and stars shone as a result of slow gravitational contraction over a few tens of millions of years - putting astronomers at odds with geologists who claimed that the Earth was much, much older. That mystery was solved in the 1920s and 30s with the discovery of nuclear energy (proving that the geologists had it right all along). Other scientific mysteries concerning the Sun have come and gone but three major mysteries remain: 1) How does the Sun produce sunspots with an 11-year cycle? 2) What produces the huge explosions that result in solar flares, prominence eruptions, and coronal mass ejections? and 3) Why is the Sun's outer atmosphere, the corona, so darned hot? Recent progress in solar astronomy reveals a single key to understanding all three of these mysteries.

  16. The Solar Maximum Mission

    NASA Astrophysics Data System (ADS)

    Simnett, G. M.

    The scientific goals, instrumentation and operation, and results from the Solar Maximum Mission are described. The spacecraft was launched to observe the peak of the solar cycle and the impulsive phase of large flares. Instrumentation included a gamma ray spectrometer, X ray burst spectrometer, imaging spectrometer, and polychromator, a UV spectrometer and polarimeter, a coronagraph/polarimeter, and an active cavity radiometer for measurements at wavelengths ranging from the Hα line at 6563 A up to the gamma ray region of the spectrum. Command programs were prepared one day in advance by each team for its instrument, and limited readjustment was available in real-time. The spacecraft was equipped to, and did, point the instruments at one region for an expected flare build-up, and maintain that heading for an extended period of time through the appearance, development, and demise of the flare.

  17. Metasurface Broadband Solar Absorber

    PubMed Central

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  18. Metasurface Broadband Solar Absorber

    DOE PAGES

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; ...

    2016-02-01

    Here, we demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Moreover, our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributionsmore » to elucidate how the absorption occurs within the metasurface structure.« less

  19. Equations for Solar Tracking

    PubMed Central

    Merlaud, Alexis; De Mazière, Martine; Hermans, Christian; Cornet, Alain

    2012-01-01

    Direct sunlight absorption by trace gases can be used to quantify them and investigate atmospheric chemistry. In such experiments, the main optical apparatus is often a grating or a Fourier transform spectrometer. A solar tracker based on motorized rotating mirrors is commonly used to direct the light along the spectrometer axis, correcting for the apparent rotation of the Sun. Calculating the Sun azimuth and altitude for a given time and location can be achieved with high accuracy but different sources of angular offsets appear in practice when positioning the mirrors. A feedback on the motors, using a light position sensor close to the spectrometer, is almost always needed. This paper aims to gather the main geometrical formulas necessary for the use of a widely used kind of solar tracker, based on two 45° mirrors in altazimuthal set-up with a light sensor on the spectrometer, and to illustrate them with a tracker developed by our group for atmospheric research. PMID:22666019

  20. Solar power from satellites

    NASA Technical Reports Server (NTRS)

    Glaser, P. E.

    1977-01-01

    Microwave beaming of satellite-collected solar energy to earth for conversion to useful industrial power is evaluated for feasibility, with attention given to system efficiencies and costs, ecological impact, hardware to be employed, available options for energy conversion and transmission, and orbiting and assembly. Advantages of such a power generation and conversion system are listed, plausible techniques for conversion of solar energy (thermionic, thermal electric, photovoltaic) and transmission to earth (lasers, arrays of mirrors, microwave beams) are compared. Structural fatigue likely to result from brief daily eclipses, 55% system efficiency at the present state of the art, present projections of system costs, and projected economic implications of the technology are assessed. Two-stage orbiting and assembly plans are described.