Science.gov

Sample records for aqueous aminomethanediphosphonic acid

  1. Solvent extraction separation of trivalent lanthanide and actinide ions using an aqueous aminomethanediphosphonic acid.

    SciTech Connect

    Jensen, M. P.

    1998-10-14

    The possibility of separating the trivalent lanthanides, represented by EU{sup 3+}, and actinides, represented by Cf{sup 3+}, using HDEHP in toluene and an aqueous phase containing N-piperidinomethane-1,1-diphosphotic acid, PMDPA, has been investigated. This modified aqueous phase offers potential advantages over the diethylenetriaminepentaacetic acid based TALSPEAK process because of the improved complexation properties of PMDPA in acidic solutions, and the ability to decompose PMDPA before disposal. Extraction experiments were conducted at 25 C in 2 M NaClO{sub 4} between -log [H{sup +}] 1 and 2. The studies enabled us to derive the aqueous phase speciation, the stability constants of the aqueous complexes, and the Cf/Eu separation factors. Despite the presence of an amino group in PMDPA that should favor the retention of the actinides in the aqueous phase, the Cf/Eu separation factors are near unity under the conditions studied.

  2. Photochemistry of aqueous pyruvic acid

    PubMed Central

    Griffith, Elizabeth C.; Carpenter, Barry K.; Shoemaker, Richard K.; Vaida, Veronica

    2013-01-01

    The study of organic chemistry in atmospheric aerosols and cloud formation is of interest in predictions of air quality and climate change. It is now known that aqueous phase chemistry is important in the formation of secondary organic aerosols. Here, the photoreactivity of pyruvic acid (PA; CH3COCOOH) is investigated in aqueous environments characteristic of atmospheric aerosols. PA is currently used as a proxy for α-dicarbonyls in atmospheric models and is abundant in both the gas phase and the aqueous phase (atmospheric aerosols, fog, and clouds) in the atmosphere. The photoreactivity of PA in these phases, however, is very different, thus prompting the need for a mechanistic understanding of its reactivity in different environments. Although the decarboxylation of aqueous phase PA through UV excitation has been studied for many years, its mechanism and products remain controversial. In this work, photolysis of aqueous PA is shown to produce acetoin (CH3CHOHCOCH3), lactic acid (CH3CHOHCOOH), acetic acid (CH3COOH), and oligomers, illustrating the progression from a three-carbon molecule to four-carbon and even six-carbon molecules through direct photolysis. These products are detected using vibrational and electronic spectroscopy, NMR, and MS, and a reaction mechanism is presented accounting for all products detected. The relevance of sunlight-initiated PA chemistry in aqueous environments is then discussed in the context of processes occurring on atmospheric aerosols. PMID:23821751

  3. Photochemistry of aqueous pyruvic acid.

    PubMed

    Griffith, Elizabeth C; Carpenter, Barry K; Shoemaker, Richard K; Vaida, Veronica

    2013-07-16

    The study of organic chemistry in atmospheric aerosols and cloud formation is of interest in predictions of air quality and climate change. It is now known that aqueous phase chemistry is important in the formation of secondary organic aerosols. Here, the photoreactivity of pyruvic acid (PA; CH3COCOOH) is investigated in aqueous environments characteristic of atmospheric aerosols. PA is currently used as a proxy for α-dicarbonyls in atmospheric models and is abundant in both the gas phase and the aqueous phase (atmospheric aerosols, fog, and clouds) in the atmosphere. The photoreactivity of PA in these phases, however, is very different, thus prompting the need for a mechanistic understanding of its reactivity in different environments. Although the decarboxylation of aqueous phase PA through UV excitation has been studied for many years, its mechanism and products remain controversial. In this work, photolysis of aqueous PA is shown to produce acetoin (CH3CHOHCOCH3), lactic acid (CH3CHOHCOOH), acetic acid (CH3COOH), and oligomers, illustrating the progression from a three-carbon molecule to four-carbon and even six-carbon molecules through direct photolysis. These products are detected using vibrational and electronic spectroscopy, NMR, and MS, and a reaction mechanism is presented accounting for all products detected. The relevance of sunlight-initiated PA chemistry in aqueous environments is then discussed in the context of processes occurring on atmospheric aerosols.

  4. Unusual hydrophobic interactions in acidic aqueous solutions.

    PubMed

    Chen, Hanning; Xu, Jianqing; Voth, Gregory A

    2009-05-21

    Hydrophobic interaction, which is believed to be a primary driving force for many fundamental chemical and biological processes such as nanostructure self-assembly, micelle formation, and protein folding, is different in acidic aqueous solutions compared to salt solutions. In this study, the aggregation/dispersion behavior of nonpolar hydrophobic molecules in aqueous solutions with varying acid (HCl) concentrations is investigated using novel molecular dynamics simulations and compared to the hydrophobic behavior in corresponding salt (NaCl) solutions. The formation of unusual weakly bound hydrophobe-hydrated proton solvation structures is observed and can be attributed to the unique "amphiphilic" characteristic of hydrated protons. This molecular-level mechanism for the acid-enhanced dissolution of hydrophobic particles also provides a novel interpretation for the apparent anomaly of the hydronium cation in the Hofmeister series.

  5. Aqueous thermal degradation of gallic acid

    SciTech Connect

    Boles, J.S.; Crerar, D.A.; Grissom, G.; Key, T.C.

    1988-02-01

    Aqueous thermal degradation experiments show gallic acid, a naturally occurring aromatic carboxylic compound, decomposes rapidly at temperatures between 105/sup 0/ and 150/sup 0/C, with an activation energy of 22.9 or 27.8 kcal/mole, depending on pH of the starting solution. Pyrogallol is the primary product identified, indicating degradation via decarboxylation and a carbanion transition state. Relatively rapid degradation of vanillic, phthalic, ellagic and tannic acids has also been observed,suggesting that these and perhaps other aromatic acids could be short-lived in deep formation waters.

  6. Aqueous thermal degradation of gallic acid

    NASA Astrophysics Data System (ADS)

    Snow Boles, Jennifer; Crerar, David A.; Grissom, Grady; Key, Tonalee C.

    1988-02-01

    Aqueous thermal degradation experiments show gallic acid, a naturally occurring aromatic carboxylic compound, decomposes rapidly at temperatures between 105° and 150°C, with an activation energy of 22.9 or 27.8 kcal/ mole, depending on pH of the starting solution. Pyrogallol is the primary product identified, indicating degradation via decarboxylation and a carbanion transition state. Relatively rapid degradation of vanillic, phthalic, ellagic and tannic acids has also been observed, suggesting that these and perhaps other aromatic acids could be short-lived in deep formation waters.

  7. NIR spectroscopic properties of aqueous acids solutions.

    PubMed

    Omar, Ahmad Fairuz; Atan, Hanafi; Matjafri, Mohd Zubir

    2012-06-15

    Acid content is one of the important quality attributes in determining the maturity index of agricultural product, particularly fruits. Despite the fact that much research on the measurement of acidity in fruits through non-destructive spectroscopy analysis at NIR wavelengths between 700 to 1,000 nm has been conducted, the same response towards individual acids is not well known. This paper presents NIR spectroscopy analysis on aqueous citric, tartaric, malic and oxalic solutions through quantitative analysis by selecting a set of wavelengths that can best be used to measure the pH of the solutions. The aquaphotomics study of the acid solutions has generated R² above 0.9 for the measurement of all acids. The most important wavelengths for pH are located at 918-925 nm and 990-996 nm, while at 975 nm for water.

  8. Speciation in aqueous solutions of nitric acid.

    PubMed

    Hlushak, S; Simonin, J P; De Sio, S; Bernard, O; Ruas, A; Pochon, P; Jan, S; Moisy, P

    2013-02-28

    In this study, speciation in aqueous solutions of nitric acid at 25 °C was assessed in two independent ways. First, Raman experiments were carried out and interpreted in terms of free nitrate ions, ion pairs and neutral HNO(3) molecules. In parallel, a model was developed to account for the formation of these two kinds of pairs. It was based on an extension of the binding mean spherical approximation (BiMSA), or associative MSA (AMSA), in which the size and the charge of the ions in the chemical pair may differ from those of the free ions. A simultaneous fit of the osmotic coefficient and of the proportion of free ions (obtained from Raman spectroscopy experiments) led to an estimation of the speciation in nitric acid solutions. The result obtained using this procedure was compared with the estimation obtained from the Raman experiments.

  9. Infrared titration of aqueous sulfuric acid

    SciTech Connect

    Max, J.J.; Menichelli, C.; Chapados, C.

    2000-03-30

    This paper presents the infrared (IR) titration of aqueous sulfuric acid solutions (0.50 M) obtained by the attenuated total reflection (ATR) sampling technique. After subtracting the water spectra, the spectra of the ionic species of H{sub 2}SO{sub 4} in the 0--14 pH range were separated by factor analysis (FA) which also gave their abundance. The results were in agreement with the theoretical calculation of the distribution of the species. Three sulfate species were found: HSO{sub 4}{sup {minus}}, SO{sub 4}{sup 2{minus}}, and HSO{sub 4}{sup {minus}}/HCl. The latter stands for the bisulfate--hydronium complex formed by the addition of HCl to obtain measurements in the 0--0.47 pH range. For 0.50 M sulfuric acid, the comparison between the experimentally IR-determined quantities and the theoretical values gave a mean activity coefficient of 0.12 {+-} 0.04, a value comparable to that from electrochemical measurements. Three types of water were quantitatively determined in the solutions: acidic water, basic water, and neutral water. The latter is always present while the two others are present in the low and high pH range, respectively. Another type of water strongly associated with the sulfates is also present. Moreover, knowledge of the behavior of the different types of water as the titration proceeded permitted us to give the details of the neutralization reactions of aqueous sulfuric acid by sodium hydroxide.

  10. RECOVERY OF ACTINIDES FROM AQUEOUS NITRIC ACID SOLUTIONS

    DOEpatents

    Ader, M.

    1963-11-19

    A process of recovering actinides is presented. Tetravalent actinides are extracted from rare earths in an aqueous nitric acid solution with a ketone and back-extracted from the ketone into an aqueous medium. The aqueous actinide solution thus obtained, prior to concentration by boiling, is sparged with steam to reduce its ketone to a maximum content of 3 grams per liter. (AEC)

  11. Uranyl fluoride luminescence in acidic aqueous solutions

    SciTech Connect

    Beitz, J.V.; Williams, C.W.

    1996-08-01

    Luminescence emission spectra and decay rates are reported for uranyl species in acidic aqueous solutions containing HF or added NaF. The longest luminescence lifetime, 0.269 {+-} 0.006 ms, was observed from uranyl in 1 M HF + 1 M HClO{sub 4} at 296 K and decreased with increasing temperature. Based on a luminescence dynamics model that assumes equilibrium among electronically excited uranyl fluoride species and free fluoride ion, this long lived uranyl luminescence in aqueous solution is attributed primarily to UO{sub 2}F{sub 2}. Studies on the effect of added LiNO{sub 3} or Na{sub 2}WO{sub 4}{center_dot}2H{sub 2}O showed relatively weak quenching of uranyl fluoride luminescence which suggests that high sensitivity determination of the UF{sub 6} content of WF{sub 6} gas should be feasible via uranyl luminescence analysis of hydrolyzed gas samples of impure WF{sub 6}.

  12. PROCESS FOR RECOVERING URANIUM FROM AQUEOUS PHOSPHORIC ACID LIQUORS

    DOEpatents

    Schmitt, J.M.

    1962-09-01

    A liquid-liquid extraction method is given for recovering uranium values from aqueous solutions. An acidic aqueous solution containing uranium values is contacted with an organic phase comprising an organic diluent and the reaction product of phosphorous pentoxide and a substantially pure dialkylphosphoric acid. The uranium values are transferred to the organic phase even from aqueous solutions containing a high concentration of strong uranium complexing agents such as phosphate ions. (AEC)

  13. Proton defect solvation and dynamics in aqueous acid and base.

    PubMed

    Kale, Seyit; Herzfeld, Judith

    2012-10-29

    Easy come, easy go: LEWIS, a new model of reactive and polarizable water that enables the simulation of a statistically reliable number of proton hopping events in aqueous acid and base at concentrations of practical interest, is used to evaluate proton transfer intermediates in aqueous acid and base (picture, left and right, respectively).

  14. Acidities of Water and Methanol in Aqueous Solution and DMSO

    ERIC Educational Resources Information Center

    Gao, Daqing

    2009-01-01

    The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…

  15. Acidities of Water and Methanol in Aqueous Solution and DMSO

    ERIC Educational Resources Information Center

    Gao, Daqing

    2009-01-01

    The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…

  16. Aqueous-phase source of formic acid in clouds

    NASA Technical Reports Server (NTRS)

    Chameides, W. L.; Davis, D. D.

    1983-01-01

    The coupled gas- and aqueous-phase cloud chemistry of HCOOH were examined for controlling factors in the acidity of cloud and rainwater. Attention was given to the aqueous OH/HO2 system that yields an OH species that is highly reactive with other species, notably SO2 and the formaldehyde/formic acid complex. A numerical model was developed to simulate the cloud chemistry in the remote troposphere, with considerations given to CH4-CO-NO(x)-O3-H(x)O(y) system. It was determined that aqueous phase OH radicals can produce and destroy formic acid droplets in daylight conditions, as well as control formic acid levels in rainwater. It is sugested that the same types of reactions may be involved in the control of acetic acid and other organic acids.

  17. Coupled diffusion in aqueous weak acid + alkanolamine absorbents

    SciTech Connect

    Leaist, D.G.; Li, Y.; Poissant, R.

    1998-11-01

    Taylor dispersion and differential refractometry are used to measure ternary interdiffusion coefficients (D{sub ik}) for aqueous solutions of acetic acid + triethanolamine (TEA) and aqueous solutions of oxalic acid + TEA at 25 C. The D{sub ik} coefficients give the coupled fluxes of acid and TEA driven by the gradient in the concentration of each solute. Ternary Fick equations with variable D{sub ik} coefficients are integrated numerically to calculate accurate concentration profiles and the moving reaction front produced by the interdiffusion of TEA and acetic or oxalic acid. Ternary diffusion coefficients are also used to predict the rate of dissolution of oxalic acid in 1.00 mol/dm{sup 3} aqueous TEA, a process analogous to the absorption of a diprotic acid gas by an alkanolamine absorbent. The diffusion of oxalic acid drives a significant counterflow of TEA. The resulting buildup of TEA at the surface of the dissolving acid increases the interfacial concentration of TEA from 1.00 to 1.20 mol/dm{sup 3}, which in turn increases the solubility of the acid by 0.20 mol/dm{sup 3}. Nernst-Planck equations are used to predict D{sub ik} coefficients for aqueous weak acid + alkanolamine solutions. The fluxes of these solutes are shown to be strongly coupled by the electric field that is generated by the diffusing ions.

  18. Aqueous infrared carboxylate absorbances: Aliphatic di-acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Leenheer, J.A.; McVey, I.F.

    1998-01-01

    Aqueous attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of 18 aliphatic di-carboxylic acids are reported as a function of pH. The spectra show isosbestic points and intensity changes which indicate that Beer's law is obeyed, and peak frequencies lie within previously reported ranges for aqueous carboxylates and pure carboxylic acids. Intensity sharing from the symmetric carboxylate stretch is evident in many cases, so that bands which are nominally due to alkyl groups show increased intensity at higher pH. The asymmetric stretch of the HA- species is linearly related to the microscopic acidity constant of the H2A species, with ??pK 2 intervening atoms). The results suggest that aqueous ATR-FTIR may be able to estimate 'intrinsic' pKa values of carboxylic acids, in addition to providing quantitative estimates of ionization. ?? 1998 Elsevier Science B.V. All rights reserved.

  19. Decomposition Studies of Triphenylboron, Diphenylborinic Acid and Phenylboric Acid in Aqueous Alkaline Solutions Containing Copper

    SciTech Connect

    Crawford, C.L.; Peterson, R. A.

    1997-02-11

    This report documents the copper-catalyzed chemical kinetics of triphenylboron, diphenylborinic acid and phenylboric acid (3PB, 2PB and PBA) in aqueous alkaline solution contained in carbon-steel vessels between 40 and 70 degrees C.

  20. Polymerization of beta-amino acids in aqueous solution

    NASA Technical Reports Server (NTRS)

    Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    We have compared carbonyl diimidazole (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as activating agents for the oligomerization of negatively-charged alpha- and beta-amino acids in homogeneous aqueous solution. alpha-Amino acids can be oligomerized efficiently using CDI, but not by EDAC. beta-Amino acids can be oligomerized efficiently using EDAC, but not by CDI. Aspartic acid, an alpha- and beta-dicarboxylic acid is oligomerized efficiently by both reagents. These results are explained in terms of the mechanisms of the reactions, and their relevance to prebiotic chemistry is discussed.

  1. Polymerization of beta-amino acids in aqueous solution

    NASA Technical Reports Server (NTRS)

    Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    We have compared carbonyl diimidazole (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as activating agents for the oligomerization of negatively-charged alpha- and beta-amino acids in homogeneous aqueous solution. alpha-Amino acids can be oligomerized efficiently using CDI, but not by EDAC. beta-Amino acids can be oligomerized efficiently using EDAC, but not by CDI. Aspartic acid, an alpha- and beta-dicarboxylic acid is oligomerized efficiently by both reagents. These results are explained in terms of the mechanisms of the reactions, and their relevance to prebiotic chemistry is discussed.

  2. Persistent ion pairing in aqueous hydrochloric acid.

    PubMed

    Baer, Marcel D; Fulton, John L; Balasubramanian, Mahalingam; Schenter, Gregory K; Mundy, Christopher J

    2014-07-03

    For strong acids, like hydrochloric acid, the complete dissociation into an excess proton and conjugated base as well as the formation of independent solvated charged fragments is assumed. The existence of chloride-hydronium (Cl(-)···H3O(+)) contact ion pairs even in moderate concentration hydrochloric acid (2.5 m) demonstrates that the counterions do not behave merely as spectators. Through comparison of recent extended X-ray absorption fine structure (EXAFS) measurements to state-of-the-art density functional theory (DFT) simulations, we are able to obtain a unique view into the molecular structure of medium-to-high concentrated electrolytes. Here we report that the Cl(-)···H3O(+) contact ion pair structure persists throughout the entire concentration range studied and that these structures differ significantly from moieties studied in microsolvated hydrochloric acid gas phase clusters. Characterizing distinct populations of these ion pairs gives rise to a novel molecular level description of how to view the reaction network for acid dissociation and how it relates to our picture of acid-base equilibria.

  3. Persistent Ion Pairing in Aqueous Hydrochloric Acid

    SciTech Connect

    Baer, Marcel D.; Fulton, John L.; Balasubramanian, Mahalingam; Schenter, Gregory K.; Mundy, Christopher J.

    2014-07-03

    For strong acids, like hydrochloric acid, the complete dissociation into an excess proton and conjugated base as well as the formation of independent solvated charged fragments is assumed. The existence of a chloride-Hyronium (Cl-H3O+) contact ion pairs even in moderate concentration hydrochloric acid (2.5 m) demonstrates that the counter ions do not behave merely as spectators. Through the use of modern extended X-ray absorption fine structure (EXAFS) measurements in conjunction with state-of-the-art density functional theory (DFT) simulations, we are able to obtain an unprecedented view into the molecular structure of medium to high concentrated electrolytes. Here we report that the Cl-H3O+ contact ion pair structure persists throughout the entire concentration range studied and that these structures differ significantly from moieties studied in micro-solvated hydrochloric acid clusters. Characterizing distinct populations of these ion pairs gives rise to a novel molecular level description of how to think about the activity of the proton that impacts our picture of the pH scale. Funding for CJM, GKS, and JLF was provided by DOE Office of Science, Office of Basic Energy Science, Division of Chemical Sciences, Geosciences, and Biosciences. Funding for MDB was provided throught the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory. MB was funded through Argonne National Laboratory.

  4. Amino-acid contamination of aqueous hydrochloric acid.

    NASA Technical Reports Server (NTRS)

    Wolman, Y.; Miller, S. L.

    1971-01-01

    Considerable amino-acid contamination in commercially available analytical grade hydrochloric acid (37% HCl) was found. One bottle contained 8,300 nmol of amino-acids per liter. A bottle from another supplier contained 6,700 nmol per liter. The contaminants were mostly protein amino-acids and several unknowns. Data on the volatility of the amino-acids during HCl distillation were also obtained.

  5. Amino-acid contamination of aqueous hydrochloric acid.

    NASA Technical Reports Server (NTRS)

    Wolman, Y.; Miller, S. L.

    1971-01-01

    Considerable amino-acid contamination in commercially available analytical grade hydrochloric acid (37% HCl) was found. One bottle contained 8,300 nmol of amino-acids per liter. A bottle from another supplier contained 6,700 nmol per liter. The contaminants were mostly protein amino-acids and several unknowns. Data on the volatility of the amino-acids during HCl distillation were also obtained.

  6. γ-Irradiation of malic acid in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Negron-Mendoza, Alicia; Graff, Rebecca L.; Ponnamperuma, Cyril

    1980-12-01

    The γ-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the non-volatile products. Thin layer chromotography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the γ-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  7. Irradiation stability of folic Acid in powder and aqueous solution.

    PubMed

    Araújo, Michel M; Marchioni, Eric; Bergaentzle, Martine; Zhao, Minjie; Kuntz, Florent; Hahn, Emeline; Villavicencio, Anna Lucia C H

    2011-02-23

    This study attempts to examine the folic acid stability after irradiation treatment, under different physical states, pH values, and atmosphere conditions. Aqueous folic acid samples, folic acid in powder, and wheat flour fortified with folic acid were irradiated by an electron beam (E-beam) between 0 (control) and 10.0 kGy. It was realized that the physical state of folic acid plays an important role on its stability toward E-beam processing, being largely unstable in solution, no matter the pH and atmosphere conditions assayed. Otherwise, folic acid in powder showed huge irradiation stability, even when mixed in a dry food matrix, such as fortified wheat flour samples.

  8. Investigation of acyl migration in mono- and dicaffeoylquinic acids under aqueous basic, aqueous acidic, and dry roasting conditions.

    PubMed

    Deshpande, Sagar; Jaiswal, Rakesh; Matei, Marius Febi; Kuhnert, Nikolai

    2014-09-17

    Acyl migration in chlorogenic acids describes the process of migration of cinnamoyl moieties from one quinic acid alcohol group to another, thus interconverting chlorogenic acid regioisomers. It therefore constitutes a special case of transesterification reaction. Acyl migration constitutes an important reaction pathway in both coffee roasting and brewing, altering the structure of chlorogenic acid initially present in the green coffee bean. In this contribution we describe detailed and comprehensive mechanistic studies comparing inter- and intramolecular acyl migration involving the seven most common chlorogenic acids in coffee. We employe aqueous acidic and basic conditions mimicking the brewing of coffee along with dry roasting conditions. We show that under aqueous basic conditions intramolecular acyl migration is fully reversible with basic hydrolysis competing with acyl migration. 3-Caffeoylquinic acid was shown to be most labile to basic hydrolysis. We additionally show that the acyl migration process is strongly pH dependent with increased transesterification taking place at basic pH. Under dry roasting conditions acyl migration competes with dehydration to form lactones. We argue that acyl migration precedes lactonization, with 3-caffeoylquinic acid lactone being the predominant product.

  9. Near infrared photochemistry of pyruvic acid in aqueous solution.

    PubMed

    Larsen, Molly C; Vaida, Veronica

    2012-06-21

    Recent experimental and theoretical results have suggested that organic acids such as pyruvic acid, can be photolyzed in the ground electronic state by the excitation of the OH stretch vibrational overtone. These overtones absorb in the near-infrared and visible regions of the spectrum where the solar photons are plentiful and could provide a reaction pathway for the organic acids and alcohols that are abundant in the earth's atmosphere. In this paper the overtone initiated photochemistry of aqueous pyruvic acid is investigated by monitoring the evolution of carbon dioxide. In these experiments CO(2) is being produced by excitation in the near-infrared, between 850 nm and ∼1150 nm (11,765-8696 cm(-1)), where the second OH vibrational overtone (Δν = 3) of pyruvic acid is expected to absorb. These findings show not only that the overtone initiated photochemical decarboxylation reaction occurs but also that in the aqueous phase it occurs at a lower energy than was predicted for the overtone initiated reaction of pyruvic acid in the gas phase (13,380 cm(-1)). A quantum yield of (3.5 ± 1.0) × 10(-4) is estimated, suggesting that although this process does occur, it does so with a very low efficiency.

  10. A critique of homogeneous freezing measurements of aqueous sulfuric acid

    NASA Astrophysics Data System (ADS)

    Alofs, Darryl J.; Vandike, John L.

    2000-08-01

    Two laboratory measurements of homogeneous freezing of aqueous sulfuric acid particles are critiqued: The first by Bertram et al., 1996, J. Phys. Chem., vol. 100, pp. 2376-2383: the second by Koop et al., 1998, J. Phys. Chem. A, vol. 102, pp. 8924-8931. Calculations for a proposed experimental artifact are inconclusive for Bertram et al. A proposed artifact for Koop et al. is shown to be insignificant.

  11. Methanol Uptake By Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    To evaluate the role of upper tropospheric and lower stratospheric aerosols in the global budget of methanol, the solubility and reactivity of CH3OH in aqueous sulfuric acid solutions are under investigation. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H(*), for methanol dissolution into 45 to 70 percent by weight H2SO4. We find that methanol solubility ranges from 10(exp 5) to 10(exp 8) M/atm and increases with decreasing temperature and with increasing sulfuric acid content. These solubility measurements include uptake due to physical solvation and all rapid equilibria which are established in solution. Our data indicate that simple uptake by aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These results differ from those recently reported in the literature, and an explanation of this disparity will be presented. In addition to solvation, reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H may proceed in the atmosphere but is not significant under our experimental conditions. Results obtained using a complementary equilibrium measurement technique confirm this directly. In addition, the extent of methanol sequestration via formation of mono- and dimethylsulfate will be evaluated under several atmospheric conditions.

  12. Methanol Uptake by Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Essin, A. M.; Golden, D. M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The global methanol budget is currently unbalanced, with source terms significantly larger than the sinks terms. To evaluate possible losses of gaseous methanol to sulfate aerosols, the solubility and reactivity of methanol in aqueous sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosols is under investigation. Methanol will partition into sulfate aerosols according to its Henry's law solubility. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H*, for cold (196 - 220 K) solutions ranging between 45 and 70 wt % H2SO4. We have found that methanol solubility ranges from approx. 10(exp 5) - 10(exp 7) M/atm for UT/LS conditions. Solubility increases with decreasing temperature and with increasing sulfuric acid content. Although methanol is slightly more soluble than are acetone and formaldehyde, current data indicate that uptake by clean aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These solubility measurements include uptake due to physical solvation and any rapid equilibria which are established in solution. Reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H is not significant over our experimental time scale for solutions below 80 wt % H2SO4. To confirm this directly, results obtained using a complementary equilibrium measurement technique will also be presented.

  13. Solubility of uranous sulfate in aqueous sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Suzuki, Shigeru; Hirono, Shuichiro; Awakura, Yasuhiro; Majima, Hiroshi

    1990-10-01

    To provide important thermodynamic data for use in uranium hydrometallurgy, solubilities of uranous sulfate were determined as a function of free acid concentration and temperature. Two sets of experiments were performed in this study. One set was the precipitation experiments of uranous sulfate crystals, in which concentrated uranous sulfate solution was mixed with sulfuric acid solution of suitable concentration. The other set was the dissolution experiments of uranous sulfate crystals in aqueous sulfuric acid solutions. It is noteworthy that good agreement exists between the solubilities determined by the two methods. At elevated temperatures, say, 363 K, the presence of free sulfuric acid is required to avoid precipitation of uranous hydroxide resulting from the hydrolysis of uranous sulfate. Generally speaking, however, an increase in free sulfuric acid concentration results in a slight decrease in uranous sulfate solubility. The elevation of solution temperature causes a decrease in solubility of uranous sulfate. It should be noted that the solid uranous sulfates equilibrated with saturated solutions at 298 K were U(SO4)2 2H2O in dilute sulfuric acid solution and U(SO4)2 4H2O in concentrated sulfuric acid solution, while those at 333 K and 363 K were mainly U(SO4)2 4H2O.

  14. Dephosphorization of Steelmaking Slag by Leaching with Acidic Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Qiao, Yong; Diao, Jiang; Liu, Xuan; Li, Xiaosa; Zhang, Tao; Xie, Bing

    2016-09-01

    In the present paper, dephosphorization of steelmaking slag by leaching with acidic aqueous solution composed of citric acid, sodium hydroxide, hydrochloric acid and ion-exchanged water was investigated. The buffer solution of C6H8O7-NaOH-HCl system prevented changes in the pH values. Kinetic parameters including leaching temperature, slag particle size and pH values of the solution were optimized. The results showed that temperature has no obvious effect on the dissolution ratio of phosphorus. However, it has a significant effect on the dissolution ratio of iron. The dephosphorization rate increases with the decrease of slag particle size and the pH value of the solution. Over 90% of the phosphorus can be dissolved in the solution while the corresponding leaching ratio of iron was only 30% below the optimal condition. Leaching kinetics of dephosphorization follow the unreacted shrinking core model with a rate controlled step by the solid diffusion layer, the corresponding apparent activation energy being 1.233 kJ mol-1. A semiempirical kinetic equation was established. After leaching, most of the nC2S-C3P solid solution in the steelmaking slag was selectively dissolved in the aqueous solution and the iron content in the solid residue was correspondingly enriched.

  15. Protonation Dynamics and Hydrogen Bonding in Aqueous Sulfuric Acid.

    PubMed

    Niskanen, Johannes; Sahle, Christoph J; Juurinen, Iina; Koskelo, Jaakko; Lehtola, Susi; Verbeni, Roberto; Müller, Harald; Hakala, Mikko; Huotari, Simo

    2015-09-03

    Hydration of sulfuric acid plays a key role in new-particle formation in the atmosphere. It has been recently proposed that proton dynamics is crucial in the stabilization of these clusters. One key question is how water molecules mediate proton transfer from sulfuric acid, and hence how the deprotonation state of the acid molecule behaves as a function concentration. We address the proton transfer in aqueous sulfuric acid with O K edge and S L edge core-excitation spectra recorded using inelastic X-ray scattering and with ab initio molecular dynamics simulations in the concentration range of 0-18.0 M. Throughout this range, we quantify the acid-water interaction with atomic resolution. Our simulations show that the number of donated hydrogen bonds per Owater increases from 1.9 to 2.5 when concentration increases from 0 to 18.0 M, in agreement with a rapid disappearance of the pre-edge feature in the O K edge spectrum. The simulations also suggest that for 1.5 M sulfuric acid SO4(2-) is most abundant and that its concentration falls monotonously with increasing concentration. Moreover, the fraction of HSO4(-) peaks at ∼12 M.

  16. Fermentation of aqueous plant seed extracts by lactic acid bacteria

    SciTech Connect

    Schafner, D.W.; Beuchat, R.L.

    1986-05-01

    The effects of lactic acid bacterial fermentation on chemical and physical changes in aqueous extracts of cowpea (Vigna unguiculata), peanut (Arachis hypogea), soybean (Glycine max), and sorghum (Sorghum vulgare) were studied. The bacteria investigated were Lactobacillus helveticus, L. delbrueckii, L. casei, L. bulgaricus, L. acidophilus, and Streptococcus thermophilus. Organisms were inoculated individually into all of the seed extracts; L. bulgaricus and S. thermophilus were also evaluated together as inocula for fermenting the legume extracts. During fermentation, bacterial population and changes in titratable acidity, pH, viscosity, and color were measured over a 72 h period at 37 degrees C. Maximum bacterial populations, titratable acidity, pH, and viscosity varied depending upon the type of extract and bacterial strain. The maximum population of each organism was influenced by fermentable carbohydrates, which, in turn, influenced acid production and change in pH. Change in viscosity was correlated with the amount of protein and titratable acidity of products. Color was affected by pasteurization treatment and fermentation as well as the source of extract. In the extracts inoculated simultaneously with L. bulgaricus and S. thermophilus, a synergistic effect resulted in increased bacterial populations, titratable acidity, and viscosity, and decreased pH in all the legume extracts when compared to the extracts fermented with either of these organisms individually. Fermented extracts offer potential as substitutes for cultured dairy products. 24 references.

  17. [Photo-chemical decomposition of perfluorooctanoic acids in aqueous periodate].

    PubMed

    Cao, Meng-Hua; Wang, Bei-Bei; Zhu, Hu-Di; Tan, Zhen-Ji; Zeng, You-Shi; Wang, Lin-Ling; Yuan, Song-Hu; Chen, Jing

    2011-01-01

    The influence of reaction atmosphere and TiO2 on photochemical decomposition of perfluorooctanoic acid (PFOA) in aqueous periodate was investigated using a type of low-pressure mercury lamps emitted at 254 nm. PFOA photolysis was slight with 254 nm light irradiation under nitrogen, whereas significant decomposition PFOA obtained with the addition of IO4-. In addition, oxygen restrained photochemical decomposition of PFOA. In UV/TiO2/IO4- system, PFOA degradation ratio was 54%, 15% lower than that for UV/IO4- system. *OH radicals generated from UV/TiO2 system exhausted a lot of IO4-, resulting in lower degree of IO3* production. IO3* was high reactive radical which great excitated PFOA decomposition. The accumulation of short-chain perfluorocarbonxylic acids (PFCAs) as products were identified with HPLC/MS. PFCAs bearing shorter perfluoroalkyl groups were formed in a stepwise way from PFCAs that bear longer perfluoroalkyl groups.

  18. Adsorption of citric acid from dilute aqueous solutions by hydroxyapatite.

    PubMed

    Vega, Enrique D; Narda, Griselda E; Ferretti, Ferdinando H

    2003-12-01

    The role of citric acid in the demineralization of dental enamel, which is mainly constituted by hydroxyapatite, is important for periodontal regeneration and in the conditioning of enamel or dentin for bonding restorative resins. The adsorption of citric acid from aqueous solutions onto synthetic hydroxyapatite at 278, 288, 298, and 308 K and pH 4.8 has been studied by means of UV spectroscopy. The adsorption reaction, which takes place by an interaction between phosphate groups and citrate anions at the solid-solution interface, yields an adsorbate-adsorbent complex of high stability. The adsorption isotherms fit the Langmuirian shape. The proposed adsorption model, where citrate species interact in a bidentate manner (one citrate ion links two phosphate sites), is coherent with the experimental data. The activation standard heat and activation standard entropy were calculated. All the thermodynamic and kinetic parameters were in concordance with the adsorption reaction proposed in this work.

  19. Polymerization of Pu(IV) in aqueous nitric acid solutions

    SciTech Connect

    Toth, L.M.; Friedman, H.A.; Osborne, M.M.

    1980-10-01

    The polymerization of Pu(IV) in aqueous nitric acid solutions has been studied spectrophotometrically both to establish the influence of large UO{sub 2}(NO{sub 3}){sub 2} concentrations on the polymerization rates and, more generally, to review the influence of the major parameters on the polymer reaction. Typically, experiments have been performed at 50{sup 0}C and with 0.05 M Pu in nitric acid solutions that vary in acidity from 0.07 to 0.4 M. An induction period usually precedes the polymer growth stage during which time nucleation of primary hydrolysis products occurs. Uranyl nitrate retards the polymerization reaction by approximately 35% in spite of the counteracting influence of the nitrate ions associated with this solute. The rate of polymer formation, expressed as d(percent polymer)/dt, has been shown to depend on the total plutonium concentration in reactions where the Pu(IV) concentration remained constant; and it is therefore suggested that the polymer reaction rate is not first order with respect to the concentration of plutonium as was previously thought. It has been shown further that accurate acid determinations on stock reagents are essential in order to obtain reliable polymerization experiments. Satisfactory procedures for these analyses did not exist, so appropriate modifications to the iodate precipitation methods were developed. The most ideal plutonium reagent material has been shown to be crystalline Pu(IV) nitrate because it can be added directly to acid solutions without the occurrence of unintentional hydrolysis reactions.

  20. A method for calculating the acid-base equilibria in aqueous and nonaqueous electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Tanganov, B. B.; Alekseeva, I. A.

    2017-06-01

    Concentrations of particles in acid-base equilibria in aqueous and nonaqueous solutions of electrolytes are calculated on the basis of logarithmic charts, activity coefficients, and equilibrium constants.

  1. Perfluoroalkyl acids in aqueous samples from Germany and Kenya.

    PubMed

    Shafique, Umer; Schulze, Stefanie; Slawik, Christian; Böhme, Alexander; Paschke, Albrecht; Schüürmann, Gerrit

    2017-04-01

    Continuous monitoring of chemicals in the environment is important to control their fate and to protect human health, flora, and fauna. Perfluoroalkyl acids (PFAAs) have been detected frequently in different environmental compartments during the last 15 years and have drawn much attention because of their environmental persistence, omnipresence, and bioaccumulation potential. Water is an important source of their transport. In the present study, distributions of PFAAs in river water, wastewater treatment plant (WWTP) effluent, and tap water from eastern part of Germany and western part of Kenya were investigated. Eleven perfluorocarboxylic acids (PFCAs) and five perfluorosulfonic acids (PFSAs) were analyzed using liquid chromatography/tandem mass spectrometry. Sum of mean concentrations of eight PFAAs detected in drinking tap water from Leipzig was 11.5 ng L(-1), dominated by perfluorooctanoic acid (PFOA, 6.2 ng L(-1)). Sums of mean riverine concentrations of PFAAs detected in Pleiße/White Elster, Saale, and Elbe (Germany) were 24.8, 54.3, and 26.8 ng L(-1), respectively. Annual flux of PFAAs from River Saale was estimated to be 164 ± 23 kg a(-1). The effluent of WWTP in Halle was found to contain four times higher levels of PFAAs than river water and was dominated by perfluorobutane sulfonate (PFBS) with 32 times higher concentration than the riverine level. It advocates that WWTPs are the point source of contaminating water bodies with PFAAs, and short-chain PFAAs are substituting long-chain homologues. Sums of mean riverine concentrations of PFAAs in Sosiani (Kenya) in samples from sparsely populated and densely populated areas were 58.8 and 109.4 ng L(-1), respectively, indicating that population directly affected the emissions of PFAAs to surface waters. The discussion includes thorough review and comparison of recently published literature reporting occurrence of PFAAs in aqueous matrices. Graphical abstract Perfluoroalkyl acids in aqueous

  2. Reversible absorption of SO2 by amino acid aqueous solutions.

    PubMed

    Deng, Renpan; Jia, Lishan; Song, Qianqian; Su, Shuai; Tian, Zhongbiao

    2012-08-30

    Six water-soluble amino acids (glycine, l-α-alanine, dl-alanine, β-alanine, proline and arginine) aqueous solutions were applied to remove SO(2) from SO(2)-N(2) system in this report. All the tested amino acids solutions were found to be excellent absorbents for SO(2) removal, and SO(2) saturation uptake of β-alanine solution was the highest under the same experimental conditions. The effects of amino acid concentration, SO(2) concentration, absorption temperature, desorption temperature and initial pH value of the absorbent on the removal of SO(2) were investigated with β-Ala solution. The experimental results showed that SO(2) saturation uptake increased with the increase in β-alanine solution and SO(2) concentration. Room temperature (20-30°C) was found to be optimal for SO(2) absorption. Additionally the SO(2) desorption capacity increased with increasing desorption temperature. The neutral environment pH value of 6.8 was found to be optimal for SO(2) removal. Ten continuous absorption-desorption cycles showed that the absorbent had an excellent regeneration performance. (13)C NMR and ultraviolet analyses offer ample evidence to speculate that the bonding between SO(2) and β-alanine was not covalent but some weak interactive forces, such as dispersion force, induction force, dipole-dipole force and hydrogen bond. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. UV photolysis of perfluorooctanoic acid (PFOA) in dilute aqueous solution.

    PubMed

    Giri, R R; Ozaki, H; Morigaki, T; Taniguchi, S; Takanami, R

    2011-01-01

    Perfluorooctanoic acid (PFOA) is very persistent in the environment and widely detected in the water environment. Only some advanced methods with extreme reaction conditions are shown to be capable of degrading the compound efficiently, and almost all the earlier investigations used very high PFOA concentrations. The compound is detected normally at very low concentrations in the water environment, while mild reaction conditions for its degradation are preferable. This article aimed to elucidate photodegradation of PFOA in dilute aqueous solutions by combined UV wavelengths (185 nm+254 nm) and 254 nm using a newly designed UV jacket. PFOA degradation was greatly enhanced with the combined wavelengths with almost one hundred percent PFOA removals in four-hour reaction. The removals were well described by the first-order reaction kinetic. The removal efficiencies and rate values significantly decreased with smaller initial PFOA concentrations. But defluorination was greatly enhanced with smaller PFOA concentrations possibly due to accelerated decomposition of fluorinated intermediates of PFOA. Formic acid and acetic acid were two tentatively identified intermediates of PFOA photolysis while the former was a major intermediate predominantly controlling solution pH during the oxidation. The results demonstrated that PFOA photolysis by the combined wavelengths with mild reaction conditions can be greatly enhanced by proper design of UV jacket and reactor system.

  4. Influence of ions on aqueous acid-base reactions.

    PubMed

    Cox, M Jocelyn; Siwick, Bradley J; Bakker, Huib J

    2009-01-12

    We study the effects of bromide salts on the rate and mechanism of the aqueous proton/deuteron-transfer reaction between the photoacid 8-hydroxy-1,3,6-pyrenetrisulfonic acid (HPTS) and the base acetate. The proton/deuteron release is triggered by exciting HPTS with 400 nm femtosecond laser pulses. Probing the electronic and vibrational resonances of the photoacid, the conjugate photobase, the hydrated proton/deuteron and the accepting base with femtosecond visible and mid-infrared pulses monitors the proton transfer. Two reaction channels are identified: 1) direct long-range proton transfer over hydrogen-bonded water bridges that connect the acid and base and 2) acid dissociation to produce fully solvated protons followed by proton scavenging from solution by acetate. We observe that the addition of salt affects the long-range reaction pathway, and reduces both the rate at which protons are released to solution by HPTS and the rate at which solvated protons are scavenged from solution by acetate. We study the dependence of these effects on the nature and concentration of the dissolved salt.

  5. Conformation of poly(γ-glutamic acid) in aqueous solution.

    PubMed

    Muroga, Yoshio; Nakaya, Asami; Inoue, Atsuki; Itoh, Daiki; Abiru, Masaya; Wada, Kaori; Takada, Masako; Ikake, Hiroki; Shimizu, Shigeru

    2016-04-01

    Local conformation and overall conformation of poly(γ-DL-glutamic acid) (PγDLGA) and poly(γ-L-glutamic acid) (PγLGA) in aqueous solution was studied as a function of degree of ionization ε by (1) H-NMR, circular dichroism, and potentiometric titration. It was clarified that their local conformation is represented by random coil over an entire ε range and their overall conformation is represented by expanded random-coil in a range of ε > ε(*) , where ε(*) is about 0.3, 0.35, 0.45, and 0.5 for added-salt concentration of 0.02M, 0.05M, 0.1M, and 0.2M, respectively. In a range of ε < ε(*) , however, ε dependence of their overall conformation is significantly differentiated from each other. PγDLGA tends to aggregate intramolecularly and/or intermolecularly with decreasing ε, but PγLGA still behaves as expanded random-coil. It is speculated that spatial arrangement of adjacent carboxyl groups along the backbone chain essentially affects the overall conformation of PγGA in acidic media.

  6. Surface oxide growth on platinum electrode in aqueous trifluoromethanesulfonic acid

    NASA Astrophysics Data System (ADS)

    Furuya, Yoshihisa; Mashio, Tetsuya; Ohma, Atsushi; Dale, Nilesh; Oshihara, Kenzo; Jerkiewicz, Gregory

    2014-10-01

    Platinum in the form of nanoparticles is the key and most expensive component of polymer electrolyte membrane fuel cells, while trifluoromethanesulfonic acid (CF3SO3H) is the smallest fluorinated sulfonic acid. Nafion, which acts as both electrolyte and separator in fuel cells, contains -CF2SO3H groups. Consequently, research on the electrochemical behaviour of Pt in aqueous CF3SO3H solutions creates important background knowledge that can benefit fuel cell development. In this contribution, Pt electro-oxidation is studied in 0.1 M aqueous CF3SO3H as a function of the polarization potential (Ep, 1.10 ≤ Ep ≤ 1.50 V), polarization time (tp, 100 ≤ tp ≤ 104 s), and temperature (T, 278 ≤ T ≤ 333 K). The critical thicknesses (X1), which determines the applicability of oxide growth theories, is determined and related to the oxide thickness (dox). Because X1 > dox for the entire range of Ep, tp, and T values, the formation of Pt surface oxide follows the interfacial place-exchange or the metal cation escape mechanism. The mechanism of Pt electro-oxidation is revised and expanded by taking into account possible interactions of cations, anions, and water molecules with Pt. A modified kinetic equation for the interfacial place exchange is proposed. The application of the interfacial place-exchange and metal cation escape mechanisms leads to an estimation of the Ptδ+-Oδ- surface dipole (μPtO), and the potential drop (Vox) and electric field (Eox) within the oxide. The Pt-anion interactions affect the oxidation kinetics by indirectly influencing the electric field within the double layer and the surface oxide.

  7. Determination of aqueous acid-dissociation constants of aspartic acid using PCM/DFT method

    NASA Astrophysics Data System (ADS)

    Sang-Aroon, Wichien; Ruangpornvisuti, Vithaya

    Determination of acid-dissociation constants, pKa, of aspartic acid in aqueous solution, using density functional theory calculations combined with the conductor-like polarizable continuum model (CPCM) and with integral-equation-formalism polarizable continuum model (IEFPCM) based on the UAKS and UAHF radii, was carried out. The computed pKa values derived from the CPCM and IEFPCM with UAKS cavity model of bare structures of the B3LYP/6-31+G(d,p)-optimized tetrahydrated structures of aspartic acid species are mostly close to the experimental pKa values.0

  8. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (hydrocyanic acid, aqueous solution). 173.195 Section 173.195 Transportation Other Regulations Relating to... (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in... 3A480, 3A480X, 3AA480, or 3A1800 metal cylinders of not over 126 kg (278 pounds) water capacity (nominal...

  9. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (hydrocyanic acid, aqueous solution). 173.195 Section 173.195 Transportation Other Regulations Relating to... (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in... 3A480, 3A480X, 3AA480, or 3A1800 metal cylinders of not over 126 kg (278 pounds) water capacity (nominal...

  10. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (hydrocyanic acid, aqueous solution). 173.195 Section 173.195 Transportation Other Regulations Relating to... (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in... 3A480, 3A480X, 3AA480, or 3A1800 metal cylinders of not over 126 kg (278 pounds) water capacity (nominal...

  11. Decomposition of perfluorocarboxylic acids (PFCAs) by heterogeneous photocatalysis in acidic aqueous medium.

    PubMed

    Panchangam, Sri Chandana; Lin, Angela Yu-Chen; Shaik, Khaja Lateef; Lin, Cheng-Fang

    2009-09-01

    Decomposition of perfluorocarboxylic acids (PFCAs) is of prime importance since they are recognized as persistent organic pollutants and are widespread in the environment. PFCAs with longer carbon chain length are particularly of interest because of their noted recalcitrance, toxicity, and bioaccumulation. Here in this study, we demonstrate efficient decomposition of three important PFCAs such as perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA) by heterogeneous photocatalysis with TiO(2) as a photocatalyst in acidic aqueous solutions. The PFCAs were decomposed into shorter carbon chain length PFCAs and fluoride ions. Photoholes of excited TiO(2) generated upon UV-irradiation are found to be the oxidation sites for PFCAs. Therefore, creation and sustenance of these photoholes in the acidic aqueous medium has enhanced the decomposition of PFCAs. Heterogeneous photocatalytic treatment achieved more than 99% decomposition and 38% complete mineralization of PFOA in 7h. The decomposition of other PFCAs was as high as 99% with a defluorination efficiency of 38% for PFDA and 54% for PFNA. The presence of perchloric acid was found to enhance the decomposition by facilitating the ionization of PFCAs. The oxygen present in the medium served both as an oxidant and an electron acceptor. The mechanistic details of PFCA decomposition and their corresponding mineralization are elaborated.

  12. Raman spectroscopic study of the conformation of dicarboxylic acid salts in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Fukushima, Kunio; Watanabe, Toshiaki; Umemura, Matome

    1986-08-01

    It is already known that the molecules of long chain monocarboxylic acid salts have a tendency to form micelles in aqueous solutions, the molecular chain taking the all- trans zigzag structure. However it is considered difficult for dicarboxylic acid salts to adopt the same structure as the monocarboxylic acid salts as they have two carboxyl groups, one on each end of the molecular chain. Therefore, a special structure is expected to exist for dicarboxylic acid salts in aqueous solution. In order to examine this, Raman spectra of suberic acid salt and azelaic acid salt in aqueous solution were measured and the normal vibrational calculation carried out, showing that dicarboxylic acid salts have a helical structure in aqueous solution.

  13. [Determination of dehydroabietic acid and abietic acid in aqueous alkali extract of Liquidambaris Resina by HPLC].

    PubMed

    Wang, Ying-Feng; Wei, Xiao-Yan

    2013-01-01

    To develop an HPLC method for content determination of dehydroabietic acid and abietic acid in aqueous alkali extract of Liquidambaris Resina. The determination was carried out on a DIONEX C18 column (4.6 mm x 250 mm, 5 microm) eluted with acetonitrile and water containing 0.1% acetic acid. The flow rate was 1 mL x min(-1), and the detected wavelength was set at 210, 240 nm. The peak areas and the sample quantity of the two components had good linear relationship in the range of 0.4-3.4 microg for dehydroabietic acid, and 0.6-4.8 microg for abietic acid. The average recoveries were 99.53%, 101.9%, respectively. The method was proved to be simple, accurate and used for the quality evaluation of Liquidambaris Resina.

  14. Optical properties of chitosan in aqueous solution of L- and D-ascorbic acids

    NASA Astrophysics Data System (ADS)

    Malinkina, Olga N.; Shipovskaya, Anna B.; Kazmicheva, Olga F.

    2016-04-01

    The optical properties of aqueous chitosan solutions in L- and D-ascorbic acids were studied by optical rotatory dispersion and spectrophotometry. The specific optical rotation [α] of all chitosan solutions tested was positive, in contrast to aqueous solutions of the ascorbic acid enantiomers, which exhibit an inverse relationship of [α] values. Significant differences in the absolute values of [α] of the chitosan solutions at polymer-acid ratios exceeding the equimolar one were found.

  15. Amino acid and fatty acid composition of an aqueous extract of Channa striatus (Haruan) that exhibits antinociceptive activity.

    PubMed

    Zakaria, Z A; Mat Jais, A M; Goh, Y M; Sulaiman, M R; Somchit, M N

    2007-03-01

    1. The present study was performed in order to determine the amino acid and fatty acid composition of an aqueous extract of the freshwater fish Channa striatus, obtained by soaking (1:2, w/v) fresh fillets overnight in a chloroform:methanol (2:1, v/v) solvent, to elucidate the mechanism responsible for its antinociceptive activity and to clarify the relationship between the presence of the amino and fatty acids and the expected activity. 2. The aqueous extract was found to contain all amino acids with the major amino acids glycine, alanine, lysine, aspartic acid and proline making up 35.77 +/- 0.58, 10.19 +/- 1.27, 9.44 +/- 0.56, 8.53 +/- 1.15 and 6.86 +/- 0.78% of the total protein, respectively. 3. In addition, the aqueous extract was found to have a high palmitic acid (C16:0) content, which contributed approximately 35.93 +/- 0.63% to total fatty acids. The other major fatty acids in the aqueous extract were oleic acid (C18:1), stearic acid (C18:0), linoleic acid (C18:2) and arachidonic acid (C20:4), contributing 22.96 +/- 0.40, 15.31 +/- 0.33, 11.45 +/- 0.31 and 7.44 +/- 0.83% of total fatty acids, respectively. 4. Furthermore, the aqueous extract was demonstrated to possess concentration-dependent antinociceptive activity, as expected, when assessed using the abdominal constriction test in mice. 5. It is concluded that the aqueous extract of C. striatus contains all the important amino acids, but only some of the important fatty acids, which are suggested to play a key role in the observed antinociceptive activity of the extract, as well as in the traditionally claimed wound healing properties of the extract.

  16. Multiple glass transitions and freezing events of aqueous citric acid.

    PubMed

    Bogdan, Anatoli; Molina, Mario J; Tenhu, Heikki; Loerting, Thomas

    2015-05-14

    Calorimetric and optical cryo-microscope measurements of 10-64 wt % citric acid (CA) solutions subjected to moderate (3 K/min) and slow (0.5 and 0.1 K/min) cooling/warming rates and also to quenching/moderate warming between 320 and 133 K are presented. Depending on solution concentration and cooling rate, the obtained thermograms show one freezing event and from one to three liquid-glass transitions upon cooling and from one to six liquid-glass and reverse glass-liquid transitions, one or two freezing events, and one melting event upon warming of frozen/glassy CA/H2O. The multiple freezing events and glass transitions pertain to the mother CA/H2O solution itself and two freeze-concentrated solution regions, FCS1 and FCS2, of different concentrations. The FCS1 and FCS2 (or FCS22) are formed during the freezing of CA/H2O upon cooling and/or during the freezing upon warming of partly glassy or entirely glassy mother CA/H2O. The formation of two FCS1 and FCS22 regions during the freezing upon warming to our best knowledge has never been reported before. Using an optical cryo-microscope, we are able to observe the formation of a continuous ice framework (IF) and its morphology and reciprocal distribution of IF/(FCS1 + FCS2). Our results provide a new look at the freezing and glass transition behavior of aqueous solutions and can be used for the optimization of lyophilization and freezing of foods and biopharmaceutical formulations, among many other applications where freezing plays a crucial role.

  17. Multiple Glass Transitions and Freezing Events of Aqueous Citric Acid

    PubMed Central

    2014-01-01

    Calorimetric and optical cryo-microscope measurements of 10–64 wt % citric acid (CA) solutions subjected to moderate (3 K/min) and slow (0.5 and 0.1 K/min) cooling/warming rates and also to quenching/moderate warming between 320 and 133 K are presented. Depending on solution concentration and cooling rate, the obtained thermograms show one freezing event and from one to three liquid–glass transitions upon cooling and from one to six liquid–glass and reverse glass–liquid transitions, one or two freezing events, and one melting event upon warming of frozen/glassy CA/H2O. The multiple freezing events and glass transitions pertain to the mother CA/H2O solution itself and two freeze-concentrated solution regions, FCS1 and FCS2, of different concentrations. The FCS1 and FCS2 (or FCS22) are formed during the freezing of CA/H2O upon cooling and/or during the freezing upon warming of partly glassy or entirely glassy mother CA/H2O. The formation of two FCS1 and FCS22 regions during the freezing upon warming to our best knowledge has never been reported before. Using an optical cryo-microscope, we are able to observe the formation of a continuous ice framework (IF) and its morphology and reciprocal distribution of IF/(FCS1 + FCS2). Our results provide a new look at the freezing and glass transition behavior of aqueous solutions and can be used for the optimization of lyophilization and freezing of foods and biopharmaceutical formulations, among many other applications where freezing plays a crucial role. PMID:25482069

  18. Thermodynamics of the complexation of arabinogalactan with salicylic and p-aminobenzoic acids in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Mudarisova, R. Kh.; Badykova, L. A.

    2016-03-01

    The thermodynamics of complexation of arabinogalactan with salicylic and p-aminobenzoic acids in aqueous solutions is studied by means spectroscopy. The standard thermodynamic characteristics (Δ H°; Δ G°; Δ S°) of complexation are calculated.

  19. The solvent effect on the acidities of haloacetic acids in aqueous solution. A RISM-SCF study

    NASA Astrophysics Data System (ADS)

    Kawata, Masaaki; Ten-no, Seiichiro; Kato, Shigeki; Hirata, Fumio

    1995-06-01

    The acidities of acetic, fluoracetic and chloroacetic acids in aqueous solution are calculated by means of the ab initio method combined with the reference interaction site method in the statistical mechanics of molecular liquids (the RISM-SCF method). The inversion in the order of acidities experimentally observed when a series of haloacetic acids is immersed into aqueous solution is reproduced. It is shown that the inversion is caused by competition between substitution and solvation effects. The solvation effect is discussed in molecular detail in terms of the charge distribution of the solute and the solute-solvent radial distribution functions.

  20. High-Yield Production of Levulinic Acid from Pretreated Cow Dung in Dilute Acid Aqueous Solution.

    PubMed

    Su, Jialei; Shen, Feng; Qiu, Mo; Qi, Xinhua

    2017-02-14

    Agricultural waste cow dung was used as feedstock for the production of a high value-added chemical levulinic acid (LA) in dilute acid aqueous solutions. A high LA yield of 338.9 g/kg was obtained from the pretreated cow dung, which was much higher than that obtained from the crude cow dung (135 g/kg), mainly attributed to the breakage of the lignin fraction in the lignocellulose structure of the cow dung by potassium hydroxide (KOH) pretreatment, and thus enhanced the accessibility of cow dung to the acid sites in the catalytic reaction. Meanwhile, another value-added chemical formic acid could be obtained with a yield of ca. 160 g/kg in the process, implying a total production of ca. 500 g/kg yield for LA and formic acid from the pretreated cow dung with the proposed process. The developed process was shown to be tolerant to high initial substrate loading with a satisfied LA yield. This work provides a promising strategy for the value-increment utilization of liglocellulosic agricultural residues.

  1. Uptake of Hypobromous Acid (HOBr) by Aqueous Sulfuric Acid Solutions: Low-Temperature Solubility and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Michelsen, Rebecca R.; Ashbourn, Samatha F. M.; Rammer, Thomas A.; Golden, David M.

    2005-01-01

    Hypobromous acid (HOBr) is a key species linking inorganic bromine to the chlorine and odd hydrogen chemical families. We have measured the solubility of HOBr in 45 - 70 wt% sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosol composition. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, with an effective Henry's law coefficient, H* = 10(exp 4) - 10(exp 7) mol/L/atm. H* is inversely dependent on temperature, with Delta H = -46.2 kJ/mol and Delta S = -106.2 J/mol/K for 55 - 70 wt% H2SO4 solutions. Our study includes temperatures which overlap both previous measurements of HOBr solubility. For uptake into aqueous 45 wt% H2SO4, the solubility can be described by log H* = 3665/T - 10.63. For 55 - 70 wt% H2SO4, log H* = 2412/T - 5.55. At temperatures colder than approx. 213 K, the solubility of HOBr in 45 wt% H2SO4 is noticeably larger than in 70 wt% H2SO4. The solubility of HOBr is comparable to that of HBr, indicating that upper tropospheric and lower stratospheric aerosols should contain equilibrium concentrations of HOBr which equal or exceed those of HBr. Our measurements indicate chemical reaction of HOBr upon uptake into aqueous sulfuric acid in the presence of other brominated gases followed by evolution of gaseous products including Br2O and Br2, particularly at 70 wt% H2SO4.

  2. Behaviors of acrylamide/itaconic acid hydrogels in uptake of uranyl ions from aqueous solutions

    SciTech Connect

    Karadag, E.; Saraydin, D.; Gueven, O.

    1995-12-01

    In this study, adsorptions of uranyl ions from two different aqueous uranyl solutions by acrylamide-itaconic acid hydrogels were investigated by a spectroscopic method. The hydrogels were prepared by irradiating with {gamma}-radiation. In the experiment of uranyl ions adsorption, Type II adsorption was found. One gram of acrylamide-itaconic acid hydrogels sorbed 178-219 mg uranyl ions from the solutions of uranyl acetate, 42-76 mg uranyl ions from the aqueous solutions of uranyl nitrate, while acrylamide hydrogel did not sorb any uranyl ion. For the hydrogel containing 40 mg of itaconic acid and irradiated to 3.73 kGy, swelling of the hydrogels was observed in water (1660%), in the aqueous solution of uranyl acetate (730%), and in the aqueous solution of uranyl nitrate (580%). Diffusions of water onto hydrogels were a non-Fickian type of diffusion, whereas diffusions of uranyl ions were a Fickian type of diffusion.

  3. The IUPAC aqueous and non-aqueous experimental pKa data repositories of organic acids and bases.

    PubMed

    Slater, Anthony Michael

    2014-10-01

    Accurate and well-curated experimental pKa data of organic acids and bases in both aqueous and non-aqueous media are invaluable in many areas of chemical research, including pharmaceutical, agrochemical, specialty chemical and property prediction research. In pharmaceutical research, pKa data are relevant in ligand design, protein binding, absorption, distribution, metabolism, elimination as well as solubility and dissolution rate. The pKa data compilations of the International Union of Pure and Applied Chemistry, originally in book form, have been carefully converted into computer-readable form, with value being added in the process, in the form of ionisation assignments and tautomer enumeration. These compilations offer a broad range of chemistry in both aqueous and non-aqueous media and the experimental conditions and original reference for all pKa determinations are supplied. The statistics for these compilations are presented and the utility of the computer-readable form of these compilations is examined in comparison to other pKa compilations. Finally, information is provided about how to access these databases.

  4. The IUPAC aqueous and non-aqueous experimental pKa data repositories of organic acids and bases

    NASA Astrophysics Data System (ADS)

    Slater, Anthony Michael

    2014-10-01

    Accurate and well-curated experimental pKa data of organic acids and bases in both aqueous and non-aqueous media are invaluable in many areas of chemical research, including pharmaceutical, agrochemical, specialty chemical and property prediction research. In pharmaceutical research, pKa data are relevant in ligand design, protein binding, absorption, distribution, metabolism, elimination as well as solubility and dissolution rate. The pKa data compilations of the International Union of Pure and Applied Chemistry, originally in book form, have been carefully converted into computer-readable form, with value being added in the process, in the form of ionisation assignments and tautomer enumeration. These compilations offer a broad range of chemistry in both aqueous and non-aqueous media and the experimental conditions and original reference for all pKa determinations are supplied. The statistics for these compilations are presented and the utility of the computer-readable form of these compilations is examined in comparison to other pKa compilations. Finally, information is provided about how to access these databases.

  5. KINETIC ASPECTS OF CATION-ENHANCED AGGREGATION IN AQUEOUS HUMIC ACIDS. (R822832)

    EPA Science Inventory

    The cation-enhanced formation of hydrophobic domains in aqueous humic acids has been shown to be a slow process, consistent with the evolution and disintegration of humic acid configurations over periods lasting from days to weeks. After the addition of a magnesium salt to a humi...

  6. Rosmarinic acid content in antidiabetic aqueous extract of Ocimum canum Sims grown in Ghana

    USDA-ARS?s Scientific Manuscript database

    Rosmarinic acid (RA) is an important polyphenol that is found in a variety of herbs including Ocimum canum sims (locally called eme or akokobesa in Ghana). Aqueous extracts from the leaves of O.canum are used as an antidiabetic herbal medicine in Ghana. Interestingly, rosmarinic acid content and p...

  7. Biosorption of acidic textile dyestuffs from aqueous solution by Paecilomyces sp. isolated from acidic mine drainage.

    PubMed

    Çabuk, Ahmet; Aytar, Pınar; Gedikli, Serap; Özel, Yasemin Kevser; Kocabıyık, Erçin

    2013-07-01

    Removal of textile dyestuffs from aqueous solution by biosorption onto a dead fungal biomass isolated from acidic mine drainage in the Çanakkale Region of Turkey was investigated. The fungus was found to be a promising biosorbent and identified as Paecilomyces sp. The optimal conditions for bioremediation were as follows: pH, 2.0; initial dyestuff concentration, 50 mg l(-1) for Reactive Yellow 85 and Reactive Orange 12, and 75 mg l(-1) for Reactive Black 8; biomass dosage, 2 g l(-1) for Reactive Yellow 85, 3 g l(-1) for Reactive Orange 12, 4 g l(-1) for Reactive Black 8; temperature, 25 °C; and agitation rate, 100 rpm. Zeta potential measurements indicated an electrostatic interaction between the binding sites and dye anions. Fourier transform infrared spectroscopy showed that amine, hydroxyl, carbonyl, and amide bonds were involved in the dyestuff biosorption. A toxicity investigation was also carried out before and after the biosorption process. These results showed that the toxicities for the reactive dyestuffs in aqueous solutions after biosorption studies decreased. The Freundlich and Langmuir adsorption models were used for the mathematical description of the biosorption equilibrium, and isotherm constants were evaluated for each dyestuff. Equilibrium data of biosorption of RY85 and RO12 dyestuffs fitted well to both models at the studied concentration and temperature.

  8. Treatment of infectious skin defects or ulcers with electrolyzed strong acid aqueous solution.

    PubMed

    Sekiya, S; Ohmori, K; Harii, K

    1997-01-01

    A chronic ulcer with an infection such as methicillin-resistant Staphylococcus aureus is hard to heal. Plastic and reconstructive surgeons often encounter such chronic ulcers that are resistant to surgical or various conservative treatments. We applied conservative treatment using an electrolyzed strong acid aqueous solution and obtained satisfactory results. The lesion was washed with the solution or soaked in a bowl of the solution for approximately 20 min twice a day. Fresh electrolyzed strong acid aqueous solution is unstable and should be stored in a cool, dark site in a sealed bottle. It should be used within a week after it has been produced. Here we report on 15 cases of infectious ulcers that were treated by electrolyzed strong acid aqueous solution. Of these cases, 7 patients were healed, 3 were granulated, and in 5, infection subsided. In most cases the lesion became less reddish and less edematous. Discharge or foul odor from the lesion was decreased. Electrolyzed strong acid aqueous solution was especially effective for treating a chronic refractory ulcer combined with diabetes melitus or peripheral circulatory insufficiency. This clinically applied therapy of electrolyzed strong acid aqueous solution was found to be effective so that this new therapeutic technique for ulcer treatment can now be conveniently utilized.

  9. A Lead/graphite accumulator using aqueous hydrofluoric acid

    NASA Astrophysics Data System (ADS)

    Beck, Fritz; Krohn, Holger

    In this paper a new aqueous accumulator is described and its main advantages and disadvantages are discussed. It consists of a lead negative electr More than 1000 cycles were completed in 40% HF while in 60% HF 3000 cycles were exceeded. The conversion of the electrolyte and the graphite was 1% and The cell promises to be cheap with a very good cycle life and, although the theoretical energy density is only 62 W h kg -1, 30 W h kg -1 sho

  10. Dissociation of equimolar mixtures of aqueous carboxylic acids in ionic liquids: role of specific interactions.

    PubMed

    Shukla, Shashi Kant; Kumar, Anil

    2015-04-30

    Hammett acidity function observes the effect of protonation/deprotonation on the optical density/absorbance of spectrophotometric indicator. In this work, the Hammett acidity, H0, of equimolar mixtures of aqueous HCOOH, CH3COOH, and CH3CH2COOH was measured in 1-methylimidazolium-, 1-methylpyrrolidinium-, and 1-methylpiperidinium-based protic ionic liquids (PILs) and 1-butyl-3-methylimidazolium-based aprotic ionic liquid (AIL) with formate (HCOO(-)) anion. Higher H0 values were observed for the equimolar mixtures of aqueous carboxylic acids in protic ionic liquids compared with those of the aprotic ionic liquid because of the involvement of the stronger specific interactions between the conjugate acid of ionic liquid and conjugate base of carboxylic acids as suggested by the hard-soft acid base (HSAB) theory. The different H0 values for the equimolar mixtures of aqueous carboxylic acids in protic and aprotic ionic liquids were noted to depend on the activation energy of proton transfer (Ea,H(+)). The higher activation energy of proton transfer was obtained in AIL, indicating lower ability to form specific interactions with solute than that of PILs. Thermodynamic parameters determined by the "indicator overlapping method" further confirmed the involvement of the secondary interactions in the dissociation of carboxylic acids. On the basis of the thermodynamic parameter values, the potential of different ionic liquids in the dissociation of carboxylic acids was observed to depend on the hydrogen bond donor acidity (α) and hydrogen bond acceptor basicity (β), characteristics of specific interactions.

  11. A theoretical study on the pH dependence of X-ray emission spectra for aqueous acetic acid

    NASA Astrophysics Data System (ADS)

    Nishida, Naohiro; Tokushima, Takashi; Takahashi, Osamu

    2016-04-01

    We performed theoretical calculations to reproduce the site-selective XES spectra for aqueous acetic acid at the oxygen K-edge. The shape of the experimental XES spectra obtained from aqueous acetic acid drastically changed when the pH value was high. Structure sampling of an aqueous acetic acid cluster model was performed by the ab initio molecular dynamics trajectory. Relative XES peak intensities for the core⿿hole excited state dynamics simulations were calculated using density functional theory. We found that the theoretical XES spectra reproduced well the experimental spectra and that these calculations gave us electronic and molecular structure information about aqueous acetic acid.

  12. Effects of aqueous and acid-based coloring liquids on the hardness of zirconia restorations.

    PubMed

    Nam, Ji-Young; Park, Mi-Gyoung

    2017-05-01

    The effects of the application of aqueous coloring liquids on the mechanical properties of zirconia have not yet been investigated. The purpose of this in vitro study was to evaluate the effects of 3 different coloring techniques and the number of coloring liquid applications on the hardness of zirconia. Eighty specimens were divided into 8 groups (n=10); nonshaded zirconia, preshaded zirconia, acid-based coloring liquid zirconia, and aqueous coloring liquid zirconia (1, 3, 6). Vickers hardness was measured. Data were analyzed via 1-way and 2-way ANOVAs. Multiple comparisons were performed using a Scheffé test (α=.05). Statistically significant differences in hardness were found between acid-based coloring liquid zirconia and aqueous coloring liquid zirconia (P<.001). Increasing the number of coloring liquid applications decreased the hardness value of acid-based coloring liquid zirconia (P<.001) but had no effect on the hardness of aqueous coloring liquid zirconia (P>.05). Within the limitations of this study, the hardness of zirconia was influenced to differing degrees depending on coloring technique. The number of coloring liquid applications affected the hardness of zirconia colored with the acid-based coloring liquid but not the hardness of zirconia colored with the aqueous coloring liquid. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Phosphorylation of Glyceric Acid in Aqueous Solution Using Trimetaphosphate

    NASA Technical Reports Server (NTRS)

    Kolb, Vera; Orgel, Leslie E.

    1996-01-01

    The phosphorylation of glyceric acid is an interesting prebiotic reaction because it converts a simple, potentially prebiotic organic molecule into phosphate derivatives that are central to carbohydrate metabolism. We find that 0.05 M glyceric acid in the presence of 0.5 M trimetaphosphate in alkaline solution gives a mixture of 2- and 3-phosphoglyceric acids in combined yields of up to 40%.

  14. Phosphorylation of glyceric acid in aqueous solution using trimetaphosphate

    NASA Astrophysics Data System (ADS)

    Kolb, Vera; Orgel, Leslie E.

    1996-02-01

    The phosphorylation of glyceric acid is an interesting prebiotic reaction because it converts a simple, potentially prebiotic organic molecule into phosphate derivatives that are central to carbohydrate metabolism. We find that 0.05 M glyceric acid in the presence of 0.5 M trimetaphosphate in alkaline solution gives a mixture of 2- and 3-phosphoglyceric acids in combined yields of up to 40%.

  15. Extraction of steroidal glucosiduronic acids from aqueous solutions by anionic liquid ion-exchangers

    PubMed Central

    Mattox, Vernon R.; Litwiller, Robert D.; Goodrich, June E.

    1972-01-01

    A pilot study on the extraction of three steroidal glucosiduronic acids from water into organic solutions of liquid ion-exchangers is reported. A single extraction of a 0.5mm aqueous solution of either 11-deoxycorticosterone 21-glucosiduronic acid or cortisone 21-glucosiduronic acid with 0.1m-tetraheptylammonium chloride in chloroform took more than 99% of the conjugate into the organic phase; under the same conditions, the very polar conjugate, β-cortol 3-glucosiduronic acid, was extracted to the extent of 43%. The presence of a small amount of chloride, acetate, or sulphate ion in the aqueous phase inhibited extraction, but making the aqueous phase 4.0m with ammonium sulphate promoted extraction strongly. An increase in the concentration of ion-exchanger in the organic phase also promoted extraction. The amount of cortisone 21-glucosiduronic acid extracted by tetraheptylammonium chloride over the pH range of 3.9 to 10.7 was essentially constant. Chloroform solutions of a tertiary, a secondary, or a primary amine hydrochloride also will extract cortisone 21-glucosiduronic acid from water. The various liquid ion exchangers will extract steroidal glucosiduronic acid methyl esters from water into chloroform, although less completely than the corresponding free acids. The extraction of the glucosiduronic acids from water by tetraheptylammonium chloride occurs by an ion-exchange process; extraction of the esters does not involve ion exchange. PMID:5075264

  16. Adsorption of organic acids from dilute aqueous solution onto activated carbon

    SciTech Connect

    Wang, S.W.

    1980-06-01

    The radioisotope technique was used to study the removal of organic acid contaminants from dilute aqueous solutions onto activated carbon. Acetic acid, propionic acid, n-butyric acid, n-hexanoic acid and n-heptanoic acid were studied at 278, 298, and 313/sup 0/K. Three bi-solute acid mixtures (acetic and propionic acids, acetic and butanoic acids, and propionic and butanoic acids) were studied at 278 and 298/sup 0/K. Isotherms of the single-solute systems were obtained at three different temperatures in the very dilute concentration region (less than 1% by weight). These data are very important in the prediction of bi-solute equilibrium data. A Polanyi-based competitive adsorption potential theory was used to predict the bi-solute equilibrium uptakes. Average errors between calculated and experimental data ranges from 4% to 14%. It was found that the competitive adsorption potential theory gives slightly better results than the ideal adsorbed solution theory.

  17. Photocatalytic Oxidation of Sulfurous Acid in an Aqueous Medium

    ERIC Educational Resources Information Center

    Romero, Alicia; Hernandez, Willie; Suarez, Marco F.

    2005-01-01

    The effect of some parameters on sulfurous acid and sulfur oxidation kinetics such as initial concentration of sulfurous acid, oxygen, TiO[2] crystalline concentration, the power of black light, and quantity of TiO[2] is investigated. The experiments can be performed in an undergraduate physical chemistry laboratory with an inexpensive…

  18. Photocatalytic Oxidation of Sulfurous Acid in an Aqueous Medium

    ERIC Educational Resources Information Center

    Romero, Alicia; Hernandez, Willie; Suarez, Marco F.

    2005-01-01

    The effect of some parameters on sulfurous acid and sulfur oxidation kinetics such as initial concentration of sulfurous acid, oxygen, TiO[2] crystalline concentration, the power of black light, and quantity of TiO[2] is investigated. The experiments can be performed in an undergraduate physical chemistry laboratory with an inexpensive…

  19. Arsenous acid ionisation in aqueous solutions from 25 to 300 °C

    NASA Astrophysics Data System (ADS)

    Zakaznova-Herzog, V. P.; Seward, T. M.; Suleimenov, O. M.

    2006-04-01

    The ultraviolet spectra of dilute, aqueous arsenic (III)-containing solutions have been measured from 25 to 300 °C at the saturated vapour pressure. From these measurements, the equilibrium constant was obtained for the reaction H3AsO3⇄H++H2AsO3-; for which p K1 (arsenous acid) decreases from 9.25 to 7.11 over a temperature range from 25 to 300 °C. In addition, electrospray mass spectrometric measurements support the conclusion that the arsenous acid moeities in low density aqueous media are HAsO 2 and AsO 2-.

  20. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOEpatents

    Dietz, M.L.; Horwitz, E.P.; Bartsch, R.A.; Barrans, R.E. Jr.; Rausch, D.

    1999-03-30

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution. 4 figs.

  1. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOEpatents

    Dietz, Mark L.; Horwitz, E. Philip; Bartsch, Richard A.; Barrans, Jr., Richard E.; Rausch, David

    1999-01-01

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution.

  2. Multi-walled carbon nanotubes in aqueous phytic acid for enhancing biosensor

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyu; Miao, Yun; Ye, Pingping; Wen, Ying; Yang, Haifeng

    2014-04-01

    The poor dispersion of carbon based nanomaterials without strong acid pretreatment in aqueous solution is a fundamental problem, limiting its applications in biology-related fields. A good dispersion of multi-walled carbon nanotubes (MWCNTs) in water was realized by 50 wt.% phytic acid (PA) solution. As an application case, the PA-MWCNTs dispersion in aqueous solution was used for the immobilization of horseradish peroxidase (HRP) and its direct electrochemistry was realized. The constructed biosensor has a sound limit of detection, wide linear range, and high affinity for hydrogen peroxide (H2O2) as well as being free from interference of co-existing electro-active species.

  3. Thermodynamic Properties of the Aqueous Sulfuric Acid System to 350 K

    NASA Astrophysics Data System (ADS)

    Zeleznik, Frank J.

    1991-11-01

    Experimental measurements for aqueous sulfuric acid and its related pure, solid phases have been thermodynamically analyzed and correlated as a function of temperature and composition from pure water to pure acid. The pure phases included anhydrous sulfuric acid, five of its hydrates and ice. Experimental data which were used in the correlation included measurements of the enthalpy of dilution, both solution and pure phase heat capacities, electromotive force and solution freezing points. The correlation yielded mutually consistent expressions for the Gibbs energy of each phase and these functions generally reproduce the experimental data to ±0.75 percent. The Gibbs energy functions of the pure solid phases were used to generate tables of their thermodynamic properties from 0 K to the melting points. The Gibbs energy function for aqueous sulfuric acid was used to produce tables of both integral and partial molar solution properties as a function of sulfuric acid mole fraction every 50° from 200 to 350 K.

  4. Amino acids partitioning in aqueous two-phase system of polypropylene glycol and magnesium sulfate.

    PubMed

    Salabat, Alireza; Abnosi, Mohammad H; Bahar, Azadeh R

    2007-10-15

    The counter-current chromatography method using aqueous two-phase systems, which is a form of liquid-liquid partition chromatography, could be applied for separation of the amino acids. This method needs some information about the partition coefficient of the amino acids in such systems. In this work, partitioning of amino acids d-alanine, l-valine and l-leucine was investigated in aqueous two-phase system of polypropylene glycol (PPG425)+MgSO4+H2O at 298.15K. The results showed that increasing the amino acid hydrophobicity lead to a corresponding increase in the partition coefficients and increasing tie line length lead to decreasing partition coefficients. The effect of the pH on amino acids partitioning was also determined. The experimental data are correlated using a modified virial-type model. The comparisons between the correlation and the experimental data reveal a good agreement.

  5. Molecular Diffusivities of Silicic and Gernamic Acids in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Cummins, K. M.; Hammond, D. E.

    2001-12-01

    Germanium and silicon have many similarities in their water column behaviors, but these elements may be fractionated by diagenetic reactions in iron-rich, reducing sediments. Pore water profiles can constrain the magnitude of this fractionation, but diffusion coefficients for both silicic and germanic acid are required to quantitatively determine their transport. The objective of this study was to experimentally determine these diffusivities, using a diaphragm cell in the laboratory. A porous frit was filled with solutions containing KCl, silicic acid, and germanic acid (as a 68Ge tracer). These solutes were allowed to diffuse into a reservoir of well-mixed deionized water at 25 C. Samples were drawn from the reservoir over time, and a numerical simulation was used to estimate the diffusivity required to best fit the resulting concentration change over a 4-6 day period. Results (in 10e-6 cm2 s-1) for silicic acid averaged 8.86 +/- 0.42 and 7.83 +/- 0.66 for silicic acid concentrations of 350 uM and 910 uM respectively. These are significantly smaller than previously published results of Applin (1987), but show a similar dependence on silicic acid concentration. These results in fresh water are comparable to results of Wollast and Garrels (1970) in sea water. Results for germanic acid averaged 8.92 +/- 0.82, indistinguishable from results for silicic acid, and they did not exhibit a strong dependence on the silicic acid concentration. Additional experiments are underway using a sea water medium.

  6. Acid gas treating by aqueous alkanolamines. Annual report, January-December 1994

    SciTech Connect

    Sandall, O.C.; Rinker, E.B.; Ashour, S.

    1994-12-01

    The objective of this work is to investigate the simulateneous absorption or desorption of CO2 and H2S into and from a mixed aqueous amine solvent consisting of methyldiethanolamine (MDEA) and diethanolamine (DEA). In work completed this year the authors have measured the density, viscosity and surface tension of pure MDEA and DEA over a range in temperatures. The diffusivity of N2O was measured in aqueous blends of MDEA and DEA at 50 wt% total amine for various ratios of DEA to MDEA over the temperature range 20 to 80 deg. C. A theoretically-based model has been developed for the correlation of the physical solubility of N2O in aqueous amine solutions. A penetration theory type model which was developed to describe acid gas absorption in aqueous amine solutions was used to carry out a sensitivity analysis for the various parameters affecting the rate of absorption of CO2 in MDEA solutions.

  7. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  8. Histological effects of aqueous acids and gaseous hydrogen chloride on bean leaves

    SciTech Connect

    Swiecki, T.J.; Endress, A.G.; Taylor, O.C.

    1982-01-01

    Primary leaves of Phaseoulus vulgaris L. (pinto bean), 9 or 12 days from sowing, were exposed to aqueous acids, chloride salts, or hydrogen chloride gas. Leaves were examined for the presence and severity of resultant visible injury and samples for light and scanning electron microscopy. Exposure to 0.06 N HCl, HNO/sub 3/, H/sub 2/SO/sub 4/ or 14.5-19.0 mg m/sup -3/ gaseous HCl for 20 min evoked similar foliar injury including glazing and necrosis of the laminas. This injury appeared to result initially from plasmolysis and collapse of the epidermis and subsequently of the underlying mesophyll. Cellular injury was accompanied by various cytoplasmic alterations. Microscopic symptoms observed in leaves exposed to gaseous HCl or aqueous acids included vesicles and particulates within the larger vacuoles. Similar symptoms were present in leaves exposed to polyethylene glycol 6000. Differential effects included formation of necrotic pits and preferential injury to paravascular tissues in leaves treated with aqueous acids and crystalline chloroplast inclusions in gaseous HCl-treated and water-stressed leaves. The visible and microscopic appearances of leaves exposed to aqueous acids or gaseous HCl were compared and related to injury stemming from acid precipitation and a possible mechanism of action for gaseous HCl phytotoxicity.

  9. Atmospheric Implications of Aqueous Solvation on the Photochemistry of Pyruvic Acid

    NASA Astrophysics Data System (ADS)

    Reed Harris, A. E.; Ervens, B.; Shoemaker, R.; Kroll, J. A.; Rapf, R.; Griffith, E. C.; Monod, A.; Vaida, V.

    2014-12-01

    Formation of aerosol from organic compounds is under investigation in order to better predict the overall radiative forcing from atmospheric aerosols and their influence on global climate. One possible formation pathway for secondary organic aerosol (SOA), which is now becoming more widely accepted, is from bulk aqueous photoreactions in atmospheric particles that create low volatility compounds. These products may remain particulate upon droplet evaporation, increasing SOA mass in the atmosphere. SOA formed in this manner may account for some of the discrepancy between measured and predicted amounts of SOA. This presentation will describe the photochemistry of pyruvic acid, an α-keto acid found in the atmosphere, in aqueous solutions representative of solutes in fogs, clouds, and wet aerosols. Solvation of pyruvic acid in water changes the photodissociation mechanism and products from that of the gas phase. The photoproducts from the aqueous phase are higher in molecular weight and therefore possible SOA precursors. Further, these polymers partition to the surface of water and are expected to modify the the surface properties of atmospheric aerosols that determine the kinetics of water uptake. The reaction mechanism of pyruvic acid as a function of its environment and concentration will be presented along with the kinetics obtained for the photochemistry in aqueous solution. These results are used as input in an atmospheric model to evaluate the atmospheric consequences of solvation of pyruvic acid on its atmospheric reactivity and its role as a global sink.

  10. Acid gas absorption in aqueous solutions of mixed amines

    SciTech Connect

    Rinker, E.B.; Ashour, S.S.; Sandall, O.C.

    1996-12-31

    A mass transfer model has been developed to describe the rate of absorption (or desorption) of H{sub 2}S and CO{sub 2} in aqueous blends of a tertiary and a secondary or a primary amine. The model is based on penetration theory, and all significant chemical reactions are incorporated in the model. The reactions are taken to be reversible, with reactions involving only a proton transfer considered to be at equilibrium. The particular amines studied in this research were methyldiethanolamine (MDEA), a tertiary amine, and diethanolamine (DEA), a secondary amine. Key physicochemical data needed in the model, such as diffusion coefficients, kinetic rate constants, and gas solubilities, were measured. Experimental absorption rates of CO{sub 2} and H{sub 2}S were measured in a model gas-liquid contacting device and were compared with model predictions. Experiments were carried out for single amine solutions (both MDEA and DEA) and for amine blends.

  11. [Sorption of amino acids from aqueous solutions on activated charcoal].

    PubMed

    Nekliudov, A D; Tsibanov, V V

    1985-03-01

    Various methods for quantitative description of amino acid sorption from solutions for parenteral nutrition on activated charcoal were studied under dynamic and static conditions. With the use of the well-known Freindlich and Langmuir absorption isotherms it was shown to be possible to describe in a simplified way the complex multicomponent process of sorption of the amino acids and to estimate their loss at the filtration stage.

  12. Radiolysis of aqueous solutions of 2-aminoethanethiosulfuric acid. [Gamma radiation

    SciTech Connect

    Grachev, S.A.; Koroleva, I.K.; Kropachev, E.V.; Litvyakova, G.I.

    1982-07-10

    In the radiolysis products of aerated and deaerated solutions of the 2-aminoethanethiosulfuric acid the authors have identified cystamine monoxide, cystamine, taurine, mercamine, the sulfate ion, the sulfite ion, and the dithionate ion. The yields of these products under different conditions have been determined. Results indicated that the sulfate ion is formed both from the divalent and the hexavalent sulfur atom of the 2-aminoethanethiosulfuric acid moelcule. A possible radiolysis mechanism is discussed.

  13. Ascorbic acid levels of aqueous humor of dogs after experimental phacoemulsification.

    PubMed

    De Biaggi, Christianni P; Barros, Paulo S M; Silva, Vanessa V; Brooks, Dennis E; Barros, Silvia B M

    2006-01-01

    Phacoemulsification has been successfully employed in humans and animals for lens extraction. This ultrasonic extracapsular surgical technique induces hydroxyl radical formation in the anterior chamber, which accumulates despite irrigation and aspiration. In this paper we determined the total antioxidant status of aqueous humor after phacoemulsification by measuring aqueous humor ascorbic acid levels. Mixed-breed dogs (n = 11; weighing about 10 kg) with normal eyes as determined by slit-lamp biomicroscopy, applanation tonometry, and indirect ophthalmoscopy had phacoemulsification performed in one eye with the other eye used as a control. Samples of aqueous humor were obtained by anterior chamber paracentesis before surgery and at days 1, 2, 3, 7, and 15 after surgery. Total aqueous humor antioxidant status was inferred from the capacity of aqueous humor to inhibit free radical generation by 2,2-azobis (2-amidopropane) chlorine. Ascorbic acid concentrations were measured by high-pressure liquid chromatography with UV detection. Protein content was determined with the biuret reagent. Statistical analysis was performed by anova followed by the paired t-test. Total antioxidant capacity was reduced from 48 to 27 min during the first 24 h with a gradual increase thereafter, remaining statistically lower than the control eye until 7 days postoperatively. Reduced levels of ascorbic acid followed this reduction in antioxidant capacity (from 211 to 99 microm after 24 h), remaining lower than the control eye until 15 days postoperatively. Protein concentration in aqueous humor increased from 0.62 mg/mL to 30.8 mg/mL 24 h after surgery, remaining statistically lower than the control eye until 15 days postoperatively. Paracentesis alone did not significantly alter the parameters measured. These results indicate that after phacoemulsification, the aqueous humor ascorbic acid levels and antioxidant defenses in aqueous humor are reduced, indirectly corroborating free radical

  14. STABILITY OF MFI ZEOLITE-FILLED PDMS MEMBRANES DURING PERVAPORATIVE ETHANOL RECOVERY FROM AQUEOUS MIXTURES CONTAINING ACETIC ACID

    EPA Science Inventory

    Pervaporation is a potential process for recovering bioethanol produced from biomass fermentation. Fermentation broths contain ethanol, water, and a variety of other compounds, often including carboxylic acids. The effects of acetic acid on long-term pervaporation of aqueous et...

  15. STABILITY OF MFI ZEOLITE-FILLED PDMS MEMBRANES DURING PERVAPORATIVE ETHANOL RECOVERY FROM AQUEOUS MIXTURES CONTAINING ACETIC ACID

    EPA Science Inventory

    Pervaporation is a potential process for recovering bioethanol produced from biomass fermentation. Fermentation broths contain ethanol, water, and a variety of other compounds, often including carboxylic acids. The effects of acetic acid on long-term pervaporation of aqueous et...

  16. Novel formation of α-amino acid from α-oxo acids and ammonia in an aqueous medium

    NASA Astrophysics Data System (ADS)

    Yanagawa, Hiroshi; Makino, Yumiko; Sato, Kazuki; Nishizawa, Masato; Egami, Fujio

    1984-12-01

    In the course of a study of possible mechanisms for chemical evolution in the primeval sea, we found the novel formation of α-amino acids and N-acylamino acids from α-oxo acids and ammonia in an aqueous medium. Glyoxylic acid reacted with ammonia to form N-oxalylglycine, which gave glycine in a 5 39% yield after hydrolysis with 6N HCl. Pyruvic acid and ammonia reacted to give N-acetylalanine, which formed alanine in a 3 7% overall yield upon hydrolysis. The pH optima in these reactions were between pH 3 and 4. These reactions were further extended to the formation of other amino acids. Glutamic acid, phenylalanine and alanine were formed from α-ketoglutaric acid, phenylpyruvic acid and oxaloacetic acid, respectively, under similar conditions. N-Succinylglutamic acid was obtained as an intermediate in glutamic acid synthesis. Phenylacetylphenyl-alanineamide was also isolated as an intermediate in phenylalanine synthesis. Alanine, rather than aspartic acid, was produced from oxaloacetic acid. These reactions provide a novel route for the prebiotic synthesis of amino acids. A mechanism for the reactions will be proposed.

  17. Comparison of XAD macroporous resins for the concentration of fulvic acid from aqueous solution

    USGS Publications Warehouse

    Aiken, G.R.

    1979-01-01

    Five macroreticular, nonlonlc AmberlHe XAD resins were evaluated for concentration and Isolation of fulvlc acid from aqueous solution. The capacity of each resin for fulvlc acid was measured by both batch and column techniques. Elution efficiencies were determined by desorptlon with 0.1 N NaOH. Highest recoveries were obtained with the acrylic ester resins which proved to be most efficient for both adsorption and elution of fulvlc acid. Compared to the acrylic ester resins, usefulness of the styrene dvlnybenzene resins to remove fulvlc acid is limited because of slow diffusion-controlled adsorption and formation of charge-transfer complexes, which hinders elution. ?? 1979 American Chemical Society.

  18. THE ROLE OF SELECTED CATIONS IN THE FORMATION OF PSEUDOMICELLES IN AQUEOUS HUMIC ACID (R822832)

    EPA Science Inventory

    The fluorescence intensity enhancement of a pyrene probe in aqueous humic acid solutions was assessed in terms of added lanthanide and thorium cations. Among the trivalent ions it was found that size played a role, with the small Lu3+ ion producing the greatest increase in pyrene...

  19. Synthesis of S-linked glycosyl amino acids in aqueous solution with unprotected carbohydrates.

    PubMed

    Cohen, S B; Halcomb, R L

    2001-02-08

    [figure: see text] The cyclic sulfamidate 5 was synthesized in 60% overall yield from L-serine benzyl ester. Compound 5 reacted cleanly with the sodium thiolate salt of a variety of unprotected 1-thio sugars in aqueous buffer to afford the corresponding S-linked amino acid glycoconjugates in good yields after hydrolysis of the N-sulfates.

  20. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed...

  1. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed...

  2. POLYSTYRENE SULFONIC ACID CATALYZED GREENER SYNTHESIS OF HYDRAZONES IN AQUEOUS MEDIUM USING MICROWAVES

    EPA Science Inventory

    An environmentally benign aqueous protocol for the synthesis of cyclic, bi-cyclic, and heterocyclic hydrazones using polystyrene sulfonic acid (PSSA) as a catalyst has been developed; the simple reaction proceeds efficiently in water in the absence of any organic solvent under mi...

  3. Hydrogen-Deuterium Exchange of Meteoritic Dicarboxylic Acids During Aqueous Extraction

    NASA Technical Reports Server (NTRS)

    Fuller, M.; Huang, Y.

    2002-01-01

    This study examines the extent of hydrogen-deuterium exchange on dicarboxylic acids during aqueous extraction. Deuterium enrichment was observed to be a function of diacid structure as well as delta-D. Additional information is contained in the original extended abstract.

  4. POLYSTYRENE SULFONIC ACID CATALYZED GREENER SYNTHESIS OF HYDRAZONES IN AQUEOUS MEDIUM USING MICROWAVES

    EPA Science Inventory

    An environmentally benign aqueous protocol for the synthesis of cyclic, bi-cyclic, and heterocyclic hydrazones using polystyrene sulfonic acid (PSSA) as a catalyst has been developed; the simple reaction proceeds efficiently in water in the absence of any organic solvent under mi...

  5. Rosmarinic acid content in antidiabetic aqueous extract from ocimum canum sims in Ghana

    USDA-ARS?s Scientific Manuscript database

    Rosmarinic acid (RA) is an important polyphenol that is found in a variety of herbs including Ocimum canum sims (locally called eme or akokobesa in Ghana). Aqueous extracts from the leaves of O. canum are used as an antidiabetic herbal medicine in Ghana. Analytical TLC was used to examine the compos...

  6. SOLVENT EXTRACTION PROCESS FOR SEPARATING URANIUM AND PLUTONIUM FROM AQUEOUS ACIDIC SOLUTIONS OF NEUTRON IRRADIATED URANIUM

    DOEpatents

    Bruce, F.R.

    1962-07-24

    A solvent extraction process was developed for separating actinide elements including plutonium and uranium from fission products. By this method the ion content of the acidic aqueous solution is adjusted so that it contains more equivalents of total metal ions than equivalents of nitrate ions. Under these conditions the extractability of fission products is greatly decreased. (AEC)

  7. Aqueous-phase hydrogenation of acetic acid over transition metal catalysts

    SciTech Connect

    Olcay, Hakan; Xu, Lijun; Xu, Ye; Huber, George

    2010-01-01

    Catalytic hydrogenation of acetic acid to ethanol has been carried out in aqueous phase on several metals, with ruthenium being the most active and selective. DFT calculations suggest that the initial CO bond scission yielding acetyl is the key step and that the intrinsic reactivity of the metals accounts for the observed activity.

  8. THE ROLE OF SELECTED CATIONS IN THE FORMATION OF PSEUDOMICELLES IN AQUEOUS HUMIC ACID (R822832)

    EPA Science Inventory

    The fluorescence intensity enhancement of a pyrene probe in aqueous humic acid solutions was assessed in terms of added lanthanide and thorium cations. Among the trivalent ions it was found that size played a role, with the small Lu3+ ion producing the greatest increase in pyrene...

  9. Mechanism of carboxylic acid photooxidation in atmospheric aqueous phase: Formation, fate and reactivity

    NASA Astrophysics Data System (ADS)

    Charbouillot, Tiffany; Gorini, Sophie; Voyard, Guillaume; Parazols, Marius; Brigante, Marcello; Deguillaume, Laurent; Delort, Anne-Marie; Mailhot, Gilles

    2012-09-01

    In the first part of the work, we investigated the reactivity toward photogenerated hydroxyl radicals (rad OH) of seven monocarboxylic acids and six dicarboxylic acids found in natural cloud water. This leads to the proposition of a schematic degradation pathway linking glutaric acid (C5) to complete mineralization into CO2. We report a detailed mechanism on the succinic acid reactivity toward rad OH leading to the formation of malonic, glyoxylic and consequently oxalic acids and a comparison with reported pathways proposed by the CAPRAM (Chemical Aqueous Phase RAdical Mechanism) is discussed. We also investigated the photooxidation of formic acid under atmospherically relevant conditions leading to the possible formation of oxalic acid via radical mediated recombination. The second part focuses on the polychromatic irradiation (closed to solar irradiation) of a collected cloud aqueous phase showing that irradiation of cloud water leads to the formation of both formic and acetic acids. Carboxylic acid formation increases in the presence of photogenerated hydroxyl radicals from hydrogen peroxide, showing that photooxidation could play a key role in the formation of carboxylic acids under atmospherically relevant conditions.

  10. The standard enthalpies of formation of crystalline N-(carboxymethyl)aspartic acid and its aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lytkin, A. I.; Chernyavskaya, N. V.; Volkov, A. V.; Nikol'Skii, V. M.

    2007-07-01

    The energy of combustion of N-(carboxymethyl)aspartic acid (CMAA) was determined by bomb calorimetry in oxygen. The standard enthalpies of combustion and formation of crystalline N-(carboxymethyl)aspartic acid were calculated. The heat effects of solution of crystalline CMAA in water and a solution of sodium hydroxide were measured at 298.15 K by direct calorimetry. The standard enthalpies of formation of CMAA and its dissociation products in aqueous solution were determined.

  11. Micro-organization of humic acids in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Klučáková, Martina; Věžníková, Kateřina

    2017-09-01

    The methods of dynamic light scattering and micro-rheology were used to investigate the molecular organization of humic acids in solutions. The obtained results were supplemented by ultraviolet/visible spectrometry and measurement of the zeta potential. Particle tracking micro-rheology was used for the first time as a novel method in humic research. Solutions of humic acids were prepared in three different mediums: NaOH, NaCl, and NaOH neutralized by HCl after dissolution of the humic sample. The molecular organization of humic acids was studied over a wide concentration range (0.01-10 g dm-3). Two breaks were detected in the obtained concentration dependencies. The rearrangements were observed at concentrations around 0.02 g dm-3 and 1 g dm-3. Changes in the measured values observed at around 0.02 g dm-3 were less noticeable and were related to the formation of particles between 100 and 1000 nm in size and the strong bimodal character of humic systems diluted by NaCl. The ;switch-over point; at around 1 g dm-3 indicated changes in the secondary structure of humic acids connected with the increase in colloidal stability (decrease of zeta potential), the decrease in polydispersity, and minimal values of viscosity.

  12. Levels of bimatoprost acid in the aqueous humour after bimatoprost treatment of patients with cataract

    PubMed Central

    Cantor, Louis B; Hoop, Joni; Wudunn, Darrell; Yung, Chi‐Wah; Catoira, Yara; Valluri, Shailaja; Cortes, Arnold; Acheampong, Andrew; Woodward, David F; Wheeler, Larry A

    2007-01-01

    Aim To determine the aqueous humour concentration of the acid hydrolysis products of bimatoprost and latanoprost after a single topical dose of bimatoprost 0.03% or latanoprost 0.005% in humans. Methods Randomised, controlled, double‐masked, prospective study. 48 eyes of 48 patients scheduled for routine cataract surgery were randomised in an 8:2:2 ratio to treatment with a single 30 μl drop of bimatoprost 0.03%, latanoprost 0.005% or placebo at 1, 3, 6 or 12 h before the scheduled cataract surgery. Aqueous humour samples were withdrawn at the beginning of the surgical procedure and analysed using high‐performance liquid chromatography–tandem mass spectrometry. Results Bimatoprost acid (17‐phenyl trinor prostaglandin F2α) was detected in aqueous samples at a mean concentration of 5.0 nM at hour 1, 6.7 nM at hour 3 and 1.9 nM at hour 6 after bimatoprost treatment. After latanoprost treatment, the mean concentration of latanoprost acid (13,14‐dihydro‐17‐phenyl trinor prostaglandin F2α) in aqueous samples was 29.1 nM at hour 1, 41.3 nM at hour 3 and 2.5 nM at hour 6. Acid metabolites were below the limit of quantitation in all samples taken 12 h after dosing and in all samples from placebo‐treated patients. None of the samples from latanoprost‐treated patients contained quantifiable levels of non‐metabolised latanoprost. Non‐metabolised bimatoprost was detected in aqueous samples at a mean concentration of 6.6 nM at hour 1 and 2.4 nM at hour 3 after bimatoprost treatment. Conclusions Low levels of bimatoprost acid were detected in aqueous humour samples from patients with cataract treated with a single dose of bimatoprost. Latanoprost acid concentrations in samples from patients treated with latanoprost were at least sixfold higher. These results suggest that bimatoprost acid in the aqueous humour does not sufficiently account for the ocular hypotensive efficacy of bimatoprost. PMID:17135335

  13. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.

    2012-01-01

    Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM-10 mM) was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  14. Regeneration of an aqueous solution from an acid gas absorption process by matrix stripping

    DOEpatents

    Rochelle, Gary T [Austin, TX; Oyenekan, Babatunde A [Katy, TX

    2011-03-08

    Carbon dioxide and other acid gases are removed from gaseous streams using aqueous absorption and stripping processes. By replacing the conventional stripper used to regenerate the aqueous solvent and capture the acid gas with a matrix stripping configuration, less energy is consumed. The matrix stripping configuration uses two or more reboiled strippers at different pressures. The rich feed from the absorption equipment is split among the strippers, and partially regenerated solvent from the highest pressure stripper flows to the middle of sequentially lower pressure strippers in a "matrix" pattern. By selecting certain parameters of the matrix stripping configuration such that the total energy required by the strippers to achieve a desired percentage of acid gas removal from the gaseous stream is minimized, further energy savings can be realized.

  15. Interaction between oxalic acid and titania in aqueous ethanol dispersions.

    PubMed

    Dahlsten, Per; Rosenholm, Jarl B

    2013-02-15

    The charging effects resulting from adsorption of oxalic acid and oxalate anions on titania (anatase) surfaces in anhydrous or mixed water-ethanol suspensions is summarized. The suddenly enhanced electrical conductance with respect to titania free solutions has previously been explained in terms of surface-induced electrolytic dissociation (SIED) of weak acids. A recently published model has previously been found to successfully characterize the complex SIED effect. The model is evaluated experimentally by recording the conductance and pH of the dispersion and the zeta potential of the particles. The experimental results can be condensed to master curves, which reveal the major properties of the systems and facilitate further modeling of extensive experimental results. The equilibrium and transport properties of solutions and particles were related, but different mechanisms was found to be active in each case. The results suggest that at least three adsorption equilibria should be considered in order to improve the model. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Reduction of hexavalent chromium by ascorbic acid in aqueous solutions.

    PubMed

    Xu, Xiang-Rong; Li, Hua-Bin; Li, Xiao-Yan; Gu, Ji-Dong

    2004-11-01

    Hexavalent chromium is a priority pollutant in the USA and many other countries. Reduction of Cr(VI) to Cr(III) is environmentally favorable as the latter species is not toxic to most living organisms and also has a low mobility and bioavailability. Reduction of Cr(VI) by ascorbic acid (vitamin C) as a reductant was studied using potassium dichromate solution as the model pollutant. Effects of concentration of vitamin C, pH, temperature, irradiation and reaction time on the reduction of Cr(VI) were examined. Cr(VI) might be reduced by vitamin C not only in acidic conditions but also in weakly alkaline solutions. The reduction of Cr(VI) by vitamin C might occur not only under irradiation but also in the dark. Vitamin C is an important biological reductant in humans and animals, and not toxic. It is water-soluble and can easily permeate through various types of soils. The results indicate that vitamin C could be used in effective remediation of Cr(VI)-contaminated soils and groundwater in a wide range of pH, with or without sunlight. copyright 2004 Elsevier Ltd.

  17. Analysis of the amino acids of soy globulins by AOT reverse micelles and aqueous buffer.

    PubMed

    Zhao, Xiaoyan; Chen, Jun; Lu, Zhifang; Ling, Xiangqing; Deng, Peng; Zhu, Qingjun; Du, Fangling

    2011-10-01

    The 7S and 11S globulins from soybean proteins using reverse micelle and aqueous buffer extraction methods were characterized by using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and scanning electron microscope (SEM), and their amino acid compositions were also evaluated. SDS-PAGE did not show electrophoretic differences between 7S and 11S globulin subunits with two extraction methods. SEM analysis showed that the AOT reverse micelle processing of 7S and 11S globulins induced a reduction of droplet size. Some individual amino acid contents of 7S and 11S globulins using two extraction methods were different, some were similar. In all the samples, the glutamic acid, aspartic acid, and leucine were the dominant amino acids while the cystine and methionine were the first-limiting amino acids. The proportion of essential amino acids to the total amino acids (E/T) of the 7S globulin from aqueous buffer and reverse micelles was similar. While significant differences were obtained in the proportion of E/T of the 11S globulin.

  18. Gamma-irradiation of malic acid in aqueous solutions. [prebiotic significance

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Graff, R. L.; Ponnamperuma, C.

    1980-01-01

    The gamma-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the nonvolatile products. Thin layer chromatography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the gamma-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  19. Ruthenium-catalyzed oxidation of alkenes, alkynes, and alcohols to organic acids with aqueous hydrogen peroxide.

    PubMed

    Che, Chi-Ming; Yip, Wing-Ping; Yu, Wing-Yiu

    2006-09-18

    A protocol that adopts aqueous hydrogen peroxide as a terminal oxidant and [(Me3tacn)(CF3CO2)2Ru(III)(OH2)]CF3CO2 (1; Me3tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane) as a catalyst for oxidation of alkenes, alkynes, and alcohols to organic acids in over 80% yield is presented. For the oxidation of cyclohexene to adipic acid, the loading of 1 can be lowered to 0.1 mol %. On the one-mole scale, the oxidation of cyclohexene, cyclooctene, and 1-octanol with 1 mol % of 1 produced adipic acid (124 g, 85% yield), suberic acid (158 g, 91% yield), and 1-octanoic acid (129 g, 90% yield), respectively. The oxidative C=C bond-cleavage reaction proceeded through the formation of cis- and trans-diol intermediates, which were further oxidized to carboxylic acids via C-C bond cleavage.

  20. Gamma-irradiation of malic acid in aqueous solutions. [prebiotic significance

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Graff, R. L.; Ponnamperuma, C.

    1980-01-01

    The gamma-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the nonvolatile products. Thin layer chromatography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the gamma-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  1. Conversion of Aqueous Ammonia-Treated Corn Stover to Lactic Acid by Simultaneous Saccharification and Cofermentation

    NASA Astrophysics Data System (ADS)

    Zhu, Yongming; Lee, Y. Y.; Elander, Richard T.

    Treatment of corn stover with aqueous ammonia removes most of the structural lignin, whereas retaining the majority of the carbohydrates in the solids. After treatment, both the cellulose and hemicellulose in corn stover become highly susceptible to enzymatic digestion. In this study, corn stover treated by aqueous ammonia was investigated as the substrate for lactic acid production by simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Spezyme-CP) and Lactobacillus pentosus American Type Culture Collection (ATCC) 8041 (Spanish Type Culture Collection [CECT]-4023) were used for hydrolysis and fermentation, respectively. In batch SSCF operation, the carbohydrates in the treated corn stover were converted to lactic acid with high yields, the maximum lactic acid yield reaching 92% of the stoichiometric maximum based on total fermentable carbohydrates (glucose, xylose, and arabinose). A small amount of acetic acid was also produced from pentoses through the phosphoketolase pathway. Among the major process variables for batch SSCF, enzyme loading and the amount of yeast extract were found to be the key factors affecting lactic acid production. Further tests on nutrients indicated that corn steep liquor could be substituted for yeast extract as a nitrogen source to achieve the same lactic acid yield. Fed-batch operation of the SSCF was beneficial in raising the concentration of lactic acid to a maximum value of 75.0 g/L.

  2. Conversion of aqueous ammonia-treated corn stover to lactic acid by simultaneous saccharification and cofermentation.

    PubMed

    Zhu, Yongming; Lee, Y Y; Elander, Richard T

    2007-04-01

    Treatment of corn stover with aqueous ammonia removes most of the structural lignin, whereas retaining the majority of the carbohydrates in the solids. After treatment, both the cellulose and hemicellulose in corn stover become highly susceptible to enzymatic digestion. In this study, corn stover treated by aqueous ammonia was investigated as the substrate for lactic acid production by simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Spezyme-CP) and Lactobacillus pentosus American Type Culture Collection (ATCC) 8041 (Spanish Type Culture Collection [CECT]-4023) were used for hydrolysis and fermentation, respectively. In batch SSCF operation, the carbohydrates in the treated corn stover were converted to lactic acid with high yields, the maximum lactic acid yield reaching 92% of the stoichiometric maximum based on total fermentable carbohydrates (glucose, xylose, and arabinose). A small amount of acetic acid was also produced from pentoses through the phosphoketolase pathway. Among the major process variables for batch SSCF, enzyme loading and the amount of yeast extract were found to be the key factors affecting lactic acid production. Further tests on nutrients indicated that corn steep liquor could be substituted for yeast extract as a nitrogen source to achieve the same lactic acid yield. Fed-batch operation of the SSCF was beneficial in raising the concentration of lactic acid to a maximum value of 75.0 g/L.

  3. [Catalytic ozonation by ceramic honeycomb for the degradation of oxalic acid in aqueous solution].

    PubMed

    Zhao, Lei; Sun, Zhi-Zhong; Ma, Jun

    2007-11-01

    Comparative experiments for the degradation of oxalic acid in aqueous solution were carried out in the three processes of ozonation alone, ceramic honeycomb-catalyzed ozonation and ceramic honeycomb adsorption. The results show that the degradation rates of oxalic acid in the ceramic honeycomb-catalyzed ozonation, ozonation alone and ceramic honeycomb adsorption systems are 37.6%, 2.2% and 0.4%, and the presence of ceramic honeycomb catalyst significantly improves the degradation rate of oxalic acid compared to the results from non-catalytic ozonation and adsorption. With the addition of tert-butanol, the degradation rates of oxalic acid in catalytic ozonation system decrease by 24.1%, 29.0% and 30.1%, respectively, at the concentration of 5, 10 and 15 mg x L(-1). This phenomenon indicates that ceramic honeycomb-catalyzed ozonation for the degradation of oxalic acid in aqueous solution follows the mechanism of *OH oxidation, namely the heterogeneous surface of catalyst enhances the initiation of *OH. The results of TOC analysis demonstrate that the process of ceramic honeycomb-catalyzed ozonation can achieve the complete mineralization level without the formation of intermediary degradation products. The experimental results suggest that the reaction temperature has positive relationship with the degradation rate of oxalic acid. The degradation rates of oxalic acid in the ceramic honeycomb-catalyzed ozonation system are 16.4%, 37.6%, 61.3% and 68.2%, at the respective reaction temperature of 10, 20, 30 and 40 degrees C.

  4. Thermochemical study of the reactions of acid-base interaction in an aqueous solution of α-aminobutyric acid

    NASA Astrophysics Data System (ADS)

    Lytkin, A. I.; Chernikov, V. V.; Krutova, O. N.; Skvortsov, I. A.; Korchagina, A. S.

    2017-01-01

    The heat effects of the interaction between a solution of α-aminobutyric acid and solutions of HNO3 and KOH are measured by means of calorimetry in different ranges of pH at 298.15 K and values of ionic strength of 0.25, 0.5, and 0.75 (KNO3). The heat effects of the stepwise dissociation of the amino acid are determined. Standard thermodynamic characteristics (Δr H 0, Δr G 0, and Δr S 0) of the reactions of acid-base interaction in aqueous solutions of α-aminobutyric acid are calculated. The connection between the thermodynamic characteristics of the dissociation of the amino acid and the structure of this compound is considered.

  5. Evaluation of the Capability of Ionic Liquid-Amino Acid Aqueous Systems for the Formation of Aqueous Biphasic Systems and Their Applications in Extraction.

    PubMed

    Noshadi, Sajjad; Sadeghi, Rahmat

    2017-03-03

    In order to obtain further experimental evidence for better understanding of the molecular mechanisms responsible for the soluting-out effect phenomena in the ternary systems composed of ionic liquid (IL), amino acid and water, systematic studies on the vapor-liquid, liquid-liquid and solid-liquid equilibrium behavior of aqueous solutions of several ILs were carried out in the presence of a range of amino acids. Water activities for binary and ternary aqueous solutions containing 1-butyl-3-methylimidazolium chloride, [C4mim]Cl, 1-hexyl-3-methylimidazolium chloride, [C6mim]Cl, 1-butyl-3-methyl-imidazolium trifluoromethanesulfonate, [C4mim][CF3SO3], l-serine, glycine, alanine, and l-proline were measured using both vapor pressure osmometry and isopiestic methods. All the ternary IL + amino acid + water systems show the negative deviations from the semi-ideal behavior and therefore the soluting-out effects have been seen in these systems. In the case of [C4mim][CF3SO3] + amino acids aqueous systems, the IL is soluted-out by the amino acids and the soluting-out effect appears by aqueous biphasic systems formation. For these systems, the phase diagram and partition coefficient of caffeine were measured at 298.15 K. However, for the [C4mim]Cl and [C6mim]Cl containing systems, the amino acids are soluted-out by the ILs and the soluting-out effect appears by precipitation of the amino acids from the solution and solubilities of the amino acids in aqueous solutions decrease in the presence of [C4mim]Cl and [C6mim]Cl.

  6. Mechanistic study of fulvic acid assisted propranolol photodegradation in aqueous solution.

    PubMed

    Makunina, Maria P; Pozdnyakov, Ivan P; Chen, Yong; Grivin, Vyacheslav P; Bazhin, Nikolay M; Plyusnin, Victor F

    2015-01-01

    Laser flash (355 nm) and stationary (365 nm) photolysis were used to study the mechanisms of propranolol photolysis in the presence of fulvic acid in aqueous solutions. The FA-assisted photodegradation of propranolol was observed using UV-A irradiation (where propranolol is stable). Direct evidence indicated that the photodegradation resulted from the static quenching of the FA triplet state by propranolol via the electron transfer mechanism. The triplet state yield (ϕT≈0.6%) and the T-T absorption coefficient (ɛT(620 nm)≈5×10(4) M(-1) cm(-1)) were estimated for the first time by modeling the yields of the FA triplet state in the presence of propranolol. Thus, fulvic acid is a promising agent for accelerating propranolol photodegradation in aqueous solutions under UV-A light irradiation.

  7. Enhanced removal of Hg(II) from acidic aqueous solution using thiol-functionalized biomass.

    PubMed

    Chai, Liyuan; Wang, Qingwei; Li, Qingzhu; Yang, Zhihui; Wang, Yunyan

    2010-01-01

    Spent grain, the low-cost and abundant biomass produced in the brewing industry, was functionalized with thiol groups to be used as an adsorbent for Hg(II) removal from acidic aqueous solution. The adsorbents were characterized by the energy-dispersive X-ray analysis (EDAX) and Fourier transform infrared (FTIR) spectroscopy. Optimum pH for Hg(II) adsorption onto the thiol-functionalized spent grain (TFSG) was 2.0. The equilibrium and kinetics of the adsorption of Hg(II) onto TFSG from acidic aqueous solution were investigated. From the Langmuir isotherm model the maximum adsorption capacity of TFSG for Hg(II) was found to be 221.73 mg g(-1), which was higher than that of most various adsorbents reported in literature. Moreover, the adsorption of Hg(II) onto TFSG followed pseudo-second-order kinetic model.

  8. Ultrasonic Studies of 4-Aminobutyric Acid in Aqueous Metformin Hydrochloride Solutions at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Rajagopal, K.; Jayabalakrishnan, S. S.

    2010-12-01

    Ultrasonic speeds and density data of 4-aminobutyric acid in 0.05 M, 0.10 M, and 0.15 M aqueous metformin hydrochloride (MFHCl) solutions are measured at 308.15 K, 313.15 K, and 318.15 K. The isentropic compressibility ( k S ), the change in isentropic compressibility (Δ k S ), the relative change in isentropic compressibility ({Δ k_S/k_S^0}), the apparent molal compressibility ({k_φ}), the limiting apparent molal compressibility ({k_φ^0 }), the transfer limiting apparent molal compressibility ({Δ k_φ^0}), the hydration number ( n H), and the pair and triplet interaction parameters ( k AH, k AHH) are estimated. The above parameters are used to interpret the solute-solute and solute-solvent interactions of 4-aminobutyric acid in aqueous MFHCl solutions.

  9. Adipic and malonic acid aqueous solutions: surface tensions and saturation vapor pressures.

    PubMed

    Riipinen, Ilona; Koponen, Ismo K; Frank, Göran P; Hyvärinen, Antti-Pekka; Vanhanen, Joonas; Lihavainen, Heikki; Lehtinen, Kari E J; Bilde, Merete; Kulmala, Markku

    2007-12-20

    The surface tension of adipic aqueous solutions was measured as a function of temperature (T=278-313 K) and adipic acid mole fraction (X=0.000-0.003) using the Wilhelmy plate method. A parametrization fitted to these data is presented. The evaporation rates of binary water-malonic and water-adipic acid droplets were measured with a TDMA technique at different temperatures (T=293-300 K) and relative humidities (58-80%), and the saturation vapor pressures of subcooled liquid malonic and adipic acids were derived from the data using a binary evaporation model. The temperature dependence of the vapor pressures was obtained as least-squares fits to the derived vapor pressures: ln(Psat,l) (Pa)=220.2389-22634.96/T (K)-26.66767 ln T (K) for malonic acid and ln(Psat,l) (Pa)=140.6704-18230.97/T (K)-15.48011 ln T (K) for adipic acid.

  10. Influence of Nitric Acid on the Helium Ion Radiolysis of Aqueous Butanal Oxime Solutions.

    PubMed

    Costagliola, A; Venault, L; Deroche, A; Vermeulen, J; Duval, F; Blain, G; Vandenborre, J; Fattahi-Vanani, M; Vigier, N

    2017-07-13

    Samples of butanal oxime in aqueous nitric acid solutions have been irradiated with the helium ion ((4)He(2+)) beam of the CEMHTI (Orléans, France) cyclotron. The consumption yield of butanal oxime has been measured by gas chromatography coupled with mass spectrometry. Gaseous products (mainly H2 and N2O) have also been monitored by micro-gas chromatography. Yields of liquid phase products (hydrogen peroxide and nitrous acid) have been determined by colorimetric methods. The influence of nitric acid on the radiation chemical behavior of butanal oxime depends on the nitric acid concentration. For a low concentration (≤0.5 mol L(-1)) butanal oxime is protected by the nitrate ions, which can efficiently scavenge the water radiolysis radicals. For higher concentrations, nitrous acid can accumulate in the medium, therefore leading to a strong increase of the butanal oxime degradation. The associated mechanism is an autocatalytic oxidation of butanal oxime by HNO2.

  11. Influence of humic acid on the uptake of aqueous metals by the killifish Fundulus heteroclitus.

    PubMed

    Dutton, Jessica; Fisher, Nicholas S

    2012-10-01

    The role of humic acids, over a concentration range of 0 to 20 mg L(-1) , was investigated in the uptake of three metals (Cd, Cr, and Hg-as both inorganic Hg [Hg(II)] and methylmercury [MeHg]) and a metalloid (As) from the aqueous phase by the killifish (Fundulus heteroclitus). Cadmium uptake showed no relationship with humic acid concentration, whereas Cr, Hg(II), and MeHg uptake showed an inverse relationship, and As uptake increased with increasing humic acid concentration. Concentration factors were >1 for Cd, Hg(II), and MeHg at all humic acid concentrations, indicating killifish were more enriched in the metal than the experimental media, whereas As and Cr generally had concentration factors <1 at the end of a 72-h exposure. The uptake of As and Cr reached steady state within the 72-h exposure, whereas uptake of Cd, Hg(II), and MeHg did not. Uptake rate constants (k(u) s; ml g(-1)  d(-1) ) were highest for MeHg (91-3,936), followed by Hg(II), Cd, and Cr, and lowest for As (0.17-0.29). Dissection data revealed that the gills generally had the highest concentration of all metals under all humic acid treatments. The present study concludes that changes in humic acid concentration can influence the accumulation of aqueous metals in killifish and should be considered when modeling metal bioaccumulation.

  12. Effective Removal of Tetracycline from Aqueous Solution by Organic Acid-Coated Magnetic Nanoparticles.

    PubMed

    Guo, Liang; Liang, Yuyan; Chen, Xuelan; Xu, Wei; Wu, Kesheng; Wei, Hua; Xiong, Yonghua

    2016-03-01

    Self-assembled iron oxide nanocomposites are good magnetic nano-adsorbents that can be prepared using simple methods. Four types of organic acid-functionalised (oleic acid, undecenoic acid, caprylic acid or hexanoic acid) magnetic nanoparticles (MNPs) were synthesised through a one-pot chemisorption method for the removal of tetracycline (TC) from aqueous solution. The undecenoic acid-coated MNPs (UA-MNPs) exhibited the highest adsorption efficiency and can be easily retrieved with a low-gradient magnetic separator (0.4 Tesla) at pH 5.0 aqueous solution. The TC adsorption process on the UA-MNPs followed the Langmuir isotherm and the maximum adsorption capacities increased from 86.96 mg g(-1) to 222.2 mg g(-1) with the increase in temperature from 288 K to 318 K. The kinetics of adsorption fits pseudo-second-order model perfectly with a rate constant, 5.946 g mg(-1) min(-1) at 298 K. The positive values of the enthalpy (AH) and the negative value of the free energy (AG) indicated an endothermic and spontaneous adsorption process of TC on the UA-MNPs. Moreover, the UA-MNPs possessed excellent ability to adsorb the other three major types of TC antibiotics, including chlortetracycline, oxytetracycline and doxycycline.

  13. Volatility of organic aerosol: evaporation of ammonium sulfate/succinic acid aqueous solution droplets.

    PubMed

    Yli-Juuti, Taina; Zardini, Alessandro A; Eriksson, Axel C; Hansen, Anne Maria K; Pagels, Joakim H; Swietlicki, Erik; Svenningsson, Birgitta; Glasius, Marianne; Worsnop, Douglas R; Riipinen, Ilona; Bilde, Merete

    2013-01-01

    Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol.

  14. Volatility of Organic Aerosol: Evaporation of Ammonium Sulfate/Succinic Acid Aqueous Solution Droplets

    PubMed Central

    2013-01-01

    Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol. PMID:24107221

  15. Removal of transition metals from dilute aqueous solution by carboxylic acid group containing absorbent polymers

    USDA-ARS?s Scientific Manuscript database

    A new carboxylic acid group containing resin with cation exchange capacity, 12.67 meq/g has been used to remove Cu2+, Co2+ and Ni2+ ions from dilute aqueous solution. The resin has Cu2+, Co2+ and Ni2+ removal capacity, 216 mg/g, 154 mg/g and 180 mg/g, respectively. The selectivity of the resin to ...

  16. Sulfate Mineral Formation from Acid-Weathered Phyllosilicates: Implications for the Aqueous History of Mars

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Ming, D. W.; Rampe, E. B.; Morris, R. V.

    2015-01-01

    Phyllosilicates on Mars are thought to have formed under neutral to alkaline conditions during Mars' earliest Noachian geologic era (approx. 4.1-3.7 Gya). Sulfate formation, on the other hand, requires more acidic conditions which are thought to have occurred later during Mars' Hesperian era (approx. 3.7-3.0 Gya). Therefore, regions on Mars where phyllosilicates and sulfates are found in close proximity to each other provide evidence for the geologic and aqueous conditions during this global transition. Both phyllosilicates and sulfates form in the presence of water and thus give clues to the aqueous history of Mars and its potential for habitability. Phyllosilicates that formed during the Noachian era may have been weathered by the prevailing acidic conditions that characterize the Hesperian. Therefore, the purpose of this study is to characterize the alteration products resulting from acid-sulfate weathered phyllosilicates in laboratory experiments. This study focuses on two phyllosilicates commonly identified with sulfates on Mars: nontronite and saponite. We also compare our results to observations of phyllosilicates and sulfates on Mars to better understand the formation process of sulfates in close proximity to phyllosilicates on Mars and constrain the aqueous conditions of these regions on Mars.

  17. Insights Into the Aqueous History of Mars from Acid-Sulfate Weathered Phyllosilicates

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Ming, D. W.; Rampe, E. B.; Morris, R. V.

    2016-01-01

    Phyllosilicates on Mars are thought to have formed during Mars' earliest Noachian geologic era (approx. 4.1-3.7 Ga). Sulfate formation, on the other hand, requires more acidic conditions which are thought to have occurred later during Mars' Hesperian era (approx. 3.7-3.0 Ga). Therefore, regions on Mars where phyllosilicates and sulfates are found in close proximity to each other provide evidence for the aqueous conditions during this global transition. Both phyllosilicates and sulfates form in the presence of water and thus give clues to the aqueous history of Mars and its potential for habitability. Phyllosilicates that formed during the Noachian era would have been weathered by the prevailing acidic conditions that define the Hesperian. Therefore, the purpose of this study is to characterize the alteration products of acid-sulfate weathered phyllosilicates in laboratory experiments, focusing on the Fe/Mg-smectites commonly identified on Mars. We also compare our results to observations of phyllosilicates and sulfates on Mars in regions such as Endeavour Crater and Mawrth Vallis to understand the formation process of sulfates and constrain the aqueous history of these regions.

  18. Human skin permeability enhancement by lauric acid under equilibrium aqueous conditions.

    PubMed

    Smith, S W; Anderson, B D

    1995-05-01

    An in vitro method was developed to investigate the enhancement of hydrocortisone transport across human stratum corneum (SC) by a model enhancer, lauric acid, in aqueous solutions under equilibrium conditions with respect to the enhancer. In contrast to classical (i.e., nonequilibrium) loading techniques, in which the enhancer is applied only to the donor side of SC either in pure form or in an organic solvent while enhancer-free aqueous buffers are placed in the receptor phase, this method allowed the investigation of pH effects, concentration effects, and reversibility of both enhancer uptake and enhancement of drug transport under thermodynamically well-defined conditions. The SC-buffer partition coefficients for lauric acid were linear with concentration and sigmoidal with pH, suggesting that both the neutral species and laurate anion partition into SC. Comparisons of partition coefficients in delipidized and untreated SC as a function of pH indicated that the uptake of lauric acid in neutral form is governed primarily by the lipid domain, whereas the protein domain accounts for anion uptake. The effects of lauric acid on skin permeability were > 80% reversible upon extraction of the enhancer from the membrane. However, the degree of enhancement of hydrocortisone permeability was nonlinearly dependent on the equilibrium concentration of lauric acid in either the aqueous buffer or the membrane, exhibiting thresholds in the appearance of enhancement with concentration. The enhancer concentration necessary to achieve isoenhancement of about 6-fold varied from approximately 1 x 10(-5) M at pH < pKa to approximately 1 x 10(-2) M at high pH (pH > 8) demonstrating the higher influence of the free acid species.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Uptake of isoprene, methacrylic acid and methyl methacrylate into aqueous solutions of sulfuric acid and hydrogen peroxide.

    PubMed

    Liu, Ze; Ge, Maofa; Wang, Weigang

    2012-01-01

    Multiphase acid-catalyzed oxidation by hydrogen peroxide has been suggested to be a potential route to secondary organic aerosol formation from isoprene and its gas-phase oxidation products, but the lack of kinetics data significantly limited the evaluation of this process in the atmosphere. Here we report the first measurement of the uptake of isoprene, methacrylic acid and methyl methacrylate into aqueous solutions of sulfuric acid and hydrogen peroxide. Isoprene cannot readily partition into the solution because of its high volatility and low solubility, which hinders its further liquid-phase oxidation. Both methacrylic acid and methyl methacrylate can enter the solutions and be oxidized by hydrogen peroxide, and steady-state uptake was observed with the acidity of solution above 30 wt.% and 70 wt.%, respectively. The steady-state uptake coefficient of methacrylic acid is much larger than that of methyl methacrylate for a solution with same acidity. These observations can be explained by the different reactivity of these two compounds caused by the different electron-withdrawing conjugation between carboxyl and ester groups. The atmospheric lifetimes were estimated based on the calculated steady-state uptake coefficients. These results demonstrate that the multiphase acid-catalyzed oxidation of methacrylic acid plays a role in secondary organic aerosol formation, but for isoprene and methyl methacrylate, this process is not important in the troposphere.

  20. Superhydrophobic copper surfaces fabricated by fatty acid soaps in aqueous solution for excellent corrosion resistance

    NASA Astrophysics Data System (ADS)

    Xu, Wenlong; Hu, Yuanyuan; Bao, Wenda; Xie, Xiaoyu; Liu, Yiran; Song, Aixin; Hao, Jingcheng

    2017-03-01

    A simple and safe one-step immersion method was developed to obtain the stable superhydrophobic copper surfaces with excellent corrosion resistance ability using fatty acids in water-medium instead of ethanol. An organic alkali, N,N-dimethylcyclohexylamine (DMCHA), was chosen to solve the poor solubility of fatty acids in water and the high Krafft point of carboxylate salts with inorganic counterions. The superhydrophobic property can be realized in a much quicker process (7.5 min) in aqueous solution than in ethanol (more than 2 d), which is universally feasible for the fabrication of superhydrophobic metal surfaces in industry scale, thereby greatly increasing the safety in industrial manufacture.

  1. Removal of MCPA from aqueous solutions by acid-activated spent bleaching earth.

    PubMed

    Mahramanlioglu, Mehmet; Kizilcikli, Irfan; Biçer, I Ozlem; Tuncay, Melda

    2003-11-01

    The removal of MCPA (4-chloro-2-methyl phenoxyacetic acid) from aqueous solutions by activated spent bleaching earth (SBE) was studied as a function of time, initial concentration, adsorbent concentration, and temperature. The Langmuir and Freundlich isotherms were fitted by the adsorption data obtained. The values of Langmuir and Freundlich constants were determined. The adsorption kinetics was described by the Lagergren equation. Mass transfer coefficient and thermodynamic parameters were also calculated. Column experiments were conducted and brekthrough capacities were found for different concentrations and different flow rates. The study demonstrates that acid-treated SBE could be used as an efficient adsorbent for the removal of MCPA-bearing wastewater effluents.

  2. Radical-driven carbonyl-to-acid conversion and acid degradation in tropospheric aqueous systems studied by CAPRAM

    NASA Astrophysics Data System (ADS)

    Tilgner, A.; Herrmann, H.

    2010-12-01

    Model studies on the aqueous phase radical-driven processing of carbonyl compounds and acids in clouds and deliquescent particles were performed. The model exposed that aqueous radical conversions of carbonyl compounds and its oxidation products can contribute potentially to the formation of functionalised organic acids. The main identified C 2-C 4 organic gas phase precursors are ethylene glycol, glycolaldehyde, glyoxal, methylglyoxal and 1,4-butenedial. The aqueous phase is shown to contribute significantly with about 93%/63%, 47%/8%, 31%/4%, 7%/4%, 36%/8% to the multiphase oxidative fate of these compounds under remote/urban conditions. Interestingly, the studies revealed that aqueous chemical processing is not only limited to in-cloud conditions but also proceeds in deliquescent particle phase with significant fluxes. Oxalic acid is shown to be formed preferably in deliquescent particles subsequent to the in-cloud oxidations. Mean aqueous phase oxalate formation fluxes of about 12, 42 and 0.4 ng m -3 h -1 in the remote, urban and maritime scenario, respectively. Additionally, the turnovers of the oxidation of organics such as methylglyoxal by NO 3 radical reactions are identified to be competitive to their OH pendants. At the current state of CAPRAM, mean C 2-C 4 in-cloud oxidation fluxes of about 0.12 and 0.5 μg m -3 h -1 are modelled under the idealised remote and urban cloud conditions. Finally, turnovers from radical oxidations were compared with those of thermal reactions. It is demonstrated that, based on the sparse kinetic data available organic accretion reaction might be of interest in just a few cases for cloud droplets and aqueous particles but generally do not reach the oxidative conversion rates of the main radical oxidants OH and NO 3. Interestingly, oxidation reactions of H 2O 2 are shown to be competitive to the OH radical conversions in cases when H 2O 2 is not readily used up by the S(IV) oxidation.

  3. The dissolution of quartz in dilute aqueous solutions of organic acids at 25 degree C

    SciTech Connect

    Bennett, P.C.; Melcer, M.E.; Siegel, D.I.; Hassett, J.P. )

    1988-06-01

    The dissolution of quartz in dilute aqueous solutions of organic acids at 25{degree}C and standard pressure was investigated by the batch dissolution method. The bulk dissolution rate of quartz in 20 mmole/Kg citrate solutions at pH 7 was 8 to 10 times faster than that in pure water. After 1750 hours the concentration of dissolved silica in the citrate solution was 167 {mu}mole/Kg compared to 50 {mu}mole/Kg in water and a 20 mmole/Kg solution of acetate at pH 7. Solutions of salicylic, oxalic, and humic acids also accelerated the dissolution of quartz in aqueous solution at pH 7. The rate of dissolution in organic acids decreased sharply with decreasing pH. The possibility of a silica-organic acid complex was investigated using UV-difference spectroscopy. Results suggest that dissolved silica is complexed by citrate, oxalate and pyruvate at pH 7 by an electron-donor acceptor complex, whereas no complexation occurs between silica and acetate, lactate, malonate, or succinate. Three models are proposed for the solution and surface complexation of silica by organic acid which result in the accelerated dissolution and increased solubility of quartz in organic rich water.

  4. The dissolution of quartz in dilute aqueous solutions of organic acids at 25°C

    USGS Publications Warehouse

    Bennett, P.C.; Melcer, M.E.; Siegel, D.I.; Hassett, J.P.

    1988-01-01

    The dissolution of quartz in dilute aqueous solutions of organic acids at 25° and standard pressure was investigated by the batch dissolution method. The bulk dissolution rate of quartz in 20 mmole/Kg citrate solutions at pH 7 was 8 to 10 times faster than that in pure water. After 1750 hours the concentration of dissolved silica in the citrate solution was 167 μmole/Kg compared to 50 μmole/Kg in water and a 20 mmole/Kg solution of acetate at pH 7. Solutions of salicylic, oxalic, and humic acids also accelerated the dissolution of quartz in aqueous solution at pH 7. The rate of dissolution in organic acids decreased sharply with decreasing pH.The possibility of a silica-organic acid complex was investigated using UV-difference spectroscopy. Results suggest that dissolved silica is complexed by citrate, oxalate and pyruvate at pH 7 by an electron-donor acceptor complex, whereas no complexation occurs between silica and acetate, lactate, malonate, or succinate. Three models are proposed for the solution and surface complexation of silica by organic acid anions which result in the accelerated dissolution and increased solubility of quartz in organic rich water.

  5. Regeneration of basic sorbents used in the recovery of acetic acid from dilute aqueous solution

    SciTech Connect

    Ng, M.; King, C.J.

    1988-10-01

    The regeneration of basic sorbents used in the recovery of dilute aqueous acetic acid was explored. The regeneration methods studied were solvent leaching and vaporization. The resins used were weak base anion exchange resins, Dow Chemical Company's Dowex MWA-1 (tertiary amine resin) and Celanese Corporation's Aurorez (polybenzimidazole resin). The equilibrium between the aqueous acetic acid solution and the resins was measured in batch experiments. The composite isotherms calculated from these data wee comparable to those of other researchers. Methanol was used as the solvent to leach acetic acid from the resin. The equilibrium data from the batch experiments were used in the local-equilibrium theory of fixed-bed devices to model the desorption behavior of acetic acid in methanol. Both sorption and desorption equilibrium data were used in chemical complexation models to obtain sorption affinities and capacities of the resin for acetic acid. However, the amount of methanol needed to achieve a high degree of regeneration was too large to be economical. 15 refs., 25 figs., 3 tabs.

  6. Aqueous Phase Photo-Oxidation of Succinic Acid: Changes in Hygroscopic Properties and Reaction Products

    NASA Astrophysics Data System (ADS)

    Hudson, P. K.; Ninokawa, A.; Hofstra, J.; de Lijser, P.

    2013-12-01

    Atmospheric aerosol particles have been identified as important factors in understanding climate change. The extent to which aerosols affect climate is determined, in part, by hygroscopic properties which can change as a result of atmospheric processing. Dicarboxylic acids, components of atmospheric aerosol, have a wide range of hygroscopic properties and can undergo oxidation and photolysis reactions in the atmosphere. In this study, the hygroscopic properties of succinic acid aerosol, a non-hygroscopic four carbon dicarboxylic acid, were measured with a humidified tandem differential mobility analyzer (HTDMA) and compared to reaction products resulting from the aqueous phase photo-oxidation reaction of hydrogen peroxide and succinic acid. Reaction products were determined and quantified using gas chromatography-flame ionization detection (GC-FID) and GC-mass spectrometry (GC-MS) as a function of hydrogen peroxide:succinic acid concentration ratio and photolysis time. Although reaction products include larger non-hygroscopic dicarboxylic acids (e.g. adipic acid) and smaller hygroscopic dicarboxylic acids (e.g. malonic and oxalic acids), comparison of hygroscopic growth curves to Zdanovskii-Stokes-Robinson (ZSR) predictions suggests that the hygroscopic properties of many of the product mixtures are largely independent of the hygroscopicity of the individual components. This study provides a framework for future investigations to fully understand and predict the role of chemical reactions in altering atmospheric conditions that affect climate.

  7. Radiolysis of aqueous solutions of acetic acid in the presence of Na-montmorillonite

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalez, R.; Negron-Mendoza, A.; Ramos, S.; Ponnamperuma, C.

    1990-01-01

    The gamma-irradiation of 0.8 mol dm-3 aqueous, oxygen-free acetic acid solutions was investigated in the presence or absence of Na-montmorillonite. H2, CH4, CO, CO2, and several polycarboxylic acids were formed in all systems. The primary characteristics observed in the latter system were: (1) Higher yield of the decomposition of acetic acid; (2) Lower yield of the formation of polycarboxylic acids; (3) No effect on the formation of methane; (4) Higher yield of the formation of carbon dioxide; and (5) The reduction of Fe3+ in the octahedral sites of Na-montmorillonite. A possible reaction scheme was proposed to account for the observed changes. The results are important in understanding heterogeneous processes in radiation catalysis and might be significant to prebiotic chemistry.

  8. Radiolysis of aqueous solutions of acetic acid in the presence of Na-montmorillonite

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalez, R.; Negron-Mendoza, A.; Ramos, S.; Ponnamperuma, C.

    1990-01-01

    The gamma-irradiation of 0.8 mol dm-3 aqueous, oxygen-free acetic acid solutions was investigated in the presence or absence of Na-montmorillonite. H2, CH4, CO, CO2, and several polycarboxylic acids were formed in all systems. The primary characteristics observed in the latter system were: (1) Higher yield of the decomposition of acetic acid; (2) Lower yield of the formation of polycarboxylic acids; (3) No effect on the formation of methane; (4) Higher yield of the formation of carbon dioxide; and (5) The reduction of Fe3+ in the octahedral sites of Na-montmorillonite. A possible reaction scheme was proposed to account for the observed changes. The results are important in understanding heterogeneous processes in radiation catalysis and might be significant to prebiotic chemistry.

  9. [Studies on carbonization of saccharides by using aqueous solution of various acids].

    PubMed

    Zhang, Xin; He, An-Qi; Kang, Ting-Guo; Xia, Jin-Ming; Weng, Shi-Fu; Xu, Yi-Zhuang; Wu, Jin-Guang

    2014-09-01

    The authors tried to establish an approach to use acids to convert biomass into a fuel with higher carbon content and lower oxygen content in a zero-energy-consumption fashion. Considering that biomass is composed of monosaccharide, we used aqueous solutions of variation acids including hydrochloric acid, sulfuric acid and perchloric acid to treat 2-deoxy-ribose and fructose at ambient temperature and pressure. Black substances were produced after a period of time when 2-deoxy-ribose and fructose were mixed with aqueous solutions containing 8 mol · L(-1) acids. The black substance was collected and characterized by using elemental analysis, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Elemental analysis results indicate that the contents of carbon increases significantly in the black substances in comparison with 2-deoxy-ribose and fructose. Moreover, XPS results indicate that the content of oxygen in the black substance undergoes a significant decrease compared with pure 2-deoxy-ribose and fructose. In the XPS spectra, the is peaks of 2-deoxy-ribose, strong sub peak at 286. 05 eV, which is assigned to carbon linked to oxygen directly, dominate in the C is peak envelop. After treatment by HClO4, the peak decreased dramatically. This result also supports the conclusion that the content of oxygen in mono-saccharide is significantly reduced after treatment by acids. In the FTIR spectra of the black substances, strong peaks can be observed around 1 600 cm(-1), indicating that C==C bond is formed in the product. The above results suggest that treatments with acids may be developed as a new zero-energy-consumption approach to convert biomass in a new fuel with improved energy output efficiency.

  10. Influence of Acidity on Uranyl Nitrate Association in Aqueous Solutions: A Molecular Dynamics Simulation Study

    SciTech Connect

    de Almeida, Valmor F; Cui, Shengting; Khomami, Bamin; Ye, Xianggui; Smith, Rodney Bryan

    2010-01-01

    Uranyl ion complexation with water and nitrate is a key aspect of the uranium/plutonium extraction process. We have carried out a molecular dynamics simulation study to investigate this complexation process, including the molecular composition of the various complex species, the corresponding structure, and the equilibrium distribution of the complexes. The observed structures of the complexes suggest that in aqueous solution, uranyls are generally hydrated by 5 water molecules in the equatorial plane. When associating with nitrate ions, a water molecule is replaced by a nitrate ion, preserving the five-fold coordination and planar symmetry. Analysis of the pair correlation function between uranyl and nitrate suggests that nitrates bind to uranyl in aqueous solution mainly in a monodentate mode, although a small portion of bidentates occur. Dynamic association and dissociation between uranyls and nitrates take place in aqueous solution with a substantial amount of fluctuation in the number of various uranyl nitrate species. The average number of the uranyl mononitrate complexes shows a dependence on acid concentration consistent with equilibrium-constant analysis, namely, the concentration of [UO2NO3]+ increases with nitric acid concentration.

  11. Chapter 21 Architecture of Hydrates and Local Structure of Acetic Acid Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Pu, Liang; Wang, Qing; Zhang, Yong; Miao, Qiang; Kim, Yang-Soo; Zhang, Zhibing

    The protonation and deprotonation phenomena and molecular association of solute molecule with water via intermolecular hydrogen bonding forming various hydration compounds are very common in aqueous solution and in biological cell in nature. In the aqueous solution, more complicated type of hydrogen bond, hydrogen-bonding rings, various kinds of hydration compounds (hydrates), and even hydrogen-bonding network can be expected. The nature of hydrogen bonding, the bonds networking, the rule in architecture of larger hydration compounds, deprotonation of acetic acid in solution, stability of the hydrated proton, and the local structure of its aqueous solution are the most fundamental problems to understanding solute molecule living style in aqueous solution. Hydrogen-bonding rings and network in the multi-hydrates of acetic acid monomer have been investigated by ab initio calculations, and ab initio molecular dynamics (CPMD) simulations on acetic acid monomer-water system were also performed to explore the local structure of acetic acid aqueous solution. More than hundreds of multi-hydrates have been selected as candidates during our calculations. The structural optimizations and energy calculations have been performed at the MP2/6-31+g (d, p) and MP4/6-31+g (d, p) levels which are adequate for our large hydrates calculations with reliable results and reasonable cost as we stated in the Section 2. The most stable structure of the smallest hydration compound of acetic acid monomer, i.e., acetic acid water dimer, has a four-membered head-on ring with the smallest dipole moment. To verify the existence of it, the infrared spectra experiment data were collected in the dilute CCl4/HAc and CCl4/H2O ratio condition. The hydroxyl (O-H) stretching vibrations in molecules of water, acetic acid, and the dimer are distinguished, for the dissolved species are isolated from each other by surrounded solvent molecules CCl4. The calculated and measured vibration frequencies are almost

  12. Study of thermodynamic and acoustic behaviour of nicotinic acid in binary aqueous mixtures of D-lactose

    NASA Astrophysics Data System (ADS)

    Sharma, Ravi; Thakur, R. C.

    2017-07-01

    In the present study, the thermodynamic properties such as partial molar volumes, partial molar expansibilities, partial molar compressibilities, partial molar heat capacities and isobaric thermal expansion coefficient of different solutions of nicotinic acid in binary aqueous mixtures of D-lactose have been determined at different temperatures (298.15, 303.15, 308.15, 313.15) K. Masson's equation is used to interpret the data in terms of solute-solute and solute-solvent interactions. In the present study it has been found that nicotinic acid behaves as structure maker in aqueous and binary aqueous mixtures of D-lactose.

  13. Hydrolysis of ionized deoxycholic acid in the aqueous phase and rate analysis for transfer of neutralized deoxycholic acid into the benzene phase across the benzene/water interface.

    PubMed

    Ohno, Ryo; Nakamura, Shohei; Moroi, Yoshikiyo; Isoda-Yamashita, Teruyo

    2008-11-13

    Sodium deoxycholate in water dissociates into sodium cation and deoxycholate anion in the aqueous phase, and then, the latter anions partially hydrolyze to form deionized deoxycholic acids. The acids move into the benzene phase, when liquid benzene is placed upon the aqueous phase, and finally the partition equilibrium is reached. The above processes were traced by pH change in the aqueous phase by a pH meter or the change in [OH-] with time, from which the rate for transfer of neutralized acid to the organic phase was analyzed. From the trace, the rate constants for hydrolysis of acid anion ( kf), neutralization of acid ( kb), transfer of neutralized acid from the aqueous phase to the organic phase ( kin*), and its back-transfer from the organic phase to the aqueous phase ( kut*) were evaluated; kf = 2.18 x 10 (-4) mol (-1) dm (3) min (-1), kb = 1.24 x 10 (5) mol (-1) dm (3) min (-1), kin* = 4.06 x 10 (-1) min (-1) cm (-2), and kout*) = 8.00 x 10 (-2) min (-1) cm (-2). The above values are supported by the partition constant of deoxycholic acid between the benzene phase and the aqueous phase.

  14. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution

    PubMed Central

    Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya

    2016-01-01

    Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma. PMID:27183129

  15. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution.

    PubMed

    Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya

    2016-01-01

    Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma.

  16. Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation

    NASA Astrophysics Data System (ADS)

    Jia, Wenbao; He, Yanquan; Ling, Yongsheng; Hei, Daqian; Shan, Qing; Zhang, Yan; Li, Jiatong

    2015-04-01

    The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L-1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the •OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while •H and eaq- played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation.

  17. The infrared optical constants of sulfuric acid at 250 K. [spectral reflectance measurement of aqueous solutions

    NASA Technical Reports Server (NTRS)

    Pinkley, L. W.; Williams, D.

    1976-01-01

    Results are presented for measurements of the IR spectral reflectance at near-normal incidence of aqueous solutions of sulfuric acid with acid concentrations of 75% and 95.6% by weight. Kramers-Kronig analyses of the reflectance data are employed to obtain values of the optical constants n(nu) and k(nu) in the spectral range from 400 to 6000 cm to the -1 power. The optical constants of these solutions at 250 K and 300 K are compared. It is found that in spectral regions remote from strong absorption bands, the values of the n(nu) indices obtained at 250 K agree with the values given by Lorentz-Lorenz correction of the same indices at 300 K. All absorption bands observed at 300 K are found to be present at 250 K with slight shifts in frequency and with significant differences in the k(nu) indices at the band maxima. Based on these results, it is concluded that the clouds of Venus probably consist of droplets of aqueous solutions of sulfuric acid with acid concentrations of about 75% by weight.

  18. Ab initio aqueous thermochemistry: application to the oxidation of hydroxylamine in nitric acid solution.

    PubMed

    Ashcraft, Robert W; Raman, Sumathy; Green, William H

    2007-10-18

    Ab initio molecular orbital calculations were performed and thermochemical parameters estimated for 46 species involved in the oxidation of hydroxylamine in aqueous nitric acid solution. Solution-phase properties were estimated using the several levels of theory in Gaussian03 and using COSMOtherm. The use of computational chemistry calculations for the estimation of physical properties and constants in solution is addressed. The connection between the pseudochemical potential of Ben-Naim and the traditional standard state-based thermochemistry is shown, and the connection of these ideas to computational chemistry results is established. This theoretical framework provides a basis for the practical use of the solution-phase computational chemistry estimates for real systems, without the implicit assumptions that often hide the nuances of solution-phase thermochemistry. The effect of nonidealities and a method to account for them is also discussed. A method is presented for estimating the solvation enthalpy and entropy for dilute aqueous solutions based on the solvation free energy from the ab initio calculations. The accuracy of the estimated thermochemical parameters was determined through comparison with (i) enthalpies of formation in the gas phase and in solution, (ii) Henry's law data for aqueous solutions, and (iii) various reaction equilibria in aqueous solution. Typical mean absolute deviations (MAD) for the solvation free energy in room-temperature water appear to be ~1.5 kcal/mol for most methods investigated. The MAD for computed enthalpies of formation in solution was 1.5-3 kcal/mol, depending on the methodology employed and the type of species (ion, radical, closed-shell) being computed. This work provides a relatively simple and unambiguous approach that can be used to estimate the thermochemical parameters needed to build detailed ab initio kinetic models of systems in aqueous solution. Technical challenges that limit the accuracy of the estimates are

  19. Self-assembling of poly(aspartic acid) with bovine serum albumin in aqueous solutions.

    PubMed

    Nita, L E; Chiriac, A P; Bercea, M; Asandulesa, M; Wolf, Bernhard A

    2017-02-01

    Macromolecular co-assemblies built up in aqueous solutions, by using a linear polypeptide, poly(aspartic acid) (PAS), and a globular protein, bovine serum albumin (BSA), have been studied. The main interest was to identify the optimum conditions for an interpenetrated complex formation in order to design materials suitable for biomedical applications, such as drug delivery systems. BSA surface possesses several amino- and carboxylic groups available for covalent modification, and/or bioactive substances attachment. In the present study, mixtures between PAS and BSA were investigated at 37°C in dilute aqueous solution by viscometry, dynamic light scattering and zeta potential determination, as well as in solid state by AFM microscopy and dielectric spectroscopy. The experimental data have shown that the interpolymer complex formation occurs for a PAS/BSA molar ratio around 0.541.

  20. Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production.

    PubMed

    Lian, Jieni; Garcia-Perez, Manuel; Coates, Ralph; Wu, Hongwei; Chen, Shulin

    2012-08-01

    The presence of very reactive C1-C4 molecules adversely affects the quality bio-oils produced from the pyrolysis of lignocellulosic materials. In this paper a scheme to produce lipids with Cryptococcus curvatus from the carboxylic acids in the pyrolytic aqueous phase collected in fractional condensers is proposed. The capacities of three oleaginous yeasts C. curvatus, Rhodotorula glutinis, Lipomyces starkeyi to ferment acetate, formate, hydroxylacat-aldehyde, phenol and acetol were investigated. While acetate could be a good carbon source for lipid production, formate provides additional energy and contributes to yeast growth and lipid production as auxiliary energy resource. Acetol could slightly support yeast growth, but it inhibits lipid accumulation. Hydroxyacetaldehyde and phenols showed high yeast growth and lipid accumulation inhibition. A pyrolytic aqueous phase with 20 g/L acetate was fermented with C. curvatus, after neutralization and detoxification to produce 6.9 g/L dry biomass and 2.2 g/L lipid.

  1. Determination of hydroxyl radicals with salicylic acid in aqueous nitrate and nitrite solutions.

    PubMed

    Yang, Xi; Zhan, Man-jun; Kong, Ling-ren; Wang, Lian-sheng

    2004-01-01

    The qualitative and quantitative analyses of reactive oxygen species are essential to determine their steady-state concentration and related reaction mechanisms in environmental aquatic systems. In this study, salicylic acid was employed as an innovative molecular probe of hydroxyl radical(OH) generated in aqueous nitrate and nitrite solutions through photochemical reactions. Kinetic studies showed that the steady-state concentrations of OH in aqueous NO3- (10 mmol/L, pH = 5) and NO2- (10 mmol/L, pH = 5) solutions under ultraviolet irradiation were at a same magnitude, 10(-15) mol/L. Apparent quantum yields of OH at 313 nm were measured as 0.011 and 0.07 for NO3- and NO2- respectively, all comparable to the results of previous studies.

  2. The effect of acidity variations in cloud droplet populations on aqueous-phase sulfate production

    SciTech Connect

    Gurciullo, C.S.; Pandis, S.N.

    1995-12-31

    The majority of global atmospheric sulfate production occurs in clouds. Experimental evidence suggests that significant chemical heterogeneities exist in cloud droplet populations. Both theoretical and field studies suggest that the acidity of a cloud droplet population can differ by 1 pH unit or more between the smallest and largest droplets. Traditionally, cloud chemistry has been studied using bulk models that assume that the aqueous- phase chemistry can be accurately modeled using {open_quotes}mean droplet{close_quotes} properties. The average droplet population pH is then used as the basis for calculating reaction rates. Using this bulk chemistry approach in cloud or fog models may lead to significant errors in the predicted aqueous-phase reaction rates. We prove analytically that the use of a droplet Population`s average pH always results in the underestimation of the rate of sulfate production. In order to examine the magnitude of this error, we have developed two aqueous-phase chemistry models: a droplet size-resolved model and a bulk chemistry model. The discrepancy between the results of these two models indicates the degree of error introduced by assuming bulk aqueous-phase properties. The magnitude of this error depends on the availability of SO{sub 2}, H{sub 2}O{sub 2}, NH{sub 3}, and acidity, and can range from zero to a factor of three for reasonable ambient conditions. A modeling approach that combines the accuracy of the size-resolved model and the low computing requirements of the bulk model is developed.

  3. Vine-shoot waste aqueous extract applied as foliar fertilizer to grapevines: Effect on amino acids and fermentative volatile content.

    PubMed

    Sánchez-Gómez, R; Garde-Cerdán, T; Zalacain, A; Garcia, R; Cabrita, M J; Salinas, M R

    2016-04-15

    The aim of this work was to study the influence of foliar applications of different wood aqueous extracts on the amino acid content of musts and wines from Airén variety; and to study their relationship with the volatile compounds formed during alcoholic fermentation. For this purpose, the foliar treatments proposed were a vine-shoot aqueous extract applied in one and two times, and an oak extract which was only applied once. Results obtained show the potential of Airén vine-shoot waste aqueous extracts to be used as foliar fertilizer, enhancing the wine amino acid content especially when they were applied once. Similar results were observed with the aqueous oak extract. Regarding wine fermentative volatile compounds, there is a close relationship between musts and their wines amino acid content allowing us to discuss about the role of proline during the alcoholic fermentation and the generation of certain volatiles.

  4. ''Pulling'' Nanoparticles into Water: Phase Transfer of Oleic Acid Stabilized Monodisperse Nanoparticles into Aqueous Solutions of alpha-Cyclodextrin

    SciTech Connect

    Wang, Y.; Wong, J.F.; Teng, X.; Lin, X.Z.; Yang, H.

    2003-10-18

    (B204)This paper describes a general method to drastically improve the disparity of oleic acid stabilized nanoparticles in aqueous solutions. We use oleic acid stabilized monodisperse nanoparticles of iron oxides and silver as model systems, and have modified the surface properties of these nanoparticles through the formation of an inclusion complex between surface-bound surfactant molecules and alpha-cyclodextrin (alpha-CD). After the modification, the nanoparticles of both iron oxide and Ag can transfer from hydrophobic solvents, such as hexane, to alpha-CD aqueous phase. The efficiency of the phase transfer to the aqueous solutions depend son the initial alpha-CD concentration. The alpha-CD/oleic acid complex stabilized nanoparticles can be stable for long periods of time in aqueous phase under ambient atmospheric conditions. Transmission electron microscopy (TME), ultraviolet-visible (UV-vis) spectroscopy, Fourier transform-infrared (FT-IR) spectroscopy, and colorimetric methods have been used in the characterization of these nanoparticles.

  5. Solubility of methanol in low-temperature aqueous sulfuric acid and implications for atmospheric particle composition

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Using traditional Knudsen cell techniques, we find well-behaved Henry's law uptake of methanol in aqueous 45 - 70 wt% H2SO4 solutions at temperatures between 197 and 231 K. Solubility of methanol increases with decreasing temperature and increasing acidity, with an effective Henry's law coefficient ranging from 10(exp 5) - 10(exp 8) M/atm. Equilibrium uptake of methanol into sulfuric acid aerosol particles in the upper troposphere and lower stratosphere will not appreciably alter gas-phase concentrations of methanol. The observed room temperature reaction between methanol and sulfuric acid is too slow to provide a sink for gaseous methanol at the temperatures of the upper troposphere and lower stratosphere. It is also too slow to produce sufficient quantities of soluble reaction products to explain the large amount of unidentified organic material seen in particles of the upper troposphere.

  6. Thermosensitivity of bile acid-based oligo(ethylene glycol) stars in aqueous solutions.

    PubMed

    Strandman, Satu; Le Dévédec, Frantz; Zhu, X X

    2011-08-03

    Amphiphilic star-shaped oligo(ethylene glycol)s with a hydrophobic bile acid core and varying number of hydrophilic arms have been made. Their thermal behavior in aqueous solutions depends on the number rather than the length of the arms. The two-armed lithocholate derivative showed the strongest tendency for association and exhibited the lowest cloud point (79 °C) of the oligomers made, as well as another phase separation at a lower temperature (31 °C). The "double thermosensitivity" arising both from the salt-dependent LCST of the oligo(ethylene glycol) segments and the temperature-responsive self-assembly of amphiphilic bile acid derivative provides an interesting path in the design of bile acid-based smart materials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ionic clusters vs shear viscosity in aqueous amino acid ionic liquids.

    PubMed

    Chaban, Vitaly V; Fileti, Eudes Eterno

    2015-03-05

    Aqueous solutions of amino acid ionic liquids (AAILs) are of high importance for applications in protein synthesis and solubilization, enzymatic reactions, templates for synthetic study, etc. This work employs molecular dynamics simulations using our own force field to investigate shear viscosity and cluster compositions of three 1-ethyl-3-methylimidazolium (emim) amino acid salts: [emim][ala], [emim][met], and [emim][trp] solutions (2, 5, 10, 20, and 30 mol %) in water at 310 K. We, for the first time, establish simple correlations between cluster composition, on one side, and viscosity, on another side. We argue that knowledge about any of these properties alone is enough to derive insights regarding the missed properties, using the reported correlations. The numerical observations and qualitative correlations are discussed in the context of the chemical structure of the amino acid anions, [ala], [met], and [trp]. The reported results will enhance progress in the efficient design and applications of AAILs and their solutions.

  8. Toxicity of aqueous C70-gallic acid suspension in Daphnia magna.

    PubMed

    Seda, Brandon C; Ke, Pu-Chun; Mount, Andrew S; Klaine, Stephen J

    2012-01-01

    The present study assessed the toxic effects of stable aqueous colloidal suspensions of gallic-acid-stabilized C(70) fullerene on Daphnia magna. The suspensions were stabilized through noncovalent surface modification with gallic acid. In addition to whole-organism responses, changes in antioxidative processes in D. magna were quantified. Acute toxicity was observed with 96LC50 for C(70) -gallic acid of 0.4 ± 0.1 mg/L C(70) . Daphnia magna fecundity was significantly reduced in 21-d bioassays at C(70) -gallic aqcid concentrations below quantifiable limits. Antioxidant enzyme activities of glutathione peroxidase and superoxide dismutase as well as lipid peroxidation suggested that exposed organisms experienced oxidative stress. Microscopic techniques used to determine cellular toxicity via apoptosis proved unsuccessful.

  9. [Adsorption of acid orange II from aqueous solution onto modified peat-resin particles].

    PubMed

    Sun, Qing-Ye; Yang, Lin-Zhang

    2007-06-01

    The adsorption of acid orange II onto modified peat-resin particles was examined in aqueous solution in a batch system. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. The pseudo-first-order, pseudo-second-order kinetic and the intraparticle diffusion models were used to describe the kinetic data. The results showed that both Langmuir and Freundlich adsorption models could be used to describe the adsorption of acid orange II onto modified peat-resin particles. The maximum adsorption capacity was 71.43 mg x g(-1). The data analysis indicated that the intraparticle diffusion model could fit the results of kinetic experiment well. The adsorption rate of acid orange II onto modified peat-resin particles is affected by the initial dye concentrations, sizes and doses of modified peat-resin particles and agitation rates. The surface of modified peat-resin particle is the major adsorption area.

  10. The γ-irradiation of aqueous acetic acid-clay suspensions

    NASA Astrophysics Data System (ADS)

    Negrón-Mendoza, Alicia; Navarro-González, Rafael

    1990-09-01

    γ-radiolysis of 0.8 mol dm-3 aqueous, oxygen-free acetic acid solutions was investigated in the presence or absence of Na-montmorillonite (1 3 g per 10 cm-3). The systems were irradiated at their natural pH (3.5), and 25 °C in a dose range from 0.01 to 500 kGy. H2, CH4, CO, CO2, and a variety of polycarboxylic acids were formed in all systems. The major features of the radiolysis in the presence of clays were: (1) More solute molecules were decomposed; (2) Carbon dioxide was produced in higher yield; (3) The yield of methane was unaffected; and (4) 44% less polycarboxylic acids were formed. Three possible mechanisms that could account for the observed changes are suggested. The results are important in understanding heterogeneous processes in radiation catalysis and might be significant to prebiotic chemistry.

  11. Removal of fluoride ion from aqueous solution by a cerium-poly(hydroxamic acid) resin complex.

    PubMed

    Haron, M J; Yunus, W M

    2001-05-01

    A cerium-loaded poly(hydroxamic acid) chelating ion exchanger was used for fluoride ion removal from aqueous solution. The resin was effective in decreasing the fluoride concentration from 5 mM down to 0.001 mM in acidic pH between 3 and 6. The sorption followed a Langmuir model with a maximum capacity of 0.5 mmol/g. The removal is accomplished by an anion exchange mechanism. The rate constant for the sorption was found to be 9.6 x 10(-2) min-1. A column test shows that the fluoride ion was retained on the column until breakthrough point and the fluoride sorbed in the column can be eluted with 0.1 M NaOH. The column can be reused after being condition with hydrochloric acid at pH 4. The resin was tested and found to be effective for removal of fluoride from actual industrial wastewater.

  12. Isolation and separation of transplutonium elements from other actinides on ion exchange resins from aqueous and aqueous ethanol solutions of sulfuric acid

    SciTech Connect

    Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.

    1987-11-01

    The behavior of Am, Cm, Bk, Cf, Es, and other actinides, as well as Zr, on an anion exchange resin and a cation exchange resin in aqueous and aqueous alcohol solutions of sulfuric acid was investigated as a function of the concentration of various components of the solution. It was found that the presence of alcohol in sulfuric acid solutions leads to an increase in the distribution coefficients both on cation exchange resins and on anion exchange resins. The possibility of using ion exchange resins for the concentration and separation of transplutonium elements from U, Np, Pu, Zr, and other elements that form strong complexes with sulfate ions in a wide range of sulfuric acid concentrations was demonstrated.

  13. Experimental Shock Chemistry of Aqueous Amino Acid Solutions and the Cometary Delivery of Prebiotic Compounds

    NASA Astrophysics Data System (ADS)

    Blank, Jennifer G.; Miller, Gregory H.; Ahrens, Michael J.; Winans, Randall E.

    2001-02-01

    A series of shock experiments were conducted to assess the feasibility of the delivery of organic compounds to the Earth via cometary impacts. Aqueous solutions containing near-saturation levels of amino acids (lysine, norvaline, aminobutyric acid, proline, and phenylalanine) were sealed inside stainless steel capsules and shocked by ballistic impact with a steel projectile plate accelerated along a 12-m-long gun barrel to velocities of 0.5-1.9 km sec^-1. Pressure-temperature-time histories of the shocked fluids were calculated using 1D hydrodynamical simulations. Maximum conditions experienced by the solutions lasted 0.85-2.7 μs and ranged from 5.1-21 GPa and 412-870 K. Recovered sample capsules were milled open and liquid was extracted. Samples were analyzed using high performance liquid chromatography (HPLC) and mass spectrometry (MS). In all experiments, a large fraction of the amino acids survived. We observed differences in kinetic behavior and the degree of survivability among the amino acids. Aminobutyric acid appeared to be the least reactive, and phenylalanine appeared to be the most reactive of the amino acids. The impact process resulted in the formation of peptide bonds; new compounds included amino acid dimers and cyclic diketopiperazines. In our experiments, and in certain naturally occurring impacts, pressure has a greater influence than temperature in determining reaction pathways. Our results support the hypothesis that significant concentrations of organic material could survive a natural impact process.

  14. ESTIMATION OF HYDROLYSIS RATE CONSTANTS OF CARBOXYLIC ACID ESTER AND PHOSPHATE ESTER COMPOUNDS IN AQUEOUS SYSTEMS FROM MOLECULAR STRUCTURE BY SPARC

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy diffe...

  15. ESTIMATION OF HYDROLYSIS RATE CONSTANTS OF CARBOXYLIC ACID ESTER AND PHOSPHATE ESTER COMPOUNDS IN AQUEOUS SYSTEMS FROM MOLECULAR STRUCTURE BY SPARC

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy diffe...

  16. Aqueous dissociation constants of bile pigments and sparingly soluble carboxylic acids by 13C NMR in aqueous dimethyl sulfoxide: effects of hydrogen bonding.

    PubMed

    Trull, F R; Boiadjiev, S; Lightner, D A; McDonagh, A F

    1997-06-01

    pKas for the acid dissociation of the carboxyl groups of bilirubin in water have been reported recently to be 8.1-8.4, or higher. These high values were attributed to intramolecular hydrogen bonding. They have led to suggestions that monoanions of bilirubin predominate at physiologic pH and are the species transported most readily into hepatocytes by carriers. Such high aqueous pKas are inconsistent with recent 13C nuclear magnetic resonance (NMR) measurements on mesobilirubin XIII alpha, done on aqueous solutions containing dimethyl sulfoxide. To investigate whether the presence of dimethyl sulfoxide leads to unreliable values when using 13C NMR spectroscopy to determine pKas of carboxylic acids that can undergo intramolecular hydrogen bonding, we measured the pKas of 13C-labeled fumaric, maleic, and phthalic acids in solutions containing up to 27 vol% dimethyl sulfoxide. In addition, we used 13C NMR to estimate the pKas of 2,2'-methylenebis[5-carbomethoxy-4-methylpyrrole-3-[1-13C] propanoic acid], a model for the two central rings of bilirubin. Our results show that 13C NMR of aqueous dimethyl sulfoxide solutions can be used with confidence to measure pKas of intramolecularly hydrogen-bonded carboxylic acids. They support our previous estimates for the pKas of bilirubin and confirm that intramolecular hydrogen bonding has little effect on the acidity of bilirubins in water. Together with previous studies and chemical arguments they strongly suggest that reported aqueous pKas of > 8, or even > 6, for the carboxyl groups of bilirubin are incorrect and that arguments used to rationalize them are questionable.

  17. Removal of Pb(ii) from aqueous/acidic solutions by using bentonite as an adsorbent.

    PubMed

    Naseem, R; Tahir, S S

    2001-11-01

    The ability of bentonite clay to remove Pb(II) from aqueous solutions and from nitric acid, hydrochloric acid and perchloric acid solutions (1.0-1 x 10(-5)) has been studied at different optimized conditions of concentrations, amount of adsorbent, temperature, concentration of electrolyte and pH. Maximum adsorption of Pb(II), i.e. > 98% has been achieved in aqueous solutions, while 86% is achieved from 1.0 x 10(-5) M HCl using 0.5 g of bentonite. The adsorption decreases by increasing the concentration of electrolytes. Flame atomic absorption spectrometer was used for measuring lead concentration. Isotherm analysis of adsorption data obtained at 25 degrees C, 30 degrees C, 40 degrees C and 50 degrees C showed that the adsorption pattern of lead on bentonite followed the langmuir isotherm and freundlich isotherm, respectively. DeltaH(o) and deltaS(o) were calculated from the slope and intercept of ln K(D) vs. I/T plots.

  18. Aqueous extracts of Mozambican plants as alternative and environmentally safe acid-base indicators.

    PubMed

    Macuvele, Domingos Lusitaneo Pier; Sithole, Gerre Zebedias Samo; Cesca, Karina; Macuvele, Suzana Lília Pinare; Matsinhe, Jonas Valente

    2016-06-01

    Indicators are substances that change color as the pH of the medium. Many of these substances are dyes of synthetic origin. The mulala plant (Euclea natalensis), which roots are commonly used by rural communities for their oral hygiene, and roseira (Hibiscus rosa-sinensis), an ornamental plant, are abundant in Mozambique. Currently, synthetic acid-base indicators are most commonly used but have environmental implications and, on the other hand, are expensive products, so the demand for natural indicators started. This study investigated the applicability of aqueous extracts of H. rosa-sinensis and E. natalensis as acid-base indicators. Ground on this work, the extracts can be used as acid-base indicators. On the basis of the absorption spectroscopy in both the UV-Vis region and previous studies, it was possible to preliminarily pinpoint anthocyanins and naphthoquinones as responsible for the shifting of colors depending on the pH range of aqueous extracts of H. rosa-sinensis and E. natalensis. These natural indicators are easily accessible, inexpensive, easy to extract, environmentally safe, and locally available.

  19. Electrochemical monitoring of methylparathion degradation in an acid aqueous medium in presence of Cu(II).

    PubMed

    Manzanilla-Cano, José A; Barceló-Quintal, Manuel H; Reyes-Salas, Eugenio O

    2004-05-01

    A study was undertaken to determine the effect of Cu(II) in degradation of methylparathion (o,o-dimethyl o,4-nitrophenyl phosphoriotioate) in acid medium. Initial electrochemical characterization of Cu(II) and methylparathion was done in an aqueous medium at a pH range of 2-7. Cu(II) was studied in the presence of different anions and it was observed that its electroactivity depends on pH and is independent of the anion used. Methylparathion had two reduction signals at pH < or = 6 and only one at pH > 6. The pesticide's transformation kinetic was then studied in the presence of Cu(II) in acid buffered aqueous medium at pH values of 2, 4, and 7. Paranitrophenol appeared as the only electroactive product at all three pH values. The reaction was first order and had k values of 5.2 x 10(-3) s(-1) at pH 2, 5.5 x 10(-3) s(-1) at pH 4 and 9.0 x 10(-3) s(-1) at pH 7. It is concluded that the principal degradation pathway of methylparathion in acid medium is a Cu(II) catalyzed hydrolysis reaction.

  20. Sulfate Mineral Formation from Acid-weathered Phyllosilicates: Implications for the Aqueous History of Mars

    NASA Astrophysics Data System (ADS)

    Craig, Patricia; Ming, Douglas; Rampe, Elizabeth

    2014-11-01

    Phyllosilicates on Mars are common in Noachian terrains whereas sulfates are found in the younger Hesperian terrains and suggest alteration under more acidic conditions. Phyllosilicates that formed during the Noachian era would have been exposed to the prevailing acidic conditions during the Hesperian. The purpose of this project is to characterize the effects of acid-weathering on phyllosilicates to better understand the aqueous history of Mars. Nontronite, montmorillonite, and saponite were exposed to H2SO4 solutions at water-rock (WR) ratios of 50 and 25.X-ray diffraction (XRD) patterns of all three acid-treated minerals showed progressive collapse of the phyllosilicate basal spacing with increasing acid concentration. Bassanite formed as an intermediate phase in weathered nontronite and montmorillonite from extracted interlayer Ca. The octahedral cation determined which sulfate formed at high acid concentration: rhomboclase from nontronite, alunogen from montmorillonite, hexahydrite and kieserite from saponite. Gypsum and anhydrite also formed as intermediate phases in nontronite treated at WR=25, showing a change in sulfate hydration state with changing acid concentration (i.e. water activity). Scanning electron microscopy analyses detected phases not identified by XRD. Al-sulfate was found in nontronite weathered at WR=25 and Ca-sulfate in weathered saponite. Near-infrared reflectance spectra of the weathered samples showed decreasing intensity of the hydration/hydroxylation bands and a change or disappearance of metal-OH bands indicating dehydration and dissociation of the interlayers and octahedral layers, respectively, with increased acid weathering.Sulfate mineral formation from acid-weathered phyllosilicates may explain the presence of phyllosilicates and sulfates in close proximity to each other on Mars, such as in Gale Crater. The CheMin XRD instrument on Curiosity may find evidence for acid-weathered phyllosilicates in Mt. Sharp by comparing the 001

  1. Silver-catalyzed decarboxylative trifluoromethylthiolation of aliphatic carboxylic acids in aqueous emulsion.

    PubMed

    Hu, Feng; Shao, Xinxin; Zhu, Dianhu; Lu, Long; Shen, Qilong

    2014-06-10

    A silver-catalyzed decarboxylative trifluoromethylthiolation of secondary and tertiary carboxylic acids under mild conditions tolerates a wide range of functional groups. The reaction was dramatically accelerated by its performance in an aqueous emulsion, which was formed by the addition of sodium dodecyl sulfate to water. It was proposed that the radical, which was generated from the silver-catalyzed decarboxylation in the "oil-in-water" droplets, could easily react with the trifluoromethylthiolating reagent to form the product. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Reactivity of aminophosphonic acids. Oxidative dephosphonylation of 1-aminoalkylphosphonic acids by aqueous halogens.

    PubMed

    Drabowicz, Józef; Jordan, Frank; Kudzin, Marcin H; Kudzin, Zbigniew H; Stevens, Christian V; Urbaniak, Paweł

    2016-02-07

    The reactions of 1-aminoalkylphosphonic acids with bromine-water, chlorine-water and iodine-water were investigated. The formation of phosphoric(v) acid, as a result of a halogen-promoted cleavage of the Cα-P bond, accompanied by nitrogen release, was observed. The dephosphonylation of 1-aminoalkylphosphonic acids was found to occur quantitatively. In the reactions of 1-aminoalkylphosphonic acids with other halogen-water reagents investigated by (31)P NMR, scission of the Cα-P bond was also observed, the reaction rates being comparable for bromine and chlorine, but much slower for iodine.

  3. Leaching of lead from zinc leach residue in acidic calcium chloride aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Le; Mu, Wen-ning; Shen, Hong-tao; Liu, Shao-ming; Zhai, Yu-chun

    2015-05-01

    A process with potentially reduced environmental impacts and occupational hazards of lead-bearing zinc plant residue was studied to achieve a higher recovery of lead via a cost-effective and environmentally friendly process. This paper describes an optimization study on the leaching of lead from zinc leach residue using acidic calcium chloride aqueous solution. Six main process conditions, i.e., the solution pH value, stirring rate, concentration of CaCl2 aqueous solution, liquid-to-solid (L/S) ratio, leaching temperature, and leaching time, were investigated. The microstructure and components of the residue and tailing were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). On the basis of experimental results, the optimum reaction conditions were determined to be a solution pH value of 1, a stirring rate of 500 r·min-1, a CaCl2 aqueous solution concentration of 400 g·L-1, a liquid-to-solid mass ratio of 7:1, a leaching temperature of 80°C, and a leaching time of 45 min. The leaching rate of lead under these conditions reached 93.79%, with an iron dissolution rate of 19.28%. Silica did not take part in the chemical reaction during the leaching process and was accumulated in the residue.

  4. Preparation of monodisperse aqueous microspheres containing high concentration of l-ascorbic acid by microchannel emulsification.

    PubMed

    Khalid, Nauman; Kobayashi, Isao; Neves, Marcos A; Uemura, Kunihiko; Nakajima, Mitsutoshi; Nabetani, Hiroshi

    2015-01-01

    Monodisperse aqueous microspheres containing high concentrations of l-ascorbic acid with different concentrations of sodium alginate (Na-ALG) and magnesium sulfate (MgSO4) were prepared by using microchannel emulsification (MCE). The continuous phase was water-saturated decane containing a 5% (w/w) hydrophobic emulsifier. The flow rate of the continuous phase was maintained at 10 mL h(-1), whereas the pressure applied to the disperse phase was varied between 3 and 25 kPa. The disperse phase optimized for successfully generating aqueous microspheres included 2% (w/w) Na-ALG and 1% (w/w) MgSO4. At a higher MgSO4 concentration, the generated microspheres resulted in coalescence and subsequent bursting. At a lower MgSO4 concentration, unstable and polydisperse microspheres were obtained. The aqueous microspheres generated from the MCs under optimized conditions had a mean particle diameter (dav) of 14-16 µm and a coefficient of variation (CV) of less than 8% at the disperse phase pressures of 5-15 kPa.

  5. Formation of isomers of anionic hemiesters of sugars and carbonic acid in aqueous medium.

    PubMed

    Dos Santos, Vagner B; Vidal, Denis T R; Francisco, Kelliton J M; Ducati, Lucas C; do Lago, Claudimir L

    2016-06-16

    Hemiesters of carbonic acid can be freely formed in aqueous media containing HCO3(-)/CO2 and mono- or poly-hydroxy compounds. Herein, (13)C NMR spectroscopy was used to identify isomers formed in aqueous solutions of glycerol (a prototype compound) and seven carbohydrates, as well as to estimate the equilibrium constant of formation (Keq). Although both isomers are formed, glycerol 1-carbonate corresponds to 90% of the product. While fructose and ribose form an indistinct mixture of isomers, the anomers of d-glucopyranose 6-carbonate correspond to 74% of the eight isomers of glucose carbonate that were detected. The values of Keq for the disaccharides sucrose (4.3) and maltose (4.2) are about twice the values for the monosaccharides glucose (2.0) and fructose (2.3). Ribose (Keq = 0.89)-the only sugar without a significant concentration of a species containing a -CH2OH group in an aqueous solution-resulted in the smallest Keq. On the basis of the Keq value and the concentrations of HCO3(-) and glucose in blood, one can anticipate a concentration of 2-4 µmol L(-1) for glucose 6-carbonate, which corresponds to ca. of 10% of its phosphate counterpart (glucose 6-phosphate). Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Photochemical reaction between triclosan and nitrous acid in the atmospheric aqueous environment

    NASA Astrophysics Data System (ADS)

    Ma, Jianzhong; Zhu, Chengzhu; Lu, Jun; Lei, Yu; Wang, Jizhong; Chen, Tianhu

    2017-05-01

    Nitrous acid (HONO) is an important tropospheric pollutant and a major source of hydroxyl radical in the atmospheric gas phase. However, studies on the role of HONO in atmospheric aqueous phase chemistry processes are relatively few. The present work investigated the photochemical reaction of HONO with triclosan (TCS), which is an emerging contaminant, using a combination of laser flash photolysis spectrometry and gas chromatography mass spectrometry. With these techniques, the reaction pathway of HONO with TCS was proposed by directly monitoring the transient species and detecting the stable products. ·OH was generated from the photodissociation of the HONO aqueous solution and attacked TCS molecules on different sites to produce the TCS-OH adducts with a second-order rate constant of 1.11 × 109 L mol-1 s-1. The ·OH added a C atom adjacent to the ether bond in the aromatic ring of TCS and self-decayed when the ether bond broke. The intermediates generated from the addition of ·OH to the benzene ring of the TCS molecular structure were immediately nitrated by HONO, which played a key role in the formation process of nitrocompounds. An atmospheric model suggests that the aqueous oxidation of TCS by ·OH is a major reaction at high liquid water concentrations, and the photolysis of TCS dominates under low-humidity conditions.

  7. [Efficient killing of anthrax spores using aqueous and alcoholic peracetic acid solutions].

    PubMed

    Nattermann, H; Becker, S; Jacob, D; Klee, S R; Schwebke, I; Appel, B

    2005-08-01

    We analysed the sporicidal effect of different concentrations of aqueous and alcoholic peracetic acid (PAA) solutions on anthrax spores in suspension and germ carrier tests. In activation of anthrax spores in suspension assays was achieved in less than 2 min using 1% PAA solution and in less than 3 min using 0.5% PAA solution, respectively. In contrast, in germ carrier as says, a test under practical conditions, spores on 38% of the germ carriers survived treatment with 1% PAA solution for 15 min. The use of PAA in 80% ethyl alcohol outclassed the sporicidal effect of aqueous PAA solutions in both suspension and germ carrier assays. Anthrax spores on 14% of germ carriers tested survived 30 min of treatment with a 1% aqueous PAA solution. In contrast anthrax spores were reliably inactivated under the same test procedure using a 1% alcoholic PAA solution for 30 min. The proven enhancement of the sporicidal effect of alcoholic PAA solutions should be kept in mind when using disinfectants in practice. In further surveys we will optimise the test conditions.

  8. Uptake of methacrolein into aqueous solutions of sulfuric acid and hydrogen peroxide.

    PubMed

    Liu, Ze; Wu, Ling-Yan; Wang, Tian-He; Ge, Mao-Fa; Wang, Wei-Gang

    2012-01-12

    Multiphase acid-catalyzed oxidation by hydrogen peroxide has been suggested to be a potential route to secondary organic aerosol (SOA) formation from isoprene and its gas-phase oxidation products, but the kinetics and chemical mechanism remain largely uncertain. Here we report the first measurement of uptake of methacrolein into aqueous solutions of sulfuric acid and hydrogen peroxide in the temperature range of 253-293 K. The steady-state uptake coefficients were acquired and increased quickly with increasing sulfuric acid concentration and decreasing temperature. Propyne, acetone, and 2,3-dihydroxymethacrylic acid were suggested as the products. The chemical mechanism is proposed to be the oxidation of carbonyl group and C═C double bonds by peroxide hydrogen in acidic environment, which could explain the large content of polyhydroxyl compounds in atmospheric fine particles. These results indicate that multiphase acid-catalyzed oxidation of methacrolein by hydrogen peroxide can contribute to SOA mass in the atmosphere, especially in the upper troposphere.

  9. The dissolution of calcite in aqueous acid: The influence of humic species

    SciTech Connect

    Compton, R.G.; Sanders, G.H.W. )

    1993-07-01

    The kinetics of proton-induced calcite dissolution in aqueous solution in the presence of humic acids and their sodium salts are reported. In equilibrated acid solutions (pH <4) there is no inhibition by humic material and dissolution proceeds at a rate simply determined by the solution pH. Contrastingly the sodium salts of humic acids were found to have a significant inhibitory effect on the acid catalyzed dissolution. This was quantified using a novel channel flow cell experiment which employed two electrodes, the upstream of which was used to inject protons into a neutral solution, which also contained sodium salts of humic acid, via electrolytic oxidation of dissolved hydroquinone. The two electrodes were located immediately upstream and downstream of a calcite crystal so that the proton injection served to dissolve the calcite in the (inhibiting) presence of humic salts unequilibrated with the solution pH. The amount of H[sup +] which survived passage to the downstream detector'' electrode was used to quantify the rate of dissolution and hence the inhibitory effects of the humic acid. The latter were found to operate in a manner not inconsistent with Langmuirian adsorption.

  10. Adsorption of naphthalene from aqueous solution onto fatty acid modified walnut shells.

    PubMed

    Zhu, Mijia; Yao, Jun; Dong, Lifu; Sun, Jingjing

    2016-02-01

    The removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous solution is challenging to environmental technologists. Agricultural waste is apparently the most attractive materials in removing PAHs because of its abundance, renewability, and economic advantage. The adsorption of PAHs (e.g., naphthalene) onto walnut shell (WNS) and its fatty acid (e.g., capric acid, lauric acid, palmitic acid, and oleic acid)-modified equivalent were investigated in this work to develop low-cost biosorbents for hydrophobic organic compounds. Compared with other modified sorbents, oleic acid graftted walnut shell (OWNS) showed the maximum partition coefficient (4330 ± 8.8 L kg(-1)) because of its lowest polarity and highest aromaticity. The adsorption capacity (7210 μg g(-1)) of OWNS at the temperature of 298 K was observed for an initial naphthalene concentration of 25 mg L(-1) with contact time of 40 h, sorbent dosage of 1 g L(-1), and in neutral condition. Furthermore, the regeneration capability of OWNS implied that it was a promising biosorbent for naphthalene removal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The Oxidation of Ascorbic Acid by Hexacyanoferrate(III) Ion in Acidic Aqueous Media.

    ERIC Educational Resources Information Center

    Martins, Luis J. A.; da Costa, J. Barbosa

    1988-01-01

    Describes a kinetic and mechanistic investigation of ascorbic acid by a substitution-inert complex in acidic medium suitable for the undergraduate level. Discusses obtaining the second order rate constant for the rate determining step at a given temperature and comparison with the value predicted on the basis of the Marcus cross-relation. (CW)

  12. Extraction of p-coumaric acid and ferulic acid using surfactant-based aqueous two-phase system.

    PubMed

    Dhamole, Pradip B; Demanna, Dhanashree; Desai, S A

    2014-09-01

    Ferulic acid (FA) and p-coumaric acid (pCA) are high-value products that can be obtained by alkaline hydrolysis of lignocellulose. Present work explores the potential of surfactant-based cloud-point extraction (CPE) for FA and pCA extraction from corn cob hydrolysate. More than 90 % (w/w) extraction of both FA and pCA was achieved from model system with L92. The partition coefficient of FA and pCA in L92 aqueous phase system was 35 and 55, respectively. A significant enrichment (8-10-fold) of both FA and pCA was achieved in surfactant-rich phase. Furthermore, the downstream process volume was reduced by 10 to 13 times. Optimized conditions (5 % v/v L92 and pH 3.0) resulted into 85 and 89 % extraction of FA and p-CA, respectively, from alkaline corn cob hydrolysate. Biocompatibility tests were carried out for L92 for ethanol fermentation and found to be biocompatible. Thus, the new surfactant-based CPE system not only concentrated FA and pCA but also reduced the process volume significantly. Further, aqueous phase containing sugars can be used for ethanol fermentation.

  13. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-01-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic aerosols (BA), for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2) and malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment, except for ω-oxooctanoic acid (ωC8) that showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids dominates their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  14. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-07-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic (BA) aerosols, for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2), malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols, whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment except for ω-oxooctanoic acid (ωC8), which showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids controls their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  15. Studies on equilibrium of anthranilic acid in aqueous solutions and in two-phase systems: aromatic solvent-water.

    PubMed

    Zapała, Lidia; Kalembkiewicz, Jan; Sitarz-Palczak, Elzbieta

    2009-03-01

    The acid-base equilibria of anthranilic acid have been characterized in terms of macro- and microdissociation constants (dissociation constants K(a1), K(a2) and tautomeric constant K(z)). On the basis of spectrophotometric investigations the values of the distribution ratio D of anthranilic acid in the two-phase systems: aromatic solvent (benzene, ethylbenzene, toluene, chlorobenzene, bromobenzene)-aqueous solution were obtained. Employing the results of potentiometric titration in the two-phase systems: aromatic solvent-aqueous solution the distribution constant K(D) and dimerization constant K(dim) values were calculated. The influence of organic solvent polarity and pH of the aqueous phase on the contents of the particular forms of the acid in the two-phase systems were analyzed.

  16. Standard enthalpies of formation of γ-aminobutyric acid and the products of its dissociation in aqueous solution

    NASA Astrophysics Data System (ADS)

    Lytkin, A. I.; Chernikov, V. V.; Krutova, O. N.; Skvortsov, I. A.; Korchagina, A. S.

    2016-09-01

    Heat effects of the dissolution of crystalline γ-aminobutyric acid in water and potassium hydroxide solutions are determined by direct colorimetry at 298.15 K. Standard enthalpies of formation of γ-aminobutyric acid and the products of its dissociation in aqueous solution are calculated.

  17. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part I. Regeneration of Amine-Carboxylic Acid Extracts

    SciTech Connect

    Poole, Loree Joanne; King, C. Judson

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO2 and H2S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, succinic acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The

  18. Sulphur Kβ emission spectra reveal protonation states of aqueous sulfuric acid

    PubMed Central

    Niskanen, Johannes; Sahle, Christoph J.; Ruotsalainen, Kari O.; Müller, Harald; Kavčič, Matjaž; Žitnik, Matjaž; Bučar, Klemen; Petric, Marko; Hakala, Mikko; Huotari, Simo

    2016-01-01

    In this paper we report an X-ray emission study of bulk aqueous sulfuric acid. Throughout the range of molarities from 1 M to 18 M the sulfur Kβ emission spectra from H2SO4 (aq) depend on the molar fractions and related deprotonation of H2SO4. We compare the experimental results with results from emission spectrum calculations based on atomic structures of single molecules and structures from ab initio molecular dynamics simulations. We show that the S Kβ emission spectrum is a sensitive probe of the protonation state of the acid molecules. Using non-negative matrix factorization we are able to extract the fractions of different protonation states in the spectra, and the results are in good agreement with the simulation for the higher part of the concentration range. PMID:26888159

  19. Second harmonic study of acid-base equilibrium at gold nanoparticle/aqueous interface

    NASA Astrophysics Data System (ADS)

    Ma, Jianqiang; Mandal, Sarthak; Bronsther, Corin; Gao, Zhenghan; Eisenthal, Kenneth B.

    2017-09-01

    Interfacial acid-base equilibrium of the capping molecules is a key factor to stabilize gold nanoparticles (AuNP) in solution. In this study we used Second Harmonic (SH) generation to measure interfacial potential and obtained a surface pKa value of 3.3 ± 0.1 for the carboxyl group in mercaptoundecanoic acid (MUA) molecule at an AuNP/aqueous interface. This pKa value is smaller than its bulk counterpart and indicates that the charged carboxylate group is favored at the AuNP surface. The SH findings are consistent with the effects of the noble metal (gold) surface on a charge in solution, as predicted by the method of images.

  20. Competitive adsorption of boric acid and chromate onto alumina in aqueous solutions.

    PubMed

    Demetriou, A; Pashalidis, I

    2014-01-01

    The competitive adsorption of boric acid and chromate from aqueous solutions by alumina has been investigated by spectrophotometry at pH 8, ionic strength = 0.0, 0.1 and 1.0 M NaClO4, T = 22 ± 3 °C and under normal atmospheric conditions. The experimental data show that addition of excess boric acid in the system leads to the increase of Cr(VI) concentration in solution, indicating the replacement of adsorbed chromate by boron on the alumina surface. Data evaluation results in the determination of the competition reaction constant and the formation constant of the Cr(VI) surface complexes, which are logKCr(VI)-B(III) = -3.5 ± 0.2 and logβ*Cr = 7.6 ± 0.3, respectively.

  1. Separation of glycols from dilute aqueous solutions via complexation with boronic acids

    SciTech Connect

    Randel, L.A.; King, C.J.

    1991-07-01

    This work examines methods of separating low molecular weight glycols from dilute aqueous solution. Extraction into conventional solvents is generally not economical, since, in the literature reviewed, distribution ratios for the two- to four-carbon glycols are all less than one. Distribution ratios can be increased, however, by incorporating into the organic phase an extracting agent that will complex with the solute of interest. The extracting agent investigated in this work is 3-nitrophenylboronic acid (NPBA). NPBA, a boric acid derivative, reversibly complexes with many glycols. The literature on complexation of borate and related compounds with glycols, including mechanistic data, measurement techniques, and applications to separation processes, provides information valuable for designing experiments with NPBA and is reviewed herein. 88 refs., 15 figs., 24 tabs.

  2. Extraction and isolation of TPE from other elements on ion exchangers in aqueous and aqueous-organic solutions of phosphoric acid

    SciTech Connect

    Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.

    1988-07-01

    The behavior of Am-Es and other actinides on anion and cation exchange resins in aqueous and aqueous-organic solutions of phosphoric acid has been studied in a wide range of concentration of various components of the solution. The sorptivity of transplutonium elements (TPE) on anion exchangers from dilute H/sub 3/PO/sub 4/ with a concentration less than or equal to 1 M in presence of organic solvents (alcohols, ketones, etc.) and on cation exchangers from concentrated H/sub 3/PO/sub 4/ has been found to be significant. The possibility of use of phosphoric acid solutions for isolation of TPE from Th, Pa, U, Np, Pu, and Zr and separation of TPE in different oxidation states in presence of a high-purity oxidant has been shown.

  3. Removal of Se(IV) from aqueous solution using sulphuric acid-treated peanut shell.

    PubMed

    El-Shafey, E I

    2007-09-01

    A carbonaceous sorbent was prepared from peanut shell via sulphuric acid treatment. Se(IV) removal from aqueous solution on the sorbent was studied varying time, pH, Se(IV) concentration, temperature and sorbent status (wet and dry). Se(IV) removal was faster using the wet sorbent than the dry sorbent following a pseudo-first-order model. Se(IV) removal increases at low pH values, and decreases as pH increases until pH 7. Sorption was found to fit the Langmuir equation and sorption capacity for the wet sorbent was higher than that for the dry one. Both sorbents showed an increased selenium sorption by rising the temperature. Redox processes between Se(IV) and the carbon sorbent are involved. Analysis by scanning electron microscope and X-ray powder diffraction for the sorbent after the reaction with acidified Se(IV) confirmed the availability of elemental selenium as particles on the sorbent surface as a result of Se(IV) reduction. Physicochemical tests showed an increase in sorbent acidity, cation exchange capacity (CEC) and surface functionality after the reaction with acidified Se(IV), indicating the oxidation processes occurring on the sorbent surface. Due to its reduction properties, the sorbent seems efficient for Se(IV) removal from aqueous solution.

  4. Removal of lead from aqueous solutions by a poly(acrylic acid)/bentonite nanocomposite

    NASA Astrophysics Data System (ADS)

    Rafiei, H. R.; Shirvani, M.; Ogunseitan, O. A.

    2016-11-01

    We synthesized a novel poly acrylic acid-organobentonite (PAA-Bent) nanocomposite by successive intercalation of cetyltrimethylammonium (CTA) surfactant and polyacrylic acid (PAA) into the bentonite (Bent) interlayer spaces. The surfactant-modified clay (CTA-Bent) and PAA-Bent nanocomposite were characterized by XRD and FT-IR techniques and used for removal of Pb(II) from aqueous solution. The XRD results confirmed the intercalation of CTA and PAA into the interlayer spaces of the bentonite increasing the d 001 spacing of the clay from 12.2 up to 38.9 Å. FT-IR analysis of the modified clay samples revealed the functional groups of CTA and PAA constituents alighted on the bentonite surfaces. Maximum Pb sorption capacity of the Bent and PAA-Bent predicted by Langmuir model were 52.3 and 93.0 mg g-1, respectively, showing that the synthesized nanocomposite superiorly adsorbed Pb from the solution as compared to the Bent. The maximum Pb removal efficiency of 99.6 % was achieved by the nanocomposite at 25 °C with <30 min contact time for a 7.5 g L-1 solid-to-liquid ratio and an initial metal concentration of 400 mg L-1. The results indicated that PAA-Bent nanocomposite can be efficiently used as a superadsorbent for the removal of Pb(II) from aqueous solution.

  5. EXAFS study of the speciation of protactinium(V) in aqueous hydrofluoric acid solutions.

    PubMed

    De Sio, Stéphanie M; Wilson, Richard E

    2014-12-01

    The speciation of protactinium(V) in hydrofluoric acid (HF) solutions was studied using X-ray absorption spectroscopy. Extended X-ray absorption fine structure measurements were performed on an aqueous solution of 0.05 M protactinium(V) with various HF concentrations ranging from 0.5 to 27 M in order to probe the protactinium coordination sphere with respect to the identity and number of coordinating ligands. The resulting fits to the spectra suggest the presence of an eight-coordinate homoleptic fluoro complex in highly concentrated fluoride solutions (27 M), with equilibrium between seven- and eight-coordinate fluoro complexes at moderate acidities, and in more dilute solutions, results indicate that one water molecule is likely to replace a fluoride in the first coordination sphere, at a distance of 2.54-2.57 Å. Comparisons of this chemistry with group V metals, niobium and tantalum, are presented, and the potential implications for these results on the hydrolytic behavior of protactinium in aqueous systems are discussed.

  6. Adsorptions of some heavy metal ions in aqueous solutions by acrylamide/maleic acid hydrogels

    SciTech Connect

    Saraydin, D.; Karadag, E.; Gueven, O.

    1995-10-01

    In this study, acrylamide-maleic acid (AAm/MA) hydrogels in the form of rod have been prepared by {gamma}-radiation. They have been used for adsorption of some heavy metal ions such as uranium, iron, and copper. For the hydrogel containing 40 mg of maleic acid and irradiated at 3.73 kGy, maximum and minimum swellings in the aqueous solutions of the heavy metal ions have been observed with water (1480%) and the aqueous solution of iron(III) nitrate (410%), respectively. Diffusions of water and heavy metal ions onto hydrogels have been found to be of the non-Fickian type of diffusion. In experiments of uranyl ions adsorption, Type II adsorption has been found. One gram of AAa/MA hydrogels sorbed 14-86 mg uranyl ions from solutions of uranyl acetate, 14-90 mg uranyl ions from solutions of uranyl nitrate, 16-39 mg iron ions from solutions of iron(IV) nitrate, and 28-81 mg copper ions from solutions of copper acetate, while acrylamide hydrogel did not sorb any heavy metals ions.

  7. An EXAFS study of the speciation of protactinium(V) in aqueous hydrofluoric acid solution

    SciTech Connect

    De Sio, Stephanie M.; Wilson, Richard E.

    2014-12-01

    The speciation of protactinium(V) in hydrofluoric acid (HF) solutions was studied using X-ray absorption spectroscopy. Extended X-ray absorption fine structure measurements were performed on an aqueous solution of 0.05 M protactinium(V) with various HF concentrations ranging from 0.5 to 27 M in order to probe the protactinium coordination sphere with respect to the identity and number of coordinating ligands. The resulting fits to the spectra suggest the presence of an eight-coordinate homoleptic fluoro complex in highly concentrated fluoride solutions (27 M), with equilibrium between seven- and eight-coordinate fluoro complexes at moderate acidities, and in more dilute solutions, results indicate that one water molecule is likely to replace a fluoride in the first coordination sphere, at a distance of 2.54-2.57 angstrom. Comparisons of this chemistry with group V metals, niobium and tantalum, are presented, and the potential implications for these results on the hydrolytic behavior of protactinium in aqueous systems are discussed.

  8. Sunlight-initiated chemistry of aqueous pyruvic acid: building complexity in the origin of life.

    PubMed

    Griffith, Elizabeth C; Shoemaker, Richard K; Vaida, Veronica

    2013-10-01

    Coupling chemical reactions to an energy source is a necessary step in the origin of life. Here, we utilize UV photons provided by a simulated sun to activate aqueous pyruvic acid and subsequently prompt chemical reactions mimicking some of the functions of modern metabolism. Pyruvic acid is interesting in a prebiotic context due to its prevalence in modern metabolism and its abiotic availability on early Earth. Here, pyruvic acid (CH3COCOOH, a C3 molecule) photochemically reacts to produce more complex molecules containing four or more carbon atoms. Acetoin (CH3CHOHCOCH3), a C4 molecule and a modern bacterial metabolite, is produced in this chemistry as well as lactic acid (CH3CHOHCOOH), a molecule which, when coupled with other abiotic chemical reaction pathways, can provide a regeneration pathway for pyruvic acid. This chemistry is discussed in the context of plausible environments on early Earth such as near the ocean surface and atmospheric aerosol particles. These environments allow for combination and exchange of reactants and products of other reaction environments (such as shallow hydrothermal vents). The result could be a contribution to the steady increase in chemical complexity requisite in the origin of life.

  9. Sulfate Formation From Acid-Weathered Phylosilicates: Implications for the Aqueous History of Mars

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Ming, D. W.; Rampe, E. B.

    2014-01-01

    Most phyllosilicates on Mars are thought to have formed during the planet's earliest Noachian era, then Mars underwent a global change making the planet's surface more acidic [e.g. 1]. Prevailing acidic conditions may have affected the already existing phyllosilicates, resulting in the formation of sulfates. Both sulfates and phyllosilicates have been identified on Mars in a variety of geologic settings [2] but only in a handful of sites are these minerals found in close spatial proximity to each other, including Mawrth Vallis [3,4] and Gale Crater [5]. While sulfate formation from the acidic weathering of basalts is well documented in the literature [6,7], few experimental studies investigate sulfate formation from acid-weathered phyllosilicates [8-10]. The purpose of this study is to characterize the al-teration products of acid-weathered phyllosilicates in laboratory experiments. We focus on three commonly identified phyllosilicates on Mars: nontronite (Fe-smectite), saponite (Mg-smectite), and montmorillonite (Al-smectite) [1, and references therein]. This information will help constrain the formation processes of sulfates observed in close association with phyllosilicates on Mars and provide a better understanding of the aqueous history of such regions as well as the planet as a whole.

  10. UV irradiation and humic acid mediate aggregation of aqueous fullerene (nC₆₀) nanoparticles.

    PubMed

    Qu, Xiaolei; Hwang, Yu Sik; Alvarez, Pedro J J; Bouchard, Dermont; Li, Qilin

    2010-10-15

    The transport and fate of engineered nanomaterials is affected by multiple environmental factors, including sunlight and natural organic matter. In this study, the initial aggregation kinetics of aqueous fullerene (nC(60)) nanoparticles before and after UVA irradiation was investigated in solutions varying in ionic strength, ionic composition, and humic acid concentration. In NaCl solutions, surface oxidation induced by UV irradiation remarkably increased nC(60) stability due to the increased negative surface charge and reduced particle hydrophobicity; although humic acid greatly enhanced the stability of pristine nC(60) via the steric hindrance effect, it had little influence on the stability of UV-irradiated nC(60) in NaCl due to reduced adsorption on oxidized nC(60) surface. In contrast, UV irradiation reduced nC(60) stability in CaCl(2) due to specific interactions of Ca(2+) with the negatively charged functional groups on UV-irradiated nC(60) surface and the consequent charge neutralization. By neutralizing surface charges of both UV-irradiated nC(60) and humic acid as well as forming intermolecular bridges, Ca(2+) facilitated humic acid adsorption on UV-irradiated nC(60), resulting in enhanced stability in the presence of humic acid. These results demonstrate the critical role of nC(60) surface chemistry in its environmental transport and fate.

  11. Influence of charge exchange in acidic aqueous and alcoholic titania dispersions on viscosity.

    PubMed

    Rosenholm, Jarl B; Dahlsten, Per

    2015-12-01

    Charging effects resulting from adsorption of acid, acid anions, and protons on titania (anatase) surfaces in anhydrous or mixed alcohol-water dispersions is summarized. The suddenly enhanced conductivity as compared to titania-free solutions has previously been modeled and explained as surface-induced electrolytic dissociation (SIED) of weak acids. This model and recently published results identifying concurrent surface-induced liquid (solvent) dissociation (SILD) are evaluated with experimentally determined conductivity and pH of solutions, zeta-potential of particles, and viscosity of dispersions. Titania (0-25wt%)-alcohol (methanol, ethanol, and propanol) dispersions mixed with (0-100wt%) water were acidified with oxalic, phosphoric, and sulfuric acids. It was found that the experimental results could in many cases be condensed to master curves representing extensive experimental results. These curves reveal that major properties of the systems appear within three concentration regions were different mechanisms (SILD, surface-induced liquid dissociation; SIAD, surface-induced acid dissociation) and charge rearrangement were found to be simultaneously active. In particular, zeta-potential - pH and viscosity - pH curves are in acidified non-polar solvents mirror images to those dependencies observed in aqueous dispersions to which hydroxyl is added. The results suggest that multiple dispersion and adsorption equilibria should be considered in order to characterize the presented exceptionally extensive and complex experimental results. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Stable Isotope Characteristics of Jarosite: The Acidic Aqueous History of Mars

    NASA Technical Reports Server (NTRS)

    Earl, Lyndsey D.

    2005-01-01

    The Mars Rover Opportunity found jarosite (Na(+) or K(+))Fe3SO4(OH)6 at the Meridiani Planum site. This mineral forms from the evaporation of an aqueous acidic sulfate brine. Oxygen isotope compositions may characterize formation conditions but subsequent isotope exchange may have occurred between the sulfate and hydroxide of jarosite and water. The rate of oxygen isotope exchange depends on the acidity and temperature of the brine, but it has not been investigated in detail. We performed laboratory experiments to determine the rate of oxygen isotope exchange under varying acidities and temperatures to learn more about this process. Barium sulfate samples were precipitated weekly from acidic sodium sulfate brines. The oxygen isotope composition of the precipitated sulfate was obtained using a Finnigan MAT253 Isotope Ratio Mass-Spectrometer. The results show that water was trapped in barium sulfate during precipitation. Trapped water may exchange with sulfate when exposed to high temperatures, thus changing the isotope composition of sulfate and the observed fractionation factor of oxygen isotope exchange between sulfate and water. The results of our research will contribute to the understanding of oxygen isotope exchange rates between water and sulfate under acidic conditions and provide experimental knowledge for the dehydration of barium sulfate samples.

  13. Sunlight-initiated Chemistry of Aqueous Pyruvic Acid: Building Complexity in the Origin of Life

    NASA Astrophysics Data System (ADS)

    Griffith, Elizabeth C.; Shoemaker, Richard K.; Vaida, Veronica

    2013-10-01

    Coupling chemical reactions to an energy source is a necessary step in the origin of life. Here, we utilize UV photons provided by a simulated sun to activate aqueous pyruvic acid and subsequently prompt chemical reactions mimicking some of the functions of modern metabolism. Pyruvic acid is interesting in a prebiotic context due to its prevalence in modern metabolism and its abiotic availability on early Earth. Here, pyruvic acid (CH3COCOOH, a C3 molecule) photochemically reacts to produce more complex molecules containing four or more carbon atoms. Acetoin (CH3CHOHCOCH3), a C4 molecule and a modern bacterial metabolite, is produced in this chemistry as well as lactic acid (CH3CHOHCOOH), a molecule which, when coupled with other abiotic chemical reaction pathways, can provide a regeneration pathway for pyruvic acid. This chemistry is discussed in the context of plausible environments on early Earth such as near the ocean surface and atmospheric aerosol particles. These environments allow for combination and exchange of reactants and products of other reaction environments (such as shallow hydrothermal vents). The result could be a contribution to the steady increase in chemical complexity requisite in the origin of life.

  14. Adsorption of Crystal violet on raw and acid-treated montmorillonite, K10, in aqueous suspension.

    PubMed

    Sarma, Gautam Kumar; Sen Gupta, Susmita; Bhattacharyya, Krishna G

    2016-04-15

    Crystal violet is used as a dye in cotton and silk textiles, paints and printing ink. The dye is hazardous and exposure to it may cause permanent injury to the cornea and conjunctiva including permanent blindness, and in severe cases, may lead to respiratory and kidney failure. The present work describes removal of Crystal violet from aqueous solution by adsorption on raw and acid-treated montmorillonite, K10. The clay mineral was treated with 0.25 and 0.50 M sulfuric acid and the resulting materials were characterized by XRD, zeta potential, SEM, FTIR, cation exchange capacity, BET surface area and pore volume measurements. The influences of pH, interaction time, adsorbent amount, and temperature on adsorption were monitored and explained on the basis of physico-chemical characteristics of the materials. Basic pH generally favors adsorption but considerable removal was possible even under neutral conditions. Adsorption was very rapid and equilibrium could be attained in 180 min. The kinetics conformed to second order model. Langmuir monolayer adsorption capacity of raw montmorillonite K10 was 370.37 mg g(-1) whereas 0.25 M and 0.50 M acid treated montmorillonite K10 had capacities of 384.62 and 400.0 mg g(-1) respectively at 303 K. Adsorption was exothermic and decreased in the temperature range of 293-323 K. Thermodynamically, the process was spontaneous with Gibbs energy decreasing with rise in temperature. The results suggest that montmorillonite K10 and its acid treated forms would be suitable for removing Crystal violet from aqueous solution.

  15. Development and validation of non-aqueous capillary electrophoresis methods to analyze boronic esters and acids.

    PubMed

    Forst, Mindy B; Warner, Anne M

    2012-05-01

    Boronic esters and acids are potential intermediates in the manufacture of many active pharmaceutical ingredients (API). Accurate quantitation of the intermediate is necessary to assure the stoichiometry of the reaction. The analysis of these compounds is challenging due to their labile nature. For example, the boronic ester can hydrolyze to the acid during storage, when exposed to moisture in the air, during sample preparation and analysis, and thus give erroneous ester results. Traditional analytical techniques like gas chromatography (GC), normal phase chromatography (NPLC), hydrophilic interaction chromatography (HILIC), and reversed phase liquid chromatography (RPLC) have been utilized but with noted limitations such as poor peak shape, variation in retention times, and evidence of hydrolysis. All of these limitations impact accurate quantitation needed for selected situations. For the proprietary boronic ester evaluated here, these traditional techniques were insufficient for the accurate determination of assay and residual boronic acid. Non-aqueous capillary electrophoresis (NACE) is an accurate quantitative technique that can be used to analyze boronic esters and their corresponding acids without the limitations noted for traditional analytical techniques. The present study describes the development of methodology for the determination of the potency of a proprietary boronic ester as well as methodology for the determination of residual boronic acid in the ester. In addition, nine model boronic ester and acid pairs with a range in polarity, based on the electronic properties of the attached side group, were tested to evaluate and demonstrate the general applicability of these conditions. Under the conditions used for potency, all ten pairs had a resolution between the boronic ester and acid of greater than 1.5, acceptable peak shape for the boronic ester (tailing factor of less than 2.0), and a run time of less than 3 min. In addition, this work describes

  16. CO 2 and CO utilization: radiation-induced carboxylation of aqueous chloroacetic acid to malonic acid

    NASA Astrophysics Data System (ADS)

    Getoff, Nikola

    2003-07-01

    CO 2 and CO in addition to HCOOH/HCOO - can be used to produce the carboxylating radical rad COOH/ rad COO - under the influence of ionizing radiation. The carboxylation of ClCH 2COOH/ClCH 2COO - to malonic acid/malonate was studied at the pH range 2-7. A maximum yield G(malonic acid)=85 at pH=3 was observed by using 5×10 -2 mol dm -3 ClCH 2COOH, 1×10 -2 mol dm -3 HCOOH and 1×10 -3 mol dm -3 CO at a dose of 4.8 kGy. Oxalic and succinic acids were found as byproducts. The yield of the formed Cl - ions passes two maxima, at pH=3 ( G=7.5) and 7 ( G=15). Reaction mechanisms for the carboxylation process are presented.

  17. Liquefaction of Douglas Fir wood slurries: titration of acids and anions in aqueous product and feed slurries

    SciTech Connect

    Davis, H.G.

    1981-03-01

    After hydrolytic pretreatment, wood slurries contain substantial amounts of organic acids. Additional acids are produced during the liquefaction step whether or not there is prehydrolysis. The acids have pH's in the range of about 3 to 5 and are easily titrated potentiometrically with sodium hydroxide. Anions present in neutralized slurry or in aqueous product can be titrated with hydrogen chloride solution with appropriate corrections for sulfate if present, and for excess titrant at the low pH of the endpoint.

  18. Influence of intragastric perfusion of aqueous spice extracts on acid secretion in anesthetized albino rats.

    PubMed

    Vasudevan, K; Vembar, S; Veeraraghavan, K; Haranath, P S

    2000-01-01

    The effect of spices on gastric acid secretion is variable. Their mechanism of action is also not well established. To study the effect of spices on gastric acid secretion in anesthetized rats. Aqueous extracts (10% w/v) of red pepper (Capsicum annuum), fennel (Foeniculum vulgare), omum/ajwan (Carum copticum), cardamom (Elettaria cardamomum), black pepper (Piper nigrum), cumin (Cuminum cyminum) and coriander (Coriandrum sativum) were prepared. The stomach of pentobarbitone-anesthetized rats was perfused at 0.15 mL/min with aqueous extracts of spice or acetylcholine (1 microgram/mL or 10 micrograms/mL solutions, in 40 min blocks, twice in each experiment bracketed by saline perfusions. The acid content in the samples was estimated by titration with 0.1N NaOH with phenolphthalein as indicator. Atropine 1 microgram/mL was added to the perfusion fluid in 28 experiments. In 32, acute gastric mucosal injury was induced by leaving aspirin 125 mg/Kg in the stomach for 2 h before perfusion. All the spices tested increased acid secretion in the following declining order: red pepper, fennel, omum, cardamom, black pepper, cumin, coriander. Red pepper increased acid secretion (mean [SEM] 0.93 [0.16] mL 0.1N HCl) to about 7 times the basal secretion (0.14 [0.05]; p < 0.005). The increase in acid secretion by the other spices was as follows: fennel 0.42 (0.11) mL 0.1 N HCl from basal secretion (0.12 [0.03]) (p < 0.02); omum 0.33 (0.05) from 0.09 (0.02) (p < 0.01); cardamom 0.28 (0.04) from 0.10 (0.03) (p < 0.005); black pepper 0.19 (0.03) from 0.04 (0.01) (p < 0.005); cumin 0.12 (0.02) from 0.08 (0.01) (p < 0.05); coriander 0.18 (0.03) from 0.09 (0.02) (p < 0.005). Atropine abolished the acid secretion induced by acetylcholine and significantly reduced acid induction by red pepper, omum and coriander, but not that by fennel. In experiments with aspirin-induced mucosal injury the basal acid secretion was low; acid secretion by red pepper and fennel was reduced significantly, but

  19. Acid-activated spent bleaching earth as a sorbent for chromium (VI) in aqueous solution.

    PubMed

    Low, K S; Lee, C K; Lee, T S

    2003-02-01

    Spent bleaching earth, an industrial waste produced after the bleaching of crude palm oil, was investigated for its potential in removing Cr(VI) from aqueous solution. The earth was treated with different amounts of sulfuric acid and under different activation temperatures. Results show that the optimum treatment process involved 10% sulfuric acid at 350 degrees C. The effects of contact time, pH, initial concentration, sorbent dosage, temperature, sorption isotherms and the presence of other anions on its sorption capacity were studied. Isotherm data could be fitted into a modified Langmuir isotherm model implying monolayer coverage of Cr(VI) on acid activated spent bleaching earth. The maximum sorption capacity derived from the Langmuir isotherm was 21.2 mg g(-1). This value was compared with those of some other low cost sorbents. Studies of anion effect on the uptake of Cr(VI) on acid activated spent bleaching earth provided the following order of suppression: EDTA >PO4(3-)>SO4(2-)>NO3(-)>Cl(-).

  20. Statistical mechanics of hydrophobic amino acids in aqueous solution: A joint experimental scattering and computational study

    NASA Astrophysics Data System (ADS)

    Song, Lingshuang; Yang, Lin; Huang, Wei; Meng, Jie; Yang, Sichun

    How hydrophobic amino acids interact with each other is still a fundamental question in understanding protein dynamics and folding. Here, we describe an integrative experimental-computational approach of combining x-ray solution scattering and atomistic molecular simulations to determine the molecular properties of a hydrophobic leucine amino acid in an aqueous solution. First, scattering data were acquired at a series of amino acid and salt concentrations and these scattering profiles were further used to calibrate atomistic molecular simulations via a single parameter for solute-solvent interaction. Second, these accurate data of atomistic leucine simulations were used to quantify the effective interacting potentials via a structural simplification of one-bead-per-residue and two-bead-per-residue representations. Third, comparative energetic analyses between the one-bead and two-bead representations were performed to reach a simple picture of residue-residue interactions with an accurate energy function. Taken together, this joint experimental-computational study provides critical insights into microscopic interactions of hydrophobic amino acids in solution with a profound application for studying molecular dynamics of, e.g., intrinsically disordered proteins and their folding.

  1. Removal of fluoride in aqueous solution by adsorption on acid activated water treatment sludge

    NASA Astrophysics Data System (ADS)

    Vinitnantharat, Soydoa; Kositchaiyong, Sriwilai; Chiarakorn, Siriluk

    2010-06-01

    This paper reports the use of a pellet of adsorbent made from water treatment sludge (S) and acid activated water treatment sludge (SH) for removal of fluoride in the batch equilibration technique. The influence of pH, adsorbent dosage, temperature and effect of other ions were employed to find out the feasibility of acid activated adsorbent to remove fluoride to the permissible concentration of 0.7 mg/L. The results from the adsorption isotherm followed both Langmuir and Freundlich models and the highest fluoride removal was found for adsorbent activated with acetic acid at 2.0 mol/L. The optimum adsorbent dosage was found at 40 g/L, 0.01 mol/L acid activated adsorbent which was able to adsorb fluoride from 10 down to 0.11 mg/L. The adsorption capacity was decreased when the temperature increased. This revealed that the adsorption of fluoride on SH was exothermic. In the presence of nitrate and carbonate ions in the aqueous solution, fluoride removal efficiency of SH decreased from 94.4% to 86.6% and 90.8%, respectively. However, there is no significant effect in the presence of sulfate and chloride ions.

  2. Recovery of rare earth elements from the sulfothermophilic red alga Galdieria sulphuraria using aqueous acid.

    PubMed

    Minoda, Ayumi; Sawada, Hitomi; Suzuki, Sonoe; Miyashita, Shin-ichi; Inagaki, Kazumi; Yamamoto, Takaiku; Tsuzuki, Mikio

    2015-02-01

    The demand for rare earth elements has increased dramatically in recent years because of their numerous industrial applications, and considerable research efforts have consequently been directed toward recycling these materials. The accumulation of metals in microorganisms is a low-cost and environmentally friendly method for the recovery of metals present in the environment at low levels. Numerous metals, including rare earth elements, can be readily dissolved in aqueous acid, but the efficiency of metal biosorption is usually decreased under the acidic conditions. In this report, we have investigated the use of the sulfothermophilic red alga Galdieria sulphuraria for the recovery of metals, with particular emphasis on the recovery of rare earth metals. Of the five different growth conditions investigated where G. sulphuraria could undergo an adaptation process, Nd(III), Dy(III), and Cu(II) were efficiently recovered from a solution containing a mixture of different metals under semi-anaerobic heterotrophic condition at a pH of 2.5. G. sulphuraria also recovered Nd(III), Dy(III), La(III), and Cu(II) with greater than 90% efficiency at a concentration of 0.5 ppm. The efficiency remained unchanged at pH values in the range of 1.5-2.5. Furthermore, at pH values in the range of 1.0-1.5, the lanthanoid ions were collected much more efficiently into the cell fractions than Cu(II) and therefore successfully separated from the Cu(II) dissolved in the aqueous acid. Microscope observation of the cells using alizarin red suggested that the metals were accumulating inside of the cells. Experiments using dead cells suggested that this phenomenon was a biological process involving specific activities within the cells.

  3. Population and size distribution of solute-rich mesospecies within mesostructured aqueous amino acid solutions.

    PubMed

    Jawor-Baczynska, Anna; Moore, Barry D; Lee, Han Seung; McCormick, Alon V; Sefcik, Jan

    2013-01-01

    Aqueous solutions of highly soluble substances such as small amino acids are usually assumed to be essentially homogenous systems with some degree of short range local structuring due to specific interactions on the sub-nanometre scale (e.g. molecular clusters, hydration shells), usually not exceeding several solute molecules. However, recent theoretical and experimental studies have indicated the presence of much larger supramolecular assemblies or mesospecies in solutions of small organic and inorganic molecules as well as proteins. We investigated both supersaturated and undersaturated aqueous solutions of two simple amino acids (glycine and DL-alanine) using Dynamic Light Scattering (DLS), Brownian Microscopy/Nanoparticles Tracking Analysis (NTA) and Cryogenic Transmission Electron Microscopy (Cryo-TEM). Colloidal scale mesospecies (nanodroplets) were previously reported in supersaturated solutions of these amino acids and were implicated as intermediate species on non-classical crystallization pathways. Surprisingly, we have found that the mesospecies are also present in significant numbers in undersaturated solutions even when the solute concentration is well below the solid-liquid equilibrium concentration (saturation limit). Thus, mesopecies can be observed with mean diameters ranging from 100 to 300 nm and a size distribution that broadens towards larger size with increasing solute concentration. We note that the mesospecies are not a separate phase and the system is better described as a thermodynamically stable mesostructured liquid containing solute-rich domains dispersed within bulk solute solution. At a given temperature, solute molecules in such a mesostructured liquid phase are subject to equilibrium distribution between solute-rich mesospecies and the surrounding bulk solution.

  4. Effective removal of phosphate from aqueous solution using humic acid coated magnetite nanoparticles.

    PubMed

    Rashid, Mamun; Price, Nathaniel T; Gracia Pinilla, Miguel Ángel; O'Shea, Kevin E

    2017-10-15

    Effective removal of excess phosphate from water is critical to counteract eutrophication and restore water quality. In this study, low cost, environmentally friendly humic acid coated magnetite nanoparticles (HA-MNP) were synthesized and applied for the remediation of phosphate from aqueous media. The HA-MNPs, characterized by FTIR, TEM and HAADF-STEM showed the extensive coating of humic acid on the magnetite surface. The magnetic nanoparticles with diameters of 7-12 nm could be easily separated from the reaction mixture by using a simple hand held magnet. Adsorption studies demonstrate the fast and effective separation of phosphate with maximum adsorption capacity of 28.9 mg/g at pH 6.6. The adsorption behavior follows the Freundlich isotherm suggesting the formation of non-uniform multilayers of phosphate on the heterogeneous surface of HA-MNP. The adsorption kinetic fits the pseudo-second order model well with rate constants of 0.206 ± 0.003, 0.073 ± 0.002 and 0.061 ± 0.003 g mg(-1)min(-1) for phosphate (P) concentrations of 2, 5 and 10 mg/L respectively. The removal of phosphate was found higher at acidic and neutral pH compared to basic conditions. The nanoparticles exhibit good selectivity and adsorption efficiency for phosphate in presence of co-existing ions such as Cl(-), SO4(2-)and NO3(-) with some inhibition effect by CO3(2-). The effect of temperature on the adsorption reveals that the process is endothermic and spontaneous. HA-MNPs are promising, simple, environmentally friendly materials for the removal of phosphate from aqueous media. Copyright © 2017. Published by Elsevier Ltd.

  5. Kinetics of atmospheric oxidation of nitrous acid by oxygen in aqueous medium

    NASA Astrophysics Data System (ADS)

    Mudgal, Punit K.; Bansal, S. P.; Gupta, K. S.

    The facts that the high concentrations of nitrous acid have been reported in dew, fog, rain and cloud water and that its oxidation by dissolved oxygen is very fast in freezing conditions have led us to study the kinetics of aqueous phase oxidation of nitrous acid by dissolved oxygen in the pH range 1.0-4.5 at 30 °C. The reaction was followed by measuring [O 2] and under pseudo-first-order conditions the results were in agreement with the rate law: -d[O]t/dt=k0[N]02[H]2[O]t/(K+[H])2, where k0 is third-order composite rate coefficient and Ka is the dissociation constant of HNO 2. The values of k0 and Ka were determined to be 1×10 2 L 2 mol -2 s -1 and 3.84×10 -4, respectively. Consistent with the kinetics results two alternative mechanisms have been considered. The first of these mechanisms assumes an intermediate complex formation, [HNO 2.O 2], by the reaction of HNO 2 and O 2 in a rapid pre-equilibrium, followed by the reaction of this intermediate with another molecule of HNO 2. The second mechanism, originally proposed by Damschen and Martin [1983. Aqueous aerosol oxidation of nitrous acid by O 2, O 3 and H 2O 2. Atmospheric Environment 17, 2005-2011], assumes the formation of a dimer, [HNO 2] 2, in a rapid pre-equilibrium followed by the reaction of the dimer with O 2 to form HNO 3. The application of the mechanisms to fast oxidation of nitrite by dissolved oxygen under freezing conditions is discussed.

  6. Adsorption and Separation of Aromatic Amino Acids from Aqueous Solutions Using Metal-Organic Frameworks.

    PubMed

    Jonckheere, Dries; Steele, Julian A; Claes, Birgit; Bueken, Bart; Claes, Laurens; Lagrain, Bert; Roeffaers, Maarten B J; De Vos, Dirk E

    2017-09-06

    Metal-organic frameworks (MOFs) are investigated for the adsorption of aromatic amino acids l-phenylalanine (l-Phe), l-tryptophan (l-Trp), and l-tyrosine (l-Tyr) from aqueous solutions. After screening a range of water-stable MOFs, the hydrophobic Zr-MOF MIL-140C emerged as the best performing material, exhibiting uptakes of 15 wt % for l-Trp and 20 wt % for l-Phe. These uptakes are 5-10 wt % higher than those of large-pore zeolites Beta and Y. Both single-compound and competitive adsorption isotherms for l-Phe and l-Trp were experimentally obtained at the natural pH of these amino acid mixtures (pH 6.5-7) without additional pH modification. We find that the hydrophobic nature of MIL-140C and the capacity of l-Trp to form hydrogen bonds favor the uptake of l-Trp with its larger indole moiety compared to the smaller phenyl side group of l-Phe. On the basis of literature and vibrational analysis, observations of hydrogen-bonded l-Trp within the MIL-140C framework are evidenced by red- and blue-shifted -NH vibrations (3400 cm(-1)) in Fourier transform infrared spectroscopy, which were attributed to types N-Hl-Trp···πMIL-140C and N-Hl-Trp···OMIL-140C, respectively. MIL-140C is shown to be recycled at least three times for both aromatic amino acids without any loss of adsorption capacity, separation performance, or crystallinity. Desorption of aromatic amino acids proceeds easily in aqueous ethanol. Substantial coadsorption of negatively charged amino acids l-glutamate and l-aspartate (l-Glu and l-Asp) was observed from a model solution for wheat straw protein hydrolysate at pH 4.3. On the basis of these results, we conclude that MIL-140C is an interesting material for the recovery of essential aromatic amino acids l-Tyr, l-Phe, and l-Trp and of l-Glu and l-Asp from waste protein hydrolysates.

  7. Decolourization performance in C. I. Vat Yellow 1 aqueous suspension using hydrophobically modified poly(acrylic acid).

    PubMed

    Chen, J; Chen, M C

    2011-01-01

    A series of hydrophobically modified poly(acrylic acid) (PAA), poly(2-phenoxyethyl acrylate-co-acrylic acid) (poly(PHEA-co-AA)), have been synthesized and characterized by Ubbelohde type viscometry, Nuclear Magnetic Resonance (1H NMR) spectrometry and Differential Scanning Calorimetry (DSC). The shear thinning Non-Newtonian fluid behavior of their aqueous solution and the dependence on pH and hydrophobic group contents were found through apparent viscosity and rheological property investigating. Decolourization performance in C. I. Vat Yellow 1 aqueous suspension was evaluated through visible absorbance data. Decolourization performance of hydrophobically associated polymer indicates two times better than that of PAA. The quantitative relationship was mainly studied.

  8. Electrochemical treatment of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater impacted by aqueous film forming foams (AFFFs).

    PubMed

    Schaefer, Charles E; Andaya, Christina; Urtiaga, Ana; McKenzie, Erica R; Higgins, Christopher P

    2015-09-15

    Laboratory experiments were performed to evaluate the use of electrochemical treatment for the decomposition of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), as well as other perfluoroalkyl acids (PFAAs), in aqueous film forming foam (AFFF)-impacted groundwater collected from a former firefighter training area and PFAA-spiked synthetic groundwater. Using a commercially-produced Ti/RuO2 anode in a divided electrochemical cell, PFOA and PFOS decomposition was evaluated as a function of current density (0-20 mA/cm(2)). Decomposition of both PFOA and PFOS increased with increasing current density, although the decomposition of PFOS did not increase as the current density was increased above 2.5 mA/cm(2). At a current density of 10 mA/cm(2), the first-order rate constants, normalized for current density and treatment volume, for electrochemical treatment of both PFOA and PFOS were 46 × 10(-5) and 70 × 10(-5) [(min(-1)) (mA/cm(2))(-1) (L)], respectively. Defluorination was confirmed for both PFOA and PFOS, with 58% and 98% recovery as fluoride, respectively (based upon the mass of PFOA and PFOS degraded). Treatment of other PFAAs present in the groundwater also was observed, with shorter chain PFAAs generally being more recalcitrant. Results highlight the potential for electrochemical treatment of PFAAs, particularly PFOA and PFOS, in AFFF-impacted groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Determination of acidity constants of curcumin in aqueous solution and apparent rate constant of its decomposition.

    PubMed

    Bernabé-Pineda, Margarita; Ramírez-Silva, María Teresa; Romero-Romo, Mario; González-Vergara, Enrique; Rojas-Hernández, Alberto

    2004-04-01

    The stability of curcumin (H3Cur) in aqueous media is improved when the systems in which it is present are at high pH values (higher than 11.7), fitting a model describable by a pseudo-zero order with a rate constant k' for the disappearance of the Cur3- species of 1.39 (10(-9)) Mmin(-1). There were three acidity constants measured for the curcumin as follows: pKA3 = 10.51 +/- 0.01 corresponding to the equilibrium HCur2- = Cur3- + H+, a pKA2 = 9.88 +/- 0.02 corresponding to the equilibrium H2Cur- = HCur-(2) + H+. These pKA values were attributed to the hydrogen of the phenol part of the curcumin, while the pKA1 = 8.38 +/- 0.04 corresponds to the equilibrium H3Cur = H2Cur- + H+ and is attributed the acetylacetone type group. Formation of quinoid structures play an important role in the tautomeric forms of the curcumin in aqueous media, which makes the experimental values differ from the theoretically calculated ones, depending on the conditions adopted in the study.

  10. Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution

    NASA Astrophysics Data System (ADS)

    Park, Sunghak; Chang, Woo Je; Lee, Chan Woo; Park, Sangbaek; Ahn, Hyo-Yong; Nam, Ki Tae

    2017-01-01

    The solar-driven splitting of hydrohalic acids (HX) is an important and fast growing research direction for H2 production. In addition to the hydrogen, the resulting chemicals (X2/X3-) can be used to propagate a continuous process in a closed cycle and are themselves useful products. Here we present a strategy for photocatalytic hydrogen iodide (HI) splitting using methylammonium lead iodide (MAPbI3) in an effort to develop a cost-effective and easily scalable process. Considering that MAPbI3 is a water-soluble ionic compound, we exploit the dynamic equilibrium of the dissolution and precipitation of MAPbI3 in saturated aqueous solutions. The I- and H+ concentrations of the aqueous solution are determined to be the critical parameters for the stabilization of the tetragonal MAPbI3 phase. Stable and efficient H2 production under visible light irradiation was demonstrated. The solar HI splitting efficiency of MAPbI3 was 0.81% when using Pt as a cocatalyst.

  11. Poly (vinylsulfonic acid) assisted synthesis of aqueous solution stable vaterite calcium carbonate nanoparticles.

    PubMed

    Nagaraja, Ashvin T; Pradhan, Sulolit; McShane, Michael J

    2014-03-15

    Calcium carbonate nanoparticles of the vaterite polymorph were synthesized by combining CaCl2 and Na2CO3 in the presence of poly (vinylsulfonic acid) (PVSA). By studying the important experimental parameters we found that controlling PVSA concentration, reaction temperature, and order of reagent addition the particle size, monodispersity, and surface charge can be controlled. By increasing PVSA concentration or by decreasing temperature CCNPs with an average size from ≈150 to 500 nm could be produced. We believe the incorporation of PVSA into the reaction plays a dual role to (1) slow down the nucleation rate by sequestering calcium and to (2) stabilize the resulting CCNPs as the vaterite polymorph, preventing surface calcification or aggregation into microparticles. The obtained vaterite nanoparticles were found to maintain their crystal structure and surface charge after storage in aqueous buffer for at least 5 months. The aqueous stable vaterite nanoparticles could be a useful platform for the encapsulation of a large variety of biomolecules for drug delivery or as a sacrificial template toward capsule formation for biosensor applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Molecular interactions of α-amino acids insight into aqueous β-cyclodextrin systems.

    PubMed

    Ekka, Deepak; Roy, Mahendra Nath

    2013-10-01

    Qualitative and quantitative analysis of molecular interaction prevailing in glycine, L-alanine, L-valine and aqueous solution of β-cyclodextrin (β-CD) have been probed by thermophysical properties. Density (ρ), viscosity (η), and ultrasonic speed (u) measurements have been reported at different temperatures. The extent of interaction (solute-solvent interaction) is expressed in terms of the limiting apparent molar volume ([Formula: see text]), viscosity B-coefficient and limiting apparent molar adiabatic compressibility ([Formula: see text]). The changes on the enthalpy ([Formula: see text]) and entropy ([Formula: see text]) of the encapsulation analysis give information about the driving forces governing the inclusion. The temperature dependence behaviour of partial molar quantities and group contributions to partial molar volumes has been determined for the amino acids. The trends in transfer volumes, [Formula: see text], have been interpreted in terms of solute-cosolute interactions based on a cosphere overlap model. The role of the solvent (aqueous solution of β-CD) and the contribution of solute-solute and solute-solvent interactions to the solution complexes have also been analyzed through the derived properties.

  13. Aqueous Dispersions of Silica Stabilized with Oleic Acid Obtained by Green Chemistry

    PubMed Central

    Nistor, Cristina Lavinia; Ianchis, Raluca; Ghiurea, Marius; Nicolae, Cristian-Andi; Spataru, Catalin-Ilie; Culita, Daniela Cristina; Pandele Cusu, Jeanina; Fruth, Victor; Oancea, Florin; Donescu, Dan

    2016-01-01

    The present study describes for the first time the synthesis of silica nanoparticles starting from sodium silicate and oleic acid (OLA). The interactions between OLA and sodium silicate require an optimal OLA/OLANa molar ratio able to generate vesicles that can stabilize silica particles obtained by the sol-gel process of sodium silicate. The optimal molar ratio of OLA/OLANa can be ensured by a proper selection of OLA and respectively of sodium silicate concentration. The titration of sodium silicate with OLA revealed a stabilization phenomenon of silica/OLA vesicles and the dependence between their average size and reagent’s molar ratio. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) measurements emphasized the successful synthesis of silica nanoparticles starting from renewable materials, in mild condition of green chemistry. By grafting octadecyltrimethoxysilane on the initial silica particles, an increased interaction between silica particles and the OLA/OLANa complex was achieved. This interaction between the oleyl and octadecyl chains resulted in the formation of stable gel-like aqueous systems. Subsequently, olive oil and an oleophylic red dye were solubilized in these stable aqueous systems. This great dispersing capacity of oleosoluble compounds opens new perspectives for future green chemistry applications. After the removal of water and of the organic chains by thermal treatment, mesoporous silica was obtained.

  14. Aqueous Hydricity from Calculations of Reduction Potential and Acidity in Water.

    PubMed

    Brereton, Kelsey R; Bellows, Sarina M; Fallah, Hengameh; Lopez, Antonio A; Adams, Robert M; Miller, Alexander J M; Jones, William D; Cundari, Thomas R

    2016-12-22

    Hydricity, or hydride donating ability, is a thermodynamic value that helps define the reactivity of transition metal hydrides. To avoid some of the challenges of experimental hydricity measurements in water, a computational method for the determination of aqueous hydricity values has been developed. With a thermochemical cycle involving deprotonation of the metal hydride (pKa), 2e(-) oxidation of the metal (E°), and 2e(-) reduction of the proton, hydricity values are provided along with other valuable thermodynamic information. The impact of empirical corrections (for example, calibrating reduction potentials with 2e(-) organic versus 1e(-) inorganic potentials) was assessed in the calculation of the reduction potentials, acidities, and hydricities of a series of iridium hydride complexes. Calculated hydricities are consistent with electronic trends and agree well with experimental values.

  15. Pretreatment of sugarcane bagasse by acid-catalysed process in aqueous ionic liquid solutions.

    PubMed

    Zhang, Zhanying; O'Hara, Ian M; Doherty, William O S

    2012-09-01

    A biomass pretreatment process was developed using acidified ionic liquid (IL) solutions containing 10-30% water. Pretreatment of sugarcane bagasse at 130°C for 30 min by aqueous 1-butyl-3-methylimidazolium chloride (BMIMCl) solution containing 1.2% HCl resulted in a glucan digestibility of 94-100% after 72 h of enzymatic hydrolysis. HCl was found to be a more effective catalyst than H(2)SO(4) or FeCl(3). Increasing acid concentration (from 0.4% to 1.2%) and reaction temperature (from 90 to 130°C) increased glucan digestibility. The glucan digestibility of solid residue obtained with the acidified BMIMCl solution that was re-used for three times was >97%. The addition of water to ILs for pretreatment could significantly reduce IL solvent costs and allow for increased biomass loadings, making the pretreatment by ILs a more economic proposition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Characterization of potassium bromide crystals grown in the aqueous solution of picric acid

    NASA Astrophysics Data System (ADS)

    Maheswari, J. Uma; Krishnan, C.; Kalyanaraman, S.; Selvarajan, P.

    2016-12-01

    Potassium bromide crystals were grown in the aqueous solution of picric acid by slow evaporation technique at room temperature. X-ray Diffraction (XRD) analysis ensures that the grown sample is in Fm3m space group and FCC structure. Energy Dispersive X-ray Spectroscopy (EDX) reveals the presence of elements in the title compound. UV-Vis-NIR spectrum reveals that the grown sample is a promising nonlinear optical (NLO) material. FTIR analysis confirms the functional groups present in the sample. The thermogravimetric (TG) and differential thermogravimetric (DTA) analyses ensure that the sample material is thermally stable up to 160 °C. The second harmonic efficiency of the sample is 1.3 times greater than that of standard KDP. The mechanical strength of the grown sample is estimated by Vickers microhardness tester. The electrical properties were investigated by impedance analysis and the results of various studies of the grown crystals are discussed.

  17. The aqueous photolysis of α-pinene in solution with humic acid

    USGS Publications Warehouse

    Goldberg, Marvin C.; Cunningham, Kirkwood M.; Aiken, George R.; Weiner, Eugene R.; ,

    1992-01-01

    Terpenes are produced abundantly by environmental processes but are found in very low concentrations in natural waters. Aqueous photolysis of solutions containing α-pinene, a representative terpene, in the presence of humic acid resulted in degradation of the pinene. Comparison of this reaction to photolysis of α-pinene in the presence of methylene blue leads to the conclusion that the reactive pathway for the abiotic degradation of α-pinene is due to reaction with singlet oxygen produced by irradiation of the humic material. The initial product of single oxygen and α-pinene is a hydroperoxide. Since humic materials are prevalent in most natural waters, this mechanism of photodecomposition for α-pinene probably also applies to other terpenes in surface waters and may be reasonably considered to contribute to their low environmental concentration.

  18. Terahertz microfluidic chips for detection of amino acids in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Su, Bo; Zhang, Cong; Fan, Ning; Zhang, Cunlin

    2016-11-01

    Microfluidic technology can control the fluidic thickness accurately in less than 100 micrometers. So the combination of terahertz (THz) and microfluidic technology becomes one of the most interesting directions towards biological detection. We designed microfluidic chips for terahertz spectroscopy of biological samples in aqueous solutions. Using the terahertz time-domain spectroscopy (THz-TDS) system, we experimentally measured the transmittance of the chips and the THz absorption spectra of L-threonine and L-arginine, respectively. The results indicated the feasibility of performing high sensitivity THz spectroscopy of amino acids solutions. Therefore, the microfluidic chips can realize real-time and label-free measurement for biochemistry samples in THz-TDS system.

  19. Pervaporation of Water from Aqueous Hydriodic Acid and Iodine Mixtures Using Nafion (R) Membranes

    SciTech Connect

    Christopher J. Orme; Frederick F. Stewart

    2007-11-01

    The sulfur-iodine (S-I) process for generation of hydrogen has been proposed as a thermochemical cycle for study due to its predicted high efficiencies. Improvements in the cycle that will yield the greatest gain in both operating and capital costs involve chemical separations. To date, membrane processes have been largely unexplored. In this work, a materials compatibility study into the application of Nafion-117® and Nafion-112® as membranes for the pervaporation of water from aqueous mixtures of hydriodic acid (HI) and HI/iodine at 134 ºC was conducted. Significant fluxes of water were measured with respect to feed water concentration and high separation factors were calculated. Most surprisingly, HI and HI/iodine feeds acted very differently in that HI-iodine complexes formed result in higher fluxes and separation factors than what was observed for HI alone.

  20. Cementation and Aqueous Alteration of a Sandstone Unit Under Acidic Conditions in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Yen, A. S.; Blake, D. F.; Ming, D. W.; Morris, R. V.; Gellert, R.; Clark, B.; Vaniman, D. T.; Chipera, S. J.; Thompson, L. M.; Bristow, T. F.; hide

    2016-01-01

    The Curiosity rover landed on Mars in August 2012 to explore the sedimentary history and to assess the habitability of Gale Crater. After 1200 sols of surface operations and over 12 km of traverse distance, the mineralogy of 10 samples has been determined by the CheMin X-ray diffractometer (XRD) and the chemical composition of nearly 300 targets has been established by the Alpha Particle X-ray Spectrometer (APXS). Light-toned fracture zones containing elevated concentrations of silica have been studied by Curiosity's instruments to determine the nature of the fluids that resulted in the enrichment of SiO2. Multiple fluid exposures are evident, and the chemistry and mineralogy data indicate at least two aqueous episodes may have occurred under acidic conditions.

  1. Activity and osmotic coefficients of aqueous sulfuric acid at 298.15 K

    NASA Astrophysics Data System (ADS)

    Staples, Bert R.

    1981-07-01

    A critical evaluation of the mean activity coefficient, γ±, and osmotic coefficient, φ, of aqueous sulfuric acid at 298.15 K is presented for the molality range of 0 to 28 molṡkg-1. Osmotic coefficients were calculated from direct vapor pressure measurements, from isopietic measurements or from freezing point depression measurements. Activity coefficients were calculated from electromotive force measurements of galvanic cells. A least-squares program was used to fit data from all sources using both φ and ln γ± as functions of molality. A nine parameter equation describes the osmotic coefficient, the mean activity coefficient, and the excess. Gibbs energy as a function of the one-half power of molality. The scientific literature has been covered through January, 1979.

  2. Comparison of aqueous ammonia and dilute acid pretreatment of bamboo fractions: Structure properties and enzymatic hydrolysis.

    PubMed

    Xin, Donglin; Yang, Zhong; Liu, Feng; Xu, Xueru; Zhang, Junhua

    2015-01-01

    The effect of two pretreatments methods, aqueous ammonia (SAA) and dilute acid (DA), on the chemical compositions, cellulose crystallinity, morphologic change, and enzymatic hydrolysis of bamboo fractions (bamboo yellow, timber, green, and knot) was compared. Bamboo fractions with SAA pretreatment had better hydrolysability than those with DA pretreatment. High crystallinity index resulted in low hydrolysis yield in the conversion of SAA pretreated bamboo fractions, not DA pretreated fractions. The increase of cellulase loading had modestly positive effect in the hydrolysis of both SAA and DA pretreated bamboo fractions, while supplement of xylanase significantly increased the hydrolysis of the pretreated bamboo fractions, especially after SAA pretreatment. The results indicated that SAA pretreatment was more effective than DA pretreatment in conversion of bamboo fractions, and supplementation of xylanase was necessary in effective conversion of the SAA pretreated fractions into fermentable sugars. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Fixed bed adsorption of 2-naphthalenesulfonic acid from aqueous solution by composite resin.

    PubMed

    Jia, Dong M; Li, Ya P; Li, Yue J; Li, Yong G; Li, Chang H

    2014-02-01

    Adsorption behavior of the iron impregnated, weakly basic resin D301 (Fe-D301) for removal of 2-naphthalenesulfonic acid (2-NSA) from aqueous solution was studied by using a fixed-bed column. The effects of process variables such as bed height, flow rate, and coexisting ions were investigated. The results indicated that the breakpoint and exhaustion point increased with increasing bed height and decreased with increasing 2-NSA flowrate. Experimental data showed a strong fit to the Bed Depth Service Time model. The coexisting ions in the 2-NSA solution had a clear effect on the breakthrough volume. The high extent of recovery of 2-NSA with good reproducibility provided an effective method for the separation of 2-NSA by the adsorbent Fe-D301.

  4. Optical properties of colloidal aqueous synthesized 3 mercaptopropionic acid stabilized CdS quantum dots

    SciTech Connect

    Sumanth Kumar, D. Jai Kumar, B.; Mahesh, H.M.

    2016-05-06

    We have explored an easiest and simplest aqueous route to synthesize bright green luminescent CdS QDs using 3-Mercaptopropionic acid (MPA) as a stabilizer in air ambient for solar cell applications. The CdS quantum dots showed a strong quantum confinement effect with good stability, size and excellent photoluminescence. MPA Capping on CdS QDs was confirmed through FTIR. The Optical absorption spectrum revealed the CdS quantum dots are highly transparent in the visible region with absorption peak at 380 nm, confirming the quantum confinement. Photoluminescence showed an emission peak at 525 nm wavelength. The optical band gap energy was found to be 3.19 eV and CdS quantum dots radius calculated using Brus equation is 1.5 nm. The results are presented and discussed in detail.

  5. Acid-catalysed autoreduction of ferrylmyoblobin in aqueous solution studied by freeze quenching and ESR spectroscopy.

    PubMed

    Kröger-Ohlsen, M V; Andersen, M L; Skibsted, L H

    1999-04-01

    Decay of the hypervalent muscle pigment ferrylmyoglobin, formed by activation of metmyoglobin by hydrogen peroxide, was found, when studied by a combination of ESR and UV/VIS spectroscopy in aqueous solution at physiological pH, to proceed by parallel second- and first-order kinetics. At pH below 6.5 a sharp ESR signal (g = 2.003) with an increasing intensity for decreasing pH were observed in solutions frozen in liquid nitrogen, and a broad signal (g = 2.005) was seen throughout the studied pH range also in frozen solutions. The g = 2.005 signal is suggested to arise from an intermediate formed in an intramolecular rate-determining electron-transfer in ferrylmyoglobin, whereas the g 2.003 signal is caused by a radical formed in a proton-assisted electron-transfer initiating the specific acid-catalysed autoreduction.

  6. Removal of Basic Violet 14 from aqueous solution using sulphuric acid activated materials.

    PubMed

    Suresh, S

    2016-01-01

    In this study the adsorption of Basic Violet, 14 from aqueous solution onto sulphuric acid activated materials prepared from Calophyllum inophyllum (CS) and Theobroma cacao (TS) shells were investigated. The experimental data were analysed by Langmuir, Freundlich and Temkin isotherm models. The results showed that CS has a superior adsorption capacity compared to the TS. The adsorption capacity was found to be 1416.43 mg/g for CS and 980.39 mg/g for TS. The kinetic data results at different concentrations were analysed using pseudo first-order and pseudo-second order model. Boyd plot indicates that the dye adsorption onto CS and TS is controlled by film diffusion. The adsorbents were characterised by scanning electron microscopy. The materials used in this study were economical waste products and hence can be an attractive alternative to costlier adsorbents for dye removal in industrial wastewater treatment processes.

  7. Electrodeposited Films from Aqueous Tungstic Acid-Hydrogen Peroxide Solutions for Electrochromic Display Devices

    NASA Astrophysics Data System (ADS)

    Yamanaka, Kazusuke

    1987-11-01

    Electrodeposited tungsten oxide films from aqueous tungstic acid-hydrogen peroxide solutions were investigated for applications to electrochromic devices. These films exhibited electrochromism in aprotic electrolyte solutions containing Li-salts. When the films were heat-treated for an hour at temperatures between 100 and 200°C, the electrochromic reactions were rich in reversibility. The coloring efficiency and response rate for the films were favorable and comparable to those for tungsten trioxide evaporated films. A cell life-test was performed on several clock-size cells by applying a 1.2-V, 1-Hz, continuous square wave. The typical amount of charge required for coloration was about 50 C / m2 and remained unchanged even after 107 coloration-bleaching cycles.

  8. The adsorption of cationic dye from aqueous solution onto acid-activated andesite.

    PubMed

    Tsai, Wen-Tien; Hsu, Hsin-Chieh; Su, Ting-Yi; Lin, Keng-Yu; Lin, Chien-Ming; Dai, Tzong-Hung

    2007-08-25

    The adsorption of cationic dye (i.e., methylene blue) onto acid-activated andesite in aqueous solution was studied in a batch system with respect to its kinetics as a function of agitation speed, initial adsorbate concentration, pH, and adsorbent mass. It was found that the resulting acid-activated adsorbent possessed a mesoporous structure with BET surface areas at around 60m(2)/g. The surface characterization of acid-activated andesite was also performed using the zeta-potential measurements, indicating that the charge sign on the surface of the andesite should be negative in a wide pH range (i.e., 3-11). Furthermore, a simplified kinetic model, pseudo-second-order, was tested to investigate the adsorption behaviors of methylene blue onto the clay samples treated under different process conditions. It was found that the adsorption process could be well described with the model. The adsorption capacity parameter of the model obtained in the present work was significantly in line with the process parameters.

  9. Removal of boron from aqueous solution using magnetic carbon nanotube improved with tartaric acid

    PubMed Central

    2014-01-01

    Boron removal capacity of multi-walled carbon nanotubes (MWCNTs) modified with tartaric acid was investigated in this study. Modification of MWCNTs with tartaric acid was confirmed by Boehm surface chemistry method and fourier transform infra-red (FT-IR) spectroscopy. Experiments were performed to determine the adsorption isotherm and adsorption thermodynamic parameters of boron adsorption on tartaric acid modified MWCNTs (TA-MWCNTs). The effect of variables including initial pH, dosage of adsorbent, contact time and temperature was investigated. Analysis of data showed that adsorption equilibrium could be better described by Freundlich isotherm and the maximum adsorption capacities obtained at the pH of 6.0 was 1.97 mg/g. The estimated thermodynamic values of free energy (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) indicated a spontaneous and an endothermic process. Furthermore, the TA-MWCNTs was magnetized for separation of boron-contaminated adsorbent from aqueous solution by applying magnetic field. The results showed that magnetic TA-MWCNTs particles were separated effectively after adsorption from contaminated water. PMID:24393401

  10. Enhanced copper surface protection in aqueous solutions containing short-chain alkanoic acid potassium salts.

    PubMed

    Abelev, Esta; Starosvetsky, David; Ein-Eli, Yair

    2007-10-23

    The ability of dissolved potassium monocarboxylate salts to produce surface passivation and to inhibit aqueous corrosion of copper was studied. The electrochemical measurements indicate that the inhibiting efficiency of these compounds, with a general formula Cn-1H2n-1COOK or CnK (n=3...12), is dependent on the hydrocarbon chain length. The inhibiting efficiency was higher for a longer hydrocarbon chain of n-alkanoic acid. The degree of copper protection was found to increase with an increase in n-alkanoic acid potassium salt concentration; the optimum concentration of potassium dodecanoate (C12K) in sulfate solutions was found to be 0.07 M. The protective layers formed at the copper surface subsequent to exposure in various n-alkanoic acid potassium salt solutions were characterized by contact angle measurements, electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared reflection spectroscopy. Pronounced copper protection was attributed to the growth of a protective film on the copper surface, containing both copper oxides and copper carboxylate compounds. It is suggested that the organic molecules enhance copper protection by covering copper oxides with a thin and dense organic layer, which prevents water molecules or aggressive anions from interacting with the copper surface.

  11. Aromatic ionene topology and counterion-tuned gelation of acidic aqueous solutions.

    PubMed

    Bachl, Jürgen; Bertran, Oscar; Mayr, Judith; Alemán, Carlos; Díaz Díaz, David

    2017-04-19

    Unusual gelation of acidic solutions was achieved using polycations bearing quaternary ammonium moieties. These ionene polymers are based on a disubstituted phenylene dibenzamide core, which allows the construction of different topomers (i.e. ortho-1, meta-2 and para-3). The topology of the polymers was found to play a key role on their aggregation behaviour both in pure water and in a variety of aqueous acidic solutions leading to the formation of stable acidic gels. Specifically, ortho-1 showed superior gelation ability than the analogues meta-2 and para-3 in numerous solutions of different pH and ionic strengths. Lower critical gelation concentrations, higher gel-to-sol transition temperatures and faster gelation were usually observed for ortho-1 regardless the solvent system. Detailed computational molecular dynamic simulations revealed a major role of the counterion (Cl(-)) and specific polymerpolymer interactions. In particular, hydrogen bonds, N-Hπ interactions and intramolecular π-π stacking networks are distinctive in ortho-1. In addition, counterions located at internal hydration regions also affect to such polymerpolymer interactions, acting as binders and, therefore, providing additional stability.

  12. Dissociation quotient of benzoic acid in aqueous sodium chloride media to 250{degrees}C

    SciTech Connect

    Kettler, R.M.; Palmer, D.A.; Wesolowski, D.J.

    1995-04-01

    The dissociation quotient of benzoic acid was determined potentiometrically in a concentration cell fitted with hydrogen electrodes. The hydrogen ion molality of benzoic acid/benzoate solutions was measured relative to a standard aqueous HCl solution at seven temperatures from 5 to 250{degrees}C and at seven ionic strengths ranging from 0.1 to 5.0 molal (NaCl). The molal dissociation quotients and selected literature data were fitted in the isocoulombic (all anionic) form by a six-term equation. This treatment yielded the following thermodynamic quantities for the acid dissociation equilibrium at 25{degrees}C and 1 bar: logK{sub a} = -4.206{+-}0.006, {Delta}H{sub a}{sup 0} = 0.3{+-}0.3 kJ-mol{sup {minus}1}, {Delta}S{sub a}{sup 0} = -79.6{+-}1.0 J-mol{sup {minus}1}-K{sup {minus}1}, and {Delta}C{sub p;a}{sup 0} = -207{+-}5 J-mol{sup {minus}1}-K{sup {minus}1}. A five-term equation derived to describe the dependence of the dissociation constant on solvent density is accurate to 250{degrees}C and 200 MPa.

  13. pH-switchable structural evolution in aqueous surfactant-aromatic dibasic acid system.

    PubMed

    Rose J, Linet; Tata, B V R; Aswal, V K; Hassan, P A; Talmon, Yeshayahu; Sreejith, Lisa

    2015-01-01

    Structural transitions triggered by pH in an aqueous micellar system comprising of a cationic surfactant (cetylpyridinium chloride) and an aromatic dibasic acid (phthalic acid) was investigated. Reversible switching between liquid-like and gel-like states was exhibited by the system on adjusting the solution pH. Self-assembled structures, responsible for the changes in flow properties were identified using rheology, light scattering techniques and cryogenic Transmission Electron Microscopy (cryo-TEM). High-viscosity, shear-thinning behavior and Maxwell-type dynamic rheology shown by the system at certain pH values suggested the growth of spheroidal/short cylindrical micelles into long and entangled structures. Light scattering profiles also supported the notion of pH-induced microstructural transitions in the solution. Cryo-TEM images confirmed the presence of spheroidal/short cylindrical micelles in the low-viscosity sample whereas very long and entangled thread-like micelles in the peak viscosity sample. pH-dependent changes in the micellar binding ability of phthalic acid is proposed as the key factor regulating the morphological transformations and related flow properties of the system.

  14. Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants.

    PubMed

    Tian, Ye; Liimatainen, Jaana; Alanne, Aino-Liisa; Lindstedt, Anni; Liu, Pengzhan; Sinkkonen, Jari; Kallio, Heikki; Yang, Baoru

    2017-04-01

    Phenolic compounds of berries and leaves of thirteen various plant species were extracted with aqueous ethanol and analyzed with UPLC-DAD-ESI-MS, HPLC-DAD, and NMR. The total content of phenolics was consistently higher in leaves than in berries (25-7856 vs. 28-711mg/100g fresh weight). Sea buckthorn leaves were richest in phenolic compounds (7856mg/100g f.w.) with ellagitannins as the dominant compound class. Sea buckthorn berries contained mostly isorhamnetin glycosides, whereas quercetin glycosides were typically abundant in most samples investigated. Anthocyanins formed the dominating group of phenolics in most dark-colored berries but phenolic acid derivatives were equally abundant in saskatoon and chokeberry berries. Caffeoylquinic acids constituted 80% of the total phenolic content (1664mg/100g f.w.) in bilberry leaves. B-type procyanidins and caffeoylquinic acids were the major phenolic compounds in hawthorn and rowanberry, respectively. Use of leaves of some species with prunasin, tyramine and β-p-arbutin, may be limited in food applications.

  15. Effects of ultrasonic processing on degradation of salvianolic acid B in aqueous solution.

    PubMed

    Guo, Y X; Zhang, L; Lu, L; Liu, E H; Shi, C Z

    2016-09-10

    To evaluate the stability of salvianolic acid B (Sal B) under ultrasound-assisted extraction in the pharmaceutical industry, degradation of Sal B under ultrasonic irradiation was investigated as the function of buffer concentration, pH, and temperature. With regard to Sal-B concentration, a first-order degradation process was determined, with 10% change in assay from its initial concentration as t90=4.81h, under maximum stability acidic conditions (pH 2.0) and at 25°C. The logkpH-pH profile described by specific acid-base catalysis and water molecules supported the experimental results. Liquid chromatography-mass spectrometry (LC-MS) analyses revealed 7 major degradation products whose structures were characterized by electrospray ionization/mass spectrometry. A primary degradation pathway involved cleavage of the ester bond and ring-opening of benzofuran in Sal B was proposed. The complete degradation pathway of Sal B was also proposed. Results showed that ultrasonic irradiation leads to degradation of Sal B in aqueous solution.

  16. Surface characterisation of ethylene propylene diene rubber upon exposure to aqueous acidic solution

    NASA Astrophysics Data System (ADS)

    Mitra, Susanta; Ghanbari-Siahkali, Afshin; Kingshott, Peter; Hvilsted, Søren; Almdal, Kristoffer

    2006-07-01

    Two types of pure ethylene propylene diene rubbers were exposed to two different acids for varying period of time. Surface characterisation was carried out using X-ray photoelectron spectroscopy (XPS). Two EPDM rubbers selected for this study were comparable in co-monomer compositions but significantly different with respect to molar mass and the presence of long chain branching. Both rubbers contained 5-ethylidene-2-norbornene (ENB) as diene. Solution cast films of pure EPDM samples were exposed in two different acidic solutions, viz. chromosulphuric (Cr (VI)/H 2SO 4) and sulphuric acid (H 2SO 4) (20%, v/v) at ambient temperature from 1 to 12 weeks. XPS analysis indicated that several oxygenated species were formed on the surface of both rubbers after exposure. It was postulated from the XPS analyses that both aqueous acidic solutions attacked the olefinic double bonds (C dbnd C) of ENB. Furthermore, 20% Cr (VI)/H 2SO 4 also attacked the allylic carbon-hydrogen (C sbnd H) bonds of ENB resulting in more oxygenated species on the surface compared to 20% H 2SO 4 under identical conditions. Cr (VI) in the 20% Cr (VI)/H 2SO 4 was found to play an important role in alteration of surface chemistry. Studies using a model system consisting of EPDM mixed with Cr (VI) and Cr (III) salts revealed that the change of oxidation state from Cr (VI) to Cr (III) as a consequence of direct involvement of Cr (VI) in the chemical alteration of EPDM surfaces. Interestingly, the presence of long chain branching and molar mass did not significantly influence the chemical processes owing to the acid treatment.

  17. Extraction of nitric acid, uranyl nitrate, and bismuth nitrate from aqueous nitric acid solutions with CMPO

    SciTech Connect

    Spencer, B.B.

    1995-08-01

    DOE sponsored development of the transuranium extraction (TRUEX) process for removing actinides from radioactive wastes. The solvent is a mixture of CMPO and TBP. Since the extraction characteristics of CMPO are not as well understood as those of TBP, the extraction of nitric acid, uranyl nitrate, and bismuth nitrate with CMPO (dissolved in n-dodecane) were studied. Results indicate that CMPO extracts nitric acid with a 1:1 stoichiometry; equilibrium constant is 2. 660{plus_minus}0.092 at 25 C, and extraction enthalpy is -5. 46{plus_minus}0.46 kcal/mol. Slope analysis indicates that uranyl nitrate extracts with a mixed equilibria of 1:1 and 2:1 stoichiometries in nearly equal proportion. Equil. constant of the 2: 1 extraction was 1.213 {times} 10{sup 6}{plus_minus}3.56 {times} 10{sup 4} at 25 C; reaction enthalpy was -9.610{plus_minus}0.594 kcal/mol. Nitration complexation constant is 8.412{plus_minus}0.579, with an enthalpy of -10.72{plus_minus}1.87 kcal/mol. Bismuth nitrate also extracts with a mixed equilibria of (perhaps) 1:1 and 2:1 stoichiometries. A 2:1 extraction equilibrium and a nitrate complexation adequately model the data. Kinetics and enthalpies were also measured.

  18. Chemistry in the Venus clouds: Sulfuric acid reactions and freezing behavior of aqueous liquid droplets

    NASA Astrophysics Data System (ADS)

    Delitsky, M. L.; Baines, K. H.

    2015-11-01

    Venus has a thick cloud deck at 40-70 km altitude consisting of liquid droplets and solid particles surrounded by atmospheric gases. The liquid droplets are highly concentrated aqueous solutions of sulfuric acid ranging in concentration from 70-99 wt%. Weight percent drops off with altitude (Imamura and Hashimoto 2001). There will be uptake of atmospheric gases into the droplet solutions and the ratios of gas-phase to liquid-phase species will depend on the Henry’s Law constant for those solutions. Reactions of sulfuric acid with these gases will form products with differing solubilities. For example, uptake of HCl by H2SO4/H2O droplets yields chlorosulfonic acid, ClSO3H (Robinson et al 1998) in solution. This may eventually decompose to thionyl- or sulfuryl chlorides, which have UV absorbances. HF will also uptake, creating fluorosulfonic acid, FSO3H, which has a greater solubility than the chloro- acid. As uptake continues, there will be many dissolved species in the cloudwaters. Baines and Delitsky (2013) showed that uptake will have a maximum at ~62 km and this is very close to the reported altitude for the mystery UV absorber in the Venus atmosphere. In addition, at very strong concentrations in lower altitude clouds, sulfuric acid will form hydrates such as H2SO4.H2O and H2SO4.4H2O which will have very different freezing behavior than sulfuric acid, with much higher freezing temperatures (Carslaw et al, 1997). Using temperature data from Venus Express from Tellmann et al (2009), and changes in H2SO4 concentrations as a function of altitude (James et al 1997), we calculate that freezing out of sulfuric acid hydrates can be significant down to as low as 56 km altitude. As a result, balloons, aircraft or other probes in the Venus atmosphere may be limited to flying below certain altitudes. Any craft flying at altitudes above ~55 km may suffer icing on the wings, propellers, balloons and instruments which could cause possible detrimental effects (thermal

  19. Aquatic photolysis: photolytic redox reactions between goethite and adsorbed organic acids in aqueous solutions

    USGS Publications Warehouse

    Goldberg, M.C.; Cunningham, K.M.; Weiner, Eugene R.

    1993-01-01

    Photolysis of mono and di-carboxylic acids that are adsorbed onto the surface of the iron oxyhydroxide (goethite) results in an oxidation of the organic material and a reduction from Fe(III) to Fe(II) in the iron complex. There is a subsequent release of Fe2+ ions into solution. At constant light flux and constant solution light absorption, the factors responsible for the degree of photolytic reaction include: the number of lattice sites that are bonded by the organic acid; the rate of acid readsorption to the surface during photolysis; the conformation and structure of the organic acid; the degree of oxidation of the organic acid; the presence or absence of an ??-hydroxy group on the acid, the number of carbons in the di-acid chain and the conformation of the di-acid. The ability to liberate Fe(III) at pH 6.5 from the geothite lattice is described by the lyotropic series: tartrate>citrate> oxalate > glycolate > maleate > succinate > formate > fumarate > malonate > glutarate > benzoate = butanoate = control. Although a larger amount of iron is liberated, the series is almost the same at pH 5.5 except that oxalate > citrate and succinate > maleate. A set of rate equations are given that describe the release of iron from the goethite lattice. It was observed that the pH of the solution increases during photolysis if the solutions are not buffered. There is evidence to suggest the primary mechanism for all these reactions is an electron transfer from the organic ligand to the Fe(III) in the complex. Of all the iron-oxyhydroxide materials, crystalline goethite is the least soluble in water; yet, this study indicates that in an aqueous suspension, iron can be liberated from the goethite lattice. Further, it has been shown that photolysis can occur in a multiphase system at the sediment- water interface which results in an oxidation of the organic species and release of Fe2+ to solution where it becomes available for further reaction. ?? 1993.

  20. A novel way for the formation of α-amino acids and their derivatives in an aqueous medium

    NASA Astrophysics Data System (ADS)

    Yanagawa, H.; Makino, Y.; Sato, K.; Nishizawa, M.; Egami, F.

    In the course of a study of possible mechanism for chemical evolution in the primeval sea, we observed the formation of α-amino acids and N-acylamino acids from α-oxo acids and ammonia in an aqueous medium. Glyoxylic acid reacted with ammonia to form N-oxalylglycine, which gave glycine in a 5-39% yield after hydrolysis with 6N HCl. Similarly when glyoxylic acid was treated with methylamine it yielded N-oxalylsarcosine, which could be hydrolyzed to sarcosine with 17-25% overall yield upon hydrolysis. Pyruvic acid and ammonia reacted to give N-acetylalanine, which formed alanine in a 3-7% overall yield upon hydrolysis. The pH optima in these reactions were pH 3-4. These reactions were further extended to the formation of other amino acids. Glutamic acid, phenylalanine and serine were formed from α-ketoglutaric acid, phenylpyruvic acid and hydroxypyruvic acid, respectively, under similar conditions, N-Succinylglutamic acid was obtained as an intermediate for glutamic acid synthesis. Phenylacetylphenylalanineamide was also isolated as an intermediate for phenylalanine synthesis. Alanine, rather than aspartic acid, was produced from oxaloacetic acid. These reactions provide a novel route for the prebiotic synthesis of amino acids. A mechanism for the reactions is proposed.

  1. Photo-induced coupling reactions of tetrazoles with carboxylic acids in aqueous solution: application in protein labelling.

    PubMed

    Zhao, Shan; Dai, Jianye; Hu, Mo; Liu, Chang; Meng, Rong; Liu, Xiaoyun; Wang, Chu; Luo, Tuoping

    2016-03-28

    The photo-induced reactions of diaryltetrazoles with carboxylic acids in aqueous solution were investigated. Besides measuring the apparent second-order rate constant and evaluating the functional group compatibility of these reactions, we further incorporated the tetrazoles into SAHA, leading to a new active-site-directed probe for labelling HDACs in both cell lysates and living cells.

  2. A GREEN CHEMISTRY APPROACH TO PREPARATION OF CORE (FE OR CU)-SHELL (NOBLE METALS) NANOCOMPOSITES USING AQUEOUS ASCORBIC ACID

    EPA Science Inventory

    A greener method to fabricate novel core (Fe or Cu)-shell (noble metals) nanocomposites of transition metals such as Fe and Cu and noble metals such as Au, Pt, Pd, and Ag using aqueous ascorbic acid is described. Transition metal salts such as Cu and Fe were reduced using ascor...

  3. A GREEN CHEMISTRY APPROACH TO PREPARATION OF CORE (FE OR CU)-SHELL (NOBLE METALS) NANOCOMPOSITES USING AQUEOUS ASCORBIC ACID

    EPA Science Inventory

    A greener method to fabricate novel core (Fe or Cu)-shell (noble metals) nanocomposites of transition metals such as Fe and Cu and noble metals such as Au, Pt, Pd, and Ag using aqueous ascorbic acid is described. Transition metal salts such as Cu and Fe were reduced using ascor...

  4. The role of hydrogen bonds in an aqueous solution of acetylsalicylic acid: a molecular dynamics simulation study.

    PubMed

    Donnamaria, Maria Cristina; de Xammar Oro, Juan Roberto

    2011-10-01

    This work focuses on the role of the dynamic hydrogen bonds (HB) formed in an aqueous solution of aspirin using molecular dynamics simulation. The statistics reveal the existence of internal HB that inhibit the rotational movements of the acetyl and the carboxylic acid groups, forcing the molecule to adopt a closed conformer structure in water, and playing an important role in stabilizing this conformation.

  5. Sorption of As(V) from aqueous solution using acid modified carbon black.

    PubMed

    Borah, Dipu; Satokawa, Shigeo; Kato, Shigeru; Kojima, Toshinori

    2009-03-15

    The sorption performance of a modified carbon black was explored with respect to arsenic removal following batch equilibrium technique. Modification was accomplished by refluxing the commercial carbon black with an acid mixture comprising HNO(3) and H(2)SO(4). Modification resulted in the substantial changes to the inherent properties like surface chemistry and morphology of the commercial carbon black to explore its potential as sorbent. The suspension pH as well as the point of zero charge (pH(pzc)) of the material was found to be highly acidic. The material showed excellent sorption performance for the removal of arsenic from a synthetic aqueous solution. It removed approximately 93% arsenic from a 50mg/L solution at equilibration time. The modified carbon black is capable of removing arsenic in a relatively broad pH range of 3-6, invariably in the acidic region. Both pseudo-first-order and second-order kinetics were applied to search for the best fitted kinetic model to the sorption results. The sorption process is best described by the pseudo-second-order kinetic. It has also been found that intra-particle diffusion is the rate-controlling step for the initial phases of the reaction. Modelling of the equilibrium data with Freundlich and Langmuir isotherms revealed that the correlation coefficient is more satisfactory with the Langmuir model although Freundlich model predicted a good sorption process. The sorption performance has been found to be strongly dependent on the solution pH with a maximum display at pH of 5.0. The temperature has a positive effect on sorption increasing the extent of removal with temperature up to the optimum temperature. The sorption process has been found to be spontaneous and endothermic in nature, and proceeds with the increase in randomness at the solid-solution interface. The spent sorbent was desorbed with various acidic and basic extracting solutions with KOH demonstrating the best result ( approximately 85% desorption).

  6. UV – INDUCED SYNTHESIS OF AMINO ACIDS FROM AQUEOUS STERILIZED SOLUTION OF AMMONIUM FORMATE AND AMMONIA UNDER HETROGENEOUS CONDITIONS

    PubMed Central

    Bisht, G.; Bisht, L. S.

    1990-01-01

    Irradiation of sterilized aqueous solution of ammonium formate and ammonia with UV light in the presence and or absence of certain inorganic sensitizers for 25 hrs. gave six ninhydrin positive products in appreciable amounts. Out of the six products observed fiver were characterized as lysine, serine, glutemic acid, n-amino butyric acid and leucine. The sensitizing effect of additives on ammonium formate was observed in the order; uranium oxide > ammonium formate > ferric oxide > arsenic oxide. PMID:22556511

  7. Electrochemical treatment of acidic aqueous ferrous sulfate and copper sulfate as models for acid mine drainage.

    PubMed

    Bunce, N J; Chartrand, M; Keech, P

    2001-12-01

    Acid mine drainage (AMD) is a serious environmental problem in the mining industry. The present work describes electrolytic reduction of solutions of synthetic AMD, comprising FeSO4/H2SO4 and CuSO4/H2SO4, in flow-through cells whose anode and cathode compartments were separated using ion exchange membranes. In the case of FeSO4/H2SO4 at constant flow rate, the pH of the effluent from the catholyte increased progressively with current at a variety of cathodes, due to electrolytic reduction of H+ ions to elemental hydrogen. Near-quantitative removal of iron was achieved by sparging air into the catholyte effluent, thereby precipitating iron outside the electrochemical cell, and avoiding fouling of the electrodes. The anode reaction was the oxidation of water to O2, a proton-releasing process. Using cation exchange membranes and sodium sulfate as the supporting electrolyte in the anode compartment, the efficiency of the process was compromised at high currents by transport of H+ competitively with Na+ from the anode to the cathode compartments. Higher efficiencies were obtained when anion exchange membranes were used, and in this case no additional supporting electrolyte other than dilute H2SO4 was needed, the net reaction being the electrochemically driven transfer of the elements of H2SO4 from the cathode to the anode compartments. Current efficiencies approximately 50% were achieved, the loss of efficiency being accounted for by ohmic heating of the solutions. In the case of CuSO4/H2SO4 and anion exchange membranes at high currents, reduction of Cu2+ and H+ ions and transport of SO4(2-) ions out of the catholyte caused unacceptably high potentials to be generated.

  8. Biosorption of methyl blue onto tartaric acid modified wheat bran from aqueous solution

    PubMed Central

    2012-01-01

    Tartaric acid modified wheat bran was utilized as adsorbent to remove methyl blue, a basic dye from aqueous solution. Batch experiments were carried out to study the effect of various experimental parameters such as initial solution pH, contact time, initial dye concentration and adsorbent dosage, on dye adsorption. The results showed that the modification of wheat bran by tartaric acid significantly improved its adsorption capacity, and made this material a suitable adsorbent to remove methyl blue. The adsorption capacity of modified wheat bran was about 1.6 times higher than that of unmodified one. The amount of methyl blue adsorbed was found to vary with initial solution pH, adsorbent dosage, contact time and initial methyl blue concentration. Kinetics study showed that the overall adsorption rate of methyl blue was illustrated by pseudo-second-order kinetic model. The applicability of the Langmuir and Freundlich models for the data was tested. Both models adequately described the experimental data of the biosorption of methyl blue. The maximum adsorption capacity for methyl blue calculated from Langmuir model was 25.18 mg/g. The study has shown the effectiveness of modified wheat bran in the removal of methyl blue, and that it can be considered as an attractive alternative to the more expensive technologies used in wastewater treatment. PMID:23369295

  9. Removal of aqueous perfluorooctanoic acid (PFOA) using starch-stabilized magnetite nanoparticles.

    PubMed

    Gong, Yanyan; Wang, Lin; Liu, Juncheng; Tang, Jingchun; Zhao, Dongye

    2016-08-15

    Fully stabilized magnetite (Fe3O4) nanoparticles were prepared with a water-soluble starch as a stabilizer and tested for removal of aqueous perfluorooctanoic acid (PFOA). The presence of starch at ≥0.2wt% can fully stabilize 0.1g/L as Fe of the Fe3O4 nanoparticles. The particle stabilization technique resulted in 2.4 times higher PFOA uptake. Fourier transform infrared spectra suggested that the main PFOA removal mechanism was inner-sphere complexation. Batch kinetic experiments revealed that the starch-stabilized nanoparticles facilitated a rapid PFOA uptake with a sorption equilibrium time of 30min, and the sorption process followed a pseudo-second-order kinetic model. The Langmuir model was able to well interpret the adsorption isotherm, with a maximum adsorption capacity of 62.5mg/g. Increasing pH from 4.7 to 9.6 led to a sharp increase (by 2.6 times) in PFOA uptake. The presence of 12mg/L humic acid inhibited PFOA uptake by 96%, while effect of ionic strength (CaCl2=0-2mmol/L) was negligible. The nanoparticles significantly reduced the biological toxicity of PFOA. The results demonstrated promise of starch-stabilized Fe3O4 nanoparticles as a "green" adsorbent for effective removal of PFOA in soil and groundwater. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Speciation of iron and sulfate in acid waters: aqueous clusters to mineral precipitates.

    PubMed

    Majzlan, Juraj; Myneni, Satish C B

    2005-01-01

    Acid mine drainage (AMD) contaminates surface water bodies, groundwater, soils, and sediments at innumerable locations around the world. AMD usually originates by weathering of pyrite (FeS2) and is rich in Fe and sulfate. In this study, we investigated speciation of FeII, FeIII, and SO4 in acid waters by Fourier transform infrared and X-ray absorption spectroscopy. The molalities of sulfate (15 mmol/ kg) and iron (10, 20, and 50 mmol/kg), and pH (1, 2, and 3) were chosen to mimic the concentration of ions in AMD waters. Sulfate and FeII either associate in outer-sphere complexes or do not associate at all. In contrast, sulfate interacts strongly with FeIII. The predominating species in FeIII-SO4 solutions are hydrogen-bonded complexes; inner-sphere complexes account only for 10+/-10% of the total sulfate. Our results show that the mode of interaction between FeIII and sulfate is similar in aqueous phase and in nanocrystalline precipitate schwertmannite (approximately FeO(OH)3/4(SO4)1/8). Because of this similarity, schwert-mannite should be the phase that controls solubility and availability of FeIII, SO4, and indirectly also other components in the AMD solutions.

  11. Biosorption of methyl blue onto tartaric acid modified wheat bran from aqueous solution.

    PubMed

    Yao, Shuhua; Lai, Hong; Shi, Zhongliang

    2012-12-05

    Tartaric acid modified wheat bran was utilized as adsorbent to remove methyl blue, a basic dye from aqueous solution. Batch experiments were carried out to study the effect of various experimental parameters such as initial solution pH, contact time, initial dye concentration and adsorbent dosage, on dye adsorption. The results showed that the modification of wheat bran by tartaric acid significantly improved its adsorption capacity, and made this material a suitable adsorbent to remove methyl blue. The adsorption capacity of modified wheat bran was about 1.6 times higher than that of unmodified one. The amount of methyl blue adsorbed was found to vary with initial solution pH, adsorbent dosage, contact time and initial methyl blue concentration. Kinetics study showed that the overall adsorption rate of methyl blue was illustrated by pseudo-second-order kinetic model. The applicability of the Langmuir and Freundlich models for the data was tested. Both models adequately described the experimental data of the biosorption of methyl blue. The maximum adsorption capacity for methyl blue calculated from Langmuir model was 25.18 mg/g. The study has shown the effectiveness of modified wheat bran in the removal of methyl blue, and that it can be considered as an attractive alternative to the more expensive technologies used in wastewater treatment.

  12. Removal of humic acid from aqueous solution by cetylpyridinium bromide modified zeolite.

    PubMed

    Zhan, Yanhui; Zhu, Zhiliang; Lin, Jianwei; Qiu, Yanling; Zhao, Jianfu

    2010-01-01

    Natural zeolite was modified by loading cetylpyridinium bromide (CPB) to create more efficient sites for humic acid (HA) adsorption. The natural and CPB modified zeolites were characterized with X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and elemental analysis. The effects of various experimental parameters such as contact time, initial HA concentration, solution pH and coexistent Ca2+, upon HA adsorption onto CPB modified zeolites were evaluated. The results showed that natural zeolite had negligible affinity for HA in aqueous solutions, but CPB modified zeolites exhibited high adsorption efficiency for HA. A higher CPB loading on natural zeolites exhibited a larger HA adsorption capacity. Acidic pH and coexistent Ca2+ were proved to be favorable for HA adsorption onto CPB modified zeolite. The kinetic process was well described by pseudo second-order model. The experimental isotherm data fitted well to Langmuir and Sips models. The maximum monolayer adsorption capacity of CPB modified zeolite with surfactant bilayer coverage was found to be 92.0 mg/g.

  13. Determination of acidity constants of sparingly soluble drugs in aqueous solution by the internal standard capillary electrophoresis method.

    PubMed

    Cabot, Joan Marc; Fuguet, Elisabet; Rosés, Martí

    2014-12-01

    A set of 33 drugs with different solubilities, ranging from soluble to very insoluble, has been chosen in order to evaluate the performance of the internal standard CE method to determine acidity constants of compounds with limited solubility. The set of drugs tested in this work has been chosen as a function of their intrinsic solubility. For the most insoluble compounds, several analytical conditions to overcome the insolubility in aqueous buffers have been tested. This paper assesses the compound solubility limits for the IS-CE method in aqueous pKa determinations, and also compares the determined pKa s with the results from the literature data obtained by other methods. It is proved that IS-CE method determines acidity constants of sparingly soluble drugs in aqueous media (compounds with logS down to around -6), whereas other reference methods require the use of aqueous-organic solvent buffers and extrapolation procedures to obtain the aqueous pKa for the same compounds.

  14. Ascorbic acid concentrations in aqueous humor after systemic vitamin C supplementation in patients with cataract: pilot study.

    PubMed

    Hah, Young-Sool; Chung, Hye Jin; Sontakke, Sneha B; Chung, In-Young; Ju, Sunmi; Seo, Seong-Wook; Yoo, Ji-Myong; Kim, Seong-Jae

    2017-07-11

    To measure ascorbic acid concentration in aqueous humor of patients with cataract after oral or intravenous vitamin C supplementation. Forty-two eyes of 42 patients with senile cataract who underwent uncomplicated cataract surgery were enrolled. Patients (n = 14 each) were administered oral vitamin C (2 g), intravenous vitamin C (20 g) or no treatment (control group) on the day before surgery. Samples of aqueous humor (0.1 cm(3)) were obtained by anterior chamber aspiration at the beginning of surgery and stored at -80 °C. Ascorbic acid concentration in aqueous humor was measured by high-pressure liquid chromatography. The mean age at surgery was 62.5 years, with no difference among the three groups. The mean ± standard deviation concentrations of ascorbic acid in aqueous humor in the control and oral and intravenous vitamin C groups were 1347 ± 331 μmol/L, 1859 ± 408 μmol/L and 2387 ± 445 μmol/L, respectively. Ascorbic acid concentration was significantly lower in the control than in the oral (P < 0.01) and intravenous (P < 0.001) vitamin C groups and was significantly higher in the intravenous than in the oral vitamin C group (P < 0.05). Ascorbic acid concentration in aqueous humor is increased by systemic vitamin C supplementation, with intravenous administration being more effective than oral administration.

  15. Formation of 4(5)-Methylimidazole in Aqueous d-Glucose-Amino Acids Model System.

    PubMed

    Karim, Faris; Smith, J Scott

    2016-01-01

    The International Agency for Research on Cancer (IRAC) has classified 4(5)-methylimidazole (4-MeI) as a group 2B possible human carcinogen. Thus, how 4-MeI forms in a D-glucose (Glu) amino acids (AA) model system is important, as it is how browning is affected. An aqueous solution of Glu was mixed individually in equimolar amounts at 3 concentrations (0.05, 0.1, and 0.15 M) with aqueous solutions of L-Alanine (Ala), L-Arginine (Arg), Glycine (Gly), L-Lysine (Lys), and L-Serine (Ser). The Glu-AA mixtures were reacted at 60, 120, and 160 °C for 1 h. The 4-MeI levels were measured by gas chromatography-mass spectrometry after derivatization with isobutylchloroformate. No 4-MeI was formed at 60 °C for any treatment combination; however, at 120 °C and 0.05 M, Glu-Arg and Glu-Lys produced 0.13 and 0.14 mg/kg of 4-MeI. At 160 °C and 0.05 M all treatment combinations formed 4-MeI. At 160 °C and 0.15 M, the observed levels of Glu-Ala, Glu-Arg, Glu-Gly, Glu-Lys, and Glu-Ser were 0.21, 1.00, 0.15, 0.22, and 0.16 mg/kg. The AA type, reactant concentrations, and temperature significantly affected (P < 0.001) formation of 4-MeI as well as browning. Glu-Lys treatment in all combinations produced the most browning, but Glu-Arg produced the most 4-MeI. This method showed that foods processed using low temperatures may have reduced levels of 4-MeI.

  16. Partial molar volumes of some alpha-amino acids in aqueous sodium acetate solutions at 308.15 K.

    PubMed

    Wang, J; Yan, Z; Zhuo, K; Lu, J

    1999-08-30

    The apparent molar volumes V(2,phi) have been determined for glycine, DL-alpha-alanine, DL-alpha-amino-n-butyric acid, DL-valine and DL-leucine in aqueous solutions of 0.5, 1.0, 1.5 and 2.0 mol kg(-1) sodium acetate by density measurements at 308.15 K. These data have been used to derive the infinite dilution apparent molar volumes V(0)(2,phi) for the amino acids in aqueous sodium acetate solutions and the standard volumes of transfer, Delta(t)V(0), of the amino acids from water to aqueous sodium acetate solutions. It has been observed that both V(0)(2,phi) and Delta(t)V(0) vary linearly with increasing number of carbon atoms in the alkyl chain of the amino acids. These linear correlations have been utilized to estimate the contributions of the charged end groups (NH(3)(+), COO(-)), CH(2) group and other alkyl chains of the amino acids to V(0)(2,phi) and Delta(t)V(0). The results show that V(0)(2,phi) values for (NH(3)(+), COO(-)) groups increase with sodium acetate concentration, and those for CH(2) are almost constant over the studied sodium acetate concentration range. The transfer volume increases and the hydration number of the amino acids decreases with increasing electrolyte concentrations. These facts indicate that strong interactions occur between the ions of sodium acetate and the charged centers of the amino acids. The volumetric interaction parameters of the amino acids with sodium acetate were calculated in water. The pair interaction parameters are found to be positive and decreased with increasing alkyl chain length of the amino acids, suggesting that sodium acetate has a stronger dehydration effect on amino acids which have longer hydrophobic alkyl chains. These phenomena are discussed by means of the co-sphere overlap model.

  17. Adsorption of chloridazon from aqueous solution on heat and acid treated sepiolites.

    PubMed

    González-Pradas, E; Socías-Viciana, M; Ureña-Amate, M D; Cantos-Molina, A; Villafranca-Sánchez, M

    2005-05-01

    The adsorption of chloridazon on heat treated sepiolite samples at 110 degrees C (S-110), 200 degrees C (S-200), 400 degrees C (S-400), 600 degrees C (S-600) and acid treated samples with H2SO4 solutions of two different concentrations (0.25 and 1.0M) (S-0.25 and S-1.0, respectively) from pure water at 25 degrees C has been studied by using batch experiments. In addition, column experiments were carried out with the natural (S-110) and 600 degrees C (S-600) heat treated samples, using a 10.30 mg l-1 aqueous solution of chloridazon. The adsorption experimental data points have been fitted to the Freundlich equation in order to calculate the adsorption capacities (Kf) of the samples; Kf values range from 2.89 mg kg-1 for the S-1.0 sample up to 164 mg kg-1 for the S-600 sample; so, the heat treatment given to the sepiolite greatly increases its adsorption capacity for the herbicide chloridazon whereas the acid treatment produces a clear decrease in the amount of chloridazon adsorbed. The removal efficiency (R) has also been calculated; R values ranging from 5.08% for S-1.0 up to 60.9% for S-600. The batch experiments showed that the strongest heat treatment is more effective than the natural and acid treated sepiolite in relation to adsorption of chloridazon. The column experiments also showed that 600 degrees C heat treated sepiolite might be reasonably used in removing chloridazon from water. Thus, as this type of clay is relatively plentiful, these activated samples might be reasonably used in order to remove chloridazon from water.

  18. Coefficient of ozone mass transfer during its interaction with an aqueous solution of formic acid in a bubble column reactor

    NASA Astrophysics Data System (ADS)

    Levanov, A. V.; Isaikina, O. Ya.; Gasanova, R. B.; Lunin, V. V.

    2017-08-01

    A way of determining the coefficient of ozone mass transfer between the gas phase and liquid aqueous phase using a test compound (formic acid) is described. The values of ozone mass transfer coefficient (in aqueous solutions of 0.1-0.55 M HClO4 and 0-1 M HCOOH, and in 0.75 M H2SO4, 0.125 M KHSO4, and 0-2 M HCOOH) are determined along with the rate constants of the reaction of O3 with undissociated HCOOH molecules and formate ions at 21 ± 1°C.

  19. Synthesis, characterization and adsorption properties of diethylenetriamine-modified hypercrosslinked resins for efficient removal of salicylic acid from aqueous solution.

    PubMed

    Huang, Jianhan; Jin, Xiaoying; Mao, Jinglin; Yuan, Bin; Deng, Rujie; Deng, Shuguang

    2012-05-30

    We report an effective approach for tailoring the pore textural properties and surface polarity of a hypercrosslinked resin to enhance its adsorption capacity and selectivity for removing salicylic acid from aqueous solution. Four hypercrosslinked resins were synthesized by controlling the reaction time of the self Friedel-Crafts reaction of chloromethylated polystyrene-co-divinylbenzene, and then modified with diethylenetriamine to adjust their surface polarity. The resins were characterized with N(2) adsorption for pore textural properties, Fourier transform infrared spectroscopy (FT-IR) for surface functional groups, chemical analysis for residual chlorine content and weak basic exchange capacity. Adsorption equilibrium, kinetics and breakthrough performance were determined for the removal of salicylic acid from aqueous solution on a selected resin HJ-M01. The equilibrium adsorption capacity of salicylic acid on HJ-M01 is significantly higher than that on its precursor HJ-11 and a few commercial adsorbents including AB-8, XAD-4 and XAD-7. The dynamic adsorption capacity of salicylic acid on HJ-M01 was found to be 456.4 mg/L at a feed concentration of 1000 mg/L and 294 K. The used resin could be fully regenerated with 1% sodium hydroxide solution. The hypercrosslinked resins being developed were promising alternatives to commercial adsorbents for removing salicylic acid and other volatile organic compounds (VOCs) from aqueous solution.

  20. The interplay between acid-base and free radical chemistry in the heterogeneous oxidation and fragmentation of citric acid in aqueous aerosol by OH radicals

    NASA Astrophysics Data System (ADS)

    Liu, M.; Wiegel, A. A.; Wilson, K. R.; Houle, F. A.

    2016-12-01

    A key uncertainty in the oxidation of organic compounds such as carboxylic acids in aqueous phase aerosol is how β-scission of alkoxy radicals is altered by acid-base chemistry. In particular, the differences between the unimolecular fragmentation rates of radical anions and their neutral forms may impact the partitioning of organic carbon between the gas and aqueous phase. To investigate the fragmentation reactions that occur during the oxidation of highly oxygenated organic aqueous aerosol, a kinetics model is developed for the OH initiated oxidation of citric acid aerosol at high relative humidities. The reaction scheme includes both free radical and acid-base reactions, uses physically validated rate coefficients, and thus accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. Free radical reactions functionalize the carbon skeleton while carboxylate groups from acid-base chemistry activate the carbon-carbon bond fragmentation of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxaloacetic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and causes the substantial water uptake and volume growth observed to accompany oxidation. These results highlight the significant role of water in controlling not only changes in physical properties but also the mechanisms of oxidation and fragmentation of aerosol in the atmosphere.

  1. Experimental and Theoretical Studies of the Acid-Catalyzed Conversion of Furfuryl Alcohol to Levulinic Acid in Aqueous Solution

    SciTech Connect

    Gonzalez Maldonado, Gretchen M.; Assary, Rajeev S.; Dumesic, James A.; Curtiss, Larry A.

    2012-02-14

    The conversion of furfuryl alcohol (FAL) to levulinic acid over Amberlyst TM 15 in aqueous media was investigated using a combination of liquid chromatography-mass spectrometry (LC-MS) measurements, isotopic labeling studies, nuclear magnetic resonance (NMR) spectroscopy, and ab initio quantum chemical calculations using the G4MP2 method. The results of these combined studies showed that one of the major reaction pathways takes place via a geminal diol species (4,5,5- trihydroxypentan-2-one, denoted as intermediate A), formed by the addition of two water molecules to FAL, where two of the oxygen atoms from FAL are retained. This geminal diol species can also be produced from another intermediate found to be a dimer-like species, denoted as intermediate B. This dimer-like species is formed at the early stages of reaction, and it can also be converted to intermediate A, indicating that intermediate B is the product of the reaction of FAL with another early intermediate. Quantum chemical calculations suggested this to be a protonated acyclic species. Reaction of this early intermediate with water produces intermediate A, while reaction with FAL produces intermediate B.

  2. Experimental and Theoretical Studies of the Acid-Catalyzed Conversion of Furfuryl Alcohol to Levulinic Acid in Aqueous Solution

    SciTech Connect

    González Maldonado, Gretchen M.; Assary, Rajeev S.; Dumesic, James; Curtiss, Larry A.

    2012-01-01

    The conversion of furfuryl alcohol (FAL) to levulinic acid over AmberlystTM 15 in aqueous media was investigated using a combination of liquid chromatography-mass spectrometry (LC-MS) measurements, isotopic labeling studies, nuclear magnetic resonance (NMR) spectroscopy, and ab initio quantum chemical calculations using the G4MP2 method. The results of these combined studies showed that one of the major reaction pathways takes place via a geminal diol species (4,5,5-trihydroxypentan-2-one, denoted as intermediate A), formed by the addition of two water molecules to FAL, where two of the oxygen atoms from FAL are retained. This geminal diol species can also be produced from another intermediate found to be a dimer-like species, denoted as intermediate B. This dimer-like species is formed at the early stages of reaction, and it can also be converted to intermediate A, indicating that intermediate B is the product of the reaction of FAL with another early intermediate. Quantum chemical calculations suggested this to be a protonated acyclic species. Reaction of this early intermediate with water produces intermediate A, while reaction with FAL produces intermediate B.

  3. Lewis Acid Pairs for the Activation of Biomass-derived Oxygenates in Aqueous Media

    SciTech Connect

    Roman, Yuriy

    2015-09-14

    The objective of this project is to understand the mechanistic aspects behind the cooperative activation of oxygenates by catalytic pairs in aqueous media. Specifically, we will investigate how the reactivity of a solid Lewis acid can be modulated by pairing the active site with other catalytic sites at the molecular level, with the ultimate goal of enhancing activation of targeted functional groups. Although unusual catalytic properties have been attributed to the cooperative effects promoted by such catalytic pairs, virtually no studies exist detailing the use heterogeneous water-tolerant Lewis pairs. A main goal of this work is to devise rational pathways for the synthesis of porous heterogeneous catalysts featuring isolated Lewis pairs that are active in the transformation of biomass-derived oxygenates in the presence of bulk water. Achieving this technical goal will require closely linking advanced synthesis techniques; detailed kinetic and mechanistic investigations; strict thermodynamic arguments; and comprehensive characterization studies of both materials and reaction intermediates. For the last performance period (2014-2015), two technical aims were pursued: 1) C-C coupling using Lewis acid and base pairs in Lewis acidic zeolites. Tin-, zirconium-, and hafnium containing zeolites (e.g., Sn-, Zr-, and Hf-Beta) are versatile solid Lewis acids that selectively activate carbonyl functional groups. In this aim, we demonstrate that these zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions. 2) One-pot synthesis of MWW zeolite nanosheets for activation of bulky substrates. Through

  4. Formation of specific amino acid sequences during carbodiimide-mediated condensation of amino acids in aqueous solution, and computer-simulated sequence generation

    NASA Astrophysics Data System (ADS)

    Hartmann, Jürgen; Nawroth, Thomas; Dose, Klaus

    1984-12-01

    Carbodiimide-mediated peptide synthesis in aqueous solution has been studied with respect to self-ordering of amino acids. The copolymerisation of amino acids in the presence of glutamic acid or pyroglutamic acid leads to short pyroglutamyl peptides. Without pyroglutamic acid the formation of higher polymers is favoured. The interactions of the amino acids and the peptides, however, are very complex. Therefore, the experimental results are rather difficult to explain. Some of the experimental results, however, can be explained with the aid of computer simulation programs. Regarding only the tripeptide fraction the copolymerisation of pyroGlu, Ala and Leu, as well as the simulated copolymerisation lead to pyroGlu-Ala-Leu as the main reaction product. The amino acid composition of the insoluble peptides formed during the copolymerisation of Ser, Gly, Ala, Val, Phe, Leu and Ile corresponds in part to the computer-simulated copolymerisation data.

  5. One-pot synthesis of amino acid precursors with insoluble organic matter in planetesimals with aqueous activity

    PubMed Central

    Kebukawa, Yoko; Chan, Queenie H. S.; Tachibana, Shogo; Kobayashi, Kensei; Zolensky, Michael E.

    2017-01-01

    The exogenous delivery of organic molecules could have played an important role in the emergence of life on the early Earth. Carbonaceous chondrites are known to contain indigenous amino acids as well as various organic compounds and complex macromolecular materials, such as the so-called insoluble organic matter (IOM), but the origins of the organic matter are still subject to debate. We report that the water-soluble amino acid precursors are synthesized from formaldehyde, glycolaldehyde, and ammonia with the presence of liquid water, simultaneously with macromolecular organic solids similar to the chondritic IOM. Amino acid products from hydrothermal experiments after acid hydrolysis include α-, β-, and γ-amino acids up to five carbons, for which relative abundances are similar to those extracted from carbonaceous chondrites. One-pot aqueous processing from simple ubiquitous molecules can thus produce a wide variety of meteoritic organic matter from amino acid precursors to macromolecular IOM in chondrite parent bodies. PMID:28345041

  6. One-pot synthesis of amino acid precursors with insoluble organic matter in planetesimals with aqueous activity.

    PubMed

    Kebukawa, Yoko; Chan, Queenie H S; Tachibana, Shogo; Kobayashi, Kensei; Zolensky, Michael E

    2017-03-01

    The exogenous delivery of organic molecules could have played an important role in the emergence of life on the early Earth. Carbonaceous chondrites are known to contain indigenous amino acids as well as various organic compounds and complex macromolecular materials, such as the so-called insoluble organic matter (IOM), but the origins of the organic matter are still subject to debate. We report that the water-soluble amino acid precursors are synthesized from formaldehyde, glycolaldehyde, and ammonia with the presence of liquid water, simultaneously with macromolecular organic solids similar to the chondritic IOM. Amino acid products from hydrothermal experiments after acid hydrolysis include α-, β-, and γ-amino acids up to five carbons, for which relative abundances are similar to those extracted from carbonaceous chondrites. One-pot aqueous processing from simple ubiquitous molecules can thus produce a wide variety of meteoritic organic matter from amino acid precursors to macromolecular IOM in chondrite parent bodies.

  7. Surface properties of aqueous amino acid solutions. I. Surface tension of hydrochloric acid-glycine and glycine-sodium hydroxide systems.

    PubMed

    Matubayasi, Norihiro; Namihira, Junji; Yoshida, Masao

    2003-11-01

    The surface tensions of aqueous solutions of four mixtures (hydrochloric acid-glycine hydrochloride, glycine hydrochloride-glycine, glycine-sodium glycinate, and sodium glycinate-sodium hydroxide) were measured as a function of total molality and mole fraction. The measurements correspond to the change in surface tension with variation of pH. The contribution of glycine hydrochloride to the increments in surface tension is equivalent to that observed for the aqueous solution of glycine, while the contribution of sodium glycinate is much larger than that of glycine. The variations in surface tension on mixing in the surface region are discussed using comparisons with mixtures of simple salts.

  8. Formation of an 8-hydroxyguanine moiety in deoxyribonucleic acid on gamma-irradiation in aqueous solution

    SciTech Connect

    Dizdaroglu, M.

    1985-07-30

    Isolation and characterization of a novel radiation-induced product, i.e., the 8-hydroxyguanine residue, produced in deoxyribonucleic acid (DNA), 2'-deoxyguanosine, and 2'-deoxyguanosine 5'-monophosphate by gamma-irradiation in aqueous solution, are described. For this purpose, gamma-irradiated DNA was first hydrolyzed with a mixture of four enzymes, i.e., DNase I, spleen and snake venom exonucleases, and alkaline phosphatase. Analysis of the resulting mixture by capillary gas chromatography-mass spectrometry after trimethylsilylation revealed the presence of a product, which was identified as 8-hydroxy-2'-deoxyguanosine on the basis of the typical fragment ions of its trimethylsilyl (Me3Si) derivative. This product was then isolated by using reversed-phase high-performance liquid chromatography. The UV and proton nuclear magnetic resonance spectra taken from the isolated product confirmed the structure suggested by the mass spectrum of its Me3Si derivative. The yield of 8-hydroxyguanine was also measured. Its mechanism of formation is believed to involve OH radical addition to the C-8 position of guanine followed by oxidation of the radical adduct.

  9. Nitrogen dioxide radicals mediated mineralization of perfluorooctanoic acid in aqueous nitrate solution with UV irradiation.

    PubMed

    Li, Aimin; Zhang, Zhe; Li, Peifeng; Cai, Lejuan; Zhang, Lizhi; Gong, Jingming

    2017-09-03

    Effective decomposition of perfluorooctanoic acid (PFOA) has received increasing attention in recent years because of its global occurrence and resistance to most conventional treatment processes. In this study, the complete mineralization of PFOA was achieved by the UV-photolysis of nitrate aqueous solution (UV/Nitrate), where the in-situ generated nitrogen dioxide radicals (NO2) efficiently mediated the degradation of PFOA. In particular, when the twinborn hydroxyl radicals were scavenged, the production of more NO2 radicals realized the complete mineralization of PFOA. DFT calculations further confirm the feasibility of PFOA removal with NO2. Near-stoichiometric equivalents of fluoride released rather than the related intermediates were detected in solution after decomposition of PEOA, further demonstrating the complete degradation of PFOA. Possible PFOA degradation pathways were proposed on the basis of experimental results. This work offers an efficient strategy for the complete mineralization of perfluorinated chemicals, and also sheds light on the indispensable roles of nitrogen dioxide radicals for environmental pollutants removal. Copyright © 2017. Published by Elsevier Ltd.

  10. Complete mineralization of perfluorooctanoic acid (PFOA) by γ-irradiation in aqueous solution

    PubMed Central

    Zhang, Ze; Chen, Jie-Jie; Lyu, Xian-Jin; Yin, Hao; Sheng, Guo-Ping

    2014-01-01

    Decomposition of perfluorooctanoic acid (C7F15COOH, PFOA) has been gaining increasing interests because it is a ubiquitous environmental contaminant and resistant to the most conventional treatment processes. In this work, the rapid and complete mineralization of PFOA and simultaneous defluorination were achieved by γ-ray irradiation with a 60Co source. The degradation rate of PFOA by γ-ray irradiation would be high, and a pseudo-first-order kinetic rate constant of 0.67 h−1 could be achieved in the N2 satured condition at pH 13.0. The experimental results and quantum chemical calculation confirmed that two radicals, i.e., hydroxyl radical (·OH) and aqueous electrons (eaq−), were responsible for the degradation of PFOA, while only either eaq− or ·OH might not be able to accomplish complete mineralization of PFOA. The synergistic effects of ·OH and eaq− involved in the cleavage of C-C and C-F bonds, and therefore complete mineralization of PFOA were achieved. The intermediate products were identified and the degradation pathway was also proposed. The results of this study may offer a useful, high-efficient approach for complete mineralizing fluorochemicals and other persistent pollutants. PMID:25492109

  11. Molecular Modeling of Ammonium, Calcium, Sulfur, and Sodium Lignosulphonates in Acid and Basic Aqueous Environments

    NASA Astrophysics Data System (ADS)

    Salazar Valencia, P. J.; Bolívar Marinez, L. E.; Pérez Merchancano, S. T.

    2015-12-01

    Lignosulphonates (LS), also known as lignin sulfonates or sulfite lignin, are lignins in sulfonated forms, obtained from the "sulfite liquors," a residue of the wood pulp extraction process. Their main utility lies in its wide range of properties, they can be used as additives, dispersants, binders, fluxing, binder agents, etc. in fields ranging from food to fertilizer manufacture and even as agents in the preparation of ion exchange membranes. Since they can be manufactured relatively easy and quickly, and that its molecular size can be manipulated to obtain fragments of very low molecular weight, they are used as transport agents in the food industry, cosmetics, pharmaceutical and drug development, and as molecular elements for the treatment of health problems. In this paper, we study the electronic structural and optical characteristics of LS incorporating ammonium, sulfur, calcium, and sodium ions in acidic and basic aqueous media in order to gain a better understanding of their behavior and the very interesting properties exhibit. The studies were performed using the molecular modeling program HyperChem 5 using the semiempirical method PM3 of the NDO Family (neglect of differential overlap), to calculate the structural properties. We calculated the electronic and optical properties using the semiempirical method ZINDO / CI.

  12. Aqueous acidities of primary benzenesulfonamides: Quantum chemical predictions based on density functional theory and SMD.

    PubMed

    Aidas, Kęstutis; Lanevskij, Kiril; Kubilius, Rytis; Juška, Liutauras; Petkevičius, Daumantas; Japertas, Pranas

    2015-11-05

    Aqueous pK(a) of selected primary benzenesulfonamides are predicted in a systematic manner using density functional theory methods and the SMD solvent model together with direct and proton exchange thermodynamic cycles. Some test calculations were also performed using high-level composite CBS-QB3 approach. The direct scheme generally does not yield a satisfactory agreement between calculated and measured acidities due to a severe overestimation of the Gibbs free energy changes of the gas-phase deprotonation reaction by the used exchange-correlation functionals. The relative pK(a) values calculated using proton exchange method compare to experimental data very well in both qualitative and quantitative terms, with a mean absolute error of about 0.4 pK(a) units. To achieve this accuracy, we find it mandatory to perform geometry optimization of the neutral and anionic species in the gas and solution phases separately, because different conformations are stabilized in these two cases. We have attempted to evaluate the effect of the conformer-averaged free energies in the pK(a) predictions, and the general conclusion is that this procedure is highly too costly as compared with the very small improvement we have gained.

  13. Complete mineralization of perfluorooctanoic acid (PFOA) by γ-irradiation in aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhang, Ze; Chen, Jie-Jie; Lyu, Xian-Jin; Yin, Hao; Sheng, Guo-Ping

    2014-12-01

    Decomposition of perfluorooctanoic acid (C7F15COOH, PFOA) has been gaining increasing interests because it is a ubiquitous environmental contaminant and resistant to the most conventional treatment processes. In this work, the rapid and complete mineralization of PFOA and simultaneous defluorination were achieved by γ-ray irradiation with a 60Co source. The degradation rate of PFOA by γ-ray irradiation would be high, and a pseudo-first-order kinetic rate constant of 0.67 h-1 could be achieved in the N2 satured condition at pH 13.0. The experimental results and quantum chemical calculation confirmed that two radicals, i.e., hydroxyl radical (.OH) and aqueous electrons (eaq-), were responsible for the degradation of PFOA, while only either eaq- or .OH might not be able to accomplish complete mineralization of PFOA. The synergistic effects of .OH and eaq- involved in the cleavage of C-C and C-F bonds, and therefore complete mineralization of PFOA were achieved. The intermediate products were identified and the degradation pathway was also proposed. The results of this study may offer a useful, high-efficient approach for complete mineralizing fluorochemicals and other persistent pollutants.

  14. [Mechanism of action of combined extremely weak magnetic field on aqueous solution of amino acid].

    PubMed

    Zhadin, M N; Bakharev, B V; Bobkova, N V

    2014-01-01

    The fundamental physical mechanisms of resonance action of an extremely weak (40 nT) alternating magnetic field at the cyclotron frequency combined with a weak (40 μT) static magnetic field, on living systems are analyzed in the present work. The experimental effects of such sort of magnetic fields were described in different papers: the very narrow resonant peaks in electrical conductivity of the aqueous solutions in the in vitro experiments and the biomedical in vivo effects on living animals of magnetic fields with frequencies tuned to some amino acids. The existing experimental in vitro data had a good repeatability in different laboratories and countries. Unfortunately, for free ions such sort of effects are absolutely impossible because the dimensions of an ion rotation radius should be measured by meters at room temperature and at very low static magnetic fields used in all the above experiments. Even for bound ions these effects should be also absolutely impossible from the positions of classic physics because of rather high viscosity of biological liquid media (blood plasma, cerebrospinal liquid, cytoplasm). Only modern quantum electrodynamics of condensed media opens the new ways for solving these problems. The proposed article is devoted to analysis of quantum mechanisms of these effects.

  15. Adsorption removal of tannic acid from aqueous solution by polyaniline: Analysis of operating parameters and mechanism.

    PubMed

    Sun, Chencheng; Xiong, Bowen; Pan, Yang; Cui, Hao

    2017-02-01

    Polyaniline (PANI) prepared by chemical oxidation was studied for adsorption removal of tannic acid (TA) from aqueous solution. Batch adsorption studies were carried out under different adsorbent dosages, pH, ionic strength, initial TA concentration and coexisting anions. Solution pH had an important impact on TA adsorption onto PANI with optimal removal in the pH range of 8-11. TA adsorption on PANI at three ionic strength levels (0.02, 0.2 and 2molL(-1) NaCl) could be well described by Langmuir model (monolayer adsorption process) and the maximum adsorption capacity was 230, 223 and 1023mgg(-1), respectively. Kinetic data showed that TA adsorption on PANI fitted well with pseudo-second-order model (controlled by chemical process). Among the coexisting anions tested, PO4(3-) significantly inhibited TA adsorption due to the enhancement of repulsive interaction. Continuous flow adsorption studies indicated good flexibility and adaptability of the PANI adsorbent under different flow rates and influent TA concentrations. The mechanism controlling TA adsorption onto PANI under different operating conditions was analyzed with the combination of electrostatic interactions, hydrogen bonding, π-π interactions and Van der Waals interactions.

  16. Adsorption of copper ions from aqueous solution by citric acid modified soybean straw.

    PubMed

    Zhu, Bo; Fan, Tongxiang; Zhang, Di

    2008-05-01

    The objectives of the present study were to convert soybean straw to a metal ion adsorbent and further to investigate the potential of using the adsorbent for the removal of Cu(2+) from aqueous solution. The soybean straw was water or base washed and citric acid (CA) modified to enhance its nature adsorption capacity. The morphological and chemical characteristics of the adsorbent were evaluated by spectroscopy and N(2)-adsorption techniques. The porous structure, as well as high amounts of introduced free carboxyl groups of CA modified soybean straw makes the adsorbent be good to retain Cu(2+). The adsorption capacities increased when the solution pH increased from 2 to 6 and reached the maximum value at pH 6 (0.64 mmol g(-1) for the base washed, CA modified soybean straw (CA-BWSS)). The Cu(2+) uptake increased and percentage adsorption of the Cu(2+) decreased with the increase in initial Cu(2+) concentration from 1 mM to 20 mM. Both the Langmuir and Freundlich adsorption isotherms were tested, and the Freundlich model fited much better than the Langmuir model. It was found that CA-BWSS have the highest adsorption capacity of the four kinds of pretreated soybean straw.

  17. Preparation and characterization of aqueous dispersions of high amylose starch and conjugated linoleic acid complex.

    PubMed

    Seo, Tae-Rang; Kim, Hee-Young; Lim, Seung-Taik

    2016-11-15

    Crystalline starch-CLA complexes were prepared by blending an alcoholic solution of conjugated linoleic acid (CLA) in an aqueous high-amylose maize starch dispersion. Recovery yield of CLA in the precipitates obtained by centrifuging the dispersion was dependent on reaction conditions such as temperature, time and pH. The CLA recovery reached a maximum when the reaction was performed at 90°C for 6h at neutral pH, with 67.7% of the initial CLA being co-precipitated with starch. The precipitates contained amylose-CLA complex exhibiting a V6I-type crystalline structure under X-ray diffraction analysis and a type II polymorph under DSC analysis. Ultrasonic treatment for the re-dispersed starch-CLA complex in water resulted in the reduction of hydrodynamic diameter of the complex particles to 201.5nm. The dispersion exhibited a zeta potential of -27.0mV and remained stable in an ambient storage without forming precipitates for more than 4weeks.

  18. Laccase-mediated transformation of triclosan in aqueous solution with metal cations and humic acid.

    PubMed

    Sun, Kai; Kang, Fuxing; Waigi, Michael Gatheru; Gao, Yanzheng; Huang, Qingguo

    2017-01-01

    Triclosan (TCS) is a broad-spectrum antimicrobial agent that is found extensively in natural aquatic environments. Enzyme-catalyzed oxidative coupling reactions (ECOCRs) can be used to remove TCS in aqueous solution, but there is limited information available to indicate how metal cations (MCs) and natural organic matter (NOM) influence the environmental fate of TCS during laccase-mediated ECOCRs. In this study, we demonstrated that the naturally occurring laccase from Pleurotus ostreatus was effective in removing TCS during ECOCRs, and the oligomerization of TCS was identified as the dominant reaction pathway by high-resolution mass spectrometry (HRMS). The growth inhibition studies of green algae (Chlamydomonas reinhardtii and Scenedesmus obliquus) proved that laccase-mediated ECOCRs could effectively reduce the toxicity of TCS. The presence of dissolved MCs (Mn(2+), Al(3+), Ca(2+), Cu(2+), and Fe(2+) ions) influenced the removal and transformation of TCS via different mechanisms. Additionally, the transformation of TCS in systems with NOM derived from humic acid (HA) was hindered, and the apparent pseudo first-order kinetics rate constants (k) for TCS decreased as the HA concentration increased, which likely corresponded to the combined effect of both noncovalent (sorption) and covalent binding between TCS and humic molecules. Our results provide a novel insight into the fate and transformation of TCS by laccase-mediated ECOCRs in natural aquatic environments in the presence of MCs and NOM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Photodecomposition of tetrabromobisphenol A in aqueous humic acid suspension by irradiation with light of various wavelengths.

    PubMed

    Han, Sang Kuk; Yamasaki, Toshihide; Yamada, Ken-ichi

    2016-03-01

    The reactive species generated in aqueous 3,3',5,5'-tetrabromobisphenol A (TBBPA)/humic acid (HA) suspensions above the TBBPA pKa (∼7.4), under various light-irradiation conditions, namely ambient and ultraviolet light, were investigated using electron paramagnetic resonance (EPR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). We confirmed that singlet oxygen and OH radicals are the key reactive oxygen species generated at wavelengths greater than 400 and 300 nm, respectively. The amount of 2,6-dibromo-p-benzosemiquinone anion radicals (2,6-DBSQ(•-)) formed under irradiation at 400 nm increased linearly with respect to irradiation time; the initial reaction rate was 7.03 × 10(-9) mol g(-1) HA s(-1). The rate increased with increasing pH and light intensity. LC-MS and EPR spectroscopy showed that tribromohydroxybisphenol A was formed under irradiation at 300 nm via reaction of OH radicals with TBBPA. This study, for the first time, shows that the main byproducts formed during irradiation at wavelengths above 300 nm are 2,6-DBSQ(•-) and tribromohydroxybisphenol A, generated from singlet oxygen ((1)O2) and OH radicals, respectively. Photodecomposition of TBBPA in the environment may occur by formation of (1)O2 and OH radicals.

  20. Photocatalytic degradation of perfluorooctanoic acid with beta-Ga2O3 in anoxic aqueous solution.

    PubMed

    Zhao, Baoxiu; Lv, Mou; Zhou, Li

    2012-01-01

    Perfluorooctanoic acid (PFOA) is a new-found hazardous persistent organic pollutant, and it is resistant to decomposition by hydroxyl radical (HO*) due to its stable chemical structure and the high electronegativity of fluorine. Photocatalytic reduction of PFOA with beta-Ga2O3 in anoxic aqueous solution was investigated for the first time, and the results showed that the photoinduced electron (e(cb-)) coming from the beta-Ga2O3 conduction band was the major degradation substance for PFOA, and shorter-chain perfluorinated carboxylic acids (PFCAs, CnF2n+i1COOH, 1 < or = n < or = 6) were the dominant products. Furthermore, the concentration of F- was measured by the IC technique and defluorination efficiency was calculated. After 3 hr, the photocatalytic degradation efficiency was 98.8% and defluorination efficiency was 31.6% in the presence of thiosulfate and bubbling N2. The degradation reaction followed first-order kinetics (k = 0.0239 min(-1), t1/2 = 0.48 hr). PFCAs (CnF2n+1COOH, 1 < or = n < or = 7) were detected and measured by LC-MS and LC-MS/MS methods. It was deduced that the probable photocatalytic degradation mechanism involves e(cb-) attacking the carboxyl of CnF2n+1COOH, resulting in decarboxylation and the generation of CnF2n+1*. The produced CnF2n+1* reacted with H2O, forming CnF2n+1OH, then CnF2n+1OH underwent HF loss and hydrolysis to form CnF2n+1COOH.

  1. Adsorption of Benzoic Acid in Aqueous Solution by Bagasse Fly Ash

    NASA Astrophysics Data System (ADS)

    Suresh, S.

    2012-09-01

    This paper reports the studies on the benzoic acid (BA) onto bagasse fly ash (BFA) was studied in aqueous solution in a batch system. Physico-chemical properties including surface area, surface texture of the GAC before and after BA adsorption onto BFA were analysed using X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The optimum initial pH for the adsorption of BA was found to be 5.56. The adsorbent dose was 10 g/l for BFA and the equilibrium time 8 h of reaction. Pseudo first and second order models were used to find the adsorption kinetics. It was found that intraparticle diffusion played important role in the adsorption mechanisms of BA and the adsorption kinetics followed pseudo-second order kinetic model rather than the pseudo first order kinetic model. Isotherm data were generated for BA solution having initial concentrations of BA in the range of 10-200 mg/l for the BFA dosage of 10 g/l at temperatures of 288, 303, and 318 K. The adsorption of BA onto BFA was favorably influenced by an increase in temperature. Equilibrium data were well represented by the Redlich-Peterson isotherm model. Values of the change in entropy ( ΔS 0), heat of adsorption ( ΔH 0) for adsorption of BA on BFA was found to be 120.10 and 19.61 kJ/mol respectively. The adsorption of BA onto BFA was an endothermic reaction. Desorption of BA from BFA was studied by various solvents method. Acetic acid was found to be a better eluant for desorption of BA with a maximum desorption efficiency of 55.2 %. Owing to its heating value, spent BFA can be used as a co-fuel for the production of heat in boiler furnaces.

  2. Action of combined magnetic fields on aqueous solution of glutamic acid: the further development of investigations.

    PubMed

    Giuliani, Livio; Grimaldi, Settimio; Lisi, Antonella; D'Emilia, Enrico; Bobkova, Natalia; Zhadin, Mikhail

    2008-01-25

    In the present work the results of the known investigation of the influence of combined static (40 microT) and alternating (amplitude of 40 nT) parallel magnetic fields on the current through the aqueous solution of glutamic acid, were successfully replicated. Fourteen experiments were carried out by the application of the combined magnetic fields to the solution placed into a Plexiglas reaction vessel at application of static voltage to golden electrodes placed into the solution. Six experiments were carried out by the application of the combined magnetic fields to the solution placed in a Plexiglas reaction vessel, without electrodes, within an electric field, generated by means of a capacitor at the voltage of 27 mV. The frequency of the alternating field was scanned within the bounds of 1.0 Hz including the cyclotron frequency corresponding to a glutamic acid ion and to the applied static magnetic field. In this study the prominent peaks with half-width of approximately 0.5 Hz and with different heights (till 80 nA) were registered at the alternating magnetic field frequency equal to the cyclotron frequency (4.2 Hz). The general reproducibility of the investigated effects was 70% among the all solutions studied by us and they arose usually after 40-60 min. after preparation of the solution. In some made-up solutions the appearance of instability in the registered current was noted in 30-45 min after the solution preparation. This instability endured for 20-40 min. At the end of such instability period the effects of combined fields action appeared practically every time. The possible mechanisms of revealed effects were discussed on the basis of modern quantum electrodynamics.

  3. Binding affinities of amino acid analogues at the charged aqueous titania interface: implications for titania-binding peptides.

    PubMed

    Sultan, Anas M; Hughes, Zak E; Walsh, Tiffany R

    2014-11-11

    Despite the extensive utilization of biomolecule-titania interfaces, biomolecular recognition and interactions at the aqueous titania interface remain far from being fully understood. Here, atomistic molecular dynamics simulations, in partnership with metadynamics, are used to calculate the free energy of adsorption of different amino acid side chain analogues at the negatively-charged aqueous rutile TiO2 (110) interface, under conditions corresponding with neutral pH. Our calculations predict that charged amino acid analogues have a relatively high affinity to the titania surface, with the arginine analogue predicted to be the strongest binder. Interactions between uncharged amino acid analogues and titania are found to be repulsive or weak at best. All of the residues that bound to the negatively-charged interface show a relatively stronger adsorption compared with the charge-neutral interface, including the negatively-charged analogue. Of the analogues that are found to bind to the titania surface, the rank ordering of the binding affinities is predicted to be "arginine" > "lysine" ≈ aspartic acid > "serine". This is the same ordering as was found previously for the charge-neutral aqueous titania interface. Our results show very good agreement with available experimental data and can provide a baseline for the interpretation of peptide-TiO2 adsorption data.

  4. Lipase in biphasic alginate beads as a biocatalyst for esterification of butyric acid and butanol in aqueous media.

    PubMed

    Ng, Choong Hey; Yang, Kun-Lin

    2016-01-01

    Esterification of organic acids and alcohols in aqueous media is very inefficient due to thermodynamic constraints. However, fermentation processes used to produce organic acids and alcohols are often conducted in aqueous media. To produce esters in aqueous media, biphasic alginate beads with immobilized lipase are developed for in situ esterification of butanol and butyric acid. The biphasic beads contain a solid matrix of calcium alginate and hexadecane together with 5 mg/mL of lipase as the biocatalyst. Hexadecane in the biphasic beads serves as an organic phase to facilitate the esterification reaction. Under optimized conditions, the beads are able to catalyze the production of 0.16 mmol of butyl butyrate from 0.5 mmol of butyric acid and 1.5 mmol of butanol. In contrast, when monophasic beads (without hexadecane) are used, only trace amount of butyl butyrate is produced. One main application of biphasic beads is in simultaneous fermentation and esterification (SFE) because the organic phase inside the beads is very stable and does not leach out into the culture medium. SFE is successfully conducted with an esterification yield of 6.32% using biphasic beads containing iso-octane even though the solvent is proven toxic to the butanol-producing Clostridium spp.

  5. Acid-base cosolvent method for determining aqueous permeability of amiodarone, itraconazole, tamoxifen, terfenadine and other very insoluble molecules.

    PubMed

    Ruell, Jeffrey Alan; Tsinman, Oksana; Avdeef, Alex

    2004-05-01

    A high-throughput, UV-detection PAMPA (parallel artificial membrane permeability assay) cosolvent procedure is described, based on the use of 20% v/v acetonitrile in aqueous buffer. A training set of 32 drugs (17 bases, 13 acids, 2 ampholytes) was studied both in aqueous buffer and in cosolvent-buffer solutions. A procedure was devised, where intrinsic permeability values, log P(o)(COS), measured in cosolvent solution, are converted to values expected under cosolvent-free conditions, using an in silico model based on Abraham H-bond acidity (alpha) and basicity (beta) descriptors, developed with the Algorithm Builder computer program, to obtain aqueous intrinsic permeability values: log P(o)=0.738+0.885 log P(o)(COS)-1.262alpha+0.436beta, r(2)=0.97, q(2)=0.96, s=0.38, n=32, F=279. Five sparingly-soluble weak bases (solubility <1 microg/ml), which could not be characterized without cosolvent, had their aqueous intrinsic permeability, P(o), estimated: miconazole 0.32 cm/s; itraconazole 3.2 cm/s; amiodarone 13 cm/s; tamoxifen 28 cm/s; terfenadine 162 cm/s.

  6. Gas chromatography/isotope ratio mass spectrometry: analysis of methanol, ethanol and acetic acid by direct injection of aqueous alcoholic and acetic acid samples.

    PubMed

    Ai, Guomin; Sun, Tong; Dong, Xiuzhu

    2014-08-15

    Methanol, ethanol, and acetic acid are not easily extracted from aqueous samples and are susceptible to isotope fractionation in gas chromatography/isotope ratio mass spectrometry (GC/IRMS) analysis. Developing a direct dilution GC/IRMS method for aqueous samples, by adjusting the sample concentrations in common solvents to be similar to each other and using a fixed GC split ratio, is very convenient and important because any linearity effects caused by amount-dependent isotope fractionation can be avoided. The suitability of acetonitrile and acetone solvents for the GC/IRMS analysis of pure methanol, ethanol and acetic acid, and commercial liquor and vinegar samples was evaluated using n-hexane and water as control solvents. All the solvents including water were separated from the analyte on a HP-INNOWAX column and were diverted away from the combustion interface. The influence of liquor matrix on the ethanol GC/IRMS analyses was evaluated by adding pure ethanol to liquor samples. Acetonitrile and acetone gave similar δ(13) C values for pure ethanol and pure acetic acid to those obtained in water and n-hexane, and also gave similar δ(13) C values of ethanol in liquor and acetic acid in white vinegar to that obtained in water. For methanol analysis, acetonitrile and refined acetone gave similar δ(13) C values to that obtained in water, but n-hexane was not a suitable solvent. In addition, isotopic fractionation caused by solvent and solute interactions was observed. We recommend using acetonitrile for the GC/IRMS analysis of aqueous alcoholic samples, and acetone for the analysis of aqueous acetic acid samples. This direct dilution method can provide high accurate and precise GC/IRMS analysis of the relative changes in δ(13) C values of methanol, ethanol, and acetic acid. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Sorption of carboxylic acid from carboxylic salt solutions at pHs close to or above the pK[sub a] of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine

    DOEpatents

    King, C.J.; Tung, L.A.

    1992-07-21

    Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH[sub a] into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. The acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carboxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia. 8 figs.

  8. Sorption of carboxylic acid from carboxylic salt solutions at PHS close to or above the pK.sub.a of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine

    DOEpatents

    King, C. Judson; Tung, Lisa A.

    1992-01-01

    Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH.sub.a into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. the acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carobxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia.

  9. Dynamic interfacial behavior of viscoelastic aqueous hyaluronic acid: effects of molecular weight, concentration and interfacial velocity.

    PubMed

    Vorvolakos, Katherine; Coburn, James C; Saylor, David M

    2014-04-07

    An aqueous hyaluronic acid (HA(aq)) pericellular coat, when mediating the tactile aspect of cellular contact inhibition, has three tasks: interface formation, mechanical signal transmission and interface separation. To quantify the interfacial adhesive behavior of HA(aq), we induce simultaneous interface formation and separation between HA(aq) and a model hydrophobic, hysteretic Si-SAM surface. While surface tension γ remains essentially constant, interface formation and separation depend greatly on concentration (5 ≤ C ≤ 30 mg mL(-1)), molecular weight (6 ≤ MW ≤ 2000 kDa) and interfacial velocity (0 ≤ V ≤ 3 mm s(-1)), each of which affect shear elastic and loss moduli G′ and G′′, respectively. Viscoelasticity dictates the mode of interfacial motion: wetting-dewetting, capillary necking, or rolling. Wetting-dewetting is quantified using advancing and receding contact angles θ(A) and θ(R), and the hysteresis between them, yielding data landscapes for each C above the [MW, V] plane. The landscape sizes, shapes, and curvatures disclose the interplay, between surface tension and viscoelasticity, which governs interfacial dynamics. Gel point coordinates modulus G and angular frequency ω appear to predict wetting-dewetting (G < 75 ω0.2), capillary necking (75 ω0.2 < G < 200 ω0.075) or rolling (G > 200ω0.075). Dominantly dissipative HA(aq) sticks to itself and distorts irreversibly before separating, while dominantly elastic HA(aq) makes contact and separates with only minor, reversible distortion. We propose the dimensionless number (G′V)/(ω(r)γ), varying from 10(-5) to 10(3) in this work, as a tool to predict the mode of interface formation-separation by relating interfacial kinetics with bulk viscoelasticity. Cellular contact inhibition may be thus aided or compromised by physiological or interventional shifts in [C, MW, V], and thus in (G′V)/(ω(r)γ), which affect both mechanotransduction and interfacial dynamics. These observations

  10. Light-induced multiphase chemistry of gas phase ozone on aqueous pyruvic and oxalic acids: Aerosol chamber study

    NASA Astrophysics Data System (ADS)

    Gligorovski, S.; Grgic, I.; Net, S.; Böge, O.; Iinuma, Y.; Kahnt, A.; Scheinhardt, S.; Herrmann, H.; Wortham, H.

    2010-12-01

    The light-absorbing organic compounds present in and on condensed aerosol particles interacting with trace gases such as ozone can initiate a new and potentially important photo-induced multiphase chemistry. However, investigations of light induced multiphase processes are very scarce at present. We have launched the idea of pyruvic acid (PA) acting as a photosensitizer in the multiphase reactions between gas-phase ozone and aqueous oxalic acid (OA). The performed photochemical batch experiments yielded a complex suite of organic molecules which resulted primarily from the oligomerization of OA/PA and subsequent reactions, including decarboxylation and cycloadition (Grgic et al., 2010). In the atmosphere, pyruvic acid will always be accompanied by other carboxylic acids (and also other organics) which are constituents of either aerosol particles or aqueous droplets the effects of a possible photochemistry triggered by pyruvic acid should be experimentally studied in depth and under natural conditions as far as possible. Hence, in a very recent study experiments in the aerosol chamber facility LEAK at IFT, Leipzig, were performed to verify the influence of pyruvic on the multiphase (photo)oxidation of oxalic acid. The aim of these experiments was to study the multiphase photo-induced oxidation reactions with airborne deliquescent particles to demonstrate the applicability of the reactions mentioned above under more realistic conditions than in a batch reactor. State of the art sampling and analytical tools were applied for the analysis of the ongoing chamber runs and the formed particulate products which include denuder sampling, carbonyl compound derivatisation, PTR-MS measurements, GC-MS measurements and HPLC-MS and CE-MS for the particle phase. First results from these joint complex chamber experiments will be presented and discussed. Reference: Grgić I., Nieto-Gligorovski L.I., Net S., Temime-Roussel B., Gligorovski S., Wortham H. Light induced multiphase

  11. Interaction of model aryl- and alkyl-boronic acids and 1,2-diols in aqueous solution.

    PubMed

    Marinaro, William A; Prankerd, Richard; Kinnari, Kaisa; Stella, Valentino J

    2015-04-01

    The goal of this work was to quantitate ester formation between alkyl and aryl boronic acids and vicinal-diols or 1,2-diols in aqueous solution. As used here, 1,2-diols includes polyols with one or more 1,2-diol pairs. Multiple techniques were used including apparent pKa shifts of the boronic acids using UV spectrophotometry (for aryl acids) and titration (for aryl and alkyl acids). Isothermal microcalorimetry was also used, with all reactions being enthalpically favored. For all the acids and 1,2-diols and the conditions studied, evidence only supported 1:1 ester formation. All the esters formed were found to be significantly more acidic, as Lewis acids, by 3-3.5 pKa units than the corresponding nonesterified boronic acid. The equilibrium constants for ester formation increased with increasing number of 1,2-diol pairs but stereochemistry may also play a role as sorbitol with five possible 1,2-diol pairs and five isomers (taking into account the stereochemistry of the alcohol groups) was twice as efficient at ester formation compared with mannitol, also with five possible 1,2-diol pairs but only three isomers. Alkyl boronic acids formed esters to a greater extent than aryl acids. Although some quantitative differences were seen between the various techniques used, rank ordering of the structure/reactivity was consistent. Formulation implications of ester formation between boronic acids and 1,2-diols are discussed.

  12. Mass spectroscopic approach to amino acids formation processes by UV irradiation to simple organic molecules in aqueous solution.

    PubMed

    Morita, Masaki; Harada, Yoshie; Iseki, Kunihiro; Izumi, Shunsuke; Hiraya, Atsunari

    2005-09-01

    We have studied amino acid formation by UV (193 nm) irradiation to organic molecules (amines, alcohols and amides) in aqueous solution. Among several types of detected amino acids, small aliphatic amino acids (Gly and alpha-, beta-Ala and alpha-, beta-, gamma-ABA) were quantitatively identified. Among these small aliphatic amino acids, certain amino acids were formed in its free form, even before hydrolysis, contrary to the results of UV irradiation to a gas mixture of CO, NH3, and H2O, where amino acids were hardly detected before hydrolysis. The species distribution of identified amino acids showed a dependence on the starting organic molecules, and also on the presence of ammonia. The formation processes of the identified small aliphatic amino acids were investigated with the aid of electrospray ionization (ESI) MS and MS/MS measurements of photoproducts. Possible formation processes of these amino acid precursors from each starting molecules are proposed. By identifying the amino acid precursor, which has a chiral carbon atom, a new possibility is suggested for asymmetric photosynthesis of amino acid from achiral organic molecules.

  13. Non-aqueous gel polymer electrolyte with phosphoric acid ester and its application for quasi solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Łatoszyńska, Anna A.; Żukowska, Grażyna Zofia; Rutkowska, Iwona A.; Taberna, Pierre-Louis; Simon, Patrice; Kulesza, Pawel J.; Wieczorek, Władysław

    2015-01-01

    A mechanically-stable non-aqueous proton-conducting gel polymer electrolyte that is based on methacrylate monomers, is considered here for application in solid-state type supercapacitors. An electrochemical cell using activated carbon as active materials and the new gel polymer electrolyte has been characterized at room temperature using cyclic voltammetry, galvanostatic charge-discharge cycle tests as well as impedance spectroscopy. The use of phosphoric acid ester (instead of phosphoric acid) as a proton donor has led to an increase of both the operation voltage window (up to 1.3 V) and the electrolyte ionic conductivity (on the level of an order of magnitude). The resulting double layer capacitance of the microporous activated carbon was found to be as high as 120 F g-1; even more important, the supercapacitor utilizing non-aqueous proton-conducting gel polymer electrolyte is well-behaved in the wide temperature range (namely, from -40 to 80 °C).

  14. Evidence for compounds hydrolyzable to amino acids in aqueous extracts of apollo 11 and apollo 12 lunar fines.

    PubMed

    Harada, K; Hare, P E; Windsor, C R; Fox, S W

    1971-07-30

    Hydrolyzates of aqueous extracts of Apollo 11 fines, an Apollo 12 trench sample, and an Apollo 12 surface sample have been analyzed on an ultrasensitive amino acid analyzer. The total content of amino acids recovered ranged from 20 to 70 parts per billion of lunar soil. Amino acids are not recovered by the direct hydrolysis of lunar fines, presumably because of decomposition in the presence of the large excess of lunar mineral. As judged by retention time, glycine is the dominant amino acid found; alanine is secondarily present in each case in the profile. Only a few amino acids have been recorded in each analysis. The pattern is relatively consistent in the samples from the three locations; the pattern from either hydrolyzed or unhydrolyzed extracts differs markedly from that of hydrolyzed or unhydrolyzed handprints. The evidence is not consistent with contamination of the kind expected by many investigators.

  15. Design of aqueous two-phase systems for purification of hyaluronic acid produced by metabolically engineered Lactococcus lactis.

    PubMed

    Rajendran, Vivek; Puvendran, Kirubhakaran; Guru, Bharath Raja; Jayaraman, Guhan

    2016-02-01

    Hyaluronic acid has a wide range of biomedical applications and its commercial value is highly dependent on its purity and molecular weight. This study highlights the utility of aqueous two-phase separation as a primary recovery step for hyaluronic acid and for removal of major protein impurities from fermentation broths. Metabolically engineered cultures of a lactate dehydrogenase mutant strain of Lactococcus lactis (L. lactis NZ9020) were used to produce high-molecular-weight hyaluronic acid. The cell-free fermentation broth was partially purified using a polyethylene glycol/potassium phosphate system, resulting in nearly 100% recovery of hyaluronic acid in the salt-rich bottom phase in all the aqueous two-phase separation experiments. These experiments were optimized for maximum removal of protein impurities in the polyethylene glycol rich top phase. The removal of protein impurities resulted in substantial reduction of membrane fouling in the subsequent diafiltration process, carried out with a 300 kDa polyether sulfone membrane. This step resulted in considerable purification of hyaluronic acid, without any loss in recovery and molecular weight. Diafiltration was followed by an adsorption step to remove minor impurities and achieve nearly 100% purity. The final hyaluronic acid product was characterized by Fourier-transform IR and NMR spectroscopy, confirming its purity.

  16. Study of the decomposition pathway of 12-molybdophosphoric acid in aqueous solutions by micro Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bajuk-Bogdanović, D.; Uskoković-Marković, S.; Hercigonja, R.; Popa, A.; Holclajtner-Antunović, I.

    2016-01-01

    Micro Raman spectroscopy was applied to investigate the speciation of heteropoly and isopoly molybdates in 0.05 and 0.005 M aqueous solutions of 12-molybdophosphoric acid at pH values between 1 and 6. For comparative purposes, 31P NMR spectroscopy was applied too. It is shown that stability of Keggin anion is influenced both by pH and concentration of solution. The Keggin structure is stable in acidic solutions (pH < 1.6) while defective Keggin structures are formed with further alkalization (up to pH 5.6). Monolacunary anion PMo11O397 - is the main component in the pH region from 1.6 to 3.4. Further removal of molybdenyl species causes the appearance of other vacant Keggin structures such as PMo9O31(OH)36 - and PMo6O259 - at about pH 4. At pH 5.0, anion PMo6O259 - is the main species. In solutions with pH greater than 5.0, heteropolymolybdates disappear completely and isopolymolybdates Mo7O246 - and MoO42 - are formed in higher amounts. In more diluted solution of 0.005 M, the decomposition scheme of 12-molybdophosphoric acid solution with increasing of pH takes place without observation of significant amounts of Mo7O246 - species. If alkalinization is performed with 0.5 M instead of 5 M NaOH, there are no significant changes in the Raman spectra of solutions. It is shown that the spectra of evaporated samples may be used for the identification of molecular species in corresponding concentrated solutions. However, Raman spectra of dry residues of more diluted solutions differ from spectra of corresponding solutions due to the reactions performed during the process of drying and cannot be used for unambiguous identification of species in solution. Acidification of 0.05 M solution of Na2MoO4 shows that at pH > 5.6, molybdate anion MoO42 - dominates, while in the pH range between 5.6 and 1, heptamolybdate anion Mo7O246 - is preferentially formed.

  17. Aerosol Fragmentation Driven by Coupling of Acid-Base and Free-Radical Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH Radicals.

    PubMed

    Liu, Matthew J; Wiegel, Aaron A; Wilson, Kevin R; Houle, Frances A

    2017-08-10

    A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps with physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular

  18. Self-assembly of folic acid: a chiral-aligning medium for enantiodiscrimination of organic molecules in an aqueous environment.

    PubMed

    Lokesh; Suryaprakash, N

    2012-09-10

    Weak orienting medium: Self-assembly of alkaline salt of folic acid yielded a weak liquid-crystalline phase in an aqueous environment. This medium has the ability to discriminate enantiomers. The mesophase exists over a broad range and has the physical parameter dependent tunability of degree of alignment (see scheme). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Concentration effects in the nucleophilic reactions of tertiary amines in aqueous solutions: Alkylation of amines with chloroacetic acid

    NASA Astrophysics Data System (ADS)

    Kazantsev, O. A.; Baruta, D. S.; Shirshin, K. V.; Sivokhin, A. P.; Kamorin, D. M.

    2011-03-01

    In alkylations of tertiary amines with chloroacetic acid in aqueous solutions, an increase in the initial concentrations of reagents to a certain level led to an abrupt increase in the initial rates and conversions attained during the control time. Viscosimetric and refractometric data showed that association with reagents occurred in these systems. The structures of associates that determine the character of the concentration effects of the Menschutkin reaction in water were suggested.

  20. Spectrophotometric Study of the Interaction Np(VI) with Orthosilicic Acid and Polymeric Silicic Acids in Aqueous Solutions

    SciTech Connect

    Yusov, A. B.; Shilov, V. P.; Fedoseev, A. M.; Astafurova, L. N.; Delegard, Calvin H.

    2005-07-15

    Spectrophotometric methods were used to investigate the interaction of the NpO22+ ion with orthosilicic acid, Si(OH)4, and polymeric silicic acids (PSA) in aqueous solutions. At рН ≤ 4.5, the interaction is described by the reaction NpO22+ + Si(OH)4 = NpO2OSi(OH)3+ + H+ with an equilibrium constant of lg K = -2.88 ± 0.12 (ionic strength I = 0.1-0.2). Recalculation to I = 0 gives lg K0 =-2.61 ± 0.12; the stability constant of the complex NpO2OSi(OH)3+ is lg β0 = 7.20 ± 0.12. Polymerization of Si(OH)4 does not lead to an apparent increase in the constant K. In solutions with рН higher than 5, and with silicate concentration more than 0.02 mole/l, leads to formation of a second complex, whose structure probably is described by the formula NpO2(≡SiO)2(≡SiOH)m-2, where (≡SiOH)m designates the PSA molecule with superficial Si-OH groups. The factors influencing the apparent equilibrium constants in forming of complexes NpO2OSi(OH)3+ and NpO2(≡SiO)2(≡SiOH)m-2 are considered upon polymerization of Si(OH)4. Absorption spectra of complexes NpO2OSi(OH)3+ and NpO2(≡SiO)2(≡SiOH)m-2 were obtained. Molar extinction coefficients at the maxima (500-600 nanometers) are much higher than those of the Np(VI) aquo ion and are about 25-30 l/mol∙cm. The stabilities of silicate complexes of all types - MO2OSi(OH)3+, MO2(≡SiO)2(≡SiOH)m-2, or MO2SiO3 (M = U, Np, or Pu) - decrease in order U> Np> Pu with the greatest difference occurring between Np and Pu.

  1. Stability of Rosmarinic Acid in Aqueous Extracts from Different Lamiaceae Species after in vitro Digestion with Human Gastrointestinal Enzymes

    PubMed Central

    Zorić, Zoran; Markić, Joško; Pedisić, Sandra; Bučević-Popović, Viljemka; Generalić-Mekinić, Ivana; Grebenar, Katarina

    2016-01-01

    Summary The present study compares the gastrointestinal stability of rosmarinic acid in aqueous extracts of thyme, winter savory and lemon balm with the stability of pure rosmarinic acid. The stability of rosmarinic acid was detected after two-phase in vitro digestion process (gastric and duodenal) with human gastrointestinal enzymes. The concentration of rosmarinic acid in undigested and digested samples was detected using HPLC-DAD. Results showed that gastrointestinal stability of pure rosmarinic acid was significantly higher than that of rosmarinic acid from plant extracts after both gastric and intestinal phases of digestion. Among plant extracts, rosmarinic acid was the most stable in lemon balm after gastric (14.10%) and intestinal digestion phases (6.5%). The temperature (37 °C) and slightly alkaline medium (pH=7.5) did not affect the stability of rosmarinic acid, while acid medium (pH=2.5) significantly decreased its stability (≥50%). In addition, the stability rate of rosmarinic acid is influenced by the concentration of human gastrointestinal juices. PMID:27904398

  2. Stability of Rosmarinic Acid in Aqueous Extracts from Different Lamiaceae Species after in vitro Digestion with Human Gastrointestinal Enzymes.

    PubMed

    Zorić, Zoran; Markić, Joško; Pedisić, Sandra; Bučević-Popović, Viljemka; Generalić-Mekinić, Ivana; Grebenar, Katarina; Kulišić-Bilušić, Tea

    2016-03-01

    The present study compares the gastrointestinal stability of rosmarinic acid in aqueous extracts of thyme, winter savory and lemon balm with the stability of pure rosmarinic acid. The stability of rosmarinic acid was detected after two-phase in vitro digestion process (gastric and duodenal) with human gastrointestinal enzymes. The concentration of rosmarinic acid in undigested and digested samples was detected using HPLC-DAD. Results showed that gastrointestinal stability of pure rosmarinic acid was significantly higher than that of rosmarinic acid from plant extracts after both gastric and intestinal phases of digestion. Among plant extracts, rosmarinic acid was the most stable in lemon balm after gastric (14.10%) and intestinal digestion phases (6.5%). The temperature (37 °C) and slightly alkaline medium (pH=7.5) did not affect the stability of rosmarinic acid, while acid medium (pH=2.5) significantly decreased its stability (≥50%). In addition, the stability rate of rosmarinic acid is influenced by the concentration of human gastrointestinal juices.

  3. Effect of synthesis and acid purification methods on the microwave dielectric properties of single-walled carbon nanotube aqueous dispersions

    NASA Astrophysics Data System (ADS)

    Xie, Shawn X.; Gao, Fuqiang; Patel, Sunny C.; Booske, John H.; Hagness, Susan C.; Sitharaman, Balaji

    2013-09-01

    We characterized the microwave-frequency (0.5-6 GHz) dielectric properties of aqueous dispersions of pristine and purified single-walled carbon nanotubes (SWCNTs). SWCNTs were synthesized by two CVD-based methods and purified using two acid-based purification methods. We characterized the structural and chemical differences across SWCNT samples using Raman analysis, UV-Vis spectroscopy, atomic force microscopy, and thermogravimetric analysis. We found that the dielectric properties of the pristine SWCNT dispersions did not vary with synthesis method, but the dielectric properties of purified SWCNT dispersions were variably impacted by acid purification due to different degrees of morphological and chemical changes in the SWCNTs.

  4. Hydrolysis mechanism of anticancer drug lobaplatin in aqueous medium under neutral and acidic conditions: A DFT study

    NASA Astrophysics Data System (ADS)

    Reddy B., Venkata P.; Mukherjee, Subhajit; Mitra, Ishani; Mahata, Sujay; Linert, Wolfgang; Moi, Sankar Ch.

    2016-10-01

    We have studied the hydrolysis mechanism of lobaplatin in aqueous medium under neutral and acidic conditions using density functional theory combining with CPCM model. The stationary states located on potential energy surface were fully optimized and characterised. The rate limiting step in neutral conditions, ring opening reaction with an activation energy of 110.21 kJ mol-1. The completely hydrolysed complex is expected to be the reactive species towards the DNA purine bases. In acidic conditions, ligand detachment is the rate limiting step with an activation energy of 113.82 kJ mol-1. Consequently, monohydrated complex is expected to be the species reacting with DNA.

  5. On the selective growth of titania polymorphs in acidic aqueous medium

    SciTech Connect

    Li, Haoguang; Afanasiev, Pavel

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Mutual influence of peptizing and anions addition of titania hydrothermal growth was studied. Black-Right-Pointing-Pointer Sulfate and chloride control TiO{sub 2} phase or particles shape depending on the order of introduction. Black-Right-Pointing-Pointer A rationale of difference between sulfate and chloride effect was provided. Black-Right-Pointing-Pointer Ground state DFT and semi-empirical calculations of Ti species support the conclusions. -- Abstract: The influence of preparation conditions on the phase composition and morphology of titania was studied for the solids synthesized by hydrothermal treatment (HT) and peptizing of hydrous TiO{sub 2} sols in acidic medium. Mutual influence of peptizing and of additive anions (SO{sub 4}{sup 2-}, Cl{sup -}) on the nature of obtained polymorphs was for the first time systematically studied and coherently explained. The solids were characterized by XRD, Raman spectroscopy, and transmission electron microscopy. It was found that peptizing step preceding HT and the presence of anions play a crucial role for the selective formation of TiO{sub 2} anatase or rutile polymorphs. Low temperature peptizing leads to acicular rutile particles, whereas HT produces highly dispersed anatase. However if the HT was preceded by peptizing step, rutile was obtained in most cases. The influence of additives strongly depends on the moment of their introduction. Sulfate and chloride species can act as phase growth controllers, or as morphology modifiers. Sulfate hindered formation of rutile and favored anatase al low temperatures, but for already formed rutile seed, sulfate acted only as a shape controller. By contrast, chloride showed a strong tendency to promote rutile growth, whatever the conditions. A qualitative model was proposed explaining the effects observed, supported by ground state DFT and semi-empirical calculations of the aqueous Ti species.

  6. Removal of Pb(II) ions from aqueous solutions by sulphuric acid-treated wheat bran.

    PubMed

    Ozer, A

    2007-03-22

    Sulphuric acid-treated wheat bran (STWB) was used as an adsorbent to remove Pb(II) ions from aqueous solution. It was observed that the adsorption yield of Pb(II) ions was found to be pH dependent. The equilibrium time for the process was determined as 2h. STWB gave the highest adsorption yield at around pH 6.0. At this pH, adsorption percentage for an initial Pb(II) ions concentration of 100mg/L was found to be 82.8 at 25 degrees C for contact time of 2h. The equilibrium data obtained at different temperatures fitted to the non-linear form of Langmuir, Freundlich and Redlich-Peterson and linear form of Langmuir and Freundlich models. Isotherm constants were calculated and compared for the models used. The maximum adsorption capacity (q(max)) which was obtained linear form of Langmuir model increased from 55.56 to 79.37mg/g with increasing temperature from 25 to 60 degrees C. Similar trend was observed for other isotherm constants related to the adsorption capacity. Linear form of Langmuir isotherm data was evaluated to determine the thermodynamic parameters for the process. Thermodynamic parameters show that adsorption process of Pb(II) ions is an endothermic and more effective process at high temperatures. The pseudo nth order kinetic model was successfully applied to the kinetic data and the order (n) of adsorption reaction was calculated at the range from 1.711 to 1.929. The values of k(ad) were found to be 5.82x10(-4) and 21.81x10(-4)(min(-1))(mg/g)(1-n) at 25 and 60 degrees C, respectively. Activation energy was determined as 29.65kJ/mol for the process. This suggest that the adsorption Pb(II) ions by STWB is chemically controlled.

  7. Oxidation of hydroxyurea with oxovanadium(V) ions in acidic aqueous solution.

    PubMed

    Gabricević, Mario; Besić, Erim; Birus, Mladen; Zahl, Achim; Eldik, Rudi van

    2006-10-01

    Hydroxyurea (HU) effectively reduces vanadium(V) into vanadium(IV) species (hereafter V(V) and V(IV) species, respectively) in acidic aqueous solution via the formation of a transient complex followed by an electron transfer process that includes the formation and subsequent fading out of a free radical, U* (U* identical with H(2)N-C(=O)N(H)O*). The electron paramagnetic resonance (EPR) spectra of U* in H(2)O/D(2)O solutions suggest that the unpaired electron is located predominantly on the hydroxamate hydroxyl-oxygen atom. Visible and V(IV)-EPR spectroscopic data reveal HU as a two-electron donor, whereas formation of U*, which reduces a second V(V), indicates that electron transfer occurs in two successive one-electron steps. At the molarity ratio [V(V)]/[HU]=2, the studied reaction can be formulated as: 2 V(V)+HU-->2 V(IV)+0.98 CO(2)+0.44 N(2)O+1.1 NH(3)+0.1 NH(2)OH. Lack of evidence for the formation of NO is suggested to be a consequence of the slow oxidation of HNO due to the too low reduction potential of the V(V)/V(IV) couple under the experimental conditions used. The nuclear magnetic resonance ((51)V-NMR) spectral data indicate protonation of (H(2)O)(4)V(V)O(2)(+), and the protonation equilibrium constant was determined to be K=0.7 M(-1). Spectrophotometric titration data for the V(V)-HU system reveal formation of (H(2)O)(2)V(V)O(OH)U(+) and (H(2)O)(3)V(V)OU(2+). Their stability constants were calculated as K(110)=5 M(-1) and K(111)=22 M(-2), where the subscript digits refer to (H(2)O)(4)V(V)O(2)(+), HU and H(+), respectively.

  8. Drin pesticides removal from aqueous solutions using acid-treated date stones.

    PubMed

    El Bakouri, H; Usero, J; Morillo, J; Rojas, R; Ouassini, A

    2009-05-01

    This work describes the potential applicability of chemically and thermally treated date stones for removing drin pesticides (aldrin, dieldrin and endrin) from aqueous solutions. The effect of several parameters, such as sorbent particle size, adsorbent dose, shaking speed, shaking time, concentration of pesticide solution and temperature, was evaluated by batch experiments. Pesticide determination was carried out using stir bar sorptive extraction and gas chromatography coupled with mass spectroscopy. Maximum removal efficiency (93%) was reached using 0.1 g of acid-treated date stones (ATDS) (63-100 microm) and 100 mL of aldrin (0.5 mg L(-1)). The removal efficiency of drin pesticides decreased in the order of aldrin, dieldrin and endrin, and decreased as the temperature rose. Adsorption data were processed according to various kinetic models. Lagergren and Morris-Weber equations were applied to fit the kinetic results. The second order model was the most suitable on the whole, and intra-particle diffusion was found to be the rate-controlling the adsorption process. According to adsorption kinetic data, 3.5h were considered as the equilibrium time for determining adsorption isotherms. Adsorption data were analyzed by the Langmuir, Freundlich and Dubinin-Radushkevich adsorption approaches. Experimental results showed that the Freundlich isotherm model best described the adsorption process. In addition, thermodynamic parameters such as DeltaH, DeltaS and DeltaG were calculated. Negative values of DeltaH and DeltaG indicate the exothermic and spontaneous nature of pesticide adsorption on ATDS.

  9. Sulfonated methyl esters of fatty acids in aqueous solutions: Interfacial and micellar properties.

    PubMed

    Danov, Krassimir D; Stanimirova, Rumyana D; Kralchevsky, Peter A; Basheva, Elka S; Ivanova, Veronika I; Petkov, Jordan T

    2015-11-01

    The interest to sulfonated methyl esters of fatty acids (SME) has been growing during the last decade, because these surfactants are considered as an environmentally friendly and renewable alternative of the linear alkyl-benzene sulfonates (LAS). Here, we present a quantitative study on the properties of aqueous SME solutions, and especially on their surface tension isotherms, critical micelle concentration (CMC) and its dependence on the concentration of added NaCl. It is demonstrated that the CMC of an ionic surfactant determined by electrical conductivity is insensitive to the presence of a small nonionic admixture, so that the CMC values determined by conductivity represent the CMC of the pure surfactant. Using SME as an example, we have demonstrated the application of a new and powerful method for determining the physicochemical parameters of the pure ionic surfactant by theoretical data analysis ("computer purification") if the used surfactant sample contains nonionic admixtures, which are present as a rule. This method involves fits of the experimental data for surface tension and conductivity by a physicochemical model based on a system of mass-balance, chemical-equilibrium and electric-double-layer equations, which allows us to determine the adsorption and micellization parameters of C12-, C14-, C16- and C18-SME, as well the fraction of nonionic admixtures (if any). Having determined these parameters, we can further predict the interfacial and micellization properties of the surfactant solutions, such as surface tension, adsorption, degree of counterion binding, and surface electric potential at every surfactant, salt and co-surfactant concentrations. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Degradation of dichloroacetic acid in homogeneous aqueous media employing ozone and UVC radiation.

    PubMed

    Lovato, María Eugenia; Martín, Carlos A; Cassano, Alberto E

    2011-03-02

    A tentative workable mechanism for dichloroacetic acid decomposition (DCA) in aqueous media employing ozone and UVC radiation has been developed. All experiments were made in a homogeneous medium under assured kinetic control regime. Under no circumstances did a headspace exist in the reactor volume. The starting point of the reaction with UVC radiation was always under the prerequisite of a confirmed state of initial equilibrium conditions for the mixture water-ozone-oxygen at 20 °C. The explored variables were: (i) DCA initial concentration, (ii) ozone concentration and (iii) fluence rate at the reactor window. The model comprises three parallel reactions: (1) direct photolysis, (2) direct ozonation and (3) ozone + UVC degradation. Complete DCA removal was achieved, and the mass balance, considering DCA disappearance and chloride ion formation, closed within very small error. The combination of ozone and UVC radiation produces a significant amount of hydrogen peroxide as an important reaction by-product. The direct photolysis can be well represented with a six step reaction sequence. The direct ozonation mechanism comprises 22 steps and, with the entire set of kinetic constants completed in this work, it is independent of the reaction pH in the range from 3 to 6.3. Lastly, the associated use of ozone and UVC radiation becomes necessary to consider the existence of radiation absorption by three species, namely DCA, ozone and hydrogen peroxide. The developed system, including the three parallel reactions, led to the proposal of a 37 step reaction mechanism. Finally the reaction kinetics, the mass balances and the radiation field corresponding to this complex system were rigorously modeled and the most significant features of the mathematical representation are briefly described. The simulation results rendered from this model agree very well with the measured experimental data. This outcome will be essential for deriving a complete reactor model that must be

  11. Acid gas treating by aqueous alkanolamines. Annual report, January-December 1993

    SciTech Connect

    Sandall, O.C.; Rinker, E.B.; Ashour, S.

    1993-12-01

    The objective of the work is to investigate the simultaneous absorption or desorption of CO2 and H2S into and from a mixed aqueous amine solvent consisting of methyldiethanolamine (MDEA) and diethanolamine (DEA). In work completed thus far, density, viscosity, gas diffusivity, gas solubility, surface tension, and amine solution vapor pressure have been measured for aqueous MDEA, DEA, and MDEA/DEA mixtures over the temperature range 20 to 100 deg. C and for concentrations up to 50 weight %. A mathematical model, based on the penetration theory, for the simultaneous absorption (desorption) of CO2 and H2S into (from) aqueous solutions of MDEA and DEA has been developed.

  12. Oleoylethanolamide-based lyotropic liquid crystals as vehicles for delivery of amino acids in aqueous environment.

    PubMed

    Mohammady, Sayed Z; Pouzot, Matthieu; Mezzenga, Raffaele

    2009-02-18

    We have investigated the phase behavior of self-assembled lyotropic liquid crystals (LC) formed by ternary mixtures of oleoylethanolamide (OEA), water and arginine. OEA, a natural analog of the endogenous cannabinoid anandamide involved in the peripheral regulation of feeding, was selected as a main component due to its capacity to induce efficient decreases in food intake and gains in body mass. Arginine was selected as representative hydrophilic amino acid and added to the OEA-water mixture at different concentrations. The phase diagrams were determined by combining cross-polarized optical microscopy and small angle x-ray scattering. First, the phase diagram for the OEA-water system was determined. It was shown that these two compounds give rise to reverse Ia3d double gyroid and reverse Pn3m double diamond cubic phases existing in bulk over a large window of temperature and composition, and that for water content beyond 25% Pn3m coexisted with excess water. Successively, the influence of arginine as guest molecule in the water channels of the reverse LC was investigated. For the sake of comparison, results for the OEA-water-arginine system were compared with analog series of OEA-water-glucose. The results showed that, at a fixed water content and temperature, the phase behavior of the liquid crystalline phases is strongly dependent on arginine concentration. In more detail, arginine could be encapsulated in the bulk OEA-water LC up to 2.0% wt, whereas transitions from Ia3d to Pn3m cubic phase were observed with increasing arginine concentration. Interestingly, upon an increase of water concentration beyond 20-25%, Pn3m phase started to coexist with excess water releasing the arginine in external water solution. Quantitative measurements of arginine content inside the LC water channels and in the excess external water solution revealed a complete release of the amino acid, demonstrating that the investigated lyotropic liquid crystalline systems can be used as

  13. Water- and acid-mediated excited-state intramolecular proton transfer and decarboxylation reactions of ketoprofen in water-rich and acidic aqueous solutions.

    PubMed

    Li, Ming-De; Yeung, Chi Shun; Guan, Xiangguo; Ma, Jiani; Li, Wen; Ma, Chensheng; Phillips, David Lee

    2011-09-19

    We present an investigation of the decarboxylation reaction of ketoprofen (KP) induced by triplet excited-state intramolecular proton transfer in water-rich and acidic solutions. Nanosecond time-resolved resonance Raman spectroscopy results show that the decarboxylation reaction is facile in aqueous solutions with high water ratios (water/acetonitrile ≥50%) or acidic solutions with moderate and strong acid concentration. These experimental results are consistent with results from density functional theory calculations in which 1) the activation energy barriers for the triplet-state intramolecular proton transfer and associated decarboxylation process become lower when more water molecules (from one up to four molecules) are involved in the reaction system and 2) perchloric acid, sulfuric acid, and hydrochloric acid can shuttle a proton from the carboxyl to carbonyl group through an initial intramolecular proton transfer of the triplet excited state, which facilitates the cleavage of the C-C bond, thus leading to the decarboxylation reaction of triplet state KP. During the decarboxylation process, the water molecules and acid molecules may act as bridges to mediate intramolecular proton transfer for the triplet state KP when KP is irradiated by ultraviolet light in water-rich or acidic aqueous solutions and subsequently it generates a triplet-protonated carbanion biradical species. The faster generation of triplet-protonated carbanion biradical in acidic solutions than in water-rich solutions with a high water ratio is also supported by the lower activation energy barrier calculated for the acid-mediated reactions versus those of water-molecule-assisted reactions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Evidence for a Morin Type Intramolecular Cyclization of an Alkene with a Phenylsulfenic Acid Group in Neutral Aqueous Solution

    PubMed Central

    Keerthi, Kripa; Sivaramakrishnan, Santhosh; Gates, Kent S.

    2009-01-01

    Sulfenic acids (RSOH) are among the most common sulfur-centered reactive intermediates generated in biological systems. Given the biological occurrence of sulfenic acids, it is important to explore the reactivity of these intermediates under physiological conditions. The Morin rearrangement is a synthetic process developed for the conversion of penicillin derivatives into cephalosporins that proceeds via nucleophilic attack of an alkene on a sulfenic acid intermediate. In its classic form, the Morin reaction involves initial elimination of a sulfenic acid from a cyclic sulfoxide, followed by intramolecular cyclization of the resulting alkene and sulfenic acid groups to generate an episulfonium ion intermediate that undergoes further reaction to yield ring-expanded products. On the basis of the existing literature, it is difficult to assess whether the reaction between an alkene and a sulfenic group can occur under mild conditions because the conditions required to generate the sulfenic acid from the sulfoxide precursor in the Morin reaction typically involve high temperatures and strong acid. In the work described here, β-sulfinylketone precursors were used to generate a “Morin type” sulfenic acid intermediate under mild conditions. This approach made it possible to demonstrate that the intramolecular cyclization of an alkene with a phenylsulfenic acid to generate an episulfonium ion intermediate can occur in neutral aqueous solution at room temperature. PMID:18500784

  15. Boronic acid-containing aminopyridine- and aminopyrimidinecarboxamide CXCR1/2 antagonists: Optimization of aqueous solubility and oral bioavailability.

    PubMed

    Schuler, Aaron D; Engles, Courtney A; Maeda, Dean Y; Quinn, Mark T; Kirpotina, Liliya N; Wicomb, Winston N; Mason, S Nicholas; Auten, Richard L; Zebala, John A

    2015-09-15

    The chemokine receptors CXCR1 and CXCR2 are important pharmaceutical targets due to their key roles in inflammatory diseases and cancer progression. We have previously identified 2-[5-(4-fluoro-phenylcarbamoyl)-pyridin-2-ylsulfanylmethyl]-phenylboronic acid (SX-517) and 6-(2-boronic acid-5-trifluoromethoxy-benzylsulfanyl)-N-(4-fluoro-phenyl)-nicotinamide (SX-576) as potent non-competitive boronic acid-containing CXCR1/2 antagonists. Herein we report the synthesis and evaluation of aminopyridine and aminopyrimidine analogs of SX-517 and SX-576, identifying (2-{(benzyl)[(5-boronic acid-2-pyridyl)methyl]amino}-5-pyrimidinyl)(4-fluorophenylamino)formaldehyde as a potent chemokine antagonist with improved aqueous solubility and oral bioavailability.

  16. Optimization of polyphenol extraction from red grape pomace using aqueous glycerol/tartaric acid mixtures and response surface methodology.

    PubMed

    Makris, Dimitris P; Passalidi, Vassiliki; Kallithraka, Stamatina; Mourtzinos, Ioannis

    2016-01-01

    Grape pomace is a food industry waste containing a high burden of antioxidant polyphenols and several methodologies have been developed for their efficient extraction. However, a sustainable and environmentally friendly process should involve recovery means composed of benign, non-toxic solvents, such as tartaric acid and glycerol, which are natural food constituents. In this line, this study examined the extraction of polyphenols using aqueous tartaric acid/glycerol solutions. The aim was to assess the role of acid and glycerol concentration in the extraction yield, employing a Box-Behnken experimental design and response surface methodology. The results showed that solutions containing only glycerol (20%, w/v) are more suitable for retrieving polyphenols, flavonoids, and pigments from grape pomace, while tartaric acid exerted a negative effect in this regard, when tested at concentrations up to 2% (w/v).

  17. Removal characteristics of As(III) and As(V) from acidic aqueous solution by steel making slag.

    PubMed

    Oh, Chamteut; Rhee, Sungsu; Oh, Myounghak; Park, Junboum

    2012-04-30

    This study focused on the environmental risk of steel making slag itself, arsenic removal mechanism and re-leaching possibility of arsenic to aqueous state after the adsorption. The purpose of the study is to promote the use of steel making slag as a low-cost adsorbent for arsenic in aqueous system. Calcium was easily dissolved out from the slag and become the dominant substance in the leachate. Some of the calcium could form amorphous calcium carbonate in alkaline condition, and arsenic in the aqueous solution would be removed by being co-precipitated with or adsorbed onto the amorphous calcium carbonate. Most of the amorphous calcium carbonate containing arsenic would be bound to amorphous iron oxide of the slag. When the slag was used as an adsorbent for arsenic removal, a little amount of toxic chemicals were leached from the slag itself under pH 0.8 to 13.6. Also, 70-80% of arsenic laden on the slag was bound to amorphous iron oxide which would not easily desorb unless given a reducing and complexing condition. Showing 95-100% removal efficiency near initial pH 2, the slag, therefore, could be used as an appropriate adsorbent for eliminating arsenic in acidic aqueous solution.

  18. Calculating the acidity of silanols and related oxyacids in aqueous solution

    NASA Astrophysics Data System (ADS)

    Tossell, John A.; Sahai, Nita

    2000-12-01

    Ab initio molecular orbital theory was used to calculate deprotonation energies and enthalpies (ΔE d, ΔH d) of oxyacid monomers and oligomers. Results were interpreted with reference to current phenomenological models for estimating metal-oxide surface acidities. The ultimate goal is to predict surface acidities using the ab initio method. We evaluated contributions to ΔE d and ΔH d from the electrostatic potential at the proton, electronic relaxation, geometric relaxation, solvation, and polymerization for the neutral-charge gas-phase molecules H 2O, CH 3OH, HCOOH, SiH 3OH, Si(OH) 4, Si 2O 7H 6, H 3PO 4, P 2O 7H 4, H 2SO 3, H 2SO 4, HOCl, HClO 4, Ge(OH) 4, As(OH) 3, and AsO(OH) 3. ΔE d, gas calculated at the modest 6-31G∗ HF of theory level correlates well with experimental pK a in solution, because hydration enthalpies for the acid anions (ΔH hyd, A-) are closely proportional to ΔE d, gas. That is, anion interaction energies with water in aqueous solution and with H + in the gas phase are closely correlated. Correction for differential hydration between an acid and its conjugate base permits generalization of the ΔE d, gas - pK a correlation to deprotonation reactions involving charged acids. Thus, stable protonated, neutral, and deprotonated species Si(OH) 3(OH 2) 1+, Si(OH) 40, Si(OH) 3O 1-, and Si(OH) 2O 22- have been characterized, and solution pK a's for Si(OH) 3(OH 2) 1+ and Si(OH) 3O 1- were estimated, assuming that the charged species (Si(OH) 3(OH 2) 1+, Si(OH) 3O -1) fit into the same ΔE d, gas - pK a correlation as do the neutral acids. The correlation yields a negative pK a (˜ -5) for Si(OH) 3(OH 2) +1. Calculated ΔE d, gas also correlates well with the degree of O under-bonding evaluated using Brown's bond-length based approach. ΔE d, gas increases along the series HClO 4 - Si(OH) 4 mainly because of increasingly negative potential at the site of the proton, not because of differing electronic or geometric relaxation energies. Thus, pK a

  19. In situ decarboxylation of acetic and formic acids in aqueous inclusions as a possible way to produce excess CH4

    NASA Astrophysics Data System (ADS)

    Ong, Anthony; Pironon, Jacques; Robert, Pascal; Dubessy, Jean; Caumon, Marie-Camille; Randi, Aurélien; Chailan, Olivier; Girard, Jean-Pierre

    2013-04-01

    Accurate reconstruction of diagenetic P-T conditions in petroleum reservoirs from fluid inclusion data relies on valid measurements of methane concentration in aqueous inclusions. Techniques have been developed (Raman spectrometry) to provide sufficiently accurate data, assuming measured methane concentration has not been modified after aqueous inclusion entrapment. In petroleum reservoirs, acetic (CH3COOH) and formic (HCOOH) acids are the most commonly reported organic acids, and the concentration of the total organic acids can be as high as 10,000 ppm at temperature below 120°C. This study investigates the likelihood that organic acids derived from petroleum fluids and dissolved in formation water might suffer decarboxylation upon post-entrapment heating within the fluid inclusion chamber upon post-entrapment heating, thereby generating excess CH4 in the inclusions. Four different experiments were conducted in Fused Silica Capillary Capsules (FSCCs), mimicking fluid inclusions. The capsules were loaded with acetic (CH3COOH) or formic (HCOOH) acid solution and were heated to 250°C for short durations (< 72hrs) in closed system conditions, with or without applying a fixed PH2. Reaction products were characterized by Raman and FT-IR spectrometry. The beginning of the decarboxylation of acetic acid is reached in 32 h at 250°C, with production of CH4 and CO2. Complete decarboxylation of formic acid is reached in 5 h at 250°C, with production of CO2, CO and H2. The lack of CH4 production in experiments with formic acid may be attributed to the relatively short duration of the experiments and/or the loss of H2 through the FSCC by diffusion during the experiment. Further experiments with a longer heating duration should be performed to assess the possibility of reducing the CO2 into CH4 from the formic acid. 2) The injection of H2 in the FSCC as a way to promote CO2 reduction did not promote decarboxylation in the duration of our experiment. These results suggest

  20. Comparing the acidities of aqueous, frozen, and freeze-dried phosphate buffers: Is there a "pH memory" effect?

    PubMed

    Vetráková, Ľubica; Vykoukal, Vít; Heger, Dominik

    2017-09-15

    The concept of "pH memory" has been established in the literature for the correlation between the pH of a pre-lyophilization solution and the ionization state of freeze-dried powder (lyophile). In this paper, the concept of "pH memory" is explored for the system of an aqueous solution, a frozen solution, and a lyophile. Sodium and potassium phosphate buffers in the pH range of 5-9 were frozen and lyophilized with sulfonephthalein indicators as acidity probes, and their Hammett acidity functions were compared to the initial pH of the aqueous solution. The results show that the acidities of the lyophiles are somewhat changed compared to the initial pHs, but the acidities in the frozen state differ more substantially. The Hammett acidity functions of the frozen buffers were found to be markedly dissimilar from the initial pH, especially in the sodium phosphate frozen at 233K, where an increase in the initial pH led to a decrease in the Hammett acidity function of the frozen state at a certain pH range. The large acidification observed after freezing the sodium phosphate buffer was not detected in the lyophiles after the sample had been dried; the phenomenon is explained considering the formed crystals analyzed by X-ray powder diffraction. The results suggest that monitoring the final acidity of a lyophile is not sufficient to predict all the acidity changes throughout the whole lyophilization process. The importance of well-controlled freezing and lyophilization conditions follows from the results of the research. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A Simple Purification of Indole-3-Acetic Acid and Abscisic Acid for GC-SIM-MS Analysis by Microfiltration of Aqueous Samples through Nylon

    PubMed Central

    Dunlap, James R.; Guinn, Gene

    1989-01-01

    A simple procedure was developed for the partial purification of plant tissue samples to be analyzed simultaneously for indole-3-acetic acid (IAA) and abscisic acid (ABA). The procedure relies on removal of contaminants by filtration through nylon and partitioning into dichloromethane. This procedure successfully purified both IAA and ABA from muskmelon, cotton, and broccoli tissue. Twenty individual samples can be purified and methylated in 8 h for analysis of free IAA and ABA with gas chromatography-selected ion monitoring-mass spectrometry. The use of microfiltration of aqueous samples through nylon offers new opportunities for improving the efficiency of existing sample purification procedures. PMID:16666735

  2. Salt Effect Model for Aqueous Solubility of TBP in a 5 to 100% TBP/n-Dodecane-Nitric Acid-Water Biphasic System at 298.2 K

    SciTech Connect

    Kumar, Shekhar; Koganti, Sudhir Babu

    2000-02-15

    The solubilities of nonelectrolytes in aqueous electrolyte solutions have traditionally been modeled by using the Setschenow equation for salt effect. The aqueous solubility of tri-n-butyl phosphate (TBP) during operating conditions of the Purex process is an important parameter for safety considerations. Use of the Setschenow equation for aqueous solubility of TBP under limited conditions has been reported in the literature. However, there is no general model available to account for the presence of the diluent and for the case of multicomponent electrolyte solutions in which only some electrolytes are solvated and extracted by TBP. An extended salt effect model is proposed for predicting the aqueous solubility of TBP in a 5 to 100% TBP/n-dodecane-nitric acid-water biphasic system at 298.2 K. The literature data on TBP solubility were correlated to aqueous acid concentration, diluent concentration in the solvents, and an interaction parameter for electrolytic solutes (extracted or not extracted by TBP)

  3. Biosorption of formic and acetic acids from aqueous solution using activated carbon from shea butter seed shells

    NASA Astrophysics Data System (ADS)

    Adekola, Folahan A.; Oba, Ismaila A.

    2016-10-01

    The efficiency of prepared activated carbon from shea butter seed shells (SB-AC) for the adsorption of formic acid (FA) and acetic acid (AA) from aqueous solution was investigated. The effect of optimization parameters including initial concentration, agitation time, adsorbent dosage and temperature of adsorbate solution on the sorption capacity were studied. The SB-AC was characterized for the following parameters: bulk density, moisture content, ash content, pH, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The optimal conditions for the adsorption were established and the adsorption data for AA fitted Dubinin-Radushkevich (D-R) isotherm well, whereas FA followed Langmuir isotherm. The kinetic data were examined. It was found that pseudo-second-order kinetic model was found to adequately explain the sorption kinetic of AA and FA from aqueous solution. It was again found that intraparticle diffusion was found to explain the adsorption mechanism. Adsorption thermodynamic parameters were estimated and the negative values of ∆G showed that the adsorption process was feasible and spontaneous in nature, while the negative values of ∆H indicate that the adsorption process was exothermic. It is therefore established that SB-AC has good potential for the removal of AA and FA from aqueous solution. Hence, it should find application in the regular treatment of polluted water in aquaculture and fish breeding system.

  4. Synthesis, spectra, and electron-transfer reaction of aspartic acid-functionalized water-soluble perylene bisimide in aqueous solution.

    PubMed

    Zhong, Lina; Xing, Feifei; Shi, Wei; Yan, Liuming; Xie, Liqing; Zhu, Shourong

    2013-04-24

    An aspartic acid-functionalized water-soluble perylene bisimide, N,N'-di(2-succinic acid)-perylene-3,4,9,10-tetracarboxylic bisimide (PASP) was synthesized and characterized. It has absorbance maximum A(0-0) and A(0-1) at 527 and 498 nm (ε ≈ 1.7 × 10(4) L cm(-1) mol(-1)) respectively in pH 7.20 HEPES buffer. Two quasi-reversible redox processes with E1/2 at -0.17 and -0.71 V (vs Ag/AgCl) respectively in pH 7-12.5 aqueous solutions. PASP can react with Na2S in pure aqueous solution to form monoanion radical and dianion species consecutively. PASP(-•) has EPR signal with g = 1.998 in aqueous solution, whereas PASP(2-) is EPR silent. The monoanion radical formation is a first-order reaction with k = 8.9 × 10(-2) s(-1). Dianion species formation is a zero-order reaction and the rate constant is 4.3 × 10(-8) mol L(-1) s(-1). The presence of H2O2 greatly increases the radical formation rate constant. PASP as a two-electron transfer reagent is expected to be used in the water photolysis.

  5. An improved synthesis of 1,3,5-triaryl-2-pyrazolines in acetic acid aqueous solution under ultrasound irradiation.

    PubMed

    Li, Ji-Tai; Zhang, Xiao-Hui; Lin, Zhi-Ping

    2007-03-21

    Pyrazoline derivatives have been found to possess a broad spectrum of biological activities. Among various pyrazoline derivatives, 2-pyrazolines seem to be the most frequently studied. A variety of methods have been reported for the preparation of this class of compound. However, in spite of their potential utility, some of the reported methods suffer from drawbacks such as long reaction times, cumbersome product isolation procedures and environmental concerns. Organic reactions in aqueous media have attracted increasing interest recently because of environmental issues and the understanding of biochemical processes. Ultrasound has increasingly been used in organic synthesis in the last three decades. A large number of organic reactions can be carried out in higher yields, shorter reaction time or milder conditions under ultrasound irradiation. Preparation of a series of 1,3,5-triaryl-2-pyrazolines through the reaction of chalcones and phenylhydrazine hydrochloride was carried out in 83-96% yield within 1.5-2 h in sodium acetate-acetic acid aqueous solution under ultrasound irradiation. We have described a practical and convenient procedure for the synthesis of 1,3,5-triaryl-2-pyrazolines in sodium acetate-acetic acid aqueous solution at room temperature under ultrasound irradiation.

  6. Study of monoprotic acid-base equilibria in aqueous micellar solutions of nonionic surfactants using spectrophotometry and chemometrics.

    PubMed

    Babamoradi, Hamid; Abdollahi, Hamid

    2015-10-05

    Many studies have shown the distribution of solutes between aqueous phase and micellar pseudo-phase in aqueous micellar solutions. However, spectrophotometric studies of acid-base equilibria in these media do not confirm such distribution because of the collinearity between concentrations of chemical species in the two phases. The collinearity causes the number of detected species to be equal to the number of species in a homogenous solution that automatically misinterpreted as homogeneity of micellar solutions, therefore the collinearity is often neglected. This interpretation is in contradiction to the distribution theory in micellar media that must be avoided. Acid-base equilibrium of an indicator was studied in aqueous micellar solutions of a nonionic surfactant to address the collinearity using UV/Visible spectrophotometry. Simultaneous analysis (matrix augmentation) of the equilibrium and solvation data was applied to eliminate the collinearity from the equilibrium data. A model was then suggested for the equilibrium that was fitted to the augmented data to estimate distribution coefficients of the species between the two phases. Moreover, complete resolution of concentration and spectral profiles of species in each phase was achieved.

  7. Thermodynamic studies of ionic hydration and interactions for amino acid ionic liquids in aqueous solutions at 298.15 K.

    PubMed

    Dagade, Dilip H; Madkar, Kavita R; Shinde, Sandeep P; Barge, Seema S

    2013-01-31

    Amino acid ionic liquids are a special class of ionic liquids due to their unique acid-base behavior, biological significance, and applications in different fields such as templates in synthetic chemistry, stabilizers for biological macromolecules, etc. The physicochemical properties of these ionic liquids can easily be altered by making the different combinations of amino acids as anion along with possible cation modification which makes amino acid ionic liquids more suitable to understand the different kinds of molecular and ionic interactions with sufficient depth so that they can provide fruitful information for a molecular level understanding of more complicated biological processes. In this context, volumetric and osmotic coefficient measurements for aqueous solutions containing 1-ethyl-3-methylimidazolium ([Emim]) based amino acid ionic liquids of glycine, alanine, valine, leucine, and isoleucine are reported at 298.15 K. From experimental osmotic coefficient data, mean molal activity coefficients of ionic liquids were estimated and analyzed using the Debye-Hückel and Pitzer models. The hydration numbers of ionic liquids in aqueous solutions were obtained using activity data. Pitzer ion interaction parameters are estimated and compared with other electrolytes reported in the literature. The nonelectrolyte contribution to the aqueous solutions containing ionic liquids was studied by calculating the osmotic second virial coefficient through an application of the McMillan-Mayer theory of solution. It has been found that the second osmotic virial coefficient which includes volume effects correlates linearly with the Pitzer ion interaction parameter estimated independently from osmotic data as well as the hydrophobicity of ionic liquids. The enthalpy-entropy compensation effect, explained using the Starikov-Nordén model of enthalpy-entropy compensation, and partial molar entropy analysis for aqueous [Emim][Gly] solutions are made by using experimental Gibb

  8. Raman spectra and structures of 1-methyl-4-(4-diethylaminophenylazo)-pyridinium iodide in neutral and acidic aqueous solutions

    NASA Astrophysics Data System (ADS)

    Iwase, Akitaka; Ueda, Atsushi; Kuwae, Akio; Hanai, Kazuhiko; Kunimoto, Ko-Ki

    2013-09-01

    Fourier transform (FT) and resonance Raman spectra of 1-methyl-4-(4-diethylaminophenylazo)-pyridinium iodide (MDP) and its four deuterated and three 15N stable isotopic compounds have been measured in neutral and acidic aqueous solutions, and the molecular structures have been discussed on the basis of detailed vibrational assignments using the isotope shifts. No Raman band due to the azo Ndbnd N group is observed in a neutral aqueous solution and also in the solid state of MDP; therefore, this finding suggests that double bond character of the azo group becomes weak and, consequently, the structures of both benzene and pyridinium rings are close to that of a quinoid. The Raman and the 15N NMR spectra indicate that the Nβ of the azo group is protonated in an acidic solution of MDP. Comparison of the spectra of the two solutions suggests that the benzene ring has more quinoid character in the acidic than in the neutral solution. The chromophore structures have been revealed in each of the neutral (purple) and the acidic (yellow) solution.

  9. Molecularly Imprinted Solid Phase Extraction using Bismethacryloyl-β-cyclodextrin and Methacrylic Acid as Double Functional Monomers for Selective Analysis of Glycyrrhizic Acid in Aqueous Media.

    PubMed

    Tang, Weili; Du, Wei; Guo, Pengqi; Wu, Ningli; Du, Kangli; Xu, Changgen; Luo, Zhimin; Chang, Ruimiao; Zeng, Aiguo; Jing, Wanghui; Chang, Chun; Li, Ji; Fu, Qiang

    2017-02-01

    In this work, a new molecularly imprinted solid phase extraction protocol was developed for the selective extraction and purification of glycyrrhizic acid from liquorice roots in aqueous media. The molecularly imprinted polymers (MIPs) for glycyrrhizic acid were prepared by using bismethacryloyl-β-cyclodextrin and methacrylic acid as double functional monomers and characterized by Fourier transform infrared spectroscopy, scanning electron microscope, thermo gravimetric analysis, nitrogen adsorption and elemental analysis. In aqueous media, the adsorption properties of MIPs including adsorption kinetics, adsorption isotherms and selectivity adsorption were investigated. The characterization of imprinted polymers indicated that the prepared MIPs had good stability and many cavity structures. The results of adsorption experiments illustrated the MIPs had high adsorption capacity of glycyrrhizic acid (69.3 mg g(-1)) with the imprinting factor 3.77, and it took ~5 min to get adsorption equilibrium. The MIPs could be used as an solid phase extraction sorbent absorbent for enrichment and purification of glycyrrhizic acid from the crude extraction of licorice roots, and the results showed promising practical value. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. A comparison of dilute aqueous p-toluenesulfonic and sulfuric acid pretreatments and saccharification of corn stover at moderate temperatures and pressures.

    PubMed

    Amarasekara, Ananda S; Wiredu, Bernard

    2012-12-01

    Single step pretreatment-saccharification of corn stover was investigated in aqueous p-toluenesulfonic and sulfuric acid media. Dilute aqueous solution of p-toluenesulfonic acid was a better catalyst than aqueous sulfuric acid of the same H(+) ion concentration for single step pretreatment-saccharification of corn stover at moderate temperatures and pressures. For example, 100mg corn stover heated at 150°C for 1h in 0.100 M H(+) aqueous sulfuric acid produced 64 μmol of total reducing sugars (TRS), whereas the sample heated in 0.100 M H(+)p-toluenesulfonic acid produced 165 μmol of TRS under identical conditions. Glucose yield showed a similar trend, as aq. sulfuric acid and p-toluene sulfonic acid media produced 29 and 35 μmol of glucose respectively after 2.5h. Higher catalytic activity of p-toluenesulfonic acid may be due to an interaction with biomass, supported by repulsion of hydrophobic tolyl group by the aqueous phase. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Sources and interrelations of oxidants (peroxides and {sup {center_dot}}OH), iron(II), and organic acids formed from aqueous-phase photochemical reactions in clouds, fogs, and aqueous aerosols

    SciTech Connect

    Faust, B.C.; Arakaki, T.; Shu P.G.

    1995-12-31

    Based on studies of cloud waters from Whiteface Mountain, New York, the aqueous photoformation of OH is attributed to two different mechanisms. One of these mechanisms involves the direct photolysis of nitrate, and the other mechanism involves an HOOH-Fe(II) photo-Fenton reaction. Separate studies of well-defined aqueous solutions (pH=3.7) of Fe(III)-dicarboxylate complexes, for dicarboxylates commonly found in atmospheric waters (oxalate, malonate, succinate, glutarate), reveals that these complexes rapidly form Fe(II) and HOOH with 313-nm illumination. Finally, studies of the aqueous (pH=3.7) photolysis of biacetyl, which is commonly found in fogs and clouds, produces acetic acid, peroxyacetic acid, HOOH, CH{sub 3}OOH, and pyruvic acid. The peroxylacetyl radical is proposed as a key intermediate; it is the most strongly oxidizing organic peroxyl radical known to date.

  12. in situ formation of rGO quantum dots during GO reduction via interaction with citric acid in aqueous medium

    NASA Astrophysics Data System (ADS)

    Ortega-Amaya, R.; Matsumoto, Y.; Flores-Conde, A.; Pérez-Guzmán, M. A.; Ortega-López, M.

    2016-10-01

    Chemical methods represent an economical approach to the mass production of graphene. Their main drawback is the use of environmentally harmful reagents. This work describes a simple, green method to prepare reduced graphene oxide (rGO) sheets and rGO quantum dots (rGOQD) in a single step using citric acid (CA) as the reductant in aqueous medium at room temperature. The reduction level of the nanocomposite obtained depends strongly on the processing time; the sample treated for 24 h demonstrate significant reduction. It is found that CA not only reduces GO but also functionalizes it to produce well-stabilized rGO aqueous dispersions. Additionally, a mechanism for the reduction and functionalization of GO by CA is proposed.

  13. Free energy surface for Brønsted acid-catalyzed glucose ring-opening in aqueous solution.

    PubMed

    Qian, Xianghong

    2013-10-03

    Car-Parrinello-based molecular dynamics coupled with metadynamics simulations were used to determine the mechanism and associated free energy surface for opening the ring structure of cyclic glucopyranose in acidic aqueous solutions. The ring-opening process is initiated by the protonation of the ring oxygen atom and the breakage of the C1-O5 bond. The barrier for this process is about 25 kcal/mol, in good agreement with experimental measurements. Moreover, the glucose cyclic conformation is found to be more stable than the open chain form. The barrier for proton-catalyzed ring-opening in aqueous solution appears to be largely solvent induced due to the high affinity of water molecules for protons.

  14. A novel liquid plasma AOP device integrating microwaves and ultrasounds and its evaluation in defluorinating perfluorooctanoic acid in aqueous media.

    PubMed

    Horikoshi, Satoshi; Sato, Susumu; Abe, Masahiko; Serpone, Nick

    2011-09-01

    A simplified and energy-saving integrated device consisting of a microwave applicator and an ultrasonic homogenizer has been fabricated to generate liquid plasma in a medium possessing high dielectric factors, for example water. The microwave waveguide and the ultrasonic transducer were interconnected through a tungsten/titanium alloy stick acting both as the microwave antenna and as the horn of the ultrasonic homogenizer. Both microwaves and ultrasonic waves are simultaneously transmitted to the aqueous media through the tungsten tip of the antenna. The microwave discharge liquid plasma was easily generated in solution during ultrasonic cavitation. The simple device was evaluated by carrying out the degradation of the perfluorooctanoic acid (PFOA), a system highly recalcitrant to degradation by conventional advanced oxidation processes (AOPs). PFOA is 59% degraded in an aqueous medium after only 90 s of irradiation by the plasma. Intermediates were identified by electrospray mass spectral techniques in the negative ion mode.

  15. A kinetic and mechanistic study of the amino acid catalyzed aldol condensation of acetaldehyde in aqueous and salt solutions.

    PubMed

    Nozière, Barbara; Córdova, Armando

    2008-04-03

    The amino acid catalyzed aldol condensation is of great interest in organic synthesis and natural environments such as atmospheric particles. However, kinetic and mechanistic information on these reactions is limited. In this work the kinetics of the aldol condensation of acetaldehyde in water and aqueous salt solutions (NaCl, CaCl2, Na2SO4, MgSO4) catalyzed by five amino acids (glycine, alanine, serine, arginine, and proline) at room temperature (295 +/- 2 K) has been studied. Monitoring the formation of three products, crotonaldehyde, 2,4-hexadienal, and 2,4,6-octatrienal, by UV-vis absorption over 200-1100 nm revealed two distinct kinetic regimes: at low amino acid concentrations (in all cases, below 0.1 M), the overall reaction was first-order with respect to acetaldehyde and kinetically limited by the formation of the enamine intermediate. At larger amino acid concentrations (at least 0.3 M), the kinetics was second order and controlled by the C-C bond-forming step. The first-order rate constants increased linearly with amino acid concentration consistent with the enamine formation. Inorganic salts further accelerated the enamine formation according to their pKb plausibly by facilitating the iminium or enamine formation. The rate constant of the C-C bond-forming step varied with the square of amino acid concentration suggesting the involvement of two amino acid molecules. Thus, the reaction proceeded via a Mannich pathway. However, the contribution of an aldol pathway, first-order in amino acid, could not be excluded. Our results show that the rate constant for the self-condensation of acetaldehyde in aqueous atmospheric aerosols (up to 10 mM of amino acids) is identical to that in sulfuric acid 10-15 M (kI approximately 10-7-10-6 s-1) clearly illustrating the potential importance of amino acid catalysis in natural environments. This work also demonstrates that under usual laboratory conditions and in natural environments aldol condensation is likely to be

  16. Characterization of Solid Dispersion of Itraconazole Prepared by Solubilization in Concentrated Aqueous Solutions of Weak Organic Acids and Drying.

    PubMed

    Parikh, Tapan; Sandhu, Harpreet K; Talele, Tanaji T; Serajuddin, Abu T M

    2016-06-01

    The purpose of this study was to develop an amorphous solid dispersion (SD) of an extremely water-insoluble and very weakly basic drug, itraconazole (ITZ), by interaction with weak organic acids and then drying that would enhance dissolution rate of drug and physical stability of formulation. Aqueous solubility of ITZ in concentrated solutions of weak organic acids, such as glutaric, tartaric, malic and citric acid, was determined. Solutions with high drug solubility were dried using vacuum oven and the resulting SDs having 2 to 20% drug load were characterized by differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. The dissolution of SDs was initially studied in 250 mL of 0.1 N HCl (pH 1.1), and any undissolved solids were collected and analyzed by PXRD. The pH of the dissolution medium was then changed from 1.1 to 5.5, particle size of precipitates were measured, and drug concentrations in solution were determined by filtration through membrane filters of varying pore sizes. The aqueous solubility of ITZ was greatly enhanced in presence of weak acids. While the solubility of ITZ in water was ~4 ng/ mL, it increased to 25-40 mg per g of solution at 25°C and 200 mg per g of solution at 65°C at a high acid concentration leading to extremely high solubilization. PXRD of SDs indicated that ITZ was present in the amorphous form, wherein the acid formed a partially crystalline matrix. ATR-FTIR results showed possible weak interactions, such as hydrogen bonding, between drug and acid but there was no salt formation. SDs formed highly supersaturated solutions at pH 1.1 and had superior dissolution rate as compared to amorphous drug and physical mixtures of drug and acids. Following the change in pH from 1.1 to 5.5, ITZ precipitated as mostly nanoparticles, providing high surface area for relatively rapid redissolution. A method of highly solubilizing an

  17. The effect of nanoparticles and humic acid on technology critical element concentrations in aqueous solutions with soil and sand.

    PubMed

    Stepka, Zane; Dror, Ishai; Berkowitz, Brian

    2017-08-23

    As a consequence of their growing use in electronic and industrial products, increasing amounts of technology critical elements (TCEs) are being released to the environment. Currently little is known about the fate of many of these elements. Initial research on their potential environmental impact identifies TCEs as emerging contaminants. TCE movement in the environment is often governed by water systems. Research on "natural" waters so far demonstrates that TCEs tend to be associated with suspended particulate matter (SPM), which influences TCE aqueous concentrations (here: concentration of TCEs in dissolved form and attached to SPM) and transport. However, the relative potential of different types of SPM to interact with TCEs is unknown. Here we examine the potential of various types of particulate matter, namely different nanoparticles (NPs; Al2O3, SiO2, CeO2, ZnO, montmorillonite, Ag, Au and carbon dots) and humic acid (HA), to impact TCE aqueous concentrations in aqueous solutions with soil and sand, and thus influence TCE transport in soil-water environments. We show that a combination of NPs and HA, and not NPs or HA individually, increases the aqueous concentrations of TCEs in soil solutions, for all tested NPs regardless of their type. TCEs retained on SPM, however, settle with time. In solutions with sand, HA alone is as influential as NPs+HA in keeping TCEs in the aqueous phase. Among NPs, Ag-NPs and Au-NPs demonstrate the highest potential for TCE transport. These results suggest that in natural soil-water environments, once TCEs are retained by soil, their partitioning to the aqueous phase by through-flowing water is unlikely. However, if TCEs are introduced to soil-water environments as part of solutions rich in NPs and HA, it is likely that NP and HA combinations can increase TCE stability in the aqueous phase and prevent their retention on soil and sand, thus facilitating TCE transport. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The redox chemistry of neptunium in γ-irradiated aqueous nitric acid in the presence of an organic phase

    SciTech Connect

    Mincher, Bruce J.; Precek, Martin; Paulenova, Alena

    2015-10-17

    The radiolytic changes in oxidation state for solutions of initially Np(V) and/or Np(VI) were investigated by gamma-irradiation in conjunction with UV/Vis spectroscopy of the aqueous phase. Samples were irradiated in varying concentrations of nitric acid, and with or without the presence of 30% TBP in dodecane. At short irradiation times Np(V) was oxidized to Np(VI), even in the presence of the organic phase. Upon the radiolytic production of sufficient amounts of nitrous acid, reduction of Np(VI) to Np(V) occurred in both phases. This was accompanied by stripping of the previously extracted Np(VI). Nitric acid concentrations of 6 M mitigated this reduction.

  19. Simultaneous determination of nitric acid and uranium concentrations in aqueous solution from measurements of electrical conductivity, density, and temperature

    SciTech Connect

    Spencer, B.B.

    1991-01-01

    Nuclear fuel reprocessing plants handle aqueous solutions of nitric acid and uranium in large quantities. Automatic control of process operations requires reliable measurements of these solutes concentration, but this is difficult to directly measure. Physical properties such as solution density and electrical conductivity vary with solute concentration and temperature. Conductivity, density and temperature can be measured accurately with relatively simple and inexpensive devices. These properties can be used to determine solute concentrations will good correlations. This paper provides the appropriate correlations for solutions containing 2 to 6 Molar (M) nitric acid and 0 to 300 g/L uranium metal at temperatures from 25--90{degrees}C. The equations are most accurate below 5 M nitric acid, due to a broad maximum in the conductivity curve at 6 M. 12 refs., 9 figs., 6 tabs.

  20. Visible-light photoconversion of carbon dioxide into organic acids in an aqueous solution of carbon dots.

    PubMed

    Sahu, Sushant; Liu, Yamin; Wang, Ping; Bunker, Christopher E; Fernando, K A Shiral; Lewis, William K; Guliants, Elena A; Yang, Fan; Wang, Jinping; Sun, Ya-Ping

    2014-07-22

    Carbon "quantum" dots (or carbon dots) have emerged as a new class of optical nanomaterials. Beyond the widely reported bright fluorescence emissions in carbon dots, their excellent photoinduced redox properties that resemble those found in conventional semiconductor nanostructures are equally valuable, with photon-electron conversion applications from photovoltaics to CO2 photocatalytic reduction. In this work we used gold-doped carbon dots from controlled synthesis as water-soluble catalysts for a closer examination of the visible-light photoconversion of CO2 into small organic acids, including acetic acid (for which the reduction requires many more electrons than that for formic acid) and, more interestingly, for the significantly enhanced photoconversion with higher CO2 pressures over an aqueous solution of the photocatalysts. The results demonstrate the nanoscale semiconductor-equivalent nature of carbon dots, with excellent potential in energy conversion applications.

  1. The redox chemistry of neptunium in γ-irradiated aqueous nitric acid in the presence of an organic phase

    DOE PAGES

    Mincher, Bruce J.; Precek, Martin; Paulenova, Alena

    2015-10-17

    The radiolytic changes in oxidation state for solutions of initially Np(V) and/or Np(VI) were investigated by gamma-irradiation in conjunction with UV/Vis spectroscopy of the aqueous phase. Samples were irradiated in varying concentrations of nitric acid, and with or without the presence of 30% TBP in dodecane. At short irradiation times Np(V) was oxidized to Np(VI), even in the presence of the organic phase. Upon the radiolytic production of sufficient amounts of nitrous acid, reduction of Np(VI) to Np(V) occurred in both phases. This was accompanied by stripping of the previously extracted Np(VI). Nitric acid concentrations of 6 M mitigated thismore » reduction.« less

  2. Recovery of transplutonium elements from aqueous and water-ethanol solutions of sulfuric acid and their separation from other actinides

    SciTech Connect

    Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.

    1988-05-01

    The behavior of Am, Cm, Bk, Cf, Es, and other actinides, as well as Zr, on anion and cation exchangers in aqueous and water-ethanol solutions of sulfuric acid as a function of the various components of the solution has been investigated. It has been discovered that the presence of ethanol in sulfuric acid solutions causes an increase in the distribution coefficients both on cation exchangers and on anion exchangers. The possibility of the use of ion exchangers for the preconcentration and separation of transplutonium elements from U, Np, Pu, Zr, and other elements which form strong complexes with sulfate ions over a broad range of concentrations of sulfuric acid has been demonstrated.

  3. Behavior of transplutonium elements on ion-exchange materials in mixed aqueous-organic solutions of mineral acids

    SciTech Connect

    Guseva, L.I.; Tikhomirov, G.S.; Stepushkina, V.V.

    1987-03-01

    Systematic studies are reported on the behavior of transplutonium elements (TPE) on cation-exchange and anion-exchange materials in mixed aqueous-organic solutions of mineral acids (HClO/sub 4/, HCl, HNO/sub 3/, H/sub 2/SO/sub 4/, H/sub 3/PO/sub 4/) as affected by solution composition, nature of acid, and nature of organic solvent. With all these acids, replacing most of the water by alcohol increases the TPE uptake on the ion exchangers, and the effect occurs for the cation exchangers at lower contents of the organic component. Optimum conditions have been identified for concentrating and separating TPE from numerous elements. The most effective system consists of anion exchanger with HNO/sub 3/ and alcohol.

  4. Curcumin-cysteine and curcumin-tryptophan conjugate as fluorescence turn on sensors for picric Acid in aqueous media.

    PubMed

    Gogoi, Bedanta; Sen Sarma, Neelotpal

    2015-06-03

    Rapid detection of picric acid in real sample is of outmost importance from the perspective of health, safety, and environment. In this study, a very simple and cost-effective detection of picric acid is accomplished by developing a couple of biobased conjugates curcumin-cysteine (CC) and curcumin-tryptophan (CT), which undergo efficient fluorescence turn on toward picric acid in aqueous media. Both the probes experience about 26.5-fold fluorescence enhancements at 70 nM concentration of the analyte. Here, the fluorescence turn on process is governed by the aggregation induced emission, which is induced from the electrostatic interaction between the conjugates with picric acid. The detection limit of CC and CT are about 13.51 and 13.54 nM of picric acid, respectively. Importantly, both the probes exhibit high selectivity and low interference of other analogues toward the detection of picric acid. In addition, the probes are highly photostable, show low response time and are practically applicable for sensing picric acid in real environmental samples, which is the ultimate goal of this work.

  5. Acid gas treating by aqueous alkanolamines. Annual report, July-December 1992

    SciTech Connect

    Sandall, O.C.; Rinker, E.B.; Tamimi, A.; Davis, R.A.; Oelschlager, D.W.

    1992-12-01

    The objective of the work is to investigate the simultaneous absorption or desorption of CO2 and H2S into and from a mixed aqueous amine solvent consisting of methyldiethanolamine (MDEA) and diethanolamine (DEA). In work completed thus far models have been developed for single gas (either H2S or CO2) absorption into a single amine solution (MDEA or DEA). Density and viscosity measurements have been made for aqueous MDEA, DEA and MDEA/DEA mixtures over the temperature range 20 to 100 C and for concentrations up to 50 weight %.

  6. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part II. Recovery of Ammonia from Sour Waters

    SciTech Connect

    Poole, L.J.; King, C.J.

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO{sub 2} and H{sub 2}S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, SUCCiOlC acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The concentration

  7. Capillary electrophoresis of some free fatty acids using partially aqueous electrolyte systems and indirect UV detection. Application to the analysis of oleic and linoleic acids in peanut breeding lines

    USDA-ARS?s Scientific Manuscript database

    This study has shown for the first time the suitability of CE with a partially aqueous electrolyte system for the analysis of free fatty acids (FFA's) in small portions of single peanut seeds. The partially aqueous electrolyte system consisted of 40 mM Tris, 2.5 mM adenosine-5'-monophosphate (AMP) ...

  8. Trivalent chromium removal from aqueous solutions by a sol–gel synthesized silica adsorbent functionalized with sulphonic acid groups

    SciTech Connect

    Gomez-Gonzalez, Sergio Efrain; Carbajal-Arizaga, Gregorio Guadalupe; Manriquez-Gonzalez, Ricardo; De la Cruz-Hernandez, Wencel; Gomez-Salazar, Sergio

    2014-11-15

    Highlights: • Corpuscular sulphonic acid-functionalized silica holds improved uptake of chromium. • Mesopores on adsorbent facilitate (CH{sub 3}COO){sub 2}Cr{sup +} ion uptake on sulphonate sites. • Formation of chromium acetate sulphonate complex proposed from XPS results. • Fixed bed chromium uptake results suggest potential industrial use. - Abstract: A high capacity hybrid silica adsorbent was synthesized via sol–gel processing with sulphonic acid groups as trivalent chromium complex ions chelators from aqueous solutions. The synthesis included co-condensation of tetraethoxysilane (TEOS) with 3-(mercaptopropyl)trimethoxysilane (MPS), and oxidation of thiol to sulphonic acid groups. Chromium uptake kinetic, batch and fixed-bed experiments were performed to assess the removal of this metal from aqueous solutions. {sup 13}C, {sup 29}Si CPMAS NMR, FTIR, XPS were used to characterize the adsorbent structure and the nature of chromium complexes on the adsorbent surface. Chromium maximum uptake was obtained at pH 3 (72.8 mg/g). Elemental analysis results showed ligand density of 1.48 mmol sulphonic groups/g. About 407 mL of Cr(III) solution (311 mg/L) were treated to breakthrough point reaching ≤0.06 mg/L at the effluent. These results comply with USEPA regulation for chromium concentration in drinking water (≤0.1 mg/L). The adsorbent shows potential to be used in chromium separations to the industrial level.

  9. Aspartic acid interaction with cobalt(II) in dilute aqueous solution: A 57Co emission Mössbauer spectroscopic study

    NASA Astrophysics Data System (ADS)

    Kamnev, Alexander A.; Tugarova, Anna V.; Kovács, Krisztina; Homonnay, Zoltan; Kuzmann, Erno; Vértes, Attila

    2012-03-01

    Emission (57Co) Mössbauer spectra of the aspartic acid—57CoCl2 system were measured at T = 80 K in frozen aqueous solution and in the form of a dried residue of this solution. The Mössbauer spectra, besides a weak contribution from after-effects, showed two Fe2 + /Co2 + components which were ascribed to octahedrally and tetrahedrally coordinated 57CoII microenvironments in the Asp-cobalt(II) complex. This dual coordination mode may be due to the involvement of the second terminal carboxylic group of aspartic acid in the coordination sphere of Co.

  10. Chemiluminescence studies between aqueous phase synthesized mercaptosuccinic acid capped cadmium telluride quantum dots and luminol-H2O2

    NASA Astrophysics Data System (ADS)

    Kaviyarasan, Kulandaivelu; Anandan, Sambandam; Mangalaraja, Ramalinga Viswanathan; Asiri, Abdullah M.; Wu, Jerry J.

    2016-08-01

    Mercaptosuccinic acid capped Cadmium telluride quantum dots have been successfully synthesized via aqueous phase method. The products were well characterized by a number of analytical techniques, including FT-IR, XRD, HRTEM, and a corrected particle size analysis by the statistical treatment of several AFM measurements. Chemiluminescence experiments were performed to explore the resonance energy transfer between chemiluminescence donor (luminol-H2O2 system) and acceptor CdTe QDs. The combination of such donor and acceptor dramatically reduce the fluorescence while compared to pristine CdTe QDs without any exciting light source, which is due to the occurrence of chemiluminescence resonance energy transfer (CRET) processes.

  11. Unexpectedly Enhanced Solubility of Aromatic Amino Acids and Peptides in an Aqueous Solution of Divalent Transition-Metal Cations

    NASA Astrophysics Data System (ADS)

    Shi, Guosheng; Dang, Yaru; Pan, Tingting; Liu, Xing; Liu, Hui; Li, Shaoxian; Zhang, Lijuan; Zhao, Hongwei; Li, Shaoping; Han, Jiaguang; Tai, Renzhong; Zhu, Yiming; Li, Jichen; Ji, Qing; Mole, R. A.; Yu, Dehong; Fang, Haiping

    2016-12-01

    We experimentally observed considerable solubility of tryptophan (Trp) in a CuCl2 aqueous solution, which could reach 2-5 times the solubility of Trp in pure water. Theoretical studies show that the strong cation-π interaction between Cu2 + and the aromatic ring in Trp modifies the electronic distribution of the aromatic ring to enhance significantly the water affinity of Trp. Similar solubility enhancement has also been observed for other divalent transition-metal cations (e.g., Zn2 + and Ni2 + ), another aromatic amino acid (phenylalanine), and three aromatic peptides (Trp-Phe, Phe-Phe, and Trp-Ala-Phe).

  12. Experimental and theoretical evaluation on the microenvironmental effect of dimethyl sulfoxide on adrenaline in acid aqueous solution

    NASA Astrophysics Data System (ADS)

    Yu, Zhang-Yu; Liu, Tao; Guo, Dao-Jun; Liu, Yong-Jun; Liu, Cheng-Bu

    2010-12-01

    The microenvironmental effect of dimethyl sulfoxide (DMSO) on adrenaline was studied by several approaches including the cyclic voltammetry (CV) of adrenaline at a platinum electrode in acid aqueous solution, the chemical shift of 1H nuclear magnetic resonance ( 1H NMR) of adrenaline, and the change of diffusion coefficient of adrenaline. The experimental results demonstrated that DMSO has significant microenvironmental effect on adrenaline, which was confirmed by the density functional theory (DFT) study on the hydrogen bond (H-bond) complexes of adrenaline with water and DMSO.

  13. Ru (III) catalyzed oxidation of aliphatic ketones by N-bromosuccinimide in aqueous acetic acid: a kinetic study.

    PubMed

    Giridhar Reddy, P; Ramesh, K; Shylaja, S; Rajanna, K C; Kandlikar, S

    2012-01-01

    Kinetics of Ru (III) catalyzed oxidation of aliphatic ketones such as acetone, ethyl methyl ketone, diethyl ketone, iso-butylmethyl ketone by N-bromosuccinimide in the presence of Hg(II) acetate have been studied in aqueous acid medium. The order of [N-bromosuccinimide] was found to be zero both in catalyzed as well as uncatalyzed reactions. However, the order of [ketone] changed from unity to a fractional one in the presence of Ru (III). On the basis of kinetic features, the probable mechanisms are discussed and individual rate parameters evaluated.

  14. Intermolecular interactions in aqueous solutions of gallic acid at 296-306 K according to spectrofluorimetry and densimetry data

    NASA Astrophysics Data System (ADS)

    Grigoryan, K. R.; Sargsyan, L. S.

    2015-12-01

    Features of intermolecular interactions in aqueous solutions of gallic acid (GA) are studied by means of densimetry and fluorescence spectroscopy (intrinsic fluorescence, 2D spectra, and excitation/ emission matrix fluorescence spectra, 3D) at 296.15, 301.15, and 306.15 K in the concentration range of 5.88 × 10-4-5.88 × 10-2 mol L-1. It is shown by analyzing the concentration and temperature dependences of the apparent molar volumes and fluorescence parameters of GA that the equilibrium between nonassociated and associated species in the solution and the hydration of these species undergo changes.

  15. UV Irradiation and Humic Acid Mediate Aggregation of Aqueous Fullerene (nC60) Nanoparticles

    EPA Science Inventory

    The transport and fate of engineered nanomaterials is affected by multiple environmental factors, including sunlight and natural organic matter. In this study, the initial aggregation kinetics of aqueous fullerene (nC60) nanoparticles before and after UVA irradiation was investig...

  16. UV Irradiation and Humic Acid Mediate Aggregation of Aqueous Fullerene (nC60) Nanoparticles

    EPA Science Inventory

    The transport and fate of engineered nanomaterials is affected by multiple environmental factors, including sunlight and natural organic matter. In this study, the initial aggregation kinetics of aqueous fullerene (nC60) nanoparticles before and after UVA irradiation was investig...

  17. Steric structure and thermodynamic aspects of the complexes of dysprosium (III) with aminobenzoic acids in aqueous solutions

    SciTech Connect

    Kondrashina, Yu, G.; Mustafina, A.R.; Vul`fson, S.G.

    1994-10-01

    Steric structures of dysprosium (III) aminobenzoate complexes with the 1:1 and 1:2 molar ratio in aqueous solutions were determined on the basis of pH-metric and paramagnetic birefringence data. An increase in conjugation observed for the series of the acids, viz., benzoic, meta-, ortho-, and para-aminobenzoic acids, results in the increased stability of the complexes with the 1:1 and 1:2 composition. In the case of para-aminobenzoic acid, the polyhedra [DyL(H{sub 2}O){sub 6}]{sup 2+} and [DyL{sub 2}(H{sub 2}O){sub 4}]{sup +} are cubes with the ligands coordinated to one and two edges, respectively. In the case of meta-aminobenzoic acid, the polyhedra [DyL(H{sub 2}O){sub 6}]{sup 2+} and [DyL{sub 2}(H{sub 2}O){sub 4}]{sup +} are a dodecahedron with the ligand coordinated to one edge and a square anti-prism with the ligands coordinated to two edges, respectively. In the case of ortho-aminobenzoic acid, both the 1:1 and 1:2 complexes have structures that are intermediate between the structures of meta- and para-aminobenzoic acids.

  18. Use of oxalic acid as inducer in photocatalytic oxidation of cresol red in aqueous solution under natural and artificial light.

    PubMed

    Seraghni, N; Ghoul, I; Lemmize, I; Reguig, A; Debbache, N; Sehili, T

    2017-08-30

    This work was carried out in the field of water treatment using advanced oxidation processes (AOPs), especially photolysis of carboxylic acid that leads to the formation in situ of hydroxyl radical (·OH). Cresol red (CR) degradation induced by organic acids/UV system was investigated in aqueous solution. The preliminary study of CR-organic acid mixture in the dark and at room temperature allowed confirming the absence of interaction under our experimental conditions. However, upon irradiation at 365 nm, the proportion of elimination of CR was 89% after 5 h of irradiation. Indeed, the CR degradation efficiency depends on the acid concentration and the pH of the medium. The concentration of acid is optimized to the 5 × 10(-3) M. pH 2.39 was the optimal one when C2HO(-)4 was the most important species at this pH. The use of i-PrOH as (·)OH confirmed the involvement of (·)OH in photodegradation of CR induced by Ox. The addition of metal ions including Zn(2+) and Cu(2+) to the CR-organic acid mixture slowed the CR degradation unlike Fe(2+), hence an improvement of its disappearance was observed. The results showed a faster degradation of the pollutant under excitation by sunlight. This environmentally friendly method appears to be very effective in the treatment of wastewater.

  19. Quantitative extraction and concentration of synthetic water-soluble acid dyes from aqueous media using a quinine-chloroform solution

    SciTech Connect

    Kobayashi, F.; Ozawa, N.; Hanai, J.; Isobe, M.; Watabe, T.

    1986-12-01

    Twenty-one water-soluble acid dyes, including eleven azo, five triphenylmethane four xanthene, one naphthol derivatives, used at practical concentrations for food coloration, were quantitatively extracted from water and various carbonated beverages into a 0.1 M quinine-chloroform solution in the presence of 0.5 M boric acid by brief shaking. Quantitative extraction of these dyes was also accomplished by the 0.1 M quinine-chloroform solution made conveniently from chloroform, quinine hydrochloride, and sodium hydroxide added successively to water or beverages containing boric acid. Quinine acted as a countercation on the dyes having sulfonic and/or carboxylic acid group(s) to form chloroform-soluble ion-pair complexes. The diacidic base alkaloid interacted with each acid group of mono-, di-, tri-, and tetrasulfonic acid dyes approximately in the ratio 0.8-0.9 to 1. The dyes in the chloroform solution were quantitatively concentrated into a small volume of sodium hydroxide solution also by brief shaking. The convenient quinine-chloroform method was applicable to the quantitative extraction of a mixture of 12 dyes from carbonated beverages, which are all currently used for food coloration. A high-pressure liquid chromatographic method is also presented for the systematic separation and determination of these 12 dyes following their concentration into the aqueous alkaline solution. The chromatogram was monitored by double-wavelength absorptiometry in the visible and ultraviolet ray regions.

  20. A systematic investigation and insight into the formation mechanism of bilayers of fatty acid/soap mixtures in aqueous solutions.

    PubMed

    Xu, Wenlong; Song, Aixin; Dong, Shuli; Chen, Jingfei; Hao, Jingcheng

    2013-10-08

    Vesicles are the most common form of bilayer structures in fatty acid/soap mixtures in aqueous solutions; however, a peculiar bilayer structure called a "planar sheet" was found for the first time in the mixtures. In the past few decades, considerable research has focused on the formation theory of bilayers in fatty acid/soap mixtures. The hydrogen bond theory has been widely accepted by scientists to explain the formation of bilayers. However, except for the hydrogen bond, no other driving forces were proposed systematically. In this work, three kinds of weak interactions were investigated in detail, which could perfectly demonstrate the formation mechanism of bilayer structures in the fatty acid/soap mixtures in aqueous solutions. (i) The influence of hydrophobic interaction was detected by changing the chain length of fatty acid (C(n)H(2n+1)COOH), in which n = 10 to 18, the phase behavior was investigated, and the phase region was presented. With the help of cryogenic transmission electron microscopy (cryo-TEM) observations, deuterium nuclear magnetic resonance ((2)H NMR), and X-ray diffraction (XRD) measurements, the vesicles and planar sheets were determined. The chain length of C(n)H(2n+1)COOH has an important effect on the physical state of the hydrophobic chain, resulting in an obvious difference in the viscoelasticity of the solution samples. (ii) The existence of hydrogen bonds between fatty acids and their soaps in aqueous solutions was demonstrated by Fourier transform infrared (FT-IR) spectroscopy and molecule dynamical simulation. From the pH measurements, the pH ranges of the bilayer formation were at the pKa values of fatty acids, respectively. (iii) Counterions can be embedded in the stern layer of the bilayers and screen the electrostatic repulsion between the COO(-) anionic headgroups. FT-IR characterization demonstrated a bidentate bridging coordination mode between counterions and carboxylates. The conductivity measurements provided the degree

  1. Sonocatalytic degradation of humic acid by N-doped TiO2 nano-particle in aqueous solution.

    PubMed

    Kamani, Hossein; Nasseri, Simin; Khoobi, Mehdi; Nabizadeh Nodehi, Ramin; Mahvi, Amir Hossein

    2016-01-01

    Un-doped and N-doped TiO2 nano-particles with different nitrogen contents were successfully synthesized by a simple sol-gel method, and were characterized by X-ray diffraction, field emission scanning electron microscopy, Energy dispersive X-ray analysis and UV-visible diffuse reflectance spectra techniques. Then enhancement of sonocatalytic degradation of humic acid by un-doped and N-doped TiO2 nano-particles in aqueous environment was investigated. The effects of various parameters such as initial concentration of humic acid, N-doping, and the degradation kinetics were investigated. The results of characterization techniques affirmed that the synthesis of un-doped and N-doped TiO2 nano-particles was successful. Degradation of humic acid by using different nano-particles obeyed the first-order kinetic. Among various nano-particles, N-doped TiO2 with molar doping ratio of 6 % and band gap of 2.92 eV, exhibited the highest sonocatalytic degradation with an apparent-first-order rate constant of 1.56 × 10(-2) min(-1). The high degradation rate was associated with the lower band gap energy and well-formed anatase phase. The addition of nano-catalysts could enhance the degradation efficiency of humic acid as well as N-doped TiO2 with a molar ratio of 6 %N/Ti was found the best nano-catalyst among the investigated catalysts. The sonocatalytic degradation with nitrogen doped semiconductors could be a suitable oxidation process for removal of refractory pollutants such as humic acid from aqueous solution.

  2. Formation of Amino Acids on the Sonolysis of Aqueous Solutions Containing Acetic Acid, Methane, or Carbon Dioxide, in the Presence of Nitrogen Gas.

    PubMed

    Dharmarathne, Leena; Grieser, Franz

    2016-01-21

    The sonolysis of aqueous solutions containing acetic acid, methane, or carbon dioxide in the presence of nitrogen gas was found to produce a number of different amino acids at a rate of ∼1 to 100 nM/min, using ultrasound at an operating power of 70 W and 355 kHz. Gas-phase elementary reactions are suggested, and discussed, to account for the formation of the complex biomolecules from the low molar mass solutes used. On the basis of the results, a new hypothesis is presented to explain the formation of amino acids under primitive atmospheric conditions and how their formation may be linked to the eventual abiotic genesis of life on Earth.

  3. Extraction of rare earth metals with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester in the presence of diethylenetriaminepentaacetic acid in aqueous phase

    SciTech Connect

    Kubota, Fukiko; Goto, Masahiro; Nakashio, Fumiyuki

    1993-07-01

    The extraction equilibria of rare earth metals with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (commercial name, PC-88A, henceforth abbreviated as HR) dissolved in n-heptane were measured at 303 K. It was found that rare earth metals are extracted with the dimer of the extractant, (HR){sub 2}, as follows. M{sub aq}{sup 3+} + 3(HR){sub 2 org} MR{sub 3} {center_dot} 3HR{sub org} + 3H{sub aq}{sup +} The extraction equilibrium constants of metals were obtained and compared with the extraction equilibrium constants obtained by di(2-ethylhexyl)phosphoric acid (henceforth DZEHPA). Furthermore, the extraction equilibria of rare earth metals with PC-88A in the presence of diethylenetriaminepentaacetic acid (henceforth DTPA) in an aqueous phase were also measured to discuss the effect of DTPA on the extraction of rare earth metals. 13 refs., 8 figs., 2 tabs.

  4. Combination of best promoter and micellar catalyst for chromic acid oxidation of 1-butanol to 1-butanal in aqueous media at room temperature.

    PubMed

    Saha, Rumpa; Ghosh, Aniruddha; Saha, Bidyut

    2014-04-24

    In aqueous acidic media, picolinic acid, 2,2'-bipyridine and 1,10-phenanthroline promoted Cr(VI) oxidation of 1-butanol produces 1-butanal. 1-butanal is separated from mixture by fractional distillation. The anionic surfactant (SDS) and neutral surfactant (TX-100) accelerate the process while the cationic surfactant (CPC) retards the reaction. Combination of bipy and SDS is the best choice for chromic acid oxidation of 1-butanol to 1-butanal in aqueous media. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Amino acid tautomerization reactions in aqueous solution via concerted and assisted mechanisms using free energy curves from MD simulation.

    PubMed

    Tolosa, Santiago; Hidalgo, Antonio; Sansón, Jorge A

    2012-11-01

    A theoretical study is described of chemical reactions in solution by means of molecular dynamics simulations, with solute-solvent interaction potentials derived from AMBER van der Waals parameters and QM/MM electrostatic charges in solution. The solvent is used as the reaction coordinate, and the free energy curves to calculate the properties related to the reaction mechanism. The proposed scheme is applied to the tautomerization process in aqueous solution for some amino acids H(2)NCHR-COOH (with R = H being glycine, R = CH(3) alanine, R = CH(2)OH serine, and R = CH(2)COOH aspartic acid), focusing on the role of the solvent in the reaction (assisted versus unassisted mechanisms) and on the effect of the hydrophilic/hydrophobic character of the radical R on the activation and reaction energies.

  6. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review.

    PubMed

    Tang, Wang-Wang; Zeng, Guang-Ming; Gong, Ji-Lai; Liang, Jie; Xu, Piao; Zhang, Chang; Huang, Bin-Bin

    2014-01-15

    Nowadays nanomaterials have been widely used to remove heavy metals from water/wastewater due to their large surface area and high reactivity. Humic acid (HA) and fulvic acid (FA) exist ubiquitously in aquatic environments and have a variety of functional groups which allow them to complex with metal ions and interact with nanomaterials. These interactions can not only alter the environmental behavior of nanomaterials, but also influence the removal and transportation of heavy metals by nanomaterials. Thus, the interactions and the underlying mechanisms involved warrant specific investigations. This review outlined the effects of HA/FA on the removal of heavy metals from aqueous solutions by various nanomaterials, mainly including carbon-based nanomaterials, iron-based nanomaterials and photocatalytic nanomaterials. Moreover, mechanisms involved in the interactions were discussed and potential environmental implications of HA/FA to nanomaterials and heavy metals were evaluated.

  7. A study of effects of acid activated saw dust on the removal of different dissolved tannery dyes (acid dye) from aqueous solutions.

    PubMed

    Dhar, N R; Khoda, A K M B; Khan, A H; Bala, P; Karim, M F

    2005-04-01

    The effectiveness of acid activated sawdust in absorbing D-Brown EGP and Lurazol Brown PM dyes from aqueous solutions was studied as a function of agitation time and initial dye concentration. The experimental data were fitted to Langmuir and Freundlich isotherm and found that adsorption process follows both the isotherms. The values of Langmuir and Freundlich constants indicate favorable and beneficial adsorption. Saw dust is an excellent low cost adsorbent of colored organic anions and may have significant potential as a color removal from tannery wastewater.

  8. Mechanism of polyol-induced protein stabilization: solubility of amino acids and diglycine in aqueous polyol solutions.

    PubMed

    Gekko, K

    1981-12-01

    The solubilities of several amino acids and diglycine have been measured in water and at several concentrations of methanol and various polyols (glycerol, erythritol, xylitol, sorbitol, and inositol). The solubility data were used to calculate the free energy of transfer of amino acid side chains and peptide group from water to the aqueous alcohol solutions. The results for methanol systems were similar to those reported for ethanol and dioxane systems. The free energy of transfer to aqueous solutions of linear polyols was positive for most nonpolar side chains and peptide group, but high concentrations of the polyols may disrupt the hydrophobic interactions of large nonpolar side chains. Moreover, the linear polyols appeared to stabilize the hydrophobic interaction more effectively and the peptide-peptide hydrogen bond less effectively with increasing hydroxymethyl chain length of polyols. A cyclic polyol, inositol, had a very strong stabilizing ability on hydrophobic interactions of nonpolar side chains, but it may act as a destabilizing reagent for peptide-peptide hydrogen bonds. From these results, it was concluded that the protein stabilization by polyols is a manifestation of polyol-induced strengthening of the hydrophobic interaction of protein molecules.

  9. Oxygenation of methylarenes to benzaldehyde derivatives by a polyoxometalate mediated electron transfer-oxygen transfer reaction in aqueous sulfuric Acid.

    PubMed

    Sarma, Bidyut Bikash; Efremenko, Irena; Neumann, Ronny

    2015-05-13

    The synthesis of benzaldehyde derivatives by oxygenation of methylarenes is of significant conceptual and practical interest because these compounds are important chemical intermediates whose synthesis is still carried out by nonsustainable methods with very low atom economy and formation of copious amounts of waste. Now an oxygenation reaction with a 100% theoretical atom economy using a polyoxometalate oxygen donor has been found. The product yield is typically above 95% with no "overoxidation" to benzoic acids; H2 is released by electrolysis, enabling additional reaction cycles. An electrocatalytic cycle is also feasible. This reaction is possible through the use of an aqueous sulfuric acid solvent, in an aqueous biphasic reaction mode that also allows simple catalyst recycling and recovery. The solvent plays a key role in the reaction mechanism by protonating the polyoxometalate thereby enabling the activation of the methylarenes by an electron transfer process. After additional proton transfer and oxygen transfer steps, benzylic alcohols are formed that further react by an electron transfer-proton transfer sequence forming benzaldehyde derivatives.

  10. Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions.

    PubMed

    Gupta, V K; Rastogi, A

    2009-04-15

    The hexavalent chromium, Cr(VI), biosorption by raw and acid-treated Oedogonium hatei were studied from aqueous solutions. Batch experiments were conducted to determine the biosorption properties of the biomass. The optimum conditions of biosorption were found to be: a biomass dose of 0.8 g/L, contact time of 110 min, pH and temperature 2.0 and 318 K respectively. Both Langmuir and Freundlich isotherm equations could fit the equilibrium data. Under the optimal conditions, the biosorption capacities of the raw and acid-treated algae were 31 and 35.2 mg Cr(VI) per g of dry adsorbent, respectively. Thermodynamic parameters showed that the adsorption of Cr(VI) onto algal biomass was feasible, spontaneous and endothermic under studied conditions. The pseudo-first-order kinetic model adequately describe the kinetic data in comparison to second-order model and the process involving rate-controlling step is much complex involving both boundary layer and intra-particle diffusion processes. The physical and chemical properties of the biosorbent were determined and the nature of biomass-metal ions interactions were evaluated by FTIR analysis, which showed the participation of -COOH, -OH and -NH(2) groups in the biosorption process. Biosorbents could be regenerated using 0.1 M NaOH solution, with up to 75% recovery. Thus, the biomass used in this work proved to be effective materials for the treatment of chromium bearing aqueous solutions.

  11. Surface modification of alumina-coated silica nanoparticles in aqueous sols with phosphonic acids and impact on nanoparticle interactions.

    PubMed

    Pauly, Céline Schmitt; Genix, Anne-Caroline; Alauzun, Johan G; Sztucki, Michael; Oberdisse, Julian; Hubert Mutin, P

    2015-07-15

    It is often necessary to tailor nanoparticle (NP) interactions and their compatibility with a polymer matrix by grafting organic groups, but the commonly used silanization route offers little versatility, particularly in water. Herein, alumina-coated silica NPs in aqueous sols have been modified for the first time with low molecular-weight phosphonic acids (PAs) bearing organic groups of various hydrophobicities and charges: propyl, pentyl and octyl PAs, and two PAs bearing hydrophilic groups, either a neutral diethylene glycol (DEPA) or a potentially charged carboxylic acid (CAPA) group. The interactions and aggregation in the sols have been investigated using zeta potential measurements, dynamic light scattering, transmission electron microscopy, and small-angle scattering methods. The surface modification has been studied using FTIR and (31)P MAS NMR spectroscopies. Both high grafting density ρ and high hydrophobicity of the groups on the PAs induced aggregation, whereas suspensions of NPs grafted by DEPA remained stable up to the highest ρ. Unexpectedly, CAPA-modified NPs showed aggregation even at low ρ, suggesting that the carboxylic end group was also grafted to the surface. Surface modification of aqueous sols with PAs allows thus for the grafting of a higher density and a wider variety of organic groups than organosilanes, offering an increased control of the interactions between NPs, which is of interest for designing waterborne nanocomposites.

  12. Role of low molecular weight organic acids on pyrite dissolution in aqueous systems: implications for catalytic chromium (VI) treatment.

    PubMed

    Kantar, Cetin

    2016-01-01

    A systematic study combining batch experiments with spectroscopic analyses was carried out to better understand the effects of various organic acids on pyrite dissolution and subsequent Cr(VI) removal in aqueous systems. Our results suggest that organic acids had no effect on total Fe dissolution from pyrite relative to systems containing no acid. However, while nearly 100% of total Fe dissolved from pyrite was in Fe(II) form in the absence of ligands, the addition of organic acids led to significant oxidation of Fe(II) species to Fe(III). The degree and extent of Fe(II) oxidation increased in the order: tartrate < salicylate < oxalate ≈ citrate < EDTA. Except for salicylate (an aromatic compound), this stimulatory effect observed in Fe(II) oxidation was well correlated with the strength of Fe-ligand complexes. In systems containing Cr(VI), the amount of Fe dissolved increased significantly relative to non-Cr(VI) containing system, and the ligands enhanced the dissolution of surface oxidation products from pyrite. Overall, it is clear that the dissolution of pyrite with organic acids had very little effect on solution phase Cr(VI) removal, but significantly stimulated surface phase Cr(VI) reduction by removing surface oxidation products, and thus creating new surface sites for extended Cr(VI) removal.

  13. Acid-base equilibria in aqueous solutions of meta-cresolsulfophthalein in the temperature range of 25 to 200°C

    NASA Astrophysics Data System (ADS)

    Stepanchikova, S. A.; Galay, G. I.

    2017-01-01

    Values of the second thermodynamic ionization constant of pH indicator m-Cresol Purple are determined spectrophotometrically in slightly alkaline aqueous solutions in the temperature range of 25 to 200°C at saturated vapor pressure. Data required for studies on acid-base equilibria in weakly alkaline aqueous solution of rare-earth elements at elevated temperatures are obtained to characterize their behavior in geochemical systems.

  14. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    NASA Astrophysics Data System (ADS)

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-05-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition.

  15. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst.

    PubMed

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-05-25

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition.

  16. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    PubMed Central

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-01-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition. PMID:27222322

  17. Ionization energies of aqueous nucleic acids: photoelectron spectroscopy of pyrimidine nucleosides and ab initio calculations.

    PubMed

    Slavícek, Petr; Winter, Bernd; Faubel, Manfred; Bradforth, Stephen E; Jungwirth, Pavel

    2009-05-13

    Vertical ionization energies of the nucleosides cytidine and deoxythymidine in water, the lowest ones amounting in both cases to 8.3 eV, are obtained from photoelectron spectroscopy measurements in aqueous microjets. Ab initio calculations employing a nonequilibrium polarizable continuum model quantitatively reproduce the experimental spectra and provide molecular interpretation of the individual peaks of the photoelectron spectrum, showing also that lowest ionization originates from the base. Comparison of calculated vertical ionization potentials of pyrimidine bases, nucleosides, and nucleotides in water and in the gas phase underlines the dramatic effect of bulk hydration on the electronic structure. In the gas phase, the presence of sugar and, in particular, of phosphate has a strong effect on the energetics of ionization of the base. Upon bulk hydration, the ionization potential of the base in contrast becomes rather insensitive to the presence of the sugar and phosphate, which indicates a remarkable screening ability of the aqueous solvent. Accurate aqueous-phase vertical ionization potentials provide a significant improvement to the corrected gas-phase values used in the literature and represent important information in assessing the threshold energies for photooxidation and oxidation free energies of solvent-exposed DNA components. Likewise, such energetic data should allow improved assessment of delocalization and charge-hopping mechanisms in DNA ionized by radiation.

  18. Crystallization of aqueous inorganic-malonic acid particles: nucleation rates, dependence on size, and dependence on the ammonium-to-sulfate ratio.

    PubMed

    Parsons, Matthew T; Riffell, Jenna L; Bertram, Allan K

    2006-07-06

    Using an electrodynamic balance, we determined the relative humidity (RH) at which aqueous inorganic-malonic acid particles crystallized, with ammonium sulfate ((NH(4))(2)SO(4)), letovicite ((NH(4))(3)H(SO(4))(2)), or ammonium bisulfate (NH(4)HSO(4)) as the inorganic component. The results for (NH(4))(2)SO(4)-malonic acid particles and (NH(4))(3)H(SO(4))(2)-malonic acid particles show that malonic acid decreases the crystallization RH of the inorganic particles by less than 7% RH when the dry malonic acid mole fraction is less than 0.25. At a dry malonic acid mole fraction of about 0.5, the presence of malonic acid can decrease the crystallization RH of the inorganic particles by up to 35% RH. For the NH(4)HSO(4)-malonic acid particles, the presence of malonic acid does not significantly modify the crystallization RH of the inorganic particles for the entire range of dry malonic acid mole fractions studied; in all cases, either the particles did not crystallize or the crystallization RH was close to 0% RH. Size dependent measurements show that the crystallization RH of aqueous (NH(4))(2)SO(4) particles is not a strong function of particle volume. However, for aqueous (NH(4))(2)SO(4)-malonic acid particles (with dry malonic acid mole fraction = 0.36), the crystallization RH is a stronger function of particle volume, with the crystallization RH decreasing by 6 +/- 3% RH when the particle volume decreases by an order of magnitude. To our knowledge, these are the first size dependent measurements of the crystallization RH of atmospherically relevant inorganic-organic particles. These results suggest that for certain organic mole fractions the particle size and observation time need to be considered when extrapolating laboratory crystallization results to atmospheric scenarios. For aqueous (NH(4))(2)SO(4) particles, the homogeneous nucleation rate data are a strong function of RH, but for aqueous (NH(4))(2)SO(4)-malonic acid particles (with dry organic mole fraction = 0

  19. Gamma irradiation of isocitric and citric acid in aqueous solution: Relevance in prebiotic chemistry

    SciTech Connect

    Negrón-Mendoza, A. Ramos-Bernal, S.

    2015-07-23

    The radiation chemistry of hydroxy acids like citric and isocitric acids is rather scarce, even though they are crucial compounds in biological systems and for food irradiation. The aim of this work is to study the radiolytic behavior of these acids focused on the interconversion induced by radiation of citric and isocitric acid into other members of the Krebs cycle. The results showed that among the products formed were succinic, malonic, malic and other acids related to metabolic pathways, and these results are correlated with its possible role in chemical evolution processes.

  20. Gamma irradiation of isocitric and citric acid in aqueous solution: Relevance in prebiotic chemistry

    NASA Astrophysics Data System (ADS)

    Negrón-Mendoza, A.; Ramos-Bernal, S.

    2015-07-01

    The radiation chemistry of hydroxy acids like citric and isocitric acids is rather scarce, even though they are crucial compounds in biological systems and for food irradiation. The aim of this work is to study the radiolytic behavior of these acids focused on the interconversion induced by radiation of citric and isocitric acid into other members of the Krebs cycle. The results showed that among the products formed were succinic, malonic, malic and other acids related to metabolic pathways, and these results are correlated with its possible role in chemical evolution processes.

  1. Combination of best promoter and micellar catalyst for more than kilo-fold rate acceleration in favor of chromic acid oxidation of D-galactose to D-galactonic acid in aqueous media at room temperature

    NASA Astrophysics Data System (ADS)

    Saha, Rumpa; Ghosh, Aniruddha; Sar, Pintu; Saha, Indrajit; Ghosh, Sumanta K.; Mukherjee, Kakali; Saha, Bidyut

    2013-12-01

    Picolinic acid, 2,2‧-bipyridine and 1,10-phenanthroline promoted Cr(VI) oxidation of D-galactose to D-galactonic acid in three representative aqueous micellar media has been studied. The anionic surfactant (SDS) accelerated the rate of reaction while the cationic surfactant (CPC) and neutral surfactant (TX-100) retarded the reaction rate. Combination of bipy and SDS is the best choice for chromic acid oxidation of D-galactose to D-galactonic acid in aqueous media although 1,10-phenanthroline is best promoter in absence of micellar catalyst.

  2. Phase diagrams and water activities of aqueous dicarboxylic acid systems of atmospheric importance.

    PubMed

    Beyer, Keith D; Friesen, Katherine; Bothe, Jameson R; Palet, Benjamin

    2008-11-20

    We have studied liquid/solid phase diagrams and water activities of the dicarboxylic acid/water binary systems for maleic, dl-malic, glutaric, and succinc acids using differential scanning calorimetry, infrared (IR) spectroscopy of thin films, and conductivity analysis of saturated solutions. For each binary system we report the measurements of the ice melting envelope, the acid dissolution envelope, and the ice/acid eutectic temperature and composition. Water activities have been determined by using the freezing point depression of ice. Additionally, an irreversible solid/solid phase transition for maleic acid was observed in both DSC and IR studies likely due to the conversion of a meta-stable crystal form of maleic acid to its most stable crystal form. In general we find good agreement with literature values for temperature-dependent acid solubilities.

  3. Theoretical study of interactions between cysteine and perfluoropropanoic acid in gas and aqueous phase

    NASA Astrophysics Data System (ADS)

    Holmes, Tiffani M.; Doskocz, Jacek; Wright, Terrance; Hill, Glake A.

    The interaction of perfluoropropanoic acid (PFPA) with the amino acid cysteine was investigated using density functional theory. Previous studies suggest that the peroxisome proliferator chemical, perfluorooctanoic acid, is circulated throughout the body by way of sulfur-containing amino acids. We present conformational analysis of the interactions of PFPA, a small model of perfluorooctanoic acid, with the sulfur-containing amino acid which occur by the process of hydrogen bonding, in which the hydrogen of the sulfhydryl group interacts with the carboxyl oxygen, and the amino nitrogen forms a hydrogen bond with the hydrogen of the bond OH group of the fluorinated alkyl. We also show in our structures a recently characterized weak nonbonded interaction between divalent sulfur and a main chain carboxyl oxygen in proteins. B3LYP calculated free energies and interaction energies predict low-energy, high-interaction conformations for complex systems of perfluorinated fatty acid interactions with cysteine.

  4. [Abiogenic photochemical synthesis of amino acids in an aqueous medium containing carbohydrates and nitrates].

    PubMed

    Khenokh, M A; Nikolaeva, M V

    1977-01-01

    Ultraviolet light (PRK-2) induces the formation of various amino acids (lysine, asparaginic, as well as traces of some other acids) in mannose, glucose and arabinose solutions containing various nitrates. K+, Co2+, Ni2+ and Fe3+ significantly sensitize the formation of amino acids. In the atmosphere of N2, synthesis of appreciable amounts of glutamic acid takes place, wherease in the atmosphere of O2 or CO2 the latter is produced only in traces. Photolysis of glucose and mannose in nitrate-free solutions in the atmosphere of N2 results in the formation of lysine and glutamic acid. The data obtained show that in pre-biologic conditions in the hydrosphere of Earth (possibly, of other planets as well), abiogenically formed organic substances, e. g. carbohydrates, unter the influence of UV irradiation could be transformed into amino acids. Nitrates present in the water milieu could serve as a source of nitrogen in the amino acids synthesis.

  5. The use of raw and acid-pretreated bivalve mollusk shells to remove metals from aqueous solutions.

    PubMed

    Liu, Yang; Sun, Changbin; Xu, Jin; Li, Youzhi

    2009-08-30

    Heavy metal removal from industrial wastewater is not only to protect living organisms in the environment but also to conserve resources such as metals and water by enabling their reuse. To overcome the disadvantage of high cost and secondary pollution by the conventional physico-chemical treatment techniques, environmentally benign and low-cost adsorbents are in demand. In this study, the use of raw and acid-pretreated bivalve mollusk shells (BMSs) to remove metals from aqueous solutions with single or mixed metal was evaluated at different BMSs doses, pH and temperatures in batch shaking experiments in laboratory conditions. When the BMSs were used to treat CuSO(4)x5H(2)O solution, the copper sorption capacities of the raw and acid-pretreated BMSs were approximately 38.93 mg/g and 138.95 mg/g, respectively. The copper removal efficiency (CRE) of the raw BMSs became greatly enhanced with increasing initial pH, reaching 99.51% at the initial pH 5. Conversely, the CRE of the acid-pretreated BMSs was maintained at 99.48-99.52% throughout the pH range of 1-5. Furthermore, the CRE values of the raw and acid-pretreated BMSs were not greatly changed when the temperature was varied from 15 degrees C to 40 degrees C. In addition, the CRE value of the raw BMSs was maintained for 12 cycles of sorption-desorption with a CRE of 98.4% being observed in the final cycle. Finally, when the BMSs were used to treat electroplating wastewater, the removal efficiencies (REs) of the raw BMSs were 99.97%, 98.99% and 87% for Fe, Zn and Cu, respectively, whereas the REs of the acid-pretreated BMSs were 99.98%, 99.43% and 92.13%, respectively. Ion exchange experiments revealed that one of mechanisms for metal sorption by the BMSs from aqueous solution is related to ion exchange, especially between the metal ions in the treated solution and Ca(2+) from BMSs. Infrared absorbance spectra analysis indicated that the acid pretreatment led to occurrence of the groups (i.e. -OH, -NH, C=O and S

  6. Determination of Arrhenius and Thermodynamic Parameters for the Aqueous Reaction of the Hydroxyl Radical with Lactic Acid

    SciTech Connect

    Leigh R. Martin; Stephen P. Mezyk; Bruce J. Mincher

    2009-01-01

    Lactic acid is a major component of the TALSPEAK process planned for use in the separation of trivalent lanthanide and actinide elements. This acid acts both as a buffer, and also to protect the actinide complexant from radiolytic damage. However, there is little kinetic information on the reaction of water radiolysis species with lactic acid, particularly under the anticipated process conditions of aerated aqueous solution at pH~3, where oxidizing reactions are expected to dominate. Here we have determined temperature-dependent reaction rate constants for the reactions of the hydroxyl radical with lactic acid and the lactate ion. For lactic acid this rate constant is given by the equation: ln k1 = (23.85 ± 0.19) – (1120 ± 54) / T, corresponding to an activation energy of 9.31 ± 0.45 kJ mol-1 and a room temperature reaction rate constant of (5.24 ± 0.09) x 108 M-1 s-1 (24.0oC). For the lactate ion, the temperature-dependent rate constant is given by: ln k2 = (24.83 ± 0.14) – (1295 ± 42) / T, for an activation energy of 10.76 ± 0.35 kJ mol-1 and a room temperature value of (7.77 ± 0.11) x 108 M-1 s-1 (22.2oC). These kinetic data have been combined with autotitration measurements to determine the temperature-dependent behavior of the lactic acid pKa value, allowing thermodynamic parameters for the acid dissociation to be calculated as ?Hº = -10.75 ± 1.77 kJ mol-1, ?Sº = -103.9 ± 6.0 J K-1 mol-1 and ?Gº = 20.24 ± 2.52 kJ mol-1 at low ionic strength.

  7. Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids.

    PubMed

    Dinda, Srikanta; Patwardhan, Anand V; Goud, Vaibhav V; Pradhan, Narayan C

    2008-06-01

    The kinetics of epoxidation of cottonseed oil by peroxyacetic acid generated in situ from hydrogen peroxide and glacial acetic acid in the presence of liquid inorganic acid catalysts were studied. It was possible to obtain up to 78% relative conversion to oxirane with very less oxirane cleavage by in situ technique. The rate constants for sulphuric acid catalysed epoxidation of cottonseed oil were in the range 0.39-5.4 x 10(-6)L mol(-1)s(-1) and the activation energy was found to be 11.7 kcal mol(-1). Some thermodynamic parameters such as enthalpy, entropy, and free energy of activation were determined to be of 11.0 kcal mol(-1), -51.4 cal mol(-1)K(-1) and 28.1 kcal mol(-1), respectively. The order of effectiveness of catalysts was found to be sulphuric acid>phosphoric acid>nitric acid>hydrochloric acid. Acetic acid was found to be superior to formic acid for the in situ cottonseed oil epoxidation.

  8. In-situ spectroscopic investigations of the redox behavior of poly(indole-5-carboxylic-acid) modified electrodes in acidic aqueous solutions.

    PubMed

    Talbi, H; Billaud, D; Louarn, G; Pron, A

    2001-03-01

    The oxidation of electrochemically grown poly(indole-5-carboxylic-acid) (P5CO2H) and its spectroscopic properties have been studied by in-situ spectroelectrochemical techniques. The purpose of this paper is to characterize the different modifications on the P5CO2H backbone, induced by the electrochemical oxidation in aqueous acidic solution. We have identified, on the basis of Raman spectra, the vibrational modes associated with neutral and oxidized segments of polymer. It was shown that at least three chemically and optically different species (perhaps other products too) are produced in different potential regimes upon oxidation of this polymer. The results obtained also indicate that the molecular properties of this conducting polymer are better revealed by in-situ resonant spectra than by ex-situ infrared and Raman studies.

  9. Fast and highly-efficient removal of methylene blue from aqueous solution by poly(styrenesulfonic acid-co-maleic acid)-sodium-modified magnetic colloidal nanocrystal clusters

    NASA Astrophysics Data System (ADS)

    Song, Yu-Bei; Lv, Shao-Nan; Cheng, Chang-Jing; Ni, Guo-Li; Xie, Xiao-Wa; Huang, Wei; Zhao, Zhi-Gang

    2015-01-01

    Magnetic colloidal nanocrystal clusters (MCNCs) modified with different amounts of poly(4-styrenesulfonic acid-co-maleic acid) sodium (PSSMA) have been prepared through simple one-step solvothermal method for removal of methylene blue (MB) from aqueous solution. The prepared MCNCs are characterized by Fourier transform infrared (FT-IR) spectra, scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), X-ray diffraction (XRD), nitrogen adsorption-desorption technique and dynamic light scattering (DLS). Moreover, effects of the solution pH, contact time, adsorbent dosage, ionic strength and initial dye concentration on MB adsorption onto the MCNCs are systematically investigated. The PSSMA-modified MCNCs show fast and highly-efficient MB removal capacity, which dramatically depends on the immobilization amounts of PSSMA, solution pH and adsorbent dosage. Their adsorption kinetics and isotherms exhibit that the kinetics and equilibrium adsorptions can be well-described by pseudo-second-order kinetic and Langmuir model, respectively. These magnetic nanocomposites, with high separation efficiency, low production cost and recyclable property, are promising as functional adsorbents for efficient removal of cationic organic pollutants from aqueous solution.

  10. Surface crystallographic dependence of voltammetric oxidation of polyhydric alcohols and related systems at monocrystalline gold-acidic aqueous interfaces

    NASA Astrophysics Data System (ADS)

    Hamelin, Antoinette; Ho, Yeunghaw; Chang, Si-Chung; Gao, Xiaoping; Weaver, Michael J.

    1992-02-01

    The voltammetric oxidation in aqueous 0.1 Molar perchloric acid of four polyhydric alcohols, ethylene glycol, glycerol, meso-erythritol, and d-mannitol, on seven oriented gold surfaces is reported with the objective of assessing the role of surface crystallographic orientation on the catalytic electrooxidation of such poly-functional reactants. The automatically well-ordered nature of these gold surfaces has been scrutinized by in-situ scanning tunneling microscopy. In particular, the Au(221) and (533) faces were selected since they provide stepped surfaces, 4(111)-(111) and 4(111)-(100), respectively. The results are compared with corresponding data for simple unifunctional reactants, specifically for formic acid oxidation and with results reported previously for carbon monoxide oxidation. In contrast to the last reaction, the electrooxidation rates for both the polyhydric alcoholic and formic acid are greatest on Au(111), with Au(110) displaying unusually low activity. While formic acid electrooxidation is insensitive to the presence of monoatomic surface steps, the polyhydric alcohols (especially mannitol) are substantially less reactive on AU(221) and (533) relative to Au(111).

  11. Simultaneous removal of acid green 25 and mercury ions from aqueous solutions using glutamine modified chitosan magnetic composite microspheres.

    PubMed

    Tao, Xue; Li, Kun; Yan, Han; Yang, Hu; Li, Aimin

    2016-02-01

    In this current work, the magnetic composite microsphere containing glutamine modified chitosan and silica coated Fe3O4 nanoparticles (CS-Gln-MCM) has been successfully prepared and extensively characterized, which is a kind of biodegradable materials. CS-Gln-MCM shows enhanced removal efficiency for both acid green 25 (AG25), an amphoteric dye, and mercury ions (Hg(2+)) from water in the respective while measured pH range compared with chitosan magnetic composite microsphere (CS-MCM) without modification. It is due to the fact that the grafted amino acid provides a variety of additional adsorption active sites and diverse adsorption mechanisms are involved. In AG25 and Hg(2+) aqueous mixture, the modified adsorbents bear preferential adsorption for AG25 over Hg(2+) in strong acidic solutions ascribed to multiple interactions between AG25 and CS-Gln-MCM, such as hydrogen bonding and electrostatic interactions. While, in weak acidic conditions, an efficient simultaneous removal is observed for different adsorption effects involved in aforementioned two pollutants. Besides, CS-Gln-MCM illuminates not only short equilibrium time for adsorption of each pollutant less than 20.0 min but also rapid magnetic separation from water and efficient regeneration after saturated adsorption. Therefore, CS-Gln-MCM bears great application potentials in water treatment.

  12. An In Silico study of TiO2 nanoparticles interaction with twenty standard amino acids in aqueous solution

    NASA Astrophysics Data System (ADS)

    Liu, Shengtang; Meng, Xuan-Yu; Perez-Aguilar, Jose Manuel; Zhou, Ruhong

    2016-11-01

    Titanium dioxide (TiO2) is probably one of the most widely used nanomaterials, and its extensive exposure may result in potentially adverse biological effects. Yet, the underlying mechanisms of interaction involving TiO2 NPs and macromolecules, e.g., proteins, are still not well understood. Here, we perform all-atom molecular dynamics simulations to investigate the interactions between TiO2 NPs and the twenty standard amino acids in aqueous solution exploiting a newly developed TiO2 force field. We found that charged amino acids play a dominant role during the process of binding to the TiO2 surface, with both basic and acidic residues overwhelmingly preferred over the non-charged counterparts. By calculating the Potential Mean Force, we showed that Arg is prone to direct binding onto the NP surface, while Lys needs to overcome a ~2 kT free energy barrier. On the other hand, acidic residues tend to form “water bridges” between their sidechains and TiO2 surface, thus displaying an indirect binding. Moreover, the overall preferred positions and configurations of different residues are highly dependent on properties of the first and second solvation water. These molecular insights learned from this work might help with a better understanding of the interactions between biomolecules and nanomaterials.

  13. Quaternary Ammonium Polyamidoamine Dendrimer Modified Quantum Dots as Fluorescent Probes for p-Fluorophenoxyacetic Acid Detection in Aqueous Solution.

    PubMed

    Xu, Xiao; Cao, Yuan-Cheng; Liu, Jun'An; Lin, Yongjun

    2017-09-11

    The wide use of pesticide p-fluorophenoxyacetic acid has caused the serious environmental contaminant. A novel fluorescent probe for sensitive detection of p-fluorophenoxyacetic acid in aqueous solutions based on 3.0G quaternary ammonium polyamidoamine (PAMAM) dendrimer modified quantum dots (QDs) (PAMAM@QDs) was reported. Through the solvent-evaporation method, quaternary ammonium PAMAM was employed to modify the QDs. Poloxamer 188 was used to improve the solubility and stability. The resultant PAMAM@QDs dispersed well in water. Fluorescence (FL) spectroscopic study showed that the FL intensity of the PAMAM@QDs was enhanced in the presence of p-fluorophenoxyacetic acid. Under optimal conditions, the enhanced FL intensity as a function of concentration matched very well in the range of 1 ~ 200 µg/mL of p-fluorophenoxyacetic acid, while the lower limits of detection were found to be 0.16 µg/mL. These results show that PAMAM@QDs is a promising luminescent probe for the detection of pesticides.

  14. An In Silico study of TiO2 nanoparticles interaction with twenty standard amino acids in aqueous solution

    PubMed Central

    Liu, Shengtang; Meng, Xuan-Yu; Perez-Aguilar, Jose Manuel; Zhou, Ruhong

    2016-01-01

    Titanium dioxide (TiO2) is probably one of the most widely used nanomaterials, and its extensive exposure may result in potentially adverse biological effects. Yet, the underlying mechanisms of interaction involving TiO2 NPs and macromolecules, e.g., proteins, are still not well understood. Here, we perform all-atom molecular dynamics simulations to investigate the interactions between TiO2 NPs and the twenty standard amino acids in aqueous solution exploiting a newly developed TiO2 force field. We found that charged amino acids play a dominant role during the process of binding to the TiO2 surface, with both basic and acidic residues overwhelmingly preferred over the non-charged counterparts. By calculating the Potential Mean Force, we showed that Arg is prone to direct binding onto the NP surface, while Lys needs to overcome a ~2 kT free energy barrier. On the other hand, acidic residues tend to form “water bridges” between their sidechains and TiO2 surface, thus displaying an indirect binding. Moreover, the overall preferred positions and configurations of different residues are highly dependent on properties of the first and second solvation water. These molecular insights learned from this work might help with a better understanding of the interactions between biomolecules and nanomaterials. PMID:27883086

  15. Structural and vibrational investigation on species derived from the cyclamic acid in aqueous solution by using HATR and Raman spectroscopies and SCRF calculations

    NASA Astrophysics Data System (ADS)

    Brizuela, Alicia B.; Raschi, Ana B.; Castillo, María V.; Davies, Lilian; Romano, Elida; Brandán, Silvia A.

    2014-09-01

    In this study, aqueous solutions at different molar concentrations of sodium cyclamate in water were completely characterized by HATR (Horizontal Attenuated Total Reflectance) and Raman spectroscopies. The theoretical structures of cyclamate ion, the zwitterionic and neutral forms of the cyclamic acid and its dimer were optimized in gas and aqueous solution phases by using the hybrid B3LYP/6-31G* method. The solvent effects for the four species in aqueous solutions were simulated by using self-consistent reaction field (SCRF) calculations employing the integral equation formalism variant (IEFPCM) model. The complete assignments of the vibrational spectra of all the forms of cyclamic acid were performed taking into account the factor group analysis with the Scaled Quantum Mechanics Force Field (SQMFF) methodology. The existence of the zwitterionic and neutral forms of the cyclamic acid and its dimer in a solution of cyclamate in water is evidenced by characteristic bands in the HATR and Raman spectra. The dimerization of cyclamate in aqueous solution was previously reported by conductimetric method. The natural population analysis (NPA) and Merz-Kollman (MK) charges, molecular electrostatic potential (MEP), natural bond orbital (NBO) and atoms in molecules (AIM) calculations predict for all the species the principal donor and acceptor sites for the H bonds formation in aqueous solution. The SQM force fields for the cyclamate ion, the zwitterionic and neutral species of the cyclamic acid were obtained and their corresponding force constants in both phases were reported. Additionally, the solvation energies for those species were reported.

  16. Interaction Between Some Monosaccharides and Aspartic Acid in Dilute Aqueous Solutions

    PubMed Central

    Kulikova, Galina A.

    2008-01-01

    Interaction between aspartic acid and d-glucose, d-galactose, and d-fructose has been studied by isothermal titration calorimetry, calorimetry of dissolution, and densimetry. It has been found that d-glucose and d-fructose form thermodynamically stable associates with aspartic acid, in contrast to d-galactose. The selectivity in the interaction of aspartic acid with monosaccharides is affected by their stereochemical structures. PMID:19669542

  17. Enrichment of the Amino Acid L-Isovaline by Aqueous Alteration on CI and CM Meteorite Parent Bodies

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.

    2009-01-01

    The distribution and enantiomeric composition of the 5-carbon (C(sub 5)) amino acids found in Cl-, CM-, and CR-type carbonaceous meteorites were investigated by using liquid chromatography fluorescence detection/TOF-MS coupled with o-phthaldialdehyde/Nacetyl- l-cysteine derivatization. A large L-enantiomeric excess (ee) of the a-methyl amino acid isovaline was found in the CM meteorite Murchison (L(sub ee) = 18.5 +/- 2.6%) and the Cl meteorite Orguell (L(sub ee) = 15.2 +/- 4.0%). The measured value for Murchison is the largest enantiomeric excess in any meteorite reported to date, and the Orgueil measurement of an isovaline excess has not been reported previously for this or any Cl meteorite. The L-isovaline enrichments in these two carbonaceous meteorites cannot be the result of interference from other C(sub 5) amino acid isomers present in the samples, analytical biases, or terrestrial amino acid contamination. We observed no L-isovaline enrichment for the most primitive unaltered Antarctic CR meteorites EET 92042 and QUE 99177. These results are inconsistent with UV circularly polarized light as the primary mechanism for L-isovaline enrichment and indicate that amplification of a small initial isovaline asymmetry in Murchison and Orgueil occurred during an extended aqueous alteration phase on the meteorite parent bodies. The large asymmetry in isovaline and other alpha-dialkyl amino acids found in altered Ct and CM meteorites suggests that amino acids delivered by asteroids, comets, and their fragments would have biased the Earth's prebiotic organic inventory with left-handed molecules before the origin of life.

  18. Enrichment of the amino acid l-isovaline by aqueous alteration on CI and CM meteorite parent bodies

    PubMed Central

    Glavin, Daniel P.; Dworkin, Jason P.

    2009-01-01

    The distribution and enantiomeric composition of the 5-carbon (C5) amino acids found in CI-, CM-, and CR-type carbonaceous meteorites were investigated by using liquid chromatography fluorescence detection/TOF-MS coupled with o-phthaldialdehyde/N-acetyl-l-cysteine derivatization. A large l-enantiomeric excess (ee) of the α-methyl amino acid isovaline was found in the CM meteorite Murchison (lee = 18.5 ± 2.6%) and the CI meteorite Orgueil (lee = 15.2 ± 4.0%). The measured value for Murchison is the largest enantiomeric excess in any meteorite reported to date, and the Orgueil measurement of an isovaline excess has not been reported previously for this or any CI meteorite. The l-isovaline enrichments in these two carbonaceous meteorites cannot be the result of interference from other C5 amino acid isomers present in the samples, analytical biases, or terrestrial amino acid contamination. We observed no l-isovaline enrichment for the most primitive unaltered Antarctic CR meteorites EET 92042 and QUE 99177. These results are inconsistent with UV circularly polarized light as the primary mechanism for l-isovaline enrichment and indicate that amplification of a small initial isovaline asymmetry in Murchison and Orgueil occurred during an extended aqueous alteration phase on the meteorite parent bodies. The large asymmetry in isovaline and other α-dialkyl amino acids found in altered CI and CM meteorites suggests that amino acids delivered by asteroids, comets, and their fragments would have biased the Earth's prebiotic organic inventory with left-handed molecules before the origin of life. PMID:19289826

  19. Enrichment of the Amino Acid L-Isovaline by Aqueous Alteration on CI and CM Meteorite Parent Bodies

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.

    2009-01-01

    The distribution and enantiomeric composition of the 5-carbon (C(sub 5)) amino acids found in Cl-, CM-, and CR-type carbonaceous meteorites were investigated by using liquid chromatography fluorescence detection/TOF-MS coupled with o-phthaldialdehyde/Nacetyl- l-cysteine derivatization. A large L-enantiomeric excess (ee) of the a-methyl amino acid isovaline was found in the CM meteorite Murchison (L(sub ee) = 18.5 +/- 2.6%) and the Cl meteorite Orguell (L(sub ee) = 15.2 +/- 4.0%). The measured value for Murchison is the largest enantiomeric excess in any meteorite reported to date, and the Orgueil measurement of an isovaline excess has not been reported previously for this or any Cl meteorite. The L-isovaline enrichments in these two carbonaceous meteorites cannot be the result of interference from other C(sub 5) amino acid isomers present in the samples, analytical biases, or terrestrial amino acid contamination. We observed no L-isovaline enrichment for the most primitive unaltered Antarctic CR meteorites EET 92042 and QUE 99177. These results are inconsistent with UV circularly polarized light as the primary mechanism for L-isovaline enrichment and indicate that amplification of a small initial isovaline asymmetry in Murchison and Orgueil occurred during an extended aqueous alteration phase on the meteorite parent bodies. The large asymmetry in isovaline and other alpha-dialkyl amino acids found in altered Ct and CM meteorites suggests that amino acids delivered by asteroids, comets, and their fragments would have biased the Earth's prebiotic organic inventory with left-handed molecules before the origin of life.

  20. Electrochemical degradation of chlorophenoxy and chlorobenzoic herbicides in acidic aqueous medium by the peroxi-coagulation method.

    PubMed

    Brillas, Enric; Boye, Birame; Baños, Miguel Angel; Calpe, Juan Carlos; Garrido, José Antonio

    2003-04-01

    The degradation of 4-chlorophenoxyacetic acid (4-CPA), 4-chloro-2-methylphenoxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) as chlorophenoxy herbicides, as well as of 3,6-dichloro-2-methoxybenzoic acid (dicamba) as chlorobenzoic herbicide, has been studied by peroxi-coagulation. This electrochemical method yields a very effective depollution of all compounds in acidic aqueous medium of pH 3.0 working under pH regulation, since they are oxidized with hydroxyl radicals produced from Fenton's reaction between Fe(2+) and H(2)O(2) generated by the corresponding Fe anode and O(2)-diffusion cathode. Their products can then be removed by mineralization or coagulation with the Fe(OH)(3) precipitate formed. Both degradative paths compete at low currents, but coagulation predominates at high currents. The peroxi-coagulation process of dicamba at I>or=300 mA leads to more than 90% of coagulation, being much more efficient than its comparative electro-Fenton treatment with a Pt anode and 1 mM Fe(2+), where only mineralization takes place. For the chlorophenoxy compounds, electro-Fenton gives a slightly lower depollution than peroxi-coagulation, because more easily oxidable products are produced. Oxidation of chlorinated products during peroxi-coagulation is accompanied by the release of chloride ion to the solution. The efficiency of this method decreases with increasing electrolysis time and current. The decay of all herbicides follows a pseudo-first-order reaction, with a similar constant rate for 4-CPA, MCPA, 2,4-D and 2,4,5-T, and a higher value for dicamba.

  1. Enrichment of the amino acid L-isovaline by aqueous alteration on CI and CM meteorite parent bodies.

    PubMed

    Glavin, Daniel P; Dworkin, Jason P

    2009-04-07

    The distribution and enantiomeric composition of the 5-carbon (C(5)) amino acids found in CI-, CM-, and CR-type carbonaceous meteorites were investigated by using liquid chromatography fluorescence detection/TOF-MS coupled with o-phthaldialdehyde/N-acetyl-L-cysteine derivatization. A large L-enantiomeric excess (ee) of the alpha-methyl amino acid isovaline was found in the CM meteorite Murchison (L(ee) = 18.5 +/- 2.6%) and the CI meteorite Orgueil (L(ee) = 15.2 +/- 4.0%). The measured value for Murchison is the largest enantiomeric excess in any meteorite reported to date, and the Orgueil measurement of an isovaline excess has not been reported previously for this or any CI meteorite. The L-isovaline enrichments in these two carbonaceous meteorites cannot be the result of interference from other C(5) amino acid isomers present in the samples, analytical biases, or terrestrial amino acid contamination. We observed no L-isovaline enrichment for the most primitive unaltered Antarctic CR meteorites EET 92042 and QUE 99177. These results are inconsistent with UV circularly polarized light as the primary mechanism for L-isovaline enrichment and indicate that amplification of a small initial isovaline asymmetry in Murchison and Orgueil occurred during an extended aqueous alteration phase on the meteorite parent bodies. The large asymmetry in isovaline and other alpha-dialkyl amino acids found in altered CI and CM meteorites suggests that amino acids delivered by asteroids, comets, and their fragments would have biased the Earth's prebiotic organic inventory with left-handed molecules before the origin of life.

  2. Prehydrolysis of aspen wood with water and with dilute aqueous sulfuric acid

    Treesearch

    Edward L. Springer; John F. Harris

    1982-01-01

    Water prehydrolysis of aspen wood was compared with 0.40% sulfuric acid prehydrolysis at a reaction temperature of 170°C. Acid prehydrolysis gave much higher yields of total anhydroxylose units in the prehydrolyzate and removed significantly less anhydroglucose from the wood than did the water treatment. At maximum yields of total anhydroxylose units in the...

  3. Controlled radical fluorination of poly(meth)acrylic acids in aqueous solution.

    PubMed

    Dong, Yucheng; Wang, Zhentao; Li, Chaozhong

    2017-08-17

    Fluorinated alkenes exhibit very poor reactivity in copolymerization with non-fluorinated polar monomers such as acrylates. Herein we describe a convenient method for the synthesis of poly(vinyl fluoride-co-acrylic acid) and poly(2-fluoropropene-co-methacrylic acid) copolymers. Thus, the silver-catalyzed decarboxylative radical fluorination of poly(acrylic acid) with Selectfluor in water at room temperature affords poly(vinyl fluoride-co-acrylic acid) copolymers in high yields with well-defined molecular weights and polydispersities. A linear correlation is observed between the extent of fluorination and the amount of Selectfluor, indicating that the copolymer of virtually any monomer ratio can be readily accessed by controlling the amount of Selectfluor. This controlled decarboxylative fluorination is extended to poly(methacrylic acid), leading to well-defined poly(2-fluoropropene-co-methacrylic acid) copolymers.Fluorinated alkenes have very poor reactivity in copolymerizations with non-fluorinated polar monomers. Here the authors show silver-catalyzed decarboxylative radical fluorination of poly(acrylic acid) with Selectfluor in water at room temperature to form poly(vinyl fluoride-co-acrylic acid) copolymers.

  4. Long-term degradation study of hyaluronic acid in aqueous solutions without protection against microorganisms.

    PubMed

    Simulescu, Vasile; Kalina, Michal; Mondek, Jakub; Pekař, Miloslav

    2016-02-10

    The degradation of hyaluronan (HA) of different molecular weights (Mw 14.3, 267.2 and 1160.6 kDa, measured for fresh solutions, before degradation) was studied in aqueous solutions by SEC-MALLS determination of molecular mass, polydispersity and conformation parameters. The solutions were stored either at laboratory or refrigerator temperatures for two months. After this period the weight average molecular weight decreased by 90% for 14.3 kDa, 95% for 267.2 kDa and 71% for 1160.6 kDa hyaluronan (room temperature) or 5.6% for 14.3 kDa, 6.2% for 267.2 kDa and 7.7% for 1160.6 kDa hyaluronan (refrigerator temperature). The hyaluronan aqueous solutions studied did not contain sodium azide or other protectants against microorganisms, because the aim of our study was to assess the degradation in solutions to be used in medicine or cosmetics (without any compounds that are poisonous or toxic for the human body). The solvent used to prepare the samples was pure water. The polydispersity of all the samples remained unaltered during the entire degradation at both temperatures. This indicates a non-random mechanism of degradation.

  5. Direct quantitative gas chromatographic separation of C2-C6 fatty acids, methanol, and ethyl alcohol in aqueous microbial fermentation media.

    PubMed

    Rogosa, M; Love, L L

    1968-02-01

    A method is described for the direct quantitative gas chromatographic separation of C(2)-C(6) lower fatty acid homologues, methanol, and ethyl alcohol in aqueous microbial fermentation media. A hydrogen flame detector and a single-phase solid column packing, comprising beads of a polyaromatic resin (polystyrene cross-linked with divinyl benzene), were employed. Direct injections of 1 to 10 muliters of aqueous culture supernatant fluids were made. Quantitative recoveries of C(2)-C(6) acids added to culture supernatant fluids were obtained.

  6. Direct Quantitative Gas Chromatographic Separation of C2-C6 Fatty Acids, Methanol, and Ethyl Alcohol in Aqueous Microbial Fermentation Media

    PubMed Central

    Rogosa, M.; Love, L. L.

    1968-01-01

    A method is described for the direct quantitative gas chromatographic separation of C2-C6 lower fatty acid homologues, methanol, and ethyl alcohol in aqueous microbial fermentation media. A hydrogen flame detector and a single-phase solid column packing, comprising beads of a polyaromatic resin (polystyrene cross-linked with divinyl benzene), were employed. Direct injections of 1 to 10 μliters of aqueous culture supernatant fluids were made. Quantitative recoveries of C2-C6 acids added to culture supernatant fluids were obtained. PMID:5645415

  7. Magnetic hyaluronic acid nanospheres via aqueous Diels-Alder chemistry to deliver dexamethasone for adipose tissue engineering.

    PubMed

    Jia, Yang; Fan, Ming; Chen, Huinan; Miao, Yuting; Xing, Lian; Jiang, Bohong; Cheng, Qifan; Liu, Dongwei; Bao, Weikang; Qian, Bin; Wang, Jionglu; Xing, Xiaodong; Tan, Huaping; Ling, Zhonghua; Chen, Yong

    2015-11-15

    Biopolymer-based nanospheres have great potential in the field of drug delivery and tissue regenerative medicine. In this work, we present a flexible way to conjugate a magnetic hyaluronic acid (HA) nanosphere system that are capable of vectoring delivery of adipogenic factor, e.g. dexamethasone, for adipose tissue engineering. Conjugation of nanospheres was established by aqueous Diels-Alder chemistry between furan and maleimide of HA derivatives. Simultaneously, a furan functionalized dexamethasone peptide, GQPGK, was synthesized and covalently immobilized into the nanospheres. The magnetic HA nanospheres were fabricated by encapsulating super-paramagnetic iron oxide nanoparticles, which exhibited quick magnetic sensitivity. The aqueous Diels-Alder chemistry made nanospheres high binding efficiency of dexamethasone, and the vectoring delivery of dexamethasone could be easily controlled by a external magnetic field. The potential application of the magnetic HA nanospheres on vectoring delivery of adipogenic factor was confirmed by co-culture of human adipose-derived stem cells (ASCs). In vitro cytotoxicity tests demonstrated that incorporation of dexamethasone into magnetic HA nanospheres showed high efficiency to promote ASCs viabilities, in particular under a magnetic field, which suggested a promising future for adipose regeneration applications.

  8. An ambient aqueous synthesis for highly dispersed and active Pd/C catalyst for formic acid electro-oxidation

    NASA Astrophysics Data System (ADS)

    Cheng, Niancai; Lv, Haifeng; Wang, Wei; Mu, Shichun; Pan, Mu; Marken, Frank

    An experimentally simple process is reported in aqueous solution and under ambient conditions to prepare highly dispersed and active Pd/C catalyst without the use of a stabilizing agent. The [Pd(NH 3) 4] 2+ ion is synthesized with gentle heating in aqueous ammonia solution without formation of Pd(OH) x complex intermediates. The adsorbed [Pd(NH 3) 4] 2+ on the surface of carbon (Vulcan XC-72) is reduced in situ to Pd nanoparticles by NaBH 4. The Pd/C catalyst obtained is characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that highly dispersed Pd/C catalyst with 20 wt.% Pd content and with an average Pd nanoparticle diameter of 4.3-4.7 nm could be obtained. The electrochemical measurements show that the Pd/C catalyst without stabilizer has a higher electro-oxidation activity for formic acid compared to that of a Pd/C catalyst prepared in a traditional high temperature polyol process in ethylene glycol.

  9. Extraction of electrolytes from aqueous solutions and their spectrophotometric determination by use of acid-base chromoionophores in lipophylic solvents.

    PubMed

    Barberi, Paola; Giannetto, Marco; Mori, Giovanni

    2004-04-01

    The formation of non-absorbing complexes in an organic phase has been exploited for the spectrophotometric determination of ionic analytes in aqueous solutions. The method is based on liquid-liquid extraction of aqueous solution with lipophylic organic phases containing an acid-base chromoionophore, a neutral lypophilic ligand (neutral carrier) selective to the analyte and a cationic (or anionic) exchanger. The method avoids all difficulties of the preparation of the very thin membranes used in optodes, so that it can advantageously be used for the study of the role physical-chemical parameters of the system in order to optimize them and to prepare, if necessary, an optimized optode. Two lipophylic derivatives of Nile Blue and 4',5-dibromofluorescein have been synthesized, in order to ensure their permanence within organic phase. Two different neutral carriers previously characterized by us as ionophores for liquid-membrane Ion Selective Electrodes have been employed. Three different ionic exchangers have been tested. Furthermore, a model allowing the interpolation of experimental data and the determination of the thermodynamic constant of the ionic-exchange equilibrium has been developed and applied.

  10. Nitrilotriacetic acid functionalized Adansonia digitata biosorbent: Preparation, characterization and sorption of Pb (II) and Cu (II) pollutants from aqueous solution.

    PubMed

    Adewuyi, Adewale; Pereira, Fabiano Vargas

    2016-11-01

    Nitrilotriacetic acid functionalized Adansonia digitata (NFAD) biosorbent has been synthesized using a simple and novel method. NFAD was characterized by X-ray Diffraction analysis technique (XRD), Scanning Electron Microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analyzer, Fourier Transform Infrared spectrometer (FTIR), particle size dispersion, zeta potential, elemental analysis (CHNS/O analyzer), thermogravimetric analysis (TGA), differential thermal analysis (DTA), derivative thermogravimetric analysis (DTG) and energy dispersive spectroscopy (EDS). The ability of NFAD as biosorbent was evaluated for the removal of Pb (II) and Cu (II) ions from aqueous solutions. The particle distribution of NFAD was found to be monomodal while SEM revealed the surface to be heterogeneous. The adsorption capacity of NFAD toward Pb (II) ions was 54.417 mg/g while that of Cu (II) ions was found to be 9.349 mg/g. The adsorption of these metals was found to be monolayer, second-order-kinetic, and controlled by both intra-particle diffusion and liquid film diffusion. The results of this study were compared better than some reported biosorbents in the literature. The current study has revealed NFAD to be an effective biosorbent for the removal of Pb (II) and Cu (II) from aqueous solution.

  11. Preparation and utilization of wheat straw bearing amine groups for the sorption of acid and reactive dyes from aqueous solutions.

    PubMed

    Xu, Xing; Gao, Bao-Yu; Yue, Qin-Yan; Zhong, Qian-Qian

    2010-10-15

    Removal of Acid Red 73 (AR 73) and Reactive Red 24 (RR 24) onto modified wheat straw (MWS) from aqueous solutions was investigated. Sorption experiments were carried out as function of MWS dosage, contact time, initial concentration, pH and temperature. Characterizations of MWS were measured and a mass of amine groups were observed in the framework of MWS. The equilibrium sorption data were well represented by the Langmuir isotherm equation, and the calculated thermodynamic parameters indicated a spontaneous and endothermic nature for sorption process. It was shown that pseudo-second-order kinetic equation could best describe the adsorption kinetics. More over, the high maximum sorption capacity (q(e max), 714.3 mg g(-1) for AR 73 and 285.7 mg g(-1) for RR 24) and low cost (1.24 US$ kg(-1)) of MWS provided strong evidence of the potential of MWS for the technological applications of anionic dyes removal from aqueous solutions. 2010 Elsevier B.V. All rights reserved.

  12. Impact of acid mine drainage on benthic communities in streams: the relative roles of substratum vs. aqueous effects.

    PubMed

    DeNicol, Dean M; Stapleton, Michael G

    2002-01-01

    Restoration of streams impacted by acid mine drainage (AMD) focuses on improving water quality, however precipitates of metals on the substrata can remain and adversely affect the benthos. To examine the effects of AMD precipitates independently of aqueous effects, four substrata treatments, clean sandstone, clean limestone, AMD precipitate-coated sandstone and coated limestone, were placed in a circumneutral stream of high water quality for 4 weeks. Iron and Al were the most abundant metals on rocks with AMD precipitate. and significantly decreased after the exposure. Precipitate on the substrata did not significantly affect macroinvertebrate or periphyton density and species composition. In an additional experiment, percent survival of caged live caddisflies was significantly lower when exposed in situ for 5 days in an AMD affected stream than in a reference stream. Caddisfly whole-body concentrations of all combined metals and Fe alone were significantly higher in the AMD stream. Whole-body metal concentrations were higher in killed caddisflies than in live, indicating the importance of passive uptake. The results suggest the aqueous chemical environment of AMD had a greater affect on organisms than a coating of recent AMD precipitate on the substrata (ca. 0.5 mm thick), and treatment that improves water quality in AMD impacted streams has the potential to aid in recovery of the abiotic and biotic benthic environment.

  13. Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites.

    PubMed

    Wang, Xiaohuan; Zheng, Yian; Wang, Aiqin

    2009-09-15

    Novel chitosan-g-poly(acrylic acid)/attapulgite (CTS-g-PAA/APT) composites were applied as adsorbents for the removal of Cu(II) from aqueous solution. The effects of the initial pH value (pH(0)) of Cu(II) solution, contact time (t), APT content (wt%) and the initial concentration of Cu(II) solution (C(0)) on the adsorption capacity of the composites were investigated. Results from kinetic experimental data showed that the Cu(II) adsorption rate on the composites with 10, 20 and 30 wt% APT was fast and more than 90% of the maximum adsorption capacity for Cu(II) occurred within the initial 15 min. The adsorption kinetics was better described by the pseudo-second order equation, and their adsorption isotherms were better fitted for the Langmuir equation. The results of the five-time consecutive adsorption-desorption studies showed that the composites had high adsorption and desorption efficiencies, which implies that the composites may be used as quite effective adsorbents for the removal of Cu(II) from aqueous solution.

  14. Hybrid molecularly imprinted poly(methacrylic acid-TRIM)-silica chemically modified with (3-glycidyloxypropyl)trimethoxysilane for the extraction of folic acid in aqueous medium.

    PubMed

    de Oliveira, Fernanda Midori; Segatelli, Mariana Gava; Tarley, César Ricardo Teixeira

    2016-02-01

    In the present study a hybrid molecularly imprinted poly(methacrylic acid-trimethylolpropane trimethacrylate)-silica (MIP) was synthesized and modified with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) with posterior opening of epoxy ring to provide hydrophilic properties of material in the extraction of folic acid from aqueous medium. The chemical and structural aggregates of hybrid material were characterized by means of Fourier Transform Infrared (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Thermogravimetric analysis (TGA) and textural data. Selectivity data of MIP were compared to non-imprinted polymer (NIP) through competitive sorption studies in the presence of caffeine, paracetamol or 4-aminobenzamide yielding relative selectivity coefficients (k′) higher than one unit, thus confirming the selective character of MIP even in the presence of structurally smaller compounds than the folic acid. The lower hydrophobic sorption by bovine serum albumin (BSA) in the MIP as compared to unmodified MIP proves the hydrophilicity of polymer surface by using GPTMS with opening ring. Under acid medium(pH 1.5) the sorption of folic acid onto MIP from batch experiments was higher than the one achieved for NIP. Equilibrium sorption of folic acid was reached at 120 min for MIP, NIP and MIP without GPTMS and kinetic sorption data were well described by pseudo-second-order, Elovich and intraparticle diffusion models. Thus, these results indicate the existence of different binding energy sites in the polymers and a complex mechanism consisting of both surface sorption and intraparticle transport of folic acid within the pores of polymers.

  15. Removal of dicyclohexyl acetic acid from aqueous solution using ultrasound, ozone and their combination.

    PubMed

    Kumar, Pardeep; Headley, John; Peru, Kerry; Bailey, Jon; Dalai, Ajay

    2014-01-01

    Naphthenic acids are a complex mixture of organic components, some of which include saturated alkyl-substituted cycloaliphatic carboxylic acids and acyclic aliphatic acids. They are naturally found in hydrocarbon deposits like oil sand, petroleum, bitumen and crude oil. In this study, the oxidation of a relatively high molecular weight naphthenic acid (Dicyclohexyl acetic acid) was investigated using ozonation, ultrasonication and hydrogen peroxide alone and their combinations. Effects on oxidation of dicyclohexyl acetic acid (DAA) were measured for different concentrations of ozone ranging between 0.7 to 3.3 mg L(-1) and pH in the range 6 to 10. Ultrasonication and hydrogen peroxide alone were not effective to oxidize dicyclohexyl acetic acid, but combining ultrasonication with H2O2 had a significant effect on oxidation of dicyclohexyl acetic acid with maximum removal reaching to 84 ± 2.2% with 81 ± 2.1% reduction in chemical oxygen demand (COD). Synergistic effects were observed for combining ultrasonication with ozonation and resulted in 100% DAA removal with 98 ± 0.8% reduction in COD within 15 min at 3.3 mg L(-1) ozone concentration and 130 Watts ultrasonication power. The reaction conditions obtained for the maximum oxidation of DAA and COD removal were used for the degradation of naphthenic acids mixture extracted from oil sands process water (OSPW). The percentage oxidation of NAs mixture extracted from OSPW was 89.3 ± 1.1% in ozonation and combined ozonation and ultrasonication, but COD removal observed was 65 ± 1.2% and 78 ± 1.4% for ozonation and combined ozonation and ultrasonication treatments, respectively.

  16. Aqueous chlorination of fenamic acids: Kinetic study, transformation products identification and toxicity prediction.

    PubMed

    Ma, Liyun; Li, Jian; Xu, Li

    2017-05-01

    Fenamic acids, one important type of non-steroidal anti-inflammatory drugs, are ubiquitous in environmental matrices. Thus it is of high significance to know the fate of them during chlorination disinfection considering their potential toxicity to the environment and humans. In the present study, the chlorination kinetics of three fenamic acids, i.e. mefenamic acid (MEF), tolfenamic acid (TOL) and clofenamic acid (CLO), were examined at different pHs, which followed second-order reaction under studied conditions. The studied fenamic acids degraded fast, with the largest apparent second-order rate coefficient (kapp) values of 446.7 M(-1) s(-1) (pH 7), 393.3 M(-1) s(-1) (pH 8) and 360.0 M(-1) s(-1) (pH 6) for MEF, TOL and CLO, respectively. The transformation products (TPs) were identified by solid-phase extraction-liquid chromatography-mass spectrometer and ion-pair liquid-liquid extraction and injection port derivatization-gas chromatography-mass spectrometer. Despite different numbers of TPs were detected for each studied fenamic acid through these two analytical methods, the types of TPs were almost the same; chlorine substitution, oxidation and the joint oxidation with chlorine substitution are transformation reactions involved in chlorination. Moreover, the total toxicity of the TPs was assayed based on luminescent bacteria. Under different pHs, the different types of TPs might form, resulting in the varied total toxicity. The toxicity of all three fenamic acids chlorinated at pH of 8 was greater than those at pHs of 6 and 7. This study provided the information about the kinetics, transformation and toxicity of three fenamic acids during water chlorination, which is important to the drinking water safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Universal reaction mechanism of boronic acids with diols in aqueous solution: kinetics and the basic concept of a conditional formation constant.

    PubMed

    Furikado, Yuki; Nagahata, Tomomi; Okamoto, Takuya; Sugaya, Tomoaki; Iwatsuki, Satoshi; Inamo, Masahiko; Takagi, Hideo D; Odani, Akira; Ishihara, Koji

    2014-10-06

    To establish a detailed reaction mechanism for the condensation between a boronic acid, RB(OH)2, and a diol, H2L, in aqueous solution, the acid dissociation constants (Ka(BL)) of boronic acid diol esters (HBLs) were determined based on the well-established concept of conditional formation constants of metal complexes. The pKa values of HBLs were 2.30, 2.77, and 2.00 for the reaction systems, 2,4-difluorophenylboronic acid and chromotropic acid, 3-nitrophenylboronic acid and alizarin red S, and phenylboronic acid and alizarin red S, respectively. A general and precise reaction mechanism of RB(OH)2 with H2L in aqueous solution, which can serve as a universal reaction mechanism for RB(OH)2 and H2L, was proposed on the basis of (a) the relative kinetic reactivities of the RB(OH)2 and its conjugate base, that is, the boronate ion, toward H2L, and (b) the determined pKa values of HBLs. The use of the conditional formation constant, K', based on the main reaction: RB(OH)2 + H2L (K1)⇌ RB(L)(OH)(-) + H3O(+) instead of the binding constant has been proposed for the general reaction of uncomplexed boronic acid species (B') with uncomplexed diol species (L') to form boronic acid diol complex species (esters, BL') in aqueous solution at pH 5-11: B' + L' (K')⇌ BL'. The proposed reaction mechanism explains perfectly the formation of boronic acid diol ester in aqueous solution.

  18. Investigation of the role of protonation of benzophenone and its derivatives in acidic aqueous solutions using time-resolved resonance Raman spectroscopy: how are ketyl radicals formed in aqueous solutions?

    PubMed

    Li, Ming-De; Huang, Jinqing; Liu, Mingyue; Li, Songbo; Ma, Jiani; Phillips, David Lee

    2015-02-12

    The formation mechanism of ketyl radicals and several other selective photoreactions of benzophenone and its derivatives are initiated by the protonation of their triplet state and have been investigated using nanosecond time-resolved resonance Raman spectroscopy (ns-TR(3)) in solutions of varying conditions. Evidence is found that the ketyl radical is generated by the combined action of a ketone protonation and a subsequent electron transfer based on the results from previous studies on the photochemistry and photophysics of benzophenone and the ns-TR(3) results reported here for benzophenone, 1,4-dibenzoylbenzene, 3-(hydroxymethyl)benzophenone, and ketoprofen in neutral and acidic solution. In order to better understand the role of the protonated ketone, results are summarized for some selective photochemical reactions of benzophenone and its derivatives induced by protonation in acidic solutions. For the parent benzophenone, the protonation of the ketone leads to the photohydration reactions at the ortho- and meta-positions of the benzene ring in acidic aqueous solutions. For 3-(hydroxymethyl)benzophenone, the protonation promotes an interesting photoredox reaction to become very efficient and the predominant reaction in a pH = 2 aqueous solution. While for ketoprofen, the protonation can initiate a solvent-mediated excited-state intramolecular proton transfer (ESIPT) from the carboxyl group to the carbonyl group that then leads to a decarboxylation reaction in a pH = 0 acidic aqueous solution. We briefly discuss the key role of the protonation of the ketone in the photochemistry of these aromatic ketones.

  19. Photochemical Formation of Nitrite and Nitrous Acid (HONO) upon Irradiation of Nitrophenols in Aqueous Solution and in Viscous Secondary Organic Aerosol Proxy.

    PubMed

    Barsotti, Francesco; Bartels-Rausch, Thorsten; De Laurentiis, Elisa; Ammann, Markus; Brigante, Marcello; Mailhot, Gilles; Maurino, Valter; Minero, Claudio; Vione, Davide

    2017-07-05

    Irradiated nitrophenols can produce nitrite and nitrous acid (HONO) in bulk aqueous solutions and in viscous aqueous films, simulating the conditions of a high-solute-strength aqueous aerosol, with comparable quantum yields in solution and viscous films (10(-5)-10(-4) in the case of 4-nitrophenol) and overall reaction yields up to 0.3 in solution. The process is particularly important for the para-nitrophenols, possibly because their less sterically hindered nitro groups can be released more easily as nitrite and HONO. The nitrophenols giving the highest photoproduction rates of nitrite and HONO (most notably, 4-nitrophenol and 2-methyl-4-nitrophenol) could significantly contribute to the occurrence of nitrite in aqueous phases in contact with the atmosphere. Interestingly, dew-water evaporation has shown potential to contribute to the gas-phase HONO levels during the morning, which accounts for the possible importance of the studied process.

  20. Development of tannic acid/chitosan/pullulan composite nanofibers from aqueous solution for potential applications as wound dressing.

    PubMed

    Xu, Fenghua; Weng, Baicheng; Gilkerson, Robert; Materon, Luis Alberto; Lozano, Karen

    2015-01-22

    This study presents the successful development of biocompatible tannic acid (TA)/chitosan (CS)/pullulan (PL) composite nanofibers (NFs) with synergistic antibacterial activity against the Gram-negative bacteria Escherichia coli. The NFs were developed utilizing the forcespinning(®) (FS) technique from CS-CA aqueous solutions to avoid the usage of toxic organic solvents. The ternary nanofibrous membranes were crosslinked to become water stable for potential applications as wound dressing. The morphology, structure, water solubility, water absorption capability and thermal properties of the NFs were characterized. The ternary composite membrane exhibits good water absorption ability with rapid uptake rate. This novel membrane favors fibroblast cell attachment and growth by providing a 3D environment which mimics the extracellular matrix (ECM) in skin and allows cells to move through the fibrous structure resulting in interlayer growth throughout the membrane, thus favoring potential for deep and intricate wound healing.

  1. Hollow-fiber membrane extraction of copper(II) from aqueous ethylenediaminetetraacetic acid solutions with Aliquat 336

    SciTech Connect

    Juang, R.S.; Huang, I.P.

    2000-05-01

    The extraction of Cu(II) from an equimolar EDTA ethylenediaminetetraacetic acid (EDTA) solution across microporous hollow fibers to an organic phase containing Aliquat 336 (a quaternary amine) was studied. It was shown that the resistance of interfacial chemical reaction could be neglected. A mass-transfer model was proposed considering aqueous-layer diffusion, membrane diffusion, and organic-layer diffusion on the basis of knowledge of extraction chemistry and the transport properties of the relevant geometry. The calculated time profiles of Cu(II) concentrations were in reasonable agreement with the measured ones (average standard deviation, 12%). The mass-transfer mechanism of this membrane extraction process was finally identified and discussed.

  2. Morphological and phase evolution of TiO 2 nanocrystals prepared from peroxotitanate complex aqueous solution: Influence of acetic acid

    NASA Astrophysics Data System (ADS)

    Chang, Jeong Ah; Vithal, Muga; Baek, In Chan; Seok, Sang Il

    2009-04-01

    Nanosized anatase and rutile TiO 2 having different shape, phase and size have been prepared from aqueous solutions of peroxo titanium complex starting from titanium(IV) isopropoxide (TTIP), acetic acid and hydrogen peroxide (H 2O 2) in water/isopropanol media by a facile sol-gel process. The TiO 2 nanocrystals are characterized by powder X-ray diffraction (XRD), Raman spectroscopy, FT-IR spectroscopy, TEM, high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) techniques. The influence of pH and the sequence of addition of reaction contents on the phase and morphology of TiO 2 are studied. The reasons for the observation of only anatase and/or mixture of anatase and rutile are given.

  3. Equilibrium and kinetics study on the adsorption of perfluorooctanoic acid from aqueous solution onto powdered activated carbon.

    PubMed

    Qu, Yan; Zhang, Chaojie; Li, Fei; Bo, Xiaowen; Liu, Guangfu; Zhou, Qi

    2009-09-30

    Powdered activated carbon (PAC) was applied to remove perfluorooctanoic acid (PFOA) from the aqueous PFOA solution in this study. Contact time, adsorbent dose and temperature were analyzed as the effect factors in the adsorption reaction. The contact time of maximum PFOA uptake was around 1h while the sorption removal efficiency increased with the PAC concentrations. And the process of adsorption increased from 303 K to 313 K and then decreased from 313 K to 323 K. Among four applied models, the experimental isotherm data were discovered to follow Langmuir isotherm model more closely. Thermodynamically, adsorption was endothermic because enthalpy, entropy and Gibbs constants were 198.5 kJ/mol, 0.709 kJ/mol/K and negative, respectively, which also indicated that the adsorption process was spontaneous and feasible. From kinetic analysis, the adsorption was suggested to be pseudo-second-order model. The adsorption of PFOA on the PAC was mainly controlled by particle diffusion.

  4. Removal of fluoride from aqueous solution using granular acid-treated bentonite (GHB): batch and column studies.

    PubMed

    Ma, Yuxin; Shi, Fengmei; Zheng, Xilai; Ma, Jun; Gao, Congjie

    2011-01-30

    Removal of fluoride from aqueous solution using granular acid-treated bentonite (GHB) was studied by batch and column adsorption experiments. The results of the batch adsorption experiments demonstrated that the maximum fluoride removal was obtained at pH of 4.95 and it took 40 min to attain equilibrium. Kinetics data fitted pseudo-second-order model. Batch adsorption data was better described by Redlich-Peterson and Freundlich isotherm models than Langmuir isotherm model. The adsorption type of GHB was ion exchange. Column experiments were carried out at different influent fluoride concentrations and different flow rates. The capacities of the breakthrough and exhaustion points increased with the decrease of flow rate and the increase of initial fluoride concentration. The experimental results were well fitted with Thomas model. Exhausted GHB was regenerated by alkali/alum treatment. The total sorption capacity of GHB was increased after regeneration and activation. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Electrical conductivity measurements of aqueous boric acid at 25--350{degree}C at saturation vapor pressure. Final report

    SciTech Connect

    Ho, P.C.; Palmer, D.A.

    1995-09-01

    Electrical conductance measurements of aqueous boric acid solutions (15-110 g/kg-H{sub 2}O {equivalent_to} 0.251--1.815 mol/kg-H{sub 2}O) were measured over the temperature range 25 to 75 C at saturation vapor pressures in glass cells with parallel platinum electrodes. Sixteen series of measurements were made involving three samples of boric acid from different sources. Conductance measurements were also made at 15.5 and 30.5 g/kg-H{sub 2}O over the temperature range 100 to 350 C at 50 C intervals with a metallic cell fitted with concentric platinum electrodes. The specific conductances of H{sub 3}BO{sub 3} (aq)were calculated after correction for the conductance of the solvent (water) and are tabulated in this report. At the specific conditions requested in the project description, namely a concentration of 110 g/kg-H{sub 2}O and 65 C, the specific conductance of boric acid is 293.2 {+-} 1.8 microSiemens/cm based on duplicate measurements of four independent solutions. The results from these tests will be utilized by the Tokamak Physics Experimental Project (TPX).

  6. Investigation of a Cu(II)-poly(gamma-glutamic acid) complex in aqueous solution and its insulin-mimetic activity.

    PubMed

    Karmaker, Subarna; Saha, Tapan K; Sakurai, Hiromu

    2007-04-10

    The complexation between cupric ions (Cu(II)) and poly(gamma-glutamic acid) (gamma-PGA) in aqueous solutions (pH 3-11) has been studied by UV-visible absorption and electron spin resonance (ESR) techniques. Formation of the Cu(II)-gamma-PGA complex is confirmed by the observation of the blue shift of the absorption band in the visible region, anisotropic line shapes in the ESR spectrum at room temperature, and a computer simulation of the visible absorption spectrum of the complex. The structure of the Cu(II)-gamma-PGA complex, depending on the pH, has been determined. The in vitro insulin-mimetic activity of the Cu(II)-gamma-PGA complex is examined by determining both inhibition of free fatty acid release and glucose uptake in isolated rat adipocytes treated with epinephrine, in which the concentration of the Cu(II)-gamma-PGA complex for 50% inhibition of free fatty acid release is very similar to that of CuSO4. However, it is significantly lower than that of a previously reported insulin-mimetic bis(3-hydroxypicolinato)copper(II), [Cu(3hpic)2], complex.

  7. A pulse radiolysis investigation of the reactions of tributyl phosphate with the radical products of aqueous nitric acid irradiation.

    PubMed

    Mincher, Bruce J; Mezyk, Stephen P; Martin, Leigh R

    2008-07-17

    Tributyl phosphate (TBP) is the most common organic compound used in liquid-liquid separations for the recovery of uranium, neptunium, and plutonium from acidic nuclear fuel dissolutions. The goal of these processes is to extract the actinides while leaving fission products in the acidic, aqueous phase. However, the radiolytic degradation of TBP has been shown to reduce separation factors of the actinides from fission products and to impede the back-extraction of the actinides during stripping. As most previous investigations of the radiation chemistry of TBP have focused on steady state radiolysis and stable product identification, with dibutylphosphoric acid (HDBP) invariably being the major product, here we have determined room temperature rate constants for the reactions of TBP and HDBP with the hydroxyl radical [(5.00 +/- 0.05) x 10(9), (4.40 +/- 0.13) x 10(9) M(-1) s(-1)], hydrogen atom [(1.8 +/-0.2) x 10(8), (1.1 +/- 0.1) x 10(8) M(-1) s(-1)], nitrate radical [(4.3 +/- 0.7) x 10(6), (2.9 +/- 0.2) x 10(6) M(-1) s(-1)], and nitrite radical (<2 x 10 (5), <2 x 10(5) M(-1) s(-1)), respectively. These data are used to discuss the mechanism of TBP radical-induced degradation.

  8. 4-Carboxybenzophenone-sensitized photooxidation of sulfur-containing amino acids in alkaline aqueous solutions. Secondary photoreactions kinetics

    SciTech Connect

    Bobrowski, K.; Hug, G.L. ); Marciniak, B. A. Mickiewicz Univ., Poznan ); Kozubek, H. )

    1994-01-13

    Sulfur-containing amino acids and alanine were oxidized via photosensitization by 4-carboxybenzophenone (CB) in alkaline aqueous solutions. The mechanism of this reaction was examined using steady-state and laser flash photolysis techniques. The rate constants were determined for the quenching of the CB triplet state by five sulfur-containing amino acids and alanine and were found to be approximately 10[sup 9] and 1.8 x 10[sup 8] M[sup [minus]1] s[sup [minus]1], respectively. The observation of the (S therefore S)[sup +] radical cations of some of the amino acids showed that the quenching process involves an electron transfer from the sulfur atom to the triplet state of CB. A show process of formation of the ketyl radical anion occurring on the microsecond time scale was assigned to the one-electron reduction of CB by the [alpha]-aminoalkyl radicals that were formed earlier as a result of an intramolecular electron transfer from the carboxyl group to the sulfur-centered radical cation followed by decarboxylation. For thiaproline, the pseudo-first-order rate constant, k[prime][sub obs], which characterizes the slow process of secondary ketyl radical anion formation, is linearly dependent on the CB concentration over the pH region 9.4-13.4. A detailed mechanism for the primary and the secondary photoreduction of CB is proposed and discussed. 32 refs., 7 figs., 5 tabs.

  9. S-oxygenation of thiocarbamides IV: Kinetics of oxidation of tetramethylthiourea by aqueous bromine and acidic bromate.

    PubMed

    Ajibola, Risikat O; Simoyi, Reuben H

    2011-04-07

    The kinetics and mechanism of oxidation of tetramethylthiourea (TTTU) by bromine and acidic bromate has been studied in aqueous media. The kinetics of reaction of bromate with TTTU was characterized by an induction period followed by formation of bromine. The reaction stoichiometry was determined to be 4BrO(3)(-) + 3(R)(2)C═S + 3H(2)O → 4Br(-) + 3(R)(2)C═O + 3SO(4)(2-) + 6H(+). For the reaction of TTTU with bromine, a 4:1 stoichiometric ratio of bromine to TTTU was obtained with 4Br(2) + (R)(2)C═S + 5H(2)O → 8Br(-) + SO(4)(2-) + (R)(2)C═O + 10H(+). The oxidation pathway went through the formation of tetramethythiourea sulfenic acid as evidenced by the electrospray ionization mass spectrum of the dynamic reaction solution. This S-oxide was then oxidized to produce tetramethylurea and sulfate as final products of reaction. There was no evidence for the formation of the sulfinic and sulfonic acids in the oxidation pathway. This implicates the sulfoxylate anion as a precursor to formation of sulfate. In aerobic conditions, this anion can unleash a series of genotoxic reactive oxygen species which can explain TTTU's observed toxicity. A bimolecular rate constant of 5.33 ± 0.32 M(-1) s(-1) for the direct reaction of TTTU with bromine was obtained.

  10. Spectroscopic study of Mg(II) ion influence on the autoxidation of gallic acid in weakly alkaline aqueous solutions

    NASA Astrophysics Data System (ADS)

    Nikolić, G. M.; Veselinović, A. M.; Nikolić, R. S.; Mitić, S. S.

    2011-12-01

    Gallic acid autoxidation in weakly alkaline aqueous solutions was studied by UV-Vis spectrophotometry and ESR spectroscopy under various conditions. Lowering the pH value from 10 to 8.5 probably changes the mechanism of the autoxidation reaction as evidenced by the different time variations of UV-Vis spectra of solutions. The presence of Mg(II) ions greatly influences the autoxidation reaction at pH 8.5. Although the UV-Vis spectral changes with time follow the similar pattern during the gallic acid autoxidation at pH 10 and at pH 8.5 in the presence of Mg(II) ions, some small differences indicate that Mg(II) ions not only affect the electron density of absorbing species but also influence the overall mechanism of the autoxidation reaction. ESR spectra of free radials formed during the initial stage of gallic acid autoxidation at pH 8.5 in the presence of Mg(II) ions were recorded. Computer simulation of ESR spectra allows partial characterization of these free radicals.

  11. Magnetically separable nanoferrite-anchored glutathione: Aqueous homocoupling of arylboronic acids under microwave irradiation

    EPA Science Inventory

    A highly active, stable and magnetically separable glutathione based organocatalyst provided good to excellent yields to symmetric biaryls in the homocoupling of arylboronic acids under microwave irradiation. Symmetrical biaryl motifs are present in a wide range of natural p...

  12. Magnetically separable nanoferrite-anchored glutathione: Aqueous homocoupling of arylboronic acids under microwave irradiation

    EPA Science Inventory

    A highly active, stable and magnetically separable glutathione based organocatalyst provided good to excellent yields to symmetric biaryls in the homocoupling of arylboronic acids under microwave irradiation. Symmetrical biaryl motifs are present in a wide range of natural p...

  13. Spectrofluorimetric study of the interaction of ciprofloxacin with amino acids in aqueous solution following solvatochromic studies

    NASA Astrophysics Data System (ADS)

    Alizadeh, Kamal; Mobarrez, Mahsa; Ganjali, Mohammad Reza; Norouzi, Parviz; Chaichi, Mohammad Javad

    Complexation of a fluoroquinolone derivative (ciprofloxacin), L, and some amino acids has been studied using spectrofluorimetric method. Results indicated that ciprofloxacin have a greater tendency to form a 1:1 complex with aspartic acid and arginine than the other tested molecules. The fluorescence of ciprofloxacin exhibits quenching process while it has been titrated with these amino acids. Formation constant values (Kf) for complex formed between ciprofloxacin and amino acids were also calculated. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were studied too. Possible reasons for the observed stability sequence were discussed based on the structures proposed for the resulting complexes. Besides the solution studies, solvatochromic properties of the ciprofloxacin are discussed by studying its spectra in a selection of different solvents.

  14. Sorption of benzoic acid from aqueous solution by cetyltrimethylammonium bromide modified birnessite.

    PubMed

    Wang, Nan-Hui; Lo, Shang-Lien

    2012-01-01

    Layered manganese oxide (birnessite) has been studied for its use as catalytic materials. The research presented in this study investigates the sorption of benzoic acid from water on synthesized cetyltrimethylammonium bromide modified birnessite (CTAB-birnessite). The synthesized CTAB-birnessite was characterized by X-ray powder diffraction (XRD). The experimental results of sorption kinetic were well fitted to the pseudo-second-order equation. The sorption isotherms were linear at different pH values, and it indicates a partition mechanism. Up to about 53% of the dissolved benzoic acid was sorbed by CTAB-birnessite; in contrast, only 16% of the dissolved benzoic acid was sorbed by birnessite. These results indicate that CTAB-birnessite can be a potential sorbent for benzoic acid removal.

  15. Tandem bis-aza-Michael addition reaction of amines in aqueous medium promoted by polystyrenesulfonic Acid

    EPA Science Inventory

    An efficient and environmentally benign tandem bis-aza-Michael addition of amines catalyzed by polystyrene sulfonic acid (PSSA) is described. This operationally simple high yielding microwave assisted synthetic protocol proceeded in water in the absence of any organic solvent.

  16. Tandem bis-aza-Michael addition reaction of amines in aqueous medium promoted by polystyrenesulfonic Acid

    EPA Science Inventory

    An efficient and environmentally benign tandem bis-aza-Michael addition of amines catalyzed by polystyrene sulfonic acid (PSSA) is described. This operationally simple high yielding microwave assisted synthetic protocol proceeded in water in the absence of any organic solvent.

  17. Photocatalytic decomposition of humic acids in anoxic aqueous solutions producing hydrogen, oxygen and light hydrocarbons.

    PubMed

    Klauson, Deniss; Budarnaja, Olga; Beltran, Ignacio Castellanos; Krichevskaya, Marina; Preis, Sergei

    2014-01-01

    Photocatalytic water splitting for hydrogen and oxygen production requires sacrificial electron donors, for example, organic compounds. Titanium dioxide catalysts doped with platinum, cobalt, tungsten, copper and iron were experimentally tested for the production of hydrogen, oxygen and low molecular weight hydrocarbons from aqueous solutions of humic substances (HS). Platinum-doped catalyst showed the best results in hydrogen generation, also producing methane, ethene and ethane, whereas the best oxygen production was exhibited by P25, followed by copper--and cobalt-containing photocatalysts. Iron-containing photocatalyst produced carbon monoxide as a major product. HS undergoing anoxic photocatalytic degradation produce hydrogen with minor hydrocarbons, and/or oxygen. It appears that better hydrogen yield is achieved when direct HS splitting takes place, as opposed to HS acting as electron donors for water splitting.

  18. Methylene blue adsorption from aqueous solution by activated carbon: effect of acidic and alkaline solution treatments.

    PubMed

    Ijagbemi, Christianah O; Chun, Ji I; Han, Da H; Cho, Hye Y; O, Se J; Kim, Dong S

    2010-01-01

    The removal of Methylene Blue (MB) from aqueous solution using activated carbon (AC) has been investigated. Adsorption experiments were conducted and the maximum adsorption capacity was determined. The effect of experimental parameters such as pH, dye concentration and temperature were studied on the adsorption process. Equilibrium data were mathematically modeled using the Langmuir and Freundlich adsorption models to describe the equilibrium isotherms at different dye concentrations and temperature. Parameters of best-fit model were calculated and discussed. To understand the mechanism of adsorption, kinetic models were employed to follow the adsorption processes; the pseudo-first-order best described the adsorption of MB onto AC. It was found that pH plays a major role in the adsorption process; adsorption capacity was influenced by the physical and surface chemical properties of carbon and the pH of the solution. 99.0% MB removal was achieved at equilibrium.

  19. Extraction and isolation of lithospermic acid B from Salvia miltiorrhiza Bunge using aqueous two-phase extraction followed by high-performance liquid chromatography.

    PubMed

    Guo, Yong Xue; Shi, Chang Zhi; Zhang, Lei; Lv, Lin; Zhang, Yue Yong

    2016-09-01

    A rapid and effective method integrating separation and purification of lithospermic acid B from Salvia miltiorrhiza Bunge was developed by combining an aqueous two-phase system extraction with preparative chromatography. An aqueous two-phase system of n-butyl alcohol/KH2 PO4 was chosen from seven systems. The influence of parameters including concentration of KH2 PO4 , n-butyl alcohol concentration, pH, and the ratio of an aqueous two-phase system to crude extract were investigated using a single factor design. Response surface methodology was subsequently used to find the optimal compositions of an aqueous two-phase system. Keeping a solvent-to-solid ratio of 10, the final optimized composition of an aqueous two-phase system was 39.1% w/w n-butyl alcohol and 22.6% w/w KH2 PO4 . Under these conditions a recovery yield of 99.8% and a high partition coefficient of 310.4 were obtained. In a pilot-scale experiment using optimized conditions, 18.79 g of lithospermic acid B with a purity of 70.5% and in a yield of 99.8% was separated from 0.5 kg of crude extract. Subsequently, 9.94 g lithospermic acid B with a purity of 99.3% and recovery yield of 70.3% was obtained with a preparative chromatographic process, and the two-step total recovery was 70.1%.

  20. Effects of Relative Humidity and Particle Phase Water on the Heterogeneous OH Oxidation of 2-Methylglutaric Acid Aqueous Droplets.

    PubMed

    Chim, Man Mei; Chow, Chun Yin; Davies, James F; Chan, Man Nin

    2017-03-02

    Organic aerosols can exist as aqueous droplets, with variable water content depending on their composition and environmental conditions (e.g., relative humidity (RH)). Recent laboratory studies have revealed that oxidation kinetics in highly concentrated droplets can be much slower than those in dilute solutions. However, it remains unclear whether aerosol phase water affects the formation of reaction products physically and/or chemically. In this work, we investigate the role of aerosol phase water on the heterogeneous chemistry of aqueous organic droplets consisting of 2-methylglutaric acid (2-MGA), measuring the reaction kinetics and the reaction products upon heterogeneous OH oxidation over a range of RH. An atmospheric pressure soft ionization source (direct analysis in real time, DART) coupled with a high-resolution mass spectrometer is used to obtain real-time molecular information on the reaction products. Aerosol mass spectra show that the same reaction products are formed at all measured RH. At a given reaction extent of the parent 2-MGA, the aerosol composition is independent of RH. These results suggest the aerosol phase water does not alter reaction mechanisms significantly. Kinetic measurements find that the effective OH uptake coefficient, γeff, decreases with decreasing RH below 72%. Isotopic exchange measurements performed using aerosol optical tweezers reveal water diffusion coefficients in the 2-MGA droplets to be 3.0 × 10(-13) to 8.0 × 10(-13) m(2) s(-1) over the RH range of 47-58%. These values are comparable to those of other viscous organic aerosols (e.g., citric acid), indicating that 2-MGA droplets are likely to be viscous at low humidity. Smaller γeff at low RH is likely attributed to the slower diffusion of reactants within the droplets. Taken together, the observed relationship between the γeff and RH is likely attributed to changes in aerosol viscosity rather than changes in reaction mechanisms.

  1. Contribution of diffuse inputs to the aqueous mass load of perfluoroalkyl acids in river and stream catchments in Korea.

    PubMed

    Kim, Seung-Kyu; Li, Dong-Hao; Shoeib, Mahiba; Zoh, Kyung-Duk

    2014-02-01

    Recent studies disagree regarding the contributions of point versus non-point sources to the aqueous mass loads of perfluoroalkyl acids (PFAAs). This study investigated the longitudinal change in PFAA mass load from upstream to downstream stations along rivers and/or streams to assess the relative contributions of point versus nonpoint inputs. With concentrations 10 to 100 times higher than running water, point sources such as wastewater treatment plants (WWTPs) effluent and airport ditch-outlet (ADO) water were separated from neighboring upstream and downstream running waters using principal component analysis. Source waters were characterized by certain predominant components [e.g., perfluorobutylsulfonate (PFBS) and perfluorooctanoic acid (PFOA) in WWTP effluent and perfluorohexylsulfonate (PFHxS) and perfluorooctylsulfonate (PFOS) in ADO water], which were minor components of running water. From a mass balance assessment of PFAA mass load, certain compounds such as PFOA and PFBS dominated the contribution of point sources to the mass load in the running water at downstream stations or in small catchment basins with high levels of industrial activity. Most of the mass load in the investigated catchments was attributable to upstream running water with a minor influence from industrial, commercial, and domestic human activities. Furthermore, the negative relationship of per capita emission factors (hereafter, EFs) with population density and a lower contribution of PFAA from WWTPs (~30% on average) compared to the running water-derived mass load at the national level indicated that diffuse inputs were more important contributors to aqueous PFAA contamination in each catchment basin as well as the entire watershed of the country (Korea). Volatile precursor compounds, which are readily dispersed to neighboring basins and transformed to PFAAs in the ambient environment, can be an important source of these diffuse inputs and will become more significant over time.

  2. Poly(hydroxyethyl methacrylate-co-methacryloylglutamic acid) nanospheres for adsorption of Cd2+ ions from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Esen, Cem; Şenay, Raziye Hilal; Feyzioğlu, Esra; Akgöl, Sinan

    2014-02-01

    Poly(2-hydroxyethyl methacrylate-co- N-methacryloyl-( l)-glutamic acid) p(HEMA-MAGA) nanospheres have been synthesized, characterized, and used for the adsorption of Cd2+ ions from aqueous solutions. Nanospheres were prepared by surfactant free emulsion polymerization. The p(HEMA-MAGA) nanospheres were characterized by SEM, FTIR, zeta size, and elemental analysis. The specific surface area of nanospheres was found to be 1,779 m2/g. According to zeta size analysis results, average size of nanospheres is 147.3 nm with poly-dispersity index of 0.200. The goal of this study was to evaluate the adsorption performance of p(HEMA-MAGA) nanospheres for Cd2+ ions from aqueous solutions by a series of batch experiments. The Cd2+ concentration was determined by inductively coupled plasma-optical emission spectrometer. Equilibrium sorption experiments indicated a Cd2+ uptake capacity of 44.2 mg g-1 at pH 4.0 at 25 °C. The adsorption of Cd2+ ions increased with increasing pH and reached a plateau value at around pH 4.0. The data were successfully modeled with a Langmuir equation. A series of kinetics experiments was then carried out and a pseudo-second order equation was used to fit the experimental data. Desorption experiments which were carried out with nitric acid showed that the p(HEMA-MAGA) nanospheres could be reused without significant losses of their initial properties in consecutive adsorption and elution operations.

  3. Adsorption characteristics of malic acid from aqueous solutions by weakly basic ion-exchange chromatography.

    PubMed

    Gao, Qiang; Pan, Chaoqiang; Liu, Fabao; Lu, Fuping; Wang, Depei; Zhang, Jian; Zhu, Yan

    2012-08-17

    In this study, we reported the effects of temperature, malic acid loading concentration, and resin dose on malic acid adsorption by IRA-67 in batch experiments. The kinetic data well fitted the pseudo-second-order kinetic model. Both the equilibrium and ultimate adsorption slightly decreased with increased temperature from 303 to 323 K at 74.7 g/L malic acid loading concentration. The malic acid adsorption was revealed as a homogeneous adsorbent process by the Langmuir model and film diffusion process at loading concentrations of 18.2-94.5 g/L malic acid by the Boyd plot. The values of effective diffusion coefficient D(i) also increased with the temperature. Based on Eq. (15), the negative values of ΔG° and ΔH° revealed that the adsorption process was spontaneous and exothermic. The negative value of ΔS° also indicated the decrease in the solid-liquid interface randomness at this interface when malic acid is adsorbed by IRA-67.

  4. Formic acid as an alternative reducing agent for the catalytic nitrate reduction in aqueous media.

    PubMed

    Choi, Eun-Kyoung; Park, Kuy-Hyun; Lee, Ho-Bin; Cho, Misun; Ahn, Samyoung

    2013-08-01

    Formic acid was used for the nitrate reduction as a reductant in the presence of Pd:Cu/gamma-alumina catalysts. The surface characteristics of the bimetallic catalyst synthesized by wet impregnation were investigated by SEM, TEM-EDS. The metals were not distributed homogeneously on the surface of catalyst, although the total contents of both metals in particles agreed well with the theoretical values. Formic acid decomposition on the catalyst surface, its influence on solution pH and nitrate removal efficacy was investigated. The best removal of nitrate (50 ppm) was obtained under the condition of 0.75 g/L catalyst with Pd:Cu ratio (4:1) and two fold excess of formic acid. Formic acid decay patterns resembled those of nitrate removal, showing a linear relationship between k(f) (formic acid decay) and k (nitrate removal). Negligible amount of ammonia was detected, and no nitrite was detected, possibly due to buffering effect of bicarbonate that is in situ produced by the decomposition of formic acid, and due to the sustained release of H2 gas.

  5. Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors

    PubMed Central

    Kawasaki, Shin-ichiro; Suzuki, Akira

    2013-01-01

    Summary The inner surface of a metallic tube (i.d. 0.5 mm) was coated with a palladium (Pd)-based thin metallic layer by flow electroless plating. Simultaneous plating of Pd and silver (Ag) from their electroless-plating solution produced a mixed distributed bimetallic layer. Preferential acid leaching of Ag from the Pd–Ag layer produced a porous Pd surface. Hydrogenation of p-nitrophenol was examined in the presence of formic acid simply by passing the reaction solution through the catalytic tubular reactors. p-Aminophenol was the sole product of hydrogenation. No side reaction occurred. Reaction conversion with respect to p-nitrophenol was dependent on the catalyst layer type, the temperature, pH, amount of formic acid, and the residence time. A porous and oxidized Pd (PdO) surface gave the best reaction conversion among the catalytic reactors examined. p-Nitrophenol was converted quantitatively to p-aminophenol within 15 s of residence time in the porous PdO reactor at 40 °C. Evolution of carbon dioxide (CO2) was observed during the reaction, although hydrogen (H2) was not found in the gas phase. Dehydrogenation of formic acid did not occur to any practical degree in the absence of p-nitrophenol. Consequently, the nitro group was reduced via hydrogen transfer from formic acid to p-nitrophenol and not by hydrogen generated by dehydrogenation of formic acid. PMID:23843908

  6. Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors.

    PubMed

    Javaid, Rahat; Kawasaki, Shin-Ichiro; Suzuki, Akira; Suzuki, Toshishige M

    2013-01-01

    The inner surface of a metallic tube (i.d. 0.5 mm) was coated with a palladium (Pd)-based thin metallic layer by flow electroless plating. Simultaneous plating of Pd and silver (Ag) from their electroless-plating solution produced a mixed distributed bimetallic layer. Preferential acid leaching of Ag from the Pd-Ag layer produced a porous Pd surface. Hydrogenation of p-nitrophenol was examined in the presence of formic acid simply by passing the reaction solution through the catalytic tubular reactors. p-Aminophenol was the sole product of hydrogenation. No side reaction occurred. Reaction conversion with respect to p-nitrophenol was dependent on the catalyst layer type, the temperature, pH, amount of formic acid, and the residence time. A porous and oxidized Pd (PdO) surface gave the best reaction conversion among the catalytic reactors examined. p-Nitrophenol was converted quantitatively to p-aminophenol within 15 s of residence time in the porous PdO reactor at 40 °C. Evolution of carbon dioxide (CO2) was observed during the reaction, although hydrogen (H2) was not found in the gas phase. Dehydrogenation of formic acid did not occur to any practical degree in the absence of p-nitrophenol. Consequently, the nitro group was reduced via hydrogen transfer from formic acid to p-nitrophenol and not by hydrogen generated by dehydrogenation of formic acid.

  7. Wormlike micelles in mixed amino acid surfactant/nonionic surfactant aqueous systems and the effect of added electrolytes.

    PubMed

    Shrestha, Rekha Goswami; Rodriguez-Abreu, Carlos; Aramaki, Kenji

    2009-01-01

    The formation of viscoelastic wormlike micelles in mixed amino acid surfactant/nonionic surfactant aqueous systems in the presence of different counterions and salts is reported, and the effects of the different electrolytes on the rheological behavior are discussed. N-dodecanoylglutamic acid (LAD) is neutralized with biologically relevant L-lysine and L-arginine to obtain anionic surfactants (LAD-Lys2, LAD-Arg2) which form aqueous micellar solutions at 25 degrees C. Addition of a nonionic surfactant, tri-ethyleneglycol mono n-tetradecyl ether (C14EO3), to the aqueous solutions of both LAD-Lys2 and LAD-Arg2 causes the zero-shear viscosity (eta(0)) to increase with C14EO3 concentration gradually at first, and then sharply, indicating one-dimensional growth of the aggregates and eventual formation of entangled wormlike micelles. Further addition of C14EO3 ultimately leads to phase separation of liquid crystals. Such a phase separation, which limits the maximum attainable viscosity, takes place at lower C14EO3 concentrations for LAD-Lys2 compared to LAD-Arg2 systems. It was found that the rheological behavior of micellar solutions is significantly affected by the addition of Na+X(-) salts (X = Cl(-), Br(-), I(-), NO3(-)). The maximum viscosities obtained for the systems with added salt are all higher than that of the salt-free system, and the onset of wormlike micelle formation shift towards lower nonionic surfactant concentrations upon addition of electrolyte. The maximum attainable thickening effect of anions increases in the order NO3(-)>I(-)>Br(-)>Cl(-). The effect of temperature was also investigated. Phase separation takes place at certain temperature, which depends on the type of anion in the added salt, and decreases in the order I(-)>NO3(-)>Br(-) approximately equal Cl(-), in agreement with Hofmeister's series in terms of amphiphile solubility. The thermoresponsive rheological behavior was also found to be highly dependent on the type of anion, and anomalous

  8. Effect of rat pretreatment with aqueous solutions of stevioside and bile acids on the action of certain cardioactive drugs.

    PubMed

    Vasović, Velibor; Vukmirović, Sasa; Posa, Mihalj; Mikov, Momir; Rasković, Aleksandar; Jakovljević, Vida

    2006-01-01

    The interaction of aqueous solutions of stevioside and bile acids with cardioactive drugs was studied in rats by registering changes in their electrocardiograms (ECG). Wistar rats of both sexes received daily doses of 20 mg/kg (i.p.) of an aqueous solution of stevioside or physiological solution (controls), then were narcotized with urethane and connected to the ECG apparatus for the first recording. The jugular vein was prepared and connected to an infusion pump to administer one of the drugs: adrenaline (0.1 mg/ml), verapamil (2.5 mg/ml) or metoprolol (1 mg/ml) to rats in both groups, while recording their ECGs. In the second part of the study, the animals were treated in the same way but instead of the stevioside solution received a single dose of 4 mg/kg of monoketocholic acid methyl ester (ME) or sodium salt of the same bile acid (MKHNa), 30 minutes before cardioactive drug infusion. The infusion rate of cardioactive drugs was 0.2 ml/min, except for verapamil (0.1 ml/min). The events observed on ECG recordings were the first myocardial reaction to drug infusion, the second longer-lasting reaction (observed as more extended extrasystoles, decrease in intensity of the QRS complex, or changes in heart rate frequency), and toxicity effect. In the control animals, adrenaline induced a decrease in heart rate frequency at a dose of 0.094 mg/kg, while with stevioside-pretreated rats this effect appeared significantly earlier (at a dose of 0.018 mg/kg). No toxic effect of adrenaline was observed, either in control or stevioside-pretreated group. Bile acids caused no changes in myocardial reaction to adrenaline. Only in the group of animals that received MKHNa, a significant decrease in the QRS complex was observed. Finally, the infusion of stevioside to intact animals at doses of 45 and 55 mg/kg caused no significant changes in the ECG patterns. The myocardial reaction to metoprolol remained unchanged in rats of all groups when compared with controls except for a mild

  9. Polyacrylic acid brushes grafted from P(St-AA)/Fe3O4 composite microspheres via ARGET-ATRP in aqueous solution for protein immobilization.

    PubMed

    Xie, Liqin; Lan, Fang; Li, Wenliao; Liu, Ziyao; Ma, Shaohua; Yang, Qi; Wu, Yao; Gu, Zhongwei

    2014-11-01

    Recently, the atom transfer radical polymerization (ATRP) of acrylic monomers in many reaction systems has been successfully accomplished. However, its application in aqueous solution is still a challenging task. In this work, polyacrylic acid (PAA) brushes with tunable length were directly grafted from P(St-AA)/Fe3O4 composite microspheres in aqueous solution via an improved method, activators regenerated by electron transfer atom transfer radical polymerization (ARGET-ATRP). This reaction was carried out in environment-friendly solvent. As well, this method overcame the sensitivity of the catalyst. Due to the strong coordination interaction of carboxyl groups, PAA brushes were employed for immobilizing gold nanoparticles, which were prepared via the in situ reduction of chloroauric acid. The PAA brushes modified magnetic composite microspheres decorating with gold nanoparticles were efficient for specific immobilization and separation of bovine serum albumin (BSA) from aqueous solution under the external magnetic field. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Phase diagrams and water activities of aqueous ammonium salts of malonic acid.

    PubMed

    Beyer, Keith D; Richardson, Michael; Reusch, Breanna

    2011-04-14

    Malonic acid has been observed in the free troposphere and as a component of tropospheric aerosol, among other dicarboxylic acids. These aerosols can uptake ammonia, which partially or completely neutralizes the acids. Therefore, the impact of ammoniated dicarboxylic acids on the phases that can exist in aerosols at atmospheric temperatures needs investigation. To that end, the low temperature, solid/liquid phase diagrams of ammonium hydrogen malonate/water, ammonium malonate/water, and triammonium hydrogen malonate/water have been investigated with differential scanning calorimetry and infrared spectroscopy of thin films. Results show that the order of increasing solubility is triammonium hydrogen malonate, ammonium hydrogen malonate, malonic acid, and ammonium malonate. We have also determined a hydrate may form in the ammonium malonate system and decompose below 240 K. We report water activities at the ice melting points for each system up to the respective eutectic concentrations, and find for a given mole fraction of water, increasing ammonium content leads to decreasing water activity coefficients.

  11. Pervaporation of Water from Aqueous Sulfuric Acid at Elevated Temperatures Using Nafion® Membranes

    SciTech Connect

    Christopher J. Orme; Frederick F. Stewart

    2009-01-01

    The concentration of sulfuric acid by pervaporation has been studied using Nafion-112® and Nafion-117® membranes, which have been characterized in terms of flux, permeability, and selectivity at 100 ºC and 120 ºC. Feed concentrations investigated ranged from 40 to over 80 weight percent. In general, water fluxes ranged from 100-8000 g/m2h, depending on feed acid concentration and separations factors as high as 104 were observed. Membrane stability was probed using Dynamic Mechanical Analysis that revealed some embrittlement of the membranes during use. Further studies showed that the embrittlement was due to an interaction with the acid and was not induced by the operating temperature.

  12. Removal of 8-quinolinecarboxylic acid pesticide from aqueous solution by adsorption on activated montmorillonites.

    PubMed

    Mekhloufi, M; Zehhaf, A; Benyoucef, A; Quijada, C; Morallon, E

    2013-12-01

    Sodium montmorillonite (Na-M), acidic montmorillonite (H-M), and organo-acidic montmorillonite (Org-H-M) were applied to remove the herbicide 8-quinolinecarboxylic acid (8-QCA). The montmorillonites containing adsorbed 8-QCA were investigated by transmission electron microscopy, FT-IR spectroscopy, X-ray diffraction analysis, X-ray fluorescence thermogravimetric analysis, and physical adsorption of gases. Experiments showed that the amount of adsorbed 8-QCA increased at lower pH, reaching a maximum at pH 2. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The Langmuir model provided the best correlation of experimental data for adsorption equilibria. The adsorption of 8-QCA decreased in the order Org-H-M > H-M > Na-M. Isotherms were also used to obtain the thermodynamic parameters. The negative values of ΔG indicated the spontaneous nature of the adsorption process.

  13. Thermodynamic and ultrasonic properties of ascorbic Acid in aqueous protic ionic liquid solutions.

    PubMed

    Singh, Vickramjeet; Sharma, Gyanendra; Gardas, Ramesh L

    2015-01-01

    In this work, we report the thermodynamic and ultrasonic properties of ascorbic acid (vitamin C) in water and in presence of newly synthesized ammonium based protic ionic liquid (diethylethanolammonium propionate) as a function of concentration and temperature. Apparent molar volume and apparent molar isentropic compression, which characterize the solvation state of ascorbic acid (AA) in presence of protic ionic liquid (PIL) has been determined from precise density and speed of sound measurements at temperatures (293.15 to 328.15) K with 5 K interval. The strength of molecular interactions prevailing in ternary solutions has been discussed on the basis of infinite dilution partial molar volume and partial molar isentropic compression, corresponding volume of transfer and interaction coefficients. Result has been discussed in terms of solute-solute and solute-solvent interactions occurring between ascorbic acid and PIL in ternary solutions (AA + water + PIL).

  14. Spectroscopic evidence for organic diacid complexation with dissolved silica in aqueous systems—I. Oxalic acid

    USGS Publications Warehouse

    Marley, N.A.; Bennett, P.; Janecky, D.R.; Gaffney, J.S.

    1989-01-01

    Increased solubility of quartz and mobilization in contaminated groundwater due to the complexation with dissolved organic acids has been recently proposed [Bennett and Siegel, Nature326, 684–686 (1987)]. Using laser Raman and Fourier transform infrared spectroscopies, we have examined mixed solutions of oxalic and silicic acids at near neutral pH in the tenth molar concentration ranges in an attempt to directly observe the proposed organo-silicate complexes.In both laser Raman and infrared spectra, product bands were observed that indicate an oxalate/silicic acid ester is being formed in the reaction. These data support the observation that organic diacids can lead to enhanced solubility of quartz in hydrogeological systems.

  15. Synergistic effects of citric acid and polyethyleneimine to remove copper from aqueous solutions.

    PubMed

    Maketon, W; Ogden, K L

    2009-04-01

    Citric acid and copper are often found in the waste streams from semiconductor manufacturing. They are likely to form complexes, which modify copper speciation. This can lead to changes in sorption mechanisms and the sorption capacity. PEI-agarose adsorbents in a packed bed column are capable of removing these anionic complexes, but the competitive binding between these organic ligands and PEI for copper is not well understood and needs to be explored. The current work focuses on investigating copper sorption by PEI-agarose adsorbent in the presence of citrate ions. Copper binding capacity and copper breakthrough curves are compared and contrasted to results without additional chelator present. The presence of citric acid at the molar ratios of 0.5, 1, and 2 to copper enhances the total copper uptake in a continuous column by 175%, 100% and 75%, respectively. This is a great advantage when wastewater streams contain either low or high amounts of citric acid ligand.

  16. Thermodynamic and Ultrasonic Properties of Ascorbic Acid in Aqueous Protic Ionic Liquid Solutions

    PubMed Central

    Singh, Vickramjeet; Sharma, Gyanendra; Gardas, Ramesh L.

    2015-01-01

    In this work, we report the thermodynamic and ultrasonic properties of ascorbic acid (vitamin C) in water and in presence of newly synthesized ammonium based protic ionic liquid (diethylethanolammonium propionate) as a function of concentration and temperature. Apparent molar volume and apparent molar isentropic compression, which characterize the solvation state of ascorbic acid (AA) in presence of protic ionic liquid (PIL) has been determined from precise density and speed of sound measurements at temperatures (293.15 to 328.15) K with 5 K interval. The strength of molecular interactions prevailing in ternary solutions has been discussed on the basis of infinite dilution partial molar volume and partial molar isentropic compression, corresponding volume of transfer and interaction coefficients. Result has been discussed in terms of solute-solute and solute-solvent interactions occurring between ascorbic acid and PIL in ternary solutions (AA + water + PIL). PMID:26009887

  17. Chemisorption of Perfluorooctanoic Acid on Powdered Activated Carbon Initiated by Persulfate in Aqueous Solution.

    PubMed

    Sun, Bo; Ma, Jun; Sedlak, David L

    2016-07-19

    Perfluorooctanoic acid (PFOA) is a perfluorocarboxylic acid that is difficult to treat by most conventional methods. As a result, it is often removed from solution by adsorption on powdered activated carbon (PAC), followed by incineration of the spent carbon. To provide a new approach for treatment, PFOA was exposed to sulfate radicals (SO4(-•)) produced by thermolysis of persulfate (S2O8(2-)) in the presence of PAC. Under acidic conditions, thermal activation of persulfate resulted in transformation of PFOA to shorter-chain-length perfluorinated compounds, as previously reported. However, when thermolysis of persulfate occurred under circumneutral pH conditions in the presence of PAC, a new removal pathway for PFOA was observed. Under these conditions, the removal of PFOA was attributable to chemisorption, a process in which PAC catalyzed persulfate decomposition and reacted with the transformation products to produce covalently bound PFOA. At PAC concentrations between 200 and 1000 mg/L and an initial PFOA concentration of 0.5 μM, covalent bonding resulted in removal of 10-40% of the PFOA. Under these conditions, the process resulted in removal of more than half of a more hydrophilic perfluoroalkyl acid (i.e., perfluorobutanoic acid, PFBA), which was greater than the amount of PFBA removed by physical adsorption on PAC. Although the high reaction temperatures (i.e., 80 °C) and relatively high doses of PAC used in this study may be impractical for drinking water treatment, this process may be applied to the treatment of these recalcitrant compounds in industrial wastewater, reverse osmosis concentrate, and other waters that contain high concentrations of PFOA and other perfluorocarboxylic acids.

  18. Interaction of some metals between marine-origin humic acids and aqueous solutions

    SciTech Connect

    Huljev, D.J.

    1986-08-01

    The interaction of metal ions (carrier-free form) in aquatic medium with humic acids is a complicated process depending on the properties of humic acids (elementary, chemical, and trace element composition), metals studied (valence, charge, chemical form, concentration), and medium used (pH, ionic strength). The use of radionuclides was found to be very suitable for a rapid and precise determination of the distribution coefficient K/sub d/ (ratio of the concentration of a certain trace metal association with a gram of humic acid over the concentration of the same trace metal per milliliter of solution) of the investigated system. Isolated humic acids from offshore sediments from the North Adriatic (Lim channel, near Rovinj, Yugoslavia) were characterized according to their elementary composition, the amount of products of hydrolysis, and the trace elements bound. All experiments were carried out between pH 3 and 5. It was found that conditions usually present at the site where humic acid interacts with metal ions (anaerobic conditions, H/sub 2/S) in brackish (21% S) and standard seawater (38% S) are determined in the pH range 3 to 5. The results of the pick-up (uptake) and replacement (release) experiments are presented as a distribution coefficient (K/sub d/), as a function of contact time. Processes of pick-up and replacement of a number of metals under various physicochemical conditions were investigated and special attention was paid to the influence of salinity. With the increase in NaCl concentration and pH in the system, the fixation of ruthenium, zinc, cobalt, and mercury by humic acids decreased.

  19. Reduction of Cr(VI) by malic acid in aqueous Fe-rich soil suspensions.

    PubMed

    Zhong, Laiyuan; Yang, Jiewen

    2012-03-01

    Detoxification of Cr(VI) through reduction by organic reductants has been regarded as an effective way for remediation of Cr(VI)-polluted soils. However, such remediation strategy would be limited in practical applications due to the low Cr(VI) reduction rate. In this study, the catalytic effect of two Fe-rich soils (Ultisol and Oxisol) on Cr(VI) reduction by malic acid was evaluated. As the results shown, the two soils could obviously accelerate the reduction of Cr(VI) by malic acid at low pH conditions, while such catalytic effect was gradually suppressed as the increase in pH. After reaction for 48 h at pH 3.2, Oxalic acid was found in the supernatant of Ultisol, suggesting the oxidization of hydroxyl in malic acid to carboxyl and breakage of the bond between C(2) and C(3). It was also found that the catalytic reactivity of Ultisol was more significant than that of Oxisol, which could be partly attributed to the fact that the amount of Fe(II) released from the reductive dissolution of Ultisol by malic acid was larger than that of Oxisol. With addition of Al(III), the catalytic effect from Ultisol was inhibited across the pH range examined. On the contrary, the presence of Cu(II) would increase the catalytic effect of Ultisol, which was more pronounced with the increase in pH. This study proposed a potential way for elimination of the environmental risks posed by the Cr(VI) contamination by use of the natural soil surfaces to catalyze Cr(VI) reduction by the organic reductant such as malic acid, a kind of organic reductant originating from soil organic decomposition process or plant excretion.

  20. Production of fermentable sugars from corn fiber using soaking in aqueous ammonia (saa) pretreatment and fermentation to succinic acid by Escherichia coli afp184

    USDA-ARS?s Scientific Manuscript database

    Conversion of corn fiber (CF), a by-product from the corn-to-ethanol conversion process, into fermentable sugar and succinic acid was investigated using soaking in aqueous ammonia (SAA) pretreatment followed by biological conversions including enzymatic hydrolysis and fermentation using genetically ...

  1. Efficacy of chlorine, acidic electrolyzed water and aqueous chlorine dioxide solutions to decontaminate Escherichia coli O157:H7 from lettuce leaves

    USDA-ARS?s Scientific Manuscript database

    This study compared the efficacy of chlorine (20 – 200 ppm), acidic electrolyzed water (50 ppm chlorine, pH 2.6), acidified sodium chlorite (20 – 200 ppm chlorite ion concentration, Sanova), and aqueous chlorine dioxide (20 – 200 ppm chlorite ion concentration, TriNova) washes in reducing population...

  2. Interactions of aqueous amino acids and proteins with the (110) surface of ZnS in molecular dynamics simulations

    SciTech Connect

    Nawrocki, Grzegorz; Cieplak, Marek

    2014-03-07

    The growing usage of nanoparticles of zinc sulfide as quantum dots and biosensors calls for a theoretical assessment of interactions of ZnS with biomolecules. We employ the molecular-dynamics-based umbrella sampling method to determine potentials of mean force for 20 single amino acids near the ZnS (110) surface in aqueous solutions. We find that five amino acids do not bind at all and the binding energy of the remaining amino acids does not exceed 4.3 kJ/mol. Such energies are comparable to those found for ZnO (and to hydrogen bonds in proteins) but the nature of the specificity is different. Cysteine can bind with ZnS in a covalent way, e.g., by forming the disulfide bond with S in the solid. If this effect is included within a model incorporating the Morse potential, then the potential well becomes much deeper—the binding energy is close to 98 kJ/mol. We then consider tryptophan cage, a protein of 20 residues, and characterize its events of adsorption to ZnS. We demonstrate the relevance of interactions between the amino acids in the selection of optimal adsorbed conformations and recognize the key role of cysteine in generation of lasting adsorption. We show that ZnS is more hydrophobic than ZnO and that the density profile of water is quite different than that forming near ZnO—it has only a minor articulation into layers. Furthermore, the first layer of water is disordered and mobile.

  3. Determination of the optimum conditions for boric acid extraction with carbon dioxide gas in aqueous media from colemanite containing arsenic

    SciTech Connect

    Ata, O.N.; Colak, S.; Copur, M.; Celik, C.

    2000-02-01

    The Taguchi method was used to determine optimum conditions for the boric acid extraction from colemanite ore containing As in aqueous media saturated by CO{sub 2} gas. After the parameters were determined to be efficient on the extraction efficiency, the experimental series with two steps were carried out. The chosen experimental parameters for the first series of experiments and their ranges were as follows: (1) reaction temperature, 25--70 C; (2) solid-to-liquid ratio (by weight), 0.091 to 0.333; (3) gas flow rate (in mL/min), 66.70--711; (4) mean particle size, {minus}100 to {minus}10 mesh; (5) stirring speed, 200--600 rpm; (6) reaction time, 10--90 min. The optimum conditions were found to be as follows: reaction temperature, 70 C; solid-to-liquid ratio, 0.091; gas flow rate, 711 (in mL/min); particle size, {minus}100 mesh; stirring speed, 500 rpm; reaction time, 90 min. Under these optimum conditions, the boric acid extraction efficiency from the colemanite containing As was approximately 54%. Chosen experimental parameters for the second series of experiments and their ranges were as follows: (1) reaction temperature, 60--80 C; (2) solid-to-liquid ratio (by weight), 0.1000 to 0.167; (3) gas pressure (in atm), 1.5; 2.7; (4) reaction time, 45--120 min. The optimum conditions were found to be as follows: reaction temperature, 70 C; solid-to-liquid ratio, 0.1; gas pressure, 2.7 atm; reaction time, 120 min. Under these optimum conditions the boric acid extraction efficiency from the colemanite ore was approximately 75%. Under these optimum conditions, the boric acid extraction efficiency from calcined colemanite ore was approximately 99.55%.

  4. Acid-base interactions and complex formation while recovering copper(II) ions from aqueous solutions using cellulose adsorbent in the presence of polyvinylpyrrolidone

    NASA Astrophysics Data System (ADS)

    Nikiforova, T. E.; Kozlov, V. A.; Islyaikin, M. K.

    2012-12-01

    The sorption properties of nontreated cotton cellulose and cellulose modified with polyvinylpyrrolidone with respect to copper(II) ions are investigated. It is established that modified cellulose adsorbents have high sorption capability associated with the formation of new sorption centers during treatment with nitrogen-containing polymer. A mechanism is proposed for acid-base interactions in aqueous solutions of acids, bases, and salts during copper(II) cation recovery using cellulose adsorbent with the participation of polyvinylpyrrolidone.

  5. Aqueous Alteration of Mars-Analog Rocks Under an Acidic Atmosphere

    NASA Technical Reports Server (NTRS)

    Bullock, M. A.; Moore, J. M.; Mellon, M. T.

    2001-01-01

    The wind-blown fines of Mars have high amounts of salts that are easily mobilized by water. We report on laboratory experiments that produce brines from the interaction of water with Mars-analog rocks and a simulated acidic Mars paleoatmosphere. Additional information is contained in the original extended abstract.

  6. Solute-enhanced production of gamma-valerolactone (GVL) from aqueous solutions of levulinic acid

    DOEpatents

    Dumesic, James A.; Wettstein, Stephanie G.; Alonso, David Martin; Gurbuz, Elif Ispir

    2016-06-28

    A method to produce levulinic acid (LA) and gamma-valerolactone (GVL) from biomass-derived cellulose or lignocellulose by selective extraction of LA using GVL and optionally converting the LA so isolated into GVL, with no purifications steps required to yield the GVL.

  7. Solute-enhanced production of gamma-valerolactone (GVL) from aqueous solutions of levulinic acid

    DOEpatents

    Dumesic, James A; Wettstein, Stephanie G; Alonso, David Martin; Gurbuz, Elif Ispir

    2015-02-24

    A method to produce levulinic acid (LA) and gamma-valerolactone (GVL) from biomass-derived cellulose or lignocellulose by selective extraction of LA using GVL and optionally converting the LA so isolated into GVL, with no purifications steps required to yield the GVL.

  8. Aqueous Alteration of Mars-Analog Rocks Under an Acidic Atmosphere

    NASA Technical Reports Server (NTRS)

    Bullock, M. A.; Moore, J. M.; Mellon, M. T.

    2001-01-01

    The wind-blown fines of Mars have high amounts of salts that are easily mobilized by water. We report on laboratory experiments that produce brines from the interaction of water with Mars-analog rocks and a simulated acidic Mars paleoatmosphere. Additional information is contained in the original extended abstract.

  9. Enthalpy changes upon dilution and ionization of poly(L-glutamic acid) in aqueous solutions.

    PubMed

    Godec, Andrej; Skerjanc, Joze

    2005-07-14

    The enthalpy changes accompanying the dilution and ionization of poly(L-glutamic acid) in water have been measured at 25 degrees C for two degrees of polymerization (DP = 115 and DP = 480) at various degrees of ionization, alpha, for a concentration range from about 0.2 to 0.002 monomol/L. The heat of dilution displays an unusual dependence on the degree of ionization, which is in sharp contrast to the behavior of other weak carboxylic polyelectrolytes, such as poly(acrylic acid). The exothermic heat effects observed at low values of alpha become endothermic for the region where the helix-coil transition is most pronounced, and for high degrees of ionization, they are exothermic again. Evidently, an endothermic heat effect, produced by an additional conformational transition in the dilution process, is superimposed on the exothermic enthalpy of dilution, and it overweighs the latter in the region of alpha where the conformational transition is prevailing. The calorimetric titration curve, which gives the dependence of the heat of ionization, deltaH(i), on alpha, has a maximum and is typical for poly(carboxylic acids) which undergo pH-induced conformational transition, such as poly(methacrylic acid). The values of deltaH(i) obtained at two polymer concentrations indicate that the enthalpy of ionization depends on the polypeptide concentration.

  10. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium.

    PubMed

    Sun, Yugang; Xia, Younan

    2004-03-31

    The replacement reaction between silver nanostructures and an aqueous HAuCl(4) solution has recently been demonstrated as a versatile method for generating metal nanostructures with hollow interiors. Here we describe the results of a systematic study detailing the morphological, structural, compositional, and spectral changes involved in such a heterogeneous reaction on the nanoscale. Two distinctive steps have been resolved through a combination of microscopic and spectroscopic methods. In the first step, silver nanostructure (i.e., the template) is dissolved to generate gold atoms that are deposited epitaxially on the surface of each template. Silver atoms also diffuse into the gold shell (or sheath) to form a seamless, hollow nanostructure with its wall made of Au-Ag alloys. The second step involves dealloying, a process that selectively removes silver atoms from the alloyed wall, induces morphological reconstruction, and finally leads to the formation of pinholes in the walls. Reaction temperature was found to play an important role in the replacement reaction because the solubility constant of AgCl and the diffusion coefficients of Ag and Au atoms were both strongly dependent on this parameter. This work has enabled us to prepare metal nanostructures with controllable geometric shapes and structures, and thus optical properties (for example, the surface plasmon resonance peaks could be readily shifted from 500 to 1200 nm by controlling the ratio between Ag and HAuCl(4)).

  11. Atmospheric aqueous phase radical chemistry of the isoprene oxidation products methacrolein, methyl vinyl ketone, methacrylic acid and acrylic acid--kinetics and product studies.

    PubMed

    Schöne, Luisa; Schindelka, Janine; Szeremeta, Edyta; Schaefer, Thomas; Hoffmann, Dirk; Rudzinski, Krzysztof J; Szmigielski, Rafal; Herrmann, Hartmut

    2014-04-07

    Kinetic and mechanistic studies were conducted on the isoprene oxidation products methacrolein, methyl vinyl ketone, methacrylic and acrylic acid reacting with hydroxyl and nitrate radicals and sulfate radical anions in aqueous solution by use of the laser flash photolysis technique and a reversed-rate method for kinetics. High-performance liquid chromatography/mass spectrometry was applied for product analysis. The kinetic investigations show the highest reactivity of the hydroxyl radical followed by sulfate and nitrate radicals. For methacrolein and methyl vinyl ketone the following rate constants have been determined at 298 K: k(OH+methacrolein) = (9.4 ± 0.7) × 10(9) M(-1) s(-1), k(OH+methyl vinyl ketone) = (7.3 ± 0.5) × 10(9) M(-1) s(-1), k(NO3+methacrolein) = (4.0 ± 1.0) × 10(7) M(-1) s(-1), k(NO3+methyl vinyl ketone) = (9.7 ± 3.4) × 10(6) M(-1) s(-1), k(SO4(-)+methacrolein) = (9.9 ± 4.9) × 10(7) M(-1) s(-1) and k(SO4(-)+methyl vinyl ketone) = (1.0 ± 0.2) × 10(8) M(-1) s(-1). Temperature and pH dependencies of the reactions of OH, NO3 and SO4(-) with methacrolein, methyl vinyl ketone, methacrylic and acrylic acid as well as Arrhenius parameters have been obtained and discussed. Product studies were performed on the OH radical induced oxidation of methacrolein and methyl vinyl ketone. In the reaction of methacrolein + OH methylglyoxal and hydroxyacetone were identified as first oxidation products with yields of 0.099 and 0.162. Methylglyoxal was primarily produced in the oxidation of methyl vinyl ketone with a yield of 0.052. For both precursor compounds the formation of glycolaldehyde was observed for the first time with yields of 0.051 and 0.111 in the oxidation of methacrolein and methyl vinyl ketone, respectively. Furthermore, highly functionalised C4 compounds were determined from the oxidation of both precursor compounds, but for the first time for methyl vinyl ketone. Reaction schemes were developed based on known peroxyl radical

  12. A new experimental and theoretical investigation on the structures of aminoethyl phosphonic acid in aqueous medium based on the vibrational spectra and DFT calculations

    NASA Astrophysics Data System (ADS)

    Roldán, María L.; Ledesma, Ana E.; Raschi, Ana B.; Castillo, María V.; Romano, Elida; Brandán, Silvia A.

    2013-06-01

    A new study on the structural and vibrational properties of the aminoethylphosphonic acid was performed in aqueous solution phase by using the self-consistent reaction field (SCRF) method. We have studied and characterized it by infrared and Raman spectroscopies in solid and aqueous solution phases. The Density Functional Theory (DFT) method with Pople's basis set show that three stable zwitterions for the title molecule have been theoretically determined in aqueous solution and that probably they are present in it medium. Here, the solvent effects were studied by means of the self-consistent reaction field (SCRF) method with the polarized continuum model (PCM). The harmonic vibrational frequencies for the optimized geometries of the three zwitterions were calculated at the B3LYP/6-31G∗ level of the theory. A complete assignment of the IR and Raman spectra of the compound in aqueous solution was performed combining the DFT calculations with Pulay's Scaled Quantum Mechanics Force Field (SQMFF) methodology in order to fit the theoretical frequency values to the experimental ones. Moreover, Natural Bond Orbital (NBO) and topological properties calculations were performed to analyze the energies and geometrical parameters of its three zwitterions in aqueous medium as well as the magnitude of the intramolecular interactions. The bond orders, atomic charges, solvation energies, dipole moments, molecular electrostatic potentials and force constants parameters calculated for zwitterions in aqueous solution, may be used to gain chemical and vibrational insights into related compounds.

  13. Chromium(VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions.

    PubMed

    Ashraf, Anam; Bibi, Irshad; Niazi, Nabeel Khan; Ok, Yong Sik; Murtaza, Ghulam; Shahid, Muhammad; Kunhikrishnan, Anitha; Li, Dongwei; Mahmood, Tariq

    2017-07-03

    In the present study, we examined sorption of chromate (Cr(VI)) to acid-activated banana peel (AABP) and organo-montmorillonite (O-mont) as a function of pH, initial Cr(VI) concentration at a sorbent dose of 4 g L(-1) and at 20 ± 1°C in aqueous solutions. In sorption edge experiments, maximum Cr(VI) removal was obtained at pH 3 after 2 hours by AABP and O-mont (88% and 69%). Sorption isotherm data showed that the sorption capacity of AABP was higher than O-mont (15.1 vs. 6.67 mg g(-1), respectively, at pH 4). Freundlich and Langmuir models provided the best fits to describe Cr(VI) sorption onto AABP (R(2) = 0.97) and O-mont (R(2) = 0.96). Fourier transform infrared spectroscopy elucidated that for AABP mainly the -OH, -COOH, -NH2, and for O-mont intercalated amines and -OH surface functional groups were involved in Cr(VI) sorption. The scanning electron microscopy combined with energy dispersive X-ray spectroscopy (SEM-EDX) analyses, although partly, indicate that the (wt. %) proportion of cations (e.g., Ca, Mg) in AABP decreased after Cr(VI) sorption. This may be due to ion exchange of chromite (Cr(III)) (produced from Cr(VI) reduction) with cationic elements in AABP. Also, Cr(VI) desorption (using phosphate solution) from AABP was lower (29%) than that from O-mont (51%) up to the third regeneration cycle. This bench scale comparative study highlights that the utilization of widely available and low-cost acid-activated biomaterials has a greater potential than organo-clays for Cr(VI) removal in aqueous media. However, future studies are warranted to precisely delineate different mechanisms of Cr(VI) sorption/reduction by acid-activated biomaterials and organo-clays.

  14. Extraction of Lanthanide and Actinide Ions from Aqueous Mixtures Using a Carboxylic Acid-Functionalized Porous Aromatic Framework

    PubMed Central

    2016-01-01

    Porous aromatic frameworks (PAFs) incorporating a high concentration of acid functional groups possess characteristics that are promising for use in separating lanthanide and actinide metal ions, as required in the treatment of radioactive waste. These materials have been shown to be indefinitely stable to concentrated acids and bases, potentially allowing for multiple adsorption/stripping cycles. Additionally, the PAFs combine exceptional features from MOFs and inorganic/activated carbons giving rise to tunable pore surfaces and maximum chemical stability. Herein, we present a study of the adsorption of selected metal ions, Sr2+, Fe3+, Nd3+, and Am3+, from aqueous solutions employing a carbon-based porous aromatic framework, BPP-7 (Berkeley Porous Polymer-7). This material displays high metal loading capacities together with excellent adsorption selectivity for neodymium over strontium based on Langmuir adsorption isotherms and ideal adsorbed solution theory (IAST) calculations. Based in part upon X-ray absorption spectroscopy studies, the stronger adsorption of neodymium is attributed to multiple metal ion and binding site interactions resulting from the densely functionalized and highly interpenetrated structure of BPP-7. Recyclability and combustibility experiments demonstrate that multiple adsorption/stripping cycles can be completed with minimal degradation of the polymer adsorption capacity. PMID:27163056

  15. Enhanced adsorption of Methylene Blue from aqueous solution by chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites.

    PubMed

    Liu, Yi; Zheng, Yian; Wang, Aiqin

    2010-01-01

    A series of chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites were synthesized and used as adsorbents for the investigation of the effect of process parameters such as vermiculite content, pH of dye solution, contact time, initial concentration of dye solution, temperature, ionic strength and concentration of surfactant sodium dodecyl sulfate on the removal of Methylene Blue (MB) from aqueous solution. The results showed that the adsorption capacity for dye increased with increasing pH, contact time and initial dye concentration, but decreased with increasing temperature, ionic strength and sodium dodecyl sulfate concentration in the present of the surfactant. The adsorption kinetics of MB onto the hydrogel composite followed pseudo second-order kinetics and the adsorption equilibrium data obeyed Langmuir isotherm. By introducing 10 wt.% vermiculite into chitosan-g-poly (acrylic acid) polymeric network, the obtaining hydrogel composite showed the highest adsorption capacity for MB, and then could be regarded as a potential adsorbent for cationic dye removal in a wastewater treatment process.

  16. Structural evolution of molybdenum carbides in hot aqueous environments and impact on low-temperature hydroprocessing of acetic acid

    SciTech Connect

    Choi, Jae -Soon; Schwartz, Viviane; Santillan-Jimenez, Eduardo; Crocker, Mark; Lewis, Sr., Samuel A.; Lance, Michael J.; Meyer, III, Harry M.; More, Karren L.

    2015-03-13

    In this paper, we investigated the structural evolution of molybdenum carbides subjected to hot aqueous environments and their catalytic performance in low-temperature hydroprocessing of acetic acid. While bulk structures of Mo carbides were maintained after aging in hot liquid water, a portion of carbidic Mo sites were converted to oxidic sites. Water aging also induced changes to the non-carbidic carbon deposited during carbide synthesis and increased surface roughness, which in turn affected carbide pore volume and surface area. The extent of these structural changes was sensitive to the initial carbide structure and was lower under actual hydroprocessing conditions indicating the possibility of further improving the hydrothermal stability of Mo carbides by optimizing catalyst structure and operating conditions. Mo carbides were active in acetic acid conversion in the presence of liquid water, their activity being comparable to that of Ru/C. Finally, the results suggest that effective and inexpensive bio-oil hydroprocessing catalysts could be designed based on Mo carbides, although a more detailed understanding of the structure-performance relationships is needed, especially in upgrading of more complex reaction mixtures or real bio-oils.

  17. Structural evolution of molybdenum carbides in hot aqueous environments and impact on low-temperature hydroprocessing of acetic acid

    DOE PAGES

    Choi, Jae -Soon; Schwartz, Viviane; Santillan-Jimenez, Eduardo; ...

    2015-03-13

    In this paper, we investigated the structural evolution of molybdenum carbides subjected to hot aqueous environments and their catalytic performance in low-temperature hydroprocessing of acetic acid. While bulk structures of Mo carbides were maintained after aging in hot liquid water, a portion of carbidic Mo sites were converted to oxidic sites. Water aging also induced changes to the non-carbidic carbon deposited during carbide synthesis and increased surface roughness, which in turn affected carbide pore volume and surface area. The extent of these structural changes was sensitive to the initial carbide structure and was lower under actual hydroprocessing conditions indicating themore » possibility of further improving the hydrothermal stability of Mo carbides by optimizing catalyst structure and operating conditions. Mo carbides were active in acetic acid conversion in the presence of liquid water, their activity being comparable to that of Ru/C. Finally, the results suggest that effective and inexpensive bio-oil hydroprocessing catalysts could be designed based on Mo carbides, although a more detailed understanding of the structure-performance relationships is needed, especially in upgrading of more complex reaction mixtures or real bio-oils.« less

  18. Removal of Cu(II) and Ni(II) from aqueous solution by lignite-based humic acids

    SciTech Connect

    Arslan, G.; Cetin, S.; Pehlivan, E.

    2007-07-01

    The removal of Cu(II) and Ni(II) metal ions from an aqueous solution were investigated by using humic acids (HAs) in a batch arrangement. HAs were prepared by using alkaline extraction, following sedimentation and acidic precipitation from three Turkish lignites: Ilgin, Beysehir, and Ermenek. The interactions of Cu(II) and Ni(II) with solid HAs and influence of three parameters (initial metal concentration, solution pH and temperature) on the removal of metals were studied. Adsorption equilibrium was achieved in about 120 min for Cu(II) and Ni(II) ions. The sorption of Cu(II) and Ni(II) on the surface of HAs depended strongly on the pH, and increased with increasing pH and the initial concentration of metal. The sorption of Cu(II) was higher than that of Ni(II) for HAs. The equilibrium relationship between adsorbent and adsorbate is described by adsorption isotherms at a fixed temperature 35 {sup o}C, at pH about 4.0. The Langmuir adsorption isotherm was used to describe observed sorption phenomena. Adsorption isotherms and kinetics data of Cu(II) and Ni(II) ions removed by HAs are presented and discussed.

  19. Removal of copper ions from aqueous solution by the sodium salt of the maleic acid-allylpropionate-styrene terpolymer.

    PubMed

    Akperov, Elchin; Akperov, Oktay; Jafarova, Elnara; Gafarova, Sabahiye

    2016-09-01

    The sodium salt of the maleic acid-allylpropionate-styrene terpolymer was used for recovery of copper ions from aqueous solution. Effects of contact time, sorbent weight and initial Cu(2+) ion concentrations on removal efficiency were tested. The maximum experimental sorption capacity of the sorbent for copper ions is 0.71 g g(-1). The sorption isotherm of copper ions onto a prepared polymer sorbent has been studied and the equilibrium data were analyzed using Langmuir and Freundlich isotherm models. The adsorption isotherm data showed that copper ions adsorption on the sorbent was better fitted to the Langmuir isotherm model. The Lagergren pseudo-first- and pseudo-second-order kinetic models were applied to examine the kinetics of the copper ions sorption by the synthesized sorbent. The kinetic data are best described by the pseudo-second-order model. The calculated value of the maximum sorption capacity by the pseudo-second-order equation (0.62 g g(-1)) corresponds well with its experimentally found value (0.71 g g(-1)). Considering the obtained kinetic data, and the Fourier transform infrared spectroscopy (FT-IR) and UV-vis spectra of the sorbent after the sorption, it is possible to come to the conclusion that during the sorption process Cu(2+) ions enter a complex with the carboxylic groups of the maleic acid units of the sorbent.

  20. Improving aqueous solubility and antitumor effects by nanosized gambogic acid-mPEG₂₀₀₀ micelles.

    PubMed

    Cai, Lulu; Qiu, Neng; Xiang, Mingli; Tong, Rongsheng; Yan, Junfeng; He, Lin; Shi, Jianyou; Chen, Tao; Wen, Jiaolin; Wang, Wenwen; Chen, Lijuan

    2014-01-01

    The clinical application of gambogic acid, a natural component with promising antitumor activity, is limited due to its extremely poor aqueous solubility, short half-life in blood, and severe systemic toxicity. To solve these problems, an amphiphilic polymer-drug conjugate was prepared by attachment of low molecular weight (ie, 2 kDa) methoxy poly(ethylene glycol) methyl ether (mPEG) to gambogic acid (GA-mPEG₂₀₀₀) through an ester linkage and characterized by (1)H nuclear magnetic resonance. The GA-mPEG₂₀₀₀ conjugates self-assembled to form nanosized micelles, with mean diameters of less than 50 nm, and a very narrow particle size distribution. The properties of the GA-mPEG₂₀₀₀ micelles, including morphology, stability, molecular modeling, and drug release profile, were evaluated. MTT (3-(4,5-dimethylthiazo l-2-yl)-2,5 diphenyl tetrazolium bromide) tests demonstrated that the GA-mPEG₂₀₀₀ micelle formulation had obvious cytotoxicity to tumor cells and human umbilical vein endothelial cells. Further, GA-mPEG₂₀₀₀ micelles were effective in inhibiting tumor growth and prolonged survival in subcutaneous B16-F10 and C26 tumor models. Our findings suggest that GA-mPEG₂₀₀₀ micelles may have promising applications in tumor therapy.