Science.gov

Sample records for aqueous acidic solution

  1. RECOVERY OF ACTINIDES FROM AQUEOUS NITRIC ACID SOLUTIONS

    DOEpatents

    Ader, M.

    1963-11-19

    A process of recovering actinides is presented. Tetravalent actinides are extracted from rare earths in an aqueous nitric acid solution with a ketone and back-extracted from the ketone into an aqueous medium. The aqueous actinide solution thus obtained, prior to concentration by boiling, is sparged with steam to reduce its ketone to a maximum content of 3 grams per liter. (AEC)

  2. Acidities of Water and Methanol in Aqueous Solution and DMSO

    ERIC Educational Resources Information Center

    Gao, Daqing

    2009-01-01

    The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…

  3. Chemical Equilibria and Kinetics in Aqueous Solutions of Zymonic Acid.

    PubMed

    Perkins, Russell J; Shoemaker, Richard K; Carpenter, Barry K; Vaida, Veronica

    2016-12-29

    The chemistry of pyruvic acid is of great interest due to its essential role in metabolism for all life and its role in atmospheric chemistry. Pyruvic acid under a wide range of conditions, including normal storage conditions, will spontaneously dimerize to form zymonic acid. We isolated zymonic acid and, using a variety of 1D and 2D NMR techniques, identified it as a single structure as a solid or dissolved in DMSO. When in aqueous solution, however, we identified a mixture of five different tautomers and hydrates in equilibrium with each other with no single dominant form. The kinetics of this conversion were studied in situ via NMR. The reactivity of the tautomers and hydrates in aqueous solution is investigated and discussed in terms of aqueous reaction mechanisms. There is strong evidence for a direct, reversible conversion from an enol to a geminal diol without passing through a ketone intermediate, which implies the reversible addition of water across a double bond under ambient conditions. Additionally, there is evidence for a base catalyzed lactone ring formation, which is in essence a base catalyzed esterification reaction. The equilibrium between pyruvic acid and its oligomers in aqueous solution is of consequence in the natural environment.

  4. Polymerization of beta-amino acids in aqueous solution

    NASA Technical Reports Server (NTRS)

    Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    We have compared carbonyl diimidazole (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as activating agents for the oligomerization of negatively-charged alpha- and beta-amino acids in homogeneous aqueous solution. alpha-Amino acids can be oligomerized efficiently using CDI, but not by EDAC. beta-Amino acids can be oligomerized efficiently using EDAC, but not by CDI. Aspartic acid, an alpha- and beta-dicarboxylic acid is oligomerized efficiently by both reagents. These results are explained in terms of the mechanisms of the reactions, and their relevance to prebiotic chemistry is discussed.

  5. Solubility of uranous sulfate in aqueous sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Suzuki, Shigeru; Hirono, Shuichiro; Awakura, Yasuhiro; Majima, Hiroshi

    1990-10-01

    To provide important thermodynamic data for use in uranium hydrometallurgy, solubilities of uranous sulfate were determined as a function of free acid concentration and temperature. Two sets of experiments were performed in this study. One set was the precipitation experiments of uranous sulfate crystals, in which concentrated uranous sulfate solution was mixed with sulfuric acid solution of suitable concentration. The other set was the dissolution experiments of uranous sulfate crystals in aqueous sulfuric acid solutions. It is noteworthy that good agreement exists between the solubilities determined by the two methods. At elevated temperatures, say, 363 K, the presence of free sulfuric acid is required to avoid precipitation of uranous hydroxide resulting from the hydrolysis of uranous sulfate. Generally speaking, however, an increase in free sulfuric acid concentration results in a slight decrease in uranous sulfate solubility. The elevation of solution temperature causes a decrease in solubility of uranous sulfate. It should be noted that the solid uranous sulfates equilibrated with saturated solutions at 298 K were U(SO4)2 2H2O in dilute sulfuric acid solution and U(SO4)2 4H2O in concentrated sulfuric acid solution, while those at 333 K and 363 K were mainly U(SO4)2 4H2O.

  6. Dephosphorization of Steelmaking Slag by Leaching with Acidic Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Qiao, Yong; Diao, Jiang; Liu, Xuan; Li, Xiaosa; Zhang, Tao; Xie, Bing

    2016-09-01

    In the present paper, dephosphorization of steelmaking slag by leaching with acidic aqueous solution composed of citric acid, sodium hydroxide, hydrochloric acid and ion-exchanged water was investigated. The buffer solution of C6H8O7-NaOH-HCl system prevented changes in the pH values. Kinetic parameters including leaching temperature, slag particle size and pH values of the solution were optimized. The results showed that temperature has no obvious effect on the dissolution ratio of phosphorus. However, it has a significant effect on the dissolution ratio of iron. The dephosphorization rate increases with the decrease of slag particle size and the pH value of the solution. Over 90% of the phosphorus can be dissolved in the solution while the corresponding leaching ratio of iron was only 30% below the optimal condition. Leaching kinetics of dephosphorization follow the unreacted shrinking core model with a rate controlled step by the solid diffusion layer, the corresponding apparent activation energy being 1.233 kJ mol-1. A semiempirical kinetic equation was established. After leaching, most of the nC2S-C3P solid solution in the steelmaking slag was selectively dissolved in the aqueous solution and the iron content in the solid residue was correspondingly enriched.

  7. Methanol Uptake by Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Essin, A. M.; Golden, D. M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The global methanol budget is currently unbalanced, with source terms significantly larger than the sinks terms. To evaluate possible losses of gaseous methanol to sulfate aerosols, the solubility and reactivity of methanol in aqueous sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosols is under investigation. Methanol will partition into sulfate aerosols according to its Henry's law solubility. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H*, for cold (196 - 220 K) solutions ranging between 45 and 70 wt % H2SO4. We have found that methanol solubility ranges from approx. 10(exp 5) - 10(exp 7) M/atm for UT/LS conditions. Solubility increases with decreasing temperature and with increasing sulfuric acid content. Although methanol is slightly more soluble than are acetone and formaldehyde, current data indicate that uptake by clean aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These solubility measurements include uptake due to physical solvation and any rapid equilibria which are established in solution. Reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H is not significant over our experimental time scale for solutions below 80 wt % H2SO4. To confirm this directly, results obtained using a complementary equilibrium measurement technique will also be presented.

  8. Polymerization of Pu(IV) in aqueous nitric acid solutions

    SciTech Connect

    Toth, L.M.; Friedman, H.A.; Osborne, M.M.

    1980-10-01

    The polymerization of Pu(IV) in aqueous nitric acid solutions has been studied spectrophotometrically both to establish the influence of large UO{sub 2}(NO{sub 3}){sub 2} concentrations on the polymerization rates and, more generally, to review the influence of the major parameters on the polymer reaction. Typically, experiments have been performed at 50{sup 0}C and with 0.05 M Pu in nitric acid solutions that vary in acidity from 0.07 to 0.4 M. An induction period usually precedes the polymer growth stage during which time nucleation of primary hydrolysis products occurs. Uranyl nitrate retards the polymerization reaction by approximately 35% in spite of the counteracting influence of the nitrate ions associated with this solute. The rate of polymer formation, expressed as d(percent polymer)/dt, has been shown to depend on the total plutonium concentration in reactions where the Pu(IV) concentration remained constant; and it is therefore suggested that the polymer reaction rate is not first order with respect to the concentration of plutonium as was previously thought. It has been shown further that accurate acid determinations on stock reagents are essential in order to obtain reliable polymerization experiments. Satisfactory procedures for these analyses did not exist, so appropriate modifications to the iodate precipitation methods were developed. The most ideal plutonium reagent material has been shown to be crystalline Pu(IV) nitrate because it can be added directly to acid solutions without the occurrence of unintentional hydrolysis reactions.

  9. Methanol Uptake By Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    To evaluate the role of upper tropospheric and lower stratospheric aerosols in the global budget of methanol, the solubility and reactivity of CH3OH in aqueous sulfuric acid solutions are under investigation. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H(*), for methanol dissolution into 45 to 70 percent by weight H2SO4. We find that methanol solubility ranges from 10(exp 5) to 10(exp 8) M/atm and increases with decreasing temperature and with increasing sulfuric acid content. These solubility measurements include uptake due to physical solvation and all rapid equilibria which are established in solution. Our data indicate that simple uptake by aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These results differ from those recently reported in the literature, and an explanation of this disparity will be presented. In addition to solvation, reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H may proceed in the atmosphere but is not significant under our experimental conditions. Results obtained using a complementary equilibrium measurement technique confirm this directly. In addition, the extent of methanol sequestration via formation of mono- and dimethylsulfate will be evaluated under several atmospheric conditions.

  10. Beryllium Chelation by Dicarboxylic Acids in Aqueous Solution.

    PubMed

    Schmidt, Michael; Bauer, Andreas; Schmidbaur, Hubert

    1997-05-07

    Maleic and phthalic acids are found to react with Be(OH)(2), generated in situ from BeSO(4)(aq) and Ba(OH)(2)(aq), in aqueous solution at pH 3.0 or 4.4, respectively (25 degrees C), to give solutions containing the complexes (H(2)O)(2)Be[(OOCCH)(2)] (1) and (H(2)O)(2)Be[(OOC)(2)C(6)H(4)] (3). The products can be isolated in high yield and identified by microanalytical data. With 2 equiv of the dicarboxylic acids and the pH adjusted to 5.5 and 5.9, respectively, by addition of ammonia, the bis-chelate complexes [(NH(4))(+)](2){[Be[(OOCCH)(2)](2)}(2)(-) (2) and [(NH(4))(+)](2){Be[(OOC)(2)C(6)H(4)](2)}(2)(-) (4) are obtained, which can also be isolated. The compounds show distinct (9)Be, (1)H, and (13)C resonances in their NMR spectra in aqueous solutions. Layering of an aqueous solution of compound 4 with acetone at ambient temperature leads to the precipitation of single crystals suitable for an X-ray structure determination. This salt (5) was found to contain the bis-chelated dianion {Be[(OOC)(2)C(6)H(4)](2)}(2)(-) with the beryllium atom in the spiro center of two seven-membered rings and an overall geometry approaching closely C(2) symmetry. These anions are associated with two crystallographically independent but structurally similar counterions [MeC(O)CH(2)CMe(2)NH(3)](+), which are the product of a condensation reaction of the ammonium cation with the acetone solvent. In the crystal the ammonium hydrogen atoms of the cations form N-H.O hydrogen bonds with the oxo functions of the dianion.

  11. A method for calculating the acid-base equilibria in aqueous and nonaqueous electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Tanganov, B. B.; Alekseeva, I. A.

    2017-06-01

    Concentrations of particles in acid-base equilibria in aqueous and nonaqueous solutions of electrolytes are calculated on the basis of logarithmic charts, activity coefficients, and equilibrium constants.

  12. Phosphorylation of Glyceric Acid in Aqueous Solution Using Trimetaphosphate

    NASA Technical Reports Server (NTRS)

    Kolb, Vera; Orgel, Leslie E.

    1996-01-01

    The phosphorylation of glyceric acid is an interesting prebiotic reaction because it converts a simple, potentially prebiotic organic molecule into phosphate derivatives that are central to carbohydrate metabolism. We find that 0.05 M glyceric acid in the presence of 0.5 M trimetaphosphate in alkaline solution gives a mixture of 2- and 3-phosphoglyceric acids in combined yields of up to 40%.

  13. Osmotic coefficient of aqueous solutions of cyclohexylsulfamic Acid at the freezing point of solutions.

    PubMed

    Bešter-Rogač, Marija; Klofutar, Cveto; Rudan-Tasič, Darja

    2010-12-01

    The osmotic coefficient of aqueous solutions of cyclohexylsulfamic acid was determined by freezing point measurements up to the molality 0.65 mol kg-1. The osmotic coefficients were fitted to the Pitzer equation, and ion interaction parameters α1, β(0) and β(1) were evaluated. The mean ion activity coefficient of the solute was calculated, and the non-ideal behaviour of the system investigated was characterized by calculation of the excess Gibbs energy of solution, as well as the respective partial molar functions of solute and solvent. The partial molar excess Gibbs energy of the solute is negative, like the excess Gibbs energy of its solution, while the partial molar excess Gibbs energy of the solvent is positive and increases with increasing concentration of the solute. The solvation ability of water was calculated from the difference between the Gibbs energy of solution of water in solution and that of pure water, and found to be positive and small for the solute investigated, throughout the concentration range studied.

  14. Micro-organization of humic acids in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Klučáková, Martina; Věžníková, Kateřina

    2017-09-01

    The methods of dynamic light scattering and micro-rheology were used to investigate the molecular organization of humic acids in solutions. The obtained results were supplemented by ultraviolet/visible spectrometry and measurement of the zeta potential. Particle tracking micro-rheology was used for the first time as a novel method in humic research. Solutions of humic acids were prepared in three different mediums: NaOH, NaCl, and NaOH neutralized by HCl after dissolution of the humic sample. The molecular organization of humic acids was studied over a wide concentration range (0.01-10 g dm-3). Two breaks were detected in the obtained concentration dependencies. The rearrangements were observed at concentrations around 0.02 g dm-3 and 1 g dm-3. Changes in the measured values observed at around 0.02 g dm-3 were less noticeable and were related to the formation of particles between 100 and 1000 nm in size and the strong bimodal character of humic systems diluted by NaCl. The ;switch-over point; at around 1 g dm-3 indicated changes in the secondary structure of humic acids connected with the increase in colloidal stability (decrease of zeta potential), the decrease in polydispersity, and minimal values of viscosity.

  15. LITERATURE VALUES FOR SELECTED CHEMICAL PHYSICAL PROPERTIES OF AQUEOUS BORIC ACID SOLUTIONS

    SciTech Connect

    Byrnes, D.E.; Foster, W.E.

    1961-01-01

    Data are given for properties of aqueous solutions of boric acid: solubility for orthoboric acid (H/sub 3/BO/sub 3/), specific gravity, pH, ionic- dissociation constants, colligative properties (vapor-pressure lowering, boiling- point elevation, freezing-point depression), solute volatility, thermal conductivity, electric conductivity, corrosion effects, and mistion and dilution). An attempt was made to secure complete literature coverage through mid-1957. (P.C.H.)

  16. Uptake of Hypobromous Acid (HOBr) by Aqueous Sulfuric Acid Solutions: Low-Temperature Solubility and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Michelsen, Rebecca R.; Ashbourn, Samatha F. M.; Rammer, Thomas A.; Golden, David M.

    2005-01-01

    Hypobromous acid (HOBr) is a key species linking inorganic bromine to the chlorine and odd hydrogen chemical families. We have measured the solubility of HOBr in 45 - 70 wt% sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosol composition. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, with an effective Henry's law coefficient, H* = 10(exp 4) - 10(exp 7) mol/L/atm. H* is inversely dependent on temperature, with Delta H = -46.2 kJ/mol and Delta S = -106.2 J/mol/K for 55 - 70 wt% H2SO4 solutions. Our study includes temperatures which overlap both previous measurements of HOBr solubility. For uptake into aqueous 45 wt% H2SO4, the solubility can be described by log H* = 3665/T - 10.63. For 55 - 70 wt% H2SO4, log H* = 2412/T - 5.55. At temperatures colder than approx. 213 K, the solubility of HOBr in 45 wt% H2SO4 is noticeably larger than in 70 wt% H2SO4. The solubility of HOBr is comparable to that of HBr, indicating that upper tropospheric and lower stratospheric aerosols should contain equilibrium concentrations of HOBr which equal or exceed those of HBr. Our measurements indicate chemical reaction of HOBr upon uptake into aqueous sulfuric acid in the presence of other brominated gases followed by evolution of gaseous products including Br2O and Br2, particularly at 70 wt% H2SO4.

  17. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  18. Extraction of steroidal glucosiduronic acids from aqueous solutions by anionic liquid ion-exchangers

    PubMed Central

    Mattox, Vernon R.; Litwiller, Robert D.; Goodrich, June E.

    1972-01-01

    A pilot study on the extraction of three steroidal glucosiduronic acids from water into organic solutions of liquid ion-exchangers is reported. A single extraction of a 0.5mm aqueous solution of either 11-deoxycorticosterone 21-glucosiduronic acid or cortisone 21-glucosiduronic acid with 0.1m-tetraheptylammonium chloride in chloroform took more than 99% of the conjugate into the organic phase; under the same conditions, the very polar conjugate, β-cortol 3-glucosiduronic acid, was extracted to the extent of 43%. The presence of a small amount of chloride, acetate, or sulphate ion in the aqueous phase inhibited extraction, but making the aqueous phase 4.0m with ammonium sulphate promoted extraction strongly. An increase in the concentration of ion-exchanger in the organic phase also promoted extraction. The amount of cortisone 21-glucosiduronic acid extracted by tetraheptylammonium chloride over the pH range of 3.9 to 10.7 was essentially constant. Chloroform solutions of a tertiary, a secondary, or a primary amine hydrochloride also will extract cortisone 21-glucosiduronic acid from water. The various liquid ion exchangers will extract steroidal glucosiduronic acid methyl esters from water into chloroform, although less completely than the corresponding free acids. The extraction of the glucosiduronic acids from water by tetraheptylammonium chloride occurs by an ion-exchange process; extraction of the esters does not involve ion exchange. PMID:5075264

  19. SOLVENT EXTRACTION PROCESS FOR SEPARATING URANIUM AND PLUTONIUM FROM AQUEOUS ACIDIC SOLUTIONS OF NEUTRON IRRADIATED URANIUM

    DOEpatents

    Bruce, F.R.

    1962-07-24

    A solvent extraction process was developed for separating actinide elements including plutonium and uranium from fission products. By this method the ion content of the acidic aqueous solution is adjusted so that it contains more equivalents of total metal ions than equivalents of nitrate ions. Under these conditions the extractability of fission products is greatly decreased. (AEC)

  20. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...

  1. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...

  2. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...

  3. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...

  4. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...

  5. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOEpatents

    Dietz, M.L.; Horwitz, E.P.; Bartsch, R.A.; Barrans, R.E. Jr.; Rausch, D.

    1999-03-30

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution. 4 figs.

  6. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOEpatents

    Dietz, Mark L.; Horwitz, E. Philip; Bartsch, Richard A.; Barrans, Jr., Richard E.; Rausch, David

    1999-01-01

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution.

  7. The dissociation of ethylenedithiodiacetic acid in aqueous solution

    NASA Astrophysics Data System (ADS)

    Kochergina, L. A.; Vasil'Ev, V. P.; Krutov, D. V.; Krutova, O. N.

    2007-05-01

    The dissociation of ethylenedithiodiacetic acid (H2Edtda) was studied by potentiometric titration at 298.15 K and ionic strength values of 0.5, 1.0, and 1.5 against the background of sodium and lithium nitrates. The concentration and thermodynamic dissociation constants were determined.

  8. The dissolution of quartz in dilute aqueous solutions of organic acids at 25°C

    USGS Publications Warehouse

    Bennett, P.C.; Melcer, M.E.; Siegel, D.I.; Hassett, J.P.

    1988-01-01

    The dissolution of quartz in dilute aqueous solutions of organic acids at 25° and standard pressure was investigated by the batch dissolution method. The bulk dissolution rate of quartz in 20 mmole/Kg citrate solutions at pH 7 was 8 to 10 times faster than that in pure water. After 1750 hours the concentration of dissolved silica in the citrate solution was 167 μmole/Kg compared to 50 μmole/Kg in water and a 20 mmole/Kg solution of acetate at pH 7. Solutions of salicylic, oxalic, and humic acids also accelerated the dissolution of quartz in aqueous solution at pH 7. The rate of dissolution in organic acids decreased sharply with decreasing pH.The possibility of a silica-organic acid complex was investigated using UV-difference spectroscopy. Results suggest that dissolved silica is complexed by citrate, oxalate and pyruvate at pH 7 by an electron-donor acceptor complex, whereas no complexation occurs between silica and acetate, lactate, malonate, or succinate. Three models are proposed for the solution and surface complexation of silica by organic acid anions which result in the accelerated dissolution and increased solubility of quartz in organic rich water.

  9. The dissolution of quartz in dilute aqueous solutions of organic acids at 25°C

    NASA Astrophysics Data System (ADS)

    Bennett, P. C.; Melcer, M. E.; Siegel, D. I.; Hassett, J. P.

    1988-06-01

    The dissolution of quartz in dilute aqueous solutions of organic acids at 25° and standard pressure was investigated by the batch dissolution method. The bulk dissolution rate of quartz in 20 mmole/Kg citrate solutions at pH 7 was 8 to 10 times faster than that in pure water. After 1750 hours the concentration of dissolved silica in the citrate solution was 167 μmole/Kg compared to 50 μmole/Kg in water and a 20 mmole/Kg solution of acetate at pH 7. Solutions of salicylic, oxalic, and humic acids also accelerated the dissolution of quartz in aqueous solution at pH 7. The rate of dissolution in organic acids decreased sharply with decreasing pH. The possibility of a silica-organic acid complex was investigated using UV-difference spectroscopy. Results suggest that dissolved silica is complexed by citrate, oxalate and pyruvate at pH 7 by an electron-donor acceptor complex, whereas no complexation occurs between silica and acetate, lactate, malonate, or succinate. Three models are proposed for the solution and surface complexation of silica by organic acid anions which result in the accelerated dissolution and increased solubility of quartz in organic rich water.

  10. Comparison of XAD macroporous resins for the concentration of fulvic acid from aqueous solution

    USGS Publications Warehouse

    Aiken, G.R.

    1979-01-01

    Five macroreticular, nonlonlc AmberlHe XAD resins were evaluated for concentration and Isolation of fulvlc acid from aqueous solution. The capacity of each resin for fulvlc acid was measured by both batch and column techniques. Elution efficiencies were determined by desorptlon with 0.1 N NaOH. Highest recoveries were obtained with the acrylic ester resins which proved to be most efficient for both adsorption and elution of fulvlc acid. Compared to the acrylic ester resins, usefulness of the styrene dvlnybenzene resins to remove fulvlc acid is limited because of slow diffusion-controlled adsorption and formation of charge-transfer complexes, which hinders elution. ?? 1979 American Chemical Society.

  11. Investigation of the swelling behaviour of hydrogels in aqueous acid or alkaline solutions

    NASA Astrophysics Data System (ADS)

    Althans, Daniel; Enders, Sabine

    2014-09-01

    For development of tailor made drug delivery systems using poly(N-isopropylacrylamide) hydrogels, the influence of acids and bases added to the aqueous solution on the swelling behaviour as function of concentration, temperature and kind of acid or base were investigated experimentally. The selected acids are formic, acetic, propionic, lactic, succinic, α-ketoglutaric and citric acid. The applied bases are sodium and potassium hydroxide. The swelling behaviour was characterised by the degree of swelling and by the uptake of acids by the hydrogel in the swollen state. In the case of weak acids the properties of the swollen hydrogel as well as the phase transition temperature and phase transition acid concentration depends on the type of acids, whereas the properties of the shrunken state do not depend on the acid used. In the case of strong bases, the properties of the shrunken and swollen state depend on the ionic strength, but not on the base applied.

  12. Removal of transition metals from dilute aqueous solution by carboxylic acid group containing absorbent polymers

    USDA-ARS?s Scientific Manuscript database

    A new carboxylic acid group containing resin with cation exchange capacity, 12.67 meq/g has been used to remove Cu2+, Co2+ and Ni2+ ions from dilute aqueous solution. The resin has Cu2+, Co2+ and Ni2+ removal capacity, 216 mg/g, 154 mg/g and 180 mg/g, respectively. The selectivity of the resin to ...

  13. Standard enthalpies of the formation of malonic acid and products of its dissociation in an aqueous solution

    NASA Astrophysics Data System (ADS)

    Dmitrieva, N. G.; Gridchin, S. N.; Romodanovskii, P. A.; Maiorov, A. V.

    2010-11-01

    Enthalpies of the dissolution of malonic acid in aqueous solutions of perchloric acid and sodium perchlorate were measured at ionic strength I = 1.0; 1.5; 2.0; 2.5 mol/l and T = 298.15 K by calorimetry. The standard enthalpies of the formation of malonic acid and the products of its dissociation in a aqueous solution were calculated.

  14. Gamma-irradiation of malic acid in aqueous solutions. [prebiotic significance

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Graff, R. L.; Ponnamperuma, C.

    1980-01-01

    The gamma-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the nonvolatile products. Thin layer chromatography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the gamma-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  15. A kinetic study on nonoxidative dissolution of sphalerite in aqueous hydrochloric acid solutions

    NASA Astrophysics Data System (ADS)

    Majima, Hiroshi; Awakura, Yasuhiro; Misaki, Norio

    1981-12-01

    The nonoxidative leaching of sphalerite in aqueous acidic solutions was studied from a kinetic point of view. Also the selective nonoxidation leaching in a hydrochloric acid solution containing a large amount of sodium chloride was examined for a Pb-Zn sulfide bulk concentrate. The dissolution rates of sphalerites from five different mines appeared to be controlled by a chemical reaction on the surface of sphalerite. The dissolution rate of sphalerite is of the first order with respect to the hydrogen ion activity of the solutions. It is also considerably affected by the iron content of the sphalerite sample; a linear relationship was observed between iron content of the sphalerite and its dissolution rate. The addition of sodium chloride to the hydrochloric acid solutions greatly enhanced dissolution rates. Compared to the dissolution rates of galena, which were reported in a previous paper, the dissolution rates of sphalerite were found to be far slower. The difference in the dissolution rates between these two minerals becomes greater with the addition of sodium chloride to the hydrchloric acid solutions. Based on these findings, the selective leaching of Pb-Zn bulk concentrate in a hydrochloric acid solution containing a large amount of sodium chloride was examined. The experimental results clearly showed that the galena was selectively leached, leaving a residue of sphalerite.

  16. Leaching of lead from zinc leach residue in acidic calcium chloride aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Le; Mu, Wen-ning; Shen, Hong-tao; Liu, Shao-ming; Zhai, Yu-chun

    2015-05-01

    A process with potentially reduced environmental impacts and occupational hazards of lead-bearing zinc plant residue was studied to achieve a higher recovery of lead via a cost-effective and environmentally friendly process. This paper describes an optimization study on the leaching of lead from zinc leach residue using acidic calcium chloride aqueous solution. Six main process conditions, i.e., the solution pH value, stirring rate, concentration of CaCl2 aqueous solution, liquid-to-solid (L/S) ratio, leaching temperature, and leaching time, were investigated. The microstructure and components of the residue and tailing were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). On the basis of experimental results, the optimum reaction conditions were determined to be a solution pH value of 1, a stirring rate of 500 r·min-1, a CaCl2 aqueous solution concentration of 400 g·L-1, a liquid-to-solid mass ratio of 7:1, a leaching temperature of 80°C, and a leaching time of 45 min. The leaching rate of lead under these conditions reached 93.79%, with an iron dissolution rate of 19.28%. Silica did not take part in the chemical reaction during the leaching process and was accumulated in the residue.

  17. Effective Removal of Tetracycline from Aqueous Solution by Organic Acid-Coated Magnetic Nanoparticles.

    PubMed

    Guo, Liang; Liang, Yuyan; Chen, Xuelan; Xu, Wei; Wu, Kesheng; Wei, Hua; Xiong, Yonghua

    2016-03-01

    Self-assembled iron oxide nanocomposites are good magnetic nano-adsorbents that can be prepared using simple methods. Four types of organic acid-functionalised (oleic acid, undecenoic acid, caprylic acid or hexanoic acid) magnetic nanoparticles (MNPs) were synthesised through a one-pot chemisorption method for the removal of tetracycline (TC) from aqueous solution. The undecenoic acid-coated MNPs (UA-MNPs) exhibited the highest adsorption efficiency and can be easily retrieved with a low-gradient magnetic separator (0.4 Tesla) at pH 5.0 aqueous solution. The TC adsorption process on the UA-MNPs followed the Langmuir isotherm and the maximum adsorption capacities increased from 86.96 mg g(-1) to 222.2 mg g(-1) with the increase in temperature from 288 K to 318 K. The kinetics of adsorption fits pseudo-second-order model perfectly with a rate constant, 5.946 g mg(-1) min(-1) at 298 K. The positive values of the enthalpy (AH) and the negative value of the free energy (AG) indicated an endothermic and spontaneous adsorption process of TC on the UA-MNPs. Moreover, the UA-MNPs possessed excellent ability to adsorb the other three major types of TC antibiotics, including chlortetracycline, oxytetracycline and doxycycline.

  18. Superhydrophobic copper surfaces fabricated by fatty acid soaps in aqueous solution for excellent corrosion resistance

    NASA Astrophysics Data System (ADS)

    Xu, Wenlong; Hu, Yuanyuan; Bao, Wenda; Xie, Xiaoyu; Liu, Yiran; Song, Aixin; Hao, Jingcheng

    2017-03-01

    A simple and safe one-step immersion method was developed to obtain the stable superhydrophobic copper surfaces with excellent corrosion resistance ability using fatty acids in water-medium instead of ethanol. An organic alkali, N,N-dimethylcyclohexylamine (DMCHA), was chosen to solve the poor solubility of fatty acids in water and the high Krafft point of carboxylate salts with inorganic counterions. The superhydrophobic property can be realized in a much quicker process (7.5 min) in aqueous solution than in ethanol (more than 2 d), which is universally feasible for the fabrication of superhydrophobic metal surfaces in industry scale, thereby greatly increasing the safety in industrial manufacture.

  19. Removal of MCPA from aqueous solutions by acid-activated spent bleaching earth.

    PubMed

    Mahramanlioglu, Mehmet; Kizilcikli, Irfan; Biçer, I Ozlem; Tuncay, Melda

    2003-11-01

    The removal of MCPA (4-chloro-2-methyl phenoxyacetic acid) from aqueous solutions by activated spent bleaching earth (SBE) was studied as a function of time, initial concentration, adsorbent concentration, and temperature. The Langmuir and Freundlich isotherms were fitted by the adsorption data obtained. The values of Langmuir and Freundlich constants were determined. The adsorption kinetics was described by the Lagergren equation. Mass transfer coefficient and thermodynamic parameters were also calculated. Column experiments were conducted and brekthrough capacities were found for different concentrations and different flow rates. The study demonstrates that acid-treated SBE could be used as an efficient adsorbent for the removal of MCPA-bearing wastewater effluents.

  20. The infrared optical constants of sulfuric acid at 250 K. [spectral reflectance measurement of aqueous solutions

    NASA Technical Reports Server (NTRS)

    Pinkley, L. W.; Williams, D.

    1976-01-01

    Results are presented for measurements of the IR spectral reflectance at near-normal incidence of aqueous solutions of sulfuric acid with acid concentrations of 75% and 95.6% by weight. Kramers-Kronig analyses of the reflectance data are employed to obtain values of the optical constants n(nu) and k(nu) in the spectral range from 400 to 6000 cm to the -1 power. The optical constants of these solutions at 250 K and 300 K are compared. It is found that in spectral regions remote from strong absorption bands, the values of the n(nu) indices obtained at 250 K agree with the values given by Lorentz-Lorenz correction of the same indices at 300 K. All absorption bands observed at 300 K are found to be present at 250 K with slight shifts in frequency and with significant differences in the k(nu) indices at the band maxima. Based on these results, it is concluded that the clouds of Venus probably consist of droplets of aqueous solutions of sulfuric acid with acid concentrations of about 75% by weight.

  1. Thermochemical study of the reactions of acid-base interaction in an aqueous solution of α-aminobutyric acid

    NASA Astrophysics Data System (ADS)

    Lytkin, A. I.; Chernikov, V. V.; Krutova, O. N.; Skvortsov, I. A.; Korchagina, A. S.

    2017-01-01

    The heat effects of the interaction between a solution of α-aminobutyric acid and solutions of HNO3 and KOH are measured by means of calorimetry in different ranges of pH at 298.15 K and values of ionic strength of 0.25, 0.5, and 0.75 (KNO3). The heat effects of the stepwise dissociation of the amino acid are determined. Standard thermodynamic characteristics (Δr H 0, Δr G 0, and Δr S 0) of the reactions of acid-base interaction in aqueous solutions of α-aminobutyric acid are calculated. The connection between the thermodynamic characteristics of the dissociation of the amino acid and the structure of this compound is considered.

  2. Enhanced malachite green removal from aqueous solution by citric acid modified rice straw.

    PubMed

    Gong, Renmin; Jin, Youbin; Chen, Fayang; Chen, Jian; Liu, Zhili

    2006-09-21

    In this paper, rice straw was thermochemically modified with citric acid (CA) as esterifying agent. Two introduced free carboxyl groups of esterified rice straw were further loaded with sodium ion to yield potentially biodegradable cationic sorbent. In order to investigate the effect of chemical modification on the cationic dye sorption of rice straw, the removal capacities of native and modified rice straw sorbing a cationic dye (malachite green) from aqueous solution were compared. The effects of various experimental parameters (e.g. initial pH, sorbent dose, dye concentration, contact time) were investigated. For modified rice straw (MRS), the malachite green (MG) removal percentage came up to the maximum value beyond pH 4. For the 250 mg/l of MG solution, the 1.5 g/l or up of MRS could almost completely remove the dye from aqueous solution. Under the condition of 2.0 g/l sorbent used, the percentage of MG sorbed on MRS kept above 93% over a range from 100 to 500 mg/l of MG concentration. The sorption isotherms fitted the Langmuir or Freundlich models. The sorption equilibriums were reached at about 10 h. The sorption processes followed the pseudo-first-order rate kinetics. After chemical modification, the intraparticle diffusion rate constant (k(id)) was obviously increased. The results in this study indicated that MRS was an excellent sorbent for removal of MG from aqueous solution.

  3. PH-Dependent Enantioselectivity of D-amino Acid Oxidase in Aqueous Solution.

    PubMed

    Liu, Qingju; Chen, Li; Zhang, Zhikun; Du, Bibai; Xiao, Yating; Yang, Kunhao; Gong, Lingling; Wu, Li; Li, Xiangjun; He, Yujian

    2017-06-07

    D-amino acid oxidases (DAAO) are stereospecific enzymes which are generally almost inactive towards L-enantiomer in neutral solution when L-, D-amino acids are supplied as substrates. In this paper, the D-amino acid oxidase can catalytic oxidize L-amino acids by modulating pH of aqueous solution. With L-Pro as substrate, the catalytic rate (k cat ) and the affinity (K m ) of DAAO were 6.71 s -1 and 33 mM at pH 8.0, respectively, suggesting that optimal pH condition enhanced the activity of DAAO towards L-Pro. Similar results were obtained when L-Ala (pH 9.8), L-Arg (pH 6.5), L-Phe (pH 9.0), L-Thr (pH 9.4), and L-Val (pH 8.5) were catalyzed by DAAO at various pH values. The racemization of the L-amino acids was not found by capillary electrophoresis analysis during oxidation, and quantification analysis of L-amino acids before and after catalytic reaction was performed, which confirmed that the modulation of enantioselectivity of DAAO resulted from the oxidation of L-amino acids rather than D-amino acids by changing pH. A mechanistic model was proposed to explain enhanced activity of DAAO towards L-amino acids under optimal pH condition.

  4. Radiolysis of aqueous solutions of acetic acid in the presence of Na-montmorillonite

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalez, R.; Negron-Mendoza, A.; Ramos, S.; Ponnamperuma, C.

    1990-01-01

    The gamma-irradiation of 0.8 mol dm-3 aqueous, oxygen-free acetic acid solutions was investigated in the presence or absence of Na-montmorillonite. H2, CH4, CO, CO2, and several polycarboxylic acids were formed in all systems. The primary characteristics observed in the latter system were: (1) Higher yield of the decomposition of acetic acid; (2) Lower yield of the formation of polycarboxylic acids; (3) No effect on the formation of methane; (4) Higher yield of the formation of carbon dioxide; and (5) The reduction of Fe3+ in the octahedral sites of Na-montmorillonite. A possible reaction scheme was proposed to account for the observed changes. The results are important in understanding heterogeneous processes in radiation catalysis and might be significant to prebiotic chemistry.

  5. Assorted interactions of amino acids prevailing in aqueous vitamin C solutions probed by physicochemical and ab-initio contrivances

    NASA Astrophysics Data System (ADS)

    Das, Koyeli; Roy, Milan Chandra; Rajbanshi, Biplab; Roy, Mahendra Nath

    2017-11-01

    Qualitative and quantitative analysis of molecular interaction prevailing in tyrosine and tryptophan in aqueous solution of vitamin C have been probed by thermophysical properties. The apparent molar volume (ϕV), viscosity B-coefficient, molal refraction (RM) of tyrosine and tryptophan have been studied in aqueous vitamin C solutions at diverse temperatures via Masson equation which deduced solute-solvent and solute-solute interactions, respectively. Spectroscopic study along with physicochemical and computational techniques provides lots of interesting and highly significant insights of the model biological systems. The overall results established strong solute-solvent interactions between studied amino acids and vitamin C mixture in the ternary solutions.

  6. [Studies on carbonization of saccharides by using aqueous solution of various acids].

    PubMed

    Zhang, Xin; He, An-Qi; Kang, Ting-Guo; Xia, Jin-Ming; Weng, Shi-Fu; Xu, Yi-Zhuang; Wu, Jin-Guang

    2014-09-01

    The authors tried to establish an approach to use acids to convert biomass into a fuel with higher carbon content and lower oxygen content in a zero-energy-consumption fashion. Considering that biomass is composed of monosaccharide, we used aqueous solutions of variation acids including hydrochloric acid, sulfuric acid and perchloric acid to treat 2-deoxy-ribose and fructose at ambient temperature and pressure. Black substances were produced after a period of time when 2-deoxy-ribose and fructose were mixed with aqueous solutions containing 8 mol · L(-1) acids. The black substance was collected and characterized by using elemental analysis, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Elemental analysis results indicate that the contents of carbon increases significantly in the black substances in comparison with 2-deoxy-ribose and fructose. Moreover, XPS results indicate that the content of oxygen in the black substance undergoes a significant decrease compared with pure 2-deoxy-ribose and fructose. In the XPS spectra, the is peaks of 2-deoxy-ribose, strong sub peak at 286. 05 eV, which is assigned to carbon linked to oxygen directly, dominate in the C is peak envelop. After treatment by HClO4, the peak decreased dramatically. This result also supports the conclusion that the content of oxygen in mono-saccharide is significantly reduced after treatment by acids. In the FTIR spectra of the black substances, strong peaks can be observed around 1 600 cm(-1), indicating that C==C bond is formed in the product. The above results suggest that treatments with acids may be developed as a new zero-energy-consumption approach to convert biomass in a new fuel with improved energy output efficiency.

  7. Experimental Shock Chemistry of Aqueous Amino Acid Solutions and the Cometary Delivery of Prebiotic Compounds

    NASA Astrophysics Data System (ADS)

    Blank, Jennifer G.; Miller, Gregory H.; Ahrens, Michael J.; Winans, Randall E.

    2001-02-01

    A series of shock experiments were conducted to assess the feasibility of the delivery of organic compounds to the Earth via cometary impacts. Aqueous solutions containing near-saturation levels of amino acids (lysine, norvaline, aminobutyric acid, proline, and phenylalanine) were sealed inside stainless steel capsules and shocked by ballistic impact with a steel projectile plate accelerated along a 12-m-long gun barrel to velocities of 0.5-1.9 km sec^-1. Pressure-temperature-time histories of the shocked fluids were calculated using 1D hydrodynamical simulations. Maximum conditions experienced by the solutions lasted 0.85-2.7 μs and ranged from 5.1-21 GPa and 412-870 K. Recovered sample capsules were milled open and liquid was extracted. Samples were analyzed using high performance liquid chromatography (HPLC) and mass spectrometry (MS). In all experiments, a large fraction of the amino acids survived. We observed differences in kinetic behavior and the degree of survivability among the amino acids. Aminobutyric acid appeared to be the least reactive, and phenylalanine appeared to be the most reactive of the amino acids. The impact process resulted in the formation of peptide bonds; new compounds included amino acid dimers and cyclic diketopiperazines. In our experiments, and in certain naturally occurring impacts, pressure has a greater influence than temperature in determining reaction pathways. Our results support the hypothesis that significant concentrations of organic material could survive a natural impact process.

  8. Experimental shock chemistry of aqueous amino acid solutions and the cometary delivery of prebiotic compounds.

    PubMed

    Blank, J G; Miller, G H; Ahrens, M J; Winans, R E

    2001-01-01

    A series of shock experiments were conducted to assess the feasibility of the delivery of organic compounds to the Earth via cometary impacts. Aqueous solutions containing near-saturation levels of amino acids (lysine, norvaline, aminobutyric acid, proline, and phenylalanine) were sealed inside stainless steel capsules and shocked by ballistic impact with a steel projectile plate accelerated along a 12-m-long gun barrel to velocities of 0.5-1.9 km sec-1. Pressure-temperature-time histories of the shocked fluids were calculated using 1D hydrodynamical simulations. Maximum conditions experienced by the solutions lasted 0.85-2.7 microseconds and ranged from 5.1-21 GPa and 412-870 K. Recovered sample capsules were milled open and liquid was extracted. Samples were analyzed using high performance liquid chromatography (HPLC) and mass spectrometry (MS). In all experiments, a large fraction of the amino acids survived. We observed differences in kinetic behavior and the degree of survivability among the amino acids. Aminobutyric acid appeared to be the least reactive, and phenylalanine appeared to be the most reactive of the amino acids. The impact process resulted in the formation of peptide bonds; new compounds included amino acid dimers and cyclic diketopiperazines. In our experiments, and in certain naturally occurring impacts, pressure has a greater influence than temperature in determining reaction pathways. Our results support the hypothesis that significant concentrations of organic material could survive a natural impact process.

  9. Competitive adsorption of boric acid and chromate onto alumina in aqueous solutions.

    PubMed

    Demetriou, A; Pashalidis, I

    2014-01-01

    The competitive adsorption of boric acid and chromate from aqueous solutions by alumina has been investigated by spectrophotometry at pH 8, ionic strength = 0.0, 0.1 and 1.0 M NaClO4, T = 22 ± 3 °C and under normal atmospheric conditions. The experimental data show that addition of excess boric acid in the system leads to the increase of Cr(VI) concentration in solution, indicating the replacement of adsorbed chromate by boron on the alumina surface. Data evaluation results in the determination of the competition reaction constant and the formation constant of the Cr(VI) surface complexes, which are logKCr(VI)-B(III) = -3.5 ± 0.2 and logβ*Cr = 7.6 ± 0.3, respectively.

  10. Solution properties and taste behavior of lactose monohydrate in aqueous ascorbic acid solutions at different temperatures: Volumetric and rheological approach.

    PubMed

    Sarkar, Abhijit; Sinha, Biswajit

    2016-11-15

    The densities and viscosities of lactose monohydrate in aqueous ascorbic acid solutions with several molal concentrations m=(0.00-0.08)molkg(-1) of ascorbic acid were determined at T=(298.15-318.15)K and pressure p=101kPa. Using experimental data apparent molar volume (ϕV), standard partial molar volume (ϕV(0)), the slope (SV(∗)), apparent specific volumes (ϕVsp), standard isobaric partial molar expansibility (ϕE(0)) and its temperature dependence [Formula: see text] the viscosity B-coefficient and solvation number (Sn) were determined. Viscosity B-coefficients were further employed to obtain the free energies of activation of viscous flow per mole of the solvents (Δμ1(0≠)) and of the solute (Δμ2(0≠)). Effects of molality, solute structure and temperature and taste behavior were analyzed in terms of solute-solute and solute-solvent interactions; results revealed that the solutions are characterized predominantly by solute-solvent interactions and lactose monohydrate behaves as a long-range structure maker. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Removal of acidic indigo carmine textile dye from aqueous solutions using radiation induced cationic hydrogels.

    PubMed

    Sari, Müfrettin Murat

    2010-01-01

    This study examined the removal of acidic indigo carmine dyes from aqueous solutions using cationic hydrogels. Irradiated hydrogels were investigated as a new sorbent for dye removal from aqueous solution. Poly(N,N-Diethylamino ethyl methacrylate) [poly(DEAEMA)] hydrogels were prepared by radiation polymerisation of N,N-diethylamino ethyl methacrylate [DEAEMA] monomer in the presence of cross-linking agent, ethylene glycol dimethacrylate [EGDMA], and used for the removal of acidic indigo carmine textile dye. The adsorption of dyes was examined using a batch sorption technique. The effects of pH, time and initial dye concentration on the adsorption capacity of hydrogels were investigated. Maximum gelation ratio was 98.2% at irradiation dose of 5.3 kGy. Maximum equilibrium volume swelling, V/V(0), value was 21.3 at pH 2.8. Maximum amount of adsorbed indigo carmine onto hydrogels was 96.7 mg dye/g gel at pH 2.8, 21 h of adsorption time and 120 mg/L initial dye solution. Swelling and adsorption capacity increased with decreasing of pH. Compared with Congo red, amounts of adsorbed indigo carmine are much higher than those of Congo red. Langmuir isotherm model was the best fit for these poly(DEAEMA) hydrogels-indigo carmine systems.

  12. Removal of lead from aqueous solutions by a poly(acrylic acid)/bentonite nanocomposite

    NASA Astrophysics Data System (ADS)

    Rafiei, H. R.; Shirvani, M.; Ogunseitan, O. A.

    2016-11-01

    We synthesized a novel poly acrylic acid-organobentonite (PAA-Bent) nanocomposite by successive intercalation of cetyltrimethylammonium (CTA) surfactant and polyacrylic acid (PAA) into the bentonite (Bent) interlayer spaces. The surfactant-modified clay (CTA-Bent) and PAA-Bent nanocomposite were characterized by XRD and FT-IR techniques and used for removal of Pb(II) from aqueous solution. The XRD results confirmed the intercalation of CTA and PAA into the interlayer spaces of the bentonite increasing the d 001 spacing of the clay from 12.2 up to 38.9 Å. FT-IR analysis of the modified clay samples revealed the functional groups of CTA and PAA constituents alighted on the bentonite surfaces. Maximum Pb sorption capacity of the Bent and PAA-Bent predicted by Langmuir model were 52.3 and 93.0 mg g-1, respectively, showing that the synthesized nanocomposite superiorly adsorbed Pb from the solution as compared to the Bent. The maximum Pb removal efficiency of 99.6 % was achieved by the nanocomposite at 25 °C with <30 min contact time for a 7.5 g L-1 solid-to-liquid ratio and an initial metal concentration of 400 mg L-1. The results indicated that PAA-Bent nanocomposite can be efficiently used as a superadsorbent for the removal of Pb(II) from aqueous solution.

  13. Mechanism of the protonation of azulenes in aqueous solutions of acids

    NASA Astrophysics Data System (ADS)

    Mikheev, Yu. A.; Guseva, L. N.; Ershov, Yu. A.

    2013-10-01

    In aqueous solutions of strong acids (H2SO4, H3PO4, and HCl) containing azulene, the fast reversible protonation of azulene is accompanied by the slow formation of a disperse dark violet dye insoluble in acids, alcohol, and heptane. On the basis of the kinetic specifics of this reaction and the nonlinear (nearly reciprocal quadratic) dependence of the concentrations ratio of their cationic and neutral forms on the Hammett acidity function known for azulene and 14 of its derivatives, azulene is shown not to be a Hammett base. A mechanism for the reversible reactions of the azulenium cation is proposed that considers supramolecular dimers to be the basic state of azulene and its derivatives. The scheme includes reactions of the unstable intermediate π complexes formed from the dimers and hydrated hydrogen cations; the complexes quickly dissociate in the opposite direction and react with the hydrated protons to yield azulenium cations and unstable molecules that induce polymerization of the dimers.

  14. Thermosensitivity of bile acid-based oligo(ethylene glycol) stars in aqueous solutions.

    PubMed

    Strandman, Satu; Le Dévédec, Frantz; Zhu, X X

    2011-08-03

    Amphiphilic star-shaped oligo(ethylene glycol)s with a hydrophobic bile acid core and varying number of hydrophilic arms have been made. Their thermal behavior in aqueous solutions depends on the number rather than the length of the arms. The two-armed lithocholate derivative showed the strongest tendency for association and exhibited the lowest cloud point (79 °C) of the oligomers made, as well as another phase separation at a lower temperature (31 °C). The "double thermosensitivity" arising both from the salt-dependent LCST of the oligo(ethylene glycol) segments and the temperature-responsive self-assembly of amphiphilic bile acid derivative provides an interesting path in the design of bile acid-based smart materials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. CESIUM RECOVERY FROM AQUEOUS SOLUTIONS

    DOEpatents

    Goodall, C.A.

    1960-09-13

    A process is given for precipitating cesium on zinc ferricyanide (at least 0.0004 M) from aqueous solutions containing mineral acid in a concentration of from 0.2 N acidity to 0.61 N acid-deficiency and advantageously, but not necessarily, also aluminum nitrate in a concentration of from l to 2.5 M.

  16. Acidity and hydrogen exchange dynamics of iron(II)-bound nitroxyl in aqueous solution.

    PubMed

    Gao, Yin; Toubaei, Abouzar; Kong, Xianqi; Wu, Gang

    2014-10-20

    Nitroxyl-iron(II) (HNO-Fe(II)) complexes are often unstable in aqueous solution, thus making them very difficult to study. Consequently, many fundamental chemical properties of Fe(II)-bound HNO have remained unknown. Using a comprehensive multinuclear ((1)H, (15)N, (17)O) NMR approach, the acidity of the Fe(II)-bound HNO in [Fe(CN)5(HNO)](3-) was investigated and its pK(a) value was determined to be greater than 11. Additionally, HNO undergoes rapid hydrogen exchange with water in aqueous solution and this exchange process is catalyzed by both acid and base. The hydrogen exchange dynamics for the Fe(II)-bound HNO have been characterized and the obtained benchmark values, when combined with the literature data on proteins, reveal that the rate of hydrogen exchange for the Fe(II)-bound HNO in the interior of globin proteins is reduced by a factor of 10(6). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fixed bed adsorption of 2-naphthalenesulfonic acid from aqueous solution by composite resin.

    PubMed

    Jia, Dong M; Li, Ya P; Li, Yue J; Li, Yong G; Li, Chang H

    2014-02-01

    Adsorption behavior of the iron impregnated, weakly basic resin D301 (Fe-D301) for removal of 2-naphthalenesulfonic acid (2-NSA) from aqueous solution was studied by using a fixed-bed column. The effects of process variables such as bed height, flow rate, and coexisting ions were investigated. The results indicated that the breakpoint and exhaustion point increased with increasing bed height and decreased with increasing 2-NSA flowrate. Experimental data showed a strong fit to the Bed Depth Service Time model. The coexisting ions in the 2-NSA solution had a clear effect on the breakthrough volume. The high extent of recovery of 2-NSA with good reproducibility provided an effective method for the separation of 2-NSA by the adsorbent Fe-D301.

  18. Terahertz microfluidic chips for detection of amino acids in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Su, Bo; Zhang, Cong; Fan, Ning; Zhang, Cunlin

    2016-11-01

    Microfluidic technology can control the fluidic thickness accurately in less than 100 micrometers. So the combination of terahertz (THz) and microfluidic technology becomes one of the most interesting directions towards biological detection. We designed microfluidic chips for terahertz spectroscopy of biological samples in aqueous solutions. Using the terahertz time-domain spectroscopy (THz-TDS) system, we experimentally measured the transmittance of the chips and the THz absorption spectra of L-threonine and L-arginine, respectively. The results indicated the feasibility of performing high sensitivity THz spectroscopy of amino acids solutions. Therefore, the microfluidic chips can realize real-time and label-free measurement for biochemistry samples in THz-TDS system.

  19. Cesium recovery from aqueous solutions

    DOEpatents

    Goodhall, C. A.

    1960-09-13

    A process for recovering cesium from aqueous solutions is given in which precipitation on zinc ferricyanide is used. The precipitation is preferably carried out in solutions containing at least 0.0004M zinc ferricyanide, an acidity ranging from 0.2N mineral acid to 0.61N acid deficiency, and 1 to 2.5M aluminum nitrate. (D.L.C.)

  20. Uptake of methacrolein into aqueous solutions of sulfuric acid and hydrogen peroxide.

    PubMed

    Liu, Ze; Wu, Ling-Yan; Wang, Tian-He; Ge, Mao-Fa; Wang, Wei-Gang

    2012-01-12

    Multiphase acid-catalyzed oxidation by hydrogen peroxide has been suggested to be a potential route to secondary organic aerosol (SOA) formation from isoprene and its gas-phase oxidation products, but the kinetics and chemical mechanism remain largely uncertain. Here we report the first measurement of uptake of methacrolein into aqueous solutions of sulfuric acid and hydrogen peroxide in the temperature range of 253-293 K. The steady-state uptake coefficients were acquired and increased quickly with increasing sulfuric acid concentration and decreasing temperature. Propyne, acetone, and 2,3-dihydroxymethacrylic acid were suggested as the products. The chemical mechanism is proposed to be the oxidation of carbonyl group and C═C double bonds by peroxide hydrogen in acidic environment, which could explain the large content of polyhydroxyl compounds in atmospheric fine particles. These results indicate that multiphase acid-catalyzed oxidation of methacrolein by hydrogen peroxide can contribute to SOA mass in the atmosphere, especially in the upper troposphere.

  1. Degradation of hydroxycinnamic acid mixtures in aqueous sucrose solutions by the Fenton process.

    PubMed

    Nguyen, Danny M T; Zhang, Zhanying; Doherty, William O S

    2015-02-11

    The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA), and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) were studied by the Fenton oxidation process. Central composite design and multiresponse surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was a <0.01% loss of sucrose in all reactions. The optimal values of the process parameters for a 200 mg/L HCA mixture in water (pH 4.73, 25.15 °C) and sucrose solution (13 mass %, pH 5.39, 35.98 °C) were 77% and 57%, respectively. Regression analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose and coprecipitated with lepidocrocite, an iron oxyhydroxide.

  2. Aquatic photolysis: photolytic redox reactions between goethite and adsorbed organic acids in aqueous solutions

    USGS Publications Warehouse

    Goldberg, M.C.; Cunningham, K.M.; Weiner, Eugene R.

    1993-01-01

    Photolysis of mono and di-carboxylic acids that are adsorbed onto the surface of the iron oxyhydroxide (goethite) results in an oxidation of the organic material and a reduction from Fe(III) to Fe(II) in the iron complex. There is a subsequent release of Fe2+ ions into solution. At constant light flux and constant solution light absorption, the factors responsible for the degree of photolytic reaction include: the number of lattice sites that are bonded by the organic acid; the rate of acid readsorption to the surface during photolysis; the conformation and structure of the organic acid; the degree of oxidation of the organic acid; the presence or absence of an ??-hydroxy group on the acid, the number of carbons in the di-acid chain and the conformation of the di-acid. The ability to liberate Fe(III) at pH 6.5 from the geothite lattice is described by the lyotropic series: tartrate>citrate> oxalate > glycolate > maleate > succinate > formate > fumarate > malonate > glutarate > benzoate = butanoate = control. Although a larger amount of iron is liberated, the series is almost the same at pH 5.5 except that oxalate > citrate and succinate > maleate. A set of rate equations are given that describe the release of iron from the goethite lattice. It was observed that the pH of the solution increases during photolysis if the solutions are not buffered. There is evidence to suggest the primary mechanism for all these reactions is an electron transfer from the organic ligand to the Fe(III) in the complex. Of all the iron-oxyhydroxide materials, crystalline goethite is the least soluble in water; yet, this study indicates that in an aqueous suspension, iron can be liberated from the goethite lattice. Further, it has been shown that photolysis can occur in a multiphase system at the sediment- water interface which results in an oxidation of the organic species and release of Fe2+ to solution where it becomes available for further reaction. ?? 1993.

  3. EXAFS study on the reactions between iron and fulvic acid in acid aqueous solutions.

    PubMed

    van Schaik, Joris W J; Persson, Ingmar; Kleja, Dan Berggren; Gustafsson, Jon Petter

    2008-04-01

    Iron(III) competes with trace metals for binding sites on organic ligands. We used X-ray absorption fine structure (EXAFS) spectroscopy to determine the binding mode and oxidation state of iron in solutions initially containing only iron(III) and fulvic acid at pHs 2 and 4. EXAFS spectra were recorded at different times after sample preparation. Iron was octahedrally configured with inner-sphere Fe-O interactions at 1.98-2.10 A, depending on the oxidation state of iron. Iron(III) formed complexes with fulvic acid within 15 min. Iron(III) was reduced to iron(II) with time at pH 2, whereas no significant reduction occurred at pH 4. No signs of dimeric/trimeric hydrolysis products were found in any of the solution samples (<0.45 microm). However, the isolated precipitate of the pH 2 sample (>0.45 microm) showed Fe...Fe distances, indicating the presence of tightly packed iron(III) trimers and/or clusters of corner-sharing octahedra. It is suggested that the binding mode of iron(III) to fulvic acid at low pH may be phase-dependent: in solution mononuclear complexes predominate, whereas in the solid phase hydrolyzed polynuclear iron(III) complexes form, even at very low pH values. The observed pH dependence of iron(III) reduction was consistent with expected results based on thermodynamic calculations for model ligands.

  4. Surface characterisation of ethylene propylene diene rubber upon exposure to aqueous acidic solution

    NASA Astrophysics Data System (ADS)

    Mitra, Susanta; Ghanbari-Siahkali, Afshin; Kingshott, Peter; Hvilsted, Søren; Almdal, Kristoffer

    2006-07-01

    Two types of pure ethylene propylene diene rubbers were exposed to two different acids for varying period of time. Surface characterisation was carried out using X-ray photoelectron spectroscopy (XPS). Two EPDM rubbers selected for this study were comparable in co-monomer compositions but significantly different with respect to molar mass and the presence of long chain branching. Both rubbers contained 5-ethylidene-2-norbornene (ENB) as diene. Solution cast films of pure EPDM samples were exposed in two different acidic solutions, viz. chromosulphuric (Cr (VI)/H 2SO 4) and sulphuric acid (H 2SO 4) (20%, v/v) at ambient temperature from 1 to 12 weeks. XPS analysis indicated that several oxygenated species were formed on the surface of both rubbers after exposure. It was postulated from the XPS analyses that both aqueous acidic solutions attacked the olefinic double bonds (C dbnd C) of ENB. Furthermore, 20% Cr (VI)/H 2SO 4 also attacked the allylic carbon-hydrogen (C sbnd H) bonds of ENB resulting in more oxygenated species on the surface compared to 20% H 2SO 4 under identical conditions. Cr (VI) in the 20% Cr (VI)/H 2SO 4 was found to play an important role in alteration of surface chemistry. Studies using a model system consisting of EPDM mixed with Cr (VI) and Cr (III) salts revealed that the change of oxidation state from Cr (VI) to Cr (III) as a consequence of direct involvement of Cr (VI) in the chemical alteration of EPDM surfaces. Interestingly, the presence of long chain branching and molar mass did not significantly influence the chemical processes owing to the acid treatment.

  5. Biosorption of methyl blue onto tartaric acid modified wheat bran from aqueous solution

    PubMed Central

    2012-01-01

    Tartaric acid modified wheat bran was utilized as adsorbent to remove methyl blue, a basic dye from aqueous solution. Batch experiments were carried out to study the effect of various experimental parameters such as initial solution pH, contact time, initial dye concentration and adsorbent dosage, on dye adsorption. The results showed that the modification of wheat bran by tartaric acid significantly improved its adsorption capacity, and made this material a suitable adsorbent to remove methyl blue. The adsorption capacity of modified wheat bran was about 1.6 times higher than that of unmodified one. The amount of methyl blue adsorbed was found to vary with initial solution pH, adsorbent dosage, contact time and initial methyl blue concentration. Kinetics study showed that the overall adsorption rate of methyl blue was illustrated by pseudo-second-order kinetic model. The applicability of the Langmuir and Freundlich models for the data was tested. Both models adequately described the experimental data of the biosorption of methyl blue. The maximum adsorption capacity for methyl blue calculated from Langmuir model was 25.18 mg/g. The study has shown the effectiveness of modified wheat bran in the removal of methyl blue, and that it can be considered as an attractive alternative to the more expensive technologies used in wastewater treatment. PMID:23369295

  6. CESIUM RECOVERY FROM AQUEOUS SOLUTIONS

    DOEpatents

    Schneider, R.A.

    1961-06-20

    Cesium may be precipitated from an aqueous solution whose acidity ranges between a pH of 1.5 and a molarity of 5 on cobaltous, zinc, cadmium, nickel, or ferrous cobalticyanide. This precipitation brings about a separation from most fission products. Ruthenium which coprecipitates to a great degree can be removed by dissolving in sulfuric acid and boiling the solution in the presence of periodic acid for volatilization; other coprecipitated fission products can then be precipitated from the sulfuric acid solution with a ferric hydroxide carrier.

  7. Physicochemical and toxicological studies on 4-chloro-3,5-dinitrobenzoic acid in aqueous solutions.

    PubMed

    Lopez, Jorge L; García Einschlag, Fernando S; Rives, Carina V; Villata, Laura S; Capparelli, Alberto L

    2004-05-01

    Physicochemical characterization of hazardous compounds often is required for the development of structure-reactivity correlations. Physical, chemical, and toxicological properties of target pollutants require determination for an efficient application of wastewater treatments. In the present work, we chose a chloro-nitro-aromatic derivative (4-chloro-3,5-dinitrobenzoic acid [CDNBA]), as a model compound on which to perform physicochemical and toxicological studies. Several properties of CDNBA are not available in the literature, although many aromatic nitro-compounds are considered hazardous materials. Measurements of solubility in water, acid dissociation constant, and kinetic parameters for the nucleophilic substitution of chlorine atom in alkaline media are reported. We also performed cytotoxicity studies of CDNBA and ultraviolet-irradiated CDNBA solutions. From the analysis of CDNBA solubility in water at different temperatures, an enthalpy of solution of 23.2 +/- 2.5 kJ/mol was found. The study of the acid dissociation constant Kc by using conductivity measurements and the modified Gran's method yielded values for the equilibrium constant Ka of 2.36 x 10(-3) and 2.26 x 10(-3), respectively. The bimolecular rate constant for the reaction of CDNB- and hydroxyl ion (HO) measured at room temperature and 0.1 M of ionic strength was 5.92/M x s, and the activation energy for this process was 70.7 +/- 3.4 kJ/mol. Cytotoxicity assays with aqueous suspensions of Tetrahymena pyriformis showed lethal effects due to the pH change induced by CDNBA. On the other hand, in buffered solutions, a value of 104.47 microM was observed for the median effective concentration, that is, the concentration of CDNBA at which the proliferation was restricted to one half of the blank. Irradiation of CDNBA solutions increased the toxicity, suggesting the formation of intermediate products with higher cytotoxicity effects.

  8. Adsorption and Separation of Aromatic Amino Acids from Aqueous Solutions Using Metal-Organic Frameworks.

    PubMed

    Jonckheere, Dries; Steele, Julian A; Claes, Birgit; Bueken, Bart; Claes, Laurens; Lagrain, Bert; Roeffaers, Maarten B J; De Vos, Dirk E

    2017-09-06

    Metal-organic frameworks (MOFs) are investigated for the adsorption of aromatic amino acids l-phenylalanine (l-Phe), l-tryptophan (l-Trp), and l-tyrosine (l-Tyr) from aqueous solutions. After screening a range of water-stable MOFs, the hydrophobic Zr-MOF MIL-140C emerged as the best performing material, exhibiting uptakes of 15 wt % for l-Trp and 20 wt % for l-Phe. These uptakes are 5-10 wt % higher than those of large-pore zeolites Beta and Y. Both single-compound and competitive adsorption isotherms for l-Phe and l-Trp were experimentally obtained at the natural pH of these amino acid mixtures (pH 6.5-7) without additional pH modification. We find that the hydrophobic nature of MIL-140C and the capacity of l-Trp to form hydrogen bonds favor the uptake of l-Trp with its larger indole moiety compared to the smaller phenyl side group of l-Phe. On the basis of literature and vibrational analysis, observations of hydrogen-bonded l-Trp within the MIL-140C framework are evidenced by red- and blue-shifted -NH vibrations (3400 cm -1 ) in Fourier transform infrared spectroscopy, which were attributed to types N-H l-Trp ···π MIL-140C and N-H l-Trp ···O MIL-140C , respectively. MIL-140C is shown to be recycled at least three times for both aromatic amino acids without any loss of adsorption capacity, separation performance, or crystallinity. Desorption of aromatic amino acids proceeds easily in aqueous ethanol. Substantial coadsorption of negatively charged amino acids l-glutamate and l-aspartate (l-Glu and l-Asp) was observed from a model solution for wheat straw protein hydrolysate at pH 4.3. On the basis of these results, we conclude that MIL-140C is an interesting material for the recovery of essential aromatic amino acids l-Tyr, l-Phe, and l-Trp and of l-Glu and l-Asp from waste protein hydrolysates.

  9. On the acidity and reactivity of HNO in aqueous solution and biological systems

    PubMed Central

    Bartberger, Michael D.; Fukuto, Jon M.; Houk, K. N.

    2001-01-01

    The gas phase and aqueous thermochemistry and reactivity of nitroxyl (nitrosyl hydride, HNO) were elucidated with multiconfigurational self-consistent field and hybrid density functional theory calculations and continuum solvation methods. The pKa of HNO is predicted to be 7.2 ± 1.0, considerably different from the value of 4.7 reported from pulse radiolysis experiments. The ground-state triplet nature of NO− affects the rates of acid-base chemistry of the HNO/NO− couple. HNO is highly reactive toward dimerization and addition of soft nucleophiles but is predicted to undergo negligible hydration (Keq = 6.9 × 10−5). HNO is predicted to exist as a discrete species in solution and is a viable participant in the chemical biology of nitric oxide and derivatives. PMID:11226215

  10. Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution.

    PubMed

    Hartono, Tri; Wang, Shaobin; Ma, Qing; Zhu, Zhonghua

    2009-05-01

    Layer structured graphite oxide (GO) was prepared from graphite using the Hummers-Offeman method, characterised using N(2) adsorption, XRD, XPS, SEM(TEM), and FT-IR, and tested for humic acid (HA) adsorption in aqueous solution. XRD, XPS, and FT-IR measurements indicate the formation of layered structure with strong functional groups of GO. It is also found that the GO exhibits strong and much higher adsorption capacity of HA than graphite. The maximum adsorption capacity of the GO from the Langmuir isotherm is 190 mg/g, higher than activated carbon. For the adsorption, several parameters will affect the adsorption such as solid loading and pH. HA adsorption will decrease with increasing pH and an optimum GO loading is required for maximum adsorption.

  11. The aqueous photolysis of α-pinene in solution with humic acid

    USGS Publications Warehouse

    Goldberg, Marvin C.; Cunningham, Kirkwood M.; Aiken, George R.; Weiner, Eugene R.; ,

    1992-01-01

    Terpenes are produced abundantly by environmental processes but are found in very low concentrations in natural waters. Aqueous photolysis of solutions containing α-pinene, a representative terpene, in the presence of humic acid resulted in degradation of the pinene. Comparison of this reaction to photolysis of α-pinene in the presence of methylene blue leads to the conclusion that the reactive pathway for the abiotic degradation of α-pinene is due to reaction with singlet oxygen produced by irradiation of the humic material. The initial product of single oxygen and α-pinene is a hydroperoxide. Since humic materials are prevalent in most natural waters, this mechanism of photodecomposition for α-pinene probably also applies to other terpenes in surface waters and may be reasonably considered to contribute to their low environmental concentration.

  12. Silver-catalyzed decarboxylative fluorination of aliphatic carboxylic acids in aqueous solution.

    PubMed

    Yin, Feng; Wang, Zhentao; Li, Zhaodong; Li, Chaozhong

    2012-06-27

    Although fluorinated compounds have found widespread applications in the chemical and materials industries, general and site-specific C(sp(3))-F bond formations are still a challenging task. We report here that with the catalysis of AgNO(3), various aliphatic carboxylic acids undergo efficient decarboxylative fluorination with SELECTFLUOR(®) reagent in aqueous solution, leading to the synthesis of the corresponding alkyl fluorides in satisfactory yields under mild conditions. This radical fluorination method is not only efficient and general but also chemoselective and functional-group-compatible, thus making it highly practical in the synthesis of fluorinated molecules. A mechanism involvinig Ag(III)-mediated single electron transfer followed by fluorine atom transfer is proposed for this catalytic fluorodecarboxylation.

  13. Needle trap extraction for GC analysis of formic and acetic acids in aqueous solution.

    PubMed

    Lee, Xinqing; Huang, Daikuan; Lou, Dawei; Pawliszyn, Janusz

    2012-07-01

    Formic and acetic acids are ubiquitous in the environment, food, and most of the natural products. Extraction of the acids from aqueous solution is required for their isotope analysis by the gas chromatography-isotope ratio mass spectrometry. To this objective, we have previously developed a purge-and-trap technique using the dynamic solid-phase microextraction technology, the NeedlEX. The extraction efficiency, however, remains unexamined. Here, we address this question using the flame ionization detector and isotope ratio mass spectrometer while comparing it with that of the CAR/PDMS fiber. The results show that the NeedlEX is applicable at a wide range of concentration through coordination of purge volume given the minimum amount 3.7 ng and 1.8 ng of formic and acetic, respectively, is extracted. The efficiency of NeedlEX was 6-7 times lower than the fiber at 1000 μg/mL depending on the analyte. It is, however, superior to the latter at 10 μg/mL or less owing to its lower detection limit. The extraction efficiency of both acids is equivalent in molar amount. This is, however, disguised by the different response of the flame ionization detector. The isotope ratio mass spectrometor overcomes this problem but is compromised by relatively large errors. These results are particularly useful for isotopic analysis of carboxylic acids. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Acid-activated spent bleaching earth as a sorbent for chromium (VI) in aqueous solution.

    PubMed

    Low, K S; Lee, C K; Lee, T S

    2003-02-01

    Spent bleaching earth, an industrial waste produced after the bleaching of crude palm oil, was investigated for its potential in removing Cr(VI) from aqueous solution. The earth was treated with different amounts of sulfuric acid and under different activation temperatures. Results show that the optimum treatment process involved 10% sulfuric acid at 350 degrees C. The effects of contact time, pH, initial concentration, sorbent dosage, temperature, sorption isotherms and the presence of other anions on its sorption capacity were studied. Isotherm data could be fitted into a modified Langmuir isotherm model implying monolayer coverage of Cr(VI) on acid activated spent bleaching earth. The maximum sorption capacity derived from the Langmuir isotherm was 21.2 mg g(-1). This value was compared with those of some other low cost sorbents. Studies of anion effect on the uptake of Cr(VI) on acid activated spent bleaching earth provided the following order of suppression: EDTA >PO4(3-)>SO4(2-)>NO3(-)>Cl(-).

  15. Application of the spin-trap HPLC-ESR method to radiation chemistry of amino acids in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Makino, Keisuke; Moriya, Fumio; Hatano, Hiroyuki

    Our recent studies of the application of the newly developed spin-trap HPLC-ESR method to γ-radiolysis of aqueous solutions containing amino acids are reviewed. 2-Methyl-2-nitrosopropane (MNP) was used as a spin trap to convert generated unstable free radicals into relatively stable aminoxyl radicals, which were separated individually by HPLC with cation-exchange columns. Compounds derived from MNP during the preparation of aqueous MNP solutions were found to be t-butylnitrosohydroxylamine, t-butyl alcohol and isbutene. The preparation procedure of the solution in which these undesirable products are minimized is proposed. γ-Radiolysis of aqueous MNP solutions resulted in the formation of five aminoxyl radicals. The chromatographic retention times of the radicals were found to be different from those of the spin adducts from the amino acids studied here. Amino acids investigated in the present work were glycine, L-alanine, L-valine, L-isoleucine, L-leucine and DL-methionine. Twenty-five spin adducts from the amino acids were detected and identified by the method. The reactions by which short-lived radicals are produced in γ-irradiated aqueous solutions of the amino acids have been found to be H-abstraction by hydroxyl radicals and deamination by hydrated electrons.

  16. Removal of boron from aqueous solution using magnetic carbon nanotube improved with tartaric acid

    PubMed Central

    2014-01-01

    Boron removal capacity of multi-walled carbon nanotubes (MWCNTs) modified with tartaric acid was investigated in this study. Modification of MWCNTs with tartaric acid was confirmed by Boehm surface chemistry method and fourier transform infra-red (FT-IR) spectroscopy. Experiments were performed to determine the adsorption isotherm and adsorption thermodynamic parameters of boron adsorption on tartaric acid modified MWCNTs (TA-MWCNTs). The effect of variables including initial pH, dosage of adsorbent, contact time and temperature was investigated. Analysis of data showed that adsorption equilibrium could be better described by Freundlich isotherm and the maximum adsorption capacities obtained at the pH of 6.0 was 1.97 mg/g. The estimated thermodynamic values of free energy (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) indicated a spontaneous and an endothermic process. Furthermore, the TA-MWCNTs was magnetized for separation of boron-contaminated adsorbent from aqueous solution by applying magnetic field. The results showed that magnetic TA-MWCNTs particles were separated effectively after adsorption from contaminated water. PMID:24393401

  17. Theoretical insights into the properties of amino acid ionic liquids in aqueous solution.

    PubMed

    Zhu, Xueying; Ai, Hongqi

    2016-07-01

    This report presents a systematic investigation of the interactions of water molecule(s) with a series of amino acid cations (Gly(+), Ala(+), Val(+), and Leu(+)), halogen anions (Cl(-), Br(-), BF4 (-), and PF6 (-)), and clusters (GlyCl) n (n = 1-5). The results reveal that H-bonds between amino acid ionic liquids (AAILs) and water molecules are crucial to the properties of aqueous solution of AAILs. The properties of AAIL in water solution depend on the alkyl chain of the amino acid cation, the size of the halogen anion, and the number of water molecules, which provides a certain theoretical basis for the design and application of new AAILs. A series of calculations for some different models showed that quadruple-GlyCl hydrate represents a basic unit for the Gly-water binary system, and can be employed as the simplest model for studying an AAIL-water cluster. On the basis of this model, the effects of water on the hygroscopicity, speed of solubility, viscosity, density, solution enthalpy, and polarity of the AAIL were also predicted. Most importantly, unlike traditional ILs, the novel GlyCl-type AAIL favors interaction of its cationic part, rather than its anionic part, with surrounding water molecules, thus amino acid cationic ILs expand the types of IL available, increasing the choice of ILs for different purposes. We hope that the application of this AAIL in many fields will lead to optimization of this class of compound and be of benefit to the environment. Graphical Abstract Quadruple-GlyCl hydrate represents the basic unit for a GlyCl-water binary system, which can be employed as the simplest model for studying an amino acid ionic liquid (AAIL)-water cluster. The effects of available water on some properties of AAIL are predicted. GlyCl-type AAIL is a novel IL, which prefers its cationic part over its anionic part for interaction with surrounding water molecules. The properties of AAIL in water solution can be adjusted by varying the ion used and the

  18. The Estimation of Acidic Behavior of Wood by Treatment with Aqueous Na2HPO4 Solution

    PubMed Central

    Uçar, Güneş; Balaban Uçar, Mualla

    2012-01-01

    As a new approach, the acidity that wood exhibits under moderate conditions is assayed by stimulated dissociation of weak wood acids in lightly basic secondary phosphate solutions. To assure a sufficient dissociation of hardly soluble weak acids in the solution, the amount of wood suspended in Na2HPO4 solutions should be small but vary depending on the degree of acidity of wood species. However, the difficulties are associated with the titration of very dilute acids limiting the precision of the measurement. If the disintegrated wood is suspended in a secondary phosphate solution, the weak woods acids form the conjugate acid Na2HPO4 from secondary phosphate Na2HPO4 resulting in a pH fall of the solution. The decrease in the pH value in phosphate solution, which depends on the wood acidity, can be evaluated to estimate the acidity arising from wood under moderate conditions. PMID:22567561

  19. Solute-enhanced production of gamma-valerolactone (GVL) from aqueous solutions of levulinic acid

    DOEpatents

    Dumesic, James A; Wettstein, Stephanie G; Alonso, David Martin; Gurbuz, Elif Ispir

    2015-02-24

    A method to produce levulinic acid (LA) and gamma-valerolactone (GVL) from biomass-derived cellulose or lignocellulose by selective extraction of LA using GVL and optionally converting the LA so isolated into GVL, with no purifications steps required to yield the GVL.

  20. Solute-enhanced production of gamma-valerolactone (GVL) from aqueous solutions of levulinic acid

    DOEpatents

    Dumesic, James A.; Wettstein, Stephanie G.; Alonso, David Martin; Gurbuz, Elif Ispir

    2016-06-28

    A method to produce levulinic acid (LA) and gamma-valerolactone (GVL) from biomass-derived cellulose or lignocellulose by selective extraction of LA using GVL and optionally converting the LA so isolated into GVL, with no purifications steps required to yield the GVL.

  1. Photo-induced coupling reactions of tetrazoles with carboxylic acids in aqueous solution: application in protein labelling.

    PubMed

    Zhao, Shan; Dai, Jianye; Hu, Mo; Liu, Chang; Meng, Rong; Liu, Xiaoyun; Wang, Chu; Luo, Tuoping

    2016-03-28

    The photo-induced reactions of diaryltetrazoles with carboxylic acids in aqueous solution were investigated. Besides measuring the apparent second-order rate constant and evaluating the functional group compatibility of these reactions, we further incorporated the tetrazoles into SAHA, leading to a new active-site-directed probe for labelling HDACs in both cell lysates and living cells.

  2. Photocatalytic CO2 reduction to formic acid using a Ru(II)-Re(I) supramolecular complex in an aqueous solution.

    PubMed

    Nakada, Akinobu; Koike, Kazuhide; Nakashima, Takuya; Morimoto, Tatsuki; Ishitani, Osamu

    2015-02-16

    In an aqueous solution, photophysical, photochemical, and photocatalytic abilities of a Ru(II)-Re(I) binuclear complex (RuReCl), of which Ru(II) photosensitizer and Re(I) catalyst units were connected with a bridging ligand, have been investigated in details. RuReCl could photocatalyze CO2 reduction using ascorbate as an electron donor, even in an aqueous solution. The main product of the photocatalytic reaction was formic acid in the aqueous solution; this is very different in product distribution from that in a dimethylformamide (DMF) and triethanolamine (TEOA) mixed solution in which the main product was CO. A (13)CO2 labeling experiment clearly showed that formic acid was produced from CO2. The turnover number and selectivity of the formic acid production were 25 and 83%, respectively. The quantum yield of the formic acid formation was 0.2%, which was much lower, compared to that in the DMF-TEOA mixed solution. Detail studies of the photochemical electron-transfer process showed back-electron transfer from the one-electron-reduced species (OERS) of the photosensitizer unit to an oxidized ascorbate efficiently proceeded, and this should be one of the main reasons why the photocatalytic efficiency was lower in the aqueous solution. In the aqueous solution, ligand substitution of the Ru(II) photosensitizer unit proceeded during the photocatalytic reaction, which was a main deactivation process of the photocatalytic reaction. The product of the ligand substitution was a Ru(II) bisdiimine complex or complexes with ascorbate as a ligand or ligands.

  3. Vanadium(IV,V) complexes of D-saccharic and mucic acids in aqueous solution.

    PubMed

    Dornyei, Agnes; Garribba, Eugenio; Jakusch, Tamas; Forgo, Peter; Micera, Giovanni; Kiss, Tamas

    2004-06-21

    The vanadium(IV,V) complexes formed with two aldaric acids (D-saccharic or D-glucaric acid, and mucic or galactaric acid) in aqueous solution were characterised by employing pH-potentiometry, EPR, multinuclear NMR and UV-VIS spectroscopy. The stoichiometry and stability constants of the complexes formed were determined at 25 degrees C and ionic strength I= 0.2 mol dm(-3)(KCl). The spectral measurements revealed that vanadium(IV,V) coordinates first at the terminal COO(-) functions, forming mononuclear complexes. At pH > 3, through the metal ion-induced deprotonation and coordination of the neighbouring alcoholic functions, (COO(-), O(-)) coordinated dinuclear complexes are formed, which predominate in the pH range 4-8. In the basic pH range, the ligand molecules are displaced and binary metal hydroxo and oxo complexes are present. EPR measurements at room temperature and at 140 K proved that formation of the VO(iv) dimers is more enhanced at room temperature, but at 140 K their dissociation is favoured. An interesting pH-dependent cis-trans isomeric equilibrium was assumed and analysed by EPR and molecular modelling in the case of the complexes [(VO)(2)L(2)H(x)](x=-2 and -4). Joint evaluation of the pH-potentiometric and (51)V NMR measurements revealed that both aldaric acids are able to bind an excess of vanadium(V), through the formation of oligomeric 2:1 and 3:2 species, besides the 2:2 species formed with VO(IV).

  4. Field effects in graphene in an interface contact with aqueous solutions of acetic acid and potassium hydroxide

    NASA Astrophysics Data System (ADS)

    Butko, A. V.; Butko, V. Yu.; Lebedev, S. P.; Lebedev, A. A.; Kumzerov, Yu. A.

    2017-10-01

    For the creation of new promising chemical sensors, it is very important to study the influence of the interface between graphene and aqueous solutions of acids and alkalis on the transistor characteristics of graphene. Transistor structures on the basis of graphene grown by thermal decomposition of silicon carbide were created and studied. For the interface of graphene with aqueous solutions of acetic acid and potassium hydroxide in the transistor geometry, with a variation in the gate-to-source voltage, the field effect corresponding to the hole type of charge carriers in graphene was observed. It is established that an increase in the concentration of molecular ions in these solutions leads to an increase in the dependence of the resistance of the transistor on the gate voltage.

  5. Chemical and spectral behavior of nitric acid in aqueous sulfuric acid solutions: Absorption spectrum and molar absorption coefficient of nitronium ion

    NASA Astrophysics Data System (ADS)

    Ershov, Boris G.; Panich, Nadezhda M.

    2018-01-01

    The chemical species formed from nitric acid in aqueous solutions of sulfuric acid (up to 18.0 mol L- 1) were studied by optical spectroscopy method. The concentration region of nitronium ion formation was identified and NO2+ ion absorption spectrum was measured (λmax ≤ 190 nm and ε190 = 1040 ± 50 mol- 1 L cm- 1).

  6. Luminescence, absorption, and Stern-Volmer studies of cerium chloride and nitrate compounds in acidic and neutral aqueous, and non-aqueous solutions

    NASA Astrophysics Data System (ADS)

    Forcha, Derick; Brown, Kwame J.; Assefa, Zerihun

    2013-02-01

    Complexation of cerium chloride and nitrate in neutral and acidic aqueous solutions as well as in anhydrous alcohol solutions were investigated using emission, excitation, and absorption spectroscopic techniques. In aqueous solution cerium chloride shows a strong, and broad emission centering at 365 nm. The excitation spectra are observed at 266 and 296 nm with the shorter wavelength showing the highest intensity. Cerium chloride compound also strongly emits in methanol (MeOH), where the broad emission spectrum is red shifted by ˜10-375 nm. The excitation spectrum in MeOH shows bands at 255 and 309 nm, respectively with the longer wavelength band (at 309 nm) dominating. The relative intensities of these two excitation bands are reversed in protic aqueous solution. In contrast, solutions of cerium nitrate are only weakly luminescent in aqueous media, while the emission is totally quenched in MeOH solution. These observations indicate that the spectral profiles are largely influenced by the extent of inner-sphere coordination and the type of the dominant species in solutions. Both nitrate and chloride anions show enhanced inner-sphere coordination in MeOH when compared with that of the aqueous media. However, enhanced inner-sphere complexation of the NO3- ion quenches the emission, while the reverse effect is observed upon Cl- coordination. Stern-Volmer studies provide quenching constant, Ksv, value of 577 M-1. The calculated rate constant kr is 1.3 × 1010 M-1 s-1 indicating diffusion controlled bimolecular process as the major mode of interaction.

  7. Regeneration of an aqueous solution from an acid gas absorption process by matrix stripping

    DOEpatents

    Rochelle, Gary T [Austin, TX; Oyenekan, Babatunde A [Katy, TX

    2011-03-08

    Carbon dioxide and other acid gases are removed from gaseous streams using aqueous absorption and stripping processes. By replacing the conventional stripper used to regenerate the aqueous solvent and capture the acid gas with a matrix stripping configuration, less energy is consumed. The matrix stripping configuration uses two or more reboiled strippers at different pressures. The rich feed from the absorption equipment is split among the strippers, and partially regenerated solvent from the highest pressure stripper flows to the middle of sequentially lower pressure strippers in a "matrix" pattern. By selecting certain parameters of the matrix stripping configuration such that the total energy required by the strippers to achieve a desired percentage of acid gas removal from the gaseous stream is minimized, further energy savings can be realized.

  8. Coefficient of ozone mass transfer during its interaction with an aqueous solution of formic acid in a bubble column reactor

    NASA Astrophysics Data System (ADS)

    Levanov, A. V.; Isaikina, O. Ya.; Gasanova, R. B.; Lunin, V. V.

    2017-08-01

    A way of determining the coefficient of ozone mass transfer between the gas phase and liquid aqueous phase using a test compound (formic acid) is described. The values of ozone mass transfer coefficient (in aqueous solutions of 0.1-0.55 M HClO4 and 0-1 M HCOOH, and in 0.75 M H2SO4, 0.125 M KHSO4, and 0-2 M HCOOH) are determined along with the rate constants of the reaction of O3 with undissociated HCOOH molecules and formate ions at 21 ± 1°C.

  9. Bioreversible derivatives of phenol. 2. Reactivity of carbonate esters with fatty acid-like structures towards hydrolysis in aqueous solutions.

    PubMed

    Østergaard, Jesper; Larsen, Claus

    2007-10-30

    A series of model phenol carbonate ester prodrugs encompassing derivatives with fatty acid-like structures were synthesized and their stability as a function of pH (range 0.4 - 12.5) at 37 degrees C in aqueous buffer solutions investigated. The hydrolysis rates in aqueous solutions differed widely, depending on the selected pro-moieties (alkyl and aryl substituents). The observed reactivity differences could be rationalized by the inductive and steric properties of the substituent groups when taking into account that the mechanism of hydrolysis may change when the type of pro-moiety is altered, e.g. n-alkyl vs. t-butyl. Hydrolysis of the phenolic carbonate ester 2-(phenoxycarbonyloxy)-acetic acid was increased due to intramolecular catalysis, as compared to the derivatives synthesized from omega-hydroxy carboxylic acids with longer alkyl chains. The carbonate esters appear to be less reactive towards specific acid and base catalyzed hydrolysis than phenyl acetate. The results underline that it is unrealistic to expect that phenolic carbonate ester prodrugs can be utilized in ready to use aqueous formulations. The stability of the carbonate ester derivatives with fatty acid-like structures, expected to interact with the plasma protein human serum albumin, proved sufficient for further in vitro and in vivo evaluation of the potential of utilizing HSA binding in combination with the prodrug approach for optimization of drug pharmacokinetics.

  10. Transformations of methyl orange dimers in aqueous-acid solutions, according to UV-Vis spectroscopy data

    NASA Astrophysics Data System (ADS)

    Mikheev, Yu. A.; Guseva, L. N.; Ershov, Yu. A.

    2017-10-01

    The effect acidity has on the UV-Vis absorption spectra of azo dye methyl orange (MOD) in aqueous solutions of hydrochloric acid in the pH range of 1.7 to 7 and sulfuric acid in the 0.24 to 18 mol/L range of concentrations is investigated. The spectral transformations of MOD solutions are compared to the corresponding spectral transformations of solutions of dimethylaminoazobenzene (DAB), which is an azo dye akin to MOD. A close resemblance between the spectral transformations of MOD and dimers DAB2 is revealed. It is concluded that the ground state of MOD, like the ground state of DAB, consists of not individual molecules but of supramolecular dimers MOD2. It is found that dimers MOD2 in aqueous low-acidic solutions are reversibly protonated with the formation of di- and triprotonated forms, which reversibly dissociate into diprotonated monomers upon an increase in acidity. The structural formulas of the chromogenic groups responsible for the spectral transformations, and the mechanisms of their reversible transformations, are given.

  11. Removing uranium (VI) from aqueous solution with insoluble humic acid derived from leonardite.

    PubMed

    Meng, Fande; Yuan, Guodong; Larson, Steven L; Ballard, John H; Waggoner, Charles A; Arslan, Zikri; Han, Fengxiang X

    2017-12-01

    The occurrence of uranium (U) and depleted uranium (DU)-contaminated wastes from anthropogenic activities is an important environmental problem. Insoluble humic acid derived from leonardite (L-HA) was investigated as a potential adsorbent for immobilizing U in the environment. The effect of initial pH, contact time, U concentration, and temperature on U(VI) adsorption onto L-HA was assessed. The U(VI) adsorption was pH-dependent and achieved equilibrium in 2 h. It could be well described with pseudo-second-order model, indicating that U(VI) adsorption onto L-HA involved chemisorption. The U(VI) adsorption mass increased with increasing temperature with maximum adsorption capacities of 91, 112 and 120 mg g-1 at 298, 308 and 318 K, respectively. The adsorption reaction was spontaneous and endothermic. We explored the processes of U(VI) desorption from the L-HA-U complex through batch desorption experiments in 1 mM NaNO3 and in artificial seawater. The desorption process could be well described by pseudo-first-order model and reached equilibrium in 3 h. L-HA possessed a high propensity to adsorb U(VI). Once adsorbed, the release of U(VI) from L-HA-U complex was minimal in both 1 mM NaNO3and artificial seawater (0.06% and 0.40%, respectively). Being abundant, inexpensive, and safe, L-HA has good potential for use as a U adsorbent from aqueous solution or immobilizing U in soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Volatility of organic aerosol: evaporation of ammonium sulfate/succinic acid aqueous solution droplets.

    PubMed

    Yli-Juuti, Taina; Zardini, Alessandro A; Eriksson, Axel C; Hansen, Anne Maria K; Pagels, Joakim H; Swietlicki, Erik; Svenningsson, Birgitta; Glasius, Marianne; Worsnop, Douglas R; Riipinen, Ilona; Bilde, Merete

    2013-01-01

    Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol.

  13. Volatility of Organic Aerosol: Evaporation of Ammonium Sulfate/Succinic Acid Aqueous Solution Droplets

    PubMed Central

    2013-01-01

    Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol. PMID:24107221

  14. Extraction of nitric acid, uranyl nitrate, and bismuth nitrate from aqueous nitric acid solutions with CMPO

    SciTech Connect

    Spencer, B.B.

    1995-08-01

    DOE sponsored development of the transuranium extraction (TRUEX) process for removing actinides from radioactive wastes. The solvent is a mixture of CMPO and TBP. Since the extraction characteristics of CMPO are not as well understood as those of TBP, the extraction of nitric acid, uranyl nitrate, and bismuth nitrate with CMPO (dissolved in n-dodecane) were studied. Results indicate that CMPO extracts nitric acid with a 1:1 stoichiometry; equilibrium constant is 2. 660{plus_minus}0.092 at 25 C, and extraction enthalpy is -5. 46{plus_minus}0.46 kcal/mol. Slope analysis indicates that uranyl nitrate extracts with a mixed equilibria of 1:1 and 2:1 stoichiometries in nearly equal proportion. Equil. constant of the 2: 1 extraction was 1.213 {times} 10{sup 6}{plus_minus}3.56 {times} 10{sup 4} at 25 C; reaction enthalpy was -9.610{plus_minus}0.594 kcal/mol. Nitration complexation constant is 8.412{plus_minus}0.579, with an enthalpy of -10.72{plus_minus}1.87 kcal/mol. Bismuth nitrate also extracts with a mixed equilibria of (perhaps) 1:1 and 2:1 stoichiometries. A 2:1 extraction equilibrium and a nitrate complexation adequately model the data. Kinetics and enthalpies were also measured.

  15. Long-term degradation study of hyaluronic acid in aqueous solutions without protection against microorganisms.

    PubMed

    Simulescu, Vasile; Kalina, Michal; Mondek, Jakub; Pekař, Miloslav

    2016-02-10

    The degradation of hyaluronan (HA) of different molecular weights (Mw 14.3, 267.2 and 1160.6 kDa, measured for fresh solutions, before degradation) was studied in aqueous solutions by SEC-MALLS determination of molecular mass, polydispersity and conformation parameters. The solutions were stored either at laboratory or refrigerator temperatures for two months. After this period the weight average molecular weight decreased by 90% for 14.3 kDa, 95% for 267.2 kDa and 71% for 1160.6 kDa hyaluronan (room temperature) or 5.6% for 14.3 kDa, 6.2% for 267.2 kDa and 7.7% for 1160.6 kDa hyaluronan (refrigerator temperature). The hyaluronan aqueous solutions studied did not contain sodium azide or other protectants against microorganisms, because the aim of our study was to assess the degradation in solutions to be used in medicine or cosmetics (without any compounds that are poisonous or toxic for the human body). The solvent used to prepare the samples was pure water. The polydispersity of all the samples remained unaltered during the entire degradation at both temperatures. This indicates a non-random mechanism of degradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Thermodynamic and Ultrasonic Properties of Ascorbic Acid in Aqueous Protic Ionic Liquid Solutions

    PubMed Central

    Singh, Vickramjeet; Sharma, Gyanendra; Gardas, Ramesh L.

    2015-01-01

    In this work, we report the thermodynamic and ultrasonic properties of ascorbic acid (vitamin C) in water and in presence of newly synthesized ammonium based protic ionic liquid (diethylethanolammonium propionate) as a function of concentration and temperature. Apparent molar volume and apparent molar isentropic compression, which characterize the solvation state of ascorbic acid (AA) in presence of protic ionic liquid (PIL) has been determined from precise density and speed of sound measurements at temperatures (293.15 to 328.15) K with 5 K interval. The strength of molecular interactions prevailing in ternary solutions has been discussed on the basis of infinite dilution partial molar volume and partial molar isentropic compression, corresponding volume of transfer and interaction coefficients. Result has been discussed in terms of solute-solute and solute-solvent interactions occurring between ascorbic acid and PIL in ternary solutions (AA + water + PIL). PMID:26009887

  17. Biosorption of formic and acetic acids from aqueous solution using activated carbon from shea butter seed shells

    NASA Astrophysics Data System (ADS)

    Adekola, Folahan A.; Oba, Ismaila A.

    2017-10-01

    The efficiency of prepared activated carbon from shea butter seed shells (SB-AC) for the adsorption of formic acid (FA) and acetic acid (AA) from aqueous solution was investigated. The effect of optimization parameters including initial concentration, agitation time, adsorbent dosage and temperature of adsorbate solution on the sorption capacity were studied. The SB-AC was characterized for the following parameters: bulk density, moisture content, ash content, pH, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The optimal conditions for the adsorption were established and the adsorption data for AA fitted Dubinin-Radushkevich (D-R) isotherm well, whereas FA followed Langmuir isotherm. The kinetic data were examined. It was found that pseudo-second-order kinetic model was found to adequately explain the sorption kinetic of AA and FA from aqueous solution. It was again found that intraparticle diffusion was found to explain the adsorption mechanism. Adsorption thermodynamic parameters were estimated and the negative values of Δ G showed that the adsorption process was feasible and spontaneous in nature, while the negative values of Δ H indicate that the adsorption process was exothermic. It is therefore established that SB-AC has good potential for the removal of AA and FA from aqueous solution. Hence, it should find application in the regular treatment of polluted water in aquaculture and fish breeding system.

  18. Kinetics of leaching of zinc ferrite in aqueous hydrochloric acid solutions

    NASA Astrophysics Data System (ADS)

    Núñez, C.; Viñals, J.

    1984-06-01

    The dissolution of synthetic samples of zinc ferrite in aqueous hydrochloric acid is stoichiometric. The rate appears to be controlled by a chemical reaction on the solid surface, and dependence of the dissolution rate on hydrochloric acid activity is of the first order. Activation energy of 83 kJ mol-1 was found. Zinc ferrite leaching is a slow solubilization process in the hydrochloric acid treatment of dead-roasted Iberian pyrite ashes. The most favorable conditions are 0.5-1 M HC1 at 90 to 100 ‡C, when preferential solubilization of the spinel phases takes place on the hematitic matrix. Extensive extraction of zinc (~90 pct of total zinc) in one to two hours and low solubilization of iron (~8 pet of total iron) results under these conditions.

  19. Characterization of Solid Dispersion of Itraconazole Prepared by Solubilization in Concentrated Aqueous Solutions of Weak Organic Acids and Drying.

    PubMed

    Parikh, Tapan; Sandhu, Harpreet K; Talele, Tanaji T; Serajuddin, Abu T M

    2016-06-01

    The purpose of this study was to develop an amorphous solid dispersion (SD) of an extremely water-insoluble and very weakly basic drug, itraconazole (ITZ), by interaction with weak organic acids and then drying that would enhance dissolution rate of drug and physical stability of formulation. Aqueous solubility of ITZ in concentrated solutions of weak organic acids, such as glutaric, tartaric, malic and citric acid, was determined. Solutions with high drug solubility were dried using vacuum oven and the resulting SDs having 2 to 20% drug load were characterized by differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. The dissolution of SDs was initially studied in 250 mL of 0.1 N HCl (pH 1.1), and any undissolved solids were collected and analyzed by PXRD. The pH of the dissolution medium was then changed from 1.1 to 5.5, particle size of precipitates were measured, and drug concentrations in solution were determined by filtration through membrane filters of varying pore sizes. The aqueous solubility of ITZ was greatly enhanced in presence of weak acids. While the solubility of ITZ in water was ~4 ng/ mL, it increased to 25-40 mg per g of solution at 25°C and 200 mg per g of solution at 65°C at a high acid concentration leading to extremely high solubilization. PXRD of SDs indicated that ITZ was present in the amorphous form, wherein the acid formed a partially crystalline matrix. ATR-FTIR results showed possible weak interactions, such as hydrogen bonding, between drug and acid but there was no salt formation. SDs formed highly supersaturated solutions at pH 1.1 and had superior dissolution rate as compared to amorphous drug and physical mixtures of drug and acids. Following the change in pH from 1.1 to 5.5, ITZ precipitated as mostly nanoparticles, providing high surface area for relatively rapid redissolution. A method of highly solubilizing an

  20. Comparison of CO2 and oxygen DC submerged thermal plasmas for decomposition of carboxylic acid in aqueous solution

    NASA Astrophysics Data System (ADS)

    Safa, S.; Hekmat-Ardakan, A.; Soucy, G.

    2014-11-01

    The feasibility of the carboxylic acid decomposition with two different direct current (DC) thermal plasma torches was investigated. An oxygen DC submerged thermal plasma torch and a newly designed submerged DC plasma torch operating with a mixture of carbon dioxide and methane (CO2/CH4) were used. Sebacic acid was selected as a representative of pollutants in the most wastewater produced by chemical process industries. The effect of different operational conditions including treatment time, the reactor pressure as well as the role of oxidizing agents such as (H2O2) were investigated on the decomposition rate of sebacic acid. Concentration of sebacic acid was quantified by Ion Chromatography/Mass Spectrometry (IC/MS). The oxygen plasma showed higher decomposition rate in basic medium. Adding H2O2 into aqueous solution enhanced the sebacic acid decomposition rate with the CO2/CH4 plasma up to the same decomposition rate of the oxygen plasma. Increasing the pressure also increased the decomposition rate for both plasmas with an increase twice higher for the CO2/CH4 plasma than that of the oxygen plasma. This work therefore presents the conditions in which these plasmas can provide the same decomposition rate for contaminants in aqueous solution.

  1. Inhibition of methemoglobin formation in aqueous solutions under aerobic conditions by the addition of amino acids.

    PubMed

    Wei, Yuping; Li, Chunlong; Zhang, Liang; Su, Zhiguo; Xu, Xia

    2014-03-01

    Hemoglobin (Hb) as an important iron-containing oxygen-transport protein is easily oxidized to the ferric met-form, methemoglobin (metHb), and loses the capacity of binding oxygen during storage. In this study, the experimental data indicate that the presence of Tyr and Glu significantly suppress the metHb formation in the Hb solutions in aqueous environment under aerobic conditions at the temperature of 25 and 37 °C, respectively. At pO2 of 144Torr the metHb percentage in the Hb solutions was the lowest with less than 10% at day 7 after incubation with Tyr at the ratio of 24 at pH 9.5 at 25 °C. At 37 °C, the metHb percentage did not reach 5% after 12h of incubation with Glu at the ratio of 24 at pH 9. Molecular simulation analysis suggest that the presence of Tyr or Glu may contribute to the formation of the breakwater network, the stabilization of distal histidine, the changes in the size of heme pocket, and eventually result in the inhibition of metHb formation. This study provides insight into a new design for Hb-oxygen based carriers with strongly inhibition of metHb formation in aqueous environment under aerobic conditions, even at physiological temperature in vitro. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Removal characteristics of As(III) and As(V) from acidic aqueous solution by steel making slag.

    PubMed

    Oh, Chamteut; Rhee, Sungsu; Oh, Myounghak; Park, Junboum

    2012-04-30

    This study focused on the environmental risk of steel making slag itself, arsenic removal mechanism and re-leaching possibility of arsenic to aqueous state after the adsorption. The purpose of the study is to promote the use of steel making slag as a low-cost adsorbent for arsenic in aqueous system. Calcium was easily dissolved out from the slag and become the dominant substance in the leachate. Some of the calcium could form amorphous calcium carbonate in alkaline condition, and arsenic in the aqueous solution would be removed by being co-precipitated with or adsorbed onto the amorphous calcium carbonate. Most of the amorphous calcium carbonate containing arsenic would be bound to amorphous iron oxide of the slag. When the slag was used as an adsorbent for arsenic removal, a little amount of toxic chemicals were leached from the slag itself under pH 0.8 to 13.6. Also, 70-80% of arsenic laden on the slag was bound to amorphous iron oxide which would not easily desorb unless given a reducing and complexing condition. Showing 95-100% removal efficiency near initial pH 2, the slag, therefore, could be used as an appropriate adsorbent for eliminating arsenic in acidic aqueous solution. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. REDUCTION OF PLUTONIUM VALUES IN AN ACIDIC AQUEOUS SOLUTION WITH FORMALDEHYDE

    DOEpatents

    Olson, C.M.

    1959-06-01

    A method is given for reducing Pu to the tetravalent state and lowering the high acidity of dissolver solutions containing U and Pu. Formaldehyde is added to the HNO/sub 3/ solution of U and Pu to effect a formaldehyde to HNO/sub 3/ molar ratio of 0.375:1 to 1.5:1. The Pu can then be removed from the solution by carrier precipitation using BiPO/sub 4/ or by ion exchange. (T.R.H.)

  4. Trivalent chromium removal from aqueous solutions by a sol–gel synthesized silica adsorbent functionalized with sulphonic acid groups

    SciTech Connect

    Gomez-Gonzalez, Sergio Efrain; Carbajal-Arizaga, Gregorio Guadalupe; Manriquez-Gonzalez, Ricardo

    2014-11-15

    Highlights: • Corpuscular sulphonic acid-functionalized silica holds improved uptake of chromium. • Mesopores on adsorbent facilitate (CH{sub 3}COO){sub 2}Cr{sup +} ion uptake on sulphonate sites. • Formation of chromium acetate sulphonate complex proposed from XPS results. • Fixed bed chromium uptake results suggest potential industrial use. - Abstract: A high capacity hybrid silica adsorbent was synthesized via sol–gel processing with sulphonic acid groups as trivalent chromium complex ions chelators from aqueous solutions. The synthesis included co-condensation of tetraethoxysilane (TEOS) with 3-(mercaptopropyl)trimethoxysilane (MPS), and oxidation of thiol to sulphonic acid groups. Chromium uptake kinetic, batch and fixed-bed experiments were performed tomore » assess the removal of this metal from aqueous solutions. {sup 13}C, {sup 29}Si CPMAS NMR, FTIR, XPS were used to characterize the adsorbent structure and the nature of chromium complexes on the adsorbent surface. Chromium maximum uptake was obtained at pH 3 (72.8 mg/g). Elemental analysis results showed ligand density of 1.48 mmol sulphonic groups/g. About 407 mL of Cr(III) solution (311 mg/L) were treated to breakthrough point reaching ≤0.06 mg/L at the effluent. These results comply with USEPA regulation for chromium concentration in drinking water (≤0.1 mg/L). The adsorbent shows potential to be used in chromium separations to the industrial level.« less

  5. Spectrophotometric Study of the Interaction Np(VI) with Orthosilicic Acid and Polymeric Silicic Acids in Aqueous Solutions

    SciTech Connect

    Yusov, A. B.; Shilov, V. P.; Fedoseev, A. M.; Astafurova, L. N.; Delegard, Calvin H.

    2005-07-15

    Spectrophotometric methods were used to investigate the interaction of the NpO22+ ion with orthosilicic acid, Si(OH)4, and polymeric silicic acids (PSA) in aqueous solutions. At рН ≤ 4.5, the interaction is described by the reaction NpO22+ + Si(OH)4 = NpO2OSi(OH)3+ + H+ with an equilibrium constant of lg K = -2.88 ± 0.12 (ionic strength I = 0.1-0.2). Recalculation to I = 0 gives lg K0 =-2.61 ± 0.12; the stability constant of the complex NpO2OSi(OH)3+ is lg β0 = 7.20 ± 0.12. Polymerization of Si(OH)4 does not lead to an apparent increase in the constant K. In solutions with рН higher than 5, and with silicate concentration more than 0.02 mole/l, leads to formation of a second complex, whose structure probably is described by the formula NpO2(≡SiO)2(≡SiOH)m-2, where (≡SiOH)m designates the PSA molecule with superficial Si-OH groups. The factors influencing the apparent equilibrium constants in forming of complexes NpO2OSi(OH)3+ and NpO2(≡SiO)2(≡SiOH)m-2 are considered upon polymerization of Si(OH)4. Absorption spectra of complexes NpO2OSi(OH)3+ and NpO2(≡SiO)2(≡SiOH)m-2 were obtained. Molar extinction coefficients at the maxima (500-600 nanometers) are much higher than those of the Np(VI) aquo ion and are about 25-30 l/mol∙cm. The stabilities of silicate complexes of all types - MO2OSi(OH)3+, MO2(≡SiO)2(≡SiOH)m-2, or MO2SiO3 (M = U, Np, or Pu) - decrease in order U> Np> Pu with the greatest difference occurring between Np and Pu.

  6. Effective removal of phosphate from aqueous solution using humic acid coated magnetite nanoparticles.

    PubMed

    Rashid, Mamun; Price, Nathaniel T; Gracia Pinilla, Miguel Ángel; O'Shea, Kevin E

    2017-10-15

    Effective removal of excess phosphate from water is critical to counteract eutrophication and restore water quality. In this study, low cost, environmentally friendly humic acid coated magnetite nanoparticles (HA-MNP) were synthesized and applied for the remediation of phosphate from aqueous media. The HA-MNPs, characterized by FTIR, TEM and HAADF-STEM showed the extensive coating of humic acid on the magnetite surface. The magnetic nanoparticles with diameters of 7-12 nm could be easily separated from the reaction mixture by using a simple hand held magnet. Adsorption studies demonstrate the fast and effective separation of phosphate with maximum adsorption capacity of 28.9 mg/g at pH 6.6. The adsorption behavior follows the Freundlich isotherm suggesting the formation of non-uniform multilayers of phosphate on the heterogeneous surface of HA-MNP. The adsorption kinetic fits the pseudo-second order model well with rate constants of 0.206 ± 0.003, 0.073 ± 0.002 and 0.061 ± 0.003 g mg -1 min -1 for phosphate (P) concentrations of 2, 5 and 10 mg/L respectively. The removal of phosphate was found higher at acidic and neutral pH compared to basic conditions. The nanoparticles exhibit good selectivity and adsorption efficiency for phosphate in presence of co-existing ions such as Cl - , SO 4 2- and NO 3 - with some inhibition effect by CO 3 2- . The effect of temperature on the adsorption reveals that the process is endothermic and spontaneous. HA-MNPs are promising, simple, environmentally friendly materials for the removal of phosphate from aqueous media. Copyright © 2017. Published by Elsevier Ltd.

  7. RECOVERY OF TETRAVALENT CATIONS FROM AQUEOUS SOLUTIONS

    DOEpatents

    Moore, R.L.

    1958-05-01

    The recovery of plutonium, zirconium, and tetravalent cerium values from aqueous solutions is described. It consists of adding an alkyl phosphate to a nnineral acid aqueous solution containing the metal to be recovered, whereby a precipitate forms with the tetravalent values, and separating the precipitate from the solution. All alkyl phosphates, if water-soluble, are suitable for the process; however, monobutyl phosphate has been found best.

  8. Poly (vinylsulfonic acid) assisted synthesis of aqueous solution stable vaterite calcium carbonate nanoparticles.

    PubMed

    Nagaraja, Ashvin T; Pradhan, Sulolit; McShane, Michael J

    2014-03-15

    Calcium carbonate nanoparticles of the vaterite polymorph were synthesized by combining CaCl2 and Na2CO3 in the presence of poly (vinylsulfonic acid) (PVSA). By studying the important experimental parameters we found that controlling PVSA concentration, reaction temperature, and order of reagent addition the particle size, monodispersity, and surface charge can be controlled. By increasing PVSA concentration or by decreasing temperature CCNPs with an average size from ≈150 to 500 nm could be produced. We believe the incorporation of PVSA into the reaction plays a dual role to (1) slow down the nucleation rate by sequestering calcium and to (2) stabilize the resulting CCNPs as the vaterite polymorph, preventing surface calcification or aggregation into microparticles. The obtained vaterite nanoparticles were found to maintain their crystal structure and surface charge after storage in aqueous buffer for at least 5 months. The aqueous stable vaterite nanoparticles could be a useful platform for the encapsulation of a large variety of biomolecules for drug delivery or as a sacrificial template toward capsule formation for biosensor applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Spectrofluorimetric study of the interaction of ciprofloxacin with amino acids in aqueous solution following solvatochromic studies

    NASA Astrophysics Data System (ADS)

    Alizadeh, Kamal; Mobarrez, Mahsa; Ganjali, Mohammad Reza; Norouzi, Parviz; Chaichi, Mohammad Javad

    Complexation of a fluoroquinolone derivative (ciprofloxacin), L, and some amino acids has been studied using spectrofluorimetric method. Results indicated that ciprofloxacin have a greater tendency to form a 1:1 complex with aspartic acid and arginine than the other tested molecules. The fluorescence of ciprofloxacin exhibits quenching process while it has been titrated with these amino acids. Formation constant values (Kf) for complex formed between ciprofloxacin and amino acids were also calculated. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were studied too. Possible reasons for the observed stability sequence were discussed based on the structures proposed for the resulting complexes. Besides the solution studies, solvatochromic properties of the ciprofloxacin are discussed by studying its spectra in a selection of different solvents.

  10. Water- and acid-mediated excited-state intramolecular proton transfer and decarboxylation reactions of ketoprofen in water-rich and acidic aqueous solutions.

    PubMed

    Li, Ming-De; Yeung, Chi Shun; Guan, Xiangguo; Ma, Jiani; Li, Wen; Ma, Chensheng; Phillips, David Lee

    2011-09-19

    We present an investigation of the decarboxylation reaction of ketoprofen (KP) induced by triplet excited-state intramolecular proton transfer in water-rich and acidic solutions. Nanosecond time-resolved resonance Raman spectroscopy results show that the decarboxylation reaction is facile in aqueous solutions with high water ratios (water/acetonitrile ≥50%) or acidic solutions with moderate and strong acid concentration. These experimental results are consistent with results from density functional theory calculations in which 1) the activation energy barriers for the triplet-state intramolecular proton transfer and associated decarboxylation process become lower when more water molecules (from one up to four molecules) are involved in the reaction system and 2) perchloric acid, sulfuric acid, and hydrochloric acid can shuttle a proton from the carboxyl to carbonyl group through an initial intramolecular proton transfer of the triplet excited state, which facilitates the cleavage of the C-C bond, thus leading to the decarboxylation reaction of triplet state KP. During the decarboxylation process, the water molecules and acid molecules may act as bridges to mediate intramolecular proton transfer for the triplet state KP when KP is irradiated by ultraviolet light in water-rich or acidic aqueous solutions and subsequently it generates a triplet-protonated carbanion biradical species. The faster generation of triplet-protonated carbanion biradical in acidic solutions than in water-rich solutions with a high water ratio is also supported by the lower activation energy barrier calculated for the acid-mediated reactions versus those of water-molecule-assisted reactions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The effect of high-energy radiation on aqueous solution of Acid Red 1 textile dye

    NASA Astrophysics Data System (ADS)

    Földváry, Cs. M.; Wojnárovits, L.

    2007-08-01

    The effect of high-energy radiation on Acid Red 1 (AR1) azo-dye solution was investigated by UV-Vis spectroscopy and chemical oxygen demand (COD) measurements. Doses in the order of 10 kGy cause complete decolouration of the 10 -3-10 -4 mol dm -3 solutions; however, for complete mineralization doses higher by 1-2 order of magnitude are needed. Hydrated electrons and H rad atom are more effective in fading reaction, while the rad OH radicals have higher efficiency in mineralization. The HO 2•/O 2•- radical-radical anion pair is rather inefficient in fading reaction.

  12. Experimental and theoretical evaluation on the microenvironmental effect of dimethyl sulfoxide on adrenaline in acid aqueous solution

    NASA Astrophysics Data System (ADS)

    Yu, Zhang-Yu; Liu, Tao; Guo, Dao-Jun; Liu, Yong-Jun; Liu, Cheng-Bu

    2010-12-01

    The microenvironmental effect of dimethyl sulfoxide (DMSO) on adrenaline was studied by several approaches including the cyclic voltammetry (CV) of adrenaline at a platinum electrode in acid aqueous solution, the chemical shift of 1H nuclear magnetic resonance ( 1H NMR) of adrenaline, and the change of diffusion coefficient of adrenaline. The experimental results demonstrated that DMSO has significant microenvironmental effect on adrenaline, which was confirmed by the density functional theory (DFT) study on the hydrogen bond (H-bond) complexes of adrenaline with water and DMSO.

  13. A systematic investigation and insight into the formation mechanism of bilayers of fatty acid/soap mixtures in aqueous solutions.

    PubMed

    Xu, Wenlong; Song, Aixin; Dong, Shuli; Chen, Jingfei; Hao, Jingcheng

    2013-10-08

    Vesicles are the most common form of bilayer structures in fatty acid/soap mixtures in aqueous solutions; however, a peculiar bilayer structure called a "planar sheet" was found for the first time in the mixtures. In the past few decades, considerable research has focused on the formation theory of bilayers in fatty acid/soap mixtures. The hydrogen bond theory has been widely accepted by scientists to explain the formation of bilayers. However, except for the hydrogen bond, no other driving forces were proposed systematically. In this work, three kinds of weak interactions were investigated in detail, which could perfectly demonstrate the formation mechanism of bilayer structures in the fatty acid/soap mixtures in aqueous solutions. (i) The influence of hydrophobic interaction was detected by changing the chain length of fatty acid (C(n)H(2n+1)COOH), in which n = 10 to 18, the phase behavior was investigated, and the phase region was presented. With the help of cryogenic transmission electron microscopy (cryo-TEM) observations, deuterium nuclear magnetic resonance ((2)H NMR), and X-ray diffraction (XRD) measurements, the vesicles and planar sheets were determined. The chain length of C(n)H(2n+1)COOH has an important effect on the physical state of the hydrophobic chain, resulting in an obvious difference in the viscoelasticity of the solution samples. (ii) The existence of hydrogen bonds between fatty acids and their soaps in aqueous solutions was demonstrated by Fourier transform infrared (FT-IR) spectroscopy and molecule dynamical simulation. From the pH measurements, the pH ranges of the bilayer formation were at the pKa values of fatty acids, respectively. (iii) Counterions can be embedded in the stern layer of the bilayers and screen the electrostatic repulsion between the COO(-) anionic headgroups. FT-IR characterization demonstrated a bidentate bridging coordination mode between counterions and carboxylates. The conductivity measurements provided the degree

  14. Self-consistent field theory investigation of the behavior of hyaluronic acid chains in aqueous salt solutions

    NASA Astrophysics Data System (ADS)

    Nogovitsin, E. A.; Budkov, Yu. A.

    2012-04-01

    In this work we continue to develop a field-theoretic methodology, which combines the technique of Gaussian equivalent representation for the calculation of functional integrals with the continuous Gaussian thread model of flexible polymers for solving statistical-mechanical problems of polyelectrolyte solutions. We present new analytic expressions for the osmotic pressure, the potential of mean force, and the monomer-monomer pair distribution function, and employ them to investigate the structural and thermodynamic quantities of the polyelectrolyte system. We demonstrate the applicability of the method for systems of polyelectrolyte chains in which the monomers interact via a Yukawa-type pair potential. As a specific example, the present work focuses on aqueous solutions of hyaluronic acid with added salts NaCl and CaCl2. Hyaluronic acid is a high molecular weight linear polysaccharide, which has a multitude of roles in biological tissues. We conclude that the effect of sodium chloride and calcium chloride on the osmotic properties of hyaluronic acid solutions can be accounted for by their contributions to the ionic strength. Nevertheless, the effects of coiling and self-association can be stimulated in solution by added salt.

  15. Acid-base equilibria in aqueous solutions of meta-cresolsulfophthalein in the temperature range of 25 to 200°C

    NASA Astrophysics Data System (ADS)

    Stepanchikova, S. A.; Galay, G. I.

    2017-01-01

    Values of the second thermodynamic ionization constant of pH indicator m-Cresol Purple are determined spectrophotometrically in slightly alkaline aqueous solutions in the temperature range of 25 to 200°C at saturated vapor pressure. Data required for studies on acid-base equilibria in weakly alkaline aqueous solution of rare-earth elements at elevated temperatures are obtained to characterize their behavior in geochemical systems.

  16. Partitioning of humic acids between aqueous solution and hydrogel. 2. Impact of physicochemical conditions.

    PubMed

    Zielińska, Katarzyna; Town, Raewyn M; Yasadi, Kamuran; van Leeuwen, Herman P

    2015-01-01

    The effects of the physicochemical features of aqueous medium on the mode of partitioning of humic acids (HAs) into a model biomimetic gel (alginate) and a synthetic polyacrylamide gel (PAAm) were explored. Experiments were performed under conditions of different pH and ionic strength as well as in the presence or absence of complexing divalent metal ions. The amount of HA penetrating the gel phase was determined by measuring its natural fluorescence by confocal laser scanning microscopy. In both gel types, the accumulation of HA was spatially heterogeneous, with a much higher concentration located within a thin film at the gel surface. The thickness of the surface film (ca. 15 μm) was similar for both types of gel and practically independent of pH, ionic strength, and the presence of complexing divalent metal ions. The extent of HA accumulation was found to be dependent on the composition of the medium and on the type of gel. Significantly more HA was accumulated in PAAm gel as compared to that in alginate gel. In general, more HA was accumulated at lower background salt concentration levels. The distribution of different types of HA species in the gel body was linked to their behavior in the medium and the differences in physicochemical conditions inside the two phases.

  17. Complete mineralization of perfluorooctanoic acid (PFOA) by γ-irradiation in aqueous solution.

    PubMed

    Zhang, Ze; Chen, Jie-Jie; Lyu, Xian-Jin; Yin, Hao; Sheng, Guo-Ping

    2014-12-10

    Decomposition of perfluorooctanoic acid (C7F15COOH, PFOA) has been gaining increasing interests because it is a ubiquitous environmental contaminant and resistant to the most conventional treatment processes. In this work, the rapid and complete mineralization of PFOA and simultaneous defluorination were achieved by γ-ray irradiation with a (60)Co source. The degradation rate of PFOA by γ-ray irradiation would be high, and a pseudo-first-order kinetic rate constant of 0.67 h(-1) could be achieved in the N2 satured condition at pH 13.0. The experimental results and quantum chemical calculation confirmed that two radicals, i.e., hydroxyl radical (·OH) and aqueous electrons (eaq(-)), were responsible for the degradation of PFOA, while only either eaq(-) or ·OH might not be able to accomplish complete mineralization of PFOA. The synergistic effects of ·OH and eaq(-) involved in the cleavage of C-C and C-F bonds, and therefore complete mineralization of PFOA were achieved. The intermediate products were identified and the degradation pathway was also proposed. The results of this study may offer a useful, high-efficient approach for complete mineralizing fluorochemicals and other persistent pollutants.

  18. Complete mineralization of perfluorooctanoic acid (PFOA) by γ-irradiation in aqueous solution

    PubMed Central

    Zhang, Ze; Chen, Jie-Jie; Lyu, Xian-Jin; Yin, Hao; Sheng, Guo-Ping

    2014-01-01

    Decomposition of perfluorooctanoic acid (C7F15COOH, PFOA) has been gaining increasing interests because it is a ubiquitous environmental contaminant and resistant to the most conventional treatment processes. In this work, the rapid and complete mineralization of PFOA and simultaneous defluorination were achieved by γ-ray irradiation with a 60Co source. The degradation rate of PFOA by γ-ray irradiation would be high, and a pseudo-first-order kinetic rate constant of 0.67 h−1 could be achieved in the N2 satured condition at pH 13.0. The experimental results and quantum chemical calculation confirmed that two radicals, i.e., hydroxyl radical (·OH) and aqueous electrons (eaq−), were responsible for the degradation of PFOA, while only either eaq− or ·OH might not be able to accomplish complete mineralization of PFOA. The synergistic effects of ·OH and eaq− involved in the cleavage of C-C and C-F bonds, and therefore complete mineralization of PFOA were achieved. The intermediate products were identified and the degradation pathway was also proposed. The results of this study may offer a useful, high-efficient approach for complete mineralizing fluorochemicals and other persistent pollutants. PMID:25492109

  19. Complete mineralization of perfluorooctanoic acid (PFOA) by γ-irradiation in aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhang, Ze; Chen, Jie-Jie; Lyu, Xian-Jin; Yin, Hao; Sheng, Guo-Ping

    2014-12-01

    Decomposition of perfluorooctanoic acid (C7F15COOH, PFOA) has been gaining increasing interests because it is a ubiquitous environmental contaminant and resistant to the most conventional treatment processes. In this work, the rapid and complete mineralization of PFOA and simultaneous defluorination were achieved by γ-ray irradiation with a 60Co source. The degradation rate of PFOA by γ-ray irradiation would be high, and a pseudo-first-order kinetic rate constant of 0.67 h-1 could be achieved in the N2 satured condition at pH 13.0. The experimental results and quantum chemical calculation confirmed that two radicals, i.e., hydroxyl radical (.OH) and aqueous electrons (eaq-), were responsible for the degradation of PFOA, while only either eaq- or .OH might not be able to accomplish complete mineralization of PFOA. The synergistic effects of .OH and eaq- involved in the cleavage of C-C and C-F bonds, and therefore complete mineralization of PFOA were achieved. The intermediate products were identified and the degradation pathway was also proposed. The results of this study may offer a useful, high-efficient approach for complete mineralizing fluorochemicals and other persistent pollutants.

  20. Comparison of phthalic acid removal from aqueous solution by electrochemical methods: Optimization, kinetic and sludge study.

    PubMed

    Sandhwar, Vishal Kumar; Prasad, Basheshwar

    2017-12-01

    In this work, comparative study between electrochemical processes such as electrocoagulation (EC), peroxi-coagulation (PC) and peroxi-electrocoagulation (PEC) was performed for the removal of phthalic acid (PA) and chemical oxygen demand (COD) from aqueous medium. Initially, acid treatment was studied at various pH (1-3) and temperature (10-55 °C). Subsequently, the supernatant was re-treated by electrochemical processes such as EC, PC and PEC separately. Independent parameters viz. pH, current density (CD), electrolyte concentration (m), electrode gap (g), H2O2 concentration and electrolysis time (t) were optimized by Central Composite Design (CCD) for these electrochemical processes. All three processes were compared based on removal, energy consumption, kinetic analysis, operating cost and sludge characteristics. In this study, PEC process was found more efficient among EC, PC and PEC processes in order to get maximum removal, minimum energy consumption and minimum operating cost. Maximum removal of PA- 68.21%, 74.36%, 82.25% & COD- 64.79%, 68.15%, 75.21% with energy consumption - 120.95, 97.51, 65.68 (kWh/kg COD removed) were attained through EC, PC and PEC processes respectively at their corresponding optimum conditions. Results indicated that PA and COD removals are in order of PEC > PC > EC under optimum conditions. First order kinetic model was found able to describe the degradation kinetics and provided best correlation for the removal rate within the acceptable error range. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review.

    PubMed

    Tang, Wang-Wang; Zeng, Guang-Ming; Gong, Ji-Lai; Liang, Jie; Xu, Piao; Zhang, Chang; Huang, Bin-Bin

    2014-01-15

    Nowadays nanomaterials have been widely used to remove heavy metals from water/wastewater due to their large surface area and high reactivity. Humic acid (HA) and fulvic acid (FA) exist ubiquitously in aquatic environments and have a variety of functional groups which allow them to complex with metal ions and interact with nanomaterials. These interactions can not only alter the environmental behavior of nanomaterials, but also influence the removal and transportation of heavy metals by nanomaterials. Thus, the interactions and the underlying mechanisms involved warrant specific investigations. This review outlined the effects of HA/FA on the removal of heavy metals from aqueous solutions by various nanomaterials, mainly including carbon-based nanomaterials, iron-based nanomaterials and photocatalytic nanomaterials. Moreover, mechanisms involved in the interactions were discussed and potential environmental implications of HA/FA to nanomaterials and heavy metals were evaluated. © 2013.

  2. Interaction of model aryl- and alkyl-boronic acids and 1,2-diols in aqueous solution.

    PubMed

    Marinaro, William A; Prankerd, Richard; Kinnari, Kaisa; Stella, Valentino J

    2015-04-01

    The goal of this work was to quantitate ester formation between alkyl and aryl boronic acids and vicinal-diols or 1,2-diols in aqueous solution. As used here, 1,2-diols includes polyols with one or more 1,2-diol pairs. Multiple techniques were used including apparent pKa shifts of the boronic acids using UV spectrophotometry (for aryl acids) and titration (for aryl and alkyl acids). Isothermal microcalorimetry was also used, with all reactions being enthalpically favored. For all the acids and 1,2-diols and the conditions studied, evidence only supported 1:1 ester formation. All the esters formed were found to be significantly more acidic, as Lewis acids, by 3-3.5 pKa units than the corresponding nonesterified boronic acid. The equilibrium constants for ester formation increased with increasing number of 1,2-diol pairs but stereochemistry may also play a role as sorbitol with five possible 1,2-diol pairs and five isomers (taking into account the stereochemistry of the alcohol groups) was twice as efficient at ester formation compared with mannitol, also with five possible 1,2-diol pairs but only three isomers. Alkyl boronic acids formed esters to a greater extent than aryl acids. Although some quantitative differences were seen between the various techniques used, rank ordering of the structure/reactivity was consistent. Formulation implications of ester formation between boronic acids and 1,2-diols are discussed. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. Use of 'soluble lipids' for biochemical processes: linoleic acid-cyclodextrin inclusion complexes in aqueous solutions.

    PubMed Central

    López-Nicolás, J M; Bru, R; Sánchez-Ferrer, A; García-Carmona, F

    1995-01-01

    The equilibria of linoleic acid (LA)-cyclodextrin (CD) complexes were studied to investigate the behaviour of 'soluble lipids' in solution as a function of factors that typically affect biochemical processes, such as pH, temperature and CD structure. The above complexes are formed with a stoicheiometry of 1:2 in solution. The first CD molecule interacts with LA through hydrogen bonds when the pH is below the fatty acid pK; hydrophobic interactions may also play an important role at high pH. The second CD molecule makes only hydrophobic contact with the LA hydrocarbon chain. The formation of hydrogen bonds is dependent on the inner diameter of the CD whereas the strength of the hydrophobic interactions between CD and LA can be related to the presence of hydrophobic groups in the CD. The first CD molecule interacts more strongly with LA at increased temperatures. The quantitative description of the LA-CD interaction allows absolute control of the effects produced by the lipid on biochemical processes. PMID:7755559

  4. Steric structure and thermodynamic aspects of the complexes of dysprosium (III) with aminobenzoic acids in aqueous solutions

    SciTech Connect

    Kondrashina, Yu, G.; Mustafina, A.R.; Vul`fson, S.G.

    1994-10-01

    Steric structures of dysprosium (III) aminobenzoate complexes with the 1:1 and 1:2 molar ratio in aqueous solutions were determined on the basis of pH-metric and paramagnetic birefringence data. An increase in conjugation observed for the series of the acids, viz., benzoic, meta-, ortho-, and para-aminobenzoic acids, results in the increased stability of the complexes with the 1:1 and 1:2 composition. In the case of para-aminobenzoic acid, the polyhedra [DyL(H{sub 2}O){sub 6}]{sup 2+} and [DyL{sub 2}(H{sub 2}O){sub 4}]{sup +} are cubes with the ligands coordinated to one and two edges, respectively. In the case of meta-aminobenzoic acid, the polyhedra [DyL(H{sub 2}O){submore » 6}]{sup 2+} and [DyL{sub 2}(H{sub 2}O){sub 4}]{sup +} are a dodecahedron with the ligand coordinated to one edge and a square anti-prism with the ligands coordinated to two edges, respectively. In the case of ortho-aminobenzoic acid, both the 1:1 and 1:2 complexes have structures that are intermediate between the structures of meta- and para-aminobenzoic acids.« less

  5. SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Callis, C.F.; Moore, R.L.

    1959-09-01

    >The separation of ruthenium from aqueous solutions containing uranium plutonium, ruthenium, and fission products is described. The separation is accomplished by providing a nitric acid solution of plutonium, uranium, ruthenium, and fission products, oxidizing plutonium to the hexavalent state with sodium dichromate, contacting the solution with a water-immiscible organic solvent, such as hexone, to extract plutonyl, uranyl, ruthenium, and fission products, reducing with sodium ferrite the plutonyl in the solvent phase to trivalent plutonium, reextracting from the solvent phase the trivalent plutonium, ruthenium, and some fission products with an aqueous solution containing a salting out agent, introducing ozone into the aqueous acid solution to oxidize plutonium to the hexavalent state and ruthenium to ruthenium tetraoxide, and volatizing off the ruthenium tetraoxide.

  6. Thermodynamic characteristics of acid-base equilibria of DL-α-alanyl-DL-norleucine in aqueous solutions at 298 K

    NASA Astrophysics Data System (ADS)

    Lytkin, A. I.; Chernikov, V. V.; Krutova, O. N.; Bychkova, S. A.; Skvortsov, I. A.

    2015-09-01

    Protolytic equilibria in aqueous solutions of DL-α-alanyl-DL-norleucine are studied via potentiometry and calorimetry. Measurements are made at 298.15 K and ionic strengths of 0.5, 1.0, and 1.5 (against a background of potassium nitrate). The thermodynamic characteristics (p K, Δ G, Δ H, Δ S) of the stepwise dissociation of the dipeptide both in aqueous-salt solutions and in standard solution are obtained for the first time.

  7. ADSORPTION OF CERIUM VALUES FROM AQUEOUS SOLUTIONS

    DOEpatents

    Roberts, F.P.

    1963-08-13

    Cerium can be removed from aqueous nitric acid (2 to 13 M) solutions by passing the latter over a PbO/sub 2/-containing anion exchange resin. The cerium is taken up by the resin, while any lanthanides, yttrium, and strontium present remain in the solution. (AEC)

  8. Freezing and glass transitions upon cooling and warming and ice/freeze-concentration-solution morphology of emulsified aqueous citric acid.

    PubMed

    Bogdan, Anatoli; Molina, Mario J; Tenhu, Heikki

    2016-12-01

    Although freeze-induced phase separation and the ice/FCS (freeze-concentration solution) morphology of aqueous solutions play an important role in fields ranging from life sciences and biotechnology to geophysics and high-altitude ice clouds, their understanding is far from complete. Herein, using differential scanning calorimetry (DSC) and optical cryo-microscope (OC-M), we have studied the freezing and glass transition behavior and the ice/FCS morphology of emulsified 10-60wt% CA (citric acid) solutions in the temperature region of ∼308and153K. We have obtained a lot of new result which are understandable and unclear. The most essential understandable results are as follows: (i) similar to bulk CA/H2O, emulsified CA/H2O also freezes upon cooling and warming and (ii) the ice/FCS morphology of frozen drops smaller than ∼3-4μm is less ramified than that of frozen bulk solutions. Unclear results, among others, are as follows: (i) in contrast to bulk solutions, which produce one freezing event, emulsified CA/H2O produces two freezing events and (ii) in emulsions, drop concentration is not uniform. Our results demonstrate that DSC thermograms and OC-M images/movies are mutually supplementary and allow us to extract important information which cannot be gained when DSC and OC-M techniques are used alone. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Nitrilotriacetic acid functionalizedAdansonia digitatabiosorbent: Preparation, characterization and sorption of Pb (II) and Cu (II) pollutants from aqueous solution.

    PubMed

    Adewuyi, Adewale; Pereira, Fabiano Vargas

    2016-11-01

    Nitrilotriacetic acid functionalized Adansonia digitata (NFAD) biosorbent has been synthesized using a simple and novel method. NFAD was characterized by X-ray Diffraction analysis technique (XRD), Scanning Electron Microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analyzer, Fourier Transform Infrared spectrometer (FTIR), particle size dispersion, zeta potential, elemental analysis (CHNS/O analyzer), thermogravimetric analysis (TGA), differential thermal analysis (DTA), derivative thermogravimetric analysis (DTG) and energy dispersive spectroscopy (EDS). The ability of NFAD as biosorbent was evaluated for the removal of Pb (II) and Cu (II) ions from aqueous solutions. The particle distribution of NFAD was found to be monomodal while SEM revealed the surface to be heterogeneous. The adsorption capacity of NFAD toward Pb (II) ions was 54.417 mg/g while that of Cu (II) ions was found to be 9.349 mg/g. The adsorption of these metals was found to be monolayer, second-order-kinetic, and controlled by both intra-particle diffusion and liquid film diffusion. The results of this study were compared better than some reported biosorbents in the literature. The current study has revealed NFAD to be an effective biosorbent for the removal of Pb (II) and Cu (II) from aqueous solution.

  10. Stability of phosphonic acid self-assembled monolayers on amorphous and single-crystalline aluminum oxide surfaces in aqueous solution.

    PubMed

    Thissen, Peter; Valtiner, Markus; Grundmeier, Guido

    2010-01-05

    The formation of octadecylphosphonic acid (ODPA) self-assembled monolayers (SAMs) and their stability in water has been studied on four distinctly different aluminum oxide surfaces. The aim was to improve the understanding of the state of binding between the phosphonic acid to the oxide surface and how this interaction depends on the structure and termination of the oxide surface. Single crystalline Al(2)O(3)(0001) and Al(2)O(3)(1102) surfaces were compared to amorphous oxide passive films on aluminum and physical vapor deposited (PVD) amorphous aluminum oxide films on gold. The monolayers were adsorbed from ethanol solution, characterized by means of high-resolution in situ atomic force microscopy (AFM), contact angle measurements, polarization modulated infrared reflection absorption spectroscopy (PM-IRRAS), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and proved to be self-assembled. On Al(2)O(3)(1102) surfaces and amorphous Al(2)O(3) surfaces, the ODPA self-assembled monolayers showed high stability in aqueous environments. However, the adsorbed ODPA monolayers were substituted by the adsorption of interfacial water on the Al(2)O(3)(0001) surface via the intermediate formation of micelles. The different stability of the monolayers in aqueous environments is explained by the variation of interfacial binding states ranging from ionic interactions between phosphonate groups and the positively charged hydrolytated oxide surface to directed coordination bonds between the phosphonate group and Al ions.

  11. Mapping the conformational free energy of aspartic acid in the gas phase and in aqueous solution

    NASA Astrophysics Data System (ADS)

    Comitani, Federico; Rossi, Kevin; Ceriotti, Michele; Sanz, M. Eugenia; Molteni, Carla

    2017-04-01

    The conformational free energy landscape of aspartic acid, a proteogenic amino acid involved in a wide variety of biological functions, was investigated as an example of the complexity that multiple rotatable bonds produce even in relatively simple molecules. To efficiently explore such a landscape, this molecule was studied in the neutral and zwitterionic forms, in the gas phase and in water solution, by means of molecular dynamics and the enhanced sampling method metadynamics with classical force-fields. Multi-dimensional free energy landscapes were reduced to bi-dimensional maps through the non-linear dimensionality reduction algorithm sketch-map to identify the energetically stable conformers and their interconnection paths. Quantum chemical calculations were then performed on the minimum free energy structures. Our procedure returned the low energy conformations observed experimentally in the gas phase with rotational spectroscopy [M. E. Sanz et al., Phys. Chem. Chem. Phys. 12, 3573 (2010)]. Moreover, it provided information on higher energy conformers not accessible to experiments and on the conformers in water. The comparison between different force-fields and quantum chemical data highlighted the importance of the underlying potential energy surface to accurately capture energy rankings. The combination of force-field based metadynamics, sketch-map analysis, and quantum chemical calculations was able to produce an exhaustive conformational exploration in a range of significant free energies that complements the experimental data. Similar protocols can be applied to larger peptides with complex conformational landscapes and would greatly benefit from the next generation of accurate force-fields.

  12. Efficient removal of heavy metal ions from aqueous solution using salicylic acid type chelate adsorbent.

    PubMed

    An, Fuqiang; Gao, Baojiao; Dai, Xin; Wang, Min; Wang, Xiaohua

    2011-09-15

    In this study, 5-aminosalicylic acid was successfully grafted onto the poly(glycidyl methacrylate) (PGMA) macromolecular chains of PGMA/SiO(2) to obtain a novel adsorbent designated as ASA-PGMA/SiO(2). The adsorption properties of ASA-PGMA/SiO(2) for heavy metal ions were studied through batch and column methods. The experimental results showed that ASA-PGMA/SiO(2) possesses strong chelating adsorption ability for heavy metal ions, and its adsorption capacity for Cu(2+), Cd(2+), Zn(2+), and Pb(2+) reaches 0.42, 0.40, 0.35, and 0.31 mmol g(-1), respectively. In addition, pH has a great influence on the adsorption capacity in the studied pH range. The adsorption isotherm data greatly obey the Langmuir and Freundlich model. The desorption of metal ions from ASA-PGMA/SiO(2) is effective using 0.1 mol l(-1) of hydrochloric acid solution as eluent. Consecutive adsorption-desorption experiments showed that ASA-PGMA/SiO(2) could be reused almost without any loss in the adsorption capacity. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Mapping the conformational free energy of aspartic acid in the gas phase and in aqueous solution.

    PubMed

    Comitani, Federico; Rossi, Kevin; Ceriotti, Michele; Sanz, M Eugenia; Molteni, Carla

    2017-04-14

    The conformational free energy landscape of aspartic acid, a proteogenic amino acid involved in a wide variety of biological functions, was investigated as an example of the complexity that multiple rotatable bonds produce even in relatively simple molecules. To efficiently explore such a landscape, this molecule was studied in the neutral and zwitterionic forms, in the gas phase and in water solution, by means of molecular dynamics and the enhanced sampling method metadynamics with classical force-fields. Multi-dimensional free energy landscapes were reduced to bi-dimensional maps through the non-linear dimensionality reduction algorithm sketch-map to identify the energetically stable conformers and their interconnection paths. Quantum chemical calculations were then performed on the minimum free energy structures. Our procedure returned the low energy conformations observed experimentally in the gas phase with rotational spectroscopy [M. E. Sanz et al., Phys. Chem. Chem. Phys. 12, 3573 (2010)]. Moreover, it provided information on higher energy conformers not accessible to experiments and on the conformers in water. The comparison between different force-fields and quantum chemical data highlighted the importance of the underlying potential energy surface to accurately capture energy rankings. The combination of force-field based metadynamics, sketch-map analysis, and quantum chemical calculations was able to produce an exhaustive conformational exploration in a range of significant free energies that complements the experimental data. Similar protocols can be applied to larger peptides with complex conformational landscapes and would greatly benefit from the next generation of accurate force-fields.

  14. Formation of Amino Acids on the Sonolysis of Aqueous Solutions Containing Acetic Acid, Methane, or Carbon Dioxide, in the Presence of Nitrogen Gas.

    PubMed

    Dharmarathne, Leena; Grieser, Franz

    2016-01-21

    The sonolysis of aqueous solutions containing acetic acid, methane, or carbon dioxide in the presence of nitrogen gas was found to produce a number of different amino acids at a rate of ∼1 to 100 nM/min, using ultrasound at an operating power of 70 W and 355 kHz. Gas-phase elementary reactions are suggested, and discussed, to account for the formation of the complex biomolecules from the low molar mass solutes used. On the basis of the results, a new hypothesis is presented to explain the formation of amino acids under primitive atmospheric conditions and how their formation may be linked to the eventual abiotic genesis of life on Earth.

  15. Removal of humic acid from aqueous solution by magnetically separable polyaniline: adsorption behavior and mechanism.

    PubMed

    Wang, Jiahong; Bi, Lijuan; Ji, Yanfen; Ma, Hongrui; Yin, Xiaolong

    2014-09-15

    Magnetically separable polyaniline (Fe3O4@SiO2-PANI) was prepared by in situ chemical polymerization of aniline on the surface of silica-coated Fe3O4 nanoparticles, and characterized by FTIR spectroscopy, powder X-ray diffraction, elemental analysis, transmission electron microscopy, vibrating sample magnetometry and X-ray photoelectron spectroscopy. Characterization results showed that Fe3O4@SiO2-PANI with amino groups of 1.78 mmol/g and the average diameter of 21.6 nm are superparamagnetic. Adsorption behavior of Fe3O4@SiO2-PANI nanoparticles for humic acid (HA) was investigated by batch experiments and adsorption kinetic tests. HA adsorption amount on the adsorbent decreased with increasing solution pH and the presence of Ca(2+) resulted in the enhanced HA adsorption. HA adsorption on Fe3O4@SiO2-PANI could be well described by Langmuir model and the maximum adsorption amount of the adsorbent for HA at 25°C was 36.36 mg/g. HA adsorption process on the adsorbent obey pseudo-second-order kinetics and the adsorption rates decrease with increasing initial HA concentration. The XPS analysis verified that HA adsorption over the adsorbent could be attributed to the surface complexation between the disassociated HA molecules and the protonated nitrogen of polyaniline on the adsorbent. HA loaded adsorbent could be magnetically separated and easily desorbed in 0.01 mol/L NaOH solution. Regeneration tests indicated that Fe3O4@SiO2-PANI could be used repeatedly. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Development of tannic acid/chitosan/pullulan composite nanofibers from aqueous solution for potential applications as wound dressing.

    PubMed

    Xu, Fenghua; Weng, Baicheng; Gilkerson, Robert; Materon, Luis Alberto; Lozano, Karen

    2015-01-22

    This study presents the successful development of biocompatible tannic acid (TA)/chitosan (CS)/pullulan (PL) composite nanofibers (NFs) with synergistic antibacterial activity against the Gram-negative bacteria Escherichia coli. The NFs were developed utilizing the forcespinning(®) (FS) technique from CS-CA aqueous solutions to avoid the usage of toxic organic solvents. The ternary nanofibrous membranes were crosslinked to become water stable for potential applications as wound dressing. The morphology, structure, water solubility, water absorption capability and thermal properties of the NFs were characterized. The ternary composite membrane exhibits good water absorption ability with rapid uptake rate. This novel membrane favors fibroblast cell attachment and growth by providing a 3D environment which mimics the extracellular matrix (ECM) in skin and allows cells to move through the fibrous structure resulting in interlayer growth throughout the membrane, thus favoring potential for deep and intricate wound healing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Simultaneous removal of acid green 25 and mercury ions from aqueous solutions using glutamine modified chitosan magnetic composite microspheres.

    PubMed

    Tao, Xue; Li, Kun; Yan, Han; Yang, Hu; Li, Aimin

    2016-02-01

    In this current work, the magnetic composite microsphere containing glutamine modified chitosan and silica coated Fe3O4 nanoparticles (CS-Gln-MCM) has been successfully prepared and extensively characterized, which is a kind of biodegradable materials. CS-Gln-MCM shows enhanced removal efficiency for both acid green 25 (AG25), an amphoteric dye, and mercury ions (Hg(2+)) from water in the respective while measured pH range compared with chitosan magnetic composite microsphere (CS-MCM) without modification. It is due to the fact that the grafted amino acid provides a variety of additional adsorption active sites and diverse adsorption mechanisms are involved. In AG25 and Hg(2+) aqueous mixture, the modified adsorbents bear preferential adsorption for AG25 over Hg(2+) in strong acidic solutions ascribed to multiple interactions between AG25 and CS-Gln-MCM, such as hydrogen bonding and electrostatic interactions. While, in weak acidic conditions, an efficient simultaneous removal is observed for different adsorption effects involved in aforementioned two pollutants. Besides, CS-Gln-MCM illuminates not only short equilibrium time for adsorption of each pollutant less than 20.0 min but also rapid magnetic separation from water and efficient regeneration after saturated adsorption. Therefore, CS-Gln-MCM bears great application potentials in water treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Study of the dose response of the system ferrous ammonium sulfate-sucrose-xylenol orange in acid aqueous solution

    NASA Astrophysics Data System (ADS)

    Juarez-Calderon, J. M.; Negron-Mendoza, A.; Ramos-Bernal, S.

    2014-11-01

    An aqueous solution of ammonium ferrous sulfate-sucrose-xylenol orange in sulfuric acid (FSX) is proposed as a dosimetric system for the processes of gamma irradiation in a range between 0.3 and 6 Gy. This system is based on the indirect oxidation of ferrous ion by an organic compound (sucrose) to ferric ion and on the formation of a color complex of Fe3+ in an acidic medium with xylenol orange (a dye). After gamma radiation, an observable change occurs in the color of the system. Irradiation was executed at three different temperatures (13 °C, 22 °C, and 40 °C). A spectrometric readout method at 585 nm was employed to evaluate the system's dose response. In all of the cases analyzed, the responses had a linear behavior, and a slight effect of irradiation temperature was observed. Post-irradiation response was also evaluated and showed the stability of the solutions 24 h after the irradiation. The results obtained suggest that FSX might be used as a dosimeter for low doses of gamma irradiation because it provides a stable signal, good reproducibility, and an accessible technique for analysis.

  19. Adsorption characteristics of humic acid-immobilized amine modified polyacrylamide/bentonite composite for cationic dyes in aqueous solutions.

    PubMed

    Anirudhan, T S; Suchithra, P S

    2009-01-01

    Humic acid-immobilized amine modified polyacrylamide/bentonite composite (HA-Am-PAA-B) was prepared and used as an adsorbent for the adsorption of cationic dyes (Malachite Green (MG), Methylene Blue (MB) and Crystal Violet (CV)) from aqueous solutions. The polyacrylamide/bentonite composite (PAA-B) was prepared by intercalative polymerization of acrylamide with Na-bentonite in the presence of N,N'-methylenebisacrylamide as a crosslinking agent and hexamethylenediammine as propagater. PAA-B was subsequently treated with ethylenediammine to increase its loading capacity for HA. The surface characterizations of the adsorbent were investigated. The adsorbent behaved like a cation exchanger and more than 99.0% removal of dyes was detected at pH range 6.0-8.0. The capacity of HA-Am-PAA-B was found to decrease in the following order: MG > MB > CV. The kinetic and isotherm data were interpreted by pseudo-second order rate equation and Freundlich isotherm model, respectively. Experiments were carried out using binary solute systems to assess the competitive adsorption phenomenon. The experimental isotherm data for each binary solute combination of MG, MB and CV were analyzed using Sheindrof-Rebhun-Sheintuch (SRS) (multicomponent Freundlich type) equation.

  20. Preparation and characterization of irradiated carboxymethyl sago starch-acid hydrogel and its application as metal scavenger in aqueous solution.

    PubMed

    Basri, Sri Norleha; Zainuddin, Norhazlin; Hashim, Kamaruddin; Yusof, Nor Azah

    2016-03-15

    Carboxymethyl sago starch-acid hydrogel was prepared via irradiation technique to remove divalent metal ions (Pb, Cu and Cd) from their aqueous solution. The hydrogel was characterized by using Fourier Transform Infrared (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The removal of these metal ions was analyzed by using inductively coupled plasma-optic emission spectra (ICP-OES) to study the amount of metal uptake by the hydrogel. Parameters of study include effect of pH, amount of sample, contact time, initial concentration of metal solution and reaction temperature. FTIR spectroscopy shows the CMSS hydrogel absorption peaks at 1741cm(-1), 1605cm(-1) and 1430cm(-1) which indicates the substitution of carboxymethyl group of modified sago starch. The degradation temperature of CMSS hydrogel is higher compared to CMSS due to the crosslinking by electron beam radiation and formed a porous hydrogel. From the data obtained, about 93.5%, 88.4% and 85.5% of Pb, Cu and Cd ions has been respectively removed from their solution under optimum condition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. SEPARATION OF PLUTONIUM FROM AQUEOUS SOLUTIONS BY ION-EXCHANGE

    DOEpatents

    Schubert, J.

    1958-06-01

    A process is described for the separation of plutonium from an aqueous solution of a plutonium salt, which comprises adding to the solution an acid of the group consisting of sulfuric acid, phosphoric acid, and oxalic acid, and mixtures thereof to provide an acid concentration between 0.0001 and 1 M, contacting the resultant solution with a synthetic organic anion exchange resin, and separating the aqueous phase and the resin which contains the plutonium.

  2. RECOVERY OF PROTACTINIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Elson, R.E.

    1959-07-14

    The recovery of fluoride complexed protactinium from aqueous acidic solutions by solvent extraction is described. Generally the prccess of the invention com rises mixing an aqueous solution containing protactinium in a complexed form with an organic solvent which is specific for protactinium, such as diisopropyl carbinol, then decomposing the protactinium complex by adjusting the acidity of the aqueous solution to between 0-3 to 0-9 M in hydrogen ion concentration, and introducing a source of aluminum ions in sufficient quantity to establish a concentration of 0.5 to 1.2 M aluminum ion, whereupon decomposition of the protactinium fluoride complex takes place and the protactinium ion is taken up by the organic solvent phase.

  3. Gamma irradiation of isocitric and citric acid in aqueous solution: Relevance in prebiotic chemistry

    SciTech Connect

    Negrón-Mendoza, A., E-mail: negron@nucleares.unam.mx; Ramos-Bernal, S.

    2015-07-23

    The radiation chemistry of hydroxy acids like citric and isocitric acids is rather scarce, even though they are crucial compounds in biological systems and for food irradiation. The aim of this work is to study the radiolytic behavior of these acids focused on the interconversion induced by radiation of citric and isocitric acid into other members of the Krebs cycle. The results showed that among the products formed were succinic, malonic, malic and other acids related to metabolic pathways, and these results are correlated with its possible role in chemical evolution processes.

  4. Substituent Effects on Carbon Acidity in Aqueous Solution and at Enzyme Active Sites.

    PubMed

    Amyes, Tina L; Richard, John P

    2017-07-01

    Methods are described for the determination of pKas for weak carbon acids in water. The application of these methods to the determination of the pKas for a variety of carbon acids including nitriles, imidazolium cations, amino acids, peptides and their derivatives and, α-iminium cations is presented. The substituent effects on the acidity of these different classes of carbon acids are discussed; and, the relevance of these results to catalysis of the deprotonation of amino acids by enzymes and by pyridoxal 5'-phosphate is reviewed. The procedure for estimating the pKa of uridine 5'-phosphate for C-6 deprotonation at the active site of orotidine 5'-phosphate decarboxylase is described, and the effect of a 5-F substituent on carbon acidity of the enzyme-bound substrate is discussed.

  5. Thermodynamics of DL-α-aminobutyric acid induced solvation mechanism in aqueous KCl solutions at 288.15-308.15 K

    NASA Astrophysics Data System (ADS)

    Mondal, S.; Ghosh, S.; Hossain, A.; Mahali, K.; Roy, S.; Dolui, B. K.

    2016-09-01

    The solubilities of DL-α-aminobutyric acid in KCl solutions of different concentrations are measured at 288.15-308.15 K. Gibbs energies and entropies have been determined for transfer of α-aminobutyric acid form water to aqueous KCl solution at 298.15 K. The cavity, dipole-dipole and other interactions affecting the solubility, as well as stability of the amino acid in solution are also evaluated. Gibbs energy and entropy of transfer due to interactions are computed to create the model of the complex solute-solvent and solventsolvent interactions. Molar volume, densities, dipole moment of solvent and diameter of co-solvent in aqueous potassium chloride are also evaluated.

  6. Experimental and Theoretical Studies of the Acid-Catalyzed Conversion of Furfuryl Alcohol to Levulinic Acid in Aqueous Solution

    SciTech Connect

    Gonzalez Maldonado, Gretchen M.; Assary, Rajeev S.; Dumesic, James A.; Curtiss, Larry A.

    2012-02-14

    The conversion of furfuryl alcohol (FAL) to levulinic acid over Amberlyst TM 15 in aqueous media was investigated using a combination of liquid chromatography-mass spectrometry (LC-MS) measurements, isotopic labeling studies, nuclear magnetic resonance (NMR) spectroscopy, and ab initio quantum chemical calculations using the G4MP2 method. The results of these combined studies showed that one of the major reaction pathways takes place via a geminal diol species (4,5,5- trihydroxypentan-2-one, denoted as intermediate A), formed by the addition of two water molecules to FAL, where two of the oxygen atoms from FAL are retained. This geminal diol species can also be produced from another intermediate found to be a dimer-like species, denoted as intermediate B. This dimer-like species is formed at the early stages of reaction, and it can also be converted to intermediate A, indicating that intermediate B is the product of the reaction of FAL with another early intermediate. Quantum chemical calculations suggested this to be a protonated acyclic species. Reaction of this early intermediate with water produces intermediate A, while reaction with FAL produces intermediate B.

  7. Experimental and Theoretical Studies of the Acid-Catalyzed Conversion of Furfuryl Alcohol to Levulinic Acid in Aqueous Solution

    SciTech Connect

    González Maldonado, Gretchen M.; Assary, Rajeev S.; Dumesic, James; Curtiss, Larry A.

    2012-01-01

    The conversion of furfuryl alcohol (FAL) to levulinic acid over AmberlystTM 15 in aqueous media was investigated using a combination of liquid chromatography-mass spectrometry (LC-MS) measurements, isotopic labeling studies, nuclear magnetic resonance (NMR) spectroscopy, and ab initio quantum chemical calculations using the G4MP2 method. The results of these combined studies showed that one of the major reaction pathways takes place via a geminal diol species (4,5,5-trihydroxypentan-2-one, denoted as intermediate A), formed by the addition of two water molecules to FAL, where two of the oxygen atoms from FAL are retained. This geminal diol species can also be produced from another intermediate found to be a dimer-like species, denoted as intermediate B. This dimer-like species is formed at the early stages of reaction, and it can also be converted to intermediate A, indicating that intermediate B is the product of the reaction of FAL with another early intermediate. Quantum chemical calculations suggested this to be a protonated acyclic species. Reaction of this early intermediate with water produces intermediate A, while reaction with FAL produces intermediate B.

  8. REMOVAL OF CHLORIDE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Hyman, M.L.; Savolainen, J.E.

    1960-01-01

    A method is given for dissolving reactor fuel elements in which the uranium is associated with a relatively inert chromium-containing alloy such as stainless steel. An aqueous mixture of acids comprising 2 to 2.5 molar hydrochloric acid and 4 to 8 molar nitric acid is employed in dissolving the fuel element. In order io reduce corrosion in subsequent processing of the resulting solution, chloride values are removed from the solution by contacting it with concentrated nitric acid at an elevated temperature.

  9. Catalytic action of acids in aqueous organic media

    SciTech Connect

    Vinnik, M.I.

    1987-07-01

    Questions pertaining to the ionizing ability and catalytic action of strong acids in aqueous organic solvents, chiefly in aqueous ethanol solutions, are discussed: the correlation between the Hammett acidity functions of solutions of strong acids in mixed aqueous organic solvents, standardized to their own solvent and water; the main causes of the change in the degree of protonation of the bases when part of the water is replaced by ethanol in an aqueous solution of a strong acid; and the main factors influencing the change in the effective rate constant of a reaction catalyzed by acid when part of the water is replaced by ethanol in an aqueous solution of a strong acid.

  10. Controlled radical fluorination of poly(meth)acrylic acids in aqueous solution.

    PubMed

    Dong, Yucheng; Wang, Zhentao; Li, Chaozhong

    2017-08-17

    Fluorinated alkenes exhibit very poor reactivity in copolymerization with non-fluorinated polar monomers such as acrylates. Herein we describe a convenient method for the synthesis of poly(vinyl fluoride-co-acrylic acid) and poly(2-fluoropropene-co-methacrylic acid) copolymers. Thus, the silver-catalyzed decarboxylative radical fluorination of poly(acrylic acid) with Selectfluor in water at room temperature affords poly(vinyl fluoride-co-acrylic acid) copolymers in high yields with well-defined molecular weights and polydispersities. A linear correlation is observed between the extent of fluorination and the amount of Selectfluor, indicating that the copolymer of virtually any monomer ratio can be readily accessed by controlling the amount of Selectfluor. This controlled decarboxylative fluorination is extended to poly(methacrylic acid), leading to well-defined poly(2-fluoropropene-co-methacrylic acid) copolymers.Fluorinated alkenes have very poor reactivity in copolymerizations with non-fluorinated polar monomers. Here the authors show silver-catalyzed decarboxylative radical fluorination of poly(acrylic acid) with Selectfluor in water at room temperature to form poly(vinyl fluoride-co-acrylic acid) copolymers.

  11. Chromium(VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions.

    PubMed

    Ashraf, Anam; Bibi, Irshad; Niazi, Nabeel Khan; Ok, Yong Sik; Murtaza, Ghulam; Shahid, Muhammad; Kunhikrishnan, Anitha; Li, Dongwei; Mahmood, Tariq

    2017-07-03

    In the present study, we examined sorption of chromate (Cr(VI)) to acid-activated banana peel (AABP) and organo-montmorillonite (O-mont) as a function of pH, initial Cr(VI) concentration at a sorbent dose of 4 g L-1 and at 20 ± 1°C in aqueous solutions. In sorption edge experiments, maximum Cr(VI) removal was obtained at pH 3 after 2 hours by AABP and O-mont (88% and 69%). Sorption isotherm data showed that the sorption capacity of AABP was higher than O-mont (15.1 vs. 6.67 mg g-1, respectively, at pH 4). Freundlich and Langmuir models provided the best fits to describe Cr(VI) sorption onto AABP (R2 = 0.97) and O-mont (R2 = 0.96). Fourier transform infrared spectroscopy elucidated that for AABP mainly the -OH, -COOH, -NH2, and for O-mont intercalated amines and -OH surface functional groups were involved in Cr(VI) sorption. The scanning electron microscopy combined with energy dispersive X-ray spectroscopy (SEM-EDX) analyses, although partly, indicate that the (wt. %) proportion of cations (e.g., Ca, Mg) in AABP decreased after Cr(VI) sorption. This may be due to ion exchange of chromite (Cr(III)) (produced from Cr(VI) reduction) with cationic elements in AABP. Also, Cr(VI) desorption (using phosphate solution) from AABP was lower (29%) than that from O-mont (51%) up to the third regeneration cycle. This bench scale comparative study highlights that the utilization of widely available and low-cost acid-activated biomaterials has a greater potential than organo-clays for Cr(VI) removal in aqueous media. However, future studies are warranted to precisely delineate different mechanisms of Cr(VI) sorption/reduction by acid-activated biomaterials and organo-clays.

  12. Removal of dicyclohexyl acetic acid from aqueous solution using ultrasound, ozone and their combination.

    PubMed

    Kumar, Pardeep; Headley, John; Peru, Kerry; Bailey, Jon; Dalai, Ajay

    2014-01-01

    Naphthenic acids are a complex mixture of organic components, some of which include saturated alkyl-substituted cycloaliphatic carboxylic acids and acyclic aliphatic acids. They are naturally found in hydrocarbon deposits like oil sand, petroleum, bitumen and crude oil. In this study, the oxidation of a relatively high molecular weight naphthenic acid (Dicyclohexyl acetic acid) was investigated using ozonation, ultrasonication and hydrogen peroxide alone and their combinations. Effects on oxidation of dicyclohexyl acetic acid (DAA) were measured for different concentrations of ozone ranging between 0.7 to 3.3 mg L(-1) and pH in the range 6 to 10. Ultrasonication and hydrogen peroxide alone were not effective to oxidize dicyclohexyl acetic acid, but combining ultrasonication with H2O2 had a significant effect on oxidation of dicyclohexyl acetic acid with maximum removal reaching to 84 ± 2.2% with 81 ± 2.1% reduction in chemical oxygen demand (COD). Synergistic effects were observed for combining ultrasonication with ozonation and resulted in 100% DAA removal with 98 ± 0.8% reduction in COD within 15 min at 3.3 mg L(-1) ozone concentration and 130 Watts ultrasonication power. The reaction conditions obtained for the maximum oxidation of DAA and COD removal were used for the degradation of naphthenic acids mixture extracted from oil sands process water (OSPW). The percentage oxidation of NAs mixture extracted from OSPW was 89.3 ± 1.1% in ozonation and combined ozonation and ultrasonication, but COD removal observed was 65 ± 1.2% and 78 ± 1.4% for ozonation and combined ozonation and ultrasonication treatments, respectively.

  13. Plasma-induced grafting of acrylic acid on bentonite for the removal of U(VI) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Hongshan, ZHU; Shengxia, DUAN; Lei, CHEN; Ahmed, ALSAEDI; Tasawar, HAYAT; Jiaxing, LI

    2017-11-01

    Fabrication of reusable adsorbents with satisfactory adsorption capacity and using environment-friendly preparation processes is required for the environment-related applications. In this study, acrylic acid (AA) was grafted onto bentonite (BT) to generate an AA-graft-BT (AA-g-BT) composite using a plasma-induced grafting technique considered to be an environment-friendly method. The as-prepared composite was characterized by scanning electron microscopy, x-ray powder diffraction, thermal gravity analysis, Fourier transform infrared spectroscopy and Barrett-Emmett-Teller analysis, demonstrating the successful grafting of AA onto BT. In addition, the removal of uranium(VI) (U(VI)) from contaminated aqueous solutions was examined using the as-prepared composite. The influencing factors, including contact time, pH value, ionic strength, temperature, and initial concentration, for the removal of U(VI) were investigated by batch experiments. The experimental process fitted best with the pseudo-second-order kinetic and the Langmuir models. Moreover, thermodynamic investigation revealed a spontaneous and endothermic process. Compared with previous adsorbents, AA-g-BT has potential practical applications in treating U(VI)-contaminated solutions.

  14. Removal of copper ions from aqueous solution by the sodium salt of the maleic acid-allylpropionate-styrene terpolymer.

    PubMed

    Akperov, Elchin; Akperov, Oktay; Jafarova, Elnara; Gafarova, Sabahiye

    2016-09-01

    The sodium salt of the maleic acid-allylpropionate-styrene terpolymer was used for recovery of copper ions from aqueous solution. Effects of contact time, sorbent weight and initial Cu2+ ion concentrations on removal efficiency were tested. The maximum experimental sorption capacity of the sorbent for copper ions is 0.71 g g-1. The sorption isotherm of copper ions onto a prepared polymer sorbent has been studied and the equilibrium data were analyzed using Langmuir and Freundlich isotherm models. The adsorption isotherm data showed that copper ions adsorption on the sorbent was better fitted to the Langmuir isotherm model. The Lagergren pseudo-first- and pseudo-second-order kinetic models were applied to examine the kinetics of the copper ions sorption by the synthesized sorbent. The kinetic data are best described by the pseudo-second-order model. The calculated value of the maximum sorption capacity by the pseudo-second-order equation (0.62 g g-1) corresponds well with its experimentally found value (0.71 g g-1). Considering the obtained kinetic data, and the Fourier transform infrared spectroscopy (FT-IR) and UV-vis spectra of the sorbent after the sorption, it is possible to come to the conclusion that during the sorption process Cu2+ ions enter a complex with the carboxylic groups of the maleic acid units of the sorbent.

  15. Contact ion pair formation between hard acids and soft bases in aqueous solutions observed with 2DIR spectroscopy.

    PubMed

    Sun, Zheng; Zhang, Wenkai; Ji, Minbiao; Hartsock, Robert; Gaffney, Kelly J

    2013-12-12

    The interaction of charged species in aqueous solution has important implications for chemical, biological, and environmental processes. We have used 2DIR spectroscopy to study the equilibrium dynamics of thiocyanate chemical exchange between free ion (NCS(-)) and contact ion pair configurations (MNCS(+)), where M(2+) = Mg(2+) or Ca(2+). Detailed studies of the influence of anion concentration and anion speciation show that the chemical exchange observed with the 2DIR measurements results from NCS(-) exchanging with other anion species in the first solvation shell surrounding Mg(2+) or Ca(2+). The presence of chemical exchange in the 2DIR spectra provides an indirect, but robust, determinant of contact ion pair formation. We observe preferential contact ion pair formation between soft Lewis base anions and hard Lewis acid cations. This observation cannot be easily reconciled with Pearson's acid-base concept or Collins' Law of Matching Water Affinities. The anions that form contact ion pairs also correspond to the ions with an affinity for water and protein surfaces, so similar physical and chemical properties may control these distinct phenomena.

  16. Dinuclear complexes of tetravalent cerium in an aqueous perchloric acid solution.

    PubMed

    Ikeda-Ohno, Atsushi; Tsushima, Satoru; Hennig, Christoph; Yaita, Tsuyoshi; Bernhard, Gert

    2012-06-28

    Primary aquo species of tetravalent cerium (Ce(IV)) in perchloric acid has been identified as a single oxo-bridging dinuclear complex, not a mononuclear one, by extended X-ray absorption fine structure (EXAFS) spectroscopy combined with density functional theory (DFT) calculations.

  17. Characterisation of weak magnetic field effects in an aqueous glutamic acid solution by nonlinear dielectric spectroscopy and voltammetry

    PubMed Central

    Pazur, Alexander

    2004-01-01

    Background Previous reports indicate altered metabolism and enzyme kinetics for various organisms, as well as changes of neuronal functions and behaviour of higher animals, when they were exposed to specific combinations of weak static and alternating low frequency electromagnetic fields. Field strengths and frequencies, as well as properties of involved ions were related by a linear equation, known as the formula of ion cyclotron resonance (ICR, abbreviation mentioned first by Liboff). Under certain conditions already a aqueous solution of the amino acid and neurotransmitter glutamate shows this effect. Methods An aqueous solution of glutamate was exposed to a combination of a static magnetic field of 40 μT and a sinusoidal electromagnetic magnetic field (EMF) with variable frequency (2–7 Hz) and an amplitude of 50 nT. The electric conductivity and dielectric properties of the solution were investigated by voltammetric techniques in combination with non linear dielectric spectroscopy (NLDS), which allow the examination of the dielectric properties of macromolecules and molecular aggregates in water. The experiments target to elucidate the biological relevance of the observed EMF effect on molecular level. Results An ion cyclotron resonance (ICR) effect of glutamate previously reported by the Fesenko laboratory 1998 could be confirmed. Frequency resolution of the sample currents was possible by NLDS techniques. The spectrum peaks when the conditions for ion cyclotron resonance (ICR) of glutamate are matched. Furthermore, the NLDS spectra are different under ICR- and non-ICR conditions: NLDS measurements with rising control voltages from 100–1100 mV show different courses of the intensities of the low order harmonics, which could possibly indicate "intensity windows". Furthermore, the observed magnetic field effects are pH dependent with a narrow optimum around pH 2.85. Conclusions Data will be discussed in the context with recent published models for the

  18. SEPARATION OF SCANDIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Peppard, D.F.; Nachtman, E.S.

    1958-02-25

    This patent relates to a process for the separation of scandium from yttrium, thorium, and trivalent rare earths and with their separation from each other. It has been found that scandium and yttrium can be separated from trivalent rare earths in acidic solution, for example, a solution 6 M in HCl, by contacting with tributyl phosphate, whereupon the scandum is preferentially extracted into the organic phase, leaving the yttrium and trivalent rare earths in the aqueous phase.

  19. Removal of lead and cadmium from aqueous solutions by using 4-amino-3-hydroxynaphthalene sulfonic acid-doped polypyrrole films.

    PubMed

    Sall, Mohamed Lamine; Diaw, Abdou Karim Diagne; Gningue-Sall, Diariatou; Chevillot-Biraud, Alexandre; Oturan, Nihal; Oturan, Mehmet Ali; Fourdrin, Chloé; Huguenot, David; Aaron, Jean-Jacques

    2018-01-09

    Water pollution by heavy metals is a great health concern worldwide. Lead and cadmium are among the most toxic heavy metals because they are dangerous for the human and aquatic lives. In this work, the removal of lead and cadmium from aqueous solutions has been studied using electrosynthesized 4-amino-3-hydroxynaphthalene-1-sulfonic acid-doped polypyrrole (AHNSA-PPy) films as a new adsorbent. Two distinct methods, including the immersion method, based on the Pb 2+ and Cd 2+ spontaneous removal by impregnation of the polymer in the solution, and the electro-elimination method, consisting of removal of Pb 2+ and Cd 2+ ions from the solution by applying a small electrical current (5 mA) to the polymer film, were developed: the evolution of Pb 2+ and Cd 2+ concentrations with time was monitored by inductively coupled plasma optical emission spectrometry (ICP-OES). The effect of pH on the adsorption and electro-elimination of Pb 2+ and Cd 2+ using the AHNSA-PPy film was investigated and optimized, showing that the ionic adsorption and electro-elimination processes were highly pH-dependent. The kinetics of Pb 2+ and Cd 2+ adsorption and electro-elimination were found to follow second-order curves. The maximum adsorption capacity values of the AHNSA-PPy film were 64.0 and 50.4 mg/g, respectively, for Pb 2+ and Cd 2+ . The removal efficiency values were, respectively, for Pb 2+ and Cd 2+ , 80 and 63% by the immersion method, and 93 and 85% by the electro-elimination method. Application of both methods to Senegal natural waters, fortified with Pb 2+ and Cd 2+ , led to removal efficiency values of, respectively for Pb 2+ and Cd 2+ , 76-77 and 58-59% by the immersion method, and of 82-90 and 80-83%, by the electro-elimination method.

  20. Proton transfer reactions of triazol-3-ylidenes: kinetic acidities and carbon acid pKa values for twenty triazolium salts in aqueous solution.

    PubMed

    Massey, Richard S; Collett, Christopher J; Lindsay, Anita G; Smith, Andrew D; O'Donoghue, AnnMarie C

    2012-12-19

    Second-order rate constants have been determined for deuteroxide ion-catalyzed exchange of the C(3)-proton for deuterium, k(DO) (M(-1) s(-1)), of a series of 20 triazolium salts in aqueous solution at 25 °C and ionic strength I = 1.0 (KCl). Evidence is presented that the rate constant for the reverse protonation of the triazol-3-ylidenes by solvent water is close to that for dielectric relaxation of solvent (10(11) s(-1)). These data enabled the calculation of carbon acid pK(a) values in the range 16.5-18.5 for the 20 triazolium salts. pD rate profiles for deuterium exchange of the triazolium salts reveal that protonation at nitrogen to give dicationic triazolium species occurs under acidic conditions, with estimates of pK(a)(N1) = -0.2 to 0.5.

  1. Acidity of the amidoxime functional group in aqueous solution. A combined experimental and computational study

    SciTech Connect

    Mehio, Nada; Lashely, Mark A.; Nugent, Joseph W.; Tucker, Lyndsay; Correia, Bruna; Do-Thanh, Chi-Linh; Dai, Sheng; Hancock, Robert D.; Bryantsev, Vyacheslav S.

    2015-01-26

    Poly(acrylamidoxime) adsorbents are often invoked in discussions of mining uranium from seawater. It has been demonstrated repeatedly in the literature that the success of these materials is due to the amidoxime functional group. While the amidoxime-uranyl chelation mode has been established, a number of essential binding constants remain unclear. This is largely due to the wide range of conflicting pKa values that have been reported for the amidoxime functional group in the literature. To resolve this existing controversy we investigated the pKa values of the amidoxime functional group using a combination of experimental and computational methods. Experimentally, we used spectroscopic titrations to measure the pKa values of representative amidoximes, acetamidoxime and benzamidoxime. Computationally, we report on the performance of several protocols for predicting the pKa values of aqueous oxoacids. Calculations carried out at the MP2 or M06-2X levels of theory combined with solvent effects calculated using the SMD model provide the best overall performance with a mean absolute error of 0.33 pKa units and 0.35 pKa units, respectively, and a root mean square deviation of 0.46 pKa units and 0.45 pKa units, respectively. Finally, we employ our two best methods to predict the pKa values of promising, uncharacterized amidoxime ligands. Hence, our study provides a convenient means for screening suitable amidoxime monomers for future generations of poly(acrylamidoxime) adsorbents used to mine uranium from seawater.

  2. Acidity of the amidoxime functional group in aqueous solution. A combined experimental and computational study

    DOE PAGES

    Mehio, Nada; Lashely, Mark A.; Nugent, Joseph W.; ...

    2015-01-26

    Poly(acrylamidoxime) adsorbents are often invoked in discussions of mining uranium from seawater. It has been demonstrated repeatedly in the literature that the success of these materials is due to the amidoxime functional group. While the amidoxime-uranyl chelation mode has been established, a number of essential binding constants remain unclear. This is largely due to the wide range of conflicting pK a values that have been reported for the amidoxime functional group in the literature. To resolve this existing controversy we investigated the pK a values of the amidoxime functional group using a combination of experimental and computational methods. Experimentally, wemore » used spectroscopic titrations to measure the pK a values of representative amidoximes, acetamidoxime and benzamidoxime. Computationally, we report on the performance of several protocols for predicting the pK a values of aqueous oxoacids. Calculations carried out at the MP2 or M06-2X levels of theory combined with solvent effects calculated using the SMD model provide the best overall performance with a mean absolute error of 0.33 pK a units and 0.35 pK a units, respectively, and a root mean square deviation of 0.46 pK a units and 0.45 pK a units, respectively. Finally, we employ our two best methods to predict the pK a values of promising, uncharacterized amidoxime ligands. Hence, our study provides a convenient means for screening suitable amidoxime monomers for future generations of poly(acrylamidoxime) adsorbents used to mine uranium from seawater.« less

  3. Photodegradation kinetics, transformation, and toxicity prediction of ketoprofen, carprofen, and diclofenac acid in aqueous solutions.

    PubMed

    Li, Jian; Ma, Li-Yun; Li, Lu-Shuang; Xu, Li

    2017-12-01

    Photodegradation of 3 commonly used nonsteroidal anti-inflammatory drugs, ketoprofen, carprofen, and diclofenac acid, was conducted under ultraviolet (UV) irradiation. The kinetic results showed that the 3 pharmaceuticals obeyed the first-order reaction with decreasing rate constants of 1.54 × 10-4 , 5.91 × 10-5 , and 7.78 × 10-6  s-1 for carprofen, ketoprofen, and diclofenac acid, respectively. Moreover, the main transformation products were identified by ion-pair liquid-liquid extraction combined with injection port derivatization-gas chromatography-mass spectrometry and high-performance liquid chromatography-quadrupole-time of flight mass spectrometric analysis. There were 8, 3, and 6 transformation products identified for ketoprofen, carprofen, and diclofenac acid, respectively. Decarboxylation, dechlorination, oxidation, demethylation, esterification, and cyclization were proposed to be associated with the transformation of the 3 pharmaceuticals. Toxicity prediction of the transformation products was conducted on the EPI Suite software based on ECOSAR model, and the results indicate that some of the transformation products were more toxic than the parent compounds. The present study provides the foundation to understand the transformation behavior of the studied pharmaceuticals under UV irradiation. Environ Toxicol Chem 2017;36:3232-3239. © 2017 SETAC. © 2017 SETAC.

  4. Revisiting the carboxylic acid dimers in aqueous solution: interplay of hydrogen bonding, hydrophobic interactions, and entropy.

    PubMed

    Chen, Jianhan; Brooks, Charles L; Scheraga, Harold A

    2008-01-17

    Carboxylic acid dimers are useful model systems for understanding the interplay of hydrogen bonding, hydrophobic effects, and entropy in self-association and assembly. Through extensive sampling with a classical force field and careful free energy analysis, it is demonstrated that both hydrogen bonding and hydrophobic interactions are indeed important for dimerization of carboxylic acids (except formic acid). The dimers are only weakly ordered, and the degree of ordering increases with stronger hydrophobic interactions between longer alkyl chains. Comparison of calculated and experimental dimerization constants reveals a systematic tendency for excessive self-aggregation in current classical force fields. Qualitative and quantitative information on the thermodynamics of hydrogen bonding and hydrophobic interactions derived from these simulations is in excellent agreement with existing results from experiment and theory. These results provide a verification from first principles of previous estimations based on two statistical mechanical hydrophobic theories. We also revisit and clarify the fundamental statistical thermodynamics formalism for calculating absolute binding constants, external entropy, and solvation entropy changes upon association from detailed free energy simulations. This analysis is believed to be useful for a wide range of applications including computational studies of protein-ligand and protein-protein binding.

  5. The computational analysis and modelling of substitution effects on hydrolysis of formanilides in acidic aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lukeš, Vladimír; Škorňa, Peter; Michalík, Martin; Klein, Erik

    2017-11-01

    Various para, meta and ortho substituted formanilides have been theoretically studied. For trans and cis-isomers of non-substituted formanilide, the calculated B3LYP vibration normal modes were analyzed. Substituent effect on the selected normal modes was described and the comparison with the available experimental data is presented. The calculated B3LYP proton affinities were correlated with Hammett constants, Fujita-Nishioka equation and the rate constants of the hydrolysis in 1 M HCl. Found linear dependences allow predictions of dissociation constants (pKBH+) and hydrolysis rate constants. Obtained results indicate that protonation of amide group may represent the rate determining step of acid catalyzed hydrolysis.

  6. Adsorption of acids and bases from aqueous solutions onto silicon dioxide particles.

    PubMed

    Zengin, Huseyin; Erkan, Belgin

    2009-12-30

    The adsorption of acids and bases onto the surface of silicon dioxide (SiO(2)) particles was systematically studied as a function of several variables, including activation conditions, contact time, specific surface area, particle size, concentration and temperature. The physical properties of SiO(2) particles were investigated, where characterizations were carried out by FT-IR spectroscopy, and morphology was examined by scanning electron microscopy (SEM). The SEM of samples showed good dispersion and uniform SiO(2) particles with an average diameter of about 1-1.5 microm. The adsorption results revealed that SiO(2) surfaces possessed effective interactions with acids and bases, and greatest adsorption capacity was achieved with NaOH, where the best fit isotherm model was the Freundlich adsorption model. The adsorption properties of raw SiO(2) particles were further improved by ultrasonication. Langmuir monolayer adsorption capacity of NaOH adsorbate at 25 degrees C on sonicated SiO(2) (182.6 mg/g) was found to be greater than that of the unsonicated SiO(2) (154.3mg/g). The spontaneity of the adsorption process was established by decreases in DeltaG(ads)(0), which varied from -10.5 to -13.6 kJ mol(-1), in the temperature range 283-338K.

  7. 2010 Water & Aqueous Solutions

    SciTech Connect

    Dor Ben-Amotz

    2010-08-13

    Water covers more than two thirds of the surface of the Earth and about the same fraction of water forms the total mass of a human body. Since the early days of our civilization water has also been in the focus of technological developments, starting from converting it to wine to more modern achievements. The meeting will focus on recent advances in experimental, theoretical, and computational understanding of the behavior of the most important and fascinating liquid in a variety of situations and applications. The emphasis will be less on water properties per se than on water as a medium in which fundamental dynamic and reactive processes take place. In the following sessions, speakers will discuss the latest breakthroughs in unraveling these processes at the molecular level: Water in Solutions; Water in Motion I and II; Water in Biology I and II; Water in the Environment I and II; Water in Confined Geometries and Water in Discussion (keynote lecture and poster winners presentations).

  8. Photocatalysis of p-chlorobenzoic acid in aqueous solution under irradiation of 254 nm and 185 nm UV light.

    PubMed

    Han, Wenya; Zhang, Pengyi; Zhu, Wanpeng; Yin, Jingjing; Li, Laisheng

    2004-11-01

    The photolytic and photocatalytic degradation of p-chlorobenzoic acid (p-CBA) in aqueous solution were investigated using two kinds of low-pressure mercury lamps: one emitted at 254 nm and the other emitted at 254 nm and 185 nm. Both the photolytic and photocatalytic degradations of p-CBA followed pseudo first-order reaction rate form. The rate constants decreased with increase of initial concentration in VUV and TiO2/VUV. The TiO2/VUV was the most efficient process, in which rate constants was 3.0-6.5 times as that in TiO2/UV depending on the initial concentration. The gas bubbling efficiently improved the mass transfer and the kind of bubbling gas had evident influence on the reaction rate except in UV photolysis. TOC reduction rate was greatly reduced in VUV and TiO2/VUV processes when bubbled with nitrogen gas, it was no more than one third of that when bubbled with oxygen, however, the degradation rate of p-CBA was not affected by bubbled nitrogen so greatly.

  9. Coarse-grained modeling of the titration and conductance behavior of aqueous fullerene hexa malonic acid (FHMA) solutions.

    PubMed

    Allison, Stuart A; Wu, Hengfu; Moyher, Avery; Soegiarto, Linda; Truong, Bi; Nguyen, Duy; Nguyen, Tam; Park, Donghyun

    2014-03-20

    The coarse-grained continuum primitive model is developed and used to characterize the titration and electrical conductance behavior of aqueous solutions of fullerene hexa malonic acid (FHMA). The spherical FHMA molecule, a highly charged electrolyte with an absolute valence charge as large as 12, is modeled as a dielectric sphere in Newtonian fluid, and electrostatics are treated numerically at the level of the non-linear Poisson-Boltzmann equation. Transport properties (electrophoretic mobilities and conductances) of the various charge states of FHMA are numerically computed using established numerical algorithms. For reasonable choices of the model parameters, good agreement between experiment (published literature) and modeling is achieved. In order to accomplish this, however, a moderate degree of specific binding of principal counterion and FHMA must be included in the modeling. It should be emphasized, however, that alternative explanations are possible. This comparison is made at 25 °C for both Na(+) and Ca(2+) principal counterions. The model is also used to characterize the different charge states and degree of counterion binding to those charge states as a function of pH.

  10. NMR spectra and potentiometry studies of aluminum(III) binding with coenzyme NAD+ in acidic aqueous solutions.

    PubMed

    Yang, Xiaodi; Bi, Shuping; Yang, Xiaoliang; Yang, Li; Hu, Jun; Liu, Jian; Yang, Zhengbiao

    2003-06-01

    Complexation and conformational studies of coenzyme NAD+ with aluminum were conducted in acidic aqueous solutions (pH 2-5) by means of potentiometry as well as multinuclear (1H, 13C, 31P, 27Al) and two-dimensional (1H, 1H-NOESY) NMR spectroscopy. These led to the following results: (1) Al could coordinate with NAD+ through the following binding sites: N7' of adenine and pyrophosphate free oxygen (O(A)1, O(N)1,O(A)2) to form various mononuclear 1:1 (AlLH23+, AlLH2+) and 2:1 (AlL2-) species, and dinuclear 2:2 (Al2L22+) species. (2) The conformations of NAD+ and Al-NAD+ depended on the solvents and different species in the complexes. The results suggest the occurrence of an Al-linked complexation, which causes structural changes at the primary recognition sites and secondary conformational alterations for coenzymes. This finding will help us to understand role of Al in biological enzyme reaction systems.

  11. Enhanced removal of 8-quinolinecarboxylic acid in an activated carbon cloth by electroadsorption in aqueous solution.

    PubMed

    López-Bernabeu, S; Ruiz-Rosas, R; Quijada, C; Montilla, F; Morallón, E

    2016-02-01

    The effect of the electrochemical treatment (potentiostatic treatment in a filter-press electrochemical cell) on the adsorption capacity of an activated carbon cloth (ACC) was analyzed in relation with the removal of 8-quinolinecarboxylic acid pollutant from water. The adsorption capacity of an ACC is quantitatively improved in the presence of an electric field (electroadsorption process) reaching values of 96% in comparison to 55% in absence of applied potential. In addition, the cathodic treatment results in higher removal efficiencies than the anodic treatment. The enhanced adsorption capacity has been proved to be irreversible, since the removed compound remains adsorbed after switching the applied potential. The kinetics of the adsorption processes is also improved by the presence of an applied potential. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Spectrophotometric determination of Rare Earth Elements in aqueous nitric acid solutions for process control.

    PubMed

    Rodionova, Oxana Ye; Tikhomirova, Tatyana I; Pomerantsev, Alexey L

    2015-04-15

    Noninvasive analytical control is of special interest for the complicated and hazardous production processes. On-line monitoring provides a unique opportunity to determine critical concentrations rapidly and without serious risks to operating personnel and the environment. Models for quantitative determination of concentrations of Rare Earth Elements in complex mixtures in nitric acid serve for these purposes. Here, the feasibility of simultaneous determination of cerium, praseodymium, and neodymium using the whole UV-vis spectroscopic range, together with chemometric data processing, is studied. The predictability of two chemometric techniques, partial least squares regression and correlation constrained multivariate curve resolution-alternating least squares are compared. Models' performances are analyzed in out-of-control cases. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Adsorption kinetics and thermodynamics of acid Bordeaux B from aqueous solution by graphene oxide/PAMAMs.

    PubMed

    Zhang, Fan; He, Shengfu; Zhang, Chen; Peng, Zhiyuan

    2015-01-01

    Graphene oxide/polyamidoamines dendrimers (GO/PAMAMs) composites were synthesized via modifying GO with 2.0 G PAMAM. The adsorption behavior of the GO/PAMAMs for acid Bordeaux B (ABB) was studied and the effects of media pH, adsorption time and initial ABB concentration on adsorption capacity of the adsorbent were investigated. The optimum pH value of the adsorption of ABB onto GO/PAMAMs was 2.5. The maximum adsorption capacity increased from 325.78 to 520.83 mg/g with the increase in temperature from 298 to 328 K. The equilibrium data followed the Langmuir isotherm model better than the Freundlich model. The kinetic study illustrated that the adsorption of ABB onto GO/PAMAMs fit the pseudo-second-order model. The thermodynamic parameters indicated that the adsorption process was physisorption, and also an endothermic and spontaneous process.

  14. RECOVERY OF PLUTONIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Reber, E.J.

    1959-09-01

    A process is described for recovering plutonium values from aqueous solutions by precipitation on bismuth phosphate. The plutonium is secured in its tetravalent state. bismuth salt is added to the solution, and ant excess of phosphoric acid anions is added to the solution in two approximately equal installments. The rate of addition of the first installment is about two to three times as high as the rate of addition of the second installment, whereby a precipitate of bismuth phosphate forms, the precipitate carrying the plutonium values. The precipitate is separated from the solution.

  15. 2010 Water & Aqueous Solutions

    SciTech Connect

    Dor Ben-Amotz

    2010-08-13

    Water covers more than two thirds of the surface of the Earth and about the same fraction of water forms the total mass of a human body. Since the early days of our civilization water has also been in the focus of technological developments, starting from converting it to wine to more modern achievements. The meeting will focus on recent advances in experimental, theoretical, and computational understanding of the behavior of the most important and fascinating liquid in a variety of situations and applications. The emphasis will be less on water properties per se than on water as a mediummore » in which fundamental dynamic and reactive processes take place. In the following sessions, speakers will discuss the latest breakthroughs in unraveling these processes at the molecular level: Water in Solutions; Water in Motion I and II; Water in Biology I and II; Water in the Environment I and II; Water in Confined Geometries and Water in Discussion (keynote lecture and poster winners presentations).« less

  16. Adsorption removal of acid black 1 from aqueous solution using ordered mesoporous carbon

    NASA Astrophysics Data System (ADS)

    Peng, Xiaoming; Hu, Xijun; Fu, Dafang; Lam, Frank L. Y.

    2014-03-01

    A novel ordered mesoporous carbon CMK-3 and synthetic CMK-3 containing nitrogen functional groups by ammonia-treated were applied for acid black 1(AB1) dye adsorption. The ammonia-treated(chemical vapor deposition method) before and after CMK-3 were characterized by using a Micrometitics ASAP 2020 surface area analyzer (ASAP 2020), Fourier transform infrared spectrophotometer (FT-IR), X-ray Photoelectron Spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscope (SEM) and equilibrium studies. This result indicates that the prepared CMK-3 and modified CMK-3 were almost uniform, as rope-like domains and their uniform mesopore with diameter centered at 3.2 nm and 3.7 nm. The FIIR analysis depicted that the presence of a variety of new basic functional groups on the modified CMK-3 surface. Several effect variables of pH, dye concentration and temperature were studied. The pseudo second-order model showed the fitter well to agree with the kinetic data. The experimental data were analyzed by the Langmuir and Freundlich models, with the latter found to closely the isotherm model. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The results show that CMK-3 using ammonia gas modified by thermal treatment system is an effective method to improvement capacity as it shows the highest adsorption capacity of AB1, as compared to the unmodified CMK-3 and the bamboo-based carbon, respectively.

  17. Sequence dependent N-terminal rearrangement and degradation of peptide nucleic acid (PNA) in aqueous solution

    NASA Technical Reports Server (NTRS)

    Eriksson, M.; Christensen, L.; Schmidt, J.; Haaima, G.; Orgel, L.; Nielsen, P. E.

    1998-01-01

    The stability of the PNA (peptide nucleic acid) thymine monomer inverted question markN-[2-(thymin-1-ylacetyl)]-N-(2-aminoaminoethyl)glycine inverted question mark and those of various PNA oligomers (5-8-mers) have been measured at room temperature (20 degrees C) as a function of pH. The thymine monomer undergoes N-acyl transfer rearrangement with a half-life of 34 days at pH 11 as analyzed by 1H NMR; and two reactions, the N-acyl transfer and a sequential degradation, are found by HPLC analysis to occur at measurable rates for the oligomers at pH 9 or above. Dependent on the amino-terminal sequence, half-lives of 350 h to 163 days were found at pH 9. At pH 12 the half-lives ranged from 1.5 h to 21 days. The results are discussed in terms of PNA as a gene therapeutic drug as well as a possible prebiotic genetic material.

  18. Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions.

    PubMed

    Zhi, Yue; Liu, Jinxia

    2016-02-01

    The objective of the research was to examine the effect of increasing carbon surface basicity on uptake of perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) by activated carbon. Granular activated carbons made from coal, coconut shell, wood, and phenolic-polymer-based activated carbon fibers were modified through high-temperature and ammonia gas treatments to facilitate systematical evaluation of the impact of basicity of different origins. Comparison of adsorption isotherms and adsorption distribution coefficients showed that the ammonia gas treatment was more effective than the high-temperature treatment in enhancing surface basicity. The resultant higher point of zero charges and total basicity (measured by total HCl uptake) correlated with improved adsorption affinity for PFOS and PFOA. The effectiveness of surface modification to enhance adsorption varied with carbon raw material. Wood-based carbons and activated carbon fibers showed enhancement by one to three orders of magnitudes while other materials could experience reduction in adsorption towards either PFOS or PFOA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Determination of acidity constants of sparingly soluble drugs in aqueous solution by the internal standard capillary electrophoresis method.

    PubMed

    Cabot, Joan Marc; Fuguet, Elisabet; Rosés, Martí

    2014-12-01

    A set of 33 drugs with different solubilities, ranging from soluble to very insoluble, has been chosen in order to evaluate the performance of the internal standard CE method to determine acidity constants of compounds with limited solubility. The set of drugs tested in this work has been chosen as a function of their intrinsic solubility. For the most insoluble compounds, several analytical conditions to overcome the insolubility in aqueous buffers have been tested. This paper assesses the compound solubility limits for the IS-CE method in aqueous pKa determinations, and also compares the determined pKa s with the results from the literature data obtained by other methods. It is proved that IS-CE method determines acidity constants of sparingly soluble drugs in aqueous media (compounds with logS down to around -6), whereas other reference methods require the use of aqueous-organic solvent buffers and extrapolation procedures to obtain the aqueous pKa for the same compounds. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Removal of metal ions from aqueous solution

    DOEpatents

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1990-01-01

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  1. Removal of metal ions from aqueous solution

    DOEpatents

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1990-11-13

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat unit for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heayv metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  2. Sucrose diffusion in aqueous solution

    PubMed Central

    Murray, Benjamin J.

    2016-01-01

    The diffusion of sugar in aqueous solution is important both in nature and in technological applications, yet measurements of diffusion coefficients at low water content are scarce. We report directly measured sucrose diffusion coefficients in aqueous solution. Our technique utilises a Raman isotope tracer method to monitor the diffusion of non-deuterated and deuterated sucrose across a boundary between the two aqueous solutions. At a water activity of 0.4 (equivalent to 90 wt% sucrose) at room temperature, the diffusion coefficient of sucrose was determined to be approximately four orders of magnitude smaller than that of water in the same material. Using literature viscosity data, we show that, although inappropriate for the prediction of water diffusion, the Stokes–Einstein equation works well for predicting sucrose diffusion under the conditions studied. As well as providing information of importance to the fundamental understanding of diffusion in binary solutions, these data have technological, pharmaceutical and medical implications, for example in cryopreservation. Moreover, in the atmosphere, slow organic diffusion may have important implications for aerosol growth, chemistry and evaporation, where processes may be limited by the inability of a molecule to diffuse between the bulk and the surface of a particle. PMID:27364512

  3. Sorption of estrogens and pesticides from aqueous solution by a humic acid and raw and processed plant materials

    NASA Astrophysics Data System (ADS)

    Loffredo, Elisabetta; Taskin, Eren

    2016-04-01

    The huge number of organic contaminants released in water as a consequence of anthropogenic activities have detrimental effects to environmental systems and human health. Industrial products and byproducts, pharmaceuticals, pesticides, detergents and so on impose increasing costs for wastewater decontamination. Adsorption techniques can be successfully used for the treatment of wastewaters to remove contaminants of various nature. Humic acids (HA) have well-known adsorptive capacities towards hydrophilic and, especially, hydrophobic compounds. In the recent years, alternative low-cost adsorbents, especially originated from agricultural wastes and food industries residues, such as wood chips, almond and coconut shells, peanut and rice husks, are under investigation. Biochar is also considered a promising and relatively low-cost adsorbent, even if there are still knowledge gaps about the influence of feedstock type, pyrolysis conditions, physical and chemical properties on its potential and safe use. In the present work, a HA from a green compost was used along with three other materials of plant origin to remove two estrogens, 4-tert-octylphenol and 17-β-estradiol, and two pesticides, carbaryl and fenuron, from an aqueous solution. The four molecules were spiked in water each at a concentration of 1 mg L-1. The materials were: a biochar obtained from 100% red spruce pellet pyrolysed at 550 °C, spent coffee grounds and spent tea leaves. Kinetics curves and adsorption isotherms studies were performed using a batch equilibrium method. Adsorption data obtained for each compound were fitted to a linear equation and non-linear Freundlich and Langmuir models. Kinetics data of the four compounds onto all adsorbents showed an initial very rapid adsorption which was completed in few hours when it reached equilibrium. The two estrogens were adsorbed onto all materials more quickly than the two less hydrophobic pesticides. Significant differences among adsorbents and the

  4. Formic acid enhanced effective degradation of methyl orange dye in aqueous solutions under UV-Vis irradiation.

    PubMed

    Wang, Jingjing; Bai, Renbi

    2016-09-15

    Developing efficient technologies to treat recalcitrant organic dye wastewater has long been of great research and practical interest. In this study, a small molecule, formic acid (FA), was applied as a process enhancer for the degradation of methyl orange (MO) dye as a model recalcitrant organic pollutant in aqueous solutions under the condition of UV-Vis light irradiation and air aeration at the ambient temperature of 25 °C. It was found that the decolouration of the dye solutions can be rapidly achieved, reducing the time, for example, from around 17.6 h without FA to mostly about less than 2 h with the presence of FA. The mineralization rate of MO dye reached as high as 81.8% in 1.5 h in the case of initial MO dye concentration at 25 mg L(-1), which is in contrast to nearly no mineralization of the MO dye for a similar system without the FA added. The study revealed that the generation of the H2O2 species in the system was enhanced and the produced OH radicals effectively contributed to the degradation of the MO dye. Process parameters such as the initial concentration of MO dye, FA dosage and solution pH were all found to have some effect on the degradation efficiency under the same condition of UV-Vis light irradiation and air aeration. The MO dye degradation performance was found to follow a first-order reaction rate to the MO dye concentration in most cases and there existed a positive correlation between the reaction rate constant and the initial FA concentration. Compared to the traditional H2O2/UV-Vis oxidation system, the use of FA as a process-enhancing agent can have the advantages of low cost, easy availability, and safe to use. The study hence demonstrates a promising approach to use a readily available small molecule of FA to enhance the degradation of recalcitrant organic pollutants, such as MO dye, especially for their pre-treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Modulation of the rate of reversible electron transfer in oxidized tryptophan and tyrosine containing peptides in acidic aqueous solution.

    PubMed

    Morozova, Olga B; Yurkovskaya, Alexandra V

    2015-01-08

    Time-resolved chemically induced dynamic nuclear polarization (CIDNP) was used to investigate reversible intramolecular electron transfer (IET) in short-lived oxidized peptides, which had different structures and contained tryptophan and tyrosine residues, in an acidic aqueous solution with a pH below the pKa of the tryptophanyl cation radical. The CIDNP kinetic data were obtained at the microsecond scale and were analyzed in detail to calculate the rate constants for electron transfer in both directions: from the tyrosine residue to the tryptophanyl cation radical, kf, and from the tryptophan residue to the neutral tyrosyl radical, kr. The charge of the terminal amino group and the presence of glycine and proline spacers were shown to strongly affect the rate constants of the reaction under study. Among these functional groups, the presence and the location of the positive charge on the amino group in close proximity to the cationic indolyl radical had the strongest effect on the rate constant of the forward IET from the tyrosine residue to the tryptophanyl radical cation, kf. This effect was manifested as an increase of 2 orders of magnitude in kf for a change in the linkage order between residues in the dipeptide: kf = 4 × 10(3) s(-1) for the oxidized Tyr-Trp increased to kf = 5.5 × 10(5) s(-1) in oxidized Trp-Tyr. The reverse rate constant for IET was less sensitive to the amino group charge. Moreover, the presence of glycine or proline spacers in the peptides with a tryptophan residue at the N-terminus not only reduced the IET rate constant but also shifted the equilibrium of the IET in the reaction under study toward the formation of tyrosyl radicals with respect to the peptide Trp-Tyr. That is, the glycine or proline spacers affected the difference in the reduction potential of the tryptophanyl and tyrosyl radicals.

  6. Removal of Mefenamic acid from aqueous solutions by oxidative process: Optimization through experimental design and HPLC/UV analysis.

    PubMed

    Colombo, Renata; Ferreira, Tanare C R; Ferreira, Renato A; Lanza, Marcos R V

    2016-02-01

    Mefenamic acid (MEF) is a non-steroidal anti-inflammatory drug indicated for relief of mild to moderate pain, and for the treatment of primary dysmenorrhea. The presence of MEF in raw and sewage waters has been detected worldwide at concentrations exceeding the predicted no-effect concentration. In this study, using experimental designs, different oxidative processes (H2O2, H2O2/UV, fenton and Photo-fenton) were simultaneously evaluated for MEF degradation efficiency. The influence and interaction effects of the most important variables in the oxidative process (concentration and addition mode of hydrogen peroxide, concentration and type of catalyst, pH, reaction period and presence/absence of light) were investigated. The parameters were determined based on the maximum efficiency to save time and minimize the consumption of reagents. According to the results, the photo-Fenton process is the best procedure to remove the drug from water. A reaction mixture containing 1.005 mmol L(-1) of ferrioxalate and 17.5 mmol L(-1) of hydrogen peroxide, added at the initial reaction period, pH of 6.1 and 60 min of degradation indicated the most efficient degradation, promoting 95% of MEF removal. The development and validation of a rapid and efficient qualitative and quantitative HPLC/UV methodology for detecting this pollutant in aqueous solution is also reported. The method can be applied in water quality control that is generated and/or treated in municipal or industrial wastewater treatment plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Efficient degradation of Acid Orange 7 in aqueous solution by iron ore tailing Fenton-like process.

    PubMed

    Zheng, Jianming; Gao, Zhanqi; He, Huan; Yang, Shaogui; Sun, Cheng

    2016-05-01

    An effective method based on iron ore tailing Fenton-like process was studied for removing an azo dye, Acid Orange 7 (AO7) in aqueous solution. Five tailings were characterized by X-ray fluorescence spectroscope (XFS), Brunner-Emmet-Teller (BET) measurement, and Scanning Electron Microscope (SEM). The result of XFS showed that Fe, Si and Ca were the most abundant elements and some toxic heavy metals were also present in the studied tailings. The result of BET analysis indicated that the studied tailings had very low surface areas (0.64-5.68 m(2) g(-1)). The degradation efficiencies of AO7 were positively correlated with the content of iron oxide and cupric oxide, and not related with the BET surface area of the tailings. The co-existing metal elements, particularly Cu, might accelerate the heterogeneous Fenton-like reaction. The effects of other parameters on heterogeneous Fenton-like degradation of AO7 by a converter slag iron tailing (tailing E) which contains highest iron oxide were also investigated. The tailing could be reused 10 times without significant decrease of the catalytic capacity. Very low amount of iron species and almost undetectable toxic elements were leached in the catalytic degradation of AO7 by the tailing E. The reaction products were identified by gas chromatography-mass spectrometry and a possible pathway of AO7 degradation was proposed. This study not only provides an effective method for removing azo dyes in polluted water by employing waste tailings as Fenton-like catalysts, but also uses waste tailings as the secondary resource. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Thermodynamic and spectroscopic study of Al3+interaction with glycine, l-cysteine and tranexamic acid in aqueous solution.

    PubMed

    Cardiano, Paola; Giacobello, Fausta; Giuffrè, Ottavia; Sammartano, Silvio

    2017-11-01

    In this paper a thermodynamic and spectroscopic study on the interaction between Al 3+ and glycine (Gly), l-cysteine (Cys), tranexamic acid (Tranex) is reported. Speciation models have been obtained by processing potentiometric titration data to determine stability constants of the species formed in aqueous solution at T=298.15K, 0.15≤I/molL -1 ≤1 in NaCl. Thermodynamic formation parameters have been obtained from calorimetric titration data, at T=298.15K, I=0.15molL -1 using NaCl as ionic medium. Al 3+ -Cys system was also investigated by spectrophotometric and 1 H NMR measurements. 1 H NMR experiments were performed on Al 3+ -Tranex system as well. Different speciation models have been observed for the three systems. The results showed the formation of MLH, ML and M 2 L 2 (OH) 2 species for Gly, ML, M 2 L and MLOH for Cys, MLH and MLOH for Tranex. The formed species are quite stable, i.e. for ML, logβ=7.18, 11.91 for Gly and Cys, respectively, at I=0.15molL -1 and T=298.15K. For all the systems the dependence of formation constants on ionic strength over the range 0.1-1molL -1 is reported. The sequestering ability of the ligands under study was also evaluated by pL 0.5 empiric parameter. For Gly, Cys and Tranex, pL 0.5 =2.51, 3.74, 3.91 respectively, at pH=5, I=0.15molL -1 and T=298.15K. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Decomposition of aspirin in the solid state in the presence of limited amounts of moisture II: Kinetics and salting-in of aspirin in aqueous acetic acid solutions.

    PubMed

    Carstensen, J T; Attarchi, F

    1988-04-01

    The solubility of aspirin in saturated solutions of salicylic acid (and vice versa) was studied in 0 to 16 M aqueous solutions of acetic acid. The solubilities, when expressed in molarity, go through a maximum at an acetic acid concentration of approximately 12 M. The temperature dependence of the solubilities is such that the logarithm of the solubility is linear in reciprocal absolute temperature. The calculated enthalpies are of the order of 11 kcal/mol. The kinetics of aspirin decomposition was also studied at the different acetic acid concentrations, and it was found that the second-order hydrolysis rate constant is fairly independent of acetic acid concentration. Aspirin decomposition follows an Arrhenius equation and has an activation energy of 18 kcal/mol.

  10. Conductometric and fluorometric studies of sodium dodecyl sulphate in aqueous solution and in the presence of amino acids

    NASA Astrophysics Data System (ADS)

    Ali, Anwar; Malik, Nisar Ahmad; Uzair, Sahar; Ali, Maroof

    2014-10-01

    The critical micelle concentration (CMC) of sodium dodecyl sulphate (SDS) in pure water and in the presence of amino acids (0.01, 0.02 and 0.03 mol kg-1), L-valine (Val) and L-leucine (Leu) was determined from conductometric and fluorometric methods using pyrene as luminescence probe. Depression in the CMC at low concentration of amino acids is attributed to the increased hydrophobic-hydrophobic interaction between the non-polar groups of the surfactant, while, at high concentration, amino acids bind strongly with the anion, DS-, head groups of SDS, thereby, delaying the micelle formation, resulting in increased CMC. A pronounced decrease in the CMC, while a marked increase in λ0+, with decrease in the solvated radius (rather than crystal radius) of the counterions is observed. Negative values of ΔG0m and ΔH0m indicate that micellisation of SDS in the presence of amino acids is thermodynamically spontaneous and exothermic. Highest negative value of ΔH0m in 0.01 m Val, with lowest CMC value, shows that 0.01 m aqueous Val is the most suitable medium favouring the micellisation of SDS. Decrease in I1/I3 from Val to Leu confirms the relative hydrophobicity of two amino acids. The observed values of the packing parameter, P, of SDS in water and in aqueous amino acids suggest that micelles formed are spherical in nature.

  11. Effect of medium acidity on the thermodynamics and kinetics of the reaction of pyridoxal 5'-phosphate with isoniazid in an aqueous solution

    NASA Astrophysics Data System (ADS)

    Gamov, G. A.; Zavalishin, M. N.; Usacheva, T. R.; Sharnin, V. A.

    2017-05-01

    Thermodynamic characteristics of the formation of the Schiff base between isoniazid and pyridoxal 5'-phosphate in an aqueous solution at different pH values of a medium are determined by means of spectrophotometry and calorimetric titration. The process kinetics is studied spectrophotometrically, and the reaction rate constants for the formation of the imine at different acidities of a medium are determined. Biochemical aspects of the binding of pyridoxal 5'-phosphate into stable compounds are discussed.

  12. Boric acid, “carbonic” acid, and N-containing oxyacids in aqueous solution: Ab initio studies of structure, pKa, NMR shifts, and isotopic fractionations

    NASA Astrophysics Data System (ADS)

    Tossell, J. A.

    2005-12-01

    B(OH) 3 and CO 2 are acidic species of considerable geochemical importance, yet the microscopic nature of the acid dissociation reactions for these B and C species is not well understood. Quantum mechanical methods have recently been applied to the direct ab initio calculation of p Ka values for many organic and inorganic weak acids, but the B and C acids have not yet been considered in detail. In the present study, p Ka values are calculated quantum mechanically for the oxyacids B(OH) 3, H 2CO 3 and HNO 3, which have experimental first p Ka values of 9.2, 6.4 and -1.3, respectively. We calculate the gas-phase reaction free energies at the highly accurate CBS-QB3 ab initio quantum mechanical level and reaction free energies of hydration using a polarizable continuum method. Using a thermodynamic cycle corresponding to the simple dissociation process HA A - + H +, in aqueous solution, we calculate p Ka values of 21.6, 3.8 to 2.2 and -0.8 for the three oxyacids mentioned above, closely matching experiment only for HNO 3. The discrepancies with experiment arise from the more complex nature of the acid dissociation process for B(OH) 3, which involves the addition of H 2O to B(OH) 3 and formation of the B(OH) 4- anion, and from the instability of hypothetical H 2CO 3 compared to the proper hydrated reactant complex CO 2. . . H 2O. When the proper microscopic description of the reactants and products is used the calculated p Ka values for the three acids become 11.1, 7.2 and -0.8, in considerably better agreement with experiment for B(OH) 3 and CO 2. . . H 2O. Thus p Ka calculations using this approach are accurate enough to give information on the actual acid species present in solution and the details of their acid dissociation processes at the microscopic level. 11B and 13C-NMR chemical shifts are also calculated for the various species and compared to experiment. By comparison of our calculations with experiment it is apparent that the 13C-NMR chemical shift has

  13. REMOVAL OF CHLORIDE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Schulz, W.W.

    1959-08-01

    The removal of chlorides from aqueons solutions is described. The process involves contacting the aqueous chloride containing solution with a benzene solution about 0.005 M in phenyl mercuric acetate whereby the chloride anions are taken up by the organic phase and separating the organic phase from the aqueous solutions.

  14. Optical and photophysical properties of the chlorin-type photosensitizer photolon in aqueous solutions of different acidities

    NASA Astrophysics Data System (ADS)

    Bagrov, I. V.; Belousova, I. M.; Dadeko, A. V.; Krisko, T. K.; Kriukova, E. V.; Martynenko, I. V.; Savchenko, M. R.

    2017-09-01

    Photolon is a modern compound for fluorescence diagnostics and photodynamic therapy, which was relatively recently introduced into clinical practice. In the present work, we study its electronic-absorption spectra, fluorescence spectra (excited at different visible wavelengths), and fluorescence quantum yields. The characteristics are studied in aqueous solutions with pH 6.0-7.5 and compared under identical conditions with the corresponding characteristics of other chlorin- or porphyrin-type compounds (Photoditazin, Radachlorin, Dimegin) for photodynamic diagnostics and therapy. It is shown that the studied properties of Photolon are very close to those of Photoditazin and Radachlorin. At the same time, chlorin products are found to be more effective than Dimegin at pH 7.5, which is close to the pH of blood, while Dimegin is the most effective in solutions with lower pH, for example, in distilled water.

  15. Aluminum speciation and equilibria in aqueous solution: II. The solubility of gibbsite in acidic sodium chloride solutions from 30 to 70°C

    NASA Astrophysics Data System (ADS)

    Palmer, Donald A.; Wesolowski, David J.

    1992-03-01

    The solubility of gibbsite in aqueous solutions was measured at ten ionic strengths made up of NaCl, HCl, and AlCl 3 at 30, 50, and 70°C with the initial acidity controlled by addition of HCl. The aluminum concentration was determined by ion chromatography, while the final equilibrium pH was measured at temperature. The equilibrium quotients for the reaction Al(OH) 3 + 3H + ai Al 3+ + 3H 2O were modeled using both an empirical equation including the Debye-Hückel term and the Pitzer ion interaction treatment which incorporated the relevant single electrolyte and mixing interaction parameters currently available in the literature. In the latter treatment only four independent variables, including θA a, ψA acl, and two terms describing the equilibrium constant at infinite dilution, were needed to fit the data well within the projected experimental error. In general, these new equilibrium quotients differ markedly from results of all but the most recently published solubility studies. The thermodynamic parameters at infinite dilution are compared with those calculated from the individual components of the reaction available in the literature. These calculations lead to recommended thermodynamic values for the Gibbs energy of reaction at 25°C of -44.2 ± 0.3 kJ mol-1, a ΔG f0(Al 3+, aq) of -487.7 ± 1.5 kJ mol-1, and a ΔH f0(Al 3+, aq) of -540.9 kJ mol-1. No evidence for aluminum chloride complexation was found by comparing solubility experiments in the presence of varying concentrations of sodium trifluoromethanesulfonate and sodium chloride at 50°C and ca. 5 molal ionic strength.

  16. SOLVENT EXTRACTION OF THORIUM VALUES FROM AQUEOUS SOLUTIONS

    DOEpatents

    Warf, J.C.

    1959-04-21

    The separation of thorium values from rare earth metals contained ln aqueous solutions by means of extraction with a water immiscible alkyl phosphate diluted with a hydrocarbon such as hexane is described. While the extraction according to this invention may be carried out from any aqueous salt solution, it is preferred to use solutions containing free mineral acid. Hydrochloric acid and in particular nitric acid are sultable in a concentration ranging from 0.1 to 7 normal. The higher acid concentration results in higher extraction values.

  17. Thermodynamical characteristics of the reaction of pyridoxal-5'-phosphate with L-amino acids in aqueous buffer solution

    NASA Astrophysics Data System (ADS)

    Barannikov, V. P.; Badelin, V. G.; Venediktov, E. A.; Mezhevoi, I. N.; Guseinov, S. S.

    2011-01-01

    The reaction of pyridoxal-5'-phosphate with L-isomers of alanine, lysine, arginine, aspartic acid, glutamic acid, and glycine in phosphate buffer solution was studied by absorption spectroscopy and the calorimetry of dissolution at physiological acidity of the medium (pH 7.35). The formation constants of Schiff bases during reactions and changes in Gibbs energy, enthalpy, and entropy were determined. It was shown that the formation constant of the Schiff base and its spectral properties depend on the nature of the bound amino acid. The progress of the reaction with a majority of amino acids is governed by the entropy factor due to the predominant role of the dehydration effect of the reaction center of amino acids during chemical reactions. The intramolecular electrostatic interaction of an ionized phosphate group with the positively charged amino group on the end of the chain of amino acid residue stabilizes the Schiff bases formed by lysine and arginine. The extinction coefficient of the base, equilibrium constant, and the exothermic effect of the reaction then increase. The excess negative charge on the end of the chain of amino acid residues of aspartic and glutamic acids destabilizes the molecule of the Schiff base. In this case, the equilibrium constant decreases and the endothermic effect of the reaction increases.

  18. Selected ion flow tube mass spectrometry of 3-hydroxybutyric acid, acetone and other ketones in the headspace of aqueous solution and urine

    NASA Astrophysics Data System (ADS)

    Wang, Tianshu; Spanel, Patrik; Smith, David

    2008-04-01

    A study has been carried out of the reactions of three isomers of hydroxybutyric acid, giving special attention to 3-hydroxybutyric acid, 3-HBA, with H3O+ and NO+ ions to acquire the required kinetic data for a selected ion flow tube mass spectrometry, SIFT-MS, search for 3-HBA in the headspace of urine since it is known to be one of the "ketone bodies" important in the diagnosis of ketoacidosis. Thus, the product ions formed in the reactions of the H3O+ and NO+ precursor ions with the three hydroxy acids were established by sampling the headspace above the pure compounds over a range of absolute humidities from 1.5% (ambient air) to 6% (liquid headspace at 37 C and exhaled breath). Then these data, together with the rate coefficients for the reactions estimated by calculation, were used to detect and quantify 3-HBA in the headspace of an aqueous solution of this compound of known concentration and above urine donated by two volunteers. The level of 3-HBA above the urine samples after they were acidified with hydrochloric acid was seen to be typically 40 parts-per-billion, ppb, which is much lower than that for acetone seen to be typically 800 ppb. Exploiting the aqueous solution data as a reference, the 3-HBA concentration in the urine samples was estimated to be about 1-2 mmol/L, which is typical of the urine from healthy individuals.

  19. Sorption of carboxylic acid from carboxylic salt solutions at pHs close to or above the pK[sub a] of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine

    DOEpatents

    King, C.J.; Tung, L.A.

    1992-07-21

    Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH[sub a] into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. The acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carboxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia. 8 figs.

  20. Sorption of carboxylic acid from carboxylic salt solutions at PHS close to or above the pK.sub.a of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine

    DOEpatents

    King, C. Judson; Tung, Lisa A.

    1992-01-01

    Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH.sub.a into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. the acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carobxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia.

  1. Enhanced removal of humic acid from aqueous solution by novel stabilized nano-amorphous calcium phosphate: Behaviors and mechanisms

    NASA Astrophysics Data System (ADS)

    Jiang, Ling; Li, Yiming; Shao, Yi; Zhang, Yong; Han, Ruiming; Li, Shiyin; Wei, Wei

    2018-01-01

    Stabilized nano-amorphous calcium phosphate (nACP) was prepared using polyethylene glycol as stabilizer to obtain a nanosized amorphous adsorbent. The produced nACP was evaluated by using XRD, FTIR, SEM and X-ray photoelectron spectroscopy (XPS). The sedimentation test demonstrated that nACP exhibited better stability than crystallized hydroxyapatite. The adsorption efficiency of the nACP material for aqueous humic acid (HA) was evaluated from the point of view of medium pH, adsorption time, temperature, and ionic strength, as well as the presences of metal ions. The results of the study showed very good adsorption performance towards aqueous HA. The Sips modeling results revealed that the stabilized nACP adsorbent had a considerably high adsorption capacity (248.3 mg/g) for HA at 298 K. The adsorption data fitted well into pseudo-second order and Elovich kinetic models. XPS analyses indicated that HA retention on nACP material might be due to the surface complexation reaction between oxygen-containing group and calcium of HA and nACP, respectively. Moreover, the HA adsorption capacity of nACP could still keep more than 86% after four adsorption-desorption cycles. By taking into account all results it was concluded that the nACP adsorbent leveraged its stability in combination with its high uptake capacity to offer a great promise for HA adsorption from water.

  2. Membrane separation for non-aqueous solution

    NASA Astrophysics Data System (ADS)

    Widodo, S.; Khoiruddin; Ariono, D.; Subagjo; Wenten, I. G.

    2018-01-01

    Membrane technology has been widely used in a number of applications competing with conventional technologies in various ways. Despite the enormous applications, they are mainly used for the aqueous system. The use of membrane-based processes in a non-aqueous system is an emerging area. This is because developed membranes are still limited in separations involving aqueous solution which show several drawbacks when implemented in a non-aqueous system. The purpose of this paper is to provide a review of the current application of membrane processes in non-aqueous solutions, such as mineral oil treatment, vegetable oil processing, and organic solvent recovery. Developments of advanced membrane materials for the non-aqueous solutions such as super-hydrophobic and organic solvent resistant membranes are reviewed. In addition, challenges and future outlook of membrane separation for the non-aqueous solution are discussed.

  3. Calcium Binding to Amino Acids and Small Glycine Peptides in Aqueous Solution: Toward Peptide Design for Better Calcium Bioavailability.

    PubMed

    Tang, Ning; Skibsted, Leif H

    2016-06-01

    Deprotonation of amino acids as occurs during transfer from stomach to intestines during food digestion was found by comparison of complex formation constants as determined electrochemically for increasing pH to increase calcium binding (i) by a factor of around 6 for the neutral amino acids, (ii) by a factor of around 4 for anions of the acidic amino acids aspartic and glutamic acid, and (iii) by a factor of around 5.5 for basic amino acids. Optimized structures of the 1:1 complexes and ΔHbinding for calcium binding as calculated by density functional theory (DFT) confirmed in all complexes a stronger calcium binding and shorter calcium-oxygen bond length in the deprotonated form. In addition, the stronger calcium binding was also accompanied by a binding site shift from carboxylate binding to chelation by α-amino group and carboxylate oxygen for leucine, aspartate, glutamate, alanine, and asparagine. For binary amino acid mixtures, the calcium-binding constant was close to the predicted geometric mean of the individual amino acid binding constants indicating separate binding of calcium to two amino acids when present together in solution. At high pH, corresponding to conditions for calcium absorption, the binding affinity increased in the order Lys < Arg < Cys < Gln < Gly ∼ Ala < Asn < His < Leu < Glu< Asp. In a series of glycine peptides, calcium-binding affinity was found to increase in the order Gly-Leu ∼ Gly-Gly < Ala-Gly < Gly-His ∼ Gly-Lys-Gly < Glu-Cys-Gly < Gly-Glu, an ordering confirmed by DFT calculations for the dipeptides and which also accounted for large synergistic effects in calcium binding for up to 6 kJ/mol when compared to the corresponding amino acid mixtures.

  4. Thermodynamics of the dissociation of aminomethanesulfonic acid and its N-substituted derivatives in aqueous solutions at 293-313 K

    NASA Astrophysics Data System (ADS)

    Khoma, R. E.

    2017-01-01

    Δ G, Δ H, and Δ S of the second dissociation step of aminomethanesulfonic acid and its N-methyl, N-hydroxyethyl, N-( tert-butyl), N-benzyl derivatives in aqueous solutions (at the isoelectric point where the ionic strength is 4.75 × 10-4 M) are determined on basis of pH measurements at 293-313 K. It is found that an increase of the electron-acceptor properties of the substituents at nitrogen atom reduces the effect temperature has on the thermodynamic functions of dissociation. Enthalpy-enthropy compensation at an isothermodynamic temperature of 303 K is recorded.

  5. Self-association of pyridine-2,6-dicarboxylic acid in aqueous solution as determined from ultraviolet hypochromic and hyperchromic effects

    NASA Astrophysics Data System (ADS)

    Peral, Fernando; Gallego, Ernesto

    2000-10-01

    The self-association of pyridine-2,6-dicarboxylic acid (dipicolinic acid), was studied in aqueous solution at the pH values of 0.2, 3.5, 6.9 and 13.0, by ultraviolet spectroscopy. The variation in molar absorptivity with the concentration of this compound was measured for the band in the mid-ultraviolet region. Deviations from Beer-Lambert law with increasing concentration were found at the pH values of 0.2, 3.5 and 6.9. Hypochromic effects were detected at pH 0.2 and 6.9, while a hyperchromic effect was observed at pH 3.5. These results were interpreted in terms of self-association leading to the formation of dimers. From the fitting of the experimental curves of hypochromic or hyperchromic effects, self-association constants were calculated. The occurrence of hypochromic and hyperchromic effects was analyzed in terms of vertical and horizontal interactions, respectively, to elucidate the nature of the self-association processes, stacking or hydrogen bonding, relevant to each of the protolytic species of dipicolinic acid in aqueous solution.

  6. Speciation of aqueous Ni(II)-carboxylate and Ni(II)-fulvic acid solutions: Combined ATR-FTIR and XAFS analysis

    NASA Astrophysics Data System (ADS)

    Strathmann, Timothy J.; Myneni, Satish C. B.

    2004-09-01

    Aqueous solutions containing Ni(II) and a series of structurally related carboxylic acids were analyzed using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and Ni K-edge X-ray absorption fine structure spectroscopy (XAFS). XAFS spectra were also collected for solutions containing Ni 2+ and chelating ligands (ethylenediaminetetraacetic acid, nitrilotriacetic acid (NTA)) as well as soil fulvic acid. Limited spectral changes are observed for aqueous Ni(II) complexes with monocarboxylates (formate, acetate) and long-chain polycarboxylates (succinate, tricarballylate), where individual donor groups are separated by multiple bridging methylene groups. These spectral changes indicate weak interactions between Ni(II) and carboxylates, and the trends are similar to some earlier reports for crystalline Ni(II)-acetate solids, for which X-ray crystallography studies have indicated monodentate Ni(II)-carboxylate coordination. Nonetheless, electrostatic or outer-sphere coordination cannot be ruled out for these complexes. However, spectral changes observed for short-chain dicarboxylates (oxalate, malonate) and carboxylates that contain an alcohol donor group adjacent to one of the carboxylate groups (lactate, malate, citrate) demonstrate inner-sphere metal coordination by multiple donor groups. XAFS spectral fits of Ni(II) solutions containing soil fulvic acid are consistent with inner-sphere Ni(II) coordination by one or more carboxylate groups, but spectra are noisy and outer-sphere modes of coordination cannot be ruled out. These molecular studies refine our understanding of the interactions between carboxylates and weakly complexing divalent transition metals, such as Ni(II).

  7. Study of diatoms/aqueous solution interface. I. Acid-base equilibria and spectroscopic observation of freshwater and marine species

    NASA Astrophysics Data System (ADS)

    Gélabert, A.; Pokrovsky, O. S.; Schott, J.; Boudou, A.; Feurtet-Mazel, A.; Mielczarski, J.; Mielczarski, E.; Mesmer-Dudons, N.; Spalla, O.

    2004-10-01

    This work reports on a concerted study of diatom-water interfaces for two marine planktonic ( Thalassiosira weissflogii= TW, Skeletonema costatum= SC) and two freshwater periphytic species ( Achnanthidium minutissimum= AMIN, Navicula minima= NMIN). Proton surface adsorption was measured at 25°C, pH of 3 to 11 and ionic strength of 0.001 to 1.0 M via potentiometric titration using a limited residence time reactor. Electrophoretic mobility of living cells and their frustules was measured as a function of pH and ionic strength. Information on the chemical composition and molecular structure of diatoms surfaces was obtained using FT-IR (in situ attenuated total reflectance) and X-ray Photoelectron Spectroscopy (XPS). The surface area of living cells and their frustules in aqueous solutions was quantified using Small Angle X-ray Scattering Spectroscopy (SAXS). These observations allowed us to identify the nature and to determine the concentration of the major surface functional groups (carboxyl, amine and silanol) responsible for the amphoteric behavior of cell surfaces in aqueous solutions. Taking into account the relative proportion of surface sites inferred from XPS and FT-IR measurements, a surface complexation model of diatom-solution interfaces was generated on the basis of surface titration results. The cell-normalized ratios of the three major surface sites {>COOH}: {>NH 3}: {>SiOH} are 1:1:0.1, 1:10:0, 1:1:0.4 and 1:1:0.3 for TW, SC, AMIN and NMIN, respectively. The total amount of proton/hydroxyl active surface sites for investigated species ranges from 1 (NMIN) to 9 (SC) mmol/g dry weight. Normalization of these site densities to the area of siliceous skeleton yields values between 0.3 (NMIN) and 0.9 mmol/m 2 (SC) which are an order of magnitude higher than corresponding values for organic-free frustules or amorphous silica. This suggests that the amphoteric properties and possibly the affinity for metal adsorption of diatom cultures are essentially

  8. Excess electron reactivity in amino acid aqueous solution revealed by ab initio molecular dynamics simulation: anion-centered localization and anion-relayed electron transfer dissociation.

    PubMed

    Wu, Xiuxiu; Gao, Liang; Liu, Jinxiang; Yang, Hongfang; Wang, Shoushan; Bu, Yuxiang

    2015-10-28

    Studies on the structure, states, and reactivity of excess electrons (EEs) in biological media are of great significance. Although there is information about EE interaction with desolvated biological molecules, solution effects are hardly explored. In this work, we present an ab initio molecular dynamics simulation study on the interaction and reactivity of an EE with glycine in solution. Our simulations reveal two striking results. Firstly, a pre-solvated EE partially localizes on the negatively charged -COO(-) group of the zwitterionic glycine and the remaining part delocalizes over solvent water molecules, forming an anion-centered quasi-localized structure, due to relative alignment of the lowest unoccupied molecular orbital energy levels of potential sites for EE residence in the aqueous solution. Secondly, after a period of anion-centered localization of an EE, the zwitterionic glycine is induced to spontaneously fragment through the cleavage of the N-Cα bond, losing ammonia (deamination), and leaving a ˙CH2-COO(-) anion radical, in good agreement with experimental observations. Introduction of the same groups (-COO(-) or -NH3(+)) in the side chain (taking lysine and aspartic acid as examples) can affect EE localization, with the fragmentation of the backbone part of these amino acids dependent on the properties of the side chain groups. These findings provide insights into EE interaction mechanisms with the backbone parts of amino acids and low energy EE induced fragmentation of amino acids and even peptides and proteins.

  9. GC/MS method for determining carbon isotope enrichment and concentration of underivatized short-chain fatty acids by direct aqueous solution injection of biogas digester samples.

    PubMed

    Mulat, Daniel Girma; Feilberg, Anders

    2015-10-01

    In anaerobic digestion of organic matter, several metabolic pathways are involved during the simultaneous production and consumption of short-chain fatty acids (SCFA) in general and acetate in particular. Understanding the role of each pathway requires both the determination of the concentration and isotope enrichment of intermediates in conjunction with isotope labeled substrates. The objective of this study was to establish a rapid and simple GC/MS method for determining the isotope enrichment of acetate and concentration of underivatized short-chain fatty acids (SCFA) in biogas digester samples by direct liquid injection of acidified aqueous samples. Sample preparation involves only acidification, centrifugation and filtration of the aqueous solution followed by direct injection of the aqueous supernatant solution onto a polar column. With the sample preparation and GC/MS conditions employed, well-resolved and sharp peaks of underivatized SCFA were obtained in a reasonably short time. Good recovery (96.6-102.3%) as well as low detection (4-7 µmol/L) and quantification limits (14-22 µmol/L) were obtained for all the 6 SCFA studied. Good linearity was achieved for both concentration and isotope enrichment measurement with regression coefficients higher than 0.9978 and 0.9996, respectively. The method has a good intra- and inter-day precision with a relative standard deviation (RSD) below 6% for determining the tracer-to-tracee ratio (TTR) of both [2-(13)C]acetate and [U-(13)C]acetate. It has also a good intra- and inter-day precision with a RSD below 6% and 5% for determining the concentration of standard solution and biogas digester samples, respectively. Acidification of biogas digester samples with oxalic acid provided the low pH required for the protonation of SCFA and thus, allows the extraction of SCFA from the complex sample matrix. Moreover, oxalic acid was the source of formic acid which was produced in the injector set at high temperature. The produced

  10. Performance of mango seed adsorbents in the adsorption of anthraquinone and azo acid dyes in single and binary aqueous solutions.

    PubMed

    Dávila-Jiménez, Martín M; Elizalde-González, María P; Hernández-Montoya, Virginia

    2009-12-01

    In this study the husk of mango seed and two carbonaceous adsorbents prepared from it were used to study the adsorption behavior of eight acid dyes. The adsorbed amount in mmol m(-2) decayed asymptotically as the molecular volume and area increased. The interaction between the studied dyes and the mesoporous carbon was governed by the ionic species in solution and the acidic/basic groups on the surface. Less than 50% of the external surface of the microporous carbon became covered with the dyes molecules, though monolayer formation demonstrating specific interactions only with active sites on the surface and the adsorption magnitudes correlated with the shape parameter of the molecule within a particular dye group. The adsorption behavior in mixtures was determined by the molecular volume of the constituents; the greater the molecular volume difference, the greater the effect on the adsorbed amount. We also demonstrated that the raw husk of the mango seed can be used to remove up to 50% from model 50 mg l(-1) solutions of the studied acid dyes.

  11. ENGINEERING BULLETIN: AIR STRIPPING OF AQUEOUS SOLUTIONS

    EPA Science Inventory

    Air striding is a means to transfer contaminants from aqueous solutions to air. ontaminants are not destroyed by air stripping but are physically separated from the aqueous solutions. ontaminant vapors are transferred into the air stream and, if necessary, can be treated by incin...

  12. SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Beederman, M.; Vogler, S.; Hyman, H.H.

    1959-07-14

    The separation of rathenium from a rathenium containing aqueous solution is described. The separation is accomplished by adding sodium nitrite, silver nitrate and ozone to the ruthenium containing aqueous solution to form ruthenium tetroxide and ihen volatilizing off the ruthenium tetroxide.

  13. Acid titrations of poly(dG-dC).poly(dG-dC) in aqueous solution and in a w/o microemulsion.

    PubMed

    Airoldi, Marta; Boicelli, C Andrea; Gennaro, Guiseppe; Giomini, Marcello; Giuliani, Anna Maria; Giustini, Mauro

    2006-02-01

    The model polynucleotide poly(dG-dC).poly(dG-dC) (polyGC) was titrated with a strong acid (HCl) in aqueous unbuffered solutions and in the quaternary w/o microemulsion CTAB/n-pentanol/n-hexane/water. The titrations, performed at several concentrations of NaCl in the range 0.005 to 0.600 M, were followed by recording the modifications of the electronic absorption and of the CD spectra (210< or = lambda < or =350 nm) upon addition of the acid. In solution, the polynucleotide undergoes two acid-induced transitions, neither of which corresponds to denaturation of the duplex to single coil. The first transition leads to the Hoogsteen type synG.C+ duplex, while the second leads to the C+.C duplex. The initial B-form of polyGC was recovered by back-titration with NaOH. The apparent pKa values were obtained for both steps of the titration, at all salt concentrations. A reasonably linear dependence of pKa1 and pKa2 from p[NaCl] was obtained, with both pKa values decreasing with increasing ionic strength. In microemulsion, at salt concentrations < or = 0.300 M, an acid-induced transition was observed, matching the first conformational transition recorded also in solution. However, further addition of acid led to denaturation of the protonated duplex. Renaturation of polyGC was obtained by back-titration with NaOH. At salt concentrations > 0.300 M, polyGC is present as a mixture of B-form and psi- aggregates, that slowly separate from the microemulsion. The acid titration induces at first a conformational transition similar to the one observed at low salt or in solution, then denaturation occurs, which is however preceded by the appearance of a transient conformation, that has been tentatively classified as a left-handed Z double helix.

  14. Stability of cefozopran hydrochloride in aqueous solutions.

    PubMed

    Zalewski, Przemysław; Skibiński, Robert; Paczkowska, Magdalena; Garbacki, Piotr; Talaczyńska, Alicja; Cielecka-Piontek, Judyta; Jelińska, Anna

    2016-01-01

    The influence of pH on the stability of cefozopran hydrochloride (CZH) was investigated in the pH range of 0.44-13.00. Six degradation products were identified with a hybrid ESI-Q-TOF mass spectrometer. The degradation of CZH as a result of hydrolysis was a pseudo-first-order reaction. As general acid-base hydrolysis of CZH was not occurred in the solutions of hydrochloric acid, sodium hydroxide, acetate, borate and phosphate buffers, kobs = kpH because specific acid-base catalysis was observed. Specific acid-base catalysis of CZH consisted of the following reactions: hydrolysis of CZH catalyzed by hydrogen ions (kH+), hydrolysis of dications (k1H2O), monocations (k2H2O) and zwitter ions (k3H2O) and hydrolysis of zwitter ions (k1OH-) and monoanions (k2OH-) of CZH catalyzed by hydroxide ions. The total rate of the reaction was equal to the sum of partial reactions: [Formula: see text]. CZH similarly like other fourth generation cephalosporin was most stable at slightly acidic and neutral pH and less stable in alkaline pH. The cleavage of the β-lactam ring resulting from a nucleophilic attack on the carbonyl carbon in the β-lactam moiety is the preferred degradation pathway of β-lactam antibiotics in aqueous solutions.

  15. Photochemistry of aqueous pyruvic acid.

    PubMed

    Griffith, Elizabeth C; Carpenter, Barry K; Shoemaker, Richard K; Vaida, Veronica

    2013-07-16

    The study of organic chemistry in atmospheric aerosols and cloud formation is of interest in predictions of air quality and climate change. It is now known that aqueous phase chemistry is important in the formation of secondary organic aerosols. Here, the photoreactivity of pyruvic acid (PA; CH3COCOOH) is investigated in aqueous environments characteristic of atmospheric aerosols. PA is currently used as a proxy for α-dicarbonyls in atmospheric models and is abundant in both the gas phase and the aqueous phase (atmospheric aerosols, fog, and clouds) in the atmosphere. The photoreactivity of PA in these phases, however, is very different, thus prompting the need for a mechanistic understanding of its reactivity in different environments. Although the decarboxylation of aqueous phase PA through UV excitation has been studied for many years, its mechanism and products remain controversial. In this work, photolysis of aqueous PA is shown to produce acetoin (CH3CHOHCOCH3), lactic acid (CH3CHOHCOOH), acetic acid (CH3COOH), and oligomers, illustrating the progression from a three-carbon molecule to four-carbon and even six-carbon molecules through direct photolysis. These products are detected using vibrational and electronic spectroscopy, NMR, and MS, and a reaction mechanism is presented accounting for all products detected. The relevance of sunlight-initiated PA chemistry in aqueous environments is then discussed in the context of processes occurring on atmospheric aerosols.

  16. Photochemistry of aqueous pyruvic acid

    PubMed Central

    Griffith, Elizabeth C.; Carpenter, Barry K.; Shoemaker, Richard K.; Vaida, Veronica

    2013-01-01

    The study of organic chemistry in atmospheric aerosols and cloud formation is of interest in predictions of air quality and climate change. It is now known that aqueous phase chemistry is important in the formation of secondary organic aerosols. Here, the photoreactivity of pyruvic acid (PA; CH3COCOOH) is investigated in aqueous environments characteristic of atmospheric aerosols. PA is currently used as a proxy for α-dicarbonyls in atmospheric models and is abundant in both the gas phase and the aqueous phase (atmospheric aerosols, fog, and clouds) in the atmosphere. The photoreactivity of PA in these phases, however, is very different, thus prompting the need for a mechanistic understanding of its reactivity in different environments. Although the decarboxylation of aqueous phase PA through UV excitation has been studied for many years, its mechanism and products remain controversial. In this work, photolysis of aqueous PA is shown to produce acetoin (CH3CHOHCOCH3), lactic acid (CH3CHOHCOOH), acetic acid (CH3COOH), and oligomers, illustrating the progression from a three-carbon molecule to four-carbon and even six-carbon molecules through direct photolysis. These products are detected using vibrational and electronic spectroscopy, NMR, and MS, and a reaction mechanism is presented accounting for all products detected. The relevance of sunlight-initiated PA chemistry in aqueous environments is then discussed in the context of processes occurring on atmospheric aerosols. PMID:23821751

  17. Functionalized polymers for binding to solutes in aqueous solutions

    DOEpatents

    Smith, Barbara F.; Robison, Thomas W.

    2006-11-21

    A functionalized polymer for binding a dissolved molecule in an aqueous solution is presented. The polymer has a backbone polymer to which one or more functional groups are covalently linked. The backbone polymer can be such polymers as polyethylenimine, polyvinylamine, polyallylamine, and polypropylamine. These polymers are generally water-soluble, but can be insoluble when cross-linked. The functional group can be for example diol derivatives, polyol derivatives, thiol and dithiol derivatives, guest-host groups, affinity groups, beta-diphosphonic acids, and beta-diamides

  18. Terahertz absorption of dilute aqueous solutions.

    PubMed

    Heyden, Matthias; Tobias, Douglas J; Matyushov, Dmitry V

    2012-12-21

    Absorption of terahertz (THz) radiation by aqueous solutions of large solutes reports on the polarization response of their hydration shells. This is because the dipolar relaxation of the solute is dynamically frozen at these frequencies, and most of the solute-induced absorption changes, apart from the expulsion of water, are caused by interfacial water. We propose a model expressing the dipolar response of solutions in terms of a single parameter, the interface dipole moment induced in the interfacial water by electromagnetic radiation. We apply this concept to experimental THz absorption of hydrated sugars, amino acids, and proteins. None of the solutes studied here follow the expectations of dielectric theories, which predict a negative projection of the interface dipole on the external electric field. We find that this prediction is not able to describe the available experimental data, which instead suggests a nearly zero interface dipole for sugars and a more diverse pattern for amino acids. Hydrophobic amino acids, similarly to sugars, give rise to near zero interface dipoles, while strongly hydrophilic ones are best described by a positive projection of the interface dipole on the external field. The sign of the interface dipole is connected to the slope of the absorption coefficient with the solute concentration. A positive slope, implying an increase in the solution polarity relative to water, mirrors results frequently reported for protein solutions. We therefore use molecular dynamics simulations of hydrated glucose and lambda repressor protein to calculate the interface dipole moments of these solutes and the concentration dependence of the THz absorption. The absorption at THz frequencies increases with increasing solute concentration in both cases, implying a higher polarity of the solution compared to bulk water. The structure of the hydration layer, extracted from simulations, is qualitatively similar in both cases, with spatial correlations

  19. Terahertz absorption of dilute aqueous solutions

    NASA Astrophysics Data System (ADS)

    Heyden, Matthias; Tobias, Douglas J.; Matyushov, Dmitry V.

    2012-12-01

    Absorption of terahertz (THz) radiation by aqueous solutions of large solutes reports on the polarization response of their hydration shells. This is because the dipolar relaxation of the solute is dynamically frozen at these frequencies, and most of the solute-induced absorption changes, apart from the expulsion of water, are caused by interfacial water. We propose a model expressing the dipolar response of solutions in terms of a single parameter, the interface dipole moment induced in the interfacial water by electromagnetic radiation. We apply this concept to experimental THz absorption of hydrated sugars, amino acids, and proteins. None of the solutes studied here follow the expectations of dielectric theories, which predict a negative projection of the interface dipole on the external electric field. We find that this prediction is not able to describe the available experimental data, which instead suggests a nearly zero interface dipole for sugars and a more diverse pattern for amino acids. Hydrophobic amino acids, similarly to sugars, give rise to near zero interface dipoles, while strongly hydrophilic ones are best described by a positive projection of the interface dipole on the external field. The sign of the interface dipole is connected to the slope of the absorption coefficient with the solute concentration. A positive slope, implying an increase in the solution polarity relative to water, mirrors results frequently reported for protein solutions. We therefore use molecular dynamics simulations of hydrated glucose and lambda repressor protein to calculate the interface dipole moments of these solutes and the concentration dependence of the THz absorption. The absorption at THz frequencies increases with increasing solute concentration in both cases, implying a higher polarity of the solution compared to bulk water. The structure of the hydration layer, extracted from simulations, is qualitatively similar in both cases, with spatial correlations

  20. REMOVAL OF CESIUM BY SORPTION FROM AQUEOUS SOLUTIONS

    DOEpatents

    Ames, L.L.

    1962-01-16

    ABS>A process is given for selectively removing cesium from acid aqueous solutions containing cesium in microquantities and other cations in macroquantities by absorption on clinoptilolite. The cesium can be eluted from the clinoptilolite with a solution of ammonia, potassium hydroxide, or rubidium hydroxide. (AEC)

  1. Aggregates of Isotactic Poly(methacrylic acid) Chains in Aqueous CsCl Solutions: a Static and Dynamic Light Scattering Study.

    PubMed

    Hočevar, Katarina; Sitar, Simona; Kogej, Ksenija

    2015-01-01

    Properties of isotactic polymethacrylic acid, iPMA, chains were studied at 25°C in aqueous solutions at various CsCl concentrations, c(s) (= 0.05-0.20 M), in dependence on degree of neutralization of the polyion's carboxyl groups, α(N), using static, SLS, and dynamic light scattering, DLS, measurements. It was demonstrated that iPMA chains with α(N) somewhat above the solubility limit of iPMA in aqueous solutions (in the present case at α(N) ≈ 0.27) are strongly aggregated. The size of the aggregates increases with increasing c(s), whereas the shape parameter, ρ, is approximately constant (ρ ≈ 0.6), irrespective of c(s). The low ρ value suggests that the aggregates have characteristics of microgel particles with a dense core surrounded by a less dense corona. The diffusion of iPMA chains was investigated also at higher α(N), up to α(N) = 1. The polyion slow mode arising from electrostatic interactions between charged chains was observed for α(N) exceeding the value 0.27 even at the highest c(s) (= 0.20 M). The diffusion coefficients for the show mode were nearly independent of α(N) and cs at the studied polymer concentration.

  2. Dynamics of conformations, hydrogen bonds and translational diffusion of poly(methacrylic acid) in aqueous solution and the concentration transition in MD simulations

    NASA Astrophysics Data System (ADS)

    Chockalingam, Rajalakshmi; Natarajan, Upendra

    2015-11-01

    The dynamic behaviour of chain conformations, hydrogen bonds and translational diffusion of aqueous poly(methacrylic acid) (PMA) solution as a function of polymer volume fraction Φp across dilute to concentrated regimes inclusive of the pure polymer amorphous state was studied by molecular dynamics simulations. The behaviour of the relaxation time (τ) of the backbone dihedral angle auto-correlation function (ACF) reveals slower relaxation at higher level of polymer concentration and the existence of a concentration-driven relaxation transition for the aqueous polymer solution which occurs in the polymer volume fraction range, specifically 54% < Φp < 82% for this system. The relaxation constant τ for backbone dihedral angle exhibits a linear variation with Φp, indicating a first-order kinetic transition. The intermittent ACF for decay of the H-bond correlation shows that H-bonds among water molecules relax faster than those of the PMA-PMA and PMA-water type. The relaxation rate of PMA-water H-bonds shows a decrease up to Φp = 72% and becomes faster at Φp = 82% due to the confining influence of neighbouring PMA chains. PMA-water and water-water H-bond dynamics show transitions around Φp = 72% PMA. With increase in Φp PMA diffusion coefficient decreases exponentially and water diffusion coefficient decreases linearly, in agreement with experimental observations using fluorescence and nuclear magnetic resonance (NMR) spectroscopic studies.

  3. Gallic acid degradation in aqueous solutions by UV/H2O2 treatment, Fenton's reagent and the photo-Fenton system.

    PubMed

    Benitez, F Javier; Real, Francisco J; Acero, Juan L; Leal, Ana I; Garcia, Carolina

    2005-11-11

    Gallic acid (3,4,5-trihydroxybenzoic acid) is a major pollutant present in the wastewater generated in the boiling cork process, as well as in other wastewaters from food manufacturing industries. Its decay in aqueous solutions has been studied by the action of several oxidation systems: monochromatic UV radiation alone and combined with hydrogen peroxide, Fenton's reagent and the combination Fenton's reagent with UV radiation (photo-Fenton system). The influence of the pH is discussed and the quantum yields are determined in the UV radiation system. Also, the influence of operating variables (initial concentrations of H2O2 and Fe(II), and pH) is established in the Fenton's reaction. The apparent pseudo-first-order rate constants are evaluated in all the experiments conducted in order to compare the efficiency of each one of the processes. Increases in the degradation levels of gallic acid are obtained in the combined processes in relation to the single UV radiation system, due to reactions of the very reactive OH*. These improvements are determined in every process by calculating the partial contribution to the overall decomposition rate of the radical pathways. For the oxidant concentrations applied, the most effective process in removing gallic acid was found to be the photo-Fenton system. The rate constant for the reaction of gallic acid with OH was also determined by means of a competition kinetics model, being its value 11.0+/-0.1 x 10(9)l mol(-1)s(-1).

  4. Photocatalytic discoloration of Acid Red 14 aqueous solution using titania nanoparticles immobilized on graphene oxide fabricated plate.

    PubMed

    Akerdi, Abdollah Gholami; Bahrami, S Hajir; Arami, Mokhtar; Pajootan, Elmira

    2016-09-01

    Textile industry consumes remarkable amounts of water during various operations. A significant portion of the water discharge to environment is in the form of colored contaminant. The present research reports the photocatalytic degradation of anionic dye effluent using immobilized TiO2 nanoparticle on graphene oxide (GO) fabricated carbon electrodes. Acid Red 14 (AR 14) was used as model compound. Graphene oxide nanosheets were synthesized from graphite powder using modified Hummer's method. The nanosheets were characterized with field emission scanning electron microscope (FESEM) images, X-ray diffraction (XRD) and FTIR spectrum. The GO nanoparticles were deposited on carbon electrode (GO-CE) by electrochemical deposition (ECD) method and used as catalyst bed. TiO2 nanoparticles were fixed on the bed (GO-CE- TiO2) with thermal process. Photocatalytic processes were carried out using a 500 ml solution containing dye in batch mode. Each photocatalytic treatment were carried out for 120 min. Effect of dye concentration (mg/L), pH of solution, time (min) and TiO2 content (g/L) on the photocatalytic decolorization was investigated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Photochemistry of nitrous acid (HONO) and nitrous acidium ion (H2ONO) in aqueous solution and ice.

    PubMed

    Anastasio, Cort; Chu, Liang

    2009-02-15

    We have examined the photochemistries of two N(III) species, nitrous acid (HONO) and nitrous acidium ion (H2ONO+), in solution and ice. Although the light absorption spectra for these two species are very similar, their photochemical efficiencies are quite different: the *OH (and NO) quantum yield for HONO is approximately 8 times greater than that of H2ONO+ at 274 K. The temperature dependent expressions for the *OH (and NO) quantum yields are In(phi(HONO --> *OH) = (7.14 +/- 0.57) - (2430 +/- 160)/T and In(phi(H2ONO+ --> *OH) = (3.16 +/- 0.67) - (1890 +/- 180)/T. The temperature dependence for H2ONO+ includes both solution and ice data (255-283 K), suggesting that its ice photochemistry is occurring in a quasi-liquid environment. The quantum yields for HONO and H2ONO+ are independent of wavelength, in contrast to NO2-. On the basis of the pH dependence of N(III) photolysis, our results are consistent with recently reported pKa values of 1.7 for H2ONO+ and 2.8 for HONO. Using our results in a kinetic model of nitrogen chemistry illustrates that the fluxes of HONO and NO(x) from sunlit snow can be explained by nitrate photolysis and are pH dependent because of a competition between HONO evaporation and N(III) reactions on ice grains.

  6. Removal of Cr(VI) from aqueous solution using electrosynthesized 4-amino-3-hydroxynaphthalene-1-sulfonic acid doped polypyrrole as adsorbent.

    PubMed

    Sall, Mohamed Lamine; Diaw, Abdou Karim Diagne; Gningue-Sall, Diariatou; Chevillot-Biraud, Alexandre; Oturan, Nihal; Oturan, Mehmet Ali; Aaron, Jean-Jacques

    2017-09-01

    Polypyrrole (PPy) conducting films, doped with 4-amino-3-hydroxynaphthalene sulfonic acid (AHNSA), were electrosynthesized by anodic oxidation of pyrrole on Pt and steel electrodes in aqueous medium (0.01 M AHNSA +0.007 M NaOH, using cyclic voltammetry (CV), and their electrochemical properties were studied. Fourier-transform infrared (FT-IR) spectroscopy confirmed the formation of AHNSA-PPy films. Their morphology was characterized by scanning electron microscopy (SEM), and their optical properties, including UV-VIS absorption and fluorescence spectra, were also investigated. AHNSA-PPy films were used for the removal of chromium(VI) from aqueous solution, by means of the immersion method and the Cr(VI) electro-reduction method. The effect of various experimental parameters, including the adsorbent (polymer) mass, pH, type of electrodes, and current intensity, on the adsorption of chromium by the polymer was performed and optimized. The adsorption and electro-reduction of (Cr VI) on the AHNSA-PPy film surface were found to be highly pH-dependent, and the kinetics of Cr(VI) adsorption and electro-reduction followed second-order kinetic curves. Apparent second-order rate constants were about three times higher for the Cr(VI) electro-reduction method than for the immersion method, indicating that the use of electro-reduction method significantly accelerated the chromium adsorption process on polymer. The maximum adsorption capacity of the AHNSA-PPy film for chromium was 224 mg g -1 . A 96% chromium removal from pure aqueous solution was reached within about 48 h by the immersion method, but only within about 6 h by the Cr(VI) electro-reduction method. Application of both methods to Cr(VI) fortified natural waters of Senegal led to chromium removal efficiency high values (93 to 96% according to the type of natural water).

  7. Aqueous thermal degradation of gallic acid

    SciTech Connect

    Boles, J.S.; Crerar, D.A.; Grissom, G.; Key, T.C.

    1988-02-01

    Aqueous thermal degradation experiments show gallic acid, a naturally occurring aromatic carboxylic compound, decomposes rapidly at temperatures between 105/sup 0/ and 150/sup 0/C, with an activation energy of 22.9 or 27.8 kcal/mole, depending on pH of the starting solution. Pyrogallol is the primary product identified, indicating degradation via decarboxylation and a carbanion transition state. Relatively rapid degradation of vanillic, phthalic, ellagic and tannic acids has also been observed,suggesting that these and perhaps other aromatic acids could be short-lived in deep formation waters.

  8. Aqueous thermal degradation of gallic acid

    NASA Astrophysics Data System (ADS)

    Snow Boles, Jennifer; Crerar, David A.; Grissom, Grady; Key, Tonalee C.

    1988-02-01

    Aqueous thermal degradation experiments show gallic acid, a naturally occurring aromatic carboxylic compound, decomposes rapidly at temperatures between 105° and 150°C, with an activation energy of 22.9 or 27.8 kcal/ mole, depending on pH of the starting solution. Pyrogallol is the primary product identified, indicating degradation via decarboxylation and a carbanion transition state. Relatively rapid degradation of vanillic, phthalic, ellagic and tannic acids has also been observed, suggesting that these and perhaps other aromatic acids could be short-lived in deep formation waters.

  9. Quenching device for electrolytic aqueous solutions

    NASA Astrophysics Data System (ADS)

    Ludl, Adriaan-Alexander; Bove, Livia Eleonora; Li, Jiaqi; Morand, Marc; Klotz, Stefan

    2017-04-01

    A simple device based on splat cooling to liquid nitrogen temperatures is presented. Its application to the amorphization of binary aqueous solutions by fast cooling is demonstrated. The fraction of amorphous material obtained is 90% in eutectic solutions. Diffraction patterns of the vitrified solutions are presented and discussed.

  10. Electrolytic nature of aqueous sulfuric acid. 2. Acidity.

    PubMed

    Fraenkel, Dan

    2012-09-27

    In part 1 of this study, I reported that the Debye-Hückel limiting law and the smaller-ion shell (SiS) model of strong electrolyte solutions fit nicely with the experimental mean ionic activity coefficient (γ(±)) of aqueous sulfuric acid as a function of concentration and of temperature when the acid is assumed to be a strong 1-3 electrolyte. Here, I report that the SiS-derived activity coefficient of H(+), γ(H(+)), of the 1-3 acid is comparable to that of aqueous HCl. This agrees with titration curves showing, as well-known, that sulfuric acid in water is parallel in strength to aqueous HCl. The calculated pH is in good accord with the Hammett acidity function, H(0), of aqueous sulfuric acid at low concentration, and differences between the two functions at high concentration are discussed and explained. This pH-H(0) relation is consistent with the literature showing that the H(0) of sulfuric acid (in the 1-9 M range) is similar to those of HCl and the other strong mineral monoprotic acids. The titration of aqueous sulfuric acid with NaOH does not agree with the known second dissociation constant of 0.010 23; rather, the constant is found to be ~0.32 and the acid behaves upon neutralization as a strong diprotic acid practically dissociating in one step. A plausible reaction pathway is offered to explain how the acid may transform, upon base neutralization, from a dissociated H(4)SO(5) (as 3H(+) and HSO(5)(3-)) to a dissociated H(2)SO(4) even though the equilibrium constant of the reaction H(+) + HSO(5)(3-) ↔ SO(4)(2-) + H(2)O, at 25 °C, is 10(-37) (part 1).

  11. Isomerization of ceftibuten in aqueous solution.

    PubMed

    Hashimoto, N; Hirano, K

    1998-09-01

    The isomerization reactions of ceftibuten and ceftibuten-related compounds in aqueous solution were investigated to estimate the substitution effect on the isomerization reaction and identify the three proximal dissociation constants of ceftibuten kinetically from the pH-rate profiles. The isomerization reaction of ceftibuten-related compounds was influenced by the substituents near the double bond at the C7-side chain, and the electron-withdrawing substituent was found to increase the isomerization rate. Ceftibuten isomerized at the C7-side chain, and the isomerization rate was influenced by the dissociation of the C7-side chain carboxylic acid and aminothiazole in the acidic pH region. The dissociation constants of ceftibuten were assigned by comparing the isomerization rates of ceftibuten with its related compounds at various pH conditions, and the pKas 2.3, 3.2, and 4.5 were attributed to the 4-carboxylic acid, 7-carboxylic acid, and 7-aminothiazole, respectively.

  12. A study of low-energy ion induced radiolysis of thiol-containing amino acid cysteine in the solid and aqueous solution states

    NASA Astrophysics Data System (ADS)

    Ke, Zhigang; Huang, Qing; Dang, Bingrong; Lu, Yilin; Yuan, Hang; Zhang, Shuqing; Yu, Zengliang

    2010-09-01

    The radiolysis of cysteine under plasma discharge and irradiation of low-energy ion beam was investigated. The damage of cysteine in aqueous solution under discharge was assessed via the acid ninhydrin reagent and the yield of cystine produced from the reaction was analyzed by FTIR. In addition, the generation of hydrogen sulfide was also identified. The destruction of solid cysteine under low-energy ion beam irradiation was estimated via monitoring IR bands of different functional groups (-SH, -NH 3, -COO -) of cysteine, and the production of cystine from ion-irradiated solid cysteine after dissolution in water was also verified. These results may help us to understand the inactivation of sulphydryl enzymes under direct and indirect interaction with the low-energy ion irradiation.

  13. Photodegradation of lambda-cyhalothrin and cypermethrin in aqueous solution as affected by humic acid and/or copper: intermediates and degradation pathways.

    PubMed

    Xie, Jimin; Wang, Pingli; Liu, Jun; Lv, Xiaomeng; Jiang, Deli; Sun, Cheng

    2011-11-01

    The influence of coexisting humic acids (HA) or Cu²⁺ on the photodegradation of pesticides lambda-cyhalothrin (λ-CHT) and cypermethrin (CPM) in aqueous solution was studied under xenon lamp irradiation. The removal efficiency of pesticides λ-CHT and CPM were enhanced in the presence of either Cu²⁺ or HA but restrained in the presence of both Cu²⁺ and HA. The photodegradation of λ-CHT and CPM followed first-order reaction kinetics. The photodegradation intermediates of λ-CHT and CPM were determined using gas chromatography/mass spectrometry. Possible photodegradation pathways included decarboxylation, ester bond cleavage, dechlorination, and phenyl group removal. Copyright © 2011 SETAC.

  14. Cellulose bearing Schiff base and carboxylic acid chelating groups: a low cost and green adsorbent for heavy metal ion removal from aqueous solution.

    PubMed

    Saravanan, R; Ravikumar, L

    2016-10-01

    Chemically modified cellulose bearing metal binding sites like Schiff base and carboxylic acid groups was synthesized and characterized through Fourier transform infrared and solid state 13C-nuclear magnetic resonance (NMR) analysis. The chemically modified cellulose (Cell-PA) adsorbent was examined for its metal ion uptake ability for Cu(II) and Pb(II) ions from aqueous solution. Kinetic and isotherm studies were carried out under optimum conditions. Pseudo-second-order kinetics and Langmuir isotherm fit well with the experimental data. Thermodynamic studies were also performed along with adsorption regeneration performance studies. The adsorbent (Cell-PA) shows high potential for the removal of Cu(II) and Pb(II) metal ions, and it shows antibacterial activity towards selected microorganisms.

  15. Substrate-Specific Amino Acid Sensing Using a Molecular d/ l-Cysteine Probe for Comprehensive Stereochemical Analysis in Aqueous Solution.

    PubMed

    Thanzeel, F Yushra; Wolf, Christian

    2017-06-12

    The appearance of d-amino acids in mammals and humans has important implications in the life sciences. d/l-Amino acid mixtures play a key role in human physiology and pathology; thus, the introduction of artificial receptors for the real-time quantification of both the concentration and d/l composition of amino acids is very promising for the study of biological processes and for the diagnosis and treatment of diseases. We now report a sensing assay that is compatible with aqueous solutions and allows fast determination of the absolute configuration, enantiomeric composition, and overall amount of cysteine at micromolar concentrations. The method relies on fast UV and CD measurements, which provide accurate stereochemical information on samples covering a wide concentration range and drastically different d/l-cysteine ratios in simulated body fluids. Competition experiments show that other amino acids and biothiols do not interfere with the cysteine-targeted sensing. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Thermodynamic properties of potassium chloride aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zezin, Denis; Driesner, Thomas

    2017-04-01

    Potassium chloride is a ubiquitous salt in natural fluids, being the second most abundant dissolved salt in many geological aqueous solutions after sodium chloride. It is a simple solute and strong electrolyte easily dissociating in water, however the thermodynamic properties of KCl aqueous solutions were never correlated with sufficient accuracy for a wide range of physicochemical conditions. In this communication we propose a set of parameters for a Pitzer-type model which allows calculation of all necessary thermodynamic properties of KCl solution, namely excess Gibbs free energy and derived activity coefficient, apparent molar enthalpy, heat capacity and volume, as well as osmotic coefficient and activity of water in solutions. The system KCl-water is one of the best studied aqueous systems containing electrolytes. Although extensive experimental data were collected for thermodynamic properties of these solutions over the years, the accurate volumetric data became available only recently, thus making possible a complete thermodynamic formulation including a pressure dependence of excess Gibbs free energy and derived properties of the KCl-water liquids. Our proposed model is intended for calculation of major thermodynamic properties of KCl aqueous solutions at temperatures ranging from freezing point of a solution to 623 K, pressures ranging from saturated water vapor up to 150 MPa, and concentrations up to the salt saturation. This parameterized model will be further implemented in geochemical software packages and can facilitate the calculation of aqueous equilibrium for reactive transport codes.

  17. Preparation and characterization of trihydroxamic acid functionalized carbon materials for the removal of Cu(II) ions from aqueous solution

    NASA Astrophysics Data System (ADS)

    Godino-Salido, M. Luz; Santiago-Medina, Antonio; López-Garzón, Rafael; Gutiérrez-Valero, María D.; Arranz-Mascarós, Paloma; López de la Torre, M. Dolores; Domingo-García, María; López-Garzón, F. Javier

    2016-11-01

    The main objective of this study is to prepare and characterize two functionalizated carbon materials with enhanced adsorptive properties for Cu(II). Thus, two novel hybrid materials have been prepared by a non-covalent functionalization method based on the adsorption of a pyrimidine-desferrioxamine-B conjugate compound (H4L) on two activated carbons, ACs (labelled Merck and F). The adsorption of H4L on the ACs is pH-dependent and highly irreversible. This is due to strong π-π interactions between the arene centers of the ACs and the pyrimidine moiety of H4L. The textural characterization of the AC/H4L hybrids shows large decreases of their surface areas. Thus the values of Merck and F are 1031 and 1426 m2/g respectively, while these of Merck/H4L and F/H4L hybrids are 200 and 322 m2/g. An important decrease in the micropore volumes is also found, due to the blockage of narrow porosity produced by the adsorption of H4L molecules. The ACs/H4L hybrids show larger adsorption capacities for Cu(II) (0.105(4) and 0.13(2) mmol/g, at pH 2.0, and 0.20(3) and 0.242(9) mmol/g, at pH 5.5, for Merck/H4L and F/H4L, respectively) than those of the ACs (0.024(6) and 0.096(9) mmol/g, at pH 2.0, and 0.10(2) and 0.177(8) mmol/g, at pH 5.5, for Merck and F respectively), which is explained on the basis of the complexing ability of the trihydroxamic acid functions. The desorption of Cu(II) from the ACs/H4L/Cu(II) materials in acid solution allows the regeneration of most active sites (78.5% in the case of Merck/H4L/Cu(II) and 83.0% in the case of F/H4L/Cu(II)).

  18. Poly(methacrylic acid)-grafted chitosan microspheres via surface-initiated ATRP for enhanced removal of Cd(II) ions from aqueous solution.

    PubMed

    Huang, Liqiang; Yuan, Shaojun; Lv, Li; Tan, Guangqun; Liang, Bin; Pehkonen, S O

    2013-09-01

    Cross-linked chitosan (CCS) microspheres tethered with pH-sensitive poly(methacrylic acid) (PMAA) brushes were developed for the efficient removal of Cd(II) ions from aqueous solutions. Functional PMAA brushes containing dense and active carboxyl groups (COOH) were grafted onto the CCS microsphere surface via surface-initiated atom transfer radical polymerization (ATRP). Batch adsorption results showed that solution pH values had a major impact on cadmium adsorption by the PMAA-grafted CCS microspheres with the optimal removal observed above pH 5. The CCS-g-PMAA microsphere was found to achieve the adsorption equilibrium of Cd(II) within 1 h, much faster than about 7 h on the CCS microsphere. At pH 5 and with an initial concentration 0.089-2.49 mmol dm(-3), the maximum adsorption capacity of Cd(II), derived from the Langmuir fitting on the PMAA-grafted microspheres was around 1.3 mmol g(-1). Desorption and adsorption cycle experimental results revealed that the PMAA-grafted CCS microspheres loaded with Cd(II) can be effectively regenerated in a dilute HNO3 solution, and the adsorption capacity remained almost unchanged upon five cycle reuse. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Kinetics of nitrobenzene hydrogenation on spongy nickel and catalyst with supported palladium in 2-propanol aqueous solutions with acid or base additives

    NASA Astrophysics Data System (ADS)

    Thu Ha, Nguen Thi; Latypova, A. R.; Efremov, E. V.; Lefedova, O. V.; Filippov, D. V.

    2017-04-01

    The effect acetic acid and sodium hydroxide additives in a 2-propanol aqueous solution of azeotrope composition have on the rate of nitrobenzene (NB) hydrogenation over spongy nickel and supported palladium catalysts is studied. Analysis of the experimental data indicates that adding acid slows the rate more than adding a base during NB hydrogenation on spongy nickel. The observed rate for spongy nickel falls in a series of solvents: 2-propanol-water (0.68 mole fraction) > 2-propanol-water (0.68 mole fraction) + NaOH (0.01M) > 2-propanol-water (0.68 mole fraction) + CH3COOH (0.01 M). When a palladium catalyst is used, the addition of acid has less of an effect on slowing the rate of the reaction than that of the base: 2-propanol-water (0.68 mole fraction) > 2-propanol-water (0.68 mole fraction) + CH3COOH (0.01 M) > 2-propanol-water (0.68 mole fraction) + NaOH (0.01 M).

  20. Fast microwave-assisted green synthesis of xanthan gum grafted acrylic acid for enhanced methylene blue dye removal from aqueous solution.

    PubMed

    Makhado, Edwin; Pandey, Sadanand; Nomngongo, Philiswa N; Ramontja, James

    2017-11-15

    In the present project, graft polymerization was employed to synthesis a novel adsorbent using acrylic acid (AA) and xanthan gum (XG) for cationic methylene dye (MB + ) removal from aqueous solution. The XG was rapidly grafted with acrylic acid (CH 2 =CHCOOH) under microwave heating. Fourier-transform infrared spectroscopy (FTIR), Proton Nuclear magnetic resonance spectroscopy ( 1 H NMR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Thermal gravimetric analysis (TGA) techniques were used to verify the adsorbent formed under optimized reaction conditions. Optimum reaction conditions [AA (0.4M), APS (0.05M), XG (2gL -1 ), MW power (100%), MW time (80s)] offer maximum %G and %GE of 484 and 78.3, respectively. The removal ratio of adsorbent to MB + reached to 92.8% at 100mgL -1 . Equilibrium and kinetic adsorptions of dyes were better explained by the Langmuir isotherm and pseudo second-order kinetic model respectively. The results demonstrate xanthan gum grafted polyacrylic acid (mw XG-g-PAA) absorbent had the universality for removal of dyes through the chemical adsorption mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Spatial structure of heptapeptide Glu-Ile-Leu-Asn-His-Met-Lys, a fragment of the HIV enhancer prostatic acid phosphatase, in aqueous and SDS micelle solutions

    NASA Astrophysics Data System (ADS)

    Bloсhin, Dmitri S.; Aganova, Oksana V.; Yulmetov, Aidar R.; Filippov, Andrei V.; Gizatullin, Bulat I.; Afonin, Sergii; Antzutkin, Oleg N.; Klochkov, Vladimir V.

    2013-02-01

    Prostatic acid phosphatase (PAP) is a protein abundantly present in human seminal fluid. PAP plays important role in fertilization. Its 39-amino-acid fragment, PAP(248-286), is effective in enhancing infectivity of HIV virus. In this work, we determined the spatial structure in aqueous solution of a heptapeptide within the PAP fragment, containing amino acid residues 266-272 (Glu-Ile-Leu-Asn-His-Met-Lys). We also report the structure of the complex formed by this heptapeptide with sodium dodecyl sulfate micelles, a model of a biological membrane, as determined by 1H NMR spectroscopy and 2D NMR (TOCSY, HSQC-HECADE, NOESY) spectroscopy. Complex formation was confirmed by chemical shift alterations in the 1H NMR spectra of the heptapeptide, as well as by the signs and values of NOE effects. We also present a comparison of the spatial structure of Glu-Ile-Leu-Asn-His-Met-Lys in water and in complex with sodium dodecyl sulfate.

  2. Kinetic and mechanism of the oxidation of chromium(III) complex with anthranil- N, N-diacetic acid by periodate ion in acidic aqueous solutions

    NASA Astrophysics Data System (ADS)

    Ali, Ismat H.

    2015-06-01

    The kinetics of oxidation of [CrIII(atda)(H2O)2] (atda = anthranil- N, N-diacetato) complex by IO{4/-} was studied spectrophotometrically in aqueous solutions with pH range 2.20-3.34, 0.30 M ionic strength and in 20.0-40.0°C temperature range. The rate law of the reaction exhibited saturation kinetics. Values of the rate constant for the electron transfer process, the equilibrium constant for dissociation of [CrIII (atda)(H2O)2] to [CrIII (atda) (H2O)OH]+ + H+ and the pre-equilibrium formation constant were calculated. The thermodynamic activation parameters are reported. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of the IVII to chromium(III).

  3. Separation of metal ions from aqueous solutions

    DOEpatents

    Almon, Amy C.

    1994-01-01

    A process and apparatus for quantitatively and selectively separating metal ions from mixtures thereof in aqueous solution. The apparatus includes, in combination, a horizontal electrochemical flow cell containing flow bulk electrolyte solution and an aqueous, metal ion-containing solution, the cell containing a metal mesh working electrode, a counter electrode positioned downstream from the working electrode, an independent variable power supply/potentiostat positioned outside of the flow cell and connected to the electrodes, and optionally a detector such as a chromatographic detector, positioned outside the flow cell. This apparatus and its operation has significant application where trace amounts of metal ions are to be separated.

  4. Radiolysis of aqueous solutions of thiamine

    NASA Astrophysics Data System (ADS)

    Chijate, C.; Albarran, G.; Negron-Mendoza, A.

    1998-06-01

    The results of the radiolysis of aqueous solutions of thiamine (vitamin B 1) are presented. The yields for decomposition of thiamine and the product of radiolytic products were determined. The G values decrease as the dose increases. Some radiolytic products were identified. Decomposition of thiamine was slightly dependent on the presence of oxygen and on the pH of the solution. At pH 4.4 with a concentration of 2.5 × 10 -4 mol L -1 of thiamine in an oxygen free aqueous solution, the G 0 value for decomposition is 5.0.

  5. EXTRACTION OF URANYL NITRATE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Furman, N.H.; Mundy, R.J.

    1957-12-10

    An improvement in the process is described for extracting aqueous uranyl nitrate solutions with an organic solvent such as ether. It has been found that the organic phase will extract a larger quantity of uranyl nitrate if the aqueous phase contains in addition to the uranyl nitrate, a quantity of some other soluble nitrate to act as a salting out agent. Mentioned as suitable are the nitrates of lithium, calcium, zinc, bivalent copper, and trivalent iron.

  6. Precipitation of neptunium dioxide from aqueous solution

    SciTech Connect

    Roberts, K E

    1999-12-01

    Tens of thousands of metric tons of highly radioactive, nuclear waste have been generated in the US. Currently, there is no treatment or disposal facility for these wastes. Of the radioactive elements in high-level nuclear waste, neptunium (Np) is of particular concern because it has a long half-life and may potentially be very mobile in groundwaters associated with a proposed underground disposal site at Yucca Mountain, Nevada. Aqueous Np concentrations observed in previous, short-term solubility experiments led to calculated potential doses exceeding proposed long-term regulatory limits. However, thermodynamic data for Np at 25 C showed that these observed aqueous Np concentrations were supersaturated with respect to crystalline NpO{sub 2}. It was hypothesized that NpO{sub 2} is the thermodynamically stable solid phase in aqueous solution, but it is slow to form in an aqueous solution of NpO{sub 2}{sup +} on the time scale of previous experiments. The precipitation of NpO{sub 2} would provide significantly lower aqueous Np concentrations leading to calculated doses below proposed regulatory limits. To test this hypothesis, solubility experiments were performed at elevated temperature to accelerate any slow precipitation kinetics. Ionic NpO{sub 2}{sup +} (aq) was introduced into very dilute aqueous solutions of NaCl with initial pH values ranging from 6 to 10. The reaction vessels were placed in an oven and allowed to react at 200 C until steady-state aqueous Np concentrations were observed. In all cases, aqueous Np concentrations decreased significantly from the initial value of 10{sup {minus}4} M. The solids that formed were analyzed by x-ray powder diffraction, x-ray absorption spectroscopy, and scanning electron microscopy. The solids were determined to be high-purity crystals of NpO{sub 2}. This is the first time that crystalline NpO{sub 2} has been observed to precipitate from NpO{sub 2}{sup +}(aq) in near-neutral aqueous solutions. The results obtained

  7. Role of counter-ions in background electrolyte for the analysis of cationgenic weak electrolytes and amino acids in neutral aqueous solutions by capillary electrophoresis with electrokinetic injection.

    PubMed

    Hattori, Takanari; Fukushi, Keiichi; Hirokawa, Takeshi

    2014-01-24

    We elucidated theoretically and experimentally that counter-ions in background electrolyte (BGE) play a role of booster for electrokinetic injection (EKI) for the determination of cationgenic weak electrolytes and amino acids in neutral aqueous solutions using capillary electrophoresis (CE). The pH change in the sample solution caused by the migration of counter-ions resulted in the increase of analyte mobility and hence the increase of the amount of analyte injected into the capillary. This type of EKI was named as counter-ion boosted EKI. Using the counter-ion boosted EKI-capillary zone electrophoresis (CZE), the limit of detections (LODs, S/N=3) for creatinine (4.8nM) and l-histidine (9.0nM) were lowest ever achieved by CE with UV detection. The RSDs (n=3) of the migration time for creatinine and l-histidine were obtained as 0.35% and 0.34%, for peak areas of 13% and 12%, and for peak heights of 12% and 8.5%, respectively. The concentrations of creatinine and l-histidine in a urine sample obtained by the proposed method were within those reported with a good recovery. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Removal of Acid Orange 7 dye from aqueous solutions by adsorption onto Kenya tea pulps; granulated shape

    PubMed Central

    Naraghi, Behnaz; Zabihi, Fahimeh; Narooie, Mohammad Reza; Saeidi, Mahdi; Biglari, Hamed

    2017-01-01

    Background and Aim Water resources pollution control is one of the main challenges of our time for researchers. Colored wastewater discharges caused by textile industry activities has added to the concern. In this study, removal of Acid Orange 7 dye (AO7) using Kenya Tea residue absorbent (granular) has been studied. Methods This cross-sectional study was conducted in 2016. In this work, initially, tea residue was prepared in three forms of raw, treated with concentrated phosphoric acid, and carbonated, at temperatures of 350, 450 and 500 °C in the chemistry laboratory of Gonabad University of Medical Sciences. Then, efficiency of the above absorbents in the removal of Acid Orange 7 dye in initial concentrations of dye as 50–500 mg/l from water samples in terms of pH 2–10 and 1–10 g/l of adsorbent dose within 20 to 300 minutes was investigated. In addition, their subordination from Langmuir and Freundlich absorption isotherms was also determined. Concentration changes in Acid Orange 7 dye at a wavelength of 483 nm was determined by spectrophotometry and results were reported using descriptive statistics. Results Results showed that efficiency of Acid Orange 7 dye removal is higher in acidic pH and higher adsorbent dosage. The highest efficiency of Acid Orange 7 dye removal was 98.41% by raw tea residue absorbent at pH 2, reaction time was 120 minutes and initial concentration of dye was 50 mg/l, which was obtained at adsorbent dosage of 10 g/l. It was determined that the mechanism of absorption acceptably follows Freundlich absorption isotherm (R2=0.97). Conclusion Due to the availability and very low price, optimal performance of Kenya tea raw residue (granular) in Acid Orange 7 dye removal, it can be used as an efficient surface absorber in an absorber from colored wastewater. PMID:28713501

  9. Double Hydrogen Bonding between Side Chain Carboxyl Groups in Aqueous Solutions of Poly (β-L-Malic Acid): Implication for the Evolutionary Origin of Nucleic Acids

    PubMed Central

    Francis, Brian R.; Watkins, Kevin; Kubelka, Jan

    2017-01-01

    The RNA world hypothesis holds that in the evolutionary events that led to the emergence of life RNA preceded proteins and DNA and is supported by the ability of RNA to act as both a genetic polymer and a catalyst. On the other hand, biosynthesis of nucleic acids requires a large number of enzymes and chemical synthesis of RNA under presumed prebiotic conditions is complicated and requires many sequential steps. These observations suggest that biosynthesis of RNA is the end product of a long evolutionary process. If so, what was the original polymer from which RNA and DNA evolved? In most syntheses of simpler RNA or DNA analogs, the D-ribose phosphate polymer backbone is altered and the purine and pyrimidine bases are retained for hydrogen bonding between complementary base pairs. However, the bases are themselves products of complex biosynthetic pathways and hence they too may have evolved from simpler polymer side chains that had the ability to form hydrogen bonds. We hypothesize that the earliest evolutionary predecessor of nucleic acids was the simple linear polyester, poly (β-D-malic acid), for which the carboxyl side chains could form double hydrogen bonds. In this study, we show that in accord with this hypothesis a closely related polyester, poly (β-L-malic acid), uses carboxyl side chains to form robust intramolecular double hydrogen bonds in moderately acidic solution. PMID:29061955

  10. Nitric acid recovery from waste solutions

    DOEpatents

    Wilson, A. S.

    1959-04-14

    The recovery of nitric acid from aqueous nitrate solutions containing fission products as impurities is described. It is desirable to subject such solutions to concentration by evaporation since nitric acid is regenerated thereby. A difficulty, however, is that the highly radioactive fission product ruthenium is volatilized together with the nitric acid. It has been found that by adding nitrous acid, ruthenium volatilization is suppressed and reduced to a negligible degree so that the distillate obtained is practically free of ruthenium.

  11. Removal of uranium from aqueous HF solutions

    DOEpatents

    Pulley, Howard; Seltzer, Steven F.

    1980-01-01

    This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separting the solution from the settled particulates. The CaF.sub.2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium, without introducing contaminants to the product solution.

  12. Hydrophobic Solvation: Aqueous Methane Solutions

    ERIC Educational Resources Information Center

    Konrod, Oliver; Lankau, Timm

    2007-01-01

    A basic introduction to concept of a solvation shell around an apolar solute as well as its detection is presented. The hydrophobic solvation of toluene is found to be a good teaching example which connects macroscopic, phenomenological thermodynamic results with an atomistic point of view.

  13. Salinity, water hardness, and dissolved organic carbon modulate degradation of peracetic acid (PAA) compounds in aqueous solutions

    USDA-ARS?s Scientific Manuscript database

    Peracetic acid (PAA) is used in aquaculture under different conditions for disinfection purposes. However, there is a lack of information about its environmental fate, particularly its persistence in aquatic systems with different chemistries. Therefore, the impact of water hardness, salinity, and d...

  14. Layered double hydroxide intercalated with aromatic acid anions for the efficient capture of aniline from aqueous solution.

    PubMed

    Yu, Shujun; Wang, Xiangxue; Chen, Zhongshan; Wang, Jian; Wang, Suhua; Hayat, Tasawar; Wang, Xiangke

    2017-01-05

    Aniline is toxic and hard to be degraded, and thereby causes the environmental pollution seriously. Herein, a practical and green hydrothermal method was applied to fabricate terephthalic acid and pyromellitic acid intercalated layered double hydroxides (LDH) (named as TAL and PAL) for aniline efficient removal. The sorption of aniline on LDH-based materials were investigated at different experimental conditions, and the results indicated that aniline sorption on LDH, TAL and PAL were strongly dependent on pH and independent of ionic strength. The maximum sorption capacities of aniline on TAL and PAL at pH 5.0 and 293K were 90.4 and 130.0mg/g, respectively, which were significantly higher than that of aniline on LDH (52.6mg/g). Based on the BET, FTIR and XPS analysis, the higher sorption capacities of TAL and PAL were mainly due to high surface area and basal spacing as well as the abundant functional groups (e.g. -COO - ). The interactions of aniline with TAL and PAL were mainly dominated by hydrogen bonds and electrostatic interactions. Such a facile synthesis method, efficient removal performance and superior reusability indicated that the aromatic acid modified LDH materials had potential application for efficient treatment of organic pollutants in environmental pollution cleanup. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Silver-catalyzed radical fluorination of alkylboronates in aqueous solution.

    PubMed

    Li, Zhaodong; Wang, Zhentao; Zhu, Lin; Tan, Xinqiang; Li, Chaozhong

    2014-11-19

    We report herein an efficient and general method for the deboronofluorination of alkylboronates. Thus, with the catalysis of AgNO3, the reactions of various alkylboronic acids or their pinacol esters with Selectfluor reagent in acidic aqueous solution afforded the corresponding alkyl fluorides under mild conditions. A broad substrate scope and wide functional group compatibility were observed. A radical mechanism is proposed for this site-specific fluorination.

  16. Protonation of Excited State Pyrene-1-Carboxylate by Phosphate and Organic Acids in Aqueous Solution Studied by Fluorescence Spectroscopy

    PubMed Central

    Zelent, Bogumil; Vanderkooi, Jane M.; Coleman, Ryan G.; Gryczynski, Ignacy; Gryczynski, Zygmunt

    2006-01-01

    Pyrene-1-carboxylic acid has a pK of 4.0 in the ground state and 8.1 in the singlet electronic excited state. In the pH range of physiological interest (pH ∼5–8), the ground state compound is largely ionized as pyrene-1-carboxylate, but protonation of the excited state molecule occurs when a proton donor reacts with the carboxylate during the excited state lifetime of the fluorophore. Both forms of the pyrene derivatives are fluorescent, and in this work the protonation reaction was measured by monitoring steady-state and time-resolved fluorescence. The rate of protonation of pyrene-COO− by acetic, chloroacetic, lactic, and cacodylic acids is a function of ΔpK, as predicted by Marcus theory. The rate of proton transfer from these acids saturates at high concentration, as expected for the existence of an encounter complex. Trihydrogen-phosphate is a much better proton donor than dihydrogen- and monohydrogen-phosphate, as can be seen by the pH dependence. The proton-donating ability of phosphate does not saturate at high concentrations, but increases with increasing phosphate concentration. We suggest that enhanced rate of proton transfer at high phosphate concentrations may be due to the dual proton donating and accepting nature of phosphate, in analogy to the Grotthuss mechanism for proton transfer in water. It is suggested that in molecular structures containing multiple phosphates, such as membrane surfaces and DNA, proton transfer rates will be enhanced by this mechanism. PMID:16920831

  17. Electrochemical efficacy of a carboxylated multiwalled carbon nanotube filter for the removal of ibuprofen from aqueous solutions under acidic conditions.

    PubMed

    Bakr, Ahmed Refaat; Rahaman, Md Saifur

    2016-06-01

    This study provides insight into the efficiency of a functionalized multiwalled carbon nanotube filter for the removal of an anti-inflammatory drug, ibuprofen, through conventional filtration and electrochemical filtration processes. A comparison was made between carboxylated multiwalled carbon nanotubes (MWNTs-COOH) and pristine multiwalled carbon nanotubes (MWNTs) in order to emphasize the enhanced performance of MWNTs-COOH for the removal of ibuprofen using an electrochemical filtration process under acidic conditions. Ibuprofen-removal trials were evaluated based on absorbance values obtained using a UV/Vis spectrophotometer, and possible degradation products were identified using liquid chromatography mass spectrometry (LC-MS). The results exhibited near complete removal of ibuprofen by MWNTs-COOH at lower applied potentials (2 V), at lower flow rates, and under acidic conditions, which can be attributed to the generation of superoxides and their active participation in simultaneous degradation of ibuprofen, and its by-products, under these conditions. At higher applied potential (3 V), the possible participation of both bulk indirect oxidation reactions, and direct electron transfer were hypothesized for the removal behavior over time (breakthrough). At 3 V under acidic conditions, near 100% removal of the target molecule was achieved and was attributed to the enhanced generation of electroactive species toward bulk chemical reactions and a possible contribution from direct electron transfer under these conditions. The degradation by-products of ibuprofen were effectively removed by allowing longer residence time during the filtration process. Moreover, the effect of temperature was studied, yet showed a non-significant effect on the overall removal process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Aqueous Solution Chemistry on Mars

    NASA Astrophysics Data System (ADS)

    Quinn, R.; Hecht, M.; Kounaves, S.; Young, S.; West, S.; Fisher, A.; Grunthaner, P.

    2007-12-01

    Currently en route to Mars, the Phoenix mission carries four wet chemistry cells designed to perform basic solution chemistry on martian soil. The measurement objectives are typical of those that would be performed on an unknown sample on Earth, including detection of common anions and cations, total conductivity, pH, redox potential, cyclic voltammetry (CV), etc. Both the challenge and the novelty arise from the necessity to perform these measurements with severely constrained resources in a harsh and (literally) alien environment. Sensors for all measurements are integrated into a common "beaker," with the ability to perform a two-point calibration of some sensors using a pair of low-concentration solutions. Sulfate measurement is performed with a crude titration. While most measurements use ion selective electrodes, halide interferences are resolved by independent chronopotentiometry (CP) measurements. No preconditioning of the soil-water mixture is possible, nor is any physical characterization of the introduced soil sample beyond coarse visual inspection. Among the idiosyncrasies of the measurement is the low external pressure, which requires that the analysis be performed close to the boiling point of water under an atmosphere consisting almost entirely of water vapor. Despite these liabilities, however, extensive laboratory characterization has validated the basic approach, and protocols for both CV and CP have been developed and tested. Enhancing the value of the measurement is the suite of coordinated observations, such as microscopy and evolved gas analysis, to be performed by other Phoenix instruments.

  19. Aqueous platinum nanoparticles solution for the detection of pyridine derivatives of aminophosphinic acid. Influence of positional isomerism

    NASA Astrophysics Data System (ADS)

    Proniewicz, Edyta; Gralec, Barbara; Olszewski, Tomasz K.; Boduszek, Bogdan

    2017-12-01

    Unsupported platinum nanoparticles (PtNPs) (∼12 nm in diameter) were synthetized by the polyol method and ultraviolet-visible spectroscopy (UV-vis), scanning electron microscope (SEM), and X-ray powder diffraction (XRD) characteristic of their agglomerates were examined. Then, three pyridine α-aminophosphinic acid isomers (α-, β-, and γ-) were synthetized and assembled on the surface of PtNPs. Differences in adsorption and thus, in the spectral response resulting from positional isomerism, were checked by surface-enhanced Raman scattering (SERS) at 785 nm excitation wavelength. The manner of interaction of the investigated isomers with PtNPs were discussed and compared. General conclusions were drowned.

  20. Efficient Sorption and Removal of Perfluoroalkyl Acids (PFAAs) from Aqueous Solution by Metal Hydroxides Generated in Situ by Electrocoagulation.

    PubMed

    Lin, Hui; Wang, Yujuan; Niu, Junfeng; Yue, Zhihan; Huang, Qingguo

    2015-09-01

    Removal of environmentally persistent perfluoroalkyl acids (PFAAs), that is, perfluorooctanesulfonate (PFOS) and perfluorocarboxylic acids (PFCAs, C4 ∼ C10) were investigated through sorption on four metal hydroxide flocs generated in situ by electrocoagulation in deionized water with 10 mM NaCl as supporting electrolyte. The results indicated that the zinc hydroxide flocs yielded the highest removal efficiency with a wide range concentration of PFOA/PFOS (1.5 μM ∼ 0.5 mM) at the zinc dosage <150 mg L(-1) with the energy consumption <0.18 Wh L(-1). The sorption kinetics indicated that the zinc hydroxide flocs had an equilibrium adsorbed amount (qe) up to 5.74/7.69 mmol g(-1) (Zn) for PFOA/PFOS at the initial concentration of 0.5 mM with an initial sorption rate (v0) of 1.01 × 10(3)/1.81 × 10(3) mmol g(-1) h(-1). The sorption of PFOA/PFOS reached equilibrium within <10 min. The sorption mechanisms of PFAAs on the zinc hydroxide flocs were proposed based on the investigation of various driving forces. The results indicated that the hydrophobic interaction was primarily responsible for the PFAAs sorption. The electrocoagulation process with zinc anode may have a great potential for removing PFAAs from industrial wastewater as well as contaminated environmental waterbody.

  1. PHOTOREACTION OF VALEROPHENONE IN AQUEOUS SOLUTION

    EPA Science Inventory

    Kinetics and products of the photoreaction of the phenyl ketone valerophenone were investigated as a function of temperature, pH, and wavelength in aqueous solution. Under these conditions (<10-4M), the photoreactions are pseudo-first-order with respect to valerophenone concentra...

  2. Water & Aqueous Solutions. Final Progress Report

    SciTech Connect

    2002-08-09

    The Gordon Research Conference (GRC) on Water & Aqueous Solutions was held at Holderness School, New Hampshire, 8/4/02 thru 8/9/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  3. Dopamine functionalized tannic-acid-templated mesoporous silica nanoparticles as a new sorbent for the efficient removal of Cu2+ from aqueous solution

    NASA Astrophysics Data System (ADS)

    Gao, Junkai; Lei, Hao; Han, Zhi; Shi, Qian; Chen, Yan; Jiang, Yanjun

    2017-03-01

    A simple, environmentally friendly and cost-effective nonsurfactant template method was used to synthesize tannic-acid-templated mesoporous silica nanoparticles (TMSNs), and then dopamine functionalized TMSNs (Dop-TMSNs) which was synthesized by a facile and biomimetic coating strategy, was developed as a new sorbent for the removal of Cu2+ from aqueous solution. The Dop-TMSNs were thoroughly characterized by SEM, TEM, BET, FT-IR and TGA, and the effects of contact time, initial pH, K+ and Na+ concentrations, co-existing polyvalent metal ions and adsorption-desorption cycle times on the sorption capacity of Dop-TMSNs were studied. It was demonstrated that the maximum adsorption capacity of Cu2+ by Dop-TMSNs was 58.7 mg/g at pH 5.5, and the sorption reached equilibrium within 180 min. Moreover, the K+ and Na+ concentrations had a very slight influence on the sorption process and the adsorption capacity of the Dop-TMSNs still remained 89.2% after recycling for four times. All the results indicated that the Dop-TMSNs could be utilized as an excellent sorbent for the sequestration of Cu2+.

  4. Ion-imprinted polymer-based on picolinic acid as a co-functional monomer for highly selective sorption of Cu(II) ions in an aqueous solution

    NASA Astrophysics Data System (ADS)

    Yusof, Noor Fadilah; Mehamod, Faizatul Shimal; Jusoh, Nurhartinie; Amin, Khairul Anuar Mat; Suah, Faiz Bukhari Mohd

    2017-09-01

    Polymer particles imprinted with Cu(II) ions was synthesized by bulk polymerization technique using methacrylic acid as a monomer, co-polymerized with picolinate complex in the presence of ethylene glycol dimethacrylate as a cross-linking agent. The morphology of Cu(II)-ion imprinted polymer (Cu-IIP) and non-imprinted polymer (NIP) were observed by scanning electron microscopy and functional groups present were determined by infrared spectroscopy. Rebinding adsorption of Cu-IIP and NIP were studied via atomic adsorption spectrometer by varying the sample mass and time taken. The distribution of Cu(II) ions and the adsorption behavior towards solid phase of imprinted polymer were investigated through equilibrium adsorption isotherm. The study revealed that Cu(II) ions recoveries can achieve up to 90% for imprinted polymer with a maximum binding capacity of 15.58 mg/g. The values of the correlation coefficient, R2 for Langmuir and pseudo-second order were found better than that of Freundlich and pseudo-first order, respectively. It was believed that the Cu-IIP has a potential to be used as sorbent material for pre-concentration of Cu(II) ions from aqueous solution.

  5. Microgel-like aggregates of isotactic and atactic poly(methacrylic acid) chains in aqueous alkali chloride solutions as evidenced by light scattering.

    PubMed

    Sitar, Simona; Aseyev, Vladimir; Kogej, Ksenija

    2014-10-21

    A comparative light-scattering study of isotactic and atactic poly(methacrylic acid), iPMA and aPMA, respectively, in aqueous solutions with added alkali chlorides, XCl (X = Li, Na, Cs), at 25 °C and XCl concentration of 0.1 mol L(-1), demonstrates that both PMA isomers are strongly associated at low degrees of neutralization, αN (= 0 for aPMA and 0.25 for iPMA), in the presence of all XCls. The shape parameter ρ and the scattering functions suggest that aggregates have the characteristics of microgel particles, with a dense core surrounded by a less dense shell. The extent of aggregation depends on the stereoregular structure of the polymer and on the type of the added cation. Li(+) and Na(+) ions support aggregation better than Cs(+) ions. Besides, iPMA chains are more strongly aggregated than aPMA chains and form particles with a denser core. A model of the aggregation process is suggested for iPMA. At high αN, a slow diffusive process (so-called extraordinary or anomalous mode in diffusion of polyelectrolytes), arising from electrostatic interactions between charged chains, is observed for both PMAs. Results suggest that under the same experimental conditions iPMA is effectively more charged than aPMA. The role of ions in the slow-mode phenomenon is less pronounced than in aggregation.

  6. Radiation grafting of acrylamide and maleic acid on chitosan and effective application for removal of Co(II) from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Saleh, Alaaeldine Sh.; Ibrahim, Ahmed G.; Elsharma, Emad M.; Metwally, Essam; Siyam, Tharwat

    2018-03-01

    The graft copolymerization has been proven as a superior polymerization technique because it combines the functional advantages of the grafted and base polymers. In this work, the radiation-induced grafting of acrylamide (AAm) and maleic acid (MA) onto chitosan (CTS) was developed and optimized by determining the grafting percentage and efficiency as a function of grafting conditions such as AAm, MA, and CTS concentrations, and absorbed dose. Fourier transform infrared spectroscopic analysis (FTIR) confirmed the graft copolymerization. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) further characterized the grafted copolymers and showed their high thermal stability. Using batch sorption experiments and 60Co as a radiotracer, poly(CTS-AAm) and poly(CTS-MA) were evaluated for Co(II) removal from aqueous solutions. The Co(II) removal increases with increasing time, pH, polymer, and Co(II) concentrations. Experimentally, P(CTS-AAm) and P(CTS-MA) show high sorption capacities of Co(II), i.e. 150 mg g-1 and 421 mg g-1, respectively, which makes them potential sorbents of Co(II) for water and wastewater treatment. Finally, the Co(II) sorption was examined using sorption isotherm and kinetic models. The sorption was best fitted to Langmuir model which suggests the sorption is of chemisorption type. On the other hand, the sorption kinetics was best represented by Elovich model which also indicates the chemical nature of Co(II) sorption on P(CTS-AAm) and P(CTS-MA).

  7. Effect of Hyaluronic Acid on the Self Assembling Behaviour of PEO-PPO Copolymers in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Mayol, L.; Borzacchiello, A.; Quaglia, F.; La Rotonda, M. I.; Ambrosio, L.

    2008-07-01

    The influence of hyaluronic acid (HA) on the self assembling properties of pluronic (PEO-PPO-PEO block copolymers) blends has been studied with the aim of engineering thermosensitive and mucoadhesive polymeric platforms for drug delivery. The gelation temperature (Tgel), viscoelastic properties and mucoadhesive force of the systems were investigated and optimised by means of rheological analyses. Pluronic micellar radius was evaluated by Photon Correlation Spectroscopy (PCS). The addition of Low Molecular Weight HA did not hamper the self assembling process of pluronics just delaying the gelation temperature of few Celsius degrees. Furthermore, HA presence led to a strong increase of the pluronics gel rheological properties. PCS results show, in formulations containing HA, aggregates with hydrodynamic diameters values much higher than those of pluronic micelles. Mucoadhesive experiments indicate the possibility of interactions between the pluronic/HA gel and mucus glycoproteins.

  8. Adsorption of phthalic acid esters (PAEs) by amphiphilic polypropylene nonwoven from aqueous solution: the study of hydrophilic and hydrophobic microdomain.

    PubMed

    Zhou, Xiangyu; Wei, Junfu; Zhang, Huan; Liu, Kai; Wang, Han

    2014-05-30

    A kind of amphiphilic polypropylene nonwoven with hydrophilic and hydrophobic microdomain was prepared through electron beam induced graft polymerization and subsequent ring opening reaction and then utilized in the adsorption of phthalic acid esters (PAEs). To elucidate the superiority of such amphiphilic microdomain, a unique structure without hydrophilic part was constructed as comparison. In addition, the adsorption behaviors including adsorption kinetics, isotherms and pH effect were systematically investigated. The result indicated that the amphiphilic structure and the synergy between hydrophilic and hydrophobic microdomain could considerably improve the adsorption capacities, rate and affinity. Particularly the existence of hydrophilic microdomain could reduce the diffusion resistance and energy barrier in the adsorption process. These adsorption results showed that the amphiphilic PP nonwoven have the potential to be used in environmental application. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. RECOVERY OF URANIUM FROM AQUEOUS PHOSPHATE-CONTAINING SOLUTIONS

    DOEpatents

    Igelsrud, I.; Stephen, E.F.

    1959-08-11

    ABS>A method is presented for recovering hexavalent uranium from an acidic phosphaie solution. A high molecular weight amine, such as a mixture of cccoanut oil amines, is added to the solution in such amount as to give a ratio of about 2000 parts by weight of amine to 1 part by weight of uranium. The uranium is precipitated with the amines and the whole filtered from the solution. The uranium is leached from the amine mass by washing with aqueous sodium carbonate solution; and the amine mixture is available for reuse.

  10. Efficacy of chlorine, acidic electrolyzed water and aqueous chlorine dioxide solutions to decontaminate Escherichia coli O157:H7 from lettuce leaves

    USDA-ARS?s Scientific Manuscript database

    This study compared the efficacy of chlorine (20 – 200 ppm), acidic electrolyzed water (50 ppm chlorine, pH 2.6), acidified sodium chlorite (20 – 200 ppm chlorite ion concentration, Sanova), and aqueous chlorine dioxide (20 – 200 ppm chlorite ion concentration, TriNova) washes in reducing population...

  11. Abatement of humic acid from aqueous solution using a carbonaceous conjugated microporous polymer derived from waste polystyrene.

    PubMed

    Chaukura, Nhamo; Moyo, Welldone; Mamba, Bhekie B; Nkambule, Thabo I

    2017-11-16

    Humic acid (HA) is a major constituent of natural organic matter (NOM) found in water systems. Although NOM generally does not have any known harmful effects to humans, it imparts repulsive organoleptic properties to water, reacts with disinfectants to produce toxic products, and interferes with the efficiency of water treatment processes. The removal of NOM and related compounds from water is therefore important to render water potable and suitable for other applications. In this work, a hitherto unreported carbonaceous conjugated microporous polymer (CCMP) prepared through the organic-polymeric-precursor-controlled carbonization of hypercrosslinked post-consumer waste polystyrene (WPS) was evaluated for its capacity to remove HA from synthetic wastewater. This advanced material retained the morphology of the precursor material, while its porosity and chemical integrity were significantly improved. The approach is an environmentally friendly way of handling WPS while at the same time remediating NOM-contaminated water. Overall, with a maximum adsorption capacity of 340 mg/g in batch experiments, and a maximum initial removal rate of 95.7% in column experiments, the results showed that CCMP can be used for the remediation of HA-contaminated water at high pH.

  12. Potentiometric and Conductometric Study of Aqueous Solutions of Lithium and Sodium Salts of Poly(thiophen-3-ylacetic acid).

    PubMed

    Hostnik, Gregor; Vlachy, Vojko; Bondarev, Dmitrij; Jiří, Vohlídal; Cerar, Janez

    2012-09-01

    The title polymer, PTAA, practically free of ester groups was obtained by oxidative polymerization of methyl thiophen-3-ylacetate and subsequent basic hydrolysis of primary polymer. Poly(thiophen-3-ylacetic acid) has been thoroughly characterized by NMR, IR, Raman, and UV/Vis spectroscopy. The polyacid behavior during neutralization titrations with lithium and sodium hydroxides, carried out under nitrogen atmosphere, has been studied by conductometry and potentiometry. Henderson-Hasselbach plots of potentiometric titration curves show a break point at pH around 6, where the curve slope drops from 1.8 (at lower pH) to a value from 1.05 to 1.3 (at higher pH values). The UV/Vis spectra monitored during back titration show: (i) monotonous decrease of both λmax and εmax as pH decreases, (ii) the presence of the isosbestic point at 401 nm that can be ascribed to conformational transition of PTAA chains, and (iii) absence of the isosbestic point at 392 nm reported previously by other authors.

  13. Synergy of ozonation and photocatalysis to mineralize low concentration 2,4-dichlorophenoxyacetic acid in aqueous solution.

    PubMed

    Giri, Rabindra Raj; Ozaki, Hiroaki; Ishida, Takehiro; Takanami, Ryohei; Taniguchi, Shogo

    2007-01-01

    Concentration of 2,4-dichlorophenoxyacetic acid (2,4-D) may affect its degradation kinetics in advanced oxidation systems, and combinations of two or more systems can be more effective for its mineralization at low concentration levels. Degradations and mineralizations of 0.045mM 2,4-D using O(3), O(3)/UV, UV/TiO(2) and O(3)/UV/TiO(2) systems were compared, and influence of reaction temperature on the mineralization in O(3)/UV/TiO(2) system was investigated. 2,4-D degradations by O(3), O(3)/UV and UV/TiO(2) systems were similar to the results of earlier investigations with higher 2,4-D concentrations. The degradations and total organic carbon (TOC) removals in the four systems were well described by the first-order reaction kinetics. The degradation and removal were greatly enhanced in O(3)/UV/TiO(2) system, and further enhancements were observed with larger O(3) supplies. The enhancements were attributed to hydroxyl radical (()OH) generation from more than one reaction pathway. The degradation and removal in O(3)/UV/TiO(2) system were very efficient with reaction temperature fixed at 20 degrees C. It was suspected that reaction temperature might have influenced ()OH generation in the system, which needs further attention.

  14. Modeling reactive geochemical transport of concentrated aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Guoxiang; Zheng, Zuoping; Wan, Jiamin

    2005-02-01

    Aqueous solutions with ionic strength larger than 1 M are usually considered concentrated aqueous solutions. These solutions can be found in some natural systems and are also industrially produced and released into accessible natural environments, and as such, they pose a big environmental problem. Concentrated aqueous solutions have unique thermodynamic and physical properties. They are usually strongly acidic or strongly alkaline, with the ionic strength possibly reaching 30 M or higher. Chemical components in such solutions are incompletely dissociated. The thermodynamic activities of both ionic and molecular species in these solutions are determined by the ionic interactions. In geological media the problem is further complicated by the interactions between the solutions and sediments and rocks. The chemical composition of concentrated aqueous solutions when migrating through the geological media may be drastically altered by these strong fluid-rock interactions. To effectively model reactive transport of concentrated aqueous solutions, we must take into account the ionic interactions. For this purpose we substantially extended an existing reactive transport code, BIO-CORE2D©, by incorporating a Pitzer ion interaction model to calculate the ionic activity. In the present paper, the model and two test cases of the model are briefly introduced. We also simulate a laboratory column experiment in which the leakage of highly alkaline waste fluid stored at Hanford (a U.S. Department of Energy site, located in Washington State) was studied. Our simulation captures the measured pH evolution and indicates that all the reactions controlling the pH evolution, including cation exchanges and mineral dissolution/precipitation, are coupled.

  15. Coagulation behavior of humic acid in aqueous solutions containing Cs+, Sr2+and Eu3+: DLS, EEM and MD simulations.

    PubMed

    Tan, Liqiang; Tan, Xiaoli; Mei, Huiyang; Ai, Yuejie; Sun, Lu; Zhao, Guixia; Hayat, Tasawar; Alsaedi, Ahmed; Chen, Changlun; Wang, Xiangke

    2018-02-17

    The coagulation behaviors of humic acid (HA) with Cs + (10-500 mM), Sr 2+ (0.8-10.0 mM) and Eu 3+ (0.01-1.0 mM) at different pH values (2.8, 7.1 and 10.0) were acquired through a dynamic light scattering (DLS) technique combined with spectroscopic analysis and molecular dynamic (MD) simulations. The coagulation rate and the average hydrodynamic diameter () increased significantly as the concentration of nuclides increased. could be scaled to time t as ∝ t a at higher Sr 2+ concentrations, which shows that HA coagulation is consistent with the diffusion-limited colloid aggregation (DLCA) model. Trivalent Eu 3+ induced HA coagulation at a much lower concentration than bivalent Sr 2+ and monovalent Cs + . The coagulation value ratio of Sr 2+ and Eu 3+ to Cs + is almost proportional to Z -6 , indicating that the HA coagulation process is generally consistent with the Schulze-Hardy rule. Spectroscopic analysis indicated that the complexation between nuclides and carboxylic/phenolic groups of HA molecules played important roles in the coagulation of HA. MD modelling suggested that Sr 2+ and Eu 3+ ions increased the coagulation process through the formation of intra- or inter-molecular bridges between negatively charged HA molecules, whereas for Cs + , no inter-molecular bridges were formed. This work offers new insight into the interactions between HA and radionuclides and provides a prediction for the roles of HA in the transportation and elimination of radionuclides in severely polluted environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Complexation of NpO2+ with (2-Hydroxyethyl)ethylenediaminetriacetic Acid (HEDTA) in Aqueous Solutions: Thermodynamic Studies and Structural Analysis

    SciTech Connect

    Li, Xingliang; Zhang, Zhicheng; Martin, Leigh R; Luo, Shunzhong; Rao, Linfeng

    2016-12-02

    Complexation of Np(V) with N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA) was studied in aqueous solution (I = 1.0 mol L-1 NaClO4, t = 25 °C) by spectrophotometry, microcalorimetry and Extended X-ray absorption fine structure (EXAFS) spectroscopy. Equilibrium constants for the formation of three complexes, NpO2L2-, NpO2(HL)-, and (NpO2)2(OH)2L26-, were determined to be (6.91 ± 0.06), (4.28 ± 0.03) and -(4.93 ± 0.03), respectively. The enthalpies of complexation were determined to be -(8.0 ± 2.0) kJ mol-1 for NpO2L2- and -(2.2 ± 2.0) kJ mol-1 for NpO2(HL)-. Thermodynamic data of the complexation of Np(V) with HEDTA were compared to those of Np(V) with other aminopolycarboxylic acids, gaining insight into the possible coordination modes of the complexes. The EXAFS studies provided further structural information on those modes. In both NpO2L2- and NpO2(HL)- complexes, HEDTA coordinates to Np(V) in a tridentate mode through two oxygens of two carboxylic groups and one nitrogen of the amine group. In the (NpO2)2(OH)2L26- complex, two Np(V) atoms are bridged by two hydroxides and each HEDTA maintains the tridentate coordination mode.

  17. Polyacrylamido-2-methyl-1-propane sulfonic acid-grafted-natural rubber as bio-adsorbent for heavy metal removal from aqueous standard solution and industrial wastewater.

    PubMed

    Phetphaisit, Chor Wayakron; Yuanyang, Siriwan; Chaiyasith, Wipharat Chuachuad

    2016-01-15

    Bio-adsorbent modified natural rubber (modified NR) was prepared, by placing the sulfonic acid functional group on the isoprene chain. This modification was carried out with the aim to prepare material capable to remove heavy metals from aqueous solution. The structures of modified NR materials were characterized by FT-IR and NMR spectroscopies. Thermal gravimetric analysis of modified NR showed that the initial degradation temperature of rubber decreases with increasing amount of polyacrylamido-2-methyl-1-propane sulfonic acid (PAMPS) in the structure. In addition, water uptake of the rubber based materials was studied as a function of time and content of PAMPS. The influence of the amount of PAMPS grafted onto NR, time, pH, concentration of metal ions, temperature, and regeneration were studied in terms of their influence on the adsorption of heavy metals (Pb(2+), Cd(2+) and Cu(2+)). The adsorption isotherms of Pb(2+) and Cd(2+) were fitted to the Freundlich isotherm model, while Cu(2+) was fitted to the Langmuir isotherm. However, the results from these two isotherms resulted in a similar behavior. The adsorption capacity of the modified NR for the various heavy metals was in the following order: Pb(2+)∼Cd(2+)>Cu(2+). The maximum adsorption capacities of Pb(2+), Cd(2+), and Cu(2+) were 272.7, 267.2, and 89.7 mg/g of modified rubber, respectively. Moreover, the modified natural rubber was used for the removal of metal ions in real samples of industrial effluents where the efficiency and regeneration were also investigated. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Complexation of NpO2+ with (2-Hydroxyethyl)ethylenediaminetriacetic Acid (HEDTA) in Aqueous Solutions: Thermodynamic Studies and Structural Analysis

    DOE PAGES

    Li, Xingliang; Zhang, Zhicheng; Martin, Leigh R; ...

    2016-12-02

    Complexation of Np(V) with N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA) was studied in aqueous solution (I = 1.0 mol L -1 NaClO 4, t = 25 °C) by spectrophotometry, microcalorimetry and Extended X-ray absorption fine structure (EXAFS) spectroscopy. Equilibrium constants for the formation of three complexes, NpO 2L 2-, NpO 2(HL) -, and (NpO 2)2(OH)2L26 -, were determined to be (6.91 ± 0.06), (4.28 ± 0.03) and -(4.93 ± 0.03), respectively. The enthalpies of complexation were determined to be -(8.0 ± 2.0) kJ mol -1 for NpO 2L 2 - and -(2.2 ± 2.0) kJ mol-1 for NpO 2(HL) -. Thermodynamic data ofmore » the complexation of Np(V) with HEDTA were compared to those of Np(V) with other aminopolycarboxylic acids, gaining insight into the possible coordination modes of the complexes. The EXAFS studies provided further structural information on those modes. In both NpO 2L 2 - and NpO 2(HL) - complexes, HEDTA coordinates to Np(V) in a tridentate mode through two oxygens of two carboxylic groups and one nitrogen of the amine group. In the (NpO 2) 2(OH) 2L 2 6- complex, two Np(V) atoms are bridged by two hydroxides and each HEDTA maintains the tridentate coordination mode.« less

  19. Apparent molar volume, viscosity B-coefficient, and adiabatic compressibility of tetrabutylammonium bromide in aqueous ascorbic acid solutions at T = 298.15, 308.15, and 318.15 K

    NASA Astrophysics Data System (ADS)

    Roy, M. N.; Das, R. K.; Bhattacharjee, A.

    2010-12-01

    Apparent molar volumes ϕν and viscosity B-coefficients for tetrabutyl ammonium bromide (TBAB) in (0.00, 0.05, 0.10, and 0.15) mol dm-3 aqueous ascorbic acid solutions have been determined from solution density and viscosity measurements at temperatures over the range 298.15 to 318.15 K as function of concentration of ascorbic acid solutions. In the investigated temperature range, the relation: ϕ{ν/0} = a 0 + a 1 T + a 2 T 2, have been used to describe the partial molar volume ϕ{ν/0}. These results, in conjunction with the results obtained in pure water, have been used to calculate the standard volumes of transfer Δϕ{/ν 0} and viscosity B-coefficients of transfer for TBAB from water to aqueous ascorbic acid solutions for rationalizing various interactions in the ternary solutions. The structure making or breaking ability of TBAB has been discussed in terms of the sign of (δ2ϕ{ν/0}/δ T 2) P . An increase in the transfer volume of TBAB with increasing ascorbic acid concentration has been explained by Friedman-Krishnan co-sphere model. The activation parameters of viscous flow for the ternary solutions studied have also been calculated and explained by the application of transition state theory.

  20. Preparation of thin ceramic films via an aqueous solution route

    DOEpatents

    Pederson, Larry R.; Chick, Lawrence A.; Exarhos, Gregory J.

    1989-01-01

    A new chemical method of forming thin ceramic films has been developed. An aqueous solution of metal nitrates or other soluble metal salts and a low molecular weight amino acid is coated onto a substrate and pyrolyzed. The amino acid serves to prevent precipitation of individual solution components, forming a very viscous, glass-like material as excess water is evaporated. Using metal nitrates and glycine, the method has been demonstrated for zirconia with various levels of yttria stabilization, for lanthanum-strontium chromites, and for yttrium-barium-copper oxide superconductors on various substrates.

  1. Wetting characteristics of aqueous rhamnolipids solutions.

    PubMed

    Ozdemir, G; Malayoglu, U

    2004-11-25

    The wetting properties of surfactants on solid surfaces form the basis of many industrial and biological processes. The preferential adsorption of the surfactants from aqueous solutions onto solid surfaces alter the adhesion tension of the surface and this behavior may cause partial to complete wetting of the surfaces by the aqueous surfactant solutions. However, different types of surfactants show different wetting characteristics. To study the wetting properties of biologically produced rhamnolipids (RL), advancing contact angles of the aqueous solutions of the RL mixture of R1 and R2 in a ratio of R2/R1=1.1 were measured as a function of surfactant concentration. For a comparison of the wetting performance, sodium dodecyl sulfate (SDS) was chosen as the reference surfactant. A hydrophilic glass surface, a hydrophobic polymer, polyethylene terephthalate (PET), and gold surface were used as the solid surfaces to determine the wetting characteristics of rhamnolipids. At low surfactant concentrations (RL concentration <3x10(-5)M, SDS concentration<3x10(-4)M) contact angle (Theta) varied in a certain range depending on the character of the surfactant interactions with the surface. This was followed by a decrease in contact angle. Parallel to this behavior, at low surfactant concentrations the adhesion tension decreased, then remained constant and an increase at higher surfactant concentrations was obtained on hydrophobic surfaces. On hydrophilic surfaces a steady decrease in adhesion tension was observed with both surfactant solutions.

  2. Aqueous solution dispersement of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo (Inventor); Park, Cheol (Inventor); Choi, Sang H. (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2011-01-01

    Carbon nanotubes (CNTs) are dispersed in an aqueous buffer solution consisting of at least 50 weight percent water and a remainder weight percent that includes a buffer material. The buffer material has a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group.

  3. Green preparation of a novel red mud@carbon composite and its application for adsorption of 2,4-dichlorophenoxyacetic acid from aqueous solution.

    PubMed

    Kazak, Omer; Eker, Yasin Ramazan; Akin, Ilker; Bingol, Haluk; Tor, Ali

    2017-10-01

    This study reports the eco-friendly preparation of a novel composite material consisting of red mud and carbon spheres, denoted as red mud@C composite, and its application for the removal of 2,4-dichlorophenoxyacetic acid herbicide (2,4-D) from aqueous solution. The preparation route has a green approach because it follows the low-energy consuming one-step hydrothermal process by using starch as a renewable carbon precursor and red mud as a waste from aluminum production industry. Characterization of the red mud@C composite was performed by FT-IR, TGA, SEM, TEM, BET, XRD, and Raman microscopy analyses. The batch adsorption studies revealed that the red mud@C composite has higher 2,4-D adsorption efficiency than those of the red mud and the naked carbon spheres. The maximum removal at initial pH of 3.0 is explained by considering the pKa of 2,4-D and pH of point of zero charge (pH pzc ) of the composite material. The adsorption equilibrium time was 60 min, which followed the pseudo-second-order kinetic model together with intra-particle diffusion model. The isotherm analysis indicated that Freundlich isotherm model better represented the adsorption data, with isotherm parameters of k [15.849 (mg/g) (mg/L) -1/n ] and n (2.985). The prepared composite is reusable at least 5 cycles of adsorption-desorption with no significant decrease in the adsorption capacity.

  4. Cationic gemini surfactant as a dual linker for a cholic acid-modified polysaccharide in aqueous solution: thermodynamics of interaction and phase behavior.

    PubMed

    Bai, Guangyue; Wu, Hui; Lou, Pengxiao; Wang, Yujie; Nichifor, Marieta; Zhuo, Kelei; Wang, Jianji; Bastos, Margarida

    2017-01-04

    Understanding the thermodynamics of formation of biocompatible aggregates is a key factor in the bottom up approach to the development of novel types of drug carriers and their structural tuning using small amphiphilic molecules. We chose an anionic amphiphilic and biocompatible polymer that consists of a dextran and grafted cholic acid pendants, randomly distributed along the dextran backbone, with a degree of substitution (DS) of 15 mol% (designated Dex-15CACOONa). The thermodynamics of interaction and phase behavior of mixtures of this polyelectrolyte and a cationic gemini surfactant hexanediyl-α,ω-bis(dodecyldimethylammonium bromide) (C 12 C 6 C 12 Br 2 ) or its monomer surfactant dodecyltrimethylammonium bromide (DTAB) in aqueous solution were characterized by isothermal titration calorimetry (ITC) and turbidity, together with cryogenic transmission electron microscopy (Cryo-TEM). The various critical concentrations and the enthalpy changes of the corresponding phase transitions for the oppositely charged system were obtained from the plots of the observed enthalpy change (ΔH obs ) and turbidity measurements as a function of gemini concentration. The morphologies of the aggregates in various phases were observed by Cryo-TEM. Altogether these results suggest the critical role of gemini as a dual linker. At the concentrations where the crosslink between the pendant aggregates happens, the free gemini concentration is proximately zero and the aggregate retains its negative charge. The analysis of various factors involved in the interaction allowed a rationalization of the driving forces for mixed aggregate formation, which will contribute to a subsequent rational design of drug delivery systems based on this polymer/surfactant system.

  5. Hydration of nonelectrolytes in binary aqueous solutions

    NASA Astrophysics Data System (ADS)

    Rudakov, A. M.; Sergievskii, V. V.

    2010-10-01

    Literature data on the thermodynamic properties of binary aqueous solutions of nonelectrolytes that show negative deviations from Raoult's law due largely to the contribution of the hydration of the solute are briefly surveyed. Attention is focused on simulating the thermodynamic properties of solutions using equations of the cluster model. It is shown that the model is based on the assumption that there exists a distribution of stoichiometric hydrates over hydration numbers. In terms of the theory of ideal associated solutions, the equations for activity coefficients, osmotic coefficients, vapor pressure, and excess thermodynamic functions (volume, Gibbs energy, enthalpy, entropy) are obtained in analytical form. Basic parameters in the equations are the hydration numbers of the nonelectrolyte (the mathematical expectation of the distribution of hydrates) and the dispersions of the distribution. It is concluded that the model equations adequately describe the thermodynamic properties of a wide range of nonelectrolytes partly or completely soluble in water.

  6. 21 CFR 524.1200b - Kanamycin ophthalmic aqueous solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Kanamycin ophthalmic aqueous solution. 524.1200b... § 524.1200b Kanamycin ophthalmic aqueous solution. (a) Specifications. The drug, which is in an aqueous solution including suitable and harmless preservatives and buffer substances, contains 10 milligrams of...

  7. Adsorption behavior of levulinic acid onto microporous hyper-cross-linked polymers in aqueous solution: Equilibrium, thermodynamic, kinetic simulation and fixed-bed column studies.

    PubMed

    Lin, Xiaoqing; Huang, Qianlin; Qi, Gaoxiang; Xiong, Lian; Huang, Chao; Chen, Xuefang; Li, Hailong; Chen, Xinde

    2017-03-01

    The recovery of levulinic acid (LA) from aqueous solution and actual biomass hydrolysate by a microporous hyper-cross-linked polymer, SY-01, was investigated for the first time under batch and fixed-bed column conditions. The results showed that the optimum pH should be in the acidic range (pH < 3.0) without adjusting the pH. In the single-component system equilibrium study, the Langmuir isotherm model fits the LA adsorption onto SY-01 resin better than the Freundlich isotherm model, indicating that LA adsorption onto SY-01 resin under the concentration range studied is a monolayer homogeneous adsorption process. The maximum adsorption capacity of LA onto SY-01 resin decreased with increasing temperature, ranging from 103.74 to 95.70 mg/g. The obtained thermodynamic parameters suggested that the adsorption of LA on SY-01 was spontaneous (ΔG 0 <-3.788 kJ/mol), and exothermic (ΔH 0  = -11.764 kJ/mol). For kinetic study, the adsorption of LA onto SY-01 resin at various operating conditions follows the pore diffusion model and the intraparticle diffusion is the rate-limiting step for the adsorption of LA onto SY-01 resin. The effective pore diffusivity was dependent upon temperature, but independent of initial LA concentration, and were 3.306 × 10 -10 , 5.274 × 10 -10 and 7.707 × 10 -10  m 2 /s at 298, 318 and 338 K, respectively. In desorption process, the recovery efficiency of LA from SY-01 resin was 99.39%, and LA concentration in the eluent was raised 2.97-fold. In conclusion, our results show that the SY-01 resin has potential application in product recovery of LA from biomass hydrolysate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Solution nonideality related to solute molecular characteristics of amino acids.

    PubMed Central

    Keener, C R; Fullerton, G D; Cameron, I L; Xiong, J

    1995-01-01

    By measuring the freezing-point depression for dilute, aqueous solutions of all water-soluble amino acids, we test the hypothesis that nonideality in aqueous solutions is due to solute-induced water structuring near hydrophobic surfaces and solute-induced water destructuring in the dipolar electric fields generated by the solute. Nonideality is expressed with a single solute/solvent interaction parameter I, calculated from experimental measure of delta T. A related parameter, I(n), gives a method of directly relating solute characteristics to solute-induced water structuring or destructuring. I(n)-values correlate directly with hydrophobic surface area and inversely with dipolar strength. By comparing the nonideality of amino acids with progressively larger hydrophobic side chains, structuring is shown to increase with hydrophobic surface area at a rate of one perturbed water molecule per 8.8 square angstroms, implying monolayer coverage. Destructuring is attributed to dielectric realignment as described by the Debye-Hückel theory, but with a constant separation of charges in the amino-carboxyl dipole. By using dimers and trimers of glycine and alanine, this destructuring is shown to increase with increasing dipole strength using increased separation of fixed dipolar charges. The capacity to predict nonideal solution behavior on the basis of amino acid characteristics will permit prediction of free energy of transfer to water, which may help predict the energetics of folding and unfolding of proteins based on the characteristics of constituent amino acids. Images FIGURE 6 PMID:7711253

  9. Plasma generation in aqueous solution containing volatile solutes

    NASA Astrophysics Data System (ADS)

    Mizukoshi, Yoshiteru; Hatanaka, Shin-ichi; Okitsu, Kenji; Iseki, Yoshikazu; Iwasaki, Ryouhei; Sakamoto, Tomokazu; Yamaguchi, Susumu; Tanaka, Hirohisa; Tanabe, Shuji

    2018-01-01

    When high and short-pulse voltage was applied with a high repetition frequency to tungsten electrodes placed in water containing ammonia and water containing 2-methyl-2-propanol, gas evolved vigorously from the plasma generated between the electrodes. The main gas evolved was H2 in both aqueous solutions. Decomposition of ammonia provided N2 in addition to H2. In the decomposition of aqueous 2-methyl-2-propanol solution, CO, CO2, methane, ethane, ethylene, and acetylene were generated in addition to H2. The “temperature” deduced by kinetic consideration using the yields of C2 products (ethane, ethylene, and acetylene) formed by the recombination of two methyl radicals was calculated to be ca. 4200 K.

  10. Process for the extraction of strontium from acidic solutions

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1993-01-01

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid.

  11. Process for the extraction of strontium from acidic solutions

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1994-09-06

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid. 4 figs.

  12. Process for the extraction of strontium from acidic solutions

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1994-01-01

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid.

  13. Aqueous Solution Vessel Thermal Model Development II

    SciTech Connect

    Buechler, Cynthia Eileen

    2015-10-28

    The work presented in this report is a continuation of the work described in the May 2015 report, “Aqueous Solution Vessel Thermal Model Development”. This computational fluid dynamics (CFD) model aims to predict the temperature and bubble volume fraction in an aqueous solution of uranium. These values affect the reactivity of the fissile solution, so it is important to be able to calculate them and determine their effects on the reaction. Part A of this report describes some of the parameter comparisons performed on the CFD model using Fluent. Part B describes the coupling of the Fluent model with a Monte-Carlo N-Particle (MCNP) neutron transport model. The fuel tank geometry is the same as it was in the May 2015 report, annular with a thickness-to-height ratio of 0.16. An accelerator-driven neutron source provides the excitation for the reaction, and internal and external water cooling channels remove the heat. The model used in this work incorporates the Eulerian multiphase model with lift, wall lubrication, turbulent dispersion and turbulence interaction. The buoyancy-driven flow is modeled using the Boussinesq approximation, and the flow turbulence is determined using the k-ω Shear-Stress-Transport (SST) model. The dispersed turbulence multiphase model is employed to capture the multiphase turbulence effects.

  14. Acid-base and metal-ion-binding properties of xanthosine 5'-monophosphate (XMP) in aqueous solution: complex stabilities, isomeric equilibria, and extent of macrochelation.

    PubMed

    Sigel, Helmut; Massoud, Salah S; Song, Bin; Griesser, Rolf; Knobloch, Bernd; Operschall, Bert P

    2006-10-25

    The four acidity constants of threefold protonated xanthosine 5'-monophosphate, H3(XMP)+, reveal that at the physiological pH of 7.5 (XMP-H)(3-) strongly dominates (and not XMP(2-) as given in textbooks); this is in contrast to the related inosine (IMP(2-)) and guanosine 5'-monophosphate (GMP(2-)) and it means that XMP should better be named as xanthosinate 5'-monophosphate. In addition, evidence is provided for a tautomeric (XMP-HN1)(3-)/(XMP-HN3)(3-) equilibrium. The stability constants of the M(H;XMP)+ species were estimated and those of the M(XMP) and M(XMP-H)- complexes (M2+=Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+) measured potentiometrically in aqueous solution. The primary M2+ binding site in M(XMP) is (mostly) N7 of the monodeprotonated xanthine residue, the proton being at the phosphate group. The corresponding macrochelates involving P(O)2(OH)- (most likely outer-sphere) are formed to approximately 65% for nearly all M2+. In M(XMP-H)- the primary M2+ binding site is (mostly) the phosphate group; here the formation degree of the N7 macrochelates varies widely from close to zero for the alkaline earth ions, to approximately 50% for Mn2+, and approximately 90% or more for Co2+, Ni2+, Cu2+, Zn2+, and Cd2+. Because for (XMP-H)(3-) the micro stability constants quantifying the M2+ affinity of the xanthosinate and PO3(2-) residues are known, one may apply a recently developed quantification method for the chelate effect to the corresponding macrochelates; this chelate effect is close to zero for the alkaline earth ions and it amounts to about one log unit for Co2+, Ni2+, Cu2+. This method also allows calculation of the formation degrees of the monodentatally coordinated isomers; this information is of relevance for biological systems because it demonstrates how metal ions can switch from one site to another through macrochelate formation. These insights are meaningful for metal-ion-dependent reactions of XMP in metabolic pathways; previous

  15. Recovery of transition metals from aqueous solutions

    SciTech Connect

    Goodall, B.L.; Grotenhuis, P.A.M.

    1989-11-14

    This patent describes a process comprising recovering a transition metal from an aqueous solution containing a complex of the transition metal with a cyclic phosphite having a bridgehead phosphorus atom linked to three oxygen atoms at least two of which form together with the bridgehead phosphorus atom part of a ring. The cyclic phosphite having a hydroxymethly group linked to a ring carbon atom, by: hydrolyzing the cyclic phosphite in the complex, thereby forming a reaction mixture, contacting the reaction mixture obtained with a compound forming a water-stable complex with the transition metal which is sufficiently water-stable to preclude themore » need to distill off water in order to achieve substantially complete recovery of the transition metal, contacting the reaction mixture with an organic extraction agent for the water-stable complex, thereby forming an organic extract phase containing at least a portion of the transition metal, and an aqueous raffinate phase and separating the organic extract phase containing at least a portion of the transition metal from the aqueous raffinate phase.« less

  16. Removal of phenols from aqueous solutions by emulsion liquid membranes.

    PubMed

    Reis, M Teresa A; Freitas, Ondina M F; Agarwal, Shiva; Ferreira, Licínio M; Ismael, M Rosinda C; Machado, Remígio; Carvalho, Jorge M R

    2011-09-15

    The present study deals with the extraction of phenols from aqueous solutions by using the emulsion liquid membranes technique. Besides phenol, two derivatives of phenol, i.e., tyrosol (2-(4-hydroxyphenyl)ethanol) and p-coumaric acid (4-hydroxycinnamic acid), which are typical components of the effluents produced in olive oil plants, were selected as the target solutes. The effect of the composition of the organic phase on the removal of solutes was examined. The influence of pH of feed phase on the extraction of tyrosol and p-coumaric was tested for the membrane with Cyanex 923 as an extractant. The use of 2% Cyanex 923 allowed obtaining a very high extraction of phenols (97-99%) in 5-6 min of contact time for either single solute solutions or for their mixtures. The removal efficiency of phenol and p-coumaric acid attained equivalent values by using the system with 2% isodecanol, but the removal rate of tyrosol was found greatly reduced. The extraction of tyrosol and p-coumaric acid from their binary mixture was also analysed for different operating conditions like the volume ratio of feed phase to stripping phase (sodium hydroxide), the temperature and the initial concentration of solute in the feed phase. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Condensation of oligoglycines with trimeta- and tetrametaphosphate in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Yamanaka, Junpei; Inomata, Katsuhiko; Yamagata, Yukio

    1988-09-01

    The dehydration condensation of glycine with trimetaphosphate in aqueous solution has been reinvestigated. Although it has been reported that the condensation of glycine under the alkaline conditions was brought about through the formation of cyclic acylphosphoramidate and hence the condensation of polyglycines could not occur, we found that the condensation of oligoglycines with trimeta- and tetrametaphosphate in aqueous solution are possible through the formation of their acylphosphates under the neutral or weak acidic conditions. Aqueous solutions of 1.0 M glycylglycine and 1.0 M trimetaphosphate in the various pH from 4.0 to 9.0 were incubated at 38 °C. The solutions were analyzed by HPLC with ninhydrin reaction system. Tetraglycine and hexaglycine were detected and their maximum yields were given in the reaction carried out around pH 7. They are approximately 15% and 4% after 30 days, respectively. Analogous experiments were performed with tetrametaphosphate. The results showed a similar pH dependence for the condensation, but the yields were about one-tenth of those of corresponding experiments with trimetaphosphate. Relative rates of dimerization of glycine, diglycine and triglycine in the equimolar concentration were also investigated at pH 6.0 at 38 °C. The rates for digylcine and triglycine were approximately twice and four times as large as that for glycine. Relevance of the experiments to chemical evolution is discussed.

  18. Thermodynamic characteristics of the acid-base equilibria of ethylenediamine- N, N'-diglutaric acid in aqueous solutions using calorimetric data

    NASA Astrophysics Data System (ADS)

    Gridchin, S. N.; Nikol'skii, V. M.

    2017-10-01

    The enthalpies of reaction of betaine group neutralization of ethylenediamine- N, N'-diglutaric acid (H4L) at 298.15 K and at different values of ionic strength of 0.1, 0.5, 1.0 (KNO3) is measured by direct calorimetry. The standard thermodynamic characteristics of the protolytic equilibria of H4L are calculated.

  19. Aqueous Solutions of Ionic Liquids: Microscopic Assembly.

    PubMed

    Vicent-Luna, Jose Manuel; Dubbeldam, David; Gómez-Álvarez, Paula; Calero, Sofia

    2016-02-03

    Aqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure-property relationships of such systems is hence desirable. One of the crucial molecular-level interactions that influences the macroscopic behavior is hydrogen bonding. In this work, we conduct molecular dynamics simulations to investigate the effects of ionic liquids on the hydrogen-bond network of water in dilute aqueous solutions of ionic liquids with various combinations of cations and anions. Calculations are performed for imidazolium-based cations with alkyl chains of different lengths and for a variety of anions, namely, [Br](-), [NO3](-), [SCN](-) [BF4](-), [PF6](-), and [Tf2N](-). The structure of water and the water-ionic liquid interactions involved in the formation of a heterogeneous network are analyzed by using radial distribution functions and hydrogen-bond statistics. To this end, we employ the geometric criterion of the hydrogen-bond definition and it is shown that the structure of water is sensitive to the amount of ionic liquid and to the anion type. In particular, [SCN](-) and [Tf2N](-) were found to be the most hydrophilic and hydrophobic anions, respectively. Conversely, the cation chain length did not influence the results. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Models of globular proteins in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Wentzel, Nathaniel James

    Protein crystallization is a continuing area of research. Currently, there is no universal theory for the conditions required to crystallize proteins. A better understanding of protein crystallization will be helpful in determining protein structure and preventing and treating certain diseases. In this thesis, we will extend the understanding of globular proteins in aqueous solutions by analyzing various models for protein interactions. Experiments have shown that the liquid-liquid phase separation curves for lysozyme in solution with salt depend on salt type and salt concentration. We analyze a simple square well model for this system whose well depth depends on salt type and salt concentration, to determine the phase coexistence surfaces from experimental data. The surfaces, calculated from a single Monte Carlo simulation and a simple scaling argument, are shown as a function of temperature, salt concentration and protein concentration for two typical salts. Urate Oxidase from Asperigillus flavus is a protein used for studying the effects of polymers on the crystallization of large proteins. Experiments have determined some aspects of the phase diagram. We use Monte Carlo techniques and perturbation theory to predict the phase diagram for a model of urate oxidase in solution with PEG. The model used includes an electrostatic interaction, van der Waals attraction, and a polymerinduced depletion interaction. The results agree quantitatively with experiments. Anisotropy plays a role in globular protein interactions, including the formation of hemoglobin fibers in sickle cell disease. Also, the solvent conditions have been shown to play a strong role in the phase behavior of some aqueous protein solutions. Each has previously been treated separately in theoretical studies. Here we propose and analyze a simple, combined model that treats both anisotropy and solvent effects. We find that this model qualitatively explains some phase behavior, including the existence of

  1. Water Evaporation from Acoustically Levitated Aqueous Solution Droplets.

    PubMed

    Combe, Nicole A; Donaldson, D James

    2017-09-28

    We present a systematic study of the effect of solutes on the evaporation rate of acoustically levitated aqueous solution droplets by suspending individual droplets in a zero-relative humidity environment and measuring their size as a function of time. The ratios of the early time evaporation rates of six simple salts (NaCl, NaBr, NaNO 3 , KCl, MgCl 2 , CaCl 2 ) and malonic acid to that of water are in excellent agreement with predictions made by modifying the Maxwell equation to include the time-dependent water activity of the evaporating aqueous salt solution droplets. However, the early time evaporation rates of three ammonium salt solutions (NH 4 Cl, NH 4 NO 3 , (NH 4 ) 2 SO 4 ) are not significantly different from the evaporation rate of pure water. This finding is in accord with a previous report that ammonium sulfate does not depress the evaporation rate of its solutions, despite reducing its water vapor pressure, perhaps due to specific surface effects. At longer evaporation times, as the droplets approach crystallization, all but one (MgCl 2 ) of the solution evaporation rates are well described by the modified Maxwell equation.

  2. Heterogeneous nucleation of aspartame from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kubota, Noriaki; Kinno, Hiroaki; Shimizu, Kenji

    1990-03-01

    Waiting times, the time from the instant of quenching needed for a first nucleus to appear, were measured at constant supercoolings for primary nucleation of aspartame (α-L-aspartyl-L-phenylalanine methylester) from aqueous solutions, which were sealed into glass ampoules (solution volume = 3.16 cm 3). Since the waiting time became shorter by filtering the solution prior to quenching, the nucleation was concluded to be heterogeneously induced. The measured waiting time consisted of two parts: time needed for the nucleus to grow to a detactable size (growth time) and stochastic time needed for nucleation (true waiting time). The distribution of the true waiting time, is well explained by a stochastic model, in which nucleation is regarded to occur heterogeneously and in a stochastic manner by two kinds of active sites. The active sites are estimated to be located on foreign particles in which such elements as Si, Al and Mg were contained. The amount of each element is very small in the order of magnitude of ppb (mass basis) of the whole solution. The growth time was correlated with the degree of supercooling.

  3. Removal of fluoride ions from aqueous solution by waste mud.

    PubMed

    Kemer, Baris; Ozdes, Duygu; Gundogdu, Ali; Bulut, Volkan N; Duran, Celal; Soylak, Mustafa

    2009-09-15

    The present study was carried out to assess the ability of original waste mud (o-WM) and different types of activated waste mud which are acid-activated (a-WM) and precipitated waste mud (p-WM), in order to remove excess of fluoride from aqueous solution by using batch technique. The p-WM exhibited greater performance than the others. Adsorption studies were conducted as a function of pH, contact time, initial fluoride concentration, adsorbent concentration, temperature, etc. Studies were also performed to understand the effect of some co-existing ions present in aqueous solutions. Adsorption process was found to be almost independent of pH for all types of waste mud. Among the kinetic models tested for p-WM, pseudo-second-order model fitted the kinetic data well with a perfect correlation coefficient value of 1.00. It was found that the adequate time for the adsorption equilibrium of fluoride was only 1h. Thermodynamic parameters including the Gibbs free energy (DeltaG degrees ), enthalpy (DeltaH degrees ), and entropy (DeltaS degrees ) revealed that adsorption of fluoride ions on the p-WM was feasible, spontaneous and endothermic in the temperature range of 0-40 degrees C. Experimental data showed a good fit with the Langmuir and Freundlich adsorption isotherm models. Results of this study demonstrated the effectiveness and feasibility of WM for removal of fluoride ions from aqueous solution.

  4. Spatial structure of oligopeptide PAP(248-261), the N-terminal fragment of the HIV enhancer prostatic acid phosphatase peptide PAP(248-286), in aqueous and SDS micelle solutions

    NASA Astrophysics Data System (ADS)

    Blokhin, Dmitriy S.; Filippov, Andrei V.; Antzutkin, Oleg N.; Karataeva, Farida Kh.; Klochkov, Vladimir V.

    2014-07-01

    Prostatic acid phosphatase (PAP) is an enzyme that facilitates infection of cells by HIV. Its peptide fragment PAP(248-286) forms amyloid fibrils known as SEVI, which enhance attachment of the virus by viral adhesion to the host cell prior to receptor-specific binding via reducing the electrostatic repulsion between the membranes of the virus and the target cell. The secondary structure of PAP(248-286) in aqueous and SDS solutions can be divided into an N-terminal disordered region, an α-helical central part and an α/310-helical C-terminal region (Nanga et al., 2009). In this work, we used NMR spectroscopy to study the spatial structure of the isolated N-terminal fragment of PAP(248-286), PAP(248-261) (GIHKQKEKSRLQGG), in aqueous and SDS micelle solutions. Formation of a PAP(248-261)-SDS complex was confirmed by chemical shift alterations in the 1H NMR spectra of the peptide, as well as by the signs and values of Nuclear Overhauser Effect (NOE). In addition, the PAP(248-261) peptide does not form any specified secondary structure in either aqueous or SDS solutions.

  5. Hydrogen production via photolytic oxidation of aqueous sodium sulfite solutions.

    PubMed

    Huang, Cunping; Linkous, Clovis A; Adebiyi, Olawale; T-Raissi, Ali

    2010-07-01

    Sulfur dioxide (SO(2)) emission from coal-burning power plants and refinery operations has been implicated as a cause of acid rain and other air pollution related problems. The conventional treatment of SO(2)-contaminated air consists of two steps: SO(2) absorption using an aqueous sodium hydroxide solution, forming aqueous sodium sulfite (Na(2)SO(3)), and Na(2)SO(3) oxidation via air purging to produce sodium sulfate (Na(2)SO(4)). In this process, the potential energy of SO(2) is lost. This paper presents a novel ultraviolet (UV) photolytic process for production of hydrogen from aqueous Na(2)SO(3) solutions. The results show that the quantum efficiency of hydrogen production can reach 14.4% under illumination from a low pressure mercury lamp. The mechanism occurs via two competing reaction pathways that involve oxidation of SO(3)(2-) to SO(4)(2-) directly and through the dithionate (S(2)O(6)(2-)) ion intermediate. The first route becomes dominant once a photostationary state for S(2)O(6)(2-) is established. The initial pH of Na(2)SO(3) solution plays an important role in determining both the hydrogen production rate and the final products of the photolytic oxidation. At initial solution pH of 9.80 Na(2)SO(3) photo-oxidation generates Na(2)SO(4) as the final reaction product, while Na(2)S(2)O(6) is merely a reaction intermediate. The highest hydrogen production rate occurs when the initial solution pH is 7.55. Reduction in the initial solution pH to 5.93 results in disproportionation of HSO(3)(-) to elemental sulfur and SO(4)(2-) but no hydrogen production.

  6. Kinetics of synthesis of monomeric betaines in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kazantsev, O. A.; Baruta, D. S.; Kamorin, D. M.; Shirshin, K. V.; Shirshin, K. K.; Kolosov, E. S.

    2016-05-01

    In the nucleophilic addition of N-(3-dimethylaminopropyl)methacrylamide to acrylic acid (1 : 1) in aqueous solutions, forming monomeric β-propiobetaine, the dependence of the initial rate on the starting reagent concentration was found to have a pronounced maximum (whose position does not depend on the temperature at 30-70°C). In the case of the addition of N, N-dimethylaminoethyl methacrylate, the dependence was exponential. The dependences of equilibrium conversions on the starting reagent concentrations were of the same type and had a maximum for both systems. The detected concentration effects are related to the peculiarities of the pre-reaction association of the reagents.

  7. Calculation of stoichiometric dissociation constants of monoprotic carboxylic acids in dilute aqueous sodium or potassium chloride solutions and p[m(H(+))] values for acetate and formate buffers at 25 degrees C.

    PubMed

    Partanen, J I

    2000-08-16

    Equations are given for calculation of the stoichiometric (molality scale) dissociation constants, K(m), of weak acids in dilute aqueous electrolyte solutions at 298.15 K from the thermodynamic dissociation constant, K(a), of the acid and the ionic strength, I(m), of the solution. The equations for K(m) were based on the single-ion activity coefficient equations of the Hückel type. The equations were tested with the conductivity data for formic, acetic, propionic, n-butyric, lactic, chloroacetic, alpha-crotonic and cyanoacetic acids, and with data measured by Harned cells for formic, acetic, propionic, n-butyric and glycolic acids. These data were taken from the literature. According to these tests, K(m) can be obtained by the Hückel method within experimental error at least up to I(m) of about 0.1 mol kg(-1). On the basis of the equations for K(m), it is suggested p(m(H)) values {p(m(H))=-lg[m(H(+))/(mol kg(-1))] where m refers to the molality} for buffer solutions containing acetic or formic acid. A new calibration method is suggested for glass electrode cells, and this method is based on the p(m(H)) values instead of pH values (pH=-lg[a(H(+))] where a refers to the activity).

  8. SEPARATION OF POLONIUM, PROTACTINIUM OR MIXTURES THEREOF IN AQUEOUS SOLUTION FROM BISMUTH, LEAD, ZIRCONIUM AND/OR COLUMBIUM VALUES

    DOEpatents

    Van Winkle, Q.; Kraus, K.A.

    1959-10-27

    A process is presented for separating polonium, protactinium, or mixtures thereof in aqueous solution from bismuth, zirconium, lead, and niobium values contained in the solution. The method comprises providing hydrochloric acid in the solution in a concentration of at least 5N. contacting the aqueous solution with a substantially waterimmiscible organic solvent such as diisopropyl ketone, and separating the aqueous phase containing the bismuth, zirconium, lead, and niobium from the organic extract phase containing the polonium, protactinium, or mixture thereof.

  9. Ions in hyaluronic acid solutions

    NASA Astrophysics Data System (ADS)

    Horkay, Ferenc; Basser, Peter J.; Londono, David J.; Hecht, Anne-Marie; Geissler, Erik

    2009-11-01

    Hyaluronic acid (HA) is an anionic biopolymer that is almost ubiquitous in biological tissues. An attempt is made to determine the dominant features that account for both its abundance and its multifunctional role, and which set it apart from other types of biopolymers. A combination of osmotic and scattering techniques is employed to quantify its dynamic and static properties in near-physiological solution conditions, where it is exposed both to mono- and divalent counterions. An equation of state is derived for the osmotic pressure Π in the semidilute concentration region, in terms of two variables, the polymer concentration c and the ionic strength J of the added salt, according to which Π =1.4×103c9/4/J3/4 kPa, where c and J are expressed in mole. Over the physiological ion concentration range, the effect of the sodium chloride and calcium chloride on the osmotic properties of HA solutions is fully accounted for by their contributions to the ionic strength. The absence of precipitation, even at high CaCl2 concentrations, distinguishes this molecule from other biopolymers such as DNA. Dynamic light scattering measurements reveal that the collective diffusion coefficient in HA solutions exceeds that in aqueous solutions of typical neutral polymers by a factor of approximately 5. This property ensures rapid adjustment to, and recovery from, stress applied to HA-containing tissue. Small angle x-ray scattering measurements confirm the absence of appreciable structural reorganization over the observed length scale range 10-1000 Å, as a result of calcium-sodium ion exchange. The scattered intensity in the transfer momentum range q >0.03 Å-1 varies as 1/q, indicating that the HA chain segments in semidilute solutions are linear over an extended concentration range. The osmotic compression modulus c ∂Π/∂c, a high value of which is a prerequisite in structural biopolymers, is several times greater than in typical neutral polymer solutions.

  10. Enhanced formation of cubic ice in aqueous organic acid droplets

    NASA Astrophysics Data System (ADS)

    Murray, Benjamin J.

    2008-04-01

    The homogeneous nucleation of ice in solution droplets is known to be an important mechanism of ice particle formation in the Earth's upper troposphere. It is known that the metastable cubic phase of ice can form when inorganic solution droplets freeze below about 200 K and that this may influence cloud properties and water vapor in the upper troposphere. However, many tropospheric aerosols contain a large and sometimes dominant proportion of oxygenated organic material in addition to inorganic substances. It is shown here that the threshold freezing temperature below which cubic ice forms and persists is shifted to considerably higher temperatures in solution droplets containing a carboxylic acid (2-hydroxypropane-1,2,3-tricarboxylic acid, citric acid, C6H8O7). Cubic and the stable hexagonal ice are the only phases to crystallize in micrometre sized citric acid droplets and therefore always exist in contact with aqueous citric acid solution. It is argued that the extremely high viscosity of low temperature aqueous citric acid solutions plays an important role in stabilizing cubic ice. The implications of these findings for ice clouds in the Earth's atmosphere are discussed.

  11. Biosorption of metal ions from aqueous solutions

    SciTech Connect

    Chen, Jiaping; Yiacoumi, Sotira

    1997-01-01

    Copper biosorption from aqueous solutions by calcium alginate is reported in this paper. The experimental section includes potentiometric titrations of biosorbents, batch equilibrium and kinetic studies of copper biosorption, as well as fixed-bed biosorption experiments. The potentiometric titration results show that the surface charge increases with decreasing pH. The biosorption of copper strongly depends on solution pH; the metal ion binding increases from 0 to 90 percent in pH ranging from 1.5 to 5.0. In addition, a decrease in ionic strength results in an increase of copper ion removal. Kinetic studies indicate that mass transfer plays an important role in the biosorption rate. Furthermore, a fixed-bed biosorption experiment shows that calcium alginate has a significant capacity for copper ion removal. The two-pK Basic Stem model successfully represents the surface charge and equilibrium biosorption experimental data. The calculation results demonstrate that the copper removal may result from the binding of free copper and its hydroxide with surface functional groups of the biosorbents.

  12. Opto-electrochemical spectroscopy of metals in aqueous solutions

    SciTech Connect

    Habib, K.

    2016-03-15

    In the present investigation, holographic interferometry was utilized for the first time to determine the rate change of the electrical resistance of aluminium samples during the initial stage of anodisation processes in aqueous solution. In fact, because the resistance values in this investigation were obtained by holographic interferometry, electromagnetic method rather than electronic method, the abrupt rate change of the resistance was called electrical resistance–emission spectroscopy. The anodisation process of the aluminium samples was carried out by electrochemical impedance spectroscopy (EIS) in different sulphuric acid concentrations (1.0%–2.5% H{sub 2}SO{sub 4}) at room temperature. In the meantime, the real time holographic interferometry was used to determine the difference between the electrical resistance of two subsequent values, dR, as a function of the elapsed time of the EIS experiment for the aluminium samples in 1.0%, 1.5%, 2.0%, and 2.5% H{sub 2}SO{sub 4} solutions. The electrical resistance–emission spectra of the present investigation represent a detailed picture of not only the rate change of the electrical resistance throughout the anodisation processes but also the spectra represent the rate change of the growth of the oxide films on the aluminium samples in different solutions. As a result, a new spectrometer was developed based on the combination of the holographic interferometry and electrochemical impedance spectroscopy for studying in situ the electrochemical behavior of metals in aqueous solutions.

  13. Formation of hydroxyapatite in various aqueous solutions

    NASA Astrophysics Data System (ADS)

    Sturgeon, Jacqueline Lee

    Hydroxyapatite (HAp), Ca10(PO4)6(OH) 2, is important in the field of biomaterials as it is the mineral component of bones and teeth. Biological apatites do not maintain an exact composition and are usually calcium-deficient, represented as Ca(10- x)(HPO 4)x(PO4)(6-x)(OH)(2-x), where x ranges from 0 to 1, with various ion substitutions. Formation of calcium-deficient hydroxyapatites (CDHAp) from solid calcium phosphate precursor materials was performed at physiologic temperature (37°C) in a variety of aqueous solutions. Two cement systems were utilized in these experiments: tetralcium phosphate (TetCP) with dicalcium phosphate anhydrous (DCPA) and beta-tricalcium phosphate (beta-TCP). The kinetics, solution chemistry, phase evolution, and microstructure of the developed apatites were analyzed as appropriate. Reaction of beta-TCP in ammonium fluoride solutions formed HAp substituted with fluoride and calculated to be deficient in calcium. A new ratio of TetCP to DCPA was used with solutions of sodium bicarbonate to form a calcium-deficient carbonate hydroxyapatite. The capacity for sodium dihydrogen phosphate to buffer pH increases and enhance reaction kinetics in this system was also explored. Formation of a highly crystalline CDHAp was achieved by hydrolyzing beta-TCP in water for extended time periods. Lattice parameters were among the features characterized for this apatite. The hydrolysis of beta-TCP in phosphate buffered saline (PBS) and simulated body fluids (SBF) was also investigated; use of SBF was found to completely inhibit formation of HAp in this system while reaction in PBS was slow in comparison to water. The effects of filler materials on the mechanical properties of a calcium phosphate cement were examined using the TetCP/DCPA system. Dense aggregates were not found to decrease compressive strength in comparison to the cement alone. The use of aggregates was found to improve the compressive strength of cement formed using NaHCO3 solution as a

  14. Effect of temperature on the protonation of N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid in aqueous solutions: Potentiometric and calorimetric studies

    SciTech Connect

    Li, Xingliang; Zhang, Zhicheng; Endrizzi, Francesco; Martin, Leigh R.; Luo, Shunzhong; Rao, Linfeng

    2015-06-01

    The TALSPEAK process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Komplexes) has been demonstrated in several pilot-scale operations to be effective at separating trivalent actinides (An3+) from trivalent lanthanides (Ln3+). However, fundamental studies have revealed undesired aspects of TALSPEAK, such as the significant partitioning of Na+, lactic acid, and water into the organic phase, thermodynamically unpredictable pH dependence, and the slow extraction kinetics. In the modified TALSPEAK process, the combination of the aqueous holdback complexant HEDTA (N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid) with the extractant HEH[EHP] (2-ethyl(hexyl) phosphonic acid mono-2-ethylhexyl ester) in the organic phase has been found to exhibit a nearly flat pH dependence between 2.5 and 4.5 and more rapid phase transfer kinetics for the heavier lanthanides. To help understand the speciation of Ln3+ and An3+ in the modified TALSPEAK, systematic studies are underway on the thermodynamics of major reactions in the HEDTA system under conditions relevant to the process (e.g., higher temperatures). Thermodynamics of the protonation and complexation of HEDTA with Ln3+ were studied at variable temperatures. Equilibrium constants and enthalpies were determined by a combination of techniques including potentiometry and calorimetry. This paper presents the protonation constants of HEDTA at T = (25 to 70) °C. The potentiometric titrations have demonstrated that, stepwise, the first two protonation constants decrease and the third one slightly increases with the increase of temperature. This trend is in good agreement with the enthalpy of protonation directly determined by calorimetry. The results of NMR analysis further confirm that the first two protonation reactions occur on the diamine nitrogen atoms, while the third protonation reaction occurs on the oxygen of a

  15. Thermal properties of ethylene glycol aqueous solutions.

    PubMed

    Baudot, A; Odagescu, V

    2004-06-01

    Preventing ice crystallization by transforming liquids into an amorphous state, vitrification can be considered as the most suitable technique allowing complex tissues, and organs cryopreservation. This process requires the use of rapid cooling rates in the presence of cryoprotective solutions highly concentrated in antifreeze compounds, such as polyalcohols. Many of them have already been intensively studied. Their glass forming tendency and the stability of their amorphous state would make vitrification a reality if their biological toxicity did not reduce their usable concentrations often below the concentrations necessary to vitrify organs under achievable thermal conditions. Fortunately, it has been shown that mixtures of cryoprotectants tend to reduce the global toxicity of cryoprotective solutions and various efficient combinations have been proposed containing ethanediol. This work reports on the thermal properties of aqueous solutions with 40, 43, 45, 48, and 50% (w/w) of this compound measured by differential scanning calorimetry. The glass forming tendency and the stability of the amorphous state are evaluated as a function of concentration. They are given by the critical cooling rates v(ccr)above which ice crystallization is avoided, and the critical warming rates v(cwr) necessary to prevent ice crystallization in the supercooled liquid state during rewarming. Those critical rates are calculated using the same semi-empirical model as previously. This work shows a strong decrease of averaged critical cooling and warming rates when ethanediol concentration increases, V(ccr) and V(cwr) = 1.08 x 10 (10) K/min for 40% (w/w) whereas V(ccr) = 11 and V(cwr) = 853 K/min for 50% (w/w). Those results are compared with the corresponding properties of other dialcohols obtained by the same method. Ethylene glycol efficiency is between those of 1,2-propanediol and 1,3-propanediol.

  16. Raman spectroscopy application to analyses of components in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Li, Gang; Zhang, Guoping

    2006-09-01

    The characterization of species in aqueous solutions has presented a challenge to analytical and physical chemist, because the JR absorption of the aqueous solvent is so intense that it becomes difficult to observe the solute in the water by JR absorption. In contrast, Raman spectrum of the solute is unaffected by the water, so the weak scattering of water makes the technique well suited to aqueous samples, and the Raman spectrum exhibits well-defined bands corresponding to fundamental modes of vibration. In addition, Raman spectroscopy has some inherent advantages in aqueous solution analysis, because the spectral features of signals from different species are much more distinct, and it provides characteristic signatures for samples, such as blood, protein and cholesterol. All the advantages make Raman spectroscopy be a potential alternative for the study of aqueous solutions. Now, Raman spectroscopy has been applied to studying samples in aqueous solutions, blood serum, intracellular protein levels. Now, industrial wasted water contains many organic contaminants, and it is necessary to determine and monitor these contaminants. The paper first introduces Raman spectroscopy, and then describes its applications to determining the components in aqueous solutions, analyzes and assignes the Raman spectra of o-dichlorobenzene, o-xylene, m-xyiene and p-xylene in detail. The experimental results demonstrate that Raman spectroscopy is a particularly powerful technique for aqueous solutions analyses.

  17. PROCESS OF SEPARATING URANIUM FROM AQUEOUS SOLUTION BY SOLVENT EXTRACTION

    DOEpatents

    Warf, J.C.

    1958-08-19

    A process is described for separating uranium values from aqueous uranyl nitrate solutions. The process consists in contacting the uramium bearing solution with an organic solvent, tributyl phosphate, preferably diluted with a less viscous organic liquida whereby the uranyl nitrate is extracted into the organic solvent phase. The uranvl nitrate may be recovered from the solvent phase bv back extracting with an aqueous mediuin.

  18. Synthesis of linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite as an adsorbent for removal of Pb(ΙΙ) from aqueous solutions.

    PubMed

    Irani, Maryam; Ismail, Hanafi; Ahmad, Zulkifli; Fan, Maohong

    2015-01-01

    The purpose of this work is to remove Pb(II) from the aqueous solution using a type of hydrogel composite. A hydrogel composite consisting of waste linear low density polyethylene, acrylic acid, starch, and organo-montmorillonite was prepared through emulsion polymerization method. Fourier transform infrared spectroscopy (FTIR), Solid carbon nuclear magnetic resonance spectroscopy (CNMR)), silicon(-29) nuclear magnetic resonance spectroscopy (Si NMR)), and X-ray diffraction spectroscope ((XRD) were applied to characterize the hydrogel composite. The hydrogel composite was then employed as an adsorbent for the removal of Pb(II) from the aqueous solution. The Pb(II)-loaded hydrogel composite was characterized using Fourier transform infrared spectroscopy (FTIR)), scanning electron microscopy (SEM)), and X-ray photoelectron spectroscopy ((XPS)). From XPS results, it was found that the carboxyl and hydroxyl groups of the hydrogel composite participated in the removal of Pb(II). Kinetic studies indicated that the adsorption of Pb(II) followed the pseudo-second-order equation. It was also found that the Langmuir model described the adsorption isotherm better than the Freundlich isotherm. The maximum removal capacity of the hydrogel composite for Pb(II) ions was 430mg/g. Thus, the waste linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite could be a promising Pb(II) adsorbent. Copyright © 2014. Published by Elsevier B.V.

  19. Reactions of CO2 with aqueous piperazine solutions: formation and decomposition of mono- and dicarbamic acids/carbamates of piperazine at 25.0 °C.

    PubMed

    Conway, William; Fernandes, Debra; Beyad, Yaser; Burns, Robert; Lawrance, Geoffrey; Puxty, Graeme; Maeder, Marcel

    2013-02-07

    Piperazine (PZ) is widely recognized as a promising solvent for postcombustion capture (PCC) of carbon dioxide (CO(2)). In view of the highly conflicting data describing the kinetic reactions of CO(2)(aq) in piperazine solutions, the present study focuses on the identification of the chemical mechanism, specifically the kinetic pathways for CO(2)(aq) in piperazine solutions that form the mono- and dicarbamates, using the analysis of stopped-flow spectrophotometric kinetic measurements and (1)H NMR spectroscopic data at 25.0 °C. The complete set of rate and equilibrium constants for the kinetic pathways, including estimations for the protonation constants of the suite of piperazine carbamates/carbamic acids, is reported here using an extended kinetic model which incorporates all possible reactions for CO(2)(aq) in piperazine solutions. From the kinetic data determined in the present study, the reaction of CO(2)(aq) with free PZ was found to be the dominant reactive pathway. The superior reactivity of piperazine is confirmed in the kinetic rate constant determined for the formation of piperazine monocarbamic acid (k(7) = 2.43(3) × 10(4) M(-1) s(-1)), which is within the wide range of published values, making it one of the faster reacting amines. The corresponding equilibrium constant for the formation of the monocarbamic acid, K(7), markedly exceeds that of other monoamines. Kinetic and equilibrium constants for the remaining pathways indicate a minor contribution to the overall kinetics at high pH; however, these pathways may become more significant at higher CO(2) loadings and lower pH values where the concentrations of the reactive species are correspondingly higher.

  20. Extraction and Chromatographic Determination of Shikimic Acid in Chinese Conifer Needles with 1-Benzyl-3-methylimidazolium Bromide Ionic Liquid Aqueous Solutions

    PubMed Central

    Chen, Fengli; Hou, Kexin; Li, Shuangyang; Zu, Yuangang; Yang, Lei

    2014-01-01

    An ionic liquids-based ultrasound-assisted extraction (ILUAE) method was successfully developed for extracting shikimic acid from conifer needles. Eleven 1-alkyl-3-methylimidazolium ionic liquids with different cations and anions were investigated and 1-benzyl-3-methylimidazolium bromide solution was selected as the solvent. The conditions for ILUAE, including the ionic liquid concentration, ultrasound power, ultrasound time, and liquid-solid ratio, were optimized. The proposed method had good recovery (99.37%–100.11%) and reproducibility (RSD, n = 6; 3.6%). ILUAE was an efficient, rapid, and simple sample preparation technique that showed high reproducibility. Based on the results, a number of plant species, namely, Picea koraiensis, Picea meyeri, Pinus elliottii, and Pinus banksiana, were identified as among the best resources of shikimic acid. PMID:24782942

  1. Synthesis of poly(acrylic acid) coated-Fe3O4 superparamagnetic nano-composites and their fast removal of dye from aqueous solution.

    PubMed

    Zhou, Chunjiao; Zhang, Wenjie; Xia, Mingxia; Zhou, Weichang; Wan, Qiang; Peng, Kun; Zou, Bingsuo

    2013-07-01

    Poly(acrylic acid) (PAA) coated-Fe3O4 superparamagnetic nano-composites were synthesized through a solvothermal technique by using cheap and environmental friendly iron salts and PAA. Each nano-composite was composed of many small primary nanocrystals. The as-synthesized products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HRTEM), vibrating sample magnetometer (VSM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric-differential scanning calorimetry (TG-DSC) analysis and nitrogen adsorption-desorption measurements. These nano-composites showed rapid adsorption rate and super removal capacity of cation organic dye methylene blue (MB). Moreover, the MB desorption could be easily performed using methanol and acetic acid mixed solution. The reused performance of the nano-composites was also studied.

  2. REDUCTION OF ACIDITY OF NITRIC ACID SOLUTIONS BY USE OF FORMALDEHYDE

    DOEpatents

    Healy, T.V.

    1958-05-20

    A continuous method is described of concentrating by evaporation and reducing the nitrate ion content of an aqueous solution of metallic salts containing nitric acid not in excess of 8N. It consists of heating the solution and then passing formaldehyde into the heated solution to bring about decomposition of the nitric acid. The evolved gases containing NO are contacted countercurrently with an aqueous metal salt solution containing nitric acid in excess of 8N so as to bring about decomposition of the nitric acid and lower the normality to at least 8N, whereupon it is passed into the body of heated solution.

  3. Lead removal from aqueous solutions by a Tunisian smectitic clay.

    PubMed

    Chaari, Islem; Fakhfakh, Emna; Chakroun, Salima; Bouzid, Jalel; Boujelben, Nesrine; Feki, Mongi; Rocha, Fernando; Jamoussi, Fakher

    2008-08-15

    The adsorption of Pb(2+) ions onto Tunisian smectite-rich clay in aqueous solution was studied in a batch system. Four samples of clay (AYD, AYDh, AYDs, AYDc) were used. The raw AYD clay was sampled in the Coniacian-Early Campanian of Jebel Aïdoudi in El Hamma area (South of Tunisia). AYDh and AYDs corresponds to AYD activated by 2.5 mol/l hydrochloric acid and 2.5 mol/l sulphuric acid, respectively. AYDc corresponds to AYD calcined at different temperatures (100, 200, 300, 400, 500 and 600 degrees C). The raw AYD clay was characterized by X-ray diffraction, chemical analysis, infrared spectroscopy and coupled DTA-TGA. Specific surface area of all the clay samples was determined from nitrogen adsorption isotherms. Preliminary adsorption tests showed that sulphuric acid and hydrochloric acid activation of raw AYD clay enhanced its adsorption capacity for Pb(2+) ions. However, the uptake of Pb(2+) by AYDs was very high compared to that by AYDh. This fact was attributed to the greater solubility of clay minerals in sulphuric acid compared to hydrochloric acid. Thermic activation of AYD clay reduced the Pb(2+) uptake as soon as calcination temperature reaches 200 degrees C. All these preliminary results were well correlated to the variation of the specific surface area of the clay samples. The ability of AYDs sample to remove Pb(2+) from aqueous solutions has been studied at different operating conditions: contact time, adsorbent amount, metal ion concentration and pH. Kinetic experiments showed that the sorption of lead ions on AYDs was very fast and the equilibrium was practically reached after only 20 min. The results revealed also that the adsorption of lead increases with an increase in the solution pH from 1 to 4.5 and then decreases, slightly between pH 4.5 and 6, and rapidly at pH 6.5 due to the precipitation of some Pb(2+) ions. The equilibrium data were analysed using Langmuir isotherm model. The maximum adsorption capacity (Q(0)) increased from 25 to 25

  4. Efficacy of chlorine, acidic electrolyzed water and aqueous chlorine dioxide solutions to decontaminate Escherichia coli O157:H7 from lettuce leaves.

    PubMed

    Keskinen, Lindsey A; Burke, Angela; Annous, Bassam A

    2009-06-30

    This study compared the efficacy of chlorine (20-200 ppm), acidic electrolyzed water (50 ppm chlorine, pH 2.6), acidified sodium chlorite (20-200 ppm chlorite ion concentration, Sanova), and aqueous chlorine dioxide (20-200 ppm chlorite ion concentration, TriNova) washes in reducing populations of Escherichia coli O157:H7 on artificially inoculated lettuce. Fresh-cut leaves of Romaine or Iceberg lettuce were inoculated by immersion in water containing E. coli O157:H7 (8 log CFU/ml) for 5 min and dried in a salad spinner. Leaves (25 g) were then washed for 2 min, immediately or following 24 h of storage at 4 degrees C. The washing treatments containing chlorite ion concentrations of 100 and 200 ppm were the most effective against E. coli O157:H7 populations on Iceberg lettuce, with log reductions as high as 1.25 log CFU/g and 1.05 log CFU/g for TriNova and Sanova wash treatments, respectively. All other wash treatments resulted in population reductions of less than 1 log CFU/g. Chlorine (200 ppm), TriNova, Sanova, and acidic electrolyzed water were all equally effective against E. coli O157:H7 on Romaine, with log reductions of approximately 1 log CFU/g. The 20 ppm chlorine wash was as effective as the deionized water wash in reducing populations of E. coli O157:H7 on Romaine and Iceberg lettuce. Scanning electron microscopy indicated that E. coli O157:H7 that was incorporated into biofilms or located in damage lettuce tissue remained on the lettuce leaf, while individual cells on undamaged leaf surfaces were more likely to be washed away.

  5. Bloch Equations for Proton Exchange Reactions in an Aqueous Solution.

    PubMed

    Lee, Jae-Seung; Regatte, Ravinder R; Jerschow, Alexej

    2016-05-01

    The extension of the Bloch equations for acid-base reactions in an aqueous solution is revisited. The acid-base reactions are second-order, and several reactions catalyzed by distinct catalysts may happen simultaneously. By constructing pseudo first-order reactions and assuming fast dissemination of protons from catalysts to solvent water, this extension converges to the well-known Bloch-McConnell equations for a two-site first-order exchange. Thus, explicit relationships between the parameters appearing in the reactions and the Bloch-McConnell equations are established. The dependencies of exchange rates and chemical exchange saturation transfer effects on pH were numerically and experimentally investigated for representative examples.

  6. Bloch Equations for Proton Exchange Reactions in an Aqueous Solution

    PubMed Central

    Lee, Jae-Seung; Regatte, Ravinder R.; Jerschow, Alexej

    2017-01-01

    The extension of the Bloch equations for acid-base reactions in an aqueous solution is revisited. The acid-base reactions are second-order, and several reactions catalyzed by distinct catalysts may happen simultaneously. By constructing pseudo first-order reactions and assuming fast dissemination of protons from catalysts to solvent water, this extension converges to the well-known Bloch-McConnell equations for a two-site first-order exchange. Thus, explicit relationships between the parameters appearing in the reactions and the Bloch-McConnell equations are established. The dependencies of exchange rates and chemical exchange saturation transfer effects on pH were numerically and experimentally investigated for representative examples. PMID:29270098

  7. Removal of phosphate from aqueous solution using modified zeolite clays

    NASA Astrophysics Data System (ADS)

    Gan, Fangqun; Qin, Pinzhu; ying, Guan; Tang, Rong; Hu, Jien

    2017-09-01

    Phosphate adsorption capabilities of different treated zeolite clays were assessed from aqueous solution. Natural zeolites were treated by thermal activation over 120–800 °C for 2 h, and by hydrochloric ac-id solution from 1%-9%, respectively. The mechanisms of phosphate adsorption of these modified products were also studied through adsorption isotherms and adsorption kinetics experiments. The acid activation in-creased the phosphate sorption capacity and the highest phosphate sorption capacity occurred at AZT9 (zeo-lite activated by 9% hydrochloric acid), while thermal activation did not have the same effect. AZT9 showed higher adsorption rate than natural zeolite (ZT). The phosphate adsorption isotherms of ZT, H400 and AZT9 are fitted well with Langmuir equation in terms of R2 values. It suggested that the adsorption of phosphate on zeolite was homogeneous multilayer adsorption. Based on R2 values, the kinetics of phosphate adsorption on these three zeolites can be satisfactorily described by pseudo-second-order kinetic equation. Results of this study suggested that acid modified zeolite could be potentially used as a promising adsorption media for phosphate removal.

  8. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  9. Study on corrosion of carbon steel in DEA aqueous solutions

    NASA Astrophysics Data System (ADS)

    Yang, Jun Han; Xie, Jia Lin; Zhang, Li

    2018-02-01

    Corrosion of carbon steel in the CO2 capture process using diethanolamine (DEA) aqueous solutions was investigated. The effects of the mass concentrations of DEA, solution temperature and CO2 loading on the corrosion rate of carbon steel were demonstrated. The experimental results provided comprehensive information on the appropriate concentration range of DEA aqueous solutions under which low corrosion of carbon steel can be achieved.

  10. Stable aqueous colloidal solutions of intact surfactant-free graphene nanoribbons and related graphitic nanostructures.

    PubMed

    Dimiev, Ayrat M; Gizzatov, Ayrat; Wilson, Lon J; Tour, James M

    2013-04-04

    Here we demonstrate a simple, nondestructive method for the preparation of stable aqueous colloidal solutions of graphene nanoribbons and carbon nanotubes. The method includes sonication of carbon nanomaterials in hypophosphorous acid, filtration accompanied by washing the solids with water and dispersion of the solids in a fresh portion of water to form colloidal solutions.

  11. Solar photo-Fenton mineralization of antipyrine in aqueous solution.

    PubMed

    Durán, A; Monteagudo, J M; Sanmartín, I; Carrasco, A

    2013-11-30

    The mineralization of an aqueous solution of antipyrine (C11H12N2O), an emerging contaminant, using a solar photocatalytic oxidation process assisted with ferrioxalate was evaluated in a compound parabolic collector (CPC) pilot plant. Under the selected operating conditions ([H2O2] = 250 ppm, [Fe] = 14 ppm, pH = 2.7, and [(COOH)2·2H2O] = 80 ppm), 60% of TOC is removed just 5 min after treating an aqueous solution containing 50 ppm of antipyrine. The addition of oxalic acid up to a maximum concentration of 80 ppm significantly increases the mineralization rate during the first 15 min of the reaction. The synergism between the solar and dark H2O2/ferrioxalate process was quantified at 79%, calculated from the pseudo first-order mineralization rate constants. The operational costs due to the consumption of electrical energy, reagents and catalysts were calculated from the optimal conditions and compared with a novel sono-photocatalytic process using artificial UV-light. The results showed that the ferrioxalate-assisted solar photo-Fenton process was economically feasible, being able to achieve up to 60% mineralization with a total cost of 4.5 cent €/g TOC removed (1.1 €/m(3)). Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Nanostructured protic ionic liquids retain nanoscale features in aqueous solution while precursor Brønsted acids and bases exhibit different behavior.

    PubMed

    Greaves, Tamar L; Kennedy, Danielle F; Weerawardena, Asoka; Tse, Nicholas M K; Kirby, Nigel; Drummond, Calum J

    2011-03-10

    Small- and wide-angle X-ray scattering (SWAXS) has been used to investigate the effect that water has on the nanoscale structure of protic ionic liquids (PILs) along with their precursor Brønsted acids and bases. The series of PILs consisted of primary, secondary, and tertiary alkylammonium cations in conjunction with formate, nitrate, or glycolate anions. Significant differences were observed for these systems. The nanoscale aggregates present in neat protic ionic liquids were shown to be stable in size on dilution to high concentrations of water, indicating that the water is localized in the ionic region and has little effect on the nonpolar domains. The Brønsted acid-water solutions did not display nanostructure at any water concentration. Primary amine Brønsted bases formed aggregates in water, which generally displayed characteristics of poorly structured microemulsions or a form of bicontinuous phase. Exceptions were butyl- and pentylamine with high water concentrations, for which the SWAXS patterns fitted well to the Teubner-Strey model for microemulsions. Brønsted base amines containing multiple alkyl chains or hydroxyl groups did not display nanostructure at any water concentration. IR spectroscopy was used to investigate the nature of water in the various solutions. For low PIL concentrations, the water was predominately present as bulk water for PIL molar fractions less than 0.4-0.5. At high PIL concentrations, in addition to the bulk water, there was a significant proportion of perturbed water, which is water influenced in some way by the cations and anions. The molecular state of the water in the studied amines was predominately present as bulk water, with smaller contributions from perturbed water than was seen in the PILs. © 2011 American Chemical Society

  13. Opto-electrochemical spectroscopy of metals in aqueous solutions

    SciTech Connect

    Habib, K., E-mail: khaledhabib@usa.net

    2016-03-15

    In the present investigation, holographic interferometry was utilized for the first time to determine the rate change of the electrical resistance of aluminium samples during the initial stage of anodisation processes in aqueous solution. In fact, because the resistance values in this investigation were obtained by holographic interferometry, electromagnetic method rather than electronic method, the abrupt rate change of the resistance was called electrical resistance–emission spectroscopy. The anodisation process of the aluminium samples was carried out by electrochemical impedance spectroscopy (EIS) in different sulphuric acid concentrations (1.0%–2.5% H{sub 2}SO{sub 4}) at room temperature. In the meantime, the real time holographicmore » interferometry was used to determine the difference between the electrical resistance of two subsequent values, dR, as a function of the elapsed time of the EIS experiment for the aluminium samples in 1.0%, 1.5%, 2.0%, and 2.5% H{sub 2}SO{sub 4} solutions. The electrical resistance–emission spectra of the present investigation represent a detailed picture of not only the rate change of the electrical resistance throughout the anodisation processes but also the spectra represent the rate change of the growth of the oxide films on the aluminium samples in different solutions. As a result, a new spectrometer was developed based on the combination of the holographic interferometry and electrochemical impedance spectroscopy for studying in situ the electrochemical behavior of metals in aqueous solutions.« less

  14. Effects of osmolytes on solvent features of water in aqueous solutions.

    PubMed

    Ferreira, Luisa A; Breydo, Leonid; Reichardt, Christian; Uversky, Vladimir N; Zaslavsky, Boris Y

    2017-04-01

    The solvatochromic solvent features of water (dipolarity/polarizability, π*, hydrogen bond donor acidity, α, and hydrogen bond acceptor basicity, β) of water have been determined in aqueous solutions of erythritol, glucose, inositol, sarcosine, xylitol and urea with concentrations from 0 to ~3 M and higher. The concentration effects of the osmolytes on the solvent features of water were characterized and compared with those reported previously for sorbitol, sucrose, trimethylamine N-oxide (TMAO), and trehalose. The solvent features of water in solutions of all osmolytes except TMAO and sarcosine were established to be linearly interrelated. It is shown that the concentration effects of essentially all nonionic osmolytes depend on osmolytes' lipophilicity, molecular polarizability, and polar surface area. It is demonstrated that solubility of various compounds in aqueous solutions of glucose, sucrose, sorbitol, and urea of varied concentrations may be described in terms of solvent dipolarity/polarizability of water in these solutions. Surface tension of aqueous solutions of sucrose and sorbitol may also be described in the same terms. The relative permittivity of aqueous solutions of glucose and sucrose may be described in terms of the solvent hydrogen bond donor acidity of water. It is suggested that the effects of nonionic osmolytes on behavior of proteins and nucleic acids in aqueous media may be considered in terms of the altered solvent features of water instead of "nano-molecular crowding" effect.

  15. METHOD OF RECOVERING PLUTONIUM VALUES FROM AQUEOUS SOLUTIONS BY CARRIER PRECIPITATION

    DOEpatents

    James, R.A.; Thompson, S.G.

    1959-11-01

    A process is presented for pretreating aqueous nitric acid- plutonium solutions containing a small quantity of hydrazine that has formed as a decomposition product during the dissolution of neutron-bombarded uranium in nitric acid and that impairs the precipitation of plutonium on bismuth phosphate. The solution is digested with alkali metal dichromate or potassium permanganate at between 75 and 100 deg C; sulfuric acid at approximately 75 deg C and sodium nitrate, oxaiic acid plus manganous nitrate, or hydroxylamine are added to the solution to secure the plutonium in the tetravalent state and make it suitable for precipitation on BiPO/sub 4/.

  16. Singlet Oxygen in Aqueous Solution: A Lecture Demonstration

    ERIC Educational Resources Information Center

    Shakhashiri, Bassam Z.; Williams, Lloyd G.

    1976-01-01

    Describes a demonstration that illustrates the red chemiluminescence due to singlet molecular oxygen that can be observed when aqueous solutions of hypochlorite ion and hydrogen peroxide are mixed. (MLH)

  17. Trace hydrazines in aqueous solutions accurately determined by gas chromatography

    NASA Technical Reports Server (NTRS)

    Welz, E. A., Jr.

    1967-01-01

    Trace amounts of hydrazines in aqueous solutions can be determined by using polythyleneimine /PEI/ in conjunction with the gas chromatographic column. The PEI specifically retains water without altering the separability or elution order of the hydrazine and associated constituents.

  18. Paracetamol degradation in aqueous solution by non-thermal plasma

    NASA Astrophysics Data System (ADS)

    Baloul, Yasmine; Aubry, Olivier; Rabat, Hervé; Colas, Cyril; Maunit, Benoît; Hong, Dunpin

    2017-08-01

    This study deals with paracetamol degradation in water using a non-thermal plasma (NTP) created by a dielectric barrier discharge (DBD). The effects of the NTP operating conditions on the degradation were studied, showing that the treatment efficiency of the process was highly dependent on the electrical parameters and working gas composition in the reactor containing the aqueous solution. A conversion rate higher than 99% was reached with an energy yield of 12 g/kWh. High resolution mass spectrometry (HRMS) measurements showed that the main species produced in water during the process were nitrogen compounds, carboxylic acids and aromatic compounds. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  19. The photosensitized oxidation of mixture of parabens in aqueous solution.

    PubMed

    Gryglik, D; Gmurek, M

    2018-02-01

    The work presents results of studies on the photosensitized oxidation of mixture of five parabens (methyl-, ethyl-, propyl-, n-butyl-, and benzylparaben) in aqueous solution. Aluminum phthalocyanine chloride tetrasulfonic acid and xenon lamp simulating solar radiation were used as a photosensitizer and a light source, respectively. The purpose was to investigate the influence of inhibitory effect compounds present in the mixture on the reaction rate. The influence of the addition of second photosensitizer on the parabens degradation rate was investigated. The effect of additives: tert-butanol - hydroxyl radical scavenger and sodium azide - singlet oxygen scavenger on reaction course was also determined. The transformation products formed during the photosensitized oxidation process were analyzed by UPLC-MS/MS. The efficiency of photosensitized oxidation of parabens with natural sunlight irradiation in the central Poland was checked.

  20. Interaction of adenylic acid with alkaline earth metal ions in the crystalline solid and aqueous solution. Evidence for the sugar C'2-endo/anti, C'3-endo/anti and C'4-exon/anti conformational changes.

    PubMed

    Tajmir-Riahi, H A

    1990-09-10

    The reaction of adenosine 5'-monophosphoric acid (H2-AMP) with the alkaline earth metal ions has been investigated in aqueous solution at neutral pH. The solid salts of Mg-AMP.5H2O, Ca-AMP.6H2O, Sr-AMP.7H2O and Ba-AMP.7H2O were isolated and characterized by Fourier transform infrared, 1H-NMR spectroscopy and X-ray powder diffraction measurements. Spectroscopic and other evidence showed that the Sr-AMP.7H2O and Ba-AMP.7H2O are isomorphous, whereas the Mg-AMP.5H2O and Ca-AMP.6H2O are not similar. The Mg2+ binding is through the N-7 (inner-sphere) and the phosphate group (outer-sphere via H2O), while the Ca2+ binds to the phosphate group (inner-sphere) and to the base N-7 site (outer-sphere through H2O). The Sr2+ and Ba2+ bind to H2O molecules, H-bonding to the N-7, N-1 and the phosphate group (outer-sphere). In aqueous solution, an equilibrium between the inner- and outer-sphere metal ion bindings can be established. The sugar moiety exhibited C'2-endo/anti conformation, in the free H2-AMP acid and the magnesium salt, C'3-endo/anti in the calcium salt and unusual C'4-exo/anti, in the strontium and barium salts.

  1. Extracting alcohols from aqueous solutions. [USDOE patent application

    DOEpatents

    Compere, A.L.; Googin, J.M.; Griffith, W.L.

    1981-12-02

    The objective is to provide an efficient process for extracting alcohols in aqueous solutions into hydrocarbon fuel mixtures, such as gasoline, diesel fuel and fuel oil. This is done by contacting an aqueous fermentation liquor with a hydrocarbon or hydrocarbon mixture containing carbon compounds having 5-18 carbon atoms, which may include gasoline, diesel fuel or fuel oil. The hydrocarbon-aqueous alcohol solution is then mixed with one or more of a group of polyoxyalkylene polymers to extract the alcohol into the hydrocarbon fuel-polyoxyalkylene polymer mixture.

  2. Characteristics of oil displacements by aqueous surfactant solutions

    SciTech Connect

    Minssieux, L.; Moulu, J.C.

    1981-01-01

    The aim of this laboratory work was a detailed study of oil recovery ability of aqueous surfactant solutions. The study was divided in two parts: (1) extensive determination of the physic-chemical properties of micellar solutions, involved in oil displacement mechanisms physico-chemical porous media; (2) analysis and interpretation of oil displacements by aqueous surfactant solutions. Application of a Buckley-Leverett type approach was considered to aid in the interpretation of the successive displacement steps observed during flooding by surfactant solutions at low or moderate concentrations. 18 refs.

  3. Computational Modeling of Actinide Ions in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Atta-Fynn, Raymond

    2014-03-01

    Unraveling the chemical behavior of actinide species is difficult owing to the complex electronic structure of these species, the fact that many of these species can occur in multiple oxidation states, and the difficulties encountered in their experimental studies. First principles dynamical modeling, although computationally costly, allows us to gain rich insights into the behavior of actinide species. In this talk, we present results of the hydration shell structure and x-ray absorption spectra of aqueous actinides in different oxidation states including U(VI), U(V), U(IV), and Cm(III) using relativistic ab initiomolecular dynamics at 300 K. We also probed the thermodynamics of hydrolysis by calculating the first acidity constant for uranium in all three oxidation states (IV, V, and VI). We predicted, for the first time, that UO2+ is a weak acid in solution with a pKa value of 8.5. This result is particularly important since no thermodynamic data are available for hydrolyzed species of U(V). In our most recent work on concentrated Cm(III) solutions, we showed that counter-ions can strengthen or weaken the solvent structure itself rather than just the water coordination number. These new results are better explained in terms of the hydrogen bond lifetimes of the solvents.

  4. Quasi-immiscible spreading of aqueous surfactant solutions on entangled aqueous polymer solution subphases.

    PubMed

    Sharma, Ramankur; Corcoran, Timothy E; Garoff, Stephen; Przybycien, Todd M; Swanson, Ellen R; Tilton, Robert D

    2013-06-26

    Motivated by the possibility of enhancing aerosol drug delivery to mucus-obstructed lungs, the spreading of a drop of aqueous surfactant solution on a physically entangled aqueous poly(acrylamide) solution subphase that mimics lung airway surface liquid was investigated. Sodium dodecyl sulfate was used as the surfactant. To visualize spreading of the drop and mimic the inclusion of a drug substance, fluorescein, a hydrophilic and non-surface-active dye, was added to the surfactant solution. The spreading progresses through a series of events. Marangoni stresses initiate the convective spreading of the drop. Simultaneously, surfactant escapes across the drop's contact line within a second of deposition and causes a change in subphase surface tension outside the drop on the order of 1 mN/m. Convective spreading of the drop ends within 2-3 s of drop deposition, when a new interfacial tension balance is achieved. Surfactant escape depletes the drop of surfactant, and the residual drop takes the form of a static lens of nonzero contact angle. On longer time scales, the surfactant dissolves into the subphase. The lens formed by the water in the deposited drop persists for as long as 3 min after the convective spreading process ends due to the long diffusional time scales associated with the underlying entangled polymer solution. The persistence of the lens suggests that the drop phase behaves as if it were immiscible with the subphase during this time period. Whereas surfactant escapes the spreading drop and advances on the subphase/vapor interface, hydrophilic dye molecules in the drop do not escape but remain with the drop throughout the convective spreading. The quasi-immiscible nature of the spreading event suggests that the chemical properties of the surfactant and subphase are much less important than their physical properties, consistent with prior qualitative studies of spreading of different types of surfactants on entangled polymer subphases: the selection of

  5. The effect of aqueous solution in Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Yuan, Xiaojuan; Dong, Xiao; Gu, Huaimin

    2009-08-01

    In Raman detection, the most popular solution for the samples is tri-distilled water. But the effect of aqueous solution is barely studied in Raman spectroscopy. In fact Raman spectroscopy of solid-state and liquid-state are obvious different. In addition, FWHM of Raman spectral peaks also change evidently. In this paper, several samples were selected for the experiment; including sodium nitrate, sodium nitrite, glucose and caffeine. By comparing the Raman spectroscopy of samples at different concentrations, it is found that the concentration of the sample can affect the strength of Raman spectroscopy, but it can hardly impact FWHM of Raman spectral peaks. By comparing the Raman spectroscopy of liquid-state with the Raman spectroscopy of solid-state, it is observed that the FWHM of some Raman spectral peaks varied obviously; that may be because when the sample was dissolved into the water, the crystal lattice structure was broken, and for some samples atom form became ion form in aqueous solution. Those structural variations caused the variation of the FWHM. The Raman spectroscopy of caffeine aqueous solution at very low concentration was also detected and analyzed. Compared with the Raman spectra of solid-state samples, it is found that some Raman spectral peaks disappeared when the sample was dissolved in water. It is possible that the low concentration of the sample result in the weakening of Raman signals and the disappearing of some weak Raman spectral peaks. Then Ag nanoparticles were added into the caffeine aqueous solution, the results suggest that surface enhanced Raman spectroscopy (SERS) not only can enhance the Raman spectral signal, but also can reduce the effect of aqueous solution. It is concluded that the concentration of sample only affects the strength of Raman spectroscopy; the aqueous solution can affect the FWHM of Raman spectral peaks; and SERS can reduce the effect of aqueous solution.

  6. Process for the recovery of strontium from acid solutions

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1992-03-31

    The invention is a process for selectively extracting strontium and technetium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant is a macrocyclic polyether in a diluent which is insoluble in water, but which will itself dissolve a small amount of water. The process will extract strontium and technetium values from nitric acid solutions which are up to 6 molar in nitric acid. 5 figs.

  7. Process for the recovery of strontium from acid solutions

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1992-01-01

    The invention is a process for selectively extracting strontium and technetium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant is a macrocyclic polyether in a diluent which is insoluble in water, but which will itself dissolve a small amount of water. The process will extract strontium and technetium values from nitric acid solutions which are up to 6 molar in nitric acid.

  8. Molecular dynamics simulation of biomembranes in aqueous solution

    NASA Astrophysics Data System (ADS)

    Bostick, David Lee

    In recent years, the developments in classical molecular dynamics simulation have allowed for an atomistic depiction of mesoscopic biological systems. With the awareness of such developments, the natural strive of the scientific community has been to increase the size of such simulated systems [70]. Nonetheless, the subtleties in the properties of biomembranes require an unusually thoughtful approach [70, 203]. In this work, a hierarchical approach is taken, with respect to system complexity, in the classical molecular dynamics simulation of biomembrane systems in aqueous solution. A progression of simulation studies is presented that begins with the analysis of the interfacial properties of neat bilayers composed of zwitterionic (phosphatidylcholine) lipids in both pure water and in electrolyte. We move on to study mixed bilayers containing zwitterionic (phosphatidylcholine) and acidic (phosphatidylserine) lipids with counterions immersed in electrolyte. Yet another layer of complexity is added to the problem by studying hydrated bilayers containing phosphatidylcholine lipids and cholesterol. Finally, we address the semipermeable nature of biomembranes by studying two membrane-channel systems. We start with a simple model membrane-channel consisting of a six-helix alamethicin bundle embedded in a hydrated phosphatidylcholine bilayer. The knowledge gained from this study is then carried over to the simulation of a large membrane-embedded prokaryotic ClC Cl-/H + antiporter, utilizing a free-energetic analysis to reveal the role of protons in the Cl- transport mechanism. Throughout the progression, methods are developed and used in the analysis of interfacial aqueous solution structure, ion-membrane binding, lipid structural properties, inter-lipid hydrogen bonded complexation, and electrostatics at the membrane interface. The developments reveal the layered nature of water near the rugged, molecularscale aqueous solution/membrane interface and its electrostatic

  9. Mechanism of chitosan adsorption on silica from aqueous solutions.

    PubMed

    Tiraferri, Alberto; Maroni, Plinio; Rodríguez, Diana Caro; Borkovec, Michal

    2014-05-06

    We present a study of the adsorption of chitosan on silica. The adsorption behavior and the resulting layer properties are investigated by combining optical reflectometry and the quartz crystal microbalance. Exactly the same surfaces are used to measure the amount of adsorbed chitosan with both techniques, allowing the systematic combination of the respective experimental results. This experimental protocol makes it possible to accurately determine the thickness of the layers and their water content for chitosan adsorbed on silica from aqueous solutions of varying composition. In particular, we study the effect of pH in 10 mM NaCl, and we focus on the influence of electrolyte type and concentration for two representative pH conditions. Adsorbed layers are stable, and their properties are directly dependent on the behavior of chitosan in solution. In mildly acidic solutions, chitosan behaves like a weakly charged polyelectrolyte, whereby electrostatic attraction is the main driving force for adsorption. Under these conditions, chitosan forms rigid and thin adsorption monolayers with an average thickness of approximately 0.5 nm and a water content of roughly 60%. In neutral solutions, on the other hand, chitosan forms large aggregates, and thus adsorption layers are significantly thicker (∼10 nm) as well as dissipative, resulting in a large maximum of adsorbed mass around the pK of chitosan. These films are also characterized by a substantial amount of water, up to 95% of their total mass. Our results imply the possibility to produce adsorption layers with tailored properties simply by adjusting the solution chemistry during adsorption.

  10. Aqueous solutions at the interface with phospholipid bilayers.

    PubMed

    Berkowitz, Max L; Vácha, Robert

    2012-01-17

    In a sense, life is defined by membranes, because they delineate the barrier between the living cell and its surroundings. Membranes are also essential for regulating the machinery of life throughout many interfaces within the cell's interior. A large number of experimental, computational, and theoretical studies have demonstrated how the properties of water and ionic aqueous solutions change due to the vicinity of membranes and, in turn, how the properties of membranes depend on the presence of aqueous solutions. Consequently, understanding the character of aqueous solutions at their interface with biological membranes is critical to research progress on many fronts. The importance of incorporating a molecular-level description of water into the study of biomembrane surfaces was demonstrated by an examination of the interaction between phospholipid bilayers that can serve as model biological membranes. The results showed that, in addition to well-known forces, such as van der Waals and screened Coulomb, one has to consider a repulsion force due to the removal of water between surfaces. It was also known that physicochemical properties of biological membranes are strongly influenced by the specific character of the ions in the surrounding aqueous solutions because of the observation that different anions produce different effects on muscle twitch tension. In this Account, we describe the interaction of pure water, and also of aqueous ionic solutions, with model membranes. We show that a symbiosis of experimental and computational work over the past few years has resulted in substantial progress in the field. We now better understand the origin of the hydration force, the structural properties of water at the interface with phospholipid bilayers, and the influence of phospholipid headgroups on the dynamics of water. We also improved our knowledge of the ion-specific effect, which is observed at the interface of the phospholipid bilayer and aqueous solution, and its

  11. SEPARATION OF TECHNETIUM FROM AQUEOUS SOLUTIONS BY COPRECIPITATION WITH MAGNETITE

    DOEpatents

    Rimshaw, S.J.

    1961-10-24

    A method of separating technetium in the 4+ oxidation state from an aqueous basic solution containing products of uranium fission is described. The method consists of contacting the solution with finely divided magnetite and recovering a technetium-bearing precipitate. (AEC)

  12. Antiscalant properties of Spergularia rubra and Parietaria officinalis aqueous solutions

    NASA Astrophysics Data System (ADS)

    Cheap-Charpentier, Hélène; Gelus, Dominique; Pécoul, Nathalie; Perrot, Hubert; Lédion, Jean; Horner, Olivier; Sadoun, Jonathan; Cachet, Xavier; Litaudon, Marc; Roussi, Fanny

    2016-06-01

    The formation of calcium carbonate in water has important implications in industry. Chemical antiscalant is usually used to control scale depositions. Plant extracts have been recently used as new green antiscalant agents, as they can be easily prepared and are environmentally friendly. In this study, stock aqueous solutions of Spergularia rubra and Parietaria officinalis, two plants used in traditional medicine to treat or prevent urolithiasis, were obtained by infusion. The antiscaling properties of these extracts towards CaCO3 formation were tested by using chronoamperometry and Fast Controlled Precipitation methods. The aqueous solution of S. rubra was further fractionated to isolate compounds of lower polarity. Their efficiency towards CaCO3 precipitation was characterized by Fast Controlled Precipitation method. The inhibiting efficiency of this fractionated solution was greater than that of the stock aqueous solution.

  13. Trifluoromethylation of Alkyl Radicals in Aqueous Solution.

    PubMed

    Shen, Haigen; Liu, Zhonglin; Zhang, Pei; Tan, Xinqiang; Zhang, Zhenzhen; Li, Chaozhong

    2017-07-26

    The copper-mediated trifluoromethylation of alkyl radicals is described. The combination of Et3SiH and K2S2O8 initiates the radical reactions of alkyl bromides or iodides with BPyCu(CF3)3 (BPy = 2,2'-bipyridine) in aqueous acetone at room temperature to afford the corresponding trifluoromethylation products in good yield. The protocol is applicable to various primary and secondary alkyl halides and exhibits wide functional group compatibility. A mechanism involving trifluoromethyl group transfer from Cu(II)-CF3 intermediates to alkyl radicals is proposed.

  14. Experimental determination of the temperature dependence of water activities for a selection of aqueous organic solutions

    NASA Astrophysics Data System (ADS)

    Ganbavale, G.; Marcolli, C.; Krieger, U. K.; Zuend, A.; Stratmann, G.; Peter, T.

    2014-09-01

    This work presents experimental data of the temperature dependence of water activity in aqueous organic solutions relevant for tropospheric conditions (200-273 K). Water activity (aw) at low temperatures (T) is a crucial parameter for predicting homogeneous ice nucleation. We investigated temperature-dependent water activities, ice freezing and melting temperatures of solutions, and vapour pressures of a selection of atmospherically relevant aqueous organic systems. To measure aw over a wide composition range and with a focus on low temperatures, we use various aw measurement techniques and instruments: a dew point water activity meter, an electrodynamic balance (EDB), differential scanning calorimetry (DSC), and a setup to measure the total gas phase pressure at equilibrium over aqueous solutions. Water activity measurements were performed for aqueous multicomponent and multifunctional organic mixtures containing the functional groups typically found in atmospheric organic aerosols, such as hydroxyl, carboxyl, ketone, ether, ester, and aromatic groups. The aqueous organic systems studied at several fixed compositions over a considerable temperature range differ significantly in their temperature dependence. Aqueous organic systems of 1,4-butanediol and methoxyacetic acid show a moderate decrease in aw with decreasing temperature. The aqueous M5 system (a multicomponent system containing five different dicarboxylic acids) and aqueous 2-(2-ethoxyethoxy)ethanol solutions both show a strong increase of water activity with decreasing temperature at high solute concentrations for T < 270 K and T < 260 K, respectively. These measurements show that the temperature trend of aw can be reversed at low temperatures and that linear extrapolations of high-temperature data may lead to erroneous predictions. To avoid this, experimentally determined aw at low temperature are needed to improve thermodynamic models towards lower temperatures and for improved predictions of the ice

  15. Experimental determination of the temperature dependence of water activities for a selection of aqueous organic solutions

    NASA Astrophysics Data System (ADS)

    Ganbavale, G.; Marcolli, C.; Krieger, U. K.; Zuend, A.; Stratmann, G.; Peter, T.

    2014-05-01

    This work presents experimental data of the temperature dependence of water activity in aqueous organic solutions relevant for tropospheric conditions (200-273 K). Water activity (aw) at low temperatures (T) is a crucial parameter for predicting homogeneous ice nucleation. We investigated temperature dependent water activities, ice freezing and melting temperatures of solutions, and vapour pressures of a selection of atmospherically relevant aqueous organic systems. To measure aw over a wide composition range and with a focus on low temperatures, we use various aw measurement techniques and instruments: a dew point water activity meter, an electrodynamic balance (EDB), differential scanning calorimetry (DSC), and a setup to measure the total gas phase pressure at equilibrium over aqueous solutions. Water activity measurements were performed for aqueous multicomponent and multifunctional organic mixtures containing the functional groups typically found in atmospheric organic aerosols, such as hydroxyl, carboxyl, ketone, ether, ester, and aromatic groups. The aqueous organic systems studied at several fixed compositions over a considerable temperature range differ significantly in their temperature dependence. Aqueous organic systems of 1,4-butanediol and methoxyacetic acid show a moderate decrease in aw with decreasing temperature. The aqueous M5 system (a multicomponent system containing five different dicarboxylic acids) and aqueous 2-(2-ethoxyethoxy)ethanol solutions both show a strong increase of water activity with decreasing temperature at high solute concentrations for T<270 K and T<260 K, respectively. These measurements show that the temperature trend of aw can be reversed at low temperatures and that linear extrapolations of high temperature data may lead to erroneous predictions. To avoid this, experimentally determined aw at low temperature are needed to improve thermodynamic models towards lower temperatures and for improved predictions of the ice

  16. Improved method for extracting lanthanides and actinides from acid solutions

    DOEpatents

    Horwitz, E.P.; Kalina, D.G.; Kaplan, L.; Mason, G.W.

    1983-07-26

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions uses a new series of neutral bi-functional extractants, the alkyl(phenyl)-N,N-dialkylcarbamoylmethylphosphine oxides. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high-level nuclear reprocessing waste solutions.

  17. Electrodialysis potential for fractionation of multicomponent aqueous solutions

    NASA Astrophysics Data System (ADS)

    Grzegorzek, Martyna; Majewska-Nowak, Katarzyna

    2017-11-01

    The paper aimed at the evaluation of the batch electrodialysis (ED) run in the course of treatment and desalination of various aqueous mixtures containing both mineral (sodium fluoride, sodium chloride) and organic substances (dyes or humic acids). The commercial ED stack (PCCell Bed) equipped with standard anion-exchange and cation-exchange membranes or monovalent selective anion-exchange membranes was used. The ED experiments were performed at a constant current density (1.56 or 1.72 mA/cm2). The mechanism of ion migration as well as membrane deposition for variable solution composition and various membrane types was analyzed The calculated mass balance and electrical energy demand for each ED run were helpful in evaluating the membrane fouling intensity. It was found that the presence of organic substances in the treated solution had a minor impact on energy consumption, but rather strongly affected chloride flux. The extent of organics deposition was significantly lower for monovalent selective anion-exchange membranes than for classic anion-exchange membranes.

  18. Metal ion removal from aqueous solution using physic seed hull.

    PubMed

    Mohammad, Masita; Maitra, Saikat; Ahmad, Naveed; Bustam, Azmi; Sen, T K; Dutta, Binay K

    2010-07-15

    The potential of physic seed hull (PSH), Jantropha curcas L. as an adsorbent for the removal of Cd(2+) and Zn(2+) metal ions from aqueous solution has been investigated. It has been found that the amount of adsorption for both Cd(2+) and Zn(2+) increased with the increase in initial metal ions concentration, contact time, temperature, adsorbent dosage and the solution pH (in acidic range), but decreased with the increase in the particle size of the adsorbent. The adsorption process for both metal ions on PSH consists of three stages-a rapid initial adsorption followed by a period of slower uptake of metal ions and virtually no uptake at the final stage. The kinetics of metal ions adsorption on PSH followed a pseudo-second-order model. The adsorption equilibrium data were fitted in the three adsorption isotherms-Freundlich, Langmuir and Dubinin-Radushkevich isotherms. The data best fit in the Langmuir isotherm indication monolayer chemisorption of the metal ions. The adsorption capacity of PSH for both Zn(2+) and Cd(2+) was found to be comparable with other available adsorbents. About 36-47% of the adsorbed metal could be leached out of the loaded PSH using 0.1M HCl as the eluting medium. 2010 Elsevier B.V. All rights reserved.

  19. Gamma-Radiolysis of Cysteine-Cysteamine Disulfide in Aqueous Solution,

    DTIC Science & Technology

    Gamma-radiolysis of a mixed disulfide, cysteine -cysteamine disulfide, in unbuffered aqueous solution (0.3 mM) was investigated in the presence and...absence of oxygen. The principal products were the thiols ( cysteine and cysteamine), the corresponding sulfinic and sulfonic acids, the symmetrical

  20. Products of hexachlorocyclopentadiene (C-56) in aqueous solution

    USGS Publications Warehouse

    Chou, S.-F.J.; Griffin, R.A.; Chou, I.-Ming; Larson, R.A.

    1987-01-01

    The photodegradation and degradation products of hexachlorocyclopentadiene (C-56) in aqueous solutions were studied in the laboratory. In each case, the half-life of C-56 was less than 4 min when exposed to sunlight. At least eight degradation products were positively or tentatively identified: 2,3,4,4,5-Pentachloro-2-cyclopentenone, hexachloro-2-cyclopentenone and hexachloro-3-cyclopentenone were the primary photodegradation products, and pentachlorocis-2,4-pentadienoic acid, Z- and E-pentachlorobutadiene and tetrachlorobutyne were the secondary degradation products. Dissociation of the primary photolysis products may proceed through corresponding pentadienoic acids to form smaller molecular weight compounds such as pentachlorobutadiene isomers and tetrachlorobutyne. In addition, dimerization of 2,3,4,4,5-pentachloro-2-cyclopentenone to form higher molecular weight compounds such as hexachloroindenone may present a minor route of degradation. The results also indicate that C-56 is highly photoreactive and suggest a possible pathway for the compound's transformation in the environment when exposed to sunlight. ?? 1987.

  1. Simple Formation of an Abiotic Porphyrinogen in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Lindsey, Jonathan S.; Ptaszek, Marcin; Taniguchi, Masahiko

    2009-12-01

    Porphyrins have long been proposed as key ingredients in the emergence of life yet plausible routes for forming their essential pyrrole precursor have heretofore not been identified. Here we show that the anaerobic reaction of δ-aminolevulinic acid (ALA, 1-5 mM) with the β-ketoester methyl 4-methoxyacetoacetate (2-40 mM) in water (pH 5-7) at 70-100°C for >6 h affords the porphyrinogen, which upon chemical oxidation gives the corresponding porphyrin in overall yield of up to 10%. The key intermediate is the α-methoxymethyl-substituted pyrrole, which undergoes tetramerization and macrocycle formation under kinetic control. The resulting type-I porphyrin bears four propionic acid and four carbomethoxy groups, is distinct from porphyrins (e.g., uroporphyrin or coproporphyrin) derivable from ALA alone via the extant universal biosynthetic path to tetrapyrroles, and is photoactive upon assembly into cationic micelles in aqueous solution. The simple self-organization of eight acyclic molecules into a tetrapyrrole macrocycle, from which a porphyrin is derived that is photoactive in lipid assemblies, augurs well for the spontaneous origin of catalysts and pigments essential for prebiotic metabolism and proto-photosynthesis.

  2. Comparative study on 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol removal from aqueous solutions via ozonation, photocatalysis and non-thermal plasma using a planar falling film reactor.

    PubMed

    Hama Aziz, Kosar Hikmat; Miessner, Hans; Mueller, Siegfried; Mahyar, Ali; Kalass, Dieter; Moeller, Detlev; Khorshid, Ibrahim; Rashid, Muhammad Amin M

    2018-02-05

    Ozonation and advanced oxidation processes based on photocatalysis (P.C.) and non-thermal plasma generated in a dielectric barrier discharge (DBD) in different gas atmospheres were compared for the degradation and mineralization of 2,4-dichlorophenoxy acetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP) in aqueous solutions, using a planar falling film reactor with comparable design. The energetic yields (G 50 ) as measure of the efficiencies of the different methods are for 2,4-D in the order DBD/Ar-Fenton>ozonation>DBD/Ar>P.C.ozonation>DBD/Ar:O 2 ≫DBD/Air>P.C.oxidation. For 2,4-DCP the order is ozonation≫DBD/Ar-Fenton>P.C.ozonation>DBD/Ar>DBD/Ar:O 2 ≫P.C.oxidation>DBD/Air. The degradation by using ozone is very effective, but it should be noted that the mineralization measured by the total organic carbon (TOC) removal is low. The reason is the formation of stable towards ozone intermediates, especially low chain carboxylic acids. The fate of these intermediates during the degradation with the different methods has been followed and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Enthalpies and constants of dissociation of several neutral and cationic acids in aqueous and methanol/water solutions at various temperatures.

    PubMed

    Shoghi, Elham; Romero, Lilian; Reta, Mario; Ràfols, Clara; Bosch, Elisabeth

    2009-05-01

    The acidic dissociation enthalpies and constants of anilinium, protonated tris(hydroxymethyl)aminomethane (HTris(+)), benzoic and acetic acids, have been determined at several temperatures in pure water and in methanol/water mixtures by potentiometry and by isothermal titration microcalorimetry (ITC). The pK(a) values determined by both techniques are in accordance when the dissociation process involves large amounts of heat. However, for the neutral acids the ITC technique gave slightly lower pK(a) values than those from potentiometry at the highest temperatures studied due to the small amounts of heat involved in the acidic dissociation. The dissociation enthalpies have been determined directly by calorimetry and the obtained values slightly decrease with the increase of temperature. Therefore, only a rough estimation of the dissociation enthalpies can be obtained from potentiometric pK(a) by means of the Van't Hoff approach.

  4. Mesoscale inhomogeneities in aqueous solutions of small amphiphilic molecules.

    PubMed

    Subramanian, Deepa; Boughter, Christopher T; Klauda, Jeffery B; Hammouda, Boualem; Anisimov, Mikhail A

    2013-01-01

    Small amphiphilic molecules, also known as hydrotropes, are too small to form micelles in aqueous solutions. However, aqueous solutions of nonionic hydrotropes show the presence of a dynamic, loose, non-covalent clustering in the water-rich region, This clustering can be viewed as "micelle-like structural fluctuations". Although these fluctuations are short ranged (approximately 1 nm) and short lived (10 ps-50 ps), they may lead to thermodynamic anomalies. In addition, many experiments on aqueous solutions of hydrotropes show the occasional presence of mesoscale (approximately 100 nm) inhomogeneities. We have combined results obtained from molecular dynamics simulations, small-angle neutron scattering, and dynamic light-scattering experiments carried out on tertiary butyl alcohol (hydrotrope)-water solutions and on tertiary butyl alcohol-water-cyclohexane (hydrophobe) solutions to elucidate the nature and structure of these inhomogeneities. We have shown that stable mesoscale inhomogeneities occur in aqueous solutions of nonionic hydrotropes only when the solution contains a third, more hydrophobic, component. Moreover, these inhomogeneities exist in ternary systems only in the concentration range where structural fluctuations and thermodynamic anomalies are observed in the binary water-hydrotrope solutions. Addition of a hydrophobe seems to stabilize the water-hydrotrope structural fluctuations, and leads to the formation of larger (mesoscopic) droplets. The structure of these mesoscopic droplets is such that they have a hydrophobe-rich core, surrounded by a hydrogen-bonded shell of water and hydrotrope molecules. These droplets can be extremely long-lived, being stable for over a year. We refer to the phenomenon of formation of mesoscopic droplets in aqueous solutions of nonionic hydrotropes containing hydrophobes, as mesoscale solubilization. This phenomenon may represent a ubiquitous feature of nonionic hydrotropes that exhibit clustering in water, and may have

  5. Mineralization of paracetamol in aqueous solution with advanced oxidation processes.

    PubMed

    Torun, Murat; Gültekin, Özge; Şolpan, Dilek; Güven, Olgun

    2015-01-01

    Paracetamol is a common analgesic drug widely used in all regions of the world more than hundred tonnes per year and it poses a great problem for the aquatic environment. Its phenolic intermediates are classified as persistent organic pollutants and toxic for the environment as well as human beings. In the present study, the irradiation of aqueous solutions of paracetamol with 60Co gamma-rays was examined on a laboratory scale and its degradation path was suggested with detected radiolysis products. The synergic effect of ozone on gamma-irradiation was investigated by preliminary ozonation before irradiation which reduced the irradiation dose from 5 to 3 kGy to completely remove paracetamol and its toxic intermediate hydroquinone from 6 to 4 kGy as well as increasing the radiation chemical yield (Gi values 1.36 and 1.66 in the absence and presence of ozone, respectively). The observed amount of formed hydroquinone was also decreased in the presence of ozone. There is a decrease in pH from 6.4 to 5.2 and dissolved oxygen consumed, which is up to 0.8 mg l(-1), to form some peroxyl radicals used for oxidation. Analytical measurements were carried out with gas chromatography/mass spectrometry and ion chromatography (IC) both qualitatively and quantitatively. Amounts of paracetamol and hydroquinone were measured with gas chromatography after trimethylsilane derivatization. Small aliphatic acids, such as acetic acid, formic acid and oxalic acid, were measured quantitatively with IC as well as inorganic ions (nitrite and nitrate) in which their yields increase with irradiation.

  6. Carbon Dioxide Capture by Aqueous Ionic Liquid Solutions.

    PubMed

    Simon, Nathalia M; Zanatta, Marcileia; Dos Santos, Francisco P; Corvo, Marta C; Cabrita, Eurico J; Dupont, Jairton

    2017-12-22

    Confined water in aqueous solutions of imidazolium-based ionic liquids (ILs) associated with acetate and imidazolate anions react reversibly with CO 2 to yield bicarbonate. Three types of CO 2 sorption in these "IL aqueous solutions" were observed: physical, CO 2 -imidazolium adduct generation, and bicarbonate formation (up to 1.9 mol bicarbonate  mol -1 of IL), resulting in a 10:1 (molar ratio) total absorption of CO 2 relative to imidazolate anions in the presence of water 1:1000 (IL/water). These sorption values are higher than the classical alkanol amines or even alkaline aqueous solutions under similar experimental conditions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Separation and concentration of lower alcohols from dilute aqueous solutions

    DOEpatents

    Moore, Raymond H.; Eakin, David E.; Baker, Eddie G.; Hallen, Richard T.

    1991-01-01

    A process for producing, from a dilute aqueous solution of a lower (C.sub.1 -C.sub.5) alcohol, a concentrated liquid solution of the alcohol in an aromatic organic solvent is disclosed. Most of the water is removed from the dilute aqueous solution of alcohol by chilling sufficiently to form ice crystals. Simultaneously, the remaining liquid is extracted at substantially the same low temperature with a liquid organic solvent that is substantially immiscible in aqueous liquids and has an affinity for the alcohol at that temperature, causing the alcohol to transfer to the organic phase. After separating the organic liquid from the ice crystals, the organic liquid can be distilled to enrich the concentration of alcohol therein. Ethanol so separated from water and concentrated in an organic solvent such as toluene is useful as an anti-knock additive for gasoline.

  8. Chemical repair of base lesions, AP-sites, and strand breaks on plasmid DNA in dilute aqueous solution by ascorbic acid

    SciTech Connect

    Hata, Kuniki; Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1195; Urushibara, Ayumi

    2013-05-03

    Highlights: •We report a novel mechanism of radiation protection of DNA by chemical activity of ascorbic acid. •The “chemical repair” of DNA damage was revealed using biochemical assay and chemical kinetics analysis. •We found that ascorbic acid significantly repairs precursors of nucleobase lesions and abasic sites. •However, ascorbic acid seldom repairs precursors of DNA-strand breaks. -- Abstract: We quantified the damage yields produced in plasmid DNA by γ-irradiation in the presence of low concentrations (10–100 μM) of ascorbic acid, which is a major antioxidant in living systems, to clarify whether it chemically repairs radiation damage in DNA. The yield ofmore » DNA single strand breaks induced by irradiation was analyzed with agarose gel electrophoresis as conformational changes in closed circular plasmids. Base lesions and abasic sites were also observed as additional conformational changes by treating irradiated samples with glycosylase proteins. By comparing the suppression efficiencies to the induction of each DNA lesion, in addition to scavenging of the OH radicals derived from water radiolysis, it was found that ascorbic acid promotes the chemical repair of precursors of AP-sites and base lesions more effectively than those of single strand breaks. We estimated the efficiency of the chemical repair of each lesion using a kinetic model. Approximately 50–60% of base lesions and AP-sites were repaired by 10 μM ascorbic acid, although strand breaks were largely unrepaired by ascorbic acid at low concentrations. The methods in this study will provide a route to understanding the mechanistic aspects of antioxidant activity in living systems.« less

  9. Surface tension of aqueous electrolyte solutions. Thermodynamics.

    PubMed

    Drzymala, Jan; Lyklema, Johannes

    2012-06-28

    A thermodynamic theory is developed for obtaining the enthalpic and entropic contributions to the surface excess Gibbs energy of electrolyte solutions from the dependence of the surface tension on concentration and temperature. For elaboration, accurate activity coefficients in solution as functions of concentration and temperature are required. The theory is elaborated for (1-1) electrolytes and applied to HClO(4), HNO(3), NaCl, NaBr, and LiCl, of which the first two adsorb positively and the other three negatively. One of the conspicuous outcomes is that in all cases, the surface excess entropies slightly decrease with electrolyte activity but remain close to that of pure water, whereas the enthalpy is different from that. The implication is that the driving force for positive or negative adsorption must have an enthalpic origin. This finding can be useful in developing and evaluating theoretical models for the interpretation of surface tensions of electrolyte solutions.

  10. Method for removing organic liquids from aqueous solutions and mixtures

    DOEpatents

    Hrubesh, Lawrence W.; Coronado, Paul R.; Dow, Jerome P.

    2004-03-23

    A method for removing organic liquids from aqueous solutions and mixtures. The method employs any porous material preferably in granular form and having small pores and a large specific surface area, that is hydrophobic so that liquid water does not readily wet its surface. In this method, organics, especially organic solvents that mix with and are more volatile than water, are separated from aqueous solution by preferentially evaporating across the liquid/solid boundary formed at the surfaces of the hydrophobic porous materials. Also, organic solvents that are immiscible with water, preferentially wet the surfaces of the hydrophobic material and are drawn within the porous materials by capillary action.

  11. Effect of temperature on thermodynamic characteristics of the dissociation of glycylglycine in aqueous solutions of electrolytes

    NASA Astrophysics Data System (ADS)

    Kochergina, L. A.; Emel'Yanov, A. V.

    2011-10-01

    Heats of reaction of glycylglycine with nitric acid and potassium hydroxide solutions are determined by two calorimetric procedures at 288.15, 298.15, 308.15 K and an ionic strength of solution of 0.25, 0.50, and 0.75 in the presence of KNO3. Standard thermodynamic characteristics (Δr H°, Δr G°, Δr S°, and Δp C°) are calculated for the acid-base reactions in aqueous peptide solutions. The effects of the concentration of background electrolyte and temperature on the heats of dissociation of glycylglycine are considered.

  12. Fluoresence quenching of riboflavin in aqueous solution by methionin and cystein

    NASA Astrophysics Data System (ADS)

    Drössler, P.; Holzer, W.; Penzkofer, A.; Hegemann, P.

    2003-01-01

    The fluorescence quantum distributions, fluorescence quantum yields, and fluorescence lifetimes of riboflavin in methanol, DMSO, water, and aqueous solutions of the sulphur atom containing amino acids methionin and cystein have been determined. In methanol, DMSO, and water (pH=4-8) only dynamic fluorescence reduction due to intersystem crossing and internal conversion is observed. In aqueous methionin solutions of pH=5.25-9 a pH independent static and dynamic fluorescence quenching occurs probably due to riboflavin anion-methionin cation pair formation. In aqueous cystein solutions (pH range from 4.15 to 9) the fluorescence quenching increases with rising pH due to cystein thiolate formation. The cystein thiol form present at low pH does not react with neutral riboflavin. Cystein thiolate present at high pH seems to react with neutral riboflavin causing riboflavin deprotonation (anion formation) by cystein thiolate reduction to the cystein thiol form.

  13. Complications in complexation kinetics for lanthanides with DTPA using dye probe molecules in aqueous solution

    DOE PAGES

    Larsson, K.; Cullen, T. D.; Mezyk, S. P.; ...

    2017-05-17

    The complexation kinetics for the polyaminopolycarboxylic ligand DTPA to lanthanides in acidic aqueous solution were investigated using the dye ligand displacement technique and stopped-flow spectroscopy. Significant rate differences were obtained for different dye probes used, indicating that the kinetics of the dissociation of the dye molecule significantly impacts the overall measured kinetics when using this common methodology. The conditions of the solution also influenced the dye-lanthanide-DTPA interactions, which reconciled previously disparate data in the literature.

  14. Adsorption of lanthanum (III) from aqueous solution using 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester-grafted magnetic silica nanocomposites.

    PubMed

    Wu, Dongbei; Sun, Yanhong; Wang, Qigang

    2013-09-15

    In view of increasing attention of magnetic materials in the field of separation science and technology, we provide an effective route for fabrication of a new magnetic material with high adsorption capacity and selectivity toward metal ions, excellent acid resistance property and long service life. Silica was firstly coated on the magnetic particles, and then silane-coupling agent (3-chloropropyltryethosysilane) was used for grating 2-ethylhexyl phosphonic acid mono-2-ethylhexyl (P507), an organophosphorous acid extractant, on the surface of magnetic silica nanocomposite. The amount of P507 anchored on the particle was estimated to be 0.43 mmol/g. The P507-grafted magnetic silica nanocomposite was stable over pH range of 0-14. The maximum adsorption capacity of La (III) was 55.9 mg/g at the optimized pH 5.5. The adsorption of La (III) on our nanocomposites was found to follow the second order kinetics equation and fit Langmuir isotherm model well. The PO functional groups took an important role in the coordination and adsorption mechanism, which was confirmed by FTIR and XPS techniques. After 10 adsorption/desorption cycles, no obvious decrease in adsorption capacity or obvious loss in saturation magnetization were observed. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. pH-specific hydrothermal assembly of binary and ternary Pb(II)-(O,N-carboxylic acid) metal organic framework compounds: correlation of aqueous solution speciation with variable dimensionality solid-state lattice architecture and spectroscopic signatures.

    PubMed

    Gabriel, C; Perikli, M; Raptopoulou, C P; Terzis, A; Psycharis, V; Mateescu, C; Jakusch, T; Kiss, T; Bertmer, M; Salifoglou, A

    2012-09-03

    Hydrothermal pH-specific reactivity in the binary/ternary systems of Pb(II) with the carboxylic acids N-hydroxyethyl-iminodiacetic acid (Heida), 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid (Dpot), and 1,10-phenanthroline (Phen) afforded the new well-defined crystalline compounds [Pb(Heida)](n)·nH(2)O(1), [Pb(Phen)(Heida)]·4H(2)O(2), and [Pb(3)(NO(3))(Dpot)](n)(3). All compounds were characterized by elemental analysis, FT-IR, solution or/and solid-state NMR, and single-crystal X-ray diffraction. The structures in 1-2 reveal the presence of a Pb(II) center coordinated to one Heida ligand, with 1 exhibiting a two-dimensional (2D) lattice extending to a three-dimensional (3D) one through H-bonding interactions. The concurrent aqueous speciation study of the binary Pb(II)-Heida system projects species complementing the synthetic efforts, thereby lending credence to a global structural speciation strategy in investigating binary/ternary Pb(II)-Heida/Phen systems. The involvement of Phen in 2 projects the significance of nature and reactivity potential of N-aromatic chelators, disrupting the binary lattice in 1 and influencing the nature of the ultimately arising ternary 3D lattice. 3 is a ternary coordination polymer, where Pb(II)-Dpot coordination leads to a 2D metal-organic-framework material with unique architecture. The collective physicochemical properties of 1-3 formulate the salient features of variable dimensionality metal-organic-framework lattices in binary/ternary Pb(II)-(hydroxy-carboxylate) structures, based on which new Pb(II) materials with distinct architecture and spectroscopic signature can be rationally designed and pursued synthetically.

  16. Corrosion study of mild steel in aqueous sulfuric acid solution using 4-methyl-4H-1,2,4-triazole-3-thiol and 2-mercaptonicotinic acid - an experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Mehmeti, Valbonë V.; Berisha, Avni R.

    2017-08-01

    The corrosion behavior of mild steel in 0.1M aqueous sulfuric acid medium has been studied using weight loss, potentiodynamic polarization measurements, quantum chemical calculations and molecular dynamic simulations in the presence and absence of 4-methyl-4H-1,2,4-triazole-3-thiol and 2-mercaptonicotinic acid. Potentiodynamic measurements indicate that these compounds mostly act as mixed inhibitors due to their adsorption on the mild steel surface. The goal of the study was to use theoretical calculations to better understand the inhibition. Monte Carlo simulation was used to calculate the adsorption behavior of the studied molecules onto Fe (1 1 1) and Fe2O3 (1 1 1) surface. The molecules were also studied with the density functional theory (DFT), using the B3LYP functional in order to determine the relationship between the molecular structure and the corrosion inhibition behavior. More accurate adsorption energies between the studied molecules and iron or iron oxide were calculated by using density functional theory with periodic boundary conditions. The calculated theoretical parameters gave important assistance into the understanding the corrosion inhibition mechanism expressed by the molecules and are in full agreement with the experimental results.

  17. Thermodynamic characteristics of protolytic equilibria of L-serine in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kochergina, L. A.; Volkov, A. V.; Khokhlova, E. A.; Krutova, O. N.

    2011-05-01

    The heat effects of the reaction of aqueous solution of L-serine with aqueous solutions of HNO3 and KOH were determined by calorimetry at temperatures of 288.15, 298.15, and 308.15 K, and ionic strength values of 0.2, 0.5, and 1.0 (background electrolyte, KNO3). Standard thermodynamic characteristics (Δr H o, Δr G o, Δr S o, Δ C {/p o}) of the acid-base reactions in aqueous solutions of L-serine were calculated. The effect of the concentration of background electrolyte and temperature on the heats of dissociation of amino acid was considered. The combustion energy of L-serine by bomb calorimetry in the medium of oxygen was determined. The standard combustion and formation enthalpies of crystalline L-serine were calculated. The heats of dissolution of crystalline L-serine in water and solutions of potassium hydroxide at 298.15 K were measured by direct calorimetry. The standard enthalpies of formation of L-serine and products of its dissociation in aqueous solution were calculated.

  18. A tunable metal-polyaniline interface for efficient carbon dioxide electro-reduction to formic acid and methanol in aqueous solution.

    PubMed

    Zheng, Weiran; Nayak, Simantini; Yuan, Weizi; Zeng, Zhiyan; Hong, Xinlin; Vincent, Kylie A; Tsang, Shik Chi Edman

    2016-11-24

    It is reported that metals on polyaniline (PANI) prepared by a simple method can exhibit excellent activity in the electro-reduction of CO 2 to HCOOH or CH 3 OH due to tunable properties: N atoms on PANI capture CO 2 through a strong Lewis acid-base interaction while Pd atoms, amongst Pd, Pt, and Cu studied, facilitate the fastest proton and electron transfers along PANI to the CO 2 trapped sites to give rise to the best HCOOH yield in a highly cooperative manner.

  19. Multi-walled carbon nanotubes in aqueous phytic acid for enhancing biosensor

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyu; Miao, Yun; Ye, Pingping; Wen, Ying; Yang, Haifeng

    2014-04-01

    The poor dispersion of carbon based nanomaterials without strong acid pretreatment in aqueous solution is a fundamental problem, limiting its applications in biology-related fields. A good dispersion of multi-walled carbon nanotubes (MWCNTs) in water was realized by 50 wt.% phytic acid (PA) solution. As an application case, the PA-MWCNTs dispersion in aqueous solution was used for the immobilization of horseradish peroxidase (HRP) and its direct electrochemistry was realized. The constructed biosensor has a sound limit of detection, wide linear range, and high affinity for hydrogen peroxide (H2O2) as well as being free from interference of co-existing electro-active species.

  20. Photocatalytic degradation of molinate in aqueous solutions.

    PubMed

    Bizani, E; Lambropoulou, D; Fytianos, K; Poulios, I

    2014-11-01

    In this study, the degradation of molinate through heterogeneous photocatalysis, using two different types of the semiconductor TiO2 as photocatalyst, as well as through homogeneous treatment, applying the photo-Fenton reaction, has been investigated. As far as heterogeneous photocatalysis is concerned, the degradation of the pesticide follows apparent first-order kinetics, while the type of the catalyst and the pH value of the solution affect the degradation rate. The effect of the addition of electron scavengers (H2O2 and K2S2O8) was also studied. In the case of photo-Fenton-assisted system, the degradation also follows pseudo-first-order kinetics. Parameters such as iron's and electron scavenger's concentration and inorganic ions strongly affect the degradation rate. The extent of pesticide mineralization was investigated using dissolved organic carbon (DOC) measurements. The toxicity of the treated solution was evaluated using the Microtox test based on the luminescent bacteria Vibrio fischeri. The detoxification and mineralization efficiency was found to be dependent on the system studied, and although it did not follow the rate of pesticide disappearance, it took place in considerable extent. The study of the photodegradation treatment was completed by the determination of the intermediate by-products formed during the process, which was carried out using LC-MS/MS technique and led to similar compounds with both processes.

  1. First Occurrence of Tetrazines in Aqueous Solution: Electrochemistry and Fluorescence.

    PubMed

    Fritea, Luminiţa; Audebert, Pierre; Galmiche, Laurent; Gorgy, Karine; Le Goff, Alan; Villalonga, Reynaldo; Săndulescu, Robert; Cosnier, Serge

    2015-12-01

    The photophysical and electrochemical properties of tetrazines substituted by linear 2,3-naphtalimide antennas and/or adamantane groups specifically dedicated to host-guest interactions with cyclodextrins are studied both in organic and aqueous media. In acetonitrile solvent, the reduction potential of tetrazine leading to the anion radical is shifted, depending on the electron-withdrawing power of the substituent of the tetrazines. Due to the hydrophobic character of these compounds, their solubilization in aqueous solution is achieved successively in presence of either β-cyclodextrins or gold nanoparticules modified by β-cyclodextrins. We demonstrate that the formation of the inclusion compound tetrazine-cyclodextrin allows the solubilization of the tetrazines in aqueous solution. The supramolecular assemblies obtained in water retain tetrazine's emission properties, yielding a yellow fluorescence. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Stability of Medium-Bridged Twisted Amides in Aqueous Solutions

    PubMed Central

    Szostak, Michal; Yao, Lei; Aubé, Jeffrey

    2012-01-01

    “Twisted” amides containing non-standard dihedral angles are typically hypersensitive to hydrolysis, a feature that has stringently limited their utility in water. We have synthesized a series of bridged lactams that contain a twisted amide linkage but which exhibit enhanced stability in aqueous environments. Many of these compounds were extracted unchanged from aqueous mixtures ranging from the strongly basic to the strongly acidic. NMR experiments showed that tricyclic lactams undergo reversible hydrolysis at extreme pH ranges, but that a number of compounds in this structure class are indefinitely stable under physiologically relevant pH conditions; one bicyclic example was additionally water-soluble. We examined the effect of structure on the reversibility of amide bond hydrolysis, which we attributed to the transannular nature of the amino acid analogs. These data suggest that medium-bridged lactams of these types should provide useful platforms for studying the behavior of twisted amides in aqueous systems. PMID:19178141

  3. Radiolysis of paracetamol in dilute aqueous solution

    NASA Astrophysics Data System (ADS)

    Szabó, László; Tóth, Tünde; Homlok, Renáta; Takács, Erzsébet; Wojnárovits, László

    2012-09-01

    Using radiolytic experiments hydroxyl radical (main reactant in advanced oxidation processes) was shown to effectively destroy paracetamol molecules. The basic reaction is attachment to the ring. The hydroxy-cyclohexadienyl radical produced in the further reactions may transform to hydroxylated paracetamol derivatives or to quinone type molecules and acetamide. The initial efficiency of aromatic ring destruction in the absence of dissolved O2 is c.a. 10%. The efficiency is 2-3 times higher in the presence of O2 due to its reaction with intermediate hydroxy-cyclohexadienyl radical and the subsequent ring destruction reactions through peroxi radical. Upon irradiation the toxicity of solutions at low doses increases with the dose and then at higher doses it decreases. This is due to formation of compounds with higher toxicity than paracetamol (e.g. acetamide, hidroquinone). These products, however, are highly sensitive to irradiation and degrade easily.

  4. RECOVERY OF METAL VALUES FROM AQUEOUS SOLUTIONS BY SOLVENT EXTRACTION

    DOEpatents

    Moore, R.L.

    1959-09-01

    An organic solvent mixure is described for extracting actinides from aqueous solutions; the solvent mixture consists of from 10 to 25% by volume of tributyl phosphate and the remainder a chlorine-fluorine-substituted saturated hydrocarbon having two carbon atoms in the molecule.

  5. Stability of disodium salt of inosine phosphate in aqueous solutions.

    PubMed

    Jelińska, A; Lewandowski, T

    2000-01-01

    The HPLC method for the separation of the disodium salt of inosine phosphate (PIN) and the product of its transformation, inosine (IN) and hypoxanthine (HP) were developed and validated. The hydrolysis kinetics of disodium salt of inosine phosphate was studied in aqueous solution at 353 K over a pH range of 0.45-12.13.

  6. REMOVAL OF CESIUM FROM AQUEOUS SOLUTIONS BY ADSORPTION

    DOEpatents

    Knoll, K.C.

    1963-07-16

    A process of removing microquantities of cesium from aqueous solutions also containing macroquantities of other ions by adsorption on clinoptilolite is described. The invention resides in the pretreatment of the clinoptilolite by heating at 400 deg C and cooling prior to use. (AEC)

  7. Hydrogen generation by electrolysis of aqueous organic solutions

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Valdez, Thomas I. (Inventor)

    2002-01-01

    A device for electrolysis of an aqueous solution of an organic fuel. The electrolyte is a solid-state polymer membrane with anode and cathode catalysts on both surfaces for electro-oxidization and electro-reduction. A low-cost and portable hydrogen generator can be made based on the device with organic fuels such as methanol.

  8. Hydrogen generation by electrolysis of aqueous organic solutions

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Valdez, Thomas I. (Inventor)

    2006-01-01

    A device for electrolysis of an aqueous solution of an organic fuel. The electrolyte is a solid-state polymer membrane with anode and cathode catalysts on both surfaces for electro-oxidization and electro-reduction. A low-cost and portable hydrogen generator can be made based on the device with organic fuels such as methanol.

  9. Non-aqueous solution preparation of doped and undoped lixmnyoz

    DOEpatents

    Boyle, Timothy J.; Voigt, James A.

    1997-01-01

    A method for generation of phase-pure doped and undoped Li.sub.x Mn.sub.y O.sub.z precursors. The method of this invention uses organic solutions instead of aqueous solutions or nonsolution ball milling of dry powders to produce phase-pure precursors. These precursors can be used as cathodes for lithium-polymer electrolyte batteries. Dopants may be homogeneously incorporated to alter the characteristics of the powder.

  10. Formation of bioorganic compounds in aqueous solution induced by plasma.

    PubMed

    Harada, K; Takasaki, M; Naraoka, H; Nomoto, S

    1984-01-01

    When plasma jet of Ar-arc plasma was blown into an aqueous solution containing organic compounds, oxidation reactions were induced in the solution. The plasma-induced reaction was a powerful oxidation which could convert a methyl to a carboxyl group and cleave a carbon-carbon bond without using any oxidizing reagent. This reaction could be regarded as a model for the solar plasma-induced reaction in the primitive hydrosphere.

  11. Electrochemical removal of tannins from aqueous solutions

    SciTech Connect

    Buso, A.; Balbo, L.; Giomo, M.

    2000-02-01

    The application of electrochemical methods to remove tannins from wastewater was investigated. Gallotannic acid was used as the reference substance. Electrochemical experiments were performed using platinum electrodes. Macroscale potentiostatic or galvanostatic electrolyses were carried out with sodium sulfate or sodium chloride as supporting electrolytes, to analyze direct and indirect oxidation processes. Operating variables such as pH and chloride concentration were considered to determine their influence on the efficiency and energy consumption of the process. The simulation of a pilot plant was carried out with a mathematical model, the parameters of which were determined by fitting of experimental profiles. The resultsmore » of a preliminary investigation on the oxidation-coagulation process using sacrificial electrodes are also reported.« less

  12. Ab Initio MD Simulations of the Brønsted Acidity of Glutathione in Aqueous Solutions: Predicting pKa Shifts of the Cysteine Residue.

    PubMed

    Tummanapelli, Anil Kumar; Vasudevan, Sukumaran

    2015-12-10

    The tripeptide glutathione (GSH) is one of the most abundant peptides and the major repository for nonprotein sulfur in both animal and plant cells. It plays a critical role in intracellular oxidative stress management by the reversible formation of glutathione disulfide with the thiol-disulfide pair acting as a redox buffer. The state of charge of the ionizable groups of GSH can influence the redox couple, and hence the pKa value of the cysteine residue of GSH is critical to its functioning. Here we report ab initio Car-Parrinello molecular dynamics simulations of glutathione solvated by 200 water molecules, all of which are considered in the simulation. We show that the free-energy landscape for the protonation-deprotonation reaction of the cysteine residue of GSH computed using metadynamics sampling provides accurate estimates of the pKa and correctly predicts the shift in the dissociation constant values as compared with the isolated cysteine amino acid.

  13. A novel two-step coprecipitation process using Fe(III) and Al(III) for the removal and immobilization of arsenate from acidic aqueous solution.

    PubMed

    Jia, Yongfeng; Zhang, Danni; Pan, Rongrong; Xu, Liying; Demopoulos, George P

    2012-02-01

    Lime neutralization and coprecipitation of arsenate with iron is widely practiced for the removal and immobilization of arsenic from mineral processing effluents. However, the stability of the generated iron-arsenate coprecipitate is still of concern. In this work, we developed a two-step coprecipitation process involving the use of iron and aluminum and tested the stability of the resultant coprecipitates. The two-step Fe-As-Fe or Fe-As-Al coprecipitation process involved an initial Fe/As = 2 coprecipitation at pH4 to remove arsenic from water down to 0.25 mg/L, followed by introduction of iron or aluminum (Fe/As = 2, Al/As = 1.5 or 2). The two-step coprecipitates showed higher stability than traditional Fe/As = 4 coprecipitate under both oxic and anoxic conditions. Leaching stability was enhanced when aluminum was applied in the second step. The use of aluminum in the second step also inhibited microbial mediated arsenate reduction and arsenic remobilization. The results suggest that the two-step coprecipitation process is superior to conventional coprecipitation methods with respect to the stability of the generated arsenic-bearing solid waste. The use of Al in the second step is better than Fe to enhance the stability. This work may have important implications to the development of new technologies for efficient arsenic removal from hydrometallurgical solutions and safe disposal in both oxic and anoxic environment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Magnetic, core-shell structured and surface molecularly imprinted polymers for the rapid and selective recognition of salicylic acid from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Zulei; Niu, Dechao; Li, Yongsheng; Shi, Jianlin

    2018-03-01

    In this work, a novel kind of magnetic, core-shell structured and surface molecularly imprinted polymers (MMIPs) for the recognition of salicylic acid (SA) was facilely synthesized through a surface imprinting and sol-gel polymerization approach. The as-synthesized MMIPs exhibit uniform core-shell structure and favorable magnetic properties with a saturation magnetization of 22.8 emu g-1. The binding experiments demonstrated that MMIPs possessed high binding and specific recognition capacity, as well as fast binding kinetics and phase separation rate. The maximum binding capacity of MMIPs is around 36.8 mg g-1, nearly 6 times that of the magnetic non-imprinted polymers (MNIPs). Moreover, the selectivity experiments show that all the relative selectivity coefficients towards SA over its structure analogs are higher than 18, further indicating the markedly enhanced binding selectivity of MMIPs. Furthermore, the MMIPs were successfully applied for the determination of SA in environmental water samples with the recovery rates ranging from 94.0 to 108.0 %. This strategy may provide a versatile approach for the fabrication of well-defined molecularly imprinted polymers on nanomaterials for the analysis of complicated matrixes.

  15. Synthesis and characterization of polyacrylic acid- grafted-carboxylic graphene/titanium nanotube composite for the effective removal of enrofloxacin from aqueous solutions: Adsorption and photocatalytic degradation studies.

    PubMed

    Anirudhan, Thayyath S; Shainy, F; Christa, J

    2017-02-15

    Polyacrylic acid-grafted-carboxylic graphene/titanium nanotube (PAA-g-CGR/TNT) composite was synthesized. It was effectively used as adsorbent as well as photocatalyst. The composite was characterized by FTIR, XRD, SEM, TEM, Surface Area Analyzer, XPS and DRS. The photocatalytic activity of PAA-g-CGR/TNT composite was evaluated on the basis of the degradation of pollutants by using sunlight. The band gap of the prepared photocatalyst was found to be 2.6eV. The removal of the antibiotic enrofloxacin (ENR) was achieved by two step mechanism based on adsorption and photodegradation. The maximum adsorption was observed at pH 5.0. The best fitted kinetic model was found to be pseudo-second-order. The maximum adsorption was observed at 30°C. The maximum adsorption capacity was found to be 13.40mg/g. The kinetics of photodegradation of ENR onto PAA-g-CGR/TNT composite follow first-order kinetics and optimum pH was found to be 5.0. The regeneration and reuse of the adsorbent-cum-photocatalyst were also examined upto five cycles. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Irradiation of human insulin in aqueous solution, first step towards radiosterilization.

    PubMed

    Terryn, Hélène; Maquille, Aubert; Houée-Levin, Chantal; Tilquin, Bernard

    2007-10-01

    The degradation of irradiated human insulin in aqueous solutions was investigated in order to protect the protein against ionizing radiation. The influence of the drug concentration, excipients and irradiation temperature were studied. Aqueous solutions at pH 2 were irradiated by gamma rays or by accelerated electrons. Two different high-performance liquid chromatography (HPLC) methods were used: reverse-phase high-performance liquid chromatography (RP-HPLC)/UV and size exclusion liquid chromatography (SEC/UV) to investigate both the fragmentation and the formation of higher molecular weight proteins. In solution without excipients irradiated at ambient temperature at 10 kGy, the loss of human insulin is almost complete. Addition of radio-protecting excipients (free radicals scavengers) and cryo-irradiation allowed to decrease insulin degradation. The best radio-protector used was ascorbic acid in aqueous solution and oxidized glutathione in the frozen solutions. Only the combination of these two approaches (addition of scavenger and freezing) enables the irradiated human insulin in aqueous solution to meet the European Pharmacopoeia requirements for chemical potency (>or=90%).

  17. Surface tensions of inorganic multicomponent aqueous electrolyte solutions and melts.

    PubMed

    Dutcher, Cari S; Wexler, Anthony S; Clegg, Simon L

    2010-11-25

    A semiempirical model is presented that predicts surface tensions (σ) of aqueous electrolyte solutions and their mixtures, for concentrations ranging from infinitely dilute solution to molten salt. The model requires, at most, only two temperature-dependent terms to represent surface tensions of either pure aqueous solutions, or aqueous or molten mixtures, over the entire composition range. A relationship was found for the coefficients of the equation σ = c(1) + c(2)T (where T (K) is temperature) for molten salts in terms of ion valency and radius, melting temperature, and salt molar volume. Hypothetical liquid surface tensions can thus be estimated for electrolytes for which there are no data, or which do not exist in molten form. Surface tensions of molten (single) salts, when extrapolated to normal temperatures, were found to be consistent with data for aqueous solutions. This allowed surface tensions of very concentrated, supersaturated, aqueous solutions to be estimated. The model has been applied to the following single electrolytes over the entire concentration range, using data for aqueous solutions over the temperature range 233-523 K, and extrapolated surface tensions of molten salts and pure liquid electrolytes: HCl, HNO(3), H(2)SO(4), NaCl, NaNO(3), Na(2)SO(4), NaHSO(4), Na(2)CO(3), NaHCO(3), NaOH, NH(4)Cl, NH(4)NO(3), (NH(4))(2)SO(4), NH(4)HCO(3), NH(4)OH, KCl, KNO(3), K(2)SO(4), K(2)CO(3), KHCO(3), KOH, CaCl(2), Ca(NO(3))(2), MgCl(2), Mg(NO(3))(2), and MgSO(4). The average absolute percentage error between calculated and experimental surface tensions is 0.80% (for 2389 data points). The model extrapolates smoothly to temperatures as low as 150 K. Also, the model successfully predicts surface tensions of ternary aqueous mixtures; the effect of salt-salt interactions in these calculations was explored.

  18. Equilibrium, kinetic and mass transfer studies and column operations for the removal of arsenic(III) from aqueous solutions using acid treated spent bleaching earth.

    PubMed

    Mahramanlioglu, M; Güçlü, K

    2004-09-01

    In the present study, a new adsorbent was produced from spent bleaching earth by H2SO4 impregnation method. The sorption of arsenic(III) by acid treated spent bleaching earth was studied to examine the possibility of utilizing this material in water treatment systems. The effect of time, pH, initial concentration, temperature on the adsorption of arsenic(III) was studied. Maximum adsorption was found to occur at pH 9.0. The adsorption process followed the first order Lagergren equation. Mass transfer coefficients and rate constants of intraparticle diffusion were calculated. The experimental data points were fitted to the Langmuir equation in order to calculate the adsorption capacity (Q0) of the adsorbent and the value of Q0 was found to be 0.46 mmol g(-1). In order to understand the adsorption mechanism, Dubinin-Radushkevich (DR) isotherm was used. The magnitude of E calculated from DR equation was found to be 5.12 kJ mol(-1). The heat of adsorption (deltaH0 = -30367 J mol(-1)) implied that the adsorption was physical exothermic adsorption. The column studies were also carried out to simulate water treatment processes. The capacity values obtained in column studies were found to be greater than the capacity values obtained in batch studies. This result was explained by the difference between batch system and column system. The factors that affect the capacity values of column and batch systems were explained. The effect of other anions on the adsorption of arsenic(III) in the presence of NO3-, SO4(2-), Cl-, Br- was studied. The presence of these anions did not affect the adsorption of arsenic(III) significantly.

  19. A novel photochemical system of ferrous sulfite complex: kinetics and mechanisms of rapid decolorization of Acid Orange 7 in aqueous solutions.

    PubMed

    Zhou, Danna; Chen, Long; Zhang, Changbo; Yu, Yingtan; Zhang, Li; Wu, Feng

    2014-06-15

    We previously reported the decolorization of the azo dye Acid Orange 7 (AO7) by sulfate radical (SO4(-)) in the presence of iron(II) sulfite complex and oxygen under UV-vis irradiation (photo-iron(II) sulfite system). This system, however, achieves very limited mineralization of AO7 (in terms of total organic carbon (TOC) removal), which is not in accordance with literature reports on the oxidation of organic contaminants by SO4(-). In the present work, kinetics and products under irradiation of xenon lamp (350 W) were analyzed to reveal the reaction pathway of decolorization of AO7. Steady-state approximation (SSA) of SO4(-) radicals and apparent kinetics of AO7 were examined. The reaction between AO7 and SO4(-) was found to proceed in two steps, namely, electron transfer and SO4(-) addition. The second-order rate constant for the reaction between AO7 and SO4(-) was found to be 8.07 ± 1.07 × 10(9) M(-1) s(-1) by SSA and 6.80 ± 0.68 × 10(9) M(-1) s(-1) by competition kinetics method. The apparent kinetics of the decolorization of AO7 under irradiation closely fits the mechanism of radical chain reactions of various reactive sulfur species. By liquid chromatography coupled with mass spectrometry, we identified the sulfate adduct AO7-SO4 and confirmed the two-step reaction between AO7 and SO4(-). This stable sulfate adduct provides a good explanation of the poor TOC removal during decolorization of AO7 by the photo-iron(II) sulfite system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Molecular diffusivity of polycyclic aromatic hydrocarbons in aqueous solution

    SciTech Connect

    Gustafson, K.E.; Dickhut, R.M. . Dept. of Physical Sciences Virginia Inst. of Marine Sciences, Gloucester Point, VA )

    1994-04-01

    Knowledge of molecular diffusion is fundamental for describing processes that control the environmental fate and distribution of contaminants such as polycyclic aromatic hydrocarbons (PAHs). Measured molecular diffusion coefficients of several polycyclic aromatic hydrocarbons (PAHs) in aqueous solution indicate that available techniques largely overestimate the diffusivities of compounds with three or more aromatic rings. The molecular diffusivities of benzene, toluene, naphthalene, phenanthrene, anthracene, benz[a]anthracene, and pyrene were measured in water at temperatures ranging from 4 to 40 C using a modified open tube elution method. An experiment was conducted to assess the effects and interactions of solute concentration, temperature, and salinity on PAH aqueous molecular diffusivity. Aqueous diffusion coefficients increased with temperature and decreased with molar volume of the diffusing species. No significant effects of solute concentration (12.5--50% saturation) and salinity (0--35 ppt) were observed. The experimental data have been used to formulate a new predictive equation for estimation of aqueous molecular diffusivity of aromatic chemicals as a function of temperature.

  1. Influence of ions on aqueous acid-base reactions.

    PubMed

    Cox, M Jocelyn; Siwick, Bradley J; Bakker, Huib J

    2009-01-12

    We study the effects of bromide salts on the rate and mechanism of the aqueous proton/deuteron-transfer reaction between the photoacid 8-hydroxy-1,3,6-pyrenetrisulfonic acid (HPTS) and the base acetate. The proton/deuteron release is triggered by exciting HPTS with 400 nm femtosecond laser pulses. Probing the electronic and vibrational resonances of the photoacid, the conjugate photobase, the hydrated proton/deuteron and the accepting base with femtosecond visible and mid-infrared pulses monitors the proton transfer. Two reaction channels are identified: 1) direct long-range proton transfer over hydrogen-bonded water bridges that connect the acid and base and 2) acid dissociation to produce fully solvated protons followed by proton scavenging from solution by acetate. We observe that the addition of salt affects the long-range reaction pathway, and reduces both the rate at which protons are released to solution by HPTS and the rate at which solvated protons are scavenged from solution by acetate. We study the dependence of these effects on the nature and concentration of the dissolved salt.

  2. Degradation of alachlor in aqueous solution by using hydrodynamic cavitation.

    PubMed

    Wang, Xikui; Zhang, Yong

    2009-01-15

    The degradation of alachlor aqueous solution by using hydrodynamic cavitation was systematically investigated. It was found that alachlor in aqueous solution can be deomposed with swirling jet-induced cavitation. The degradation can be described by a pseudo-first-order kinetics and the degradation rate was found to be 4.90x10(-2)min(-1). The effects of operating parameters such as fluid pressure, solution temperature, initial concentration of alachlor and medium pH on the degradation rates of alachlor were also discussed. The results showed that the degradation rates of alachlor increased with increasing pressure and decreased with increasing initial concentration. An optimum temperature of 40 degrees C existed for the degradation rate of alachlor and the degradation rate was also found to be slightly depend on medium pH. Many degradation products formed during the process, and some of them were qualitatively identified by GC-MS.

  3. Study of thermodynamic and acoustic behaviour of nicotinic acid in binary aqueous mixtures of D-lactose

    NASA Astrophysics Data System (ADS)

    Sharma, Ravi; Thakur, R. C.

    2017-07-01

    In the present study, the thermodynamic properties such as partial molar volumes, partial molar expansibilities, partial molar compressibilities, partial molar heat capacities and isobaric thermal expansion coefficient of different solutions of nicotinic acid in binary aqueous mixtures of D-lactose have been determined at different temperatures (298.15, 303.15, 308.15, 313.15) K. Masson's equation is used to interpret the data in terms of solute-solute and solute-solvent interactions. In the present study it has been found that nicotinic acid behaves as structure maker in aqueous and binary aqueous mixtures of D-lactose.

  4. Spontaneous Oligomerization of Nucleotide Alternatives in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Smith, Karen E.; House, Christopher H.; Dworkin, Jason P.; Callahan, Michael P.

    2017-03-01

    On early Earth, a primitive polymer that could spontaneously form from likely available precursors may have preceded both RNA and DNA as the first genetic material. Here, we report that heated aqueous solutions containing 5-hydroxymethyluracil (HMU) result in oligomers of uracil, heated solutions containing 5-hydroxymethylcytosine (HMC) result in oligomers of cytosine, and heated solutions containing both HMU and HMC result in mixed oligomers of uracil and cytosine. Oligomerization of hydroxymethylated pyrimidines, which may have been abundant on the primitive Earth, might have been important in the development of simple informational polymers.

  5. Thermostatic water bath for experimental studies in aqueous solutions

    SciTech Connect

    Sibert, R.M.; McGee, K.A.; Hostetler, P.B.

    1977-01-01

    A temperature-controlled water bath for the study of ion-pairing equilibria and mineral solubility in aqueous solutions below 100/sup 0/C is described. The bath is similar to a previously described system (P.B. Hostetler and C.L. Christ, 1968, U.S. Geol. Survey Prof. Paper 600--D, p. D217--D221) but incorporates several significant improvements. Included among these are a more efficient stirring mechanism, a potentially larger solid-to-solution ratio, and improved equilibration of the gas phase with the solution.

  6. Process of concentrating ethanol from dilute aqueous solutions thereof

    DOEpatents

    Oulman, Charles S. [Ames, IA; Chriswell, Colin D. [Slater, IA

    1981-07-07

    Relatively dilute aqueous solutions of ethanol are concentrated by passage through a bed of a crystalline silica polymorph, such as silicalite, to adsorb the ethanol with residual dilute feed in contact with the bed, which is displaced by passing concentrated aqueous ethanol through the bed without displacing the adsorbed ethanol. A product concentrate is then obtained by removing the adsorbed ethanol from the bed together with at least a portion of the concentrated aqueous ethanol used as the displacer liquid. This process permits ethanol to be concentrated from dilute fermentation beers, which may contain from 6 to 10% ethanol, to obtain a concentrate product at very low energy cost having an ethanol concentration in excess of 95%, such as a concentration of from 98 to 99.5%.

  7. Process of concentrating ethanol from dilute aqueous solutions thereof

    DOEpatents

    Oulman, C.S.; Chriswell, C.D.

    1981-07-07

    Relatively dilute aqueous solutions of ethanol are concentrated by passage through a bed of a crystalline silica polymorph, such as silicalite, to adsorb the ethanol with residual dilute feed in contact with the bed, which is displaced by passing concentrated aqueous ethanol through the bed without displacing the adsorbed ethanol. A product concentrate is then obtained by removing the adsorbed ethanol from the bed together with at least a portion of the concentrated aqueous ethanol used as the displacer liquid. This process permits ethanol to be concentrated from dilute fermentation beers, which may contain from 6 to 10% ethanol, to obtain a concentrate product at very low energy cost having an ethanol concentration in excess of 95%, such as a concentration of from 98 to 99.5%. 5 figs.

  8. Evaluation of the Capability of Ionic Liquid-Amino Acid Aqueous Systems for the Formation of Aqueous Biphasic Systems and Their Applications in Extraction.

    PubMed

    Noshadi, Sajjad; Sadeghi, Rahmat

    2017-03-30

    To obtain further experimental evidence for a better understanding of the molecular mechanisms responsible for the soluting-out effect phenomena in ternary systems composed of an ionic liquid (IL), amino acid, and water, systematic studies on the vapor-liquid, liquid-liquid, and solid-liquid equilibrium behavior of aqueous solutions of several ILs were carried out in the presence of a range of amino acids. Water activities for binary and ternary aqueous solutions containing 1-butyl-3-methylimidazolium chloride, [C 4 mim]Cl, 1-hexyl-3-methylimidazolium chloride, [C 6 mim]Cl, 1-butyl-3-methyl-imidazolium trifluoromethanesulfonate, [C 4 mim][CF 3 SO 3 ], l-Ser, Gly, Ala, and l-Pro were measured using both vapor pressure osmometry and isopiestic methods. All of the ternary IL + amino acid + water systems show negative deviations from semi-ideal behavior and therefore soluting-out effects have been observed in these systems. In the case of the [C 4 mim][CF 3 SO 3 ] + amino acids aqueous systems, the IL is soluted-out by the amino acids and the soluting-out effect appears by aqueous biphasic system formation. For these systems, the phase diagram and partition coefficient of caffeine were measured at 298.15 K. However, for the [C 4 mim]Cl and [C 6 mim]Cl containing systems, the amino acids are soluted-out by the ILs and the soluting-out effect appears by precipitation of the amino acids from the solution, and the solubilities of the amino acids in the aqueous solutions decrease in the presence of [C 4 mim]Cl and [C 6 mim]Cl.

  9. Dendritic chelating agents. 2. U(VI) binding to poly(amidoamine) and poly(propyleneimine) dendrimers in aqueous solutions.

    PubMed

    Diallo, Mamadou S; Arasho, Wondwossen; Johnson, James H; Goddard, William A

    2008-03-01

    Chelating agents are widely employed in many separation processes used to recover uranyl [U(VI)] from contaminated aqueous solutions. This article describes an experimental investigation of the binding of U(VI) to poly(amidoamine) [PAMAM] and poly(propyleneimine) [PPI] dendrimers in aqueous solutions. We combine fluorescence spectroscopy with bench scale ultrafiltration experiments to measure the extent of binding and fractional binding of U(VI) in aqueous solutions of these dendrimers as a function of (i) metal-ion dendrimer loading, (ii) dendrimer generation, (iii) dendrimer core and terminal group chemistry, and (iv) solution pH and competing ligands (NO3-, PO4(3-), CO3(2-), and Cl-). The overall results of this study suggest that uranyl binding to PAMAM and PPI dendrimers in aqueous solutions involves the coordination of the UO2(2+) ions with the dendrimer amine, amide, and carboxylic groups. We find significant binding of U(VI) to PAMAM dendrimers in (i) acidic solutions containing up to 1.0 M HNO3 and H3PO4 and (ii) in basic solutions containing up to 0.5 M Na2CO3. However, no binding of U(VI) by PAMAM dendrimers is observed in aqueous solutions containing 1.0 M NaCl at pH 3.0. These results strongly suggest that PAMAM and PPI dendrimers can serve as high capacity and selective chelating ligands for U(VI) in aqueous solutions.

  10. [The sonochemical-degradation mechanism of toluene in aqueous solution].

    PubMed

    Bian, H; Zhang, D; Zhao, Y; Jin, Z; Hua, B

    2001-05-01

    The sonochemical degradation of toluene in the airproof aqueous solution was studied, and the mechanism and course of degradation was explored. It was found that the sonication time had great effect on the removal rate of toluene, and the degradation followed a pseudo-first-order kinetic law, and 90%-95% of toluene was removed only after being irradiated for 40 min, types of dissolved gas and pH also had some effects. After aqueous solution was analyzed pH and scanned UV-wavelength and identified components with SMPE-GC-MS, results confirmed that radical-oxidation controlled the sonochemical-oxidation of toluene, and main middle-products included benzaldehyde, bibenzyl, dibutyl phthalate, et al., final products were carbon dioxide and water.

  11. A lithium ion battery using an aqueous electrolyte solution

    PubMed Central

    Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei

    2016-01-01

    Energy and environmental pollution have become the two major problems in today’s society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg−1. It will be a promising energy storage system with good safety and efficient cooling effects. PMID:27328707

  12. A lithium ion battery using an aqueous electrolyte solution.

    PubMed

    Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei

    2016-06-22

    Energy and environmental pollution have become the two major problems in today's society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg(-1). It will be a promising energy storage system with good safety and efficient cooling effects.

  13. Polyamide nanofiltration membranes to remove aniline in aqueous solutions.

    PubMed

    Hidalgo, A M; León, G; Gómez, M; Murcia, M D; Bernal, M D; Ortega, S

    2014-01-01

    Aniline is commonly used in a number of industrial processes. It is known to be a harmful and persistent pollutant and its presence in wastewater requires treatment before disposal. In this paper, the effectiveness of nanofiltration (NF) to remove aniline from aqueous solutions is studied in a flat membrane test module using two thin-layer composite membranes of polyamide (NF97 and NF99HF). The influence of different operational variables (applied pressure, feed concentration and pH) on the removal of aniline from synthetic aqueous solutions was analysed. The experimental NF results are compared with results previously obtained by reverse osmosis. Based on this comparative study, the effective order for aniline rejection is: HR98PP > NF97 > DESAL3B > SEPA-MS05 > NF99HF.

  14. Schwertmannite stability in anoxic Fe(II)-rich aqueous solution

    NASA Astrophysics Data System (ADS)

    Paikaray, Susanta; Schröder, Christian; Peiffer, Stefan

    2017-11-01

    Schwertmannite (SHM) is a powerful scavenger for As(III) leading to As(III)-enriched precipitates around acid mine drainage environments that may become exposed to aqueous Fe(II). In this study we have investigated the stability of pure SHM and SHM containing 0.92 wt% As(III) under Fe(II)aq-rich (0.4-1.0 mM) anoxic conditions using XRD, SEM, Mössbauer and FTIR spectroscopic techniques. Schwertmannite transformation proceeded through an alkalinity-driven pathway releasing sulfate and a Fe(II)-catalyzed pathway that generated lepidocrocite and goethite at pH 6 and 6.9 in the presence of 1 mM Fe(II)aq. Lepidocrocite was found to be needle shaped if the SHM contained As(III) and platy for pure SHM. Goethite had a poor degree of crystallinity in As(III) containing SHM. Pre-adsorption of As(III) inhibited the extent of SHM transformation. Fe(II) sorption onto SHM was pH dependent and reflected a sorption edge with complete consumption at pH 6.9, while only ∼20% were adsorbed at pH 5. Surface coverage with Fe(II) appears to be the key parameter controlling extent and products of the transformation process. As(III) concentrations in solution are controlled by two mechanisms: (1) exchange of As(III) for sulfate upon alkalinity-driven transformation of schwertmannite and (2) re-adsorption to new phases formed upon Fe(II)-catalyzed transformation. The adsorbed As(III) has inhibited the extent of transformation and was partly released with the maximum release at pH 5 (0.5%) in the absence of Fe(II)aq.

  15. Electrodeposition of nickel-iridium alloy films from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Wu, Wangping; Jiang, Jinjin; Jiang, Peng; Wang, Zhizhi; Yuan, Ningyi; Ding, Jianning

    2018-03-01

    Nickel-iridium (Ni-Ir) alloy films were electrodeposited from aqueous solutions on copper substrates under galvanostatic conditions. The effects of bath composition and deposition time on the faradaic efficiency (FE), partial current densities, chemical composition, morphology and crystallographic structure of the films were studied. The results show that the Ni-Ir alloys with Ir content as high as 37 at% and FE as high as 44% were obtained. Increase in concentration of citric acid had little or no effect on the composition of the alloys, but resulted in a significant decrease in FE and partial current densities of Ni and Ir. The FE and the partial current density of Ni slightly decreased with increasing Ir3+ concentration, however, Ir content increased while partial current density of Ir remained stable. The increase of Ni2+ concentration could result in the increase of the FE and the rate of Ni-Ir deposition, and even no cracks formed on the surface. The surface average roughness and root mean square roughness of the film were 6.8 ± 0.3 nm and 5.4 ± 0.3 nm, respectively. The mixture phases contained significant amounts of Ni oxides and a small amount of metallic Ni, Ir and Ir oxides on the surface. After argon ion sputter cleaning, the film was mainly composed of metallic Ni and Ir. The film consisted of the amorphous and nanocrystalline phases. The Ni content in the deposits was higher than that in the electrolyte, the co-deposition of Ni-Ir alloy was a normal deposition.

  16. Redox Conversion of Chromium(VI) and Arsenic(III) with the Intermediates of Chromium(V) and Arsenic(IV) via AuPd/CNTs Electrocatalysis in Acid Aqueous Solution.

    PubMed

    Sun, Meng; Zhang, Gong; Qin, Yinghua; Cao, Meijuan; Liu, Yang; Li, Jinghong; Qu, Jiuhui; Liu, Huijuan

    2015-08-04

    Simultaneous reduction of Cr(VI) to Cr(III) and oxidation of As(III) to As(V) is a promising pretreatment process for the removal of chromium and arsenic from acid aqueous solution. In this work, the synergistic redox conversion of Cr(VI) and As(III) was efficiently achieved in a three-dimensional electrocatalytic reactor with synthesized AuPd/CNTs particles as electrocatalysts. The AuPd/CNTs facilitated the exposure of active Pd{111} facets and possessed an approximate two-electron-transfer pathway of oxygen reduction with the highly efficient formation of H2O2 as end product, resulting in the electrocatalytic reduction of 97.2 ± 2.4% of Cr(VI) and oxidation of 95.7 ± 4% of As(III). The electrocatalytic reduction of Cr(VI) was significantly accelerated prior to the electrocatalytic oxidation of As(III), and the effectiveness of Cr(VI)/As(III) conversion was favored at increased currents from 20 to 150 mA, decreased initial pH from 7 to 1 and concentrations of Cr(VI) and As(III) ranging from 50 to 1 mg/L. The crucial intermediates of Cr(V) and As(IV) and active free radicals HO(•) and O2(•-) were found for the first time, whose roles in the control of Cr(VI)/As(III) redox conversion were proposed. Finally, the potential applicability of AuPd/CNTs was revealed by their stability in electrocatalytic conversion over 10 cycles.

  17. Ultrafast dynamics of hydrogen bond exchange in aqueous ionic solutions.

    PubMed

    Park, Sungnam; Odelius, Michael; Gaffney, Kelly J

    2009-06-04

    The structural and dynamical properties of aqueous ionic solutions influence a wide range of natural and biological processes. In these solutions, water has the opportunity to form hydrogen bonds with other water molecules and anions. Knowing the time scale with which these configurations interconvert represents a key factor to understanding the influence of molecular scale heterogeneity on chemical events in aqueous ionic solutions. We have used ultrafast IR spectroscopy and Car-Parrinello molecular dynamics (CPMD) simulations to investigate the hydrogen bond (H-bond) structural dynamics in aqueous 6 M sodium perchlorate (NaClO4) solution. We have measured the H-bond exchange dynamics between spectrally distinct water-water and water-anion H-bond configurations with 2DIR spectroscopy and the orientational relaxation dynamics of water molecules in different H-bond configurations with polarization-selective IR pump-probe experiments. The experimental H-bond exchange time correlates strongly with the experimental orientational relaxation time of water molecules. This agrees with prior observations in water and aqueous halide solutions, and has been interpreted within the context of an orientational jump model for the H-bond exchange. The CPMD simulations performed on aqueous 6 M NaClO4 solution clearly demonstrate that water molecules organize into two radially and angularly distinct structural subshells within the first solvation shell of the perchlorate anion, with one subshell possessing the majority of the water molecules that donate H-bonds to perchlorate anions and the other subshell possessing predominantly water molecules that donate two H-bonds to other water molecules. Due to the high ionic concentration used in the simulations, essentially all water molecules reside in the first ionic solvation shells. The CPMD simulations also demonstrate that the molecular exchange between these two structurally distinct subshells proceeds more slowly than the H

  18. Dissolution of lignin in green urea aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Jingyu; Li, Ying; Qiu, Xueqing; Liu, Di; Yang, Dongjie; Liu, Weifeng; Qian, Yong

    2017-12-01

    The dissolution problem is the main obstacle for the value-added modification and depolymerization of industrial lignin. Here, a green urea aqueous solution for complete dissolution of various lignin is presented and the dissolution mechanism is analyzed by AFM, DLS and NMR. The results show that the molecular interaction of lignin decreases from 32.3 mN/m in pure water to 11.3 mN/m in urea aqueous solution. The immobility of 1H NMR spectra and the shift of 17O NMR spectra of urea in different lignin/urea solutions indicate that the oxygen of carbonyl in urea and the hydrogen of hydroxyl in lignin form new hydrogen bonds and break the original hydrogen bonds among lignin molecules. The shift of 1H NMR spectra of lignin and the decrease of interactions in model compound polystyrene indicate that urea also breaks the π-π interactions between aromatic rings of lignin. Lignin dissolved in urea aqueous has good antioxidant activity and it can scavenge at least 63% free radicals in 16 min.

  19. Ionic liquid salt bridge in dilute aqueous solutions.

    PubMed

    Yoshimatsu, Takahiro; Kakiuchi, Takashi

    2007-09-01

    A new type of salt bridge composed of a hydrophobic room-temperature ionic liquid, recently proposed (T. Kakiuchi and T. Yoshimatsu, Bull. Chem. Soc. Jpn., 2006, 79, 1017), has been shown to be satisfactorily usable in dilute aqueous solutions of submillimolar range. A stable phase-boundary potential has been demonstrated between an ionic liquid, 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C(8)mim+][C(1)C(1)N-), and an aqueous KCl solution of submillimolar level, which is lower than the solubility of [C(8)mim+][C(1)C(1)N-] in water, 1.6 mmol dm(-3) at 25 degrees C. The phase-boundary potential between [C(8)mim+][C(1)C(1)N-] and water is maintained constant over more than four orders of magnitude change in the concentration of an aqueous electrolyte solution. The ionic-liquid salt bridge is a superior alternative to salt bridges based on equitransferent electrolytes in practical applications, particularly, the potentiometry of samples of low ionic strengths, such as potentiometric pH measurements of rainwater.

  20. Conductivity and electrochemical stability of concentrated aqueous choline chloride solutions

    NASA Astrophysics Data System (ADS)

    Grishina, E. P.; Kudryakova, N. O.

    2017-10-01

    The conductivity and electrochemical stability of choline chloride (ChCl) solutions with water contents ranging from 20 to 39 wt % are studied. Exposing ChCl to moist ambient air yields a highly concentrated aqueous solution that, as an electrolyte, exhibits the properties and variations in conductivity with temperature and concentration characteristic of other similar systems. Its electrochemical stability window, determined by cyclic voltammetry, is comparable to that of ChCl-based deep eutectic solvents (DESs). Products of the electrolysis of ChCl‒H2O mixtures seem to be less toxic than those of Reline, Ethaline, and Maline.

  1. Electrokinetic Properties of Aluminum Nanopowders in Citric Acid Solution

    NASA Astrophysics Data System (ADS)

    Karepina, E.; Godymchuk, A.; Kuznetsov, D.; Senatova, S.

    2013-05-01

    Electrical conductivity of aqueous suspensions based on aluminum nanopowder and citric acid solution (20 g/l). The correlation between nanoparticles concentration and abating conductivity of suspensions has been demonstrated during the agglomeration of the aluminum nanoparticles. For the studied suspensions with different concentrations of nanoparticles the smallest conductivity was found after which the particles aggregates begin to deagglomerate due to the high diffusion mobility of the carboxyl groups in the acid medium.

  2. Radiolytic degradation of atrazine aqueous solution containing humic substances.

    PubMed

    Basfar, A A; Mohamed, K A; Al-Abduly, A J; Al-Shahrani, A A

    2009-03-01

    Degradation of atrazine herbicide in humic substances (HS) aqueous solutions and distilled water solutions was investigated on a laboratory scale upon gamma-irradiation from a (60)Co source. In addition, the effect of ionizing radiation on the atrazine residues removal efficiency was investigated in relation to degradation of by-products. gamma-Irradiation experiments were carried out for three targeted concentrations (i.e. 0.464, 2.318 and 4.636 microM) with doses over the range 0.1-60 kGy. The initial concentration of herbicide, scavengers and irradiation doses play a significant role in the degradation efficiency as shown by decay constants of atrazine residues. gamma-Radiolysis showed that atrazine exhibited high degradation percentages at low absorbed doses in HS aqueous solutions compared to distilled water solutions. Absorbed doses from 0.6 to 21 kGy and from 6 to 72 kGy at a dose rate of 14.52 kGyh(-1) achieved 90% degradation for atrazine with initial concentrations over the range 0.464-4.636 microM in humic and distilled water solutions, respectively. The radiolytic degradation by-products and their mass balances were qualitatively determined with good confidence using gas chromatography/quadruple mass spectrometry (GC/MS) with electron impact ionization (EI(+)) mode.

  3. Genotoxicity study of photolytically treated 2-chloropyridine aqueous solutions.

    PubMed

    Vlastos, Dimitris; Skoutelis, Charalambos G; Theodoridis, Ioannis T; Stapleton, David R; Papadaki, Maria I

    2010-05-15

    2-Chloropyridine (2-CPY) has been identified as a trace organic chemical in process streams, wastewater and even drinking water. Furthermore, it appears to be formed as a secondary pollutant during the decomposition of specific insecticides. As reported in our previous work, 2-CPY was readily removed and slowly mineralised when subjected to ultraviolet (UV) irradiation at 254 nm. Moreover, 2-CPY was found to be genotoxic at 100 microg ml(-1) but it was not genotoxic at or below 50 microg ml(-1). In this work 2-CPY aqueous solutions were treated by means of UV irradiation at 254 nm. 2-CPY mineralisation history under different conditions is shown. 2-CPY was found to mineralise completely upon prolonged irradiation. Identified products of 2-CPY photolytic decomposition are presented. Solution genotoxicity was tested as a function of treatment time. Aqueous solution samples, taken at different photo-treatment times were tested in cultured human lymphocytes applying the cytokinesis block micronucleus (CBMN) assay. It was found that the solution was genotoxic even when 2-CPY had been practically removed. This shows that photo-treatment of 2-CPY produces genotoxic products. Upon prolonged irradiation solution genotoxicity values approached the control value. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  4. Chitosan-derived carbonaceous material for highly efficient adsorption of chromium (VI) from aqueous solution.

    PubMed

    Shen, Feng; Su, Jialei; Zhang, Xiao; Zhang, Keqiang; Qi, Xinhua

    2016-10-01

    A carbonaceous adsorbent for effectively removing Cr(VI) was synthesized by facile hydrothermal carbonization of chitosan (HTC-chitosan). The prepared HTC-chitosan exhibited good stability in acid solution while the amine groups were retained completely after simple and green hydrothermal carbonization treatment. Structure characteristics of the HTC-chitosan as well as its adsorption behaviors for Cr(VI) in aqueous solution were investigated. Under optimal conditions, the adsorption capacity of the HTC-chitosan for Cr(VI) reached as high as 388.60mgg(-1), which was much higher than that of other materials reported previously. The prepared HTC-chitosan adsorbent could be reused at least five times with adsorption efficiency more than 92%. These results indicate that HTC-chitosan exhibited great superiority for Cr(VI) adsoption from aqueous solution both in terms of the preparation process and adsorption performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Thermochemical analysis of intermolecular interactions between N-acetylglycine and polyols in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Mezhevoi, I. N.; Badelin, V. G.

    2017-05-01

    The integral enthalpies of dissolution Δsol H m for N-acetylglycine in aqueous solutions of glycerol, ethylene glycol and 1,2-propylene glycol are measured via solution calorimetry. The standard enthalpies of dissolution (Δsol H 0) and transfer (Δtr H 0) for N-acetylglycine from water to aqueous solutions of polyhydric alcohols are calculated from experimental data. Positive values of enthalpy coefficients of pair interactions h xy for amino acids and polyol molecules are calculated using the McMillan-Mayer theory. The results are discussed using an approach for evaluating different types of interactions in ternary systems and the effect the structural features of interacting biomolecules have on the thermochemical characteristics of N-acetylglycine dissolution.

  6. On the structure of an aqueous propylene glycol solution

    NASA Astrophysics Data System (ADS)

    Rhys, Natasha H.; Gillams, Richard J.; Collins, Louise E.; Callear, Samantha K.; Lawrence, M. Jayne; McLain, Sylvia E.

    2016-12-01

    Using a combination of neutron diffraction and empirical potential structure refinement computational modelling, the interactions in a 30 mol. % aqueous solution of propylene glycol (PG), which govern both the hydration and association of this molecule in solution, have been assessed. From this work it appears that PG is readily hydrated, where the most prevalent hydration interactions were found to be through both the PG hydroxyl groups but also alkyl groups typically considered hydrophobic. Hydration interactions of PG dominate the solution over PG self-self interactions and there is no evidence of more extensive association. This hydration behavior for PG in solutions suggests that the preference of PG to be hydrated rather than to be self-associated may translate into a preference for PG to bind to lipids rather than itself, providing a potential explanation for how PG is able to enhance the apparent solubility of drug molecules in vivo.

  7. Melting point of ice in aqueous saccharide solutions

    NASA Astrophysics Data System (ADS)

    Sei, Tadanori; Gonda, Takehiko

    2006-07-01

    The melting point of ice in trehalose and sucrose solutions was measured by in situ observations of a minute ice crystal. It was found that the concentration dependence of the melting point of ice in both trehalose and sucrose solutions was identical. Such a concentration dependence of the melting point was in agreement with the equation of freezing point depression for dilute aqueous solutions up to about 1 molal. In addition, the measured values of the melting point decreased rapidly with an increase in the concentration. These experimental results for an equilibrium state were discussed by comparing them with the results for a nonequilibrium state, i.e., the results obtained for growing ice crystals in saccharide solutions.

  8. On the structure of an aqueous propylene glycol solution.

    PubMed

    Rhys, Natasha H; Gillams, Richard J; Collins, Louise E; Callear, Samantha K; Lawrence, M Jayne; McLain, Sylvia E

    2016-12-14

    Using a combination of neutron diffraction and empirical potential structure refinement computational modelling, the interactions in a 30 mol. % aqueous solution of propylene glycol (PG), which govern both the hydration and association of this molecule in solution, have been assessed. From this work it appears that PG is readily hydrated, where the most prevalent hydration interactions were found to be through both the PG hydroxyl groups but also alkyl groups typically considered hydrophobic. Hydration interactions of PG dominate the solution over PG self-self interactions and there is no evidence of more extensive association. This hydration behavior for PG in solutions suggests that the preference of PG to be hydrated rather than to be self-associated may translate into a preference for PG to bind to lipids rather than itself, providing a potential explanation for how PG is able to enhance the apparent solubility of drug molecules in vivo.

  9. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures.

    PubMed

    Cochrane, T T; Cochrane, T A

    2016-01-01

    To demonstrate that the authors' new "aqueous solution vs pure water" equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of "free" water molecules per unit volume of solution, "Nf," and (c) the "t" factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate Nf was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors' equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. The provisional equations formulated to calculate Nf, the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of Nf using recorded relative density data at 20 °C. They were

  10. Protein conformation and supercharging with DMSO from aqueous solution.

    PubMed

    Sterling, Harry J; Prell, James S; Cassou, Catherine A; Williams, Evan R

    2011-07-01

    The efficacy of dimethyl sulfoxide (DMSO) as a supercharging reagent for protein ions formed by electrospray ionization from aqueous solution and the mechanism for supercharging were investigated. Addition of small amounts of DMSO to aqueous solutions containing hen egg white lysozyme or equine myoglobin results in a lowering of charge, whereas a significant increase in charge occurs at higher concentrations. Results from both near-UV circular dichroism spectroscopy and solution-phase hydrogen/deuterium exchange mass spectrometry indicate that DMSO causes a compaction of the native structure of these proteins at low concentration, but significant unfolding occurs at ~63% and ~43% DMSO for lysozyme and myoglobin, respectively. The DMSO concentrations required to denature these two proteins in bulk solution are ~3-5 times higher than the concentrations required for the onset of supercharging, consistent with a significantly increased concentration of this high boiling point supercharging reagent in the ESI droplet as preferential evaporation of water occurs. DMSO is slightly more basic than m-nitrobenzyl alcohol and sulfolane, two other supercharging reagents, based on calculated proton affinity and gas-phase basicity values both at the B3LYP and MP2 levels of theory, and all three of these supercharging reagents are significantly more basic than water. These results provide additional evidence that the origin of supercharging from aqueous solution is the result of chemical and/or thermal denaturation that occurs in the ESI droplet as the concentration of these supercharging reagents increases, and that proton transfer reactivity does not play a significant role in the charge enhancement observed.

  11. Protein Conformation and Supercharging with DMSO from Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Sterling, Harry J.; Prell, James S.; Cassou, Catherine A.; Williams, Evan R.

    2011-07-01

    The efficacy of dimethyl sulfoxide (DMSO) as a supercharging reagent for protein ions formed by electrospray ionization from aqueous solution and the mechanism for supercharging were investigated. Addition of small amounts of DMSO to aqueous solutions containing hen egg white lysozyme or equine myoglobin results in a lowering of charge, whereas a significant increase in charge occurs at higher concentrations. Results from both near-UV circular dichroism spectroscopy and solution-phase hydrogen/deuterium exchange mass spectrometry indicate that DMSO causes a compaction of the native structure of these proteins at low concentration, but significant unfolding occurs at ~63% and ~43% DMSO for lysozyme and myoglobin, respectively. The DMSO concentrations required to denature these two proteins in bulk solution are ~3-5 times higher than the concentrations required for the onset of supercharging, consistent with a significantly increased concentration of this high boiling point supercharging reagent in the ESI droplet as preferential evaporation of water occurs. DMSO is slightly more basic than m-nitrobenzyl alcohol and sulfolane, two other supercharging reagents, based on calculated proton affinity and gas-phase basicity values both at the B3LYP and MP2 levels of theory, and all three of these supercharging reagents are significantly more basic than water. These results provide additional evidence that the origin of supercharging from aqueous solution is the result of chemical and/or thermal denaturation that occurs in the ESI droplet as the concentration of these supercharging reagents increases, and that proton transfer reactivity does not play a significant role in the charge enhancement observed.

  12. Inhibition of citral degradation in an acidic aqueous environment by polyoxyethylene alkylether surfactants.

    PubMed

    Maswal, Masrat; Dar, Aijaz Ahmad

    2013-06-15

    Citral is a flavour component widely used in food and cosmetic industries, but is chemically unstable and degrades over time in aqueous solutions due to acid-catalysed and oxidative reactions leading to loss of desirable flavour. The present study reveals the effect of non-ionic micellar solutions of Brij30 and Brij35 on the extent of solubilisation and stabilisation of citral. The rate of chemical degradation of citral in acidic aqueous solutions was found to be highest, which was subsequently reduced significantly within these studied surfactant systems, suggesting protection of citral from an acidic environment once it is incorporated into the micelles. The work concludes that polyoxyethylene alkylether surfactants with lower HLB value, less dense hydrophilic corona and more hydrophobic core volume are efficient in solubilising and stabilising citral against an acidic environment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. RECOVERY OF URANIUM AND THORIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Calkins, G.D.

    1958-06-10

    >A process is described for the recovery of uranium and thorium from monazite sand, which is frequently processed by treating it with a hot sodium hydroxide solution whereby a precipitate forms consisting mainly of oxides or hydroxides of the rare earths, thorium and uranium. The precipitate is dissolved in mineral acid, and the acid solution is then neutralized to a pH value of between 5.2 and 6.2 whereby both the uranium and thorium precipitate as the hydroxides, while substantially all the rare earth metal values present remain in the solution. The uranium and thoriunn can then be separated by dissolving the precipitate in a solution containing a mixture of alkali carbonate and alkali bicarbonate: and contacting the carbonate solution with a strong-base anion exchange resin whereby the uranium values are adsorbed on the resin while the thorium remains in solution.

  14. Ultrasound response of aqueous poly(ionic liquid) solution.

    PubMed

    Li, Kai; Kobayashi, Takaomi

    2016-05-01

    Ultrasound (US) effects on aqueous poly(ionic liquid) (PIL) solution were investigated using viscosity and FT-IR spectroscopy after exposure to US of 23, 43, and 96 kHz frequencies at 50 W. The viscosity of the poly(1-vinyl-3-butyl-imidazolium chloride) (PIL) aqueous solution decreased during exposure to US. It then increased gradually within about 10 min as US stopped. The aqueous PIL behavior was then observed using FT-IR spectroscopy. The US exposure enhanced the FT-IR band intensity of the OH stretching. The band intensity returned to its original value after the US stopped. These results responded cyclically to the US on/off. Analysis of the FT-IR spectra revealed that US influenced the breakage and reformation of hydrogen bonds in the PIL and water. Two-dimensional correlation and deconvolution were used to analyze the change of components in the region of 3000-3700 cm(-1) for US exposure. Results of these analyses suggest that US exposure might break hydrogen bonds between PIL segments and water. In the absence of US, hydrogen bonds reformation was also observed between the PIL and water. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Solubility of silybin in aqueous poly(ethylene glycol) solution.

    PubMed

    Bai, Tong-Chun; Yan, Guo-Bing; Hu, Jie; Zhang, Hua-Li; Huang, Cheng-Gang

    2006-02-03

    Silybin is a main component in silymarin, which is an antihepatotoxic polyphenolic substance isolated from the milk thistle plant, Silybum marianum. A major problem in the development of an oral solid dosage form of this drug is the extremely poor aqueous solubility. In present work, the solubility of silybin in aqueous poly(ethylene glycol) 6,000 (PEG 6,000) solution at the temperature range from 293.15 to 313.15K was measured by a solid liquid equilibrium method. The aim of this study is to investigate the possible effect of poly(ethylene glycol) concentration and temperature on the solubility of the drug, and to reveal the solubilization capacity of the polymer for the drug. Experimental results reveal that the solubility of silybin increases with the increase both in PEG's concentration and temperature. With the increase in PEG's concentration, the transfer enthalpy and entropy for silybin from water to aqueous PEG solution increases first in a positive region, and then decreases to a negative region. The transfer enthalpy is lower than the entropy term. A modified Universal Quasi Chemical (UNIQUAC) model was used to correlate solubility data.

  16. Monte Carlo Simulation of Aqueous Dilute Solutions of Polyhydric Alcohols

    NASA Astrophysics Data System (ADS)

    Lilly, Arnys Clifton, Jr.

    In order to investigate the details of hydrogen bonding and solution molecular conformation of complex alcohols in water, isobaric-isothermal Monte Carlo simulations were carried out on several systems. The solutes investigated were ethanol, ethylene glycol, 1,2-propylene glycol, 1,3 -propylene glycol and glycerol. In addition, propane, which does not hydrogen bond but does form water hydrates, was simulated in aqueous solution. The complex alcohol-water systems are very nonideal in their behavior as a function of solute concentration down to very dilute solutions. The water model employed was TIP4P water^1 and the intermolecular potentials employed are of the Jorgensen type^2 in which the interactions between the molecules are represented by interaction sites usually located on nuclei. The interactions are represented by a sum of Coulomb and Lennard-Jones terms between all intermolecular pairs of sites. Intramolecular rotations in the solute are modeled by torsional potential energy functions taken from ethanol, 1-propanol and 2-propanol for C-O and C-C bond rotations. Quasi-component pair correlation functions were used to analyze the hydrogen bonding. Hydrogen bonds were classified as proton acceptor and proton donor bonds by analyzing the nearest neighbor pair correlation function between hydroxyl oxygen and hydrogen and between solvent-water hydrogen and oxygen. The results obtained for partial molar heats of solution are more negative than experimental values by 3.0 to 14 kcal/mol. In solution, all solutes reached a contracted molecular geometry with the OH groups generally on one side of the molecule. There is a tendency for the solute OH groups to hydrogen bond with water, with more proton acceptor bonds than proton donor bonds. The water -solute binding energies correlate with experimental measurements of the water-binding properties of the solute. ftn ^1Jorgensen, W. L. et al, J. Chem. Phys., 79, 926 (1983). ^2Jorgensen, W. L., J. Phys Chem., 87, 5304

  17. Equilibrium modeling of cadmium biosorption from aqueous solution by compost.

    PubMed

    Ahmad, Iftikhar; Akhtar, Muhammad Javed; Jadoon, Iram Bashir Khan; Imran, Muhammad; Imran, Muhammad; Ali, Shahid

    2017-02-01

    One of the most serious environmental issues of the present century is metal contamination of the aqueous environment due to the release of metal-containing effluents into the water bodies. Cadmium (Cd) is one of the toxic heavy metals which is not biodegradable thereby causing high risks to animals, plants, and humans. In the present study, potential and feasibility of compost derived from fruits and vegetables for Cd biosorption from aqueous solution were investigated. The batch biosorption experiments were performed to evaluate the effects of Cd concentrations (5, 15, 30, and 60 mg/L), compost biomass (0.5, 1.0, and 1.5 g/100 mL), pH (4, 6, and 8), contact time (1, 4, and 19 h), and temperature (28 and 35 °C) on Cd sorption and removal by compost. The biosorption of Cd was found to be highly dependent on initial Cd concentration, sorbent biomass, pH, contact time, and temperature of aqueous solution. It was observed that Cd sorption by compost was rapid up to 4 h, and then it became slow and stable as the contact time shifted towards equilibrium state (19 h). At equilibrium, the Cd sorption (q = 0.33-5.43 mg/g compost) and removal (45-99%) were observed at pH 6 and temperature 28 °C depending upon Cd concentrations and sorbent biomass in aqueous solution. The equilibrium experimental data were fitted well with Langmuir adsorption isotherm model (q max = 6.35-7.14 mg/g compost, R 2 = 0.77-0.98). FTIR spectrum of the compost indicated the presence of hydroxyl and carboxyl groups, which might be involved in the biosorption of Cd through ion exchange and complexation mechanisms. The optimal environmental conditions (pH 6, sorbent biomass 0.5 g/100 mL, and temperature 28 °C) induced more Cd sorption on compost at equilibrium. Results show compost as a cost-effective adsorbent material having high potential for heavy metal remediation from aqueous solution.

  18. Scandium sulfate complexation in aqueous solution by dielectric relaxation spectroscopy.

    PubMed

    Schrödle, Simon; Wachter, Wolfgang; Buchner, Richard; Hefter, Glenn

    2008-10-06

    Ion association in aqueous solutions of scandium sulfate has been investigated at 25 degrees C and at concentrations from 0.01 to 0.8 M by broadband dielectric spectroscopy over the frequency range 0.2 solutions of other high-valent metal sulfates. Outer-outer-sphere 1:1 complexes are probably also formed, but their contribution is swamped by the presence of higher-order inner-sphere complexes. The latter predominate in the more concentrated solutions, causing major changes to the low-frequency end of the spectrum. The data, while not definitive, are consistent with fac-[Sc(SO 4) 3(OH 2) 3] (3-) as the major species present. The speciation is strikingly different from that recently reported for aluminum sulfate solutions and indicates that the often-postulated similarity between the aqueous chemistry of Al(III) and Sc(III) has to be treated with caution.

  19. Aqueous-phase source of formic acid in clouds

    NASA Technical Reports Server (NTRS)

    Chameides, W. L.; Davis, D. D.

    1983-01-01

    The coupled gas- and aqueous-phase cloud chemistry of HCOOH were examined for controlling factors in the acidity of cloud and rainwater. Attention was given to the aqueous OH/HO2 system that yields an OH species that is highly reactive with other species, notably SO2 and the formaldehyde/formic acid complex. A numerical model was developed to simulate the cloud chemistry in the remote troposphere, with considerations given to CH4-CO-NO(x)-O3-H(x)O(y) system. It was determined that aqueous phase OH radicals can produce and destroy formic acid droplets in daylight conditions, as well as control formic acid levels in rainwater. It is sugested that the same types of reactions may be involved in the control of acetic acid and other organic acids.

  20. Fast Cooling and Vitrification of Aqueous Solutions for Cryopreservation

    NASA Astrophysics Data System (ADS)

    Warkentin, Matt; Husseini, Naji; Berejnov, Viatcheslav; Thorne, Robert

    2006-03-01

    In many applications, a small volume of aqueous solution must be cooled at a rate sufficient to produce amorphous solid water. Two prominent examples include flash-freezing of protein crystals for X-ray data collection and freezing of cells (i.e. spermatozoa) for cryopreservation. The cooling rate required to vitrify pure water (˜10^6 K/s) is unattainable for volumes that might contain cells or protein crystals, but the required rate can be reduced by adding cryoprotectants. We report the first measurements of the critical concentration required to produce a vitrified sample as a function of the sample's volume, the cryogen into which the sample is plunged, and the temperature of the cryogen, for a wide range of cryoprotectants. These experiments have broad practical consequences for cryopreservation, and provide insight into the physics of glass formation in aqueous systems.

  1. Diffusion of Trehalose and Sucrose in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Feick, E.; von Meerwall, E.; Ekdawi, N.; de Pablo, J.

    2000-10-01

    Trehalose is emerging as superior substitute for sucrose in solution as a cryoprotectant, e. g., to preserve organs destined for transplantation. We have used the proton NMR pulsed-gradient spin-echo method between T = 30 and 85 deg. C to study the self-diffusion of solvent and solute in aqueous solutions of these molecules as function of their concentration, c. We find that both solute molecules diffuse substantially more slowly than water at corresponding c and T; that addition of water accelerates solute diffusion more rapidly than that of water; and that while at a given c and T water diffusion is insensitive to solute identity, trehalose diffusion is slower than sucrose diffusion. The latter effect increases with c, approaching a factor of two at the highest c. In these respects our results correspond closely to those of our extensive numerical simulations of these systems. Free-volume theory is employed to explore the cooperative kinetic interactions between solvent and solutes, and to account tentatively for part of the superiority of trehalose to sucrose as preservation agent. Differences in crystallization behavior also seem to be involved.

  2. Process for disposal of aqueous solutions containing radioactive isotopes

    DOEpatents

    Colombo, Peter; Neilson, Jr., Robert M.; Becker, Walter W.

    1979-01-01

    A process for disposing of radioactive aqueous waste solutions whereby the waste solution is utilized as the water of hydration to hydrate densified powdered portland cement in a leakproof container; said waste solution being dispersed without mechanical inter-mixing in situ in said bulk cement, thereafter the hydrated cement body is impregnated with a mixture of a monomer and polymerization catalyst to form polymer throughout the cement body. The entire process being carried out while maintaining the temperature of the components during the process at a temperature below 99.degree. C. The container containing the solid polymer-impregnated body is thereafter stored at a radioactive waste storage dump such as an underground storage dump.

  3. Hydrogen bond breaking in aqueous solutions near the critical point

    USGS Publications Warehouse

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2001-01-01

    The nature of water-anion bonding is examined using X-ray absorption fine structure spectroscopy on a 1mZnBr2/6m NaBr aqueous solution, to near critical conditions. Analyses show that upon heating the solution from 25??C to 500??C, a 63% reduction of waters occurs in the solvation shell of ZnBr42-, which is the predominant complex at all pressure-temperature conditions investigated. A similar reduction in the hydration shell of waters in the Br- aqua ion was found. Our results indicate that the water-anion and water-water bond breaking mechanisms occurring at high temperatures are essentially the same. This is consistent with the hydration waters being weakly hydrogen bonded to halide anions in electrolyte solutions. ?? 2001 Elsevier Science B.V.

  4. Rapid structural analysis of nanomaterials in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Ryuzaki, Sou; Tsutsui, Makusu; He, Yuhui; Yokota, Kazumichi; Arima, Akihide; Morikawa, Takanori; Taniguchi, Masateru; Kawai, Tomoji

    2017-04-01

    Rapid structural analysis of nanoscale matter in a liquid environment represents innovative technologies that reveal the identities and functions of biologically important molecules. However, there is currently no method with high spatio-temporal resolution that can scan individual particles in solutions to gain structural information. Here we report the development of a nanopore platform realizing quantitative structural analysis for suspended nanomaterials in solutions with a high z-axis and xy-plane spatial resolution of 35.8 ± 1.1 and 12 nm, respectively. We used a low thickness-to-diameter aspect ratio pore architecture for achieving cross sectional areas of analyte (i.e. tomograms). Combining this with multiphysics simulation methods to translate ionic current data into tomograms, we demonstrated rapid structural analysis of single polystyrene (Pst) beads and single dumbbell-like Pst beads in aqueous solutions.

  5. THE ROLE OF SELECTED CATIONS IN THE FORMATION OF PSEUDOMICELLES IN AQUEOUS HUMIC ACID (R822832)

    EPA Science Inventory

    The fluorescence intensity enhancement of a pyrene probe in aqueous humic acid solutions was assessed in terms of added lanthanide and thorium cations. Among the trivalent ions it was found that size played a role, with the small Lu3+ ion producing the greatest increase in pyrene...

  6. Removing Phosphorus from Aqueous Solutions Using Lanthanum Modified Pine Needles

    PubMed Central

    Wang, Xianze; Liu, Zhongmou; Liu, Jiancong; Huo, Mingxin; Huo, Hongliang; Yang, Wu

    2015-01-01

    The renewable pine needles was used as an adsorbent to remove phosphorus from aqueous solutions. Using batch experiments, pine needles pretreated with alkali-isopropanol (AI) failed to effectively remove phosphorus, while pine needles modified with lanthanum hydroxide (LH) showed relatively high removal efficiency. LH pine needles were effective at a wide pH ranges, with the highest removal efficiency reaching approximately 85% at a pH of 3. The removal efficiency was kept above 65% using 10 mg/L phosphorus solutions at desired pH values. There was no apparent significant competitive behavior between co-existing anions of sulfate, nitrate, and chloride (SO42-, NO3- and Cl-); however, CO32- exhibited increased interfering behavior as concentrations increased. An intraparticle diffusion model showed that the adsorption process occurred in three phases, suggesting that a boundary layer adsorption phenomena slightly affected the adsorption process, and that intraparticle diffusion was dominant. The adsorption process was thermodynamically unfavorable and non-spontaneous; temperature increases improved phosphorus removal. Total organic carbon (TOC) assays indicated that chemical modification reduced the release of soluble organic compounds from 135.6 mg/L to 7.76 mg/L. This new information about adsorption performances provides valuable information, and can inform future technological applications designed to remove phosphorus from aqueous solutions. PMID:26630014

  7. Highly compressed water structure observed in a perchlorate aqueous solution.

    PubMed

    Lenton, Samuel; Rhys, Natasha H; Towey, James J; Soper, Alan K; Dougan, Lorna

    2017-10-13

    The discovery by the Phoenix Lander of calcium and magnesium perchlorates in Martian soil samples has fueled much speculation that flows of perchlorate brines might be the cause of the observed channeling and weathering in the surface. Here, we study the structure of a mimetic of Martian water, magnesium perchlorate aqueous solution at its eutectic composition, using neutron diffraction in combination with hydrogen isotope labeling and empirical potential structure refinement. We find that the tetrahedral structure of water is heavily perturbed, the effect being equivalent to pressurizing pure water to pressures of order 2 GPa or more. The Mg 2+ and ClO 4 - ions appear charge-ordered, confining the water on length scales of order 9 Å, preventing ice formation at low temperature. This may explain the low evaporation rates and high deliquescence of these salt solutions, which are essential for stability within the low relative humidity environment of the Martian atmosphere.Significant amounts of different perchlorate salts have been discovered on the surface of Mars. Here, the authors show that magnesium perchlorate has a major impact on water structure in solution, providing insight into how an aqueous fluid might exist under the sub-freezing conditions present on Mars.

  8. Theoretical study of decomposition of methanediol in aqueous solution.

    PubMed

    Inaba, Satoshi

    2015-06-04

    Methanediol is a product of the hydration of formaldehyde and is more abundant than formaldehyde in aqueous solution. We carried out a number of quantum chemical simulations to study the decomposition of methanediol in aqueous solution. The decomposition of a methanediol proceeds by transferring a proton from a hydroxyl to an oxygen atom of the other hydroxyl in the methanediol. The decomposition of the methanediol completes after the cleavage of the bond between the formaldehyde and the water molecule. The probability of the proton transfer increases by the quantum mechanical tunneling at the low temperature because the width of the potential barrier for the decomposition becomes similar to the de Broglie wavelength of the proton. We consider the catalytic effect of water molecules in aqueous solution. The structure of the methanediol is not required to change significantly when undergoing decomposition due to the active role of water molecules to transfer a proton. We consider three types of arrangement for water molecules with respect to a methanediol: (1) a ring structure formed by a methanediol and water molecules; (2) a water cluster attracted to a methanediol by hydrogen bonds; and (3) a water cluster and additional water molecules, both of which are attracted to a methanediol by hydrogen bonds. The activation energy for the decomposition is reduced by a water cluster more efficiently than water molecules in a ring structure. However, the activation energy reduced by a water cluster is still larger than that obtained from laboratory experiments. We include water molecules that are attracted to a methanediol by hydrogen bonds during the water-cluster-catalyzed decomposition of a methanediol. The hydrogen bonds with the water molecules permit little change in the structure of the methanediol during the decomposition and play a significant role to reduce the activation energy for the decomposition. The rate constant obtained from the theoretical simulation

  9. Characterization of aqueous silver nitrate solutions for leakage tests.

    PubMed

    Costa, José Ferreira; Siqueira, Walter Luiz; Loguercio, Alessandro Dourado; Reis, Alessandra; Oliveira, Elizabeth de; Alves, Cláudia Maria Coelho; Bauer, José Roberto de Oliveira; Grande, Rosa Helena Miranda

    2011-01-01

    To determine the pH over a period of 168 h and the ionic silver content in various concentrations and post-preparation times of aqueous silver nitrate solutions. Also, the possible effects of these factors on microleakage test in adhesive/resin restorations in primary and permanent teeth were evaluated. A digital pHmeter was used for measuring the pH of the solutions prepared with three types of water (purified, deionized or distilled) and three brands of silver nitrate salt (Merck, Synth or Cennabras) at 0, 1, 2, 24, 48, 72, 96 and 168 h after preparation, and storage in transparent or dark bottles. Ionic silver was assayed according to the post-preparation times (2, 24, 48, 72, 96, 168 h) and concentrations (1, 5, 25, 50%) of solutions by atomic emission spectrometry. For each sample of each condition, three readings were obtained for calculating the mean value. Class V cavities were prepared with enamel margins on primary and permanent teeth and restored with the adhesive systems OptiBond FL or OptiBond SOLO Plus SE and the composite resin Filtek Z-250. After nail polish coverage, the permanent teeth were immersed in 25% or 50% AgNO₃ solution and the primary teeth in 5% or 50% AgNO₃ solutions for microleakage evaluation. ANOVA and the Tukey's test were used for data analyses (α=5%). The mean pH of the solutions ranged from neutral to alkaline (7.9±2.2 to 11.8±0.9). Mean ionic silver content differed depending on the concentration of the solution (4.75±0.5 to 293±15.3 ppm). In the microleakage test, significant difference was only observed for the adhesive system factor (p=0.000). Under the tested experimental conditions and based on the obtained results, it may be concluded that the aqueous AgNO₃ solutions: have neutral/alkaline pH and service life of up to 168 h; the level of ionic silver is proportional to the concentration of the solution; even at 5% concentration, the solutions were capable of indicating loss of marginal seal in the composite

  10. Volumetric and calorimetric properties of aqueous ionene solutions

    PubMed Central

    Lukšič, Miha; Hribar-Lee, Barbara

    2016-01-01

    The volumetric (partial and apparent molar volumes) and calorimetric properties (apparent heat capacities) of aqueous cationic polyelectrolyte solutions – ionenes – were studied using the oscillating tube densitometer and differential scanning calorimeter. The polyion’s charge density and the counterion properties were considered as variables. The special attention was put to evaluate the contribution of electrostatic and hydrophobic effects to the properties studied. The contribution of the CH2 group of the polyion’s backbone to molar volumes and heat capacities was estimated. Synergistic effect between polyion and counterions was found. PMID:28503012

  11. Formation of Glycolaldehyde Phosphate from Glycolaldehyde in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Ramanarayanan; Arrhenius, Gustaf; Eschenmoser, Albert

    1999-08-01

    Amidotriphosphate (0.1 M) in aqueous solution at near neutral pH in the presence of magnesium ions (0.25 M) converts glycolaldehyde (0.025 M) within days at room temperature into glycolaldehyde phosphate in (analytically) nearly quantitative yields (76% in isolated product). This robust phosphorylation process was observed to proceed at concentrations as low as 30 μM glycolaldehyde and 60 μM phosphorylation reagent under otherwise identical conditions. In sharp contrast, attempts to achieve a phosphorylation of glycolaldehyde with cyclotriphosphate (`trimetaphosphate') as phosphorylating reagent were unsuccessful. Mechanistically, the phosphorylation of glycolaldehyde with amidotriphosphate is an example of intramolecular delivery of the phosphate group.

  12. Fluorescence of aqueous solutions of commercial humic products

    NASA Astrophysics Data System (ADS)

    Gosteva, O. Yu.; Izosimov, A. A.; Patsaeva, S. V.; Yuzhakov, V. I.; Yakimenko, O. S.

    2012-01-01

    We have studied the spectral luminescence characteristics of aqueous solutions of humic products obtained from different raw material sources, and their behavior as the excitation wavelength increases from 270 nm to 355 nm. We have identified differences in the spectral properties of industrial humic products from coalified materials, lignin-containing organic waste, and humic products from plant raw material (peat, sapropel, vermicompost). We have shown that humic products from plant raw material have spectral properties closer to those for humic substances in natural water or soil than humic products from coalified materials.

  13. Formation of glycolaldehyde phosphate from glycolaldehyde in aqueous solution

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, R.; Arrhenius, G.; Eschenmoser, A.; Bada, J. L. (Principal Investigator)

    1999-01-01

    Amidotriphosphate (0.1 M) in aqueous solution at near neutral pH in the presence of magnesium ions (0.25 M) converts glycolaldehyde (0.025 M) within days at room temperature into glycolaldehyde phosphate in (analytically) nearly quantitative yields (76% in isolated product). This robust phosphorylation process was observed to proceed at concentrations as low as 30 microM glycolaldehyde and 60 microM phosphorylation reagent under otherwise identical conditions. In sharp contrast, attempts to achieve a phosphorylation of glycolaldehyde with cyclotriphosphate ('trimetaphosphate') as phosphorylating reagent were unsuccessful. Mechanistically, the phosphorylation of glycolaldehyde with amidotriphosphate is an example of intramolecular delivery of the phosphate group.

  14. λ-Radiolysis of aqueous solution of glucosides

    NASA Astrophysics Data System (ADS)

    Rongyao, Yuan; Jilan, Wu

    In this paper, three types of aqueous solution of glucoside, baicalin (I), 1, 8-dihydroxyanthraquinone-β-D-glucoside (II) and glycyrrhizin (III), have been investigated. The yields of decomposition of glucosides are determined. Their G values decrease as doses increase. Some radiolysis products are identified. The influences of different radical scavengers such as, O 2, N 2O, KCNS and isopropanol, are observed. Radiolysis is mainly caused by OH radical. Radiation induced hydrolysis of glucosidic linkage is not the main process, the proportions of dissociated aglycon to total radiolysis products are less than 10%.

  15. Characteristics of zinc oxide nanorod array/titanium oxide film heterojunction prepared by aqueous solution deposition

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Hong, Min-Hsuan; Li, Bo-Wei

    2016-07-01

    The characteristics of a ZnO nanorod array/TiO2 film heterojunction were investigated. A TiO2 film was prepared on glass by aqueous solution deposition with precursors of ammonium hexafluorotitanate and boric acid at 40 °C. Then, a ZnO seed layer was prepared on a TiO2 film/glass substrate by RF sputtering. A vertically oriented ZnO nanorod array was grown on a ZnO seed layer/TiO2 film/glass substrate by aqueous solution deposition with precursors of zinc nitrate and hexamethylenetetramine (HMT) at 70 °C. After thermal annealing in N2O ambient at 300 °C, this heterojunction used as an oxygen gas sensor shows much better rise time, decay time, and on/off current ratio than as-grown and annealed ZnO nanorods.

  16. Photocatalysis of zinc oxide nanotip array/titanium oxide film heterojunction prepared by aqueous solution deposition

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Lee, Bo-Wei; Kao, Chen-Yu

    2017-05-01

    A TiO2 film was prepared on indium tin oxide (ITO)/glass by aqueous solution deposition (ASD) with precursors of ammonium hexafluoro-titanate and boric acid at 40 °C. The photocatalysis of annealed TiO2 film increases with increasing growth time and decreases with increasing growth times longer than 60 min. A ZnO nanotip array was prepared on ZnO seed layer/TiO2 film/glass by aqueous solution deposition with precursors of zinc nitrate and ammonium hydroxide at 70 °C. The photocatalysis of ASD-ZnO/ASD-TiO2 film/ITO glass can be better than that of P25.

  17. Fast heavy-ion radiation damage of glycine in aqueous solution

    NASA Astrophysics Data System (ADS)

    Nomura, Shinji; Tsuchida, Hidetsugu; Furuya, Ryosuke; Majima, Takuya; Itoh, Akio

    2016-12-01

    Fast heavy-ion radiolysis of biomolecules in aqueous solution is investigated for an atomistic understanding of radiation damage to normal cells during heavy-particle beam therapy. The smallest amino acid glycine was used as a model biomaterial. Microjets of aqueous glycine solutions under vacuum were irradiated with 4.0-MeV carbon ions corresponding to energies in the Bragg peak region. To understand the effects of the water environment on molecular damage, the yield of glycine dissociation was measured by secondary ion mass spectroscopy. The yield was significantly reduced relative to gas-phase glycine targets. This implies that the numerous water molecules surrounding a single glycine molecule act as a buffer that suppresses dissociation. This is an environmental effect similar to that observed for other biomolecular cluster targets.

  18. Time domain measurement of dielectric spectra of aqueous polyelectrolyte solutions at low frequencies

    NASA Astrophysics Data System (ADS)

    Nakamura, Haruki; Husimi, Yuzuru; Wada, Akiyoshi

    1981-04-01

    Dielectric measurements of aqueous solutions at low frequencies below 104-105 Hz have always been accompanied by two problems, which have made it difficult to obtain precise results; they are (i) the electrode polarization and (ii) the thermal drift of electric dc conductivity. For the former, adoption of a four-electrode cell has been proven to be effective in suppressing the electrode polarization. For the latter problem, a time domain measurement of the dielectric spectra is adequate. A combination of a four-electrode method with a time domain spectrometry using a Fourier synthesized pseudorandom noise (FSPN) method gave precise dielectric spectra at low frequencies, which were difficult to obtain by previous methods, with an adequate reproducibility for aqueous solutions of biological molecules, DNA, and polyglutamic acid. A precise description of the combined system is mentioned and the precision of the measurement is discussed.

  19. Heterogeneity of activated carbons in adsorption of aniline from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Podkościelny, P.; László, K.

    2007-08-01

    The heterogeneity of activated carbons (ACs) prepared from different precursors is investigated on the basis of adsorption isotherms of aniline from dilute aqueous solutions at various pH values. The APET carbon prepared from polyethyleneterephthalate (PET), as well as, commercial ACP carbon prepared from peat were used. Besides, to investigate the influence of carbon surface chemistry, the adsorption was studied on modified carbons based on ACP carbon. Its various oxygen surface groups were changed by both nitric acid and thermal treatments. The Dubinin-Astakhov (DA) equation and Langmuir-Freundlich (LF) one have been used to model the phenomenon of aniline adsorption from aqueous solutions on heterogeneous carbon surfaces. Adsorption-energy distribution (AED) functions have been calculated by using an algorithm based on a regularization method. Analysis of these functions for activated carbons studied provides important comparative information about their surface heterogeneity.

  20. Oligonucleotides as probes for studying polymerization reactions in dilute aqueous solution

    NASA Technical Reports Server (NTRS)

    Kolb, V.; Orgel, L. E.; Miller, S. L. (Principal Investigator)

    1994-01-01

    We have prepared a [32P]-labled oligonucleotide probe carrying a free primary amine at its 3'-terminus. This probe is used to initiate polymerization of aziridine (ethyleneimine) in aqueous solution. The nature of the oligomeric products and the kinetics of their formation are then monitored by gel electrophoresis. Our results are generally consistent with those obtained using conventional techniques. We have also investigated the effect of polyanionic templates on the rate of oligomerization of aziridine. We find that water-soluble polyanions generally accelerate the polymerization. The sodium salt of polymethacrylic acid is the most effective of the templates that we studied. The methods introduced in this paper should be applicable to a variety of polymerization reactions in aqueous solution. They should greatly simplify the screening of potentially prebiotic polymerization reactions.

  1. Mineralization of aniline in aqueous solution by electrochemical activation of persulfate.

    PubMed

    Chen, Wen-Shing; Huang, Chi-Pin

    2015-04-01

    Oxidative degradation of aniline in aqueous solution was carried out by coupling electrolysis with persulfate oxidation, in which a synergistic effect occurred. Experiments were performed under a batch-wise mode to evaluate the influence of various operation parameters on the electrolytic behavior, such as acidity of aqueous solution, temperature, electrode potential, persulfate anion concentration and nitrogen/oxygen gas dosage. The aniline pollutants could be almost entirely mineralized by means of electro-activated persulfate oxidation, wherein sulfate radicals were presumed to be principal oxidizing agents. Besides, electrogenerated hydrogen peroxide originated from cathodic reduction of oxygen, supplied chiefly by anodic oxidation of water, would contribute partially for decomposition of aniline. On the whole, the electro-activated persulfate process is a very promising method for treatment of aniline in wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Photochemical degradation of the carbapenem antibiotics imipenem and meropenem in aqueous solutions under solar radiation.

    PubMed

    Reina, Alejandro Cabrera; Martínez-Piernas, Ana B; Bertakis, Yannis; Brebou, Christina; Xekoukoulotakis, Nikolaos P; Agüera, Ana; Sánchez Pérez, José Antonio

    2018-01-01

    This paper deals with the photochemical fate of two representative carbapenem antibiotics, namely imipenem and meropenem, in aqueous solutions under solar radiation. The analytical method employed for the determination of the target compounds in various aqueous matrices, such as ultrapure water, municipal wastewater treatment plant effluents, and river water, at environmentally relevant concentrations, was liquid chromatography coupled with hybrid triple quadrupole-linear ion trap-mass spectrometry. The absorption spectra of both compounds were measured in aqueous solutions at pH values from 6 to 8, and both compounds showed a rather strong absorption band centered at about 300 nm, while their molar absorption coefficient was in the order from 9 × 10 3 -10 4  L mol -1  cm -1 . The kinetics of the photochemical degradation of the target compounds was studied in aqueous solutions under natural solar radiation in a solar reactor with compound parabolic collectors. It was found that the photochemical degradation of both compounds at environmentally relevant concentrations follows first order kinetics and the quantum yield was in the order of 10 -3  mol einsten -1 . Several parameters were studied, such as solution pH, the presence of nitrate ions and humic acids, and the effect of water matrix. In all cases, it was found that the presence of various organic and inorganic constituents in the aqueous matrices do not contribute significantly, either positively or negatively, to the photochemical degradation of both compounds under natural solar radiation. In a final set of photolysis experiments, the effect of the level of irradiance was studied under simulated solar radiation and it was found that the quantum yield for the direct photodegradation of both compounds remained practically constant by changing the incident solar irradiance from 28 to 50 W m -2 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Multiple glass transitions and freezing events of aqueous citric acid.

    PubMed

    Bogdan, Anatoli; Molina, Mario J; Tenhu, Heikki; Loerting, Thomas

    2015-05-14

    Calorimetric and optical cryo-microscope measurements of 10-64 wt % citric acid (CA) solutions subjected to moderate (3 K/min) and slow (0.5 and 0.1 K/min) cooling/warming rates and also to quenching/moderate warming between 320 and 133 K are presented. Depending on solution concentration and cooling rate, the obtained thermograms show one freezing event and from one to three liquid-glass transitions upon cooling and from one to six liquid-glass and reverse glass-liquid transitions, one or two freezing events, and one melting event upon warming of frozen/glassy CA/H2O. The multiple freezing events and glass transitions pertain to the mother CA/H2O solution itself and two freeze-concentrated solution regions, FCS1 and FCS2, of different concentrations. The FCS1 and FCS2 (or FCS22) are formed during the freezing of CA/H2O upon cooling and/or during the freezing upon warming of partly glassy or entirely glassy mother CA/H2O. The formation of two FCS1 and FCS22 regions during the freezing upon warming to our best knowledge has never been reported before. Using an optical cryo-microscope, we are able to observe the formation of a continuous ice framework (IF) and its morphology and reciprocal distribution of IF/(FCS1 + FCS2). Our results provide a new look at the freezing and glass transition behavior of aqueous solutions and can be used for the optimization of lyophilization and freezing of foods and biopharmaceutical formulations, among many other applications where freezing plays a crucial role.

  4. Multiple Glass Transitions and Freezing Events of Aqueous Citric Acid

    PubMed Central

    2014-01-01

    Calorimetric and optical cryo-microscope measurements of 10–64 wt % citric acid (CA) solutions subjected to moderate (3 K/min) and slow (0.5 and 0.1 K/min) cooling/warming rates and also to quenching/moderate warming between 320 and 133 K are presented. Depending on solution concentration and cooling rate, the obtained thermograms show one freezing event and from one to three liquid–glass transitions upon cooling and from one to six liquid–glass and reverse glass–liquid transitions, one or two freezing events, and one melting event upon warming of frozen/glassy CA/H2O. The multiple freezing events and glass transitions pertain to the mother CA/H2O solution itself and two freeze-concentrated solution regions, FCS1 and FCS2, of different concentrations. The FCS1 and FCS2 (or FCS22) are formed during the freezing of CA/H2O upon cooling and/or during the freezing upon warming of partly glassy or entirely glassy mother CA/H2O. The formation of two FCS1 and FCS22 regions during the freezing upon warming to our best knowledge has never been reported before. Using an optical cryo-microscope, we are able to observe the formation of a continuous ice framework (IF) and its morphology and reciprocal distribution of IF/(FCS1 + FCS2). Our results provide a new look at the freezing and glass transition behavior of aqueous solutions and can be used for the optimization of lyophilization and freezing of foods and biopharmaceutical formulations, among many other applications where freezing plays a crucial role. PMID:25482069

  5. Changing Hafnium Speciation in Aqueous Sulfate Solutions: A High-Energy X-ray Scattering Study

    SciTech Connect

    Kalaji, Ali; Skanthakumar, S.; Kanatzidis, Mercouri G.; Mitchell, John F.; Soderholm, L.

    2014-06-16

    The relationship of solution speciation and the structures of corresponding precipitates is examined for an aqueous Hf4+ . sulfate series. High-energy X-ray scattering (HEXS) and Raman spectroscopy data are used to probe atomic correlations in solutions. Hf4+ in acidic perchlorate solution shows no evidence of a mononuclear metal species but instead has a peak in the pair-distribution function (PDF), generated from the HEXS data, at 3.55 angstrom, indicating Hf4+- Hf4+ solution correlations. The peak intensity is consistent with clusters that are, on average, larger than the tetramic unit [M-4(OH)(8)(H2O)(16)](8+) usually attributed to Zr4+ and Hf4+ solution speciation under these conditions. Addition of sulfate results in a breakup of hydroxo-bridged oligomers into sulfate-capped dimers and, for higher concentrations, Hf-sulfate monomers. The bidentate coordination mode of sulfate dominates the dissolved precursors, although it is not found in the structure of the final crystallized product, which instead is comprised of bridging-bidentate sulfate ligation. Neither the PDF patterns nor the Raman spectra show any evidence of the larger oligomers, such as the octadecameric metal clusters, found in similar Zr4+ solutions. The oligomeric units found in solution provide insights into possible assembly routes for crystallization. In addition to expanding our understanding of synthesis science this study also reveals differences in the aqueous chemistries between Hf and Zr, two elements with ostensibly very similar chemical behavior.

  6. Photodegradation of 2-chloropyridine in aqueous solution: Reaction pathways and genotoxicity of intermediate products.

    PubMed

    Skoutelis, Charalambos; Antonopoulou, Maria; Konstantinou, Ioannis; Vlastos, Dimitris; Papadaki, Maria

    2017-01-05

    2-Chloropyridine, an important precursor of the chemical industry is also a persistent water pollutant. The genotoxicity of photolytically treated 2-chloropyridine aqueous solution to human lymphocytes initially increases and fluctuates during treatment finally reaching the control values after prolonged treatment. Intermediate products formed were identified; a kinetic scheme for their formation is presented. To identify the source of genotoxicity variations and the potential in vitro effects on human lymphocytes of the partially photo-treated aqueous solution, the genotoxicity of four (the only) commercially available intermediates, i.e., 1H-pyrrole-2-carboxaldehyde, 6-chloro-2-pyridinecarboxylic acid, 2,3-dichloropyridine and 2-pyridinecarbonitrile was measured; the obtained results were used for the reasoning on the variation of the solution genotoxic (including clastogenic as well as aneugenic) events and cytotoxic activity. It was found that 1H-pyrrole-2-carboxaldehyde and 6-chloro-2-pyridinecarboxylic acid were highly genotoxic even at the very low concentration measured here. Thus, they likely had a significant contribution to the photolytically treated solution genotoxicity. 2,3-Dichloropyridine was found to be genotoxic but only at concentrations higher than the ones measured in this work. Thus, it was not likely to have contributed to the solution genotoxicity. Finally, at the concentrations measured in this work 2-pyridinecarbonitrile was found to be only cytotoxic. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Surface oxide growth on platinum electrode in aqueous trifluoromethanesulfonic acid

    NASA Astrophysics Data System (ADS)

    Furuya, Yoshihisa; Mashio, Tetsuya; Ohma, Atsushi; Dale, Nilesh; Oshihara, Kenzo; Jerkiewicz, Gregory

    2014-10-01

    Platinum in the form of nanoparticles is the key and most expensive component of polymer electrolyte membrane fuel cells, while trifluoromethanesulfonic acid (CF3SO3H) is the smallest fluorinated sulfonic acid. Nafion, which acts as both electrolyte and separator in fuel cells, contains -CF2SO3H groups. Consequently, research on the electrochemical behaviour of Pt in aqueous CF3SO3H solutions creates important background knowledge that can benefit fuel cell development. In this contribution, Pt electro-oxidation is studied in 0.1 M aqueous CF3SO3H as a function of the polarization potential (Ep, 1.10 ≤ Ep ≤ 1.50 V), polarization time (tp, 100 ≤ tp ≤ 104 s), and temperature (T, 278 ≤ T ≤ 333 K). The critical thicknesses (X1), which determines the applicability of oxide growth theories, is determined and related to the oxide thickness (dox). Because X1 > dox for the entire range of Ep, tp, and T values, the formation of Pt surface oxide follows the interfacial place-exchange or the metal cation escape mechanism. The mechanism of Pt electro-oxidation is revised and expanded by taking into account possible interactions of cations, anions, and water molecules with Pt. A modified kinetic equation for the interfacial place exchange is proposed. The application of the interfacial place-exchange and metal cation escape mechanisms leads to an estimation of the Ptδ+-Oδ- surface dipole (μPtO), and the potential drop (Vox) and electric field (Eox) within the oxide. The Pt-anion interactions affect the oxidation kinetics by indirectly influencing the electric field within the double layer and the surface oxide.

  8. Effects of organic acids, amino acids and ethanol on the radio-degradation of patulin in an aqueous model system

    NASA Astrophysics Data System (ADS)

    Yun, Hyejeong; Lim, Sangyong; Jo, Cheorun; Chung, Jinwoo; Kim, Soohyun; Kwon, Joong-Ho; Kim, Dongho

    2008-06-01

    The effects of organic acids, amino acids, and ethanol on the radio-degradation of patulin by gamma irradiation in an aqueous model system were investigated. The patulin, dissolved in distilled water at a concentration of 50 ppm, was practically degraded by the gamma irradiation at the dose of 1.0 kGy, while 33% of the patulin remained in apple juice. In the aqueous model system, the radio-degradation of patulin was partially inhibited by the addition of organic acids, amino acids, and ethanol. The proportions of remaining patulin after irradiation with the dose of 1.0 kGy in the 1% solution of malic acid, citric acid, lactic acid, acetic acid, ascorbic acid, and ethanol were 31.4%, 2.3%, 31.2%, 6.1%, 50.8%, and 12.5%, respectively. During 30 days of storage, the remaining patulin was reduced gradually in the solution of ascorbic acid and malic acid compared to being stable in other samples. The amino acids, serine, threonine, and histidine, inhibited the radio-degradation of patulin. In conclusion, it was suggested that 1 kGy of gamma irradiation (recommended radiation doses for radicidation and/or quarantine in fruits) is effective for the reduction of patulin, but the nutritional elements should be considered because the radio-degradation effects are environment dependent.

  9. Instabilities and Coarsening of Stressed Crystal Surfaces in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Bisschop, Jan; Dysthe, Dag Kristian

    2006-04-01

    Strong pattern formation occurs on polished miscut surfaces of sodium chlorate (NaClO3) single crystals that are uniaxially stressed perpendicular to the step edge direction and placed in a saturated aqueous solution. The wavelength λ of the stress-induced surface instability increased continuously in experiments up to 9 days after placed in the solution. There were three successive regimes of coarsening: (i) one-dimensional step bunching with λ˜t1/4 until an undulation transition was reached, (ii) a two-dimensional coarsening mechanism with λ˜t1/2, and a gradual transition to (iii) Ostwald ripening-like coarsening with λ˜t1/3. The coarsening of the surface patterns towards a stable, flat surface implies the spontaneous formation of a stress-free skin on the surface of the stressed solid.

  10. Removal of thiobencarb in aqueous solution by zero valent iron.

    PubMed

    Nurul Amin, Md; Kaneco, Satoshi; Kato, Tetsuya; Katsumata, Hideyuki; Suzuki, Tohru; Ohta, Kiyohisa

    2008-01-01

    A cost-effective method with zero valent iron (ZVI) powder was developed for the purification of thiobencarb (TB)-contaminated water. The removal treatment was performed in the batch system. A sample solution of 10 ml containing 10 microg ml(-1) of TB could be almost completely treated by 100mg of ZVI at 25 degrees C for 12h of treatment time. Since the formation of chloride ion in the aqueous solution during the treatment of TB was observed, the removal of TB with ZVI may contain two processes: reduction (degradation) and adsorption. Because the present treatment for TB is simple, easy handling and cheap, the developed technology with ZVI can contribute to the treatment of agricultural wastewaters.

  11. Insights into tris-(2-hydroxylethyl)methylammonium methylsulfate aqueous solutions.

    PubMed

    Aparicio, Santiago; Atilhan, Mert

    2012-10-08

    We report herein a combined experimental-computational study on tris-(2-hydroxylethyl)methylammonium methylsulfate in water solutions, as a representative ionic liquid of the aqueous-solution behavior of hydroxylammonium-based ionic liquids. Relevant thermophysical properties were measured as a function of mixture composition and temperature. Classical molecular dynamics simulations were performed to infer microscopic structural features. The reported results for ionic liquid in water-rich solutions show that it behaves as isolated non-interacting ions solvated by water molecules, through well-defined solvation shells, exerting a disrupting effect on the water hydrogen bonding network. Nevertheless, as ionic liquid concentration increase, interionic association increases, even for diluted water solutions, evolving from the typical behavior of strong electrolytes in solution toward large interacting structures. For ionic-liquid-rich mixtures, water exerts a minor disrupting effect on the fluid's structuring because it occupies regions around each ion (developing water-ion hydrogen bonds) but without significantly weakening anion-cation interactions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Aqueous infrared carboxylate absorbances: Aliphatic di-acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Leenheer, J.A.; McVey, I.F.

    1998-01-01

    Aqueous attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of 18 aliphatic di-carboxylic acids are reported as a function of pH. The spectra show isosbestic points and intensity changes which indicate that Beer's law is obeyed, and peak frequencies lie within previously reported ranges for aqueous carboxylates and pure carboxylic acids. Intensity sharing from the symmetric carboxylate stretch is evident in many cases, so that bands which are nominally due to alkyl groups show increased intensity at higher pH. The asymmetric stretch of the HA- species is linearly related to the microscopic acidity constant of the H2A species, with ??pK 2 intervening atoms). The results suggest that aqueous ATR-FTIR may be able to estimate 'intrinsic' pKa values of carboxylic acids, in addition to providing quantitative estimates of ionization. ?? 1998 Elsevier Science B.V. All rights reserved.

  13. Radiation crosslinking of methylcellulose and hydroxyethylcellulose in concentrated aqueous solutions

    NASA Astrophysics Data System (ADS)

    Wach, Radoslaw A.; Mitomo, Hiroshi; Nagasawa, Naotsugu; Yoshii, Fumio

    2003-12-01

    The effects of ionizing radiation on aqueous solutions of cellulose ethers, methylcellulose (MC) and hydroxyethylcellulose (HEC) were investigated. The well-established knowledge states that cellulose and its derivatives belong to degrading type of polymers. However, in our study intermolecular crosslinking initiated by gamma rays or electron beam leaded to the formation of insoluble gel. This is an opposite effect of irradiation to the degradation. Paste-like form of the initial specimen, i.e. concentration 20-30%, when water plasticizes the bulk of polymer; and a high dose rate were favorable for hydrogel formation. Gel fraction up to 60% and 70% was obtained from solutions of HEC and MC, respectively. Produced hydrogels swell markedly in aqueous media by imbibing and holding the solvent. Radiation parameters of irradiation, such as yields of degradation and crosslinking and the gelation dose, were evaluated by sol-gel analysis on the basis of Charlesby-Rosiak equation. Despite of the crosslinked structure, obtained hydrogels can be included into the group of biodegradable materials. They undergo decomposition by the action of cellulase enzyme or microorganisms from compost.

  14. Efficient removal of mercury from aqueous solutions and industrial effluent.

    PubMed

    Dos Santos, Maria B P; Leal, Katia Z; Oliveira, Fernando J S; Sella, Silvia M; Vieira, Méri D; Marques, Elisa M D; Gomes, Vanessa A C

    2015-01-01

    The objective of this study was to examine the ability of a solid waste produced during beneficiation of ornamental rocks to remove mercury (Hg) from an industrial effluent and aqueous solutions under various conditions. Batch studies have been carried out by observing the effects of pH, concentration of the adsorbate, contact time, and so on. Various sorption isotherm models such as Langmuir, Freundlich, and Tóth have been applied for the adsorbent. Film and intraparticle diffusion were both found to be rate-limiting steps. Adsorption was properly described by the Freundlich model (capacity constant of 0.3090 (mg g(-1))(mg L(-1))(-1/n) and adsorption intensity indicator of 2.2939), which indicated a favorable sorption and encouraged subsequent studies for treatment of Hg-containing industrial effluent. Industrial effluent treatment efficiency reached Hg removals greater than 90% by using ornamental rock solid waste (ORSW). Besides, desorption studies indicated that the maximum recovery of mercury was 100 ± 2% for 1 mol L(-1) HNO3 and 74 ± 8% for 0.1 mol L(-1) HNO3. The ORSW could be reused thrice without significant difference on the Hg removal rate from industrial effluent. These findings place ORSW as a promising efficient and low-cost adsorbent for the removal of Hg from aqueous solutions and industrial effluent.

  15. Preparation of metallic nanoparticles by irradiation in starch aqueous solution

    NASA Astrophysics Data System (ADS)

    NemÅ£anu, Monica R.; Braşoveanu, Mirela; Iacob, Nicuşor

    2014-11-01

    Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔEab (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle ho was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.

  16. Preparation of metallic nanoparticles by irradiation in starch aqueous solution

    SciTech Connect

    Nemţanu, Monica R. Braşoveanu, Mirela Iacob, Nicuşor

    2014-11-24

    Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔE{sub ab} (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle h{sup o} was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.

  17. Molecular dynamics simulations of aqueous solutions of ethanolamines.

    PubMed

    López-Rendón, Roberto; Mora, Marco A; Alejandre, José; Tuckerman, Mark E

    2006-08-03

    We report on molecular dynamics simulations performed at constant temperature and pressure to study ethanolamines as pure components and in aqueous solutions. A new geometric integration algorithm that preserves the correct phase space volume is employed to study molecules having up to three ethanol chains. The most stable geometry, rotational barriers, and atomic charges were obtained by ab initio calculations in the gas phase. The calculated dipole moments agree well with available experimental data. The most stable conformation, due to intramolecular hydrogen bonding interactions, has a ringlike structure in one of the ethanol chains, leading to high molecular stability. All molecular dynamics simulations were performed in the liquid phase. The interaction parameters are the same for the atoms in the ethanol chains, reducing the number of variables in the potential model. Intermolecular hydrogen bonding is also analyzed, and it is shown that water associates at low water mole fractions. The force field reproduced (within 1%) the experimental liquid densities at different temperatures of pure components and aqueous solutions at 313 K. The excess and partial molar volumes are analyzed as a function of ethanolamine concentration.

  18. New terahertz dielectric spectroscopy for the study of aqueous solutions.

    PubMed

    George, Deepu K; Charkhesht, Ali; Vinh, N Q

    2015-12-01

    We present the development of a high precision, tunable far-infrared (terahertz) frequency-domain dielectric spectrometer for studying the dynamics of biomolecules in aqueous solutions in the gigahertz-to-terahertz frequency. As an important benchmark system, we report on the measurements of the absorption and refractive index for liquid water in the frequency range from 5 GHz to 1.12 THz (0.17-37.36 cm(-1) or 0.268-60 mm). The system provides a coherent radiation source with power up to 20 mW in the gigahertz-to-terahertz region. The dynamic range of our instrument reaches 10(12) and the system achieves a spectral resolution of less than 100 Hz. The temperature of samples can be controlled precisely with error bars of ±0.02 °C from 0 °C to 90 °C. Given these attributes, our spectrometer provides unique capabilities for the accurate measurement of even very strongly absorbing materials such as aqueous solutions.

  19. Preparation of metallic nanoparticles by irradiation in starch aqueous solution

    SciTech Connect

    Nemţanu, Monica R., E-mail: monica.nemtanu@inflpr.ro; Braşoveanu, Mirela, E-mail: monica.nemtanu@inflpr.ro; Iacob, Nicuşor, E-mail: monica.nemtanu@inflpr.ro

    2014-11-24

    Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔE{sub ab} (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle h{supmore » o} was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.« less

  20. Removal of Cr6+ from aqueous solution by some algae.

    PubMed

    Baran, Ayşe; Baysal, Senay Hamarat; Sukatar, Atakan

    2005-06-01

    Biosorption of Cr6+ from aqueous solution on dried (Halimeda tuna, Sargassum vulgare, Pterocladia capillacea, Hypnea musciformis, Laurencia papillosa) algae were studied with variation in the parameters of pH, initial metal ion concentration and agitation time. From the batch system studies the working sorption pH value was determined as 1.0 for Halimeda tuna and Sargassum vulgare, 2.0 for Pterocladia capillacea and Hypnea musciformis, 3.0 for Laurencia papillosa. The total adsorbed quantities, equilibrium uptakes and total removal percents of Cr6+ were determined by evaluating the breakthrough curves obtained at different inlet Cr6+ concentration for each sorbent. The maximum chromium biosorption occured at 120 min for Halimeda tuna, 180 min for Sargassum vulgare, Hypnea musciformis and Pterocladia capillacea, 60 min for Laurencia papillosa. The suitability of the Freundlich and Langmiur adsorption models were also investigated for each chromium-sorbent system. The results showed that Sargassum vulgare was found suitable for removing chromium from aqueous solution. The maximum sorption capacities of Halimeda tuna, Sargassum vulgare, Pterocladia capillacea, Hypnea musciformis, Laurencia papillosa were determined as 2.3, 33.0, 6.6, 4.7 and 5.3 mgg(-1).

  1. Photochemistry of Tetrabromobisphenol A in Frozen and Liquid Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Reich, J.; Grannas, A. M.; Dolak, E.

    2012-12-01

    Brominated flame retardants are an emerging environmental contaminant and are now globally distributed in the environment, including the Polar Regions. Because bioaccumulation presents serious concerns for human and wildlife health within the Arctic, it is important to assess the potential fate of these contaminants. Despite some established knowledge regarding photochemical processes in reactive frozen media, little published literature exists regarding the chemical transformations and fate of brominated flame retardants in the Arctic. Here, we consider the photochemical transformation of tetrabromobisphenol A (TBBPA). We have conducted field-based experiments in Barrow, Alaska to investigate the potential photochemical degradation of TBBPA in snow/ice samples and found that TBBPA was efficiently photodegraded in frozen aqueous samples under natural Barrow sunlight. The main pathway of degradation was direct photolysis and the addition of photosensitizers had no significant impact on TBBPA photodegradation. In aqueous solution the solubility and light absorption properties of TBBPA are pH dependent, indicating that the photodegradation of TBBPA in the environment will be highly pH dependent. Reactions than are pH dependent may be affected by the nature of the liquid-like layers in snow/ice as well as the presence of other solutes that may indirectly affect the local pH. Here we will discuss our field and laboratory-based results investigating the role that snow/ice composition may play on TBBPA photochemical reactivity.

  2. Method of precipitating uranium from an aqueous solution and/or sediment

    DOEpatents

    Tokunaga, Tetsu K; Kim, Yongman; Wan, Jiamin

    2013-08-20

    A method for precipitating uranium from an aqueous solution and/or sediment comprising uranium and/or vanadium is presented. The method includes precipitating uranium as a uranyl vanadate through mixing an aqueous solution and/or sediment comprising uranium and/or vanadium and a solution comprising a monovalent or divalent cation to form the corresponding cation uranyl vanadate precipitate. The method also provides a pathway for extraction of uranium and vanadium from an aqueous solution and/or sediment.

  3. Spectroscopic and Thermogravimetric Characterization of Pb(II) Dinonyldithiophosphate: Removal of Pb(II) from Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Gümgüm, H. B.; Biricik, N.

    2015-07-01

    Dinonyldithiophosphoric acid (DNDTPA) was prepared by adding phosphorus pentasulfide to nonyl alcohol. The lead dinonyl dithiophosphate complex Pb(DNDTP) 2 was prepared by mixing a solution of lead(II) with a solution of DNDTPA in ethanol at room temperature. The recovered Pb(DNDTP) 2 was crystallized in ethanol, and fi ne colorless needles were obtained. The complex was characterised by elemental analysis and IR, UV-vis and atomic absorption spectroscopy. The thermal behavior of Pb(DNDTP) 2 was investigated by thermogravimetric analysis under a nitrogen atmosphere. Removal of Pb(II) from aqueous media by DNDTPA solutions was investigated. The optimum conditions for extraction, such as the organic solvent, pH of the aqueous phase, time of equilibration, concentration, and effect of anions, were investigated. It was found that DNDTPA is an effective substance for removing Pb(II) from aqueous solution.

  4. Water dynamics in n-propylene glycol aqueous solutions

    NASA Astrophysics Data System (ADS)

    Cerveny, S.; Schwartz, G. A.; Alegría, A.; Bergman, R.; Swenson, J.

    2006-05-01

    The relaxation dynamics of dipropylene glycol and tripropylene glycol (nPG—n=2,3) water solutions on the nPG-rich side has been studied by broadband dielectric spectroscopy and differential scanning calorimetry in the temperature range of 130-280K. Two relaxation processes are observed for all the hydration levels; the slower process (I) is related to the α relaxation of the solution whereas the faster one (II) is associated with the reorientation of water molecules in the mixture. Dielectric data for process (II) at temperatures between 150 and 200K indicate the existence of a critical water concentration (xc) below which water mobility is highly restricted. Below xc, nPG-water domains drive the dielectric signal whereas above xc, water-water domains dominate the dielectric response at low temperatures. The results also show that process (II) at low temperatures is due to local motions of water molecules in the glassy frozen matrix. Additionally, we will show that the glass transition temperatures (Tg) for aqueous PG, 2PG, and 3PG solutions do not extrapolate to ˜136K, regardless of the extrapolation method. Instead, we find that the extrapolated Tg value for water from these solutions lies in the neighborhood of 165K.

  5. Radiation induced degradation of xanthan gum in aqueous solution

    NASA Astrophysics Data System (ADS)

    Hayrabolulu, Hande; Demeter, Maria; Cutrubinis, Mihalis; Güven, Olgun; Şen, Murat

    2018-03-01

    In our previous study, we have investigated the effect of gamma rays on xanthan gum in the solid state and it was determined that dose rate was an important factor effecting the radiation degradation of xanthan gum. In the present study, in order to provide a better understanding of how ionizing radiation effect xanthan gum, we have investigated the effects of ionizing radiation on aqueous solutions of xanthan at various concentrations (0.5-4%). Xanthan solutions were irradiated with gamma rays in air, at ambient temperature, at different dose rates (0.1-3.3-7.0 kGy/h) and doses (2.5-50 kGy). Change in their molecular weights was followed by size exclusion chromatography (SEC). Chain scission yield (G(S)), and degradation rate constants (k) were calculated. It was determined that, solution concentration was a factor effecting the degradation chemical yield and degradation rate of xanthan gum. Chain scission reactions were more effective for lower solution concentrations.

  6. Spectral reflectance of selected aqueous solutions for water quality applications

    NASA Technical Reports Server (NTRS)

    Querr, M. R.; Waring, R. C.; Holland, W. E.; Nijm, W.; Hale, G. M.

    1972-01-01

    The relative specular reflectances of individual aqueous solutions having a particular chemical salt content were measured in the 2 to 20 micrometers region of the infrared component or radiant flux. Distilled water was the reflectance standard. The angle of incidence was 70.03 deg plus or minus 0.23 deg. Absolute reflectances of the solutions for the same polarization and angle of incidence were computed by use of the measured relative reflectances, one of the Fresnel equations, and the optical constants of distilled water. Phase shift and phase difference spectra were obtained by respectively applying a Kramers-Kronig dispersion analysis to the absolute and relative reflectance spectra. The optical constants of the solutions were determined by algorithms commonly associated with the Kramers-Kronig analysis. Spectral signatures that qualitatively and quantitatively characterize the solute and that show structure of the infrared bands of water were noted in the phase difference spectra. The relative and absolute reflectances, the phase shift and phase difference spectra and the optical constants are presented in graphical form. Application of these results to remote sensing of the chemical quality of natural waters is discussed briefly.

  7. Study on the adsorption mechanism of DNA with mesoporous silica nanoparticles in aqueous solution.

    PubMed

    Li, Xu; Zhang, Jixi; Gu, Hongchen

    2012-02-07

    Among the numerous adsorption strategies for DNA adsorption into mesopores, the salt-solution-induced adsorption method has a great application potential in nucleic acids science; thus, it is important to understand the adsorption mechanism. This work demonstrates the mechanistic aspects underlying the adsorption behaviors of DNA with mesoporous silica nanoparticles (MSNs) in aqueous solution. The driving forces for the adsorption process can be categorized into three parts: the shielded electrostatic force, the dehydration effect, and the intermolecular hydrogen bonds. Compared to the adsorption behaviors of DNA with a solid silica nanosphere, we find some unique features for DNA adsorption into the mesopores, such as increasing the salt concentration or decreasing the pH value can promote DNA adsorption into the mesoporous silica. Further analysis indicates that the entrance of DNA into mesopores is probably controlled by the Debye length in solution and DNA can generate direct and indirect hydrogen bonds in the pores with different diameters. The following desorption study depicts that such types of hydrogen bonds result in different energy barriers for the desorption process. In summary, our study depicts the mechanism of DNA adsorption within mesopores in aqueous solution and sets the stage for formulating MSNs as carriers of nucleic acids.

  8. Dissociation of equimolar mixtures of aqueous carboxylic acids in ionic liquids: role of specific interactions.

    PubMed

    Shukla, Shashi Kant; Kumar, Anil

    2015-04-30

    Hammett acidity function observes the effect of protonation/deprotonation on the optical density/absorbance of spectrophotometric indicator. In this work, the Hammett acidity, H0, of equimolar mixtures of aqueous HCOOH, CH3COOH, and CH3CH2COOH was measured in 1-methylimidazolium-, 1-methylpyrrolidinium-, and 1-methylpiperidinium-based protic ionic liquids (PILs) and 1-butyl-3-methylimidazolium-based aprotic ionic liquid (AIL) with formate (HCOO(-)) anion. Higher H0 values were observed for the equimolar mixtures of aqueous carboxylic acids in protic ionic liquids compared with those of the aprotic ionic liquid because of the involvement of the stronger specific interactions between the conjugate acid of ionic liquid and conjugate base of carboxylic acids as suggested by the hard-soft acid base (HSAB) theory. The different H0 values for the equimolar mixtures of aqueous carboxylic acids in protic and aprotic ionic liquids were noted to depend on the activation energy of proton transfer (Ea,H(+)). The higher activation energy of proton transfer was obtained in AIL, indicating lower ability to form specific interactions with solute than that of PILs. Thermodynamic parameters determined by the "indicator overlapping method" further confirmed the involvement of the secondary interactions in the dissociation of carboxylic acids. On the basis of the thermodynamic parameter values, the potential of different ionic liquids in the dissociation of carboxylic acids was observed to depend on the hydrogen bond donor acidity (α) and hydrogen bond acceptor basicity (β), characteristics of specific interactions.

  9. Novel Superdielectric Materials: Aqueous Salt Solution Saturated Fabric

    PubMed Central

    Phillips, Jonathan

    2016-01-01

    The dielectric constants of nylon fabrics saturated with aqueous NaCl solutions, Fabric-Superdielectric Materials (F-SDM), were measured to be >105 even at the shortest discharge times (>0.001 s) for which reliable data could be obtained using the constant current method, thus demonstrating the existence of a third class of SDM. Hence, the present results support the general theoretical SDM hypothesis, which is also supported by earlier experimental work with powder and anodized foil matrices: Any material composed of liquid containing dissolved, mobile ions, confined in an electrically insulating matrix, will have a very high dielectric constant. Five capacitors, each composed of a different number of layers of salt solution saturated nylon fabric, were studied, using a galvanostat operated in constant current mode. Capacitance, dielectric constant, energy density and power density as a function of discharge time, for discharge times from ~100 s to nearly 0.001 s were recorded. The roll-off rate of the first three parameters was found to be nearly identical for all five capacitors tested. The power density increased in all cases with decreasing discharge time, but again the observed frequency response was nearly identical for all five capacitors. Operational limitations found for F-SDM are the same as those for other aqueous solution SDM, particularly a low maximum operating voltage (~2.3 V), and dielectric “constants” that are a function of voltage, decreasing for voltages higher than ~0.8 V. Extrapolations of the present data set suggest F-SDM could be the key to inexpensive, high energy density (>75 J/cm3) capacitors. PMID:28774037

  10. Adsorption characteristics of Pb(II) from aqueous solutions onto a natural biosorbent, fallen arborvitae leaves.

    PubMed

    Shi, Jie; Zhao, Zhiwei; Liang, Zhijie; Sun, Tianyi

    2016-01-01

    In this study, the potential of the oriental arborvitae leaves for the adsorption of Pb(II) from aqueous solutions was evaluated. Brunauer-Emmett-Teller analysis showed that the surface area of arborvitae leaves was 29.52 m(2)/g with pore diameter ranging from 2 to 50 nm. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy showed C-C or C-H, C-O, and O-C=O were the main groups on the arborvitae leaves, which were the main sites for surface complexation. Finally, effects of adsorbent dose, initial pH, contact time, and coexisting natural organic matters (humic acid (HA)) on the adsorption of Pb(II) were investigated. The results indicated that the pHZPC (adsorbents with zero point charge at this pH) was 5.3 and the adsorption reached equilibrium in 120 min. Isotherm simulations revealed that the natural arborvitae leaves exhibit effective adsorption for Pb(II) in aqueous solution, giving adsorptive affinity and capacity in an order of 'no HA' > 5 mg/L HA > 10 mg/L HA, and according to the Langmuir models, the maximum adsorptions of Pb(II) were 43.67 mg/g, 38.61 mg/g and 35.97 mg/g, respectively. The results demonstrated that the oriental arborvitae leaves showed high potentials for the adsorption of Pb(II) from aqueous solutions.

  11. Heavy metal uptake capacity of fresh water algae (Oedogonium westti) from aqueous solution: A mesocosm research.

    PubMed

    Shamshad, Isha; Khan, Sardar; Waqas, Muhammad; Asma, Maliha; Nawab, Javed; Gul, Nayab; Raiz, Arjumand; Li, Gang

    2016-01-01

    The green macroalgae present in freshwater ecosystems have attracted a great attention of the world scientists for removal of heavy metals from wastewater. In this mesocosm study, the uptake rates of heavy metals such as cadmium (Cd), nickel (Ni), chromium (Cr), and lead (Pb) by Oedogonium westi (O. westti) were measured. The equilibrium adsorption capabilities of O. westti were different for Cd, Ni, Cr, and Pb (0.974, 0.418, 0.620, and 0.261 mgg(-1), respectively) at 18 °C and pH 5.0. Furthermore, the removal efficiencies for Cd, Cr, Ni and Pb were observed from 55-95%, 61-93%, 59-89%, and 61-96%, respectively. The highest removal efficiency was observed for Cd and Cr from aqueous solution at acidic pH and low initial metal concentrations. However, the removal efficiencies of Ni and Pb were higher at high pH and high concentrations of metals in aqueous solution. The results summarized that O. westti is a suitable candidate for removal of selected toxic heavy metals from the aqueous solutions.

  12. Dispergation and modification of multi-walled carbon nanotubes in aqueous solution

    NASA Astrophysics Data System (ADS)

    Qu, Chunlai; Cheng, Fang; Su, Hui; Zhao, Yang

    2016-11-01

    Multi-walled carbon nanotubes (MWCNTs) are widely applied in development of composite materials. However, their properties are directly influenced by the degree of uniformity of dispersion of MWCNTs in the material's matrix. In this paper, the dispersing of raw MWCNTs (R-MWCNTs) and decorated MWCNTs (D-MWCNTs) was studied in aqueous solution. The D-MWCNTs were obtained by chemical modification method by treatment of initial MWCNTs with the mixture of concentrated nitric and sulfuric acids (3: 1 vol/vol). To achieve a good dispersion of the MWCNTs, a method utilizing ultrasonic processing and surfactant (polyvinylpyrrolidone, PVP) was employed. MWCNTs were characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The prepared MWCNTs suspensions were investigated by UV spectroscopy, zeta potential measurements, surface tension and transmission electron microscopy (TEM). The D-MWCNTs have better dispersibility in aqueous solution; this attributed to the functional groups formed on their surface during chemical modification. The PVP surfactant in a certain concentration of 0.6 g/L has the maximum dispersing effect on MWCNTs in aqueous solution, the optimum concentration ratio of PVP and MWCNTs was 3: 1.

  13. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures

    SciTech Connect

    Cochrane, T. T.; Cochrane, T. A.

    2016-01-15

    Purpose: To demonstrate that the authors’ new “aqueous solution vs pure water” equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. Methods: The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of “free” water molecules per unit volume of solution, “N{sub f},” and (c) the “t” factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate N{sub f} was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors’ equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. Results: The provisional equations formulated to calculate N{sub f}, the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of N{sub f

  14. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures

    SciTech Connect

    Cochrane, T. T., E-mail: agteca@hotmail.com; Cochrane, T. A., E-mail: tom.cochrane@canterbury.ac.nz

    2016-01-15

    Purpose: To demonstrate that the authors’ new “aqueous solution vs pure water” equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. Methods: The authors experimented with their newmore » equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of “free” water molecules per unit volume of solution, “N{sub f},” and (c) the “t” factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate N{sub f} was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors’ equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. Results: The provisional equations formulated to calculate N{sub f}, the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of

  15. A fundamental study of the transport properties of aqueous superacid solutions.

    PubMed

    Suarez, Sophia N; Jayakody, Jay R P; Greenbaum, Steve G; Zawodzinski, Thomas; Fontanella, John J

    2010-07-15

    An extensive investigation of the transport properties of aqueous acid solutions was undertaken. The acids studied were trifluoromethanesulfonic (CF(3)SO(3)H), bis(trifluoromethanesulfonyl)imide [(CF(3)SO(2))(2)NH], and para-toluenesulfonic (CH(3)C(6)H(4)SO(3)H), of which the first two are considered superacids. NMR measurements of self-diffusion coefficients (D), spin-lattice relaxation times (T(1)), and chemical shifts, in addition to ionic conductivity (sigma), viscosity (eta), and density measurements, were performed at 30 degrees C over the concentration range of 2-112 water to acid molecules. Results showed broad maxima in sigma for all three acids in the concentration range of 12-20 water to acid molecules. This coincided with minima in anion Ds and is attributed to a local molecular ordering, reduced solution dielectric permittivity, and increased ionic interactions. The location of the maxima in sigma correlates with what is observed for hydrated sulfonated perfluoropolymers such as Nafion, which gives a maximum in ionic transport when the ratio of water to acid molecules is about 15-20. Of the three acids, bis(trifluoromethanesulfonyl)imide was found to be the least dependent on hydration level. The occurrence of the anticorrelation between the ionic conductivity maximum and the anion self-diffusion minimum supports excess proton mobility in this region and may offer additional information on the strength of hydrogen bonding in aqueous media as well as on the role of high acid concentration in the Grotthuss proton transport mechanism.

  16. A Fundamental Study of the Transport Properties of Aqueous Superacid Solutions

    PubMed Central

    Suarez, Sophia N.; Jayakody, Jay R.P; Greenbaum, Steve G.; Zawodzinski, Thomas; Fontanella, John J.

    2010-01-01

    An extensive investigation of the transport properties of aqueous acid solutions was undertaken. The acids studied were trifluoromethanesulfonic (CF3SO3H), bis(trifluoromethanesulfonyl)imide ((CF3SO2)2NH), and para-toluenesulfonic (CH3C6H4SO3H), of which the first two are considered superacids. NMR measurements of self-diffusion coefficients (D), spin-lattice relaxation times (T1), and chemical shifts, in addition to ionic conductivity (σ), viscosity (η), and density measurements were performed at 30°C over the concentration range of 2 – 112 water to acid molecules. Results showed broad maxima in σ for all three acids in the concentration range of 12 – 20 water to acid molecules. This coincided with minima in anion D's, and is attributed to a local molecular ordering, reduced solution dielectric permittivity and increased ionic interactions. The location of the maxima in σ correlates with what is observed for hydrated sulfonated perfluoropolymers such as Nafion, which gives a maximum in ionic transport when the ratio of water to acid molecules is about 15 – 20. Of the three acids, bis(trifluoromethanesulfonyl)imide was found to be the least dependent on hydration level. The occurrence of the anti-correlation between the ionic conductivity maximum and anion self-diffusion minimum supports excess proton mobility in this region and may offer additional information on the strength of hydrogen bonding in aqueous media as well as on the role of high acid concentration in the Grotthuss proton transport mechanism. PMID:20568805

  17. Strong adhesion and cohesion of chitosan in aqueous solutions

    PubMed Central

    Lee, Dong Woog; Lim, Chanoong; Israelachvili, Jacob N.; Hwang, Dong Soo

    2014-01-01

    Chitosan, a load-bearing biomacromolecule found in the exoskeletons of crustaceans and insects, is a promising biopolymer for the replacement of synthetic plastic compounds. Here, surface interactions mediated by chitosan in aqueous solutions, including the effects of pH and contact time, were investigated using a surface forces apparatus (SFA). Chitosan films showed an adhesion to mica for all tested pH ranges (3.0–8.5), achieving a maximum value at pH 3.0 after a contact time of 1 hr (Wad ~6.4 mJ/m2). We also found weak or no cohesion between two opposing chitosan layers on mica in aqueous buffer until the critical contact time for maximum adhesion (chitosan-mica) was reached. Strong cohesion (Wco ~8.5 mJ/m2) between the films was measured with increasing contact times up to 1 hr at pH 3.0, which is equivalent to ~60% of the strongest, previously reported, mussel underwater adhesion. Such time-dependent adhesion properties are most likely related to molecular or molecular group reorientations and interdigitations. At high pH (8.5), the solubility of chitosan changes drastically, causing the chitosan-chitosan (cohesion) interaction to be repulsive at all separation distances and contact times. The strong contact time and pH-dependent chitosan-chitosan cohesion and adhesion properties provide new insight into the development of chitosan based load-bearing materials. PMID:24138057

  18. DNA dynamics in aqueous solution: opening the double helix

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Ross, W. S.; Tinoco, I. Jr; MacElroy, R. D. (Principal Investigator)

    1990-01-01

    The opening of a DNA base pair is a simple reaction that is a prerequisite for replication, transcription, and other vital biological functions. Understanding the molecular mechanisms of biological reactions is crucial for predicting and, ultimately, controlling them. Realistic computer simulations of the reactions can provide the needed understanding. To model even the simplest reaction in aqueous solution requires hundreds of hours of supercomputing time. We have used molecular dynamics techniques to simulate fraying of the ends of a six base pair double strand of DNA, [TCGCGA]2, where the four bases of DNA are denoted by T (thymine), C (cytosine), G (guanine), and A (adenine), and to estimate the free energy barrier to this process. The calculations, in which the DNA was surrounded by 2,594 water molecules, required 50 hours of CRAY-2 CPU time for every simulated 100 picoseconds. A free energy barrier to fraying, which is mainly characterized by the movement of adenine away from thymine into aqueous environment, was estimated to be 4 kcal/mol. Another fraying pathway, which leads to stacking between terminal adenine and thymine, was also observed. These detailed pictures of the motions and energetics of DNA base pair opening in water are a first step toward understanding how DNA will interact with any molecule.

  19. Chemical metallization of KMPR photoresist polymer in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zeb, Gul; Duong, Xuan Truong; Vu, Ngoc Pi; Phan, Quang The; Nguyen, Duc Tuong; Ly, Viet Anh; Salimy, Siamak; Le, Xuan Tuan

    2017-06-01

    While conventional methods for preparing thin films of metals and metallic alloys on insulating substrates in the field of microelectromechanical systems (MEMS) include vapor deposition techniques, we demonstrate here that electroless deposition can be considered as an alternate efficient approach to metallize the surface of insulating substrates, such as KMPR epoxy photoresist polymer. In comparison with the physical and chemical vapor deposition methods, which are well-established for metallization of photoresist polymers, our electroless nickel plating requires only immersing the substrates into aqueous solutions in open air at low temperatures. Thin films of nickel alloy have been deposited electrolessly on KMPR surface, through a cost-effective and environmental chromium-free process, mediated through direct grafting of amine palladium complexes in aqueous medium. This covalent organic coating provides excellent adhesion between KMPR and the nickel film and allows better control of the palladium catalyst content. Covalent grafting and characterization of the deposited nickel film have been carried out by means of Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy techniques.

  20. Separation of aniline from aqueous solutions using emulsion liquid membranes.

    PubMed

    Devulapalli, R; Jones, F

    1999-12-31

    An emulsion liquid membrane process is developed to separate aniline from dilute aqueous solution. Aniline (amino-benzene) is a carcinogenic chemical common in industry and industrial wastewater. Due to aniline's high boiling point (183 degrees C) and low concentration in wastewater, more traditional methods of separation such as distillation are very energy intensive. This emulsion process is offered as a low energy alternative. All separations occur in a Rushton stirred tank. The membrane phase consists of kerosene and the surfactant sorbitan monooleate (span 80). Hydrogen chloride solution is the internal phase. This study also examines the effects of HCl concentration, aniline concentration, and the amount of emulsion on separation. Up to 99.5% of the aniline is removed from solutions containing 5000 ppm in as little as 4 min depending on process conditions. Leakage is minimal and swelling is only about 3% after 5 min of processing. Approximately 98% of the membrane phase (both kerosene and span 80) is successfully recovered and recycled by using heat and/or adding 2-propanol for demulsification.