Science.gov

Sample records for aqueous alkaline solution

  1. Mercury(II) Penicillamine Complex Formation in Alkaline Aqueous Solution

    SciTech Connect

    Leung, B.O.; Jalilehvand, F.; Mah, V.

    2009-06-01

    The complex formation between mercury(II) and penicillamine (H{sub 2}Pen = 3,3'-dimethyl cysteine) in alkaline aqueous solutions (pH {approx}2) has been investigated with extended X-ray absorption fine structure (EXAFS) and {sup 199}Hg NMR spectroscopy. By varying the penicillamine concentration (C{sub H{sub 2}Pen} = 0.2--1.25 M) in {approx}0.1 M Hg(II) solutions, two coexisting major species [Hg(Pen){sub 2}]{sup 2-} and [Hg(Pen){sub 3}]{sub 4-} were characterized with mean Hg-S bond distances 2.34(2) and 2.44(2) {angstrom}, respectively. The [Hg(Pen){sub 2}]{sup 2-} complex with two deprotonated penicillamine ligands forms an almost linear S-Hg-S entity with two weak chelating Hg-N interactions at the mean Hg-N distance 2.52(2) {angstrom}. The same type of coordination is also found for the corresponding [Hg(Cys){sub 2}]{sup 2-} complex in alkaline aqueous solution with the mean bond distances Hg-S 2.34(2) {angstrom} and Hg-N 2.56(2) {angstrom}. The relative amounts of the [Hg(Pen){sub 2}]{sup 2-} and [Hg(Pen){sub 3}]{sup 4-} complexes were estimated by fitting linear combinations of the EXAFS oscillations to the experimental spectra. Also their {sup 199}Hg NMR chemical shifts were used to evaluate the complex formation, showing that the [Hg(Pen){sub 3}]{sup 4-} complex dominates already at moderate excess of the free ligand ([Pen{sup 2-}] > {approx} 0.1 M).

  2. Decomposition Studies of Triphenylboron, Diphenylborinic Acid and Phenylboric Acid in Aqueous Alkaline Solutions Containing Copper

    SciTech Connect

    Crawford, C.L.; Peterson, R. A.

    1997-02-11

    This report documents the copper-catalyzed chemical kinetics of triphenylboron, diphenylborinic acid and phenylboric acid (3PB, 2PB and PBA) in aqueous alkaline solution contained in carbon-steel vessels between 40 and 70 degrees C.

  3. Hydrogels of N-acylchitosans and their cellulose composites generated from the aqueous alkaline solutions.

    PubMed

    Hirano, S; Usutani, A

    1997-07-01

    Hydrogels of N-acetyl and N-propionylchitosans were prepared form aqueous solutions of sodium N-acylchitosan salts (alkaline N-acylchitosans) and sodium N-acylchitosan xanthate [O-(sodiumthio)thiocarbonyl N-acylchitosan], respectively, by standing at room temperature and on heating. Novel hydrogels of N-acetylchitosan-cellulose and N-propionylchitosan-cellulose composites were also prepared from sodium cellulose xanthate [O-(sodiumthio)thiocarbonyl cellulose] solutions mixed with sodium N-acylchitosan salts and with sodium N-acylchitosan xanthates, respectively.

  4. Sulfate Separation from Aqueous Alkaline Solutions by Selective Crystallization of Alkali Metal Coordination Capsules

    SciTech Connect

    Rajbanshi, Arbin; Moyer, Bruce A; Custelcean, Radu

    2011-01-01

    Self-assembly of a tris(urea) anion receptor with Na{sub 2}SO{sub 4} or K{sub 2}SO{sub 4} yields crystalline capsules held together by coordinating Na{sup +} or K{sup +} cations and hydrogen-bonding water bridges, with the sulfate anions encapsulated inside urea-lined cavities. The sodium-based capsules can be selectively crystallized in excellent yield from highly competitive aqueous alkaline solutions ({approx}6 M Na{sup +}, pH 14), thereby providing for the first time a viable approach to sulfate separation from nuclear wastes.

  5. Alkaline deoxygenated graphene oxide as adsorbent for cadmium ions removal from aqueous solutions.

    PubMed

    Liu, Jun; Du, Hongyan; Yuan, Shaowei; He, Wanxia; Yan, Pengju; Liu, Zhanhong

    2015-01-01

    Alkaline deoxygenated graphene oxide (aGO) was prepared through alkaline hydrothermal treatment and used as adsorbent to remove Cd(II) ions from aqueous solutions for the first time. The characterization results of transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectra indicate that aGO was successfully synthesized. The batch adsorption experiments showed that the adsorption kinetics could be described by the pseudo-second-order kinetic model, and the isotherms equilibrium data were well fitted with the Langmuir model. The maximum adsorption capacity of Cd(II) on aGO was 156 mg/g at pH 5 and T=293 K. The adsorption thermodynamic parameters indicated that the adsorption process was a spontaneous and endothermic reaction. The mainly adsorption mechanism speculated from FT-IR results may be attributed to the electrostatic attraction between Cd2+ and negatively charged groups (-CO-) of aGO and cation-π interaction between Cd2+ and the graphene planes. The findings of this study demonstrate the potential utility of the nanomaterial aGO as an effective adsorbent for Cd(II) removal from aqueous solutions.

  6. Speciation and the structure of lead(II) in hyper-alkaline aqueous solution.

    PubMed

    Bajnóczi, Eva G; Pálinkó, István; Körtvélyesi, Tamás; Bálint, Szabolcs; Bakó, Imre; Sipos, Pál; Persson, Ingmar

    2014-12-14

    The identity of the predominating lead(ii) species in hyper-alkaline aqueous solution has been determined by Raman spectroscopy, and ab initio quantum chemical calculations and its structure has been determined by EXAFS. The observed and calculated Raman spectra for the [Pb(OH)3](-) complex are in agreement while they are different for two-coordinated complexes and complexes containing Pb[double bond, length as m-dash]O double bonds. Predicted bond lengths are also consistent with the presence of [Pb(OH)3](-) and exclude the formation of Pb[double bond, length as m-dash]O double bond(s). These observations together with experimentally established analogies between lead(ii) and tin(ii) in hyper-alkaline aqueous solutions suggest that the last stepwise hydroxido complex of lead(ii) is [Pb(OH)3](-). The Pb-O bond distance in the [Pb(OH)3](-) complex as determined is remarkably short, 2.216 Å, and has low symmetry as no multiple back-scattering is observed. The [Pb(OH)3](-) complex has most likely trigonal pyramidal geometry as all reported three-coordinated lead(ii) complexes in the solid state. From single crystal X-ray data, the bond lengths for O-coordinated lead(ii) complexes with low coordination numbers are spread over an unusually wide interval, 2.216-2.464 Å for N = 3. The Pb-O bond distance is at the short side and within the range of three coordinated complexes, as also observed for the trihydroxidostannate(ii) complex indicating that the hydroxide ion forms short bonds with d(10)s(2) metal ions with occupied anti-bonding orbitals.

  7. Methylene blue adsorption from aqueous solution by activated carbon: effect of acidic and alkaline solution treatments.

    PubMed

    Ijagbemi, Christianah O; Chun, Ji I; Han, Da H; Cho, Hye Y; O, Se J; Kim, Dong S

    2010-01-01

    The removal of Methylene Blue (MB) from aqueous solution using activated carbon (AC) has been investigated. Adsorption experiments were conducted and the maximum adsorption capacity was determined. The effect of experimental parameters such as pH, dye concentration and temperature were studied on the adsorption process. Equilibrium data were mathematically modeled using the Langmuir and Freundlich adsorption models to describe the equilibrium isotherms at different dye concentrations and temperature. Parameters of best-fit model were calculated and discussed. To understand the mechanism of adsorption, kinetic models were employed to follow the adsorption processes; the pseudo-first-order best described the adsorption of MB onto AC. It was found that pH plays a major role in the adsorption process; adsorption capacity was influenced by the physical and surface chemical properties of carbon and the pH of the solution. 99.0% MB removal was achieved at equilibrium.

  8. Mercury(II) Complex Formation With Glutathione in Alkaline Aqueous Solution

    SciTech Connect

    Mah, V.; Jalilehvand, F.

    2009-05-19

    The structure and speciation of the complexes formed between mercury(II) ions and glutathione (GSH = L-glutamyl-L-cysteinyl-glycine) have been studied for a series of alkaline aqueous solutions (C{sub Hg{sup 2+}} {approx} 18 mmol dm{sup -3} and C{sub GSH} = 40-200 mmol dm{sup -3} at pH {approx} 10.5) by means of extended X-ray absorption fine structure (EXAFS) and {sup 199}Hg NMR spectroscopy at ambient temperature. The dominant complexes are [Hg(GS){sub 2}]{sup 4-} and [Hg(GS){sub 3}]{sup 7-}, with mean Hg-S bond distances of 2.32(1) and 2.42(2) {angstrom} observed in digonal and trigonal Hg-S coordination, respectively. The proportions of the Hg{sup 2+}-glutathione complexes were evaluated by fitting linear combinations of model EXAFS oscillations representing each species to the experimental EXAFS spectra. The [Hg(GS){sub 4}]{sup 10-} complex, with four sulfur atoms coordinated at a mean Hg-S bond distance of 2.52(2) {angstrom}, is present in minor amounts (<30%) in solutions containing a large excess of glutathione (C{sub GSH} {ge} 160 mmol dm{sup -3}). Comparable alkaline mercury(II) cysteine (H{sub 2}Cys) solutions were also investigated and a reduced tendency to form higher complexes was observed, because the deprotonated amino group of Cys{sup 2-} allows the stable [Hg(S,N-Cys){sub 2}]{sup 2-} chelate to form. The effect of temperature on the distribution of the Hg{sup 2+}-glutathione complexes was studied by comparing the EXAFS spectra at ambient temperature and at 25 K of a series of glycerol/water (33/67, v/v) frozen glasses with and C{sub Hg{sup 2+}} {approx} 7 mmol dm{sup -3} and C{sub GSH} = 16-81 mmol dm{sup -3}. Complexes with high Hg-S coordination numbers, [Hg(GS){sub 3}]{sup 7-} and [Hg(GS){sub 4}]{sup 10-}, became strongly favored when just a moderate excess of glutathione (C{sub GSH} {ge} 28 mmol dm{sup -3}) was used in the glassy samples, as expected for a stepwise exothermic bond formation. Addition of glycerol had no effect on the Hg

  9. Speciation and structure of tin(II) in hyper-alkaline aqueous solution.

    PubMed

    Bajnóczi, Eva G; Czeglédi, Eszter; Kuzmann, Ernő; Homonnay, Zoltán; Bálint, Szabolcs; Dombi, György; Forgo, Péter; Berkesi, Ottó; Pálinkó, István; Peintler, Gábor; Sipos, Pál; Persson, Ingmar

    2014-12-28

    The identity of the predominating tin(ii)-hydroxide complex formed in hyper-alkaline aqueous solutions (0.2 ≤CNaOH≤ 12 mol dm(-3)) is determined by potentiometric titrations, Raman, Mössbauer and XANES spectroscopy, supplemented by quantum chemical calculations. Thermodynamic studies using a H2/Pt electrode up to free hydroxide concentrations of 1 mol dm(-3) showed the presence of a single monomeric complex with a tin(II) : hydroxide ratio of 1 : 3. This observation together with Raman and Mössbauer spectroscopic measurements supplemented by quantum mechanical calculations proved that the predominating complex is [Sn(OH)3](-), and that the presence of the other possible complex, [SnO(OH)](-), could not be proven with either experiments or simulations. The structure of the trihydroxidostannate(II) complex, [Sn(OH)3](-), was determined by EXAFS and was found to be independent of the applied hydroxide and tin(II) concentrations. The mean Sn-O bond distance is short, 2.078 Å, and in very good agreement with the only structure reported in the solid state. It is also shown that at pH values above 13 the speciation of the predominant trihydroxidostannate(II) complex is not affected by the presence of high concentrations of chloride ions.

  10. Influence of alkalinity and salinity on the sonochemical degradation of estrogen hormones in aqueous solution.

    PubMed

    Suri, Rominder P S; Singh, Tony Sarvinder; Abburi, Shashi

    2010-02-15

    Ultrasound assisted degradation of estrogen hormones was examined in a batch reactor using a 2 kW (20 kHz) sonication unit. The degradation of estrogens follow a pseudo first order rate kinetics, and the order of degradation is 17alpha-dihydroequilin > equilin >17alpha-ethinyl estradiol >17alpha-estradiol >17beta-estradiol > estrone > estriol. Effect of solution alkalinity and salinity on the sonochemical degradation of estrogen hormones is examined. At alkalinity concentration of 10 mM, no adverse effect on the degradation rate constants of estradiols (17alpha-estradiol, 17beta-estradiol, and 17alpha-ethinyl estradiol) was observed, whereas equilin compounds showed a decrease in their degradation rate constants. Significant inhibitory effects were observed for all the compounds at high alkalinity concentration of 120 mM and which could be due to the scavenging of OH(*) radicals in the bulk solution. The presence of salinity (0.17 M) enhanced the estrogen degradation except for the equilin compounds. Simultaneous presence of high alkalinity (120 mM) and salinity (0.17 M) also increased the degradation of estrogen hormones than the case when only alkalinity (120 mM) was present, indicating the diffusion of analytes to the cavity interface where most of the degradation occurs under these conditions. A mechanistic approach was used to model the degradation behavior of estrogen hormones under different solution alkalinity and salinity conditions.

  11. Performed surfactant-optimized aqueous alkaline flood

    SciTech Connect

    Thigpen, D.R.; Lawson, J.B.; Nelson, R.C.

    1991-11-26

    This paper describes improvement in a process for recovering oil from an acidic oil reservoir by injecting an aqueous alkaline solution comprising water, sodium chloride, and alkaline material for reacting with the reservoir oil forming a petroleum acid soap to form an in-situ surfactant system. The improvement comprises: selecting a preformed cosurfactant which is soluble in both the aqueous solution and the reservoir oil and has a solubility ratio which is grater than the solubility ratio of the petroleum acid soap where the solubility ratio is the ratio of solubility in the aqueous alkaline solution to the solubility in the reservoir oil; combining with the alkaline solution an amount of the preformed cosurfactant which will result in the in-situ surfacant system having a salinity about equal to a salinity which results in minimal interfacial tension between the oil in the reservoir and the in-situ surfactant system at reservoir temperature, wherein the amount of the preformed cosurfactant is about 0.3 percent by weight in the aqueous alkaline solution; and injecting the cosurfactant-aqueous alkaline solution mixture into the reservoir to displace oil toward a fluid production location.

  12. The Role of Oxygen in the Copper-Catalyzed Decomposition of Phenylborates in Aqueous Alkaline Solutions

    SciTech Connect

    Hyder, M.L.

    1997-03-17

    The effect of oxygen on the copper-catalyzed hydrolysis of phenyl borates containing from one to four phenyl groups was studied in 1 M aqueous sodium hydroxide solution at 59 degrees C. The results are tentatively explained if the effective catalyst for each of the reactions is either cupric or cuprous ion, with the latter being present in significant concentration only in the absence of air.

  13. Interactions of silicate ions with zinc(II) and aluminum(III) in alkaline aqueous solution.

    PubMed

    Anseau, Michel R; Leung, Jennifer P; Sahai, Nita; Swaddle, Thomas W

    2005-10-31

    We present (29)Si, (27)Al, and (67)Zn NMR evidence to show that silicate ions in alkaline solution form complexes with zinc(II) (present as zincate, Zn(OH)(3)(-) or Zn(OH)(4)(2-)) and, concomitantly, with aluminate (Al(OH)(4)(-)). Zincate reacts with monomeric silicate at pH 14-15 to form [(HO)O(2)Si-O-Zn(OH)(3)](4-) and with dimeric silicate to produce [HO-SiO(2)-O-SiO(2)-O-Zn(OH)(3)](6-). The exchange of Si between these free and Zn-bound sites is immeasurably fast on the (29)Si NMR time scale. The cyclic silicate trimer reacts relatively slowly and incompletely with zincate to form [(HO)(3)Zn{(SiO(3))(3)}](7-). The concentration of the cyclic trimer becomes further depleted because zincate scavenges the silicate monomer and dimer, with which the cyclic trimer is in equilibrium on the time scale of sample preparation. Identification of these zincate-silicate complexes is supported by quantum chemical theoretical calculations. Aluminate and zincate, when present together, compete roughly equally for a deficiency of silicate to form [(HO)(3)ZnOSiO(2)OH](4-) and [(HO)(3)AlOSiO(2)OH](3-) which exchange (29)Si at a fast but measurable rate.

  14. Process for extracting technetium from alkaline solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  15. Comprehensive study of the chemical reactions resulting from the decomposition of chloroform in alkaline aqueous solution

    NASA Astrophysics Data System (ADS)

    Estevez Mews, Jorge

    reactions. Each gas-phase potential energy profile obtained at a high level of theory was used as a post-correction of the corresponding reaction free energy profile in aqueous solution. A detailed picture of the actual mechanism driving the decomposition pathway of chloroform has emerged from these simulations.

  16. Sodium Sulfate Separation from Aqueous Alkaline Solutions via Crystalline Urea-Functionalized Capsules: Thermodynamics and Kinetics of Crystallization

    SciTech Connect

    Custelcean, Radu; Sloop, Frederick V.; Rajbanshi, Arbin; Wan, Shun; Moyer, Bruce A.

    2014-12-04

    We measured the thermodynamics and kinetics of crystallization of sodium sulfate with a tripodal tris-urea receptor (L1) from aqueous alkaline solutions in the 15 55 C temperature range, with the goal of identifying the optimal conditions for efficient and quick sulfate removal from nuclear wastes. The use of radiolabeled Na235SO4 provided a practical way to monitor the sulfate concentration in solution by liquid scintillation counting. Our results are consistent with a two-step crystallization mechanism, involving relatively quick dissolution of crystalline L1 followed by the rate-limiting crystallization of the Na2SO4(L1)2(H2O)4 capsules. We found that temperature exerted relatively little influence over the equilibrium sulfate concentration, which ranged between 0.004 and 0.011 M. Moreover, this corresponds to 77 91% removal of sulfate from a solution containing 0.0475 M initial sulfate concentration, as found in a typical Hanford waste tank. The apparent pseudo-first-order rate constant for sulfate removal increased 20-fold from 15 to 55 C, corresponding to an activation energy of 14.1 kcal/mol. At the highest measured temperature of 55 C, 63% and 75% of sulfate was removed from solution within 8 h and 24 h, respectively.

  17. Sodium Sulfate Separation from Aqueous Alkaline Solutions via Crystalline Urea-Functionalized Capsules: Thermodynamics and Kinetics of Crystallization

    DOE PAGES

    Custelcean, Radu; Sloop, Frederick V.; Rajbanshi, Arbin; ...

    2014-12-04

    We measured the thermodynamics and kinetics of crystallization of sodium sulfate with a tripodal tris-urea receptor (L1) from aqueous alkaline solutions in the 15 55 C temperature range, with the goal of identifying the optimal conditions for efficient and quick sulfate removal from nuclear wastes. The use of radiolabeled Na235SO4 provided a practical way to monitor the sulfate concentration in solution by liquid scintillation counting. Our results are consistent with a two-step crystallization mechanism, involving relatively quick dissolution of crystalline L1 followed by the rate-limiting crystallization of the Na2SO4(L1)2(H2O)4 capsules. We found that temperature exerted relatively little influence over themore » equilibrium sulfate concentration, which ranged between 0.004 and 0.011 M. Moreover, this corresponds to 77 91% removal of sulfate from a solution containing 0.0475 M initial sulfate concentration, as found in a typical Hanford waste tank. The apparent pseudo-first-order rate constant for sulfate removal increased 20-fold from 15 to 55 C, corresponding to an activation energy of 14.1 kcal/mol. At the highest measured temperature of 55 C, 63% and 75% of sulfate was removed from solution within 8 h and 24 h, respectively.« less

  18. Silica Polymerization from Supersaturated Dilute Aqueous Solutions in the Presence of Alkaline Earth Salts.

    PubMed

    Kley, M; Kempter, A; Boyko, V; Huber, K

    2017-06-20

    The early stages of silica polymerization in aqueous solution proceed according to a mechanism based on three steps: nucleation, particle growth, and agglomeration of the particles. Application of time-resolved static and dynamic light scattering as a powerful in situ technique in combination with spectrophotometric analysis of the monomer consumption based on the molybdenum blue method was carried out to further investigate this 3-step process. Experiments were carried out at four different initial silicic acid contents covering a range between 350 and 750 ppm in the presence of either 10 mM NaCl or 5 mM of a mixture of CaCl2 and MgCl2. The process in all cases was initiated with a drop of pH to 7. Addition of the salts made possible an analysis of the impact of an electrolyte on the process. Independent of the presence or absence of salt, particle growth in step two proceeded as a monomer-addition process without being interfered significantly by Ostwald-ripening. The growing particles were compact with a homogeneous density. The size of the particles approached final values between 5 and 20 nm with the actual value increasing with decreasing initial silicic acid content. Above a certain concentration of initial silica content, which depends on the level of added salt, particle-particle interactions caused agglomeration. The presence of electrolyte shifted this level from ∼2000 ppm to a range between 500 and 750 ppm. The resulting agglomerates had a fractal dimension of 2. Independent of the conditions, particle growth could be described with a simple nucleation and growth model.

  19. Spectroscopic study of Mg(II) ion influence on the autoxidation of gallic acid in weakly alkaline aqueous solutions

    NASA Astrophysics Data System (ADS)

    Nikolić, G. M.; Veselinović, A. M.; Nikolić, R. S.; Mitić, S. S.

    2011-12-01

    Gallic acid autoxidation in weakly alkaline aqueous solutions was studied by UV-Vis spectrophotometry and ESR spectroscopy under various conditions. Lowering the pH value from 10 to 8.5 probably changes the mechanism of the autoxidation reaction as evidenced by the different time variations of UV-Vis spectra of solutions. The presence of Mg(II) ions greatly influences the autoxidation reaction at pH 8.5. Although the UV-Vis spectral changes with time follow the similar pattern during the gallic acid autoxidation at pH 10 and at pH 8.5 in the presence of Mg(II) ions, some small differences indicate that Mg(II) ions not only affect the electron density of absorbing species but also influence the overall mechanism of the autoxidation reaction. ESR spectra of free radials formed during the initial stage of gallic acid autoxidation at pH 8.5 in the presence of Mg(II) ions were recorded. Computer simulation of ESR spectra allows partial characterization of these free radicals.

  20. Dependence of the solubility of atmospheric oxygen in weakly alkaline aqueous solutions on surfactant concentration

    NASA Astrophysics Data System (ADS)

    Chistyakova, G. V.; Koksharov, S. A.; Vladimirova, T. V.

    2012-11-01

    The solubility of atmospheric oxygen in solutions of surfactants of different natures at 293 K and pH 8 is determined by gas chromatography. It is found that additives of nonionic surfactants decrease the oxygen content in the solution in the premicellar region and increase its solubility in the micellar region. It is shown that, for anionic surfactants, a decrease in the solubility of O2 is observed over the entire concentration range.

  1. Decomposition of N-chloroglycine in alkaline aqueous solution: kinetics and mechanism.

    PubMed

    Szabó, Mária; Baranyai, Zsolt; Somsák, László; Fábián, István

    2015-06-15

    The decomposition kinetics and mechanism of N-chloroglycine (MCG) was studied under very alkaline conditions ([OH(-)] = 0.01-0.10 M). The absorbance change is consistent with two consecutive first-order processes in the 220-350 nm wavelength range. The first reaction is linearly dependent on [OH(-)] and interpreted by the formation of a carbanion from MCG in an equilibrium step (KOH) and a subsequent loss of chloride ion from this intermediate: kobs1 = KOH k1 = (6.4 ± 0.1) × 10(-2) M(-1) s(-1), I = 1.0 M (NaClO4), and T = 25.0 °C. The second process is assigned to the first-order decomposition of N-oxalylglycine, which is also formed as an intermediate in this system: kobs2 = (1.2 ± 0.1) × 10(-3) s(-1). Systematic (1)H and (13)C NMR measurements were performed in order to identify and follow the concentration changes of the reactant, intermediate, and product. It is confirmed that the decomposition proceeds via the formation of glyoxylate ion and produces N-formylglycine as a final product. This compound is stable for an extended period of time but eventually hydrolyses into formate and glycinate ions. A detailed mechanism is postulated which resolves the controversies found in earlier literature results.

  2. 4-Carboxybenzophenone-sensitized photooxidation of sulfur-containing amino acids in alkaline aqueous solutions. Secondary photoreactions kinetics

    SciTech Connect

    Bobrowski, K.; Hug, G.L. ); Marciniak, B. A. Mickiewicz Univ., Poznan ); Kozubek, H. )

    1994-01-13

    Sulfur-containing amino acids and alanine were oxidized via photosensitization by 4-carboxybenzophenone (CB) in alkaline aqueous solutions. The mechanism of this reaction was examined using steady-state and laser flash photolysis techniques. The rate constants were determined for the quenching of the CB triplet state by five sulfur-containing amino acids and alanine and were found to be approximately 10[sup 9] and 1.8 x 10[sup 8] M[sup [minus]1] s[sup [minus]1], respectively. The observation of the (S therefore S)[sup +] radical cations of some of the amino acids showed that the quenching process involves an electron transfer from the sulfur atom to the triplet state of CB. A show process of formation of the ketyl radical anion occurring on the microsecond time scale was assigned to the one-electron reduction of CB by the [alpha]-aminoalkyl radicals that were formed earlier as a result of an intramolecular electron transfer from the carboxyl group to the sulfur-centered radical cation followed by decarboxylation. For thiaproline, the pseudo-first-order rate constant, k[prime][sub obs], which characterizes the slow process of secondary ketyl radical anion formation, is linearly dependent on the CB concentration over the pH region 9.4-13.4. A detailed mechanism for the primary and the secondary photoreduction of CB is proposed and discussed. 32 refs., 7 figs., 5 tabs.

  3. Aqueous thiocyanate-urea solution as a powerful non-alkaline swelling agent for cellulose fibres.

    PubMed

    Mahmud-Ali, Amalid; Bechtold, Thomas

    2015-02-13

    For many applications cellulose fibres are treated with concentrated solutions of swelling agents to increase reactivity and to achieve reorganisation of fibre structure. Representative examples are caustic soda, potassium hydroxide solution or liquid ammonia. These highly concentrated media bear considerable safety hazards during the technical handling thus alternative swelling agents are of interest. The thiocyanate-urea system investigated in this work offers high swelling potential for regenerated cellulose fibres. Experiments with different cations of M(+) in M(+) SCN(-) demonstrate the significant influence of the cation on the degree of fibre swelling. In concentrated NaSCN/urea solutions, at 80 °C, lyocell fibres expand the diameter from 12-14 to 100 μm. The treatment in the swelling agent also led to a significant increase in the water retention value which was accompanied by a strength loss of 20-40% of the initial value. FTIR analysis of treated fibres did not indicate substantial changes in structure of the cellulose polymer. Limited weight loss of up to 20% was observed despite the high expansion of the fibre.

  4. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  5. Amino-functionalized alkaline clay with cationic star-shaped polymer as adsorbents for removal of Cr(VI) in aqueous solution

    NASA Astrophysics Data System (ADS)

    Pan, Yuanfeng; Cai, Pingxiong; Farmahini-Farahani, Madjid; Li, Yiduo; Hou, Xiaobang; Xiao, Huining

    2016-11-01

    Pentaerythritol (PER) was esterified with 2-bromoisobutyryl bromide to synthesize a four-arm initiator 4Br-PER for atom transfer radical polymerization (ATRP). Star-shaped copolymers (P(AM-co-DMAEMA)4, CSP) were prepared via ATRP using dimethyl aminoethyl methacrylate (DMAEMA) and acrylamide (AM) as comonomers, while Br-PER and CuBr/2,2‧-bipyridine (BPY) as the initiator and the catalyst, respectively. The resulting four-arm initiator and star-shaped polymer (CSP) were characterized with FT-IR, 1H NMR and Ubbelohde viscometry. Alkaline clay (AC) was immobilized with CSPs to yield amino groups, and the cationic star polymer-immobilized alkaline clay (CSP-AC) was applied to remove Cr(VI) from the aqueous solution in batch experiments. Various influencing factors, including pH, contact time and immobilization amount of CSP on adsorption capacity of CSP-AC for Cr(VI) were also investigated. The results demonstrated that Cr(VI) adsorption was highly pH dependent. The optimized pH value was 4.0. The adsorption isotherms of the adsorbent fit the Langmuir model well, with the maximum adsorption capacity of 137.9 mg/g at 30 °C. The material should be a promising adsorbent for Cr(VI) removal, with the advantages of high adsorption capacity.

  6. Controlled synthesis of flower like zinc oxide nanostructures using ionic liquid through a simple alkaline aqueous solution growth technique

    NASA Astrophysics Data System (ADS)

    Singh, Neha; Haque, Fozia Z.

    2015-05-01

    This article describes the synthesis of ZnO nanostructures with different morphologies such as, flakes-like, flowers or mixture of both morphologies. The growth rate is enhanced by adjusting the concentration of ionic liquid (IL): Benzyltrimethylammoium hydroxide (BTMAH) and sodium hydroxide in reaction mixture. Different structures are obtained including a unique flower like ZnO nanostructures. These structures show three-order symmetry, groups of many oriented flakes and leaves grown on the branches symmetrically, indicating an interesting fractal growth. The products have been investigated by XRD, Scanning Electron Microscopy (SEM), Atomic force microscopy (AFM), Fourier Transform Infrared (FTIR), UV-Vis and photolumincence (PL). According to the investigation on the growth process, it was confirmed that as-prepared samples of ZnO nanoparticles morphologies and properties strongly dependant on the ratio of alkaline and IL.

  7. Chemical equilibrium model for interfacial activity of crude oil in aqueous alkaline solution: the effects of pH, alkali and salt

    SciTech Connect

    Chan, M.; Yen, T.F.

    1980-11-01

    A chemical equilibrium model for interfacial activity of crude in aqueous alkaline solution is proposed. The model predicts the observed effects of pH and concentrations of alkali and salt on the interfacial tension (IFT). The model proposed was shown to describe the observed effects of acid content, pH, and sodium ions on the interfacial activity of crude oil in water. Once the pH of the interface reaches the pKa of the acids, sometimes with the help of addition of some salt, the IFT experiences a sudden steep drop to the range of 10/sup -2/ dynes/cm. After that, further addition of sodium either in the form of NaOH or NaCl is going to increase the IFT due to a shift of equilibriumn to the formation of undissociated soap. This was confirmed by the difference in the observed effect of sodium on the IFT of the extracted soap molecules which are dissociated easily and those which are associated highly and precipitated easily. These soap molecules have dissociation constant values ranging from below 10/sup -2/ to above one. 13 references.

  8. Enhanced removal of trace Cr(VI) from neutral and alkaline aqueous solution by FeCo bimetallic nanoparticles.

    PubMed

    Qin, Nannan; Zhang, Ya; Zhou, Hongjian; Geng, Zhigang; Liu, Gang; Zhang, Yunxia; Zhao, Huijun; Wang, Guozhong

    2016-06-15

    The reactivity of zero valent iron (Fe(0)) for removing Cr(VI) is self-inhibiting under neutral and alkaline conditions, due to the precipitation of ferrous hydroxide on the surface of Fe(0). To overcome this difficulty, we incorporated a second metal (Co) into Fe(0) to form FeCo bimetallic nanoparticles (FeCo BNPs), which can achieve higher activity and significant improvement in the reaction kinetics for the removal of Cr(VI) compared with Fe(0). The FeCo BNPs were synthesized by a hydrothermal reduction method without using any templates. The characterization analysis indicated that the products were highly uniform in large scale with 120-140 nm size in diameter. The obtained FeCo BNPs exhibited a remarkable removal ability for Cr(VI) in the pH range of 5.3-10.0. Especially, FeCo BNPs were able to reduce trace Cr(VI) (1.0 mg L(-1), pH=7.5) down to about 0.025 mg L(-1) within 1h. XPS analysis confirmed that Cr(VI) was reduced to Cr(III) by FeCo BNPs, while Fe and Co was oxidized, implying a chemical reduction process. The enhanced removal of trace Cr(VI) could be originated from the introduction of Co, which not only served as a protecting agent against surface corrosion by galvanic cell effect, but also enhanced the efficient flow of electron transfer between iron and Cr(VI). All the results primarily imply that FeCo BNPs can be employed as high efficient material for wastewater treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Reflectance of aqueous solutions

    NASA Technical Reports Server (NTRS)

    Querry, M. R.

    1972-01-01

    The optical properties and optical constants of water and aqueous solutions were studied to develop an accurate tabulation of graphical representations of the optical constants through a broad spectrum. Manuscripts of articles are presented concerning extinction coefficients, relative specular reflectance, and temperature effect on the water spectrum. Graphs of absolute reflectance, phase shifts, index of refraction, and extinction coefficients for water, heavy water and aqueous solutions are included.

  10. Cation exchange properties of zeolites in hyper alkaline aqueous media.

    PubMed

    Van Tendeloo, Leen; de Blochouse, Benny; Dom, Dirk; Vancluysen, Jacqueline; Snellings, Ruben; Martens, Johan A; Kirschhock, Christine E A; Maes, André; Breynaert, Eric

    2015-02-03

    Construction of multibarrier concrete based waste disposal sites and management of alkaline mine drainage water requires cation exchangers combining excellent sorption properties with a high stability and predictable performance in hyper alkaline media. Though highly selective organic cation exchange resins have been developed for most pollutants, they can serve as a growth medium for bacterial proliferation, impairing their long-term stability and introducing unpredictable parameters into the evolution of the system. Zeolites represent a family of inorganic cation exchangers, which naturally occur in hyper alkaline conditions and cannot serve as an electron donor or carbon source for microbial proliferation. Despite their successful application as industrial cation exchangers under near neutral conditions, their performance in hyper alkaline, saline water remains highly undocumented. Using Cs(+) as a benchmark element, this study aims to assess the long-term cation exchange performance of zeolites in concrete derived aqueous solutions. Comparison of their exchange properties in alkaline media with data obtained in near neutral solutions demonstrated that the cation exchange selectivity remains unaffected by the increased hydroxyl concentration; the cation exchange capacity did however show an unexpected increase in hyper alkaline media.

  11. Solubility of quartz in H2O-KOH solutions at 700°C and 1 GPa: implications for aqueous silica species in alkaline high pressure fluids

    NASA Astrophysics Data System (ADS)

    Wang, S.; Makhluf, A.; Manning, C. E.

    2016-12-01

    At deep-crustal and subduction-zone conditions, thermodynamic models show that water-rich fluids equilibrated with common crustal rocks have pH values that are commonly alkaline (e.g., Galvez et al., 2105, EPSL, 430, 486). This raises the possibility that one of the most abundant solutes in these fluids, aqueous silica, may be dominated by the deprotonated species HSiO3-, which is comparatively rare at near-surface conditions. However, the thermodynamic properties of this species are very poorly known. We conducted hydrothermal piston cylinder experiments on quartz solubility in H2O-KOH solutions. All experiments were carried out at 700 °C and 1 GPa, using weight-loss methods and solutions ranging from pure H2O to 2.1 molal total KOH ([Ktotal]. Quartz solubility ([Sitotal]) in pure H2O was found to be 0.730 molal, consistent with previous experimental work but slightly higher than the value of 0.621 m predicted by the Deep Earth Water model (DEW; Sverjensky et al., 2014, GCA, 129, 125). The value of [Sitotal] remains constant with increasing K concentration to [Ktotal] 10-2 m, above which [Sitotal] rises dramatically to 4.6 m at the highest [Ktotal]. The rise in Si concentration in part signals the increasing concentration of Si anions, here provisionally assumed to be limited to monomeric HSiO3-. We combined our experimental results with thermodynamic data for quartz solubility in H2O and silica polymerization from Manning (2007, Geofluids, 7, 258) to evaluate the equilibrium constant (K) for the reaction SiO2aq + H2O = H+ + HSiO3- at 700 °C and 1 GPa, where SiO2aq refers to the neutral monomer. The data require a value of logK > -6, which is significantly greater than the value -8.7 implied by experimental data at lower P. This would require that the standard molal Gibbs free energy of HSiO3- is substantially less negative than currently thought; however, it also likely requires the presence of neutral KHSiO3 ion pairs, for which no data currently exist. A key

  12. Technetium recovery from high alkaline solution

    SciTech Connect

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  13. The molecular velocity of sound. [aqueous solutions

    NASA Technical Reports Server (NTRS)

    Auslaender, D.; Onitiu, L.

    1974-01-01

    The molecular velocity of sound was calculated according to Rao's formula and the temperature and concentration dependences of this value were studied in aqueous solutions of alkali and alkaline-earth halides. Study of relative association brought to light characteristic effects of ions. The variation of the relative association can be explained by a breaking of hydrogen bonds by ions and thermal agitation.

  14. The molecular velocity of sound. [aqueous solutions

    NASA Technical Reports Server (NTRS)

    Auslaender, D.; Onitiu, L.

    1974-01-01

    The molecular velocity of sound was calculated according to Rao's formula and the temperature and concentration dependences of this value were studied in aqueous solutions of alkali and alkaline-earth halides. Study of relative association brought to light characteristic effects of ions. The variation of the relative association can be explained by a breaking of hydrogen bonds by ions and thermal agitation.

  15. Influence of acid and alkaline sources on optical, structural and photovoltaic properties of CdSe nanoparticles precipitated from aqueous solution

    NASA Astrophysics Data System (ADS)

    Coria-Monroy, C. Selene; Sotelo-Lerma, Mérida; Hu, Hailin

    2016-06-01

    CdSe is a widely researched material for photovoltaic applications. One of the most important parameters of the synthesis is the pH value, since it determines the kinetics and the mechanism of the reaction and in consequence, the optical and morphological properties of the products. We present the synthesis of CdSe in solution with strict control of pH and the comparison of ammonia and KOH as alkaline sources and diluted HCl as acid medium. CdSe formation was monitored with photoluminescence emission spectra (main peak in 490 nm, bandgap of CdSe nanoparticles). XRD patterns indicated that CdSe nanoparticles are mainly of cubic structure for ammonia and HCl, but the hexagonal planes appear with KOH. Product yield decreases with pH and also decreases with KOH at constant pH value since ammonia has a double function, as complexing agent and alkaline source. Changes in morphology were observed in SEM images as well with the different alkaline source. The effect of alkaline sources on photovoltaic performance of hybrid organic solar cells with CdSe and poly(3-hexylthiophene) as active layers was clearly observed, indicating the importance of synthesis conditions on optoelectronic properties of promising semiconductor nanomaterials for solar cell applications.

  16. Advanced oxidation of acridine orange by aqueous alkaline iodine.

    PubMed

    Azmat, Rafia; Qamar, Noshab; Naz, Raheela; Khursheed, Anum

    2016-11-01

    The advanced oxidation process is certainly used for the dye waste water treatment. In this continuation a new advanced oxidation via aqueous alkaline iodine was developed for the oxidation of acridine orange (AO) {3, 6 -bis (dimethylamino) acridine zinc chloride double salt}. Oxidation Kinetics of AO by alkaline solution of iodine was investigated spectrophotometrically at λmax 491 nm. The reaction was monitored at various operational parameters like several concentrations of dye and iodine, pH, salt electrolyte and temperature. The initial steps of oxidation kinetics followed fractional order reaction with respect to the dye while depend upon the incremental amount of iodine to certain extent whereas maximum oxidation of AO was achieved at high pH. Decline in the reaction rate in the presence of salt electrolyte suggested the presence of oppositely charged species in the rate determining step. Kinetic data revealed that the de-colorization mechanism involves triodate (I3(-)) species, instead of hypoidate (OI(-)) and hypiodous acid (HOI), in alkaline medium during the photo-excitation of hydrolyzed AO. Alleviated concentration of alkali result in decreasing of rate of reaction, clearly indicate that the iodine species are active oxidizing species instead of OH radical. Activation parameters at elevated temperatures were determined which revealed that highly solvated state of dye complex existed into solution. Reaction mixture was subjected to UV/Visible and GC mass spectrum analysis that proves the secondary consecutive reaction was operative in rate determining step and finally dye complex end into smaller fragments.

  17. Photo-catalytic polymerization of catechin molecules in alkaline aqueous.

    PubMed

    Liang, Ji-Yuan; Wu, Jun-Yun; Yang, Ming-Yeh; Hu, Anren; Chen, Liang-Yü

    2016-12-01

    Polyphenols are associated with a wide range of physiological properties. Catechin is a flavan-3-ol with five phenolic hydroxyl groups. After blue light illumination, the transparent solution of catechin became yellowish. The effects of visible light illumination (400-800nm) were investigated on molecular structures and antioxidant capacities of catechin. Under the neutral or alkaline aqueous with the illumination of blue light, the photolysis and polymerization of catechin were observed in this study. A chromogenic catechin dimer was separated and identified as a proanthocyanidin by the chromatographic technique and mass spectrometry. For quantitative evaluation, the signal intensities of the catechin and the photochemical product show a negative correlation in the liquid chromatograms. The oligomer of flavan-3-ols (catechin dimer) is suggested as a dimeric B type proanthocyanidin, which has the molecular formula C30H26O12 and 578.14g/mol in exact mass. The mass spectrum of catechin dimer had characteristic ion signals in m/z 577, 560, 439Da. However, the total phenolic contents and scavenging O2(-) activity of catechin treated by blue light illumination are not changed significantly at the neutral or alkaline aqueous. Our results of photocatalytic oligomers of catechin provide a novel way to explain the sensory changes of green tea and a biochemical mechanism under the irradiation environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Structure and dynamics of oxy-overlayer on Cu(1 1 1) electrode surfaces in alkaline aqueous solution revealed by electrochemical STM and quartz crystal microbalance measurement

    NASA Astrophysics Data System (ADS)

    Matsuoka, Osamu; Sugiyama Ono, Shoko; Nozoye, Hisakazu; Yamamoto, Sadaaki

    2003-11-01

    The redox reactivity of copper in aqueous solution has attracted much attention due to practical applications such as catalysis, electrodeposition, microelectronic device fabrication. In this work, the structure and dynamic behavior of Cu(1 1 1) electrodes were investigated in 0.01 M NaOH aqueous solution in the potential range where copper electrode shows redox reactivity for aldehyde oxidation by using electrochemical scanning tunneling microscopy (EC-STM), cyclic voltammetry, and electrochemical quartz crystal microbalance (EQCM). EC-STM observations revealed that the Cu(1 1 1) electrode surface was covered with an oxy-overlayer (layer of adsorbates containing oxygen), which formed a terrace-step structure with a monoatomic step height. Two kinds of ordered structures on the terrace were observed at the potential negative-side of the cathodic peak at -0.85 V vs. Ag/AgCl: hexagonal lattice with a unit vector of 0.70 ± 0.03 nm (structure A), and rhombic lattice with a unit vector of 1.40 ± 0.03 nm (structure B). Species with these structures seem responsible for aldehyde oxidation, based on the good agreement between the cyclic voltammogram (CV) for these species and that previously reported for Cu electrodes active for aldehyde oxidation. EC-STM revealed the deposition and dissolution of the oxy-overlayer on Cu(1 1 1) electrode surfaces. Combining the EQCM measurement with EC-STM images suggests that a cluster of water molecules had adsorbed on a species that had ordered structure A at the potential of -0.65 V in an anodic scan. This hydration probably transforms the species into a soluble species, such as Cu(OH) 2-, which induces the partial dissolution of a terrace from a step edge. In addition, dependence of the position of the anodic peak at -0.65 V on a cathode limit was observed for the first time. EC-STM observation revealed that this electrochemical behavior of the anodic peak correlated with the surface structure of the oxy-overlayer, namely

  19. Ion segregation in aqueous solutions.

    PubMed

    Bian, Hongtao; Li, Jiebo; Zhang, Qiang; Chen, Hailong; Zhuang, Wei; Gao, Yi Qin; Zheng, Junrong

    2012-12-13

    Microscopic structures and dynamics of aqueous salt solutions were investigated with the ultrafast vibrational energy exchange method and anisotropy measurements. In KSCN aqueous solutions of various concentrations, the rotational time constants of SCN(-) anions are proportional to the viscosities of the solutions. However, the reorientation dynamics of the water molecules are only slightly affected by the solution viscosity. With the addition of strongly hydrated F(-) anions, the rotations of both SCN(-) anions and water molecules slow down. With the addition of weakly hydrated I(-) anions, only the rotation of SCN(-) anions slows down with that of water molecules unaffected. Vibrational energy exchange measurements show that the separation among SCN(-) anions decreases with the addition of F(-) and increases with the addition of I(-). The series of experiments clearly demonstrate that both structures and dynamics of ion and water are segregated in the strong electrolyte aqueous solutions.

  20. Synthesis, crystal structure and investigation of mononuclear copper(II) and zinc(II) complexes of a new carboxylate rich tripodal ligand and their interaction with carbohydrates in alkaline aqueous solution

    PubMed Central

    Stewart, Christopher D.; Pedraza, Mayra; Arman, Hadi; Fan, Hua-Jun; Schilling, Eduardo Luiz; Szpoganicz, Bruno; Musie, Ghezai T.

    2016-01-01

    A new carboxylate rich asymmetric tripodal ligand, N-[2-carboxybenzomethyl]-N-[carboxymethyl]-β-alanine (H3camb), and its di-copper(II), (NH4)2[1]2, and di-zinc(II), ((CH3)4 N)2[2]2, complexes have been synthesized as carbohydrate binding models in aqueous solutions. The ligand and complexes have been fully characterized using several techniques, including single crystal X-ray diffraction. The interactions of (NH4)2[1]2 and ((CH3)4 N)2[2]2 with D-glucose, D-mannose, D-xylose and xylitol in aqueous alkaline media were investigated using UV–Vis and 13C-NMR spectroscopic techniques, respectively. The molar conductance, NMR and ESI–MS studies indicate that the complexes dissociate in solution to produce the respective complex anions, 1− and 2−. Complexes 1− and 2− showed chelating ability towards the naturally abundant and biologically relevant sugars, D-glucose, D-mannose, D-xylose, and xylitol. The complex ions bind to one molar equivalent of the sugars, even in the presence of stoichiometric excess of the substrates, in solution. Experimentally obtained spectroscopic data and computational results suggest that the substrates bind to the metal center in a bidentate fashion. Apparent binding constant values, pKapp, between the complexes and the substrates were determined and a specific mode of substrate binding is proposed. The pKapp and relativistic density functional theory (DFT) calculated Gibbs free energy values indicate that D-mannose displayed the strongest interaction with the complexes. Syntheses, characterizations, detailed substrate binding studies using spectroscopic techniques, single crystal X-ray diffraction and geometry optimizations of the complex-substrates with DFT calculations are also reported. PMID:25969174

  1. Synthesis, crystal structure and investigation of mononuclear copper(II) and zinc(II) complexes of a new carboxylate rich tripodal ligand and their interaction with carbohydrates in alkaline aqueous solution.

    PubMed

    Stewart, Christopher D; Pedraza, Mayra; Arman, Hadi; Fan, Hua-Jun; Schilling, Eduardo Luiz; Szpoganicz, Bruno; Musie, Ghezai T

    2015-08-01

    A new carboxylate rich asymmetric tripodal ligand, N-[2-carboxybenzomethyl]-N-[carboxymethyl]-β-alanine (H3camb), and its di-copper(II), (NH4)2[1]2, and di-zinc(II), ((CH3)4N)2[2]2, complexes have been synthesized as carbohydrate binding models in aqueous solutions. The ligand and complexes have been fully characterized using several techniques, including single crystal X-ray diffraction. The interactions of (NH4)2[1]2 and ((CH3)4N)2[2]2 with D-glucose, D-mannose, D-xylose and xylitol in aqueous alkaline media were investigated using UV-Vis and (13)C-NMR spectroscopic techniques, respectively. The molar conductance, NMR and ESI-MS studies indicate that the complexes dissociate in solution to produce the respective complex anions, 1(-) and 2(-). Complexes 1(-) and 2(-) showed chelating ability towards the naturally abundant and biologically relevant sugars, D-glucose, D-mannose, D-xylose, and xylitol. The complex ions bind to one molar equivalent of the sugars, even in the presence of stoichiometric excess of the substrates, in solution. Experimentally obtained spectroscopic data and computational results suggest that the substrates bind to the metal center in a bidentate fashion. Apparent binding constant values, pK(app), between the complexes and the substrates were determined and a specific mode of substrate binding is proposed. The pK(app) and relativistic density functional theory (DFT) calculated Gibbs free energy values indicate that D-mannose displayed the strongest interaction with the complexes. Syntheses, characterizations, detailed substrate binding studies using spectroscopic techniques, single crystal X-ray diffraction and geometry optimizations of the complex-substrates with DFT calculations are also reported. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Mobilization of Manufactured Gas Plant Tar with Alkaline Flushing Solutions

    PubMed Central

    Hauswirth, Scott C.; Birak, Pamela Schultz; Rylander, Seth C.; Miller, Cass T.

    2011-01-01

    This experimental study investigates the use of alkaline and alkaline-polymer solutions for the mobilization of former manufactured gas plant (FMGP) tars. Tar-aqueous interfacial tensions (IFTs) and contact angles were measured, and column flushing experiments were conducted. NaOH solutions (0.01–1 wt.%) were found to significantly reduce tar-aqueous IFT. Contact angles indicated a shift to strongly water-wet, then to tar-wet conditions as NaOH concentration increased. Column experiments were conducted with flushing solutions containing 0.2, 0.35, and 0.5% NaOH, both with and without xanthan gum (XG). Between 10 and 44% of the residual tar was removed by solutions containing only NaOH, while solutions containing both NaOH and XG removed 81–93% of the tar with final tar saturations as low as 0.018. The mechanism responsible for the tar removal is likely a combination of reduced IFT, a favorable viscosity ratio, and tar bank formation. Such an approach may have practical applications and would be significantly less expensive than surfactant-based methods. PMID:22091957

  3. Interaction of adenylic acid with alkaline earth metal ions in the crystalline solid and aqueous solution. Evidence for the sugar C'2-endo/anti, C'3-endo/anti and C'4-exon/anti conformational changes.

    PubMed

    Tajmir-Riahi, H A

    1990-09-10

    The reaction of adenosine 5'-monophosphoric acid (H2-AMP) with the alkaline earth metal ions has been investigated in aqueous solution at neutral pH. The solid salts of Mg-AMP.5H2O, Ca-AMP.6H2O, Sr-AMP.7H2O and Ba-AMP.7H2O were isolated and characterized by Fourier transform infrared, 1H-NMR spectroscopy and X-ray powder diffraction measurements. Spectroscopic and other evidence showed that the Sr-AMP.7H2O and Ba-AMP.7H2O are isomorphous, whereas the Mg-AMP.5H2O and Ca-AMP.6H2O are not similar. The Mg2+ binding is through the N-7 (inner-sphere) and the phosphate group (outer-sphere via H2O), while the Ca2+ binds to the phosphate group (inner-sphere) and to the base N-7 site (outer-sphere through H2O). The Sr2+ and Ba2+ bind to H2O molecules, H-bonding to the N-7, N-1 and the phosphate group (outer-sphere). In aqueous solution, an equilibrium between the inner- and outer-sphere metal ion bindings can be established. The sugar moiety exhibited C'2-endo/anti conformation, in the free H2-AMP acid and the magnesium salt, C'3-endo/anti in the calcium salt and unusual C'4-exo/anti, in the strontium and barium salts.

  4. Supercooling behavior in aqueous solutions.

    PubMed

    Kimizuka, Norihito; Suzuki, Toru

    2007-03-08

    Using the emulsion method, we measured the homogeneous nucleation temperature depression, DeltaT(f,hom), and equilibrium melting points depression, DeltaT(m), of various aqueous solutions and then calculated lambda for each solute using the linear relationship DeltaT(f,hom) = lambdaDeltaT(m). We defined lambda as the solute-specific supercooling capacity and examined its correlation with some known hydration characteristics. The results showed that lambda is correlated with D0, the self-diffusion coefficient of solute molecules in infinite dilution.

  5. 2010 Water & Aqueous Solutions

    SciTech Connect

    Dor Ben-Amotz

    2010-08-13

    Water covers more than two thirds of the surface of the Earth and about the same fraction of water forms the total mass of a human body. Since the early days of our civilization water has also been in the focus of technological developments, starting from converting it to wine to more modern achievements. The meeting will focus on recent advances in experimental, theoretical, and computational understanding of the behavior of the most important and fascinating liquid in a variety of situations and applications. The emphasis will be less on water properties per se than on water as a medium in which fundamental dynamic and reactive processes take place. In the following sessions, speakers will discuss the latest breakthroughs in unraveling these processes at the molecular level: Water in Solutions; Water in Motion I and II; Water in Biology I and II; Water in the Environment I and II; Water in Confined Geometries and Water in Discussion (keynote lecture and poster winners presentations).

  6. CESIUM RECOVERY FROM AQUEOUS SOLUTIONS

    DOEpatents

    Goodall, C.A.

    1960-09-13

    A process is given for precipitating cesium on zinc ferricyanide (at least 0.0004 M) from aqueous solutions containing mineral acid in a concentration of from 0.2 N acidity to 0.61 N acid-deficiency and advantageously, but not necessarily, also aluminum nitrate in a concentration of from l to 2.5 M.

  7. Cesium recovery from aqueous solutions

    DOEpatents

    Goodhall, C. A.

    1960-09-13

    A process for recovering cesium from aqueous solutions is given in which precipitation on zinc ferricyanide is used. The precipitation is preferably carried out in solutions containing at least 0.0004M zinc ferricyanide, an acidity ranging from 0.2N mineral acid to 0.61N acid deficiency, and 1 to 2.5M aluminum nitrate. (D.L.C.)

  8. CESIUM RECOVERY FROM AQUEOUS SOLUTIONS

    DOEpatents

    Schneider, R.A.

    1961-06-20

    Cesium may be precipitated from an aqueous solution whose acidity ranges between a pH of 1.5 and a molarity of 5 on cobaltous, zinc, cadmium, nickel, or ferrous cobalticyanide. This precipitation brings about a separation from most fission products. Ruthenium which coprecipitates to a great degree can be removed by dissolving in sulfuric acid and boiling the solution in the presence of periodic acid for volatilization; other coprecipitated fission products can then be precipitated from the sulfuric acid solution with a ferric hydroxide carrier.

  9. Sucrose diffusion in aqueous solution

    PubMed Central

    Murray, Benjamin J.

    2016-01-01

    The diffusion of sugar in aqueous solution is important both in nature and in technological applications, yet measurements of diffusion coefficients at low water content are scarce. We report directly measured sucrose diffusion coefficients in aqueous solution. Our technique utilises a Raman isotope tracer method to monitor the diffusion of non-deuterated and deuterated sucrose across a boundary between the two aqueous solutions. At a water activity of 0.4 (equivalent to 90 wt% sucrose) at room temperature, the diffusion coefficient of sucrose was determined to be approximately four orders of magnitude smaller than that of water in the same material. Using literature viscosity data, we show that, although inappropriate for the prediction of water diffusion, the Stokes–Einstein equation works well for predicting sucrose diffusion under the conditions studied. As well as providing information of importance to the fundamental understanding of diffusion in binary solutions, these data have technological, pharmaceutical and medical implications, for example in cryopreservation. Moreover, in the atmosphere, slow organic diffusion may have important implications for aerosol growth, chemistry and evaporation, where processes may be limited by the inability of a molecule to diffuse between the bulk and the surface of a particle. PMID:27364512

  10. Determination of bisphenol A in thermal printing papers treated by alkaline aqueous solution using the combination of single-drop microextraction and HPLC.

    PubMed

    Gao, Leihong; Zou, Jing; Liu, Haihong; Zeng, Jingbin; Wang, Yiru; Chen, Xi

    2013-04-01

    A method for the quantitative determination of bisphenol A in thermal printing paper was developed and validated. Bisphenol A was extracted from the paper samples using 2% NaOH solution, then the extracted analyte was enriched using single-drop microextraction followed by HPLC analysis. Several parameters relating to the single-drop microextraction efficiency including extraction solvent, extraction temperature and time, stirring rate, and pH of donor phase were studied and optimized. Spiked recovery of bisphenol A at 20 and 5 mg/g was found to be 95.8 and 108%, and the method detection limit and method quantification limit was 0.03 and 0.01 mg/g, respectively. Under the optimized conditions, the proposed method was applied to the determination of bisphenol A in seven types of thermal printing paper samples, and the concentration of bisphenol A was found in the range of 0.53-20.9 mg/g. The considerably minimum usage of organic solvents (5 μL 1-octanol) and high enrichment factor (189-197) in the sample preparation are the two highlighted advantages in comparison with previously published works.

  11. Stabilized aqueous hydrogen peroxide solution

    SciTech Connect

    Malin, M.J.; Sciafani, L.D.

    1988-05-17

    This patent describes a stabilized aqueous hydrogen peroxide solution having a pH below 7 and an amount of Ferric ion up to about 2 ppm comprising hydrogen peroxide, acetanilide having a concentration which ranges between 0.74 M Mol/L and 2.22 mMol/L, and o-benzene disulfonic acid or salt thereof at a concentration between about 0.86 mMol/L to about 1.62 mMol/L.

  12. Specular reflectance of aqueous solutions.

    NASA Technical Reports Server (NTRS)

    Querry, M. R.; Waring, R. C.; Holland, W. E.; Mansell, G. R.

    1971-01-01

    Description of two laboratory instruments for measuring the specular reflectance of aqueous solutions. The instruments are an organic-dye-laser spectrophotometer for the 360- to 650-nm wavelength region and a reflectometer accessory for a Perkin-Elmer E-system spectrophotometer which will operate in the 0.2- to 20-micron wavelength region. The reflectometer accessory has been used to measure the relative infrared specular reflectance in limited spectral regions for aqueous solutions of NaCl, K2SO4, ZnSO4, (NH4)2SO4, and NH4H2PO4 with radiant flux incident at about 70 deg and polarized perpendicular to the plane of incidence. The laser spectrometer has been used to measure the absolute reflectance of aqueous solutions of NaCl in the wavelength region from 575 to 610 nm for light incident at angles of about 60, 65, and 70 deg and polarized parallel to the plane of incidence.

  13. Specular reflectance of aqueous solutions.

    NASA Technical Reports Server (NTRS)

    Querry, M. R.; Waring, R. C.; Holland, W. E.; Mansell, G. R.

    1971-01-01

    Description of two laboratory instruments for measuring the specular reflectance of aqueous solutions. The instruments are an organic-dye-laser spectrophotometer for the 360- to 650-nm wavelength region and a reflectometer accessory for a Perkin-Elmer E-system spectrophotometer which will operate in the 0.2- to 20-micron wavelength region. The reflectometer accessory has been used to measure the relative infrared specular reflectance in limited spectral regions for aqueous solutions of NaCl, K2SO4, ZnSO4, (NH4)2SO4, and NH4H2PO4 with radiant flux incident at about 70 deg and polarized perpendicular to the plane of incidence. The laser spectrometer has been used to measure the absolute reflectance of aqueous solutions of NaCl in the wavelength region from 575 to 610 nm for light incident at angles of about 60, 65, and 70 deg and polarized parallel to the plane of incidence.

  14. Thermosensitive aqueous solutions of polyvinylacetone

    NASA Astrophysics Data System (ADS)

    Wu, Wei-Tai; Wang, Yusong; Shi, Lei; Zhu, Qingren; Pang, Wenmin; Xu, Guoyong; Lu, Fei

    2006-04-01

    The dimethylketals of poly(vinyl alcohol), termed polyvinylacetone (PVKA), of moderate ketalization degree in the range from 0.28 to 0.6 exhibited temperature-induced phase transition in aqueous solution, as revealed by cloud point measurements and electron micrographs, which was then further investigated on molecular level using solution-state 1H NMR measurements. The present phase transition is caused by the amphiphilic characteristics in the polymer chain. Moreover, this finding could be further applied as a novel strategy in the syntheses of thermosensitive polymer by the hydrophobic functionalities of linear polyol.

  15. Solubility of pllutonium in alkaline salt solutions

    SciTech Connect

    Hobbs, D.T.; Edwards, T.B.

    1993-02-26

    Plutonium solubility data from several studies have been evaluated. For each data set, a predictive model has been developed where appropriate. In addition, a statistical model and corresponding prediction intervals for plutonium solubility as a quadratic function of the hydroxide concentration have been developed. Because of the wide range of solution compositions, the solubility of plutonium can vary by as much as three orders of magnitude for any given hydroxide concentration and still remain within the prediction interval. Any nuclear safety assessments that depend on the maximum amount of plutonium dissolved in alkaline salt solutions should use concentrations at least as great as the upper prediction limits developed in this study. To increase the confidence in the prediction model, it is recommended that additional solubility tests be conducted at low hydroxide concentrations and with all of the other solution components involved. To validate the model for application to actual waste solutions, it is recommended that the plutonium solubilities in actual waste solutions be determined and compared to the values predicted by the quadratic model.

  16. REMOVAL OF CHLORIDE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Schulz, W.W.

    1959-08-01

    The removal of chlorides from aqueons solutions is described. The process involves contacting the aqueous chloride containing solution with a benzene solution about 0.005 M in phenyl mercuric acetate whereby the chloride anions are taken up by the organic phase and separating the organic phase from the aqueous solutions.

  17. Removal of plutonium and americium from alkaline waste solutions

    DOEpatents

    Schulz, Wallace W.

    1979-01-01

    High salt content, alkaline waste solutions containing plutonium and americium are contacted with a sodium titanate compound to effect removal of the plutonium and americium from the alkaline waste solution onto the sodium titanate and provide an effluent having a radiation level of less than 10 nCi per gram alpha emitters.

  18. Singlet-Oxygen Generation in Alkaline Periodate Solution.

    PubMed

    Bokare, Alok D; Choi, Wonyong

    2015-12-15

    A nonphotochemical generation of singlet oxygen ((1)O2) using potassium periodate (KIO4) in alkaline condition (pH > 8) was investigated for selective oxidation of aqueous organic pollutants. The generation of (1)O2 was initiated by the spontaneous reaction between IO4(-) and hydroxyl ions, along with a stoichiometric conversion of IO4(-) to iodate (IO3(-)). The reactivity of in-situ-generated (1)O2 was monitored by using furfuryl alcohol (FFA) as a model substrate. The formation of (1)O2 in the KIO4/KOH system was experimentally confirmed using electron spin resonance (ESR) measurements in corroboration with quenching studies using azide as a selective (1)O2 scavenger. The reaction in the KIO4/KOH solution in both oxic and anoxic conditions initiated the generation of superoxide ion as a precursor of the singlet oxygen (confirmed by using superoxide scavengers), and the presence of molecular oxygen was not required as a precursor of (1)O2. Although hydrogen peroxide had no direct influence on the FFA oxidation process, the presence of natural organic matter, such as humic and fulvic acids, enhanced the oxidation efficiency. Using the oxidation of simple organic diols as model compounds, the enhanced (1)O2 formation is attributed to periodate-mediated oxidation of vicinal hydroxyl groups present in humic and fulvic constituent moieties. The efficient and simple generation of (1)O2 using the KIO4/KOH system without any light irradiation can be employed for the selective oxidation of aqueous organic compounds under neutral and near-alkaline conditions.

  19. Calixarene crown ether solvent composition and use thereof for extraction of cesium from alkaline waste solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.; Presley, Derek J.

    2001-01-01

    A solvent composition and corresponding method for extracting cesium (Cs) from aqueous neutral and alkaline solutions containing Cs and perhaps other competing metal ions is described. The method entails contacting an aqueous Cs-containing solution with a solvent consisting of a specific class of lipophilic calix[4]arene-crown ether extractants dissolved in a hydrocarbon-based diluent containing a specific class of alkyl-aromatic ether alcohols as modifiers. The cesium values are subsequently recovered from the extractant, and the solvent subsequently recycled, by contacting the Cs-containing organic solution with an aqueous stripping solution. This combined extraction and stripping method is especially useful as a process for removal of the radionuclide cesium-137 from highly alkaline waste solutions which are also very concentrated in sodium and potassium. No pre-treatment of the waste solution is necessary, and the cesium can be recovered using a safe and inexpensive stripping process using water, dilute (millimolar) acid solutions, or dilute (millimolar) salt solutions. An important application for this invention would be treatment of alkaline nuclear tank wastes. Alternatively, the invention could be applied to decontamination of acidic reprocessing wastes containing cesium-137.

  20. Photochemistry of norharmane in aqueous solution.

    PubMed

    Gonzalez, M Micaela; Salum, M Laura; Gholipour, Yousef; Cabrerizo, Franco M; Erra-Balsells, Rosa

    2009-08-01

    The photochemistry of norharmane (9H-pyrido[3,4-b]indole) in acidic (pH 5.0+/-0.1) and alkaline (pH 10.0+/-0.1) aqueous solutions was studied. The photochemical reactions were monitored by TLC, UV/VIS absorption spectroscopy, high-performance liquid chromatography (HPLC), electronic ionization-mass spectrometry (EI-MS), UV-laser desorption/ionization-time of flight-mass spectrometry (UV-LDI-TOF-MS) and an enzymatic method for H2O2 determination. The neutral (nHoN) and the protonated (nHoH+) forms of norharmane irradiated under Ar atmosphere were photostable, but they suffered a photochemical transformation in the presence of O2, yielding as photoproducts norharmane dimers, trimers and tetramers. nHoN shown to be more photostable than nHoH+. The nHoH+ and nHoN consumption quantum yields were 1.82x10(-3) and 0.51x10(-3), respectively, and the mechanisms involved in its photochemistry are discussed. H2O2 and singlet oxygen (1O2) were also detected and quantified in irradiated solutions of norharmane, and their role in the photochemistry of norharmane is discussed.

  1. Stability of cefozopran hydrochloride in aqueous solutions.

    PubMed

    Zalewski, Przemysław; Skibiński, Robert; Paczkowska, Magdalena; Garbacki, Piotr; Talaczyńska, Alicja; Cielecka-Piontek, Judyta; Jelińska, Anna

    2016-01-01

    The influence of pH on the stability of cefozopran hydrochloride (CZH) was investigated in the pH range of 0.44-13.00. Six degradation products were identified with a hybrid ESI-Q-TOF mass spectrometer. The degradation of CZH as a result of hydrolysis was a pseudo-first-order reaction. As general acid-base hydrolysis of CZH was not occurred in the solutions of hydrochloric acid, sodium hydroxide, acetate, borate and phosphate buffers, kobs = kpH because specific acid-base catalysis was observed. Specific acid-base catalysis of CZH consisted of the following reactions: hydrolysis of CZH catalyzed by hydrogen ions (kH+), hydrolysis of dications (k1H2O), monocations (k2H2O) and zwitter ions (k3H2O) and hydrolysis of zwitter ions (k1OH-) and monoanions (k2OH-) of CZH catalyzed by hydroxide ions. The total rate of the reaction was equal to the sum of partial reactions: [Formula: see text]. CZH similarly like other fourth generation cephalosporin was most stable at slightly acidic and neutral pH and less stable in alkaline pH. The cleavage of the β-lactam ring resulting from a nucleophilic attack on the carbonyl carbon in the β-lactam moiety is the preferred degradation pathway of β-lactam antibiotics in aqueous solutions.

  2. IUPAC-NIST Solubility Data Series. 95. Alkaline Earth Carbonates in Aqueous Systems. Part 2. Ca

    NASA Astrophysics Data System (ADS)

    Vanderdeelen, Jan

    2012-06-01

    The alkaline earth carbonates are an important class of minerals. This article is part of a volume in the IUPAC-NIST Solubility Data Series that compiles and critically evaluates solubility data of the alkaline earth carbonates in water and in simple aqueous electrolyte solutions. Part 1 outlined the procedure adopted in this volume, and presented the beryllium and magnesium carbonates. Part 2, the current paper, compiles and critically evaluates the solubility data of calcium carbonate. The chemical forms included are the anhydrous CaCO3 types calcite, aragonite, and vaterite, the monohydrate monohydrocalcite (CaCO3. H2O), the hexahydrate ikaite (CaCO3.6H2O), and an amorphous form. The data were analyzed with two model variants, and thermodynamic data of each form consistent with each of the models and with the CODATA key values for thermodynamics are presented.

  3. IUPAC-NIST Solubility Data Series. 95. Alkaline Earth Carbonates in Aqueous Systems. Part 2. Ca

    SciTech Connect

    De Visscher, Alex; Vanderdeelen, Jan

    2012-06-15

    The alkaline earth carbonates are an important class of minerals. This article is part of a volume in the IUPAC-NIST Solubility Data Series that compiles and critically evaluates solubility data of the alkaline earth carbonates in water and in simple aqueous electrolyte solutions. Part 1 outlined the procedure adopted in this volume, and presented the beryllium and magnesium carbonates. Part 2, the current paper, compiles and critically evaluates the solubility data of calcium carbonate. The chemical forms included are the anhydrous CaCO{sub 3} types calcite, aragonite, and vaterite, the monohydrate monohydrocalcite (CaCO{sub 3}{center_dot} H{sub 2}O), the hexahydrate ikaite (CaCO{sub 3}{center_dot}6H{sub 2}O), and an amorphous form. The data were analyzed with two model variants, and thermodynamic data of each form consistent with each of the models and with the CODATA key values for thermodynamics are presented.

  4. SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Beederman, M.; Vogler, S.; Hyman, H.H.

    1959-07-14

    The separation of rathenium from a rathenium containing aqueous solution is described. The separation is accomplished by adding sodium nitrite, silver nitrate and ozone to the ruthenium containing aqueous solution to form ruthenium tetroxide and ihen volatilizing off the ruthenium tetroxide.

  5. ENGINEERING BULLETIN: AIR STRIPPING OF AQUEOUS SOLUTIONS

    EPA Science Inventory

    Air striding is a means to transfer contaminants from aqueous solutions to air. ontaminants are not destroyed by air stripping but are physically separated from the aqueous solutions. ontaminant vapors are transferred into the air stream and, if necessary, can be treated by incin...

  6. ENGINEERING BULLETIN: AIR STRIPPING OF AQUEOUS SOLUTIONS

    EPA Science Inventory

    Air striding is a means to transfer contaminants from aqueous solutions to air. ontaminants are not destroyed by air stripping but are physically separated from the aqueous solutions. ontaminant vapors are transferred into the air stream and, if necessary, can be treated by incin...

  7. Comparison of alkaline industrial wastes for aqueous mineral carbon sequestration through a parallel reactivity study.

    PubMed

    Noack, Clinton W; Dzombak, David A; Nakles, David V; Hawthorne, Steven B; Heebink, Loreal V; Dando, Neal; Gershenzon, Michael; Ghosh, Rajat S

    2014-10-01

    Thirty-one alkaline industrial wastes from a wide range of industrial processes were acquired and screened for application in an aqueous carbon sequestration process. The wastes were evaluated for their potential to leach polyvalent cations and base species. Following mixing with a simple sodium bicarbonate solution, chemistries of the aqueous and solid phases were analyzed. Experimental results indicated that the most reactive materials were capable of sequestering between 77% and 93% of the available carbon under experimental conditions in four hours. These materials - cement kiln dust, spray dryer absorber ash, and circulating dry scrubber ash - are thus good candidates for detailed, process-oriented studies. Chemical equilibrium modeling indicated that amorphous calcium carbonate is likely responsible for the observed sequestration. High variability and low reactive fractions render many other materials less attractive for further pursuit without considering preprocessing or activation techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Kinetics of the Fading of Phenolphthalein in Alkaline Solution.

    ERIC Educational Resources Information Center

    Nicholson, Lois

    1989-01-01

    Described is an experiment which illustrates pseudo-first-order kinetics in the fading of a common indicator in an alkaline solution. Included are background information, details of materials used, laboratory procedures, and sample results. (CW)

  9. RECOVERY OF TETRAVALENT CATIONS FROM AQUEOUS SOLUTIONS

    DOEpatents

    Moore, R.L.

    1958-05-01

    The recovery of plutonium, zirconium, and tetravalent cerium values from aqueous solutions is described. It consists of adding an alkyl phosphate to a nnineral acid aqueous solution containing the metal to be recovered, whereby a precipitate forms with the tetravalent values, and separating the precipitate from the solution. All alkyl phosphates, if water-soluble, are suitable for the process; however, monobutyl phosphate has been found best.

  10. The radiolysis of bromophenol blue in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Abdel Rahim, F.; Eid, S. A.; Souka, N.; McLaughlin, W. L.

    The effect of gamma radiation on the color intensity of aerated and oxygenated aqueous solution of bromophenol blue (BPB) was investigated. Ionizing radiation at increasing absorbed doses ( D) brought about gradual bleaching (i.e. decrease in optical absorbance, -Δ A) of bromophenol blue solutions. The molar extinction coefficients of acidic, neutral, and alkaline solutions were measured and found to be independent of temperature during spectrophotometry between 20 and 40°C. Aerated and oxygen-saturated acidic solutions showed a linear response -Δ A vs D) up to doses of 2.4 and 2.1 kGy, respectively. Aerated alkaline solutions on the other hand showed a linear response up to 4.8 kGy. The decoloration yields for 5 × 10 -5 M bromophenol blue aqueous solutions, G(-BPB), obtained from the decrease in absorbance at 591 nm wavelength for acidic, neutral, and alkaline solutions, were 0.244, 0.113, and 0.098 (100 eV) -1, respectively. The first-order rate constant for the reaction of OH radical with bromophenol, obtained from competition reactions with ethanol at pH 4, was found to be 9.1 +- 1.2 × 10 9 M -1 s -1. The degree of decoloration of bromophenol blue in acidic solutions was found to decrease upon the addition of ethanol, G(-BPB) decreasing from 0.24 to 0.088 upon the addition of ethanol at a concentration of 10 -2M. Suggestions are made for possible radiation dosimetry in the dose range (0.1-5 kGy) by means of spectrophotometric analysis of absorption spectra.

  11. Cu(II) complex formation with xylitol in alkaline solutions.

    PubMed

    Norkus, Eugenijus; Vaiciūniene, Jūrate; Vuorinen, Tapani; Gaidamauskas, Ernestas; Reklaitis, Jonas; Jääskeläinen, Anna-Stiina; Crans, Debbie C

    2004-02-25

    The formation of four Cu(II)-xylitol complexes was observed in aqueous alkaline solutions (11.0< or =pH< or =14.0, I=1.0, 20 degrees C) by means of direct current polarography and VIS spectrophotometry. Mononuclear hydroxy complexes, CuXyl(OH)- (log beta=17.7 +/- 0.5), CuXyl(OH)2(2-) (log beta=20.2 +/- 0.3) and CuXyl2(OH)2(4-) (log beta=22.4 +/- 0.3), are formed at high ligand-to-metal ratios (L:M> or =10), whereas dinuclear complex Cu2Xyl (log beta=29.2 +/- 0.3) is the predominant species at low ligand-to-metal ratio (L:M=0.5). Diffusion coefficients and molar absorptivities of the complex species were determined. pH variable 13C NMR suggested that pKa values of xylitol are rather similar and equal to 13.8 +/- 0.2, 13.9 +/- 0.1 and 13.9 +/- 0.2 for OH-groups adjacent to (C-1,C-5), (C-3) and (C-2,C-4) carbon atoms, respectively.

  12. Thermodynamic properties of potassium chloride aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zezin, Denis; Driesner, Thomas

    2017-04-01

    Potassium chloride is a ubiquitous salt in natural fluids, being the second most abundant dissolved salt in many geological aqueous solutions after sodium chloride. It is a simple solute and strong electrolyte easily dissociating in water, however the thermodynamic properties of KCl aqueous solutions were never correlated with sufficient accuracy for a wide range of physicochemical conditions. In this communication we propose a set of parameters for a Pitzer-type model which allows calculation of all necessary thermodynamic properties of KCl solution, namely excess Gibbs free energy and derived activity coefficient, apparent molar enthalpy, heat capacity and volume, as well as osmotic coefficient and activity of water in solutions. The system KCl-water is one of the best studied aqueous systems containing electrolytes. Although extensive experimental data were collected for thermodynamic properties of these solutions over the years, the accurate volumetric data became available only recently, thus making possible a complete thermodynamic formulation including a pressure dependence of excess Gibbs free energy and derived properties of the KCl-water liquids. Our proposed model is intended for calculation of major thermodynamic properties of KCl aqueous solutions at temperatures ranging from freezing point of a solution to 623 K, pressures ranging from saturated water vapor up to 150 MPa, and concentrations up to the salt saturation. This parameterized model will be further implemented in geochemical software packages and can facilitate the calculation of aqueous equilibrium for reactive transport codes.

  13. SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Callis, C.F.; Moore, R.L.

    1959-09-01

    >The separation of ruthenium from aqueous solutions containing uranium plutonium, ruthenium, and fission products is described. The separation is accomplished by providing a nitric acid solution of plutonium, uranium, ruthenium, and fission products, oxidizing plutonium to the hexavalent state with sodium dichromate, contacting the solution with a water-immiscible organic solvent, such as hexone, to extract plutonyl, uranyl, ruthenium, and fission products, reducing with sodium ferrite the plutonyl in the solvent phase to trivalent plutonium, reextracting from the solvent phase the trivalent plutonium, ruthenium, and some fission products with an aqueous solution containing a salting out agent, introducing ozone into the aqueous acid solution to oxidize plutonium to the hexavalent state and ruthenium to ruthenium tetraoxide, and volatizing off the ruthenium tetraoxide.

  14. Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates

    SciTech Connect

    Ruiz-Santaquiteria, C.; Fernandez-Jimenez, A.; Palomo, A.

    2012-09-15

    This study investigates the effect of the alkaline solution/binder (S/B) ratio on the composition and nanostructure of the reaction products generated in the alkaline activation of aluminosilicates. The experiments used two mixtures of fly ash and dehydroxylated white clay and for each of these, varying proportions of the solution components. The alkali activator was an 8 M NaOH solution (with and without sodium silicate) used at three S/B ratios: 0.50, 0.75 and 1.25. The {sup 29}Si, {sup 27}Al MAS NMR and XRD characterisation of the reaction products reveal that for ratios nearest the value delivering suitable paste workability, the reaction-product composition and structure depend primarily on the nature and composition of the starting materials and the alkaline activator used. However, when an excess alkaline activator is present in the system, the reaction products tend to exhibit SiO{sub 2}/Al{sub 2}O{sub 3} ratios of approximately 1, irrespective of the composition of the starting binder or the alkaline activator.

  15. Radiolysis of aqueous solutions of thiamine

    NASA Astrophysics Data System (ADS)

    Chijate, C.; Albarran, G.; Negron-Mendoza, A.

    1998-06-01

    The results of the radiolysis of aqueous solutions of thiamine (vitamin B 1) are presented. The yields for decomposition of thiamine and the product of radiolytic products were determined. The G values decrease as the dose increases. Some radiolytic products were identified. Decomposition of thiamine was slightly dependent on the presence of oxygen and on the pH of the solution. At pH 4.4 with a concentration of 2.5 × 10 -4 mol L -1 of thiamine in an oxygen free aqueous solution, the G 0 value for decomposition is 5.0.

  16. Separation of metal ions from aqueous solutions

    DOEpatents

    Almon, Amy C.

    1994-01-01

    A process and apparatus for quantitatively and selectively separating metal ions from mixtures thereof in aqueous solution. The apparatus includes, in combination, a horizontal electrochemical flow cell containing flow bulk electrolyte solution and an aqueous, metal ion-containing solution, the cell containing a metal mesh working electrode, a counter electrode positioned downstream from the working electrode, an independent variable power supply/potentiostat positioned outside of the flow cell and connected to the electrodes, and optionally a detector such as a chromatographic detector, positioned outside the flow cell. This apparatus and its operation has significant application where trace amounts of metal ions are to be separated.

  17. ADSORPTION OF CERIUM VALUES FROM AQUEOUS SOLUTIONS

    DOEpatents

    Roberts, F.P.

    1963-08-13

    Cerium can be removed from aqueous nitric acid (2 to 13 M) solutions by passing the latter over a PbO/sub 2/-containing anion exchange resin. The cerium is taken up by the resin, while any lanthanides, yttrium, and strontium present remain in the solution. (AEC)

  18. Alkaline solution absorption of carbon dioxide method and apparatus

    DOEpatents

    Hobbs, D.T.

    1991-01-01

    Disclosed is a method for measuring the concentration of hydroxides (or pH) in alkaline solutions, using the tendency of hydroxides to adsorb CO{sub 2}. The method comprises passing CO{sub 2} over the surface of an alkaline solution in a remote tank before and after measurements of the CO{sub 2} concentration. Comparison of the measurements yields the adsorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to adsorption fraction. A schematic is given of a process system according to a preferred embodiment of the invention. 2 figs.

  19. EXTRACTION OF URANYL NITRATE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Furman, N.H.; Mundy, R.J.

    1957-12-10

    An improvement in the process is described for extracting aqueous uranyl nitrate solutions with an organic solvent such as ether. It has been found that the organic phase will extract a larger quantity of uranyl nitrate if the aqueous phase contains in addition to the uranyl nitrate, a quantity of some other soluble nitrate to act as a salting out agent. Mentioned as suitable are the nitrates of lithium, calcium, zinc, bivalent copper, and trivalent iron.

  20. Precipitation of neptunium dioxide from aqueous solution

    SciTech Connect

    Roberts, K E

    1999-12-01

    Tens of thousands of metric tons of highly radioactive, nuclear waste have been generated in the US. Currently, there is no treatment or disposal facility for these wastes. Of the radioactive elements in high-level nuclear waste, neptunium (Np) is of particular concern because it has a long half-life and may potentially be very mobile in groundwaters associated with a proposed underground disposal site at Yucca Mountain, Nevada. Aqueous Np concentrations observed in previous, short-term solubility experiments led to calculated potential doses exceeding proposed long-term regulatory limits. However, thermodynamic data for Np at 25 C showed that these observed aqueous Np concentrations were supersaturated with respect to crystalline NpO{sub 2}. It was hypothesized that NpO{sub 2} is the thermodynamically stable solid phase in aqueous solution, but it is slow to form in an aqueous solution of NpO{sub 2}{sup +} on the time scale of previous experiments. The precipitation of NpO{sub 2} would provide significantly lower aqueous Np concentrations leading to calculated doses below proposed regulatory limits. To test this hypothesis, solubility experiments were performed at elevated temperature to accelerate any slow precipitation kinetics. Ionic NpO{sub 2}{sup +} (aq) was introduced into very dilute aqueous solutions of NaCl with initial pH values ranging from 6 to 10. The reaction vessels were placed in an oven and allowed to react at 200 C until steady-state aqueous Np concentrations were observed. In all cases, aqueous Np concentrations decreased significantly from the initial value of 10{sup {minus}4} M. The solids that formed were analyzed by x-ray powder diffraction, x-ray absorption spectroscopy, and scanning electron microscopy. The solids were determined to be high-purity crystals of NpO{sub 2}. This is the first time that crystalline NpO{sub 2} has been observed to precipitate from NpO{sub 2}{sup +}(aq) in near-neutral aqueous solutions. The results obtained

  1. Thermodynamic Properties of Aqueous Solution of Ammonia

    NASA Astrophysics Data System (ADS)

    Kitamura, Hiroshi; Oguchi, Kosei

    Present status on the thermodynamic properties of experimental data and their correlations of both ammonia and aqueous solution of ammonia was introduced in this paper. The aqueous solution of ammonia is used for not only a working fluid in absorption refrigerator cycles but also working fluids in bottoming cycles of steam power plants and other heat recovering systems. Therefore, the thermodynamic properties of this substance are required in a wide range of temperatures, pressures and compositions. The experimental results of pVTx properties for ammonia and aqueous solution of ammonia and their comparisons with a formulation by Tillner-Roth and Friend1) were critically surveyed. The “Guideline on the IAPWS Formulation 2000 for the Thermodynamic Properties of Ammonia-Water Mixtures”, correlated by Tillner-Roth and Friend1), was approved on September, 2001, by the International Association for the Properties of Water and Steam (IAPWS) 2).

  2. RECOVERY OF PROTACTINIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Elson, R.E.

    1959-07-14

    The recovery of fluoride complexed protactinium from aqueous acidic solutions by solvent extraction is described. Generally the prccess of the invention com rises mixing an aqueous solution containing protactinium in a complexed form with an organic solvent which is specific for protactinium, such as diisopropyl carbinol, then decomposing the protactinium complex by adjusting the acidity of the aqueous solution to between 0-3 to 0-9 M in hydrogen ion concentration, and introducing a source of aluminum ions in sufficient quantity to establish a concentration of 0.5 to 1.2 M aluminum ion, whereupon decomposition of the protactinium fluoride complex takes place and the protactinium ion is taken up by the organic solvent phase.

  3. Superlubricity of a Mixed Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Ma, Zhi-Zuo; Zhang, Chen-Hui; Luo, Jian-Bin; Lu, Xin-Chun; Wen, Shi-Zhu

    2011-05-01

    A super-low friction coefficient of 0.0028 is measured under a pressure of 300 MPa when the friction pair (the silicon nitride ball sliding on the silicate glass) is lubricated by the mixed aqueous solution of glycerol and boric acid. The morphorlogies of the hydroxylated glass plate are observed by an atomic force microscope (AFM) in deionized water, glycerol, boric acid and their mixed aqueous solution. Bonding peaks of the retained liquids adhered on the surface of the sliding track are detected by an infrared spectrum apparatus and a Raman spectrum apparatus. The mechanism of the superlubricity of the glycerol and boric acid mixed aqueous solution is discussed. It is deduced that the formation of the lubricant film has enough strength to support higher loads, the hydration effect offering the super lower shear resistance. Key words: superlubricity, water based lubricant, ultra-low friction

  4. Removal of uranium from aqueous HF solutions

    DOEpatents

    Pulley, Howard; Seltzer, Steven F.

    1980-01-01

    This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separting the solution from the settled particulates. The CaF.sub.2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium, without introducing contaminants to the product solution.

  5. Aqueous Solution Chemistry of Plutonium

    SciTech Connect

    Clark, David L.

    2014-01-28

    Things I have learned working with plutonium: Chemistry of plutonium is complex; Redox equilibria make Pu solution chemistry particularly challenging in the absence of complexing ligands; Understanding this behavior is key to successful Pu chemistry experiments; There is no suitable chemical analog for plutonium.

  6. Hydrophobic Solvation: Aqueous Methane Solutions

    ERIC Educational Resources Information Center

    Konrod, Oliver; Lankau, Timm

    2007-01-01

    A basic introduction to concept of a solvation shell around an apolar solute as well as its detection is presented. The hydrophobic solvation of toluene is found to be a good teaching example which connects macroscopic, phenomenological thermodynamic results with an atomistic point of view.

  7. Hydrophobic Solvation: Aqueous Methane Solutions

    ERIC Educational Resources Information Center

    Konrod, Oliver; Lankau, Timm

    2007-01-01

    A basic introduction to concept of a solvation shell around an apolar solute as well as its detection is presented. The hydrophobic solvation of toluene is found to be a good teaching example which connects macroscopic, phenomenological thermodynamic results with an atomistic point of view.

  8. Isothermal and nonisothermal decomposition of famotidine in aqueous solution.

    PubMed

    Junnarkar, G H; Stavchansky, S

    1995-04-01

    The kinetics of hydrolysis of famotidine in aqueous solution was studied by isothermal and nonisothermal method over the pH range of 1.71 to 10.0. Nonisothermal kinetics was studied with the purpose of determining its use in the establishment of the expiration date of pharmaceutical preparations, particularly drugs in solutions and for assessment of stability characteristics of pharmaceutical formulations during the development stage. A comparison of isothermal (55, 70 and 85 degrees C) and nonisothermal kinetics was performed. Aqueous solutions of famotidine were buffered at pH 1.71, 2.24, 2.66, 4.0, 8.5, 9.0 and 10.0 were used. In the nonisothermal studies, the temperature rate of the reaction was continuously varied throughout the experiment. The energies of activation were found to be in close agreement for isothermal and nonisothermal studies, indicating that nonisothermal studies may save considerable amount of time in the early stages of drug development and stability testing. Logk-pH profiles were constructed for 55, 70 and 85 degrees C from the first-order rate constants obtained from isothermal studies at pH values ranging from 1.71 to 10.00. The pH-rate profile indicated that famotidine undergoes specific acid catalysis in the acidic region and general base catalysis in the alkaline region. Hydrolysis in the acidic and alkaline media resulted in the formation of four and five degradation products, respectively. A possible degradation pathway for the acidic and alkaline hydrolysis was discussed.

  9. Aqueous Solution Chemistry on Mars

    NASA Astrophysics Data System (ADS)

    Quinn, R.; Hecht, M.; Kounaves, S.; Young, S.; West, S.; Fisher, A.; Grunthaner, P.

    2007-12-01

    Currently en route to Mars, the Phoenix mission carries four wet chemistry cells designed to perform basic solution chemistry on martian soil. The measurement objectives are typical of those that would be performed on an unknown sample on Earth, including detection of common anions and cations, total conductivity, pH, redox potential, cyclic voltammetry (CV), etc. Both the challenge and the novelty arise from the necessity to perform these measurements with severely constrained resources in a harsh and (literally) alien environment. Sensors for all measurements are integrated into a common "beaker," with the ability to perform a two-point calibration of some sensors using a pair of low-concentration solutions. Sulfate measurement is performed with a crude titration. While most measurements use ion selective electrodes, halide interferences are resolved by independent chronopotentiometry (CP) measurements. No preconditioning of the soil-water mixture is possible, nor is any physical characterization of the introduced soil sample beyond coarse visual inspection. Among the idiosyncrasies of the measurement is the low external pressure, which requires that the analysis be performed close to the boiling point of water under an atmosphere consisting almost entirely of water vapor. Despite these liabilities, however, extensive laboratory characterization has validated the basic approach, and protocols for both CV and CP have been developed and tested. Enhancing the value of the measurement is the suite of coordinated observations, such as microscopy and evolved gas analysis, to be performed by other Phoenix instruments.

  10. IUPAC-NIST Solubility Data Series. 95. Alkaline Earth Carbonates in Aqueous Systems. Part 1. Introduction, Be and Mg

    NASA Astrophysics Data System (ADS)

    De Visscher, Alex; Vanderdeelen, Jan; Königsberger, Erich; Churagulov, Bulat R.; Ichikuni, Masami; Tsurumi, Makoto

    2012-03-01

    The alkaline earth carbonates are an important class of minerals. This volume compiles and critically evaluates solubility data of the alkaline earth carbonates in water and in simple aqueous electrolyte solutions. Part 1, the present paper, outlines the procedure adopted in this volume in detail, and presents the beryllium and magnesium carbonates. For the minerals magnesite (MgCO3), nesquehonite (MgCO3.3H2O), and lansfordite (MgCO3.5H2O), a critical evaluation is presented based on curve fits to empirical and/or thermodynamic models. Useful side products of the compilation and evaluation of the data outlined in the introduction are new relationships for the Henry constant of CO2 with Sechenov parameters, and for various equilibria in the aqueous phase including the dissociation constants of CO2(aq) and the stability constant of the ion pair MCO30(aq) (M = alkaline earth metal). Thermodynamic data of the alkaline earth carbonates consistent with two thermodynamic model variants are proposed. The model variant that describes the Mg2+-HCO3- ion interaction with Pitzer parameters was more consistent with the solubility data and with other thermodynamic data than the model variant that described the interaction with a stability constant.

  11. Removal of metal ions from aqueous solution

    DOEpatents

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1990-11-13

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat unit for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heayv metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  12. Removal of metal ions from aqueous solution

    DOEpatents

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1990-01-01

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  13. Unusual hydrophobic interactions in acidic aqueous solutions.

    PubMed

    Chen, Hanning; Xu, Jianqing; Voth, Gregory A

    2009-05-21

    Hydrophobic interaction, which is believed to be a primary driving force for many fundamental chemical and biological processes such as nanostructure self-assembly, micelle formation, and protein folding, is different in acidic aqueous solutions compared to salt solutions. In this study, the aggregation/dispersion behavior of nonpolar hydrophobic molecules in aqueous solutions with varying acid (HCl) concentrations is investigated using novel molecular dynamics simulations and compared to the hydrophobic behavior in corresponding salt (NaCl) solutions. The formation of unusual weakly bound hydrophobe-hydrated proton solvation structures is observed and can be attributed to the unique "amphiphilic" characteristic of hydrated protons. This molecular-level mechanism for the acid-enhanced dissolution of hydrophobic particles also provides a novel interpretation for the apparent anomaly of the hydronium cation in the Hofmeister series.

  14. RECOVERY OF PLUTONIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Reber, E.J.

    1959-09-01

    A process is described for recovering plutonium values from aqueous solutions by precipitation on bismuth phosphate. The plutonium is secured in its tetravalent state. bismuth salt is added to the solution, and ant excess of phosphoric acid anions is added to the solution in two approximately equal installments. The rate of addition of the first installment is about two to three times as high as the rate of addition of the second installment, whereby a precipitate of bismuth phosphate forms, the precipitate carrying the plutonium values. The precipitate is separated from the solution.

  15. Water & Aqueous Solutions. Final Progress Report

    SciTech Connect

    2002-08-09

    The Gordon Research Conference (GRC) on Water & Aqueous Solutions was held at Holderness School, New Hampshire, 8/4/02 thru 8/9/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  16. PHOTOREACTION OF VALEROPHENONE IN AQUEOUS SOLUTION

    EPA Science Inventory

    Kinetics and products of the photoreaction of the phenyl ketone valerophenone were investigated as a function of temperature, pH, and wavelength in aqueous solution. Under these conditions (<10-4M), the photoreactions are pseudo-first-order with respect to valerophenone concentra...

  17. PHOTOREACTION OF VALEROPHENONE IN AQUEOUS SOLUTION

    EPA Science Inventory

    Kinetics and products of the photoreaction of the phenyl ketone valerophenone were investigated as a function of temperature, pH, and wavelength in aqueous solution. Under these conditions (<10-4M), the photoreactions are pseudo-first-order with respect to valerophenone concentra...

  18. SEPARATION OF SCANDIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Peppard, D.F.; Nachtman, E.S.

    1958-02-25

    This patent relates to a process for the separation of scandium from yttrium, thorium, and trivalent rare earths and with their separation from each other. It has been found that scandium and yttrium can be separated from trivalent rare earths in acidic solution, for example, a solution 6 M in HCl, by contacting with tributyl phosphate, whereupon the scandum is preferentially extracted into the organic phase, leaving the yttrium and trivalent rare earths in the aqueous phase.

  19. Solubility of plutonium and uranium in alkaline salt solutions

    SciTech Connect

    Hobbs, D.T.; Edwards, T.B.; Fleischman, S.D.

    1993-02-12

    The solubility of plutonium and uranium in alkaline salt solutions, which will be processed in the In-Tank Precipitation (ITP) process, was investigated to screen for significant factors and interactions among the factors comprising the salt solutions. The factors included in the study were hydroxide, nitrate, nitrite, aluminate, sulfate, carbonate, and temperature. Over the range of factor concentrations studied, the level of hydroxide in the solution is not sufficient alone to predict the resulting concentration of plutonium and uranium in the solution. Other constituents of the salt solution play an important role in determining the amount of plutonium and uranium in solution. Statistical models predicting the plutonium and uranium concentrations over the range of salt solutions investigated are provided.

  20. Ibuprofen photodegradation in aqueous solutions.

    PubMed

    Iovino, Pasquale; Chianese, Simeone; Canzano, Silvana; Prisciandaro, Marina; Musmarra, Dino

    2016-11-01

    The advanced treatment of polluted liquid streams containing traces of pharmaceutical compounds is a major issue, since more and more effluents from pharma labs and wastewaters containing the excretions of medically treated humans and animals are discharged in the conventional wastewater treatment plants without previous effective treatments. Ibuprofen is a widely used non-steroidal anti-inflammatory drug (NSAID), which explains why it is found in wastewaters so often. In this paper, the removal of IBP from simulated water streams was investigated by using a lab-scale experimental device, consisting of a batch reactor equipped with a lamp emitting monochromatic UV light at a fixed wavelength (254 nm) and various intensities. Three sets of experiments were carried out: the first to study IBP concentration as a function of time, at different volumes of treated solutions (V = 10-30 mL); the second to explore the effect of pH on IBP degradation as a function of time (pH = 2.25-8.25) and the third to evaluate the effect of different UV light intensities on IBP degradation (E = 100-400 mJ m(-2)). The IBP initial concentration (IBP 0) was varied in the range 30-60 mg L(-1). The results obtained show that the concentration of IBP decreases along with treatment time, with a negative effect of the treated volume, i.e. smaller volumes, such as lower liquid heights, are more easily degraded. Moreover, the higher the pH, the better the IBP degradation; actually, when pH increases from 2.25 to 6.6 and 8.25, the IBP concentration, after an hour of treatment, decreases respectively to 45, 34 and 27 % of its initial value. In addition, as the intensity of light increases from 100 to 400 mJ m(-2), the IBP concentration decreases to 34 % of its initial value. A reaction scheme is put forward in the paper, which well describes the effects of volume, pH and light intensity on the IBP degradation measured experimentally. Moreover, the IBP degradation by-products have

  1. The chemistry of drying an aqueous solution of salts.

    PubMed

    Takenaka, Norimichi; Takayama, Kayoko; Ojiro, Naofumi; Shimazaki, Wataru; Ohira, Kingo; Soda, Hiroyuki; Suzue, Takahiko; Sadanaga, Yasuhiro; Bandow, Hiroshi; Maeda, Yasuaki

    2009-11-05

    The fate of salts in drying aqueous solution was investigated. In the drying of acidic solutions, weak acid ions and chloride ions combine with protons and evaporate, depending on the proton concentration. In the drying of alkaline solutions, weak acid ions evaporate or remain as salts depending on the ratio of the concentrations of excess nonvolatile cations (the difference between concentrations of nonvolatile cation and nonvolatile anion) to volatile anions defined as DeltaCA. Under neutral and alkaline conditions, the fate of nitrite depends not only on DeltaCA but also on the drying speed. Nitrite is converted to N2, which is formed by reacting nitrite with ammonium (denitrification), NO and NO2, HONO and salts. In urban areas, nitrite and ammonium can appear in high concentrations in dew. HONO in the atmosphere affects the ozone concentration, but dew formation decreases the concentration of HONO. If chemical denitrification occurs, nitrogen species will decrease in the environment, and as a result, the ozone concentration could decrease. Ozone levels show an ozone depression when dew formed, and a Box model simulation showed an ozone depression by decreasing HONO levels.

  2. Thiomethylation of ketones by sulphide-alkaline solutions and formaldehyde

    SciTech Connect

    Ulendeyeva, A.D.; Samigullin, I.I.; Nasteka, V.I.

    1993-12-31

    An investigation has been made of the thiomethylation of ketones by formaldehyde with mercaptides, sodium sulphide and their mixture. It is possible to regenerate 78-100 rel.% of the sulphide-alkaline solutions under mild conditions (20-50{degrees}C, atmospheric pressure) without feeding a catalyst, with the simultaneous production of ketosulphide concentrate - a less toxic product with properties of practical benefit. 7 refs., 2 figs., 2 tabs.

  3. Exclusion of Nitrate from Frozen Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Marrocco, H. A.; Michelsen, R. R.

    2013-12-01

    Reactions occurring at the surface of ice, sea ice, and snow in Earth's cryosphere have an impact on the composition of the overlying atmosphere. In order to elucidate reaction mechanisms and model their contributions to atmospheric processes, the morphology of frozen aqueous surfaces and amounts of reactants contained therein must be determined. To this end, the exclusion of nitrate ions to the surface of frozen aqueous solutions has been studied by attenuated total reflection infrared spectroscopy (ATR-IR). In this technique the near-surface region of the frozen films are interrogated to a depth of a few hundred nanometers from the film-crystal interface. Aqueous solutions (0.001 to 0.01 M) of sodium nitrate (NaNO3), magnesium nitrate (Mg(NO3)2), and nitric acid (HNO3) were quickly frozen on the germanium ATR crystal and observed at a constant temperature of about -18°C. In addition to ice and the solutes, liquid water in varying amounts was observed in the spectra. The amount of nitrate in the surface liquid is three to four orders of magnitude higher than in the unfrozen solution. While all the nitrate salts exhibit exclusion to the unfrozen surface, the dynamics are different for different counter-ions. Results are compared to freezing point depression data and the predictions of equilibrium thermodynamics.

  4. Critical Heat Flux of Butanol Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Nishiguchi, Shotaro; Shoji, Masahiro

    It is known that the addition of small amount of alcohol such as butanol to water enhances the CHF. Such aqueous solution is actively applied to heat transfer devices such as heat pipes and microchannel cooling systems, however, the fundamental characters of boiling have not been fully understood. In the present research, the experiment of boiling heat transfer is performed on a heated wire by employing butanol aqueous solution as a typical test solution and by changing concentration 1-butanol and subcooling in a wide range. Bubbling aspects were observed using high-speed video camera. It is found from the experiment that CHF is 2 to 3 times higher than that of pure water and generating bubbles are tiny even at the saturated condition. The dependence of CHF on subcooling is found to be curious showing that CHF decreases first, takes a minimum, and then increases with increasing subcooling. These results suggest that the butanol aqueous solution is a promising liquid for the application of boiling to a small-scaled cooling device.

  5. Hydroxide ion hydration in aqueous solutions.

    PubMed

    Smiechowski, Maciej; Stangret, Janusz

    2007-04-19

    Hydroxide ion hydration was studied in aqueous solutions of selected alkali metal hydroxides by means of Fourier transform infrared (FTIR) spectroscopy of HDO isotopically diluted in H2O. The quantitative difference spectra procedure was applied for the first time to investigate such systems. It allowed removal of bulk water contribution and separation of the spectra of solute-affected HDO. The obtained spectral data were confronted with ab initio calculated structures of small gas-phase and polarizable continuum solvation model (PCM) solvated aqueous clusters, OH-(H2O)n, n = 1-7, to establish the structural and energetic states of hydration spheres of the hydrated hydroxide anion. This was achieved by comparison of the calculated optimal geometries with the interatomic distances derived from HDO band positions. The energetic state of water in OH- hydration shells, as revealed by solute-affected HDO spectra, is similar to that of an isoelectronic F- anion. No evidence was found for the existence of stable hydroxide dimer, H3O2-, in an aqueous solution. Spectral data do confirm, however, existence of a weak interaction with a single water molecule at the hydrogen site of OH-.

  6. Mechanism of alcohol-enhanced lucigenin chemiluminescence in alkaline solution.

    PubMed

    Chi, Quan; Chen, Wanying; He, Zhike

    2015-11-01

    The chemiluminescence (CL) of lucigenin (Luc(2+)) can be enhanced by different alcohols in alkaline solution. The effect of different fatty alcohols on the CL of lucigenin was related to the carbon chain length and the number of hydroxyl groups. Glycerol provides the greatest enhancement. UV/Vis absorption spectra and fluorescence spectra showed that N-methylacridone (NMA) was produced in the CL reaction in the presence of different alcohols. The peak of the CL spectrum was located at 470 nm in all cases, indicating that the luminophore was always the excited-state NMA. The quenching of lucigenin CL by superoxide dismutase (SOD) and the electron spin resonance (ESR) results with the spin trap of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) demonstrated that superoxide anions (O2 (•-)) were generated from dissolved oxygen in the CL reaction and that glycerol and dihydroxyacetone (DHA) can promote O2 (•-) production by the reduction of dissolved oxygen in alkaline solution. It was assumed that the enhancement provided by different alcohols was related to the solvent effect and reducing capacity. Glycerol and DHA can also reduce Luc(2+) into lucigenin cation radicals (Luc(•+) ), which react with O2 (•-) to produce CL, and glycerol can slowly transform into DHA, which is oxidized quickly in alkaline solution.

  7. Interactions of N,N'-dimethylaminoethanol with steel surfaces in alkaline and chlorine containing solutions

    NASA Astrophysics Data System (ADS)

    Welle, A.; Liao, J. D.; Kaiser, K.; Grunze, M.; Mäder, U.; Blank, N.

    1997-10-01

    Formulations based on dilute aqueous solutions of N,N'-dimethylethanolamine (DMEA) are used to protect reinforcement steel bars ('rebar') in concrete from corrosion. In a previous paper we discussed the usefulness of X-ray photoelectron spectroscopy (XPS) to detect DMEA adsorbed from solution and the application of secondary neutral mass spectrometry (SNMS) to study migration of DMEA through a cement matrix. In this report we present XPS data of DMEA adsorbed on steel surfaces from alkaline and chlorine containing solutions of variable concentration range and discuss models for the interaction of DMEA with the oxidized steel surface and the mechanism of corrosion inhibition of DMEA. DMEA is strongly bonded to the steel surface and displaces ionic species from the substrate/solution interface hence protecting the ironoxide surface from ionic attack.

  8. Aqueous solution dispersement of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo (Inventor); Park, Cheol (Inventor); Choi, Sang H. (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2011-01-01

    Carbon nanotubes (CNTs) are dispersed in an aqueous buffer solution consisting of at least 50 weight percent water and a remainder weight percent that includes a buffer material. The buffer material has a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group.

  9. Optimization of aqueous degassing of rubber solutions

    SciTech Connect

    Rotenberg, E.B.; Slutsman, N.N.

    1983-02-01

    The optimality criterion of the aqueous degassing process of rubber solutions is proposed. The limitation system for the variables of the process is formulated. The problems of determination of the optimal temperature and average residence time of a rubber crumb in each degasifier, the number of degasifiers, and the total average residence time of a rubber crumb in the system at the planning and control stages are solved.

  10. REMOVAL OF CHLORIDE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Hyman, M.L.; Savolainen, J.E.

    1960-01-01

    A method is given for dissolving reactor fuel elements in which the uranium is associated with a relatively inert chromium-containing alloy such as stainless steel. An aqueous mixture of acids comprising 2 to 2.5 molar hydrochloric acid and 4 to 8 molar nitric acid is employed in dissolving the fuel element. In order io reduce corrosion in subsequent processing of the resulting solution, chloride values are removed from the solution by contacting it with concentrated nitric acid at an elevated temperature.

  11. Aggregation of sodium alkylbenzenesulfonates in aqueous solution

    SciTech Connect

    Magid, L.J.; Shaver, R.J.; Gulari, E.; Bedwell, B.; Alkhafaji, S.

    1981-01-01

    The surfactant 6 phenyl C/sub 12/SNa forms small spherical micelles in aqueous solution, having an aggregation number of 20 to 30 and a fractional charge of 0.45. These micelles are hydrated to the extent of approximately 18 moles H/sub 2/O per moles of surfactant. A second larger aggregate is also present in 6 phenyl C/sub 12/SNa solutions; its importance increases with solution age. Addition of NaCl causes both aggregates to apparently increase modestly in size. The surfactant 8 phenyl C/sub 16/SNa also contains both aggregates in its solutions; the larger one is relatively more important here. The larger aggregate does not correspond to dispersed bits of a liquid crystalline mesophase.

  12. 21 CFR 524.1200b - Kanamycin ophthalmic aqueous solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Kanamycin ophthalmic aqueous solution. 524.1200b... § 524.1200b Kanamycin ophthalmic aqueous solution. (a) Specifications. The drug, which is in an aqueous... kanamycin activity (as the sulfate) per milliliter of solution. (b) Sponsor. See No. 000856 in §...

  13. 21 CFR 524.1200b - Kanamycin ophthalmic aqueous solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Kanamycin ophthalmic aqueous solution. 524.1200b... § 524.1200b Kanamycin ophthalmic aqueous solution. (a) Specifications. The drug, which is in an aqueous... kanamycin activity (as the sulfate) per milliliter of solution. (b) Sponsor. See No. 000856 in §...

  14. 21 CFR 524.1200b - Kanamycin ophthalmic aqueous solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Kanamycin ophthalmic aqueous solution. 524.1200b... § 524.1200b Kanamycin ophthalmic aqueous solution. (a) Specifications. The drug, which is in an aqueous... kanamycin activity (as the sulfate) per milliliter of solution. (b) Sponsor. See No. 000856 in §...

  15. 21 CFR 524.1200b - Kanamycin ophthalmic aqueous solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Kanamycin ophthalmic aqueous solution. 524.1200b... § 524.1200b Kanamycin ophthalmic aqueous solution. (a) Specifications. The drug, which is in an aqueous... kanamycin activity (as the sulfate) per milliliter of solution. (b) Sponsor. See No. 000856 in §...

  16. Bentonite for ciprofloxacin removal from aqueous solution.

    PubMed

    Genç, Nevim; Can Dogan, Esra; Yurtsever, Meral

    2013-01-01

    Ciprofloxacin hydrochloride (CIP) is the second generation of fluoroquinolone antibiotics whose residues are found in wastewater and surface water. CIP has high aqueous solubility under different pH conditions and high stability in the soil system. In this study, bentonite was used as a potential sorbent for the removal of CIP from aqueous solutions using batch experiments. The effects of various parameters such as contact time, pH, adsorbent dosage, agitation speed, ionic strength and initial concentration of CIP in aqueous solution on the adsorption capacity were investigated. The optimum contact time, pH, agitation speed and adsorbent dosage were found to be 30 min, 4.5 pH, 150 rpm and 2.5 g L(-1), respectively. When the ionic strength was increased from 5 to 50 mM, the adsorption of CIP decreased from 97.8 to 93.4%. The isotherm adsorption data fitted well with the Langmuir model, Kl and qe were found to be 0.27 L mg(-1) and 147.06 mg g(-1), and the data fitted well with the pseudo-second order kinetics, whereby k was found to be 2.19 g mg(-1) h(-1).

  17. Density of aqueous solutions of CO2

    SciTech Connect

    Garcia, Julio E.

    2001-10-10

    In this report, we present a numerical representation for the partial molar volume of CO2 in water and the calculation of the corresponding aqueous solution density. The motivation behind this work is related to the importance of having accurate representations for aqueous phase properties in the numerical simulation of carbon dioxide disposal into aquifers as well as in geothermal applications. According to reported experimental data the density of aqueous solutions of CO2 can be as much as 2-3% higher than pure water density. This density variation might produce an influence on the groundwater flow regime. For instance, in geologic sequestration of CO2, convective transport mixing might occur when, several years after injection of carbon dioxide has stopped, the CO2-rich gas phase is concentrated at the top of the formation, just below an overlaying caprock. In this particular case the heavier CO2 saturated water will flow downward and will be replaced by water with a lesser CO2 content.

  18. Corrosion-wear behavior of nanocrystalline Fe88Si12 alloy in acid and alkaline solutions

    NASA Astrophysics Data System (ADS)

    Fu, Li-cai; Qin, Wen; Yang, Jun; Liu, Wei-min; Zhou, Ling-ping

    2017-01-01

    The corrosion-wear behavior of a nanocrystalline Fe88Si12 alloy disc coupled with a Si3N4 ball was investigated in acid (pH 3) and alkaline (pH 9) aqueous solutions. The dry wear was also measured for reference. The average friction coefficient of Fe88Si12 alloy in the pH 9 solution was approximately 0.2, which was lower than those observed for Fe88Si12 alloy in the pH 3 solution and in the case of dry wear. The fluctuation of the friction coefficient of samples subjected to the pH 9 solution also showed similar characteristics. The wear rate in the pH 9 solution slightly increased with increasing applied load. The wear rate was approximately one order of magnitude less than that in the pH 3 solution and was far lower than that in the case of dry wear, especially at high applied load. The wear traces of Fe88Si12 alloy under different wear conditions were examined and analyzed by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The results indicated that the tribo-chemical reactions that involve oxidation of the worn surface and hydrolysis of the Si3N4 ball in the acid solution were restricted in the pH 9 aqueous solution. Thus, water lubrication can effectively improve the wear resistance of nanocrystalline Fe88Si12 alloy in the pH 9 aqueous solution.

  19. Formation of electroactive colloids via in situ coprecipitation under electric field: erbium chloride alkaline aqueous pseudocapacitor.

    PubMed

    Chen, Kunfeng; Xue, Dongfeng

    2014-09-15

    For the first time, a new ErCl3 alkaline aqueous pseudocapacitor system was demonstrated by designing commercial ErCl3 salt electrode in alkaline aqueous electrolyte, where the materials synthesis and subsequently integrating into practical electrode structures occur at the same spatial and temporal scale. Highly electroactive ErOOH colloids were in-situ crystallized via electric field assisted chemical coprecipitation of ErCl3 in KOH aqueous electrolyte. These electroactive ErOOH colloids absorbed by carbon black and PVDF matrix were highly redox-reactive with higher cation utilization ratio of 86 % and specific capacitance values of 1811F/g, exceeding the one-electron redox theoretical capacitance (Er(3+)↔Er(2+)). We believe that additional two-electron (Er(2+)↔Er) or three-electron (Er(3+)↔Er) reactions can occur in our designed ErCl3 alkaline aqueous pseudocapacitor system. The specific electrode configuration with ErOOH colloids grown among the carbon black/PVDF matrix can create short ion diffusion and electron transfer length to enable the fast and reversible Faradaic reactions. This work shows promising for finding high-performance electrical energy storage systems via designing the colloidal state of electroactive cations with the utilization of in-situ crystallization route.

  20. Electrochemical behavior of immobilized hemoglobin in alkaline solution

    NASA Astrophysics Data System (ADS)

    Jović-Jovičić, Nataša; Mojović, Zorica; Mojović, Miloš; Banković, Predrag; Ajduković, Marija; Milutinović-Nikolić, Aleksandra; Jovanović, Dušan

    2017-04-01

    Glassy carbon electrode was modified with different synthesized hybrid clay-based materials and tested in alkaline solution with and without H2O2. The hybrid materials were obtained by immobilizing hemoglobin (Hb) on acid activated (AA) clay, or on AA clay modified with different sodium dodecyl sulfate (SDS) loadings. The obtained materials were characterized using DR UV-vis and ESR spectroscopy, elemental analysis, and SEM. The characterization confirmed higher degree of hemoglobin incorporation in the presence of SDS. The presence of SDS on the surface of clay particles resulted in the partial oxidation/denaturation of hemoglobin and formation of hemichrome. Cyclic voltammetry was used for the investigation of the electrochemical behavior of immobilized hemoglobin in alkaline solution. Two cathodic peaks at -0.45 V and -0.70 V were recorded and ascribed to the reduction of heme Fe(III)/Fe(II), and formation of HbFe(I) - highly reduced form of hemoglobin - respectively. The latter peak reflects hemoglobin denaturation. The presence of H2O2 in the alkaline solution increased current intensities corresponding to both peaks (-0.45 V and -0.7 V). Linear response of peak current intensity vs. H2O2 concentration was monitored for all investigated samples within different H2O2 concentration ranges. The AA-SDS1.0-Hb electrode exhibited the highest current response with linear regression equation in the following form: I(μA) = 7.99 + 1.056 × [H2O2] (mM) (R = 0.996). The limit of detection of 28 μM was estimated using the 3 sigma method. Different modified electrodes exhibited different degrees of denaturation resistance. The obtained values of Michaelis-Menten constant indicated that prolonged cycling in the presence of SDS increases protein denaturation.

  1. Stability of melatonin in aqueous solution.

    PubMed

    Cavallo, A; Hassan, M

    1995-03-01

    Melatonin solutions are frequently used in human, animal, and in vitro research. Generally, fresh solutions are prepared, for fear of instability of melatonin in solution. We tested the high-performance liquid chromatography (HPLC) stability of melatonin in aqueous solutions stored room temperature, 4 degrees C, and -70 degrees C for up to 6 months. Solutions were prepared in a laminar flow hood using sterile technique, directly into sterile, pyrogen-free glass vacuum vials for storage. Different concentrations were tested (1.0-113.0 micrograms/ml). There was no loss of potency as assessed by HPLC, and the preparations remained sterile and pyrogen-free. We conclude that melatonin solutions may be prepared in batches maintained in sterile, pyrogen-free vials at 4 degrees C or at -70 degrees C until use within 6 months. This method will save on research time used for preparation of fresh solutions and will reduce the number of dose validation tests for each new experiment.

  2. Reversible State Transition in Nanoconfined Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Wang, Chunlei; Liu, Jian; Wen, Binghai; Tu, Yusong; Wang, Zuowei; Fang, Haiping

    2014-02-01

    Using molecular dynamics simulations, we find a reversible transition between the dispersion and aggregation states of solute molecules in aqueous solutions confined in nanoscale geometry, which is not observed in macroscopic systems. The nanoscale confinement also leads to a significant increase of the critical aggregation concentration (CAC). A theoretical model based on Gibbs free energy calculation is developed to describe the simulation results. It indicates that the reversible state transition is attributed to the low free energy barrier (of order kBT) in between two energy minima corresponding to the dispersion and aggregation states, and the enhancement of the CAC results from the fact that at lower concentrations the number of solute molecules is not large enough to allow the formation of a stable cluster in the confined systems.

  3. NIR spectroscopic properties of aqueous acids solutions.

    PubMed

    Omar, Ahmad Fairuz; Atan, Hanafi; Matjafri, Mohd Zubir

    2012-06-15

    Acid content is one of the important quality attributes in determining the maturity index of agricultural product, particularly fruits. Despite the fact that much research on the measurement of acidity in fruits through non-destructive spectroscopy analysis at NIR wavelengths between 700 to 1,000 nm has been conducted, the same response towards individual acids is not well known. This paper presents NIR spectroscopy analysis on aqueous citric, tartaric, malic and oxalic solutions through quantitative analysis by selecting a set of wavelengths that can best be used to measure the pH of the solutions. The aquaphotomics study of the acid solutions has generated R² above 0.9 for the measurement of all acids. The most important wavelengths for pH are located at 918-925 nm and 990-996 nm, while at 975 nm for water.

  4. Investigation of aluminum gate CMP in a novel alkaline solution

    NASA Astrophysics Data System (ADS)

    Cuiyue, Feng; Yuling, Liu; Ming, Sun; Wenqian, Zhang; Jin, Zhang; Shuai, Wang

    2016-01-01

    Beyond 45 nm, due to the superior CMP performance requirements with the metal gate of aluminum in the advanced CMOS process, a novel alkaline slurry for an aluminum gate CMP with poly-amine alkali slurry is investigated. The aluminum gate CMP under alkaline conditions has two steps: stock polishing and fine polishing. A controllable removal rate, the uniformity of aluminum gate and low corrosion are the key challenges for the alkaline polishing slurry of the aluminum gate CMP. This work utilizes the complexation-soluble function of FA/O II and the preference adsorption mechanism of FA/O I nonionic surfactant to improve the uniformity of the surface chemistry function with the electrochemical corrosion research, such as OCP-TIME curves, Tafel curves and AC impedance. The result is that the stock polishing slurry (with SiO2 abrasive) contains 1 wt.% H2O2,0.5 wt.% FA/O II and 1.0 wt.% FA/O I nonionic surfactant. For a fine polishing process, 1.5 wt.% H2O2, 0.4 wt.% FA/O II and 2.0 wt.% FA/O I nonionic surfactant are added. The polishing experiments show that the removal rates are 3000 ± 50 Å/min and 1600 ± 60 Å/min, respectively. The surface roughnesses are 2.05 ± 0.128 nm and 1.59 ± 0.081 nm, respectively. A combination of the functions of FA/O II and FA/O I nonionic surfactant obtains a controllable removal rate and a better surface roughness in alkaline solution.

  5. Aqueous Solution Vessel Thermal Model Development II

    SciTech Connect

    Buechler, Cynthia Eileen

    2015-10-28

    The work presented in this report is a continuation of the work described in the May 2015 report, “Aqueous Solution Vessel Thermal Model Development”. This computational fluid dynamics (CFD) model aims to predict the temperature and bubble volume fraction in an aqueous solution of uranium. These values affect the reactivity of the fissile solution, so it is important to be able to calculate them and determine their effects on the reaction. Part A of this report describes some of the parameter comparisons performed on the CFD model using Fluent. Part B describes the coupling of the Fluent model with a Monte-Carlo N-Particle (MCNP) neutron transport model. The fuel tank geometry is the same as it was in the May 2015 report, annular with a thickness-to-height ratio of 0.16. An accelerator-driven neutron source provides the excitation for the reaction, and internal and external water cooling channels remove the heat. The model used in this work incorporates the Eulerian multiphase model with lift, wall lubrication, turbulent dispersion and turbulence interaction. The buoyancy-driven flow is modeled using the Boussinesq approximation, and the flow turbulence is determined using the k-ω Shear-Stress-Transport (SST) model. The dispersed turbulence multiphase model is employed to capture the multiphase turbulence effects.

  6. RECOVERY OF ACTINIDES FROM AQUEOUS NITRIC ACID SOLUTIONS

    DOEpatents

    Ader, M.

    1963-11-19

    A process of recovering actinides is presented. Tetravalent actinides are extracted from rare earths in an aqueous nitric acid solution with a ketone and back-extracted from the ketone into an aqueous medium. The aqueous actinide solution thus obtained, prior to concentration by boiling, is sparged with steam to reduce its ketone to a maximum content of 3 grams per liter. (AEC)

  7. Adsorption of tungsten onto zeolite fly ash produced by hydrothermally treating fly ash in alkaline solution.

    PubMed

    Ogata, Fumihiko; Iwata, Yuka; Kawasaki, Naohito

    2014-01-01

    Fly ash (FA) was hydrothermally treated in an alkaline solution to produce zeolite fly ash (Z-FA). The properties of the FA and Z-FA were investigated. The amounts of tungsten (W) adsorbed onto the FA and Z-FA surfaces were evaluated. Z-FA was produced by hydrothermally treating FA in an alkaline solution. The specific surface area and pore volume of the Z-FA were greater than those of the FA. More W was adsorbed onto the Z-FA surface than onto the FA surface. The adsorption isotherms for W were fitted using both the Freundlich and Langmuir equations. The equilibrium concentrations of W adsorbed onto the FA and Z-FA surfaces were subsequently reached within 20 h. The pseudo-second-order model more accurately described the data than did the pseudo-first-order model. Sodium hydroxide solutions (1-50 mmol/L) were used to easily recover W from Z-FA, indicating that Z-FA was useful for recovering W from aqueous solutions.

  8. Pulse radiolysis of tetrazolium violet in aqueous and aqueous-alcoholic solutions under oxidative and reductive conditions

    NASA Astrophysics Data System (ADS)

    Kovács, A.; Wojnárovits, L.; Pálfi, T.; Emi-Reynolds, G.; Fletcher, J.

    2008-09-01

    The radiolytic reduction of colourless tetrazolium salts to coloured formazans in liquid and solid state is suggested for dosimetry purposes. In order to clarify the reaction mechanism, a pulse radiolysis study was conducted in aqueous and aqueous-alcoholic solutions under oxidative and reductive conditions. Under reducing conditions, fast formation of the electron adduct tetrazolinyl radical was observed: coloured formazan final product formed during the decay of electron adduct. Both the decay of the tetrazolinyl radical and the formation of the formazan were found to be second order. The spectra of the formazan were similar in neutral and alkaline solutions, but with higher absorbance in the latter solutions due to the higher molar absorption coefficient. Under oxidative conditions formazan did not form; hydroxylated products through OH-adducts were observed in the pH range studied.

  9. Corrosion of silicon nitride in high temperature alkaline solutions

    NASA Astrophysics Data System (ADS)

    Qiu, Liyan; Guzonas, Dave A.; Qian, Jing

    2016-08-01

    The corrosion of silicon nitride (Si3N4) in alkaline solutions was studied at temperatures from 60 to 300 °C. Si3N4 experienced significant corrosion above 100 °C. The release rates of silicon and nitrogen follow zero order reaction kinetics and increase with increasing temperature. The molar ratio of dissolved silicon and nitrogen species in the high temperature solutions is the same as that in the solid phase (congruent dissolution). The activation energy for silicon and nitrogen release rates is 75 kJ/mol which agrees well with that of silica dissolution. At 300 °C, the release of aluminum is observed and follows first order reaction kinetics while other minor constituents including Ti and Y are highly enriched on the corrosion films due to the low solubility of their oxides.

  10. Speciation in aqueous solutions of nitric acid.

    PubMed

    Hlushak, S; Simonin, J P; De Sio, S; Bernard, O; Ruas, A; Pochon, P; Jan, S; Moisy, P

    2013-02-28

    In this study, speciation in aqueous solutions of nitric acid at 25 °C was assessed in two independent ways. First, Raman experiments were carried out and interpreted in terms of free nitrate ions, ion pairs and neutral HNO(3) molecules. In parallel, a model was developed to account for the formation of these two kinds of pairs. It was based on an extension of the binding mean spherical approximation (BiMSA), or associative MSA (AMSA), in which the size and the charge of the ions in the chemical pair may differ from those of the free ions. A simultaneous fit of the osmotic coefficient and of the proportion of free ions (obtained from Raman spectroscopy experiments) led to an estimation of the speciation in nitric acid solutions. The result obtained using this procedure was compared with the estimation obtained from the Raman experiments.

  11. Synthesis of Polyoxovanadates from Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Bouhedja, L.; Steunou, N.; Maquet, J.; Livage, J.

    2001-12-01

    Polyoxovanadates have been synthesized from aqueous solutions of VV in the presence of inorganic Na+ and organic [N(CH3)4]+ cations. Decavanadate crystals are precipitated at room temperature around pH 7, whereas layered compounds Na[V3O8].H2O and N(CH3)4[V4O10] are formed at the same pH under hydrothermal conditions. In situ51V NMR experiments show that upon heating solute decavanadate species are progressively transformed into cyclic metavanadates [V4O12]4-. A chemical mechanism is suggested for the formation of these layered vanadium oxides. It involves the ring-opening polymerization of cyclic metavanadates arising from co-ordination expansion favored by protonation or vanadium reduction.

  12. Pathways of aqueous Cr(VI) attenuation in a slightly alkaline oxic subsurface

    SciTech Connect

    Qafoku, Nikolla; Dresel, P. Evan; McKinley, James P.; Liu, Chongxuan; Heald, Steve M.; Ainsworth, Calvin C.; Phillips, Jerry L.; Fruchter, Jonathan S.

    2009-01-21

    Column experiments combined with geochemical modeling, microscopic inspections and spectroscopic interrogations were conducted with four freshly or naturally aged contaminated sediments with concentrated Cr(VI) waste fluids. The objective was to determine sediment-dependent Cr(VI) desorption extent and rates, Cr(VI) physical location and soil mineral associations, and mechanism(s) of Cr(VI) attenuation under mild alkaline conditions. Results showed that majority of Cr(VI) mass was easily removed from all sediments. Equilibrium site Kd varied from 0 to 0.33 ml g-1 and equilibrium site fraction was greater than 95 %. In addition, long tailings of time-dependent Cr(VI) concentrations above Environmental Protection Agency maximum concentration limit (MCL) of 1.9 µmol L-1, were also observed (kinetic site Kd and desorption reaction half-life varied from 0 to 45 ml g-1, and 76.1 to 126 h, respectively). Aqueous phase pH, particle size distribution and pore water composition contributed to the variability observed among sediments. Microscopic and spectroscopic studies confirmed that Cr was concentrated within fine-grained coatings in small areas rich in phyllosilicates that contained mixed valence [Cr(III)/Cr(VI)]. However, Cr(VI) reduction was neither significant nor complete. The kinetically controlled Cr(VI) desorption may have resulted from the transport (diffusion) of Cr(VI) out of these areas. In summary, at least four pools of Cr(VI) with different leaching behavior might be present in sediments exposed to concentrated waste fluids: i.) The pool of highly mobile and easily removed Cr(VI) (over 95% of total Cr); ii.) The pool of Cr(VI) held in remote sites that provided a long-term continuing source of contaminant Cr; iii.) The pool of reduced immobile Cr(III) which was formed, most likely, by redox reactions of aqueous Cr(VI) and aqueous, sorbed, or structural Fe(II); vi.) The pool of sparingly soluble Cr(VI) phases (e.g., BaCrO4) or solid solutions which did not

  13. Multistep nucleation of nanocrystals in aqueous solution

    NASA Astrophysics Data System (ADS)

    Loh, N. Duane; Sen, Soumyo; Bosman, Michel; Tan, Shu Fen; Zhong, Jun; Nijhuis, Christian A.; Král, Petr; Matsudaira, Paul; Mirsaidov, Utkur

    2017-01-01

    The nucleation and growth of solids from solutions impacts many natural processes and is fundamental to applications in materials engineering and medicine. For a crystalline solid, the nucleus is a nanoscale cluster of ordered atoms that forms through mechanisms still poorly understood. In particular, it is unclear whether a nucleus forms spontaneously from solution via a single- or multiple-step process. Here, using in situ electron microscopy, we show how gold and silver nanocrystals nucleate from supersaturated aqueous solutions in three distinct steps: spinodal decomposition into solute-rich and solute-poor liquid phases, nucleation of amorphous nanoclusters within the metal-rich liquid phase, followed by crystallization of these amorphous clusters. Our ab initio calculations on gold nucleation suggest that these steps might be associated with strong gold-gold atom coupling and water-mediated metastable gold complexes. The understanding of intermediate steps in nuclei formation has important implications for the formation and growth of both crystalline and amorphous materials.

  14. Sound absorption in nonelectrolyte aqueous solutions

    NASA Astrophysics Data System (ADS)

    Endo, Harumi; Honda, Kazuyuki

    2001-10-01

    We indicate that the curve fitting for Debye-type relaxation spectrum of sound absorption (SA) cannot sufficiently account for the observed data of nonelectrolyte aqueous solutions (NEAS). To solve these problems, we introduce the distribution function of relaxation time [DFRT, F(τ)] from a diffusion equation of concentration fluctuations using the fluctuation dispersion theory. The SA expression is described by four-adjustable parameters. By use of the mixtures of 1-propanol, t-butanol, and monobutyl triethylene glycol with water, our calculation of SA shows the best fit between the observed and calculated curves, compared with other models. It was found that at lower frequencies the SA behaves as the square root of frequency. The approximate expression of DFRT was expressed in terms of a power law of relaxation time, F(τ)∝τ-γ, which is the same as the expression of dielectric relaxation by Matsumoto and Higashi. Our exponent (γ) of relaxation time is varied from 5/2 in hydrophilic solutes to 3/2 in hydrophobic solutes. The power (γ) of relaxation time was regarded as a parameter to explain the hydrophobic and hydrophilic in the dissolved states of a solute. Our SA expression of γ=5/2 for solutes of a small correlation length leads to that of Romanov-Solov'ev, where the value of 5/2 is that of the Debye distribution for the relaxation time in the Romanov-Solov'ev model.

  15. Spontaneous precipitation of struvite from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Bouropoulos, Nicolaos Ch; Koutsoukos, Petros G.

    2000-06-01

    The kinetics of the spontaneous precipitation of struvite was investigated in aqueous supersaturated solutions containing stoichiometric concentrations of Mg 2+, NH 4+ and PO 43- ions, ionic strenght 0.15 M NaCl and at 25°C in a batch, stirred reactor at constant supersaturation. The induction times preceding the onset of struvite precipitation and the initial rates of precipitation were measured directly from the traces of titrants added in order to maintain the solution supersaturation. From the measurement of the induction times as a function of the solution supersaturation, the stability diagram of the system was constructed. In all cases the only solid-phase forming was identified as struvite. Kinetic analysis of the rates, which depended strongly on the solution supersaturation yielding a second-order dependence, suggested a surface diffusion mechanism. The precipitated struvite crystals showed a high negative charge which increased as a function of the solution pH while the presence of magnesium ions affected the microelectrophoretic mobility of struvite dispersions yielding an isoelectric point at pMg of 1.75.

  16. Acid-base equilibria in aqueous solutions of meta-cresolsulfophthalein in the temperature range of 25 to 200°C

    NASA Astrophysics Data System (ADS)

    Stepanchikova, S. A.; Galay, G. I.

    2017-01-01

    Values of the second thermodynamic ionization constant of pH indicator m-Cresol Purple are determined spectrophotometrically in slightly alkaline aqueous solutions in the temperature range of 25 to 200°C at saturated vapor pressure. Data required for studies on acid-base equilibria in weakly alkaline aqueous solution of rare-earth elements at elevated temperatures are obtained to characterize their behavior in geochemical systems.

  17. Uranyl fluoride luminescence in acidic aqueous solutions

    SciTech Connect

    Beitz, J.V.; Williams, C.W.

    1996-08-01

    Luminescence emission spectra and decay rates are reported for uranyl species in acidic aqueous solutions containing HF or added NaF. The longest luminescence lifetime, 0.269 {+-} 0.006 ms, was observed from uranyl in 1 M HF + 1 M HClO{sub 4} at 296 K and decreased with increasing temperature. Based on a luminescence dynamics model that assumes equilibrium among electronically excited uranyl fluoride species and free fluoride ion, this long lived uranyl luminescence in aqueous solution is attributed primarily to UO{sub 2}F{sub 2}. Studies on the effect of added LiNO{sub 3} or Na{sub 2}WO{sub 4}{center_dot}2H{sub 2}O showed relatively weak quenching of uranyl fluoride luminescence which suggests that high sensitivity determination of the UF{sub 6} content of WF{sub 6} gas should be feasible via uranyl luminescence analysis of hydrolyzed gas samples of impure WF{sub 6}.

  18. Aqueous Solutions of Ionic Liquids: Microscopic Assembly.

    PubMed

    Vicent-Luna, Jose Manuel; Dubbeldam, David; Gómez-Álvarez, Paula; Calero, Sofia

    2016-02-03

    Aqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure-property relationships of such systems is hence desirable. One of the crucial molecular-level interactions that influences the macroscopic behavior is hydrogen bonding. In this work, we conduct molecular dynamics simulations to investigate the effects of ionic liquids on the hydrogen-bond network of water in dilute aqueous solutions of ionic liquids with various combinations of cations and anions. Calculations are performed for imidazolium-based cations with alkyl chains of different lengths and for a variety of anions, namely, [Br](-), [NO3](-), [SCN](-) [BF4](-), [PF6](-), and [Tf2N](-). The structure of water and the water-ionic liquid interactions involved in the formation of a heterogeneous network are analyzed by using radial distribution functions and hydrogen-bond statistics. To this end, we employ the geometric criterion of the hydrogen-bond definition and it is shown that the structure of water is sensitive to the amount of ionic liquid and to the anion type. In particular, [SCN](-) and [Tf2N](-) were found to be the most hydrophilic and hydrophobic anions, respectively. Conversely, the cation chain length did not influence the results.

  19. Infrared spectra of cesium chloride aqueous solutions

    NASA Astrophysics Data System (ADS)

    Max, Jean-Joseph; Chapados, Camille

    2000-10-01

    The aqueous solutions of CsCl were studied at room temperature by infrared (IR) spectroscopy in the entire solubility range, 0-1200 g/L, using attenuated total reflection (ATR) sampling. The influence of anomalous dispersion on the IR-ATR spectra was evaluated by calculating the imaginary refractive index, k(ν), of each sample. Factor analysis (FA) was used to determine the number and abundance of species in the solutions. FA applied to both k(ν) spectra and IR-ATR spectra produced two principal spectra with a similar abundance of species. This result indicates that, even at high salt concentration, the optical effects do not influence the chemical analysis of IR-ATR spectra. The spectral modifications related to the salt concentrations are mainly first order. Second order effects were observed, but being weak, were not investigated. The two principal spectra are related to the two species present in the solution: pure water and CsCl-solvated water. From the latter, 2.8±0.4 water molecules were calculated to be associated with each close-bound Cs+/Cl- ion pair. In the case of KCl and NaCl aqueous solutions, both of which showed the same number of species, the number of water molecules associated to an ion pair was 5.0±0.4. That the latter number is different from that of CsCl indicates that the interaction between water molecules and ion pairs is different when cation Na or K in the chloride salt is replaced by Cs.

  20. Models of globular proteins in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Wentzel, Nathaniel James

    Protein crystallization is a continuing area of research. Currently, there is no universal theory for the conditions required to crystallize proteins. A better understanding of protein crystallization will be helpful in determining protein structure and preventing and treating certain diseases. In this thesis, we will extend the understanding of globular proteins in aqueous solutions by analyzing various models for protein interactions. Experiments have shown that the liquid-liquid phase separation curves for lysozyme in solution with salt depend on salt type and salt concentration. We analyze a simple square well model for this system whose well depth depends on salt type and salt concentration, to determine the phase coexistence surfaces from experimental data. The surfaces, calculated from a single Monte Carlo simulation and a simple scaling argument, are shown as a function of temperature, salt concentration and protein concentration for two typical salts. Urate Oxidase from Asperigillus flavus is a protein used for studying the effects of polymers on the crystallization of large proteins. Experiments have determined some aspects of the phase diagram. We use Monte Carlo techniques and perturbation theory to predict the phase diagram for a model of urate oxidase in solution with PEG. The model used includes an electrostatic interaction, van der Waals attraction, and a polymerinduced depletion interaction. The results agree quantitatively with experiments. Anisotropy plays a role in globular protein interactions, including the formation of hemoglobin fibers in sickle cell disease. Also, the solvent conditions have been shown to play a strong role in the phase behavior of some aqueous protein solutions. Each has previously been treated separately in theoretical studies. Here we propose and analyze a simple, combined model that treats both anisotropy and solvent effects. We find that this model qualitatively explains some phase behavior, including the existence of

  1. Terahertz absorption of dilute aqueous solutions.

    PubMed

    Heyden, Matthias; Tobias, Douglas J; Matyushov, Dmitry V

    2012-12-21

    Absorption of terahertz (THz) radiation by aqueous solutions of large solutes reports on the polarization response of their hydration shells. This is because the dipolar relaxation of the solute is dynamically frozen at these frequencies, and most of the solute-induced absorption changes, apart from the expulsion of water, are caused by interfacial water. We propose a model expressing the dipolar response of solutions in terms of a single parameter, the interface dipole moment induced in the interfacial water by electromagnetic radiation. We apply this concept to experimental THz absorption of hydrated sugars, amino acids, and proteins. None of the solutes studied here follow the expectations of dielectric theories, which predict a negative projection of the interface dipole on the external electric field. We find that this prediction is not able to describe the available experimental data, which instead suggests a nearly zero interface dipole for sugars and a more diverse pattern for amino acids. Hydrophobic amino acids, similarly to sugars, give rise to near zero interface dipoles, while strongly hydrophilic ones are best described by a positive projection of the interface dipole on the external field. The sign of the interface dipole is connected to the slope of the absorption coefficient with the solute concentration. A positive slope, implying an increase in the solution polarity relative to water, mirrors results frequently reported for protein solutions. We therefore use molecular dynamics simulations of hydrated glucose and lambda repressor protein to calculate the interface dipole moments of these solutes and the concentration dependence of the THz absorption. The absorption at THz frequencies increases with increasing solute concentration in both cases, implying a higher polarity of the solution compared to bulk water. The structure of the hydration layer, extracted from simulations, is qualitatively similar in both cases, with spatial correlations

  2. On the complex structural diffusion of proton holes in nanoconfined alkaline solutions within slit pores

    PubMed Central

    Muñoz-Santiburcio, Daniel; Marx, Dominik

    2016-01-01

    The hydroxide anion OH−(aq) in homogeneous bulk water, that is, the solvated proton hole, is known to feature peculiar properties compared with excess protons solvated therein. In this work, it is disclosed that nanoconfinement of such alkaline aqueous solutions strongly affects the key structural and dynamical properties of OH−(aq) compared with the bulk limit. The combined effect of the preferred hypercoordinated solvation pattern of OH−(aq), its preferred perpendicular orientation relative to the confining surfaces, the pronounced layering of nanoconfined water and the topology of the hydrogen bond network required for proton hole transfer lead to major changes of the charge transport mechanism, in such a way that the proton hole migration mechanism depends exquisitely on the width of the confined space that hosts the water film. Moreover, the anionic Zundel complex, which is of transient nature in homogeneous bulk solutions, can be dynamically trapped as a shallow intermediate species by suitable nanoconfinement conditions. PMID:27550616

  3. Phase behavior of DODAB aqueous solution

    SciTech Connect

    Voronov, V. P.; Kuryakov, V. N.; Muratov, A. R.

    2012-12-15

    Phase behavior of DODAB aqueous solution, prepared without sonication, was studied by adiabatic scanning calorimetry. Measurements revealed four phase transitions with the temperatures 35.2, 39.6, 44.6, and 52.4 Degree-Sign C at heating and one transition at the temperature 40.4 Degree-Sign C at cooling. The first three transitions at heating occur in unilamellar vesicles. The first and third transitions correspond to the subgel-gel and gelliquid phase transitions, corresponding enthalpy jumps are equal to 33 and 49 kJ/mol. The second transition appears after some aging and is similar to gel-ripple phase transition in a DPPC solution, with the enthalpy jump under the transition exceeding 7.4 kJ/mol. The transition occurs in unilamellar vesicles. The transition at the temperature 52.4 Degree-Sign C occurs in another subsystem of the solution, which we believe to be multilamellar vesicles. The enthalpy jump at this transition is equal to 97 kJ/mol, and data analysis suggests that this is a subgel-liquid transition. The phase transition at cooling is the liquid-gel transition in unilamellar vesicles. During the measurements, a slow evolution of the solution occurs, consisting in a change of concentrations of unilamellar and multilamellar vesicles. This transformation mainly occurs at low temperatures.

  4. Heterogeneous nucleation of aspartame from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kubota, Noriaki; Kinno, Hiroaki; Shimizu, Kenji

    1990-03-01

    Waiting times, the time from the instant of quenching needed for a first nucleus to appear, were measured at constant supercoolings for primary nucleation of aspartame (α-L-aspartyl-L-phenylalanine methylester) from aqueous solutions, which were sealed into glass ampoules (solution volume = 3.16 cm 3). Since the waiting time became shorter by filtering the solution prior to quenching, the nucleation was concluded to be heterogeneously induced. The measured waiting time consisted of two parts: time needed for the nucleus to grow to a detactable size (growth time) and stochastic time needed for nucleation (true waiting time). The distribution of the true waiting time, is well explained by a stochastic model, in which nucleation is regarded to occur heterogeneously and in a stochastic manner by two kinds of active sites. The active sites are estimated to be located on foreign particles in which such elements as Si, Al and Mg were contained. The amount of each element is very small in the order of magnitude of ppb (mass basis) of the whole solution. The growth time was correlated with the degree of supercooling.

  5. Preparation of novel alkaline pH-responsive copolymers for the formation of recyclable aqueous two-phase systems and their application in the extraction of lincomycin.

    PubMed

    Liu, Jiali; Cao, Xuejun

    2016-02-01

    Aqueous two-phase systems have potential industrial application in bioseparation and biocatalysis engineering; however, their practical application is limited primarily because the copolymers involved in the formation of aqueous two-phase systems cannot be recovered. In this study, two novel alkaline pH-responsive copolymers were synthesized and examined for the extraction of lincomycin. The two copolymers could form a novel alkaline aqueous two-phase systems when their concentrations were both 6% w/w and the pH was 8.4(±0.1)-8.7(±0.1). One copolymer was synthesized using acrylic acid, 2-(dimethylamino)ethyl methacrylate, and butyl methacrylate as monomers. Moreover, 98.8% of the copolymer could be recovered by adjusting the solution pH to its isoelectric point (pH 6.29). The other copolymer was synthesized using the monomers methacrylic acid, 2-(dimethylamino)ethyl methacrylate, and methyl methacrylate. In this case, 96.7% of the copolymer could be recovered by adjusting the solution pH to 7.19. The optimal partition coefficient of lincomycin was 0.17 at 30°C in the presence of 10 mM KBr and 5.5 at 40°C in the presence of 80 mM Ti(SO4)2 using the novel alkaline aqueous two-phase systems.

  6. Mg isotope fractionation between inorganic aragonite and aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Zhang, S.; Hu, P.

    2012-12-01

    Recent studies showed δ26Mg values of some species of Scleractinian corals, and aragonitic sponges and Scaphopod are inconsistent with the Mg isotope fractionation calibrated previously between inorganic aragonite and seawater. In this study, we explored Mg isotope fractionation between aragonite and aqueous solution under various experimental conditions, including salinity (mostly in fresh water), Mg/Ca ratio (3-5 in molar), Ca concentration (400-1500 ppm), temperature (25-55oC) and duration of experiments (3-21 days). Precipitation experiments were conducted using 'free-drift' method. The starting solution was made by mixing an appropriate amount of reagent-grade NaHCO3, CaCl2 and MgCl2 in deionized water, flushed with CO2 gas. The mixed solution was filtered after these reagents completely dissolved before any experiment, and then passively-degassed in a water bath kept at a constant temperature. Over the course of the experiments, pH and alkalinity of the aqueous solution were closely monitored. At the end of the experiment, the precipitates were cleaned, characterized by SEM and checked by XRD. The solution and precipitates were treated by acid. The supernatant was passed through two chromatographic columns to extract pure Mg, and measured for their δ26Mg values. In each case, a leaching procedure is employed to clean aragonite before their isotopic compositions were measured. Our preliminary results show that the Mg isotope fractionation between aragonite and solution varies with Ca concentration at a given Mg/Ca ratio, i.e., aragonite are strongly depleted in 26Mg in solution with high and low Ca concentration (e.g., Ca = 400ppm and 2000 ppm), but less depleted in solutions with intermediate Ca concentration (e.g., Ca= 1000 ppm). At a given Ca and Mg/Ca, the fractionation factor is temperature-dependent, defining linear relationship with 1/T (T is temperature in Kelvin) with temperature sensitivity of ~ 0.01‰/oC. These results seem to suggest a kinetic

  7. Functionalized polymers for binding to solutes in aqueous solutions

    DOEpatents

    Smith, Barbara F.; Robison, Thomas W.

    2006-11-21

    A functionalized polymer for binding a dissolved molecule in an aqueous solution is presented. The polymer has a backbone polymer to which one or more functional groups are covalently linked. The backbone polymer can be such polymers as polyethylenimine, polyvinylamine, polyallylamine, and polypropylamine. These polymers are generally water-soluble, but can be insoluble when cross-linked. The functional group can be for example diol derivatives, polyol derivatives, thiol and dithiol derivatives, guest-host groups, affinity groups, beta-diphosphonic acids, and beta-diamides

  8. Metal adsorbent for alkaline etching aqua solutions of Si wafer

    NASA Astrophysics Data System (ADS)

    Tamada, Masao; Ueki, Yuji; Seko, Noriaki; Takeda, Toshihide; Kawano, Shin-ichi

    2012-08-01

    High performance adsorbent is expected to be synthesized for the removal of Ni and Cu ions from strong alkaline solution used in the surface etching process of Si wafer. Fibrous adsorbent was synthesized by radiation-induce emulsion graft polymerization onto polyethylene nonwoven fabric and subsequent amination. The reaction condition was optimized using 30 L reaction vessel and nonwoven fabric, 0.3 m width and 18 m long. The resulting fibrous adsorbent was evaluated by 48 wt% NaOH and KOH contaminated with Ni and Cu ions, respectively. The concentration levels of Ni and Cu ions was reduced to less than 1 μg/kg (ppb) at the flow rate of 10 h-1 in space velocity. The life of adsorbent was 30 times higher than that of the commercialized resin. This novel adsorbent was commercialized as METOLATE® since the ability of adsorption is remarkably higher than that of commercial resin used practically in Si wafer processing.

  9. Properties of hydroxyapatite crystallized from high temperature alkaline solutions

    NASA Astrophysics Data System (ADS)

    Lazić, S.; Katanić-Popović, J.; Zec, S.; Miljević, N.

    1996-07-01

    Hydroxyapatite was prepared from alkaline solutions at 95°C by the method of slow titration in an atmosphere of nitrogen. The crystals were ripened under reflux for various periods of time, and then characterized by X-ray diffraction, infrared analysis, transmission electron microscopy, differential thermal analysis, thermogravimetric analysis, surface area measurements and chemical analysis. The obtained crystals are pure apatites with stoichiometric {Ca}/{P} ratio. The phase composition of the prepared powders remains unchanged after heating at 900°C during 2 h. The lattice constants of maturated powders were in excellent agreement with ASTM 9-432 diffraction file data for the hydrohxyapatite. Ripening under reflux improved lattice ordering but did not have a marked effect on the {Ca}/{P} ratio. Crystallite size and morphology significantly changed during the first day of refluxing following synthesis.

  10. Process for decomposing nitrates in aqueous solution

    DOEpatents

    Haas, Paul A.

    1980-01-01

    This invention is a process for decomposing ammonium nitrate and/or selected metal nitrates in an aqueous solution at an elevated temperature and pressure. Where the compound to be decomposed is a metal nitrate (e.g., a nuclear-fuel metal nitrate), a hydroxylated organic reducing agent therefor is provided in the solution. In accordance with the invention, an effective proportion of both nitromethane and nitric acid is incorporated in the solution to accelerate decomposition of the ammonium nitrate and/or selected metal nitrate. As a result, decomposition can be effected at significantly lower temperatures and pressures, permitting the use of system components composed of off-the-shelf materials, such as stainless steel, rather than more costly materials of construction. Preferably, the process is conducted on a continuous basis. Fluid can be automatically vented from the reaction zone as required to maintain the operating temperature at a moderate value--e.g., at a value in the range of from about 130.degree.-200.degree. C.

  11. Pulse radiolysis of epicatechin in aqueous solution

    NASA Astrophysics Data System (ADS)

    Li, Fengmei; Fang, Xingwang

    1998-06-01

    Pulse radiolysis of epicatechin in aqueous solution has been done to investigate the reactions of epicatechin derived phenoxy radical (EpO) at neutral pH. EpO was generated by N 3 reacting toward EpOH, the rate constant was measured to be 3 × 10 8 dm 3 mol -1 s -1. The biomolecular termination of EpO is rather slow ((2 k < × 10 6 dm 3 mol -1 s -1) and results in products exhibiting strong visible absorption around 450 nm. No reactions have been observed for EpO with O 2 and O 2 in the time scale of pulse radiolysis (0.01 s), suggesting the bimolecular rate constant are less than 10 4 and 5 × 10 6 dm 3 mol -1 s -1, respectively.

  12. Abiotic transformation of DDT in aqueous solutions.

    PubMed

    Pirnie, Erica F; Talley, Jeffrey W; Hundal, Lakhwinder S

    2006-11-01

    Significant concentrations of chlorinated pesticides such as 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) and its two main transformation products, 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD) and 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (DDE) are still present in soil and sediment systems more than 30 years after DDT use was banned in the United States. DDT enters waterways via the runoff from industrial point sources, agricultural lands and atmospheric deposition. We evaluated zero-valent iron (Fe(0)), ferrous sulfide (FeS), as well as combining them with hydrogen peroxide (H(2)O(2)) as viable treatment technologies for degrading DDT in an aqueous solution. Treatment of DDT with Fe(0) and FeS resulted in approximately 88% and 56% transformation of DDT within 150h, respectively. DDE production was insignificant in all systems. The DDT removal was slower with FeS than with Fe(0), but the amounts of DDD and DDE produced did not exceed baseline. Treatment with a 1:1 mixture of Fe(0)-FeS removed about 95% of the added mass of DDT within 4days and generated significant amounts of DDD and minor amounts of DDMU. When small amounts of H(2)O(2) were introduced halfway through the Fe(0) and FeS treatment times, the mass of DDT decreased by 87% and 96%, respectively, within 2days. Our results demonstrate that mixtures of Fe(0)-FeS in combination with H(2)O(2) can be used for rapid and efficient removal of DDT from aqueous solutions.

  13. "Switchable water": aqueous solutions of switchable ionic strength.

    PubMed

    Mercer, Sean M; Jessop, Philip G

    2010-04-26

    "Salting out" is a standard method for separating water-soluble organic compounds from water. In this method, adding a large amount of salt to the aqueous solution forces the organic compound out of the aqueous phase. However, the method can not be considered sustainable because it creates highly salty water. A greener alternative would be a method that allows reversible salting out. Herein, we describe aqueous solutions of switchable ionic strength. Aqueous solutions of a diamine in water have essentially zero ionic strength but are converted by CO(2) into solutions of high ionic strength. The change is reversible. Application to the reversible salting out of THF from water is described.

  14. Catalyzed reduction of nitrate in aqueous solutions

    SciTech Connect

    Haas, P.A.

    1994-08-01

    Sodium nitrate and other nitrate salts in wastes is a major source of difficulty for permanent disposal. Reduction of nitrate using aluminum metal has been demonstrated, but NH{sub 3}, hydrazine, or organic compounds containing oxygen would be advantageous for reduction of nitrate in sodium nitrate solutions. Objective of this seed money study was to determine minimum conditions for reduction. Proposed procedure was batchwise heating of aqueous solutions in closed vessels with monitoring of temperatures and pressures. A simple, convenient apparatus and procedure were demonstrated for observing formation of gaseous products and collecting samples for analyses. The test conditions were 250{degree}C and 1000 psi max. Any useful reduction of sodium nitrate to sodium hydroxide as the primary product was not found. The nitrate present at pHs < 4 as HNO{sub 3} or NH{sub 4}NO{sub 3} is easily decomposed, and the effect of nitromethane at these low pHs was confirmed. When acetic acid or formic acid was added, 21 to 56% of the nitrate in sodium nitrate solutions was reduced by methanol or formaldehyde. With hydrazine and acetic acid, 73 % of the nitrate was decomposed to convert NaNO{sub 3} to sodium acetate. With hydrazine and formic acid, 36% of the nitrate was decomposed. If these products are more acceptable for final disposal than sodium nitrate, the reagents are cheap and the conversion conditions would be practical for easy use. Ammonium acetate or formate salts did not significantly reduce nitrate in sodium nitrate solutions.

  15. Modification of polystyrene surface in aqueous solutions.

    PubMed

    Mielczarski, J A; Jeyachandran, Y L; Mielczarski, E; Rai, B

    2011-10-15

    Herein, we report our analysis of the surface modification of polystyrene (PS) when treated under ambient conditions with a common biological buffer such as phosphate buffered saline (PBS) or aqueous solutions of the ionic constituents of PBS. Attenuated total reflection Fourier transform infrared spectroscopy was used for the analysis because the resultant spectra are very sensitive to minor changes in the chemical and structural properties of PS films. In addition, ultraviolet-visible spectroscopy was applied to characterize the surface modifications of PS. Treatment with PBS resulted in the most significant chemical and structural surface modifications of the PS films, as compared with each of the solutions of the constituents of PBS, which were tested separately. A multistep mechanism for the wet modification of PS is discussed. We postulate that the observed surface modifications are the result of photo-oxidation/reduction, swelling, and conformational changes and re-arrangement of the polymer chain. The resultant surface modifications could be similar to those produced by commonly used dry processes such as plasma treatments and electron, ion or ultraviolet irradiation. We found that the modifications that occurred in PBS were more stable than those initiated by dry processes. The formation of active groups on the surface of PS can be controlled by adsorption of bovine serum albumin or thermal annealing of PS before PBS treatment. This approach provides a simple and efficient method for the surface modification of PS for biomedical applications. Copyright © 2011. Published by Elsevier Inc.

  16. REDISTRIBUTION OF ALKALINE ELEMENTS IN ASSOCIATION WITH AQUEOUS ACTIVITY IN THE EARLY SOLAR SYSTEM

    SciTech Connect

    Hidaka, Hiroshi; Higuchi, Takuya; Yoneda, Shigekazu E-mail: s-yoneda@kahaku.go.jp

    2015-12-10

    It is known that the Sayama meteorite (CM2) shows an extensive signature for aqueous alteration on the meteorite parent body, and that most of the primary minerals in the chondrules are replaced with phyllosilicates as the result of the aqueous alteration. In this paper, it is confirmed from the observation of two-dimensional Raman spectra that a part of olivine in a chondrule collected from the Sayama chondrite is serperntinized. Ion microprobe analysis of the chondrule showed that alkaline elements such as Rb and Cs are heterogeneously redistributed in the chondrule. The result of higher Rb and Cs contents in serpentinized phases in the chondrule rather than in other parts suggested the selective adsorption of alkaline elements into the serpentine in association with early aqueous activity on the meteorite parent body. Furthermore Ba isotopic analysis provided variations of {sup 135}Ba/{sup 138}Ba and {sup 137}Ba/{sup 138}Ba in the chondrule. This result was consistent with our previous isotopic data suggesting isotopic evidence for the existence of the presently extinct nuclide {sup 135}Cs in the Sayama meteorite, but the abundance of {sup 135}Cs in the solar system remains unclear because of large analytical uncertainties.

  17. Formation of hydroxyapatite in various aqueous solutions

    NASA Astrophysics Data System (ADS)

    Sturgeon, Jacqueline Lee

    Hydroxyapatite (HAp), Ca10(PO4)6(OH) 2, is important in the field of biomaterials as it is the mineral component of bones and teeth. Biological apatites do not maintain an exact composition and are usually calcium-deficient, represented as Ca(10- x)(HPO 4)x(PO4)(6-x)(OH)(2-x), where x ranges from 0 to 1, with various ion substitutions. Formation of calcium-deficient hydroxyapatites (CDHAp) from solid calcium phosphate precursor materials was performed at physiologic temperature (37°C) in a variety of aqueous solutions. Two cement systems were utilized in these experiments: tetralcium phosphate (TetCP) with dicalcium phosphate anhydrous (DCPA) and beta-tricalcium phosphate (beta-TCP). The kinetics, solution chemistry, phase evolution, and microstructure of the developed apatites were analyzed as appropriate. Reaction of beta-TCP in ammonium fluoride solutions formed HAp substituted with fluoride and calculated to be deficient in calcium. A new ratio of TetCP to DCPA was used with solutions of sodium bicarbonate to form a calcium-deficient carbonate hydroxyapatite. The capacity for sodium dihydrogen phosphate to buffer pH increases and enhance reaction kinetics in this system was also explored. Formation of a highly crystalline CDHAp was achieved by hydrolyzing beta-TCP in water for extended time periods. Lattice parameters were among the features characterized for this apatite. The hydrolysis of beta-TCP in phosphate buffered saline (PBS) and simulated body fluids (SBF) was also investigated; use of SBF was found to completely inhibit formation of HAp in this system while reaction in PBS was slow in comparison to water. The effects of filler materials on the mechanical properties of a calcium phosphate cement were examined using the TetCP/DCPA system. Dense aggregates were not found to decrease compressive strength in comparison to the cement alone. The use of aggregates was found to improve the compressive strength of cement formed using NaHCO3 solution as a

  18. Liquid membrane processes for gallium recovery from alkaline solutions

    SciTech Connect

    Zha, F.F.; Fane, A.G.; Fell, C.J.D.

    1995-05-01

    Gallium is an important material in the semiconductor industry. Intermetallic compounds with gallium have applications as high-temperature rectifiers and transistors, solar batteries, and other devices where the photovoltaic effect can be used. In this paper, the authors examine the possibility of using membrane extraction and supported liquid membranes to recover gallium from alkaline solutions. Membrane extraction proves to be an alternative process to recover gallium from such liquors. In order to maximize mass transfer, highly hydrophilic membranes should be used in both the membrane extraction and stripping processes. The optimum composition of the membrane extractant is 10--15% Kelex 100, 10% n-decanol, 5% Versatic 10, and kerosene (vol %). The highest gallium permeability was obtained when the feed solution contained about 1.5 mol/l sodium hydroxide. The supported liquid membrane used failed to transport gallium because of instability. The dominant mechanisms for failure are considered to be spontaneous formation of a water-in-oil emulsion and formation of precipitates, causing membrane pore obstruction.

  19. Thermal properties of ethylene glycol aqueous solutions.

    PubMed

    Baudot, A; Odagescu, V

    2004-06-01

    Preventing ice crystallization by transforming liquids into an amorphous state, vitrification can be considered as the most suitable technique allowing complex tissues, and organs cryopreservation. This process requires the use of rapid cooling rates in the presence of cryoprotective solutions highly concentrated in antifreeze compounds, such as polyalcohols. Many of them have already been intensively studied. Their glass forming tendency and the stability of their amorphous state would make vitrification a reality if their biological toxicity did not reduce their usable concentrations often below the concentrations necessary to vitrify organs under achievable thermal conditions. Fortunately, it has been shown that mixtures of cryoprotectants tend to reduce the global toxicity of cryoprotective solutions and various efficient combinations have been proposed containing ethanediol. This work reports on the thermal properties of aqueous solutions with 40, 43, 45, 48, and 50% (w/w) of this compound measured by differential scanning calorimetry. The glass forming tendency and the stability of the amorphous state are evaluated as a function of concentration. They are given by the critical cooling rates v(ccr)above which ice crystallization is avoided, and the critical warming rates v(cwr) necessary to prevent ice crystallization in the supercooled liquid state during rewarming. Those critical rates are calculated using the same semi-empirical model as previously. This work shows a strong decrease of averaged critical cooling and warming rates when ethanediol concentration increases, V(ccr) and V(cwr) = 1.08 x 10 (10) K/min for 40% (w/w) whereas V(ccr) = 11 and V(cwr) = 853 K/min for 50% (w/w). Those results are compared with the corresponding properties of other dialcohols obtained by the same method. Ethylene glycol efficiency is between those of 1,2-propanediol and 1,3-propanediol.

  20. Influence of Acidic and Alkaline Waste Solution Properties on Uranium Migration in Subsurface Sediments

    SciTech Connect

    Szecsody, James E.; Truex, Michael J.; Qafoku, Nikolla; Wellman, Dawn M.; Resch, Charles T.; Zhong, Lirong

    2013-08-01

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments has significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH 2) resulted in a rapid (< 10 h) increase in aqueous carbonate (with Ca2+, Mg2+) and phosphate and a slow (100s of hours) increase in silica, Al3+, and K+, likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH 13) resulted in a rapid (< 10 h) increase in carbonate, followed by a slow (10s to 100s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity.

  1. Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments

    NASA Astrophysics Data System (ADS)

    Szecsody, Jim E.; Truex, Mike J.; Qafoku, Nikolla P.; Wellman, Dawn M.; Resch, Tom; Zhong, Lirong

    2013-08-01

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH 2) resulted in a rapid (< 10 h) increase in aqueous carbonate (with Ca2 +, Mg2 +) and phosphate and a slow (100 s of hours) increase in silica, Al3 +, and K+, likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH 13) resulted in a rapid (< 10 h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity.

  2. Direct Solar Charging of an Organic–Inorganic, Stable, and Aqueous Alkaline Redox Flow Battery with a Hematite Photoanode

    PubMed Central

    Wedege, Kristina; Azevedo, João; Khataee, Amirreza

    2016-01-01

    Abstract The intermittent nature of the sunlight and its increasing contribution to electricity generation is fostering the energy storage research. Direct solar charging of an auspicious type of redox flow battery could make solar energy directly and efficiently dispatchable. The first solar aqueous alkaline redox flow battery using low cost and environmentally safe materials is demonstrated. The electrolytes consist of the redox couples ferrocyanide and anthraquinone‐2,7‐disulphonate in sodium hydroxide solution, yielding a standard cell potential of 0.74 V. Photovoltage enhancement strategies are demonstrated for the ferrocyanide‐hematite junction by employing an annealing treatment and growing a layer of a conductive polyaniline polymer on the electrode surface, which decreases electron–hole recombination. PMID:27151516

  3. Direct Solar Charging of an Organic-Inorganic, Stable, and Aqueous Alkaline Redox Flow Battery with a Hematite Photoanode.

    PubMed

    Wedege, Kristina; Azevedo, João; Khataee, Amirreza; Bentien, Anders; Mendes, Adélio

    2016-06-13

    The intermittent nature of the sunlight and its increasing contribution to electricity generation is fostering the energy storage research. Direct solar charging of an auspicious type of redox flow battery could make solar energy directly and efficiently dispatchable. The first solar aqueous alkaline redox flow battery using low cost and environmentally safe materials is demonstrated. The electrolytes consist of the redox couples ferrocyanide and anthraquinone-2,7-disulphonate in sodium hydroxide solution, yielding a standard cell potential of 0.74 V. Photovoltage enhancement strategies are demonstrated for the ferrocyanide-hematite junction by employing an annealing treatment and growing a layer of a conductive polyaniline polymer on the electrode surface, which decreases electron-hole recombination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Primary radical yields in pulse irradiated alkaline aqueous solution

    NASA Technical Reports Server (NTRS)

    Fielden, E. M.; Hart, E. J.

    1969-01-01

    Primary radical yields of hydrated electrons, H atoms, and OH radicals are determined by measuring hydrated electron formation following a 4 microsecond pulse of X rays. The pH dependence of free radical yields beyond pH 12 is determined by observation of the hydrated electrons.

  5. PROCESS OF SEPARATING URANIUM FROM AQUEOUS SOLUTION BY SOLVENT EXTRACTION

    DOEpatents

    Warf, J.C.

    1958-08-19

    A process is described for separating uranium values from aqueous uranyl nitrate solutions. The process consists in contacting the uramium bearing solution with an organic solvent, tributyl phosphate, preferably diluted with a less viscous organic liquida whereby the uranyl nitrate is extracted into the organic solvent phase. The uranvl nitrate may be recovered from the solvent phase bv back extracting with an aqueous mediuin.

  6. Stabilizing the viscosity of an aqueous solution of polysaccharide polymer

    SciTech Connect

    Wellington, S.L.

    1980-08-19

    In an oil recovery process in which an aqueous solution thickened with a water-soluble anionic polysaccharide polymer (Xanthan gum polymer) is injected into a subterranean reservoir, the stability of the solution viscosity is improved by deoxygenating the aqueous liquid and then adding a sulfurcontaining antioxidant, a readily oxidizable water-soluble alcohol or glycol and the xanthan gum polymer.

  7. Simulating Monovalent and Divalent Ions in Aqueous Solution Using a Drude Polarizable Force Field

    PubMed Central

    Yu, Haibo; Whitfield, Troy W.; Harder, Edward; Lamoureux, Guillaume; Vorobyov, Igor; Anisimov, Victor M.; MacKerell, Alexander D.; Roux, Benoît

    2010-01-01

    An accurate representation of ion solvation in aqueous solution is critical for meaningful computer simulations of a broad range of physical and biological processes. Polarizable models based on classical Drude oscillators are introduced and parametrized for a large set of monoatomic ions including cations of the alkali metals (Li+, Na+, K+, Rb+ and Cs+) and alkaline earth elements (Mg2+, Ca2+, Sr2+ and Ba2+) along with Zn2+ and halide anions (F−, Cl−, Br− and I−). The models are parameterized, in conjunction with the polarizable SWM4-NDP water model [Lamoureux et al., Chem. Phys. Lett. 418, 245 (2006)], to be consistent with a wide assortment of experimentally measured aqueous bulk thermodynamic properties and the energetics of small ion-water clusters. Structural and dynamic properties of the resulting ion models in aqueous solutions at infinite dilution are presented. PMID:20300554

  8. Structure of aqueous sodium perchlorate solutions.

    PubMed

    General, Ignacio J; Asciutto, Eliana K; Madura, Jeffry D

    2008-12-04

    Salt solutions have been the object of study of many scientists through history, but one of the most important findings came along when the Hofmeister series were discovered. Their importance arises from the fact that they influence the relative solubility of proteins, and solubility is directly related to one of today's holy grails: protein folding. In this work we characterize one of the more-destabilizing salts in the series, sodium perchlorate, by studying it as an aqueous solution at various concentrations ranging from 0.08 to 1.60 mol/L. Molecular dynamics simulations at room temperature permitted a detailed study of the organization of solvent and cosolvent, in terms of its radial distribution functions, along with the study of the structure of hydrogen bonds in the ions' solvation shells. We found that the distribution functions have some variations in their shape as concentration changes, but the position of their peaks is mostly unaffected. Regarding water, the most salient fact is the noticeable (although small) change in the second hydration shell and even beyond, especially for g(O(w)***O(w)), showing that the locality of salt effects should not be restricted to considerations of only the first solvation shell. The perturbation of the second shell also appears in the study of the HB network, where the difference between the number of HBs around a water molecule and around the Na(+) cation gets much smaller as one goes from the first to the second solvation shell, yet the difference is not negligible. Nevertheless, the effect of the ions past their first hydration shell is not enough to make a noticeable change in the global HB network. The Kirkwood-Buff theory of liquids was applied to our system, in order to calculate the activity derivative of the cosolvent. This coefficient, along with a previously calculated preferential binding, allowed us to establish that if a folded AP peptide is immersed in the studied solution, becoming the solute, then

  9. Electrospinning of silk fibroin from all aqueous solution at low concentration.

    PubMed

    Kishimoto, Yuki; Morikawa, Hideaki; Yamanaka, Shigeru; Tamada, Yasushi

    2017-04-01

    Non-woven mats of Bombyx mori silk fibroin were fabricated using electrospinning with an all aqueous solution at <10wt% without any co-existing water soluble polymer such as PEO. The fibroin aqueous solution electrospinnability was affected by the fibroin molecular weight and the spinning solution pH. Hot-water treatment without any alkaline reagent or soap produced higher molecular weight fibroin than the typical degumming process did. The higher molecular weight fibroin provided good electrospinnability. Results show that the basic solution (pH10-11) is important for electrospinning at low concentrations of 5wt%. Evaluation of structural and mechanical properties of the non-woven mat fabricated with water solvent revealed that it is safe for use in the human body. It is anticipated for wider use in medical materials such as cellular scaffolds for tissue engineering.

  10. Component dynamics in polyvinylpyrrolidone concentrated aqueous solutions

    NASA Astrophysics Data System (ADS)

    Busselez, Rémi; Arbe, Arantxa; Cerveny, Silvina; Capponi, Sara; Colmenero, Juan; Frick, Bernhard

    2012-08-01

    2H-nuclear magnetic resonance (NMR) and neutron scattering (NS) on isotopically labelled samples have been combined to investigate the structure and dynamics of polyvinylpyrrolidone (PVP) aqueous solutions (4 water molecules/monomeric unit). Neutron diffraction evidences the nanosegregation of polymer main-chains and water molecules leading to the presence of water clusters. NMR reveals the same characteristic times and spectral shape as those of the slower process observed by broadband dielectric spectroscopy in this system [S. Cerveny et al., J. Chem. Phys. 128, 044901 (2008)], 10.1063/1.2822332. The temperature dependence of such relaxation time crosses over from a cooperative-like behavior at high temperatures to an Arrhenius behavior at lower temperatures. Below the crossover, NMR features the spectral shape as due to a symmetric distribution of relaxation times and the underlying motions as isotropic. NS results on the structural relaxation of both components-isolated via H/D labeling-show (i) anomalously stretched and non-Gaussian functional forms of the intermediate scattering functions and (ii) a strong dynamic asymmetry between the components that increases with decreasing temperature. Strong heterogeneities associated to the nanosegregated structure and the dynamic asymmetry are invoked to explain the observed anomalies. On the other hand, at short times the atomic displacements are strongly coupled for PVP and water, presumably due to H-bond formation and densification of the sample upon hydration.

  11. Photochemistry of dihydrobiopterin in aqueous solution.

    PubMed

    Vignoni, Mariana; Cabrerizo, Franco M; Lorente, Carolina; Claparols, Catherine; Oliveros, Esther; Thomas, Andrés H

    2010-02-21

    Dihydrobiopterin (H(2)Bip) and its oxidized analogue, biopterin (Bip), accumulate in the skin of patients suffering from vitiligo, a chronic depigmentation disorder in which the protection against UV radiation fails. The photochemistry of H(2)Bip was studied in neutral aqueous solutions upon UV-A irradiation (320-400 nm) at room temperature. The photochemical reactions were followed by UV/vis spectrophotometry, HPLC and enzymatic methods for hydrogen peroxide (H(2)O(2)) determination. Photoproducts were analyzed by means of electrospray ionization mass spectrometry. Under anaerobic conditions, excitation of H(2)Bip leads to the formation of at least two isomeric dimers with molecular masses equal to exactly twice the molecular mass of the reactant. This reaction takes place from the singlet excited state of the reactant. To the best of our knowledge, this is the first time that the photodimerization of a dihydropterin is reported. In the presence of air, the dimers are again the main photoproducts at the beginning of the reaction, but a small proportion of the reactant is converted into Bip. As the reaction proceeds and enough Bip accumulates in the solution, a photosensitized process starts, where Bip photoinduces the oxidation of H(2)Bip to Bip, and H(2)O(2) is formed. As a consequence, the rates of H(2)Bip consumption and Bip formation increase as a function of irradiation time, resulting in an autocatalytic photochemical process. In this process, Bip in its triplet excited state reacts with the ground state of H(2)Bip. The mechanisms involved are analyzed and the biological implications of the results are discussed.

  12. Batch and dynamic biosorption of basic dyes from binary solutions by alkaline-treated cypress cone chips.

    PubMed

    Fernandez, M E; Nunell, G V; Bonelli, P R; Cukierman, A L

    2012-02-01

    A simple alkaline pre-treatment of Cupressus sempervirens cone chips was performed to improve their biosorption capacity towards methylene blue and rhodamine B from aqueous solutions, in batch and continuous modes. Biosorption kinetics were determined from single and binary dyes solutions, and properly described by the pseudo-second-order rate model. Experimental single-dye equilibrium isotherms fitted the Langmuir-Freundlich model, with maximum biosorption capacities of 0.68mmol/g for methylene blue and 0.50mmol/g for rhodamine B. Single-dye dynamic biosorption showed that breakthrough time for methylene blue biosorption was almost four times longer than for rhodamine B and that the alkaline modification of the chips greatly improved the biosorption performance. Competitive dynamic biosorption demonstrated the preference of the modified cone chips for biosorbing methylene blue, confirmed by the exit concentration overshoots obtained in the breakthrough curves of rhodamine B.

  13. Nitroimidazoles adsorption on activated carbon cloth from aqueous solution.

    PubMed

    Ocampo-Pérez, R; Orellana-Garcia, F; Sánchez-Polo, M; Rivera-Utrilla, J; Velo-Gala, I; López-Ramón, M V; Alvarez-Merino, M A

    2013-07-01

    The objective of this study was to analyze the equilibrium and adsorption kinetics of nitroimidazoles on activated carbon cloth (ACC), determining the main interactions responsible for the adsorption process and the diffusion mechanism of these compounds on this material. The influence of the different operational variables, such as ionic strength, pH, temperature, and type of water (ultrapure, surface, and waste), was also studied. The results obtained show that the ACC has a high capacity to adsorb nitroimidazoles in aqueous solution. Electrostatic interactions play an important role at pH<3, which favors the repulsive forces between dimetridazole or metronidazole and the ACC surface. The formation of hydrogen bonds and dispersive interactions play the predominant role at higher pH values. Modifications of the ACC with NH3, K2S2O8, and O3 demonstrated that its surface chemistry plays a predominant role in nitroimidazole adsorption on this material. The adsorption capacity of ACC is considerably high in surface waters and reduced in urban wastewater, due to the levels of alkalinity and dissolved organic matter present in the different types of water. Finally, the results of applying kinetic models revealed that the global adsorption rate of dimetridazole and metronidazole is controlled by intraparticle diffusion.

  14. PMBP extraction and TPE separation in alkaline pyrophosphate solutions

    SciTech Connect

    Karalova, Z.K.; Bukina, T.I.; Lavrinovich, E.A.; Trofimov, T.I.; Kulyako, Yu.M.; Myasoedov, B.F.

    1988-11-01

    Measurements have been made on the solvent extraction of Am(III), Am(V), Cm(III), and Eu(III) in trace and macroscopic amounts from (NH/sub 4/)/sub 4/P/sub 2/O/sub 7/ (pH = 7.6) and Na/sub 4/P/sub 2/O/sub 7/ (pH = 10) solutions as coordination compounds with 1-phenyl-3-methyl-4-benzoylpyrazol-5-one (PMBP). A method has been devised for separating weighable amounts of americium and curium, which is based in trivalent curium being extracted quantitatively from 0.1 M sodium pyrophosphate (pH 10) by 0.1 M PMBP solution in chloroform, where high distribution coefficients apply, while americium is electrochemically oxidized in that medium to Am(VI) and on contact with the extraction agent is reduced to Am(V) and remains in the aqueous phase. The separation factor for the Cm(III)-Am(V) pair is about 10/sup 3/.

  15. Stability in alkaline aqueous electrolyte of air electrode protected with fluorinated interpenetrating polymer network membrane

    NASA Astrophysics Data System (ADS)

    Bertolotti, Bruno; Messaoudi, Houssam; Chikh, Linda; Vancaeyzeele, Cédric; Alfonsi, Séverine; Fichet, Odile

    2015-01-01

    We developed original anion exchange membranes to protect air electrodes operating in aqueous lithium-air battery configuration, i.e. supplied with atmospheric air and in concentrated aqueous lithium hydroxide. These protective membranes have an interpenetrating polymer network (IPN) architecture combining a hydrogenated cationic polyelectrolyte network based on poly(epichlorohydrin) (PECH) and a fluorinated neutral network based on perfluoropolyether (Fluorolink® MD700). Two phases, each one rich in one of the polymer, are co-continuous in the materials. This morphology allows combining their properties according to the weight proportions of each polymer. Thus, PECH/Fluorolink IPNs show ionic conductivity varying from 1 to 2 mS cm-1, water uptake from 30 to 90 wt.% and anionic transport number from 0.65 to 0.80 when the PECH proportion varies from 40 to 90 wt.%. These membranes have been systematically assembled on air electrodes. Air electrode protected with PECH/Fluorolink 70/30 IPN shows outstanding stability higher than 1000 h, i.e. a 20-fold increase in the lifetime of the non-modified electrode. This efficient membrane/air electrode assembly is promising for development of alkaline electrolyte based storage or production energy systems, such as metal air batteries or alkaline fuel cells.

  16. Note on the stability of mefloquine hydrochloride in aqueous solution

    PubMed Central

    Reber-Liske, Rosemaria

    1983-01-01

    Using Desjardins' technique for the testing of antimalarials against Plasmodium falciparum in vitro, a 4-year-old solution of mefloquine in water (10-3 mol/litre) was compared with a freshly prepared solution. The results showed that the two solutions had almost identical activity. There was no evidence for any instability of mefloquine in aqueous solution. PMID:6349842

  17. SEPARATION OF PLUTONIUM FROM AQUEOUS SOLUTIONS BY ION-EXCHANGE

    DOEpatents

    Schubert, J.

    1958-06-01

    A process is described for the separation of plutonium from an aqueous solution of a plutonium salt, which comprises adding to the solution an acid of the group consisting of sulfuric acid, phosphoric acid, and oxalic acid, and mixtures thereof to provide an acid concentration between 0.0001 and 1 M, contacting the resultant solution with a synthetic organic anion exchange resin, and separating the aqueous phase and the resin which contains the plutonium.

  18. Reverse osmosis separation of radium from dilute aqueous solutions

    SciTech Connect

    Subramanian, K.S.; Sastri, V.S.

    1980-03-01

    Porous cellulose acetate membranes obtained from Osmonics Inc. were characterized in terms of pure water permeability constant, solute transport parameter, and mass transfer coefficient with aqueous sodium chloride solution as the reference system. Reverse osmosis separation behavior of radium-226 as nitrate, chloride, and sulfate salts was studied. Reverse osmosis method of removing radium-226 from aqueous solutions has been compared with other methods, and it has been shown to be one of the best methods for alleviating radium contamination problems.

  19. ELECTROCHEMICAL DECHLORINATIONOF 2-CHLOROBIPHENYL IN AQUEOUS SOLUTION

    EPA Science Inventory

    This paper presents electrochemical dechlorination of 2-chlorobiphenyl (2-CI BP) in aqueous environment using palladium modified granular graphite electrodes. 2-CI BP, the PCB congener that requires the highest reduction potential, was effectively dechlorinated in electrochemical...

  20. ELECTROCHEMICAL DECHLORINATIONOF 2-CHLOROBIPHENYL IN AQUEOUS SOLUTION

    EPA Science Inventory

    This paper presents electrochemical dechlorination of 2-chlorobiphenyl (2-CI BP) in aqueous environment using palladium modified granular graphite electrodes. 2-CI BP, the PCB congener that requires the highest reduction potential, was effectively dechlorinated in electrochemical...

  1. Reductive dehalogenation of bromoform in aqueous solution.

    PubMed

    Betterton, E A; Arnold, R G; Kuhler, R J; Santo, G A

    1995-06-01

    The hybrid semiconducter-macrocycle catalyst TiO2-cobalt phthalocyanine promotes the solar photolysis of aqueous bromoform under anaerobic conditions. The major decomposition products are dibromoethane and HBr. Bromomethane and methane were produced only after prolonged photolysis (30 hr). Acetone, derived from added 2-propanol, was the only observed oxidation product. Preliminary experiments showed that electrolytic reduction of aqueous carbon tetrachloride at a vitamin B12-modified silver electrode produced the expected lower homologues but with surprisingly high yields of methane.

  2. Critical properties of aqueous solutions. Part 1: Experimental data

    NASA Astrophysics Data System (ADS)

    Abdulagatov, A. I.; Stepanov, G. V.; Abdulagatov, I. M.

    2008-08-01

    All data available in the literature on the critical properties of binary aqueous solutions like H2O + common salt, H2O + hydrocarbon, H2O + alcohol, H2O + gas, and others are gathered. Methods for determining them are presented together with errors and concentration measurement intervals for each source of data. The format in which the data are presented will allow the readers to quickly find the necessary information on the critical properties of aqueous solutions from the original sources and use them for solving scientific and engineering tasks. Certain general features of the critical lines and phase diagrams of aqueous solutions with volatile and nonvolatile components are discussed.

  3. The electrochemistry of SIMFUEL in dilute alkaline hydrogen peroxide solutions

    NASA Astrophysics Data System (ADS)

    Goldik, Jon

    The work described in this thesis is a study of the electrochemistry of SIMFUEL (SIMulated nuclear FUEL) in dilute, alkaline hydrogen peroxide solutions. In the first set of experiments, the reaction of H2O 2 on SIMFUEL electrodes was studied electrochemically and under open circuit conditions in 0.1 mol L-1 NaCl solutions at pH 9.8. The composition of the oxidized UO2 surface was determined by X-ray photoelectron spectroscopy. Hydrogen peroxide reduction was found to be catalyzed by the formation of a mixed UIV/UV (UO 2+x) surface layer, but to be blocked by the accumulation of UVI species (UO3· yH2O or adsorbed (UO2)2+) on the electrode surface. The formation of this UVI layer blocks both H2O2 reduction and oxidation, thereby inhibiting the potentially rapid H2O2 decomposition reaction to H2O and O2. Decomposition is found to proceed at a rate controlled by the desorption of the adsorbed (UO2)2+ or reduction of adsorbed O2 species. Reduction of (O2) ads is coupled to the slow oxidative dissolution of UO2 and formation of a corrosion product deposit of UO3· yH2O. In the second series of experiments, the electrochemical reduction of hydrogen peroxide on SIMFUEL was studied using the steady-state polarization technique. Kinetic parameters for the reaction, such as Tafel slopes and reaction orders, were determined. The results were interpreted in terms of a chemical-electrochemical mechanism involving UIV/UV donor-acceptor reduction sites. The large values of the Tafel slopes and the fractional reaction orders with respect to H2O2 can be understood in terms of the potential-dependent surface coverage of active sites, similar to that observed in the reduction of hydrogen peroxide on oxidized copper surfaces. The effects of pH over the range 10-13 were also investigated. The H2O 2 reduction currents were nearly independent of pH in the range 10-11, but were slowed at more alkaline values. The change in pH dependence appears to be related to the acid-base properties

  4. Quantitative ionization energies and work functions of aqueous solutions.

    PubMed

    Olivieri, Giorgia; Goel, Alok; Kleibert, Armin; Cvetko, Dean; Brown, Matthew A

    2016-10-26

    Despite the ubiquitous nature of aqueous solutions across the chemical, biological and environmental sciences our experimental understanding of their electronic structure is rudimentary-qualitative at best. One of the most basic and seemingly straightforward properties of aqueous solutions-ionization energies-are (qualitatively) tabulated at the water-air interface for a mere handful of solutes, and the manner in which these results are obtained assume the aqueous solutions behave like a gas in the photoelectron experiment (where the vacuum levels of the aqueous solution and of the photoelectron analyzer are equilibrated). Here we report the experimental measure of a sizeable offset (ca. 0.6 eV) between the vacuum levels of an aqueous solution (0.05 M NaCl) and that of our photoelectron analyzer, indicating a breakdown of the gas-like vacuum level alignment assumption for the aqueous solution. By quantifying the vacuum level offset as a function of solution chemical composition our measurements enable, for the first time, quantitative determination of ionization energies in liquid solutions. These results reveal that the ionization energy of liquid water is not independent of the chemical composition of the solution as is usually inferred in the literature, a finding that has important ramifications as measured ionization energies are frequently used to validate theoretical models that posses the ability to provide microscopic insight not directly available by experiment. Finally, we derive the work function, or the electrochemical potential of the aqueous solution and show that it too varies with the chemical composition of the solution.

  5. A preliminary study of the electro-oxidation of L-ascorbic acid on polycrystalline silver in alkaline solution

    NASA Astrophysics Data System (ADS)

    Majari Kasmaee, L.; Gobal, F.

    Electrochemical oxidation of L-ascorbic acid on polycrystalline silver in alkaline aqueous solutions is studied by cyclic voltammetry (CV), chronoamperometry (CA) and impedance spectroscopy (IS). The anodic electro-oxidation starts at -500 mV versus SCE and shows continued anodic oxidation in the cathodic half cycle in the CV regime signifying slowly oxidizing adsorbates. Diffusion coefficient of ascorbate ion measured under both voltammetric regimes is around 1.4 × 10 -5 cm 2 s -1. Impedance spectroscopy measures the capacitances associated with double layer and adsorption around 50 μF cm -2 and 4 mF cm -2 as well as the adsorption and decomposition resistances (rates).

  6. Flocculation performance of a cationic biopolymer derived from a cellulosic source in mild aqueous solution.

    PubMed

    Liimatainen, Henrikki; Sirviö, Juho; Sundman, Ola; Visanko, Miikka; Hormi, Osmo; Niinimäki, Jouko

    2011-10-01

    The flocculation behavior of cationic, quaternary ammonium groups containing cellulosic biopolymers, CDACs, synthesized by cationizing dialdehyde cellulose in mild aqueous solution was studied in a kaolin suspension. In particular, the role of CDAC dosage and solution pH, NaCl concentration, and temperature were clarified. In addition, the initial apparent charge densities (CDs), particle sizes, ζ-potential, and stability of CDs were determined. CDACs possessed a high flocculation activity in neutral and acidic solutions, but a significant decrease was observed in alkaline solutions (pH >9). This was also seen as a decline in the apparent CD and particle size of the CDACs in alkaline conditions. The measurements also indicated that the apparent CD decreased to a constant level of 3 mmol/g in aqueous solutions. However, no notable decrease in flocculation performance was obtained after several days of storage. Moreover, the variation of NaCl concentration and temperature did not affect the flocculation activity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Singlet Oxygen in Aqueous Solution: A Lecture Demonstration

    ERIC Educational Resources Information Center

    Shakhashiri, Bassam Z.; Williams, Lloyd G.

    1976-01-01

    Describes a demonstration that illustrates the red chemiluminescence due to singlet molecular oxygen that can be observed when aqueous solutions of hypochlorite ion and hydrogen peroxide are mixed. (MLH)

  8. Singlet Oxygen in Aqueous Solution: A Lecture Demonstration

    ERIC Educational Resources Information Center

    Shakhashiri, Bassam Z.; Williams, Lloyd G.

    1976-01-01

    Describes a demonstration that illustrates the red chemiluminescence due to singlet molecular oxygen that can be observed when aqueous solutions of hypochlorite ion and hydrogen peroxide are mixed. (MLH)

  9. Trace hydrazines in aqueous solutions accurately determined by gas chromatography

    NASA Technical Reports Server (NTRS)

    Welz, E. A., Jr.

    1967-01-01

    Trace amounts of hydrazines in aqueous solutions can be determined by using polythyleneimine /PEI/ in conjunction with the gas chromatographic column. The PEI specifically retains water without altering the separability or elution order of the hydrazine and associated constituents.

  10. Extraction of ethylene glycol from aqueous salt solutions

    NASA Astrophysics Data System (ADS)

    Butyrskaya, E. V.; Belyakova, N. V.; Rozhkova, M. V.; Nechaeva, L. S.

    2012-11-01

    A method is proposed for extracting ethylene glycol from aqueous salt solutions by dialysis through ion-exchange membranes, based on the Donnan exclusion of the electrolyte. Dialysis is performed in the continuous and batch modes. It is found that the batch mode of dialysis is more effective for extracting ethylene glycol from its aqueous salt solutions. The effect of the ionic form of the membrane on ethylene glycol fluxes is explained through computer simulation.

  11. Anti-inflammatory activity of aqueous and alkaline extracts from mushrooms (Agaricus blazei Murill).

    PubMed

    Padilha, Marina M; Avila, Ana A L; Sousa, Pergentino J C; Cardoso, Luis Gustavo V; Perazzo, Fábio F; Carvalho, José Carlos T

    2009-04-01

    The effects of aqueous and alkaline extracts from Agaricus blazei Murill, an edible mushroom used as folk medicine in Brazil, Japan, and China to treat several illnesses, were investigated on the basis of the inflammatory process induced by different agents. Oral administration of A. blazei extracts marginally inhibited the edema induced by nystatin. In contrast, when complete Freund's adjuvant was used as the inflammatory stimulus, both extracts were able to inhibit this process significantly (P < .05, analysis of variance followed by Tukey-Kramer multiple comparison post hoc test), although it inhibited the granulomatous tissue induction moderately. These extracts were able to decrease the ulcer wounds induced by stress. Also, administration of extracts inhibited neutrophil migration to the exudates present in the peritoneal cavity after carrageenin injection. Therefore, it is possible that A. blazei extracts can be useful in inflammatory diseases because of activation of the immune system and its cells induced by the presence of polysaccharides such as beta-glucans.

  12. Evaluation of a process for aqueous alkaline digestion of biomass to produce a liquid fuel

    SciTech Connect

    Alexander, B.F.; Rosson, H.F.

    1983-12-01

    The aqueous alkaline digestion of microcrystalline cellulose was studied over the temperature range of 480-540/sup 0/F (249-282/sup 0/C) at residence times of 10-25 minutes and catalyst (Na/sub 2/CO/sub 3/) loadings of 11-76 g/kg. The reaction products were characterized as an oil fraction, water soluble fraction, gas and residue. Addition of carbon monoxide and synthesis gas (50/50 mole ratio CO/H/sub 2/) and simulated recycle of the water soluble fraction were also investigated. Batch experiments were conducted in a one-liter stirred autoclave equipped with rapid feed injection. The information gained from the experimental program plus that available in the literature was used to design a plant for conversion of wood to fuel oil. The cost of producing oil was then calculated based on this design.

  13. Scanning force microscopy under aqueous solutions.

    PubMed

    Bustamante, C; Rivetti, C; Keller, D J

    1997-10-01

    Merely ten years after its invention, the scanning force microscope is becoming a powerful method to investigate the structure and dynamics of biological molecules under aqueous environments. From the visualization of transcription in real time to the mechanical manipulation of individual proteins, the advances made during the past year open up a vast number of exciting applications of this technique in biology.

  14. Assembly of DNA Architectures in a Non-Aqueous Solution

    PubMed Central

    Finch, Amethist S.; Anton, Christopher M.; Jacob, Christina M.; Proctor, Thomas J.; Stratis-Cullum, Dimitra N.

    2012-01-01

    In the present work, the procedures for the creation of self-assembled DNA nanostructures in aqueous and non-aqueous media are described. DNA-Surfactant complex formation renders the DNA soluble in organic solvents offering an exciting way to bridge the transition of DNA origami materials electronics applications. The DNA retains its structural features, and these unique geometries provide an interesting candidate for future electronics and nanofabrication applications with potential for new properties. The DNA architectures were first assembled under aqueous conditions, and then characterized in solution (using circular dichroism (CD) spectroscopy) and on the surface (using atomic force microscopy (AFM)). Following aqueous assembly, the DNA nanostructures were transitioned to a non-aqueous environment, where butanol was chosen for optical compatibility and thermal properties. The retention of DNA hierarchical structure and thermal stability in non-aqueous conditions were confirmed via CD spectroscopy. The formation and characterization of these higher order DNA-surfactant complexes is described in this paper.

  15. Extracting alcohols from aqueous solutions. [USDOE patent application

    DOEpatents

    Compere, A.L.; Googin, J.M.; Griffith, W.L.

    1981-12-02

    The objective is to provide an efficient process for extracting alcohols in aqueous solutions into hydrocarbon fuel mixtures, such as gasoline, diesel fuel and fuel oil. This is done by contacting an aqueous fermentation liquor with a hydrocarbon or hydrocarbon mixture containing carbon compounds having 5-18 carbon atoms, which may include gasoline, diesel fuel or fuel oil. The hydrocarbon-aqueous alcohol solution is then mixed with one or more of a group of polyoxyalkylene polymers to extract the alcohol into the hydrocarbon fuel-polyoxyalkylene polymer mixture.

  16. Americium/Lanthanide Separations in Alkaline Solutions for Advanced Nuclear Fuel Cycles

    SciTech Connect

    Goff, George S.; Long, Kristy Marie; Reilly, Sean D.; Jarvinen, Gordon D.; Runde, Wolfgang H.

    2012-06-11

    Project goals: Can used nuclear fuel be partitioned by dissolution in alkaline aqueous solution to give a solution of uranium, neptunium, plutonium, americium and curium and a filterable solid containing nearly all of the lanthanide fission products and certain other fission products? What is the chemistry of Am/Cm/Ln in oxidative carbonate solutions? Can higher oxidation states of Am be stabilized and exploited? Conclusions: Am(VI) is kinetically stable in 0.5-2.0 M carbonate solutions for hours. Aliquat 336 in toluene has been successfully shown to extract U(VI) and Pu(VI) from carbonate solutions. (Stepanov et al 2011). Higher carbonate concentration gives lower D, SF{sub U/Eu} for = 4 in 1 M K{sub 2}CO{sub 3}. Experiments with Am(VI) were unsuccessful due to reduction by the organics. Multiple sources of reducing organics...more optimization. Reduction experiments of Am(VI) in dodecane/octanol/Aliquat 336 show that after 5 minutes of contact, only 30-40% of the Am(VI) has been reduced. Long enough to perform an extraction. Shorter contact times, lower T, and lower Aliquat 336 concentration still did not result in any significant extraction of Am. Anion exchange experiments using a strong base anion exchanger show uptake of U(VI) with minimal uptake of Nd(III). Experiments with Am(VI) indicate Am sorption with a Kd of 9 (10 minute contact) but sorption mechanism is not yet understood. SF{sub U/Nd} for = 7 and SF{sub U/Eu} for = 19 after 24 hours in 1 M K{sub 2}CO{sub 3}.

  17. Solubility of vanadium from manganese vanadates in aqueous solutions of soda ash

    NASA Astrophysics Data System (ADS)

    Khalezov, B. D.; Krasheninin, A. G.; Vatolin, N. A.; Ovchinnikova, L. A.

    2016-05-01

    It is shown that, in the course of developing the technology of pure vanadium pentoxide preparation from manganic vanadium-containing metallurgical slags, their oxidative roasting and cinder formation without alkaline additives are accompanied by the decomposition of spinelides with the formation of manganese meta- and pyrovanadates. Concentrated aqueous solutions of soda ash with an Na2CO3 concentration of 120-150 g/dm3 are accepted as a selective leaching reagent for vanadium from a cinder. Manganese metaand pyrovanadates are synthesized, and the procedure of their preparation is presented. The solubility of vanadium from manganese vanadates in aqueous solutions of soda ash at C_{Na_2 CO_3 } = 150 g/dm^3 is studied at 20-95°C for pyrovanadate and at 85-95°C for metavanadate. It is shown that vanadium should be leached from converter manganic slags roasted without alkaline metal additives at a leaching solution temperature higher than 95°C. There is a possibility to increase the vanadium content in a leaching solution to 60-80 g/dm3. The results obtained are used in the development of the technology of vanadium leaching.

  18. Quasi-Immiscible Spreading of Aqueous Surfactant Solutions on Entangled Aqueous Polymer Solution Subphases

    PubMed Central

    Sharma, Ramankur; Corcoran, Timothy E.; Garoff, Stephen; Przybycien, Todd M.; Swanson, Ellen R.; Tilton, Robert D.

    2014-01-01

    Motivated by the possibility of enhancing aerosol drug delivery to mucus-obstructed lungs, the spreading of a drop of aqueous surfactant solution on a physically entangled aqueous poly(acrylamide) solution subphase that mimics lung airway surface liquid was investigated. Sodium dodecyl sulfate was used as the surfactant. To visualize spreading of the drop and mimic the inclusion of a drug substance, fluorescein, a hydrophilic and non-surface active dye, was added to the surfactant solution. The spreading progresses through a series of events. Marangoni stresses initiate the convective spreading of the drop. Simultaneously, surfactant escapes across the drop’s contact line within a second of deposition and causes a change in subphase surface tension outside the drop on the order of 1 mN/m. Convective spreading of the drop ends within 2–3 seconds of drop deposition, when a new interfacial tension balance is achieved. Surfactant escape depletes the drop of surfactant and the residual drop takes the form of a static lens of non-zero contact angle. On longer time scales, the surfactant dissolves into the subphase. The lens formed by the water in the deposited drop persists for as long as 3 minutes after the convective spreading process ends due to the long diffusional timescales associated with the underlying entangled polymer solution. The persistence of the lens suggests that the drop phase behaves as if it were immiscible with the subphase during this time period. Whereas surfactant escapes the spreading drop and advances on the subphase/vapor interface, hydrophilic dye molecules in the drop do not escape, but remain with the drop throughout the convective spreading. The quasi-immiscible nature of the spreading event suggests that the chemical properties of the surfactant and subphase are much less important than their physical properties, consistent with prior qualitative studies of spreading of different types of surfactants on entangled polymer subphases: the

  19. Quasi-immiscible spreading of aqueous surfactant solutions on entangled aqueous polymer solution subphases.

    PubMed

    Sharma, Ramankur; Corcoran, Timothy E; Garoff, Stephen; Przybycien, Todd M; Swanson, Ellen R; Tilton, Robert D

    2013-06-26

    Motivated by the possibility of enhancing aerosol drug delivery to mucus-obstructed lungs, the spreading of a drop of aqueous surfactant solution on a physically entangled aqueous poly(acrylamide) solution subphase that mimics lung airway surface liquid was investigated. Sodium dodecyl sulfate was used as the surfactant. To visualize spreading of the drop and mimic the inclusion of a drug substance, fluorescein, a hydrophilic and non-surface-active dye, was added to the surfactant solution. The spreading progresses through a series of events. Marangoni stresses initiate the convective spreading of the drop. Simultaneously, surfactant escapes across the drop's contact line within a second of deposition and causes a change in subphase surface tension outside the drop on the order of 1 mN/m. Convective spreading of the drop ends within 2-3 s of drop deposition, when a new interfacial tension balance is achieved. Surfactant escape depletes the drop of surfactant, and the residual drop takes the form of a static lens of nonzero contact angle. On longer time scales, the surfactant dissolves into the subphase. The lens formed by the water in the deposited drop persists for as long as 3 min after the convective spreading process ends due to the long diffusional time scales associated with the underlying entangled polymer solution. The persistence of the lens suggests that the drop phase behaves as if it were immiscible with the subphase during this time period. Whereas surfactant escapes the spreading drop and advances on the subphase/vapor interface, hydrophilic dye molecules in the drop do not escape but remain with the drop throughout the convective spreading. The quasi-immiscible nature of the spreading event suggests that the chemical properties of the surfactant and subphase are much less important than their physical properties, consistent with prior qualitative studies of spreading of different types of surfactants on entangled polymer subphases: the selection of

  20. Aqueous Rechargeable Alkaline CoxNi2-xS2/TiO2 Battery.

    PubMed

    Liu, Jilei; Wang, Jin; Ku, Zhiliang; Wang, Huanhuan; Chen, Shi; Zhang, Lili; Lin, Jianyi; Shen, Ze Xiang

    2016-01-26

    An electrochemical energy storage system with high energy density, stringent safety, and reliability is highly desirable for next-generation energy storage devices. Here an aqueous rechargeable alkaline CoxNi2-xS2 // TiO2 battery system is designed by integrating two reversible electrode processes associated with OH(-) insertion/extraction in the cathode part and Li ion insertion/extraction in the anode part, respectively. The prototype CoxNi2-xS2 // TiO2 battery is able to deliver high energy/power densities of 83.7 Wh/kg at 609 W/kg (based on the total mass of active materials) and good cycling stabilities (capacity retention 75.2% after 1000 charge/discharge cycles). A maximum volumetric energy density of 21 Wh/l (based on the whole packaged cell) has been achieved, which is comparable to that of a thin-film battery and better than that of typical commercial supercapacitors, benefiting from the unique battery and hierarchical electrode design. This hybrid system would enrich the existing aqueous rechargeable LIB chemistry and be a promising battery technology for large-scale energy storage.

  1. Removal of toxic metals from aqueous solutions by fungal biomass of Agaricus macrosporus.

    PubMed

    Melgar, M J; Alonso, J; García, M A

    2007-10-15

    Fungi such as Agaricus macrosporus show potential for the removal of heavy metals from aqueous solutions contaminated by zinc, copper, mercury, cadmium or lead. This study investigated biosorption of these metals by living or non-living biomass of A. macrosporus from an acid solution, an acid solution supplemented with potassium and phosphorus, and an alkaline solution. Uptake showed a pH-dependent profile. Maximum percentage uptake of all metals was found to occur at alkaline pH (Cu 96%, Pb 89%). With living biomass, metal biosorption was greater and faster in K/P-supplemented acid medium than in non-supplemented acid medium, with equilibrium reached within 15 min for all metals, and the highest percentage uptake being of cadmium (96%). In general, the greatest differences in biosorption capacity were seen for living biomass, between supplemented and non-supplemented acid medium; the smallest differences were between living and dead biomass in alkaline medium. These results support the potential utility of A. macrosporus for heavy metal removal.

  2. The effect of aqueous solution in Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Yuan, Xiaojuan; Dong, Xiao; Gu, Huaimin

    2009-08-01

    In Raman detection, the most popular solution for the samples is tri-distilled water. But the effect of aqueous solution is barely studied in Raman spectroscopy. In fact Raman spectroscopy of solid-state and liquid-state are obvious different. In addition, FWHM of Raman spectral peaks also change evidently. In this paper, several samples were selected for the experiment; including sodium nitrate, sodium nitrite, glucose and caffeine. By comparing the Raman spectroscopy of samples at different concentrations, it is found that the concentration of the sample can affect the strength of Raman spectroscopy, but it can hardly impact FWHM of Raman spectral peaks. By comparing the Raman spectroscopy of liquid-state with the Raman spectroscopy of solid-state, it is observed that the FWHM of some Raman spectral peaks varied obviously; that may be because when the sample was dissolved into the water, the crystal lattice structure was broken, and for some samples atom form became ion form in aqueous solution. Those structural variations caused the variation of the FWHM. The Raman spectroscopy of caffeine aqueous solution at very low concentration was also detected and analyzed. Compared with the Raman spectra of solid-state samples, it is found that some Raman spectral peaks disappeared when the sample was dissolved in water. It is possible that the low concentration of the sample result in the weakening of Raman signals and the disappearing of some weak Raman spectral peaks. Then Ag nanoparticles were added into the caffeine aqueous solution, the results suggest that surface enhanced Raman spectroscopy (SERS) not only can enhance the Raman spectral signal, but also can reduce the effect of aqueous solution. It is concluded that the concentration of sample only affects the strength of Raman spectroscopy; the aqueous solution can affect the FWHM of Raman spectral peaks; and SERS can reduce the effect of aqueous solution.

  3. Development of alkaline solution separations for potential partitioning of used nuclear fuels

    SciTech Connect

    Jarvinen, Gordon D; Runde, Wolfgang H; Goff, George S

    2009-01-01

    The processing of used nuclear fuel in alkaline solution provides potentially useful new selectivity for separating the actinides from each other and f rom the fission products. Over the ast decade, several research teams around the world have considered dissolution of used fuel in alkaline solution and further partitioning in this medium as an alternative to acid dissolution. The chemistry of the actinides and fission products in alkaline soilltion requires extensive investigation to more carefully evaluate its potential for developing useful separation methods for used nuclear fueI.

  4. Near-ultraviolet chemiluminescence from the reaction of ammonia with hypobromite in aqueous solution

    NASA Astrophysics Data System (ADS)

    Francis, Paul S.; Adcock, Jacqui L.; Barnett, Neil W.

    2006-11-01

    The chemiluminescence arising from the oxidation of ammonium chloride by sodium hypobromite in aqueous alkaline solution includes a series of peaks in the near-ultraviolet, which is not commonly observed in liquid-phase chemiluminescence. The dominant peak in that region has an intensity maximum at 292 nm and smaller peaks are observed at 313, 334 and 356 nm. The emitted photons are of similar energy to the Vergard-Kaplan transition of molecular nitrogen, a major product of this reaction. However, the spectral distribution is different to that of previously reported gas-phase chemiluminescence attributed to the Vergard-Kaplan transition.

  5. Mechanism of glycine oxidation catalyzed by pyrroloquinoline quinone in aqueous solution

    NASA Astrophysics Data System (ADS)

    Uchida, Waka; Wakabayashi, Masamitsu; Ikemoto, Kazuto; Nakano, Masahiko; Ohtani, Hiroyuki; Nakamura, Shinichiro

    2015-01-01

    The mechanism of glycine oxidation reaction by PQQ in aqueous solution was investigated. A new crystal structure of PQQ under alkaline conditions was referred to calculate on a quantum chemical basis. Two mechanisms are investigated by this calculation: a 'stepwise' mechanism, namely, a nucleophilic attack on C5 or C4 by the nitrogen atom of glycine, and proton and electron transfer to PQQ. The second mechanism is a 'concerted' mechanism, namely, simultaneous reaction, which does not include the nucleophilic attack and include proton and electron transfer to PQQ.

  6. Titrimetric determination of hydrogen peroxide in alkaline solution.

    PubMed

    McCurdy, W H; Bell, H F

    1966-07-01

    Direct titration of hydrogen peroxide in alkaline bromide media has been accomplished with sodium hypochlorite. The relative standard deviation is 0.2%. A photometric end-point is recommended for the determination of 0.10-1.0 mequiv of peroxide. Larger samples are evaluated by use of Bordeaux Red as visual indicator. The hypochlorite procedure compares favourably with iodometry and permanganate in the analysis of commercial peroxides.

  7. Aqueous solutions at the interface with phospholipid bilayers.

    PubMed

    Berkowitz, Max L; Vácha, Robert

    2012-01-17

    In a sense, life is defined by membranes, because they delineate the barrier between the living cell and its surroundings. Membranes are also essential for regulating the machinery of life throughout many interfaces within the cell's interior. A large number of experimental, computational, and theoretical studies have demonstrated how the properties of water and ionic aqueous solutions change due to the vicinity of membranes and, in turn, how the properties of membranes depend on the presence of aqueous solutions. Consequently, understanding the character of aqueous solutions at their interface with biological membranes is critical to research progress on many fronts. The importance of incorporating a molecular-level description of water into the study of biomembrane surfaces was demonstrated by an examination of the interaction between phospholipid bilayers that can serve as model biological membranes. The results showed that, in addition to well-known forces, such as van der Waals and screened Coulomb, one has to consider a repulsion force due to the removal of water between surfaces. It was also known that physicochemical properties of biological membranes are strongly influenced by the specific character of the ions in the surrounding aqueous solutions because of the observation that different anions produce different effects on muscle twitch tension. In this Account, we describe the interaction of pure water, and also of aqueous ionic solutions, with model membranes. We show that a symbiosis of experimental and computational work over the past few years has resulted in substantial progress in the field. We now better understand the origin of the hydration force, the structural properties of water at the interface with phospholipid bilayers, and the influence of phospholipid headgroups on the dynamics of water. We also improved our knowledge of the ion-specific effect, which is observed at the interface of the phospholipid bilayer and aqueous solution, and its

  8. Interactions of Cl- and OH radical in aqueous solution.

    PubMed

    Valiev, Marat; D'Auria, Raffaella; Tobias, Douglas J; Garrett, Bruce C

    2009-08-06

    There is a considerable controversy surrounding the nature of the Cl-/OH complex in aqueous solution, which appears as a byproduct of the irradiation of salt solutions in nuclear reactor operation, radioactive waste storage, medicine, and environmental problems. In this work, we report results of combined quantum mechanical molecular mechanics calculations of ground-state free-energy surfaces and absorption spectrum through the CCSDT level of theory that are consistent with the experimental data and suggest that hemibonded HOCl- species may indeed exist in bulk aqueous solution.

  9. ``Phase'' Behavior of Aqueous Solutions of Poly(N-isopropylacrylamide)

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Tomoaki; Kobayashi, Kunihiko; Osa, Masashi; Yoshizaki, Takenao

    2008-03-01

    A series of linear poly(N-isopropylacrylamide)(PNIPAM) samples were prepared by living anionic polymerization. The cloud-point curves for their aqueous solutions were determined by monitoring the transmittance of light through the solutions. The transmittance decreased monotonically with increasing temperature below the cloud point, as expected, but unexpectedly, it remained at a constant value if heating was stopped at a temperature. It means that the decrease in transmittance with increasing temperature does not necessarily correspond to the phase separation, i.e., the cloud-point curve for an aqueous solution of PNIPAM is not always identical with the coexistence curve.

  10. SOLVENT EXTRACTION OF THORIUM VALUES FROM AQUEOUS SOLUTIONS

    DOEpatents

    Warf, J.C.

    1959-04-21

    The separation of thorium values from rare earth metals contained ln aqueous solutions by means of extraction with a water immiscible alkyl phosphate diluted with a hydrocarbon such as hexane is described. While the extraction according to this invention may be carried out from any aqueous salt solution, it is preferred to use solutions containing free mineral acid. Hydrochloric acid and in particular nitric acid are sultable in a concentration ranging from 0.1 to 7 normal. The higher acid concentration results in higher extraction values.

  11. SEPARATION OF TECHNETIUM FROM AQUEOUS SOLUTIONS BY COPRECIPITATION WITH MAGNETITE

    DOEpatents

    Rimshaw, S.J.

    1961-10-24

    A method of separating technetium in the 4+ oxidation state from an aqueous basic solution containing products of uranium fission is described. The method consists of contacting the solution with finely divided magnetite and recovering a technetium-bearing precipitate. (AEC)

  12. Acidities of Water and Methanol in Aqueous Solution and DMSO

    ERIC Educational Resources Information Center

    Gao, Daqing

    2009-01-01

    The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…

  13. Acidities of Water and Methanol in Aqueous Solution and DMSO

    ERIC Educational Resources Information Center

    Gao, Daqing

    2009-01-01

    The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…

  14. Properties of aqueous solutions in THz frequency range

    NASA Astrophysics Data System (ADS)

    Cherkasova, O.; Nazarov, M.; Shkurinov, A.

    2017-01-01

    Terahertz time-domain spectroscopy has been used for measuring of bovine serum albumin and glucose solutions response. The transmission and the attenuated total internal reflection geometries have been combined for analyzing the dielectric properties of aqueous solutions spectra at 0.07-3.2 THz.

  15. REMOVAL OF CESIUM BY SORPTION FROM AQUEOUS SOLUTIONS

    DOEpatents

    Ames, L.L.

    1962-01-16

    ABS>A process is given for selectively removing cesium from acid aqueous solutions containing cesium in microquantities and other cations in macroquantities by absorption on clinoptilolite. The cesium can be eluted from the clinoptilolite with a solution of ammonia, potassium hydroxide, or rubidium hydroxide. (AEC)

  16. Molecular dynamics simulation of aqueous solutions of glycine betaine

    NASA Astrophysics Data System (ADS)

    Civera, Monica; Fornili, Arianna; Sironi, Maurizio; Fornili, Sandro L.

    2003-01-01

    Molecular dynamics simulation is used to investigate hydration properties of glycine betaine in a large range of solute concentrations. Statistical analyses of the system trajectories evidence microscopic details suggesting an interpretation of experimental results recently obtained for aqueous solutions of trimethylamine- N-oxide, a bioprotectant closely related to glycine betaine.

  17. Adsorption of arsenic from aqueous solution using magnetic graphene oxide

    NASA Astrophysics Data System (ADS)

    Sherlala, A. I. A.; Raman, A. A.; Bello, M. M.

    2017-06-01

    A binary of graphene oxide (GO) and iron oxide (IO) was prepared and used for the removal of arsenic from aqueous solution. The synthesized compound was characterized using XRD analysis. The prepared composite was used for the adsorption of arsenic from aqueous solution. Central Composite Design was used to design the adsorption experiments and to investigate the effects of operational parameters (initial concentration of arsenic, adsorbent dosage, pH and time) on the adsorption capacity and efficiency. The adsorbent shows a high adsorption capacity for the arsenic. The adsorption efficiency ranges between 33.2 % and 99.95 %. The most significant factors affecting the adsorption capacity were found to be the initial concentration of arsenic and the adsorbent dosage. The initial pH of the solution slightly affects the adsorption capacity, with the maximum adsorption capacity occurring around pH 6 - 7. Thus, the developed adsorbent has a potential for effective removal of arsenic from aqueous solution.

  18. Antiscalant properties of Spergularia rubra and Parietaria officinalis aqueous solutions

    NASA Astrophysics Data System (ADS)

    Cheap-Charpentier, Hélène; Gelus, Dominique; Pécoul, Nathalie; Perrot, Hubert; Lédion, Jean; Horner, Olivier; Sadoun, Jonathan; Cachet, Xavier; Litaudon, Marc; Roussi, Fanny

    2016-06-01

    The formation of calcium carbonate in water has important implications in industry. Chemical antiscalant is usually used to control scale depositions. Plant extracts have been recently used as new green antiscalant agents, as they can be easily prepared and are environmentally friendly. In this study, stock aqueous solutions of Spergularia rubra and Parietaria officinalis, two plants used in traditional medicine to treat or prevent urolithiasis, were obtained by infusion. The antiscaling properties of these extracts towards CaCO3 formation were tested by using chronoamperometry and Fast Controlled Precipitation methods. The aqueous solution of S. rubra was further fractionated to isolate compounds of lower polarity. Their efficiency towards CaCO3 precipitation was characterized by Fast Controlled Precipitation method. The inhibiting efficiency of this fractionated solution was greater than that of the stock aqueous solution.

  19. Ion clustering in aqueous solutions probed with vibrational energy transfer

    PubMed Central

    Bian, Hongtao; Wen, Xiewen; Li, Jiebo; Chen, Hailong; Han, Suzee; Sun, Xiuquan; Song, Jian; Zhuang, Wei; Zheng, Junrong

    2011-01-01

    Despite prolonged scientific efforts to unravel the hydration structures of ions in water, many open questions remain, in particular concerning the existences and structures of ion clusters in 1∶1 strong electrolyte aqueous solutions. A combined ultrafast 2D IR and pump/probe study through vibrational energy transfers directly observes ion clustering in aqueous solutions of LiSCN, NaSCN, KSCN and CsSCN. In a near saturated KSCN aqueous solution (water/KSCN molar ratio = 2.4/1), 95% of the anions form ion clusters. Diluting the solution results in fewer, smaller, and tighter clusters. Cations have significant effects on cluster formation. A small cation results in smaller and fewer clusters. The vibrational energy transfer method holds promise for studying a wide variety of other fast short-range molecular interactions.

  20. EMERGING TECHNOLOGY BULLETIN: REMOVAL OF PHENOL FROM AQUEOUS SOLUTIONS USING HIGH ENERGY ELECTRON BEAM IRRADIATION

    EPA Science Inventory

    Irradiation of aqueous solutions with high-energy electrons results in the formation of the aqueous electron, hydrogen radical, H-, and the hydroxyl radical, OH-. These reactive transient species initiate chemical reactions capable of destroying organic compounds in aqueous solut...

  1. On crack closure of precipitation hardened steels in aqueous solution

    NASA Astrophysics Data System (ADS)

    Hamano, R.

    1989-06-01

    Fatigue crack propagation tests were carried out in air and in a 3.5 pct NaCl aqueous solution under cathodic potential of -0.85 V (Ag/AgCl) for aged-hardened high strength steel (Ni-Al-Cr-Mo-C steel). the emphasis in the study was placed on the crack closure behavior of age-hardened materials in air and in the NaCl aqueous solution. The degree of crack closure in air was dependent on the behavior of plastic deformation such as inhomogeneous or homogeneous slip under mixed modes I and II. The underaged material containing coherent precipitates with the matrix had a higher crack opening load in air, compared with the overaged steel containing incoherent precipitates with the matrix. The degrec of crack closure of the underaged material in the NaCl aqueous solution was lower than that in air and was similar to that of overaged materials in the NaCl aqueous solution. It was shown that the decreased crack closure level for the underaged material resulted from accelerated fatigue crack growth under mode I due to hydrogen embrittlement in the aqueous solution.

  2. Study of the stability of tylosin A in aqueous solutions.

    PubMed

    Paesen, J; Cypers, W; Pauwels, K; Roets, E; Hoogmartens, J

    1995-08-01

    The decomposition of the 16-membered ring macrolide antibiotic tylosin A in aqueous buffers has been investigated in the pH range 2-13, by means of a liquid chromatographic assay with ultraviolet detection at 280 nm. In acidic medium, tylosin A is converted into tylosin B, while in neutral and alkaline medium, tylosin A aldol is formed together with a number of polar decomposition products of unknown identity. The decomposition kinetics have been studied as a function of the type and concentration of the buffer, ionic strength, pH and temperature.

  3. Effect of various alkaline metal ions on electrochemical behavior of lead electrode in sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Hirai, Nobumitsu; Yamamoto, Yui

    2015-10-01

    The effect of various alkaline metal ions on electrochemical behavior of lead electrode in sulfuric acid solution has been investigated. It was found that ;the specific anodic oxidation peak; appears at the cathodic scan in cyclic voltammogram of lead electrode in sulfuric acid solution containing Li2SO4, K2SO4, Na2SO4, Rb2SO4, or Cs2SO4. The height of the specific anodic oxidation peak varies with the alkaline sulfate in the solution; K2SO4 >> Na2SO4 > Cs2SO4 > Rb2SO4 > Li2SO4. It should be note that alkaline ions exist in lead sulfate formed on lead electrode in sulfuric acid solution containing potassium sulfate when the electrode was immersed in the solution at the rest potential for more than 1 h.

  4. Structural and thermal characterization of hemicelluloses isolated by organic solvents and alkaline solutions from Tamarix austromongolica.

    PubMed

    Sun, Yong-Chang; Wen, Jia-Long; Xu, Feng; Sun, Run-Cang

    2011-05-01

    Three organosolv and three alkaline hemicellulosic fractions were prepared from lignocellulosic biomass of the fast-growing shrub Tamarix austromongolica (Tamarix Linn.). Sugar analysis revealed that the organosolv-soluble fractions contained a higher content of glucose (33.7-6.5%) and arabinose (14.8-5.6%), and a lower content of xylose (62.2-54.8%) than the hemicellulosic fractions isolated with aqueous alkali solutions. A relatively high concentration of alkali resulted in a decreasing trend of the xylose/4-O-methyl-D-glucuronic acid ratio in the alkali-soluble fractions. The results of NMR analysis supported a major substituted structure based on a linear polymer of β-(1→4)-linked d-xylopyranosyl residues, having ramifications of α-L-arabinofuranose and 4-O-methyl-D-glucuronic acid residues monosubstituted at O-3 and O-2, respectively. Thermogravimetric analysis revealed that one step of major mass loss occurred between 200-400°C, as hemicelluloses devolatilized with total volatile yield of about 55%. It was found that organosolv-soluble fractions are more highly ramified, and showed a higher thermal stability than the alkali-soluble fractions.

  5. Surface tension of low-temperature aqueous solutions

    SciTech Connect

    Horibe, A.; Fukusako, S.; Yamada, M.

    1996-03-01

    Measurements of the surface tension have been carried out to determine the effects of both temperature and concentration on the surface tension of aqueous solutions of sodium chloride, propylene glycol, and ethylene glycol. A differential capillary-rise method was employed for the measurements. The results show that the surface tension of the ethylene glycol solution and the propylene glycol solution increases as the concentration of the solution decreases, while for the sodium chloride solution the surface tension increases monotonically as the concentration increases. The surface tension of the liquids was found to be an almost-linear function of temperature from 20{degrees}C to just above the freezing temperature. Equations for the surface tension of the three binary aqueous solutions as a function of temperature and concentration are presented.

  6. Reactivity of Tannic Acid with Common Corrosion Products and Its Influence on the Hydrolysis of Iron in Alkaline Solutions

    NASA Astrophysics Data System (ADS)

    Jaén, J. A.; Araúz, E. Y.; Iglesias, J.; Delgado, Y.

    2003-06-01

    To ascertain the role of tannic acid in the anticorrosive protection of steels, the reaction between 5% tannic acid aqueous solutions with lepidocrocite, goethite, superparamagnetic goethite, akaganeite, poorly crystalline maghemite, magnetite and hematite was studied using color changes, infrared and Mössbauer spectroscopy. After three months of interaction with lepidocrocite, the formation of an iron tannate complex was detected by its dark blue color and confirmed by infrared and Mössbauer analysis. Evidence for the chemical transformation was obtained for goethite in nanoparticles and poorly crystalline maghemite after reaction for six months. The other iron compounds do not transform to another oxide or phase upon treatment with the tannic acid solution. These results showed that lepidocrocite is the most reactive phase and that the size and degree of crystallinity have strong influence on the formation of the tannate complexes. The precipitation of iron phases from alkaline solutions of iron (II) sulfate heptahydrate containing different amount of tannic acid and potassium nitrate as oxidative agent was also studied. Mössbauer and infrared results show that in the absence of tannic acid some common rust components are obtained (viz. goethite, superparamagnetic goethite, maghemite and non-stoichiometric magnetite). The presence of 0.1% tannic acid in a low alkalinity solution results in the precipitation of iron oxyhydroxides and some iron tannates. Concentrations of 1% tannic acid are required for the formation of the tannates complexes as main reaction product.

  7. Preparation and utilization of wheat straw anionic sorbent for the removal of nitrate from aqueous solution.

    PubMed

    Wang, Yu; Gao, Bao-yu; Yue, Wen-wen; Yue, Qin-yan

    2007-01-01

    In order to reduce the impact of eutrophication caused by agricultural residues (i.e., excess nitrate) in aqueous solution, economic and effective anionic sorbents are required. In this article, we prepared anionic sorbent using wheat straw. Its structural characteristics and adsorption properties for nitrate removal from aqueous solution were investigated. The results indicate that the yield of the prepared anionic sorbent, the total exchange capacity, and the maximum adsorption capacity were 350%, 2.57 mEq/g, and 2.08 mmol/g, respectively. The Freundlich isotherm mode is more suitable than the Langmuir mode and the adsorption process accords with the first order reaction kinetic rate equation. When multiple anions (SO4(2-), H2PO4(-), NO3(-), and NO2(-)) were present, the isotherm mode of prepared anionic sorbent for nitrate was consistent with Freundlich mode; however, the capacity of nitrate adsorption was reduced by 50%. In alkaline solutions, about 90% of adsorbed nitrate ions could be desorbed from prepared anionic sorbent. The results of this study confirmed that the wheat straw anionic sorbent can be used as an excellent nitrate sorbent that removes nitrate from aqueous solutions.

  8. Mesoscale inhomogeneities in aqueous solutions of small amphiphilic molecules.

    PubMed

    Subramanian, Deepa; Boughter, Christopher T; Klauda, Jeffery B; Hammouda, Boualem; Anisimov, Mikhail A

    2013-01-01

    Small amphiphilic molecules, also known as hydrotropes, are too small to form micelles in aqueous solutions. However, aqueous solutions of nonionic hydrotropes show the presence of a dynamic, loose, non-covalent clustering in the water-rich region, This clustering can be viewed as "micelle-like structural fluctuations". Although these fluctuations are short ranged (approximately 1 nm) and short lived (10 ps-50 ps), they may lead to thermodynamic anomalies. In addition, many experiments on aqueous solutions of hydrotropes show the occasional presence of mesoscale (approximately 100 nm) inhomogeneities. We have combined results obtained from molecular dynamics simulations, small-angle neutron scattering, and dynamic light-scattering experiments carried out on tertiary butyl alcohol (hydrotrope)-water solutions and on tertiary butyl alcohol-water-cyclohexane (hydrophobe) solutions to elucidate the nature and structure of these inhomogeneities. We have shown that stable mesoscale inhomogeneities occur in aqueous solutions of nonionic hydrotropes only when the solution contains a third, more hydrophobic, component. Moreover, these inhomogeneities exist in ternary systems only in the concentration range where structural fluctuations and thermodynamic anomalies are observed in the binary water-hydrotrope solutions. Addition of a hydrophobe seems to stabilize the water-hydrotrope structural fluctuations, and leads to the formation of larger (mesoscopic) droplets. The structure of these mesoscopic droplets is such that they have a hydrophobe-rich core, surrounded by a hydrogen-bonded shell of water and hydrotrope molecules. These droplets can be extremely long-lived, being stable for over a year. We refer to the phenomenon of formation of mesoscopic droplets in aqueous solutions of nonionic hydrotropes containing hydrophobes, as mesoscale solubilization. This phenomenon may represent a ubiquitous feature of nonionic hydrotropes that exhibit clustering in water, and may have

  9. Reorientation and Allied Dynamics in Water and Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Laage, Damien; Stirnemann, Guillaume; Sterpone, Fabio; Rey, Rossend; Hynes, James T.

    2011-05-01

    The reorientation of a water molecule is important for a host of phenomena, ranging over—in an only partial listing—the key dynamic hydrogen-bond network restructuring of water itself, aqueous solution chemical reaction mechanisms and rates, ion transport in aqueous solution and membranes, protein folding, and enzymatic activity. This review focuses on water reorientation and related dynamics in pure water, and for aqueous solutes with hydrophobic, hydrophilic, and amphiphilic character, ranging from tetra-methylurea to halide ions and amino acids. Attention is given to the application of theory, simulation, and experiment in the probing of these dynamics, in usefully describing them, and in assessing the description. Special emphasis is placed on a novel sudden, large-amplitude jump mechanism for water reorientation, which contrasts with the commonly assumed Debye rotational diffusion mechanism, characterized by small-amplitude angular motion. Some open questions and directions for further research are also discussed.

  10. Separation and concentration of lower alcohols from dilute aqueous solutions

    DOEpatents

    Moore, Raymond H.; Eakin, David E.; Baker, Eddie G.; Hallen, Richard T.

    1991-01-01

    A process for producing, from a dilute aqueous solution of a lower (C.sub.1 -C.sub.5) alcohol, a concentrated liquid solution of the alcohol in an aromatic organic solvent is disclosed. Most of the water is removed from the dilute aqueous solution of alcohol by chilling sufficiently to form ice crystals. Simultaneously, the remaining liquid is extracted at substantially the same low temperature with a liquid organic solvent that is substantially immiscible in aqueous liquids and has an affinity for the alcohol at that temperature, causing the alcohol to transfer to the organic phase. After separating the organic liquid from the ice crystals, the organic liquid can be distilled to enrich the concentration of alcohol therein. Ethanol so separated from water and concentrated in an organic solvent such as toluene is useful as an anti-knock additive for gasoline.

  11. Electrochemical Removal Of Selenate From Aqueous Solutions

    PubMed Central

    Baek, Kitae; Kasem, Naji; Ciblak, Ali; Vesper, Dorothy; Padilla, Ingrid; Alshawabkeh, Akram N.

    2013-01-01

    Removal of selenate from solution is investigated in batch electrochemical systems using reactive iron anodes and copper plate cathode in a bicarbonate medium. Iron anodes produce ferrous hydroxide, which is a major factor in the removal of selenate from solution. Iron anodes also generate a significant decrease in the oxidation-reduction potential (ORP) of the solution because it prevents generation of oxygen gas at the anode by electrolysis. The removal rates varied from 45.1 to 97.4%, depending on current density and selenate concentration. The transformation of selenate by the process is modeled based on a heterogeneous reaction coupled with electrochemical generation of ferrous and hydroxide. The rates are optimized at lower initial concentrations, higher electrical currents, and the presence of anions. Presence of dissolved oxygen does not cause any significant effects the removal of selenate. PMID:23378820

  12. Oxidation of Hydrazine in Aqueous Solutions

    DTIC Science & Technology

    1978-03-01

    mechanism is different in the two different temperature regions [ Levenspiel (Reference 21)]. Lurker (Reference 7) also observed that at 6°C a kinetic...and Bielski, B., Kinetic Systems: Mathematical Descriptions of Chemical Kinetics in Solution, Wiley Interscience, New York (1972). 21. Levenspiel , 0

  13. [Extraction of alpha-cypermethrin from aqueous methanol solutions].

    PubMed

    Shormanov, V K; Chigareva, E N; Belousova, O V

    2010-01-01

    Alpha cypermethrin was extracted from aqueous methanol solutions using hydrophobic organic solvents. The efficiency of extraction was shown to depend on the chemical nature of the solvent, the water to methanol ratio, and saturation of the aqueous methanol layer with an electrolyte. Optimal extraction of alpha-cypermethrin was achieved using toluene as the solvent under desalinization conditions. The extraction factor for the removal of the sought amount of alpha-cypermethrin from the water-methanol solution (4:1) using various solvents was calculated.

  14. Method for removing organic liquids from aqueous solutions and mixtures

    DOEpatents

    Hrubesh, Lawrence W.; Coronado, Paul R.; Dow, Jerome P.

    2004-03-23

    A method for removing organic liquids from aqueous solutions and mixtures. The method employs any porous material preferably in granular form and having small pores and a large specific surface area, that is hydrophobic so that liquid water does not readily wet its surface. In this method, organics, especially organic solvents that mix with and are more volatile than water, are separated from aqueous solution by preferentially evaporating across the liquid/solid boundary formed at the surfaces of the hydrophobic porous materials. Also, organic solvents that are immiscible with water, preferentially wet the surfaces of the hydrophobic material and are drawn within the porous materials by capillary action.

  15. Photochemical properties of Yt base in aqueous solution.

    PubMed Central

    Paszyc, S; Rafalska, M

    1979-01-01

    Photoreactivity of Yt base [I] has been studied in aqueous solution [pH approximately 6] saturated with oxygen. Two photoproducts (II,III], resulting from irradiation at lambda = 253.7 nm and lambda greater than or equal to 290 nm, were isolated and their structures determined. The quantum yield for Yt base disappearance [zeta dis] is 0.002 [lambda = 313 nm]. It was shown that dye-sensitized photooxidation of Yt base in aqueous solution occurs according to a Type I mechanism, as well as with participation of singlet state oxygen. Quantum yields, fluorescence decay times and phosphorescence of Yt base have been also determined. PMID:424298

  16. Photodegradation of triazine herbicides in aqueous solutions and natural waters.

    PubMed

    Evgenidou, E; Fytianos, K

    2002-10-23

    The photodegradation of three triazines, atrazine, simazine, and prometryn, in aqueous solutions and natural waters using UV radiation (lambda > 290 nm) has been studied. Experimental results showed that the dark reactions were negligible. The rate of photodecomposition in aqueous solutions depends on the nature of the triazines and follows first-order kinetics. In the case of the use of hydrogen peroxide and UV radiation, a synergistic effect was observed. The number of photodegradation products detected, using FIA/MS and FIA/MS/MS techniques, suggests the existence of various degradation routes resulting in complex and interconnected pathways.

  17. Valence Electronic Structure of Aqueous Solutions: Insights from Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Seidel, Robert; Winter, Bernd; Bradforth, Stephen E.

    2016-05-01

    The valence orbital electron binding energies of water and of embedded solutes are crucial quantities for understanding chemical reactions taking place in aqueous solution, including oxidation/reduction, transition-metal coordination, and radiation chemistry. Their experimental determination based on liquid-photoelectron spectroscopy using soft X-rays is described, and we provide an overview of valence photoelectron spectroscopy studies reported to date. We discuss principal experimental aspects and several theoretical approaches to compute the measured binding energies of the least tightly bound molecular orbitals. Solutes studied are presented chronologically, from simple electrolytes, via transition-metal ion solutions and several organic and inorganic molecules, to biologically relevant molecules, including aqueous nucleotides and their components. In addition to the lowest vertical ionization energies, the measured valence photoelectron spectra also provide information on adiabatic ionization energies and reorganization energies for the oxidation (ionization) half-reaction. For solutes with low solubility, resonantly enhanced ionization provides a promising alternative pathway.

  18. Valence Electronic Structure of Aqueous Solutions: Insights from Photoelectron Spectroscopy.

    PubMed

    Seidel, Robert; Winter, Bernd; Bradforth, Stephen E

    2016-05-27

    The valence orbital electron binding energies of water and of embedded solutes are crucial quantities for understanding chemical reactions taking place in aqueous solution, including oxidation/reduction, transition-metal coordination, and radiation chemistry. Their experimental determination based on liquid-photoelectron spectroscopy using soft X-rays is described, and we provide an overview of valence photoelectron spectroscopy studies reported to date. We discuss principal experimental aspects and several theoretical approaches to compute the measured binding energies of the least tightly bound molecular orbitals. Solutes studied are presented chronologically, from simple electrolytes, via transition-metal ion solutions and several organic and inorganic molecules, to biologically relevant molecules, including aqueous nucleotides and their components. In addition to the lowest vertical ionization energies, the measured valence photoelectron spectra also provide information on adiabatic ionization energies and reorganization energies for the oxidation (ionization) half-reaction. For solutes with low solubility, resonantly enhanced ionization provides a promising alternative pathway.

  19. Silica encapsulation of thiol-stabilized lead selenide (PbSe) quantum dots in aqueous solution.

    PubMed

    Primera-Pedrozo, Oliva M; Ates, Mehmet; Arslan, Zikri

    2013-07-01

    Silica encapsulation of lead selenide quantum dots (PbSe QDs) in aqueous solution is reported. Thioglycolic acid (TGA) stabilized PbSe QDs were modified with 3-mercaptopropyl trimethoxysilane (MPS) through vigorous stirring in water for 18-24 h in alkaline solution (pH 10.4-10.6). Silica shell was developed by controlled deposition and precipitation of silicates from sodium silicate solution onto MPS modified QDs surfaces. TEM images showed multiple PbSe QDs encapsulated in silica shell. The size of PbSe-SiO2 core-shell nanocrystals was estimated to be 25-30 nm by TEM. Elemental compositions (Pb, Se and Si) were investigated by EDX analysis. The purified colloids of PbSe-SiO2 QDs were stable for months when kept at 4 °C.

  20. Binding sites of chlorpheniramine on 1:1 layered kaolinite from aqueous solution.

    PubMed

    Lv, Guocheng; Wu, Limei; Li, Zhaohui; Liao, Libing; Liu, Meitang

    2014-06-15

    Interactions between chlorpheniramine (CP), an antihistamine drug used to treat allergy, and kaolinite in aqueous solution were investigated under batch studies and molecular simulations. The CP adsorption was relatively fast with a large rate constant. The CP adsorption capacity on kaolinite was 25 mmol/kg, about the same magnitude of the cation exchange capacity of kaolinite. Molecular dynamic simulation showed that the edges of kaolinite were responsible for the uptake of CP, while a net repulsive interaction between the basal plane and CP molecules was obtained. As the broken bond effect of kaolinite was strongly affected by solution pH via protonation-deprotonation of kaolinite edges, a higher CP adsorption was achieved under neutral to weak alkaline solution. It was the charge density, rather than the surface area, that ultimately controlled the amount of CP adsorption on kaolinite.

  1. Evaluation of a process for aqueous alkaline digestion of biomass to produce a liquid fuel

    SciTech Connect

    Alexander, B.F.

    1983-01-01

    The aqueous alkaline digestion of microcrystalline cellulose was studied over the temperature range of 480-540/sup 0/F (249-282/sup 0/C), residence times of 10-25 minutes and catalyst (Na/sub 2/CO/sub 3/) loadings of 11-76 g/kg. Addition of carbon monoxide and synthesis gas (50/50 mole ratio CO/H/sub 2/) and recycle of aqueous phase products were also investigated. The information gained from the experimental program plus that available in the literature was used to design a plant for conversion of wood to fuel oil. The cost of producing oil was then calculated based on this design. A maximum recoverable oil yield of about 28 wt%, based on dry cellulose was achieved without recycle. This was generally obtained at 510-540/sup 0/F (266-282/sup 0/C), residence times of 20 minutes or longer and catalyst loadings of 50-60 g/kg. Adding up to 300 psi of CO or 300 psi each of CO and H/sub 2/ before the run had no effect on oil yields. The maximum could be achieved at several combinations of conditions, and although the reaction rate was increased by higher temperatures or by adding CO, the final oil yield was the same. As much as half of the water soluble product was converted to oil by passing it back through the reactor with fresh cellulose and catalyst. This increased the overall yield to 36 wt% from 27 wt%, based on cellulose. The oil phase product contained about 20 wt% oxygen and the aqueous phase close to 50 wt%. The oil was also quite viscous, with a pour point of around 80/sup 0/F (27/sup 0/C). The plant design is different from those proposed by Bechtel, Stanford Research Institute and others in three ways: no CO is fed to the reactor, reaction conditions are relatively mild (520/sup 0/F, 271/sup 0/C) and a moderate hydrogenation (1440 SCF H/sub 2//bbl) step is used to stabilize the oil. The cost of producing the oil is estimated to be $88-146/bbl, depending on the wood price ($15-45/dry ton) and oil yield in a commercial plant (37-47 wt%, based on dry wood).

  2. Absorption into silicone rubber membranes from powders and aqueous solutions.

    PubMed

    McCarley, Kelly D; Bunge, Annette L

    2003-01-02

    This study compared the rate and amount of absorption from aqueous solutions and pure powders of 3- and 4-cyanophenol (CP) into silicone rubber (SR) membranes. SR membranes were cast directly onto a zinc-selenide attenuated total reflectance (ATR) crystal, which was then mounted on a Fourier transform infrared (FTIR) spectrometer. CP was presented to the SR membrane from aqueous solutions or powders sufficient to completely cover the membrane surface. The concentration of CP in the membrane at the interface with the crystal was determined by IR absorption of the C triple bond N stretch. The amount of CP in the SR membrane at steady state was determined by extraction and UV absorption measurements of the extract. The concentration of CP in SR membranes was found to depend weakly on the concentration of the aqueous solution. The amount of CP in SR membranes equilibrated with pure powders was essentially the same as for the CP-saturated solutions. Diffusion coefficients for 3 and 4-CP (2.8+/-0.2 and 2.5+/-0.6 x 10(-7) cm(2) s(-1), respectively) were not statistically different. The absorption rate of CP into SR membranes was almost the same from the powder and aqueous solution indicating that the rate of mass transfer from the powder to membrane was larger than 0.04 cm h(-1).

  3. Phosphorylation of Glyceric Acid in Aqueous Solution Using Trimetaphosphate

    NASA Technical Reports Server (NTRS)

    Kolb, Vera; Orgel, Leslie E.

    1996-01-01

    The phosphorylation of glyceric acid is an interesting prebiotic reaction because it converts a simple, potentially prebiotic organic molecule into phosphate derivatives that are central to carbohydrate metabolism. We find that 0.05 M glyceric acid in the presence of 0.5 M trimetaphosphate in alkaline solution gives a mixture of 2- and 3-phosphoglyceric acids in combined yields of up to 40%.

  4. Phosphorylation of glyceric acid in aqueous solution using trimetaphosphate

    NASA Astrophysics Data System (ADS)

    Kolb, Vera; Orgel, Leslie E.

    1996-02-01

    The phosphorylation of glyceric acid is an interesting prebiotic reaction because it converts a simple, potentially prebiotic organic molecule into phosphate derivatives that are central to carbohydrate metabolism. We find that 0.05 M glyceric acid in the presence of 0.5 M trimetaphosphate in alkaline solution gives a mixture of 2- and 3-phosphoglyceric acids in combined yields of up to 40%.

  5. Automated iodine monitor system. [for aqueous solutions

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The feasibility of a direct spectrophotometric measurement of iodine in water was established. An iodine colorimeter, was built to demonstrate the practicality of this technique. The specificity of this method was verified when applied to an on-line system where a reference solution cannot be used, and a preliminary design is presented for an automated iodine measuring and controlling system meeting the desired specifications. An Automated iodine monitor/controller system based on this preliminary design was built, tested, and delivered to the Johnson Space Center.

  6. Photocatalytic degradation of molinate in aqueous solutions.

    PubMed

    Bizani, E; Lambropoulou, D; Fytianos, K; Poulios, I

    2014-11-01

    In this study, the degradation of molinate through heterogeneous photocatalysis, using two different types of the semiconductor TiO2 as photocatalyst, as well as through homogeneous treatment, applying the photo-Fenton reaction, has been investigated. As far as heterogeneous photocatalysis is concerned, the degradation of the pesticide follows apparent first-order kinetics, while the type of the catalyst and the pH value of the solution affect the degradation rate. The effect of the addition of electron scavengers (H2O2 and K2S2O8) was also studied. In the case of photo-Fenton-assisted system, the degradation also follows pseudo-first-order kinetics. Parameters such as iron's and electron scavenger's concentration and inorganic ions strongly affect the degradation rate. The extent of pesticide mineralization was investigated using dissolved organic carbon (DOC) measurements. The toxicity of the treated solution was evaluated using the Microtox test based on the luminescent bacteria Vibrio fischeri. The detoxification and mineralization efficiency was found to be dependent on the system studied, and although it did not follow the rate of pesticide disappearance, it took place in considerable extent. The study of the photodegradation treatment was completed by the determination of the intermediate by-products formed during the process, which was carried out using LC-MS/MS technique and led to similar compounds with both processes.

  7. Ultrasonic degradation of sulfadiazine in aqueous solutions.

    PubMed

    Lastre-Acosta, Arlen Mabel; Cruz-González, Germán; Nuevas-Paz, Lauro; Jáuregui-Haza, Ulises Javier; Teixeira, Antonio Carlos Silva Costa

    2015-01-01

    Advanced oxidation methods, like ultrasound (US), are a promising technology for the degradation of emerging pollutants in water matrices, such as sulfonamide antibiotics. Nevertheless, few authors report the degradation of sulfonamides by high-frequency US (>100 kHz), and limited information exist concerning the use of ultrasonic-driven processes in the case of sulfadiazine (SDZ). In this study, SDZ degradation was investigated with the aim to evaluate the influence of initial concentration, pH and US frequency, and power. Ultrasonic frequencies of 580, 862, and 1,142 kHz at different power values and SDZ initial concentrations of 25, 50, and 70 mg L(-1) were used. The results show that SDZ degradation followed pseudo first-order reaction kinetics with k values and percent removals decreasing for increasing solute initial concentration. Higher SDZ percent removals and removal rates were observed for the lowest operating frequency (580 kHz), higher dissipated power, and in slightly acidic solution (pH 5.5). Addition of the radical scavenger n-butanol confirmed that hydroxyl radical-mediated reactions at the interface of the cavitation bubbles are the prevailing degradation mechanism, which is directly related to the pKa-dependent speciation of SDZ molecules. Finally, addition of H2O2 had a detrimental effect on SDZ degradation, whereas the addition of the Fenton reagent showed a positive effect, revealing to be a promising alternative for the removal of sulfadiazine.

  8. Optical properties of DNA in aqueous solution.

    PubMed

    Umazano, J P; Bertolotto, J A

    2008-04-01

    In the study of DNA electric birefringence, it is usual to use theories that consider that molecules in solution are small in relation to the light wavelength. In this work, we study the DNA electric birefringence using a broken-rod macroion (BRM) model composed of two cylindrical arms which does not restrict the size of the molecules. To achieve this, we include the inhomogeneity effect of the light electric field through the molecule and the interaction between its different parts. To analyze the interaction between a molecule and the incident beam of light, we apply the discrete dipole approximation (DDA), according to which each molecule is described as a finite array of electronic coupled oscillators. The electric birefringence is calculated from the oscillator polarizability. This is obtained from experimental data of electric birefringence saturation and from the increment of the solution refraction index in relation to that of the solvent. Furthermore, the oscillator polarizability is also estimated from DNA absorption spectrum using the Kronig-Kramers relations. This allows us to analyze the contributions of the different absorption bands of DNA to the electric birefringence. We analyze the influence of the inhomogeneity of the light electric field and of the intramolecular interactions in the characterization of DNA optical properties using electric birefringence measurements.

  9. Dissociation of methane hydrate in aqueous NaCl solutions.

    PubMed

    Yagasaki, Takuma; Matsumoto, Masakazu; Andoh, Yoshimichi; Okazaki, Susumu; Tanaka, Hideki

    2014-10-09

    Molecular dynamics simulations of the dissociation of methane hydrate in aqueous NaCl solutions are performed. It is shown that the dissociation of the hydrate is accelerated by the formation of methane bubbles both in NaCl solutions and in pure water. We find two significant effects on the kinetics of the hydrate dissociation by NaCl. One is slowing down in an early stage before bubble formation, and another is swift bubble formation that enhances the dissociation. These effects arise from the low solubility of methane in NaCl solution, which gives rise to a nonuniform spatial distribution of solvated methane in the aqueous phase. We also demonstrate that bubbles form near the hydrate interface in dense NaCl solutions and that the hydrate dissociation proceeds inhomogeneously due to the bubbles.

  10. Drag enhancement of aqueous electrolyte solutions in turbulent pipe flow.

    PubMed

    Doherty, Andrew P; Spedding, Peter L; Chen, John J J

    2010-04-22

    Detailed experimental results are presented for both laminar and turbulent flow of aqueous solutions in pipes of different diameters. Nonelectrolytes, such as sugar solutions followed the normal Moody pressure loss curves. Drag enhancement was demonstrated for turbulent flow of aqueous electrolyte solutions but not for laminar flow. The increased pressure drop for turbulent electrolyte flow was attributed to an electroviscous effect and a theory was developed to explain the drag enhancement. The increased pressure drop for the turbulent region of flow was shown to depend on the Debye length in the laminar sublayer on the pipe wall. Reasonable predictions of the increasing drag were obtained for both 1:1 and 2:1 electrolyte solutions.

  11. RECOVERY OF URANIUM FROM AQUEOUS PHOSPHATE-CONTAINING SOLUTIONS

    DOEpatents

    Igelsrud, I.; Stephen, E.F.

    1959-08-11

    ABS>A method is presented for recovering hexavalent uranium from an acidic phosphaie solution. A high molecular weight amine, such as a mixture of cccoanut oil amines, is added to the solution in such amount as to give a ratio of about 2000 parts by weight of amine to 1 part by weight of uranium. The uranium is precipitated with the amines and the whole filtered from the solution. The uranium is leached from the amine mass by washing with aqueous sodium carbonate solution; and the amine mixture is available for reuse.

  12. Hydrogen permeation of carbon steel in weak alkaline solution containing hydrogen sulfide and cyanide ion

    SciTech Connect

    Yamakawa, K; Nishimura, R.

    1999-01-01

    The hydrogen permeation behavior of carbon steel (CS) was investigated electrochemically in weak alkaline solutions containing hydrogen sulfide (H{sub 2}S) with various cyanide ion (CN{sup {minus}}) concentrations under open-circuit conditions. Anodic and cathodic polarization behaviors of CS also were investigated under the same environmental conditions. Little hydrogen content (C{sub 0}) was detected in alkaline solutions without CN{sup {minus}}. However, when a small amount of CN was added in the alkaline solution, a rapid increase in C{sub 0} was observed after the induction time, which corresponded to a rapid decrease in rest potential. Surface abrasion also produced a similar increase in C{sub o} in the presence of CN{sup {minus}}. Results were explained in terms of formation and destruction of iron sulfide (FeS), soluble species of H{sub 2}S, and iron dissolution.

  13. Radiolysis of paracetamol in dilute aqueous solution

    NASA Astrophysics Data System (ADS)

    Szabó, László; Tóth, Tünde; Homlok, Renáta; Takács, Erzsébet; Wojnárovits, László

    2012-09-01

    Using radiolytic experiments hydroxyl radical (main reactant in advanced oxidation processes) was shown to effectively destroy paracetamol molecules. The basic reaction is attachment to the ring. The hydroxy-cyclohexadienyl radical produced in the further reactions may transform to hydroxylated paracetamol derivatives or to quinone type molecules and acetamide. The initial efficiency of aromatic ring destruction in the absence of dissolved O2 is c.a. 10%. The efficiency is 2-3 times higher in the presence of O2 due to its reaction with intermediate hydroxy-cyclohexadienyl radical and the subsequent ring destruction reactions through peroxi radical. Upon irradiation the toxicity of solutions at low doses increases with the dose and then at higher doses it decreases. This is due to formation of compounds with higher toxicity than paracetamol (e.g. acetamide, hidroquinone). These products, however, are highly sensitive to irradiation and degrade easily.

  14. Special Features of Copper(II) Detection in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Sergeev, A. A.; Mironenko, A. Y.; Leonov, A. A.; Nazirov, A. E.; Voznesenskiy, S. S.; Bratskaya, S. Y.; Kulchin, Y. N.

    New approach to organize fluorescent sensor system for determination of metal ions in aqueous solutions was presented. The approach is based on modification of hydrophilic polymer with sensitive fluorescent indicators. Possibility to register Cu2+ ions by analyzing of luminescence excitation spectra and lifetimes of the sensitive coating is presented.

  15. [Anomalous Properties of Water and Aqueous Solutions at Low Temperatures].

    PubMed

    Matsumoto, Masakazu

    2015-01-01

    Water has many anomalous properties below the room temperature. The temperature range overlaps with that of the Earth's atmosphere and also with that natural life forms favor. We review the origin of the anomalous properties of water and aqueous solutions in association with the hypothetical second critical point and liquid-liquid phase separation of water hidden in the supercooled state of liquid water.

  16. REMOVAL OF CESIUM FROM AQUEOUS SOLUTIONS BY ADSORPTION

    DOEpatents

    Knoll, K.C.

    1963-07-16

    A process of removing microquantities of cesium from aqueous solutions also containing macroquantities of other ions by adsorption on clinoptilolite is described. The invention resides in the pretreatment of the clinoptilolite by heating at 400 deg C and cooling prior to use. (AEC)

  17. Hydrogen generation by electrolysis of aqueous organic solutions

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Valdez, Thomas I. (Inventor)

    2002-01-01

    A device for electrolysis of an aqueous solution of an organic fuel. The electrolyte is a solid-state polymer membrane with anode and cathode catalysts on both surfaces for electro-oxidization and electro-reduction. A low-cost and portable hydrogen generator can be made based on the device with organic fuels such as methanol.

  18. RECOVERY OF METAL VALUES FROM AQUEOUS SOLUTIONS BY SOLVENT EXTRACTION

    DOEpatents

    Moore, R.L.

    1959-09-01

    An organic solvent mixure is described for extracting actinides from aqueous solutions; the solvent mixture consists of from 10 to 25% by volume of tributyl phosphate and the remainder a chlorine-fluorine-substituted saturated hydrocarbon having two carbon atoms in the molecule.

  19. Photodecomposition of an acaricide, fenazaquin, in aqueous alcoholic solution.

    PubMed

    Bhattacharyya, Jayati; Banerjee, Hemanta; Bhattacharyya, Anjan

    2003-07-02

    Fenazaquin (I) is a new acaricide of the quinazoline class. The photodecomposition of I was studied in aqueous methanolic and 2-propanolic solution under UV light (30 h) and sunlight (70 h) separately. The photolytic half-lives in aqueous methanolic solution were found to be 17.1 h (UV) and 38.1 h (sunlight), whereas these were 12.9 h (UV) and 29.2 h (sunlight) for aqueous 2-propanolic solution; all followed a first-order reaction kinetics. Six photoproducts were obtained: beta-phenyl (p-tert-butyl) ethyl alcohol (II), 4-hydroxyquinazoline (III), p-tert-butyl vinyl benzene (IV), 2,4-dihydroxyquinazoline (V), phenyl (p-tert-butyl) acetic acid (VI), and 2-methyl-2-[4'-(2' '-hydroxyethyl)phenyl]propanoic acid (VII). Compounds VI and VII could be isolated only from aqueous 2-propanolic solution under sunlight irradiation. The major degradation products are formed as a result of cleavage of the ether bridge linking the quinazoline and phenyl ring systems of the molecule, oxidation of the tert-butyl substituent, and oxidation of the heterocyclic portion of the quinazoline ring. A probable mechanism of formation of the photoproducts is also suggested.

  20. Rheological properties of silica suspensions in aqueous cellulose derivatives solutions

    NASA Astrophysics Data System (ADS)

    Ryo, Y.; Kawaguchi, M.

    1992-05-01

    The rheological properties of the silica suspensions in aqueous solutions of hydroxypropylmethylcellulose (HPMC) were investigated in terms of the shear stress and storage and loss moduli (G' and G`) as a function of silica content, HPMC concentration, and HPMC molecular weight by using a coaxial cylinder rheometer.

  1. Colorimetric "naked eye" sensing of anions in aqueous solution.

    PubMed

    Gunnlaugsson, Thorfinnur; Kruger, Paul E; Jensen, Paul; Tierney, Juliann; Ali, Haslin Dato Paduka; Hussey, Gillian M

    2005-12-23

    [structure: see text] The synthesis and UV-vis and NMR spectroscopic studies of thiourea-based colorimetric sensors for anions are presented. These sensors can recognize anions through hydrogen binding even in competitive pH-buffered aqueous solutions, giving rise to large color changes that are clearly visible to the naked eye.

  2. Adsorptive removal of antibiotics from aqueous solution using carbon materials.

    PubMed

    Yu, Fei; Li, Yong; Han, Sheng; Ma, Jie

    2016-06-01

    Antibiotics, an important type of environmental contamination, have attracted many researchers to the study of their removal from aqueous solutions. Adsorption technology is a fast, efficient, and economical physicochemical method that is extensively used in wastewater treatment. From original activated carbon and carbon nanotubes to the latest graphene-based materials, carbon-based materials have been widely used as highly effective adsorbents for contaminant removal from aqueous solution because of their large specific surface area, high porosity, and high reaction activity. In this article, adsorption removal methods for four major types of antibiotic (tetracyclines, sulfonamides, macrolides, and quinolones) are reviewed. We also provide an overview of the application development of carbon materials as adsorbents for antibiotic removal from aqueous solution. The most promising works are discussed, and the main challenges in preparing high-performance adsorbents and the development tendency of adsorbents are also analyzed. This work provides theoretical guidance for subsequent research in the design and modification of carbon materials for applications in the adsorption removal of antibiotics from aqueous solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Hydrogen generation by electrolysis of aqueous organic solutions

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Valdez, Thomas I. (Inventor)

    2006-01-01

    A device for electrolysis of an aqueous solution of an organic fuel. The electrolyte is a solid-state polymer membrane with anode and cathode catalysts on both surfaces for electro-oxidization and electro-reduction. A low-cost and portable hydrogen generator can be made based on the device with organic fuels such as methanol.

  4. Hydrogen generation by electrolysis of aqueous organic solutions

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Valdez, Thomas I. (Inventor)

    2002-01-01

    A device for electrolysis of an aqueous solution of an organic fuel. The electrolyte is a solid-state polymer membrane with anode and cathode catalysts on both surfaces for electro-oxidization and electro-reduction. A low-cost and portable hydrogen generator can be made based on the device with organic fuels such as methanol.

  5. Non-aqueous solution preparation of doped and undoped lixmnyoz

    DOEpatents

    Boyle, Timothy J.; Voigt, James A.

    1997-01-01

    A method for generation of phase-pure doped and undoped Li.sub.x Mn.sub.y O.sub.z precursors. The method of this invention uses organic solutions instead of aqueous solutions or nonsolution ball milling of dry powders to produce phase-pure precursors. These precursors can be used as cathodes for lithium-polymer electrolyte batteries. Dopants may be homogeneously incorporated to alter the characteristics of the powder.

  6. The precipitation of potassium aluminium sulphate from aqueous solution

    NASA Astrophysics Data System (ADS)

    Mullin, J. W.; Žáček, S.

    1981-06-01

    A precipitation study has been made with potassium aluminium sulphate (potash alum) produced by mixing aqueous solutions of its constituent salts. Rates of nucleation, as indicated by the induction period, were measured for both agitated and non-agitated solutions over the temperature range 15-35°C. Nucleation rates increase with increases in agitation, temperature and supersaturation, but the latter has the dominant effect, as predicted by classical nucleation theory. The temperature-dependence of the interfacial tension is evaluated.

  7. Untangling Element Fluxes From The Subducting Slabs: Aqueous Solutions Through The Electrostatic Lense

    NASA Astrophysics Data System (ADS)

    Galvez, M.; Connolly, J. A.; Manning, C. E.

    2015-12-01

    Understanding the deep cycling of elements hinges on characterizing the chemistry of fluids in subduction zones. Aqueous solutions dielectric properties determine their characteristics as solvents for rocks. Predicting the composition and speciation of fluid solutions at equilibrium with complex mineral assemblages has been a long lasting challenge. We have developed a model to explore the composition and speciation of metamorphic aqueous solutions to upper mantle pressure and temperature. Our model combines Gibbs free energy minimization of rock and molecular fluids with an electrostatic approach to describe solute-solute and solute-solvent interactions in the fluid phase. Using an extension of the Debye-Onsager-Kirkwood model to characterize the dielectric properties of COH solutions, we derive aqueous fluid speciation by solving the mass action and charge balance of the system. This framework is applied to various slab lithologies. We find, e.g., that the pH of carbonated basalts and pelites is alkaline, i.e. ~2-2.5 pH units above neutrality, in C and Cl-free fluids and shows an isothermal decrease above the albite-jadeite-quartz equilibrium, at P ~ 2 GPa. C and Chlorine (1M) decrease the alkalinity by a combined ~ 1.5 pH unit, with variations tied to the thermal structure and mineral assemblages along typical P-T paths. The results produced are compared with experimental solubility measurements on identical systems. Significant discrepancies reveal that the process of solute polymerization at elevated T and P is more general than previously recognized. Unaccounted species contain, in addition to Na, Si and Al, an important fraction of the total dissolved load of the elements K, Ca and Mg (>50% at T= 600 °C and P = 2 Ga). Finally, we show that knowledge of the acid-base properties of metamorphic fluid solutions affect the (de)coupling between C and alkali-earth mobility, and magnitude of low-T C transfers associated to carbonate dissolution through time. This

  8. Critical droplet theory explains the glass formability of aqueous solutions.

    PubMed

    Warkentin, Matthew; Sethna, James P; Thorne, Robert E

    2013-01-04

    When pure water is cooled at ~10(6) K / s, it forms an amorphous solid (glass) instead of the more familiar crystalline phase. The presence of solutes can reduce this required (or "critical") cooling rate by orders of magnitude. Here, we present critical cooling rates for a variety of solutes as a function of concentration and a theoretical framework for understanding these rates. For all solutes tested, the critical cooling rate is an exponential function of concentration. The exponential's characteristic concentration for each solute correlates with the solute's Stokes radius. A modification of critical droplet theory relates the characteristic concentration to the solute radius and the critical nucleation radius of ice in pure water. This simple theory of ice nucleation and glass formability in aqueous solutions has consequences for general glass-forming systems, and in cryobiology, cloud physics, and climate modeling.

  9. Surface tensions of inorganic multicomponent aqueous electrolyte solutions and melts.

    PubMed

    Dutcher, Cari S; Wexler, Anthony S; Clegg, Simon L

    2010-11-25

    A semiempirical model is presented that predicts surface tensions (σ) of aqueous electrolyte solutions and their mixtures, for concentrations ranging from infinitely dilute solution to molten salt. The model requires, at most, only two temperature-dependent terms to represent surface tensions of either pure aqueous solutions, or aqueous or molten mixtures, over the entire composition range. A relationship was found for the coefficients of the equation σ = c(1) + c(2)T (where T (K) is temperature) for molten salts in terms of ion valency and radius, melting temperature, and salt molar volume. Hypothetical liquid surface tensions can thus be estimated for electrolytes for which there are no data, or which do not exist in molten form. Surface tensions of molten (single) salts, when extrapolated to normal temperatures, were found to be consistent with data for aqueous solutions. This allowed surface tensions of very concentrated, supersaturated, aqueous solutions to be estimated. The model has been applied to the following single electrolytes over the entire concentration range, using data for aqueous solutions over the temperature range 233-523 K, and extrapolated surface tensions of molten salts and pure liquid electrolytes: HCl, HNO(3), H(2)SO(4), NaCl, NaNO(3), Na(2)SO(4), NaHSO(4), Na(2)CO(3), NaHCO(3), NaOH, NH(4)Cl, NH(4)NO(3), (NH(4))(2)SO(4), NH(4)HCO(3), NH(4)OH, KCl, KNO(3), K(2)SO(4), K(2)CO(3), KHCO(3), KOH, CaCl(2), Ca(NO(3))(2), MgCl(2), Mg(NO(3))(2), and MgSO(4). The average absolute percentage error between calculated and experimental surface tensions is 0.80% (for 2389 data points). The model extrapolates smoothly to temperatures as low as 150 K. Also, the model successfully predicts surface tensions of ternary aqueous mixtures; the effect of salt-salt interactions in these calculations was explored.

  10. Extraction of starch from wheat flour by alkaline solution

    USDA-ARS?s Scientific Manuscript database

    Separation of starch from wheat flour with high purity is very important for the analysis of starch such as amylose and amylopectin determination by size exclusion HPLC (SE-HPLC). A procedure that extracts starch from flour by ethanol precipitation after dissolving flour in KOH and urea solution wa...

  11. Experimental measurements of U60 nanocluster stability in aqueous solution

    NASA Astrophysics Data System (ADS)

    Flynn, Shannon L.; Szymanowski, Jennifer E. S.; Gao, Yunyi; Liu, Tianbo; Burns, Peter C.; Fein, Jeremy B.

    2015-05-01

    In this study, the aqueous behavior of isolated U60 nanoclusters (K16Li25[UO2(O2)OH]60)-19 was studied under several pH conditions and nanocluster concentrations to determine if the nanoclusters exhibit solid phase buffering behavior or if they exhibit behavior more like aqueous complexes. U60 is a cage cluster consisting of 60 (UO2)(O2)2(OH)2 uranyl polyhedral which share OH and O2 groups with their neighboring uranyl polyhedral, resulting in negatively charged cage clusters whose charge is at least partially offset by K+ and Li+ in the aqueous phase. Batch experiments to monitor nanocluster stability were conducted for 16 days at pH 7.5, 8.0 and 8.5 at nanocluster suspension concentrations of 1.4, 2.8 and 6.0 g/L. The aqueous concentrations of U, Li, and K, determined after 10 kDa molecular weight filtration, achieved steady-state with the nanoclusters within 24 h. The steady-state aqueous U, Li, and K concentrations were independent of solution pH, however they increased with increasing nanocluster concentration, indicating that the nanoclusters do not buffer the aqueous activities as a bulk solid phase would, but exhibit behavior that is more characteristic of dissolved aqueous complexes. The ion activity product (I.A.P.) value was calculated using two approaches: (1) treating the nanoclusters as a solid phase with an activity of one, and (2) treating the nanoclusters as aqueous complexes with a non-unit activity equal to their concentration in solution. The I.A.P. values that were calculated with non-unit activity for the nanoclusters exhibited significantly less variation as a function of nanocluster concentration compared to the I.A.P. values calculated with a nanocluster activity of one. The results yield a calculated log dissociation constant for the U60 nanoclusters of 9.2 + 0.2/-0.3 (1σ). Our findings provide a better understanding of the thermodynamic stability and behavior of U60 nanoclusters in aqueous systems, and can be used to estimate the

  12. Solubility of nitrous oxide in alkanolamine aqueous solutions

    SciTech Connect

    Tsai, T.C.; Ko, J.J.; Wang, H.M.; Lin, C.Y.; Li, M.H.

    2000-04-01

    The solubility of nitrous oxide (N{sub 2}O) in alkanolamine aqueous solutions has been measured at (30, 35, and 40) C. The systems studied are monoethanolamine, diethanolamine, diisopropanolamine, triethanolamine, and 2-amino-2-methyl-1-propanol aqueous solutions. The concentration of amine for monoethanolamine ranges from (1 to 6) kmol/m{sup 3} and for other amines from (0.5 to 3) kmol/m{sup 3}. The accuracy of the measurement is estimated to be {+-}2%. A semiempirical model of the excess Henry's constant proposed by Wang et al. (1992) was used to correlate the solubility of N{sub 2}O in amine solutions. The parameters of the correlation were determined from the measured solubility data and the available data in the open literature. For a wide temperature range from (15 to 75) C, the obtained correlation has been shown to represent reasonably the solubility of N{sub 2}O in six amine aqueous solutions: MEA, DEA, DIPA, TEA, MDEA, and AMP. For the purpose of process design, the obtained correlations are, in general, satisfactory for estimating the solubility of N{sub 2}O in amine solutions, which in turn can be used to estimate the correct free-gas solubility of CO{sub 2} in amines.

  13. Adsorption of EDTA on activated carbon from aqueous solutions.

    PubMed

    Zhu, Hai-song; Yang, Xiao-juan; Mao, Yan-peng; Chen, Yu; Long, Xiang-li; Yuan, Wei-kang

    2011-01-30

    In this study, the adsorption of EDTA on activated carbon from aqueous solutions has been investigated in a batch stirred cell. Experiments have been carried out to investigate the effects of temperature, EDTA concentration, pH, activated carbon mass and particle size on EDTA adsorption. The experimental results manifest that the EDTA adsorption rate increases with its concentration in the aqueous solutions. EDTA adsorption also increases with temperature. The EDTA removal from the solution increases as activated carbon mass increases. The Langmuir and Freundlich equilibrium isotherm models are found to provide a good fitting of the adsorption data, with R(2) = 0.9920 and 0.9982, respectively. The kinetic study shows that EDTA adsorption on the activated carbon is in good compliance with the pseudo-second-order kinetic model. The thermodynamic parameters (E(a), ΔG(0), ΔH(0), ΔS(0)) obtained indicate the endothermic nature of EDTA adsorption on activated carbon.

  14. Laboratory study of soil flushing by aqueous solutions

    SciTech Connect

    Park, J.; O`Neill, M.W.; Symons, J.M.

    1998-10-01

    This paper explores the removal of organics from soils in a simulated in-situ environment using aqueous solution extraction. A laboratory investigation is described in which organic compounds representative of the major groups of organic contaminants were adsorbed in low concentrations onto slightly organic, loamy soil, and various aqueous solutions were permeated through the soil under controlled hydraulic gradients and effective stress conditions, simulating the in-situ extraction process. The effectiveness of the extraction process was evaluated by periodically measuring the concentration of the contaminants in the permeameter effluent. Simple contact shaking tests were also performed and compared with the results of the permeation tests to ascertain whether contact shaking tests can be used as an index to the effectiveness of permeation testing. The results may be applicable to injection and extraction wells, in which the solution extract is pumped to a location on the ground surface for treatment.

  15. Comparison of different advanced oxidation processes for the removal of amoxicillin in aqueous solution.

    PubMed

    Souza, Fernanda Siqueira; da Silva, Vanessa Vargas; Rosin, Catiusa Kuchak; Hainzenreder, Luana; Arenzon, Alexandre; Féris, Liliana Amaral

    2017-03-13

    Amoxicillin (AMX) is a widely used penicillin-type antibiotic whose presence in the environment has been investigated. In this work, the degradation of the AMX in aqueous solutions by ozonation, ozonation with UV radiation (O3/UV), homogeneous catalytic ozonation (O3/Fe(2+)) and homogeneous photocatalytic ozonation (O3/Fe(2+)/UV) was investigated. The performance results have been compared in terms of removal of amoxicillin and total organic carbon (mineralization efficiency). In all processes, complete amoxicillin degradation was obtained after 5 min. However, low mineralization was achieved. For the best available process, the potential toxicity of AMX intermediates formed after ozonation was examined using a Fish Embryo Toxicity test (FET). Results reveal that the systems O3 in alkaline solution and O3/ Fe(2+)/UV provide the highest mineralization rates. Ecotoxicity showed that no acute toxicity was observed during the exposure period of 96 hours.

  16. Molecular mechanism of the viscosity of aqueous glucose solutions

    NASA Astrophysics Data System (ADS)

    Bulavin, L. A.; Zabashta, Yu. F.; Khlopov, A. M.; Khorol'skii, A. V.

    2017-01-01

    Experimental relations are obtained for the viscosity of aqueous glucose solutions in the temperature range of 10-80°C and concentration range 0.01-2.5%. It is found that the concentration dependence of fluidity is linear when the concentration is higher than a certain value and varies at different temperatures. The existence of such a dependence indicates that the mobilities of solvent and solute molecules are independent of the concentration of solutions. This assumption is used to construct a theoretical model, in which the structure of an aqueous glucose solution is presented as a combination of two weakly interacting networks formed by hydrogen bonds between water molecules and between glucose molecules. Theoretical relations are obtained using this model of network solution structure for the concentration and temperature dependence of solution viscosity. Experimental data are used to calculate the activation energies for water ( U w = 3.0 × 10-20 J) and glucose molecules ( U g = 2.8 × 10-20 J). It is shown that the viscosity of a solution in such a network structure is governed by the Brownian motion of solitons along the chains of hydrogen bonds. The weak interaction between networks results in the contributions to solution fluidity made by the motion of solitons in both of them being almost independent.

  17. Spectrophotometric determination of lithium ion using a water-soluble octabromoporphyrin in aqueous solution.

    PubMed

    Tabata, M; Nishimoto, J; Kusano, T

    1998-08-01

    A water-soluble porphyrin, (2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin; H(2)obtpps(4-)) was synthesized and developed for the determination of lithium ion in aqueous solution. The octabromo groups lower the basicity of the porphyrin by their electron-withdrawing effect, and enable the porphyrin to react with the lithium ion in alkaline solution to form the lithium complex along with a shift of absorption maximum: lambda max/nm (logepsilon/mol(-1) dm(3) cm(-1)) of the lithium porphyrin are 490.5 nm (5.31) and 734 nm (4.36). Sodium and potassium ions did not react with the porphyrin. The equilibrium constant for the reaction Li(+)+Hobtpps(5-)right harpoon over left harpoon[Li(obtpps)](5-)+H(+) was found to be 10(-8.80) and the conditional formation constant of the [Li(obtpps)](5-) at pH 13 is 10(4.21). The above results were applied to the determination of lithium ion in aqueous solution. The interference from transition and heavy metal ions was masked by using N,N'-1,2-ethanediylbis[N(carboxylmethy)glycinato]magnesium(II) ([Mg(edta)](2-)) solution. Absorbance at 490 nm was measured against a blank solution. A calibration graph was linear over the range of 0.007-0.7 mug cm(-3) (1x10(-6)-1x10(-4) mol dm(-3)) of lithium(I) with a correlation factor of 0.967. Lithium ion less than ppm level was determined spectrophtometrically in aqueous solution. The proposed method was applied to the determination of lithium in human serum and sea water samples.

  18. Spontaneous Oligomerization of Nucleotide Alternatives in Aqueous Solutions.

    PubMed

    Smith, Karen E; House, Christopher H; Dworkin, Jason P; Callahan, Michael P

    2017-03-01

    On early Earth, a primitive polymer that could spontaneously form from likely available precursors may have preceded both RNA and DNA as the first genetic material. Here, we report that heated aqueous solutions containing 5-hydroxymethyluracil (HMU) result in oligomers of uracil, heated solutions containing 5-hydroxymethylcytosine (HMC) result in oligomers of cytosine, and heated solutions containing both HMU and HMC result in mixed oligomers of uracil and cytosine. Oligomerization of hydroxymethylated pyrimidines, which may have been abundant on the primitive Earth, might have been important in the development of simple informational polymers.

  19. Brillouin and Raman Scattering Study of Ethylene Glycol Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Seshimo, Y.; Ike, Y.; Kojima, S.

    2008-02-01

    We studied the cluster structure of ethylene glycol aqueous solutions by Brillouin and Raman scattering. We measured the ultrasonic sound velocity of the sample by Brillouin scattering. From the concentration dependence of the sound velocity, we studied the cluster structure in the solution. We showed that the number of H2O molecule neighboring a EG molecule becomes a little higher with increasing temperature and the intermolecular interaction between EG and H2O molecules weakened with increasing temperature. In Raman scattering study, We studied the hydrogen bond in the solution using the OD stretching band. We revealed that the strength of the hydrogen bond is independent of the EG concentration.

  20. Spontaneous Oligomerization of Nucleotide Alternatives in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Smith, Karen E.; House, Christopher H.; Dworkin, Jason P.; Callahan, Michael P.

    2017-03-01

    On early Earth, a primitive polymer that could spontaneously form from likely available precursors may have preceded both RNA and DNA as the first genetic material. Here, we report that heated aqueous solutions containing 5-hydroxymethyluracil (HMU) result in oligomers of uracil, heated solutions containing 5-hydroxymethylcytosine (HMC) result in oligomers of cytosine, and heated solutions containing both HMU and HMC result in mixed oligomers of uracil and cytosine. Oligomerization of hydroxymethylated pyrimidines, which may have been abundant on the primitive Earth, might have been important in the development of simple informational polymers.

  1. Photodegradation of the novel fungicide fluopyram in aqueous solution: kinetics, transformation products, and toxicity evolvement.

    PubMed

    Dong, Bizhang; Hu, Jiye

    2016-10-01

    The aqueous photodegradation of fluopyram was investigated under UV light (λ ≥ 200 nm) and simulated sunlight irradiation (λ ≥ 290 nm). The effect of solution pH, fulvic acids (FA), nitrate (NO3 (-)), Fe (III) ions, and titanium dioxide (TiO2) on direct photolysis of fluopyram was explored. The results showed that fluopyram photodegradation was faster in neutral solution than that in acidic and alkaline solutions. The presence of FA, NO3 (-), Fe (III), and TiO2 slightly affected the photodegradation of fluopyram under UV irradiation, whereas the photodegradation rates of fluopyram with 5 mg L(-1) Fe (III) and 500 mg L(-1) TiO2 were about 7-fold and 13-fold faster than that without Fe (III) and TiO2 under simulated sunlight irradiation, respectively. Three typical products for direct photolysis of fluopyram have been isolated and characterized by liquid chromatography tandem mass spectrometry. These products resulted from the intramolecular elimination of HCl, hydroxyl-substitution, and hydrogen extraction. Based on the identified transformation products and evolution profile, a plausible degradation pathway for the direct photolysis of fluopyram in aqueous solution was proposed. In addition, acute toxicity assays using the Vibrio fischeri bacteria test indicated that the transformation products were more toxic than the parent compound.

  2. Process of concentrating ethanol from dilute aqueous solutions thereof

    DOEpatents

    Oulman, C.S.; Chriswell, C.D.

    1981-07-07

    Relatively dilute aqueous solutions of ethanol are concentrated by passage through a bed of a crystalline silica polymorph, such as silicalite, to adsorb the ethanol with residual dilute feed in contact with the bed, which is displaced by passing concentrated aqueous ethanol through the bed without displacing the adsorbed ethanol. A product concentrate is then obtained by removing the adsorbed ethanol from the bed together with at least a portion of the concentrated aqueous ethanol used as the displacer liquid. This process permits ethanol to be concentrated from dilute fermentation beers, which may contain from 6 to 10% ethanol, to obtain a concentrate product at very low energy cost having an ethanol concentration in excess of 95%, such as a concentration of from 98 to 99.5%. 5 figs.

  3. Process of concentrating ethanol from dilute aqueous solutions thereof

    DOEpatents

    Oulman, Charles S. [Ames, IA; Chriswell, Colin D. [Slater, IA

    1981-07-07

    Relatively dilute aqueous solutions of ethanol are concentrated by passage through a bed of a crystalline silica polymorph, such as silicalite, to adsorb the ethanol with residual dilute feed in contact with the bed, which is displaced by passing concentrated aqueous ethanol through the bed without displacing the adsorbed ethanol. A product concentrate is then obtained by removing the adsorbed ethanol from the bed together with at least a portion of the concentrated aqueous ethanol used as the displacer liquid. This process permits ethanol to be concentrated from dilute fermentation beers, which may contain from 6 to 10% ethanol, to obtain a concentrate product at very low energy cost having an ethanol concentration in excess of 95%, such as a concentration of from 98 to 99.5%.

  4. Solid / solution interaction: The effect of carbonate alkalinity on adsorbed thorium

    NASA Astrophysics Data System (ADS)

    LaFlamme, Brian D.; Murray, James W.

    1987-02-01

    Elevated activities of dissolved Th have been found in Soap Lake, an alkaline lake in Eastern Washington. Dissolved 232Th ranges from less than 0.001 to 4.9 dpm/L compared to about 1.3 × 10 -5 dpm/ L in sea water. The enhanced activity in the lake coincides with an increase in carbonate alkalinity. Experiments were conducted to evaluate the effect of pH, ionic strength and carbonate alkalinity on Th adsorption on goethite. Thorium (10 -13 M total) in the presence of 5.22 mg/L α-FeOOH and 0.1 M NaNO 3 has an adsorption edge from pH 2-5. At pH 9.0 ± 0.6 the percent Th absorbed on the solid began to decrease from 100% at 100 meq/L carbonate alkalinity and exhibited no adsorption above 300 meq/L. The experimental data were modeled to obtain the intrinsic adsorption equilibrium constants for Th hydrolysis species. These adsorption constants were incorporated in the model to interpret the observed effect of carbonate alkalinity on Th adsorption. There are two main effects of the alkalinity. To a significant degree the decrease in Th adsorption is due to competition of HCO -3 and CO 2-3 ions for surface sites. Dissolved Th carbonate complexes also contribute to the increase of Th in solution.

  5. Dephosphorization of Steelmaking Slag by Leaching with Acidic Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Qiao, Yong; Diao, Jiang; Liu, Xuan; Li, Xiaosa; Zhang, Tao; Xie, Bing

    2016-09-01

    In the present paper, dephosphorization of steelmaking slag by leaching with acidic aqueous solution composed of citric acid, sodium hydroxide, hydrochloric acid and ion-exchanged water was investigated. The buffer solution of C6H8O7-NaOH-HCl system prevented changes in the pH values. Kinetic parameters including leaching temperature, slag particle size and pH values of the solution were optimized. The results showed that temperature has no obvious effect on the dissolution ratio of phosphorus. However, it has a significant effect on the dissolution ratio of iron. The dephosphorization rate increases with the decrease of slag particle size and the pH value of the solution. Over 90% of the phosphorus can be dissolved in the solution while the corresponding leaching ratio of iron was only 30% below the optimal condition. Leaching kinetics of dephosphorization follow the unreacted shrinking core model with a rate controlled step by the solid diffusion layer, the corresponding apparent activation energy being 1.233 kJ mol-1. A semiempirical kinetic equation was established. After leaching, most of the nC2S-C3P solid solution in the steelmaking slag was selectively dissolved in the aqueous solution and the iron content in the solid residue was correspondingly enriched.

  6. Electrochemical Recovery of Sodium Hydroxide from Alkaline Salt Solution

    SciTech Connect

    Hobbs, D.T.; Edwards, T.B.

    1996-10-01

    A statistically designed set of tests determined the effects of current density, temperature, and the concentrations of nitrate/nitrite, hydroxide and aluminate on the recovery of sodium as sodium hydroxide (caustic) from solutions simulating those produced from the Savannah River Site (SRS) In-Tank Precipitation process. These tests included low nitrate and nitrite concentrations which would be produced by electrolytic nitrate/nitrite destruction. The tests used a two compartment electrochemical cell with a Nafion Type 324 ion-exchange membrane. Caustic was successfully recovered from the waste solutions. Evaluation of the testing results indicated that the transport of sodium across the membrane was not significantly affected by any of the varied parameters. The observed variance in the sodium flux is attributed to experimental errors and variations in the performance characteristics of individual pieces of the organic-based Nafion membrane.Additional testing is recommended to determine the maximum current density, to evaluate the chemical durability of the organic membrane as a function of current density and to compare the durability and performance characteristics of the organic-based Nafion membrane with that of other commercially available organic membranes and the inorganic class of membranes under development by Ceramatec and PNNL.

  7. Structures and stability of salt-bridge in aqueous solution.

    PubMed

    Sagarik, Kritsana; Chaiyapongs, Supaporn

    2005-09-01

    Structures and stability of salt-bridges in aqueous solutions were investigated using a complex formed from the guanidinium (Gdm+) and formate (FmO-) ions as a model system. The Test-particle model (T-model) potentials to describe the interactions in the Gdm+-H2O, FmO(-)-H2O and Gdm+-FmO- complexes were constructed, tested and applied in molecular dynamics (MD) simulations of the aqueous solutions at 298 K. The three-dimensional structures and energetic of the hydrogen bond (H-bond) networks of water in the first hydration shells of the Gdm+ and FmO- ions, as well as the Gdm+-FmO- complex, were visualized and analyzed using various probability distribution (PD) maps. The structures of the average potential energy landscapes at the H-bond networks were employed to characterize the stability and dynamic behavior of water molecules in the first hydration shells of the solutes. It was observed that water molecules in the first hydration shell of the close-contact Gdm+-FmO- complex form associated H-bond networks, which introduce a net stabilization effect to the ion-pair, whereas those in the interstitial H-bond network destabilize and break the solvent-separated Gdm+-FmO- complex. The present results showed that, in order to provide complete insights into the structures and stability of ion-pairs in aqueous solutions, explicit water molecules have to be included in the model calculations.

  8. USING CERAMIC MEMBRANES TO RECYCLE TWO NONIONIC ALKALINE METAL-CLEANING SOLUTIONS

    EPA Science Inventory

    One ZrO2 ultrafilter (0.05 um pore size) and two a-Al2O3 microfilters (0.2 and 0.8 um) were used to remove one synthetic ester oil and two polyalphaolefin-based and two petroleum hydrocarbon-based oils and greases from two nonionic alkaline cleaning solutions (e.g., Turco 4215-NC...

  9. USING CERAMIC MEMBRANES TO RECYCLE TWO NONIONIC ALKALINE METAL-CLEANING SOLUTIONS

    EPA Science Inventory

    One ZrO2 ultrafilter (0.05 um pore size) and two a-Al2O3 microfilters (0.2 and 0.8 um) were used to remove one synthetic ester oil and two polyalphaolefin-based and two petroleum hydrocarbon-based oils and greases from two nonionic alkaline cleaning solutions (e.g., Turco 4215-NC...

  10. In vitro susceptibility of oral Candida albicans strains to different pH levels and calcium hydroxide saturated aqueous solution.

    PubMed

    Weckwerth, Paulo Henrique; Carnietto, Cristiane; Weckwerth, Ana Carolina Villas Boas; Duarte, Marco Antonio Hungaro; Kuga, Milton Carlos; Vivan, Rodrigo Ricci

    2012-01-01

    Candida albicans is present in the oral cavity and in the whole digestive tract of humans and other animals, being frequently related to endodontic treatment failure. The present study determined the incidence of C. albicans in the oral cavity and the susceptibility of isolates to different pH values and saturated calcium hydroxide aqueous solution at pH 12.5. Sixty-five patients attending the Endodontic Clinic at the Sagrado Coração University participated in the study. The collected samples were cultivated in selective media for C. albicans and the isolates were tested in terms of resistance to both alkaline pH and saturated aqueous solution of calcium hydroxide. In relation to time variables, yeast viability was assessed by the Sabouraud's agar culture and fluorescein diacetate and ethidium bromide fluorescent staining method. Results from the different pHs and experimental times, including those from different techniques measuring fungal viability, were compared using the chi-square and Fisher's exact tests (α=0.05). The yeasts became completely inviable after 48 h of contact with the calcium hydroxide solution. On the other hand, when exposed to the alkaline culture broth, the yeasts were found to be viable at pHs 9.5 and 10.5 for up to 7 days. In conclusion, C. albicans can only be completely inhibited by direct contact with saturated calcium hydroxide aqueous solution after 48 h of exposure.

  11. Perchlorate production by photodecomposition of aqueous chlorine solutions.

    PubMed

    Rao, Balaji; Estrada, Nubia; McGee, Shelly; Mangold, Jerry; Gu, Baohua; Jackson, W Andrew

    2012-11-06

    Aqueous chlorine solutions (defined as chlorine solutions (Cl(2,T)) containing solely or a combination of molecular chlorine (Cl(2)), hypochlorous acid (HOCl), and hypochlorite (OCl(-))) are known to produce toxic inorganic disinfection byproduct (e.g., chlorate and chlorite) through photoactivated transformations. Recent reports of perchlorate (ClO(4)(-)) production-a well-known thyroid hormone disruptor- from stored bleach solutions indicates the presence of unexplored transformation pathway(s). The evaluation of this potential ClO(4)(-) source is important given the widespread use of aqueous chlorine as a disinfectant. In this study, we perform detailed rate analysis of ClO(4)(-) generation from aqueous chlorine under varying environmental conditions including ultraviolet (UV) light sources, intensity, solution pH, and Cl(2,T) concentrations. Our results show that ClO(4)(-) is produced upon UV exposure of aqueous chlorine solutions with yields ranging from 0.09 × 10(-3) to 9.2 × 10(-3)% for all experimental conditions. The amount of ClO(4)(-) produced depends on the starting concentrations of Cl(2,T) and ClO(3)(-), UV source wavelength, and solution pH, but it is independent of light intensity. We hypothesize a mechanistic pathway derived from known reactions of Cl(2,T) photodecomposition that involves the reaction of Cl radicals with ClO(3)(-) to produce ClO(4)(-) with calculated rate coefficient (k(ClO4-)) of (4-40) × 10(5) M(-1) s(-1) and (3-250) × 10(5) M(-1) s(-1) for UV-B/C and UV-A, respectively. The measured ClO(4)(-) concentrations for both UV-B and UV-C experiments agreed well with our model (R(2) = 0.88-0.99), except under UV-A light exposure (R(2) = 0.52-0.93), suggesting the possible involvement of additional pathways at higher wavelengths. Based on our results, phototransformation of aqueous chlorine solutions at concentrations relevant to drinking water treatment would result in ClO(4)(-) concentrations (~0.1 μg L(-1)) much below the proposed

  12. Water Evaporation from Acoustically Levitated Aqueous Solution Droplets.

    PubMed

    Combe, Nicole A; Donaldson, D James

    2017-09-28

    We present a systematic study of the effect of solutes on the evaporation rate of acoustically levitated aqueous solution droplets by suspending individual droplets in a zero-relative humidity environment and measuring their size as a function of time. The ratios of the early time evaporation rates of six simple salts (NaCl, NaBr, NaNO3, KCl, MgCl2, CaCl2) and malonic acid to that of water are in excellent agreement with predictions made by modifying the Maxwell equation to include the time-dependent water activity of the evaporating aqueous salt solution droplets. However, the early time evaporation rates of three ammonium salt solutions (NH4Cl, NH4NO3, (NH4)2SO4) are not significantly different from the evaporation rate of pure water. This finding is in accord with a previous report that ammonium sulfate does not depress the evaporation rate of its solutions, despite reducing its water vapor pressure, perhaps due to specific surface effects. At longer evaporation times, as the droplets approach crystallization, all but one (MgCl2) of the solution evaporation rates are well described by the modified Maxwell equation.

  13. Fractional Walden rule for electrolytes in supercooled disaccharide aqueous solutions.

    PubMed

    Longinotti, M Paula; Corti, Horacio R

    2009-04-23

    The electrical conductivity of CsCl, KCl, Bu(4)NBr, and Bu(4)NI was studied in stable and supercooled (metastable) sucrose and trehalose aqueous solutions over a wide viscosity range. The results indicate that large positive deviations from the Walden rule occur in these systems due to the higher tendency of the ions to move in water-rich regions, as previously observed for NaCl and MgCl(2). The electrical molar conductivity viscosity dependence can be described with a fractional Walden rule (Lambdaeta(alpha) = constant), where alpha is a decoupling parameter which increases with ionic size and varies between 0.61 and 0.74 for all of the studied electrolytes. Using the electrical molar conductivity dependence of ion-ion interactions, an effective dielectric constant was calculated for a trehalose 39 wt% aqueous solution as a function of temperature. Above 278 K, the effective and the bulk solution dielectric constants are similar, but at lower temperatures, where the carbohydrate becomes less mobile than water, the effective dielectric constant approaches the dielectric constant of water. We also conclude that the solute-solvent dielectric friction contribution can be neglected, reinforcing the idea that the observed breakdown of the Walden rule is due to the existence of local microheterogeneities. The Walden plots for the studied ionic solutes show a decoupling similar to that found for the diffusion of water in the same solutions.

  14. Radiolytic degradation of malathion and lindane in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Mohamed, K. A.; Basfar, A. A.; Al-Kahtani, H. A.; Al-Hamad, K. S.

    2009-11-01

    Degradation of malathion and lindane pesticides present in an aqueous solution was investigated on a laboratory scale upon gamma-irradiation from a 60Co source. The effects of pesticide group, presence of various additives and absorbed dose on efficiency of pesticide degradation were investigated. Gamma-irradiation was carried out in distilled water solutions (malathion and lindane) and in combination with humic solution (HS), nitrous oxide (N 2O) and HS/N 2O (lindane) over the range 0.1-2 kGy (malathion) and 5-30 kGy (lindane). Malathion was easily degraded at low absorbed doses compared to lindane in distilled water solutions. Absorbed doses required to remove 50% and 90% of initial malathion and lindane concentrations in distilled water solutions were 0.53 and 1.77 kGy (malathion) and 17.97 and 28.79 kGy (lindane), respectively. The presence of HS, N 2O and HS/N 2O additives in aqueous solutions, significantly improved the effectiveness of radiolytic degradation of lindane. Chemical analysis of the pesticides and the by-products resulted from the radiolytic degradation were made using a gas chromatography associated with mass spectrometry (GC-MS). Additionally, the final degradation products of irradiation as detected by ion chromatography (IC) were acetic acid and traces of some anions (phosphate and chloride).

  15. Zinc chloride aqueous solution as a solvent for starch.

    PubMed

    Lin, Meiying; Shang, Xiaoqin; Liu, Peng; Xie, Fengwei; Chen, Xiaodong; Sun, Yongyi; Wan, Junyan

    2016-01-20

    It is important to obtain starch-based homogeneous systems for starch modification. Regarding this, an important key point is to find cheap, low-cost and low-toxicity solvents to allow complete dissolution of starch and its easy regeneration. This study reveals that a ZnCl2 aqueous solution is a good non-derivatizing solvent for starch at 50 °C, and can completely dissolve starch granules. The possible formation of a "zinc-starch complex" might account for the dissolution; and the degradation of starch, which was caused by the H(+) inZnCl2 aqueous solution, could not contribute to full dissolution. From polarized light microscopic observation combined with the solution turbidity results, it was found that the lowest ZnCl2 concentration for full dissolution was 29.6 wt.% at 50 °C, with the dissolving time being 4h. Using Fourier-transform infrared (FTIR), solid state (13)C nuclear magnetic resonance (NMR), and X-ray diffraction (XRD), it was revealed that ZnCl2 solution had no chemical reaction with starch glucosides, but only weakened starch hydrogen bonding and converted the crystalline regions to amorphous regions. In addition, as shown by intrinsic viscosity and thermogravimetric analysis (TGA), ZnCl2 solution caused degradation of starch macromolecules, which was more serious with a higher concentration of ZnCl2 solution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Separate determination of nitrophenols and aminophenols in aqueous solutions

    SciTech Connect

    Korenman, Y.I.; Bortnikova, R.N.; Nefedova, T.A.; Sotnikova, N.G.

    1985-05-01

    Nitro and aminophenols are widely distributed, highly toxic components of waste waters from the phenolic industry. This article proposes a rapid extraction photometric method for determination of the most widespread isomers of nitro and aminophenols (ortho-substituted). Preliminary separation of the components being determined is based on the substantial difference in the ability of 2-nitrophenol and 2-aminophenol to be extracted from aqueous solutions by organic solvents. It is shown that the distribution coefficient for 2-nitrophenol in the system dibutyl ether-water is almost 40 times larger than the corresponding value for 2-aminophenol. The method described made possible the determination of 2-nitrophenol and 2-aminophenol in aqueous solution after their separation with satisfactory accuracy. The maximum error for the determination of 2-aminophenol was 12% and for 2-nitrophenol, 4%.

  17. Degradation of Sodium-Polyacrylate in Dilute Aqueous Solution, II

    NASA Astrophysics Data System (ADS)

    Saita, Takao; Matumura, On

    1983-08-01

    It has been found that Na-PAA molecules in dilute aqueous solution are degraded by shearing stress, oxidation and photolysis during usual viscosity measurements with a capillary viscometer. The results of previous viscosity measurements, mainly about the mechanochemical degradation in air and in air-free conditions, showed that the degradation rate increases with increasing shear stress, and with decreasing polymer concentration. In this work, the effects of the molecular weight and temperature on the degradation rate are measured using a capillary viscometer in air, and the photodegradation of Na-PAA and PAA in aqueous solution irradiated with UV light are studied by viscosity measurements in air, and by UV absorption and ESR methods. The results show that the degradation of molecules is enhanced by an increase in the molecular weight and strongly accelerated by a rise in temperature and by UV irradiation, and is accompanied by free-radical chain reactions.

  18. Laser purification of ultradispersed diamond in aqueous solution

    SciTech Connect

    Dolgaev, Sergei I; Kirichenko, N A; Lubnin, Evgenii N; Simakin, Aleksandr V; Shafeev, Georgii A; Kulevskii, L A

    2004-09-30

    The effect of pulsed radiation from a 2.92-{mu}m, 130-ns Cr{sup 3+}:Yb{sup 3+}:Ho{sup 3+}:YSGG holmium laser and a 510-nm, 20-ns copper vapour laser on an aqueous suspension of ultradispersed diamond is studied. X-ray photoelectron spectroscopy and electron energy loss spectroscopy revealed that exposure of the suspension to holmium laser radiation reduces the concentration of nondiamond carbon impurity in it. This is due to the dissolution of carbon impurity in supercritical aqueous solution, caused by radiation absorption. Dissolution of the nondiamond fraction may serve as an indicator of the solution being in the supercritical state as a result of laser irradiation of liquids. This process can be used for efficient purification of ultradispersed diamonds. (laser applications and other topics in quantum electronics)

  19. A lithium ion battery using an aqueous electrolyte solution

    PubMed Central

    Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei

    2016-01-01

    Energy and environmental pollution have become the two major problems in today’s society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg−1. It will be a promising energy storage system with good safety and efficient cooling effects. PMID:27328707

  20. Interaction between pirenoxine and bovine serum albumin in aqueous solution.

    PubMed

    Liao, Zhixi; Yu, Xianyong; Yao, Qing; Yi, Pinggui

    2014-08-14

    This work concerns the interaction of prenoxine sodium (PRX) and bovine serum albumin (BSA), which was conducted by spectroscopic means: fluorescence spectra, ultraviolet-visible spectra (UV-vis) and circular dichroism spectra (CD spectra) in physiological conditions. The results revealed the PRX can quench the fluorescence of BSA remarkably in aqueous solution. The quench mechanism has been obtained after corrected the fluorescence intensities for inner filter effects. The binding constants (Ka) were calculated according to the relevant fluorescence data at different temperatures. Moreover, from a series of analyses, we have obtained the binding sites, the binding distance and binding force. The effect of PRX on the conformation of BSA has been analyzed using synchronous fluorescence under experimental conditions. In addition, the CD spectra proved that the secondary structure of BSA changed in the presence of PRX in aqueous solution.

  1. Polyamide nanofiltration membranes to remove aniline in aqueous solutions.

    PubMed

    Hidalgo, A M; León, G; Gómez, M; Murcia, M D; Bernal, M D; Ortega, S

    2014-01-01

    Aniline is commonly used in a number of industrial processes. It is known to be a harmful and persistent pollutant and its presence in wastewater requires treatment before disposal. In this paper, the effectiveness of nanofiltration (NF) to remove aniline from aqueous solutions is studied in a flat membrane test module using two thin-layer composite membranes of polyamide (NF97 and NF99HF). The influence of different operational variables (applied pressure, feed concentration and pH) on the removal of aniline from synthetic aqueous solutions was analysed. The experimental NF results are compared with results previously obtained by reverse osmosis. Based on this comparative study, the effective order for aniline rejection is: HR98PP > NF97 > DESAL3B > SEPA-MS05 > NF99HF.

  2. A lithium ion battery using an aqueous electrolyte solution

    NASA Astrophysics Data System (ADS)

    Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei

    2016-06-01

    Energy and environmental pollution have become the two major problems in today’s society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg-1. It will be a promising energy storage system with good safety and efficient cooling effects.

  3. Interaction between pirenoxine and bovine serum albumin in aqueous solution

    NASA Astrophysics Data System (ADS)

    Liao, Zhixi; Yu, Xianyong; Yao, Qing; Yi, Pinggui

    2014-08-01

    This work concerns the interaction of prenoxine sodium (PRX) and bovine serum albumin (BSA), which was conducted by spectroscopic means: fluorescence spectra, ultraviolet-visible spectra (UV-vis) and circular dichroism spectra (CD spectra) in physiological conditions. The results revealed the PRX can quench the fluorescence of BSA remarkably in aqueous solution. The quench mechanism has been obtained after corrected the fluorescence intensities for inner filter effects. The binding constants (Ka) were calculated according to the relevant fluorescence data at different temperatures. Moreover, from a series of analyses, we have obtained the binding sites, the binding distance and binding force. The effect of PRX on the conformation of BSA has been analyzed using synchronous fluorescence under experimental conditions. In addition, the CD spectra proved that the secondary structure of BSA changed in the presence of PRX in aqueous solution.

  4. A lithium ion battery using an aqueous electrolyte solution.

    PubMed

    Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei

    2016-06-22

    Energy and environmental pollution have become the two major problems in today's society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg(-1). It will be a promising energy storage system with good safety and efficient cooling effects.

  5. Photodegradation of Norfloxacin in aqueous solution containing algae.

    PubMed

    Zhang, Junwei; Fu, Dafang; Wu, Jilong

    2012-01-01

    Photodegradation of Norfloxacin in aqueous solution containing algae under a medium pressure mercury lamp (15 W, lambda(max) = 365 nm) was investigated. Results indicated that the photodegradation of Norfloxacin could be induced by the algae in the heterogeneous algae-water systems. The photodegradation rate of Norfloxacin increased with increasing algae concentration, and was greatly influenced by the temperature and pH of solution. Meanwhile, the cooperation action of algae and Fe(III), and the ultrasound were beneficial to photodegradation of Norfloxacin. The degradation kinetics of Norfloxacin was found to follow the pseudo zero-order reaction in the suspension of algae. In addition, we discussed the photodegradation mechanism of Norfloxacin in the suspension of algae. This work will be helpful for understanding the photochemical degradation of antibiotics in aqueous environment in the presence of algae, for providing a new method to deal with antibiotics pollution.

  6. SANS simulation of aggregated protein in aqueous solution

    NASA Astrophysics Data System (ADS)

    Sugiyama, Masaaki; Hamada, Kei; Kato, Koichi; Kurimoto, Eiji; Okamoto, Kenta; Morimoto, Yukio; Ikeda, Susumu; Naito, Sachio; Furusaka, Michihiko; Itoh, Keiji; Mori, Kazuhiro; Fukunaga, Toshiharu

    2009-02-01

    Small-angle neutron scattering (SANS) of aggregated protein in an aqueous solution is simulated based on the crystallographic data of the protein. After obtaining the crystallographic data of the target protein, hydrogen atoms are added to the data and then some hydrogen atoms are replaced with deuterium atoms. The structure models are made with this data and then their gyration radii and SANS intensities are calculated. Compared the calculated SANS data with the experimental one, the most probable structure is determined. With this analysis method, the aggregate structure of proteasome α7-subunit (PRSα) in an aqueous solution was investigated. Three structural models, a simple monomer and two types of dimers, were supposed as the aggregated structure of PRSα. The analysis showed that the best compromised structure was the dimer, which was consistent with electron microscopy observation.

  7. Adsorption analysis of ammonia in an aqueous solution

    SciTech Connect

    Arman, B.; Panchal, C.B.

    1993-08-01

    An analysis is carried out to determine the effects of the diffusional resistance on the rate of the adsorption of ammonia in an aqueous solution. A performance prediction model is developed to calculate the local rate of heat and mass transfer, including physical and thermodynamic property calculations of the mixture. An algorithm is developed for calculating the interfacial conditions. The local heat- and mass-transfer calculation is then incorporated into the performance prediction method for adsorption for a given geometry.

  8. Freezing and thawing of aqueous solutions in emulsions

    NASA Astrophysics Data System (ADS)

    Hauptmann, Astrid; Handle, Karl; Hölzl, Georg; Loerting, Thomas

    2016-04-01

    The freezing behaviour of aqueous solutions in different emulsions is investigated by analytical methods such as differential scanning calorimetry and optical cryomicroscopy. We show that freezing temperature, freeze concentration and correspondingly cold-crystallization and melting change depending on the properties of the surrounding oil and emulsifier, size distribution of emulsified droplets and the parameters of emulsification. Relevance to freezing of cloud droplets is discussed.

  9. Formation and reactivity of phenylperoxyl radicals in aqueous solutions

    SciTech Connect

    Alfassi, Z.B.; Marguet, S.; Neta, P. )

    1994-08-18

    The reaction of phenyl radicals with oxygen, to produce phenylperoxyl radicals, and the reactions of several phenylperoxyl radicals with a number of organic compounds in aqueous solutions have been studied by pulse radiolysis. Phenyl radicals were produced by reduction of aryl halides with hydrated electrons. The rate constant for the reaction of 4-carboxyphenyl with O[sub 2] was determined from the rate of buildup of the peroxyl radical absorption at 520 nm as a function of [O[sub 2

  10. An MD Simulation of Concentrated Aqueous Solutions of Caesium Iodide

    NASA Astrophysics Data System (ADS)

    Tamura, Y.; Ohtaki, H.; Okada, I.

    1991-12-01

    Molecular dynamics simulations of concentrated aqueous Csl solutions have been performed for Csl: H2O = 1:20 (2.78 molal) at 298 K and 341 K and 1:10 (5.56 molal) at 349 K. Effects of temperature and concentration on the structures of the hydrated ions, the ion pairs, and ionic aggregates are discussed by comparing the results with X-ray diffraction data obtained under similar conditions [1

  11. Relationship between supercooling stability and solution structure in sodium acetate aqueous solution

    NASA Astrophysics Data System (ADS)

    Machida, Hironobu; Sugahara, Takeshi; Hirasawa, Izumi

    2017-10-01

    We have observed the solution structure of the supercooled sodium acetate aqueous solution, especially for the existence of clusters and their crystallization process, by means of Scanning electron microscopy (SEM) with the freeze replica method. Microscopic internal structure of sodium acetate trihydrate crystals mainly constitutes the aggregates of 100-200 nm in diameter, which consists of the clusters of 10-20 nm in diameter. In the case of a supercooled aqueous solution of 293 K, two types of aspect in the vitrified aqueous solution mainly exist: one is the clusters of 10-20 nm in diameter; the other is the smooth zone without any structure. At 263 K, the relationship among clusters of 10-20 nm and their aggregates of 100-200 nm was clearly observed. The aggregates construct the three-dimensional loose networks, which are not fully packed, different from the crystal.

  12. The solubility of ozone and kinetics of its chemical reactions in aqueous solutions of sodium chloride

    NASA Astrophysics Data System (ADS)

    Levanov, A. V.; Kuskov, I. V.; Antipenko, E. E.; Lunin, V. V.

    2008-12-01

    The solubility of ozone and the kinetics of its decomposition and interaction with chloride ions in a 1 M aqueous solution of NaCl at 20°C and pH 8.4-10.8 were studied. The ratio between the concentration of O3 in solution and the gas phase was found to be 0.16 at pH 8.4-9.8. The concentration of dissolved ozone decreased sharply as pH increased to 10.8 because of a substantial increase in the rate of its decomposition. It was observed for the first time that the interaction of O3 with Cl- in alkaline media resulted in the formation of ClO{3/-} chlorate ions. The dependence of the rate of formation of ClO{3/-} on pH was determined; its maximum value was found to be 9.6 × 10-6 mol l-1 min-1 at pH 10.0 and the concentration of ozone at the entrance of the reactor 30.0 g/m3. A spectrophotometric method for the determination of chlorate ions (concentrations 1 × 10-5-3 × 10-4 M) in aqueous solutions was suggested.

  13. Removal of fluoride ions from aqueous solution by waste mud.

    PubMed

    Kemer, Baris; Ozdes, Duygu; Gundogdu, Ali; Bulut, Volkan N; Duran, Celal; Soylak, Mustafa

    2009-09-15

    The present study was carried out to assess the ability of original waste mud (o-WM) and different types of activated waste mud which are acid-activated (a-WM) and precipitated waste mud (p-WM), in order to remove excess of fluoride from aqueous solution by using batch technique. The p-WM exhibited greater performance than the others. Adsorption studies were conducted as a function of pH, contact time, initial fluoride concentration, adsorbent concentration, temperature, etc. Studies were also performed to understand the effect of some co-existing ions present in aqueous solutions. Adsorption process was found to be almost independent of pH for all types of waste mud. Among the kinetic models tested for p-WM, pseudo-second-order model fitted the kinetic data well with a perfect correlation coefficient value of 1.00. It was found that the adequate time for the adsorption equilibrium of fluoride was only 1h. Thermodynamic parameters including the Gibbs free energy (DeltaG degrees ), enthalpy (DeltaH degrees ), and entropy (DeltaS degrees ) revealed that adsorption of fluoride ions on the p-WM was feasible, spontaneous and endothermic in the temperature range of 0-40 degrees C. Experimental data showed a good fit with the Langmuir and Freundlich adsorption isotherm models. Results of this study demonstrated the effectiveness and feasibility of WM for removal of fluoride ions from aqueous solution.

  14. Aqueous ozone solutions for pesticide removal from potatoes.

    PubMed

    Heleno, Fernanda F; de Queiroz, Maria Eliana Lr; Faroni, Lêda Ra; Neves, Antônio A; de Oliveira, André F; Costa, Luiz Pl; Pimenta, Gustavo G

    2016-12-01

    The presence of pesticide residues in potatoes is of concern because of the potential impact to human health due to the high consumption of this vegetable. In this study, aqueous solutions with and without ozone saturation as postharvest wash treatment at pH 4.0, 7.0, and 9.0 were tested to remove chlorothalonil from potatoes. The method used for pesticide analysis has been validated, presenting recovery values of 94-103%, with variations in the repeatability coefficients of ≤10.6%, and a quantification limit of 0.05 mg kg(-1) Regardless of pH, treatment with aqueous ozone solutions removed 70-76% of the pesticide present in the potato. In the no-ozone treatments, the percentage average removal of chlorothalonil residues in potatoes was only 36%. Over 24 days of storage, the quality of potatoes washed with aqueous ozone solutions was not significantly different from those washed with pure water. © The Author(s) 2016.

  15. [Adsorption of Congo red from aqueous solution on hydroxyapatite].

    PubMed

    Zhan, Yan-Hui; Lin, Jian-Wei

    2013-08-01

    The adsorption of Congo red (CR) from aqueous solution on hydroxyapatite was investigated using batch experiments. The hydroxyapatite was effective for CR removal from aqueous solution. The adsorption kinetics of CR on hydroxyapatite well followed a pseudo-second-order model. The equilibrium adsorption data of CR on hydroxyapatite could be described by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Thermodynamic parameters such as Gibbs free energy change, enthalpy change and entropy change were calculated and showed that the adsorption of CR on hydroxyapatite was spontaneous and exothermic in nature. The CR adsorption capacity for hydroxyapatite decreased significantly with increasing pH from 8 to 10. Thermal regeneration showed that hydroxyapatite could be used for six desorption-adsorption cycles with high removal efficiency for CR in each cycle. The mechanisms for CR adsorption on hydroxyapatite with pH value below the pH at point of zero charge (pH(PZC)) include electrostatic attraction, hydrogen bonding and Lewis acid-base interaction. The mechanisms for CR adsorption on hydroxyapatite with pH value above its pH(PZC) include hydrogen bonding and Lewis acid-base interaction. Results of this work indicate that hydroxyapatite is a promising adsorbent for CR removal from aqueous solution.

  16. Hydrogen production via photolytic oxidation of aqueous sodium sulfite solutions.

    PubMed

    Huang, Cunping; Linkous, Clovis A; Adebiyi, Olawale; T-Raissi, Ali

    2010-07-01

    Sulfur dioxide (SO(2)) emission from coal-burning power plants and refinery operations has been implicated as a cause of acid rain and other air pollution related problems. The conventional treatment of SO(2)-contaminated air consists of two steps: SO(2) absorption using an aqueous sodium hydroxide solution, forming aqueous sodium sulfite (Na(2)SO(3)), and Na(2)SO(3) oxidation via air purging to produce sodium sulfate (Na(2)SO(4)). In this process, the potential energy of SO(2) is lost. This paper presents a novel ultraviolet (UV) photolytic process for production of hydrogen from aqueous Na(2)SO(3) solutions. The results show that the quantum efficiency of hydrogen production can reach 14.4% under illumination from a low pressure mercury lamp. The mechanism occurs via two competing reaction pathways that involve oxidation of SO(3)(2-) to SO(4)(2-) directly and through the dithionate (S(2)O(6)(2-)) ion intermediate. The first route becomes dominant once a photostationary state for S(2)O(6)(2-) is established. The initial pH of Na(2)SO(3) solution plays an important role in determining both the hydrogen production rate and the final products of the photolytic oxidation. At initial solution pH of 9.80 Na(2)SO(3) photo-oxidation generates Na(2)SO(4) as the final reaction product, while Na(2)S(2)O(6) is merely a reaction intermediate. The highest hydrogen production rate occurs when the initial solution pH is 7.55. Reduction in the initial solution pH to 5.93 results in disproportionation of HSO(3)(-) to elemental sulfur and SO(4)(2-) but no hydrogen production.

  17. Solubility of volatile organic compounds in aqueous ammonia solution.

    PubMed

    Görgényi, Miklós; Dewulf, Jo; Van Langenhove, Herman; Király, Zoltán

    2005-05-01

    The Ostwald solubility coefficient, L of 17 volatile organic compounds (VOCs) from the gas phase into water and dilute aqueous ammonia solutions was determined by the equilibrium partitioning in closed system-solid phase micro extraction (EPICS-SPME) method at 303 K and at 0-2.5 mol dm(-3) ammonia concentrations. Ammonia increased the solubility of all VOCs nearly linearly, but to a different extent. The difference in the solubility values in aqueous ammonia solutions (Lmix) compared to pure water (L) is explained on the basis of a Linear Solvation Energy Relationship (LSER) equation made applicable for solvent mixtures, logLmix - logL = x((sNH3 - sH2O)pi2H + (aNH3 - aH2O)Sigma2H + (bNH3 - bH2O)Sigmabeta2H + (vNH3 - VH2O)Vx). sNH3 - sH2O, aNH3 - aH2O, bNH3 - bH2O, vNH3 - vH2O are the differences of solvent parameters, x is the mole fraction, pi2H is the solute dipolarity-polarizability, Sigmaalpha2H is the effective hydrogen bond acidity of the solute, Sigmabeta2H is the effective hydrogen bond basicity of the solute and Vx, the McGowan characteristic volume. The most significant term was v, the phase hydrophobicity. The solubility behavior was explained by the change in structure of the aqueous solution: the presence of ammonia reduces the cavity effect. These findings show that the presence of compounds such as ammonia, frequently observed in environmental waters, especially wastewaters, affect the fugacity of VOCs, having consequences for the environmental partitioning of VOCs and having technical consequences towards wastewater treatment technologies.

  18. Decomposition of aniline in aqueous solution by UV/TiO2 process with applying bias potential.

    PubMed

    Ku, Young; Chiu, Ping-Chin; Chou, Yiang-Chen

    2010-11-15

    Application of bias potential to the photocatalytic decomposition of aniline in aqueous solution was studied under various solution pH, bias potentials and concentrations of potassium chloride. The decomposition of aniline by UV/TiO(2) process was found to be enhanced with the application of bias potential of lower voltages; however, the electrolysis of aniline became more dominant as the applying bias potential exceeding 1.0 V. Based on the experimental results and calculated synergetic factors, the application of bias potential improved the decomposition of aniline more noticeably in acidic solutions than that in alkaline solutions. Decomposition of aniline by UV/bias/TiO(2) process in alkaline solutions was increased to certain extent with the concentration of potassium chloride present in aqueous solution. Experimental results also indicated that the energy consumed by applying bias potential for aniline decomposition by UV/bias/TiO(2) process might be much lower than that consumed for increasing light intensity for photocatalysis.

  19. Oxidation of ammonium sulfite in aqueous solutions using ozone technology

    NASA Astrophysics Data System (ADS)

    Li, Yue; Shang, Kefeng; Lu, Na; Li, Jie; Wu, Yan

    2013-03-01

    How to deal with unstable ammonium sulfite, the byproduct of flue gas desulfuration by ammonia absorption methods, has been a difficult problem in recent years. Oxidation of ammonium sulfite in aqueous solutions using ozone produced by a surface discharge system was investigated in the paper. The oxidation efficiency of ammonium sulfite by ozone and traditional air aeration were compared, and the factors including ozone concentration, gas flow rate, initial concentration of ammonium sulfite solution and reaction temperature were discussed. The results show that the oxidation efficiency of ammonium sulfite by ozone technology reached nearly 100% under the optimum conditions, which had a significant increase compared with that by air aeration.

  20. Preparation of thin ceramic films via an aqueous solution route

    DOEpatents

    Pederson, Larry R.; Chick, Lawrence A.; Exarhos, Gregory J.

    1989-01-01

    A new chemical method of forming thin ceramic films has been developed. An aqueous solution of metal nitrates or other soluble metal salts and a low molecular weight amino acid is coated onto a substrate and pyrolyzed. The amino acid serves to prevent precipitation of individual solution components, forming a very viscous, glass-like material as excess water is evaporated. Using metal nitrates and glycine, the method has been demonstrated for zirconia with various levels of yttria stabilization, for lanthanum-strontium chromites, and for yttrium-barium-copper oxide superconductors on various substrates.

  1. Radiolysis of berberine or palmatine in aqueous solution

    NASA Astrophysics Data System (ADS)

    Marszalek, Milena; Wolszczak, Marian

    2011-01-01

    The reactions of hydrated electron (eaq-), hydrogen atom (H rad ) (reducing species) and Cl2•-, Br2•-, N,O•H radicals (oxidizing species) with berberine or palmatine in aqueous solution have been studied by steady-state and pulse radiolysis. The spectra of transient intermediates, leading to the final products, are presented. The rate constants of the reaction of eaq- and rad OH radical with both alkaloids in the homogenous solution and in the presence of DNA are reported. It is demonstrated that the primary products of the reaction of berberine and palmatine with eaq- and radicals generated during radiolysis are unstable and undergo further reactions.

  2. Initiation of sugars synthesis from formaldehyde in the aqueous solution with ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Pestunova, O.; Simonov, A.; Stojanovskii, V.; Snytnikov, V.; Parmon, V.

    Many scientists consider autocatalytic sugars synthesis from formaldehyde in alkaline aqueous solutions via so-called formose reaction as a probable way of sugars formation at the prebiotic stage of the Earth evolution [1, 2]. However, the authors of paper [3] shown, that in the pure aqueous solution of formaldehyde, which does not contain even seeds of monosaccharides, the formose reaction of formaldehyde polymerisation does not occur. In this work we demonstrate that in the above mentioned solution the formose reaction can be initiated by ultraviolet radiation. A quartz cuvette (l = 10 mm) with an aqueous solution of formaldehyde (2 or 0.5 mol/l) and a magnetic stirrer was exposed to an ArF excimer laser radiation (wavelength 193 nm, 15 ns, 150 mJ, beam area 24 mm2). The location of the absorption maximum of carbonyl group of formaldehyde is 190 nm. In the course of the light-initiated reaction, in the UV spectra of solutions two absorption bands at 205 and 270 nm appear. Apparently, these bands are belonging to formic acid and glycolaldehyde, respectively. The increase of the optical density of the solution during such transformation decrease the transparency of the solution for the laser beam, this resulted in a gradual reducing of the reaction rate and the further stop of reaction. The conversion of formaldehyde at the photoreaction stopping was 7 % for the 2 mol/l solution and 16 % for the 0.5 mol/l one. The analysis of exposed solutions with a HPLC method has shown, that one of the products of the reaction is glycol aldehyde (C2O2H4), which formally is a primary C2-sugar. The yield of glycol aldehyde was 0.5 and 0.4 mol % respectively. It is well-known, that glycol aldehyde initiates the autocatalytic formose reaction, being a better initiator than other monosaccharides [4]. In our case, the addition of the UV-exposed solution to a formaldehyde and calcium hydroxide containing solution stimulated the formose reaction with a sharp reduction of the induction

  3. Ice nucleation and supercooling behavior of polymer aqueous solutions.

    PubMed

    Kimizuka, Norihito; Viriyarattanasak, Chotika; Suzuki, Toru

    2008-02-01

    We determined the homogeneous nucleation temperature depression, DeltaT(f,hom), the equilibrium melting point depression, DeltaT(m), and the value lambda, which can be obtained from the linear relationship DeltaT(f,hom)=lambdaDeltaT(m), for aqueous solutions of PEG (200-20,000 g mol(-1)), PVP (10,000, 35,000, 40,000 g mol(-1)), and dextran (10,000 g mol(-1)) in the concentration range 0-40 wt% using the emulsion method. The molecular weight dependence of T(f,hom), T(m), and lambda in PEG aqueous solutions was found to change in the vicinity of Mw 600-1540 at all concentrations. In addition, it was confirmed that for all of the polymers studied, there was a good linear relationship between lambda and the logarithmic value of the self-diffusion coefficient D(0) of the solute molecule. These results indicate that the parameters that describe non-equilibrium freezing, such as T(f,hom) and lambda, are dependent on solution properties such as viscosity and self-diffusion of solute molecules.

  4. Association of riboflavin, caffeine, and sodium salicylate in aqueous solution

    NASA Astrophysics Data System (ADS)

    Baranovskii, S. F.; Bolotin, P. A.

    2007-03-01

    We have used UV and visible spectrophotometry to study self-association of aromatic riboflavin molecules (RFN, vitamin B2, 7,8-dimethyl-10-N-(1'-D-ribityl)isoalloxazine) in aqueous solution (pH 6.86) at T = 298 K, using a dimer model. We have determined the equilibrium dimerization constant for riboflavin, KdB = 125 ± 40 M-1. We have studied heteroassociation in the system of molecules of 7,8-dimethyl-10-ribitylisoalloxazine with 1,3,7-trimethylxanthine (caffeine) and sodium salicylate (NAS) in aqueous solution (pH 6.86; T = 298 K). We have determined the heteroassociation constants for RFN-NAS and RFN-caffeine molecules in the absence and in the presence of urea in solutions using a modified Benesi-Hildebrand equation: 25 ± 4, 17 ± 3, and 74 ± 11, 53 ± 7 M-1 respectively. We have determined the dimerization constants for NAS (2.7 ± 0.5 M-1) and caffeine (17.0 ± 1.5 M-1). We conclude that heteroassociation of the aromatic molecules leads to a lower effective riboflavin concentration in solution, and the presence of urea in mixed solutions leads to an decrease in the complexation constants for the RFN-NAS and RFN-caffeine systems.

  5. Structure of concentrated aqueous solutions of scandium chloride

    NASA Astrophysics Data System (ADS)

    Smirnov, P. R.; Grechin, O. V.

    2017-03-01

    It is shown via X-ray diffraction that aqueous solutions of scandium chloride form ionic associates in a wide range of concentrations. It is established that the Sc3+ ion coordination number increases upon dilution to 8.2 at an unchanged Sc3+-OH2 distance of 0.215 nm. The second coordination sphere of the cation forms at an average distance of 0.420 nm. The number of solvent molecules in the sphere logically increases during dilution. It is concluded that the anion does not form its own sphere in highly concentrated solutions. This coordination sphere begins to form only in solutions with moderate concentrations at a distance of 0.315 nm, and it contains six water molecules in diluted solutions.

  6. Photodegradation in Micellar Aqueous Solutions of Erythrosin Esters Derivatives.

    PubMed

    Herculano, Leandro Silva; Lukasievicz, Gustavo Vinicius Bassi; Sehn, Elizandra; Caetano, Wilker; Pellosi, Diogo Silva; Hioka, Noboru; Astrath, Nelson Guilherme Castelli; Malacarne, Luis Carlos

    2015-07-01

    Strong light absorption and high levels of singlet oxygen production indicate erythrosin B as a viable candidate as a photosensitizer in photodynamic therapy or photodynamic inactivation of microorganisms. Under light irradiation, erythrosin B undergoes a photobleaching process that can decrease the production of singlet oxygen. In this paper, we use thermal lens spectroscopy to investigate photobleaching in micellar solutions of erythrosin ester derivatives: methyl, butyl, and decyl esters in low concentrations of non-ionic micellar aqueous solutions. Using a previously developed thermal lens model, it was possible to determine the photobleaching rate and fluorescence quantum efficiency for dye-micelle solutions. The results suggest that photobleaching is related to the intensity of the dye-micelle interaction and demonstrate that the thermal lens technique can be used as a sensitive tool for quantitative measurement of photochemical properties in very diluted solutions.

  7. Thermal analysis of a growing crystal in an aqueous solution

    NASA Astrophysics Data System (ADS)

    Shiomi, Yuji; Kuroda, Toshio; Ogawa, Tomoya

    1980-10-01

    The temperature profiles around growing crystals in aqueous solutions of Rochelle salt were measured with accuracy of 0.005°C in a two-dimensional cell which was used for elimination of thermal convection current in the cell. The temperature distribution became stationary after 2 h from injection of the mother liquid, but the concentration distribution did not become stationary because the diffusion constant of solute in the solution was much smaller than the thermal diffusivity of the solution. The growth rate was linearly proportional to the temperature gradient at every growing interface. Since crystal growth is a typical interaction process between thermal and material flow, the experimental results were analysed by such an interaction model. The analysis confirms that the material flow is limited by diffusion within a layer width of about a few hundreds micrometers on the growing interface.

  8. On the structure of an aqueous propylene glycol solution

    NASA Astrophysics Data System (ADS)

    Rhys, Natasha H.; Gillams, Richard J.; Collins, Louise E.; Callear, Samantha K.; Lawrence, M. Jayne; McLain, Sylvia E.

    2016-12-01

    Using a combination of neutron diffraction and empirical potential structure refinement computational modelling, the interactions in a 30 mol. % aqueous solution of propylene glycol (PG), which govern both the hydration and association of this molecule in solution, have been assessed. From this work it appears that PG is readily hydrated, where the most prevalent hydration interactions were found to be through both the PG hydroxyl groups but also alkyl groups typically considered hydrophobic. Hydration interactions of PG dominate the solution over PG self-self interactions and there is no evidence of more extensive association. This hydration behavior for PG in solutions suggests that the preference of PG to be hydrated rather than to be self-associated may translate into a preference for PG to bind to lipids rather than itself, providing a potential explanation for how PG is able to enhance the apparent solubility of drug molecules in vivo.

  9. On the structure of an aqueous propylene glycol solution.

    PubMed

    Rhys, Natasha H; Gillams, Richard J; Collins, Louise E; Callear, Samantha K; Lawrence, M Jayne; McLain, Sylvia E

    2016-12-14

    Using a combination of neutron diffraction and empirical potential structure refinement computational modelling, the interactions in a 30 mol. % aqueous solution of propylene glycol (PG), which govern both the hydration and association of this molecule in solution, have been assessed. From this work it appears that PG is readily hydrated, where the most prevalent hydration interactions were found to be through both the PG hydroxyl groups but also alkyl groups typically considered hydrophobic. Hydration interactions of PG dominate the solution over PG self-self interactions and there is no evidence of more extensive association. This hydration behavior for PG in solutions suggests that the preference of PG to be hydrated rather than to be self-associated may translate into a preference for PG to bind to lipids rather than itself, providing a potential explanation for how PG is able to enhance the apparent solubility of drug molecules in vivo.

  10. Method of solidifying waste materials, such as radioactive or toxic materials, contained in aqueous solutions

    SciTech Connect

    Knieper, J.; May, K.; Printz, H.

    1984-07-24

    A method is disclosed of solidifying waste materials, such as radioactive or toxic materials, which are contained in aqueous solutions. To accomplish this solidification, an inorganic, non-metallic binding agent such as gypsum is intermixed with the aqueous solution and a substance such as pumice or ceramic tile which promotes the intermixing of the binding agent and the aqueous solution.

  11. Protein Conformation and Supercharging with DMSO from Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Sterling, Harry J.; Prell, James S.; Cassou, Catherine A.; Williams, Evan R.

    2011-07-01

    The efficacy of dimethyl sulfoxide (DMSO) as a supercharging reagent for protein ions formed by electrospray ionization from aqueous solution and the mechanism for supercharging were investigated. Addition of small amounts of DMSO to aqueous solutions containing hen egg white lysozyme or equine myoglobin results in a lowering of charge, whereas a significant increase in charge occurs at higher concentrations. Results from both near-UV circular dichroism spectroscopy and solution-phase hydrogen/deuterium exchange mass spectrometry indicate that DMSO causes a compaction of the native structure of these proteins at low concentration, but significant unfolding occurs at ~63% and ~43% DMSO for lysozyme and myoglobin, respectively. The DMSO concentrations required to denature these two proteins in bulk solution are ~3-5 times higher than the concentrations required for the onset of supercharging, consistent with a significantly increased concentration of this high boiling point supercharging reagent in the ESI droplet as preferential evaporation of water occurs. DMSO is slightly more basic than m-nitrobenzyl alcohol and sulfolane, two other supercharging reagents, based on calculated proton affinity and gas-phase basicity values both at the B3LYP and MP2 levels of theory, and all three of these supercharging reagents are significantly more basic than water. These results provide additional evidence that the origin of supercharging from aqueous solution is the result of chemical and/or thermal denaturation that occurs in the ESI droplet as the concentration of these supercharging reagents increases, and that proton transfer reactivity does not play a significant role in the charge enhancement observed.

  12. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures.

    PubMed

    Cochrane, T T; Cochrane, T A

    2016-01-01

    To demonstrate that the authors' new "aqueous solution vs pure water" equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of "free" water molecules per unit volume of solution, "Nf," and (c) the "t" factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate Nf was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors' equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. The provisional equations formulated to calculate Nf, the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of Nf using recorded relative density data at 20 °C. They were

  13. Ultrasound response of aqueous poly(ionic liquid) solution.

    PubMed

    Li, Kai; Kobayashi, Takaomi

    2016-05-01

    Ultrasound (US) effects on aqueous poly(ionic liquid) (PIL) solution were investigated using viscosity and FT-IR spectroscopy after exposure to US of 23, 43, and 96 kHz frequencies at 50 W. The viscosity of the poly(1-vinyl-3-butyl-imidazolium chloride) (PIL) aqueous solution decreased during exposure to US. It then increased gradually within about 10 min as US stopped. The aqueous PIL behavior was then observed using FT-IR spectroscopy. The US exposure enhanced the FT-IR band intensity of the OH stretching. The band intensity returned to its original value after the US stopped. These results responded cyclically to the US on/off. Analysis of the FT-IR spectra revealed that US influenced the breakage and reformation of hydrogen bonds in the PIL and water. Two-dimensional correlation and deconvolution were used to analyze the change of components in the region of 3000-3700 cm(-1) for US exposure. Results of these analyses suggest that US exposure might break hydrogen bonds between PIL segments and water. In the absence of US, hydrogen bonds reformation was also observed between the PIL and water. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Stability of metal oxide nanoparticles in aqueous solutions.

    PubMed

    Tso, Chih-ping; Zhung, Cheng-min; Shih, Yang-hsin; Tseng, Young-Ming; Wu, Shian-chee; Doong, Ruey-an

    2010-01-01

    The application of nanoparticles in the processes of making commercial products has increased in recent years due to their unique physical and chemical properties. With increasing amount of commercial nanoparticles released into nature, their fate and effects on the ecosystem and human health are of growing concern. This study investigated the stability and morphology of three metal oxide nanoparticles in aqueous solutions. The commercially available nanoparticles, TiO(2), ZnO, SiO(2), aggregated quickly into micrometer-size particles in aqueous solutions, which may not threaten human health. Their changes in morphology and characteristics were further examined by dynamic light scattering (DLS) method and transmission electron microscopy (TEM). Among the several dispersion approaches, ultrasonication was found to be the most effective for disaggregating nanoparticles in water. For these three selected nanoparticles, ZnO could not remain stable in suspensions, presumably due to the dissolution of particles to form high concentration of ions, resulting in enhanced aggregation of particles. In addition, the existence of dissolved organic matters stabilized nanoparticles in lake water and wastewater for several hours in spite of the high concentration of cations in these real-water samples. The fate of metal oxide nanoparticles in natural water bodies would be determined by the type and concentration of cations and organic matters. Results obtained in this study revealed that the stability of nanoparticles changed under different aqueous conditions and so did their fate in the environment.

  15. Dielectric properties of solutions of oil materials solubilized by sodium dodecyl sulfate in aqueous solutions

    SciTech Connect

    Abe, M.; Shimizu, A.; Ogino, K.

    1982-08-01

    One of the most important properties of micellar systems is their ability to solubilize a variety of species. For aqueous micelles, solubilization is related closely to the hydrophobic and hydrophilic properties of the solubilizate. Different sites of solubilization and orientations may be involved, depending on the structure of the solubilizate. A number of studies on solubilization have been performed experimentally and theoretically. Dielectric constant measurement has proved to be a powerful tool for the investigation of permanent dipole moments of various molecules and of the behavior in solution of various substances, and has been applied in various fields. This technique has been used to determine the chemical structure of surfactants, but not to investigate the solubilization of oily materials in aqueous solution. The dielectric constants and ac electric conductivities observed when a solubilizate is added to an aqueous solution of an anionic surfactant and the differences in the solubilizing behavior due to different kinds of polar groups are discussed. 30 references.

  16. Equilibrium modeling of cadmium biosorption from aqueous solution by compost.

    PubMed

    Ahmad, Iftikhar; Akhtar, Muhammad Javed; Jadoon, Iram Bashir Khan; Imran, Muhammad; Imran, Muhammad; Ali, Shahid

    2017-02-01

    One of the most serious environmental issues of the present century is metal contamination of the aqueous environment due to the release of metal-containing effluents into the water bodies. Cadmium (Cd) is one of the toxic heavy metals which is not biodegradable thereby causing high risks to animals, plants, and humans. In the present study, potential and feasibility of compost derived from fruits and vegetables for Cd biosorption from aqueous solution were investigated. The batch biosorption experiments were performed to evaluate the effects of Cd concentrations (5, 15, 30, and 60 mg/L), compost biomass (0.5, 1.0, and 1.5 g/100 mL), pH (4, 6, and 8), contact time (1, 4, and 19 h), and temperature (28 and 35 °C) on Cd sorption and removal by compost. The biosorption of Cd was found to be highly dependent on initial Cd concentration, sorbent biomass, pH, contact time, and temperature of aqueous solution. It was observed that Cd sorption by compost was rapid up to 4 h, and then it became slow and stable as the contact time shifted towards equilibrium state (19 h). At equilibrium, the Cd sorption (q = 0.33-5.43 mg/g compost) and removal (45-99%) were observed at pH 6 and temperature 28 °C depending upon Cd concentrations and sorbent biomass in aqueous solution. The equilibrium experimental data were fitted well with Langmuir adsorption isotherm model (q max = 6.35-7.14 mg/g compost, R (2) = 0.77-0.98). FTIR spectrum of the compost indicated the presence of hydroxyl and carboxyl groups, which might be involved in the biosorption of Cd through ion exchange and complexation mechanisms. The optimal environmental conditions (pH 6, sorbent biomass 0.5 g/100 mL, and temperature 28 °C) induced more Cd sorption on compost at equilibrium. Results show compost as a cost-effective adsorbent material having high potential for heavy metal remediation from aqueous solution.

  17. Methanol Uptake by Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Essin, A. M.; Golden, D. M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The global methanol budget is currently unbalanced, with source terms significantly larger than the sinks terms. To evaluate possible losses of gaseous methanol to sulfate aerosols, the solubility and reactivity of methanol in aqueous sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosols is under investigation. Methanol will partition into sulfate aerosols according to its Henry's law solubility. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H*, for cold (196 - 220 K) solutions ranging between 45 and 70 wt % H2SO4. We have found that methanol solubility ranges from approx. 10(exp 5) - 10(exp 7) M/atm for UT/LS conditions. Solubility increases with decreasing temperature and with increasing sulfuric acid content. Although methanol is slightly more soluble than are acetone and formaldehyde, current data indicate that uptake by clean aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These solubility measurements include uptake due to physical solvation and any rapid equilibria which are established in solution. Reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H is not significant over our experimental time scale for solutions below 80 wt % H2SO4. To confirm this directly, results obtained using a complementary equilibrium measurement technique will also be presented.

  18. Opto-electrochemical spectroscopy of metals in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Habib, K.

    2016-03-01

    In the present investigation, holographic interferometry was utilized for the first time to determine the rate change of the electrical resistance of aluminium samples during the initial stage of anodisation processes in aqueous solution. In fact, because the resistance values in this investigation were obtained by holographic interferometry, electromagnetic method rather than electronic method, the abrupt rate change of the resistance was called electrical resistance-emission spectroscopy. The anodisation process of the aluminium samples was carried out by electrochemical impedance spectroscopy (EIS) in different sulphuric acid concentrations (1.0%-2.5% H2SO4) at room temperature. In the meantime, the real time holographic interferometry was used to determine the difference between the electrical resistance of two subsequent values, dR, as a function of the elapsed time of the EIS experiment for the aluminium samples in 1.0%, 1.5%, 2.0%, and 2.5% H2SO4 solutions. The electrical resistance-emission spectra of the present investigation represent a detailed picture of not only the rate change of the electrical resistance throughout the anodisation processes but also the spectra represent the rate change of the growth of the oxide films on the aluminium samples in different solutions. As a result, a new spectrometer was developed based on the combination of the holographic interferometry and electrochemical impedance spectroscopy for studying in situ the electrochemical behavior of metals in aqueous solutions.

  19. Opto-electrochemical spectroscopy of metals in aqueous solutions

    SciTech Connect

    Habib, K.

    2016-03-15

    In the present investigation, holographic interferometry was utilized for the first time to determine the rate change of the electrical resistance of aluminium samples during the initial stage of anodisation processes in aqueous solution. In fact, because the resistance values in this investigation were obtained by holographic interferometry, electromagnetic method rather than electronic method, the abrupt rate change of the resistance was called electrical resistance–emission spectroscopy. The anodisation process of the aluminium samples was carried out by electrochemical impedance spectroscopy (EIS) in different sulphuric acid concentrations (1.0%–2.5% H{sub 2}SO{sub 4}) at room temperature. In the meantime, the real time holographic interferometry was used to determine the difference between the electrical resistance of two subsequent values, dR, as a function of the elapsed time of the EIS experiment for the aluminium samples in 1.0%, 1.5%, 2.0%, and 2.5% H{sub 2}SO{sub 4} solutions. The electrical resistance–emission spectra of the present investigation represent a detailed picture of not only the rate change of the electrical resistance throughout the anodisation processes but also the spectra represent the rate change of the growth of the oxide films on the aluminium samples in different solutions. As a result, a new spectrometer was developed based on the combination of the holographic interferometry and electrochemical impedance spectroscopy for studying in situ the electrochemical behavior of metals in aqueous solutions.

  20. Lead(II) binding to the chelating agent D-penicillamine in aqueous solution.

    PubMed

    Sisombath, Natalie S; Jalilehvand, Farideh; Schell, Adam C; Wu, Qiao

    2014-12-01

    A spectroscopic investigation of the complexes formed between the Pb(II) ion and D-penicillamine (H2Pen), a chelating agent used in the treatment of lead poisoning, was carried out on two sets of alkaline aqueous solutions with CPb(II) ≈ 10 and 100 mM, varying the H2Pen/Pb(II) molar ratio (2.0, 3.0, 4.0, 10.0). Ultraviolet-visible (UV-vis) spectra of the 10 mM Pb(II) solutions consistently showed an absorption peak at 298 nm for S(-) → Pb(II) ligand-to-metal charge-transfer. The downfield (13)C NMR chemical shift for the penicillamine COO(-) group confirmed Pb(II) coordination. The (207)Pb NMR chemical shifts were confined to a narrow range between 1806 ppm and 1873 ppm for all Pb(II)-penicillamine solutions, indicating only small variations in the speciation, even in large penicillamine excess. Those chemical shifts are considerably deshielded, relative to the solid-state (207)Pb NMR isotropic chemical shift of 909 ppm obtained for crystalline penicillaminatolead(II) with Pb(S,N,O-Pen) coordination. The Pb LIII-edge extended X-ray absorption fine structure (EXAFS) spectra obtained for these solutions were well-modeled with two Pb-S and two Pb-(N/O) bonds with mean distances 2.64 ± 0.04 Å and 2.45 ± 0.04 Å, respectively. The combined spectroscopic results, reporting δ((207)Pb) ≈ 1870 ppm and λmax ≈ 298 nm for a Pb(II)S2NO site, are consistent with a dominating 1:2 lead(II):penicillamine complex with [Pb(S,N,O-Pen)(S-HnPen)](2-n) (n = 0-1) coordination in alkaline solutions, and provide useful structural information on how penicillamine can function as an antidote against lead toxicity in vivo.

  1. Monte Carlo Simulation of Aqueous Dilute Solutions of Polyhydric Alcohols

    NASA Astrophysics Data System (ADS)

    Lilly, Arnys Clifton, Jr.

    In order to investigate the details of hydrogen bonding and solution molecular conformation of complex alcohols in water, isobaric-isothermal Monte Carlo simulations were carried out on several systems. The solutes investigated were ethanol, ethylene glycol, 1,2-propylene glycol, 1,3 -propylene glycol and glycerol. In addition, propane, which does not hydrogen bond but does form water hydrates, was simulated in aqueous solution. The complex alcohol-water systems are very nonideal in their behavior as a function of solute concentration down to very dilute solutions. The water model employed was TIP4P water^1 and the intermolecular potentials employed are of the Jorgensen type^2 in which the interactions between the molecules are represented by interaction sites usually located on nuclei. The interactions are represented by a sum of Coulomb and Lennard-Jones terms between all intermolecular pairs of sites. Intramolecular rotations in the solute are modeled by torsional potential energy functions taken from ethanol, 1-propanol and 2-propanol for C-O and C-C bond rotations. Quasi-component pair correlation functions were used to analyze the hydrogen bonding. Hydrogen bonds were classified as proton acceptor and proton donor bonds by analyzing the nearest neighbor pair correlation function between hydroxyl oxygen and hydrogen and between solvent-water hydrogen and oxygen. The results obtained for partial molar heats of solution are more negative than experimental values by 3.0 to 14 kcal/mol. In solution, all solutes reached a contracted molecular geometry with the OH groups generally on one side of the molecule. There is a tendency for the solute OH groups to hydrogen bond with water, with more proton acceptor bonds than proton donor bonds. The water -solute binding energies correlate with experimental measurements of the water-binding properties of the solute. ftn ^1Jorgensen, W. L. et al, J. Chem. Phys., 79, 926 (1983). ^2Jorgensen, W. L., J. Phys Chem., 87, 5304

  2. Inhibition of Brass Corrosion by 2-Mercapto-1-methylimidazole in Weakly Alkaline Solution

    NASA Astrophysics Data System (ADS)

    Radovanovic, Milan B.; Antonijevic, Milan M.

    2016-03-01

    The electrochemical behavior of brass and anticorrosion effect of 2-mercapto-1-methylimidazole (2-MMI) in weakly alkaline solution with and without presence of chloride ions was investigated using electrochemical techniques in addition to SEM-EDS analysis. Results show that inhibition efficiency depended on inhibitor concentration and immersion time of brass electrode in inhibitor solution. Inhibition mechanism of 2-mercapto-1-methylimidazole includes adsorption of inhibitor on active sites on electrode surface which was confirmed by SEM-EDS analysis of the brass. Adsorption of the 2-MMI in sodium tetraborate solution obeys Flory-Huggins adsorption isotherm, while in the presence of chloride, ions adsorption of inhibitor obeys Langmuir adsorption isotherm.

  3. Advanced oxidation for the treatment of chlorpyrifos in aqueous solution.

    PubMed

    Ismail, M; Khan, Hasan M; Sayed, Murtaza; Cooper, William J

    2013-10-01

    Chlorpyrifos is an organophosphate pesticide and is significant because of its extensive use, persistence in the environment, wide distribution, and its toxicity may lead to lung and central nervous system damage, developmental and autoimmune disorders and vomiting. In the present study, the irradiation of chlorpyrifos in aqueous solution by (60)Co γ-rays was conducted on a laboratory scale and the removal efficiency of chlorpyrifos was investigated. The SPME-GC-ECD method was used for analysis of chlorpyrifos. Aqueous solutions of different concentrations of target compound (200-1000 μg L(-1)) were irradiated through 30-575 Gy. Gamma irradiation showed 100% degradation for a 500 μg L(-1) solution at an absorbed dose of 575 Gy (the dose rate was 300 Gy h(-1)). The radiolysis of chlorpyrifos was pseudo-first order (decay) with respect to dose. The dose constants determined in this study ranged from 8.2×10(-3) to 2.6×10(-2) Gy(-1), and decreased with an increase in the initial concentration of chlorpyrifos, while the radiation chemical yield (G-value) for the loss of chlorpyrifos was found to decrease with increasing absorbed dose. The effect of saturated solutions of N2 and N2O, and radical scavengers tert-butanol, iso-propanol, H2O2, NaNO3 and NaNO2 on the degradation of chlorpyrifos were also studied. The results showed that the oxidative OH was the most important in the degradation of chlorpyrifos, while the reductive radicals, aqueous electron and H, were of less importance for the degradation of chlorpyrifos. The inorganic by-products Cl(-), SO4(2-) and PO4(3-) were quantitatively determined by IC.

  4. Effect of different alkaline solutions on crystalline structure of cellulose at different temperatures.

    PubMed

    Keshk, Sherif M A S

    2015-01-22

    Effect of alkaline solutions such as 10% NaOH, NaOH/urea and NaOH/ethylene glycol solutions on crystalline structure of different cellulosic fibers (cotton linter and filter paper) was investigated at room temperature and -4°C. The highest dissolution of cotton linter and filter paper was observed in NaOH/ethylene glycol at both temperatures. X-ray patterns of treated cotton linter with different alkaline solutions at low temperature showed only two diffractions at 2θ=12.5° and 21.0°, which belonged to the crystalline structure of cellulose II. CP/MAS (13)C NMR spectra showed the doublet peaks at 89.2 ppm and 88.3 ppm representing C4 resonance for cellulose I at room temperature, Whereas, at low temperature the doublet peaks were observed at 89.2 ppm and 87.8 ppm representing C4 resonance for cellulose II. Degree of polymerization of cellulose plays an important role in cellulose dissolution in different alkaline solutions and temperatures, where, a low temperature gives high dissolutions percentage with change in crystalline structure from cellulose I to cellulose II forms.

  5. The cost of alkaline solutions in ambulatory hemodialysis: an analysis about wasteful from the processes control.

    PubMed

    de Moraes Junior, Celso Souza; de Mendonça, Ricardo Rodrigues Silveira; Hatem, Raquel Oliveira Rocha de Freitas; Souza, André Luiz Sampaio; Chaves, Adriana Rodrigues; Bastos, Marcus Gomes; Colugnati, Fernando Antônio Basile

    2014-01-01

    There are few studies about costs of inputs used in hemodialysis and among these expenditures, the compounds that make up the dialysate are one of the values considered as representative of this therapy. However, there aren't costs studies that guiding solutions. The objective of this article is discuss whether there is wasteful of alkaline solutions in ambulatory hemodialysis and hence the possibility of reduction in cost from the standardization process simulation of establishment of dialysate flow in periods between shifts in hemodialysis outpatients. Starting from an observational analytic, a simulation was performed twenty case scenarios, which ten cases established by standardizing processes control on the dialysate flow in recession. The combination of data was performed using as a basis the prices of three suppliers of alkali liquid or powder. It was observed among the scenarios with standardized processes, ranging between 7.7% and 33.3% savings in the alkaline solution cost (powder or liquid), by reducing waste. It is possible to restrain the wasteful use of alkaline solutions, both powder and liquid. Consequently, its cost from the patterning on reducing the flow of dialysate during the intervals between shifts observed in the outpatient hemodialysis. However, these results are conditional upon the commitment of health professionals, mainly to supervision exercise and control of activities in quality function deployment.

  6. Dynamic self-assembly of coordination polymers in aqueous solution.

    PubMed

    Li, Wen; Kim, Yongju; Li, Jingfang; Lee, Myongsoo

    2014-08-07

    The construction of supramolecular polymers has been intensively pursued because the nanostructures formed through weak non-covalent interactions can be triggered by external stimuli leading to smart materials and sensors. Self-assemblies of coordination polymers consisting of metal ions and organic ligands in aqueous solution also provide particular contributions in this area. The main motivation for developing those coordination polymers originates from the value-added combination between metal ions and ligands. This review highlights the recent progress of the dynamic self-assembly of coordination polymers that result from the sophisticated molecular design, towards fabricating stimuli-responsive systems and bio-related materials. Dynamic structural changes and switchable physical properties triggered by various stimuli are summarized. Finally, the outlook for aqueous nanostructures originated from the dynamic self-assembly of coordination polymers is also presented.

  7. Wash Solution Bath Life Extension for the Space Shuttle Rocket Motor Aqueous Cleaning System

    NASA Technical Reports Server (NTRS)

    Saunders, Chad; Evans, Kurt; Sagers, Neil

    1999-01-01

    A spray-in-air aqueous cleaning system, which replaced 1,1,1 trichloroethane (TCA) vapor degreasing, is used for critical cleaning of Space Shuttle Redesigned Solid Rocket Motor (RSRM) metal parts. Small-scale testing demonstrated that the alkaline-based wash solution possesses adequate soil loading and cleaning properties. However, full-scale testing exhibited unexpected depletion of some primary components of the wash solution. Specifically, there was a significant decrease in the concentration of sodium metasilicate which forced change-out of the wash solution after eight days. Extension of wash solution bath life was necessary to ease the burden of frequent change-out on manufacturing. A laboratory study supports a depletion mechanism that is initiated by the hydrolysis of sodium tripolyphosphate (STPP) lowering the pH of the solution. The decrease in pH causes polymerization and subsequent precipitation of sodium metasilicate (SM). Further investigation showed that maintaining the pH was the key to preventing the precipitation of the sodium metasilicate. Implementation to the full scale operation demonstrated that periodic additions of potassium hydroxide (KOH) extended the useful bath life to more than four months.

  8. Removal and recovery of Hg(II) from aqueous solution using chitosan-coated cotton fibers.

    PubMed

    Qu, Rongjun; Sun, Changmei; Ma, Fang; Zhang, Ying; Ji, Chunnuan; Xu, Qiang; Wang, Chunhua; Chen, Hou

    2009-08-15

    Two types of chitosan-coated cotton fibers (SCCH and RCCH) were applied to remove and recover Hg(II) ions in aqueous solution. The adsorption kinetics and isotherms of the two fibers for Hg(II) were investigated at different temperatures. The results revealed that the adsorption kinetic processes of SCCH and RCCH fibers for Hg(II) followed the pseudo second-order model at lower temperatures and the pseudo first-order model at higher temperatures. Both the Langmuir and Freundlich models well described the adsorption isotherms of SCCH and RCCH fibers for Hg(II) in the temperature range studied. SCCH and RCCH fibers selectively adsorbed Hg(II) from binary ion systems in the presence of Pb(II), Cu(II), Ni(II), Cd(II), Zn(II), Co(II), Mn(II) and Ag(I). Increased temperature was beneficial to adsorption. The recovery of Hg(II) from aqueous solutions was also studied as a function of sample flow rate and volume, concentration and volume of eluent, elution rate, quantity of adsorbents added and concomitant ions. The results showed that the two fibers efficiently enriched and recovered Hg(II) in the presence of alkali and alkaline earth metals and some heavy metals under optimum conditions. The RCCH fiber exhibited better stability than the SCCH fiber following repeated use.

  9. Solubility of uranous sulfate in aqueous sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Suzuki, Shigeru; Hirono, Shuichiro; Awakura, Yasuhiro; Majima, Hiroshi

    1990-10-01

    To provide important thermodynamic data for use in uranium hydrometallurgy, solubilities of uranous sulfate were determined as a function of free acid concentration and temperature. Two sets of experiments were performed in this study. One set was the precipitation experiments of uranous sulfate crystals, in which concentrated uranous sulfate solution was mixed with sulfuric acid solution of suitable concentration. The other set was the dissolution experiments of uranous sulfate crystals in aqueous sulfuric acid solutions. It is noteworthy that good agreement exists between the solubilities determined by the two methods. At elevated temperatures, say, 363 K, the presence of free sulfuric acid is required to avoid precipitation of uranous hydroxide resulting from the hydrolysis of uranous sulfate. Generally speaking, however, an increase in free sulfuric acid concentration results in a slight decrease in uranous sulfate solubility. The elevation of solution temperature causes a decrease in solubility of uranous sulfate. It should be noted that the solid uranous sulfates equilibrated with saturated solutions at 298 K were U(SO4)2 2H2O in dilute sulfuric acid solution and U(SO4)2 4H2O in concentrated sulfuric acid solution, while those at 333 K and 363 K were mainly U(SO4)2 4H2O.

  10. Diffusion of Trehalose and Sucrose in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Feick, E.; von Meerwall, E.; Ekdawi, N.; de Pablo, J.

    2000-10-01

    Trehalose is emerging as superior substitute for sucrose in solution as a cryoprotectant, e. g., to preserve organs destined for transplantation. We have used the proton NMR pulsed-gradient spin-echo method between T = 30 and 85 deg. C to study the self-diffusion of solvent and solute in aqueous solutions of these molecules as function of their concentration, c. We find that both solute molecules diffuse substantially more slowly than water at corresponding c and T; that addition of water accelerates solute diffusion more rapidly than that of water; and that while at a given c and T water diffusion is insensitive to solute identity, trehalose diffusion is slower than sucrose diffusion. The latter effect increases with c, approaching a factor of two at the highest c. In these respects our results correspond closely to those of our extensive numerical simulations of these systems. Free-volume theory is employed to explore the cooperative kinetic interactions between solvent and solutes, and to account tentatively for part of the superiority of trehalose to sucrose as preservation agent. Differences in crystallization behavior also seem to be involved.

  11. Separation characteristics of alcohol from aqueous solution by ultrasonic atomization.

    PubMed

    Yasuda, Keiji; Mochida, Kyosuke; Asakura, Yoshiyuki; Koda, Shinobu

    2014-11-01

    The generation rate of ultrasonically atomized droplets and the alcohol concentration in droplets were estimated by measuring the flow rate and the alcohol concentration of vapors from a bulk solution with a fountain. The effect of the alcohol concentration in the bulk solution on the generation rate of droplets and the alcohol concentration in droplets were investigated. The ultrasonic frequency was 2.4MHz, and ethanol and methanol aqueous solutions were used as samples. The generation rate of droplets for ethanol was smaller than that for methanol at the same alcohol molar fraction in the bulk solution. For both solutions, at low alcohol concentration in the bulk solution, the alcohol concentration in droplets was lower than that in vapors and the atomized droplets were visible. On the other side, at high concentration, the concentration in droplets exceeded that in vapors and the atomized droplets became invisible. These results could be explained that the alcohol-rich clusters in the bulk solution were preferentially atomized by ultrasonic irradiation. The concentration in droplets for ethanol was higher than that for methanol at low alcohol concentration because the amount of alcohol-rich clusters was larger. When the alcohol molar fraction was greater than 0.6, the atomized droplets almost consisted of pure alcohol. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Hydrogen bond breaking in aqueous solutions near the critical point

    USGS Publications Warehouse

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2001-01-01

    The nature of water-anion bonding is examined using X-ray absorption fine structure spectroscopy on a 1mZnBr2/6m NaBr aqueous solution, to near critical conditions. Analyses show that upon heating the solution from 25??C to 500??C, a 63% reduction of waters occurs in the solvation shell of ZnBr42-, which is the predominant complex at all pressure-temperature conditions investigated. A similar reduction in the hydration shell of waters in the Br- aqua ion was found. Our results indicate that the water-anion and water-water bond breaking mechanisms occurring at high temperatures are essentially the same. This is consistent with the hydration waters being weakly hydrogen bonded to halide anions in electrolyte solutions. ?? 2001 Elsevier Science B.V.

  13. Process for disposal of aqueous solutions containing radioactive isotopes

    DOEpatents

    Colombo, Peter; Neilson, Jr., Robert M.; Becker, Walter W.

    1979-01-01

    A process for disposing of radioactive aqueous waste solutions whereby the waste solution is utilized as the water of hydration to hydrate densified powdered portland cement in a leakproof container; said waste solution being dispersed without mechanical inter-mixing in situ in said bulk cement, thereafter the hydrated cement body is impregnated with a mixture of a monomer and polymerization catalyst to form polymer throughout the cement body. The entire process being carried out while maintaining the temperature of the components during the process at a temperature below 99.degree. C. The container containing the solid polymer-impregnated body is thereafter stored at a radioactive waste storage dump such as an underground storage dump.

  14. Rapid structural analysis of nanomaterials in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Ryuzaki, Sou; Tsutsui, Makusu; He, Yuhui; Yokota, Kazumichi; Arima, Akihide; Morikawa, Takanori; Taniguchi, Masateru; Kawai, Tomoji

    2017-04-01

    Rapid structural analysis of nanoscale matter in a liquid environment represents innovative technologies that reveal the identities and functions of biologically important molecules. However, there is currently no method with high spatio-temporal resolution that can scan individual particles in solutions to gain structural information. Here we report the development of a nanopore platform realizing quantitative structural analysis for suspended nanomaterials in solutions with a high z-axis and xy-plane spatial resolution of 35.8 ± 1.1 and 12 nm, respectively. We used a low thickness-to-diameter aspect ratio pore architecture for achieving cross sectional areas of analyte (i.e. tomograms). Combining this with multiphysics simulation methods to translate ionic current data into tomograms, we demonstrated rapid structural analysis of single polystyrene (Pst) beads and single dumbbell-like Pst beads in aqueous solutions.

  15. Simulation of osmotic pressure in concentrated aqueous salt solutions.

    SciTech Connect

    Luo, Y.; Roux, B.; Univ. of Chicago

    2010-01-01

    Accurate force fields are critical for meaningful simulation studies of highly concentrated electrolytes. The ion models that are widely used in biomolecular simulations do not necessarily reproduce the correct behavior at finite concentrations. In principle, the osmotic pressure is a key thermodynamic property that could be used to test and refine force field parameters for concentrated solutions. Here we describe a novel, simple, and practical method to compute the osmotic pressure directly from molecular dynamics (MD) simulation of concentrated aqueous solutions by introducing an idealized semipermeable membrane. Simple models for Na+, K+, and Cl- are tested and calibrated to accurately reproduce the experimental osmotic pressure at high salt concentration, up to the solubility limit of 4-5 M. The methodology is general and can be extended to any type of solute as well as nonadditive polarizable force fields.

  16. Photobleaching mechanisms of Radachlorin photosensitizer in aqueous solution

    NASA Astrophysics Data System (ADS)

    Beltukova, D. M.; Vasyutinskii, O. S.; Glazov, A. L.; Semenova, I. V.; Smolin, A. G.

    2017-02-01

    The time dependence of the fluorescence intensity of aqueous solutions of Radachlorin photosensitizer at different concentrations and the influence of the dissolved oxygen concentration on the fluorescence dynamics are analyzed. The experimental results are interpreted based on the numerical solution of the system of kinetic equations describing the photochemical processes that lead to the formation and degradation of singlet oxygen in solution. The influence of possible mechanisms of photosensitizer photobleaching is analyzed. It is shown that the main photobleaching mechanism under our experimental conditions is the chemical reaction between the photosensitizer in the triplet state and dissolved oxygen molecules. Two rate constants of electron-transfer chemical reactions, which are important for understanding the nature of the occurring photoprocesses, are determined.

  17. Direct contact membrane distillation of sugar aqueous solutions

    SciTech Connect

    Izquierdo-Gil, M.A.; Garcia-Payo, M.C.; Fernandez-Pineda, C.

    1999-06-01

    Results are given from direct contact membrane distillation, using tangential flows to the membrane, with sugar aqueous solutions. Several effects on the distillation process are examined: flow rate through the cell, nature of the feed solutions, initial concentrations of the feed solutions, average temperature, and temperature difference. On the basis of enthalpy flux conservation in the different regions, various systems of equations are proposed for the estimation of the interfacial temperatures. Based on the known temperatures of the liquid-vapor interfaces, the experimental distillate fluxes for several sets are fitted to the gas stagnant film diffusion model to obtain the effective diffusion coefficients of the water vapor-air mixture, D{sub ef}, and the results are analyzed.

  18. Characterization of Laboratory Prepared Concrete Pastes Exposed to High Alkaline and High Sodium Salt Solutions

    SciTech Connect

    Langton, C. A.

    2016-06-30

    The objective of this study was to identify potential chemical degradation mechanisms for the Saltstone Disposal Unit (SDU) concretes, which over the performance life of the structures may be exposed to highly alkaline sodium salt solutions containing sulfate, hydroxide, and other potentially corrosive chemicals in salt solution and saltstone flush water, drain water, leachate and / or pore solution. The samples analyzed in this study were cement pastes prepared in the SIMCO Technologies, Inc. concrete laboratory. They were based on the paste fractions of the concretes used to construct the Saltstone Disposal Units (SDUs). SDU 1 and 4 concrete pastes were represented by the PV1 test specimens. The paste in the SDU 2, 3, 5, and 6 concrete was represented by the PV2 test specimens. SIMCO Technologies, Inc. selected the chemicals and proportions in the aggressive solutions to approximate proportions in the saltstone pore solution [2, 3, 5, and 6]. These test specimens were cured for 56 days in curing chamber before being immersed in aggressive solutions. After exposure, the samples were frozen to prevent additional chemical transport and reaction. Selected archived (retrieved from the freezer) samples were sent to the Savannah River National Laboratory (SRNL) for additional characterization using x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray (EDX) spectroscopy. Characterization results are summarized in this report. In addition, a correlation between the oxide composition of the pastes and their chemical durability in the alkaline salt solutions is provided.

  19. Temperature dependence of the absorbance of alkaline solutions of 4-nitrophenyl phosphate--a potential source of error in the measurement of alkaline phosphatase activity.

    PubMed

    Burtis, C A; Seibert, L E; Baird, M A; Sampson, E J

    1977-09-01

    The absorbance of an alkaline solution of 4-nitrophenyl phosphate is a function of temperature. Quantitative evaluation of this phenomenon indicates that it (a) depends on the concentration of the compound and is independent of source, buffer concentration, and pH above 9.0; (b) is reversible; (c) is not a result of alkaline hydrolysis or 4-nitrophenol contamination; and (d) correlates with a temperature-induced shift of its absorbance spectrum. The phenomenon may represent a potential analytical problem in methods for alkaline phosphatase in which this compound is the substrate. If thermal equilibrium is not reached and maintained during an alkaline phosphatase assay, the thermochromic response will be included in the measured rate. The magnitude of this error depends on the thermal response and control characteristics of each particular instrument and the reaction conditions under which such an analysis is performed.

  20. Simulation of hydrogen sulphide absorption in alkaline solution using a packed column.

    PubMed

    Azizi, Mohamed; Biard, Pierre-François; Couvert, Annabelle; Ben Amor, Mohamed

    2014-01-01

    In this work, a simulation tool was developed for hydrogen sulphide (H₂S) removal in an alkaline solution in packed columns working at countercurrent. Modelling takes into account the mass-transfer enhancement due to the reversible reactions between H₂S and the alkaline species (CO(²⁻)(3), HCO⁻(3), and HO⁻) in the liquid film. Many parameters can be controlled by the user such as the gas and liquid inlet H₂S concentrations, the gas and liquid flow rates, the scrubbing liquid pH, the desired H₂S removal efficiency, the temperature, the alkalinity, etc. Since the influence of the hydrodynamic and mass-transfer performances in a packed column is well known, the numerical resolutions performed were dedicated to the study of the influence of the chemical conditions (through the pH and the alkalinity), the temperature and the liquid-to-gas mass flow rate ratio (L/G). A packed column of 3 m equipped with a given random packing material working at countercurrent and steady state has been modelled. The results show that the H₂S removal efficiency increases with the L/G, the pH, the alkalinity and more surprisingly with the temperature. Alkalinity has a very significant effect on the removal efficiency through the mass-transfer enhancement and buffering effect, which limits pH decreasing due to H₂S absorption. This numerical resolution provides a tool for designers and researchers involved in H₂S treatment to understand deeper the process and optimize their processes.

  1. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    SciTech Connect

    Smith, F; Luther Hamm, L; Sebastian Aleman, S; Johnston Michael, J

    2008-08-26

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system.

  2. Electrochemical adsorption of OH on Pt(111) in alkaline solutions: combining DFT and molecular dynamics.

    PubMed

    Pinto, Leandro M C; Quaino, Paola; Arce, Mauricio D; Santos, Elizabeth; Schmickler, Wolfgang

    2014-07-21

    The adsorption of OH on Pt(111) in alkaline solution has been investigated by a method that combines density functional theory, molecular dynamics, and quantum statistical mechanics. In particular, we have calculated the free energy surface for the reaction. A physisorbed hydroxide ion in a metastable state and a stable adsorbed uncharged OH group are observed. The energy of activation at equilibrium is comparatively low, so that the reaction is fast.

  3. Removing Phosphorus from Aqueous Solutions Using Lanthanum Modified Pine Needles.

    PubMed

    Wang, Xianze; Liu, Zhongmou; Liu, Jiancong; Huo, Mingxin; Huo, Hongliang; Yang, Wu

    2015-01-01

    The renewable pine needles was used as an adsorbent to remove phosphorus from aqueous solutions. Using batch experiments, pine needles pretreated with alkali-isopropanol (AI) failed to effectively remove phosphorus, while pine needles modified with lanthanum hydroxide (LH) showed relatively high removal efficiency. LH pine needles were effective at a wide pH ranges, with the highest removal efficiency reaching approximately 85% at a pH of 3. The removal efficiency was kept above 65% using 10 mg/L phosphorus solutions at desired pH values. There was no apparent significant competitive behavior between co-existing anions of sulfate, nitrate, and chloride (SO4(2-), NO3(-) and Cl(-)); however, CO3(2-) exhibited increased interfering behavior as concentrations increased. An intraparticle diffusion model showed that the adsorption process occurred in three phases, suggesting that a boundary layer adsorption phenomena slightly affected the adsorption process, and that intraparticle diffusion was dominant. The adsorption process was thermodynamically unfavorable and non-spontaneous; temperature increases improved phosphorus removal. Total organic carbon (TOC) assays indicated that chemical modification reduced the release of soluble organic compounds from 135.6 mg/L to 7.76 mg/L. This new information about adsorption performances provides valuable information, and can inform future technological applications designed to remove phosphorus from aqueous solutions.

  4. Nanoscale adhesive forces between silica surfaces in aqueous solutions.

    PubMed

    Troncoso, Paula; Saavedra, Jorge H; Acuña, Sergio M; Jeldres, Ricardo; Concha, Fernando; Toledo, Pedro G

    2014-06-15

    Nanoscale adhesive forces between a colloidal silica probe and a flat silica substrate were measured with an atomic force microscope (AFM) in a range of aqueous NaCl, CaCl2, and AlCl3 solutions, with concentrations ranging from 10(-)(6) to 10(-)(2) M at pH ∼5.1. Notably, the measured force curves reveal large pull-off forces in water which increase in electrolyte solutions, with jump-off-contact occurring as a gradual detachment of the probe from the flat substrate rather than as a sharp discontinuous jump. The measured force curves also show that the number and size of the steps increase with concentration and notably with electrolyte valence. For the higher concentration and valence the steps become jumps. We propose that these nanoscale adhesive forces between mineral surfaces in aqueous solutions may arise from newly born cavities or persistent subnanometer bubbles. Formation of cavities or nanobubbles cannot be observed directly in our experiments; however, we cannot disregard them as responsible for the discontinuities in the measured force data. A simple model based on several cavities bridging the two surfaces we show that is able to capture all the features in the measured force curves. The silica surfaces used are clean but not intentionally hydroxylated, as contact angle measurements show, and as such may be responsible for the cavities. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Reaction of lincosamide antibiotics with manganese oxide in aqueous solution.

    PubMed

    Chen, Wan-Ru; Ding, Yunjie; Johnston, Cliff T; Teppen, Brian J; Boyd, Stephen A; Li, Hui

    2010-06-15

    Lincosamides are among the most frequently detected antibacterial agents in effluents from wastewater treatment plants and surface runoff at agricultural production systems. Little is known about their transformations in the environment. This study revealed that manganese oxide caused rapid and extensive decomposition of clindamycin and lincomycin in aqueous solution. The reactions occurred mainly at the pyranose ring of lincosamides, initially by formation of complexes with Mn and cleavage of the ether linkage, leading to the formation of a variety of degradation products via subsequent hydrolytic and oxidative reactions. The results of LC-MS/MS and FTIR analysis confirm cleavage of the C-O-C bond in the pyranose ring, formation of multiple carbonyl groups, and transformation of the methylthio moiety to sulfur oxide. The overall transformation was controlled by interactions of cationic species of lincosamides with MnO(2) surfaces. The presence of electrolytes (i.e., NaCl, CaCl(2), and MnCl(2)) and dissolved organic matter in aqueous solution, and increase of solution pH, diminished lincosamide binding to MnO(2) hence reducing the rate and magnitude of the transformations. Results from this study indicate that manganese dioxides in soils and sediments could contribute to the decomposition of lincosamide antibiotics released into the environment.

  6. Removing Phosphorus from Aqueous Solutions Using Lanthanum Modified Pine Needles

    PubMed Central

    Wang, Xianze; Liu, Zhongmou; Liu, Jiancong; Huo, Mingxin; Huo, Hongliang; Yang, Wu

    2015-01-01

    The renewable pine needles was used as an adsorbent to remove phosphorus from aqueous solutions. Using batch experiments, pine needles pretreated with alkali-isopropanol (AI) failed to effectively remove phosphorus, while pine needles modified with lanthanum hydroxide (LH) showed relatively high removal efficiency. LH pine needles were effective at a wide pH ranges, with the highest removal efficiency reaching approximately 85% at a pH of 3. The removal efficiency was kept above 65% using 10 mg/L phosphorus solutions at desired pH values. There was no apparent significant competitive behavior between co-existing anions of sulfate, nitrate, and chloride (SO42-, NO3- and Cl-); however, CO32- exhibited increased interfering behavior as concentrations increased. An intraparticle diffusion model showed that the adsorption process occurred in three phases, suggesting that a boundary layer adsorption phenomena slightly affected the adsorption process, and that intraparticle diffusion was dominant. The adsorption process was thermodynamically unfavorable and non-spontaneous; temperature increases improved phosphorus removal. Total organic carbon (TOC) assays indicated that chemical modification reduced the release of soluble organic compounds from 135.6 mg/L to 7.76 mg/L. This new information about adsorption performances provides valuable information, and can inform future technological applications designed to remove phosphorus from aqueous solutions. PMID:26630014

  7. Removal of methylene blue dye from aqueous solutions by adsorption using yellow passion fruit peel as adsorbent.

    PubMed

    Pavan, Flávio André; Mazzocato, Ana Cristina; Gushikem, Yoshitaka

    2008-05-01

    The removal of color from aquatic systems caused by presence of synthetic dyes is extremely important from the environmental viewpoint because most of these dyes are toxic, mutagenic and carcinogenic. In this present study, the yellow passion fruit (Passiflora edulis Sims. f. flavicarpa Degener) peel a powdered solid waste, was tested as an alternative low-cost adsorbent for the removal of a basic dye, methylene blue (MB), from aqueous solutions. Adsorption of MB onto this natural adsorbent was studied by batch adsorption isotherms at room temperature. The effects of shaking time and pH on adsorption capacity were studied. An alkaline pH was favorable for the adsorption of MB. The contact time required to obtain the maximum adsorption was 56 h at 25 degrees C. Yellow passion fruit peel may be used as an alternative adsorbent to remove MB from aqueous solutions.

  8. Lubrication, adsorption, and rheology of aqueous polysaccharide solutions.

    PubMed

    Stokes, Jason R; Macakova, Lubica; Chojnicka-Paszun, Agnieszka; de Kruif, Cornelis G; de Jongh, Harmen H J

    2011-04-05

    Aqueous lubrication is currently at the forefront of tribological research due to the desire to learn and potentially mimic how nature lubricates biotribological contacts. We focus here on understanding the lubrication properties of naturally occurring polysaccharides in aqueous solution using a combination of tribology, adsorption, and rheology. The polysaccharides include pectin, xanthan gum, gellan, and locus bean gum that are all widely used in food and nonfood applications. They form rheologically complex fluids in aqueous solution that are both shear thinning and elastic, and their normal stress differences at high shear rates are found to be characteristic of semiflexible/rigid molecules. Lubrication is studied using a ball-on-disk tribometer with hydrophobic elastomer surfaces, mimicking biotribological contacts, and the friction coefficient is measured as a function of speed across the boundary, mixed, and hydrodynamic lubrication regimes. The hydrodynamic regime, where the friction coefficient increases with increasing lubricant entrainment speed, is found to depend on the viscosity of the polysaccharide solutions at shear rates of around 10(4) s(-1). The boundary regime, which occurs at the lowest entrainment speeds, depends on the adsorption of polymer to the substrate. In this regime, the friction coefficient for a rough substrate (400 nm rms roughness) is dependent on the dry mass of polymer adsorbed to the surface (obtained from surface plasmon resonance), while for a smooth substrate (10 nm rms roughness) the friction coefficient is strongly dependent on the hydrated wet mass of adsorbed polymer (obtained from quartz crystal microbalance, QCM-D). The mixed regime is dependent on both the adsorbed film properties and lubricant's viscosity at high shear rates. In addition, the entrainment speed where the friction coefficient is a minimum, which corresponds to the transition between the hydrodynamic and mixed regime, correlates linearly with the ratio

  9. Theoretical study of decomposition of methanediol in aqueous solution.

    PubMed

    Inaba, Satoshi

    2015-06-04

    Methanediol is a product of the hydration of formaldehyde and is more abundant than formaldehyde in aqueous solution. We carried out a number of quantum chemical simulations to study the decomposition of methanediol in aqueous solution. The decomposition of a methanediol proceeds by transferring a proton from a hydroxyl to an oxygen atom of the other hydroxyl in the methanediol. The decomposition of the methanediol completes after the cleavage of the bond between the formaldehyde and the water molecule. The probability of the proton transfer increases by the quantum mechanical tunneling at the low temperature because the width of the potential barrier for the decomposition becomes similar to the de Broglie wavelength of the proton. We consider the catalytic effect of water molecules in aqueous solution. The structure of the methanediol is not required to change significantly when undergoing decomposition due to the active role of water molecules to transfer a proton. We consider three types of arrangement for water molecules with respect to a methanediol: (1) a ring structure formed by a methanediol and water molecules; (2) a water cluster attracted to a methanediol by hydrogen bonds; and (3) a water cluster and additional water molecules, both of which are attracted to a methanediol by hydrogen bonds. The activation energy for the decomposition is reduced by a water cluster more efficiently than water molecules in a ring structure. However, the activation energy reduced by a water cluster is still larger than that obtained from laboratory experiments. We include water molecules that are attracted to a methanediol by hydrogen bonds during the water-cluster-catalyzed decomposition of a methanediol. The hydrogen bonds with the water molecules permit little change in the structure of the methanediol during the decomposition and play a significant role to reduce the activation energy for the decomposition. The rate constant obtained from the theoretical simulation

  10. Recent advances in tailoring the aggregation of heavier alkaline earth metal halides, alkoxides and aryloxides from non-aqueous solvents.

    PubMed

    Fromm, Katharina M

    2006-11-21

    This overview on one of the subjects treated in our group deals with the synthesis and study of low-dimensional polymer and molecular solid state structures formed with alkaline earth metal ions in non-aqueous solvents. We have chosen several synthetic approaches in order to obtain such compounds. The first concept deals with the "cutting out" of structural fragments from a solid state structure of a binary compound, which will be explained with reference to BaI2. Depending on the size and concentration of oxygen donor ligands, used as chemical scissors on BaI2, three-, two-, one- and zero-dimensional derived adducts of BaI2 are obtained, comparable to a structural genealogy tree for BaI2. A second part deals with the supramolecular approach for the synthesis of low dimensional polymeric compounds based on alkaline earth metal iodides, obtained by the combination of metal ion coordination with hydrogen bonding between the cationic complexes and their anions. Certain circumstances allow rules to be established for the prediction of the dimensionality of a given compound, contributing to the fundamental problem of structure prediction in crystal engineering. A third section describes a synthetic approach for generating pure alkaline earth metal cage compounds as well as alkali and alkaline earth mixed metal clusters. A first step deals with different molecular solvated alkaline earth metal iodides which are investigated as a function of the ligand size in non-aqueous solvents. These are then reacted with some alkali metal compound in order to partially or totally eliminate alkali iodide and to form the targeted clusters. These unique structures of ligand stabilized metal halide, hydroxide and/or alkoxide and aryloxide aggregates are of interest as potential precursors for oxide materials and as catalysts. Approaches to two synthetic methods of the latter, sol-gel and (MO)CVD (metal-organic chemical vapour deposition), are investigated with some of our compounds. (D

  11. Adsorption of phosphate from aqueous solution by hydrous zirconium oxide.

    PubMed

    Rodrigues, Liana Alvares; Maschio, Leandro José; Coppio, Luciana de Simone Cividanes; Thim, Gilmar Patrocínio; da Silva, Maria Lúcia Caetano Pinto

    2012-06-01

    Synthetic ZrO2 x nH2O was used for phosphate removal from aqueous solution. The optimum adsorbent dose obtained for phosphate adsorption on to hydrous zirconium oxide was 0.1 g. The kinetic process was described very well by a pseudo-second-order rate model. The phosphate adsorption tended to increase with the decrease in pH. The adsorption capacity increased from 61 to 66 mg g(-1) when the temperature was increased from 298 to 338 K. A phosphate desorption of approximately 74% was obtained using water at pH 12.

  12. Degradation of Sodium-Polyacrylate in Dilute Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Saita, Takao

    1980-12-01

    It is shown using a capillary viscometer that the viscosity of a dilute aqueous solution of sodium-polyacrylate at 20°C decreases gradually for each flow time measurement and also decreases with the time of rest. Assuming that the polymer degradation is caused by shearing stress and oxidation, their effects are discussed with the data obtained using a closed-type capillary viscometer derived for this investigation. It is proved from the results that rupture of the Na-PAA molecule is caused by mechanochemical degradation, and also photo-degradation under the usual illumination and sunlight in a laboratory.

  13. Removal of synthetic food dyes in aqueous solution by Octolig.

    PubMed

    Martin, Dean F; Alessio, Rachael J; McCane, Cheryl H

    2013-01-01

    We studied six of the seven food dyes commonly used, e.g., FD&C Blue No. 1 and No. 2, Green No. 3, Red No. 3 and No. 40, Yellow No. 5 and No. 6. Quantitative removal was achieved by passage of dyes in aqueous solutions over chromatography columns packed with Octolig, a polyethylenediimine covalently attached to high-surface-area silica. A structural feature most of the dyes have in common are the presence of sulfonate groups attached to aromatic molecules. Prior studies and the current one indicated that the seventh food dye (Green No. 3) should also be quantitatively removed. Matrix effects were considered, but none were observed.

  14. Photochemical dehydrogenation of ethanol in dilute aqueous solution

    NASA Astrophysics Data System (ADS)

    Handman, J.; Harriman, A.; Porter, G.

    1984-02-01

    The cyclic photodissociation of water has not yet been achieved in a homogeneous solution using visible light. The replacement of the sacrificial electron donor with such waste materials as sulfide is suggested as a method for improving homogeneous systems. Attention is given to the efficient photogeneration of H2 by means of a system that employs a low grade fermentation product, aqueous ethanol, as electron donor. The photoproduction of H2 is coupled to the oxidation of the ethanol by means of NADH/alcohol dehydrogenase as a relay.

  15. Fluorescence of aqueous solutions of commercial humic products

    NASA Astrophysics Data System (ADS)

    Gosteva, O. Yu.; Izosimov, A. A.; Patsaeva, S. V.; Yuzhakov, V. I.; Yakimenko, O. S.

    2012-01-01

    We have studied the spectral luminescence characteristics of aqueous solutions of humic products obtained from different raw material sources, and their behavior as the excitation wavelength increases from 270 nm to 355 nm. We have identified differences in the spectral properties of industrial humic products from coalified materials, lignin-containing organic waste, and humic products from plant raw material (peat, sapropel, vermicompost). We have shown that humic products from plant raw material have spectral properties closer to those for humic substances in natural water or soil than humic products from coalified materials.

  16. Adsorption of phosphate from aqueous solution using activated red mud

    SciTech Connect

    Pradhan, J.; Das, J.; Das, S.; Thakur, R.S.

    1998-08-01

    Adsorption of phosphate (PO{sub 4}{sup 3{minus}}) from aqueous solution on activated red mud (ARM) was studied as a function of time, pH, temperature, concentration of adsorbent and adsorbate in acetic acid-sodium acetate buffer medium. The adsorption of phosphate follows Langmuir as well as Freundlich adsorption isotherms. The process efficiency was found to be 80--90% at room temperature. This can be extended to the treatment of industrial effluents containing phosphates like that from phosphatic fertilizer plants.

  17. Polymerization of beta-amino acids in aqueous solution

    NASA Technical Reports Server (NTRS)

    Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    We have compared carbonyl diimidazole (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as activating agents for the oligomerization of negatively-charged alpha- and beta-amino acids in homogeneous aqueous solution. alpha-Amino acids can be oligomerized efficiently using CDI, but not by EDAC. beta-Amino acids can be oligomerized efficiently using EDAC, but not by CDI. Aspartic acid, an alpha- and beta-dicarboxylic acid is oligomerized efficiently by both reagents. These results are explained in terms of the mechanisms of the reactions, and their relevance to prebiotic chemistry is discussed.

  18. Standard Electrode Potentials Involving Radicals in Aqueous Solution: Inorganic Radicals

    SciTech Connect

    Armstrong, David A.; Huie, Robert E.; Koppenol, Willem H.; Lymar, Sergei V.; Merenyi, Gabor; Neta, Pedatsur; Ruscic, Branko; Stanbury, David M.; Steenken, Steen; Wardman, Peter

    2015-12-01

    Recommendations are made for standard potentials involving select inorganic radicals in aqueous solution at 25 °C. These recommendations are based on a critical and thorough literature review and also by performing derivations from various literature reports. The recommended data are summarized in tables of standard potentials, Gibbs energies of formation, radical pKa’s, and hemicolligation equilibrium constants. In all cases, current best estimates of the uncertainties are provided. An extensive set of Data Sheets is appended that provide original literature references, summarize the experimental results, and describe the decisions and procedures leading to each of the recommendations

  19. Formation of glycolaldehyde phosphate from glycolaldehyde in aqueous solution

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, R.; Arrhenius, G.; Eschenmoser, A.; Bada, J. L. (Principal Investigator)

    1999-01-01

    Amidotriphosphate (0.1 M) in aqueous solution at near neutral pH in the presence of magnesium ions (0.25 M) converts glycolaldehyde (0.025 M) within days at room temperature into glycolaldehyde phosphate in (analytically) nearly quantitative yields (76% in isolated product). This robust phosphorylation process was observed to proceed at concentrations as low as 30 microM glycolaldehyde and 60 microM phosphorylation reagent under otherwise identical conditions. In sharp contrast, attempts to achieve a phosphorylation of glycolaldehyde with cyclotriphosphate ('trimetaphosphate') as phosphorylating reagent were unsuccessful. Mechanistically, the phosphorylation of glycolaldehyde with amidotriphosphate is an example of intramolecular delivery of the phosphate group.

  20. Hydroxyl radical induced degradation of salicylates in aerated aqueous solution

    NASA Astrophysics Data System (ADS)

    Szabó, László; Tóth, Tünde; Homlok, Renáta; Rácz, Gergely; Takács, Erzsébet; Wojnárovits, László

    2014-04-01

    Ionizing radiation induced degradation of acetylsalicylic acid, its hydrolysis product salicylic acid and a salicylic acid derivative 5-sulpho-salicylic acid, was investigated in dilute aqueous solutions by UV-vis spectrophotometry, HPLC separation and diode-array or MS/MS detection, chemical oxygen demand, total organic carbon content and by Vibrio fischeri toxicity measurements. Hydroxyl radicals were shown to degrade these molecules readily, and first degradation products were hydroxylated derivatives in all cases. Due to the by-products, among them hydrogen peroxide, the toxicity first increased and then decreased with the absorbed dose. With prolonged irradiation complete mineralization was achieved.

  1. Hydrate-based heavy metal separation from aqueous solution

    NASA Astrophysics Data System (ADS)

    Song, Yongchen; Dong, Hongsheng; Yang, Lei; Yang, Mingjun; Li, Yanghui; Ling, Zheng; Zhao, Jiafei

    2016-02-01

    A novel hydrate-based method is proposed for separating heavy metal ions from aqueous solution. We report the first batch of experiments and removal characteristics in this paper, the effectiveness and feasibility of which are verified by Raman spectroscopy analysis and cross-experiment. 88.01-90.82% of removal efficiencies for Cr3+, Cu2+, Ni2+, and Zn2+ were obtained. Further study showed that higher R141b-effluent volume ratio contributed to higher enrichment factor and yield of dissociated water, while lower R141b-effluent volume ratio resulted in higher removal efficiency. This study provides insights into low-energy, intensive treatment of wastewater.

  2. Polymerization of beta-amino acids in aqueous solution

    NASA Technical Reports Server (NTRS)

    Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    We have compared carbonyl diimidazole (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as activating agents for the oligomerization of negatively-charged alpha- and beta-amino acids in homogeneous aqueous solution. alpha-Amino acids can be oligomerized efficiently using CDI, but not by EDAC. beta-Amino acids can be oligomerized efficiently using EDAC, but not by CDI. Aspartic acid, an alpha- and beta-dicarboxylic acid is oligomerized efficiently by both reagents. These results are explained in terms of the mechanisms of the reactions, and their relevance to prebiotic chemistry is discussed.

  3. Highly Efficient Transition Metal Nanoparticle Catalysts in Aqueous Solutions.

    PubMed

    Wang, Changlong; Ciganda, Roberto; Salmon, Lionel; Gregurec, Danijela; Irigoyen, Joseba; Moya, Sergio; Ruiz, Jaime; Astruc, Didier

    2016-02-24

    A ligand design is proposed for transition metal nanoparticle (TMNP) catalysts in aqueous solution. Thus, a tris(triazolyl)-polyethylene glycol (tris-trz-PEG) amphiphilic ligand, 2, is used for the synthesis of very small TMNPs with Fe, Co, Ni, Cu, Ru, Pd, Ag, Pt, and Au. These TMNP-2 catalysts were evaluated and compared for the model 4-nitrophenol reduction, and proved to be extremely efficient. High catalytic efficiencies involving the use of only a few ppm metal of PdNPs, RuNPs, and CuNPs were also exemplified in Suzuki-Miyaura, transfer hydrogenation, and click reactions, respectively.

  4. λ-Radiolysis of aqueous solution of glucosides

    NASA Astrophysics Data System (ADS)

    Rongyao, Yuan; Jilan, Wu

    In this paper, three types of aqueous solution of glucoside, baicalin (I), 1, 8-dihydroxyanthraquinone-β-D-glucoside (II) and glycyrrhizin (III), have been investigated. The yields of decomposition of glucosides are determined. Their G values decrease as doses increase. Some radiolysis products are identified. The influences of different radical scavengers such as, O 2, N 2O, KCNS and isopropanol, are observed. Radiolysis is mainly caused by OH radical. Radiation induced hydrolysis of glucosidic linkage is not the main process, the proportions of dissociated aglycon to total radiolysis products are less than 10%.

  5. Gas solubilities in aqueous solutions of organic substances

    SciTech Connect

    Rischbieter, E.; Schumpe, A.; Wunder, V.

    1996-07-01

    The solubilities of He, N{sub 2}, O{sub 2}, CH{sub 4}, and CO{sub 2} in aqueous solutions of glycerol, acetic acid, glucose, sucrose, and lactose were measured at 303.2 K. Additional data were generated for CO{sub 2} at 293.2 K and 323.2 K. The present results and literature data were analyzed to develop an empirical model. The parameter set allows predictions for 15 gases and 63 organic substances at temperatures between 273 K and 343 K.

  6. Formation of glycolaldehyde phosphate from glycolaldehyde in aqueous solution

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, R.; Arrhenius, G.; Eschenmoser, A.; Bada, J. L. (Principal Investigator)

    1999-01-01

    Amidotriphosphate (0.1 M) in aqueous solution at near neutral pH in the presence of magnesium ions (0.25 M) converts glycolaldehyde (0.025 M) within days at room temperature into glycolaldehyde phosphate in (analytically) nearly quantitative yields (76% in isolated product). This robust phosphorylation process was observed to proceed at concentrations as low as 30 microM glycolaldehyde and 60 microM phosphorylation reagent under otherwise identical conditions. In sharp contrast, attempts to achieve a phosphorylation of glycolaldehyde with cyclotriphosphate ('trimetaphosphate') as phosphorylating reagent were unsuccessful. Mechanistically, the phosphorylation of glycolaldehyde with amidotriphosphate is an example of intramolecular delivery of the phosphate group.

  7. Structural aspects of magnetic fluid stabilization in aqueous agarose solutions

    NASA Astrophysics Data System (ADS)

    Nagornyi, A. V.; Petrenko, V. I.; Avdeev, M. V.; Yelenich, O. V.; Solopan, S. O.; Belous, A. G.; Gruzinov, A. Yu.; Ivankov, O. I.; Bulavin, L. A.

    2017-06-01

    Structure characterization of magnetic fluids (MFs) synthesized by three different methods in aqueous solutions of agarose was done by means of small-angle neutron (SANS) and synchrotron X-ray scattering (SAXS). The differences in the complex aggregation observed in the studied magnetic fluids were related to different stabilizing procedures of the three kinds of MFs. The results of the analysis of the scattering (mean size of single polydisperse magnetic particles, fractal dimensions of the aggregates) are consistent with the data of transmission electron microscopy (TEM).

  8. Primary nucleation of sodium perborate in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Chianese, A.; Contaldi, A.; Mazzarotta, B.

    1986-11-01

    The nucleation kinetics of sodium perborate in aqueous solutions, have been studied at different contents of sodium metaborate. Measurements of metastable zone width and induction periods, carried out under controlled conditions of temperature, supersaturation, and stirring rate, show the great influence of sodium metaborate content over both the sodium perborate solubility and its nucleation kinetics. Furthermore, from the experimental results, nucleation rate relationships and interfacial tension values for the examined systems have been determined. An interesting result of the study has been the good agreement obtained between the interfacial tension values derived from two different sets of experimental data regarding the metastable zone width and the induction period respectively.

  9. Removal of phenols from aqueous solutions by emulsion liquid membranes.

    PubMed

    Reis, M Teresa A; Freitas, Ondina M F; Agarwal, Shiva; Ferreira, Licínio M; Ismael, M Rosinda C; Machado, Remígio; Carvalho, Jorge M R

    2011-09-15

    The present study deals with the extraction of phenols from aqueous solutions by using the emulsion liquid membranes technique. Besides phenol, two derivatives of phenol, i.e., tyrosol (2-(4-hydroxyphenyl)ethanol) and p-coumaric acid (4-hydroxycinnamic acid), which are typical components of the effluents produced in olive oil plants, were selected as the target solutes. The effect of the composition of the organic phase on the removal of solutes was examined. The influence of pH of feed phase on the extraction of tyrosol and p-coumaric was tested for the membrane with Cyanex 923 as an extractant. The use of 2% Cyanex 923 allowed obtaining a very high extraction of phenols (97-99%) in 5-6 min of contact time for either single solute solutions or for their mixtures. The removal efficiency of phenol and p-coumaric acid attained equivalent values by using the system with 2% isodecanol, but the removal rate of tyrosol was found greatly reduced. The extraction of tyrosol and p-coumaric acid from their binary mixture was also analysed for different operating conditions like the volume ratio of feed phase to stripping phase (sodium hydroxide), the temperature and the initial concentration of solute in the feed phase.

  10. Removal of pesticides from aqueous solutions using liquid membrane emulsions

    SciTech Connect

    Norwood, V.M. III

    1991-12-31

    Extractive liquid membrane technology is based on a water-in-oil emulsion as the vehicle to effect separation. An aqueous internal reagent phase is emulsified into an organic phase containing a surfactant and optional complexing agents. The emulsion, presenting a large membrane surface area, is then dispersed in an aqueous continuous phase containing the species to be removed. The desired species is transferred from the continuous, phase through the organic liquid membrane and concentrated in the internal reagent phase. Extraction and stripping occur simultaneously rather than sequentially as in conventional solvent extraction. Experiments were conducted to assess the feasibility of using liquid membranes to extract pesticides from rinsewaters typical of those generated by fertilizer/agrichemical dealers. A liquid membrane emulsion containing 10% NaOH as the internal reagent phase was used to extract herbicides from aqueous solution at a continuous phase:emulsion ratio of 5:1. Removals of 2,4-D, MCPA, Carbaryl, Diazinon, and Atrazine were investigated.

  11. Removal of pesticides from aqueous solutions using liquid membrane emulsions

    SciTech Connect

    Norwood, V.M. III.

    1991-01-01

    Extractive liquid membrane technology is based on a water-in-oil emulsion as the vehicle to effect separation. An aqueous internal reagent phase is emulsified into an organic phase containing a surfactant and optional complexing agents. The emulsion, presenting a large membrane surface area, is then dispersed in an aqueous continuous phase containing the species to be removed. The desired species is transferred from the continuous, phase through the organic liquid membrane and concentrated in the internal reagent phase. Extraction and stripping occur simultaneously rather than sequentially as in conventional solvent extraction. Experiments were conducted to assess the feasibility of using liquid membranes to extract pesticides from rinsewaters typical of those generated by fertilizer/agrichemical dealers. A liquid membrane emulsion containing 10% NaOH as the internal reagent phase was used to extract herbicides from aqueous solution at a continuous phase:emulsion ratio of 5:1. Removals of 2,4-D, MCPA, Carbaryl, Diazinon, and Atrazine were investigated.

  12. Stability studies on aqueous and oily ophthalmic solutions of diclofenac.

    PubMed

    Ahuja, Munish; Dhake, Avinash Shridhar; Sharma, Surendra Kumar; Majumdar, Dipak Kanti

    2009-04-01

    Various aqueous and oily diclofenac ophthalmic formulations were subjected to accelerated and long term stability studies. Degradation of diclofenac was found to follow first-order kinetics. Among the aqueous formulations containing preservative, formulation with PMA, PMN, SA, MP/PP and SMS showed diclofenac content above 90% after 6 months of accelerated and 12 months of room temperature storage. Diclofenac 0.1%, w/v aqueous formulation (pH 7.4), with 5-10% overages, containing SMS, MP/PP or PMN look promising taking both stability and corneal permeability in view. However, for use in cataract surgery formulation without preservative appears ideal. Oily ophthalmic formulations except those in olive and mustard oil, had more than 90% drug content after 6 months of accelerated and 12 months of room temperature storage. Diclofenac (0.2%, w/v) ophthalmic solution in sesame oil with 3% overage and containing benzyl alcohol (0.5%, v/v) as preservative, appears ideal, taking both stability and corneal permeability in view.

  13. Excess Thermodynamic Properties of Concentrated Aqueous Solutions at High Temperatures

    SciTech Connect

    Guszkiewicz, M.S.

    2001-06-07

    Measurements of the vapor pressure of the solvent in wide ranges of concentration and temperature provide information on solute solvation and ion pairing--the two phenomena most often invoked for description of dilute solutions. Even in moderately concentrated solutions, as interionic distances become comparable to ionic diameters, these simple concepts gradually lose their meaning and solutions behave like molten salts. The usefulness of experimental vapor pressure results increases rapidly with their accuracy, since derived properties, such as solution enthalpies and heat capacities, can be calculated. Very accurate results can be obtained by the isopiestic method, but primary vapor pressure data for standard solutions are needed. In order to obtain vapor pressures at conditions where accurate isopiestic standards are not available and to establish more accurate standards, the ORNL isopiestic apparatus was modified for simultaneous direct vapor pressure measurements and isopiestic comparisons. There are no comprehensive solution theories derived from molecular level models and able to predict thermodynamic properties of various electrolytes as the composition changes from dilute solutions to molten salts in a wide range of temperatures. Empirical and semi-empirical models are useful for representation of experimental results, interpretation of measurements of other properties such as conductance., solubility or liquid-vapor partitioning of solutes, and for verification of theoretical predictions. Vapor pressures for aqueous CaCl{sub 2}, CaBr{sub 2}, LiCl, LiBr, LiI, NaI were measured at temperatures between 380 and 523 K in the concentration range extended to water activities below 0.2 (over 30 mol/kg for LiCl). General equations based on the modified Pitzer ion-interaction model were used to obtain enthalpy and heat capacity surfaces, which are compared with direct calorimetric measurements.

  14. Potentiometric determination of the 'formal' hydrolysis ratio of aluminium species in aqueous solutions.

    PubMed

    Fournier, Agathe C; Shafran, Kirill L; Perry, Carole C

    2008-01-21

    The 'formal' hydrolysis ratio (h = C(OH-)added/C(Al)total) of hydrolysed aluminium-ions is an important parameter required for the exhaustive and quantitative speciation-fractionation of aluminium in aqueous solutions. This paper describes a potentiometric method for determination of the formal hydrolysis ratio based on an automated alkaline titration procedure. The method uses the point of precipitation of aluminium hydroxide as a reference (h = 3.0) in order to calculate the initial formal hydrolysis ratio of hydrolysed aluminium-ion solutions. Several solutions of pure hydrolytic species including aluminium monomers (AlCl3), Al13 polynuclear cluster ([Al13O4(OH)24(H2O)12]7+), Al30 polynuclear cluster ([Al30O8(OH)56(H2O)26]18+) and a suspension of nanoparticulate aluminium hydroxide have been used as 'reference standards' to validate the proposed potentiometric method. Other important variables in the potentiometric determination of the hydrolysis ratio have also been optimised including the concentration of aluminium and the type and strength of alkali (Trizma-base, NH3, NaHCO3, Na2CO3 and KOH). The results of the potentiometric analysis have been cross-verified by quantitative 27Al solution nuclear magnetic resonance (27Al NMR) measurements. The 'formal' hydrolysis ratio of a commercial basic aluminium chloride has been measured as an example of a practical application of the developed technique.

  15. Regeneration of Aqueous Periodate Solutions by Ozone Treatment: A Sustainable Approach for Dialdehyde Cellulose Production.

    PubMed

    Koprivica, Slavica; Siller, Martin; Hosoya, Takashi; Roggenstein, Walter; Rosenau, Thomas; Potthast, Antje

    2016-04-21

    A method for easy and fast regeneration of aqueous periodate solutions from dialdehyde cellulose (DAC) production by ozone treatment is presented, along with a direct and reliable simultaneous quantification of iodate and periodate by reversed-phase HPLC. The influence of iodate and ozone concentration, solution pH, and reaction time on the regeneration efficiency was studied, as well as the reaction kinetics. Regeneration of spent periodate solutions by ozone was successfully performed in alkaline medium, which favors the formation of free (.) OH radicals, as supported by the addition of radical scavengers and quantum mechanical calculations. At pH 13 and an ozone concentration of approximately 150 mg L(-1) , periodate was completely regenerated from a 100 mm solution of iodate within 1 h at room temperature. A cyclic process of cellulose oxidation and subsequent regeneration of spent periodate with 90 % efficiency has been developed. So far, commercial applications of DAC have been hampered by difficulties in reusing the costly periodate. This work overcomes this hurdle and presents a highly efficient, clean, and low-cost protocol for the preparation of DAC with integrated periodate recycling, with the possibility of scaling the process up.

  16. Optimization for the removal of orthophosphate from aqueous solution by chemical precipitation using ferrous chloride.

    PubMed

    An, Ju-Suk; Back, Ye-Ji; Kim, Ki-Chul; Cha, Ran; Jeong, Tae-Young; Chung, Hyung-Keun

    2014-08-01

    The precipitation reaction between the orthophosphate and Fe2+ ions was studied to describe the optimum condition for the removal of orthophosphate from the aqueous solution. The effects of pH, Fe:P molar ratio, and alkalinity were evaluated for the initial orthophosphate concentrations in the range from 1.55 to 31.00 mg/L - PO4(3-) -P. The optimum pH was found to be 8.0 in all orthophosphate concentration ranges. When the stoichiometric moles of Fe2+ were added, the removal efficiencies were significantly less than the theoretical values. It is likely that the precipitation of Fe(OH)2(s) is partially formed. For the initial orthophosphate concentration of 3.10 mg/L PO4(3-) -P or greater, the removal efficiencies with the Fe:P molar ratio of 3.0:1.0 approached to the theoretical values, yielding greater than 98.5%. If the molar ratio of Fe:P was great enough, the precipitation reaction was completed within 1 h. As the alkalinity increases, the experimental removal efficiencies were significantly greater than the theoretical values. This is because the formation of vivianite is favoured over FeCO3(s). Finally, it was demonstrated that the orthophosphate (1.40-6.80 mg/L PO4(3-) -P) in the secondary effluents from wastewater treatment plants was effectively removed by dosing sufficient amount of Fe2+ ions.

  17. Preparation and characterization of carboxymethyl derivatives of yeast mannans in aqueous solutions.

    PubMed

    Machová, Eva; Bystrický, Peter; Malovíková, Anna; Bystrický, Slavomír

    2014-09-22

    Novel carboxymethyl derivatives of yeast mannans of different degrees of substitution (DS) were prepared by optimized reaction of concentrated polysaccharides in alkaline aqueous solution. Mannans from various yeasts differing in size and degree of branching show similar reactivity. Strong alkaline conditions during carboxymethylation caused degradation of the polysaccharides. The degree of substitution (DS) of Candida albicans mannan and dextran were proportional to the amount of monochloroacetate added. However, degrees of carboxymethylation of Candida albicans mannan (0.30, 0.41, 0.73) were lower than those of dextran (DS=0.33, 0.6, 1.1) using the same amounts of monochloroacetate. Evidently the resulted polyanionic derivatives have higher hydrodynamic sizes than the original polysaccharides. Non-uniform, variable position of substitutions results to non-proportional change of optical rotation and increase of complexity of NMR spectra. Basic physico-chemical characteristics of novel carboxymethyl mannans obtained by potentiometric titration, FT-IR, UV, HPLC, 1H NMR and optical rotation measurements are presented here. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Solution structures of ferrihaem in some dipolar aprotic solvents and their binary aqueous mixtures

    PubMed Central

    Brown, S. B.; Lantzke, I. R.

    1969-01-01

    1. Conductivity and u.v. and visible spectroscopic techniques were used to investigate the solution structure of the prosthetic group of the ferric haemoproteins (ferrihaem) in dimethyl sulphoxide, NN-dimethylacetamide, NN-dimethylformamide and sulpholane, and certain of their aqueous mixtures. 2. In neutral or acid dimethyl sulphoxide, chlorohaemin is monomeric and completely dissociated into Cl−ion and a ferrihaem species with dimethyl sulphoxide molecules in the fifth and sixth co-ordination positions on iron. 3. In neutral NN-dimethylacetamide and NN-dimethylformamide chlorohaemin is monomeric but is largely undissociated, giving different spectra from that of chlorohaemin in dimethyl sulphoxide. On acidification, dissociation occurs and the dimethyl sulphoxide type of spectrum results. 4. Studies in a fourth solvent, sulpholane, indicate that solvent co-ordinating power (ligand strength) rather than bulk dielectric constant is responsible for dissociation of chlorohaemin. 5. In neutral dimethyl sulphoxide–water mixtures chlorohaemin remains monomeric and completely dissociated, and spectra are independent of mixture composition, except at high water concentrations, when precipitation occurs. In alkaline dimethyl sulphoxide–water mixtures, where the complete solvent mixture range is accessible, ferrihaem is polymeric (probably dimeric) and spectra are dependent on solvent composition. A quantitative analysis indicates that the spectral changes are due to replacement by water of one molecule of co-ordinated dimethyl sulphoxide per ferrihaem aggregate, and do not involve a two-molecule replacement as has been suggested for the alkaline pyridine–water system. PMID:5378383

  19. Supercritical fluid precipitation of recombinant human immunoglobulin from aqueous solutions.

    PubMed

    Nesta, D P; Elliott, J S; Warr, J P

    2000-02-20

    Supercritical carbon dioxide was used as an antisolvent for producing recombinant human immunoglobulin G (rIgG) particulate powders. Liquid carbon dioxide (CO(2)) was premixed with ethanol to create a single-phase, modified supercritical fluid (SCF). The modified SCF was then vigorously mixed with a pharmaceutically acceptable, aqueous formulation of rIgG, and the mixture was immediately atomized into a pressurized vessel where rapid expansion of the modified SCF extracted the aqueous phase, resulting in precipitation of the protein powder. The process was reproducible, and resulting powder products were characterized by their aqueous solubilities, and the spectroscopic profile, molecular integrity, and antigen binding activity of the individual soluble fractions. Molecular integrity was assessed via size-exclusion high-performance liquid chromatography (SEC), whereas antigen binding activity was determined using an enzyme-linked immunosorbent assay (ELISA). Attempts to characterize particle size and morphology were confounded due to the extremely deliquescent nature of the powders, causing them to absorb moisture rapidly and become gummy. Operational conditions were optimized to a point which yielded powders that were completely soluble, and had ultraviolet (UV) spectroscopic and SEC profiles indistinguishable from those of the reference standard starting solution from which the powders were derived. Antigen binding activities of the powders, however, were

  20. Inhibitive effects of palm kernel oil on carbon steel corrosion by alkaline solution

    NASA Astrophysics Data System (ADS)

    Zulkafli, M. Y.; Othman, N. K.; Lazim, A. M.; Jalar, A.

    2013-11-01

    The behavior of carbon steel SAE 1045 in 1 M NaOH solution containing different concentrations of palm kernel oil (PKO) has been studied by weight loss and polarization measurement. Results showed that the corrosion of carbon steel in NaOH solution was considerably reduced in presence of such inhibitors. The inhibition efficiency increases when concentration of inhibitor increase. Maximum inhibition efficiency (≈ 96.67%) is obtained at PKO concentration 8 v/v %. This result revealed that palm kernel oil can act as a corrosion inhibitor in an alkaline medium. Corrosion rates of carbon steel decrease as the concentration of inhibitor is increased.

  1. Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans.

    PubMed

    Kulkarni, Sayali; Ballal, Anand; Apte, Shree Kumar

    2013-11-15

    Bioremediation of uranium (U) from alkaline waste solutions remains inadequately explored. We engineered the phoK gene (encoding a novel alkaline phosphatase, PhoK) from Sphingomonas sp. for overexpression in the radioresistant bacterium Deinococcus radiodurans. The recombinant strain thus obtained (Deino-PhoK) exhibited remarkably high alkaline phosphatase activity as evidenced by zymographic and enzyme activity assays. Deino-PhoK cells could efficiently precipitate uranium over a wide range of input U concentrations. At low uranyl concentrations (1 mM), the strain precipitated >90% of uranium within 2h while a high loading capacity of around 10.7 g U/g of dry weight of cells was achieved at 10 mM U concentration. Uranium bioprecipitation by Deino-PhoK cells was not affected in the presence of Cs and Sr, commonly present in intermediate and low level liquid radioactive waste, or after exposure to very high doses of ionizing radiation. Transmission electron micrographs revealed the extracellular nature of bioprecipitated U, while X-ray diffraction and fluorescence analysis identified the precipitated uranyl phosphate species as chernikovite. When immobilized into calcium alginate beads, Deino-PhoK cells efficiently removed uranium, which remained trapped in beads, thus accomplishing physical separation of precipitated uranyl phosphate from solutions. The data demonstrate superior ability of Deino-PhoK, over earlier reported strains, in removal of uranium from alkaline solutions and its potential use in bioremediation of nuclear and other waste. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Degradation of aqueous DEA solutions in heat transfer tubes

    SciTech Connect

    Meisen, A.; Chakma, A.

    1985-01-01

    Experiments were performed on the degradation of aqueous diethanolamine (DEA) solutions passing through a coiled heat transfer tube (2.0032 mm ID, 3.175 mm OD, 4.8 m long) immersed in a constant temperature bath. The operating conditions were: DEA flow rate 0.011 to 0.0172 L/s, DEA concentration 20 to 40 wt%, DEA temperature 60 to 200/sup 0/C, CO/sub 2/ partial pressure 1.38 to 4.18 MPa. The degradation rate was found to increase with temperature, DEA concentration and CO/sub 2/ partial pressure; it decreased with solution flow rate. The degradation was accompanied by the formation of a fouling deposit. A simple mathematical model is presented for predicting DEA degradation.

  3. Removal of phosphate from aqueous solution with blast furnace slag.

    PubMed

    Oguz, Ensar

    2004-10-18

    Blast furnace slag was used to remove phosphate from aqueous solutions. The influence of pH, temperature, agitation rate, and blast furnace slag dosage on phosphate removal was investigated by conducting a series of batch adsorption experiments. In addition, the yield and mechanisms of phosphate removal were explained on the basis of the results of X-ray spectroscopy, measurements of zeta potential of particles, specific surface area, and images of scanning electron microscopy (SEM) of the particles before and after adsorption. The specific surface area of the blast furnace slag was 0.4m(2)g(-1). The removal of phosphate predominantly has taken place by a precipitation mechanism and weak physical interactions between the surface of adsorbent and the metallic salts of phosphate. In this study, phosphate removal in excess of 99% was obtained, and it was concluded that blast furnace slag is an efficient adsorbent for the removal of phosphate from solution.

  4. Photoelectron Spectra of Aqueous Solutions from First Principles

    SciTech Connect

    Gaiduk, Alex P.; Govoni, Marco; Seidel, Robert; Skone, Jonathan H.; Winter, Bernd; Galli, Giulia

    2016-06-08

    We present a combined computational and experimental study of the photoelectron spectrum of a simple aqueous solution of NaCl. Measurements were conducted on microjets, and first-principles calculations were performed using hybrid functionals and many-body perturbation theory at the G0W0 level, starting with wave functions computed in ab initio molecular dynamics simulations. We show excellent agreement between theory and experiments for the positions of both the solute and solvent excitation energies on an absolute energy scale and for peak intensities. The best comparison was obtained using wave functions obtained with dielectric-dependent self-consistent and range-separated hybrid functionals. Our computational protocol opens the way to accurate, predictive calculations of the electronic properties of electrolytes, of interest to a variety of energy problems.

  5. Products of radiation removal of lead from aqueous solutions.

    PubMed

    Drtinova, B; Pospisil, M; Cuba, V

    2010-01-01

    The influence of typical *OH radical scavengers as potassium formate and isopropanol on the radiation-induced removal of lead was individually studied. The lead can be completely removed from aqueous solutions containing 1x10(-2) mol/L of formate already at the dose of 2.5 kGy. With increasing concentration of formate (5x10(-5)-1x10(-2) mol/L) increases the amount of Pb(formate)(+) species in the solution before irradiation. The radiation product is metallic lead at low concentration of formate to PbCO(3) at higher concentration of scavenger. In the system with 10% isopropanol dominates the species Pb(2+) and the product of radiation reduction is then metallic lead. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Anomalies in, and crystallization of supercooled water and aqueous solutions

    NASA Astrophysics Data System (ADS)

    Angell, C. A.

    1984-03-01

    This report summarizes research work performed under ONR auspices during the period 1978-1983. Thermodynamic studies of pure water and various aqueous solutions containing simple molecular second components such as H2O2N2H4 and formamide have been performed at temperatures down to -120 C, in order to perform extrapolations to obtain properties of normal water, i.e. water free from anomalous structure fluctuations. Properties studied have been heat capacity, expansivity and compressibility. On certain of these solutions, viscosity and also dielectric relaxation studies have been performed. Spectroscopic measurements in both the far infrared, and the near infrared, have yielded information on vibrational modes and characteristic hydrogen bonding structures. All together these measurements have done much to elucidate the anomalous behavior of water in the supercooled regime.

  7. Adsorption of citric acid from dilute aqueous solutions by hydroxyapatite.

    PubMed

    Vega, Enrique D; Narda, Griselda E; Ferretti, Ferdinando H

    2003-12-01

    The role of citric acid in the demineralization of dental enamel, which is mainly constituted by hydroxyapatite, is important for periodontal regeneration and in the conditioning of enamel or dentin for bonding restorative resins. The adsorption of citric acid from aqueous solutions onto synthetic hydroxyapatite at 278, 288, 298, and 308 K and pH 4.8 has been studied by means of UV spectroscopy. The adsorption reaction, which takes place by an interaction between phosphate groups and citrate anions at the solid-solution interface, yields an adsorbate-adsorbent complex of high stability. The adsorption isotherms fit the Langmuirian shape. The proposed adsorption model, where citrate species interact in a bidentate manner (one citrate ion links two phosphate sites), is coherent with the experimental data. The activation standard heat and activation standard entropy were calculated. All the thermodynamic and kinetic parameters were in concordance with the adsorption reaction proposed in this work.

  8. Colloidal interactions between asphaltene surfaces in aqueous solutions.

    PubMed

    Liu, Jianjun; Zhang, Liyan; Xu, Zhenghe; Masliyah, Jacob

    2006-02-14

    Asphaltene at oil/water interfaces plays a dominant role in the recovery of crude oil. In this study, asphaltene monolayer films were deposited on hydrophobic silicon wafers and silica spheres from oil-water interfaces using a Langmuir interfacial trough. The morphology of the deposited asphaltene films was characterized with an atomic force microscope (AFM). The colloidal forces between the prepared asphaltene films in aqueous solutions were measured with AFM to shed light on the stabilization of water or oil droplets coated with asphaltene films. Factors such as solution pH, KCl concentration, calcium addition, and temperature all showed a strong impact on colloidal forces between the prepared asphaltene films. The findings provided a better understanding of asphaltene interfacial films at an oil/water interface in stabilizing bitumen-in-water and water-in-bitumen emulsions.

  9. Aggregation and micelle formation of ionic liquids in aqueous solution

    NASA Astrophysics Data System (ADS)

    Miskolczy, Zsombor; Sebők-Nagy, Krisztina; Biczók, László; Göktürk, Sinem

    2004-12-01

    Association of ionic liquids possessing n-octyl moiety either in the cation or in the anion has been studied in aqueous solution with conductivity and turbidity measurements as well as using 2-hydroxy-substituted Nile Red solvatochromic probe. 1-Butyl-3-methylimidazolium octyl sulfate was found to act as a surfactant above 0.031 M critical micelle concentration. In contrast, 1-methyl-3-octylimidazolium chloride produced inhomogeneous solution of larger aggregates, which were dissolved on the addition of more than 2:1 molar excess of sodium dodecyl sulfate (SDS) due to mixed micelle formation. Even small amount (<10 mM) of ionic liquids could markedly reduce the polarity of the Stern layer of SDS micelle.

  10. Adsorption of thorium from aqueous solutions by perlite.

    PubMed

    Talip, Z; Eral, M; Hiçsönmez, U

    2009-02-01

    The use of expanded perlite for the adsorption of thorium from aqueous solution by batch technique is presented. The effects of particle size, pH of the solution, initial thorium concentration, shaking time, V/m ratio and temperature were determined. It was found that the adsorption capacity increases by the increase in the pH of the suspensions. The rate of thorium adsorption on expanded perlite was observed to be fast in the first hour of the reaction time. Adsorption isotherms were expressed by Langmuir and Freundlich adsorption models and the adsorption experiments conducted at 30 +/- 1 degrees C showed that the adsorption isotherms correlated well with the Langmuir model. From the adsorption data, thermodynamic parameters such as DeltaG(o), DeltaH(o) and DeltaS(o) were calculated as a function of temperature.

  11. [Conformation of trypsin molecules in aqueous solutions containing 2-chloroethanol].

    PubMed

    Kushner, V P

    1980-01-01

    Changes in the macromolecular parameters of trypsin in the presence of 2-chloroethanol in aqueous solutions have been studied by means of optical and hydrodynamic methods. At temperature--dependent volume fraction of 2-chloroethanol in solution upsilon t < 0.30 the globular structure of trypsin is destroyed but the regularity of polypeptide chains within the limits of secondary structure is maintained. At 0.30 < upsilon < 0.80 the solvation envelope of macromolecules is kept constant mainly owing to hydration, but the solubilization takes place only at upsilon < 0.30. At upsilon < 0.80 spiralization sharply increases and reaches in pure 2-chloroethanol its maximum value (50%). The intrinsic viscosity moreover reaches only half the whole value [eta]coil--[eta]glob.

  12. Nitrate Concentration near the Surface of Frozen Aqueous Solutions.

    PubMed

    Marrocco, Harley A; Michelsen, Rebecca R H

    2014-12-26

    Photolysis of nitrate plays an important role in the emission of nitrogen oxides from snow and ice, which affects the composition of the overlying atmosphere. In order to quantify these reactions, it is necessary to know how much nitrate is available for photolysis near the surfaces of snow and ice. The concentration of nitrate excluded from frozen solutions of nitric acid, sodium nitrate, and magnesium nitrate was measured with attenuated total reflection infrared spectroscopy. Liquid water and nitrate were observed at and near the bottom surface of frozen aqueous solutions during annealing from -18 to -2 °C. At -2 °C, the nitrate concentration was determined to be ∼1.0 mol/L for frozen NaNO(3) and Mg(NO(3))(2) solutions and ∼0.8 mol/L for frozen HNO(3) solutions. At lower temperatures, nitrate concentration ranged from 1.6 to 3.7 mol/L. Ideal thermodynamics overestimates nitrate concentration at colder temperatures where the brine is highly concentrated for all solutions. The nitrate concentration at ice surfaces is well described by bulk freezing point depression data close to the melting point of ice and for nitric acid at colder temperatures. Effects of temperature and counterions and implications for modeling snow chemistry are discussed.

  13. Reversible absorption of SO2 by amino acid aqueous solutions.

    PubMed

    Deng, Renpan; Jia, Lishan; Song, Qianqian; Su, Shuai; Tian, Zhongbiao

    2012-08-30

    Six water-soluble amino acids (glycine, l-α-alanine, dl-alanine, β-alanine, proline and arginine) aqueous solutions were applied to remove SO(2) from SO(2)-N(2) system in this report. All the tested amino acids solutions were found to be excellent absorbents for SO(2) removal, and SO(2) saturation uptake of β-alanine solution was the highest under the same experimental conditions. The effects of amino acid concentration, SO(2) concentration, absorption temperature, desorption temperature and initial pH value of the absorbent on the removal of SO(2) were investigated with β-Ala solution. The experimental results showed that SO(2) saturation uptake increased with the increase in β-alanine solution and SO(2) concentration. Room temperature (20-30°C) was found to be optimal for SO(2) absorption. Additionally the SO(2) desorption capacity increased with increasing desorption temperature. The neutral environment pH value of 6.8 was found to be optimal for SO(2) removal. Ten continuous absorption-desorption cycles showed that the absorbent had an excellent regeneration performance. (13)C NMR and ultraviolet analyses offer ample evidence to speculate that the bonding between SO(2) and β-alanine was not covalent but some weak interactive forces, such as dispersion force, induction force, dipole-dipole force and hydrogen bond. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Modeling of sodium acetate recovery from aqueous solutions by electrodialysis.

    PubMed

    Fidaleo, Marcello; Moresi, Mauro

    2005-09-05

    The main engineering parameters (i.e., ion transport numbers in solution and electro-membranes; effective solute and water transport numbers; effective membrane surface area, membrane surface resistances, and limiting current intensity) affecting the recovery of sodium acetate from model solutions by electrodialysis (ED) were determined in accordance with a sequential experimental procedure. Such parameters allowed a satisfactory simulation of a few validation tests carried out under constant or step-wisely variable current intensity. The performance of this ED process was characterized in terms of a current efficiency (omega) of about 93% in the constant-current region, a water transport number (t(W)) of about 15, and a specific energy consumption (epsilon) increasing from 0.14 to 0.31 kWh/kg for a solute recovery yield of 95% as the current density (j) was increased from 112 to 337 A/m2. The specific resistance of the anion- or cation-exchange membranes were found to be three or two times greater than those measured in aqueous NaCl solutions and are to be used to design and/or optimize ED stacks involved in the downstream processing of acetic acid fermentation broths. Copyright 2005 Wiley Periodicals, Inc

  15. Short-range interactions of concentrated proline in aqueous solution.

    PubMed

    Busch, Sebastian; Lorenz, Christian D; Taylor, Jonathan; Pardo, Luis Carlos; McLain, Sylvia E

    2014-12-11

    Molecular interactions for proline in a highly concentrated aqueous solution (up to 1:5 proline:water molecular ratio) have been investigated using a variety of experimental and computational techniques. Rather than the solution containing either small crystallites or large aggregates of proline, three-dimensional structural analysis reveals the presence of proline-proline dimers. These dimers appear to be formed by cyclic electrostatic interactions between CO2(-) and NH2(+) groups on neighboring proline molecules, which causes the ring motifs of proline to be roughly parallel to one another. In addition, water appears to aggregate around the electrostatic groups of the proline-proline dimers where it may in fact bridge these groups on different molecules. The observed short-range interactions for proline in solution may explain its function as a hydrotrope in vivo in which this observed dimerization might allow proline molecules to generate small pockets of a hydrophobic environment that can associate with nonpolar motifs of other molecules in solution. The results presented here emphasize the need for careful three-dimensional analysis to assess the short-range order of highly concentrated solutions.

  16. Removal of phthalate esters from aqueous solutions by chitosan bead.

    PubMed

    Chen, Chih-Yu; Chung, Ying-Chien

    2006-01-01

    Removal of phthalate esters (PAEs) by chitosan bead in aqueous solution was studied. The adsorption isotherms of PAEs by chitosan bead were well described by Freundlich isotherm equations. Results of kinetic experiments indicated that diheptyl phthalate (DHpP) had the highest adsorption capacity (1.52 mg/g) among six PAEs in our research. PAE adsorption efficiency by chitosan bead was examined in both batch and continuous systems, and DHpP attained 74.9% recovery efficiency from chitosan bead by shaking with an equal volume mixture of methanol and water. The recovered chitosan bead was reusable as an adsorbent. The influences of temperature, pH, Ca+2, and NaCl on PAE adsorption were also evaluated to determine performance in different water environments (e.g., groundwater, surface water, and sea water). The results showed that PAE adsorption decreased as temperature increased. From pH experiments it appeared that pH 8.0 was optimal for adsorption. The effect of Ca+2 showed that adsorption efficiency did not change by increasing the concentrations of Ca+2 until 400 mg/L. NaCl coexistence showed an insignificant effect on PAE adsorption. Furthermore, the chitosan bead was also applied to treating the discharge of a plastics plant, and the treatment results resembled those of a laboratory continuous system. This is the first report to use chitosan bead as an adsorbent to adsorb phthalate esters from aqueous solution. These results indicate that the application of chitosan bead is feasible in the aqueous environments of Taiwan.

  17. Preparation of metallic nanoparticles by irradiation in starch aqueous solution

    SciTech Connect

    Nemţanu, Monica R. Braşoveanu, Mirela Iacob, Nicuşor

    2014-11-24

    Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔE{sub ab} (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle h{sup o} was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.

  18. Methanol Uptake By Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    To evaluate the role of upper tropospheric and lower stratospheric aerosols in the global budget of methanol, the solubility and reactivity of CH3OH in aqueous sulfuric acid solutions are under investigation. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H(*), for methanol dissolution into 45 to 70 percent by weight H2SO4. We find that methanol solubility ranges from 10(exp 5) to 10(exp 8) M/atm and increases with decreasing temperature and with increasing sulfuric acid content. These solubility measurements include uptake due to physical solvation and all rapid equilibria which are established in solution. Our data indicate that simple uptake by aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These results differ from those recently reported in the literature, and an explanation of this disparity will be presented. In addition to solvation, reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H may proceed in the atmosphere but is not significant under our experimental conditions. Results obtained using a complementary equilibrium measurement technique confirm this directly. In addition, the extent of methanol sequestration via formation of mono- and dimethylsulfate will be evaluated under several atmospheric conditions.

  19. Adsorption of dyes on carbon nanomaterials from aqueous solutions.

    PubMed

    Rodríguez, A; Ovejero, G; Sotelo, J L; Mestanza, M; García, J

    2010-10-01

    The removal of methylene blue (MB), a cationic dye and orange II (OII), an anionic dye, from aqueous solution by using carbon nanomaterials as multiwalled carbon nanotubes (MWNTs) and carbon nanofibers (CNF) as adsorbents was studied in batch experiments. The effect of pH, temperature and surface modification of adsorbent on the removal of MB and OII was also investigated. The removals of OII and MB by adsorption on MWNT were maximum at pH 3.0 and pH 7.0, respectively. However, in the case CNF was employed as adsorbent, the optimum values of pH were 9.0 and 5.0 for OII and MB, respectively. Langmuir and Freundlich isotherms are applied to fit the adsorption data of both dyes. Equilibrium data were well described by the typical Langmuir adsorption isotherm. Overall, the study demonstrated that MWNTs and CNFs can effectively remove cationic and anionic dyes as MB and OII from aqueous solutions under these experimental conditions.

  20. Radiation crosslinking of methylcellulose and hydroxyethylcellulose in concentrated aqueous solutions

    NASA Astrophysics Data System (ADS)

    Wach, Radoslaw A.; Mitomo, Hiroshi; Nagasawa, Naotsugu; Yoshii, Fumio

    2003-12-01

    The effects of ionizing radiation on aqueous solutions of cellulose ethers, methylcellulose (MC) and hydroxyethylcellulose (HEC) were investigated. The well-established knowledge states that cellulose and its derivatives belong to degrading type of polymers. However, in our study intermolecular crosslinking initiated by gamma rays or electron beam leaded to the formation of insoluble gel. This is an opposite effect of irradiation to the degradation. Paste-like form of the initial specimen, i.e. concentration 20-30%, when water plasticizes the bulk of polymer; and a high dose rate were favorable for hydrogel formation. Gel fraction up to 60% and 70% was obtained from solutions of HEC and MC, respectively. Produced hydrogels swell markedly in aqueous media by imbibing and holding the solvent. Radiation parameters of irradiation, such as yields of degradation and crosslinking and the gelation dose, were evaluated by sol-gel analysis on the basis of Charlesby-Rosiak equation. Despite of the crosslinked structure, obtained hydrogels can be included into the group of biodegradable materials. They undergo decomposition by the action of cellulase enzyme or microorganisms from compost.

  1. Removal of Congo Red from aqueous solution by cattail root.

    PubMed

    Hu, Zhenhu; Chen, Hui; Ji, Feng; Yuan, Shoujun

    2010-01-15

    In this study, cattail root was used to remove Congo Red (CR) from aqueous solution. The effects of operation variables, such as cattail root dosage, contact time, initial pH, ionic strength and temperature on the removal of CR were investigated using batch adsorption technique. Removal efficiency increased with increase of cattail root dosage and ionic strength, but decreased with increase of temperature. The equilibrium data fitted well to the Langmuir model (R(2)>0.98) and the adsorption kinetic followed the pseudo-second-order equation (R(2)>0.99). Thermodynamics parameters such as standard free energy change (Delta G degrees), standard enthalpy change (Delta H degrees), and standard entropy change (DeltaS degrees ) were analyzed. The values of Delta G degrees were between -7.871 and -4.702 kJ mol(-1), of Delta H degrees was -54.116 kJ mol(-1), and of DeltaS degrees was -0.157 kJ mol(-1)K(-1), revealing that the removal of CR from aqueous solution by cattail root was a spontaneous and exothermic adsorption process. The maximum adsorption capacities of CR on cattail root were 38.79, 34.59 and 30.61 mg g(-1) at 20, 30 and 40 degrees C, respectively. These results suggest that cattail root is a potential low-cost adsorbent for the dye removal from industrial wastewater.

  2. Efficient removal of mercury from aqueous solutions and industrial effluent.

    PubMed

    Dos Santos, Maria B P; Leal, Katia Z; Oliveira, Fernando J S; Sella, Silvia M; Vieira, Méri D; Marques, Elisa M D; Gomes, Vanessa A C

    2015-01-01

    The objective of this study was to examine the ability of a solid waste produced during beneficiation of ornamental rocks to remove mercury (Hg) from an industrial effluent and aqueous solutions under various conditions. Batch studies have been carried out by observing the effects of pH, concentration of the adsorbate, contact time, and so on. Various sorption isotherm models such as Langmuir, Freundlich, and Tóth have been applied for the adsorbent. Film and intraparticle diffusion were both found to be rate-limiting steps. Adsorption was properly described by the Freundlich model (capacity constant of 0.3090 (mg g(-1))(mg L(-1))(-1/n) and adsorption intensity indicator of 2.2939), which indicated a favorable sorption and encouraged subsequent studies for treatment of Hg-containing industrial effluent. Industrial effluent treatment efficiency reached Hg removals greater than 90% by using ornamental rock solid waste (ORSW). Besides, desorption studies indicated that the maximum recovery of mercury was 100 ± 2% for 1 mol L(-1) HNO3 and 74 ± 8% for 0.1 mol L(-1) HNO3. The ORSW could be reused thrice without significant difference on the Hg removal rate from industrial effluent. These findings place ORSW as a promising efficient and low-cost adsorbent for the removal of Hg from aqueous solutions and industrial effluent.

  3. Electroreduction of carbon dioxide in aqueous solutions at metal electrodes

    SciTech Connect

    Augustynski, J.; Jermann, B.; Kedzierzawski, P.

    1996-12-31

    The quantities of carbon stored in the form of atmospheric carbon dioxide, CO{sub 2} in the hydrosphere and carbonates in the terrestrial environment substantially exceed those of fossil fuels. In spite of this the industrial use of carbon dioxide as a source of chemical carbon is presently limited to preparation of urea and certain carboxylic acids as well as organic carbonates and polycarbonates. However, the situation is expected to change in the future, if effective catalytic systems allowing to activate carbon dioxide will become available. In this connection, the electrochemical reduction of CO{sub 2}, requiring only an additional input of water and electrical energy, appears as an attractive possibility. For more than 100 years formic acid and formates of alkali metals were considered as the only significant products of the electroreduction of carbon dioxide in aqueous solutions. The highest current efficiencies, exceeding 90 %, were obtained either with mercury or with amalgam electrodes. The only comprehensive study regarding kinetics of CO{sub 2} reduction in aqueous solution has been performed by Eyring et al. using a mercury cathode. This paper describes electrolysis studies.

  4. Pulse radiolysis of aqueous solutions of sodium tetraphenylborate

    NASA Astrophysics Data System (ADS)

    Crawford, Charles L.; Gholami, Mohammad R.; Bhave, Ravindra N.; Hanrahan, Robert J.

    1994-09-01

    In previous work on the 60Co γ-radiolysis of aqueous tetraphenylborate (TPB -) solutions carried out in this laboratory, it was found that several organic products, including benzene, phenol and biphenyl, are produced with substantial yield. However, the reaction mechanism was not established. In the present study, reactions initiated by OḢ radicals, N 3 radicals and e -aq in aqueous TPB - solutions were studied by pulse radiolysis using a 600 keV Febetron electron accelerator. The lack of reactivity between TPB - and e -aq was demonstrated by directly monitoring the transient optical absorbance of e -aq. Concerning the reaction with O Ḣ, two schemes were considered: (1) electron transfer from B(C 6H 5) -4 to O Ḣ; or (2) O Ḣ addition to B(C 6H 5) -4. Comparison of observed transient absorption spectra with expectations based on two different schemes suggests that O Ḣ addition is the dominant reaction pathway under conditions of N 2O saturation, with an experimentally determined second-order rate constant of 6.2×10 9M -1s -1. A mechanism based on an initial first-order self-decomposition of the O Ḣ adduct, (C 6H 5) 3BC 6H 5OH -· with a measured rate constant of 4×10 4s -1 is proposed. Kinetic modeling on the proposed mechanistic scheme gives good agreement with our experimental results.

  5. Photochemistry of Tetrabromobisphenol A in Frozen and Liquid Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Reich, J.; Grannas, A. M.; Dolak, E.

    2012-12-01

    Brominated flame retardants are an emerging environmental contaminant and are now globally distributed in the environment, including the Polar Regions. Because bioaccumulation presents serious concerns for human and wildlife health within the Arctic, it is important to assess the potential fate of these contaminants. Despite some established knowledge regarding photochemical processes in reactive frozen media, little published literature exists regarding the chemical transformations and fate of brominated flame retardants in the Arctic. Here, we consider the photochemical transformation of tetrabromobisphenol A (TBBPA). We have conducted field-based experiments in Barrow, Alaska to investigate the potential photochemical degradation of TBBPA in snow/ice samples and found that TBBPA was efficiently photodegraded in frozen aqueous samples under natural Barrow sunlight. The main pathway of degradation was direct photolysis and the addition of photosensitizers had no significant impact on TBBPA photodegradation. In aqueous solution the solubility and light absorption properties of TBBPA are pH dependent, indicating that the photodegradation of TBBPA in the environment will be highly pH dependent. Reactions than are pH dependent may be affected by the nature of the liquid-like layers in snow/ice as well as the presence of other solutes that may indirectly affect the local pH. Here we will discuss our field and laboratory-based results investigating the role that snow/ice composition may play on TBBPA photochemical reactivity.

  6. Preparation of metallic nanoparticles by irradiation in starch aqueous solution

    NASA Astrophysics Data System (ADS)

    NemÅ£anu, Monica R.; Braşoveanu, Mirela; Iacob, Nicuşor

    2014-11-01

    Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔEab (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle ho was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.

  7. New terahertz dielectric spectroscopy for the study of aqueous solutions

    NASA Astrophysics Data System (ADS)

    George, Deepu K.; Charkhesht, Ali; Vinh, N. Q.

    2015-12-01

    We present the development of a high precision, tunable far-infrared (terahertz) frequency-domain dielectric spectrometer for studying the dynamics of biomolecules in aqueous solutions in the gigahertz-to-terahertz frequency. As an important benchmark system, we report on the measurements of the absorption and refractive index for liquid water in the frequency range from 5 GHz to 1.12 THz (0.17-37.36 cm-1 or 0.268-60 mm). The system provides a coherent radiation source with power up to 20 mW in the gigahertz-to-terahertz region. The dynamic range of our instrument reaches 1012 and the system achieves a spectral resolution of less than 100 Hz. The temperature of samples can be controlled precisely with error bars of ±0.02 °C from 0 °C to 90 °C. Given these attributes, our spectrometer provides unique capabilities for the accurate measurement of even very strongly absorbing materials such as aqueous solutions.

  8. New terahertz dielectric spectroscopy for the study of aqueous solutions.

    PubMed

    George, Deepu K; Charkhesht, Ali; Vinh, N Q

    2015-12-01

    We present the development of a high precision, tunable far-infrared (terahertz) frequency-domain dielectric spectrometer for studying the dynamics of biomolecules in aqueous solutions in the gigahertz-to-terahertz frequency. As an important benchmark system, we report on the measurements of the absorption and refractive index for liquid water in the frequency range from 5 GHz to 1.12 THz (0.17-37.36 cm(-1) or 0.268-60 mm). The system provides a coherent radiation source with power up to 20 mW in the gigahertz-to-terahertz region. The dynamic range of our instrument reaches 10(12) and the system achieves a spectral resolution of less than 100 Hz. The temperature of samples can be controlled precisely with error bars of ±0.02 °C from 0 °C to 90 °C. Given these attributes, our spectrometer provides unique capabilities for the accurate measurement of even very strongly absorbing materials such as aqueous solutions.

  9. New terahertz dielectric spectroscopy for the study of aqueous solutions

    SciTech Connect

    George, Deepu K.; Charkhesht, Ali; Vinh, N. Q.

    2015-12-15

    We present the development of a high precision, tunable far-infrared (terahertz) frequency-domain dielectric spectrometer for studying the dynamics of biomolecules in aqueous solutions in the gigahertz-to-terahertz frequency. As an important benchmark system, we report on the measurements of the absorption and refractive index for liquid water in the frequency range from 5 GHz to 1.12 THz (0.17–37.36 cm{sup −1} or 0.268–60 mm). The system provides a coherent radiation source with power up to 20 mW in the gigahertz-to-terahertz region. The dynamic range of our instrument reaches 10{sup 12} and the system achieves a spectral resolution of less than 100 Hz. The temperature of samples can be controlled precisely with error bars of ±0.02 °C from 0 °C to 90 °C. Given these attributes, our spectrometer provides unique capabilities for the accurate measurement of even very strongly absorbing materials such as aqueous solutions.

  10. Gamma radiolytic degradation of naphthalene in aqueous solution

    NASA Astrophysics Data System (ADS)

    Chu, Libing; Yu, Shaoqing; Wang, Jianlong

    2016-06-01

    The decomposition of naphthalene in aqueous solution was studied using gamma irradiation combined with both H2O2 and TiO2 nanoparticles. Gamma irradiation led to a complete degradation of naphthalene and a partial mineralization. With initial concentration of 5-32 mg/L, more than 98% of naphthalene was removed and TOC reduction reached 28-31% at an absorbed dose of 3.0 kGy. The degradation of naphthalene was faster at neutral pH and the initial degradation rate increased with increasing the initial concentration of naphthalene. Addition of H2O2 and TiO2 nanoparticles all enhanced the degradation and mineralization of naphthalene. TOC removal efficiency increased from 28% (irradiation alone) to 35% with addition of H2O2 (40 mg/L), and to 48% with addition of TiO2 (0.8 g/L). The degradation of naphthalene in aqueous solution by gamma irradiation was mainly through the oxidation by ·OH radicals. The intermediate naphthol and carboxylic acids such as formic acid and oxalic acid were identified by LC-MS and IC.

  11. Direct Hydrothermal Precipitation of Pyrochlore-Type Tungsten Trioxide Hemihydrate from Alkaline Sodium Tungstate Solution

    NASA Astrophysics Data System (ADS)

    Li, Xiaobin; Li, Jianpu; Zhou, Qiusheng; Peng, Zhihong; Liu, Guihua; Qi, Tiangui

    2012-04-01

    Pyrochlore-type tungsten trioxide hemihydrate (WO3·0.5H2O) powder with the average particle size of 0.5 μm was prepared successfully from the weak alkaline sodium tungstate solution by using organic substances of sucrose or cisbutenedioic acid as the acidification agent. The influences of solution pH and acidification agents on the precipitation process were investigated. The results showed that organic acidification agents such as sucrose and cisbutenedioic acid could improve the precipitation of pyrochlore WO3·0.5H2O greatly from sodium tungstate solution compared with the traditional acidification agent of hydrochloric acid. In addition, the pH value of the hydrothermal system played a critical role in the precipitation process of WO3·0.5H2O, and WO3·0.5H2O precipitation mainly occured in the pH range of 7.0 to 8.5. The precipitation rate of tungsten species in the sodium tungstate solution could reach up to 98 pct under the optimized hydrothermal conditions. This article proposed also the hydrothermal precipitation mechanism of WO3·0.5H2O from the weak alkaline sodium tungstate solution. The novel method reported in this study has a great potential to improve the efficiency of advanced tungsten trioxide-based functional material preparation, as well as for the pollution-reducing and energy-saving tungsten extractive metallurgy.

  12. Method of precipitating uranium from an aqueous solution and/or sediment

    SciTech Connect

    Tokunaga, Tetsu K; Kim, Yongman; Wan, Jiamin

    2013-08-20

    A method for precipitating uranium from an aqueous solution and/or sediment comprising uranium and/or vanadium is presented. The method includes precipitating uranium as a uranyl vanadate through mixing an aqueous solution and/or sediment comprising uranium and/or vanadium and a solution comprising a monovalent or divalent cation to form the corresponding cation uranyl vanadate precipitate. The method also provides a pathway for extraction of uranium and vanadium from an aqueous solution and/or sediment.

  13. Population and size distribution of solute-rich mesospecies within mesostructured aqueous amino acid solutions.

    PubMed

    Jawor-Baczynska, Anna; Moore, Barry D; Lee, Han Seung; McCormick, Alon V; Sefcik, Jan

    2013-01-01

    Aqueous solutions of highly soluble substances such as small amino acids are usually assumed to be essentially homogenous systems with some degree of short range local structuring due to specific interactions on the sub-nanometre scale (e.g. molecular clusters, hydration shells), usually not exceeding several solute molecules. However, recent theoretical and experimental studies have indicated the presence of much larger supramolecular assemblies or mesospecies in solutions of small organic and inorganic molecules as well as proteins. We investigated both supersaturated and undersaturated aqueous solutions of two simple amino acids (glycine and DL-alanine) using Dynamic Light Scattering (DLS), Brownian Microscopy/Nanoparticles Tracking Analysis (NTA) and Cryogenic Transmission Electron Microscopy (Cryo-TEM). Colloidal scale mesospecies (nanodroplets) were previously reported in supersaturated solutions of these amino acids and were implicated as intermediate species on non-classical crystallization pathways. Surprisingly, we have found that the mesospecies are also present in significant numbers in undersaturated solutions even when the solute concentration is well below the solid-liquid equilibrium concentration (saturation limit). Thus, mesopecies can be observed with mean diameters ranging from 100 to 300 nm and a size distribution that broadens towards larger size with increasing solute concentration. We note that the mesospecies are not a separate phase and the system is better described as a thermodynamically stable mesostructured liquid containing solute-rich domains dispersed within bulk solute solution. At a given temperature, solute molecules in such a mesostructured liquid phase are subject to equilibrium distribution between solute-rich mesospecies and the surrounding bulk solution.

  14. Relationship between solution structure and phase behavior: a neutron scattering study of concentrated aqueous hexamethylenetetramine solutions.

    PubMed

    Burton, R C; Ferrari, E S; Davey, R J; Finney, J L; Bowron, D T

    2009-04-30

    The water-hexamethylenetetramine system displays features of significant interest in the context of phase equilibria in molecular materials. First, it is possible to crystallize two solid phases depending on temperature, both hexahydrate and anhydrous forms. Second, saturated aqueous solutions in equilibrium with these forms exhibit a negative dependence of solubility (retrograde) on temperature. In this contribution, neutron scattering experiments (with isotopic substitution) of concentrated aqueous hexamethylenetetramine solutions combined with empirical potential structure refinement (EPSR) were used to investigate the time-averaged atomistic details of this system. Through the derivation of radial distribution functions, quantitative details emerge of the solution coordination, its relationship to the nature of the solid phases, and of the underlying cause of the solubility behavior of this molecule.

  15. Adsorption of cesium on cement mortar from aqueous solutions.

    PubMed

    Volchek, Konstantin; Miah, Muhammed Yusuf; Kuang, Wenxing; DeMaleki, Zack; Tezel, F Handan

    2011-10-30

    The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L(-1) and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive (137)Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L(-1) while the respective surface concentration on coupons varied from 0.0395 to 22.34 μg cm(-2). Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol(-1) suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.

  16. Neptunium interaction with uranium dioxide in aqueous solution

    NASA Astrophysics Data System (ADS)

    Batuk, O. N.; Kalmykov, St. N.; Petrov, V. G.; Zakharova, E. V.; Teterin, Yu. A.; Teterin, A. Yu.; Shapovalov, V. I.; Haire, M. J.

    2007-05-01

    Neptunium, Np(V) and Np(IV), sorption onto uranium dioxide surface was studied at various values of pH. Sorption was studied in two sets of experiments with different redox conditions that correspond to either Np(V) (Set 1) or Np(IV) (Set 2) in solution. In Set 1 the reduction of Np(V) was established when low pH solution covered a UO2 surface. When the pH increased, the sorption of neptunium is decreased. At pH > 5.5 neptunium sequestration from solution is governed by Np(V) sorption onto UO2.25. In Set 2 (the more anoxic conditions) complete neptunium sorption is established at pH > 2: it is present in the tetravalent form over the whole pH range. The proposed mechanisms of neptunium sorption was suggested by using pH sorption edges of Th(IV) as an analog to Np(IV) onto UO2 and Np(V) onto ThO2. The UO2 surface was characterized by X-ray photoelectron spectroscopy (XPS) after equilibration with aqueous solutions at different pH values.

  17. Polymerization of Pu(IV) in aqueous nitric acid solutions

    SciTech Connect

    Toth, L.M.; Friedman, H.A.; Osborne, M.M.

    1980-10-01

    The polymerization of Pu(IV) in aqueous nitric acid solutions has been studied spectrophotometrically both to establish the influence of large UO{sub 2}(NO{sub 3}){sub 2} concentrations on the polymerization rates and, more generally, to review the influence of the major parameters on the polymer reaction. Typically, experiments have been performed at 50{sup 0}C and with 0.05 M Pu in nitric acid solutions that vary in acidity from 0.07 to 0.4 M. An induction period usually precedes the polymer growth stage during which time nucleation of primary hydrolysis products occurs. Uranyl nitrate retards the polymerization reaction by approximately 35% in spite of the counteracting influence of the nitrate ions associated with this solute. The rate of polymer formation, expressed as d(percent polymer)/dt, has been shown to depend on the total plutonium concentration in reactions where the Pu(IV) concentration remained constant; and it is therefore suggested that the polymer reaction rate is not first order with respect to the concentration of plutonium as was previously thought. It has been shown further that accurate acid determinations on stock reagents are essential in order to obtain reliable polymerization experiments. Satisfactory procedures for these analyses did not exist, so appropriate modifications to the iodate precipitation methods were developed. The most ideal plutonium reagent material has been shown to be crystalline Pu(IV) nitrate because it can be added directly to acid solutions without the occurrence of unintentional hydrolysis reactions.

  18. Peculiarities of state diagrams of aqueous solutions of cryoprotective agents.

    PubMed

    Osetsky, Alexander I

    2009-10-01

    The phase transitions in aqueous solutions of glycerol and PEO-1500 within the temperature range of +30 to -150 degrees C have been studied using the methods of thermoplastic analysis and volumetric scanning tensodilatometry. We present the revealed phenomenon of cluster cyrystallization of these solutions as well as principles of describing this phenomenon using state diagrams, containing the intervals of concentration corresponding to the existence of amorphous and cryocolloid fractions. We note that for the cryocolloid fraction, a low temperature association of molecules of cryoprotective agents leads the formation of ice nanocrystals either close to or directly inside the aggregations. These fractions exist in cooled cryoprotective solutions near the vitrification temperatures of the liquid phase and may contribute to the initiation of damaging events in cryopreserved biological systems. Our data may be helpful in explaining the peculiarities observed during crystallization of cryoprotective solutions and may further contribute to a broader understanding of the principles of protection and protocol optimization of biological materials at temperatures approaching vitrification.

  19. Crystallization in solid solution-aqueous solution systems: Thermodynamic and kinetic approaches

    SciTech Connect

    Shtukenberg, A. G. Punin, Yu. O.; Azimov, P. Ya.

    2010-03-15

    A new phenomenological approach is proposed to describe the crystallization kinetics in solid solution-aqueous solution binary systems. The phase diagrams, equilibria, and quasie-quilibria are considered within this approach. The crystallization kinetics near the true equilibrium and the crystallization features at large deviations from equilibrium are discussed on this basis. Special attention is paid to possible interactions in a solution with a seed crystal placed in it. In particular, the interactions leading to the seed's crystal growth or dissolution and to a possible exchange or metasomatic reactions are considered. In addition, the effect of the generated mismatch stress on the crystal growth rate and composition is analyzed.

  20. Aromatic oligomers that form hetero duplexes in aqueous solution.

    PubMed

    Gabriel, Gregory J; Iverson, Brent L

    2002-12-25

    The electron-deficient 1,4,5,8-naphthalenetetracarboxylic diimide (Ndi) and electron-rich 1,5-dialkoxynaphthalene (Dan) have been shown to complex strongly with each other in water due to the hydrophobic effect as modulated through the electrostatic complementarity of the stacked dimer. Previously, oligomers of alternating Ndi and Dan units, termed aedamers, were the first foldamers to employ intramolecular aromatic stacking to effect the formation of secondary structure of nonnatural chains in aqueous solution. Described here is the use of this aromatic-aromatic (or pi-pi) interaction, this time in an intermolecular format, to demonstrate the self-assembly of stable hetero duplexes from a set of molecular strands (1a-4a) and (1b-4b) incorporating Ndi and Dan units, respectively. A 1-to-1 binding stoichiometry was determined from NMR and isothermal titration calorimetry (ITC) investigations, and these experiments indicated that association is enthalpically favored with the tetra-Ndi (4a) and tetra-Dan (4b) strands forming hetero duplexes (4a:4b) with a stability constant of 350 000 M-1 at T = 318 K. Polyacrylamide gel electrophoresis (PAGE) also illustrated the strong interaction between 4a and 4b and support a 1-to-1 binding mode even when one component is in slight excess. Overall, this system is the first to utilize complementary aromatic units to drive discrete self-assembly in aqueous solution. This new approach for designing assemblies is encouraging for future development of duplex systems with highly programmable modes of binding in solution or on surfaces.

  1. Coupled jump rotational dynamics in aqueous nitrate solutions.

    PubMed

    Banerjee, Puja; Yashonath, Subramanian; Bagchi, Biman

    2016-12-21

    A nitrate ion (NO3(-)) with its trigonal planar geometry and charges distributed among nitrogen and oxygen atoms can couple to the extensive hydrogen bond network of water to give rise to unique dynamical characteristics. We carry out detailed atomistic simulations and theoretical analyses to investigate these aspects and report certain interesting findings. We find that the nitrate ions in aqueous potassium nitrate solution exhibit large amplitude rotational jump motions that are coupled to the hydrogen bond rearrangement dynamics of the surrounding water molecules. The jump motion of nitrate ions bears certain similarities to the Laage-Hynes mechanism of rotational jump motions of tagged water molecules in neat liquid water. We perform a detailed atomic-level investigation of hydrogen bond rearrangement dynamics of water in aqueous KNO3 solution to unearth two distinct mechanisms of hydrogen bond exchange that are instrumental to promote these jump motions of nitrate ions. As observed in an earlier study by Xie et al., in the first mechanism, after breaking a hydrogen bond with nitrate ion, water forms a new hydrogen bond with a water molecule, whereas the second mechanism involves just a switching of hydrogen bond between the two oxygen atoms of the same nitrate ion (W. J. Xie et al., J. Chem. Phys. 143, 224504 (2015)). The magnitude as well as nature of the reorientational jump of nitrate ion for the two mechanisms is different. In the first mechanism, nitrate ion predominantly undergoes out-of-plane rotation, while in the second mechanism, in-plane reorientation of NO3(-) is favourable. These have been deduced by computing the torque on the nitrate ion during the hydrogen bond switching event. We have defined and computed the time correlation function for coupled reorientational jump of nitrate and water and obtained the associated relaxation time which is also different for the two mechanisms. These results provide insight into the relation between the

  2. Coupled jump rotational dynamics in aqueous nitrate solutions

    NASA Astrophysics Data System (ADS)

    Banerjee, Puja; Yashonath, Subramanian; Bagchi, Biman

    2016-12-01

    A nitrate ion (NO3-) with its trigonal planar geometry and charges distributed among nitrogen and oxygen atoms can couple to the extensive hydrogen bond network of water to give rise to unique dynamical characteristics. We carry out detailed atomistic simulations and theoretical analyses to investigate these aspects and report certain interesting findings. We find that the nitrate ions in aqueous potassium nitrate solution exhibit large amplitude rotational jump motions that are coupled to the hydrogen bond rearrangement dynamics of the surrounding water molecules. The jump motion of nitrate ions bears certain similarities to the Laage-Hynes mechanism of rotational jump motions of tagged water molecules in neat liquid water. We perform a detailed atomic-level investigation of hydrogen bond rearrangement dynamics of water in aqueous KNO3 solution to unearth two distinct mechanisms of hydrogen bond exchange that are instrumental to promote these jump motions of nitrate ions. As observed in an earlier study by Xie et al., in the first mechanism, after breaking a hydrogen bond with nitrate ion, water forms a new hydrogen bond with a water molecule, whereas the second mechanism involves just a switching of hydrogen bond between the two oxygen atoms of the same nitrate ion (W. J. Xie et al., J. Chem. Phys. 143, 224504 (2015)). The magnitude as well as nature of the reorientational jump of nitrate ion for the two mechanisms is different. In the first mechanism, nitrate ion predominantly undergoes out-of-plane rotation, while in the second mechanism, in-plane reorientation of NO3- is favourable. These have been deduced by computing the torque on the nitrate ion during the hydrogen bond switching event. We have defined and computed the time correlation function for coupled reorientational jump of nitrate and water and obtained the associated relaxation time which is also different for the two mechanisms. These results provide insight into the relation between the coupled

  3. Novel Superdielectric Materials: Aqueous Salt Solution Saturated Fabric

    PubMed Central

    Phillips, Jonathan

    2016-01-01

    The dielectric constants of nylon fabrics saturated with aqueous NaCl solutions, Fabric-Superdielectric Materials (F-SDM), were measured to be >105 even at the shortest discharge times (>0.001 s) for which reliable data could be obtained using the constant current method, thus demonstrating the existence of a third class of SDM. Hence, the present results support the general theoretical SDM hypothesis, which is also supported by earlier experimental work with powder and anodized foil matrices: Any material composed of liquid containing dissolved, mobile ions, confined in an electrically insulating matrix, will have a very high dielectric constant. Five capacitors, each composed of a different number of layers of salt solution saturated nylon fabric, were studied, using a galvanostat operated in constant current mode. Capacitance, dielectric constant, energy density and power density as a function of discharge time, for discharge times from ~100 s to nearly 0.001 s were recorded. The roll-off rate of the first three parameters was found to be nearly identical for all five capacitors tested. The power density increased in all cases with decreasing discharge time, but again the observed frequency response was nearly identical for all five capacitors. Operational limitations found for F-SDM are the same as those for other aqueous solution SDM, particularly a low maximum operating voltage (~2.3 V), and dielectric “constants” that are a function of voltage, decreasing for voltages higher than ~0.8 V. Extrapolations of the present data set suggest F-SDM could be the key to inexpensive, high energy density (>75 J/cm3) capacitors. PMID:28774037

  4. Reduction of earth alkaline metal salts in THF solution studied by picosecond pulse radiolysis.

    PubMed

    Ma, Jun; Archirel, Pierre; Schmidhammer, Uli; Teuler, Jean-Marie; Pernot, Pascal; Mostafavi, Mehran

    2013-12-27

    Picosecond pulse radiolysis of tetrahydrofuran (THF) solutions containing earth alkaline metal salt, M(II)(ClO4)2, at different concentrations are performed using two different supercontinua as probe pulse, one covering the visible and another the near-infrared (NIR) down to the visible. Two types of line scan detectors are used to record the absorption spectra in the range from 400 to 1500 nm. Because of the strong overlap between the spectra of the absorbing species in the present wavelength range, global matrices were built for each M(II) system, by delay-wise binding the matrix for pure THF with the available matrices for this cation. The number of absorbers was assessed by Singular Value Decomposition of the global matrix, and a MCR-ALS analysis with the corresponding number of species was performed. The analysis of the results show clearly that solvated electron reacts with the earth alkaline metal molecule and the product has an optical absorption band very different than that of solvated electron in pure THF. So, contrarily to the case of solution containing free Na(+), in the presence of Mg(II), Ca(II) and Sr(II) the observed absorption band is not only blueshifted, but its shape is also drastically changed. In fact with Na(+) solvated electron forms a tight-contact pair but with earth alkaline metal cation solvated electron is scavenged by the undissociated molecule M(II)(ClO4)2. In order to determine the structure of the absorbing species observed after the electron pulse, Monte Carlo/DFT simulations were performed in the case of Mg(II), based on a classical Monte Carlo code and DFT/PCM calculation of the solute. The UV-visible spectrum of the solute is calculated with the help of the TDDFT method. The calculated spectrum is close to the experimental one. It is due to two species, a contact pair and an anion.

  5. Electrochemistry and electrogenerated chemiluminescence of films of silicon nanoparticles in aqueous solution

    NASA Astrophysics Data System (ADS)

    Bae, Yoonjung; Lee, Doh C.; Rhogojina, Elena V.; Jurbergs, David C.; Korgel, Brian A.; Bard, Allen J.

    2006-08-01

    Films of octadecyl-capped Si nanoparticles (NPs) (diameter, 3.4 ± 0.7 nm) prepared by drop-coating on indium tin oxide (ITO) showed electrogenerated chemiluminescence (ECL) for both cathodic and anodic potential sweeps in KOH solutions containing peroxydisulfate. The redox potentials of the Si NPs can be estimated as approximately -0.9 and +0.95 V (versus Ag|AgCl) based on the anodic potential for the onset of ECL minus the ECL peak energy. The ECL exhibits a relatively broad spectrum (FWHM = 160 nm) with a peak wavelength of ~670 nm (1.85 eV), similar to the photoluminescence spectra. In electrochemical studies in KOH solution in the absence of peroxydisulfate, an anodic current peak appears at about -1 V (versus Ag|AgCl) following a scan to negative potentials. A similar peak has been observed during the etching of a bulk single crystal Si electrode in alkaline aqueous solution. Unpassivated surface sites of Si NPs seem to be etched at potentials negative of the anodic oxidation peak.

  6. Factors influencing hydroquinone degradation in aqueous solution using a modified microelectrolysis method.

    PubMed

    Li, Tong; Li, Tingting; Xiong, Houfeng; Zou, Donglei

    2015-01-01

    The discharge of hydroquinone (HQ), an important chemical raw material, to natural waters poses different ecological threats to aquatic organisms. In this study, we investigated the removal performance of traditional and modified microelectrolysis methods in aqueous solutions. The traditional microelectrolysis packing was modified by adding manganese (Mn), zinc (Zn), and copper (Cu) powder as additives. The factors affecting the removal performance of HQ, such as catalytic metal type, mass fraction of additive, reaction time, and initial pH, were examined. The results showed that the Mn modified packing exhibited the best performance compared to Zn and Cu powder. The removal rate of HQ using Mn modified packing can reach 94% after 4 h. In addition, 9% of Mn packing has a higher removal rate than other mass fractions. The acidic solution pH shows a more favorable degradation than a neutral and alkaline solution. The intermediates of HQ degradation by modified microelectrolysis were identified and then the pathway of HQ degradation was proposed. Our result indicates that Mn as catalytic metal holds promising potential to enhance HQ removal in water using the microelectrolysis method.

  7. Reduction of hexavalent chromium by ascorbic acid in aqueous solutions.

    PubMed

    Xu, Xiang-Rong; Li, Hua-Bin; Li, Xiao-Yan; Gu, Ji-Dong

    2004-11-01

    Hexavalent chromium is a priority pollutant in the USA and many other countries. Reduction of Cr(VI) to Cr(III) is environmentally favorable as the latter species is not toxic to most living organisms and also has a low mobility and bioavailability. Reduction of Cr(VI) by ascorbic acid (vitamin C) as a reductant was studied using potassium dichromate solution as the model pollutant. Effects of concentration of vitamin C, pH, temperature, irradiation and reaction time on the reduction of Cr(VI) were examined. Cr(VI) might be reduced by vitamin C not only in acidic conditions but also in weakly alkaline solutions. The reduction of Cr(VI) by vitamin C might occur not only under irradiation but also in the dark. Vitamin C is an important biological reductant in humans and animals, and not toxic. It is water-soluble and can easily permeate through various types of soils. The results indicate that vitamin C could be used in effective remediation of Cr(VI)-contaminated soils and groundwater in a wide range of pH, with or without sunlight. copyright 2004 Elsevier Ltd.

  8. Molecular dynamics simulation of biomembranes in aqueous solution

    NASA Astrophysics Data System (ADS)

    Bostick, David Lee

    In recent years, the developments in classical molecular dynamics simulation have allowed for an atomistic depiction of mesoscopic biological systems. With the awareness of such developments, the natural strive of the scientific community has been to increase the size of such simulated systems [70]. Nonetheless, the subtleties in the properties of biomembranes require an unusually thoughtful approach [70, 203]. In this work, a hierarchical approach is taken, with respect to system complexity, in the classical molecular dynamics simulation of biomembrane systems in aqueous solution. A progression of simulation studies is presented that begins with the analysis of the interfacial properties of neat bilayers composed of zwitterionic (phosphatidylcholine) lipids in both pure water and in electrolyte. We move on to study mixed bilayers containing zwitterionic (phosphatidylcholine) and acidic (phosphatidylserine) lipids with counterions immersed in electrolyte. Yet another layer of complexity is added to the problem by studying hydrated bilayers containing phosphatidylcholine lipids and cholesterol. Finally, we address the semipermeable nature of biomembranes by studying two membrane-channel systems. We start with a simple model membrane-channel consisting of a six-helix alamethicin bundle embedded in a hydrated phosphatidylcholine bilayer. The knowledge gained from this study is then carried over to the simulation of a large membrane-embedded prokaryotic ClC Cl-/H + antiporter, utilizing a free-energetic analysis to reveal the role of protons in the Cl- transport mechanism. Throughout the progression, methods are developed and used in the analysis of interfacial aqueous solution structure, ion-membrane binding, lipid structural properties, inter-lipid hydrogen bonded complexation, and electrostatics at the membrane interface. The developments reveal the layered nature of water near the rugged, molecularscale aqueous solution/membrane interface and its electrostatic

  9. Infrared spectroscopy of aqueous ionic salt solutions at low concentrations

    NASA Astrophysics Data System (ADS)

    Max, Jean-Joseph; Gessinger, Véronique; van Driessche, Caroline; Larouche, Pascal; Chapados, Camille

    2007-05-01

    The analysis by infrared spectroscopy of aqueous solutions of the binary inorganic salts NaI and NaCl and the ternary salts CaCl2 and BaCl2 at concentrations from 1000to2mM was carried out to complement a previous study done at higher concentrations on nine binary salts (alkali halides) and one ternary salt (MgCl2) [J.-J. Max and C. Chapados, J. Chem. Phys. 115, 2664 (2001)]. These salts are completely ionized in aqueous solutions, forming monoatomic species that do not absorb IR but that perturb the surrounding water, modifying its spectrum. The factor analysis of the spectra revealed that all these salt solutions were composed of two water types: pure water and salt solvated water. The authors obtained pure salt solvated water spectra for all the salts using an extrapolation technique. The water types obtained are constant for the binary and ternary salts down to 2mM. For the binary salts, we determine that 5.0 and 4.0 water molecules are solvated to the Na +-Cl- and Na+-I- ion pairs, respectively. These numbers are the same as that obtained at higher concentrations. For the new ternary salts, we find that 6.0 and 8.0 water molecules are solvated to Ca++-(Cl-)2 and Ba++-(Cl-)2 ion pairs, respectively. These numbers are higher than the four water molecules solvated to Mg++-(Cl-)2 ion pairs determined previously, but show a progression that follows their atomic numbers. These results constitute new experimental results on "simple" systems whose molecular organization is still a matter of debate. The IR method that probes the system at the molecular level is a method different than the macroscopic ones that give the activity coefficients. The IR gives direct observation at the molecular level of the strong ion-water interactions that are often neglected and its water structure not considered in macroscopic methods. The present results and their analysis together with those obtained by other methods will facilitate the determination of the organization of these

  10. Remediation of methyl iodide in aqueous solution and soils amended with thiourea.

    PubMed

    Zheng, Wei; Papiernik, Sharon K; Guo, Mingxin; Yates, Scott R

    2004-02-15

    Methyl iodide (MeI) is considered a very promising fumigant alternative to methyl bromide (MeBr) for controlling soil-borne pests. Because atmospheric emission of highly volatile fumigants contributes to air pollution, feasible strategies to reduce emissions are urgently needed. In this study, thiourea (a nitrification inhibitor) was shown to accelerate the degradation of MeI in soil and water. In aqueous solution, the reaction between MeI and thiourea was independent of pH, although the rate of MeI hydrolysis increased in alkaline solution. Substantial increases in the rate of MeI dissipation were observed in thiourea-amended soils. Transformation of MeI by thiourea in aqueous solution was by a single chemical reaction process, while MeI degradation in thiourea-amended soil apparently involved a catalytic mechanism. The electron delocalization between the thiourea molecule and the surfaces of soil particles is energetically favorable and would increase the nucleophilic reactivity of the thiono group toward MeI, resulting in an enhancement of the dissipation rate. The soil half-life for MeI was reduced from >300 h for unamended soils to only a few hours in soil or sand amended with thiourea at a 2:1 molar ratio (thiourea:MeI). The MeI transformation rate in thiourea-amended soil increased with increasing soil temperature and decreasing soil moisture. Therefore, spraying thiourea on the soil surface to form a "reactive surface barrier" may be an effective and innovative strategy for controlling fumigant emissions to the atmosphere and for improving environmental protection.

  11. Efficiency of succinylated-olive stone biosorbent on the removal of cadmium ions from aqueous solutions.

    PubMed

    Aziz, Abdellah; Elandaloussi, El Hadj; Belhalfaoui, Belkacem; Ouali, Mohand Said; De Ménorval, Louis Charles

    2009-10-15

    Chemical functionalization of olive stone wastes with succinate linkers can potentially improve the performance of wastewater treatment technologies via enhanced adsorption and high affinity of the covalently attached succinate groups for heavy metals. In this study, a novel reusable adsorbent material based on agricultural waste has been synthesized by esterifying the lignocellulosic matrix of olive stones with succinic anhydride in toluene under basic conditions. Characterization of the as-prepared material by FTIR and solid-state MAS (13)C NMR spectroscopies and TGA confirmed that the heterogeneous esterification has proceeded very efficiently to yield the succinylated-olive stone (S-OS). Subsequent alkaline treatment of S-OS with saturated NaHCO(3) aqueous solution led to the resulting sodic material (NaS-OS), which was subjected to batch experiments in order to evaluate its cadmium-removing efficiency from aqueous solutions at realistic concentrations of cadmium found in industrial effluents. The results obtained from the sorption characteristics have revealed that NaS-OS material is highly effective in removing cadmium from aqueous solutions, with a maximum uptake capacity of 200 mg g(-1) (1.78 mmol g(-1)). The Langmuir isotherm model was found to fit adequately the equilibrium isotherm data. Cadmium adsorption occurs rapidly and the adsorption mechanism is a chemical sorption via ionic exchange between the adsorbate and adsorbent. Thermodynamic parameters were also evaluated from the effect of temperature studies. Regenerability of NaS-OS material was ascertained by quantitative desorption of cadmium with 1M aqueous NaCl and the reusability of the matrix after five repeated cycles led to nearly no attenuation in its performance (less than 2% in the sorption capacity), indicating that repeated use of NaS-OS is quite feasible. Compared to other low-cost adsorbents utilized for the removal of Cd(II) from water/wastewater, NaS-OS shows higher sorption capacity

  12. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures

    SciTech Connect

    Cochrane, T. T.; Cochrane, T. A.

    2016-01-15

    Purpose: To demonstrate that the authors’ new “aqueous solution vs pure water” equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. Methods: The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of “free” water molecules per unit volume of solution, “N{sub f},” and (c) the “t” factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate N{sub f} was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors’ equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. Results: The provisional equations formulated to calculate N{sub f}, the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of N{sub f

  13. Chemical metallization of KMPR photoresist polymer in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zeb, Gul; Duong, Xuan Truong; Vu, Ngoc Pi; Phan, Quang The; Nguyen, Duc Tuong; Ly, Viet Anh; Salimy, Siamak; Le, Xuan Tuan

    2017-06-01

    While conventional methods for preparing thin films of metals and metallic alloys on insulating substrates in the field of microelectromechanical systems (MEMS) include vapor deposition techniques, we demonstrate here that electroless deposition can be considered as an alternate efficient approach to metallize the surface of insulating substrates, such as KMPR epoxy photoresist polymer. In comparison with the physical and chemical vapor deposition methods, which are well-established for metallization of photoresist polymers, our electroless nickel plating requires only immersing the substrates into aqueous solutions in open air at low temperatures. Thin films of nickel alloy have been deposited electrolessly on KMPR surface, through a cost-effective and environmental chromium-free process, mediated through direct grafting of amine palladium complexes in aqueous medium. This covalent organic coating provides excellent adhesion between KMPR and the nickel film and allows better control of the palladium catalyst content. Covalent grafting and characterization of the deposited nickel film have been carried out by means of Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy techniques.

  14. DNA dynamics in aqueous solution: opening the double helix

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Ross, W. S.; Tinoco, I. Jr; MacElroy, R. D. (Principal Investigator)

    1990-01-01

    The opening of a DNA base pair is a simple reaction that is a prerequisite for replication, transcription, and other vital biological functions. Understanding the molecular mechanisms of biological reactions is crucial for predicting and, ultimately, controlling them. Realistic computer simulations of the reactions can provide the needed understanding. To model even the simplest reaction in aqueous solution requires hundreds of hours of supercomputing time. We have used molecular dynamics techniques to simulate fraying of the ends of a six base pair double strand of DNA, [TCGCGA]2, where the four bases of DNA are denoted by T (thymine), C (cytosine), G (guanine), and A (adenine), and to estimate the free energy barrier to this process. The calculations, in which the DNA was surrounded by 2,594 water molecules, required 50 hours of CRAY-2 CPU time for every simulated 100 picoseconds. A free energy barrier to fraying, which is mainly characterized by the movement of adenine away from thymine into aqueous environment, was estimated to be 4 kcal/mol. Another fraying pathway, which leads to stacking between terminal adenine and thymine, was also observed. These detailed pictures of the motions and energetics of DNA base pair opening in water are a first step toward understanding how DNA will interact with any molecule.

  15. Strong adhesion and cohesion of chitosan in aqueous solutions

    PubMed Central

    Lee, Dong Woog; Lim, Chanoong; Israelachvili, Jacob N.; Hwang, Dong Soo

    2014-01-01

    Chitosan, a load-bearing biomacromolecule found in the exoskeletons of crustaceans and insects, is a promising biopolymer for the replacement of synthetic plastic compounds. Here, surface interactions mediated by chitosan in aqueous solutions, including the effects of pH and contact time, were investigated using a surface forces apparatus (SFA). Chitosan films showed an adhesion to mica for all tested pH ranges (3.0–8.5), achieving a maximum value at pH 3.0 after a contact time of 1 hr (Wad ~6.4 mJ/m2). We also found weak or no cohesion between two opposing chitosan layers on mica in aqueous buffer until the critical contact time for maximum adhesion (chitosan-mica) was reached. Strong cohesion (Wco ~8.5 mJ/m2) between the films was measured with increasing contact times up to 1 hr at pH 3.0, which is equivalent to ~60% of the strongest, previously reported, mussel underwater adhesion. Such time-dependent adhesion properties are most likely related to molecular or molecular group reorientations and interdigitations. At high pH (8.5), the solubility of chitosan changes drastically, causing the chitosan-chitosan (cohesion) interaction to be repulsive at all separation distances and contact times. The strong contact time and pH-dependent chitosan-chitosan cohesion and adhesion properties provide new insight into the development of chitosan based load-bearing materials. PMID:24138057

  16. Colloidal Stability of Graphene Oxide Nanosheets in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Guikema, Janice; Wang, Yung-Li; Chen, Kai

    2013-03-01

    Carbon-based nanomaterials are increasingly used in commercial products as well as in research and industrial applications. Due to its extraordinary properties, graphene has attracted intense research interest and has been demonstrated in many potential applications including solar cells, conductive ink, and transistors. Graphene oxide has also been studied extensively and has been used to produce biocompatible antibacterial paper. Chemical reduction of graphene oxide is commonly used to produce inexpensive graphene in large quantities. With the increasing use of graphene and graphene oxide in consumer products, these nanomaterials may inevitably be released to aqueous systems, resulting in potential risk to environmental ecosystems and human health. The fate and mobility of graphene and its oxides in aquatic systems is dependent on their colloidal stability. We will discuss our study of the early-stage aggregation kinetics of graphene oxide in aqueous solutions. We prepared a suspension of single-layer graphene oxide nanosheets in water and used time-resolved dynamic light scattering to study the influence of electrolytes and pH on the aggregation kinetics of the nanosheets. Atomic force microscopy was employed to further examine the graphene oxide nanosheets.

  17. Strong adhesion and cohesion of chitosan in aqueous solutions.

    PubMed

    Lee, Dong Woog; Lim, Chanoong; Israelachvili, Jacob N; Hwang, Dong Soo

    2013-11-19

    Chitosan, a load-bearing biomacromolecule found in the exoskeletons of crustaceans and insects, is a promising biopolymer for the replacement of synthetic plastic compounds. Here, surface interactions mediated by chitosan in aqueous solutions, including the effects of pH and contact time, were investigated using a surface forces apparatus (SFA). Chitosan films showed an adhesion to mica for all tested pH ranges (3.0-8.5), achieving a maximum value at pH 3.0 after a contact time of 1 h (Wad ~ 6.4 mJ/m(2)). We also found weak or no cohesion between two opposing chitosan layers on mica in aqueous buffer until the critical contact time for maximum adhesion (chitosan-mica) was reached. Strong cohesion (Wco ~ 8.5 mJ/m(2)) between the films was measured with increasing contact times up to 1 h at pH 3.0, which is equivalent to ~60% of the strongest, previously reported, mussel underwater adhesion. Such time-dependent adhesion properties are most likely related to molecular or molecular group reorientations and interdigitations. At high pH (8.5), the solubility of chitosan changes drastically, causing the chitosan-chitosan (cohesion) interaction to be repulsive at all separation distances and contact times. The strong contact time and pH-dependent chitosan-chitosan cohesion and adhesion properties provide new insight into the development of chitosan-based load-bearing materials.

  18. DNA dynamics in aqueous solution: opening the double helix

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Ross, W. S.; Tinoco, I. Jr; MacElroy, R. D. (Principal Investigator)

    1990-01-01

    The opening of a DNA base pair is a simple reaction that is a prerequisite for replication, transcription, and other vital biological functions. Understanding the molecular mechanisms of biological reactions is crucial for predicting and, ultimately, controlling them. Realistic computer simulations of the reactions can provide the needed understanding. To model even the simplest reaction in aqueous solution requires hundreds of hours of supercomputing time. We have used molecular dynamics techniques to simulate fraying of the ends of a six base pair double strand of DNA, [TCGCGA]2, where the four bases of DNA are denoted by T (thymine), C (cytosine), G (guanine), and A (adenine), and to estimate the free energy barrier to this process. The calculations, in which the DNA was surrounded by 2,594 water molecules, required 50 hours of CRAY-2 CPU time for every simulated 100 picoseconds. A free energy barrier to fraying, which is mainly characterized by the movement of adenine away from thymine into aqueous environment, was estimated to be 4 kcal/mol. Another fraying pathway, which leads to stacking between terminal adenine and thymine, was also observed. These detailed pictures of the motions and energetics of DNA base pair opening in water are a first step toward understanding how DNA will interact with any molecule.

  19. Standard enthalpies of formation for glycyl-tyrosine and products of its dissociation in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kochergina, L. A.; Badelin, V. G.; Krutova, O. N.; Volkov, A. V.; Damrina, K. V.

    2015-07-01

    The enthalpies of solution of crystalline glycyl-tyrosine in water and potassium hydroxide aqueous solutions are determined at 298.15 K by means of direct calorimetry. Standard enthalpies of formation for dipeptide and its products of dissociation in an aqueous solution are calculated.

  20. Process for recovering uranium using an alkyl pyrophosphoric acid and alkaline stripping solution

    SciTech Connect

    Worthington, R.E.; Magdics, A.

    1987-03-24

    A process is described for stripping uranium from a pregnant organic extractant comprising an alkyl pyrophosphoric acid dissolved in a substantially water-immiscible organic diluent. The organic extractant contains tetravalent uranium and an alcohol or phenol modifier in a quantity sufficient to retain substantially all the unhydrolyzed alkyl pyrophosphoric acid in solution in the diluent during stripping. The process comprises adding an oxidizing agent to the organic extractant to and thereby oxidizing the tetravalent uranium to the +6 state in the organic extractant, and contacting the organic extractant containing the uranium in the +6 state with a stripping solution comprising an aqueous solution of an alkali metal or ammonium carbonate, nonsaturated in uranium. The uranium is stripped from, the organic extractant into the stripping solution, and the resulting barren organic extractant containing substantially all of the unhydrolyzed alkyl pyrophosphoric acid dissolved in the diluent is separated from the stripping solution containing the stripped uranium, the barren extractant being suitable for recycle.

  1. Process for recovering uranium using an alkyl pyrophosphoric acid and alkaline stripping solution

    SciTech Connect

    Worthington, R.E.; Magdics, A.

    1987-03-24

    A process is described for stripping uranium for a pregnant organic extractant comprising an alkyl pyrophosphoric acid dissolved in a substantially water-immiscible organic diluent. The organic extractant contains tetravalent uranium and an alcohol or phenol modifier in a quantity sufficient to retain substantially all the unhydrolyzed alkyl pyrophosphoric acid in solution in the diluent during stripping. The process comprises adding an oxidizing agent to the organic extractant and thereby oxidizing the tetravalent uranium to the +6 state in the organic extractant, and contacting the organic extractant containing the uranium in the +6 state with a stripping solution comprising an aqueous solution of an alkali metal or ammonium carbonate or hydroxide thereby stripping uranium from the organic extractant into the stripping solution. The resulting barren organic extractant containing substantially all of the unhydrolyzed alkyl pyrophosphoric acid dissolved in the diluent is separated from the stripping solution containing the stripped uranium, the barren extractant being suitable for recycle.

  2. Removal characteristics of As(III) and As(V) from acidic aqueous solution by steel making slag.

    PubMed

    Oh, Chamteut; Rhee, Sungsu; Oh, Myounghak; Park, Junboum

    2012-04-30

    This study focused on the environmental risk of steel making slag itself, arsenic removal mechanism and re-leaching possibility of arsenic to aqueous state after the adsorption. The purpose of the study is to promote the use of steel making slag as a low-cost adsorbent for arsenic in aqueous system. Calcium was easily dissolved out from the slag and become the dominant substance in the leachate. Some of the calcium could form amorphous calcium carbonate in alkaline condition, and arsenic in the aqueous solution would be removed by being co-precipitated with or adsorbed onto the amorphous calcium carbonate. Most of the amorphous calcium carbonate containing arsenic would be bound to amorphous iron oxide of the slag. When the slag was used as an adsorbent for arsenic removal, a little amount of toxic chemicals were leached from the slag itself under pH 0.8 to 13.6. Also, 70-80% of arsenic laden on the slag was bound to amorphous iron oxide which would not easily desorb unless given a reducing and complexing condition. Showing 95-100% removal efficiency near initial pH 2, the slag, therefore, could be used as an appropriate adsorbent for eliminating arsenic in acidic aqueous solution.

  3. THE KINETICS OF SAPONIFICATION OF IODOACETIC ACID BY SODIUM HYDROXIDE AND BY CERTAIN ALKALINE BUFFER SOLUTIONS.

    PubMed

    Brdicka, R

    1936-07-20

    1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions.

  4. Molecular Dynamics Simulation Studies of Caffeine Aggregation in Aqueous Solution

    PubMed Central

    Tavagnacco, Letizia; Schnupf, Udo; Mason, Philip E.; Saboungi, Marie-Louise; Cesàro, Attilio; Brady, John W.

    2011-01-01

    Molecular dynamics simulations were carried out on a system of eight independent caffeine molecules in a periodic box of water at 300 K, representing a solution near the solubility limit for caffeine at room temperature, using a newly-developed CHARMM-type force field for caffeine in water. Simulations were also conducted for single caffeine molecules in water using two different water models (TIP3P and TIP4P). Water was found to structure in a complex fashion around the planar caffeine molecules, which was not sensitive to the water model used. As expected, extensive aggregation of the caffeine molecules was observed, with the molecules stacking their flat faces against one another like coins, with their methylene groups staggered to avoid steric clashes. A dynamic equilibrum was observed between large n-mers, including stacks with all eight solute molecules, and smaller clusters, with the calculated osmotic coefficient being in acceptable agreement with the experimental value. The insensitivity of the results to water model and the congruence with experimental thermodynamic data suggest that the observed stacking interactions are a realistic representation of the actual association mechanism in aqueous caffeine solutions. PMID:21812485

  5. Carbon dioxide capture capacity of sodium hydroxide aqueous solution.

    PubMed

    Yoo, Miran; Han, Sang-Jun; Wee, Jung-Ho

    2013-01-15

    The present paper investigates the various features of NaOH aqueous solution when applied as an absorbent to capture carbon dioxide (CO(2)) emitted with relatively high concentration in the flue gas. The overall CO(2) absorption reaction was carried out according to consecutive reaction steps that are generated in the order of Na(2)CO(3) and NaHCO(3). The reaction rate and capture efficiency were strongly dependent on the NaOH concentration in the Na(2)CO(3) production range, but were constant in the NaHCO(3) production step, irrespective of the NaOH concentration. The amount of CO(2) absorbed in the solution was slightly less than the theoretical value, which was ascribed to the low trona production during the reaction and the consequent decrease in CO(2) absorption in the NaOH solution. The mass ratio of absorbed CO(2) that participated in the Na(2)CO(3), NaHCO(3), and trona production reactions was calculated to be 20:17:1, respectively.

  6. Neutron dosimetry using aqueous solutions of lithium acetate

    SciTech Connect

    Rakovan, Lance John

    1996-01-01

    A thermal neutron dosimetry system using the 6Li(n,α)3H reaction and liquid scintillation counting of tritium was developed. Lithium acetate was chosen to supply the 6Li in the aqueous dosimetry solutions. Neutron irradiations were completed using The Ohio State University Research Reactor. After two sets of samples were irradiated, variables in the system such as the mass of lithium acetate in the solutions and the counting window of the liquid scintillation counter used to analyze the sample were chosen. The system was evaluated by completing two sets of 23 minute irradiations with the reactor at 500 kW, 50 kW, 5 kW, and one irradiation at 500 W. The samples irradiated at 500 W were below the threshold of the system, and could not be used. Prompt analysis was essential due to loss of detectable emissions in the dosimetry solutions over time. The thermal neutron fluences calculated with the data from the samples were compared to the fluences determined from gold wire irradiations. The fluence values differed at most by 6%. The fluence values calculated from the samples were consistently less than those determined from the gold wires.

  7. Hydrophobicity and thermodynamic response for aqueous solutions of amphiphiles

    NASA Astrophysics Data System (ADS)

    Zemánková, Katerina; Troncoso, Jacobo; Cerdeiriña, Claudio A.; Romaní, Luis; Anisimov, Mikhail A.

    2016-06-01

    The anomalous behavior of aqueous solutions of amphiphiles in the water-rich region is analyzed via a phenomenological approach that utilizes the isobaric heat capacity Cp as an experimental probe. We report extensive data for solutions of 14 amphiphiles as a function of temperature at atmospheric pressure. Beyond that, Cp data but also isobaric thermal expansivities and isothermal compressibilities for three solutions of tert-butanol as a function of both temperature and pressure are presented. Results rule out the possibility that the observed phenomenology is associated with the anomalous thermodynamics of pure water. Indeed, our Cp data, quantitatively consistent with recent spectroscopic analyses, suggest that water-mediated interactions between the nonpolar parts of amphiphiles are at the origin of anomalies, with the effects of such "hydrophobic aggregation" being observed at mole fractions as small as 0.01. Physicochemical details like the size, the electronic charge distribution and the geometry of amphiphile molecules as well as third-order derivatives of the Gibbs energy and the associated Koga lines support the above claims while they further contribute to characterizing the role of hydrophobicity in these phenomena. Progress with a view to gain a deeper, more concrete understanding remains.

  8. Multi-basin dynamics of a protein in aqueous solution

    SciTech Connect

    Garcia, A.E.

    1994-10-01

    A molecular dynamics simulation of crambin in aqueous solution shows that motions are characteristic of non-linear systems. The authors describe typical non-linear excitations, such as intermittency, for various representations of the protein dynamics and structure. The protein backbone dihedral angles show fast correlated transitions from one minimum well to another. Each transition is followed by small overdamped oscillations. Equal-time cross correlations of all ({phi},{psi}) angles show that correlations are extended along the backbone chain. An analysis based on a generalized least squares fitting of the protein fluctuations along vectors show that a small set of molecule optimal dynamic coordinates (MODC) describe most of the protein fluctuations. In addition, the MODC describe a trajectory where the protein conformation jumps from one minimum well to another. An extension of the MODC describing 2- and 3-dimensional cuts of the protein configurational space clearly shows a trajectory around multiple basins of attraction.

  9. Aggregation behavior of bile salts in aqueous solution.

    PubMed

    Coello, A; Meijide, F; Núñez, E R; Tato, J V

    1996-01-01

    Freezing point depression, delta T/k, and pNa are measured and analyzed for aqueous solutions of trihydroxy (NaTC) and dihydroxy (NaDC and NaTDC) bile salts. The results show the existence of break points in the plot of delta T/k vs molality at 0.018, 0.013, and 0.007 m, respectively, in good agreement with previous published critical micelle concentration values. Above the break point bile salts form aggregates with average aggregation numbers of 2.59 +/- 0.12 (NaTC), 5.82 +/- 0.04 (NaDC), and 5.42 +/- 0.47 (NaTDC). Fractions of bound counterions are also deduced, being close to 0.3 for the three bile salts studied. This indicates that only one counterion is bound for every three monomers in the aggregate. The different structural models published for the bile salt aggregates are discussed.

  10. Experimental study on thermophoresis of colloids in aqueous surfactant solutions

    NASA Astrophysics Data System (ADS)

    Dong, Ruo-Yu; Zhou, Yi; Yang, Chun; Cao, Bing-Yang

    2015-12-01

    Thermophoresis refers to the motion of particles under a temperature gradient and it is one of the particle manipulation techniques. Regarding the thermophoresis of particles in liquid media, however, many open questions still remain, especially the role of the interfacial effect. This work reports on a systematic experimental investigation of surfactant effects, especially the induced interfacial effect, on the thermophoresis of colloids in aqueous solutions via a microfluidic approach. Two kinds of commonly used surfactants, sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB), are selected and the results show that from relatively large concentrations, the two surfactants can greatly enhance the thermophilic mobilities. Specifically, it is found that the colloid-water interfaces modified with more polar end groups can potentially lead to a stronger thermophilic tendency. Due to the complex effects of surfactants, further theoretical model development is needed to quantitatively describe the dependence of thermophoresis on the interface characteristics.

  11. Experimental study on thermophoresis of colloids in aqueous surfactant solutions.

    PubMed

    Dong, Ruo-Yu; Zhou, Yi; Yang, Chun; Cao, Bing-Yang

    2015-12-16

    Thermophoresis refers to the motion of particles under a temperature gradient and it is one of the particle manipulation techniques. Regarding the thermophoresis of particles in liquid media, however, many open questions still remain, especially the role of the interfacial effect. This work reports on a systematic experimental investigation of surfactant effects, especially the induced interfacial effect, on the thermophoresis of colloids in aqueous solutions via a microfluidic approach. Two kinds of commonly used surfactants, sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB), are selected and the results show that from relatively large concentrations, the two surfactants can greatly enhance the thermophilic mobilities. Specifically, it is found that the colloid-water interfaces modified with more polar end groups can potentially lead to a stronger thermophilic tendency. Due to the complex effects of surfactants, further theoretical model development is needed to quantitatively describe the dependence of thermophoresis on the interface characteristics.

  12. Acid gas absorption in aqueous solutions of mixed amines

    SciTech Connect

    Rinker, E.B.; Ashour, S.S.; Sandall, O.C.

    1996-12-31

    A mass transfer model has been developed to describe the rate of absorption (or desorption) of H{sub 2}S and CO{sub 2} in aqueous blends of a tertiary and a secondary or a primary amine. The model is based on penetration theory, and all significant chemical reactions are incorporated in the model. The reactions are taken to be reversible, with reactions involving only a proton transfer considered to be at equilibrium. The particular amines studied in this research were methyldiethanolamine (MDEA), a tertiary amine, and diethanolamine (DEA), a secondary amine. Key physicochemical data needed in the model, such as diffusion coefficients, kinetic rate constants, and gas solubilities, were measured. Experimental absorption rates of CO{sub 2} and H{sub 2}S were measured in a model gas-liquid contacting device and were compared with model predictions. Experiments were carried out for single amine solutions (both MDEA and DEA) and for amine blends.

  13. γ-Irradiation of malic acid in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Negron-Mendoza, Alicia; Graff, Rebecca L.; Ponnamperuma, Cyril

    1980-12-01

    The γ-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the non-volatile products. Thin layer chromotography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the γ-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  14. Irradiation stability of folic Acid in powder and aqueous solution.

    PubMed

    Araújo, Michel M; Marchioni, Eric; Bergaentzle, Martine; Zhao, Minjie; Kuntz, Florent; Hahn, Emeline; Villavicencio, Anna Lucia C H

    2011-02-23

    This study attempts to examine the folic acid stability after irradiation treatment, under different physical states, pH values, and atmosphere conditions. Aqueous folic acid samples, folic acid in powder, and wheat flour fortified with folic acid were irradiated by an electron beam (E-beam) between 0 (control) and 10.0 kGy. It was realized that the physical state of folic acid plays an important role on its stability toward E-beam processing, being largely unstable in solution, no matter the pH and atmosphere conditions assayed. Otherwise, folic acid in powder showed huge irradiation stability, even when mixed in a dry food matrix, such as fortified wheat flour samples.

  15. Removal of lead from aqueous solutions by Penicillium biomass

    SciTech Connect

    Hui Niu; Xue Shu Xu; Jian Hua Wang . Dept. of Chemical Engineering); Volesky, B. . Dept. of Chemical Engineering)

    1993-09-05

    The removal of lead ions from aqueous solutions by adsorption on nonliving Penicillium chrysogenum biomass was studied. Biosorption of the Pb[sup +2] ion was strongly affected by pH. Within a pH range of 4 to 5, the saturated sorption uptake of Pb[sup +2] was 116 mg/g dry biomass, higher than that of activated charcoal and some other microorganisms. At pH 4.5, P. chrysogenum biomass exhibited selectivity for Pb[sup +2] over other metal ions such as Cd[sup +2], Cu[sup +2], Zn [sup +2], and As[sub +3]. Sorption preference for metals decreased in the following order: Pb > Cd > Cu > Zn > As. The sorption uptake of Pb[sup +2] remained unchanged in the presence of Cu[sup +2] and As [sup +3], it decreased in the presence of Zn[sup +2], and increased in the presence of Cd[sup +2].

  16. Hydrothermal Dehydration of Aqueous Fructose Solutions in a Closed System

    SciTech Connect

    Yao, Chunhua; Shin, Yongsoon; Wang, Li Q.; Windisch, Charles F.; Samuels, William D.; Arey, Bruce W.; Wang, Chong M.; Risen Jr., William M.; Exarhos, Gregory J.

    2007-10-25

    The synthesis of materials with targeted size and shape has attracted much attention. Specifically, colloidal spheres with targeted and uniform sizes have opened the door for a variety of applications associated with drug delivery, and manipulation of light (photonic band-gap crystals). Surface modification is a key to realizing many of these applications owing to the inherent inert surface.The remarkable transformation of carbohydrate molecules including sugars to homogeneous carbon spheres is found to readily occur by a dehydration mechanism and subsequent sequestering in aqueous solutions that are heated at 160-180oC in a pressurized vessel. Under such conditions, these molecules actually dehydrate even though they are dissolved in water. Size-tunable metal and metal oxides with uniform shells have also been prepared by using carbon spheres as templates.

  17. Ionizing radiation induced degradation of monuron in dilute aqueous solution

    NASA Astrophysics Data System (ADS)

    Kovács, Krisztina; He, Shijun; Míle, Viktória; Földes, Tamás; Pápai, Imre; Takács, Erzsébet; Wojnárovits, László

    2016-07-01

    The decomposition of monuron was investigated in dilute aqueous solutions using pulse radiolysis and γ-radiolysis in order to identify the intermediates and final products. The main reaction takes place between monuron and the hydroxyl radicals yielding hydroxycyclohexadienyl type radicals with a second order rate constant of (7.4±0.2)×109 mol-1 dm3 s-1. In •OH reactions, the aminyl and phenoxyl radicals may also form. Dechlorination was observed in both hydroxyl radical and hydrated electron reactions. The •OH induced dechlorination reactions are suggested to occur through OH substitution or phenoxyl radical formation. The rate of oxidation is very high in the presence of dissolved oxygen. Some of the results are also supported by quantum chemical calculations.

  18. Protein thermal stabilization in aqueous solutions of osmolytes.

    PubMed

    Bruździak, Piotr; Panuszko, Aneta; Jourdan, Muriel; Stangret, Janusz

    2016-01-01

    Proteins' thermal stabilization is a significant problem in various biomedical, biotechnological, and technological applications. We investigated thermal stability of hen egg white lysozyme in aqueous solutions of the following stabilizing osmolytes: Glycine (GLY), N-methylglycine (NMG), N,N-dimethylglycine (DMG), N,N,N-trimethylglycine (TMG), and trimethyl-N-oxide (TMAO). Results of CD-UV spectroscopic investigation were compared with FTIR hydration studies' results. Selected osmolytes increased lysozyme's thermal stability in the following order: Gly>NMG>TMAO≈DMG>TMG. Theoretical calculations (DFT) showed clearly that osmolytes' amino group protons and water molecules interacting with them played a distinctive role in protein thermal stabilization. The results brought us a step closer to the exact mechanism of protein stabilization by osmolytes.

  19. Hydrate-based heavy metal separation from aqueous solution

    PubMed Central

    Song, Yongchen; Dong, Hongsheng; Yang, Lei; Yang, Mingjun; Li, Yanghui; Ling, Zheng; Zhao, Jiafei

    2016-01-01

    A novel hydrate-based method is proposed for separating heavy metal ions from aqueous solution. We report the first batch of experiments and removal characteristics in this paper, the effectiveness and feasibility of which are verified by Raman spectroscopy analysis and cross-experiment. 88.01–90.82% of removal efficiencies for Cr3+, Cu2+, Ni2+, and Zn2+ were obtained. Further study showed that higher R141b–effluent volume ratio contributed to higher enrichment factor and yield of dissociated water, while lower R141b–effluent volume ratio resulted in higher removal efficiency. This study provides insights into low-energy, intensive treatment of wastewater. PMID:26887357

  20. Infrared spectrophotometric analysis of acidified aqueous sodium oleate solutions

    NASA Astrophysics Data System (ADS)

    Drzymala, Jan; Kielkowska, M. M.

    Infrared spectroscopy was applied to the analysis of 10 -3 M aqueous sodium oleate solutions titrated with 0.2 M HCl. From characteristic absorption bands of sodium oleate at 1560 cm -1 and oleic acid at 1710 cm -1 the degree of oleate ion neutralization in the titrated system at varying pH was calculated.It was found that the pH-metric titration curve of oleate ions differs considerably from the theoretical curve calculated for the reaction Ol -aq + H + = HOl liq, taking the solubility product of oleic acid equal to 12.5. Most likely aggregates of oleate ons (micelles) are formed during titration and account for the deviation of the titration curves from theory.

  1. Photoreduction of methyl viologen in aqueous neutral solution without additives

    NASA Astrophysics Data System (ADS)

    Ebbesen, T. W.; Levey, G.; Patterson, L. K.

    1982-08-01

    The direct photoreduction of methyl viologen (paraquat) in aqueous solution to the reducd species radical cation MV(2+)Cl(-)2 was examined to study its effectiveness as a herbicide and in solar photochemical energy conversion devices. Dissolved crystalline cations were found to vary in absorption spectrum with added Cl(-), and excitation with a nitrogen laser at 377 nm indicated the presence of a transient species absorbing below 400 nm. The oxidation of Cl ions by a photolysis-excited state of the MV(2+) is shown to have a quantum yield of 0.2 at 337 nm, using anthracene as a reference. A parallel pathway to normal toxic oxidation of the substance on plants is suggested, involving the photoproduction of the radical Cl(2-), which reacts with thymine, uracil, guanine, histidine, thyrosine, tryptophan, cysteine, and ascorbic acid. The observed properties are suggested to be useful in the photoreduction and oxidation of water.

  2. Paracetamol degradation in aqueous solution by non-thermal plasma

    NASA Astrophysics Data System (ADS)

    Baloul, Yasmine; Aubry, Olivier; Rabat, Hervé; Colas, Cyril; Maunit, Benoît; Hong, Dunpin

    2017-08-01

    This study deals with paracetamol degradation in water using a non-thermal plasma (NTP) created by a dielectric barrier discharge (DBD). The effects of the NTP operating conditions on the degradation were studied, showing that the treatment efficiency of the process was highly dependent on the electrical parameters and working gas composition in the reactor containing the aqueous solution. A conversion rate higher than 99% was reached with an energy yield of 12 g/kWh. High resolution mass spectrometry (HRMS) measurements showed that the main species produced in water during the process were nitrogen compounds, carboxylic acids and aromatic compounds. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  3. Seeded batch crystallization of ammonium aluminum sulfate from aqueous solution

    NASA Astrophysics Data System (ADS)

    Kubota, Noriaki; Onosawa, Masahiro

    2009-10-01

    Seed crystals of ammonium aluminum sulfate ((NH 4)Al(SO 4) 2··12H 2O) were grown in aqueous solution by cooling. The temperature of a crystallizer was lowered with no control by circulating cooling water through the jacket. It fell in an exponential manner. The effects of seed amount and size on the product crystal size distribution were examined. The product crystals obtained were of narrow and uni-modal size distribution with suppressed secondary nucleation if seed crystals were loaded more than a critical value. The critical value was determined and well compared with previously reported values for other material systems. This crystallization technique does not need any prior knowledge of the kinetics of crystal growth and nucleation. It is simple and robust, and can be easily applied to an existing crystallizer without installing any additional control systems.

  4. Synergistic adsorption of phenol from aqueous solution onto polymeric adsorbents.

    PubMed

    Ming, Zhang W; Long, Chen J; Cai, Pan B; Xing, Zhang Q; Zhang, B

    2006-02-06

    Adsorption of phenol from aqueous solution onto a nonpolar adsorbent, aminated adsorbent and weak base adsorbent (Amberlite XAD4, NDA103 and Amberlite IRA96C, respectively) at temperatures from 293 to 313K was studied for the weak interactions between the phenol molecules and the polymeric adsorbents. Isotherms of Langmuir and Freundlich equation with characteristic parameters for different adsorbents were well fitted to the batch equilibrium adsorption data. The adsorption capacity on NDA103 driven by hydrogen bonding and van der Waals interaction together is higher than that on IRA96C driven by hydrogen bonding interaction only and on XAD4 driven by van der Waals interaction only. For evaluating synergistic adsorption for phenol-water systems onto polymeric adsorbents, the adsorption capacity is normalized to the amounts of specific surface area and amino groups of adsorbents. The synergistic effect with other weak interactions would contribute more to the adsorption as acting simultaneously than that of acting individually.

  5. Pervaporation separation of aqueous alcohol solution through asymmetric polycarbonate membrane

    SciTech Connect

    Lee, K.R.; Liu, M.J.; Lai, J.Y. )

    1994-01-01

    In the present work the separation of aqueous alcohol mixtures through wet-phase inversion prepared polycarbonate membranes was studied by using the pervaporation process. The formation of asymmetric pervaporation membranes was discussed in terms of the presence of a nonsolvent in the casting solution, the polycarbonate concentration, and the kinds of coagulation media. The effects of feed composition, swelling degree, and the size of the alcohols on the pervaporation performances were investigated. The rate of liquid-liquid demixing increases with a decreasing number of carbon atoms of the alcohol coagulation medium. The permeation rate of the pervaporation process for the nonsolvent-added membrane was much higher than that of the membrane without nonsolvent additive. In binary alcohol mixtures, the permselectivities of small-sized alcohols through the asymmetric membrane are decided by two factors: preferential solubility of larger-sized alcohol and predominant diffusivity of small-sized alcohol. 19 refs., 8 figs., 6 tabs.

  6. Diffusion-viscosity decoupling in supercooled glycerol aqueous solutions.

    PubMed

    Trejo González, José A; Longinotti, M Paula; Corti, Horacio R

    2015-01-08

    The diffusion of ferrocene methanol in supercooled glycerol-water mixtures has been measured over a wide viscosity range, which allowed analyzing the composition dependence of the Stokes-Einstein breakdown (diffusion-viscosity decoupling). The observed decoupling exhibits a common behavior for all studied compositions (glycerol mass fractions between 0.7 and 0.9), determined by the reduced temperature (T/Tg) of the mixtures. This result differs from that reported previously for the diffusion of glycerol in its aqueous solutions, where the reduced temperature for the decoupling decreases with increasing water content. We conclude that the contradictory results are only apparent, and they can be explained by the use of inconsistent extrapolated values of the viscosity of the glycerol-water mixtures in the supercooled region.

  7. Radiation-induced degradation of 4-chloroaniline in aqueous solution

    NASA Astrophysics Data System (ADS)

    Sánchez, M.; Wolfger, H.; Getoff, N.

    2002-12-01

    The radiation-induced decomposition of 4-chloroaniline (4-ClA) was studied under steady-state conditions using aqueous solutions saturated with air, pure oxygen, N 2O, argon and argon in the presence of t-Butanol. Using HPLC-method, the initial G-values of the substrate degradation as well as of a number of radiolytic products were determined. The formation of aminophenols, chlorophenols, aniline and phenol in addition to chloride, ammonia, formaldehyde and mixture of aldehydes as well as carboxylic acids was studied as a function of absorbed dose. Based on the experimental data, probable reaction mechanisms for the degradation of 4-ClA by γ-rays and the formation of the identified products are presented.

  8. Effect of solute nature on the polyamorphic transition in glassy polyol aqueous solutions

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshiharu

    2017-08-01

    I examined the polyamorphic behavior of glassy dilute aqueous solutions of polyols (ethylene glycol, glycerol, meso-erythritol, xylitol, and D-sorbitol) under pressure at low temperatures. Although the volume change of the glassy aqueous solution varied continuously against pressure, the rate of the volume change appeared to vary discontinuously at the onset pressure of the gradual polyamorphic transition. It is thought that low-density liquid-like solvent water and high-density liquid-like solvent water coexist during the transition. Moreover, the existence of a solute induces the shift of polyamorphic transition to the lower-pressure side. The effect of a solute on the polyamorphic transition becomes larger in the order ethylene glycol, glycerol, meso-erythritol, xylitol, and D-sorbitol. Therefore, the solute can become a variable controlling the polyamorphic state of liquid water. This experimental result suggests that the metastable-equilibrium phase boundary between the low-density and the high-density amorphs for pure water is likely to be located at 0.22-0.23 GPa at about 150 K, which is slightly larger than the previously estimated pressure. Moreover, the solute-nature dependence on the polyamorphic transition seems to connect to that on the homogeneous nucleation temperature of polyol aqueous solution at ambient pressure. The region in which a low-density liquid appears coincides with the region in which the nucleus of ice Ih appears, suggesting that the formation of a low-density liquid is a precursory phenomenon of the nucleation of ice Ih.

  9. Mechanism of chitosan adsorption on silica from aqueous solutions.

    PubMed

    Tiraferri, Alberto; Maroni, Plinio; Rodríguez, Diana Caro; Borkovec, Michal

    2014-05-06

    We present a study of the adsorption of chitosan on silica. The adsorption behavior and the resulting layer properties are investigated by combining optical reflectometry and the quartz crystal microbalance. Exactly the same surfaces are used to measure the amount of adsorbed chitosan with both techniques, allowing the systematic combination of the respective experimental results. This experimental protocol makes it possible to accurately determine the thickness of the layers and their water content for chitosan adsorbed on silica from aqueous solutions of varying composition. In particular, we study the effect of pH in 10 mM NaCl, and we focus on the influence of electrolyte type and concentration for two representative pH conditions. Adsorbed layers are stable, and their properties are directly dependent on the behavior of chitosan in solution. In mildly acidic solutions, chitosan behaves like a weakly charged polyelectrolyte, whereby electrostatic attraction is the main driving force for adsorption. Under these conditions, chitosan forms rigid and thin adsorption monolayers with an average thickness of approximately 0.5 nm and a water content of roughly 60%. In neutral solutions, on the other hand, chitosan forms large aggregates, and thus adsorption layers are significantly thicker (∼10 nm) as well as dissipative, resulting in a large maximum of adsorbed mass around the pK of chitosan. These films are also characterized by a substantial amount of water, up to 95% of their total mass. Our results imply the possibility to produce adsorption layers with tailored properties simply by adjusting the solution chemistry during adsorption.

  10. Supercharging Protein Complexes from Aqueous Solution Disrupts their Native Conformations

    NASA Astrophysics Data System (ADS)

    Sterling, Harry J.; Kintzer, Alexander F.; Feld, Geoffrey K.; Cassou, Catherine A.; Krantz, Bryan A.; Williams, Evan R.

    2012-02-01

    The effects of aqueous solution supercharging on the solution- and gas-phase structures of two protein complexes were investigated using traveling-wave ion mobility-mass spectrometry (TWIMS-MS). Low initial concentrations of m-nitrobenzyl alcohol ( m-NBA) in the electrospray ionization (ESI) solution can effectively increase the charge of concanavalin A dimers and tetramers, but at higher m-NBA concentrations, the increases in charge are accompanied by solution-phase dissociation of the dimers and up to a ~22% increase in the collision cross section (CCS) of the tetramers. With just 0.8% m-NBA added to the ESI solution of a ~630 kDa anthrax toxin octamer complex, the average charge is increased by only ~4% compared with the "native" complex, but it is sufficiently destabilized so that extensive gas-phase fragmentation occurs in the relatively high pressure regions of the TWIMS device. Anthrax toxin complexes exist in either a prechannel or a transmembrane channel state. With m-NBA, the prechannel state of the complex has the same CCS/charge ratio in the gas phase as the transmembrane channel state of the same complex formed without m-NBA, yet undergoes extensive dissociation, indicating that destabilization from supercharging occurs in the ESI droplet prior to ion formation and is not a result of Coulombic destabilization in the gas phase as a result of higher charging. These results demonstrate that the supercharging of large protein complexes is the result of conformational changes induced by the reagents in the ESI droplets, where enrichment of the supercharging reagent during droplet evaporation occurs.

  11. Adhesion of bacteria to pyrophyllite clay in aqueous solution.

    PubMed

    Kang, Jin-Kyu; Lee, Chang-Gu; Park, Jeong-Ann; Kim, Song-Bae; Choi, Nag-Choul; Park, Seong-Jik

    2013-01-01

    The aim of this study was to investigate the adhesion of bacteria (Escherichia coli) to pyrophyllite clay using batch and flow-through column experiments. Batch results demonstrated that pyrophyllite was effective in removing bacteria (94.5 +/- 2.0%) from aqueous solution (1 mM NaCl solution; pyrophyllite dose of 1 g/ml). At solution pH 7.1, negatively-charged bacteria could be removed due to their adhesion to positively-charged surfaces of pyrophyllite (point of zero charge = 9.2). Column results showed that pyrophyllite (per cent removal of 94.1 +/- 2.3%) was far more effective in bacterial adhesion than quartz sand (53.6 +/- 5.3%) under the given experimental conditions (flow rate of 0.3 ml/min; solution of 1 mM NaCl + 0.1 mM NaHCO3). Bacterial removal in pyrophyllite columns increased from 90 to 100% with decreasing flow rate from 0.6 to 0.15 ml/min due to increasing contact time between bacteria and filter materials. In addition, bacterial removal remained relatively constant at 94-97% even though NaHCO3 concentration increased from 0.1 to 10 mM (flow rate of 0.3 ml/min). This could be related to the fact that pyrophyllite remained positively-charged even though the solution conditions changed. This study demonstrates that pyrophyllite could be used as adsorptive filter materials in the removal of bacteria.

  12. Supercharging Protein Complexes from Aqueous Solution Disrupts their Native Conformations

    PubMed Central

    Sterling, Harry J.; Kintzer, Alexander F.; Feld, Geoffrey K.; Cassou, Catherine A.; Krantz, Bryan A.; Williams, Evan R.

    2011-01-01

    The effects of aqueous solution supercharging on the solution- and gas-phase structures of two protein complexes were investigated using traveling-wave ion mobility-mass spectrometry (TWIMS-MS). Low initial concentrations of m-nitrobenzyl alcohol (m-NBA) in the electrospray ionization (ESI) solution can effectively increase the charge of concanavalin A dimers and tetramers, but at higher m-NBA concentrations, the increases in charge are accompanied by solution-phase dissociation of the dimers and up to a ~22% increase in the collision cross section (CCS) of the tetramers. With just 0.8% m-NBA added to the ESI solution of a ~630 kDa anthrax toxin octamer complex, the average charge is increased by only ~4% compared to the “native” complex, but it is sufficiently destabilized so that extensive gas-phase fragmentation occurs in the relatively high pressure regions of the TWIMS device. Anthrax toxin complexes exist in either a pre-channel or a transmembrane channel state. With m-NBA, the prechannel state of the complex has the same CCS/charge ratio in the gas phase as the transmembrane channel state of the same complex formed without m-NBA, yet undergoes extensive dissociation, indicating that destabilization from supercharging occurs in the ESI droplet prior to ion formation and is not a result of coulombic destabilization in the gas phase as a result of higher charging. These results demonstrate that the supercharging of large protein complexes is the result of conformational changes induced by the reagents in the ESI droplets where enrichment of the supercharging reagent during droplet evaporation occurs. PMID:22161509

  13. Thermodynamic quantities of surface formation of aqueous electrolyte solutions VII. Aqueous solution of alkali metal nitrates LiNO3, NaNO3, and KNO3.

    PubMed

    Matubayasi, Norihiro; Yoshikawa, Ryuji

    2007-11-15

    To compare the effect of nitrate anions on the surface tension increments of aqueous solutions with that of halide anions, the surface tension of aqueous solutions of lithium nitrate, sodium nitrate, and potassium nitrate was measured as a function of temperature and concentration. It is shown that the surface tension of aqueous alkali metal nitrate solutions is determined primarily by the kinds of anions, since the surface tension increments of these nitrates were of the same magnitude. The importance of the electrical double layer at the surface is discussed in relation to these surface tension increments.

  14. Surface Changes in Well Casing Pipe Exposed to High Concentrations of Organics in Aqueous Solution

    DTIC Science & Technology

    1990-03-01

    IIC FILE COPY Surface Changes in Well Casing Pipe Exposed to High Concentrations of Organics in Aqueous Solution Susan Taylor and Louise Parker March...Engineers Cold Regions Research & Engineering Laboratory Surface Changes in Well Casing Pipe Exposed to High Concentrations of Organics in Aqueous Solution...14 iii Surface Changes in Well Casing Pipe Exposed to High Concentrations of Organics in Aqueous Solution SUSAN TAYLOR AND LOUISE

  15. Catalytic destruction of hazardous organics in aqueous solutions

    SciTech Connect

    Baker, E.G.; Sealock, L.J. Jr.

    1988-04-01

    Pacific Northwest Laboratory (PNL) is developing a process for destroying hazardous organics and chlorinated organics in aqueous solutions. The process is targeted at liquid waste streams that are difficult and costly to treat with conventional or developing technologies. Examples of these waste streams include contaminated groundwater and surface water and industrial wastewater. Aqueous solutions are treated with a transition metal catalyst at 300/degree/C to 460/degree/C and 2000 to 5000 psig pressure to convert the wastes to innocuous gases. During proof-of-principle tests conducted in a 1-L batch reactor, destruction of over 99/percent/ (in most cases approaching 99.9/percent/) of the organic material was achieved. Hexone (methyl is isobutyl ketone, MIBK), p-cresol, hexane, benzene, and naphthalene were used as model waste materials. The only major product with all of the organic compounds was a gas containing 50/percent/ to 75/percent/ methane, 25/percent/ to 45/percent/ carbon dioxide, and 0/percent) to 5/percent/ hydrogen. Reduced nickel was the only effective catalyst and that the optimal operating conditions for destroying nonchlorinated organics were 350/degree/C to 400/degree/C, 2000 to 4000 psig, and 30/endash/ to 60/endash/min residence time. These tests also indicated that catalyst deactivation or fouling would not be a problem at these conditions. Chlorobenzene and trichloroethylene (TEC), were also tested. Destruction of both compounds was 99/percent/ or greater, but the products were different from those obtained from hydrocarbons. With TCE, the major product was carbon dioxide; with chlorobenzene the major product identified was benzene. In the tests with the chlorinated hydrocarbons, the chlorine was converted to HC1 and the reduced nickel was converted to nickel hydroxide, which may be detrimental to long-term catalyst activity. (15 refs., 8 figs., 6 tabs).

  16. Spontaneous insertion of lipopolysaccharide into lipid membranes from aqueous solution.

    PubMed

    Alam, Jahangir Md; Yamazaki, Masahito

    2011-02-01

    Lipopolysaccharide (LPS), one of the main components of outer membranes of Gram-negative bacteria, consists of a hydrophobic lipid (lipid A) with six hydrocarbon chains and a large hydrophilic polysaccharide chain. LPS plays endotoxic roles and can stimulate macrophages and B cells. To elucidate the mechanism of the interaction of LPS with various cell membranes, it is important to investigate the interaction of wild type LPS in a buffer with lipid membranes. In this report we investigated the interaction of low concentrations of LPS in a buffer with giant unilamellar vesicles (GUVs) of dioleoylphosphatidylcholine (DOPC) membrane in the liquid-crystalline (L(α)) phase and sphingomyelin (SM)/cholesterol(chol) (molar ration; 6/4) membrane in the liquid-ordered (lo) phase. We found that low concentrations (less than critical micelle concentration) of LPS in aqueous solution induced the shape changes such as the transformation from a prolate to a two-spheres-connected by a very narrow neck in the DOPC-GUVs and also in the SM/chol (6/4)-GUVs above their threshold concentrations. The analysis of the shape changes of the GUVs indicates that the monomers of LPS can insert spontaneously into the external monolayer of the lipid membranes of these GUVs from the aqueous solution. Moreover, higher concentrations of LPS induced the vesicle fission of SM/chol(6/4)-GUVs above its higher threshold concentration. The vesicle fission of GUVs is similar to those induced by single long chain amphiphiles such as lysophosphatidylcholine. On the basis of these results, we discuss the interaction of wild type LPS with lipid membranes and cell membranes. These results suggest that LPS molecules can insert spontaneously into the external monolayer of the plasma membranes composed of the L(α) phase-membrane and the microdomain in the lo phase. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Removal of zirconium from aqueous solution by modified clinoptilolite.

    PubMed

    Faghihian, H; Kabiri-Tadi, M

    2010-06-15

    Adsorptive behavior of natural clinoptilolite was assessed for the removal of zirconium from aqueous solutions. Natural zeolite was characterized by X-ray diffraction, X-ray fluorescence, thermal methods of analysis and FTIR. The zeolite sample composed mainly of clinoptilolite and presented a cation exchange capacity of 1.46 meq g(-1). K, Na and Ca-exchanged forms of zeolite were prepared and their sorption capacities for removal of zirconium from aqueous solutions were determined. The effects of relevant parameters, including initial concentration, contact time, temperature and initial pH on the removal efficiency were investigated in batch studies. The pH strongly influenced zirconium adsorption capacity and maximal capacity was obtained at pH 1.0. The maximum removal efficiency obtained at 40 degrees C and equilibration time of 24h on the Ca-exchanged form. Kinetics and isotherm of adsorption were also studied. The pseudo-first-order, pseudo-second-order, Elovich and intra-particle diffusion models were used to describe the kinetic data. The pseudo-second-order kinetic model provided excellent kinetic data fitting (R(2)>0.998) with rate constant of 1.60x10(-1), 1.96x10(-1), 2.45x10(-1) and 2.02x10(-1)g mmol(-1)min(-1) respectively for Na, K, Ca-exchanged forms and natural clinoptilolite. The Langmuir and Freundlich models were applied to describe the equilibrium isotherms for zirconium uptake and the Langmuir model agrees very well with experimental data. Thermodynamic parameters were determined and are discussed.

  18. Biosorption of arsenic from aqueous solution using dye waste.

    PubMed

    Nigam, Shubha; Vankar, Padma S; Gopal, Krishna

    2013-02-01

    The purpose of this study is to examine on removal of arsenic from water by biosorption through potential application of herbal dye wastes. Four different flower dye residues (after extraction of natural dye) viz. Hibiscus rosasinensis, Rosa rosa, Tagetes erecta, and Canna indica were utilized successfully for the removal of arsenic from aqueous solution. Batch studies were carried out for various parameters viz. pH, sorbent dose, contact time, initial metal ion concentration, and temperature. Data were utilized for isothermal, kinetic, and thermodynamic studies. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDAX), and Fourier transform infrared (FTIR) analyses of biomass were performed. The results showed that 1 g/100 ml for 5.0-5.5 h contact time at pH 6.0-7.5 with agitation rate 150 rpm provided 98, 96, 92, and 85 % maximum absorption of arsenic by R. rosa, H. rosasinensis, T. erecta, and C. indica, respectively, at initial concentration of 500 ppb. Data followed Langmuir isotherm showing sorption to be monolayer on heterogeneous surface of biosorbent. Negative values of ΔG° indicated spontaneous nature, whereas ΔH° indicates exothermic nature of system followed by pseudo-first-order adsorption kinetics. FTIR results showed apparent changes in functional group regions after metal chelation. SEM and EDAX analyses showed the changes in surface morphology of all test biosorbents. Herbal dye wastes, used as biosorbent, exhibited significant (85-98 %) removal of arsenic from aqueous solution. Hence, these biosorbents are cost-effective, easily available, eco-friendly, and comparatively more effective than other biosorbents already in use. These may be used to remove arsenic and other toxic metals from water.

  19. Effects of coprecipitation on uranium and plutonium concentrations in alkaline salt solutions

    SciTech Connect

    Hobbs, D.T.

    1997-03-19

    The chemistry of uranium and plutonium in conjunction with the storage, retrieval and treatment of high-level nuclear waste (HLW) has been the subject of increasing scrutiny due to concerns with nuclear criticality safety. Previous studies focused on determining the solubilities of plutonium and uranium in alkaline salt solutions that encompass the compositions present during storage and evaporation of fresh and aged. Recent studies extend the chemistry to include the effects of coprecipitation on the liquid phase concentrations of plutonium and uranium. Particle size, morphology and identification of crystalline phases in the precipitated solids as well as the plutonium and uranium dissolution characteristics upon dilution of the liquid phases were also determined.

  20. Study of the decomposition pathway of 12-molybdophosphoric acid in aqueous solutions by micro Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bajuk-Bogdanović, D.; Uskoković-Marković, S.; Hercigonja, R.; Popa, A.; Holclajtner-Antunović, I.

    2016-01-01

    Micro Raman spectroscopy was applied to investigate the speciation of heteropoly and isopoly molybdates in 0.05 and 0.005 M aqueous solutions of 12-molybdophosphoric acid at pH values between 1 and 6. For comparative purposes, 31P NMR spectroscopy was applied too. It is shown that stability of Keggin anion is influenced both by pH and concentration of solution. The Keggin structure is stable in acidic solutions (pH < 1.6) while defective Keggin structures are formed with further alkalization (up to pH 5.6). Monolacunary anion PMo11O397 - is the main component in the pH region from 1.6 to 3.4. Further removal of molybdenyl species causes the appearance of other vacant Keggin structures such as PMo9O31(OH)36 - and PMo6O259 - at about pH 4. At pH 5.0, anion PMo6O259 - is the main species. In solutions with pH greater than 5.0, heteropolymolybdates disappear completely and isopolymolybdates Mo7O246 - and MoO42 - are formed in higher amounts. In more diluted solution of 0.005 M, the decomposition scheme of 12-molybdophosphoric acid solution with increasing of pH takes place without observation of significant amounts of Mo7O246 - species. If alkalinization is performed with 0.5 M instead of 5 M NaOH, there are no significant changes in the Raman spectra of solutions. It is shown that the spectra of evaporated samples may be used for the identification of molecular species in corresponding concentrated solutions. However, Raman spectra of dry residues of more diluted solutions differ from spectra of corresponding solutions due to the reactions performed during the process of drying and cannot be used for unambiguous identification of species in solution. Acidification of 0.05 M solution of Na2MoO4 shows that at pH > 5.6, molybdate anion MoO42 - dominates, while in the pH range between 5.6 and 1, heptamolybdate anion Mo7O246 - is preferentially formed.