Science.gov

Sample records for aqueous chemical conditions

  1. Transport of cerium oxide nanoparticles in saturated silica media: influences of operational parameters and aqueous chemical conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaohan; Gao, Peng; Qiu, Ye; Liu, Guohong; Feng, Yujie; Wiesner, Mark

    2016-10-01

    This paper aimed to investigate the influences of operational parameters and aqueous chemical conditions on transport behaviors of cerium oxides nanoparticles (CeO2-NPs) in saturated silica media. Results indicated that increasing rates of attachment efficiency (α) were related with cationic types, and critical deposition concentration (CDC) for divalent cation (Ca2+ and Mg2+) were more than 31-fold of that for monovalent cation (Na+ and K+). Increase or reduction of electrolyte pH could both promote the mobility of CeO2-NPs in glass beads, while influence was more evident at alkaline conditions. α increased linearly with NPs concentrations, while decreased linearly with flow velocity in the column, and effects were related with electrolyte contents. Presence of surfactants could sharply decreased α, and SDS was more effective to facilitate CeO2-NPs transport than Triton X–100. With DOMs concentrations increasing, α firstly kept constant, then sharply declined, and finally reduced very slowly. The influence of DOMs on NPs deposition was in order of SA > HA > TA >  BSA. Overall, this study revealed that aqueous chemical conditions was crucial to NPs transport in porous media, and would provide significant information for our understanding on the fate and transport of nanoparticles in natural environment.

  2. Transport of cerium oxide nanoparticles in saturated silica media: influences of operational parameters and aqueous chemical conditions

    PubMed Central

    Zhang, Zhaohan; Gao, Peng; Qiu, Ye; Liu, Guohong; Feng, Yujie; Wiesner, Mark

    2016-01-01

    This paper aimed to investigate the influences of operational parameters and aqueous chemical conditions on transport behaviors of cerium oxides nanoparticles (CeO2-NPs) in saturated silica media. Results indicated that increasing rates of attachment efficiency (α) were related with cationic types, and critical deposition concentration (CDC) for divalent cation (Ca2+ and Mg2+) were more than 31-fold of that for monovalent cation (Na+ and K+). Increase or reduction of electrolyte pH could both promote the mobility of CeO2-NPs in glass beads, while influence was more evident at alkaline conditions. α increased linearly with NPs concentrations, while decreased linearly with flow velocity in the column, and effects were related with electrolyte contents. Presence of surfactants could sharply decreased α, and SDS was more effective to facilitate CeO2-NPs transport than Triton X–100. With DOMs concentrations increasing, α firstly kept constant, then sharply declined, and finally reduced very slowly. The influence of DOMs on NPs deposition was in order of SA > HA > TA >  BSA. Overall, this study revealed that aqueous chemical conditions was crucial to NPs transport in porous media, and would provide significant information for our understanding on the fate and transport of nanoparticles in natural environment. PMID:27694968

  3. Transport of cerium oxide nanoparticles in saturated silica media: influences of operational parameters and aqueous chemical conditions.

    PubMed

    Zhang, Zhaohan; Gao, Peng; Qiu, Ye; Liu, Guohong; Feng, Yujie; Wiesner, Mark

    2016-10-03

    This paper aimed to investigate the influences of operational parameters and aqueous chemical conditions on transport behaviors of cerium oxides nanoparticles (CeO2-NPs) in saturated silica media. Results indicated that increasing rates of attachment efficiency (α) were related with cationic types, and critical deposition concentration (CDC) for divalent cation (Ca(2+) and Mg(2+)) were more than 31-fold of that for monovalent cation (Na(+) and K(+)). Increase or reduction of electrolyte pH could both promote the mobility of CeO2-NPs in glass beads, while influence was more evident at alkaline conditions. α increased linearly with NPs concentrations, while decreased linearly with flow velocity in the column, and effects were related with electrolyte contents. Presence of surfactants could sharply decreased α, and SDS was more effective to facilitate CeO2-NPs transport than Triton X-100. With DOMs concentrations increasing, α firstly kept constant, then sharply declined, and finally reduced very slowly. The influence of DOMs on NPs deposition was in order of SA > HA > TA >  BSA. Overall, this study revealed that aqueous chemical conditions was crucial to NPs transport in porous media, and would provide significant information for our understanding on the fate and transport of nanoparticles in natural environment.

  4. Chemical reactions at aqueous interfaces

    NASA Astrophysics Data System (ADS)

    Vecitis, Chad David

    2009-12-01

    Interfaces or phase boundaries are a unique chemical environment relative to individual gas, liquid, or solid phases. Interfacial reaction mechanisms and kinetics are often at variance with homogeneous chemistry due to mass transfer, molecular orientation, and catalytic effects. Aqueous interfaces are a common subject of environmental science and engineering research, and three environmentally relevant aqueous interfaces are investigated in this thesis: 1) fluorochemical sonochemistry (bubble-water), 2) aqueous aerosol ozonation (gas-water droplet), and 3) electrolytic hydrogen production and simultaneous organic oxidation (water-metal/semiconductor). Direct interfacial analysis under environmentally relevant conditions is difficult, since most surface-specific techniques require relatively `extreme' conditions. Thus, the experimental investigations here focus on the development of chemical reactors and analytical techniques for the completion of time/concentration-dependent measurements of reactants and their products. Kinetic modeling, estimations, and/or correlations were used to extract information on interfacially relevant processes. We found that interfacial chemistry was determined to be the rate-limiting step to a subsequent series of relatively fast homogeneous reactions, for example: 1) Pyrolytic cleavage of the ionic headgroup of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) adsorbed to cavitating bubble-water interfaces during sonolysis was the rate-determining step in transformation to their inorganic constituents carbon monoxide, carbon dioxide, and fluoride; 2) ozone oxidation of aqueous iodide to hypoiodous acid at the aerosol-gas interface is the rate-determining step in the oxidation of bromide and chloride to dihalogens; 3) Electrolytic oxidation of anodic titanol surface groups is rate-limiting for the overall oxidation of organics by the dichloride radical. We also found chemistry unique to the interface, for example: 1

  5. Chemical behavior of iodine in aqueous solutions up to 150/sup 0/C. I. An experimental study of nonredox conditions

    SciTech Connect

    Toth, L.M.; Pannell, K.D.; Kirkland, O.L.

    1984-04-01

    The chemical behavior of iodine, I/sub 2/, in (pH = 6 to 10) aqueous solutions containing 2500 ppM boron as H/sub 3/BO/sub 3/ (0.231 M) was studied at temperatures up to 150/sup 0/C. Absorption spectrophotometry was used to identify and monitor the iodine species present. The I/sub 2/ hydrolysis chemistry was found to be consistent with the two-stage mechanism: I/sub 2/ + H/sub 2/O reversible HOI + H/sup +/ + I/sup -/, 3 HOI reversible IO/sub 3//sup -/ + 2I/sup -/ + 3H/sup +/, where the intermediate species is designated as HOI to emphasize that its exact structure and composition are not defined. Three objectives were considered: (1) species identification, with special attention given to HOI; (2) the kinetics of reaction between iodine and water to produce iodide and iodate ions; and (3) partition coefficients between liquid and vapor phases for individual iodine species. Kinetic rate constants for the disproportionation of the HOI intermediate were measured. A typical activation energy for this reaction was found to be 28.4 kJ/mol (6.8 kcal/mol). Although some initial results had suggested an ionic strength dependency, a more detailed examination of the ionic strength effect on this disproportionation reaction suggests that the intermediate in solution throughout the pH 7 to 10 range is primarily an uncharged species such as the triatomic HOI. No absorption bands can be assigned to the HOI intermediate even though it has been shown, in some cases, to be present at concentrations of greater than or equal to 1 x 10/sup -3/ M. A very low molar absorptivity (< 10 M/sup -1/ cm/sup -1/) is probably responsible for its undetectability. A partition coefficient of > 1 x 10/sup 4/ has been estimated for HOI.

  6. Chemical constraints governing the origin of metabolism: the thermodynamic landscape of carbon group transformations under mild aqueous conditions

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    2002-01-01

    The thermodynamics of organic chemistry under mild aqueous conditions was examined in order to begin to understand its influence on the structure and operation of metabolism and its antecedents. Free energies (deltaG) were estimated for four types of reactions of biochemical importance carbon-carbon bond cleavage and synthesis, hydrogen transfer between carbon groups, dehydration of alcohol groups, and aldo-keto isomerization. The energies were calculated for mainly aliphatic groups composed of carbon, hydrogen, and oxygen. The energy values showed (1) that generally when carbon-carbon bond cleavage involves groups from different functional group classes (i.e., carboxylic acids, carbonyl groups, alcohols, and hydrocarbons), the transfer of the shared electron-pair to the more reduced carbon group is energetically favored over transfer to the more oxidized carbon group, and (2) that the energy of carbon-carbon bond transformation is primarily determined by the functional group class of the group that changes oxidation state in the reaction (i.e., the functional group class of the group that donates the shared electron-pair during cleavage, or that accepts the incipient shared electron-pair during synthesis). In contrast, the energy of hydrogen transfer between carbon groups is determined by the functional group class of both the hydrogen-donor group and the hydrogen-acceptor group. From these and other observations we concluded that the chemistry involved in the origin of metabolism (and to a lesser degree modern metabolism) was strongly constrained by (1) the limited redox-based transformation energy of organic substrates that is readily dissipated in a few energetically favorable irreversible reactions; (2) the energy dominance of a few transformation half-reactions that determines whether carbon-carbon bond transformation (cleavage or synthesis) is energetically favorable (deltaG < -3.5 kcal/mol), reversible (deltaG between +/-3.5 kcal/mol), or unfavorable (delta

  7. Chemical Constraints Governing the Origin of Metabolism: The Thermodynamic Landscape of Carbon Group Transformations under Mild Aqueous Conditions

    NASA Astrophysics Data System (ADS)

    Weber, Arthur L.

    2002-08-01

    The thermodynamics of organic chemistry under mild aqueous conditions was examined in order to begin to understand its influence on the structure and operation of metabolism and its antecedents. Free energies (ΔG) were estimated for four types of reactions of biochemical importance - carbon-carbon bond cleavage and synthesis, hydrogen transfer between carbon groups, dehydration of alcohol groups, and aldo-keto isomerization. The energies were calculated for mainly aliphatic groups composed of carbon, hydrogen, and oxygen. The energy values showed (1) that generally when carbon-carbon bond cleavage involves groups from different functional group classes (i.e., carboxylic acids, carbonyl groups, alcohols, and hydrocarbons), the transfer of the shared electron-pair to the more reduced carbon group is energetically favored over transfer to the more oxidized carbon group, and (2) that the energy of carbon-carbon bond transformation is primarily determined by the functional group class of the group that changes oxidation state in the reaction (i.e., the functional group class of the group that donates the shared electron-pair during cleavage, or that accepts the incipient shared electron-pair during synthesis). In contrast, the energy of hydrogen transfer between carbon groups is determined by the functional group class of both the hydrogen-donor group and the hydrogen-acceptor group. From these and other observations we concluded that the chemistry involved in the origin of metabolism (and to a lesser degree modern metabolism) was strongly constrained by (1) the limited redox-based transformation energy of organic substrates that is readily dissipated in a few energetically favorable irreversible reactions; (2) the energy dominance of a few transformation half-reactions that determines whether carbon-carbon bond transformation (cleavage or synthesis) is energetically favorable (ΔG < -3.5 kcal/mol), reversible (ΔG between +/-3.5 kcal/mol), or unfavorable (ΔG > +3

  8. Plasmon-driven sequential chemical reactions in an aqueous environment

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Wang, Peijie; Zhang, Zhenglong; Fang, Yurui; Sun, Mengtao

    2014-06-01

    Plasmon-driven sequential chemical reactions were successfully realized in an aqueous environment. In an electrochemical environment, sequential chemical reactions were driven by an applied potential and laser irradiation. Furthermore, the rate of the chemical reaction was controlled via pH, which provides indirect evidence that the hot electrons generated from plasmon decay play an important role in plasmon-driven chemical reactions. In acidic conditions, the hot electrons were captured by the abundant H+ in the aqueous environment, which prevented the chemical reaction. The developed plasmon-driven chemical reactions in an aqueous environment will significantly expand the applications of plasmon chemistry and may provide a promising avenue for green chemistry using plasmon catalysis in aqueous environments under irradiation by sunlight.

  9. Plasmon-driven sequential chemical reactions in an aqueous environment.

    PubMed

    Zhang, Xin; Wang, Peijie; Zhang, Zhenglong; Fang, Yurui; Sun, Mengtao

    2014-06-24

    Plasmon-driven sequential chemical reactions were successfully realized in an aqueous environment. In an electrochemical environment, sequential chemical reactions were driven by an applied potential and laser irradiation. Furthermore, the rate of the chemical reaction was controlled via pH, which provides indirect evidence that the hot electrons generated from plasmon decay play an important role in plasmon-driven chemical reactions. In acidic conditions, the hot electrons were captured by the abundant H(+) in the aqueous environment, which prevented the chemical reaction. The developed plasmon-driven chemical reactions in an aqueous environment will significantly expand the applications of plasmon chemistry and may provide a promising avenue for green chemistry using plasmon catalysis in aqueous environments under irradiation by sunlight.

  10. CHEMICAL TRANSFORMATIONS USING NON-TRADITIONAL APPROACHES: MICROWAVE-ASSISTED GREENER SYNTHESES IN AQUEOUS MEDIA OR UNDER SOLVENT-FREE CONDITIONS

    EPA Science Inventory

    Microwave (MW) irradiation in conjunction with water as reaction media has proven to be a 'greener' chemical approach for expeditious N-alkylation reactions of amines and hydrazines wherein the reactions under mildly basic conditions afford tertiary amines and double N<...

  11. Aqueous Alteration and Martian Bulk Chemical Composition

    NASA Astrophysics Data System (ADS)

    Taylor, J.; Boynton, W. V.; McLennan, S. M.

    2009-12-01

    The bulk compositions of the terrestrial planets are fundamentally important in testing models for planetary accretion. This is particularly true for the abundances of volatile elements. In the absence of direct samples of the mantle, we must rely on samples of surface materials obtained from orbit (specifically from the Mars Odyssey Gamma-Ray Spectrometer, GRS), Martian meteorites, and in situ analyses. Use of these databases requires understanding the processes that formed and modified the igneous rocks composing the crust; aqueous processes are particularly important. Halogens are useful elements for understanding Martian bulk composition and surface aqueous alteration. Here, we focus on Cl, which is an incompatible element during partial melting. Cosmochemically, Cl is a moderately volatile element with a condensation temperature of 948 Kelvin, only slightly below that of K (1006 Kelvin), another incompatible lithophile element. Cl is substantially lost during magma degassing at or near the surface, making it difficult to determine its abundances in the interior through analyses of rocks, leading to an underestimate of Cl abundance in bulk silicate Mars. GRS data for Mars between approximately 52 degrees north and south show that K and Cl are uncorrelated. This is not surprising as they fractionate easily by release of Cl-bearing gases from magmas near the surface and during eruptions, by aqueous alteration of surface materials, and by the large solubility of Cl salts in water. A positive correlation of Cl with H supports the role of water in Cl redistribution. In spite of the lack of correlation between K and Cl, the mean Cl/K ratio is roughly chondritic: 1.5 ±0.1 compared to 1.28 in CI chondrites. However, Cl appears to be enriched at least in the uppermost few tens of cm analyzed by the GRS: Cl correlates with both H and S, but a linear fit to the data shows a positive Cl intercept of about 0.3, which suggests a decoupling of Cl from S and H. Adjusting the

  12. CHEMICAL SYNTHESES IN AQUEOUS MEDIA USING MICROWAVES

    EPA Science Inventory

    The development of efficient, selective and eco-friendly synthetic methods has remained a major focus of our research group. Microwave (MW) irradiation as alternative energy source in conjunction with water as reaction media has proven to be a successful 'greener' chemical appro...

  13. Physical-chemical conditions of ore deposition

    USGS Publications Warehouse

    Barton, P.B.

    1981-01-01

    Ore deposits form under a wide range of physical and chemical conditions, but those precipitating from hot, aqueous fluids-i.e. the hydrothermal deposits-form generally below 700??C and at pressures of only 1 or 2 kbar or less. Natural aqueous fluids in rocks may extract metal and sulfur from a variety of rock types or may acquire them as a residual heritage from a crystallizing silicate magma. Ore-forming hydrothermal fluids never appear as hot springs (except in deep, submarine situations) because they boil, mix with surface waters, and cool, thereby losing their ore-bearing ability before reaching the surface. Mineral systems function as chemical buffers and indicators just as buffers and indicators function in a chemical laboratory. By reading the record written in the buffer/indicator assemblages of minerals one can reconstruct many aspects of the former chemical environment. By studying the record of changing conditions one may deduce information regarding the processes functioning to create the succession of chemical environments and the ore deposits they represent. The example of the OH vein at Creede, Colorado, shows a pH buffered by the K-feldspar + muscovite + quartz assemblage and the covariation of S2 and O2 buffered by the assemblage chlorite + pyrite + quartz. Boiling of the ore fluid led to its oxidation to hematite-bearing assemblages and simultaneously produced an intensely altered, sericitic capping over the vein in response to the condensation of vapors bearing acidic components. The solubility of metals as calculated from experimental and theoretical studies of mineral solubility appears too low by at least one or two powers of ten to explain the mineralization at Creede. In contrast to Creede where the mineral stabilities all point to a relatively consistent chemistry, the Mississippi Valley type deposits present a puzzle of conflicting chemical clues that are impossible to reconcile with any single equilibrium situation. Thus we must

  14. Chemical stability of teniposide in aqueous and parenteral lipid emulsions.

    PubMed

    Wang, Jing; Cui, Yue; Tang, Xing

    2009-04-01

    The purpose of this study was to investigate the degradation kinetics of teniposide in lipid emulsion and aqueous solution. The chemical stability of teniposide in lipid emulsion and aqueous solution at various pH values and temperatures was monitored by high-performance liquid chromatography. In addition, the viscosities of emulsion at different temperatures were investigated. The degradation of teniposide both in emulsion and in aqueous solution was shown to follow pseudo-first-order degradation kinetics. The t (1/2) values of teniposide lipid emulsion (TLE) and the aqueous solution were 80 and 2.6 days at 10 degrees C, respectively. Under the most stable pH range of 6.0-6.5, stability of teniposide in the emulsion increased more than 30-fold compared with that in aqueous solution. Furthermore, there was a difference between the shelf life of TLE actually measured (29 days) at 10 degrees C and the one deduced (15 days) from the degradation data of high temperatures by Arrhenius equation. It could be hypothesized that the difference was due to a slower diffusion of teniposide from oil phase to aqueous phase at the lower temperatures, which would be a speed-limited process in the degradation of TLE. The results of viscosity test confirmed the presumption.

  15. Thermoreversible gelation in aqueous binary solvents of chemically modified agarose.

    PubMed

    Dahmani, Mohammed; Ramzi, Mohamed; Rochas, Cyrille; Guenet, Jean-Michel

    2003-01-15

    The thermoreversible gelation of chemically modified agarose has been studied in aqueous binary solvents (dimethyl sulfoxide and a series of formamide) by differential calorimetry, mechanical testing, and small-angle neutron scattering. The temperature-composition phase diagrams have been established. It is concluded that gelation is promoted by the formation of ternary complexes modified agarose/water/cosolvent, wherein the cosolvent mediates the interaction between chains through the formation of electrostatic interactions.

  16. Molecular simulation of aqueous electrolytes: water chemical potential results and Gibbs-Duhem equation consistency tests.

    PubMed

    Moučka, Filip; Nezbeda, Ivo; Smith, William R

    2013-09-28

    This paper deals with molecular simulation of the chemical potentials in aqueous electrolyte solutions for the water solvent and its relationship to chemical potential simulation results for the electrolyte solute. We use the Gibbs-Duhem equation linking the concentration dependence of these quantities to test the thermodynamic consistency of separate calculations of each quantity. We consider aqueous NaCl solutions at ambient conditions, using the standard SPC/E force field for water and the Joung-Cheatham force field for the electrolyte. We calculate the water chemical potential using the osmotic ensemble Monte Carlo algorithm by varying the number of water molecules at a constant amount of solute. We demonstrate numerical consistency of these results in terms of the Gibbs-Duhem equation in conjunction with our previous calculations of the electrolyte chemical potential. We present the chemical potential vs molality curves for both solvent and solute in the form of appropriately chosen analytical equations fitted to the simulation data. As a byproduct, in the context of the force fields considered, we also obtain values for the Henry convention standard molar chemical potential for aqueous NaCl using molality as the concentration variable and for the chemical potential of pure SPC/E water. These values are in reasonable agreement with the experimental values.

  17. Thermodynamics of Water and Aqueous Solutions under Mantle Conditions

    NASA Astrophysics Data System (ADS)

    Brown, J. M.; Vance, S.; Bollengier, O.; Shaw, G. H.; Abramson, E.

    2014-12-01

    Interactions between aqueous solutions and rocks extending from the surface and through the deep mantle control the state and evolution of Earth. The accurate representation of the fluid chemical energy as a function of pressure, temperature and composition over a wide range of conditions is prerequisite in understanding phase equilibria and solubilities in multicomponent systems. End-member thermodynamic properties of water (densities, specific heats, sound speeds, and more) have been extensively explored in a regime below about 100 MPa and an available complex formulation for the Helmholtz free energy (IAPWS-95) accurately represents these data and a smaller number of measurements extending to 1 GPa. However, this parameterization systematically misfits higher pressure data and is not easily adjusted to provide a better description. To address these points, we developed a flexible framework for the acquisition and description of Gibbs' free energy of water and aqueous solutions. Through use of local basis functions, the thermodynamic state surface can be adjusted to account for improved experimental constraints or for results in new regimes of pressure and temperature. Based on our experimental work on pure water, MgSO4(aq), Na2SO4(aq), and ammonia-water mixtures, new insights are provided on the volumetric behavior of fluids at high pressure. For the ionic solutions, where the partial molar volume at infinite dilution, Vo, is dominated by electrostriction at low pressure, the initial pressure derivative of Vo is large. At high pressure, where Vo is more related to the "size" of the ions, it is only weakly pressure dependent. The non-ideal behavior of these ionic solutions over an extended range of pressures and temperatures is successfully described using a standard three-term parameterization representing solvent (Debye-Hückel), solvent-ion, and ion-ion interactions. The solvent-ion and ion-ion interaction parameters show less dependence on pressure and

  18. FBX aqueous chemical dosimeter for measurement of dosimetric parameters.

    PubMed

    Moussous, O; Medjadj, T; Benguerba, M

    2011-02-01

    We investigated the ferrous sulphate-benzoic acid-xylenol orange (FBX) aqueous chemical dosimeter for measurement of dosimetric parameters such as the output factor, backscatter factor and lateral beam profiles for different square fields sizes for (60)Co γ-rays. A water phantom was employed to measure these parameters. An ionization chamber (IC) was used for calibration and comparison. A comparison of the resulting measurements with an ionization chamber's measured parameters showed good agreement. We thus believe that the tissue equivalent FBX dosimetry system can measure the dosimetric parameters for (60)Co with reasonable accuracy.

  19. Timescales and conditions for the aqueous alteration of chondrites

    NASA Astrophysics Data System (ADS)

    Jilly, Christine E.

    It has become well-recognized that water played a critical role in the early geological evolution of materials through observation of hydrated phases in chondritic meteorites. However, details about the mechanism, timing, and conditions of aqueous alteration are poorly constrained. This dissertation investigates water-driven processes in Renazzo-like (CR) carbonaceous chondrites, with some comparison to the heavily altered and Mighei-like (CM) chondrites. CR chondrites were chosen as the focus of this study, as they are the only chondrite group to range from practically anhydrous to completely hydrated, providing petrographic context for the aqueous alteration process. The central goal of the thesis is to elucidate the complete mechanism of aqueous alteration, from primary anhydrous components to secondary minerals. This research uses a variety of micro-analytical techniques to address three main objectives: 1) to detail the petrographic context, 2) to quantify the onset and duration of alteration using radiometric dating, and 3) to constrain the fluid chemistry and conditions for aqueous alteration. On a microscopic scale, fine-grained matrices and glassy mesostases were the first phases to become altered, allowing for elemental transport over short distances (< 100 microns). As alteration progressed, the iron-metal was oxidized, and silicate phenocrysts were pseudomorphically replaced. 53Mn-53 Cr radiometric dating of secondary carbonates in CR chondrites show that aqueous alteration began quickly after accretion of the parent body, ~4 Myr after the beginning of the Solar System. This is contemporaneous with dolomite formation in the CM chondrite Sutter's Mill and with carbonate formation in other CM chondrites. However, the calcite age from a heavily hydrated CR lithology indicates that late-stage alteration occurred ~12 Myr after the beginning of the Solar System. The oxygen isotopic compositions of magnetite and carbonate minerals reveal that altering fluid

  20. Pavlovian conditioning and multiple chemical sensitivity.

    PubMed

    Siegel, S; Kreutzer, R

    1997-03-01

    Pavlovian conditioning processes may contribute to some symptoms of multiple chemical sensitivity (MCS). This review summarizes the potential relevance of the literature on conditional taste and olfactory aversions, conditional sensitization, and conditional immunomodulation to understanding MCS. A conditioning-based perspective on MCS suggests novel research and treatment strategies.

  1. Aqueous photolysis of the organic ultraviolet filter chemical octyl methoxycinnamate.

    PubMed

    MacManus-Spencer, Laura A; Tse, Monica L; Klein, Jacob L; Kracunas, Alison E

    2011-05-01

    Organic UV filter chemicals are the active ingredients in personal care products designed to protect the skin from UV radiation, and hundreds of tons are estimated to be produced annually. Despite their entrance into the aquatic environment by both direct and indirect routes and their detection in surface waters and fish, little is known about their environmental fate. UV filter chemicals are designed to be photostable, but some undergo transformation upon exposure to UV light. Octyl methoxycinnamate (OMC), a commonly used UV filter chemical, degrades rapidly by direct photolysis; previous studies have focused on its photoisomerization, and a few investigators have reported the formation of cyclodimers. Here, we present the kinetics and quantum efficiency of the direct photolysis of OMC and confirm that dimerization occurs as a result of direct photolysis in aqueous solution. Likely identities of the dimers are offered based on comparison to reported results for other cinnamate derivatives. We have identified additional products of direct photolysis that have not been previously reported and investigated their photostability, as well as the mechanism of product formation. There is also some evidence of indirect photolysis in the presence of dissolved natural organic matter.

  2. Chemical properties of rutherfordium (Rf) and dubnium (Db) in the aqueous phase

    NASA Astrophysics Data System (ADS)

    Nagame, Yuichiro; Kratz, Jens Volker; Schädel, Matthias

    2016-12-01

    Recent experimental studies of the chemical characterization of the first two transactinide elements, rutherfordium (Rf) and dubnium (Db), conducted atom-at-a-time in aqueous phases are reviewed. A short description on experimental techniques based on partition methods, specifically automated rapid chemical separation systems, is also given. Perspectives for aqueous-phase chemistry experiments on heavier elements are briefly discussed.

  3. Determination of Gibbs energies of formation in aqueous solution using chemical engineering tools.

    PubMed

    Toure, Oumar; Dussap, Claude-Gilles

    2016-08-01

    Standard Gibbs energies of formation are of primary importance in the field of biothermodynamics. In the absence of any directly measured values, thermodynamic calculations are required to determine the missing data. For several biochemical species, this study shows that the knowledge of the standard Gibbs energy of formation of the pure compounds (in the gaseous, solid or liquid states) enables to determine the corresponding standard Gibbs energies of formation in aqueous solutions. To do so, using chemical engineering tools (thermodynamic tables and a model enabling to predict activity coefficients, solvation Gibbs energies and pKa data), it becomes possible to determine the partial chemical potential of neutral and charged components in real metabolic conditions, even in concentrated mixtures.

  4. Multiple chemical sensitivity as a conditional response.

    PubMed

    Siegel, S

    1999-01-01

    Pavlovian conditioning may contribute to some cases of multiple chemical sensitivity (MCS). On the basis of the conditioning analysis, environmental stimuli (especially olfactory cues) present at the time of a toxicant overdose become associated with the toxicant and elicit aversive conditional responses. Similar associations have been reported in patients receiving chemotherapy, and the literature on such 'pretreatment nausea' in cancer patients is relevant to understanding the role of conditioning in MCS. Evaluation of the contribution of conditioning to MCS has been complicated by confounding interpretations that emphasize conditional responses with interpretations which emphasize the psychiatric status of the patient. Appreciation of the contribution of Pavlovian conditioning to MCS will lead to a better understanding of this complex disorder.

  5. Volatile release from aqueous solutions under dynamic headspace dilution conditions.

    PubMed

    Marin, M; Baek, I; Taylor, A J

    1999-11-01

    Static equilibrium was established between the gas phase (headspace) and an unstirred aqueous phase in a sealed vessel. The headspace was then diluted with air to mimic the situation when a container of food is opened and the volatiles are diluted by the surrounding air. Because this first volatile signal can influence overall flavor perception, the parameters controlling volatile release under these conditions are of interest. A mechanistic model was developed and validated experimentally. Release of compounds depended on the air-water partition coefficient (K(aw)) and the mass transport in both phases. For compounds with K(aw) values <10(-)(3), K(aw) was the factor determining release rate. When K(aw) was >10(-)(3), mass transport in the gas phase became significant and the Reynolds number played a role. Because release from packaged foods occurs at low Reynolds numbers, whereas most experiments are conducted at medium to high Reynolds numbers, the experimentally defined profile may not reflect the real situation.

  6. 'GREENER' CHEMICAL SYNTHESES USING ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    Microwave (MW) irradiation in conjunction with water as reaction media has proven to be a greener chemical approach for expeditious N-alkylation reactions of amines and hydrazines wherein the reactions under mildly basic conditions afford tertiary amines and double N-alkylation t...

  7. Influence of aqueous chemistry on the chemical composition of fog water and interstitial aerosol in Fresno

    NASA Astrophysics Data System (ADS)

    Kim, Hwajin; Ge, Xinlei; Collier, Sonya; Xu, Jianzhong; Sun, Yele; Wang, Youliang; Herckes, Pierre; Zhang, Qi

    2015-04-01

    A measurement study was conducted in the Central Valley (Fresno) of California in January 2010, during which radiation fog events were frequently observed. Fog plays important roles in atmospheric chemistry by scavenging aerosol particles and trace gases and serving as a medium for various aqueous-phase reactions. Understanding the effects of fog on the microphysical and chemical processing of aerosol particles requires detailed information on their chemical composition. In this study, we characterized the chemical composition of fog water and interstitial aerosol particles to study the effects of fog processing on aerosol properties. Fog water samples were collected during the 2010 Fresno campaigns with a Caltech Active Strand Cloud water Collector (CASCC) while interstitial submicron aerosols were characterized in real time with an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and a scanning Mobility Particle Sizer (SMPS). The fog water samples were later analyzed using the HR-ToF-AMS, ion chromatography, and a total carbon analyzer. The chemical composition and characteristics of interstitial particles during the fog events were compared to those of dissolved inorganic and organic matter in fog waters. Compared to interstitial aerosols, fog water is composed of a higher fraction of ammonium nitrate and oxygenated organics, due to aqueous formation of secondary aerosol species as well as enhanced gas-to-particle partitioning of water soluble species under water rich conditions. Sulfate is formed most efficiently in fog water although its contribution to total dissolved mass is relatively low. The HR-ToF-AMS mass spectra of organic matter in fog water (FOM) are very similar to that of oxygenated organic aerosols (OOA) derived from positive matrix factorization (PMF) of the HR-ToF-AMS spectra of ambient aerosol (r2 = 0.96), but FOM appears to contain a large fraction of acidic functional groups than OOA. FOM is also enriched of

  8. Effects of surface condition on aqueous corrosion and environmental embrittlement of iron aluminides

    SciTech Connect

    Perrin, R.L.; Buchanan, R.A.

    1996-08-01

    Effects of retained high-temperature surface oxides, produced during thermomechanical processing and/or heat treatment, on the aqueous-corrosion and environmental-embrittlement characteristics of Fe{sub 3}Al-based iron aluminides (FA-84, FA-129 and FAL-Mo), a FeAl-based iron aluminide (FA-385), and a disordered low-aluminum Fe-Al alloy (FAPY) were evaluated. All tests were conducted at room temperature in a mild acid-chloride solution. In cyclic-anodic-polarization testing for aqueous-corrosion behavior, the surface conditions examined were: as-received (i.e., with the retained high-temperature oxides), mechanically cleaned and chemically cleaned. For all materials, the polarization tests showed the critical pitting potentials to be significantly lower in the as-received condition than in the mechanically-cleaned and chemically-cleaned conditions. These results indicate detrimental effects of the retained high-temperature oxides in terms of increased susceptibilities to localized corrosion. In 200-hour U-bend stress-corrosion-cracking tests for environmental-embrittlement behavior, conducted at open-circuit corrosion potentials and at a hydrogen-charging potential of {minus}1500 mV (SHE), the above materials (except FA-385) were examined with retained oxides and with mechanically cleaned surfaces. At the open-circuit corrosion potentials, none of the materials in either surface condition underwent cracking. At the hydrogen-charging potential, none of the materials with retained oxides underwent cracking, but FA-84, FA-129 and FAL-Mo in the mechanically cleaned condition did undergo cracking. These results suggest beneficial effects of the retained high-temperature oxides in terms of increased resistance to environmental hydrogen embrittlement.

  9. Chemical characterization and anaerobic biodegradability of hydrothermal liquefaction aqueous products from mixed-culture wastewater algae.

    PubMed

    Tommaso, Giovana; Chen, Wan-Ting; Li, Peng; Schideman, Lance; Zhang, Yuanhui

    2015-02-01

    This study examined the chemical characteristics and the anaerobic degradability of the aqueous product from hydrothermal liquefaction (HTL-ap) from the conversion of mixed-culture algal biomass grown in a wastewater treatment system. The effects of the HTL reaction times from 0 to 1.5 h, and reaction temperatures from 260 °C to 320 °C on the anaerobic degradability of the HTL-ap were quantified using biomethane potential assays. Comparing chemical oxygen demand data for HTL-ap from different operating conditions, indicated that organic matter may partition from organic phase to aqueous phase at 320 °C. Moderate lag phase and the highest cumulative methane production were observed when HTL-ap was obtained at 320 °C. The longest lag phase and the smallest production rate were observed in the process fed with HTL-ap obtained at 300 °C. Nevertheless, after overcoming adaptation issues, this HTL-ap led to the second highest accumulated specific methane production. Acetogenesis was identified as a possible rate-limiting pathway.

  10. Title III section 313 release reporting guidance: Estimating chemical releases from formulation of aqueous solutions

    SciTech Connect

    Not Available

    1988-03-01

    Formulators of aqueous solutions may be required to report annually any releases to the environment of certain chemicals regulated under Section 313, Title III, of the Superfund Amendments and Reauthorization Act (SARA) of 1986. The document has been developed to assist formulators of aqueous solutions, emulsions, and slurries in the completion of Part III (Chemical Specific Information) of the Toxic Chemical Release Inventory Reporting Form. Included herein is general information on toxic chemicals used and process wastes generated, along with several examples to demonstrate the types of data needed and various methodologies available for estimating releases.

  11. Cementation and Aqueous Alteration of a Sandstone Unit Under Acidic Conditions in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Yen, A. S.; Blake, D. F.; Ming, D. W.; Morris, R. V.; Gellert, R.; Clark, B.; Vaniman, D. T.; Chipera, S. J.; Thompson, L. M.; Bristow, T. F.; Rampe, E. B.; Crisp, J. A.

    2016-01-01

    The Curiosity rover landed on Mars in August 2012 to explore the sedimentary history and to assess the habitability of Gale Crater. After 1200 sols of surface operations and over 12 km of traverse distance, the mineralogy of 10 samples has been determined by the CheMin X-ray diffractometer (XRD) and the chemical composition of nearly 300 targets has been established by the Alpha Particle X-ray Spectrometer (APXS). Light-toned fracture zones containing elevated concentrations of silica have been studied by Curiosity's instruments to determine the nature of the fluids that resulted in the enrichment of SiO2. Multiple fluid exposures are evident, and the chemistry and mineralogy data indicate at least two aqueous episodes may have occurred under acidic conditions.

  12. Pulse radiolysis of tetrazolium violet in aqueous and aqueous-alcoholic solutions under oxidative and reductive conditions

    NASA Astrophysics Data System (ADS)

    Kovács, A.; Wojnárovits, L.; Pálfi, T.; Emi-Reynolds, G.; Fletcher, J.

    2008-09-01

    The radiolytic reduction of colourless tetrazolium salts to coloured formazans in liquid and solid state is suggested for dosimetry purposes. In order to clarify the reaction mechanism, a pulse radiolysis study was conducted in aqueous and aqueous-alcoholic solutions under oxidative and reductive conditions. Under reducing conditions, fast formation of the electron adduct tetrazolinyl radical was observed: coloured formazan final product formed during the decay of electron adduct. Both the decay of the tetrazolinyl radical and the formation of the formazan were found to be second order. The spectra of the formazan were similar in neutral and alkaline solutions, but with higher absorbance in the latter solutions due to the higher molar absorption coefficient. Under oxidative conditions formazan did not form; hydroxylated products through OH-adducts were observed in the pH range studied.

  13. Method for Non-Invasive Determination of Chemical Properties of Aqueous Solutions

    NASA Technical Reports Server (NTRS)

    Todd, Paul W. (Inventor); Jones, Alan (Inventor); Thomas, Nathan A. (Inventor)

    2016-01-01

    A method for non-invasively determining a chemical property of an aqueous solution is provided. The method provides the steps of providing a colored solute having a light absorbance spectrum and transmitting light through the colored solute at two different wavelengths. The method further provides the steps of measuring light absorbance of the colored solute at the two different transmitted light wavelengths, and comparing the light absorbance of the colored solute at the two different wavelengths to determine a chemical property of an aqueous solution.

  14. [Biological denoxation of chemical pathogens in aqueous medium].

    PubMed

    Globa, L I; Gvozdiak, P I

    2015-01-01

    There are considered possibilities and perspectives of denoxation (decontamination) of chemical pathogens by means of biological methods for the environment sanitation and protection from contamination. There are presented numerous examples of successful practical application of the modern biotechnologies in industrial sewage denoxation from xenobiotics.

  15. Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols.

    PubMed

    McNeill, V Faye

    2015-02-03

    Over the past decade, it has become clear that aqueous chemical processes occurring in cloud droplets and wet atmospheric particles are an important source of organic atmospheric particulate matter. Reactions of water-soluble volatile (or semivolatile) organic gases (VOCs or SVOCs) in these aqueous media lead to the formation of highly oxidized organic particulate matter (secondary organic aerosol; SOA) and key tracer species, such as organosulfates. These processes are often driven by a combination of anthropogenic and biogenic emissions, and therefore their accurate representation in models is important for effective air quality management. Despite considerable progress, mechanistic understanding of some key aqueous processes is still lacking, and these pathways are incompletely represented in 3D atmospheric chemistry and air quality models. In this article, the concepts, historical context, and current state of the science of aqueous pathways of SOA formation are discussed.

  16. Chemical-equilibrium calculations for aqueous geothermal brines

    SciTech Connect

    Kerrisk, J.F.

    1981-05-01

    Results from four chemical-equilibrium computer programs, REDEQL.EPAK, GEOCHEM, WATEQF, and SENECA2, have been compared with experimental solubility data for some simple systems of interest with geothermal brines. Seven test cases involving solubilities of CaCO/sub 3/, amorphous SiO/sub 2/, CaSO/sub 4/, and BaSO/sub 4/ at various temperatures from 25 to 300/sup 0/C and in NaCl or HCl solutions of 0 to 4 molal have been examined. Significant differences between calculated results and experimental data occurred in some cases. These differences were traced to inaccuracies in free-energy or equilibrium-constant data and in activity coefficients used by the programs. Although currently available chemical-equilibrium programs can give reasonable results for these calculations, considerable care must be taken in the selection of free-energy data and methods of calculating activity coefficients.

  17. Optical techniques for nanoscale probing and chemical detection in aqueous environments

    NASA Astrophysics Data System (ADS)

    Pristinski, Denis

    substrates from aqueous solution. We have shown that the coverage density of Ag nanoparticles on the glass substrates correlates with the amount of adsorbed PAH. The SERS-active substrates were robust and stable in 0.5 M NaCl solutions, as well in extreme acidic and basic conditions. Rhodamine 6G dye (R6G) was chosen as a model molecule for SERS spectra acquisition. The glass substrates with immobilized non-aggregated Ag nanoparticles exhibited SERS enhancement and provided in situ detection sensitivity of R6G at 5 ppt level, with estimated surface coverage of 2 to 4 R6G molecules per silver particle. The results will improve the design of SERS-active photonic crystal fibers for highly sensitive chemical and biological detection.

  18. Properties of vermicompost aqueous extracts prepared under different conditions.

    PubMed

    Hanc, Ales; Boucek, Jiri; Svehla, Pavel; Dreslova, Marketa; Tlustos, Pavel

    2016-09-23

    The aim of this work was to determine the influence of aeration and time of extraction on the agrochemical properties of aqueous extracts from vermicomposts made from horse manure (M) and apple pomace (P) waste. There were two extract treatments: stirring without aeration (S), and stirring with aeration (A) for 48 h. Aeration significantly increased the levels of electrical conductivity (EC) and the concentration of [Formula: see text], [Formula: see text], and macro-elements in the extracts. In the (A) treatment, the extraction efficiency of K and Mg increased twofold, and the extraction efficiency of Ca and P increased by one-third compared with the (S) treatment. Simultaneously, the extracts prepared under aeration were characteristic with a higher pH value compared with non-aerated variants. The EC and content of macro-elements in the extracts increased proportionally with time. Their highest growth was found within the first 6 h. After 48 h, the highest release of macro-elements into the extract was found in the case of the horse manure under stirring with aeration.

  19. Effect of surface condition on the aqueous corrosion behavior of iron aluminies

    SciTech Connect

    Buchanan, R.A.; Perrin, R.L.

    1995-08-01

    The effects of retained high-temperature surface oxides, produced during thermomechanical processing and/or heat treatment, on the aqueous-corrosion characteristics of Fe-Al-based alloys were evaluated by electrochemical methods. Cyclic anodic polarization evaluations were conducted at room temperature in a mild acid-chloride solution (pH = 4,200 ppm Cl{sup {minus}}) on the Fe{sub 3}Al-based iron aluminides, FA-84 (Fe-28Al-2Cr-0.05B, at %), FA-129 (Fe-28Al-5Cr-0.5Nb-0.2C, at %), and FAL-Mo (Fe-28Al-5Cr-1Mo-0.04B-0.08Zr, at %), on the FeAl-based iron aluminide, FA-385 (Fe-35.65Al-0.20Mo-0.05Zr-0.11C, at %). The surface conditions evaluated were: As received (i.e. with the retained high-temperature oxides), mechanically cleaned (ground through 600-grit SiC paper), and chemically cleaned (10% HNO{sub 3}, 2%HF, at 43 {degree}C). The principal electrochemical parameter of interest was the critical putting potential with lower values indicating less resistance to chloride-induced localized corrosion. For all materials evaluated, the critical pitting potential was found to be significantly lower in the as-received condition than in the mechanically-cleaned and chemically-cleaned conditions. Mechanisms responsible for the detrimental high-temperature-oxide effect are under study.

  20. Investigation of acyl migration in mono- and dicaffeoylquinic acids under aqueous basic, aqueous acidic, and dry roasting conditions.

    PubMed

    Deshpande, Sagar; Jaiswal, Rakesh; Matei, Marius Febi; Kuhnert, Nikolai

    2014-09-17

    Acyl migration in chlorogenic acids describes the process of migration of cinnamoyl moieties from one quinic acid alcohol group to another, thus interconverting chlorogenic acid regioisomers. It therefore constitutes a special case of transesterification reaction. Acyl migration constitutes an important reaction pathway in both coffee roasting and brewing, altering the structure of chlorogenic acid initially present in the green coffee bean. In this contribution we describe detailed and comprehensive mechanistic studies comparing inter- and intramolecular acyl migration involving the seven most common chlorogenic acids in coffee. We employe aqueous acidic and basic conditions mimicking the brewing of coffee along with dry roasting conditions. We show that under aqueous basic conditions intramolecular acyl migration is fully reversible with basic hydrolysis competing with acyl migration. 3-Caffeoylquinic acid was shown to be most labile to basic hydrolysis. We additionally show that the acyl migration process is strongly pH dependent with increased transesterification taking place at basic pH. Under dry roasting conditions acyl migration competes with dehydration to form lactones. We argue that acyl migration precedes lactonization, with 3-caffeoylquinic acid lactone being the predominant product.

  1. Aqueous phase oligomerization of methyl vinyl ketone through photooxidation - Part 2: Development of the chemical mechanism and atmospheric implications

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Renard, P.; Ravier, S.; Clément, J.-L.; Monod, A.

    2014-08-01

    We developed a chemical mechanism based on laboratory experiments that have shown efficient oligomerization from methyl vinyl ketone (MVK) in the bulk aqueous phase. Kinetic data are applied (if known) or fitted to the observed MVK decay and oligomer mass increase. The mechanism is then implemented into a multiphase box model that simulates (i) oligomer formation upon uptake of MVK from the gas phase, and (ii) SOA formation from isoprene, as a precursor of MVK and methacrolein (MACR) in the aqueous and gas phases. Model results show that under atmospheric conditions, the oligomer formation rate strongly depends on the availability of dissolved oxygen. If oxygen is consumed too quickly or its solubility is kinetically or thermodynamically limited, oligomerization is accelerated, in agreement with the laboratory studies. The comparison of predicted oligomer formation shows that for most model assumptions (e.g. depending on the assumed partitioning of MVK and MACR), SOA formation from isoprene in the gas phase exceeds aqueous SOA formation by a factor 3-4. However, at high aerosol liquid water content and potentially high partitioning of oligomer precursors into the aqueous phase, SOA formation in both phases might be equally efficient.

  2. Iron oxide functionalized graphene nano-composite for dispersive solid phase extraction of chemical warfare agents from aqueous samples.

    PubMed

    Chinthakindi, Sridhar; Purohit, Ajay; Singh, Varoon; Tak, Vijay; Goud, D Raghavender; Dubey, D K; Pardasani, Deepak

    2015-05-15

    Present study deals with the preparation and evaluation of graphene based magnetic nano-composite for dispersive solid phase extraction of Chemical Weapons Convention (CWC) relevant chemicals from aqueous samples. Nano-composite, Fe3O4@SiO2-G was synthesized by covalently bonding silica coated Fe3O4 onto the graphene sheets. Nerve agents (NA), Sulfur mustard (SM) and their non-toxic environmental markers were the target analytes. Extraction parameters like amount of sorbent, extraction time and desorption conditions were optimized. Dispersion of 20 milligram of sorbent in 200mL of water sample for 20min. followed by methanol/chloroform extraction produced average to good recoveries (27-94%) of targeted analytes. Recoveries of real agents exhibited great dependency upon sample pH and ionic strength. Sarin produced maximum recovery under mild acidic conditions (56% at pH 5) while VX demanded alkaline media (83% at pH 9). Salts presence in the aqueous samples was found to be advantageous, raising the recoveries to as high as 94% for SM. Excellent limits of detection (LOD) for sulphur mustard and VX (0.11ngmL(-1) and 0.19ngmL(-1) respectively) proved the utility of the developed method for the off-site analysis of CWC relevant chemicals.

  3. Aqueous alteration of VHTR fuels particles under simulated geological conditions

    NASA Astrophysics Data System (ADS)

    Ait Chaou, Abdelouahed; Abdelouas, Abdesselam; Karakurt, Gökhan; Grambow, Bernd

    2014-05-01

    Very High Temperature Reactor (VHTR) fuels consist of the bistructural-isotropic (BISO) or tristructural-isotropic (TRISO)-coated particles embedded in a graphite matrix. Management of the spent fuel generated during VHTR operation would most likely be through deep geological disposal. In this framework we investigated the alteration of BISO (with pyrolytic carbon) and TRISO (with SiC) particles under geological conditions simulated by temperatures of 50 and 90 °C and in the presence of synthetic groundwater. Solid state (scanning electron microscopy (SEM), micro-Raman spectroscopy, electron probe microanalyses (EPMA) and X-ray photoelectron spectroscopy (XPS)) and solution analyses (ICP-MS, ionique chromatography (IC)) showed oxidation of both pyrolytic carbon and SiC at 90 °C. Under air this led to the formation of SiO2 and a clay-like Mg-silicate, while under reducing conditions (H2/N2 atmosphere) SiC and pyrolytic carbon were highly stable after a few months of alteration. At 50 °C, in the presence and absence of air, the alteration of the coatings was minor. In conclusion, due to their high stability in reducing conditions, HTR fuel disposal in reducing deep geological environments may constitute a viable solution for their long-term management.

  4. Exploring Atmospheric Aqueous Chemistry (and Secondary Organic Aerosol Formation) through OH Radical Oxidation Experiments, Droplet Evaporation and Chemical Modeling

    NASA Astrophysics Data System (ADS)

    Turpin, B. J.; Kirkland, J. R.; Lim, Y. B.; Ortiz-Montalvo, D. L.; Sullivan, A.; Häkkinen, S.; Schwier, A. N.; Tan, Y.; McNeill, V. F.; Collett, J. L.; Skog, K.; Keutsch, F. N.; Sareen, N.; Carlton, A. G.; Decesari, S.; Facchini, C.

    2013-12-01

    Gas phase photochemistry fragments and oxidizes organic emissions, making water-soluble organics ubiquitous in the atmosphere. My group and others have found that several water-soluble compounds react further in the aqueous phase forming low volatility products under atmospherically-relevant conditions (i.e., in clouds, fogs and wet aerosols). Thus, secondary organic aerosol can form as a result of gas followed by aqueous chemistry (aqSOA). We have used aqueous OH radical oxidation experiments coupled with product analysis and chemical modeling to validate and refine the aqueous chemistry of glyoxal, methylglyoxal, glycolaldehyde, and acetic acid. The resulting chemical model has provided insights into the differences between oxidation chemistry in clouds and in wet aerosols. Further, we conducted droplet evaporation experiments to characterize the volatility of the products. Most recently, we have conducted aqueous OH radical oxidation experiments with ambient mixtures of water-soluble gases to identify additional atmospherically-important precursors and products. Specifically, we scrubbed water-soluble gases from the ambient air in the Po Valley, Italy using four mist chambers in parallel, operating at 25-30 L min-1. Aqueous OH radical oxidation experiments and control experiments were conducted with these mixtures (total organic carbon ≈ 100 μM-C). OH radicals (3.5E-2 μM [OH] s-1) were generated by photolyzing H2O2. Precursors and products were characterized using electrospray ionization mass spectrometry (ESI-MS), ion chromatography (IC), IC-ESI-MS, and ultra high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Chemical modeling suggests that organic acids (e.g., oxalate, pyruvate, glycolate) are major products of OH radical oxidation at cloud-relevant concentrations, whereas organic radical - radical reactions result in the formation of oligomers in wet aerosols. Products of cloud chemistry and droplet evaporation have

  5. FACILITATED CHEMICAL SYNTHESIS UNDER ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    The chemical research in the late 1990's witnessed a paradigm shift towards "environmentally-friendly chemistry" more popularly known as "green chemistry" due to the increasing environmental concerns and legislative requirements to curb the release of chemical waste into the atmo...

  6. Removal of lead from aqueous solution with native and chemically modified corncobs.

    PubMed

    Tan, Guangqun; Yuan, Hongyan; Liu, Yong; Xiao, Dan

    2010-02-15

    In this study, corncobs biomass was utilized as an adsorbent to remove Pb(II) from aqueous solution. The adsorption behavior of Pb(II) was studied under different conditions, including solution pH, contact time and metal concentration. Ground corncobs were modified with CH(3)OH and NaOH to investigate the effect of chemical modification on Pb(II) binding capacity. Results showed that Pb(II) binding on the biomass is pH-dependent and the kinetics can be well described by the Lagergren-second-order model. The maximum Pb(II) binding capacity q(max) calculated from Langmuir isotherm was 0.0783 mmol/g. After base hydrolysis of the biomass, Pb(II) binding capacity increased from 0.0783 to 0.2095 mmol/g (about 43.4 mg Pb/g). However, Pb(II) binding capacity on the esterified corncobs decreased greatly from 0.0783 to 0.0381 mmol/g. Fourier transform infrared spectroscopy (FTIR) analysis showed that hydroxyl and carboxylic (COO(-)) groups on the biomass play an important role in Pb(II) binding process. The X-ray photoelectron spectroscopy (XPS) data further indicated that lead is adsorbed as Pb(2+) and is attached to oxide groups on the biomass.

  7. Mechanisms of chemical vapor generation by aqueous tetrahydridoborate. Recent developments toward the definition of a more general reaction model

    NASA Astrophysics Data System (ADS)

    D'Ulivo, Alessandro

    2016-05-01

    A reaction model describing the reactivity of metal and semimetal species with aqueous tetrahydridoborate (THB) has been drawn taking into account the mechanism of chemical vapor generation (CVG) of hydrides, recent evidences on the mechanism of interference and formation of byproducts in arsane generation, and other evidences in the field of the synthesis of nanoparticles and catalytic hydrolysis of THB by metal nanoparticles. The new "non-analytical" reaction model is of more general validity than the previously described "analytical" reaction model for CVG. The non-analytical model is valid for reaction of a single analyte with THB and for conditions approaching those typically encountered in the synthesis of nanoparticles and macroprecipitates. It reduces to the previously proposed analytical model under conditions typically employed in CVG for trace analysis (analyte below the μM level, borane/analyte ≫ 103 mol/mol, no interference). The non-analytical reaction model is not able to explain all the interference effects observed in CVG, which can be achieved only by assuming the interaction among the species of reaction pathways of different analytical substrates. The reunification of CVG, the synthesis of nanoparticles by aqueous THB and the catalytic hydrolysis of THB inside a common frame contribute to rationalization of the complex reactivity of aqueous THB with metal and semimetal species.

  8. Phytotoxic activity and chemical composition of aqueous volatile fractions from Eucalyptus species.

    PubMed

    Zhang, Jinbiao; An, Min; Wu, Hanwen; Liu, De Li; Stanton, Rex

    2014-01-01

    The essential oils from four Eucalyptus species (E. spathulata, E. salubris, E. brockwayii and E. dundasii) have been previously confirmed to have stronger inhibitory effects on germination and seedling growth of silverleaf nightshade (Solanum elaeagnifolium Cav.). The aqueous volatile fractions (AVFs) were the water soluble volatile fractions produced together with the essential oils (water insoluble fractions) during the steam distillation process. The aim of this study was to further assess the phytotoxicity of AVFs from the four Eucalyptus species and their chemical composition. The fresh leaves of the four Eucalyptus species were used for the extraction of AVFs. The AVFs were tested for their phytotoxic effects on the perennial weed, silverleaf nightshade under laboratory conditions. The chemical compositions of the AVFs were determined by gas chromatograph-mass spectrometry (GC-MS). Our results showed that the AVFs had strong inhibition on the germination and seedling growth of silverleaf nightshade. The inhibition index increased with the increasing concentrations of AVFs. The inhibitory effects of the AVFs varied between different Eucalyptus species. The AVF from E. salubris demonstrated the highest inhibitory activity on the weed tested, with complete inhibition on germination and seedling growth at a concentration of 75%. The GC-MS analysis revealed that 1,8-cineole, isopentyl isovalerate, isomenthol, pinocarvone, trans-pinocarveol, alpha-terpineol and globulol were the main compounds in the AVFs. These results indicated that all AVFs tested had differential inhibition on the germination and seedling growth of silverleaf nightshade, which could be due to the joint effects of compounds present in the AVFs as these compounds were present in different quantities and ratio between Eucalyptus species.

  9. Phytotoxic Activity and Chemical Composition of Aqueous Volatile Fractions from Eucalyptus Species

    PubMed Central

    Zhang, Jinbiao; An, Min; Wu, Hanwen; Liu, De Li; Stanton, Rex

    2014-01-01

    The essential oils from four Eucalyptus species (E. spathulata, E. salubris, E. brockwayii and E. dundasii) have been previously confirmed to have stronger inhibitory effects on germination and seedling growth of silverleaf nightshade (Solanum elaeagnifolium Cav.). The aqueous volatile fractions (AVFs) were the water soluble volatile fractions produced together with the essential oils (water insoluble fractions) during the steam distillation process. The aim of this study was to further assess the phytotoxicity of AVFs from the four Eucalyptus species and their chemical composition. The fresh leaves of the four Eucalyptus species were used for the extraction of AVFs. The AVFs were tested for their phytotoxic effects on the perennial weed, silverleaf nightshade under laboratory conditions. The chemical compositions of the AVFs were determined by gas chromatograph–mass spectrometry (GC-MS). Our results showed that the AVFs had strong inhibition on the germination and seedling growth of silverleaf nightshade. The inhibition index increased with the increasing concentrations of AVFs. The inhibitory effects of the AVFs varied between different Eucalyptus species. The AVF from E. salubris demonstrated the highest inhibitory activity on the weed tested, with complete inhibition on germination and seedling growth at a concentration of 75%. The GC-MS analysis revealed that 1,8-cineole, isopentyl isovalerate, isomenthol, pinocarvone, trans-pinocarveol, alpha-terpineol and globulol were the main compounds in the AVFs. These results indicated that all AVFs tested had differential inhibition on the germination and seedling growth of silverleaf nightshade, which could be due to the joint effects of compounds present in the AVFs as these compounds were present in different quantities and ratio between Eucalyptus species. PMID:24681490

  10. GREEN CHEMICAL SYNTHESIS THROUGH CATALYSIS AND ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    Green chemical synthesis through catalysis and alternate reaction conditions

    Encompassing green chemistry techniques and methodologies, we have initiated several projects at the National Risk Management Research laboratory that focus on the design and development of chemic...

  11. Physical conditions and chemical processes during single-bubble sonoluminescence

    NASA Astrophysics Data System (ADS)

    Flannigan, David J.

    In order to gain insight into the physical conditions and chemical processes associated with single-bubble sonoluminescence (SBSL), nonvolatile liquids such as concentrated sulfuric acid (H2SO 4) were explored. The SBSL radiant powers from H2SO 4 aqueous solutions were found to be over 103 times larger than those typically observed for SBSL from water. In addition, the emission spectra contain extensive bands and lines from molecules, atoms, and ions. The population of high-energy states of atoms (20 eV) and ions (37 eV) provides definitive experimental evidence of the formation of a plasma. By using various techniques (e.g., small molecules and atoms as intra-cavity probes, standard methods of plasma diagnostics, and spectrometric methods of pyrometry), it was possible to quantify the heavy particle temperatures (15,000 K), heavy particle densities (1021 cm-3) and pressures (4,000 bar), and plasma electron densities (1018 cm -3) generated during SBSL from H2SO4. It was also found that SBSL from H2SO4 containing mixtures of noble gas and air was quenched up to a critical acoustic pressure, above which the radiant powers increased by 104. From the spectral profiles it was determined that the air limited heating and plasma formation by endothermic chemical reactions and energy-transfer reactions. Simultaneous stroboscopic and spectroscopic studies of SBSL in H2SO4 containing alkali-metal sulfates showed that dramatic changes in the bubble dynamics correlated with the onset of emission from nonvolatile species such as Na and K atoms. These effects were attributed to the development of interfacial instabilities with increasing translational velocity of the bubble.

  12. Chemical characterization of some aqueous leachates from crop residues in 'CELSS'

    NASA Technical Reports Server (NTRS)

    Madsen, Brooks C.

    1992-01-01

    Aqueous leachate samples prepared from crop residues that are produced as a component of the Controlled Ecological Life Support System program designed to support long duration space missions have been compared and general chemical characterization has been accomplished. Solid phase extraction and high performance liquid chromatography were used to accomplish comparisons based on chromatographic and ultraviolet absorption properties of the components that are present. Specific compounds were not identified, however, general composition related to the presence of phenol-like compounds was explored.

  13. Changes in the color, chemical stability and antioxidant capacity of thermally treated anthocyanin aqueous solution over storage.

    PubMed

    Sui, Xiaonan; Bary, Solène; Zhou, Weibiao

    2016-02-01

    Many anthocyanin-containing foods are thermally processed to ensure their safety, and stored for some time before being consumed. However, the combination of thermal processing and subsequent storage has a significant impact on anthocyanins. This study aimed to investigate the color, chemical stability, and antioxidant capacity of thermally treated anthocyanin aqueous solutions during storage at 4, 25, 45, and 65 °C, respectively. Anthocyanin aqueous solutions were thermally treated before storage. Results showed that the degradation rate of anthocyanins in aqueous solutions was much faster than those in real food. The color of the anthocyanin aqueous solutions changed dramatically during storage. The anthocyanin aqueous solutions stored at 4 °C showed the best chemical stability. Interestingly, the antioxidant capacity of the anthocyanin aqueous solutions stored at lower temperatures remained the same; however, the antioxidant capacity of those thermally treated at 120 or 140 °C and stored at 45 or 65 °C significantly decreased.

  14. Dermal absorption of neat and aqueous volatile organic chemicals in the Fischer 344 rat

    SciTech Connect

    Morgan, D.L.; Cooper, S.W.; Carlock, D.L.; Sykora, J.J.; Sutton, B.; Mattie, D.R.; McDougal, J.N. )

    1991-06-01

    Quantification of dermal absorption of volatile organic chemicals (VOCs) from aqueous solutions is required to understand the potential health hazards resulting from skin exposure to these chemicals in contaminated water. Male Fischer 344 rats were dermally exposed (3.1-cm2 dorsal skin) to neat, one-third saturated, two-thirds saturated, or saturated aqueous solutions of 14 VOCs for 24 hr. Blood samples were obtained via indwelling jugular catheters during exposure (0, 0.5, 1, 2, 4, 8, 12, and 24 hr), and analyzed for the VOCs by gas chromatography using headspace analysis. Absorption of the neat VOCs in this series of chemicals decreased as water solubility decreased. Peak blood levels of VOCs attained during exposure for 24 hr to neat chemicals were: 1,2-dichloroethane (135.1 micrograms/ml), bromochloromethane (113.3 micrograms/ml), chloroform (51.0 micrograms/ml), benzene (24.2 micrograms/ml), tetrachloroethylene (21.1 micrograms/ml), dibromomethane (18.2 micrograms/ml), trichloroethylene (11.6 micrograms/ml), toluene (9.5 micrograms/ml), xylene (8.8 micrograms/ml), hexane (8.0 micrograms/ml), ethylbenzene (5.6 micrograms/ml), styrene (5.3 micrograms/ml), carbon tetrachloride (5.0 micrograms/ml), and 1,1,1-trichloroethane (3.4 micrograms/ml). Blood levels of 1,2-dichloroethane and benzene continued to increase during the 24-hr exposure to neat chemical, while blood levels of the other neat VOCs peaked within 4 hr and then either decreased or remained about the same for the duration of the exposure. Absorption of VOCs from one-third, two-thirds, or saturated aqueous solutions was rapid, and resulted in depletion of the chemical from the solution although only a small amount of water was absorbed. Blood levels of each VOC were directly related to the exposure concentrations.

  15. Plasma treatment of aqueous solutes: Some chemical properties of a gliding arc in humid air

    NASA Astrophysics Data System (ADS)

    Benstaali, B.; Moussa, D.; Addou, A.; Brisset, J.-L.

    1998-11-01

    The chemical properties of the gaseous species generated in a humid air gliding arc discharge are investigated. Aqueous solutions are used as the targets exposed to the plasma, and this allows to evidence strong acid and oxidizing effects on various solutes by means of spectrometric or potentiometric methods. The influence of some working parameters such as the input gas flow, the distance from the electrodes to the target or the electrode gap is examined on the chemical transform and simple experimental laws are derived. A general feature is observed for oxidation and suggests the occurrence of an auto-catalytic step in the relevant kinetic mechanism.

  16. Phyto-chemical evaluation of dried aqueous extract of Jivanti [Leptadenia reticulata (Retz.) Wt. et Arn].

    PubMed

    Pal, Atanu; Sharma, Parmeshwar P; Pandya, Tarulata N; Acharya, Rabinarayan; Patel, Bhupesh R; Shukla, Vinay J; Ravishankar, B

    2012-10-01

    Jivanti (Leptadenia reticulata (Retz.) Wt. et Arn) is a well known climber used for its innumerable therapeutic properties like antioxidant, antibacterial, vasodilator, galactogogue, Jivaniya, etc., Its use in veterinary practice is tremendous due to its lactogenic effect. The Ghana (dried aqueous extract) of the whole plant was prepared and evaluated phyto-chemically by subjecting it to various tests like physico-chemical, qualitative analysis; TLC and HPTLC. Qualitative tests revealed the presence of flavonoids and TLC also inferred positive Rf value (0.30), indicating the presence of quercetin in the Ghana.

  17. A radical addition/cyclization of diverse ethers to 2-isocyanobiaryls under mildly basic aqueous conditions.

    PubMed

    Anton-Torrecillas, Cintia; Felipe-Blanco, Diego; Gonzalez-Gomez, Jose C

    2016-12-07

    Mildly basic aqueous conditions facilitated the tert-butyl peroxybenzoate (TBPB) mediated dehydrogenative addition of a range of ethers, including acetals, to diverse substituted 2-isocyanobiaryls. Mechanistic studies suggest that this radical cascade is an example of base promoted homolytic aromatic substitution (BHAS).

  18. Single step signal group-imidazole labeling of organic phosphate groups under aqueous conditions

    DOEpatents

    Giese, Roger W.; Wang, Poguang

    1996-01-01

    Compounds and methods for single step, covalent labeling of the phosphate group of an organic substance under aqueous conditions are described. The labeling compound includes any kind of detectable signal group covalently bound to an imidazole moiety, which can be imidazole or a substituted imidazole. A preferred labeling compound has the formula ##STR1##

  19. Single step signal group-imidazole labeling of organic phosphate groups under aqueous conditions

    DOEpatents

    Giese, R.W.; Wang, P.

    1996-04-30

    Compounds and methods for single step, covalent labeling of the phosphate group of an organic substance under aqueous conditions are described. The labeling compound includes any kind of detectable signal group covalently bound to an imidazole moiety, which can be imidazole or a substituted imidazole. A preferred labeling compound has the formula shown in the accompanying diagram. 4 figs.

  20. Modelling the multiphase chemical processing of Monoethanolamine from industrial CCS processes in tropospheric aqueous particles and clouds

    NASA Astrophysics Data System (ADS)

    Tilgner, Andreas; Bräuer, Peter; Wolke, Ralf; Herrmann, Hartmut

    2013-04-01

    Using amine based solvent technology is an option to realise CO2 capture from the exhaust of power plants. Amines such as Monoethanolamine (MEA) may potentially be released in trace amounts during the carbon capture and storage (CCS) process. In order to investigate the tropospheric chemical fate of MEA from CO2 capturing processes and their oxidation products, multiphase modelling was performed and a reduced mechanism for future 3D model applications was developed in the present study. Based on former laboratory investigations and mechanism developments, an up-to-date multiphase mechanism describing the gas and aqueous phase chemistry of MEA has been developed in the present study. The developed multiphase phase oxidation scheme of MEA and its oxidation products, incl. nitrosamines, nitramines and amides, was coupled to the existing multiphase chemistry mechanism (RACM-MIM2ext-CAPRAM3.0i-red, Deguillaume et al. 2010) and the CAPRAM Halogen Module 2.0. Overall, the multiphase mechanism comprises 1276 chemical processes including 668 gas and 518 aqueous phase reactions as well as 90 phase transfers. The multiphase amine module contains in total 138 processes. The final mechanism was used in the Lagrangian parcel model SPACCIM (Wolke et al., 2005) to investigate e.g. the main oxidation pathways, the formation of hazardous oxidation products and seasonal differences. Simulations were performed using a meteorological scenario with non-permanent clouds, different environmental trajectories and seasonal conditions. The simulations revealed the importance of both cloud droplets and deliquescent particles to be an important compartment for the multiphase processing of MEA and its products. Due to the shifted partitioning of MEA towards the aqueous phase, the model investigations implicated that aqueous phase oxidation by OH radicals represents the main sink for MEA under daytime cloud summer conditions. Reaction flux analyses have shown that under deliquescent particle

  1. Influence of formulation properties on chemical stability of captopril in aqueous preparations.

    PubMed

    Kristensen, S; Lao, Y E; Brustugun, J; Braenden, J U

    2008-12-01

    The influence of various formulation properties on the chemical stability of captopril in aqueous media at pH 3 was investigated, in order to reformulate and increase the shelf-life of an oral mixture of the drug. At this pH, chemical stability is improved by an increase in drug concentration (1-5 mg/ml) and a decrease in temperature (5-36 degrees C), the latter demonstrated by a linear Arrhenius-plot. The activation energy is low (Ea = 10.2 kcal/mol), thus the Q10 value is only 1.8 in pure aqueous solutions. The degradation at the lowest concentration investigated in pure aqueous solution apparently follows zero order kinetics. The reaction order is changed at higher concentrations. We are presenting a hypothesis of intramolecular proton transfer from the thiol to the ionized carboxylic group as the initial step in the oxidative degradation pathways of captopril. Long-term stability of 1 mg/ml captopril in aqueous solutions at pH 3, stored at 36 degrees C for one year, shows that the sugar alcohol sorbitol accelerates degradation of the drug while Na-EDTA at a concentration as low as 0.01% is sufficient to stabilize these samples. Purging with N2-gas prior to storage is not essential for drug stability, as long as Na-EDTA is present. Only at a low level of Na-EDTA (0.01%) combined with a high level of sorbitol (35%), purging with N2-gas appears to have a small effect. The destabilizing effect of sugar alcohols is confirmed by accelerated degradation also in the presence of glycerol. The efficient stabilization in the presence of Na-EDTA at a low concentration indicates that the metal-ion-catalyzed oxidation pathway dominates the chemical degradation process at low pH, although several mechanisms seem to be involved depending on excipients present.

  2. Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen.

    PubMed

    Zakzeski, Joseph; Weckhuysen, Bert M

    2011-03-21

    The solubilization and aqueous phase reforming of lignin, including kraft, soda, and alcell lignin along with sugarcane bagasse, at low temperatures (T≤498 K) and pressures (P≤29 bar) is reported for the first time for the production of aromatic chemicals and hydrogen. Analysis of lignin model compounds and the distribution of products obtained during the lignin aqueous phase reforming revealed that lignin was depolymerized through disruption of the abundant β-O-4 linkages and, to a lesser extent, the 5-5' carbon-carbon linkages to form monomeric aromatic compounds. The alkyl chains contained on these monomeric compounds were readily reformed to produce hydrogen and simple aromatic platform chemicals, particularly guaiacol and syringol, with the distribution of each depending on the lignin source. The methoxy groups present on the aromatic rings were subject to hydrolysis to form methanol, which was also readily reformed to produce hydrogen and carbon dioxide. The composition of the isolated yields of monomeric aromatic compounds and overall lignin conversion based on these isolated yields varied from 10-15% depending on the lignin sample, with the balance consisting of gaseous products and residual solid material. Furthermore, we introduce the use of a high-pressure autoclave with optical windows and an autoclave with ATR-IR sentinel for on-line in situ spectroscopic monitoring of biomass conversion processes, which provides direct insight into, for example, the solubilization process and aqueous phase reforming reaction of lignin.

  3. Aspects of glycosidic bond formation in aqueous solution: chemical bonding and the role of water.

    PubMed

    Stubbs, John M; Marx, Dominik

    2005-04-22

    A model of the specific acid-catalyzed glycosidic bond formation in liquid water at ambient conditions is studied based on constrained Car-Parrinello ab initio molecular dynamics. Specifically the reaction of alpha-D-glucopyranose and methanol is found to proceed by a D(N)A(N) mechanism. The D(N) step consists of a concerted protonation of the O(1) hydroxyl leaving group; this process results in the breaking of the C(1)-O(1) bond, and oxocarbenium ion formation involving C(1)=O(5). The second step, A(N), is the formation of the C(1)-O(m) glycosidic bond, deprotonation of the methanol hydroxyl group O(m)H(m), and re-formation of the C(1)-O(5) single bond. A focus of this study is the analysis of the electronic structure during this condensed phase reaction relying on both Boys/Wannier localized orbitals and the electron localization function ELF. This analysis allows the clear elucidation of the chemical bonding features of the intermediate bracketed by the D(N) and A(N) steps, which is a non-solvent equilibrated oxocarbenium cation. Most interestingly, it is found that the oxygen in the pyranose ring becomes "desolvated" upon double bond/oxocarbenium formation, whereas it is engaged in the hydrogen-bonded water network before and after this period. This demonstrates that hydrogen bonding and thus the aqueous solvent play an active role in this reaction implying that microsolvation studies in the gas phase, both theoretical and experimental, might lead to qualitatively different reaction mechanisms compared to solution.

  4. Chemical relaxation and equilibrium studies of association in aqueous solutions of bolaform detergents. Part 3

    SciTech Connect

    Zana, R.; Yiv, S.; Kale, K.M.

    1980-10-01

    Micelle formation in aqueous solutions of docasane-1,22-bis(trimethylammonium bromide) (C22ME6) has been investigated by means of conductivity, EMF (concentration cell and bromide ion and detergent ion specific electrodes), density, light scattering, fluorescence, and chemical relaxation (p-jump, t-jump, shock tube, ultrasonic absorption). The CMC, micelle ionization degree, micelle ionization degree, micelle aggregation number, and volume change upon micellization were calculated. The slope of the plot log CMC vs. number m of carbon atoms in the alkyl chain of bolaforms of the CMME6 type as well as several other results reveal that these bolaforms behave like detergents with 2 charged groups on the first carbon of the alkyl chain. The conclusion is that the bolaform alkyl chain may be somewhat folded both in aqueous solution and in the micellized state. 25 references.

  5. Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review.

    PubMed

    Rubio-Clemente, Ainhoa; Torres-Palma, Ricardo A; Peñuela, Gustavo A

    2014-04-15

    Due to their carcinogenic, mutagenic and teratogenic potential, the removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous environment using physical, biological and chemical processes has been studied by several researchers. This paper reviews the current state of knowledge concerning PAHs including their physico-chemical properties, input sources, occurrence, adverse effects and conventional and alternative chemical processes applied for their removal from water. The mechanisms and reactions involved in each treatment method are reported, and the effects of various variables on the PAH degradation rate as well as the extent of degradation are also discussed. Extensive literature analysis has shown that an effective way to perform the conversion and mineralization of this type of substances is the application of advanced oxidation processes (AOPs). Furthermore, combined processes, particularly AOPs coupled with biological treatments, seem to be one of the best solutions for the treatment of effluents containing PAHs.

  6. Asian dust particles converted into aqueous droplets under remote marine atmospheric conditions.

    PubMed

    Tobo, Yutaka; Zhang, Daizhou; Matsuki, Atsushi; Iwasaka, Yasunobu

    2010-10-19

    The chemical history of dust particles in the atmosphere is crucial for assessing their impact on both the Earth's climate and ecosystem. So far, a number of studies have shown that, in the vicinity of strong anthropogenic emission sources, Ca-rich dust particles can be converted into aqueous droplets mainly by the reaction with gaseous HNO(3) to form Ca(NO(3))(2). Here we show that other similar processes have the potential to be activated under typical remote marine atmospheric conditions. Based on field measurements at several sites in East Asia and thermodynamic predictions, we examined the possibility for the formation of two highly soluble calcium salts, Ca(NO(3))(2) and CaCl(2), which can deliquesce at low relative humidity. According to the results, the conversion of insoluble CaCO(3) to Ca(NO(3))(2) tends to be dominated over urban and industrialized areas of the Asian continent, where the concentrations of HNO(3) exceed those of HCl ([HNO(3)/HCl] >  ∼ 1). In this regime, CaCl(2) is hardly detected from dust particles. However, the generation of CaCl(2) becomes detectable around the Japan Islands, where the concentrations of HCl are much higher than those of HNO(3) ([HNO(3)/HCl] <  ∼ 0.3). We suggest that elevated concentrations of HCl in the remote marine boundary layer are sufficient to modify Ca-rich particles in dust storms and can play a more important role in forming a deliquescent layer on the particle surfaces as they are transported toward remote ocean regions.

  7. Asian dust particles converted into aqueous droplets under remote marine atmospheric conditions

    PubMed Central

    Tobo, Yutaka; Zhang, Daizhou; Matsuki, Atsushi; Iwasaka, Yasunobu

    2010-01-01

    The chemical history of dust particles in the atmosphere is crucial for assessing their impact on both the Earth’s climate and ecosystem. So far, a number of studies have shown that, in the vicinity of strong anthropogenic emission sources, Ca-rich dust particles can be converted into aqueous droplets mainly by the reaction with gaseous HNO3 to form Ca(NO3)2. Here we show that other similar processes have the potential to be activated under typical remote marine atmospheric conditions. Based on field measurements at several sites in East Asia and thermodynamic predictions, we examined the possibility for the formation of two highly soluble calcium salts, Ca(NO3)2 and CaCl2, which can deliquesce at low relative humidity. According to the results, the conversion of insoluble CaCO3 to Ca(NO3)2 tends to be dominated over urban and industrialized areas of the Asian continent, where the concentrations of HNO3 exceed those of HCl ([HNO3/HCl] >  ∼ 1). In this regime, CaCl2 is hardly detected from dust particles. However, the generation of CaCl2 becomes detectable around the Japan Islands, where the concentrations of HCl are much higher than those of HNO3 ([HNO3/HCl] <  ∼ 0.3). We suggest that elevated concentrations of HCl in the remote marine boundary layer are sufficient to modify Ca-rich particles in dust storms and can play a more important role in forming a deliquescent layer on the particle surfaces as they are transported toward remote ocean regions. PMID:20921372

  8. Process for preparing chemically modified micas for removal of cesium salts from aqueous solution

    DOEpatents

    Yates, Stephen Frederic; DeFilippi, Irene; Gaita, Romulus; Clearfield, Abraham; Bortun, Lyudmila; Bortun, Anatoly

    2000-09-05

    A chemically modified mica composite formed by heating a trioctahedral mica in an aqueous solution of sodium chloride having a concentration of at least 1 mole/liter at a temperature greater than 180 degrees Centigrade for at least 20 hours, thereby replacing exchangeable ions in the mica with sodium. Formation is accomplished at temperatures and pressures which are easily accessed by industrial equipment. The reagent employed is inexpensive and non-hazardous, and generates a precipitate which is readily separated from the modified mica.

  9. Zero-valent iron removal rates of aqueous Cr(VI) measured under flow conditions

    SciTech Connect

    Kaplan, Daniel I.; Gilmore, Tyler J.

    2004-06-30

    The rates of Cr(VI) removal from the aqueous phase by zero-valent iron Fe(0) was measured under flow conditions. The intent of this work was to generate removal rate coefficients that would be applicable to the Reactive Well Technology, a gournwater remediation technology that replaces the sand in a filter pack of a conventioanl well with a reactive material, such as Fe(0).

  10. Aqueous Chemical Modeling of Sedimentation on Early Mars with Application to Surface-Atmosphere Evolution

    NASA Technical Reports Server (NTRS)

    Catling, David C.

    2004-01-01

    This project was to investigate models for aqueous sedimentation on early Mars from fluid evaporation. Results focused on three specific areas: (1) First, a fluid evaporation model incorporating iron minerals was developed to compute the evaporation of a likely solution on early Mars derived from the weathering of mafic rock. (2) Second, the fluid evaporation model was applied to salts within Martian meteorites, specifically salts in the nakhlites and ALH84001. Evaporation models were found to be consistent with the mineralogy of salt assemblages-anhydrite, gypsum, Fe-Mg-Ca carbonates, halite, clays-- and the concentric chemical fractionation of Ca-to Mg-rich carbonate rosettes in ALH84001. We made progress in further developing our models of fluid concentration by contributing to updating the FREZCHEM model. (3) Third, theoretical investigation was done to determine the thermodynamics and kinetics involved in the formation of gray, crystalline hematite. This mineral, of probable ancient aqueous origin, has been observed in several areas on the surface of Mars by the Thermal Emission Spectrometer on Mars Global Surveyor. The "Opportunity" Mars Exploration Rover has also detected gray hematite at its landing site in Meridiani Planum. We investigated how gray hematite can be formed via atmospheric oxidation, aqueous precipitation and subsequent diagenesis, or hydrothermal processes. We also studied the geomorphology of the Aram Chaos hematite region using Mars Orbiter Camera (MOC) images.

  11. Reaction mechanisms of aqueous monoethanolamine with carbon dioxide: a combined quantum chemical and molecular dynamics study.

    PubMed

    Hwang, Gyeong S; Stowe, Haley M; Paek, Eunsu; Manogaran, Dhivya

    2015-01-14

    Aqueous monoethanolamine (MEA) has been extensively studied as a solvent for CO2 capture, yet the underlying reaction mechanisms are still not fully understood. Combined ab initio and classical molecular dynamics simulations were performed to revisit and identify key elementary reactions and intermediates in 25-30 wt% aqueous MEA with CO2, by explicitly taking into account the structural and dynamic effects. Using static quantum chemical calculations, we also analyzed in more detail the fundamental interactions involved in the MEA-CO2 reaction. We find that both the CO2 capture by MEA and solvent regeneration follow a zwitterion-mediated two-step mechanism; from the zwitterionic intermediate, the relative probability between deprotonation (carbamate formation) and CO2 removal (MEA regeneration) tends to be determined largely by the interaction between the zwitterion and neighboring H2O molecules. In addition, our calculations clearly demonstrate that proton transfer in the MEA-CO2-H2O solution primarily occurs through H-bonded water bridges, and thus the availability and arrangement of H2O molecules also directly impacts the protonation and/or deprotonation of MEA and its derivatives. This improved understanding should contribute to developing more comprehensive kinetic models for use in modeling and optimizing the CO2 capture process. Moreover, this work highlights the importance of a detailed atomic-level description of the solution structure and dynamics in order to better understand molecular mechanisms underlying the reaction of CO2 with aqueous amines.

  12. 49 CFR 219.11 - General conditions for chemical tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false General conditions for chemical tests. 219.11 Section 219.11 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... for chemical tests. (a) Any employee who performs covered service for a railroad is deemed to...

  13. 49 CFR 219.11 - General conditions for chemical tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false General conditions for chemical tests. 219.11 Section 219.11 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... for chemical tests. (a) Any employee who performs covered service for a railroad is deemed to...

  14. 49 CFR 219.11 - General conditions for chemical tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false General conditions for chemical tests. 219.11 Section 219.11 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... for chemical tests. (a) Any employee who performs covered service for a railroad is deemed to...

  15. Intrinsic formation of nanocrystalline neptunium dioxide under neutral aqueous conditions relevant to deep geological repositories.

    PubMed

    Husar, Richard; Hübner, René; Hennig, Christoph; Martin, Philippe M; Chollet, Mélanie; Weiss, Stephan; Stumpf, Thorsten; Zänker, Harald; Ikeda-Ohno, Atsushi

    2015-01-25

    The dilution of aqueous neptunium carbonate complexes induces the intrinsic formation of nanocrystalline neptunium dioxide (NpO2) particles, which are characterised by UV/Vis and X-ray absorption spectroscopies and transmission electron microscopy. This new route of nanocrystalline NpO2 formation could be a potential scenario for the environmental transport of radionuclides from the waste repository (i.e. under near-field alkaline conditions) to the geological environment (i.e. under far-field neutral conditions).

  16. The radiolysis of aqueous ammonium cyanide - Compounds of interest to chemical evolution studies

    SciTech Connect

    Draganic, Z.D.; Jovanovic, S.

    1980-07-01

    Oxygen-free aqueous solutions of NH4CN (0.1 M, pH 9) were exposed to gamma rays from a Co-60 source, the mixture of nonvolatile products was fractionated, and the fractions were analyzed. The procedures were chosen to make effective investigations of radiolytic products, and to minimize the contributions of chemical changes which are known to occur in aqueous solution in the absence of ionizing radiation. It has been found that the main constituents are: urea, 25.9% an oligomer, very likely oligoimine (18.4%) and several fractions (about 50%) which release amino acids on hydrolysis. These fractions differ considerably, as shown by amino acid assay, enzymatic digestion, IR spectra, and biuret reaction. All these tests were found to be positive for two fractions in two further fractions the enzymatic cleavage was absent, but other tests were positive. Negative enzymatic and biuret tests, and no bands characteristic of amide or peptide, were found for a fraction whose hydrolysate consisted of 55% glycine. Although most of the isolated materials were found to be composite, the results of the analyses were sufficient for getting a reliable over-all picture of the chemical action of the ionizing radiation. The role of free radicals in reactions leading to the formations of radiolytic products was considered.

  17. Self-assembly of 6-O- and 6'-O-hexadecylsucroses mixture under aqueous conditions.

    PubMed

    Kanemaru, Manami; Kuwahara, Shin-ya; Yamamoto, Kazuya; Kaneko, Yoshiro; Kadokawa, Jun-ichi

    2010-12-10

    In this paper, we report the self-assembly of 6-O- and 6'-O-hexadecylsucroses mixture under aqueous conditions. The mixture was synthesized by a five-step sequence from sucrose. The SEM image of a sample prepared by drying a dispersion of the mixture in water showed nanoparticles with the diameter of ∼50nm and aggregates that were formed by further assembly of them. The XRD measurement of the sample exhibited the diffraction pattern assignable to face-centered cubic (FCC) structure and the diameter of a sphere, which took part in the FCC structure, was calculated to be 5.1nm. This value was relatively close to that observed in the DLS measurement of a dispersion of the mixture in water and estimated for a spherical micelle based on the molecular sizes of the two sucrose ethers. On the basis of the above findings, the following self-assembly process of the mixture under aqueous conditions was proposed. The mixture formed the spherical micelles with the diameter of ∼5-7nm in water. The micelles regularly organized according to the FCC structure during the drying process from the aqueous dispersion to construct the nanoparticles with the diameter of ∼50nm. Several numbers of the nanoparticles further assembled to form the aggregates.

  18. Homogeneous ice freezing temperatures and ice nucleation rates of aqueous ammonium sulfate and aqueous levoglucosan particles for relevant atmospheric conditions.

    PubMed

    Knopf, Daniel Alexander; Lopez, Miguel David

    2009-09-28

    Homogeneous ice nucleation from micrometre-sized aqueous (NH4)2SO4 and aqueous levoglucosan particles is studied employing the optical microscope technique. A new experimental method is introduced that allows us to control the initial water activity of the aqueous droplets. Homogeneous ice freezing temperatures and ice melting temperatures of these aqueous solution droplets, 10 to 80 microm in diameter, are determined. Homogeneous ice nucleation from aqueous (NH4)2SO4 particles 5-39 wt% in concentration and aqueous levoglucosan particles with initial water activities of 0.85-0.99 yield upper limits of the homogeneous ice nucleation rate coefficients of up to 1x10(10) cm(-3) s(-1). The experimentally derived homogeneous ice freezing temperatures and upper limits of the homogeneous ice nucleation rate coefficients are compared with corresponding predictions of the water-activity-based ice nucleation theory [T. Koop, B. P. Luo, A. Tsias and T. Peter, Nature, 2000, 406, 611]. It is found that the water-activity-based ice nucleation theory can capture the experimentally derived ice freezing temperatures and homogeneous ice nucleation rate coefficients of the aqueous (NH4)2SO4 and aqueous levoglucosan particles. However, the level of agreement between experimentally derived and predicted values, in particular for homogeneous ice nucleation rate coefficients, crucially depends on the extrapolation method to obtain water activities at corresponding freezing temperatures. It is suggested that the combination of experimentally derived ice freezing temperatures and homogeneous ice nucleation rate coefficients can serve as a better validation of the water-activity-based ice nucleation theory than when compared to the observation of homogeneous ice freezing temperatures alone. The atmospheric implications with regard to the application of the water-activity-based ice nucleation theory and derivation of maximum ice particle production rates are briefly discussed.

  19. Comprehensive study of the chemical reactions resulting from the decomposition of chloroform in alkaline aqueous solution

    NASA Astrophysics Data System (ADS)

    Estevez Mews, Jorge

    Chloroform (CHCl3) is a volatile liquid, which has a rather slow rate of decomposition in ground water. It is a known carcinogen and one of the most common contaminants found at toxic waste sites. The dominant degradation process for chloroform in both the atmosphere and the groundwater is the reaction with the hydroxyl radical or hydroxide ion. This process triggers a sequence of reactions which ultimately yield carbon monoxide, hydrogen chloride, and formic acid. The rate of chloroform degradation is considerably larger in solution than that in the gas phase and it increases dramatically with increasing pH. However, only one of the viable reactions had been studied previously at a high level of theory in solution. It is of great interest to gain a deeper understanding of the decomposition reaction mechanism. Quantum mechanical methods are well suited for studying the mechanism of organic reactions. However, a full quantum mechanical treatment of the entire fluid system is not computationally feasible. In this work, combined quantum mechanical and molecular mechanical (QM/MM) methods are used for studying chemical reactions in condensed phases. In these calculations, the solute molecules are treated quantum mechanically (QM), whereas the solvent molecules are approximated by empirical (MM) potential energy functions. The use of quantum mechanics and statistical sampling simulation is necessary to determine the reaction free energy profile. In the present study, the ab initio Hartree-Fock theory along with the 3-21G basis set was used in the quantum mechanical calculations to elucidate the reaction pathways of chloroform decomposition, with a focus on basic reaction conditions. Statistical mechanical Monte Carlo approach was then applied in molecular mechanical simulations, employing the empirical TIP3P model for water. We employed state-of-the-art electronic structure methods to determine the gas-phase inter-nuclear potential energy profile for all the relevant

  20. Aqueous fluid composition in CI chondritic materials: Chemical equilibrium assessments in closed systems

    NASA Astrophysics Data System (ADS)

    Zolotov, Mikhail Yu.

    2012-08-01

    Solids of nearly solar composition have interacted with aqueous fluids on carbonaceous asteroids, icy moons, and trans-neptunian objects. These processes altered mineralogy of accreted materials together with compositions of aqueous and gaseous phases. We evaluated chemistry of aqueous solutions coexisted with CI-type chondritic solids through calculations of chemical equilibria in closed water-rock-gas systems at different compositions of initial fluids, water/rock mass ratios (0.1-1000), temperatures (<350 °C), and pressures (<2 kbars). The calculations show that fluid compositions are mainly affected by solubilities of solids, the speciation of chlorine in initial water-rock mixtures, and the occurrence of Na-bearing secondary minerals such as saponite. The major species in modeled alkaline solutions are Na+, Cl-, CO32-,HCO3-, K+, OH-, H2, and CO2. Aqueous species of Mg, Fe, Ca, Mn, Al, Ni, Cr, S, and P are not abundant in these fluids owing to low solubility of corresponding solids. Typical NaCl type alkaline fluids coexist with saponite-bearing mineralogy that usually present in aqueously altered chondrites. A common occurrence of these fluids is consistent with the composition of grains emitted from Enceladus. Na-rich fluids with abundant CO32-,HCO3-, and OH- anions coexist with secondary mineralogy depleted in Na. The Na2CO3 and NaHCO3 type fluids could form via accretion of cometary ices. NaOH type fluids form in reduced environments and may locally occur on parent bodies of CR carbonaceous chondrites. Supposed melting of accreted HCl-bearing ices leads to early acidic fluids enriched in Mg, Fe and other metals, consistent with signs of low-pH alteration in chondrites. Neutralization of these solutions leads to alkaline Na-rich fluids. Sulfate species have negligible concentrations in closed systems, which remain reduced, especially at elevated pressures created by forming H2 gas. Hydrogen, CO2, and H2O dominate in the gaseous phase, though the abundance

  1. Detailed investigation of the radical-induced destruction of chemical warfare agent simulants in aqueous solution.

    PubMed

    Abbott, Amberashley; Sierakowski, Tim; Kiddle, James J; Clark, Kristin K; Mezyk, Stephen P

    2010-06-10

    The persistence of delivered chemical warfare agents (CWAs) in a variety of environmental matrices is of serious concern to both the military and civilian populations. Ultimately understanding all of the degradation pathways of the various CWAs in different environmental matrices is essential for determining whether native processes would offer sufficient decontamination of a particular material or if active chemical decontamination is required. Whereas much work on base-promoted chemical degradation has been reported, additional remediation strategies such as the use of advanced oxidation or reduction process free radical treatments may also be a viable option. We have examined here the primary kinetics and reaction mechanisms for an extensive library of chemical warfare agent simulants with the oxidizing hydroxyl radical and reducing hydrated electrons in water. From these values, it is seen that the reductive destruction occurs primarily through a single mechanism, consisting of hydrated electron capture at the phosphorus group with subsequent elimination, whereas hydroxyl radical oxidation shows two separate reaction mechanisms, dependent on the aqueous pK(a) of the leaving group.

  2. The distribution of methane in groundwater in Alberta (Canada) and associated aqueous geochemistry conditions

    NASA Astrophysics Data System (ADS)

    Humez, Pauline; Mayer, Bernhard; Nightingale, Michael; Becker, Veith; Kingston, Andrew; Taylor, Stephen; Millot, Romain; Kloppmann, Wolfram

    2016-04-01

    wide range of δ13CCH4 values in baseline groundwater samples, no conclusive evidence was found for deep thermogenic gas that had migrated in significant amounts into shallow aquifers either naturally or via anthropogenically induced pathways. This study shows that the combined interpretation of aqueous geochemistry data in concert with the chemical and isotopic composition of dissolved and/or free gas can yield unprecedented insights into formation or migration of methane in shallow groundwater. This enables the assessment of cross-formational methane migration and provides an understanding of alkane gas sources and pathways necessary for a stringent baseline definition in the context of current and future unconventional hydrocarbon exploration and exploitation.

  3. Stable organic field-effect transistors for continuous and nondestructive sensing of chemical and biologically relevant molecules in aqueous environment.

    PubMed

    Yun, Minseong; Sharma, Asha; Fuentes-Hernandez, Canek; Hwang, Do Kyung; Dindar, Amir; Singh, Sanjeev; Choi, Sangmoo; Kippelen, Bernard

    2014-02-12

    The use of organic field-effect transistors (OFETs) as sensors in aqueous media has gained increased attention for environmental monitoring and medical diagnostics. However, stable operation of OFETs in aqueous media is particularly challenging because of electrolytic hydrolysis of water, high ionic conduction through the analyte, and irreversible damage of organic semiconductors when exposed to water. To date, OFET sensors have shown the capability of label-free sensing of various chemical/biological species, but they could only be used once because their operational stability and lifetime while operating in aqueous environments has been poor, and their response times typically slow. Here, we report on OFETs with unprecedented water stability. These OFETs are suitable for the implementation of reusable chemical/biological sensors because they primarily respond to charged species diluted in an aqueous media by rapidly shifting their threshold voltage. These OFET sensors present stable current baselines and saturated signals which are ideal for detection of low concentration of small or large molecules that alter the pH of an aqueous environment. The overall response of these OFET sensors paves the way for the development of continuous chemical/biological nondestructive sensor applications in aqueous media.

  4. Possible interrelations among chemical freeze-out conditions

    NASA Astrophysics Data System (ADS)

    Tawfik, A.; El-Bakry, M. Y.; Habashy, D. M.; Mohamed, M. T.; Abbas, E.

    2016-03-01

    At thermal equilibrium, different chemical freeze-out conditions have been proposed so far. They have an ultimate aim of proposing a universal description for the chemical freeze-out parameters (Tch and μb), which are to be extracted from the statistical fitting of different particle ratios measured at various collision energies with calculations from thermal models. A systematic comparison between these conditions is presented. The physical meaning of each of them and their sensitivity to the hadron mass cuts are discussed. Based on availability, some of them are compared with recent lattice calculations. We found that most of these conditions are thermodynamically equivalent, especially at small baryon chemical potential. We propose that further crucial consistency tests should be performed at low energies. The fireball thermodynamics is another way of guessing conditions describing the chemical freeze-out parameters extracted from high-energy experiments. We endorse the possibility that the various chemical freeze-out conditions should be interpreted as different aspects of one universal condition.

  5. Chemical and Isotopic Study of Lab-formed Carbonates Under Cryogenic and Hydrothermal Conditions

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Leshin, L. A.; Socki, R. A.; Guan, Y.; Golden, D. C.; Ming, D. W.; Gibson, E. K.

    2004-01-01

    Aqueous environments on early Mars were probably relatively short-lived and localized, as evidenced by the lack of abundant secondary minerals detected by the TES instrument. In order to better understand the aqueous history of early Mars we need to be able to interpret the evidence preserved in secondary minerals formed during these aqueous events. Carbonate minerals, in particular, are important secondary minerals for interpreting past aqueous environments as illustrated by the carbonates preserved in ALH84001. Carbonates formed in short-lived, dynamic aqueous events often preserve kinetic rather than equilibrium chemical and isotopic processes, and predicting the behavior of such systems is facilitated by empirical data.

  6. Chemical speciation of inorganic compounds under hydrothermal conditions. 1998 annual progress report

    SciTech Connect

    Stern, E.A.; Fulton, J.L.; Darab, J.G.; Steidler, G.T.

    1998-06-01

    'To obtain the chemistry of metallic solute ions under aqueous and hydrothermal conditions in order to obtain key insights pertinent to the removal of toxic wastes. Elements present in Hanford tank wastes will be investigated to get a better understanding of how the high temperatures involved in vitrification will affect the hydrolysis-polymerization reaction. In the following summary of the x-ray absorption fine structure (XAFS) measurements under aqueous and hydrothermal conditions, most measurements below the critical temperature (375 C) were taken at about 200 bar pressure, while at supercritical temperatures the pressure was about 600 bar. Chemistry of Na{sub 2} WO{sub 4} Under Aqueous and Hydrothermal Conditions Tungsten, molybdenum, vanadium and, to a lesser agree, chromium, niobium and tantalum form isopolymetallates, polymeric species of rather complicated structure and complex chemical equilibria, in aqueous solution upon acidification. Except Tantalum, all of these elements are present in the Hanford tank wastes and it is not well understood how the high temperatures involved in vitrification will affect the hydrolysis-polymerization reaction. In March 1998, the authors launched a series of XAFS experiments to resolve these questions. Measurements were obtained for 0.2 molal tungstate solutions as a function of temperature (to 200 C) and as a function of starting pH. The outcome of these measurements is providing key insights into this chemistry as follows: (1) A change from tetrahedral to octahedral coordination of the oxygen atoms around the tungsten center atom can be detected upon increasing extent of polymerization. (2) At least one new feature shows up in the Fourier Transform of the k-weighted Chi plot (closely related to a radial distribution function) which is unambiguously attributed to a tungsten-tungsten scattering path, only present in the polymeric species. (3) Perhaps most interestingly, the XAFS data indicate a higher extent of

  7. Chemical Characterization of Secondary Organic Aerosol Formed from Atmospheric Aqueous-phase Reactions of Phenolic Compounds

    NASA Astrophysics Data System (ADS)

    Yu, L.; Smith, J.; Anastasio, C.; Zhang, Q.

    2012-12-01

    Phenolic compounds, which are released in significant amounts from biomass burning, may undergo fast aqueous-phase reactions to form secondary organic aerosol (SOA) in the atmosphere. Understanding the aqueous-phase reaction mechanisms of these compounds and the composition of their reaction products is thus important for constraining SOA sources and predicting organic aerosol properties in models. In this study, we investigate the aqueous-phase reactions of three phenols (phenol, guaiacol and syringol) with two oxidants - excited triplet states (3C*) of non-phenolic aromatic carbonyls and hydroxyl radical (OH). By employing four analytical methods including high-resolution aerosol mass spectrometry, total organic carbon analysis, ion chromatography, and liquid chromatography-mass spectrometry, we thoroughly characterize the chemical compositions of the low volatility reaction products of phenols and propose formation mechanisms based on this information. Our results indicate that phenolic SOA is highly oxygenated, with O/C ratios in the range of 0.83-1.03, and that the SOA of phenol is usually more oxidized than those of guaiacol and syringol. Among the three precursors, syringol generates the largest fraction of higher molecular weight (MW) products. For the same precursor, the SOA formed via reaction with 3C* is less oxidized than that formed via reaction with OH. In addition, oxidation by 3C* enhances the formation of higher MW species, including phenolic dimers, higher oligomers and hydroxylated products, compared to reactions initiated by OH, which appear to favor the formation of organic acids. However, our results indicate that the yields of small organic acids (e.g., formate, acetate, oxalate, and malate) are low for both reaction pathways, together accounting for less than 5% of total SOA mass.

  8. Chemical characterization of the main products formed through aqueous-phase photonitration of guaiacol

    NASA Astrophysics Data System (ADS)

    Kitanovski, Z.; Čusak, A.; Grgić, I.; Claeys, M.

    2014-08-01

    Guaiacol (2-methoxyphenol) and its derivatives can be emitted into the atmosphere by thermal degradation (i.e., burning) of wood lignins. Due to its volatility, guaiacol is predominantly distributed atmospherically in the gaseous phase. Recent studies have shown the importance of aqueous-phase reactions in addition to the dominant gas-phase and heterogeneous reactions of guaiacol, in the formation of secondary organic aerosol (SOA) in the atmosphere. The main objectives of the present study were to chemically characterize the main products of the aqueous-phase photonitration of guaiacol and examine their possible presence in urban atmospheric aerosols. The aqueous-phase reactions were carried out under simulated sunlight and in the presence of hydrogen peroxide and nitrite. The formed guaiacol reaction products were concentrated by solid-phase extraction and then purified with semi-preparative high-performance liquid chromatography (HPLC). The fractionated individual compounds were isolated as pure solids and further analyzed with liquid-state proton, carbon-13 and two-dimensional nuclear magnetic resonance (NMR) spectroscopy, and direct infusion negative ion electrospray ionization tandem mass spectrometry ((-)ESI-MS/MS). The NMR and product ion (MS2) spectra were used for unambiguous product structure elucidation. The main products of guaiacol photonitration are 4-nitroguaiacol (4NG), 6-nitroguaiacol (6NG), and 4,6-dinitroguaiacol (4,6DNG). Using the isolated compounds as standards, 4NG and 4,6DNG were unambiguously identified in winter PM10 aerosols from the city of Ljubljana (Slovenia) by means of HPLC/(-)ESI-MS/MS. Owing to the strong absorption of ultraviolet and visible light, 4,6DNG could be an important constituent of atmospheric "brown" carbon, especially in regions affected by biomass burning.

  9. CO₂ carbonation under aqueous conditions using petroleum coke combustion fly ash.

    PubMed

    González, A; Moreno, N; Navia, R

    2014-12-01

    Fly ash from petroleum coke combustion was evaluated for CO2 capture in aqueous medium. Moreover the carbonation efficiency based on different methodologies and the kinetic parameters of the process were determined. The results show that petroleum coke fly ash achieved a CO2 capture yield of 21% at the experimental conditions of 12 g L(-1), 363°K without stirring. The carbonation efficiency by petroleum coke fly ash based on reactive calcium species was within carbonation efficiencies reported by several authors. In addition, carbonation by petroleum coke fly ash follows a pseudo-second order kinetic model.

  10. Covalent attachment of mechanoresponsive luminescent micelles to glasses and polymers in aqueous conditions.

    PubMed

    Sagara, Yoshimitsu; Komatsu, Toru; Ueno, Tasuku; Hanaoka, Kenjiro; Kato, Takashi; Nagano, Tetsuo

    2014-03-19

    Covalent attachment of mechanoresponsive luminescent organic or organometallic compounds to other materials is a promising approach to develop a wide variety of mechanoresponsive luminescent materials. Here, we report covalently linkable mechanoresponsive micelles that change their photoluminescence from yellow to green in response to mechanical stimulation under aqueous conditions. These micelles are composed of a dumbbell-shaped amphiphilic pyrene derivative having amine groups at the peripheral positions of its dendrons. Using a well-established cross-linker, the micelles were covalently linked via their peripheral amine groups to the surface of glass beads, polylactic acid (PLA) beads, and living cells under aqueous conditions. Vortexing of glass beads bearing the micelles in a glass vial filled with water caused a photoluminescence color change from yellow to green. PLA beads bearing the micelles showed no change in photoluminescence color under the same conditions. We ascribe this result to the lower density and stiffness of the PLA beads, because the color of the PLA beads changed on vortexing in the presence of bare glass beads. HeLa cells and HL-60 cells bearing the micelles showed no obvious photoluminescence color change under vortexing. The structure, photophysical properties, and mechanism of photoluminescence color change of the micellar assemblies were examined.

  11. Removal of methylene blue from aqueous solutions by chemically modified bamboo.

    PubMed

    Guo, Jian-Zhong; Li, Bing; Liu, Li; Lv, Kangle

    2014-09-01

    Chemically modified bamboo (CMB) was utilized for removing methylene blue (MB) from aqueous media in the present study. The adsorbent was characterized by Fourier transform infrared (FTIR) spectra and elemental analysis, which confirms that carboxyl groups and diethylenetriamine were successfully introduced into the surface of bamboo. The effects of initial MB concentration (100-900mgL(-1)), contact time (15-315min), the pH of the solution (3-10), temperature (298-318K), adsorbent dosage (0.4-2.6gL(-1)) and salt concentration on the adsorption efficiency of CMB towards MB were investigated. It was found that the adsorption of MB in CMB fits Langmuir mode well, and the maximum adsorption capacity of CMB achieved 606mgg(-1) at 298K, which is much higher than those obtained from previously investigated bioadsorbents. The adsorption kinetics can be described by pseudo-second-order kinetic model, and the adsorption of MB on CMB was an exothermic process. The results of the present study suggest that CMB is an effective biosorbent for removal of organic pollutants from aqueous solutions.

  12. Aqueous suspension of anise “Pimpinella anisum” protects rats against chemically induced gastric ulcers

    PubMed Central

    Al Mofleh, Ibrahim A; Alhaider, Abdulqader A; Mossa, Jaber S; Al-Soohaibani, Mohammed O; Rafatullah, Syed

    2007-01-01

    AIM: To substantiate the claims of Unani and Arabian traditional medicine practitioners on the gastroprotective potential effect of a popular spice anise, “Pimpinella anisum L.” on experimentally-induced gastric ulceration and secretion in rats. METHODS: Acute gastric ulceration in rats was produced by various noxious chemicals including 80% ethanol, 0.2 mol/L NaOH, 25% NaCl and indomethacin. Anti-secretory studies were undertaken using pylorus-ligated Shay rat technique. Levels of gastric non-protein sulfhydryls (NP-SH) and wall mucus were estimated and gastric tissue was also examined histologically. Anise aqueous suspension was used in two doses (250 and 500 mg/kg body weight) in all experiments. RESULTS: Anise significantly inhibited gastric mu-cosal damage induced by necrotizing agents and indomethacin. The anti-ulcer effect was further confirmed histologically. In pylorus-ligated Shay rats, anise suspension significantly reduced the basal gastric acid secretion, acidity and completely inhibited the rumenal ulceration. On the other hand, the suspension significantly replenished ethanol-induced depleted levels of gastric mucosal NP-SH and gastric wall mucus concentration. CONCLUSION: Anise aqueous suspension possesses significant cytoprotective and anti-ulcer activities against experimentally-induced gastric lesions. The anti-ulcer effect of anise is possibly prostaglandin-mediated and/or through its anti-secretory and antioxidative properties. PMID:17373749

  13. Prediction of aqueous solubility, vapor pressure and critical micelle concentration for aquatic partitioning of perfluorinated chemicals.

    PubMed

    Bhhatarai, Barun; Gramatica, Paola

    2011-10-01

    The majority of perfluorinated chemicals (PFCs) are of increasing risk to biota and environment due to their physicochemical stability, wide transport in the environment and difficulty in biodegradation. It is necessary to identify and prioritize these harmful PFCs and to characterize their physicochemical properties that govern the solubility, distribution and fate of these chemicals in an aquatic ecosystem. Therefore, available experimental data (10-35 compounds) of three important properties: aqueous solubility (AqS), vapor pressure (VP) and critical micelle concentration (CMC) on per- and polyfluorinated compounds were collected for quantitative structure-property relationship (QSPR) modeling. Simple and robust models based on theoretical molecular descriptors were developed and externally validated for predictivity. Model predictions on selected PFCs were compared with available experimental data and other published in silico predictions. The structural applicability domains (AD) of the models were verified on a bigger data set of 221 compounds. The predicted properties of the chemicals that are within the AD, are reliable, and they help to reduce the wide data gap that exists. Moreover, the predictions of AqS, VP, and CMC of most common PFCs were evaluated to understand the aquatic partitioning and to derive a relation with the available experimental data of bioconcentration factor (BCF).

  14. Resistance to chemical disinfection under conditions of microgravity

    NASA Astrophysics Data System (ADS)

    Marchin, George L.

    1998-01-01

    In unit gravity, bacteria and disinfecting resin beads co-sediment to the septum in a fluid processing apparatus (FPA) resulting in effective chemical disinfection. In microgravity bacteria in suspension have access to a larger volume of the FPA because of a lack of sedimentation. Further, when disinfecting resin beads are added to the FPA they also remain in suspension reducing their effective concentration. Typically, therefore, disinfection experiments in microgravity return larger numbers of viable bacteria than ground-based controls. Preliminary experiments aboard the MIR Space Station with Pseudomonas aeruginosa additionally suggest that the longer bacteria are retained in microgravity the more resistant they become to chemical disinfection. This phenomenon is probably due to additional time to develop resistant biofilms on the interior of the FPA. To partially solve these problems we have developed additional disinfecting materials to use in conjunction with polyiodide containing resin beads. One of these materials carbon beads coated with 3-trimethoxy silylpropyl dimethyloctadecyl ammonium chloride (Dow-Corning 5700®), acts synergistically with polyiodide resin disinfectants. Carbon beads so treated are still able to remove aqueous iodine from the water stream while providing an additional level of chemical disinfection. This additional capability prevents contamination of the carbon beads with heterotrophic bacteria and insures that bacteria surviving iodine disinfection are efficiently devitalized.

  15. Validity conditions for moment closure approximations in stochastic chemical kinetics

    SciTech Connect

    Schnoerr, David; Sanguinetti, Guido; Grima, Ramon

    2014-08-28

    Approximations based on moment-closure (MA) are commonly used to obtain estimates of the mean molecule numbers and of the variance of fluctuations in the number of molecules of chemical systems. The advantage of this approach is that it can be far less computationally expensive than exact stochastic simulations of the chemical master equation. Here, we numerically study the conditions under which the MA equations yield results reflecting the true stochastic dynamics of the system. We show that for bistable and oscillatory chemical systems with deterministic initial conditions, the solution of the MA equations can be interpreted as a valid approximation to the true moments of the chemical master equation, only when the steady-state mean molecule numbers obtained from the chemical master equation fall within a certain finite range. The same validity criterion for monostable systems implies that the steady-state mean molecule numbers obtained from the chemical master equation must be above a certain threshold. For mean molecule numbers outside of this range of validity, the MA equations lead to either qualitatively wrong oscillatory dynamics or to unphysical predictions such as negative variances in the molecule numbers or multiple steady-state moments of the stationary distribution as the initial conditions are varied. Our results clarify the range of validity of the MA approach and show that pitfalls in the interpretation of the results can only be overcome through the systematic comparison of the solutions of the MA equations of a certain order with those of higher orders.

  16. Physical and chemical interactions at the interface between atmospheric pressure plasmas and aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lindsay, Alexander; Byrns, Brandon; Knappe, Detlef; Graves, David; Shannon, Steven

    2014-10-01

    Transport and reactions of charged species, neutrals, and photons at the interface between plasmas and liquids must be better quantified. The work presented here combines theoretical and experimental investigations of conditions in the gas and liquid phases in proximity to the interface for various discharges. OES is used to determine rotational and vibrational temperatures of OH, NO, and N2+; the relationship between these temperatures that characterize the distribution of internal energy states and gas and electron kinetic temperatures is considered. The deviation of OH rotational states from equilibrium under high humidity conditions is also presented. In contradiction with findings of other groups, high energy rotational states appear to become underpopulated with increasing humidity. In the aqueous phase, concentrations of longer-lived species such as nitrate, nitrite, hydrogen peroxide, and ozone are determined using ion chromatography and colorimetric methods. Spin-traps and electron paramagnetic resonance (EPR) are investigated for characterization of short-lived aqueous radicals like OH, O2-, NO, and ONOO-. Finally, experimental results are compared to a numerical model which couples transport and reactions within and between the bulk gas and liquid phases.

  17. The Mars Chemical Analysis Laboratory (MCAL) for in-situ analysis of martian aqueous geochemistry

    NASA Astrophysics Data System (ADS)

    Kounaves, S. P.; Bauer, J.; McElhoney, K. M.

    2013-09-01

    The 2007 Phoenix Mars Lander [1] included four Wet Chemistry Laboratory (WCL) units [2] for performing the first wet chemical analysis of soil on another planet. Each WCL (Figure 1) consisted of electrochemical sensors for analyzing the aqueous geochemical properties of the soil. These included sensors for Ca2+, Mg2+, K+, Na+, NH4 +, Cl-, Br-, I-, NO3 -, pH, and SO4 =; electrodes for measuring electrical conductivity; determining redox potential (Eh), for independent determination of halides, and for identifying redox couples. Three ~1 cm3 soil samples were successfully added to 25mL of water and analyzed. The soil/water mixture had a pH of 7.7(±0.3), conductivity of 1.4(±0.5) mS/cm, with [Ca2+] = 0.5(±0.5) mM, [Mg2+] = 2.9(±1.5) mM, [Na+] = 1.4(±0.6) mM, soluble sulfate SO4 2- = 5.9 (±1.5) mM, [K+] = 0.36(±0.3) mM, and an Eh of 253 (±6) mV. The most unexpected finding was perchlorate (ClO4-), with an average concentration 2.5 (±1) mM [3-6]. Here we describe a heritage-based next generation Mars wet chemistry laboratory for an upcoming mission that, in addition to analyses performed by the Phoenix lander WCL [2-6], extends the capability to several dozen or more soil samples without increasing the demand on spacecraft resources, and extends the quantitative chemical aspects of the analyses to provide for better understanding of the aqueous geochemistry and toxicity of the martian soil.

  18. Characterizing photochemical transformation of aqueous nC60 under environmentally relevant conditions.

    PubMed

    Hwang, Yu Sik; Li, Qilin

    2010-04-15

    Engineered nanomaterials may undergo transformation upon interactions with various environmental factors. In this study, photochemical transformation of aqueous nC60 was investigated under UVA irradiation. nC60 underwent photochemical transformation in the presence of dissolved O2, resulting in surface oxygenation and hydroxylation as demonstrated by XPS and ATR-FTIR analyses. The reaction followed a pseudo-first order rate law with the apparent reaction rate constant of 2.2 x 10(-2) h(-1). However, the core of the nanoparticles remained intact over 21 days of irradiation. Although no mineralization or dissolution of nC60 was observed, experiments using fullerol as a reference fullerene derivative suggested likely dissolution and partial mineralization of nC60 under long-term UVA exposure. Aquatic humic acid reduced nC60 transformation kinetics presumably due to scavenging of reactive oxygen species. Results from this study imply that photochemical transformation is an important factor controlling nC60 physical and chemical properties as well as its fate and transport in the natural aqueous environment. In addition, changes in nC60 surface chemistry drastically reduced C60 extraction efficiency by toluene, suggesting that the existing analytical method for C60 may not be applicable to environmental samples.

  19. Influences of solution chemical conditions on mobilization of TNT from contaminated soil

    SciTech Connect

    Dante, D.A.; Tiller, C.L.; Pennell, K.D.

    1996-12-31

    2,4,6-trinitrotoluene (TNT) and its byproducts are common contaminants on US military installations. Many potential remediation processes are in part limited by the transfer of TNT from the contaminated soil into the aqueous phase. The purpose of this research is to assess the release of TNT from contaminated soil under varying solution chemical conditions. In particular, influences of pH, aquatic natural organic matter, and addition of two surfactants is investigated. Uncontaminated soil was collected from a near-surface site at the Alabama Army Ammunition Plant and was artificially contaminated with TNT prior to the mobilization experiments. Results for the pH experiments show that more TNT is mobilized at neutral pH conditions than at low pH conditions. The presence of dissolved organic matter enhances the release of TNT from soil, but not by a large amount. Surfactant addition has the most significant effect on TNT mobilization.

  20. Human skin permeability enhancement by lauric acid under equilibrium aqueous conditions.

    PubMed

    Smith, S W; Anderson, B D

    1995-05-01

    An in vitro method was developed to investigate the enhancement of hydrocortisone transport across human stratum corneum (SC) by a model enhancer, lauric acid, in aqueous solutions under equilibrium conditions with respect to the enhancer. In contrast to classical (i.e., nonequilibrium) loading techniques, in which the enhancer is applied only to the donor side of SC either in pure form or in an organic solvent while enhancer-free aqueous buffers are placed in the receptor phase, this method allowed the investigation of pH effects, concentration effects, and reversibility of both enhancer uptake and enhancement of drug transport under thermodynamically well-defined conditions. The SC-buffer partition coefficients for lauric acid were linear with concentration and sigmoidal with pH, suggesting that both the neutral species and laurate anion partition into SC. Comparisons of partition coefficients in delipidized and untreated SC as a function of pH indicated that the uptake of lauric acid in neutral form is governed primarily by the lipid domain, whereas the protein domain accounts for anion uptake. The effects of lauric acid on skin permeability were > 80% reversible upon extraction of the enhancer from the membrane. However, the degree of enhancement of hydrocortisone permeability was nonlinearly dependent on the equilibrium concentration of lauric acid in either the aqueous buffer or the membrane, exhibiting thresholds in the appearance of enhancement with concentration. The enhancer concentration necessary to achieve isoenhancement of about 6-fold varied from approximately 1 x 10(-5) M at pH < pKa to approximately 1 x 10(-2) M at high pH (pH > 8) demonstrating the higher influence of the free acid species.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Secondary organic aerosol (trans)formation through aqueous phase guaiacol photonitration: chemical characterization of the products

    NASA Astrophysics Data System (ADS)

    Grgić, Irena; Kitanovski, Zoran; Kroflič, Ana; Čusak, Alen

    2014-05-01

    One of the largest primary sources of organic aerosol in the atmosphere is biomass burning (BB) (Laskin et al. 2009); in Europe its contribution to annual mean of PM10 is between 3 and 14 % (Maenhaut et al. 2012). During the process of wood burning many different products are formed via thermal degradation of wood lignin. Hardwood burning produces mainly syringol (2,6-dimetoxyphenol) derivatives, while softwood burning exclusively guaiacol (2-methoxyphenol) and its derivatives. Taking into account physical properties of methoxyphenols only, their concentrations in atmospheric waters might be underestimated. So, their aqueous phase reactions can be an additional source of SOA, especially in regions under significant influence of wood combustion. An important class of compounds formed during physical and chemical aging of the primary BBA in the atmosphere is nitrocatechols, known as strong absorbers of UV and Vis light (Claeys et al. 2012). Very recently, methyl-nitrocatechols were proposed as suitable markers for highly oxidized secondary BBA (Iinuma et al. 2010, Kitanovski et al. 2012). In the present work, the formation of SOA through aqueous phase photooxidation and nitration of guaiacol was examined. The key objective was to chemically characterize the main low-volatility products and further to check their possible presence in the urban atmospheric aerosols. The aqueous phase reactions were performed in a thermostated reactor under simulated sunlight in the presence of H2O2 and nitrite. Guaiacol reaction products were first concentrated by solid-phase extraction (SPE) and then subjected to semi-preparative liquid chromatography.The main product compounds were fractionated and isolated as pure solids and their structure was further elucidated by using nuclear magnetic resonance spectroscopy (1H, 13C and 2D NMR) and direct infusion negative ion electro-spray ionization tandem mass spectrometry (( )ESI-MS/MS). The main photonitration products of guaiacol (4

  2. Promoted oxidation of phenol in aqueous solution using molecular oxygen at mild conditions

    SciTech Connect

    Vogel, F.; Harf, J.; Hug, A.; Rohr, P.R. von

    1999-05-01

    Wet oxidation with molecular oxygen at mild conditions (temperature < 200 C, pressure {le} 2 MPa) is an economically attractive pretreatment step for non-biodegradable aqueous waste streams. In order to overcome the low reactivity of molecular oxygen towards organic molecules at these mild process conditions, an initiator was used in combination with ferrous ions in the acidic range. The promoted oxidation of phenol in aqueous solution was investigated in a 4 liters stirred autoclave. It was possible to degrade the phenol at temperatures as low as 100 C without observing an induction time. The remaining solution contained mainly acetic and formic acid and was well biodegradable. The oxidative behavior of the oxygen/phenol system could be explained using the well-known autoxidation mechanism for aliphatic molecules. 4-hydroperoxy-phenol is suggested as a key intermediate. Measured products are p-benzoquinone, hydroquinone, catechol, maleic, oxalic, pyruvic, formic, and acetic acid. Dimers could also be identified in sample extracts. A global pathway including all identified products is presented.

  3. Identification of the chemical constituents in aqueous extract of Zhi-Qiao and evaluation of its antidepressant effect.

    PubMed

    Wu, Ming; Zhang, Hongwu; Zhou, Chao; Jia, Hongmei; Ma, Zhuo; Zou, Zhongmei

    2015-04-16

    The immature fruit of Citrus aurantium L. (Zhi-Qiao, ZQ) has been used as a traditional medicine in China. Our previous study has shown that ZQ decoction may contribute to the antidepressant-like action of Chaihu-Shu-Gan-San. However, there are no reports on the chemical constituents of ZQ aqueous extract or its anti-depression effects. Firstly, this research reported the on-line identification of the chemical constituents in the aqueous extract of ZQ by coupling ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC-Q-TOF/MS). A total of 31 chemical constituents were identified in ZQ aqueous extract, including one tannic acid, five flavones, 13 flavanones, one limonoid, three coumarins, three cyclic peptides, and five polymethoxylated flavonoids. The antidepressant effect of ZQ aqueous extract was evaluated in vivo and the results indicated that the mice immobility time during the forced swimming test and the tail suspension test were significantly reduced with ZQ treatment. MTT assays showed both ZQ aqueous extract and its major constituents (naringin, hesperidin, neohesperidin, and nobiletin) had neuroprotective effect on corticosterone-induced neurotoxicity in PC12 cells. The in vivo and in vitro results suggest that ZQ has an antidepressant effect.

  4. Kinetic studies of Cd (II) and Pb (II) ions biosorption from aqueous media using untreated and chemically treated biosorbents.

    PubMed

    Bakyayita, G K; Norrström, A C; Nalubega, M; Kulabako, R N

    2014-01-01

    Untreated and chemically treated Albizia coriaria, Erythrina abyssinica and Musa spp. were studied in batch for uptake of Cd(2+) and Pb(2+) ions at pH 2.0-9.0 and agitation time of 30-390 min. Optimum biosorption conditions were pH 4 for Pb(2+) ions and pH 5 for Cd(2+) ions, contact time was 3.5 hours at 24 ± 1 °C for 10 mg/L biosorbent dosage and initial metal ions concentration of 20 mg/L. Chemical treatment had a 10-17% biosorption efficiency enhancement for Cd(2+) ions and a 1.6-2.3% reduction effect for Pb(2+) ions. The sorption capacities for Cd(2+) and Pb(2+) ions for treated biosorbents were 1.760-1.738 mg g(-1) compared to 1.415-1.539 mg g(-1) for untreated materials. The pseudo second-order model suitably fitted the Cd(2+) and Pb(2+) ions biosorption data with regression coefficients (R(2)) of 0.9784-0.9999. Fitting of the Ho model to the experimental data showed that the biosorption mechanism for both metal ions studied was mainly a chemisorption process. Therefore, treated A. coriaria, E. abyssinica and Musa spp. were potential biosorbents for remediation of Cd(2+) ions and the untreated materials suitable for removing Pb(2+) ions from contaminated aqueous media.

  5. On hematite as a target for dating aqueous conditions on Mars

    NASA Astrophysics Data System (ADS)

    Kula, Joseph; Baldwin, Suzanne L.

    2012-07-01

    Hematite spherules, identified by the Opportunity Mars Exploration Rover (MER), have been interpreted as in situ evidence for past aqueous conditions on the Martian surface. Hematite has also been demonstrated as a reliable (U-Th)/He chronometer, although it is not widely used. In the absence of post-formational diffusive He loss, (U-Th)/He ages measured from Martian hematite spherules should yield the time since water was present on Mars. Using published morphologic constraints and He diffusion kinetics for hematite we model He diffusive loss to assess whether Martian hematite spherules will retain original (U-Th)/He ages during long residence times (4.0 Ga) at surface conditions (22 °C). Fractional loss calculations predict <2% diffusive loss at 22 °C over 4.0 Ga, indicating Martian hematite will preserve ages within analytical precision of the (U-Th)/He technique. If present Mars conditions persisted since the Noachian (e.g. 4.0 Ga), hematite spherules likely record ages reflecting the timing of aqueous mineralization. For the 'wetting-upwards' Burn Formation at Meridiani Planum, hematite from the lower eolian dune subunit would be postdepositional providing a minimum age on deposition, while hematite from the upper interdune/playa unit may be syndepositional thus yielding the age of the deposit. Therefore (U-Th)/He hematite ages obtained from samples collected along a vertical profile could potentially constrain the timing and rates of water saturation of the rock column, and the timing of the transition from wet to dry conditions at Meridiani Planum. Determining an absolute paleohydrologic timescale on Mars may reveal if water was available for sufficient durations required for the development of life.

  6. Nanoscale carbon materials from hydrocarbons pyrolysis: Structure, chemical behavior, utilisation for non-aqueous supercapacitors

    SciTech Connect

    Savilov, Serguei V.; Strokova, Natalia E.; Ivanov, Anton S.; Arkhipova, Ekaterina A.; Desyatov, Andrey V.; Hui, Xia; Aldoshin, Serguei M.; Lunin, Valery V.

    2015-09-15

    Highlights: • N-doped and regular carbon nanomaterials were obtained by pyrolitic technique. • Dynamic vapor sorption of different solvents reveals smaller S{sub BET} values. • Steric hindrance and specific chemical interactions are the reasons for this. • Nitrogen doping leads to raise of capacitance and coulombic efficiency with non-aqueous N-containing electrolyte. - Abstract: This work systematically studies adsorption properties of carbon nanomaterials that are synthesized through hydrocarbons that is a powerful technique to fabricate different kinds of carbon materials, e.g., nanotubes, nanoshells, onions, including nitrogen substituted. The adsorption properties of the as-synthesized carbons are achieved by low temperature nitrogen adsorption and organic vapors sorption. Heptane, acetonitrile, water, ethanol, benzene and 1-methylimidazole, which are of great importance for development of supercapacitors, are used as substrates. It is discovered that while nitrogen adsorption reveals a high specific surface area, this parameter for most of organic compounds is rather small depending not only on the size of its molecule but also on chemical interactions for a pair adsorbent–adsorbate. The experimental values of heat of adsorption for carbon and N-substituted structures, when Coulomb cross-coupling of nitrogen atoms in adsorbent and adsorbate takes place, confirms this supposition.

  7. Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation.

    PubMed

    Das, Saroj Kumar; Bedar, Amita; Kannan, Aadithya; Jasuja, Kabeer

    2015-06-04

    The discovery of graphene has led to a rising interest in seeking quasi two-dimensional allotropes of several elements and inorganic compounds. Boron, carbon's neighbour in the periodic table, presents a curious case in its ability to be structured as graphene. Although it cannot independently constitute a honeycomb planar structure, it forms a graphenic arrangement in association with electron-donor elements. This is exemplified in magnesium diboride (MgB2): an inorganic layered compound comprising boron honeycomb planes alternated by Mg atoms. Till date, MgB2 has been primarily researched for its superconducting properties; it hasn't been explored for the possibility of its exfoliation. Here we show that ultrasonication of MgB2 in water results in its exfoliation to yield few-layer-thick Mg-deficient hydroxyl-functionalized nanosheets. The hydroxyl groups enable an electrostatically stabilized aqueous dispersion and create a heterogeneity leading to an excitation wavelength dependent photoluminescence. These chemically modified MgB2 nanosheets exhibit an extremely small absorption coefficient of 2.9 ml mg(-1) cm(-1) compared to graphene and its analogs. This ability to exfoliate MgB2 to yield nanosheets with a chemically modified lattice and properties distinct from the parent material presents a fundamentally new perspective to the science of MgB2 and forms a first foundational step towards exfoliating metal borides.

  8. Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation

    PubMed Central

    Das, Saroj Kumar; Bedar, Amita; Kannan, Aadithya; Jasuja, Kabeer

    2015-01-01

    The discovery of graphene has led to a rising interest in seeking quasi two-dimensional allotropes of several elements and inorganic compounds. Boron, carbon’s neighbour in the periodic table, presents a curious case in its ability to be structured as graphene. Although it cannot independently constitute a honeycomb planar structure, it forms a graphenic arrangement in association with electron-donor elements. This is exemplified in magnesium diboride (MgB2): an inorganic layered compound comprising boron honeycomb planes alternated by Mg atoms. Till date, MgB2 has been primarily researched for its superconducting properties; it hasn’t been explored for the possibility of its exfoliation. Here we show that ultrasonication of MgB2 in water results in its exfoliation to yield few-layer-thick Mg-deficient hydroxyl-functionalized nanosheets. The hydroxyl groups enable an electrostatically stabilized aqueous dispersion and create a heterogeneity leading to an excitation wavelength dependent photoluminescence. These chemically modified MgB2 nanosheets exhibit an extremely small absorption coefficient of 2.9 ml mg−1 cm−1 compared to graphene and its analogs. This ability to exfoliate MgB2 to yield nanosheets with a chemically modified lattice and properties distinct from the parent material presents a fundamentally new perspective to the science of MgB2 and forms a first foundational step towards exfoliating metal borides. PMID:26041686

  9. Semiconducting polymer encapsulated mesoporous silica particles with conjugated Europium complexes: toward enhanced luminescence under aqueous conditions.

    PubMed

    Zhang, Jixi; Prabhakar, Neeraj; Näreoja, Tuomas; Rosenholm, Jessica M

    2014-01-01

    Immobilization of lanthanide organic complexes in meso-organized hybrid materials for luminescence applications have attracted immense interest due to the possibility of controlled segregation at the nanoscopic level for novel optical properties. Aimed at enhancing the luminescence intensity and stability of the hybrid materials in aqueous media, we developed polyvinylpyrrolidone (PVP) stabilized, semiconducting polymer (poly(9-vinylcarbazole), PVK) encapsulated mesoporous silica hybrid particles grafted with Europium(III) complexes. Monosilylated β-diketonate ligands (1-(2-naphthoyl)-3,3,3-trifluoroacetonate, NTA) were first co-condensed in the mesoporous silica particles as pendent groups for bridging and anchoring the lanthanide complexes, resulting in particles with an mean diameter of ∼ 450 nm and a bimodal pore size distribution centered at 3.5 and 5.3 nm. PVK was encapsulated on the resulted particles by a solvent-induced surface precipitation process, in order to seal the mesopores and protect Europium ions from luminescence quenching by producing a hydrophobic environment. The obtained polymer encapsulated MSN-EuLC@PVK-PVP particles exhibit significantly higher intrinsic quantum yield (Φ(Ln) = 39%) and longer lifetime (τ(obs) = 0.51 ms), as compared with those without polymer encapsulation. Most importantly, a high luminescence stability was realized when MSN-EuLC@PVK-PVP particles were dispersed in various aqueous media, showing no noticeable quenching effect. The beneficial features and positive attributes of both mesoporous silica and semiconducting polymers as lanthanide-complex host were merged in a single hybrid carrier, opening up the possibility of using these hybrid luminescent materials under complex aqueous conditions such as biological/physiological environments.

  10. Temporal Changes in Aqu/C60 Physical-Chemical, Deposition, and Transport Characteristics in Aqueous Systems

    EPA Science Inventory

    Little is known about how temporal changes in the physical–chemical properties of C60 aggregates formed in aqueous systems (termed aqu/C60) can impact transport pathways contributing to ecological exposures. In this study three aqu/C60 suspensions of short-term (100 days), interm...

  11. Optimization of nickel adsorption from aqueous solution by using activated carbon prepared from waste apricot by chemical activation

    NASA Astrophysics Data System (ADS)

    Erdoğan, S.; Önal, Y.; Akmil-Başar, C.; Bilmez-Erdemoğlu, S.; Sarıcı-Özdemir, Ç.; Köseoğlu, E.; İçduygu, G.

    2005-12-01

    Waste apricot supplied by Malatya apricot plant (Turkey) was activated by using chemical activation method and K 2CO 3 was chosen for this purpose. Activation temperature was varied over the temperature range of 400-900 °C and N 2 atmosphere was used with 10 °C/min heat rate. The maximum surface area (1214 m 2/g) and micropore volume (0.355 cm 3/g) were obtained at 900 °C, but activated carbon was predominantly microporous at 700 °C. The resulting activated carbons were used for removal of Ni(II) ions from aqueous solution and adsorption properties have been investigated under various conditions such as pH, activation temperature, adsorbent dosage and nickel concentration. Adsorption parameters were determined by using Langmuir model. Optimal condition was determined as; pH 5, 0.7 g/10 ml adsorbent dosage, 10 mg/l Ni(II) concentration and 60 min contact time. The results indicate that the effective uptake of Ni(II) ions was obtained by activating the carbon at 900 °C.

  12. ZERO-VALENT IRON REMOVAL RATES OF AQUEOUS Cr(VI) MEASURED UNDER FLOW CONDITIONS

    SciTech Connect

    Kaplan, Daniel I.; Gilmore, Tyler J.

    2004-06-01

    The rates of Cr(VI) removal from the aqueous phase by zero-valent iron, Fe(0), was measured under flow conditions. The intent of this work was to generate removal rate coefficients that would be applicable to the Reactive Well Technology, a groundwater remediation technology that replaces the sand in a filter pack of a conventional well with a reactive material, such as Fe(0). Dissolved Cr(VI) concentration, dissolved O2 concentration, and Eh data indicated that Cr(VI) removal from the aqueous phase was mass-transfer limited. All pseudo-first-order regression fits to the data were significant (P≤0.05), however, they did not capture many of the salient aspects of the data, including that the removal rate often decreased as contact time increased. As such, application of these rate coefficients to predict long-term Cr(VI) removal were compromised. The rate coefficients measured under flow conditions were comparable to those measured previously under batch conditions with significantly greater solution:solid ratios. Between the range of 20 and 100 wt-% Fe(0) in the column, there was little measurable change in the reaction kinetics. Thus, it may be possible to include sand into the reactive filter packs in the event it is necessary to increase filter pack porosity or to decrease the accumulation of secondary reaction products that may lead to filter pack plugging. Background water chemistry (0.2 M NaHCO3, distilled water, and a carbonate-dominated groundwater) had only marginal, if any, effects on reaction rate coefficients. The reaction rates measured in this study indicated that an Fe(0) filter pack could be used to lower Cr(VI) concentrations by several orders of magnitude in a once-through mode of operation of the Reactive Well Technology.

  13. Ammonium sorption from aqueous solutions by the natural zeolite Transcarpathian clinoptilolite studied under dynamic conditions.

    PubMed

    Sprynskyy, Myroslav; Lebedynets, Mariya; Terzyk, Artur P; Kowalczyk, Piotr; Namieśnik, Jacek; Buszewski, Bogusław

    2005-04-15

    The scope of this study is ammonium-ion uptake from synthetic aqueous solutions onto raw and pretreated forms of the natural zeolite Transcarpathian clinoptilolite under dynamic conditions. Hydrogen ions displaced exchangeable cations on the clinoptilolite in distilled water (sodium ions) and hydrochloric acid (sodium, potassium, and calcium ions) and destroyed the zeolite framework structure in the last case. Ammonium uptake onto the zeolite occurs by exchange with Na(+), Ca(2+), and K(+) ions. Although Na(+) ions were observed to be more easily exchanged for both hydrogen and ammonium ions, the role of Ca(2+) ions increased with zeolite saturation by NH(+)(4) ions. The maximum sorption capacity of the clinoptilolite toward NH(+)(4) ions, estimated under dynamic conditions, is significantly higher than that measured under static conditions; proximity of the values of a distribution coefficient and a retardation factor for different conditions (215-265 dm(3)/kg and 979-1107, respectively) allows us to use these parameters to model ammonium uptake onto the clinoptilolite. Slowing down or interruption in filtration resulted in the improvement of ammonium sorption properties of the zeolite. The ammonium removal improves with use of the finer fractions of the clinoptilolite up to 0.35 mm. A recycling study results confirmed the importance of external diffusion for ammonium sorption by the clinoptilolite. Preliminary treatment of the sorbent confirmed the predominant importance of the ion-exchange mechanism. The advantage of prior NaCl treatment of the clinoptilolite in improvement of ammonium removal over the other techniques was shown.

  14. Effects of pressure on aqueous chemical equilibria at subzero temperatures with applications to Europa

    USGS Publications Warehouse

    Marion, G.M.; Kargel, J.S.; Catling, D.C.; Jakubowski, S.D.

    2005-01-01

    Pressure plays a critical role in controlling aqueous geochemical processes in deep oceans and deep ice. The putative ocean of Europa could have pressures of 1200 bars or higher on the seafloor, a pressure not dissimilar to the deepest ocean basin on Earth (the Mariana Trench at 1100 bars of pressure). At such high pressures, chemical thermodynamic relations need to explicitly consider pressure. A number of papers have addressed the role of pressure on equilibrium constants, activity coefficients, and the activity of water. None of these models deal, however, with processes at subzero temperatures, which may be important in cold environments on Earth and other planetary bodies. The objectives of this work were to (1) incorporate a pressure dependence into an existing geochemical model parameterized for subzero temperatures (FREZCHEM), (2) validate the model, and (3) simulate pressure-dependent processes on Europa. As part of objective 1, we examined two models for quantifying the volumetric properties of liquid water at subzero temperatures: one model is based on the measured properties of supercooled water, and the other model is based on the properties of liquid water in equilibrium with ice. The relative effect of pressure on solution properties falls in the order: equilibrium constants(K) > activity coefficients (??) > activity of water (aw). The errors (%) in our model associated with these properties, however, fall in the order: ?? > K > aw. The transposition between K and ?? is due to a more accurate model for estimating K than for estimating ??. Only activity coefficients are likely to be significantly in error. However, even in this case, the errors are likely to be only in the range of 2 to 5% up to 1000 bars of pressure. Evidence based on the pressure/temperature melting of ice and salt solution densities argue in favor of the equilibrium water model, which depends on extrapolations, for characterizing the properties of liquid water in electrolyte

  15. Partitioning of Trace Elements Between Hydrous Minerals and Aqueous Fluids : a Contribution to the Chemical Budget of Subduction Zones

    NASA Astrophysics Data System (ADS)

    Daniel, I.; Koga, K. T.; Reynard, B.; Petitgirard, S.; Chollet, M.; Simionovici, A.

    2006-12-01

    Subduction zones are powerful chemical engines where the downgoing lithosphere reacts with asthenospheric mantle and produces magmas. Understanding this deep recycling system is a scientific challenge requiring multiple approaches. Among those, it appears that we lack basic information on the composition of the fluid that begins the process of material transfer in subduction zones. Indeed, no pristine fluid sample has yet been collected from this particular environment. Albeit challenging, the alternative would be experimental study of fluids under the appropriate conditions. Consequently, we developed an experimental protocol to measure the concentration of aqueous fluids equilibrated with minerals up to pressures (P) of 5 GPa, at least and temperatures (T) of 550 C. This includes syntheses at high-P and -T conditions, and determination of the fluid composition. Syntheses were performed in a large volume belt-type press at the conditions, 2-5 GPa and ca. 550 C. Oxides or minerals were loaded with water in a gold capsule sealed afterwards. Presence of free fluid during experiments could be confirmed by direct observation of fluid release from the sealed capsule upon puncturing. The composition in trace elements of the fluids that were equilibrated at high-P and -T with minerals was reconstructed from that of the precipitates deposited at the surface of minerals after evaporation of the capsule. The precipitates were dissolved and analyzed by a leaching technique detailed in Koga et al. (2005). Two hydrous minerals of prime interest for subductions were sofar investigated: the high-pressure variety of serpentine, antigorite, and talc. The partitioning coefficients of a series of trace-elements will be presented, as well as their evolution as a function of pressure. Consequences for the composition of the fluids released during the dehydration of hydrous metamorphic minerals will be drawn. Those measurements are unlikely to be feasible at pressures in excess of 5 GPa

  16. Removal Rates of Aqueous Cr(VI) by Zero-Valent Iron Measured Under Flow Conditions

    SciTech Connect

    Kaplan, D.I.

    2002-05-10

    Studies were undertaken to measure the rate of Cr(VI) removal from the aqueous phase by zero-valent iron, Fe(0), under flow conditions. The intent of this work was to generate removal rate coefficients that would be applicable to the Reactive Well Technology, a groundwater remediation technology that replaces the sand in a filter pack of a conventional well with a reactive material, such as Fe(0). The pseudo-first-order rate coefficients measured under flow conditions were comparable to those previously measured under batch conditions that had significantly greater ratios of solution volume to Fe(0) surface area. Between the range of 20 and 100 weight percent Fe(0), there was little measurable change in the reaction kinetics. Thus, it may be possible to include sand into the reactive filter packs in the event it is necessary to increase filter pack porosity or to decrease the accumulation of secondary reaction products that may lead to filter pack plugging. Background water chemistry had only marginal effects on reaction rate coefficients. The reaction rates measured in this study indicated that an Fe(0) filter pack could be used to lower Cr(VI) concentrations by several orders of magnitude in a once-through mode of operation of the Reactive Well Technology.

  17. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    PubMed Central

    Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders

    2016-01-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V. PMID:27966605

  18. Chemical vapor deposited carbon nanotubes for aqueous H2-Cl2 fuel cells.

    PubMed

    Suryavanshi, U B; Bhosale, C H

    2010-06-01

    Carbon nanotubes having large surface area is an interesting material to develop H2-Cl2 fuel cell electrodes. The attempts were made to deposit carbon nanotubes on porous substrates by chemical vapour deposition. Turpentine oil (C10H16) was used as a precursor, decomposed at 1100 degrees C reactor temperature. Nickel, platinum, tin, Ni-Pt, Ni-Sn, Pt-Sn, Ni-Pt-Sn catalysts were used to grow carbon nanotubes. Nickel was deposited with electrodeposition, platinum with sputter coater and tin with vacuum deposition technique. The developed electrodes were characterized by XRD, SEM, TEM, FTIR, and resistivity by van-der Pauw method. Carbon nanotubes have been formed for 0.25 N nickel deposited for 45 and 60 min; 0.5 N, 0.75 N and 1 N nickel deposited for 15 to 60 min, at the interval of 15. Ni-Pt, Ni-Sn, Pt-Sn and Ni-Pt-Sn activated carbon also shows the well grown CNTs. Aqueous H2-Cl2 fuel cell performance was tested with these grown carbon nanotubes. 40% KCl with 1067 mohm(-1) cm(-1) conductivity was used as electrolyte. Linear sweep voltametry shows reduction potential for hydrogen gas. Chronoamperometry results show better half cell performance for nickel, deposited with 1 N, 45 min deposition time period; and combination of Ni-Pt-Sn with 140, and 110-100 mA/cm2 stable current density respectively.

  19. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    NASA Astrophysics Data System (ADS)

    Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders

    2016-12-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V.

  20. Fate of hydraulic fracturing chemicals under down-hole conditions

    NASA Astrophysics Data System (ADS)

    Blotevogel, J.; Kahrilas, G.; Corrin, E. R.; Borch, T.

    2013-12-01

    Hydraulic fracturing is a method to increase the yield of oil and natural gas extraction from unconventional rock formations. The process of hydrofracturing occurs via injecting water, sand, and chemicals into the production well and subjecting this mixture to high pressures to crack the rock shale, allowing increased amounts of gas and oil to seep out of the target formation. Typical constituents of the chemical mixtures are biocides, which are applied to inhibit growth of sulfate reducing bacteria in order to prevent pipe corrosion and production of hazardous gases. However, very little is known about the persistence, fate, and activity of biocides when subjected to the high temperatures and pressures of down-hole conditions. Thus, the objective of this talk is to present data from ongoing experiments focused on determining the fate of biocides commonly used for hydraulic fracturing under conditions simulating down-hole environments. Using stainless steel reactors, the high pressures and temperatures of down-hole conditions in the Marcellus shale are simulated, while concentration, speciation, and degradation of priority biocides are observed as a function of time, using primarily LC/MS techniques. The impact of water quality, shale, temperature, and pressure on the transformation kinetics and pathways of biocides will be discussed. Finally, field samples (both sediments and flowback brine) from the Marcellus shale are analyzed to verify that our lab simulations mirror real-life conditions and results.

  1. Neutron Diffraction of Aqueous Tetramethylammonium Chloride (TMA) Solutions and TMA Intercalated Swelling Clays Under Burial Conditions

    NASA Astrophysics Data System (ADS)

    Patel, R.; Howard, C. A.; Greenwell, C.; Youngs, T.; Soper, A. K.; Skipper, N. T.

    2014-12-01

    There is a need for the improvement and optimisation of clay swelling inhibitors for the enhancement of oil and gas exploration. The hydration region of both ions and the possibility of ion pairing in 1 molar aqueous solution of clay swelling inhibitor, tetramethylammonium chloride (TMACl), in D2O, under elevated hydrostatic-pressures and temperatures has been determined with unprecedented detail using a combination of neutron diffraction and small-angle scattering in conjunction with hydrogen/deuterium isotopic labeling. The O-H correlation function (H-bonds) for the water in the 1.0M solution is measured and compared with that for pure D2O. Also investigated is the effect of burial conditions on the d-spacing of TMA-intercalated vermiculite. Contrary to expectations, no aggregation of TMA ions due to hydrophobic interactions is observed, nor are any ionic pairs of TMA+ and Cl- at these burial conditions. The data revealed a more ordered water-water structure with the addition of TMACl from bulk D2O. There is no change in the hydration structure measured at the applied elevated conditions. This is in remarkable contrast to pure water at the same conditions which is well known to be compressible. The dry d-spacing of the TMA-exchanged Eucatex vermiculite is measured at 13.66 Å which increases to 14.03 Å with the addition of D2O. Beyond this, there is no change in d-spacing with increasing pressure and temperature indicating the strength of the TMA ions binding to the clay interlayers and therefore its performance as a clay-swelling inhibitor.

  2. Improved Decontamination: Interfacial Transport, and Chemical Properties of Aqueous Surfactant Cleaners

    SciTech Connect

    Robert M. Counce

    2003-05-30

    The aqueous cleaning parameter of interest in this series of studies was the pH of the aqueous cleaning solution. A sessile droplet of industrial quench oil was analyzed to determine the effect of varied solution pH its removal from a stainless steel surface.

  3. Chemical reduction kinetics of nitrate in aqueous solution by Mg/Cu bimetallic particles.

    PubMed

    Mortazavi, S B; Ramavandi, B; Moussavi, G

    2011-01-01

    Synthesized magnesium/copper (Mg/Cu) bimetallic particles have shown good potential for use in the reduction of nitrate from aqueous solutions. This study was conducted to investigate the main factors affecting the kinetics of nitrate reduction by Mg/Cu particles (<100 microm) in uncontrolled reaction conditions. The Mg/Cu bimetallic particles removed the majority of the various nitrate concentrations tested (50, 100, 150, 200 and 300 mg L(-1)) within a short period. The time required for the removal of 90.6% of the NO3(-) from a 100 mg L(-1) solution was about 20 min using 2 gL(-1) bimetallic Mg/Cu at an initial solution pH of 6. The activation energy (Ea) for nitrate reduction by Mg/Cu over the temperature range of 5 to 60 degrees C was 14.21 kJ mol(-1). The experimental results of the kinetic analysis from batch studies indicated that a higher initial nitrate concentration yielded a greater reaction-rate constant and the denitrification rate increased with increase Mg/Cu dosage.

  4. Chemical unfolding of chicken villin headpiece in aqueous dimethyl sulfoxide solution: cosolvent concentration dependence, pathway, and microscopic mechanism.

    PubMed

    Roy, Susmita; Bagchi, Biman

    2013-04-25

    Unfolding of a protein often proceeds through partial unfolded intermediate states (PUIS). PUIS have been detected in several experimental and simulation studies. However, complete analyses of transitions between different PUIS and the unfolding trajectory are sparse. To understand such dynamical processes, we study chemical unfolding of a small protein, chicken villin head piece (HP-36), in aqueous dimethyl sulfoxide (DMSO) solution. We carry out molecular dynamics simulations at various solution compositions under ambient conditions. In each concentration, the initial step of unfolding involves separation of two adjacent native contacts, between phenyl alanine residues (11-18 and 7-18). This first step induces, under appropriate conditions, subsequent separation among other hydrophobic contacts, signifying a high degree of cooperativity in the unfolding process. The observed sequence of structural changes in HP-36 on increasing DMSO concentration and the observed sequence of PUIS, are in approximate agreement with earlier simulation results (in pure water) and experimental observations on unfolding of HP-36. Peculiar to water-DMSO mixture, an intervening structural transformation (around 15% of DMSO) in the binary mixture solvent retards the progression of unfolding as composition is increased. This is reflected in a remarkable nonmonotonic composition dependence of RMSD, radius of gyration and the fraction of native contacts. At 30% mole fraction of DMSO, we find the extended randomly coiled structure of the unfolded protein. The molecular mechanism of DMSO induced unfolding process is attributed to the initial preferential solvation of the hydrophobic side chain atoms through the methyl groups of DMSO, followed by the hydrogen bonding of the oxygen atom of DMSO to the exposed backbone NH groups of HP-36.

  5. Modeling aqueous ozone/UV process using oxalic acid as probe chemical.

    PubMed

    Garoma, Temesgen; Gurol, Mirat D

    2005-10-15

    A kinetic model that describes the removal of organic pollutants by an ozone/UV process is described. Oxalic acid, which reacts with a very low rate constant with ozone and relatively high rate constant with hydroxyl radical (OH*), was used as the probe chemical to model the process. The model was verified by experimental data on concentrations of oxalic acid and hydrogen peroxide (H202) under various experimental conditions, i.e., ozone gas dosage, UV light intensity, and varying oxalic acid concentrations.

  6. Detection of zinc ions under aqueous conditions using chirality assisted solid-state fluorescence of a bipyridyl based fluorophore.

    PubMed

    Sreejith, Sivaramapanicker; Divya, Kizhumuri P; Ajayaghosh, Ayyappanpillai

    2008-07-07

    A pyrrole end-capped bipyridyl ligand incorporating a chiral handle exhibited high solid-state emission when compared to the achiral analogue 1b and to the racemic molecule 1c which allowed the design of a reusable fluorescent probe for the selective detection of Zn2+ under aqueous conditions.

  7. Human Serum Albumin Increases the Stability of Green Tea Catechins in Aqueous Physiological Conditions.

    PubMed

    Zinellu, Angelo; Sotgia, Salvatore; Scanu, Bastianina; Forteschi, Mauro; Giordo, Roberta; Cossu, Annalisa; Posadino, Anna Maria; Carru, Ciriaco; Pintus, Gianfranco

    2015-01-01

    Epicatechin (EC), epigallocatechin (EGC), epicatechingallate (ECG) and epigallocatechingallate (EGCG) are antioxidants present in the green tea, a widely used beverage whose health benefits are largely recognized. Nevertheless, major physicochemical limitations, such as the high instability of catechins, pose important questions concerning their potential pharmacological use. Recent studies indicate that binding of catechins with plasmatic proteins may modulate their plasma concentration, tissue delivery and biological activity. After 5 minutes of incubation with HSA both ECG and EGCG were fully bound to HSA, while after 48h incubation only 41% of EC and 70% of EGC resulted linked. HSA had a strong stabilizing effect on all catechins, which could be found in solution between 29 and 85% even after 48h of incubation. In the absence of HSA, EGC and EGCG disappeared in less than 24h, while ECG and EC were found after 48h at 5 and 50%, respectively. The stabilizing effect of HSA toward EGCG, obtained in aqueous physiological conditions, resulted stronger in comparison to cysteine and HCl, previously reported to stabilize this polyphenol. Because of the multitude of contradictory data concerning in vivo and in vitro antioxidant-based experimentations, we believe our work may shed some light on this debated field of research.

  8. Peptide synthesis in aqueous environments: the role of extreme conditions and pyrite mineral surfaces on formation and hydrolysis of peptides.

    PubMed

    Schreiner, Eduard; Nair, Nisanth N; Wittekindt, Carsten; Marx, Dominik

    2011-06-01

    A comprehensive study of free energy landscapes and mechanisms of COS-mediated polymerization of glycine via N-carboxy anhydrides (NCAs, "Leuchs anhydrides") and peptide hydrolysis at the water-pyrite interface at extreme thermodynamic conditions is presented. Particular emphasis is set on the catalytic effects of the mineral surface including the putative role of the ubiquitous sulfur vacancy defects. It is found that the mere presence of a surface is able to change the free energetics of the elementary reaction steps. This effect can be understood in terms of a reduction of entropic contributions to the reactant state by immobilizing the reactants and/or screening them from bulk water in a purely geometric ("steric") sense. Additionally, the pyrite directly participates chemically in some of the reaction steps, thus changing the reaction mechanism qualitatively compared to the situation in bulk water. First, the adsorption of reactants on the surface can preform a product-like structure due to immobilizing and scaffolding them appropriately. Second, pyrite can act as a proton acceptor, thus replacing water in this role. Third, sulfur vacancies are found to increase the reactivity of the surface. The finding that the presence of pyrite speeds up the rate-determining step in the formation of peptides with respect to the situation in bulk solvent while stabilizing the produced peptide against hydrolysis is of particular interest to the hypothesis of prebiotic peptide formation at hydrothermal aqueous conditions. Apart from these implications, the generality of the studied organic reactions are of immediate relevance to many fields such as (bio)geochemistry, biomineralization, and environmental chemistry.

  9. Chemical reactions in viscous liquids under space conditions

    NASA Astrophysics Data System (ADS)

    Kondyurin, A.; Lauke, B.; Richter, E.

    A long-term human flight needs a large-size space ships with artificial self-regulating ecological life-support system. The best way for creation of large-size space ship is a synthesis of light construction on Earth orbit, that does not need a high energy transportation carriers from Earth surface. The construction can be created by the way of chemical polymerisation reaction under space environment. But the space conditions are very specific for chemical reactions. A high vacuum, high energy particles, X-rays, UV- and VUV-irradiations, atomic oxygen, microgravity have a significant influence on chemical reactions. Polymerisation reactions in liquid active mixture were studied in simulated space environment. The epoxy resins based on Bisphenol A and amine curing agents were investigated under vacuum, microwave plasma discharge and ion beam. An acceleration of polymerisation reaction with free radicals formation was observed. The polymerisation reaction can be carried out under space environment. The study was supported by Alexander von Humboldt Foundation (A. Kondyurin) and European Space Agency, ESTEC (contract 17083/03/NL/Sfe "Space Environmental Effects on the Polymerisation of Composite Structures").

  10. Diverse Aqueous Conditions on Mars from New Orbital Detections of Carbonate and Sulfate

    NASA Astrophysics Data System (ADS)

    Wray, James J.; Squyres, S. W.

    2010-10-01

    Diverse aqueous environments on ancient Mars have been a key inference from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on NASA's Mars Reconnaissance Orbiter, which has identified many alteration minerals in a range of settings [e.g., 1-4]. Here we report two new minerals detected using CRISM. In the southern highlands northwest of the Hellas basin, a mid-sized crater exposes carbonate in its central uplift. Spectral absorptions at 1, 2.33, and 2.53 microns are most consistent with Fe-carbonate, distinct from the Mg-carbonates identified from orbit by [5]. Fe-carbonate is associated with Mg-phyllosilicate in fractured materials formerly buried kilometers beneath the surface, and--like the Mg/Fe-carbonate found by the Spirit rover [6]--suggests a reducing, neutral-to-alkaline alteration environment. One of the largest phyllosilicate exposures on Mars occurs in the Mawrth Vallis region [e.g., 7]. We identify bassanite (Ca-sulfate hemihydrate) in layers underlying the phyllosilicate-bearing beds [8], a stratigraphy distinct from that predicted by global models of martian aqueous history [9]. Bassanite could have formed via acid-sulfate alteration of Ca-carbonate, through dehydration of gypsum, or under hydrothermal conditions [10]. These detections expand the known mineralogic diversity of Mars and the range of environments to explore for past habitability. [1] Mustard, J. F. et al. (2008) Nature 454, 305-309. [2] Murchie, S. L. et al. (2009) J. Geophys. Res. 114, E00D06. [3] Ehlmann, B. L. et al. (2009) J. Geophys. Res. 114, E00D08. [4] Wray, J. J. et al. (2009) Geology 37, 1043-1046. [5] Ehlmann, B. L. et al. (2008) Science 322, 1828-1832. [6] Morris, R. V. et al. Science, in press, doi:10.1126/science.1189667. [7] Poulet, F. et al. (2005) Nature 438, 623-627. [8] Wray, J. J. et al. Icarus, in press, doi:10.1016/j.icarus.2010.06.001. [9] Bibring, J.-P. et al. (2006) Science 312, 400-404. [10] Vaniman, D. T. et al. (2009) LPSC 40, 1654.

  11. Physical properties of rocks and aqueous fluids at conditions simulating near- and supercritical reservoirs

    NASA Astrophysics Data System (ADS)

    Kummerow, Juliane; Raab, Siegfried

    2016-04-01

    The growing interest in exploiting supercritical geothermal reservoirs calls for a thorough identification and understanding of physico-chemical processes occuring in geological settings with a high heat flow. In reservoir engineering, electrical sounding methods are common geophysical exploration and monitoring tools. However, a realistic interpretation of field measurements is based on the knowledge of both, the physical properties of the rock and those of the interacting fluid at defined temperature and pressure conditions. Thus, laboratory studies at simulated in-situ conditions provide a link between the field data and the material properties in the depth. The physico-chemical properties of fluids change dramatically above the critical point, which is for pure water 374.21 °C and 221.2 bar. In supercritical fluids mass transfer and diffusion-controlled chemical reactions are enhanced and cause mineral alterations. Also, ion mobility and ion concentration are affected by the change of physical state. All this cause changes in the electrical resistivity of supercritical fluids and may have considerable effects on the porosity and hydraulic properties of the rocks they are in contact with. While there are some datasets available for physical and chemical properties of water and single component salt solutions above their critical points, there exist nearly no data for electrical properties of mixed brines, representing the composition of natural geothermal fluids. Also, the impact of fluid-rock interactions on the electrical properties of multicomponent fluids in a supercritical region is scarcely investigated. For a better understanding of fluid-driven processes in a near- and supercritical geological environment, in the framework of the EU-funded FP7 program IMAGE we have measured (1) the electrical resistivity of geothermal fluids and (2) physical properties of fluid saturated rock samples at simulated in-situ conditions. The permeability and electrical

  12. Magnesium bicarbonate and carbonate interactions in aqueous solutions: An infrared spectroscopic and quantum chemical study

    NASA Astrophysics Data System (ADS)

    Stefánsson, Andri; Lemke, Kono H.; Bénézeth, Pascale; Schott, Jacques

    2017-02-01

    The interaction of magnesium with bicarbonate and carbonate ions in aqueous solutions was studied using infrared spectroscopy and quantum chemical calculations. Using the infrared vibrational bands for HCO3- and CO32- at 1200-1450 cm-1 (δC-OH, vS and v3) together with their molar absorptivity (ε), the concentrations of the HCO3- and CO32- ions and the corresponding Mg ion pairs have been determined. In the absence of Mg2+, measured spectra were accurately reproduced assuming that only HCO3- and CO32- were present in solution. Upon addition of Mg2+ at fixed pH, infrared spectra were observed to shift indicating presence of the MgHCO3+ and MgCO3 (aq) ion pairs. From measurements, the second ionization constant of carbonic acid and the MgHCO3+ and MgCO3 (aq) ion pair formation constants have been obtained, these being logK2 = -10.34 ± 0.04, logKMgHCO3+ = 1.12 ± 0.11 and logKMgCO3 = 2.98 ± 0.06, respectively. To support our experimental infrared measurements and to gain further insight into the molecular nature of the ion pair formation, density functional theory (DFT) calculations with VPT2 anharmonic correction were conducted. The most stable geometries predicted for the MgHCO3+ and MgCO3 (aq) ion pairs were a bi-dentate [MgHCO3]+(H2O)n and a monodentate [MgHCO3]+(OH)(H2O)n complexes, respectively. The predicted frequencies for HCO3-, CO32- and MgHCO3+ were found to shift toward those experimentally measured with an increasing H2O solvation number where possible band shifts were predicted for MgCO3 (aq) relative to CO32-, this being dependent on the exact structure and hydration of the bulk MgCO3 (aq) ion pair. Experimentally, the ion pair formations were found to have insignificant effects on the δC-OH, vS and v3 vibrational frequencies. The speciation of dissolved inorganic carbon may be significantly influenced by ion pair formation, particularly in alkaline solutions where they may be the predominant species.

  13. One-step growth of structured ZnO thin films by chemical bath deposition in aqueous ammonia solution

    NASA Astrophysics Data System (ADS)

    Huang, S M; Bian, Z Q; Chu, J B; Wang, Z A; Zhang, D W; Li, X D; Zhu, H B; Sun, Z

    2009-03-01

    Structured ZnO films have been fabricated on soda-lime glass slides at a low temperature (80-85 °C) by a chemical bath deposition method in one step without seed layers. Mixed aqueous solutions of zinc sulfate, ammonia and thiourea were used at alkaline conditions. The influence of the ammonia concentration in the initial solution on the property of the deposited film was investigated systematically. The morphology, structural and optical properties of the deposited films were examined and characterized by x-ray diffraction (XRD), energy-dispersive spectroscopy x-ray diffraction (EDX), scanning electron microscopy (SEM), Raman spectroscopy and photoluminescence (PL) spectroscopy. Structural analyses with XRD, EDX and SEM revealed that the formed films exhibit a wurtzite hexagonal phase. The deposited film was more preferentially oriented in the (0 0 2) direction with an increase in the ammonia concentration from 0.75 to 2 mol l-1. The optical-phonon E2 mode at 437 cm-1 in the Raman spectrum, together with the XRD and EDX analyses, showed that flower-like and columnar crystalline ZnO films were formed in two ammonia concentration ranges, 0.75-1.4 mol l-1 and 1.6-2.0 mol l-1, respectively. Furthermore, PL spectra showed strong and high intensity peaks of UV emission with suppressed green emission for these deposited ZnO films. ZnS films were formed with a high ammonia concentration of 3.0 M. The formation mechanisms of ZnO, Zn(OH)2 and ZnS phases were discussed.

  14. Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments.

    PubMed

    Wu, Weidong; Li, Jianhong; Niazi, Nabeel Khan; Müller, Karin; Chu, Yingchao; Zhang, Lingling; Yuan, Guodong; Lu, Kouping; Song, Zhaoliang; Wang, Hailong

    2016-11-01

    Biochar has received widespread attention as an eco-friendly and efficient material for immobilization of toxic heavy metals in aqueous environments. In the present study, three types of coconut fiber-derived biochars were obtained by pyrolyzing at three temperatures, i.e., 300, 500, and 700 °C. In addition, nine types of biochars were prepared by chemical modification with ammonia, hydrogen peroxide, and nitric acid, respectively, which were used to investigate changes in physico-chemical properties by inter alia, Fourier transformation infrared spectrophotometry (FTIR), scanning electron microscope (SEM), and BET specific surface area analysis. Batch sorption experiments were carried out to determine the sorption capacity of the biochars for lead (Pb) in aqueous solutions. Results showed that the cation exchange capacity of biochar pyrolyzed at 300 °C and modified with nitric acid increased threefold compared to the control. Loosely corrugated carbon surface and uneven carbon surface of the biochar pyrolyzed at 300 °C were produced during ammonia and nitric acid modifications. Removal rate of Pb by the coconut biochar pyrolyzed at 300 °C and modified with ammonia was increased from 71.8 to 99.6 % compared to the untreated biochar in aqueous solutions containing 100 mg L(-1) Pb. However, chemical modification did not enhance adsorption of Pb of the biochars pyrolyzed at higher temperatures (e.g., 500 or 700 °C), indicating that resistance of biochars to chemical treatment increased with pyrolysis temperature.

  15. The Aqueous Complexation of Thorium with Citrate under Neutral to Basic Conditions

    SciTech Connect

    Felmy, Andrew R; Cho, Herman M; Dixon, David A; Xia, Yuanxian; Hess, Nancy J; Wang, Zheming

    2006-04-20

    The aqueous complexation of thorium with citrate was investigated under neutral to basic conditions and over a broad range of ionic strengths. The solubility data for ThO2(am) as a function of citrate concentration indicate the presence of stable species with citrate-to-metal ratios of between two to three. The dependence of the ThO2(am) solubilities on hydrogen ion concentration can also be readily explained by the classical assumption of hydrolysis of the central Th(IV) ion to form mixed thorium-hydroxide-citrate complexes. 13C NMR spectra of the species in solution confirm that the citrate-to-metal ratio of the species in solution is between two and three and show that the citrate attaches to the metal in a bidentate fashion through oxygens on the -carboxylate and -alkoxyl groups, rather than through the carboxylate groups. The 13C NMR spectra, as well as a density functional theory (DFT) electronic structure study of the presumptive complexes, suggests that the associated α-hydroxyl proton can be displaced during complex formation. These findings indicate an alternative explanation for the observed changes in solubility as a function of hydrogen ion concentration, the displacement of protons from the citrate alkoxyl groups via metal binding. Removal of protons from the alkoxyl groups or hydrolysis of the central Th(IV) cannot be distinguished by thermodynamic measurements, however the species with the α-hydroxyl proton removed (i.e., ThOH(Cit)25- and Th(Cit)38-) would appear to better represent the microscopic binding. Apparent equilibrium constants for the solution phase reactions of these species and the hydrous thorium oxide have been calculated as a function of ionic strength.

  16. Adsorption of anionic dyes from aqueous solutions using chemically modified straw.

    PubMed

    Zhang, Wenxuan; Li, Haijiang; Kan, Xiaowei; Dong, Lei; Yan, Han; Jiang, Ziwen; Yang, Hu; Li, Aimin; Cheng, Rongshi

    2012-08-01

    The effective disposal of redundant straw is a significant work for environmental protection and full utilization of resource. In this work, the wheat straw has been modified by etherification to prepare a kind of quaternary ammonium straw adsorbents. The adsorption behaviors of the modified straw for methyl orange (MO) and acid green 25(AG25) were studied in both batch and column systems. The adsorption capacity of the straw for both dyes improved evidently after modification. The maximal MO and AG25 uptakes were more than 300 and 950 mg g(-1), respectively. Furthermore, the adsorption equilibrium, kinetics and column studies all indicated that the adsorption behavior was a monolayer chemical adsorption with an ion-exchange process. In addition, after adsorption of anionic dyes, the used adsorbents were successfully applied to adsorb a cationic dye directly at suitable conditions in the secondary adsorption. This was due to the altered surface structures of the used adsorbents.

  17. Kinetics of Organic Transformations Under Mild Aqueous Conditions: Implications for the Origin of Life and Its Metabolism

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    2003-01-01

    The rates of thermal transformation of organic molecules containing carbon, hydrogen, and oxygen were systematically examined in order to identify the kinetic constraints that governed origin-of-life organic chemistry under mild aqueous conditions. Arrhenius plots of the kinetic data were used to estimate the reaction half-life at 50 C, and to reveal the effect of functional groups on reactivity. This survey showed that hydrocarbons and organic substances containing a single oxygenated group were kinetically the most stable (i. e. acetate decarboxylation half-life was l0(exp 18) years at 50 C); whereas, organic substances containing two oxygenated groups in which one group was a beta-positioned carbonyl group were the most reactive (i. e. acetoacetate decarboxylation half-life was l0(exp-2) years at 50 C). Of all functional groups the beta-positioned carbonyl group (aldehyde or ketone) was the strongest activating group, giving rates of reaction that were up to 10(exp 24)-times faster than rates of similar molecules lacking the beta-carbonyl group. From this knowledge of organic reactivity and the inherent constraints of autocatalytic processes, we concluded that an origins-of-life process based on autocatalytic transformation of C,H,O-substrates was constrained to using the most reactive organic molecules that contain alpha- or beta-carbonyl groups, since small autocatalytic domains of plausible catalytic power that used less reactive substrates could not carry out chemical transformations fast enough to prevent catastrophic efflux (escape) of reaction intermediates. Knowledge of the kinetics of organic transformations is useful, not only in constraining the chemistry of the earliest autocatalytic process related to the origin of life, but also in establishing the relative reactivity of organic molecules on the early Earth and other planets that may or may not be related to the origin of life.

  18. Epoxidized natural rubber toughened aqueous resole type liquefied EFB resin: Physical and chemical characterization

    NASA Astrophysics Data System (ADS)

    Amran, Umar Adli; Zakaria, Sarani; Chia, Chin Hua

    2013-11-01

    A preliminary study on the reaction between aqueous resole type resinified liquefied palm oil empty fruit bunches fibres (RLEFB) with epoxidized natural rubber (ENR). Liquefaction of empty fruit bunches (EFB) is carried out at different ratio of phenol to EFB (P:EFB). Resole type phenolic resin is prepared using sodium hydroxide (NaOH) as the catalyst with the ratio of liquefied EFB (LEFB) to formaldehyde (LEFB:F) of 1:1.8. 50% epoxidation of epoxidized natural rubber (ENR-50) is used to react with resole resin by mixing with ENR with aqueous resole resin. The cured resin is characterized with FT-IR and SEM. Aqueous system have been found to be unsuitable medium in the reaction between resin and ENR. This system produced a highly porous product when RLEFB/ENR resin is cured.

  19. Double torsion fracture mechanics testing of shales under chemically reactive conditions

    NASA Astrophysics Data System (ADS)

    Chen, X.; Callahan, O. A.; Holder, J. T.; Olson, J. E.; Eichhubl, P.

    2015-12-01

    Fracture properties of shales is vital for applications such as shale and tight gas development, and seal performance of carbon storage reservoirs. We analyze the fracture behavior from samples of Marcellus, Woodford, and Mancos shales using double-torsion (DT) load relaxation fracture tests. The DT test allows the determination of mode-I fracture toughness (KIC), subcritical crack growth index (SCI), and the stress-intensity factor vs crack velocity (K-V) curves. Samples are tested at ambient air and aqueous conditions with variable ionic concentrations of NaCl and CaCl2, and temperatures up to 70 to determine the effects of chemical/environmental conditions on fracture. Under ambient air condition, KIC determined from DT tests is 1.51±0.32, 0.85±0.25, 1.08±0.17 MPam1/2 for Marcellus, Woodford, and Mancos shales, respectively. Tests under water showed considerable change of KIC compared to ambient condition, with 10.6% increase for Marcellus, 36.5% decrease for Woodford, and 6.7% decrease for Mancos shales. SCI under ambient air condition is between 56 and 80 for the shales tested. The presence of water results in a significant reduction of the SCI from 70% to 85% compared to air condition. Tests under chemically reactive solutions are currently being performed with temperature control. K-V curves under ambient air conditions are linear with stable SCI throughout the load-relaxation period. However, tests conducted under water result in an initial cracking period with SCI values comparable to ambient air tests, which then gradually transition into stable but significantly lower SCI values of 10-20. The non-linear K-V curves reveal that crack propagation in shales is initially limited by the transport of chemical agents due to their low permeability. Only after the initial cracking do interactions at the crack tip lead to cracking controlled by faster stress corrosion reactions. The decrease of SCI in water indicates higher crack propagation velocity due to

  20. Sample preparation followed by HPLC under harmless 100% aqueous conditions for determination of oxytetracycline in milk and eggs.

    PubMed

    Furusawa, Naoto

    2004-05-01

    A simple and hazardous chemical-free method for the high-performance liquid chromatographic determination of oxytetracycline (OTC) residues in milk and eggs has been developed. Sample preparation consists in homogenization with an aqueous solution by means of a handheld ultrasonic homogenizer followed by centrifugal ultrafiltration. HPLC is performed with an isocratic aqueous mobile phase and a photodiode array detector. Average recoveries of OTC (0.05, 0.1, and 0.2 microg mL(-1) for milk; 0.1, 0.2, and 0.4 microg mL(-1) for eggs) were > or =84% with relative standard deviations of < or =2.3%. The total time required for the analysis of one sample and LOQs were <30 min and <0.1 microg mL(-1), respectively. In all the processes, no organic solvents or hazardous reagents were used.

  1. Hydrolysis mechanism of anticancer drug lobaplatin in aqueous medium under neutral and acidic conditions: A DFT study

    NASA Astrophysics Data System (ADS)

    Reddy B., Venkata P.; Mukherjee, Subhajit; Mitra, Ishani; Mahata, Sujay; Linert, Wolfgang; Moi, Sankar Ch.

    2016-10-01

    We have studied the hydrolysis mechanism of lobaplatin in aqueous medium under neutral and acidic conditions using density functional theory combining with CPCM model. The stationary states located on potential energy surface were fully optimized and characterised. The rate limiting step in neutral conditions, ring opening reaction with an activation energy of 110.21 kJ mol-1. The completely hydrolysed complex is expected to be the reactive species towards the DNA purine bases. In acidic conditions, ligand detachment is the rate limiting step with an activation energy of 113.82 kJ mol-1. Consequently, monohydrated complex is expected to be the species reacting with DNA.

  2. Chemical durability of hollandite ceramic for conditioning cesium

    NASA Astrophysics Data System (ADS)

    Angeli, Frédéric; McGlinn, Peter; Frugier, Pierre

    2008-10-01

    The aqueous corrosion behavior of Cs-doped hollandite ceramic (BaCs 0.28Fe 0.82Al 1.46Ti 5.72O 16) was studied using several different static experimental protocols, with leachants of varying pH, and at different surface area to volume ratios, for periods ranging from six months to three years. All leach tests were carried out at 90 °C. X-ray diffraction (XRD) and scanning electron microscopy (SEM), coupled with energy dispersive X-ray spectroscopy (EDS), were used to characterize the surfaces of the hollandite before and after leaching. The most pronounced elemental releases, and corresponding changes to surface composition and microstructure, was evident at low pH, in particular pH 1. Cs and Ba releases were highest at low pH, with surface alteration exhibited by the formation of secondary rutile (prevalent at pH 1) and Al- and Ba-depleted hollandite (prevalent at pH 2). After rapid initial Cs release, the alteration rate was extremely low over the pH range from 2 to 10, as well as in pure water experiments with a sample-surface-area-to-solution-volume ratio ranging from 0.1 cm -1 to 1200 cm -1. The rates were about 10 -5 g m -2 d -1, corresponding to alteration thicknesses of a few nanometers per year. Higher rates (5 × 10 -3 g m -2 d -1) were observed only under very acidic conditions (pH 1). Congruency in Cs and Ba releases occurred only at pH 1, with incongruency between the two elements increasing with increasing pH. There were no apparent solubility constraints on Cs releases regardless of the SA/ V ratio, whereas geochemical modeling suggested that Ba releases could have been affected by the formation of BaCO 3, particularly at high SA/ V ratios. Extended leaching (with the leachant renewed once after 261 days of leaching) confirmed the high durability of hollandite with altered thicknesses of less than one nanometer per year over the last two years. Whilst Cs depletion of the hollandite surface was evidenced when leachates were replenished with the

  3. Development of linear free energy relationships for aqueous phase radical-involved chemical reactions.

    PubMed

    Minakata, Daisuke; Mezyk, Stephen P; Jones, Jace W; Daws, Brittany R; Crittenden, John C

    2014-12-02

    Aqueous phase advanced oxidation processes (AOPs) produce hydroxyl radicals (HO•) which can completely oxidize electron rich organic compounds. The proper design and operation of AOPs require that we predict the formation and fate of the byproducts and their associated toxicity. Accordingly, there is a need to develop a first-principles kinetic model that can predict the dominant reaction pathways that potentially produce toxic byproducts. We have published some of our efforts on predicting the elementary reaction pathways and the HO• rate constants. Here we develop linear free energy relationships (LFERs) that predict the rate constants for aqueous phase radical reactions. The LFERs relate experimentally obtained kinetic rate constants to quantum mechanically calculated aqueous phase free energies of activation. The LFERs have been applied to 101 reactions, including (1) HO• addition to 15 aromatic compounds; (2) addition of molecular oxygen to 65 carbon-centered aliphatic and cyclohexadienyl radicals; (3) disproportionation of 10 peroxyl radicals, and (4) unimolecular decay of nine peroxyl radicals. The LFERs correlations predict the rate constants within a factor of 2 from the experimental values for HO• reactions and molecular oxygen addition, and a factor of 5 for peroxyl radical reactions. The LFERs and the elementary reaction pathways will enable us to predict the formation and initial fate of the byproducts in AOPs. Furthermore, our methodology can be applied to other environmental processes in which aqueous phase radical-involved reactions occur.

  4. Parameterizing the equilibrium distribution of chemicals between the dissolved, solid particulate matter, and colloidal matter compartments in aqueous systems

    USGS Publications Warehouse

    Pankow, J.F.; McKenzie, S.W.

    1991-01-01

    The manner in which a chemical material partitions among the dissolved (D), participate (P), and colloidal (C) phases affects both its chemical and physical behavior in the aquatic environment. The fractions of the chemical that are present in each of these three phases will be determined by the values of two simple parameters, KpSp/??w and KcSc/??w. The variables Kp and Kc are the particle/water and colloid/water partition constants (mL/g), respectively, Sp and Sc are the volume concentrations of particulate and colloidal material (mg/L), respectively, and ??w is the fractional volume of the system that is aqueous. This parameterization allows a rapid overview of how partitioning (1) changes as a function of chemical partitioning properties and water type, (2) affects apparent partition constants (i.e., Kpapp values) computed between the particulate phase and the remainder of the system, and (3) causes Kpapp values to become independent of chemical properties at high values of KcSc/??w. ?? 1991 American Chemical Society.

  5. Experimental aqueous alteration of the Allende meteorite under oxidizing conditions: Constraints on asteroidal alteration

    NASA Astrophysics Data System (ADS)

    Jones, Catherine L.; Brearley, Adrian J.

    2006-02-01

    We have performed an experimental study of the aqueous alteration of the Allende CV3 carbonaceous chondrite under highly oxidizing conditions, in order to examine the alteration behavior of Allende's anhydrous mineralogy. The experiments were carried out at temperatures of 100, 150, and 200 °C, for time periods between 7 and 180 days, with water/rock ratios ranging from 1:1 to 9:1. Uncrushed cubes of Allende were used so that the spatial relationships between reactant and product phases could be examined in detail. Scanning electron microscope studies show that in all the experiments, even those of short duration (7 days), soluble salts of Ca and Mg (CaSO 4, CaCO 3, and MgSO 4) precipitated on the sample surface, indicating that these elements are rapidly mobilized during alteration. In addition, iron oxides and hydroxides formed on the sample surfaces. The sulfates, carbonates, and the majority of the iron-bearing secondary minerals are randomly distributed over the surface of samples. In some instances the iron oxides and hydroxides are constrained to the boundaries of altering mineral grains. Transmission electron microscope studies show that the FeO-rich olivine in the interior of the samples has altered to form interlayered serpentine/saponite and Fe-oxyhydroxides. The degree of alteration increases significantly with increasing water/rock ratio, and to a lesser extent with increasing duration of heating. The serpentine/saponite forms both by direct replacement of the olivine in crystallographically oriented intergrowths, and by recrystallization of an amorphous Si-rich phase that precipitates in pore space between the olivine grains. The alteration assemblage bears many similarities to those found in altered carbonaceous chondrites, although in detail there are important differences, which we attribute to (a) the relatively high temperatures of our experiments and (b) comparatively short reaction times compared with the natural examples. In terms of mineral

  6. CHEMICAL SYNTHESIS USING 'GREENER' ALTERNATIVE REACTION CONDITIONS AND MEDIA

    EPA Science Inventory

    The chemical research during the last decade has witnessed a paradigm shift towards "environmentally-friendly chemistry" more popularly known as "green chemistry" due to the increasing environmental concerns and legislative requirements to curb the release of chemical waste into ...

  7. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    DOEpatents

    Vijayan, S.; Wong, C.F.; Buckley, L.P.

    1994-11-22

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved. 1 fig.

  8. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    DOEpatents

    Vijayan, Sivaraman; Wong, Chi F.; Buckley, Leo P.

    1994-01-01

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved.

  9. Improved removal of malachite green from aqueous solution using chemically modified cellulose by anhydride.

    PubMed

    Zhou, Yanmei; Min, Yinghao; Qiao, Han; Huang, Qi; Wang, Enze; Ma, Tongsen

    2015-03-01

    Cellulose modified with maleic (M) and phthalic (P) anhydride, to be named CMA and CPA, were tested as feasible adsorbents for the removal of malachite green from aqueous solution. At the same time, the uptake ability of natural cellulose was also studied for comparison. The structure of material was characterized by FT-IR and XRD. The effects of solution pH, initial dye concentration, contact time and temperature were investigated in detail by batch adsorption experiments. The kinetic and isotherm studies suggested that the adsorption followed the pseudo-second-order model and Langmuir isotherm. The maximum adsorption capacity on CMA and CPA were 370 mg g(-1) and 111 mg g(-1), respectively. Furthermore, the thermodynamics studies indicated the spontaneous nature of adsorption of malachite green on adsorbents. All the studied results showed that the modified cellulose could be used as effective adsorption material for the removal of malachite green from aqueous solutions.

  10. Chemical imaging of Fischer-Tropsch catalysts under operating conditions

    PubMed Central

    Price, Stephen W. T.; Martin, David J.; Parsons, Aaron D.; Sławiński, Wojciech A.; Vamvakeros, Antonios; Keylock, Stephen J.; Beale, Andrew M.; Mosselmans, J. Frederick W.

    2017-01-01

    Although we often understand empirically what constitutes an active catalyst, there is still much to be understood fundamentally about how catalytic performance is influenced by formulation. Catalysts are often designed to have a microstructure and nanostructure that can influence performance but that is rarely considered when correlating structure with function. Fischer-Tropsch synthesis (FTS) is a well-known and potentially sustainable technology for converting synthetic natural gas (“syngas”: CO + H2) into functional hydrocarbons, such as sulfur- and aromatic-free fuel and high-value wax products. FTS catalysts typically contain Co or Fe nanoparticles, which are often optimized in terms of size/composition for a particular catalytic performance. We use a novel, “multimodal” tomographic approach to studying active Co-based catalysts under operando conditions, revealing how a simple parameter, such as the order of addition of metal precursors and promoters, affects the spatial distribution of the elements as well as their physicochemical properties, that is, crystalline phase and crystallite size during catalyst activation and operation. We show in particular how the order of addition affects the crystallinity of the TiO2 anatase phase, which in turn leads to the formation of highly intergrown cubic close-packed/hexagonal close-packed Co nanoparticles that are very reactive, exhibiting high CO conversion. This work highlights the importance of operando microtomography to understand the evolution of chemical species and their spatial distribution before any concrete understanding of impact on catalytic performance can be realized. PMID:28345057

  11. Chemical imaging of Fischer-Tropsch catalysts under operating conditions.

    PubMed

    Price, Stephen W T; Martin, David J; Parsons, Aaron D; Sławiński, Wojciech A; Vamvakeros, Antonios; Keylock, Stephen J; Beale, Andrew M; Mosselmans, J Frederick W

    2017-03-01

    Although we often understand empirically what constitutes an active catalyst, there is still much to be understood fundamentally about how catalytic performance is influenced by formulation. Catalysts are often designed to have a microstructure and nanostructure that can influence performance but that is rarely considered when correlating structure with function. Fischer-Tropsch synthesis (FTS) is a well-known and potentially sustainable technology for converting synthetic natural gas ("syngas": CO + H2) into functional hydrocarbons, such as sulfur- and aromatic-free fuel and high-value wax products. FTS catalysts typically contain Co or Fe nanoparticles, which are often optimized in terms of size/composition for a particular catalytic performance. We use a novel, "multimodal" tomographic approach to studying active Co-based catalysts under operando conditions, revealing how a simple parameter, such as the order of addition of metal precursors and promoters, affects the spatial distribution of the elements as well as their physicochemical properties, that is, crystalline phase and crystallite size during catalyst activation and operation. We show in particular how the order of addition affects the crystallinity of the TiO2 anatase phase, which in turn leads to the formation of highly intergrown cubic close-packed/hexagonal close-packed Co nanoparticles that are very reactive, exhibiting high CO conversion. This work highlights the importance of operando microtomography to understand the evolution of chemical species and their spatial distribution before any concrete understanding of impact on catalytic performance can be realized.

  12. Localized Chemical Redistribution During Aqueous Alteration in CR2 Carbonaceous Chondrites EET 87770 and EET 92105

    NASA Technical Reports Server (NTRS)

    Burger, Paul V.; Brearley, Adrian J.

    2005-01-01

    Carbonaceous chondrites are primitive meteorites that are valuable because they preserve evidence of processes that occurred in the solar nebula and on asteroidal parent bodies. Among the carbonaceous chondrite groups, the CR group appears to contain a particularly pristine record of early solar system processes. Distinguishing characteristics of CR2 chondrites include a high abundance of chondrules (50-60 vol.%) and Fe, Ni metal (5-8 vol. %). These meteorites preserve evidence for varying degrees of aqueous alteration, manifested by progressive replacement of chondrule mesostasis by phyllosilicates. Recent studies have suggested that even in weakly altered chondrites, mass transfer occurred between chondrules and fine-grained matrices, implying that aqueous alteration must have followed lithification of the final meteorite parent body. Although petrographic characteristics of alteration in CR chondrites have been documented, mechanisms of alteration are still only poorly understood. For example, the relative rates and scales of elemental mobility as well as the sources and sinks for key elements are currently not constrained. An improved knowledge of these issues will contribute to an increased understanding of aqueous alteration reactions on meteorite parent bodies. This study expands on research conducted on Type IIA chondrules and chondrule fragments from two CR2 chondrites, EET 87770 and EET 92105. These chondrites have been weakly altered; chondrule mesostases show incipient alteration primarily where they are in direct contact with fine-grained matrices.

  13. Modeling the transport of organic chemicals between polyethylene passive samplers and water in finite and infinite bath conditions.

    PubMed

    Tcaciuc, A Patricia; Apell, Jennifer N; Gschwend, Philip M

    2015-12-01

    Understanding the transfer of chemicals between passive samplers and water is essential for their use as monitoring devices of organic contaminants in surface waters. By applying Fick's second law to diffusion through the polymer and an aqueous boundary layer, the authors derived a mathematical model for the uptake of chemicals into a passive sampler from water, in finite and infinite bath conditions. The finite bath model performed well when applied to laboratory observations of sorption into polyethylene (PE) sheets for various chemicals (polycyclic aromatic hydrocarbons, polychlorinated biphenyls [PCBs], and dichlorodiphenyltrichloroethane [DDT]) and at varying turbulence levels. The authors used the infinite bath model to infer fractional equilibration of PCB and DDT analytes in field-deployed PE, and the results were nearly identical to those obtained using the sampling rate model. However, further comparison of the model and the sampling rate model revealed that the exchange of chemicals was inconsistent with the sampling rate model for partially or fully membrane-controlled transfer, which would be expected in turbulent conditions or when targeting compounds with small polymer diffusivities and small partition coefficients (e.g., phenols, some pesticides, and others). The model can be applied to other polymers besides PE as well as other chemicals and in any transfer regime (membrane, mixed, or water boundary layer-controlled). Lastly, the authors illustrate practical applications of this model such as improving passive sampler design and understanding the kinetics of passive dosing experiments.

  14. Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing.

    PubMed

    Serrano-Ruiz, Juan Carlos; Luque, Rafael; Sepúlveda-Escribano, Antonio

    2011-11-01

    Global warming issues and the medium-term depletion of fossil fuel reserves are stimulating researchers around the world to find alternative sources of energy and organic carbon. Biomass is considered by experts the only sustainable source of energy and organic carbon for our industrial society, and it has the potential to displace petroleum in the production of chemicals and liquid transportation fuels. However, the transition from a petroleum-based economy to one based on biomass requires new strategies since the petrochemical technologies, well-developed over the last century, are not valid to process the biomass-derived compounds. Unlike petroleum feedstocks, biomass derived platform molecules possess a high oxygen content that gives them low volatility, high solubility in water, high reactivity and low thermal stability, properties that favour the processing of these resources by catalytic aqueous-phase technologies at moderate temperatures. This tutorial review is aimed at providing a general overview of processes, technologies and challenges that lie ahead for a range of different aqueous-phase transformations of some of the key biomass-derived platform molecules into liquid fuels for the transportation sector and related high added value chemicals.

  15. Morphology and Optical Properties of Zinc Oxide Films Grown on Metal Coated Glass Substrates by Aqueous Chemical Growth

    NASA Astrophysics Data System (ADS)

    Bakar, M. A.; Hamid, M. A. A.; Jalar, A.; Shamsudin, R.

    2013-04-01

    Zinc oxide films were deposited on three different metal coated substrates (gold, nickel and platinum) by aqueous chemical growth method. This paper discusses the effect of metal coated substrates on the morphology and optical properties of grown ZnO films. X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM) and UV-visible spectroscopy (UV-vis) were employed to characterize the samples. All the as-deposited ZnO films exhibit crystalline hexagonal wurzite structure. The crystallite size of the ZnO films were in the range of 29 to 32 nm. FESEM micrographs revealed hexagonal rod, oval-like and flower-like ZnO structures formed on all metal coated substrates. The Pt coated film contains higher density hexagonal rod as compared to others metal coated substrate. Most probably the Pt lattice parameter is the nearest to ZnO compared to nickel and gold. The optical band gap energy, Eg of ZnO films were estimated to be 3.30 eV which is near to bulk Eg, 3.37 eV. This indicates that the ZnO grown by aqueous chemical growth is able to produce similar quality properties to other conventional method either films or bulk size.

  16. Hydrolysis and photolysis of diacylhydrazines-type insect growth regulator JS-118 in aqueous solutions under abiotic conditions.

    PubMed

    Hu, J-Y; Liu, C; Zhang, Y-C; Zheng, Z-X

    2009-05-01

    JS-118 is a diacylhydrazines-type insect growth regulator which is now used extensively in China. The hydrolysis and photolysis of the pesticide JS-118 in aqueous solutions have been assessed under natural and controlled conditions in this project. Hydrolysis experimental results show that JS-118 is quite stable in aqueous solutions in dark, with no significant variations be observed in degradation under various conditions. Abiotic hydrolysis is relatively unimportant compared to photolysis. The rate of photodecomposition of JS-118 in aqueous solutions follows first-order kinetics both in UV radiation and natural sunlight. The degradation rates are faster under UV light than sunlight, with the half-lives (t (1/2) = ln2/k) of 6.00-10.85 min and 6.63-10.16 day, respectively. Under UV light, two major photoproducts are detected, and tentatively identified according to HPLC-MS spectral information as N-t-butyl-N-(3,5-dimethylbenzoyl) and 3,7-dimethyl-benzoatedihydrofuran. The corresponding photolysis pathways of JS-118 are also proposed. The results obtained indicate that direct photoreaction is an important dissipation pathway of JS-118 in natural water systems.

  17. Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions.

    PubMed

    Thoi, V Sara; Sun, Yujie; Long, Jeffrey R; Chang, Christopher J

    2013-03-21

    Growing global energy demands and climate change motivate the development of new renewable energy technologies. In this context, water splitting using sustainable energy sources has emerged as an attractive process for carbon-neutral fuel cycles. A key scientific challenge to achieving this overall goal is the invention of new catalysts for the reductive and oxidative conversions of water to hydrogen and oxygen, respectively. This review article will highlight progress in molecular electrochemical approaches for catalytic reduction of protons to hydrogen, focusing on complexes of earth-abundant metals that can function in pure aqueous or mixed aqueous-organic media. The use of water as a reaction medium has dual benefits of maintaining high substrate concentration as well as minimizing the environmental impact from organic additives and by-products.

  18. Immiscible Hydrocarbon and Aqueous Fluids Under Subduction Zone Conditions and Implications for the Deep Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Huang, F.; Daniel, I.; Cardon, H.; Montagnac, G.; Sverjensky, D. A.

    2015-12-01

    Subducting slabs recycle rocks into the deep Earth releasing fluids which may cause partial melting and possible oxidation of the mantle wedge. Recent theoretical studies1 indicate that at pressures greater than about 3.0 GPa these fluids could contain high concentrations of organic and inorganic C-species with a wide range of C-oxidation states at equilibrium. If so, such fluids could play an important role in the deep carbon cycle, including the formation of diamond. However, direct experimental observations of the speciation in the fluids are needed. We studied 1.0 M aqueous Na-formate and 1.0 M Na-acetate solutions in the diamond anvil cell using Raman spectroscopy at 300 ºC and 3.0 GPa for up to 60 hours. Our preliminary results indicate that formate rapidly decomposed to bicarbonate/carbonate species and methane, with no detectable H2. Acetate decomposed much more slowly. Within the first two hours of heating, crystals of Na2CO3 precipitated in the fluid, and kept growing while immiscible droplets of hydrocarbon appeared and persisted throughout the experiments at elevated temperature and pressure. In the aqueous fluid, acetate and HCO3- were present during the first 6 hours, and then CO32- and acetate after 20 hours of heating. The final HCO3- /CO32- ratio was constant indicating a constant pH. This is the first in situ observation of persistent immiscible fluid hydrocarbons formed from an aqueous precursor at upper mantle pressures. Our results suggest that Earth's subduction zone fluids at high pressures might involve fluid hydrocarbon species as well as inorganic and organic aqueous C-species, which considerably broadens the picture of deep carbon sources, cycles and sinks. [1] Sverjensky et at. (2014), Nat. Geosci. 7, 909-913.

  19. Direct aqueous measurement of 25-hydroxyvitamin D levels in a cellular environment by LC-MS/MS using the novel chemical derivatization reagent MDBP.

    PubMed

    Müller, Miriam J; Bruns, Heiko; Volmer, Dietrich A

    2017-01-30

    Vitamin D measurements in biological fluids by mass spectrometry are challenging at very low concentration levels. As a result, chemical derivatization is often employed to enhance the ionization properties of low abundant vitamin D compounds. Cookson-type reagents such as 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) or similar derivatives work well but require careful, water-free experimental conditions, as traces of water inactivate the reagent and inhibit or stop the derivatization reactions, thus making quantitative measurements in aqueous samples impossible. We describe a novel electrospray liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for determining 25-hydroxyvitamin D3 (25(OH)D3) directly in aqueous cellular systems using a new derivatization reagent, the ionic liquid 12-(maleimidyl)dodecyl-tri-n-butylphosphonium bromide (MDBP). The proof-of-concept for the MDBP assay was demonstrated by measuring the levels of 25(OH)D3 in four different human cell types, namely T cells, helper T cells, B cells, and macrophages. In addition to the ability to determine the levels of 25(OH)D3 directly in aqueous samples, the cellular integrity was maintained in our application. We show the time-dependent uptake of 25(OH)D3 into the investigated cells to demonstrate the applicability of the new label. Furthermore, the MDBP derivatization technique may be equally useful in imaging mass spectrometry, where it could be used for response enhancements of spatially localized vitamin D metabolites on wet tissue surfaces, without destroying the integrity of the tissue surface. Graphical Abstract MDBP labelling of 25-hydroxyvitamin D in the extracellular space.

  20. Effect of chemical exchange on radiation damping in aqueous solutions of the osmolyte glycine.

    PubMed

    Rodríguez, Juan Carlos; Jennings, Patricia A; Melacini, Giuseppe

    2002-06-05

    Radiation damping is of central relevance in NMR spectroscopy especially with the advent of ultrahigh-field magnets and of supersensitive probes. Furthermore, the recent realization that the combined effect of the distant dipole field and of radiation damping causes the resurrection of undesired crushed water magnetization emphasizes the need for a thorough understanding of all the factors affecting radiation damping. While the effects of pulsed-field gradients and of active feedback have been extensively investigated, the consequences on radiation damping of chemical exchange between water and co-solutes is not as well understood. Here it is demonstrated that the rate of water radiation damping is significantly affected by free glycine (Gly), a representative of an important class of biocompatible osmolytes often used at molar concentrations as protein stabilizers. The pH and temperature dependencies of this effect were investigated and rationalized in terms of radiation damping attenuation caused by incoherent dephasing occurring in the intermediate exchange regime. For instance, at pH 6.0 and at a temperature of 313 K the Gly NH3+/water exchange has the same dramatic effect on radiation damping as a series of repeated weak PFGs, increasing the water inversion-recovery zero-crossing delay from approximately 30 ms to approximately 2.3 s. In addition, under these conditions, the Gly NH3+/water exchange suppresses the resurrection of unwanted crushed water magnetization. When used in combination with PFGs and water flip-back schemes, glycine is therefore expected to tame chaotic dynamics and improve the reproducibility of the NMR experiments affected by it.

  1. Chemical standardization of the aqueous extract of Cecropia glaziovii Sneth endowed with antihypertensive, bronchodilator, antiacid secretion and antidepressant-like activities.

    PubMed

    Tanae, M M; Lima-Landman, M T R; De Lima, T C M; Souccar, C; Lapa, A J

    2007-05-01

    This study reports the extraction process and standardization of the aqueous extract (AE) of a Cecropia species aiming its pharmacological characterization as a phytomedicine to be used in primary health care. The plant was originally collected in its environment, and was thereafter specially cultivated for the present work. To standardize the plant AE, several 2.0% tea of the dried leaves were prepared under controlled conditions and freeze dried. The AE (20% yield) was partitioned with n-butanol yielding the butanolic fraction (BuF; 1% yield). The activity of AE on vital organ functions (cardiovascular, respiratory, gastrointestinal and central nervous system) was determined in vivo. The effects of AE were compared to those of BuF in the same models and the relative potency determined. BuF was further evaluated in representative in vitro models to assess possible mechanisms of action. Chemical constituents of BuF were isolated in preparative HPLC columns yielding 10 highly purified compounds chemically identified as catechins (2), procyanidins (4), flavonoids (2), mixed sugars (1) and chlorogenic acid. All the compounds were identified by chemical analytic instrumentation (13C-NMR, 1H-NMR, LC-MS). Their relative concentrations in AE were ca 12% catechins, 19% procyanidins and 19% flavonoids. The pharmacological activity of the standardized AE is reported in accompanying papers.

  2. Organic chemical degradation by remote study of the redox conditions

    NASA Astrophysics Data System (ADS)

    Fernandez, P. M.; Revil, A.; Binley, A. M.; Bloem, E.; French, H. K.

    2014-12-01

    Monitoring the natural (and enhanced) degradation of organic contaminants is essential for managing groundwater quality in many parts of the world. Contaminated sites often have limited access, hence non-intrusive methods for studying redox processes, which drive the degradation of organic compounds, are required. One example is the degradation of de-icing chemicals (glycols and organic salts) released to the soil near airport runways during winter. This issue has been broadly studied at Oslo airport, Gardermoen, Norway using intrusive and non-intrusive methods. Here, we report on laboratory experiments that aim to study the potential of using a self-potential, DCresistivity, and time-domain induced polarization for geochemical characterization of the degradation of Propylene Glycol (PG). PG is completely miscible in water, does not adsorb to soil particles and does not contribute to the electrical conductivity of the soil water. When the contaminant is in the unsaturated zone near the water table, the oxygen is quickly consumed and the gas exchange with the surface is insufficient to ensure aerobic degradation, which is faster than anaerobic degradation. Since biodegradation of PG is highly oxygen demanding, anaerobic pockets can exist causing iron and manganese reduction. It is hypothesised that nitrate would boost the degradation rate under such conditions. In our experiment, we study PG degradation in a sand tank. We provide the system with an electron highway to bridge zones with different redox potential. This geo-battery system is characterized by self-potential, resistivity and induced polarization anomalies. An example of preliminary results with self-potential at two different times of the experiment can be seen in the illustration. These will be supplemented with more direct information on the redox chemistry: in-situ water sampling, pH, redox potential and electrical conductivity measurements. In parallel, a series of batch experiments have been

  3. Multispecies reactive tracer test in an aquifer with spatially variable chemical conditions

    USGS Publications Warehouse

    Davis, J.A.; Kent, D.B.; Coston, J.A.; Hess, K.M.; Joye, J.L.

    2000-01-01

    A field investigation of multispecies reactive transport was conducted in a well-characterized, sand and gravel aquifer on Cape Cod, Massachusetts. The aquifer is characterized by regions of differing chemical conditions caused by the disposal of secondary sewage effluent. Ten thousand liters of groundwater with added tracers (Br, Cr(VI), and BDTA complexed with Pb, Zn, Cu, and Ni) were injected into the aquifer and distributions of the tracers were monitored for 15 months. Most of the tracers were transported more than 200 m; transport was quantified using spatial moments computed from the results of a series of synoptic samplings. Cr(VI) transport was retarded relative to Br; the retardation factor varied from 1.1 to 2.4 and was dependent on chemical conditions. At 314 days after the injection, dissolved Cr(VI) mass in the tracer cloud had decreased 85%, with the likely cause being reduction to Cr(III) in a suboxic region of the aquifer. Transport of the metal-EDTA complexes was affected by aqueous complexation, adsorption, and dissolution-precipitation reactions of Fe oxyhydroxide minerals in the aquifer sediments. Dissolved Pb-EDTA complexes disappeared from the tracer cloud within 85 days, probably due to metal exchange reactions with Fe and adsorbed Zn (present prior to the injection from contamination by the sewage effluent). About 30% of the Cu-EDTA complexes remained within the tracer cloud 314 days after injection, even though the thermodynamic stability of the Pb-EDTA complex is greater than Cu-EDTA. It is hypothesized that stronger adsorption of Pb2+ to the aquifer sediments causes the Pb-EDTA complex to disassociate to a greater degree than the Cu-EDTA complex. The mass of dissolved Zn-EDTA increased during the first 175 days of the tracer test to 140% of the mass injected, with the increase due to desorption of sewage-derived Zn. Dissolved Ni-EDTA mass remained nearly constant throughout the tracer test, apparently only participating in reversible

  4. Calculations of physical and chemical reactions with DNA in aqueous solution from Auger cascades

    SciTech Connect

    Wright, H.A.; Hamm, R.N.; Turner, J.E.; Howell, R.W.; Rao, D.V.; Sastry, K.S.R.

    1989-01-01

    Monte Carlo calculations are performed of the physical and chemical interactions in liquid water by electrons produced during Auger cascades resulting from the decay of various radionuclides. Estimates are also made of the number of direct physical and indirect chemical interactions that would be produced on DNA located near the decay site. 13 refs., 8 figs.

  5. A purge and trap integrated microGC platform for chemical identification in aqueous samples.

    PubMed

    Akbar, Muhammad; Narayanan, Shree; Restaino, Michael; Agah, Masoud

    2014-07-07

    The majority of current micro-scale gas chromatography (μGC) systems focus on air sampling to detect volatile organic compounds (VOCs). However, purging the VOCs from a water sample using microsystems is an unchartered territory. Various organic compounds used in everyday life find their way to water bodies. Some of these water organic compounds (WOCs) persist or degrade slowly, threatening not just human existence but also aquatic life. This article reports the first micro-purge extractor (μPE) chip and its integration with a micro-scale gas chromatography (μGC) system for the extraction and analysis of water organic compounds (WOCs) from aqueous samples. The 2 cm × 3 cm μPE chip contains two inlet and outlet ports and an etched cavity sealed with a Pyrex cover. The aqueous sample is introduced from the top inlet port while a pure inert gas is supplied from the side inlet to purge WOCs from the μPE chip. The outlets are assigned for draining water from the chip and for directing purged WOCs to the micro-thermal preconcentrator (μTPC). The trapped compounds are desorbed from the μTPC by resistive heating using the on-chip heater and temperature sensor, are separated by a 2 m long, 80 μm wide, and 250 μm deep polydimethylsiloxane (OV-1) coated μGC separation column, and are identified using a micro-thermal conductivity detector (μTCD) monolithically integrated with the column. Our experiments indicate that the combined system is capable of providing rapid chromatographic separation (<1.5 min) for quaternary WOCs namely toluene, tetrachloroethylene (PCE), chlorobenzene and ethylbenzene with a minimum detection concentration of 500 parts-per-billion (ppb) in aqueous samples. The proposed method is a promising development towards the future realization of a miniaturized system for sensitive, on-site and real-time field analysis of organic contaminants in water.

  6. Chemical Speciation of Inorganic Compounds under Hydrothermal Conditions

    SciTech Connect

    Edward A Stern; John Fulton

    2002-02-21

    Measurements of oxidation. These spectra are to the best of our knowledge the first reported in situ spectroscopic observation of homogeneous aqueous redox chemistry at temperatures beyond the critical temperature of waste. We also observed a time-dependence for the growth of the Cr(VI) XANES peak and have therefore obtained both kinetic information as well as structural information on the reactants and products at the reaction temperature. We feel that these new techniques, when employed on actual waste components will elucidate the underlying chemistry.

  7. Peptide synthesis in aqueous environments: the role of extreme conditions on peptide bond formation and peptide hydrolysis.

    PubMed

    Schreiner, Eduard; Nair, Nisanth N; Marx, Dominik

    2009-09-30

    The mechanisms and free energetics underlying the formation of peptides from alpha-amino acids and alpha-amino acid N-carboxyanhydrides (NCAs) in bulk water at both ambient and extreme temperature and pressure conditions were investigated using accelerated ab initio molecular dynamics. In particular, peptide bond formation using an activated amino acid in form of its NCA, subsequent decarboxylation, as well as hydrolysis of the formed peptide were studied using glycine. It is shown to what extent thermodynamic conditions affect the reaction mechanisms qualitatively and the energetics quantitatively in solution. In particular, the zwitterionic intermediate in the peptidization step found in ambient water degenerates into a transient species in hot-pressurized water, whereas the hydrolysis reaction is found to follow qualitatively different pathways at ambient and extreme conditions. The work also quantifies the impact of extreme solvent conditions on both peptide bond formation and peptide hydrolysis in aqueous media. Beyond the specific case, the results provide important insights into how elevated temperatures and increased pressures affect organic reactions in aqueous solutions.

  8. The aqueous root extract of Aristolochia ringens (Vahl.) Aristolochiaceae inhibits chemically-induced inflammation in rodents.

    PubMed

    Ruth, Aigbe Flora; Olaide, Adeyemi Olufunmilayo; Oluwatoyin, Sofidiya Margaret

    2014-11-01

    The potential of the aqueous root extract of Aristolochia ringens (AR) (10-100 mg/kg p.o) to inhibit inflammation induced by phlogistics was evaluated using the carrageenan and egg albumin induced rat paw oedema, formaldehyde induced arthritic inflammation and xylene induced mouse ear oedema models. AR (10-50 mg/kg) dose-dependently decreased rat paw oedema in the carrageenan and egg albumin induced inflammation, producing comparable inhibition of 57.1% and 65.6% to the 57.9% and 63.9% of indomethacin and diclofenac (10 mg/kg p.o) respectively at 50 mg/kg. AR (10-50 mg/kg) also dose dependently inhibited formaldehyde-induced arthritic paw oedema over the 10 day observation period, with a greater inhibition of 50% at 50 mg/kg than the 40.8% inhibition by diclofenac (10 mg/kg i.p). AR (50 mg/kg) also produced greater inhibition of 84.78% than the 65.21% by dexamethasone (1 mg/kg) in xylene-induced ear oedema. Results show that the aqueous root extract of Aristolochia ringens possesses antiinflammatory activity.

  9. The solubility of ozone and kinetics of its chemical reactions in aqueous solutions of sodium chloride

    NASA Astrophysics Data System (ADS)

    Levanov, A. V.; Kuskov, I. V.; Antipenko, E. E.; Lunin, V. V.

    2008-12-01

    The solubility of ozone and the kinetics of its decomposition and interaction with chloride ions in a 1 M aqueous solution of NaCl at 20°C and pH 8.4-10.8 were studied. The ratio between the concentration of O3 in solution and the gas phase was found to be 0.16 at pH 8.4-9.8. The concentration of dissolved ozone decreased sharply as pH increased to 10.8 because of a substantial increase in the rate of its decomposition. It was observed for the first time that the interaction of O3 with Cl- in alkaline media resulted in the formation of ClO{3/-} chlorate ions. The dependence of the rate of formation of ClO{3/-} on pH was determined; its maximum value was found to be 9.6 × 10-6 mol l-1 min-1 at pH 10.0 and the concentration of ozone at the entrance of the reactor 30.0 g/m3. A spectrophotometric method for the determination of chlorate ions (concentrations 1 × 10-5-3 × 10-4 M) in aqueous solutions was suggested.

  10. The effect of precipitation conditions and aging upon characteristics of particles precipitated from aqueous solutions

    SciTech Connect

    Rard, J.A.

    1989-10-01

    Precipitation of a dissolved species from aqueous solutions is one of the techniques used to grow particles with certain size or composition characteristics. Various factors affecting the particle properties for sparingly soluble substances are briefly discussed here, including homogeneous versus heterogeneous nucleation, the effect of relative supersaturation on the number of nuclei and their relative size, particle growth by way of Ostwald Ripening, the Ostwald Step Rule and nucleation of metastable phases, diffusion-controlled versus surface reaction-controlled growth, incorporation of dopants into the precipitate, and dendritic growth. 13 refs.

  11. Chemical characterization of the main secondary organic aerosol (SOA) products formed through aqueous-phase photonitration of guaiacol

    NASA Astrophysics Data System (ADS)

    Kitanovski, Z.; Čusak, A.; Grgić, I.; Claeys, M.

    2014-04-01

    Guaiacol (2-methoxyphenol) and its derivatives can be emitted into the atmosphere by thermal degradation (i.e. burning) of wood lignins. Due to its volatility, guaiacol is predominantly distributed in the atmospheric gaseous phase. Recent studies have shown the importance of aqueous-phase reactions in addition to the dominant gas-phase and heterogeneous reactions of guaiacol, in the formation of secondary organic aerosol (SOA) in the atmosphere. The main objectives of the present study were to chemically characterize the low-volatility SOA products of the aqueous-phase photonitration of guaiacol and examine their possible presence in urban atmospheric aerosols. The aqueous-phase reactions were carried out under simulated sunlight and in the presence of H2O2 and nitrite. The formed guaiacol reaction products were concentrated by using solid-phase extraction (SPE) and then purified by means of semi-preparative high-performance liquid chromatography (HPLC). The fractionated individual compounds were isolated as pure solids and further analyzed with liquid-state 1H, 13C and 2D nuclear magnetic resonance (NMR) spectroscopy and direct infusion negative ion electrospray ionization tandem mass spectrometry ((-)ESI-MS/MS). The NMR and product ion (MS2) spectra were used for unambiguous product structure elucidation. The main products of guaiacol photonitration are 4-nitroguaiacol (4NG), 6-nitroguaiacol (6NG), and 4,6-dinitroguaiacol (4,6DNG). Using the isolated compounds as standards, 4NG and 4,6DNG were unambiguously identified in winter PM10 aerosols from the city of Ljubljana (Slovenia) by means of HPLC/(-)ESI-MS/MS. Owing to the strong absorption of UV and visible light, 4,6DNG could be an important constituent of atmospheric "brown" carbon, especially in regions affected by biomass burning.

  12. Optimization of Physical Conditions for the Aqueous Extraction of Antioxidant Compounds from Ginger (Zingiber officinale) Applying a Box-Behnken Design.

    PubMed

    Ramírez-Godínez, Juan; Jaimez-Ordaz, Judith; Castañeda-Ovando, Araceli; Añorve-Morga, Javier; Salazar-Pereda, Verónica; González-Olivares, Luis Guillermo; Contreras-López, Elizabeth

    2017-03-01

    Since ancient times, ginger (Zingiber officinale) has been widely used for culinary and medicinal purposes. This rhizome possesses several chemical constituents; most of them present antioxidant capacity due mainly to the presence of phenolic compounds. Thus, the physical conditions for the optimal extraction of antioxidant components of ginger were investigated by applying a Box-Behnken experimental design. Extracts of ginger were prepared using water as solvent in a conventional solid-liquid extraction. The analyzed variables were time (5, 15 and 25 min), temperature (20, 55 and 90 °C) and sample concentration (2, 6 and 10 %). The antioxidant activity was measured using the 2,2-diphenyl-1-picrylhydrazyl method and a modified ferric reducing antioxidant power assay while total phenolics were measured by Folin & Ciocalteu's method. The suggested experimental design allowed the acquisition of aqueous extracts of ginger with diverse antioxidant activity (100-555 mg Trolox/100 g, 147-1237 mg Fe(2+)/100 g and 50-332 mg gallic acid/100 g). Temperature was the determining factor in the extraction of components with antioxidant activity, regardless of time and sample quantity. The optimal physical conditions that allowed the highest antioxidant activity were: 90 °C, 15 min and 2 % of the sample. The correlation value between the antioxidant activity by ferric reducing antioxidant power assay and the content of total phenolics was R(2) = 0.83. The experimental design applied allowed the determination of the physical conditions under which ginger aqueous extracts liberate compounds with antioxidant activity. Most of them are of the phenolic type as it was demonstrated through the correlation established between different methods used to measure antioxidant capacity.

  13. ROS Initiated Oxidation of Dopamine under Oxidative Stress Conditions in Aqueous and Lipidic Environments

    PubMed Central

    2011-01-01

    Dopamine is known to be an efficient antioxidant and to protect neurocytes from oxidative stress by scavenging free radicals. In this work, we have carried out a systematic quantum chemistry and computational kinetics study on the reactivity of dopamine toward hydroxyl (•OH) and hydroperoxyl (•OOH) free radicals in aqueous and lipidic simulated biological environments, within the density functional theory framework. Rate constants and branching ratios for the different paths contributing to the overall reaction, at 298 K, are reported. For the reactivity of dopamine toward hydroxyl radicals, in water at physiological pH, the main mechanism of the reaction is proposed to be the sequential electron proton transfer (SEPT), whereas in the lipidic environment, hydrogen atom transfer (HAT) and radical adduct formation (RAF) pathways contribute almost equally to the total reaction rate. In both environments, dopamine reacts with hydroxyl radicals at a rate that is diffusion-controlled. Reaction with the hydroperoxyl radical is much slower and occurs only by abstraction of any of the phenolic hydrogens. The overall rate coefficients are predicted to be 2.23 × 105 and 8.16 × 105 M–1 s–1, in aqueous and lipidic environment, respectively, which makes dopamine a very good •OOH, and presumably •OOR, radical scavenger. PMID:21919526

  14. Aqueous phototransformation of zinc pyrithione Degradation kinetics and byproduct identification by liquid chromatography--atmospheric pressure chemical ionisation mass spectrometry.

    PubMed

    Sakkas, V A; Shibata, K; Yamaguchi, Y; Sugasawa, S; Albanis, T

    2007-03-16

    The photochemical behavior of the antifouling agent zinc pyrithione (ZnPT) was studied in aqueous media of different composition under simulated solar irradiation using a xenon light source. The influence of important constituents of natural water (dissolved organic matter and nitrate) was also examined using a multivariate kinetic model. It was found that photodegradation proceeds via a pseudo first-order reaction. Kinetic experiments were monitored by LC-MS and photolytic half-lives ranging between 9.2 and 15.1 min have been observed. The increasing concentration of dissolved organic matter (DOM) accelerates the photolysis reaction, while the effect of nitrate ions was also positive since it increased the degradation rate, but to a lesser extent. Irradiation of the aqueous ZnPT solutions gave rise to several transformation products that were isolated by means of solid-phase extraction using poly(styrene-divinylbenzene) extraction disks. These byproducts were identified using liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry. Besides 2-pyridinesulfonic-acid, other degradation products formed included pyridine-N-oxide, 2-mercaptopyridine, 2,2'-dithiobis(pyridine-N-oxide), 2,2-dipyridyl disulfide and the pyridine/pyrithione mixed disulfide, 2,2'-dithiobispyridine mono-N-oxide (PPMD).

  15. Chemical effects induced by gamma-irradiation in solid and in aqueous methanol solutions of 4-iodophenol

    NASA Astrophysics Data System (ADS)

    Mahfouz, R. M.; Siddiqui, M. R. H.; Al-Wassil, A. I.; Al-Resayes, S. I.; Al-Otaibi, A. M.

    2005-05-01

    The present work is a study on radiolyses of 4-iodophenol in aqueous methanol solutions. The radiolysis products are separated and identified using spectrophotometric and chromatographic techniques. The radiolytic products (I-2, I- and IO3-) formed in aerated solutions at room temperature were identified and the yields are investigated as a function of absorbed gamma-ray dose. The formation of I-2 is mainly dependent on the acidity of solution and produced via the pathway of secondary free radical reactions. Aromatic products of lower and higher molecular weight than the corresponding investigated compound were analysed and separated by HPLC. The results have been discussed in view of mechanisms based on free radicals and ion-molecule interactions. The chemical effects induced by gamma-irradiation in solid 4-iodophenol have also been investigated and the degradation products were identified in solid state by NMR, GC/MS experiments and HPLC after dissolution in aqueous methanol. The results were evaluated and compared with radiolysis data.

  16. Physical and chemical effects of direct aqueous advanced oxidation processing on green sand foundry mold materials

    NASA Astrophysics Data System (ADS)

    Clobes, Jason Kenneth

    Iron foundries using the common green sand molding process have increasingly been incorporating aqueous advanced oxidation (AO) systems to reduce the consumption of sand system bentonite clay and coal raw materials by and to decrease their volatile organic compound (VOC) emissions. These AO systems typically use a combination of sonication, ozone aeration, and hydrogen peroxide to treat and recycle slurries of sand system baghouse dust, which is rich in clay and coal. While the overall effects of AO on raw material consumption and organic emissions are known, the mechanisms behind these effects are not well understood. This research examined the effects of bench-scale direct aqueous AO processing on green sand mold materials at the micro level. Bench-scale AO processing, including acoustic sonication, ozone/oxygen aeration, and hydrogen peroxide dramatically decreased the particle sizes of both western bentonite and foundry sand system baghouse dust. Bench-scale AO processing was shown to effectively separate the clay material from the larger silica and coal particles and to extensively break up the larger clay agglomerates. The acoustic sonication component of AO processing was the key contributor to enhanced clay recovery. Acoustic sonication alone was slightly more effective than combined component AO in reducing the particle sizes of the baghouse dust and in the recovery of clay yields in the supernatant during sedimentation experiments. Sedimentation separation results correlated well with the increase in small particle concentrations due to AO processing. Clay suspension viscosity decreased with AO processing due to enhanced dispersion of the particles. X-ray diffraction of freeze-dried baghouse dust indicated that AO processing does not rehydrate calcined montmorillonite and does not increase the level of interlayer water hydration in the dry clays. Zeta potential measurements indicated that AO processing also does not produce any large changes in the

  17. Biosorption of Cr(VI) from aqueous solution by chemically modified potato starch: equilibrium and kinetic studies.

    PubMed

    Pillai, Saumya S; Mullassery, Manohar D; Fernandez, Noeline B; Girija, N; Geetha, P; Koshy, Mathew

    2013-06-01

    The biosorption capacity of chemically modified potato starch (CPS) for Cr(VI) from aqueous solution was investigated. The materials derived from carbohydrates are biodegradable and are generally regarded as safe and environmentally acceptable. The hydroxyl, carboxyl and carbonyl groups are responsible for the biosorption process. In the present study, the influence of various important parameters such as pH, time, biosorbent dose and initial Cr(VI) concentration on the biosorption capacity were investigated. The isotherms such as Langmuir, Freundlich and Tempkin were studied. The Freundlich and the Redlich-Peterson isotherms had been well fitted the biosorption of Cr(VI) with chemically modified potato starch. The kinetics of Cr(VI) removal using chemically modified potato starch was well explained by second-order kinetic model. The thermodynamic parameters were also evaluated from the biosorption measurements. Among the various desorbing agents tested, 98.2 percent chromium recovery was achieved with 0.1molL(-1) NaOH.

  18. Chemical and structural evaluation of activated carbon prepared from jute sticks for Brilliant Green dye removal from aqueous solution.

    PubMed

    Asadullah, Mohammad; Asaduzzaman, Mohammad; Kabir, Mohammad Shajahan; Mostofa, Mohammad Golam; Miyazawa, Tomohisa

    2010-02-15

    Activated carbons have been prepared from jute sticks by chemical activation using ZnCl(2) and physical activation using steam for the removal of Brilliant Green dye from aqueous solution. The activated carbons and charcoal prepared from jute sticks were characterized by evaluating the surface chemistry, structural features and surface morphology. The maximum BET surface area was obtained to be 2304 m(2)/g for chemical activated carbon (ACC) while it is 730 and 80 m(2)/g for steam activated carbon (ACS) and charcoal, respectively. The FT-IR spectra exhibited that the pyrolysis and steam activation of jute sticks resulted in the release of aliphatic and O-containing functional groups by thermal effect. However, the release of functional groups is the effect of chemical reaction in the ZnCl(2) activation process. A honeycomb-type carbon structure in ACC was formed as observed on SEM images. Although charcoal and ACC were prepared at 500 degrees C the ACC exhibited much lower Raman sensitivity due to the formation of condensed aromatic ring systems. Due to high surface area and high porous structure with abundance of functional groups, the ACC adsorbed dye molecules with much higher efficiency than those of ACS and charcoal.

  19. A flow-through passive dosing system for continuously supplying aqueous solutions of hydrophobic chemicals to bioconcentration and aquatic toxicity tests.

    PubMed

    Adolfsson-Erici, Margaretha; Åkerman, Gun; Jahnke, Annika; Mayer, Philipp; McLachlan, Michael S

    2012-02-01

    A continuous supply of water with defined stable concentrations of hydrophobic chemicals is a requirement in a range of laboratory tests such as the OECD 305 protocol for determining the bioconcentration factor in fish. Satisfying this requirement continues to be a challenge, particularly for hydrophobic chemicals. Here we present a novel solution based on equilibrium passive dosing. It employs a commercially available unit consisting of ~16000 polydimethylsiloxane (PDMS) tubes connected to two manifolds. The chemicals are loaded into the unit by repeatedly perfusing it with a methanol solution of the substances that is progressively diluted with water. Thereafter the unit is perfused with water and the chemicals partition from the unit into the water. The system was tested with nine chemicals with logK(OW) ranging from 4.1 to 6.3. The aqueous concentrations generated were shown to be largely independent of the water flow rate, and the unit to unit reproducibility was within a factor of ~2. In continuous flow experiments the aqueous concentrations of most of the study chemicals remained constant over 8d. A model was assembled that allows prediction of the operating characteristics of the system from the logK(OW) or PDMS/water partition coefficient of the chemical. The system is a simple, safe, predictable and flexible tool that generates stable aqueous concentrations of hydrophobic chemicals.

  20. Nucleation-dependant chemical bonding paradigm: the effect of rare earth ions on the nucleation of urea in aqueous solution.

    PubMed

    Chen, Xiaoyan; Sun, Congting; Wu, Sixin; Xue, Dongfeng

    2017-03-29

    Rare earth ions can be used to construct a variety of novel structures and are favorable to chemical bonding regulation and design. In this study, the chemical bonding paradigm between rare earth ions (Ln(3+)) and urea molecules in an aqueous solution can be tracked by the evolution of C[double bond, length as m-dash]O, NH2, and CN vibration bands during the urea nucleation stage. Rare earth ions such as La(3+), Gd(3+), and Lu(3+) can manipulate the nucleation time of urea via regulating the nucleation-dependant N-C[double bond, length as m-dash]OH-N hydrogen-bonding between urea molecules. Two types of chemical bondings between Ln(3+) and urea molecules have been confirmed, which are Ln(3+)O[double bond, length as m-dash]C-N and Ln(3+)NH2-C. Compared with Ln(3+)NH2-C, Ln(3+) prefers to coordinate with the O[double bond, length as m-dash]C bond in urea. With a higher concentration of rare earth ions in the solution, some N-C[double bond, length as m-dash]OH-N hydrogen bonds are broken as a consequence of the incorporation of Ln(3+) into the lattice, resulting in the decreased symmetry of local urea molecules in the crystalline nuclei and the consequent Ln(3+) concentration-dependent nucleation time of urea. Moreover, using the ionic electronegativity scale of Ln(3+), the different effects of La(3+), Gd(3+), and Lu(3+) on urea nucleation can be further distinguished. The present study provides basic data for unrevealing the chemical bonding regulation role of rare earth ions in the formation of hydrogen bonded materials, which may give insight into the design and fabrication of novel materials utilizing rare earth ions to adjust the chemical bonding process.

  1. Exploration of interactions between bioactive solutes and vitamin B9 in aqueous medium by physico-chemical contrivances

    NASA Astrophysics Data System (ADS)

    Nath Roy, Mahendra; Chakraborti, Palash; Ekka, Deepak

    2014-09-01

    Molecular interaction prevailing in α-amino acids (glycine, L-alanine, L-valine) and aqueous solution of folic acid (FA) has been reported by physico-chemical properties as density (ρ), viscosity (η), refractive index (nD) and ultrasonic speed (u) at 298.15 K. The extent of interaction (solute-solvent interaction) is expressed in terms of the limiting apparent molar volume (φ0V), viscosity B-coefficient, molar refraction (RM) and limiting apparent molar adiabatic compressibility (φ0K). The trends in transfer volumes, Δφ0V, have been interpreted in terms of solute-cosolute interactions on the basis of a co-sphere overlap model. The role of the cosolute (FA), and the contribution of solute-solute and solute-solvent interactions to the solution complexes, has also been analysed through the derived properties.

  2. Aqueous-phase oligomerization of methyl vinyl ketone through photooxidation - Part 2: Development of the chemical mechanism and atmospheric implications

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Renard, P.; Tlili, S.; Ravier, S.; Clément, J.-L.; Monod, A.

    2015-08-01

    Laboratory experiments of efficient oligomerization from methyl vinyl ketone (MVK) in the bulk aqueous phase were simulated in a box model. Kinetic data are applied (if known) or fitted to the observed MVK decay and oligomer mass increase. Upon model sensitivity studies, in which unconstrained rate constants were varied over several orders of magnitude, a set of reaction parameters was found that could reproduce laboratory data over a wide range of experimental conditions. This mechanism is the first that comprehensively describes such radical-initiated oligomer formation. This mechanism was implemented into a multiphase box model that simulates secondary organic aerosol (SOA) formation from isoprene, as a precursor of MVK and methacrolein (MACR) in the aqueous and gas phases. While in laboratory experiments oxygen limitation might occur and lead to accelerated oligomer formation, such conditions are likely not met in the atmosphere. The comparison of predicted oligomer formation shows that MVK and MACR likely do negligibly contribute to total SOA as their solubilities are low and even reduced in aerosol water due to ionic strength effects (Setchenov coefficients). Significant contribution by oligomers to total SOA might only occur if a substantial fraction of particulate carbon acts as oligomer precursors and/or if oxygen solubility in aerosol water is strongly reduced due to salting-out effects.

  3. CH 4/NH 3/H 2O spark tholin: Chemical analysis and interaction with Jovian aqueous clouds

    NASA Astrophysics Data System (ADS)

    McDonald, Gene D.; Khare, Bishun N.; Reid Thompson, W.; Sagan, Carl

    1991-12-01

    The organic solid (tholin) produced by spark discharge in a CH 4 + NH 3 + H 2O atmosphere is investigated, along with the separable components of its water-soluble fraction. The chemistry of this material serves as a provisional model for the interaction of Jovian organic heteropolymers with the deep aqueous clouds of Jupiter. Intact (unhydrolyzed) tholin is resolved into four chemically distinct fractions by high-pressure liquid chromatography (HPLC). Gel filtration chromatography reveals abundant components at molecular weights ⋍600-700 and 200-300 Da. Gas chromatography/mass spectrometry of derivatized hydrolysis products of unfractionated tholin shows about 10% by mass protein and nonprotein amino acids, chiefly glycine, alanine, aspartic acid, β-alanine, and β-aminobutyric acid, and 12% by mass other organic acids and hydroxy acids. The stereospecificity of alanine is investigated and shown to be racemic. The four principal HPLC fractions yield distinctly different proportions of amino acids. Chemical tests show that small peptides or organic molecules containing multiple amino acid precursors are a possibility in the intact tholins, but substantial quantities of large peptides are not indicated. Candidate 700-Da molecules have a central unsaturated, hydrocarbon- and nitrile-rich core, linked by acid-labile (ester or amide) bonds to amino acid and carboxylic acid side groups. The core is probably not HCN "polymer." The concentration of amino acids from tholin hydrolysis in the lower aqueous clouds of Jupiter, about 0.1 μ M, is enough to maintain small populations of terrestrial microorganisms even if the amino acids must serve as the sole carbon source.

  4. Composition and freezing of aqueous H2SO4/HNO3 solutions under polar stratospheric conditions

    NASA Technical Reports Server (NTRS)

    Beyer, K. D.; Seago, S. W.; Chang, H. Y.; Molina, M. J.

    1994-01-01

    The results of laboratory investigations of the freezing behavior of aqueous acid solutions indicate that in the stratosphere H2SO/H2O aerosol droplets would not freeze at temperatures above the ice frost point in the absence of HNO3; however, in the presence of typical levels of HNO3 liquid sulfuric acid aerosols take up significant amounts of HNO3 and H2O vapors and freeze much more readily. This is a consequence of the very rapid change in composition of the liquid droplets as the temperature drops to within two to three degrees of the equilibrium temperature at which HNO3 and H2O vapors would co-condense to form a liquid solution. In the high latitude stratosphere this HNO3/H2O 'dew point' is typically around 192-194 K at 100 mbar.

  5. Chemical Enrichment and Physical Conditions in IZw18*

    NASA Technical Reports Server (NTRS)

    Lebouteiller, V.; Heap, S.; Hubeny, I.; Kunth, D.

    2013-01-01

    Low-metallicity star-forming dwarf galaxies are prime targets to understand the chemical enrichment of the interstellar medium. The H I region contains the bulk of the mass in blue compact dwarfs, and it provides important constraints on the dispersal and mixing of heavy elements released by successive star-formation episodes. The metallicity of the H I region is also a critical parameter to investigate the future star-formation history, as metals provide most of the gas cooling that will facilitate and sustain star formation. Aims. Our primary objective is to study the enrichment of the H I region and the interplay between star-formation history and metallicity evolution. Our secondary obje ctive is to constrain the spatial- and time-scales over which the HI and H II regions are enriched, and the mass range of stars responsible for the heavy element production. Finally, we aim to examine the gas heating and cooling mechanisms in the H I region. Methods. We observed the most metal-poor star-forming galaxy in the Local Universe, I Zw 18, with the Cosmic Origin Spectrograph onboard Hubble. The abundances in the neutral gas are derived from far-ultraviolet absorption-lines (H I, CIII, CIIi*, N I, OI,...) and are compared to the abundances in the H II region. Models are constructed to calculate the ionization structure and the thermal processes. We investigate the gas cooling in the HIi region through physical diagnostics drawn from the fine-structure level of C+. Results. We find that H I region abundances are lower by a factor of approx 2 as compared to the H II region. There is no differential depletion on dust between the H I and H II region. Using sulfur as a metallicity tracer, we calculate a metallicity of 1/46 Z(solar) (vs. 1/31 Z(solar) in the H II region). From the study of the C/O, [O/Fe], and N/O abundance ratios, we propose that C, N, O, and Fe are mainly produced in massive stars. We argue that the H I envelope may contain pockets of pristine gas with a

  6. Chemical enrichment and physical conditions in I Zw 18

    NASA Astrophysics Data System (ADS)

    Lebouteiller, V.; Heap, S.; Hubeny, I.; Kunth, D.

    2013-05-01

    Context. Low-metallicity star-forming dwarf galaxies are prime targets to understand the chemical enrichment of the interstellar medium. The H i region contains the bulk of the mass in blue compact dwarfs, and it provides important constraints on the dispersal and mixing of heavy elements released by successive star-formation episodes. The metallicity of the H i region is also a critical parameter to investigate the future star-formation history, as metals provide most of the gas cooling that will facilitate and sustain star formation. Aims: Our primary objective is to study the enrichment of the H i region and the interplay between star-formation history and metallicity evolution. Our secondary objective is to constrain the spatial- and time-scales over which the H i and H ii regions are enriched, and the mass range of stars responsible for the heavy element production. Finally, we aim to examine the gas heating and cooling mechanisms in the H i region. Methods: We observed the most metal-poor star-forming galaxy in the Local Universe, I Zw 18, with the Cosmic Origin Spectrograph onboard Hubble. The abundances in the neutral gas are derived from far-ultraviolet absorption-lines (H i, C ii, C ii*, N i, O i, ...) and are compared to the abundances in the H ii region. Models are constructed to calculate the ionization structure and the thermal processes. We investigate the gas cooling in the H i region through physical diagnostics drawn from the fine-structure level of C+. Results: We find that H i region abundances are lower by a factor of ~2 as compared to the H ii region. There is no differential depletion on dust between the H i and H ii region. Using sulfur as a metallicity tracer, we calculate a metallicity of 1/46 Z⊙ (vs. 1/31 Z⊙ in the H ii region). From the study of the C/O, [O/Fe], and N/O abundance ratios, we propose that C, N, O, and Fe are mainly produced in massive stars. We argue that the H i envelope may contain pockets of pristine gas with a

  7. Oxidative weathering chemical migration under variably saturated conditions and supergene copper enrichment

    SciTech Connect

    Xu, Tianfu; Pruess, K.; Brimhall, G.

    1999-04-01

    Transport of oxygen gas from the land surface through an unsaturated zone has a strong influence on oxidative weathering processes. Oxidation of sulfide minerals such as pyrite (FeS{sub 2}), one of the most common naturally occurring minerals, is the primary source of acid drainage from mines and waste rock piles. Here we present a detailed numerical model of supergene copper enrichment that involves the oxidative weathering of pyrite (FeS{sub 2}) and chalcopyrite (CuFeS{sub 2}), and acidification that causes mobilization of metals in the unsaturated zone, with subsequent formation of enriched ore deposits of chalcocite (CuS) and covellite (Cu{sub 2}S) in the reducing conditions below the water table. We examine and identify some significant conceptual and computational issues regarding the oxidative weathering processes through the modeling tool. The dissolution of gaseous oxygen induced by the oxidation reduces oxygen partial pressure, as well as the total pressure of the gas phase. As a result, the gas flow is modified, then the liquid phase flow. Results indicate that this reaction effect on the fluid flow may not be important under ambient conditions, and gas diffusion can be a more important mechanism for oxygen supply than gas or liquid advection. Acidification, mobilization of metals, and alteration of primary minerals mostly take place in unsaturated zone (oxidizing), while precipitation of secondary minerals mainly occurs in saturated zone (reducing). The water table may be considered as an interface between oxidizing and reducing zones. Moving water table due to change of infiltration results in moving oxidizing zone and redistributing aqueous chemical constitutes and secondary mineral deposits. The oxidative weathering processes are difficult to model numerically, because concentrations of redox sensitive chemical species such as O{sub 2}(aq), SO{sub 4}{sup 2-} and HS{sup -} may change over tens of orders of magnitude between oxidizing and reducing

  8. EFFICIENT CHEMICAL TRANSFORMATIONS USING ALTERNATIVE REACTION CONDITIONS AND MEDIA

    EPA Science Inventory

    The diverse nature of chemical entities requires various green' strategic pathways in our quest towards attaining sustainability. A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of less-expensive and recyclable...

  9. Public Health Risk Conditioned by Chemical Composition of Ground Water

    NASA Astrophysics Data System (ADS)

    Yankovich, E.; Osipova, N.; Yankovich, K.; Matveenko, I.

    2016-03-01

    The article studies the public health potential risk originated from water consumption and estimated on the basis of the groundwater chemical composition. We have processed the results of chemical groundwater analysis in different aquifers of Tomsk district (Tomsk Oblast, Russia). More than 8400 samples of chemical groundwater analyses were taken during long-term observation period. Human health risk assessment of exposure to contaminants in drinking water was performed in accordance with the risk assessment guidance for public health concerning chemical pollution of the environment (Russian reference number: 2.1.10.1920-04-M, 2004). Identified potential risks were estimated for consuming water of each aquifer. The comparative analysis of water quality of different aquifers was performed on the basis of the risk coefficient of the total non-carcinogenic effects. The non-carcinogenic risk for the health of the Tomsk district population due to groundwater consumption without prior sanitary treatment was admitted acceptable. A rather similar picture is observed for all aquifers, although deeper aquifers show lower hazard coefficients.

  10. Simultaneous separation of hydrophobic and hydrophilic peptides with a silica hydride stationary phase using aqueous normal phase conditions.

    PubMed

    Boysen, Reinhard I; Yang, Yuanzhong; Chowdhury, Jamil; Matyska, Maria T; Pesek, Joseph J; Hearn, Milton T W

    2011-11-04

    The application of a silica hydride modified stationary phase with low organic loading has been investigated as a new type of chromatographic material suitable for the separation and analysis of peptides with electrospray ionization mass spectrometric detection. Retention maps were established to delineate the chromatographic characteristics of a series of peptides with physical properties ranging from strongly hydrophobic to very hydrophilic and encompassing a broad range of pI values (pI 5.5-9.4). The effects of low concentrations of two additives (formic acid and acetic acid) in the mobile phase were also investigated with respect to their contribution to separation selectivity and retention under comparable conditions. Significantly, strong retention of both the hydrophobic and the hydrophilic peptides was observed when high-organic low-aqueous mobile phases were employed, thus providing a new avenue to achieve high resolution peptide separations. For example, simultaneous separation of hydrophobic and hydrophilic peptides was achieved under aqueous normal phase (ANP) chromatographic conditions with linear gradient elution procedures in a single run, whilst further gradient optimization enabled improved peak efficiencies of the more strongly retained hydrophobic and hydrophilic peptides.

  11. 'GREENER' CHEMICAL SYNTHESES USING MICROWAVES UNDER SOLVENT-FREE CONDITIONS OR AQUEOUS MEDIA

    EPA Science Inventory

    A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of recyclable mineral supports such as alumina, silica, clay, or 'doped' surfaces is presented which is applicable to a wide range of cleavage, condensation, cycl...

  12. "GREENER" CHEMICAL SYNTHESES USING AN ALTERNATE REACTION CONDITIONS OR AQUEOUS MEDIA

    EPA Science Inventory

    A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of recyclable mineral supports such as alumina, silica, clay, or 'doped' surfaces is presented which is applicable to a wide range of cleavage, condensation, cycl...

  13. Biosorptive removal of malachite green from aqueous solution using chemically modified brown marine alga Sargassum swartzii.

    PubMed

    Jerold, M; Sivasubramanian, V

    2017-02-01

    Sargassum swartzii, marine macro brown alga, showed a high malachite green (MG) biosorption capacity in batch mode of operation. The analytical evidence from Fourier transform infrared spectra confirmed the involvement of amine group in the biosorption of MG and electrostatic interaction type of mechanism was proposed to occur between the amine group of dye and the cationic MG dye solution. Scanning electron micrograph shows the morphological features and the attachment of dye onto the biosorbent. pH edge experiment shows that biosorption capacity was maximum at pH 10. The effect of biosorbent concentration, pH, temperature, adsorption time was studied for the biosorption of MG using S. swartzii. Langmuir, Freundlich and Temkin models were used to describe the isotherm data, of which Langmuir model described the isotherm data with high coefficient of determination R(2) = 0.999. The maximum dye uptake of 111.1 mg/g was reported at pH 10 based on Langmuir model. Kinetics and temperature profiles were evaluated and reported. Desorption study was carried out with 0.1 M HCl. Efforts were also made to continuously treat MG bearing wastewater using up-flow packed column. Investigations proved that S. swartzii is an excellent biosorbent for the sequestration of MG in aqueous media.

  14. Biosorption of heavy metals from aqueous solutions by chemically modified orange peel.

    PubMed

    Feng, Ningchuan; Guo, Xueyi; Liang, Sha; Zhu, Yanshu; Liu, Jianping

    2011-01-15

    Equilibrium, thermodynamic and kinetic studies were carried out for the biosorption of Pb(2+), Cd(2+) and Ni(2+) ions from aqueous solution using the grafted copolymerization-modified orange peel (OPAA). Langmuir and Freundlich isotherm models were applied to describe the biosorption of the metal ions onto OPAA. The influences of pH and contact time of solution on the biosorption were studied. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. According to the Langmuir equation, the maximum uptake capacities for Pb(2+), Cd(2+) and Ni(2+) ions were 476.1, 293.3 and 162.6 mg g(-1), respectively. Compared with the unmodified orange peel, the biosorption capacity of the modified biomass increased 4.2-, 4.6- and 16.5-fold for Pb(2+), Cd(2+) and Ni(2+), respectively. The kinetics for Pb(2+), Cd(2+) and Ni(2+) ions biosorption followed the pseudo-second-order kinetics. The free energy changes (ΔG°) for Pb(2+), Cd(2+) and Ni(2+) ions biosorption process were found to be -3.77, -4.99 and -4.22 kJ mol(-1), respectively, which indicates the spontaneous nature of biosorption process. FTIR demonstrated that carboxyl and hydroxyl groups were involved in the biosorption of the metal ions. Desorption of Pb(2+), Cd(2+) and Ni(2+) ions from the biosorbent was effectively achieved in a 0.05 mol L(-1) HCl solution.

  15. Aqueous acidities of primary benzenesulfonamides: Quantum chemical predictions based on density functional theory and SMD.

    PubMed

    Aidas, Kęstutis; Lanevskij, Kiril; Kubilius, Rytis; Juška, Liutauras; Petkevičius, Daumantas; Japertas, Pranas

    2015-11-05

    Aqueous pK(a) of selected primary benzenesulfonamides are predicted in a systematic manner using density functional theory methods and the SMD solvent model together with direct and proton exchange thermodynamic cycles. Some test calculations were also performed using high-level composite CBS-QB3 approach. The direct scheme generally does not yield a satisfactory agreement between calculated and measured acidities due to a severe overestimation of the Gibbs free energy changes of the gas-phase deprotonation reaction by the used exchange-correlation functionals. The relative pK(a) values calculated using proton exchange method compare to experimental data very well in both qualitative and quantitative terms, with a mean absolute error of about 0.4 pK(a) units. To achieve this accuracy, we find it mandatory to perform geometry optimization of the neutral and anionic species in the gas and solution phases separately, because different conformations are stabilized in these two cases. We have attempted to evaluate the effect of the conformer-averaged free energies in the pK(a) predictions, and the general conclusion is that this procedure is highly too costly as compared with the very small improvement we have gained.

  16. Aqueous chemical growth of alpha-Fe2O3-alpha-Cr203 nanocompositethin films

    SciTech Connect

    Vayssieres, Lionel; Guo, Jinghua; Nordgren, Joseph

    2001-06-30

    We are reporting here on the inexpensive fabrication and optical properties of an iron(III) oxide chromium(III) oxide nanocomposite thin film of corundum crystal structure. Its novel and unique-designed architecture consists of uniformed, well-defined and oriented nanorods of Hematite (alpha-Fe2O3) of 50 nm in diameter and 500nm in length and homogeneously distributed nonaggregated monodisperse spherical nanoparticles of Eskolaite (alpha-Cr2O3) of 250 nm in diameter. This alpha-Fe2O3 alpha-Cr2O3 nanocomposite thin film is obtained by growing, directly onto transparent polycrystalline conducting substrate, an oriented layer of hematite nanorods and growing subsequently, the eskolaite layer. The synthesis is carried out by a template-free, low-temperature, multilayer thin film coating process using aqueous solution of metal salts as precursors. Almost 100 percent of the light is absorbed by the composite film between 300 and 525 nm and 40 percent at 800 nm which yields great expectations as photoanode materials for photovoltaic cells and photocatalytic devices.

  17. [Studies on chemical constituents of aqueous extract of Lonicera japonica flower buds].

    PubMed

    Yu, Yang; Song, Wei-xia; Guo, Qing-lan; Lin, Sheng; Wang, Su-juan; Yang, Yong-chun; Shi, Jian-gong

    2015-09-01

    From an aqueous extract of Lonicera japonica flower buds, sixteen compounds were isolated by a combination of various chromatographic techniques including column chromatography over macroporous resin, MCI gel, silica gel, and sephadex LH-20 and reversed-phase HPLC. Their structures were elucidated by spectroscopic data analysis as 6'-O-acetylvogeloside (1), 6'-O-acetylsecoxyloganin (2), dichlorogelignate (3), guanosinyl-(3' --> 5')-adenosine monophosphate(GpA,4) , 5'-O-methyladenosine (5), 2'-O-methyladenosine (6), adenosine (7), syringin (8), methyl 4-O-β-D-glucopyranosyl caffeate (9), (-)-dihydrophaseic acid 4'-O-β-D-glucopyranoside (10), ketologanin (11), 7α-morroniside (12), 7β-morroniside (13), kingiside (14), cryptochlorogenic acid methyl ester (15), and 6-hydroxymethyl-3-pyridinol (16). All the compounds were obtained from this plant for the first time, compounds 1 and 2 are new compounds, 3 and 5 are new natural products, and 4 is the first example of dinucleoside monophosphate isolated from a plant extract.

  18. Structural, chemical and optical evaluation of Cu-doped ZnO nanoparticles synthesized by an aqueous solution method

    SciTech Connect

    Iribarren, A.; Hernández-Rodríguez, E.; Maqueira, L.

    2014-12-15

    Highlights: • Cu-doped ZnO nanoparticles obtained by chemical synthesis. • Substitutional or interstitial Cu into ZnO lead specific structural, chemical, and optical changes. • Incorporation efficiency of Cu atoms in ZnO as a function of the Cu concentration in the precursor dissolution. - Abstract: In this work a study of ZnO and Cu-doped ZnO nanoparticles obtained by chemical synthesis in aqueous media was carried out. Structural analysis gave the dominant presence of wurtzite ZnO phase forming a solid solution Zn{sub 1−x}Cu{sub x}O. For high Cu doping CuO phase is also present. For low Cu concentration the lattice shrinks due to Cu atoms substitute Zn atoms. For high Cu concentration the lattice enlarges due to predominance of interstitial Cu. From elemental analysis we determined and analyzed the incorporation efficiency of Cu atoms in Zn{sub 1−x}Cu{sub x}O as a function of the Cu concentration in the precursor dissolution. Combining structural and chemical results we described the Cu/Zn precursor concentrations r{sub w} in which the solid solution of Cu in ZnO is predominant. In the region located at r{sub w} ≈ 0.2–0.3 it is no longer valid. For Cu/Zn precursor concentration r{sub w} > 0.3 interstitial Cu dominates, and some amount of copper oxide appears. As the Cu concentration increases, the effective size of nanoparticles decreases. Photoluminescence (PL) measurements of the Cu-doped ZnO nanoparticles were carried out and analyzed.

  19. SH-SAW Sensor Platform for Chemical Detection in Aqueous Solutions

    SciTech Connect

    Casalnuovo, Steve; Cernosek, Richard; Josse, Fabien; Ricco, Antonio; Zhou, Rongnong

    1999-07-20

    Chemically sensitive polymers coated on delay lines utilizing shear horizontal surface acoustic wave (SH-SAW) sensors are investigated for the detection of organic analytes in liquid environments. The SH-SAW sensor platform was designed and fabricated on 36{degree} rotated Y-cut LiTaO{sub 3}. By depositing a SiO{sub 2} dielectric layer over the entire device prior to applying the polymer film, partial electrical passivation of the interdigital transducers (IDT) is obtained while increasing the mass sensitivity of the device. Changes in the mechanical properties of the chemically sensitive polymer materials were clearly detectable through a frequency shift at least one order of magnitude larger than that of a coated-quartz crystal resonator (QCR) in a similar experiment.

  20. Laser-induced chemical liquid phase deposition of copper from aqueous solutions without reducing agents

    SciTech Connect

    Kochemirovsky, V A; Tumkin, I I; Logunov, L S; Safonov, S V; Menchikov, Leonid G

    2012-08-31

    Laser-induced chemical liquid phase deposition of copper without a traditional reducing agent has been used for the first time to obtain conductive patterns on a dielectric surface having a reducing ability. It is shown that phenol-formaldehyde binder of the dielectric (glass fibre) can successfully play the role of a reducing agent in this process. The resulting copper sediments have low electrical resistance and good topology. (interaction of laser radiation with matter. laser plasmas)

  1. Destruction of VX by aqueous-phase oxidation using peroxydisulfate (direct chemical oxidation)

    SciTech Connect

    Cooper, J.F.; Krueger, R.; Farmer, J.C.

    1995-10-11

    Chemical warfare agents may be completely destroyed (converted to H{sub 2}O, CO{sub 2}, salts) by oxidation at 90--100 C using acidified ammonium peroxydisulfate, with recycle of NH{sub 4}SO{sub 4} byproduct. The process requires no toxic or expended catalysts and produces no secondary wastes other than the precipitated inorganic content of the agents. To determine oxidative capability of peroxydisulfate at low reductant contents, we measured rate data for oxidation of 20 diverse compounds with diverse functional groups; 4 of these have bonds similar to those found in VX, HD, and GB. On an equivalence basis, integral first-order rate constants for 100 C oxidation are 0.012{plus_minus}0.005 min{sup {minus}1} for di-isopropyl-methyl-phosphonate, methyl phosphonic acid, triethylamine, and 2,2{prime}-thiodiethanol at low initial concentrations of 50 ppM(as carbon) and pH 1.5. To provide scale-up equations for a bulk chemical agent destruction process, we measured time-dependent oxidation of bulk model chemicals at high concentrations (0.5 N) and developed and tested a quantitative model. A practical process for bulk VX destruction would begin with chemical detoxification by existing techniques (eg, hydrolysis or mild oxidation using oxone), followed by mineralization of the largely detoxified products by peroxydisulfate. Secondary wastes would be avoided by use of commercial electrolysis equipment to regenerate the oxidant. Reagent requirements, mass balance and scaleup parameters are given for VX destruction, using peroxydisulfate alone, or supplemented with hydrogen peroxide. For the use of 2.5 N peroxydisulfate as the oxidant, a 1 m{sup 3} digester will process about 200 kg (as C) per day. The process may be extended to total destruction of HD and hydrolysis products of G agents.

  2. The decay of chemical weapons agents under environmental conditions

    SciTech Connect

    McGuire, R.R.; Haas, J.S.; Eagle, R.J.

    1993-04-09

    The rate and mechanism of decay of chemical agents in the environment was studied via live agent field trials at the chemical and Biological Defence Establishment, Porton Down, UK. The plan was to deposit the agents GD (Soman), VX, and H (sulfur mustard) on separate l-m{sup 2} plots on three successive days; i.e., Tuesday through Thursday. The depositions were to be made so as to give an areal concentration of 10 g/m{sup 2}. Four felt pads of approximately 25 cm{sup 2} each were placed at the corners of each of the test plots. These were subsequently extracted and analyzed by CBDE to determine the actual agent concentration. Samples for LLNL (two different types of soil, disks of silicone rubber gasket material, and short cylinders of concrete were to be contaminated and analyzed. Results are described.

  3. Removal of Pb2+ from aqueous solution by adsorption on chemically modified muskmelon peel.

    PubMed

    Huang, Kai; Zhu, Hongmin

    2013-07-01

    A cost-effective biosorbent was prepared by a green chemical modification process from muskmelon peel by saponification with alkaline solution of Ca(OH)2. Its adsorption behavior for lead ions was investigated and found to exhibit excellent adsorption properties. Results showed that the optimal equilibrium pH range for 100% adsorption is from 4 up to 6.4. Adsorption equilibrium was attained within 10 min. The adsorption process can be described well by Langmuir model and pseudo-second-order kinetics equation, respectively. The maximum adsorption capacity for lead ions was found to be 0.81 mol/kg. Pectic acid contained in the muskmelon peel is the main factor responsible for the uptake of lead ions onto the gel, and the chemical modification process presented in this study can be assumed effective to prepare other similar biomaterials. The large adsorption capacity and the fast adsorption rate indicated that chemically saponified muskmelon peel gel in present study has great potential to be used as a cost-effective adsorbent for the removal of lead ions from the water.

  4. Charting the known chemical space for non-aqueous lithium-air battery electrolyte solvents.

    PubMed

    Husch, Tamara; Korth, Martin

    2015-09-21

    Li-air batteries are very promising candidates for powering future mobility, but finding a suitable electrolyte solvent for this technology turned out to be a major problem. We present a systematic computational investigation of the known chemical space for possible Li-air electrolyte solvents. It is shown that the problem of finding better Li-air electrolyte solvents is not only - as previously suggested - about maximizing Li(+) and O2(-) solubilities, but also about finding the optimal balance of these solubilities with the viscosity of the solvent. As our results also show that trial-and-error experiments on known chemicals are unlikely to succeed, full chemical sub-spaces for the most promising compound classes are investigated, and suggestions are made for further experiments. The proposed screening approach is transferable and robust and can readily be applied to optimize electrolytes for other electrochemical devices. It goes beyond the current state-of-the-art both in width (considering the number of compounds screened and the way they are selected), as well as depth (considering the number and complexity of properties included).

  5. Oxidation of methanol by hydroxyl radicals in aqueous solution under simulated cloud droplet conditions

    NASA Astrophysics Data System (ADS)

    Monod, Anne; Chebbi, Abderaouf; Durand-Jolibois, Régine; Carlier, Patrick

    The results of a detailed mechanistic study of aqueous-phase OH-oxidation of methanol are presented. Analysis of reaction products by specific chromatographic methods revealed that hydrated formaldehyde is not the only stable primary reaction product. Formic acid and/or formate ion are also stable primary molecular reaction products of methanol OH-oxidation. The branching ratios for their formation are highly pH dependent. At pH=7, hydrated formaldehyde is the dominant molecular reaction product (ratio 4.5 : 1 for hydrated formaldehyde : formate ion), whereas at pH=2, formic acid is the dominant product (ratio 3.7 : 1 for formic acid : hydrated formaldehyde). At all pH studied, the sum of the primary stable products represents 49 (±11)% of methanol removal, in agreement with the amount of OOCH 2OH radicals formed relative to methanol removal 48(±2)%. The formation of primary formic acid at pH=2 is attributed to OOCH 2OH self-reaction, and the strong pH effect is attributed to the base-catalyzed decomposition of OOCH 2OH leading to the formation of hydrated formaldehyde. Evaporation and/or an addition reaction between CH 2OH and HO 2 radicals leading to the formation of hydroxymethyl hydroperoxide is proposed to explain the missing yields. The implications of this mechanism to atmospheric chemistry are discussed.

  6. Photochemical processing of aldrin and dieldrin in frozen aqueous solutions under arctic field conditions.

    PubMed

    Rowland, Glenn A; Bausch, Alexandra R; Grannas, Amanda M

    2011-05-01

    Organochlorine (OC) contaminants are transported to the Polar Regions, where they have the potential to bioaccumulate, presenting a threat to the health of wildlife and indigenous communities. They deposit onto snowpack during winter, and accumulate until spring, when they experience prolonged solar irradiation until snowmelt occurs. Photochemical degradation rates for aldrin and dieldrin, in frozen aqueous solution made from MilliQ water, 500 μM hydrogen peroxide solution or locally-collected melted snow were measured in a field campaign near Barrow, AK, during spring-summer 2008. Significant photoprocessing of both pesticides occurs; the reactions depend on temperature, depth within the snowpack and whether the predominant phase is ice or liquid water. The effect of species present in natural snowpack is comparable to 500 μM hydrogen peroxide, pointing to the potential significance of snowpack-mediated reactions. Aldrin samples frozen at near 0 °C were more reactive than comparable liquid samples, implying that the microenvironments experienced on frozen ice surfaces are an important consideration.

  7. Biosorption of zinc from aqueous solution using chemically treated rice husk.

    PubMed

    Zhang, Ying; Zheng, Ru; Zhao, Jiaying; Zhang, Yingchao; Wong, Po-Keung; Ma, Fang

    2013-01-01

    In this study, adsorption of zinc onto the adsorbent (untreated rice husk and NaOH-treated rice husk) was examined. During the removal process, batch technique was used, and the effects of pH and contact time were investigated. Langmuir isotherm was applied in order to determine the efficiency of NaOH-treated rice husk used as an adsorbent. The zinc adsorption was fast, and equilibrium was attained within 30 min. The maximum removal ratios of zinc for untreated rice husk and NaOH-treated rice husk after 1.5 h were 52.3% and 95.2%, respectively, with initial zinc concentration of 25 mg/L and optimum pH of 4.0. Data obtained from batch adsorption experiments fitted well with the Langmuir isotherm model. Maximum adsorption capacity of zinc onto untreated rice husk and NaOH-treated rice husk was 12.41 mg/g, and 20.08 mg/g respectively, at adsorbent dosage of 1 g/L at 25°C. The nature of functional groups (i.e., amino, carboxyl, and hydroxyl) and metal ion interactions was examined by the FT-IR technique. It was concluded that the NaOH-treated rice husk had stronger adsorption capacity for Zn(2+) compared with the untreated rice husk. The NaOH-treated rice husk is an inexpensive and environmentally friendly adsorbent for Zn(2+) removal from aqueous solutions.

  8. Copper(II) removal from aqueous solutions by adsorption on non-treated and chemically modified cactus fibres.

    PubMed

    Prodromou, M; Pashalidis, I

    2013-01-01

    The adsorption efficiency of a biomass by-product (cactus fibres) regarding the removal of copper(II) from aqueous solutions has been investigated before and after its chemical treatment. The chemical treatment of the biomass by-product included phosphorylation and MnO2-coating. The separation/removal efficiency has been studied as a function of pH, Cu(II) concentration, ionic strength, temperature and contact time. Evaluation of the experimental data shows that the MnO2-coated product presents the highest adsorption capacity, followed by the non-treated and phosphorylated material. Regarding the effect of ionic strength/salinity on the adsorption, in contrast to the removal efficiency of the phosphorylated product, which is significantly affected, the MnO2-coated and non-treated material don't show any effect, indicating the formation of inner-sphere surface complexes. The adsorption reaction is in all cases endothermic and relatively fast, particularly the adsorption on the MnO2-coated product. The results of the present study indicate that for the removal of bivalent metal-ions from contaminated waters the MnO2-coated material is expected to be the most effective adsorbent and an alternative to MnO2 resins for the treatment of environmentally relevant waters.

  9. Hyphenation of sequential- and flow injection analysis with FTIR-spectroscopy for chemical analysis in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lendl, B.; Schindler, R.; Kellner, R.

    1998-06-01

    A survey of the principles of sequential (SIA)-and flow injection analysis (FIA) systems with FTIR spectroscopic detection is presented to introduce these hyphenations as powerful techniques for performing chemical analysis in aqueous solution. The strength of FIA/SIA-FTIR systems lies in the possibility to perform highly reproducible and automated sample manipulations such as sample clean-up and/or chemical reactions prior to spectrum acquisition. It is shown that the hyphenation of FIA/SIA systems with an FTIR spectrometer enhances the problem solving capabilities of the FTIR spectrometer as also parameters which can not be measured directly (e.g. enzyme activities) can be determined. On the other hand application of FTIR spectroscopic detection in FIA or SIA is also of advantage as it allows to shorten conventional analysis procedures (e.g. sucrose or phosphate analysis) or to establish and apply a multivariate calibration model for simultaneous determinations (e.g. glucose, fructose and sucrose analysis). In addition to these examples two recent instrumental developments in miniaturized FIA/SIA-FTIR systems, a μ-Flow through cell based on IR fiber optics and a micromachined SI-enzyme reactor are presented in this paper.

  10. APPLICATION OF STIR BAR SORPTIVE EXTRACTION TO ANALYSIS OF VOLATILE AND SEMIVOLATILE ORGANIC CHEMICALS OF POTENTIAL CONCERN IN SOLIDS AND AQUEOUS SAMPLES FROM THE HANFORD SITE

    SciTech Connect

    FRYE JM; KUNKEL JM

    2009-03-05

    Stir bar sorptive extraction was applied to aqueous and solid samples for the extraction and analysis of organic compounds from the Hanford chemicals of potential concern list, as identified in the vapor data quality objectives. The 222-S Laboratory analyzed these compounds from vapor samples on thermal desorption tubes as part of the Hanford Site industrial hygiene vapor sampling effort.

  11. Sorption of nickel (II) from aqueous system by chemically modified pungan (pongamia pinnata) seedpod carbon

    NASA Astrophysics Data System (ADS)

    Senthil, M.; Arulanantham, A.

    2013-06-01

    The adsorption of Ni (II) on chemically modified bicarbonate impregnated sulphuric acid treated pungan (pongamia pinnata) seedpod carbon (BSPAC) was investigated as a function of equilibrium time, solution pH and carbon dosage. The adsorption of nickel (II) was also studied by using Freundlich, Langmuir and Temkin isotherm models. Kinetic studies were conducted using reversible-first-order, pseudo-first-order and pseudo-second-order kinetic equations. The results obtained were compared with commercially available activated carbon (CAC) of same 20-50 ASTM mesh size.

  12. Polyurethane foam loaded with sodium dodecylsulfate for the extraction of 'quat' pesticides from aqueous medium: Optimization of loading conditions.

    PubMed

    Vinhal, Jonas O; Lima, Claudio F; Cassella, Ricardo J

    2016-09-01

    The cationic herbicides paraquat, diquat and difenzoquat are largely used in different cultures worldwide. With this, there is an intrinsic risk of environmental contamination when these herbicides achieve natural waters. The goal of this work was to propose a novel and low-cost sorbent for the removal of the cited herbicides from aqueous medium. The proposed sorbent was prepared by loading polyurethane foam with sodium dodecylsulfate. The influence of several parameters (SDS concentration, HCl concentration and shaking time) on the loading process was investigated. The results obtained in this work demonstrated that all studied variables influenced the loading process, having significant effect on the extraction efficiency of the resulted PUF-SDS. At optimized conditions, the PUF was loaded by shaking 200mg of crushed foam with 200mL of a solution containing 5.0×10(-3)molL(-1) SDS and 0.25molL(-1) HCl, for 30min. The obtained PUF-SDS was efficient for removing the three herbicides from aqueous medium, achieving extraction percentages higher than 90%. The sorption process followed a pseudo second-order kinetics, which presented excellent predictive capacity of the amount of herbicide retained with time.

  13. Chemically and biologically modified activated carbon sorbents for the removal of lead ions from aqueous media.

    PubMed

    Mahmoud, Mohamed E; Abdel-Fattah, Tarek M; Osman, Maher M; Ahmed, Somia B

    2012-01-01

    A method is described for hybridization of the adsorption and biosorption characteristics of chemically treated commercial activated carbon and baker's yeast, respectively, for the formation of environmental friendly multifunctional sorbents. Activated carbon was loaded with baker's yeast after acid-base treatment. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) Spectroscopy were used to characterize these sorbents. Moreover, the sorption capabilities for lead (II) ions were evaluated. A value of 90 μmol g(-1) was identified as the maximum sorption capacity of activated carbon. Acid-base treatment of activated carbon was found to double the sorption capacity (140-180 μmol g(-1)). Immobilization of baker's yeast on the surface of activated carbon sorbents was found to further improve the sorption capacity efficiency of lead to 360, 510 and 560 μmol g(-1), respectively. Several important factors such as pH, contact time, sorbent dose, lead concentration and interfering ions were examined. Lead sorption process was studied and evaluated by several adsorption isotherms and found to follow the Langmuir and BET models. The potential applications of various chemically and biologically modified sorbents and biosorbents for removal of lead from real water matrices were also investigated via multistage micro-column technique and the results referred to excellent recovery values of lead (95.0-99.0 ± 3.0-5.0 %).

  14. Achieving Chemical Equilibrium: The Role of Imposed Conditions in the Ammonia Formation Reaction

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2006-01-01

    Under conditions of constant temperature T and pressure P, chemical equilibrium occurs in a closed system (fixed mass) when the Gibbs free energy G of the reaction mixture is minimized. However, when chemical reactions occur under other conditions, other thermodynamic functions are minimized or maximized. For processes at constant T and volume V,…

  15. Experimental investigation and modeling of uranium (VI) transport under variable chemical conditions

    USGS Publications Warehouse

    Kohler, M.; Curtis, G.P.; Kent, D.B.; Davis, J.A.

    1996-01-01

    The transport of adsorbing and complexing metal ions in porous media was investigated with a series of batch and column experiments and with reactive solute transport modeling. Pulses of solutions containing U(VI) were pumped through columns filled with quartz grains, and the breakthrough of U(VI) was studied as a function of variable solution composition (pH, total U(VI) concentration, total fluoride concentration, and pH-buffering capacity). Decreasing p H and the formation of nonadsorbing aqueous complexes with fluoride increased U(VI) mobility. A transport simulation with surface complexation model (SCM) parameters estimated from batch experiments was able to predict U(VI) retardation in the column experiments within 30%. SCM parameters were also estimated directly from transport data, using the results of three column experiments collected at different pH and U(VI) pulse concentrations. SCM formulations of varying complexity (multiple surface types and reaction stoichiometries) were tested to examine the trade-off between model simplicity and goodness of fit to breakthrough. A two-site model (weak- and strong-binding sites) with three surface complexation reactions fit these transport data well. With this reaction set the model was able to predict (1) the effects of fluoride complexation on U(VI) retardation at two different pH values and (2) the effects of temporal variability of pH on U(VI) transport caused by low p H buffering. The results illustrate the utility of the SCM approach in modeling the transport of adsorbing inorganic solutes under variable chemical conditions.

  16. 49 CFR 219.11 - General conditions for chemical tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... physiological effects of alcohol and the major drug groups on the controlled substances list. The program must... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CONTROL OF ALCOHOL AND DRUG USE General § 219.11 General conditions... sustained a personal injury and is subject to alcohol or drug testing under this part, necessary...

  17. 49 CFR 219.11 - General conditions for chemical tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... physiological effects of alcohol and the major drug groups on the controlled substances list. The program must... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CONTROL OF ALCOHOL AND DRUG USE General § 219.11 General conditions... sustained a personal injury and is subject to alcohol or drug testing under this part, necessary...

  18. Evaluation of uncertainties in solid-aqueous-gas chemical equilibrium calculations

    NASA Astrophysics Data System (ADS)

    Novoselov, Alexey A.; Popov, Serguei; de Souza Filho, Carlos Roberto

    2015-06-01

    Thermodynamic calculations are traditionally carried out under the assumption of specified input parameters. Errors associated to the results are not often estimated. Here, we propose a novel algorithm that propagates the uncertainty intervals on thermodynamic constants to the uncertainty in chemical equilibrium compositions. The computing uses a dataset of uncertainties on thermodynamic parameters for minerals, solution species and gases consistent with the SUPCRT92 database. Also the algorithm of nonlinear optimization is thoroughly described and realized on a base of the CRONO software. This code can be incorporated into reactive mass transport models as a core for calculating equilibrium compositions. The performance of the algorithm is tested in an experimental system involving Mont Terri's Opalinus Clay interacting with pore water. Its effectiveness is also evaluated against Monte Carlo simulations and Latin Hypercube sampling.

  19. NMR-based analysis of the chemical composition of Japanese persimmon aqueous extracts.

    PubMed

    Ryu, Shoraku; Furihata, Kazuo; Koda, Masanori; Wei, Feifei; Miyakawa, Takuya; Tanokura, Masaru

    2016-03-01

    Japanese persimmon (Diospyros kaki L.) is recognized as an outstanding source of biologically active compounds relating to many health benefits. In the present study, NMR spectroscopy provided a comprehensive metabolic overview of Japanese persimmon juice. Detailed signal assignments of Japanese persimmon juice were carried out using various 2D NMR techniques incorporated with broadband water suppression enhanced through T1 effects (BB-WET) or WET sequences, and 26 components, including minor components, were identified. In addition, most components were quantitatively evaluated by the integration of signals using conventional (1) H NMR and BB-WET NMR. This is the first detailed analysis combined with quantitative characterization of chemical components using NMR for Japanese persimmon. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Comparison of aqueous chemical treatments to eliminate Salmonella on alfalfa seeds.

    PubMed

    Weissinger, W R; Beuchat, L R

    2000-11-01

    Several outbreaks of salmonellosis associated with alfalfa sprouts have been documented in the United States since 1995. This study was undertaken to evaluate various chemical treatments for their effectiveness in killing Salmonella on alfalfa seeds. Immersing inoculated seeds in solutions containing 20,000 ppm free chlorine (Ca[OCl]2), 5% Na3PO4, 8% H2O2, 1% Ca(OH)2, 1% calcinated calcium, 5% lactic acid, or 5% citric acid for 10 min resulted in reductions of 2.0 to 3.2 log10 CFU/ g. Treatment with 1,060 ppm Tsunami or Vortex, 1,200 ppm acidified NaClO2, or 5% acetic acid were less effective in reducing Salmonella populations. With the exceptions of 8% H2O2, 1% Ca(OH)2, and 1% calcinated calcium that reduced populations by 3.2, 2.8, and 2.9 log10 CFU/g, respectively, none of treatments reduced the number of Salmonella by more than 2.2 log10 CFU/g without significantly reducing the seed germination percentage. Treatment with 5% acetic, lactic, or citric acids substantially reduced the ability of seeds to germinate. Treatment with 1% Ca(OH)2 in combination with 1% Tween 80, a surfactant, enhanced inactivation by 1.3 log10 CFU/g compared to treatment with 1% Ca(OH)2 alone. Presoaking seeds in water, 0.1% EDTA, 1% Tween 80, or 1% Tween 80 plus 0.1% EDTA for 30 min before treatment with water, 2,000 ppm NaOCl, or 2% lactic acid had a minimal effect on reducing populations of Salmonella. Results indicate that, although several chemical treatments cause reductions in Salmonella populations of up to 3.2 log10 CFU/g initially on alfalfa seeds when analyzed by direct plating, no treatment eliminated the pathogen, as evidenced by detection in enriched samples.

  1. Chemical conditions of gas in planet-forming disks

    NASA Astrophysics Data System (ADS)

    Hogerheijde, Michiel

    2016-05-01

    Molecular gas observations of planet-forming disks are undergoing a radical improvement with the sensitivity and resolution of ALMA. Species that until now went undetected can now be imaged, like methanol and other (simple) organics, and rare species like N2D+. At the same time, more 'standard' molecules like CO and its isotopes can be studied at much higher signal-to-noise. Together, these observations are starting to tell us a story of the chemical processes in disks that affect the gas, and on the kinematics inside the disk. I will review recent results, making comparisons to what the dust-continuum observations are showing, and sketch where future observations may take us.

  2. Optimization of Aqueous Extraction Conditions for Recovery of Phenolic Content and Antioxidant Properties from Macadamia (Macadamia tetraphylla) Skin Waste

    PubMed Central

    Dailey, Adriana; Vuong, Quan V.

    2015-01-01

    The macadamia is native to Australia and is now grown commercially around the world. Macadamia skin, known as waste, has been generated abundantly, but this ample source has had limited uses as a byproduct. The aim of this study was to develop optimal aqueous extraction conditions for the recovery of phenolic compounds and antioxidant properties from macadamia skin using Response Surface Methodology (RSM). Water was selected for optimizing the extraction conditions because it is a cheap, safe, and environmentally friendly solvent. The results showed that the RSM models were reliable for the prediction and evaluation of the tested variables. Within the tested ranges, temperature (°C), time (min), and sample-to-solvent ratio (g/100 mL), and their interactions, did not significantly affect phenolic compound (TPC), flavonoid, proanthocyanidin, CUPRAC, and FRAP contents. However, the time and the sample-to-solvent ratio significantly affected DPPH antioxidant activity and the ratio significantly affected ABTS antioxidant capacity. The optimal extraction conditions for the recovery of phenolic compounds and antioxidant properties were predicted and validated at a temperature of 90 °C, a time of 20 min, and a sample-to-solvent ratio of 5 g/100 mL. At these conditions, an extract with TPC of 86 mg GAE/g, flavonoids of 30 mg RUE/g, and proanthocyanidins of 97 mg CAE/g could be prepared with potent antioxidant capacity. PMID:26783954

  3. Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions.

    PubMed

    Liu, Kuo-Liang; Wu, Chien-Chen; Huang, Ying-Jung; Peng, Hwei-Ling; Chang, Hwan-You; Chang, Pin; Hsu, Long; Yew, Tri-Rung

    2008-11-01

    A novel and disposable microchip (K-kit) with SiO(2) nano-membranes was developed and used as a specimen kit for in situ imaging of living organisms in an aqueous condition using transmission electron microscopy (TEM) without equipment modification. This K-kit enabled the successful TEM observation of living Escherichia coli cells and the tellurite reduction process in Klebsiella pneumoniae. The K. pneumoniae and Saccharomyces cerevisiae can stay alive in K-kit after continuous TEM imaging for up to 14 s and 42 s, respectively. Besides, different tellurite reduction profiles in cells grown in aerobic and anaerobic environments can be clearly revealed. These results demonstrate that the K-kit developed in this paper can be useful for observing living organisms and monitoring biological processes in situ.

  4. Hydrothermal diamond anvil cell for XAFS studies of first-row transition elements in aqueous solutions up to supercritical conditions

    USGS Publications Warehouse

    Bassett, William A.; Anderson, Alan J.; Mayanovic, Robert A.; Chou, I.-Ming

    2000-01-01

    A hydrothermal diamond anvil cell (HDAC) has been modified by drilling holes with a laser to within 150 ??m of the anvil face to minimize the loss of X-rays due to absorption and scatter by diamond. This modification enables acquisition of K-edge X-ray absorption fine structure (XAFS) spectra from first-row transition metal ions in aqueous solutions at temperatures ranging from 25??C to 660??C and pressures up to 800 MPa. These pressure-temperature (P-T) conditions are more than sufficient for carrying out experimental measurements that can provide data valuable in the interpretation of fluid inclusions in minerals found in ore-forming hydrothermal systems as well as other important lithospheric processes involving water. (C) 2000 Elsevier Science B.V. All rights reserved.

  5. The Chemical Impact of Physical Conditions in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Rimmer, Paul B.

    2012-03-01

    We examine the role cosmic rays, X-rays and ultra-violet (UV) photons play in the chemical evolution of the interstellar medium, and how astrophysical processes like massive star formation can change the fluxes of these energetic particles. We connect star formation rates to interstellar chemistry. We first explore the basic effects of cosmic-ray and X-ray ionization and UV photodissociation on the chemistry. For cosmic-ray and X-ray ionization, increasing the ionization rates enriches the chemistry, up to a value of 10(-14) s-1, whereupon molecules and ions are quickly destroyed due to the high electron fraction. Isolated from other effects, the UV field tends to dissociate species much more efficiently than ionizing them, and generally reduces molecular abundances, especially those of complex molecules. The combination of a high ionization rate and a high UV field can enhance the production of some molecular species, such as small hydrocarbons. We investigate the role of cosmic rays and UV photons in the Horsehead Nebula, and determine the impact a column-dependent cosmic ray ionization rate makes on photodissociation region (PDR) chemistry. The column-dependence of cosmic rays is solved using a three-dimensional two-fluid magnetohydrodynamics model, treating the cosmic rays as a fluid governed by the relativistic Boltzmann Transport Equation, and treating the interstellar medium as a second fluid, governed by the standard non-relativistic magnetohydrodynamics equations. We then utilize a modified version of the Morata-Herbst time-dependent PDR model, incorporating our function for cosmic ray ionization. Our results help solve a chemical mystery concerning high abundances of small hydrocarbons at the edge of the nebula. We discuss predictions the model makes for species currently unobserved in the Horsehead Nebula. Finally, we examine the role of star formation on interstellar astrochemistry in the Orion KL region. We develop a new astrochemical gas-grain PDR

  6. The Chemical Impact of Physical Conditions in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Rimmer, Paul Brandon

    2012-09-01

    We examine the role cosmic rays, X-rays and ultra-violet (UV) photons play in the chemical evolution of the interstellar medium, and how astrophysical processes like massive star formation can change the fluxes of these energetic particles. We connect star formation rates to interstellar chemistry. We first explore the basic effects of cosmic-ray and X-ray ionization and UV photodissociation on the chemistry. For cosmic-ray and X-ray ionization, increasing the ionization rates enriches the chemistry, up to a value of 10 -14 s-1, whereupon molecules and ions are quickly destroyed due to the high electron fraction. Isolated from other effects, the UV field tends to dissociate species much more efficiently than ionizing them, and generally reduces molecular abundances, especially those of complex molecules. The combination of a high ionization rate and a high UV field can enhance the production of some molecular species, such as small hydrocarbons. We investigate the role of cosmic rays and UV photons in the Horsehead Nebula, and determine the impact a column-dependent cosmic ray ionization rate makes on photodissociation region (PDR) chemistry. The column-dependence of cosmic rays is solved using a three-dimensional two-fluid magnetohydrodynamics model, treating the cosmic rays as a fluid governed by the relativistic Boltzmann Transport Equation, and treating the interstellar medium as a second fluid, governed by the standard non-relativistic magnetohydrodynamics equations. We then utilize a modified version of the Morata-Herbst time-dependent PDR model, incorporating our function for cosmic ray ionization. Our results help solve a chemical mystery concerning high abundances of small hydrocarbons at the edge of the nebula. We discuss predictions the model makes for species currently unobserved in the Horsehead Nebula. Finally, we examine the role of star formation on interstellar astrochemistry in the Orion KL region. We develop a new astrochemical gas-grain PDR

  7. Chemical bonding in aqueous hexacyano cobaltate from photon- and electron-detection perspectives

    NASA Astrophysics Data System (ADS)

    Lalithambika, Sreeju Sreekantan Nair; Atak, Kaan; Seidel, Robert; Neubauer, Antje; Brandenburg, Tim; Xiao, Jie; Winter, Bernd; Aziz, Emad F.

    2017-01-01

    The electronic structure of the [Co(CN)6]3‑ complex dissolved in water is studied using X-ray spectroscopy techniques. By combining electron and photon detection methods from the solutions ionized or excited by soft X-rays we experimentally identify chemical bonding between the metal center and the CN ligand. Non-resonant photoelectron spectroscopy provides solute electron binding energies, and nitrogen 1 s and cobalt 2p resonant core-level photoelectron spectroscopy identifies overlap between metal and ligand orbitals. By probing resonances we are able to qualitatively determine the ligand versus metal character of the respective occupied and non-occupied orbitals, purely by experiment. For the same excitations we also detect the emitted X-rays, yielding the complementary resonant inelastic X-ray scattering spectra. For a quantitative interpretation of the spectra, we perform theoretical electronic-structure calculations. The latter provide both orbital energies and orbital character which are found to be in good agreement with experimental energies and with experimentally inferred orbital mixing. We also report calculated X-ray absorption spectra, which in conjunction with our orbital-structure analysis, enables us to quantify various bonding interactions with a particular focus on the water-solvent – ligand interaction and the strength of π-backbonding between metal and ligand.

  8. Chemical bonding in aqueous hexacyano cobaltate from photon- and electron-detection perspectives

    PubMed Central

    Lalithambika, Sreeju Sreekantan Nair; Atak, Kaan; Seidel, Robert; Neubauer, Antje; Brandenburg, Tim; Xiao, Jie; Winter, Bernd; Aziz, Emad F.

    2017-01-01

    The electronic structure of the [Co(CN)6]3− complex dissolved in water is studied using X-ray spectroscopy techniques. By combining electron and photon detection methods from the solutions ionized or excited by soft X-rays we experimentally identify chemical bonding between the metal center and the CN ligand. Non-resonant photoelectron spectroscopy provides solute electron binding energies, and nitrogen 1 s and cobalt 2p resonant core-level photoelectron spectroscopy identifies overlap between metal and ligand orbitals. By probing resonances we are able to qualitatively determine the ligand versus metal character of the respective occupied and non-occupied orbitals, purely by experiment. For the same excitations we also detect the emitted X-rays, yielding the complementary resonant inelastic X-ray scattering spectra. For a quantitative interpretation of the spectra, we perform theoretical electronic-structure calculations. The latter provide both orbital energies and orbital character which are found to be in good agreement with experimental energies and with experimentally inferred orbital mixing. We also report calculated X-ray absorption spectra, which in conjunction with our orbital-structure analysis, enables us to quantify various bonding interactions with a particular focus on the water-solvent – ligand interaction and the strength of π-backbonding between metal and ligand. PMID:28098216

  9. 21 CFR 522.144 - Arsenamide sodium aqueous injection.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Arsenamide sodium aqueous injection. 522.144... § 522.144 Arsenamide sodium aqueous injection. (a) Chemical name. dithio diacetic acid, sodium salt. (b... sodium. (c) Sponsor. See No. 050604 in § 510.600(c) of this chapter. (d) Conditions of use. (1) For...

  10. 21 CFR 522.144 - Arsenamide sodium aqueous injection.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Arsenamide sodium aqueous injection. 522.144... § 522.144 Arsenamide sodium aqueous injection. (a) Chemical name. dithio diacetic acid, sodium salt. (b... sodium. (c) Sponsor. See No. 050604 in § 510.600(c) of this chapter. (d) Conditions of use. (1) For...

  11. Chemical water/rock interaction under reservoir condition

    SciTech Connect

    Watanabe, K.; Tanifuji, K.; Takahashi, H.; Wang, Y.; Yamasaki, N.; Nakatsuka, K.

    1995-01-26

    A simple model is proposed for water/rock interaction in rock fractures through which geothermal water flows. Water/rock interaction experiments were carried out at high temperature and pressure (200-350 C, 18 MPa) in order to obtain basic solubility and reaction rate data. Based on the experimental data, changes of idealized fracture apertures with time are calculated numerically. The results of the calculations show that the precipitation from water can lead to plugging of the fractures under certain conditions. Finally, the results are compared with the experimental data.

  12. Effects of Carrier Gas Conditions on Concentration of Alcohol Aqueous Solution by Ultrasonic Atomization

    NASA Astrophysics Data System (ADS)

    Yasuda, Keiji; Tanaka, Naofumi; Rong, Lei; Nakamura, Masaaki; Li, Li; Oda, Akiyoshi; Kawase, Yasuhito

    2003-05-01

    The effects of carrier gas conditions on the concentration of ethanol by ultrasonic atomization are examined. With increasing height from vessel bottom to gas inlet and outlet, the ethanol content in the accompanied liquid increases and the flow rate of alcohol decreases. The ethanol content in the accompanied liquid becomes lower as the gas velocity becomes higher. The attachment of a demister is effective for the increase of the content in the accompanied liquid.

  13. Determination of the optimum conditions for boric acid extraction with carbon dioxide gas in aqueous media from colemanite containing arsenic

    SciTech Connect

    Ata, O.N.; Colak, S.; Copur, M.; Celik, C.

    2000-02-01

    The Taguchi method was used to determine optimum conditions for the boric acid extraction from colemanite ore containing As in aqueous media saturated by CO{sub 2} gas. After the parameters were determined to be efficient on the extraction efficiency, the experimental series with two steps were carried out. The chosen experimental parameters for the first series of experiments and their ranges were as follows: (1) reaction temperature, 25--70 C; (2) solid-to-liquid ratio (by weight), 0.091 to 0.333; (3) gas flow rate (in mL/min), 66.70--711; (4) mean particle size, {minus}100 to {minus}10 mesh; (5) stirring speed, 200--600 rpm; (6) reaction time, 10--90 min. The optimum conditions were found to be as follows: reaction temperature, 70 C; solid-to-liquid ratio, 0.091; gas flow rate, 711 (in mL/min); particle size, {minus}100 mesh; stirring speed, 500 rpm; reaction time, 90 min. Under these optimum conditions, the boric acid extraction efficiency from the colemanite containing As was approximately 54%. Chosen experimental parameters for the second series of experiments and their ranges were as follows: (1) reaction temperature, 60--80 C; (2) solid-to-liquid ratio (by weight), 0.1000 to 0.167; (3) gas pressure (in atm), 1.5; 2.7; (4) reaction time, 45--120 min. The optimum conditions were found to be as follows: reaction temperature, 70 C; solid-to-liquid ratio, 0.1; gas pressure, 2.7 atm; reaction time, 120 min. Under these optimum conditions the boric acid extraction efficiency from the colemanite ore was approximately 75%. Under these optimum conditions, the boric acid extraction efficiency from calcined colemanite ore was approximately 99.55%.

  14. Kinetics and corrosion products of aqueous nitrate reduction by iron powder without reaction conditions control.

    PubMed

    Fan, Xiaomeng; Guan, Xiaohong; Ma, Jun; Ai, Hengyu

    2009-01-01

    Although considerable research has been conducted on nitrate reduction by zero-valent iron powder (Fe0), these studies were mostly operated under anaerobic conditions with invariable pH that was unsuitable for practical application. Without reaction conditions (dissolved oxygen or reaction pH) control, this work aimed at subjecting the kinetics of denitrification by microscale Fe0 (160-200 mesh) to analysis the factors affecting the denitrification of nitrate and the composition of iron reductive products coating upon the iron surface. Results of the kinetics study have indicated that a higher initial concentration of nitrate would yield a greater reaction rate constant. The reduction rate of nitrate increased with increasing Fe0 dosage. The reaction can be described as a pseudo-first order reaction with respect to nitrate concentration or Fe0 dosage. Experimental results also suggested that nitrate reduction by microscale Fe0 without reaction condition control primarily was an acid-driven surface-mediated process, and the reaction order was 0.65 with respect to hydrogen ion concentration. The analyses of X-ray diffractometry and X-ray photoelectron spectroscopy indicated that a black coating, consisted of Fe2O3, Fe3O4 and FeO(OH), was formed on the surface of iron grains as an iron corrosion product when the system initial pH was lower than 5. The proportion of FeO(OH) increased as reaction time went on, whereas the proportion of Fe3O4 decreased.

  15. Inhibited Cr(VI) reduction by aqueous Fe(II) under hyperalkaline conditions.

    PubMed

    He, Y Thomas; Chen, Chia-Chen; Traina, Samuel J

    2004-11-01

    This study investigated Cr(VI) reduction by dissolved Fe(II) in hyperalkaline pH conditions as found in fluid wastes associated with the U.S. nuclear weapons program. The results show that Cr(VI) reduction by Fe(II) at alkaline pH solutions proceeds very quickly. The amount of Cr(VI) removed from solution and the amount reduced increases with Fe(II):Cr(VI) ratio. However, the Cr(VI) reduction under alkaline pH condition is nonstoichiometric, probably due to Fe(II) precipitation and mixed iron(III)-chromium-(III) (oxy)hydroxides blocking Fe(II) surface sites, as well as removing Fe(II) from solution through O2 oxidation. After Cr(VI) was reduced to Cr(III), it precipitated out as mixed Fe(x)Cr1-xO3(solids) and various Fe(III) precipitates with an overall Cr:Fe ratio of 1:3; all Cr remaining in the solution phase was unreduced Cr(VI). EXAFS data showed that Cr-O and Cr-Cr distances in the precipitates equal to 1.98 and 3.01 A, respectively, consistent with the spinel-type structure as chromite.

  16. Development of a functionalized polymeric ionic liquid monolith for solid-phase microextraction of polar endocrine disrupting chemicals in aqueous samples coupled to high-performance liquid chromatography.

    PubMed

    Feng, Juanjuan; Sun, Min; Bu, Yanan; Luo, Chuannan

    2015-09-01

    Ionic liquids (ILs) have been efficiently used as a "designer sorbent" in sample preparation. A novel 1-(3-aminopropyl)-3-(4-vinylbenzyl)imidazolium 4-styrenesulfonate IL monomer was synthesized and copolymerized with 1,6-di(3-vinylimidazolium) hexane bishexafluorophosphate IL as cross-linking agent to prepare a cross-linked polymeric ionic liquids (PILs) monolith. Coupled to high-performance liquid chromatography (HPLC), the PILs monolith was used as a solid-phase microextraction (SPME) sorbent to extract some polar endocrine disrupting chemical (EDCs) such as estrogens, bisphenol A, and phthalate esters in aqueous samples. Preparation and extraction conditions were investigated and optimized to obtain satisfactory extraction efficiency. Limits of detection (LODs) of the proposed method for three steroid estrogens and bisphenol A were 0.25 and 0.2 μg L(-1), respectively, which were lower than or comparable to some other sample preparation methods. Intra- and inter-day repeatability for all the analytes was 2.2-12%. The monolith-to-monolith repeatability was 7.4-15%. The extraction performance of the method for analysis of target estrogens in treated domestic wastewater was investigated and compared with a dispersive liquid-liquid microextraction (DLLME) method. The proposed SPME method provided better sensitivity and higher resistance to matrix interferences.

  17. Interactions of silicate glasses with aqueous environments under conditions of prolonged contact and flow

    NASA Technical Reports Server (NTRS)

    Barkatt, Aaron; Saad, E. E.; Adiga, R. B.; Sousanpour, W.; Barkatt, AL.; Feng, X.; O'Keefe, J. A.; Alterescu, S.

    1988-01-01

    This paper discusses mechanisms involving saturation and reactions that lead to the formation of altered phases in silicate glasses considered for use in geologic repositories for nuclear waste. It is shown that the rate of dissolution of silicate glasses exposed to a broad range of contact times, leachant compositions, and surface-to-volume ratios is strongly affected by the presence of reactive species such as Al, Mg, and Fe. The reactive materials may originate in the leachant or, under conditions of high surface-to-volume ratio, in the glass itself. The effects of glass composition on the course of the corrosion process can be viewed in terms of the formation of a surface layer on the leached glass; the type, composition, and structure of this layer control the dissolution behavior of the glass.

  18. The influence of pH and temperature on the aqueous geochemistry of neodymium in near surface conditions.

    PubMed

    Cetiner, Ziya S

    2009-04-01

    Geochemical calculations were employed for the solubility and speciation of neodymium in a model soil solution as a function of pH. The calculations were based on the recently determined stability constants for Nd and solubility product for the Nd end-member of mineral monazite (NdPO(4)). Simulations were carried out at near neutral pH (pH 6.0 to pH 7.5) and 25 degrees C at the atmospheric CO(2) partial pressure. Additional calculations were also performed to assess Nd mobility at the extreme temperature conditions (300 degrees C) at neutral pH. Our results suggest that relatively dilute (Ionic Strength, I = 0.1), low-temperature waters may transport very small quantities of rare earth elements and actinides to the surficial environment at near neutral pH conditions. Evidently, higher temperature or extreme fluid composition may have a greater potential for mobilization of these elements. The results are pertinent to researchers interested in engineering applications for the precipitation of Nd and surrogate actinides from aqueous nuclear wastes.

  19. Flow and morphological conditions associated with the directional solidification of aqueous ammonium chloride

    SciTech Connect

    Magirl, C.S.; Incropera, F.P.

    1993-01-01

    Using 27% aq. NH[sub 4]Cl solutions as transparent analog, shadowgraphy and dye injection were used to observe flow and morphology in unidirectional solidification (UDS) from below. Dendritic crystals that form at the cold surface reject lighter, solute-deficient fluid, and instability is shown by finger-type double-diffusive convection. As the mushy two-phase region grows, perturbations at the liquidus interface cause localized remelting and downward development of channels. Solsutal plumes emanate from the channels, and in time, double-diffusive convection layers also form in the melt. When the solution is chilled at the sides as well as at the bottom, conditions are influenced by detachment and settling of crystals from the sidewall and by plumes from slanted channels. When a slow, oscillatory rocking motion is imposed on UDS, the freckle-type segregates in the final cast is suppressed. Within the melt, plumes and double-diffusive convection are eliminated. Inertially induced convection mixes the melt and produces a dense slurry. Although channels are eliminated from the bottom mushy region, overall heat transfer and macrosegregation in the cavity are unaffected by the slow rocking. Numerical simulations qualitatively predict trends in the field variables and provide insights on interdendritic flows and macrosegregation (freckle-, A-type segregates), although its quantitative predictions are hampered by simplifying assumptions.

  20. Flow and morphological conditions associated with the directional solidification of aqueous ammonium chloride. Annual performance report

    SciTech Connect

    Magirl, C.S.; Incropera, F.P.

    1993-01-01

    Using 27% aq. NH{sub 4}Cl solutions as transparent analog, shadowgraphy and dye injection were used to observe flow and morphology in unidirectional solidification (UDS) from below. Dendritic crystals that form at the cold surface reject lighter, solute-deficient fluid, and instability is shown by finger-type double-diffusive convection. As the mushy two-phase region grows, perturbations at the liquidus interface cause localized remelting and downward development of channels. Solsutal plumes emanate from the channels, and in time, double-diffusive convection layers also form in the melt. When the solution is chilled at the sides as well as at the bottom, conditions are influenced by detachment and settling of crystals from the sidewall and by plumes from slanted channels. When a slow, oscillatory rocking motion is imposed on UDS, the freckle-type segregates in the final cast is suppressed. Within the melt, plumes and double-diffusive convection are eliminated. Inertially induced convection mixes the melt and produces a dense slurry. Although channels are eliminated from the bottom mushy region, overall heat transfer and macrosegregation in the cavity are unaffected by the slow rocking. Numerical simulations qualitatively predict trends in the field variables and provide insights on interdendritic flows and macrosegregation (freckle-, A-type segregates), although its quantitative predictions are hampered by simplifying assumptions.

  1. Mars aqueous chemistry experiment

    NASA Technical Reports Server (NTRS)

    Clark, Benton C.; Mason, Larry W.

    1993-01-01

    The Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. Progress for the first year MACE PIDDP is reported in two major areas of effort: (1) fluids handling concepts, definition, and breadboard fabrication and (2) aqueous chemistry ion sensing technology and test facility integration. A fluids handling breadboard was designed, fabricated, and tested at Mars ambient pressure. The breadboard allows fluid manipulation scenarios to be tested under the reduced pressure conditions expected in the Martian atmosphere in order to validate valve operations, orchestrate analysis sequences, investigate sealing integrity, and to demonstrate efficacy of the fluid handling concept. Additional fluid manipulation concepts have also been developed based on updated MESUR spacecraft definition. The Mars Aqueous Chemistry Experiment Ion Selective Electrode (ISE) facility was designed as a test bed to develop a multifunction interface for measurements of chemical ion concentrations in aqueous solution. The interface allows acquisition of real time data concerning the kinetics and heats of salt dissolution, and transient response to calibration and solubility events. An array of ion selective electrodes has been interfaced and preliminary calibration studies performed.

  2. Chemical Compositional Indications of Aqueous Alteration for Whitewater Lake Boxworks, Veneers and Veins at Cape York, Mars

    NASA Astrophysics Data System (ADS)

    Clark, Benton; Gellert, R.; Squyres, S.; Arvidson, R.; Yen, A.; Rice, J.; Athena Science Team

    2013-10-01

    An area of partially-veneered, flat-lying rocks which also includes boxwork and linear veins contains a variety of compositions which are each indicative of minor to major aqueous alteration processes in the Cape York rim of Endeavour Crater. As analyzed by APXS x-ray fluorescence spectroscopy, the sets of unique elemental compositions correspond variously to Al-Si rich clays in boxwork veins, with Fe- and Cl-enriched salt veneers (Esperance samples); swarms of Ca sulfate veins (Ortiz samples); and, as indicated by remote sensing, mafic smectite alteration products in veneers (Chelmsford covering Azilda samples). Multiple offset analyses by APXS reveal clear trends and associations of certain elements, allowing inferences of mineralogies. In contrast to the acidic environment deduced for the genesis of the multiple-sulfate Burns formation sediments and shallow ferric-rich sulfate deposits beneath soils, these alteration products formed at more near-neutral pH, often with major chemical segregations and requiring high water-rock ratios comparable to a wide range of eminently habitable terrestrial environments. Several of these compositions are also rated high with respect to their potential for preservation of organic materials and biomarkers. Within distances of just tens of meters inside this so-called Whitewater Lake unit, this broad diversity exemplifies the tantalizing opportunities as well as challenges for future sample return missions to the red planet, which in this case could also be expanded to include nearby samples of Burns Fm sandstones, hematite concretions, light-toned spherules (Kirkwood), large gypsum veins (Homestake), martian global soils and surface dust.

  3. Regimes of chemical reaction waves initiated by nonuniform initial conditions for detailed chemical reaction models.

    PubMed

    Liberman, M A; Kiverin, A D; Ivanov, M F

    2012-05-01

    Regimes of chemical reaction wave propagation initiated by initial temperature nonuniformity in gaseous mixtures, whose chemistry is governed by chain-branching kinetics, are studied using a multispecies transport model and a detailed chemical model. Possible regimes of reaction wave propagation are identified for stoichiometric hydrogen-oxygen and hydrogen-air mixtures in a wide range of initial pressures and temperature levels, depending on the initial non-uniformity steepness. The limits of the regimes of reaction wave propagation depend upon the values of the spontaneous wave speed and the characteristic velocities of the problem. It is shown that one-step kinetics cannot reproduce either quantitative neither qualitative features of the ignition process in real gaseous mixtures because the difference between the induction time and the time when the exothermic reaction begins significantly affects the ignition, evolution, and coupling of the spontaneous reaction wave and the pressure wave, especially at lower temperatures. We show that all the regimes initiated by the temperature gradient occur for much shallower temperature gradients than predicted by a one-step model. The difference is very large for lower initial pressures and for slowly reacting mixtures. In this way the paper provides an answer to questions, important in practice, about the ignition energy, its distribution, and the scale of the initial nonuniformity required for ignition in one or another regime of combustion wave propagation.

  4. Regimes of chemical reaction waves initiated by nonuniform initial conditions for detailed chemical reaction models

    NASA Astrophysics Data System (ADS)

    Liberman, M. A.; Kiverin, A. D.; Ivanov, M. F.

    2012-05-01

    Regimes of chemical reaction wave propagation initiated by initial temperature nonuniformity in gaseous mixtures, whose chemistry is governed by chain-branching kinetics, are studied using a multispecies transport model and a detailed chemical model. Possible regimes of reaction wave propagation are identified for stoichiometric hydrogen-oxygen and hydrogen-air mixtures in a wide range of initial pressures and temperature levels, depending on the initial non-uniformity steepness. The limits of the regimes of reaction wave propagation depend upon the values of the spontaneous wave speed and the characteristic velocities of the problem. It is shown that one-step kinetics cannot reproduce either quantitative neither qualitative features of the ignition process in real gaseous mixtures because the difference between the induction time and the time when the exothermic reaction begins significantly affects the ignition, evolution, and coupling of the spontaneous reaction wave and the pressure wave, especially at lower temperatures. We show that all the regimes initiated by the temperature gradient occur for much shallower temperature gradients than predicted by a one-step model. The difference is very large for lower initial pressures and for slowly reacting mixtures. In this way the paper provides an answer to questions, important in practice, about the ignition energy, its distribution, and the scale of the initial nonuniformity required for ignition in one or another regime of combustion wave propagation.

  5. Degradation of (-)-epicatechin and procyanidin B2 in aqueous and lipidic model systems. first evidence of "chemical" flavan-3-ol oligomers in processed cocoa.

    PubMed

    De Taeye, Cédric; Cibaka, Marie-Lucie Kankolongo; Jerkovic, Vesna; Collin, Sonia

    2014-09-10

    Despite the key role of flavan-3-ols in many foods, very little is yet known concerning the modification of their chemical structures through food processes. Degradation of model media containing (-)-epicatechin and procyanidin B2, either separately or together, was monitored by RP-HPLC-DAD-ESI(-)-MS/MS. Medium composition (aqueous or lipidic) and temperature (60 and 90 °C) were studied. In aqueous medium at 60 °C, (-)-epicatechin was mainly epimerized to (-)-catechin, but it was also oxidized to "chemical" dimers, a "chemical" trimer, and dehydrodi(epi)catechin A. Unlike oxidation, epimerization was enhanced at 90 °C. In lipidic medium, epimerization proved slow but degradation was faster. Procyanidin B2 likewise proved able to epimerize, especially at 90 °C and in aqueous medium. At high temperature only, the interflavan linkage was cleaved, yielding the same compounds as those found in the monomer-containing model medium. Oxidation to procyanidin A2 was also evidenced. With little epimerization and slow oxidation even at 90 °C, procyanidin B2 proved more stable in lipidic medium. Synergy was also observed: in the presence of the monomer, the dimer degradation rate increased 2-fold at 60 °C. This work states for the first time the presence of newly formed flavan-3-ol oligomers in processed cocoa.

  6. Electrochemistry and electrochemiluminescence of [Ru(II)-tris(bathophenanthroline-disulfonate)]4- in aprotic conditions and aqueous buffers.

    PubMed

    Zanarini, Simone; Della Ciana, Leopoldo; Marcaccio, Massimo; Marzocchi, Ettore; Paolucci, Francesco; Prodi, Luca

    2008-08-21

    In this work, the electrochemical and ECL properties of tris[1,10-phenanthrolinediyl-4,7-di(benzenesulfonate)]Ru(II) ([Ru(BPS)3]4-) have been addressed in both strictly aprotic conditions and aqueous buffers. A combined theoretical and experimental approach is presented to focus thermodynamics and kinetic effects of electro-generated species possessing highly negative charge. The complex, prepared as the sodium salt by using a newly developed procedure, was subsequently converted to the tetrabutylammonium salt by ion exchange, thus making it soluble in organic media and allowing, for the first time, its thorough electrochemical investigation in ultra-dry aprotic media. The electrochemically induced luminescence (ECL) of Na 4[Ru(BPS)3] in phosphate buffer, using the co-reactant method (tripropylamine), was investigated as a function of the electrode material and halide addition, and ECL intensities six times higher than that of [Ru(bpy)3]2+ were found. In addition, the ECL behavior of this promising dye for biomolecule recognition was investigated in aprotic media and, for the first time, the direct radical anion-radical cation annihilation ECL was obtained.

  7. Rare-earth metal oxide doped transparent mesoporous silica plates under non-aqueous condition as a potential UV sensor.

    PubMed

    Lee, Sang-Joon; Park, Sung Soo; Lee, Sang Hyun; Hong, Sang-Hyun; Ha, Chang-Sik

    2013-11-01

    Transparent mesoporous silica plates doped with rare-earth metal oxide were prepared using solvent-evaporation method based on the self-organization between structure-directing agent and silicate in a non-aqueous solvent. A triblock copolymer, Pluronic (F127 or P123), was used as the structure-directing agent, while tetraethyl orthosilicate (TEOS) was used as a silica source. The pore diameter and the surface area of the mesoporous silica plate prepared with the optimized conditions were ca 40 A and 600 m2 g(-1), respectively, for both structure-directing agent. Rare-earth metal oxides (Eu, Tb, Tm oxide) in mesochannel were formed via one-step synthetic route based on the preparation method of a silica plate. Optical properties of rare-earth metal oxide-doped mesoporous silica plates were investigated by UV irradiation and photoluminescence (PL) spectroscopy. Under the exitation wavelength of 254 nm, the doped mesoporous silica plates emitted red, green and blue for Eu, Tb and Tm oxides, respectively. Rare-earth metal oxide-doped mesoporous silica plates showed enhanced PL intensity compared to that of the bulk rare-earth metal oxide.

  8. Kinetics of organic transformations under mild aqueous conditions: implications for the origin of life and its metabolism

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    2004-01-01

    The rates of thermal transformation of organic molecules containing carbon, hydrogen, and oxygen were systematically examined in order to identify the kinetic constraints that governed origin-of-life organic chemistry under mild aqueous conditions. Arrhenius plots of the kinetic data were used to estimate the reaction of half-lifes at 50 degrees C. This survey showed that hydrocarbons and organic substances containing a single oxygenated group were kinetically the most stable; whereas organic substances containing two oxygenated groups in which one group was an alpha- or beta-positioned carbonyl group were the most reactive. Compounds with an alpha- or beta-positioned carbonyl group (aldehyde or ketone) had rates of reaction that were up to 10(24)-times faster than rates of similar molecules lacking the carbonyl group. This survey of organic reactivity, together with estimates of the molecular containment properties of lipid vesicles and liquid spherules, indicates that an origins process in a small domain that used C,H,O-intermediates had to be catalytic and use the most reactive organic molecules to prevent escape of its reaction intermediates.

  9. Effect of borage and green tea aqueous extracts on the quality of lamb leg chops displayed under retail conditions.

    PubMed

    Bellés, M; Alonso, V; Roncalés, P; Beltrán, J A

    2017-03-06

    Different concentrations of two aqueous extracts from green tea leaves and borage seeds with potential antioxidant activity were evaluated in lamb leg chops. Chops were sprayed with 0.005, 0.05, 0.5, 5% (p/v) green tea extracts (T) and 0.5, 5 and 10% (p/v) borage seed extracts (B) and displayed under retail conditions for 13days. Total polyphenols, TBARS, colour, microbial and sensory analyses were performed. The extracts showed a concentration-dependent action; the minimum concentration of polyphenols which significantly reduced lipid oxidation was 2.08mgGAE/100cm(2) of meat. Both 0.5% T and 10% B limited colour deterioration, reducing also metmyoglobin formation. The extracts showed no antimicrobial effect, exceeding microbial counts of 7logCFU/cm(2) at 13days of display. Sensory analyses determined that none of the extracts added herb odours or flavours to lamb. In conclusion, 0.5% T or 10% B extracts extended lamb shelf life from 8 to 11days, so both would be recommended for lamb chops preservation.

  10. XAFS measurements on zinc chloride aqueous solutions from ambient to supercritical conditions using the diamond anvil cell

    USGS Publications Warehouse

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    1999-01-01

    The structure and bonding properties of metal complexes in subcritical and supercritical fluids are still largely unknown. Conventional high pressure and temperature cell designs impose considerable limitations on the pressure, temperature, and concentration of metal salts required for measurements on solutions under supercritical conditions. In this study, we demonstrate the first application of the diamond anvil cell, specially designed for x-ray absorption studies of first-row transition metal ions in supercritical fluids. Zn K-edge XAFS spectra were measured from aqueous solutions of 1-2m ZnCl2 and up to 6m NaCl, at temperatures ranging from 25-660 ??C and pressures up to 800 MPa. Our results indicate that the ZnCl42- complex is predominant in the 1m ZnCl2/6m NaCl solution, while ZnCl2(H2O)2 is similarly predominant in the 2m ZnCl2 solution, at all temperatures and pressures. The Zn-Cl bond length of both types of chlorozinc(II) complexes was found to decrease at a rate of about 0.01 A??/100 ??C.

  11. Physico-chemical properties of alginate/shellac aqueous-core capsules: Influence of membrane architecture on riboflavin release.

    PubMed

    Ben Messaoud, Ghazi; Sánchez-González, Laura; Probst, Laurent; Jeandel, Carole; Arab-Tehrany, Elmira; Desobry, Stéphane

    2016-06-25

    To enhance physico-chemical properties of alginate liquid-core capsules, shellac was incorporated into the membrane (composite capsules) or as an additional external layer (coated capsules). The influence of pH, coating time, shellac concentration and preparation mechanism (acid or calcium precipitation) were investigated. Results showed that shellac significantly influenced the capsules properties. The feasibility of shellac incorporation was closely related to the preparation conditions as confirmed by Infrared spectroscopy. Optical, fluorescence and scanning electron microscopy, highlighted different capsules and membranes architectures. In contrast to simple and composite capsules, coated capsules showed a pH-dependent release of the entrapped vitamin especially after shellac crosslinking with calcium. Heating of coated capsules above the glass transition temperature investigated by Differential Scanning Calorimetry, led to irreversible structural change due to thermoplastic behavior of shellac and enhanced riboflavin retention under acidic conditions. This global approach is useful to control release mechanism of low molecular weight molecules from macro and micro-capsules.

  12. Transport of Chemical Vapors from Subsurface Sources to Atmosphere as Affected by Shallow Subsurface and Atmospheric Conditions

    NASA Astrophysics Data System (ADS)

    Rice, A. K.; Smits, K. M.; Hosken, K.; Schulte, P.; Illangasekare, T. H.

    2012-12-01

    Understanding the movement and modeling of chemical vapor through unsaturated soil in the shallow subsurface when subjected to natural atmospheric thermal and mass flux boundary conditions at the land surface is of importance to applications such as landmine detection and vapor intrusion into subsurface structures. New, advanced technologies exist to sense chemical signatures at the land/atmosphere interface, but interpretation of these sensor signals to make assessment of source conditions remains a challenge. Chemical signatures are subject to numerous interactions while migrating through the unsaturated soil environment, attenuating signal strength and masking contaminant source conditions. The dominant process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal or no quantification of other processes contributing to vapor migration, such as thermal diffusion, convective gas flow due to the displacement of air, expansion/contraction of air due to temperature changes, temporal and spatial variations of soil moisture and fluctuations in atmospheric pressure. Soil water evaporation and interfacial mass transfer add to the complexity of the system. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmosphere interface and use the resulting dataset to test existing theories on subsurface gas flow and iterate between numerical modeling efforts and experimental data. Ultimately, we aim to update conceptual models of shallow subsurface vapor transport to include conditionally significant transport processes and inform placement of mobile sensors and/or networks. We have developed a two-dimensional tank apparatus equipped with a network of sensors and a flow-through head space for simulation of the atmospheric interface. A detailed matrix of realistic atmospheric boundary conditions was applied in a series of

  13. Secondary organic aerosol formation from aqueous chemistry of glyoxal, methylglyoxal, and glycolaldehyde in atmospheric waters: Chemical insights and kinetic model studies

    NASA Astrophysics Data System (ADS)

    Lim, Y. B.; Tan, Y.; Altieri, K. E.; Perri, M. J.; Carlton, A. G.; Seitzinger, S.; Turpin, B. J.

    2010-12-01

    Aqueous chemistry in clouds, fog and aerosol water is now considered an important source of secondary organic aerosol (SOA). Modeling studies confirm that the underlying chemistry is kinetically favorable. Laboratory studies have begun to validate and refine the aqueous chemical mechanisms. Field observations, such as the atmospheric abundance of oxalate, ubiquitous presence of high molecular weight or humic-like substances (HULIS), high ambient O/C ratios, and correlations between SOA and aerosol liquid water content provide atmospheric evidence for SOA formation through aqueous chemistry. In the aqueous phase, small and volatile (C2-C3) but water soluble organic compounds undergo radical (photooxidation) and non-radical (acid/base catalysis) reactions, or reactions with inorganic constituents (sulfate, nitrate or ammonia) to form low volatility products including organic acids, organic-inorganic complexes and oligomers. These products are expected to remain at least in part in the particle phase after water evaporation, forming SOA. While not traditionally considered to be SOA precursors, atmospherically abundant and water soluble organic compounds like glyoxal (C2), methylglyoxal (C3) and glycolaldehyde (C2) have great potential to form SOA via aqueous chemistry. This paper presents a unified reaction mechanism and full kinetic model for the aqueous-phase reaction of glyoxal, methylglyoxal, glycolaldehyde, pyruvic acid and acetic acid with OH radical and validates this mechanism, in part, with laboratory experiments. At cloud relevant concentrations (~1E-6 M), the major product is oxalic acid and formation is well predicted by the previous cloud model (Lim et al., 2005). As concentrations increase radical-radical reactions become increasingly important and yield higher molecular weight products. The full kinetic model suggests that SOA formed in aerosol water (where organic concentrations are > 1 M) is comprised of high molecular weight multifunctional compounds

  14. An integrated approach to optimize the conditioning chemicals for enhanced sludge conditioning in a pilot-scale sludge dewatering process.

    PubMed

    Zhai, Lin-Feng; Sun, Min; Song, Wei; Wang, Gan

    2012-10-01

    An integrated approach incorporating response surface methodology (RSM), grey relational analysis, and fuzzy logic analysis was developed to quantitatively evaluate the conditioning chemicals in sludge dewatering process. The polyacrylamide (PAM), ferric chloride (FeCl(3)) and calcium-based mineral powders were combined to be used as the sludge conditioners in a pilot-scale sludge dewatering process. The performance of conditioners at varied dosages was comprehensively evaluated by taking into consideration the sludge dewatering efficiency and chemical cost of conditioner. In the evaluation procedure, RSM was employed to design the experiment and to optimize the dosage of each conditioner. The grey-fuzzy logic was established to quantify the conditioning performance on the basis of grey relational coefficient generation, membership function construction, and fuzzy rule description. Based on the evaluation results, the optimal chemical composition for conditioning was determined as PAM at 4.62 g/kg DS, FeCl(3) at 55.4 g/kg DS, and mineral powders at 30.0 g/kg DS.

  15. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.

    PubMed

    Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang

    2010-05-25

    There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.

  16. Effects of physical conditioning on heat tolerance in chemical-defense gear. Master's thesis

    SciTech Connect

    Nauss, M.M.

    1986-06-01

    Today the threat of chemical warfare is real. The only effective defense is the use of chemical defense gear and gas masks. Since they render chemical-warfare gases and liquids impermeable to penetration, they also prohibit sweat evaporation in conditions of thermal stress and thus, contribute to heat illness development. Historically, it has been the hot, humid tropics where United Nation's peacekeeping forces have been called, thus the use of chemical-defense gear in these regions is a realistic possibility and heat illness could affect the outcome of any mission carried out there. The human body only operates within a narrow range of core temparatures, and heat illness is the result of a breakdown in homeostasis. Many factors influence heat tolerance, thus maintaining core temperature within a safe range. Adequate hydration, acclimitization to heat, low body weight, young age, low alcohol intake, and physical fitness all contribute to heat tolerance. This proposal attempts to look specifically at the effect of physical conditioning on heat tolerance in chemical-defense gear as a possible solution to the heat-stress problem noted in this gear. Trainee graduates attending technical training schools at Lackland AFB, Texas, will be tested for maximum oxygen uptake (VO/2max) and heat tolerance time (HTT) in chemical defense gear on bicycle ergometers at Brooks AFB, Texas. Half of these subjects will be physically conditioned for 12 weeks.

  17. The selective peptide reactivity of chemical respiratory allergens under competitive and non-competitive conditions.

    PubMed

    Lalko, Jon F; Kimber, Ian; Dearman, Rebecca J; Api, Anne Marie; Gerberick, G Frank

    2013-01-01

    It is well established that certain chemicals cause respiratory allergy. In common with contact allergens, chemicals that induce sensitization of the respiratory tract must form stable associations with host proteins to elicit an immune response. Measurement of the reactivity of chemical allergens to single nucleophilic peptides is increasingly well-described, and standardized assays have been developed for use in hazard assessment. This study employed standard and modified peptide reactivity assays to investigate the selectivity of chemical respiratory allergens for individual amino acids under competitive and non-competitive conditions. The reactivity of 20 known chemical respiratory sensitizers (including diisocyanates, anhydrides, and reactive dyes) were evaluated for reactivity towards individual peptides containing cysteine, lysine, histidine, arginine, or tyrosine. Respiratory allergens exhibited the common ability to deplete both lysine and cysteine peptides; however, reactivity for histidine, arginine, and tyrosine varied between chemicals, indicating differences in relative binding affinity toward each nucleophile. To evaluate amino acid selectivity for cysteine and lysine under competitive conditions a modified assay was used in which reaction mixtures contained different relative concentrations of the target peptides. Under these reaction conditions, the binding preferences of reference respiratory and contact allergens (dinitrochlorobenzene, dinitrofluorobenzene) were evaluated. Discrete patterns of reactivity were observed showing various levels of competitive selectivity between the two allergen classes.

  18. Sampling of Organic Solutes in Aqueous and Heterogeneous Environments Using Oscillating Excess Chemical Potentials in Grand Canonical-like Monte Carlo-Molecular Dynamics Simulations.

    PubMed

    Lakkaraju, Sirish Kaushik; Raman, E Prabhu; Yu, Wenbo; MacKerell, Alexander D

    2014-06-10

    Solute sampling of explicit bulk-phase aqueous environments in grand canonical (GC) ensemble simulations suffer from poor convergence due to low insertion probabilities of the solutes. To address this, we developed an iterative procedure involving Grand Canonical-like Monte Carlo (GCMC) and molecular dynamics (MD) simulations. Each iteration involves GCMC of both the solutes and water followed by MD, with the excess chemical potential (μex) of both the solute and the water oscillated to attain their target concentrations in the simulation system. By periodically varying the μex of the water and solutes over the GCMC-MD iterations, solute exchange probabilities and the spatial distributions of the solutes improved. The utility of the oscillating-μex GCMC-MD method is indicated by its ability to approximate the hydration free energy (HFE) of the individual solutes in aqueous solution as well as in dilute aqueous mixtures of multiple solutes. For seven organic solutes: benzene, propane, acetaldehyde, methanol, formamide, acetate, and methylammonium, the average μex of the solutes and the water converged close to their respective HFEs in both 1 M standard state and dilute aqueous mixture systems. The oscillating-μex GCMC methodology is also able to drive solute sampling in proteins in aqueous environments as shown using the occluded binding pocket of the T4 lysozyme L99A mutant as a model system. The approach was shown to satisfactorily reproduce the free energy of binding of benzene as well as sample the functional group requirements of the occluded pocket consistent with the crystal structures of known ligands bound to the L99A mutant as well as their relative binding affinities.

  19. Electrochemical efficacy of a carboxylated multiwalled carbon nanotube filter for the removal of ibuprofen from aqueous solutions under acidic conditions.

    PubMed

    Bakr, Ahmed Refaat; Rahaman, Md Saifur

    2016-06-01

    This study provides insight into the efficiency of a functionalized multiwalled carbon nanotube filter for the removal of an anti-inflammatory drug, ibuprofen, through conventional filtration and electrochemical filtration processes. A comparison was made between carboxylated multiwalled carbon nanotubes (MWNTs-COOH) and pristine multiwalled carbon nanotubes (MWNTs) in order to emphasize the enhanced performance of MWNTs-COOH for the removal of ibuprofen using an electrochemical filtration process under acidic conditions. Ibuprofen-removal trials were evaluated based on absorbance values obtained using a UV/Vis spectrophotometer, and possible degradation products were identified using liquid chromatography mass spectrometry (LC-MS). The results exhibited near complete removal of ibuprofen by MWNTs-COOH at lower applied potentials (2 V), at lower flow rates, and under acidic conditions, which can be attributed to the generation of superoxides and their active participation in simultaneous degradation of ibuprofen, and its by-products, under these conditions. At higher applied potential (3 V), the possible participation of both bulk indirect oxidation reactions, and direct electron transfer were hypothesized for the removal behavior over time (breakthrough). At 3 V under acidic conditions, near 100% removal of the target molecule was achieved and was attributed to the enhanced generation of electroactive species toward bulk chemical reactions and a possible contribution from direct electron transfer under these conditions. The degradation by-products of ibuprofen were effectively removed by allowing longer residence time during the filtration process. Moreover, the effect of temperature was studied, yet showed a non-significant effect on the overall removal process.

  20. Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase

    NASA Astrophysics Data System (ADS)

    Lim, Y. B.; Tan, Y.; Turpin, B. J.

    2013-09-01

    Atmospherically abundant, volatile water-soluble organic compounds formed through gas-phase chemistry (e.g., glyoxal (C2), methylglyoxal (C3), and acetic acid) have great potential to form secondary organic aerosol (SOA) via aqueous chemistry in clouds, fogs, and wet aerosols. This paper (1) provides chemical insights into aqueous-phase OH-radical-initiated reactions leading to SOA formation from methylglyoxal and (2) uses this and a previously published glyoxal mechanism (Lim et al., 2010) to provide SOA yields for use in chemical transport models. Detailed reaction mechanisms including peroxy radical chemistry and a full kinetic model for aqueous photochemistry of acetic acid and methylglyoxal are developed and validated by comparing simulations with the experimental results from previous studies (Tan et al., 2010, 2012). This new methylglyoxal model is then combined with the previous glyoxal model (Lim et al., 2010), and is used to simulate the profiles of products and to estimate SOA yields. At cloud-relevant concentrations (~ 10-6 - ~ 10-3 M; Munger et al., 1995) of glyoxal and methylglyoxal, the major photooxidation products are oxalic acid and pyruvic acid, and simulated SOA yields (by mass) are ~ 120% for glyoxal and ~ 80% for methylglyoxal. During droplet evaporation oligomerization of unreacted methylglyoxal/glyoxal that did not undergo aqueous photooxidation could enhance yields. In wet aerosols, where total dissolved organics are present at much higher concentrations (~ 10 M), the major oxidation products are oligomers formed via organic radical-radical reactions, and simulated SOA yields (by mass) are ~ 90% for both glyoxal and methylglyoxal. Non-radical reactions (e.g., with ammonium) could enhance yields.

  1. Enhancing sewage sludge dewaterability by bioleaching approach with comparison to other physical and chemical conditioning methods.

    PubMed

    Liu, Fenwu; Zhou, Jun; Wang, Dianzhan; Zhou, Lixiang

    2012-01-01

    The sewage sludge conditioning process is critical to improve the sludge dewaterability prior to mechanical dewatering. Traditionally, sludge is conditioned by physical or chemical approaches, mostly with the addition of inorganic or organic chemicals. Here we report that bioleaching, an efficient and economical microbial method for the removal of sludge-borne heavy metals, also plays a significant role in enhancing sludge dewaterability. The effects of bioleaching and physical or chemical approaches on sludge dewaterability were compared. The conditioning result of bioleaching by Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans on sludge dewatering was investigated and compared with the effects of hydrothermal (121 degrees C for 2 hr), microwave (1050 W for 50 sec), ultrasonic (250 W for 2 min), and chemical conditioning (24% ferric chloride and 68% calcium oxide; dry basis). The results show that the specific resistance to filtration (SRF) or capillary suction time (CST) of sludge is decreased by 93.1% or 74.1%, respectively, after fresh sludge is conditioned by bioleaching, which is similar to chemical conditioning treatment with ferric chloride and calcium oxide but much more effective than other conditioning approaches including hydrothermal, microwave, and ultrasonic conditioning. Furthermore, after sludge dewatering, bioleached sludge filtrate contains the lowest concentrations of chroma (18 times), COD (542 mg/L), total N (TN, 300 mg/L), NH4(+)-N (208 mg/L), and total P (TP, 2 mg/L) while the hydrothermal process resulted in the highest concentration of chroma (660 times), COD (18,155 mg/L), TN (472 mg/L), NH4(+)-N (381 mg/L), and TP (191 mg/L) among these selected conditioning methods. Moreover, unlike chemical conditioning, sludge bioleaching does not result in a significant reduction of organic matter, TN, and TP in the resulting dewatered sludge cake. Therefore, considering sludge dewaterability and the chemical properties of sludge

  2. Method of using an aqueous chemical system to recover hydrocarbon and minimize wastes from sludge deposits in oil storage tanks

    SciTech Connect

    Goss, M.L.

    1992-02-04

    This patent describes a process for separating and removing a hydrocarbon, water and solid components of sludge deposited in an oil storage tank. It comprises: introducing a sufficient amount of a nonionic surfactant in an aqueous solution to form a layer of the solution above the sludge layer; the nonionic surfactant comprising: C{sub 8}-C{sub 12} alkylphenol-ethylene oxide adducts of about 55%-75% by weight ethylene oxide, and at least one castor oil-ethylene oxide adduct of about 55%-75% by weight ethylene oxide; the nonionic surfactant being present in a quantity sufficient to separate hydrocarbon component from the sludge without forming an emulsion, adding a diluent, immiscible with the aqueous layer, for extracting the hydrocarbons, and separately draining the diluent layer and aqueous layer from the tank.

  3. Diurnal and seasonal variation in physico-chemical conditions within intertidal rock pools

    NASA Astrophysics Data System (ADS)

    Morris, S.; Taylor, A. C.

    1983-09-01

    A study of the diurnal and seasonal variation in the physico-chemical conditions within intertidal rock pools on the West coast of Scotland was undertaken to provide data on the environmental conditions experienced by animals inhabiting these pools. The temperature, pH, partial pressure of oxygen ( PO2) and salinity were measured every hour for 24 h and the total alkalinity, partial pressure of carbon dioxide ( PCO2) and carbon dioxide content ( CCO2) calculated. This sampling regime was carried out once a month for 12 months to determine the extent of seasonal variation in conditions within temperate pools. Large diurnal variations were recorded in nearly all the physico-chemical parameters measured. The greatest variation was recorded in the temperature and PO2 of the water but significant changes in pH and PCO2 were also recorded. Total alkalinity varied little during any 24 h period but carbonate alkalinity, which was always lower than total alkalinity, showed slightly greater variation. There was also considerable variation in the magnitude of these diurnal changes between pools at different heights on the shore. Diurnal variation in the physico-chemical conditions within the pools were observed throughout the year although the magnitude of these changes varied seasonally. Detailed studies on individual pools demonstrated that appreciable local variation existed in the physico-chemical conditions within each pool.

  4. Modifying culture conditions in chemical library screening identifies alternative inhibitors of mycobacteria.

    PubMed

    Miller, Christopher H; Nisa, Shahista; Dempsey, Sandi; Jack, Cameron; O'Toole, Ronan

    2009-12-01

    In this study, application of a dual absorbance/fluorescence assay to a chemical library screen identified several previously unknown inhibitors of mycobacteria. In addition, growth conditions had a significant effect on the activity profile of the library. Some inhibitors such as Se-methylselenocysteine were detected only when screening was performed under nutrient-limited culture conditions as opposed to nutrient-rich culture conditions. We propose that multiple culture condition library screening is required for complete inhibitory profiling and for maximal antimycobacterial compound detection.

  5. Estimation of octanol/water partition coefficient and aqueous solubility of environmental chemicals using molecular fingerprints and machine learning methods

    EPA Science Inventory

    Octanol/water partition coefficient (logP) and aqueous solubility (logS) are two important parameters in pharmacology and toxicology studies, and experimental measurements are usually time-consuming and expensive. In the present research, novel methods are presented for the estim...

  6. Theoretical calculations of the thermodynamic stability of ionic substitutions in hydroxyapatite under an aqueous solution environment.

    PubMed

    Matsunaga, Katsuyuki; Murata, Hidenobu; Shitara, Kazuki

    2010-09-29

    Defect formation energies in materials generally depend on chemical potentials determined by a chemical equilibrium condition. In particular, an aqueous solution environment is important for biomaterials such as hydroxyapatite studied here. Therefore, a methodology to obtain ionic chemical potentials under chemical equilibrium between solid and aqueous solution was introduced, and was applied to substitutional divalent cations formed via ion exchange with Ca(2+) in hydroxyapatite. The calculated ranking of the stability of substitutional cations in HAp was in good agreement with the experimentally observed trend. The present theoretical approach would be useful to explore the thermodynamic stability of defects in materials subjected to an aqueous solution environment.

  7. Chemistry of the system: Al2O3(c)minus HCL aqueous. [chemical reactions resulting from propellant combustion of rocket propellants

    NASA Technical Reports Server (NTRS)

    Tyree, S. Y., Jr.

    1975-01-01

    In order to study exhaust gas chemistry for the space shuttle, the vapor pressure of 2 to 1 weight mixtures of 3-M hydrochloric acid and Al2O3 was studied over a l80 minute reaction period at 31 C. The Al2O3 sample was one of high surface area furnished by NASA Langley Research Center. A brief review is given for aqueous aluminum chemistry, and the chemical reactions of combustion products (exhaust gases) of aluminum propellant binders for the space shuttle are listed.

  8. Methanogenesis-induced pH–Eh shifts drives aqueous metal(loid) mobility in sulfide mineral systems under CO2 enriched conditions

    SciTech Connect

    Harvey, Omar R.; Qafoku, Nikolla; Cantrell, Kirk J.; Wilkins, Michael J.; Brown, Christopher F.

    2016-01-15

    Accounting for microbially-mediated CO2 transformation is pivotal to assessing geochemical implications for elevated CO2 in subsurface environments. A series of batch-reactor experiments were conducted to decipher links between autotrophic methanogenesis, CO2 dynamics and aqueous Fe, As and Pb concentrations in the presence of sulfide minerals. Microbially-mediated solubility-trapping followed by pseudo-first order reduction of HCO3- to CH4 (k’ = 0.28-0.59 d-1) accounted for 95% of the CO2 loss from methanogenic experiments. Bicarbonate-to-methane reduction was pivotal in the mitigation of CO2-induced acidity (~1 pH unit) and enhancement of reducing conditions (Eh change from -0.215 to -0.332V ). Methanogenesis-associated shifts in pH-Eh values showed no significant effect on aqueous Pb but favored, 1) increased aqueous As as a result of microbially-mediated dissolution of arsenopyrite and 2) decreased aqueous Fe due to mineral-trapping of CO2-mobilized Fe as Fe-carbonate. Its order of occurrence (and magnitude), relative to solubility- and mineral-trapping, highlighted the potential for autotrophic methanogenesis to modulate both carbon sequestration and contaminant mobility in CO2-impacted subsurface environments.

  9. Differences in the chemical composition of Enterococcus faecalis biofilm under conditions of starvation and alkalinity.

    PubMed

    Chen, Weixu; Liang, Jingping; He, Zhiyan; Jiang, Wei

    2017-01-02

    ABSTACT This study aimed to investigate the dynamic changes that occur in the chemical composition of an Enterococcus faecalis (E. faecalis) biofilm under conditions of starvation and in an alkaline environment and to explore the function of chemical composition changes in the resistance of the E. faecalis biofilm to an extreme environment. This study established an in vitro E. faecalis biofilm model under starvation and in an alkaline environment. During the formation of the biofilm, the pH value and nutritional condition of the culture medium were changed, and the changes in chemical composition were observed using biochemical measures. The results showed that, when the pH value of the culture medium was 11, the percentage of water-insoluble polysaccharides in the biofilm was significantly lower than under other conditions. In addition, the percentage of water-soluble polysaccharides in culture medium with pH values of 9 and 11 gradually decreased. The level of the water-soluble polysaccharides in each milligram of dry weight of biofilm at pH 11 increased compared to that under other conditions. The results from this study indicate that the chemical composition of E. faecalis biofilm changed in extreme environments. These changes served as a defensive mechanism for E. faecalis against environmental pressures.

  10. Effects of biomass types and carbonization conditions on the chemical characteristics of hydrochar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of biomass types (sugar beet pulp vs. bark mulch) and hydrothermal carbonization (HTC) processing conditions (temperature, residence time, and the phase of reaction medium) on the chemical characteristics of hydrochars were examined by elemental analysis, advanced solid-state nuclear magneti...

  11. Quantum-chemical and experimental modeling of hydrogen peroxide generation in heterogenous aqueous surroundings, which contain dibenzo-p-dioxines or their analogues

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Nina B.; Kuznetsov, Pavel E.; Vlasov, Igor A.; Mikhirev, Dmitry A.

    2006-07-01

    A hypothetical molecular mechanism of previously unknown way of toxic action of dibenzo-p-dioxin derivatives has been suggested and demonstrated on the basis of quantum-chemical investigations. The main stages of this process are as follows: protonization of oxygen atom of dioxin ring on the surface of biomembrane; interaction of dioxin with oxygen of oxidized cytochrome P-450; as a result, this xenobiotic becomes a catalyst in the generation of active forms of oxygen (H IIO II, O II -, 3O II, etc.). The process may become cyclic if the initial state of dibenzo-p-dioxin is restored. In this case dibenzo-p-dioxines can be considered as carriers of electrons. The hypothesis we are coming up with has been tested by means of comparatively simple experimental models based on the well-known chemical model of cytochrome P-450. Generation of hydrogen peroxide in heterogeneous aqueous media containing dioxanes derivatives has been experimentally proven.

  12. Optimization of chemical and instrumental parameters in hydride generation laser-induced breakdown spectrometry for the determination of arsenic, antimony, lead and germanium in aqueous samples.

    PubMed

    Yeşiller, Semira Unal; Yalçın, Serife

    2013-04-03

    A laser induced breakdown spectrometry hyphenated with on-line continuous flow hydride generation sample introduction system, HG-LIBS, has been used for the determination of arsenic, antimony, lead and germanium in aqueous environments. Optimum chemical and instrumental parameters governing chemical hydride generation, laser plasma formation and detection were investigated for each element under argon and nitrogen atmosphere. Arsenic, antimony and germanium have presented strong enhancement in signal strength under argon atmosphere while lead has shown no sensitivity to ambient gas type. Detection limits of 1.1 mg L(-1), 1.0 mg L(-1), 1.3 mg L(-1) and 0.2 mg L(-1) were obtained for As, Sb, Pb and Ge, respectively. Up to 77 times enhancement in detection limit of Pb were obtained, compared to the result obtained from the direct analysis of liquids by LIBS. Applicability of the technique to real water samples was tested through spiking experiments and recoveries higher than 80% were obtained. Results demonstrate that, HG-LIBS approach is suitable for quantitative analysis of toxic elements and sufficiently fast for real time continuous monitoring in aqueous environments.

  13. Effect of preparation conditions of oil palm fronds activated carbon on adsorption of bentazon from aqueous solutions.

    PubMed

    Salman, J M; Hameed, B H

    2010-03-15

    Oil palm fronds (OPF) were used to prepare activated carbon (PFAC) using physiochemical activation method, which consisted of potassium hydroxide (KOH) treatment and carbon dioxide gasification. The effects of the preparation variables, which were activation temperature, activation time and chemical impregnation ratios (KOH: char by weight), on the carbon yield and bentazon removal were investigated. Based on the central composite design (CCD), two factor interaction (2FI) and quadratic models were, respectively, employed to correlate the PFAC preparation variables to the bentazon removal and carbon yield. From the analysis of variance (ANOVA), the most influential factor on each experimental design response was identified. The optimum conditions for preparing activated carbon from OPF were found as follows: activation temperature of 850 degrees C, activation time of 1h and KOH:char ratio of 3.75:1. The predicted and experimental results for removal of bentazon and yield of PFAC were 99.85%, 20.5 and 98.1%, 21.6%, respectively.

  14. UV – INDUCED SYNTHESIS OF AMINO ACIDS FROM AQUEOUS STERILIZED SOLUTION OF AMMONIUM FORMATE AND AMMONIA UNDER HETROGENEOUS CONDITIONS

    PubMed Central

    Bisht, G.; Bisht, L. S.

    1990-01-01

    Irradiation of sterilized aqueous solution of ammonium formate and ammonia with UV light in the presence and or absence of certain inorganic sensitizers for 25 hrs. gave six ninhydrin positive products in appreciable amounts. Out of the six products observed fiver were characterized as lysine, serine, glutemic acid, n-amino butyric acid and leucine. The sensitizing effect of additives on ammonium formate was observed in the order; uranium oxide > ammonium formate > ferric oxide > arsenic oxide. PMID:22556511

  15. Universal reaction mechanism of boronic acids with diols in aqueous solution: kinetics and the basic concept of a conditional formation constant.

    PubMed

    Furikado, Yuki; Nagahata, Tomomi; Okamoto, Takuya; Sugaya, Tomoaki; Iwatsuki, Satoshi; Inamo, Masahiko; Takagi, Hideo D; Odani, Akira; Ishihara, Koji

    2014-10-06

    To establish a detailed reaction mechanism for the condensation between a boronic acid, RB(OH)2, and a diol, H2L, in aqueous solution, the acid dissociation constants (Ka(BL)) of boronic acid diol esters (HBLs) were determined based on the well-established concept of conditional formation constants of metal complexes. The pKa values of HBLs were 2.30, 2.77, and 2.00 for the reaction systems, 2,4-difluorophenylboronic acid and chromotropic acid, 3-nitrophenylboronic acid and alizarin red S, and phenylboronic acid and alizarin red S, respectively. A general and precise reaction mechanism of RB(OH)2 with H2L in aqueous solution, which can serve as a universal reaction mechanism for RB(OH)2 and H2L, was proposed on the basis of (a) the relative kinetic reactivities of the RB(OH)2 and its conjugate base, that is, the boronate ion, toward H2L, and (b) the determined pKa values of HBLs. The use of the conditional formation constant, K', based on the main reaction: RB(OH)2 + H2L (K1)⇌ RB(L)(OH)(-) + H3O(+) instead of the binding constant has been proposed for the general reaction of uncomplexed boronic acid species (B') with uncomplexed diol species (L') to form boronic acid diol complex species (esters, BL') in aqueous solution at pH 5-11: B' + L' (K')⇌ BL'. The proposed reaction mechanism explains perfectly the formation of boronic acid diol ester in aqueous solution.

  16. Adaptive Chemical Networks under Non-Equilibrium Conditions: The Evaporating Droplet.

    PubMed

    Armao, Joseph J; Lehn, Jean-Marie

    2016-10-17

    Non-volatile solutes in an evaporating drop experience an out-of-equilibrium state due to non-linear concentration effects and complex flow patterns. Here, we demonstrate a small molecule chemical reaction network that undergoes a rapid adaptation response to the out-of-equilibrium conditions inside the droplet leading to control over the molecular constitution and spatial arrangement of the deposition pattern. Adaptation results in a pronounced coffee stain effect and coupling to chemical concentration gradients within the drop is demonstrated. Amplification and suppression of network species are readily identifiable with confocal fluorescence microscopy. We anticipate that these observations will contribute to the design and exploration of out-of-equilibrium chemical systems, as well as be useful towards the development of point-of-care medical diagnostics and controlled deposition of small molecules through inkjet printing.

  17. Theoretical study of the influence of chemical reactions and physical parameters on the convective dissolution of CO2 in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Loodts, Vanessa; Rongy, Laurence; De Wit, Anne

    2014-05-01

    Subsurface carbon sequestration has emerged as a promising solution to the problem of increasing atmospheric carbon dioxide (CO2) levels. How does the efficiency of such a sequestration process depend on the physical and chemical characteristics of the storage site? This question is emblematic of the need to better understand the dynamics of CO2 in subsurface formations, and in particular, the properties of the convective dissolution of CO2 in the salt water of aquifers. This dissolution is known to improve the safety of the sequestration by reducing the risks of leaks of CO2 to the atmosphere. Buoyancy-driven convection makes this dissolution faster by transporting dissolved CO2 further away from the interface. Indeed, upon injection, the less dense CO2 phase rises above the aqueous layer where it starts to dissolve. The dissolved CO2 increases the density of the aqueous solution, thereby creating a layer of denser CO2-rich solution above less dense solution. This unstable density gradient in the gravity field is at the origin of convection. In this framework, we theoretically investigate the effect of CO2 pressure, salt concentration, temperature, and chemical reactions on the dissolution-driven convection of CO2 in aqueous solutions. On the basis of a linear stability analysis, we assess the stability of the time-dependent density profiles developing when CO2 dissolves in an aqueous layer below it. We predict that increasing CO2 pressure destabilizes the system with regard to buoyancy-driven convection, because it increases the density gradient at the origin of the instability. By contrast, increasing salt concentration or temperature stabilizes the system via effects on CO2 solubility, solutal expansion coefficient, diffusion coefficient and on the viscosity and density of the solution. We also show that a reaction of CO2 with chemical species dissolved in the aqueous solution can either enhance or decrease the amplitude of the convective dissolution compared

  18. New insights on the nature of the chemical species involved during the process of dopamine deprotonation in aqueous solution: theoretical and experimental study.

    PubMed

    Corona-Avendaño, Silvia; Alarcón-Angeles, Georgina; Rosquete-Pina, Giselle A; Rojas-Hernández, Alberto; Gutierrez, Atilano; Ramírez-Silva, M Teresa; Romero-Romo, Mario; Palomar-Pardavé, Manuel

    2007-02-22

    Due to dopamine's chemical structure and the fact that it has three pKa values, its deprotonation process, in aqueous solution, may involve different chemical species. For instance, the first deprotonation step, from the fully protonated dopamine molecule (H3DA+) to the neutral one (H2DA), will result in zwitterionic species if a proton from one of the OH groups in the catechol ring is lost or into a neutral species if the proton is lost from the amino group. Given that the interaction of such a product with its environment will be quite different depending on its nature, it is very important, therefore, to have an accurate knowledge of which is the dopamine chemical species that results after each deprotonation step. In order to gain a better understanding of dopamine chemistry and to establish a plausible dopamine deprotonation pathway, the optimized geometries of the aforementioned species were calculated in this work by means of the density functionals theory (B3LYP/6-311+G(d,p)) in both cases: in vacuo and with solvent effect, to assess, among other theoretical criteria, the proton affinities of the different dopamine species. This permitted us to propose the following reaction pathway: [reaction in text]. Moreover, the calculations of the chemical shift (NMR-GIAO) modeling the effect of the solvent with a continuum method (PCM) was in agreement with the 13C NMR experimental spectra, which confirmed even further the proposed deprotonation pathway.

  19. Chemical controls on uranyl citrate speciation and the self-assembly of nanoscale macrocycles and sandwich complexes in aqueous solutions.

    PubMed

    Basile, M; Unruh, D K; Gojdas, K; Flores, E; Streicher, L; Forbes, T Z

    2015-03-28

    Uranyl citrate forms trimeric species at pH > 5.5, but exact structural characteristics of these important oligomers have not previously been reported. Crystallization and structural characterization of the trimers suggests the self-assembly of the 3 : 3 and 3 : 2 U : Cit complexes into larger sandwich and macrocyclic molecules. Raman spectroscopy and ESI-MS have been utilized to investigate the relative abundance of these species in solution under varying pH and citrate concentrations. Additional dynamic light scattering experiments indicate that self-assembly of the larger molecules does occur in aqueous solution.

  20. Relative toxicity of pyrolysis gases from materials - Effects of chemical composition and test conditions

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1978-01-01

    Relative toxicity test data on 270 materials are presented, based on test procedures developed at the University of San Francisco. The effects of chemical composition, using data on 13 types of synthetic polymers and eight types of fabrics, are discussed. Selected materials were evaluated using nine test conditions with the USF method, and using methods developed at the FAA Civil Aeromedical Institute, Douglas Aircraft Company and San Jose State University.

  1. Kinematical Modeling of Pad Profile Variation during Conditioning in Chemical Mechanical Polishing

    NASA Astrophysics Data System (ADS)

    Lee, Sangjik; Jeong, Sukhoon; Park, Kihyun; Kim, Hyoungjae; Jeong, Haedo

    2009-12-01

    Conditioning is the process of removing the glazing area from a polishing pad surface and restoring the quality of the surface to maintain a stable polishing performance. However, the conditioning process can induce a non-uniform profile variation of the pad, which can result in nonuniform material removal rates across the wafer. In this paper, a kinematical model based on Preston's equation is proposed to examine the pad profile variation (PPV) induced by swing arm conditioning with a diamond disk. The proposed model was simulated with various swing arm velocity profiles (SAVPs), and the results were compared with experimental results. The results showed the relationship between kinematical parameters and the PPV. The PPV was proportional to sliding distance based on the kinematical model, and then the sliding distance distribution across the pad was dependent on the SAVP. This study has proven the effectiveness of the kinematical model on the PPV during conditioning in chemical mechanical polishing (CMP).

  2. Sensitivity of chemical weathering and dissolved carbon dynamics to hydrological conditions in a typical karst river.

    PubMed

    Zhong, Jun; Li, Si-Liang; Tao, Faxiang; Yue, Fujun; Liu, Cong-Qiang

    2017-02-21

    To better understand the mechanisms that hydrological conditions control chemical weathering and carbon dynamics in the large rivers, we investigated hydrochemistry and carbon isotopic compositions of dissolved inorganic carbon (DIC) based on high-frequency sampling in the Wujiang River draining the carbonate area in southwestern China. Concentrations of major dissolved solute do not strictly follow the dilution process with increasing discharge, and biogeochemical processes lead to variability in the concentration-discharge relationships. Temporal variations of dissolved solutes are closely related to weathering characteristics and hydrological conditions in the rainy seasons. The concentrations of dissolved carbon and the carbon isotopic compositions vary with discharge changes, suggesting that hydrological conditions and biogeochemical processes control dissolved carbon dynamics. Biological CO2 discharge and intense carbonate weathering by soil CO2 should be responsible for the carbon variability under various hydrological conditions during the high-flow season. The concentration of DICbio (DIC from biological sources) derived from a mixing model increases with increasing discharge, indicating that DICbio influx is the main driver of the chemostatic behaviors of riverine DIC in this typical karst river. The study highlights the sensitivity of chemical weathering and carbon dynamics to hydrological conditions in the riverine system.

  3. Sensitivity of chemical weathering and dissolved carbon dynamics to hydrological conditions in a typical karst river

    PubMed Central

    Zhong, Jun; Li, Si-liang; Tao, Faxiang; Yue, Fujun; Liu, Cong-Qiang

    2017-01-01

    To better understand the mechanisms that hydrological conditions control chemical weathering and carbon dynamics in the large rivers, we investigated hydrochemistry and carbon isotopic compositions of dissolved inorganic carbon (DIC) based on high-frequency sampling in the Wujiang River draining the carbonate area in southwestern China. Concentrations of major dissolved solute do not strictly follow the dilution process with increasing discharge, and biogeochemical processes lead to variability in the concentration-discharge relationships. Temporal variations of dissolved solutes are closely related to weathering characteristics and hydrological conditions in the rainy seasons. The concentrations of dissolved carbon and the carbon isotopic compositions vary with discharge changes, suggesting that hydrological conditions and biogeochemical processes control dissolved carbon dynamics. Biological CO2 discharge and intense carbonate weathering by soil CO2 should be responsible for the carbon variability under various hydrological conditions during the high-flow season. The concentration of DICbio (DIC from biological sources) derived from a mixing model increases with increasing discharge, indicating that DICbio influx is the main driver of the chemostatic behaviors of riverine DIC in this typical karst river. The study highlights the sensitivity of chemical weathering and carbon dynamics to hydrological conditions in the riverine system. PMID:28220859

  4. Sensitivity of chemical weathering and dissolved carbon dynamics to hydrological conditions in a typical karst river

    NASA Astrophysics Data System (ADS)

    Zhong, Jun; Li, Si-Liang; Tao, Faxiang; Yue, Fujun; Liu, Cong-Qiang

    2017-02-01

    To better understand the mechanisms that hydrological conditions control chemical weathering and carbon dynamics in the large rivers, we investigated hydrochemistry and carbon isotopic compositions of dissolved inorganic carbon (DIC) based on high-frequency sampling in the Wujiang River draining the carbonate area in southwestern China. Concentrations of major dissolved solute do not strictly follow the dilution process with increasing discharge, and biogeochemical processes lead to variability in the concentration-discharge relationships. Temporal variations of dissolved solutes are closely related to weathering characteristics and hydrological conditions in the rainy seasons. The concentrations of dissolved carbon and the carbon isotopic compositions vary with discharge changes, suggesting that hydrological conditions and biogeochemical processes control dissolved carbon dynamics. Biological CO2 discharge and intense carbonate weathering by soil CO2 should be responsible for the carbon variability under various hydrological conditions during the high-flow season. The concentration of DICbio (DIC from biological sources) derived from a mixing model increases with increasing discharge, indicating that DICbio influx is the main driver of the chemostatic behaviors of riverine DIC in this typical karst river. The study highlights the sensitivity of chemical weathering and carbon dynamics to hydrological conditions in the riverine system.

  5. A stronger necessary condition for the multistationarity of chemical reaction networks.

    PubMed

    Soliman, Sylvain

    2013-11-01

    Biochemical reaction networks grow bigger and bigger, fed by the high-throughput data provided by biologists and bred in open repositories of models allowing merging and evolution. Nevertheless, since the available data is still very far from permitting the identification of the increasing number of kinetic parameters of such models, the necessity of structural analyses for describing the dynamics of chemical networks appears stronger every day. Using the structural information, notably from the stoichiometric matrix, of a biochemical reaction system, we state a more strict version of the famous Thomas' necessary condition for multistationarity. In particular, the obvious cases where Thomas' condition was trivially satisfied, mutual inhibition due to a multimolecular reaction and mutual activation due to a reversible reaction, can now easily be ruled out. This more strict condition shall not be seen as some version of Thomas' circuit functionality for the continuous case but rather as related and complementary to the whole domain of the structural analysis of (bio)chemical reaction systems, as pioneered by the chemical reaction network theory.

  6. Analysis of initial reactions of MALDI based on chemical properties of matrixes and excitation condition.

    PubMed

    Lai, Yin-Hung; Wang, Chia-Chen; Chen, Chiu Wen; Liu, Bo-Hong; Lin, Sheng Hsien; Lee, Yuan Tseh; Wang, Yi-Sheng

    2012-08-16

    This investigation concerns the initial chemical reactions that affect the ionization of matrixes in matrix-assisted laser desorption/ionization (MALDI). The study focuses on the relaxations of photon energy that occur on a comparable time scale to that of ionization, in which the available laser energy is shared and the ionization condition is changed. The relaxations include fluorescence, fragmentation, and nonradiative relaxation from the excited state to the ground state. With high absorption cross section and long excited-state lifetime, photoionization of matrix plays an important role if sufficient laser energy is used. Under other conditions, thermal ionization of the molecule in the ground state is predicted to be one of the important reactions. Evidence of change in the branching ratio of initial reactions with the matrix and the excitation wavelength was obtained with α-cyano-4-hydroxycinnamic acid, sinapinic acid, 2,5-dihydroxybenzoic acid, and 2,4,6-trihydroxyacetophenone. These matrixes are studied by obtaining their mixed crystal absorption spectra, fluorescence properties, laser-induced infrared emission, and product ions. The exact ionization pathway depends on the chemical properties of matrixes and the excitation conditions. This concept may explain the diversity of experimental results observed in MALDI experiments, which provides an insight into the ensemble of chemical reactions that govern the generation of ions.

  7. Decomposition Dynamics and Changes in Chemical Composition of Wheat Straw Residue under Anaerobic and Aerobic Conditions

    PubMed Central

    Gao, Hongjian; Chen, Xi; Wei, Junling; Zhang, Yajie; Zhang, Ligan; Chang, Jiang; Thompson, Michael L.

    2016-01-01

    Soil aeration is a crucial factor that regulates crop residue decomposition, and the chemical composition of decomposing crop residues may change the forms and availability of soil nutrients, such as N and P. However, to date, differences in the chemical composition of crop straw residues after incorporation into soil and during its decomposition under anaerobic vs. aerobic conditions have not been well documented. The objective of the present study was to assess changes in the C-containing functional groups of wheat straw residue during its decomposition in anaerobic and aerobic environments. A 12-month incubation experiment was carried out to investigate the temporal variations of mass, carbon, and nitrogen loss, as well as changes in the chemical composition of wheat (Triticum aestivum L) straw residues under anaerobic and aerobic conditions by measuring C-containing functional groups using solid state nuclear magnetic resonance (NMR) spectroscopy. The residual mass, carbon content, and nitrogen content of the straw residue sharply declined during the initial 3 months, and then slowly decreased during the last incubation period from 3 to 12 months. The decomposition rate constant (k) for mass loss under aerobic conditions (0.022 d-1) was higher than that under anaerobic conditions (0.014 d-1). The residual mass percentage of cellulose and hemicellulose in the wheat straw gradually declined, whereas that of lignin gradually increased during the entire 12-month incubation period. The NMR spectra of C-containing functional groups in the decomposing straw under both aerobic and anaerobic conditions were similar at the beginning of the incubation as well as at 1 month, 6 months, and 12 months. The main alterations in C-containing functional groups during the decomposition of wheat straw were a decrease in the relative abundances of O-alkyl C and an increase in the relative abundances of alkyl C, aromatic C and COO/N-C = O functional groups. The NMR signals of alkyl C

  8. Decomposition Dynamics and Changes in Chemical Composition of Wheat Straw Residue under Anaerobic and Aerobic Conditions.

    PubMed

    Gao, Hongjian; Chen, Xi; Wei, Junling; Zhang, Yajie; Zhang, Ligan; Chang, Jiang; Thompson, Michael L

    2016-01-01

    Soil aeration is a crucial factor that regulates crop residue decomposition, and the chemical composition of decomposing crop residues may change the forms and availability of soil nutrients, such as N and P. However, to date, differences in the chemical composition of crop straw residues after incorporation into soil and during its decomposition under anaerobic vs. aerobic conditions have not been well documented. The objective of the present study was to assess changes in the C-containing functional groups of wheat straw residue during its decomposition in anaerobic and aerobic environments. A 12-month incubation experiment was carried out to investigate the temporal variations of mass, carbon, and nitrogen loss, as well as changes in the chemical composition of wheat (Triticum aestivum L) straw residues under anaerobic and aerobic conditions by measuring C-containing functional groups using solid state nuclear magnetic resonance (NMR) spectroscopy. The residual mass, carbon content, and nitrogen content of the straw residue sharply declined during the initial 3 months, and then slowly decreased during the last incubation period from 3 to 12 months. The decomposition rate constant (k) for mass loss under aerobic conditions (0.022 d-1) was higher than that under anaerobic conditions (0.014 d-1). The residual mass percentage of cellulose and hemicellulose in the wheat straw gradually declined, whereas that of lignin gradually increased during the entire 12-month incubation period. The NMR spectra of C-containing functional groups in the decomposing straw under both aerobic and anaerobic conditions were similar at the beginning of the incubation as well as at 1 month, 6 months, and 12 months. The main alterations in C-containing functional groups during the decomposition of wheat straw were a decrease in the relative abundances of O-alkyl C and an increase in the relative abundances of alkyl C, aromatic C and COO/N-C = O functional groups. The NMR signals of alkyl C

  9. Effects of stable aqueous fullerene nanocrystal (nC60) on Daphnia magna: evaluation of hop frequency and accumulations under different conditions.

    PubMed

    Tao, Xianji; He, Yiliang; Zhang, Bo; Chen, Yongsheng; Hughes, Joseph B

    2011-01-01

    We investigated the effects of environmental factors and properties of water-stable crystal fullerene (nC60) on the uptake of nC60 by Daphnia magna based on known accumulation in our laboratory. This study was performed for seven days using different environmental factors including temperature, pH, water hardness, concentration (density of particle), and particle size. Results demonstrated that body burden of C60 increased with time in all experiments. Body burden of C60 increased with increasing concentration and particle size, and uptake of particles >100 nm reached their maximums more quickly than those <100 nm. Under high hardness in aqueous systems with lower pH and high temperature, uptake was higher than those under opposite conditions. Uptake in all batch tests reached balance within five days. Both nC60 properties and environmental factors influenced uptake of nC60 by D. magna in an aqueous system. Additionally, environmental factors may have affected accumulation by changing nC60 properties, which are critical to understand the accumulation of fullerenes in aqueous systems.

  10. Chemically modified olive stone: a low-cost sorbent for heavy metals and basic dyes removal from aqueous solutions.

    PubMed

    Aziz, Abdellah; Ouali, Mohand Said; Elandaloussi, El Hadj; De Menorval, Louis Charles; Lindheimer, Marc

    2009-04-15

    In the present work, we have investigated the sorption efficiency of treated olive stones (TOS) towards cadmium and safranine removal from their respective aqueous solutions. TOS material was prepared by treatment of olive stones with concentrated sulfuric acid at room temperature followed up by a subsequent neutralization with 0.1 M NaOH aqueous solution. The resulting material has been thoroughly characterized by SEM, energy-dispersive X-ray (EDX), MAS (13)C NMR, FTIR and physicochemical parameters were calculated. The sorption study of TOS at the solid-liquid interface was investigated using kinetics, sorption isotherms, pH effect and thermodynamic parameters. The preliminary results indicate that TOS exhibit a better efficiency in terms of sorption capacities toward the two pollutants (128.2 and 526.3 mg/g for cadmium and safranine, respectively) than those reported so far in the literature. Moreover, the sorption process is ascertained to occur fast enough so that the equilibrium is reached in less than 15 min of contact time. The results found in the course of this study suggest that ion exchange mechanism is the most appropriate mechanism involved in cadmium and safranine removal. Finally, the sorption efficiency of TOS is compared to those of other low-cost sorbents materials yet described in the literature.

  11. Relaxation of the structure of simple metal ion complexes in aqueous solutions at up to supercritical conditions

    USGS Publications Warehouse

    Mayanovic, Robert A.; Jayanetti, Sumedha; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2003-01-01

    Recently x-ray absorption fine structure (XAFS) studies of various ions in aqueous solutions showed a variation of cation-ligand bond lengths, often coupled with other structure changes, with increasing temperatures. Thus, the variations of the structure of several metal ion complexes with temperature based on observations from the X-ray absorption fine structure (XAFS) studies in the hope that it will stimulate the development of either first- principles theory or molecular dynamics simulations that might adequately describes these results are discussed.

  12. Effect of ethylene and temperature conditioning on sensory attributes and chemical composition of 'Comice' pears.

    PubMed

    Makkumrai, Warangkana; Sivertsen, Hanne; Sugar, David; Ebeler, Susan E; Negre-Zakharov, Florence; Mitcham, Elizabeth J

    2014-06-04

    'Comice' is among the pear varieties most difficult to ripen after harvest. Ethylene, cold temperature, and intermediate (10 °C) temperature conditioning have been successfully used to stimulate the ability of 'Comice' pears to ripen. However, the sensory quality of pears stimulated to ripen by different conditioning treatments has not been evaluated. In this study, a descriptive sensory analysis of 'Comice' pears conditioned to soften to 27, 18, and 9 N firmness with ethylene exposure for 3 or 1 days, storage at 0 °C for 25 or 15 days, or storage at 10 °C for 10 days was performed. Sensory attributes were then related to changes in chemical composition, including volatile components, water-soluble polyuronides, soluble solids content (SSC), and titratable acidity (TA). The sensory profile of fruit conditioned with ethylene was predominant in fibrous texture and low in fruity and pear aroma. Fruit conditioned at 0 °C was described as crunchy at 27 and 18 N firmness and became juicy at 9 N firmness. Fruit conditioned at 0 °C produced the highest quantity of alcohols and fewer esters than fruit conditioned at 10 °C, and they had higher fruity and pear aroma than fruit conditioned with ethylene, but lower than fruit conditioned at 10 °C. Fruit held at 10 °C were predominant in fruity and pear aroma and had the highest concentration of esters. Water-soluble polyuronides were strongly, positively correlated (r > 0.9) with sensory attributes generally associated with ripeness, including juiciness, butteriness, and sweetness and negatively correlated (r > -0.9) with sensory attributes generally associated with the unripe stage, such as firmness and crunchiness. However, water-soluble polyuronides were not significantly different among conditioning treatments. Sensory sweetness was not significantly correlated with SSC, but TA and SSC/TA were significantly correlated with sensory tartness. However, there were no significant differences among the conditioning

  13. Process for the conversion of and aqueous biomass hydrolyzate into fuels or chemicals by the selective removal of fermentation inhibitors

    DOEpatents

    Hames, Bonnie R.; Sluiter, Amie D.; Hayward, Tammy K.; Nagle, Nicholas J.

    2004-05-18

    A process of making a fuel or chemical from a biomass hydrolyzate is provided which comprises the steps of providing a biomass hydrolyzate, adjusting the pH of the hydrolyzate, contacting a metal oxide having an affinity for guaiacyl or syringyl functional groups, or both and the hydrolyzate for a time sufficient to form an adsorption complex; removing the complex wherein a sugar fraction is provided, and converting the sugar fraction to fuels or chemicals using a microorganism.

  14. Aqueous-phase photooxidation of levoglucosan - a mechanistic study using Aerosol Time of Flight Chemical Ionization Mass Spectrometry (Aerosol-ToF-CIMS)

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Mungall, E. L.; Lee, A. K. Y.; Aljawhary, D.; Abbatt, J. P. D.

    2014-04-01

    Levoglucosan (LG) is a widely employed tracer for biomass burning (BB). Recent studies have shown that LG can react rapidly with hydroxyl (OH) radicals in the aqueous phase, despite many mass balance receptor models assuming it to be inert during atmospheric transport. In the current study, aqueous-phase photooxidation of LG by OH radicals was performed in the laboratory. The reaction kinetics and products were monitored by Aerosol Time of Flight Chemical Ionization Mass Spectrometry (Aerosol-ToF-CIMS). Approximately 50 reaction products were detected by the Aerosol-ToF-CIMS during the photooxidation experiments, representing one of the most detailed product studies yet performed. By following the evolution of mass defects of product peaks, unique trends of adding oxygen (+O) and removing hydrogen (-2H) were observed among the products detected, providing useful information to determine potential reaction mechanisms and sequences. As well, bond scission reactions take place, leading to reaction intermediates with lower carbon numbers. We introduce a data analysis framework where the average oxidation state (OSc) is plotted against a novel molecular property: double bond equivalence to carbon ratio (DBE / #C). The trajectory of LG photooxidation on this plot suggests formation of poly-carbonyl intermediates and their subsequent conversion to carboxylic acids as a general reaction trend. We also determined the rate constant of LG with OH radicals at room temperature to be 1.08 ± 0.16 × 109 M-1 s-1. By coupling an Aerosol Mass Spectrometer (AMS) to the system, we observed a rapid decay of the mass fraction of organic signals at mass-to-charge ratio 60 (f60), corresponding closely to the LG decay monitored by the Aerosol-ToF-CIMS. The trajectory of LG photooxidation on a f44-f60 correlation plot matched closely to literature field measurement data. This implies that aqueous-phase photooxidation might be partially contributing to aging of BB particles in the ambient

  15. Aqueous-phase photooxidation of levoglucosan - a mechanistic study using aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS)

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Mungall, E. L.; Lee, A. K. Y.; Aljawhary, D.; Abbatt, J. P. D.

    2014-09-01

    Levoglucosan (LG) is a widely employed tracer for biomass burning (BB). Recent studies have shown that LG can react rapidly with hydroxyl (OH) radicals in the aqueous phase despite many mass balance receptor models assuming it to be inert during atmospheric transport. In the current study, aqueous-phase photooxidation of LG by OH radicals was performed in the laboratory. The reaction kinetics and products were monitored by aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS). Approximately 50 reaction products were detected by the Aerosol ToF-CIMS during the photooxidation experiments, representing one of the most detailed product studies yet performed. By following the evolution of mass defects of product peaks, unique trends of adding oxygen (+O) and removing hydrogen (-2H) were observed among the products detected, providing useful information for determining potential reaction mechanisms and sequences. Additionally, bond-scission reactions take place, leading to reaction intermediates with lower carbon numbers. We introduce a data analysis framework where the average oxidation state (OSc) is plotted against a novel molecular property: double-bond-equivalence-to-carbon ratio (DBE/#C). The trajectory of LG photooxidation on this plot suggests formation of polycarbonyl intermediates and their subsequent conversion to carboxylic acids as a general reaction trend. We also determined the rate constant of LG with OH radicals at room temperature to be 1.08 ± 0.16 × 109 M-1 s-1. By coupling an aerosol mass spectrometer (AMS) to the system, we observed a rapid decay of the mass fraction of organic signals at mass-to-charge ratio 60 (f60), corresponding closely to the LG decay monitored by the Aerosol ToF-CIMS. The trajectory of LG photooxidation on a f44-f60 correlation plot matched closely to literature field measurement data. This implies that aqueous-phase photooxidation might be partially contributing to aging of BB particles in the

  16. Sensitive determination of bromine and iodine in aqueous and biological samples by electrothermal vaporization inductively coupled plasma mass spectrometry using tetramethylammonium hydroxide as a chemical modifier.

    PubMed

    Kataoka, Hiroko; Tanaka, Sachiko; Konishi, Chie; Okamoto, Yasuaki; Fujiwara, Terufumi; Ito, Kazuaki

    2008-06-01

    A procedure for the simultaneous determination of bromine and iodine by inductively coupled plasma (ICP) mass spectrometry was investigated. In order to prevent the decrease in the ionization efficiencies of bromine and iodine atoms caused by the introduction of water mist, electrothermal vaporization was used for sample introduction into the ICP mass spectrometer. To prevent loss of analytes during the drying process, a small amount of tetramethylammonium hydroxide solution was placed as a chemical modifier into the tungsten boat furnace. After evaporation of the solvent, the analytes instantly vaporized and were then introduced into the ICP ion source to detect the (79)Br(+), (81)Br(+), and (127)I(+) ions. By using this system, detection limits of 0.77 pg and 0.086 pg were achieved for bromine and iodine, respectively. These values correspond to 8.1 pg mL(-1) and 0.91 pg mL(-1) of the aqueous bromide and iodide ion concentrations, respectively, for a sampling volume of 95 microL. The relative standard deviations for eight replicate measurements were 2.2% and 2.8% for 20 pg of bromine and 2 pg of iodine, respectively. Approximately 25 batches were vaporizable per hour. The method was successfully applied to the analysis of various certified reference materials and practical situations as biological and aqueous samples. There is further potential for the simultaneous determination of fluorine and chlorine.

  17. Standard Gibbs free energies of reactions of ozone with free radicals in aqueous solution: quantum-chemical calculations.

    PubMed

    Naumov, Sergej; von Sonntag, Clemens

    2011-11-01

    Free radicals are common intermediates in the chemistry of ozone in aqueous solution. Their reactions with ozone have been probed by calculating the standard Gibbs free energies of such reactions using density functional theory (Jaguar 7.6 program). O(2) reacts fast and irreversibly only with simple carbon-centered radicals. In contrast, ozone also reacts irreversibly with conjugated carbon-centered radicals such as bisallylic (hydroxycylohexadienyl) radicals, with conjugated carbon/oxygen-centered radicals such as phenoxyl radicals, and even with nitrogen- oxygen-, sulfur-, and halogen-centered radicals. In these reactions, further ozone-reactive radicals are generated. Chain reactions may destroy ozone without giving rise to products other than O(2). This may be of importance when ozonation is used in pollution control, and reactions of free radicals with ozone have to be taken into account in modeling such processes.

  18. Intercomparison of chemical mechanisms for air quality policy formulation and assessment under North American conditions.

    PubMed

    Derwent, Richard

    2017-02-22

    The intercomparison of seven chemical mechanisms for their suitability for air quality policy formulation and assessment is described. Box modelling techniques were employed using 44 sets of background environmental conditions covering North America to constrain the chemical development of the longer-lived species. The selected mechanisms were modified to enable an unbiased assessment of the adequacy of the parameterisations of photochemical ozone production from VOC oxidation in the presence of NOx. Photochemical ozone production rates responded differently to 30% NOx and VOC reductions with the different mechanisms, despite the striking similarities between the base case ozone production rates. The 30% reductions in NOx and VOCs also produced changes in OH. The responses in OH to 30% reductions in NOx and VOCs appeared to be more sensitive to mechanism choice, compared with the responses in the photochemical ozone production rates. Whereas 30% NOx reductions generally led to decreases in OH, 30% reductions in VOCs led to increases in OH, irrespective of mechanism choice and background environmental conditions. The different mechanisms therefore gave different OH responses to NOx and VOC reductions and so would give different responses in terms of changes in the fate and behaviour of air toxics, acidification and eutrophication and fine particle formation compared with others, in response to ozone control strategies. Policy-makers need to understand that there are likely to be inherent differences in the responses to ozone control strategies between different mechanisms, depending on background environmental conditions and the extents of NOx and VOC reductions under consideration. IMPLICATIONS The purpose of this paper is to compare predicted ozone responses to NOx and VOC reductions with seven chemical mechanisms under North American conditions. The good agreement found between the tested mechanisms should provide some support for their application in the air

  19. Chemically synthesized glycosides of hydroxylated flavylium ions as suitable models of anthocyanins: binding to iron ions and human serum albumin, antioxidant activity in model gastric conditions.

    PubMed

    Al Bittar, Sheiraz; Mora, Nathalie; Loonis, Michèle; Dangles, Olivier

    2014-12-11

    Polyhydroxylated flavylium ions, such as 3',4',7-trihydroxyflavylium chloride (P1) and its more water-soluble 7-O-β-d-glucopyranoside (P2), are readily accessible by chemical synthesis and suitable models of natural anthocyanins in terms of color and species distribution in aqueous solution. Owing to their catechol B-ring, they rapidly bind FeIII, weakly interact with FeII and promote its autoxidation to FeIII. Both pigments inhibit heme-induced lipid peroxidation in mildly acidic conditions (a model of postprandial oxidative stress in the stomach), the colorless (chalcone) forms being more potent than the colored forms. Finally, P1 and P2 are moderate ligands of human serum albumin (HSA), their likely carrier in the blood circulation, with chalcones having a higher affinity for HSA than the corresponding colored forms.

  20. MIPs in Aqueous Environments.

    PubMed

    Wan, Ying-chun; Ma, Hui-ting; Lu, Bin

    2015-01-01

    When organic solvent-compatible molecularly imprinted polymers (MIPs) are used in aqueous environment, how to reduce nonspecific binding is a major challenge. By modifying the binding solvents and introducing appropriate washing and elution steps, even relatively hydrophobic MIPs can gain optimal rebinding selectivity in aqueous conditions. Furthermore, water-compatible MIPs that can be used to treat aqueous samples directly have been prepared. The use of hydrophilic co-monomers, the controlled surface modification through controlled radical polymerization, and the new interfacial molecular imprinting methods are different strategies to prepare water-compatible MIPs. By combining MIPs with other techniques, both organic solvent-compatible and water-compatible MIPs can display better functional performances in aqueous conditions. Intensive studies on MIPs in aqueous conditions can provide new MIPs with much-improved compatibilities that will lead to more interesting applications in biomedicine and biotechnology.

  1. Chemical and structural properties of Jordanian zeolitic tuffs and their admixtures with urea and thiourea: Potential scavengers for phenolics in aqueous medium

    SciTech Connect

    Yousef, R.I.; Tutunji, M.F.; Derwish, G.A.W.; Musleh, S.M.

    1999-08-15

    Native Jordanian zeolitic tuffs, rich in phillipsite, were treated with urea and thiourea. The chemical and structural properties of the tuffs and their urea and thiourea admixtures were studied using SEM, XRF, XRD, and FTIR techniques, and their adsorption capacities were estimated by the methylene blue method. The urea and thiourea treatment has not affected the mineral constitution of the tuffs. The results revealed that urea and thiourea were linked by hydrogen bonding through the NH{sub 2} moiety to the zeolite substrate, with urea showing the strongest effect. Experiments were carried out to investigate the possible use of the prepared materials for the removal of phenol and chlorinated phenols from aqueous solutions. Although thiourea caused a reduction in the relative surface area, both urea and thiourea admixtures were more effective than the free zeolitic tuff in the removal of phenol and chlorinated phenols from water, with urea admixture displaying the largest removal capacity.

  2. Chemical immobilization of crested porcupines with tiletamine HCl and zolazepam HCl (Zoletil) under field conditions.

    PubMed

    Massolo, Alessandro; Sforzi, Andrea; Lovari, Sandro

    2003-07-01

    The combination of tiletamine HCl and zolazepam HCl has been used on many species of wild mammals. Short induction time, low dosage, satisfactory safety margins, relatively constant immobilization time, and smooth recovery are benefits reported. This combination (Zoletil 100) was used during a study on behavioural ecology of the crested porcupine (Hystrix cristata) in a Mediterranean coastal area (Maremma Regional Park, Tuscany, Italy). We used this mixture 42 times on 31 individuals. Mean adult dose was (+/- SE) 7.24 +/- 0.37 mg/kg (74.0 +/- 3.0 mg/individual). Average adult induction time was 5.3 min (+/- 1.1) and average adult immobilization time was 22.6 min (+/- 6.0). One adult male porcupine died after chemical restraints. The use of tiletamine-zolazepam seems adequate for chemical immobilization of crested porcupines under field conditions, mainly because of its short induction time, small volume to be injected and wide safety margin.

  3. Influence of the pore structure and surface chemical properties of activated carbon on the adsorption of mercury from aqueous solutions.

    PubMed

    Lu, Xincheng; Jiang, Jianchun; Sun, Kang; Wang, Jinbiao; Zhang, Yanping

    2014-01-15

    Reactivation and chemical modification were used to obtain modified activated carbons with different pore structure and surface chemical properties. The samples were characterized by nitrogen absorption-desorption, Fourier transform infrared spectroscopy and the Bothem method. Using mercury chloride as the target pollutant, the Hg(2+) adsorption ability of samples was investigated. The results show that the Hg(2+) adsorption capacity of samples increased significantly with increases in micropores and acidic functional groups and that the adsorption process was exothermic. Different models and thermodynamic parameters were evaluated to establish the mechanisms. It was concluded that the adsorption occurred through a monolayer mechanism by a two-speed process involving both rapid adsorption and slow adsorption. The adsorption rate was determined by chemical reaction.

  4. Chemically activated carbon from lignocellulosic wastes for heavy metal wastewater remediation: Effect of activation conditions.

    PubMed

    Nayak, Arunima; Bhushan, Brij; Gupta, Vartika; Sharma, P

    2017-05-01

    Chemical activation is known to induce specific surface features of porosity and functionality which play a definite role in enhancing the adsorptive potential of the developed activated carbons. Different conditions of temperature, time, reagent type and impregnation ratio were applied on sawdust precursor and their effect on the physical, surface chemical features and finally on the adsorption potential of the developed activated carbons were analysed. Under activation conditions of 600°C, 1hr, 1:0.5 ratio, ZnCl2 impregnated carbon (CASD_ZnCl2) resulted in microporosity while KOH impregnation (CASD_KOH) yielded a carbon having a wider pore size distribution. The surface chemistry revealed similar functionalities. At same pH, temperature and adsorbate concentrations, CASD_KOH demonstrated better adsorption potential (1.06mmoles/g for Cd(2+) and 1.61mmoles/g for Ni(2+)) in comparison to CASD_ZnCl2 (0.23mmoles/g and 0.33mmoles/g for Cd(2+) and Ni(2+) respectively). Other features were a short equilibrium time of 60mins and an adsorbent dose of 0.2g/L for the CASD_KOH in comparison to CASD_ZnCl2 (equilibrium time of 150min and dosage of 0.5g/L). The nature of interactions was physical for both adsorbents and pore diffusion mechanisms were operative. The results reveal the potentiality of chemical activation so as to achieve the best physico-chemical properties suited for energy efficient, economical and eco-friendly water treatment.

  5. Size-dependent chemical ageing of oleic acid aerosol under dry and humidified conditions

    NASA Astrophysics Data System (ADS)

    Al-Kindi, Suad S.; Pope, Francis D.; Beddows, David C.; Bloss, William J.; Harrison, Roy M.

    2016-12-01

    A chemical reaction chamber system has been developed for the processing of oleic acid aerosol particles with ozone under two relative humidity conditions: dry and humidified to 65 %. The apparatus consists of an aerosol flow tube, in which the ozonolysis occurs, coupled to a scanning mobility particle sizer (SMPS) and an aerosol time-of-flight mass spectrometer (ATOFMS) which measure the evolving particle size and composition. Under both relative humidity conditions, ozonolysis results in a significant decrease in particle size and mass which is consistent with the formation of volatile products that partition from the particle to the gas phase. Mass spectra derived from the ATOFMS reveal the presence of the typically observed reaction products: azelaic acid, nonanal, oxononanoic acid and nonanoic acid, as well as a range of higher molecular weight products deriving from the reactions of reaction intermediates with oleic acid and its oxidation products. These include octanoic acid and 9- and 10-oxooctadecanoic acid, as well as products of considerably higher molecular weight. Quantitative evaluation of product yields with the ATOFMS shows a marked dependence upon both particle size association (from 0.3 to 2.1 µm diameter) and relative humidity. Under both relative humidity conditions, the percentage residual of oleic acid increases with increasing particle size and the main lower molecular weight products are nonanal and oxononanoic acid. Under dry conditions, the percentage of higher molecular weight products increases with increasing particle size due to the poorer internal mixing of the larger particles. Under humidified conditions, the percentage of unreacted oleic acid is greater, except in the smallest particle fraction, with little formation of high molecular weight products relative to the dry particles. It is postulated that water reacts with reactive intermediates, competing with the processes which produce high molecular weight products. Whilst the

  6. Treatment of hydrocarbon contamination under flow through conditions by using magnetite catalyzed chemical oxidation.

    PubMed

    Usman, M; Faure, P; Lorgeoux, C; Ruby, C; Hanna, K

    2013-01-01

    Soil pollution by hydrocarbons (aromatic and aliphatic hydrocarbons) is a major environmental issue. Various treatments have been used to remove them from contaminated soils. In our previous studies, the ability of magnetite has been successfully explored to catalyze chemical oxidation for hydrocarbon remediation in batch slurry system. In the present laboratory study, column experiments were performed to evaluate the efficiency of magnetite catalyzed Fenton-like (FL) and activated persulfate (AP) oxidation for hydrocarbon degradation. Flow-through column experiments are intended to provide a better representation of field conditions. Organic extracts isolated from three different soils (an oil-contaminated soil from petrochemical industrial site and two soils polluted by polycyclic aromatic hydrocarbon (PAH) originating from coking plant sites) were spiked on sand. After solvent evaporation, spiked sand was packed in column and was subjected to oxidation using magnetite as catalyst. Oxidant solution was injected at a flow rate of 0.1 mL min(-1) under water-saturated conditions. Organic analyses were performed by GC-mass spectrometry, GC-flame ionization detector, and micro-Fourier transform infrared spectroscopy. Significant abatement of both types of hydrocarbons (60-70 %) was achieved after chemical oxidation (FL and AP) of organic extracts. No significant by-products were formed during oxidation experiment, underscoring the complete degradation of hydrocarbons. No selective degradation was observed for FL with almost similar efficiency towards all hydrocarbons. However, AP showed less reactivity towards higher molecular weight PAHs and aromatic oxygenated compounds. Results of this study demonstrated that magnetite-catalyzed chemical oxidation can effectively degrade both aromatic and aliphatic hydrocarbons (enhanced available contaminants) under flow-through conditions.

  7. Photodegradation behaviour of sethoxydim and its comercial formulation Poast(®) under environmentally-relevant conditions in aqueous media. Study of photoproducts and their toxicity.

    PubMed

    Sevilla-Morán, Beatriz; Calvo, Luisa; López-Goti, Carmen; Alonso-Prados, José L; Sandín-España, Pilar

    2017-02-01

    Photolysis is an important route for the abiotic degradation of many pesticides. However, the knowledge of the photolytic behaviour of these compounds and their commercial formulations under environmentally-relevant conditions are limited. The present study investigated the importance of photochemical processes on the persistence and fate of the herbicide sethoxydim and its commercial formulation Poast(®) in aqueous media. Moreover, the effect of important natural water substances (nitrate, calcium, and ferric ions) on the photolysis of the herbicide was also studied. The results showed that additives existing in the commercial formulation Poast(®) accelerated the rate of photolysis of sethoxydim by a factor of 3. On the contrary, the presence of nitrate and calcium ions had no effect on the photodegradation rate while ferric ions resulted in an important decrease in the half-life of sethoxydim possibly due to the formation of a complex. Different transformation products were identified in the course of sethoxydim irradiation and the effect of experimental conditions on their concentrations was investigated. Finally, Microtox(®) test revealed that aqueous solutions of sethoxydim photoproducts increased the toxicity to the bacteria Vibrio fischeri.

  8. Chemical speciation of neptunium(VI) under strongly alkaline conditions. Structure, composition, and oxo ligand exchange.

    PubMed

    Clark, David L; Conradson, Steven D; Donohoe, Robert J; Gordon, Pamela L; Keogh, D Webster; Palmer, Phillip D; Scott, Brian L; Tait, C Drew

    2013-04-01

    Hexavalent neptunium can be solubilized in 0.5-3.5 M aqueous MOH (M = Li(+), Na(+), NMe4(+) = TMA(+)) solutions. Single crystals were obtained from cooling of a dilute solution of Co(NH3)6Cl3 and NpO2(2+) in 3.5 M [N(Me)4]OH to 5 °C. A single-crystal X-ray diffraction study revealed the molecular formula of [Co(NH3)6]2[NpO2(OH)4]3·H2O, isostructural with the uranium analogue. The asymmetric unit contains three distinct NpO2(OH)4(2-) ions, each with pseudooctahedral coordination geometry with trans-oxo ligands. The average Np═O and Np-OH distances were determined to be 1.80(1) and 2.24(1) Å, respectively. EXAFS data and fits at the Np L(III)-edge on solid [Co(NH3)6]2[NpO2(OH)4]3·H2O and aqueous solutions of NpO2(2+) in 2.5 and 3.5 M (TMA)OH revealed bond lengths nearly identical with those determined by X-ray diffraction but with an increase in the number of equatorial ligands with increasing (TMA)OH concentration. Raman spectra of single crystals of [Co(NH3)6]2[NpO2(OH)4]3·H2O reveal a ν1(O═Np═O) symmetric stretch at 741 cm(-1). Raman spectra of NpO2(2+) recorded in a 0.6-2.2 M LiOH solution reveal a single ν1 frequency of 769 cm(-1). Facile exchange of the neptunyl oxo ligands with the water solvent was also observed with Raman spectroscopy performed with (16)O- and (18)O-enriched water solvent. The combination of EXAFS and Raman data suggests that NpO2(OH)4(2-) is the dominant solution species under the conditions of study and that a small amount of a second species, NpO2(OH)5(3-), may also be present at higher alkalinity. Crystal data for [Co(NH3)6]2[NpO2(OH)4]3·H2O: monoclinic, space group C2/c, a = 17.344(4) Å, b = 12.177(3) Å, c = 15.273 Å, β = 120.17(2)°, Z = 4, R1 = 0.0359, wR2 = 0.0729.

  9. Impact of Pad Conditioning on Thickness Profile Control in Chemical Mechanical Planarization

    NASA Astrophysics Data System (ADS)

    Kincal, S.; Basim, G. B.

    2013-01-01

    Chemical mechanical planarization (CMP) has been proven to be the best method to achieve within-wafer and within-die uniformity for multilevel metallization. Decreasing device dimensions and increasing wafer sizes continuously demand better planarization, which necessitates better understanding of all the variables of the CMP process. A recently highlighted critical factor, pad conditioning, affects the pad surface profile and consequently the wafer profile; in addition, it reduces defects by refreshing the pad surface during polishing. This work demonstrates the changes in the postpolish wafer profile as a function of pad wear. It also introduces a wafer material removal rate profile model based on the locally relevant Preston equation by estimating the pad thickness profile as a function of polishing time. The result is a dynamic predictor of how the wafer removal rate profile shifts as the pad ages. The model helps fine-tune the pad conditioner operating characteristics without the requirement for costly and lengthy experiments. The accuracy of the model is demonstrated by experiments as well as data from a real production line. Both experimental data and simulations indicate that the smaller conditioning disk size and extended conditioning sweep range help improve the post-CMP wafer planarization. However, the defectivity tends to increase when the conditioning disk sweeps out of the pad radius; hence, the pad conditioning needs to be designed by considering the specific requirements of the CMP process conducted. The presented model predicts the process outcomes without requiring detailed experimentation.

  10. Conversion of Japanese red pine wood (Pinus densiflora) into valuable chemicals under subcritical water conditions.

    PubMed

    Asghari, Feridoun Salak; Yoshida, Hiroyuki

    2010-01-11

    A comparative study on the decomposition of Japanese red pine wood under subcritical water conditions in the presence and absence of phosphate buffer was investigated in a batch-type reaction vessel. Since cellulose makes up more than 40-45% of the components found in most wood species, a series of experiments were also carried out using pure cellulose as a model for woody biomass. Several parameters such as temperature and residence time, as well as pH effects, were investigated in detail. The best temperature for decomposition and hydrolysis of pure cellulose was found around 270 degrees C. The effects of the initial pH of the solution which ranged from 1.5 to 6.5 were studied. It was found that the pH has a considerable effect on the hydrolysis and decomposition of the cellulose. Several products in the aqueous phase were identified and quantified. The conditions obtained from the subcritical water treatment of pure cellulose were applied for the Japanese red pine wood chips. As a result, even in the absence of acid catalyst, a large amount of wood sample was hydrolyzed in water; however, by using phosphate buffer at pH 2, there was an increase in the hydrolysis and dissolution of the wood chips. In addition to the water-soluble phase, acetone-soluble and water-acetone-insoluble phases were also isolated after subcritical water treatment (which can be attributed mainly to the degraded lignin, tar, and unreacted wood chips, respectively). The initial wood:acid ratio in the case of reactions catalyzed by phosphate buffer was also investigated. The results showed that this weight ratio can be as high as 3:1 without changing the catalytic activity. The size of the wood chips as one of the most important experimental parameters was also investigated.

  11. Prebiotic chemistry: chemical evolution of organics on the primitive Earth under simulated prebiotic conditions.

    PubMed

    Dondi, Daniele; Merli, Daniele; Pretali, Luca; Fagnoni, Maurizio; Albini, Angelo; Serpone, Nick

    2007-11-01

    A series of prebiotic mixtures of simple molecules, sources of C, H, N, and O, were examined under conditions that may have prevailed during the Hadean eon (4.6-3.8 billion years), namely an oxygen-free atmosphere and a significant UV radiation flux over a large wavelength range due to the absence of an ozone layer. Mixtures contained a C source (methanol, acetone or other ketones), a N source (ammonia or methylamine), and an O source (water) at various molar ratios of C : H : N : O. When subjected to UV light or heated for periods of 7 to 45 days under an argon atmosphere, they yielded a narrow product distribution of a few principal compounds. Different initial conditions produced different distributions. The nature of the products was ascertained by gas chromatographic-mass spectral analysis (GC-MS). UVC irradiation of an aqueous methanol-ammonia-water prebiotic mixture for 14 days under low UV dose (6 x 10(-2) Einstein) produced methylisourea, hexamethylenetetramine (HMT), methyl-HMT and hydroxy-HMT, whereas under high UV dose (45 days; 1.9 x 10(-1) Einstein) yielded only HMT. By contrast, the prebiotic mixture composed of acetone-ammonia-water produced five principal species with acetamide as the major component; thermally the same mixture produced a different product distribution of four principal species. UVC irradiation of the CH(3)CN-NH(3)-H(2)O prebiotic mixture for 7 days gave mostly trimethyl-s-triazine, whereas in the presence of two metal oxides (TiO(2) or Fe(2)O(3)) also produced some HMT; the thermal process yielded only acetamide.

  12. On the formation and structure of rare-earth element complexes in aqueous solutions under hydrothermal conditions with new data on gadolinium aqua and chloro complexes

    USGS Publications Warehouse

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2007-01-01

    (III) chloro complexes increases steadily with temperature from 0.4 ?? 0.2 to 1.7 ?? 0.3 in the 0.006m chloride solution and from 0.9 ?? 0.7 to 1.8 ?? 0.7 in the 0.1m GdCl3 aqueous solution in the 300-500????C range. Conversely, the number of H2O ligands of Gd(H2O)??-nCln+3-n complexes decreases steadily from 8.9 ?? 0.4 to 5.8 ?? 0.7 in the 0.006m GdCl3 aqueous solution and from 9.0 ?? 0.5 to 5.3 ?? 1.0 in the 0.1m GdCl3 aqueous solution at temperatures from 25 to 500????C. Analysis of our results shows that the chloride ions partially displace the inner-shell water molecules during Gd(III) complex formation under hydrothermal conditions. The Gd-OH2 bond of the partially-hydrated Gd(III) chloro complexes exhibits slightly smaller rates of length contraction (??? 0.005??A??/100????C) for both solutions. The structural aspects of chloride speciation of Gd(III) as measured from this study and of Yb(III) as measured from our previous experiments are consistent with the solubility of these and other REE in deep-sea hydrothermal fluids. ?? 2006 Elsevier B.V. All rights reserved.

  13. Chemical Processing in High-Pressure Aqueous Environments. 9. Process Development for Catalytic Gasification of Algae Feedstocks

    SciTech Connect

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.

    2012-07-26

    Through the use of a metal catalyst, gasification of wet algae slurries can be accomplished with high levels of carbon conversion to gas at relatively low temperature (350 C). In a pressurized-water environment (20 MPa), near-total conversion of the organic structure of the algae to gases has been achieved in the presence of a supported ruthenium metal catalyst. The process is essentially steam reforming, as there is no added oxidizer or reagent other than water. In addition, the gas produced is a medium-heating value gas due to the synthesis of high levels of methane, as dictated by thermodynamic equilibrium. As opposed to earlier work, biomass trace components were removed by processing steps so that they did not cause processing difficulties in the fixed catalyst bed tubular reactor system. As a result, the algae feedstocks, even those with high ash contents, were much more reliably processed. High conversions were obtained even with high slurry concentrations. Consistent catalyst operation in these short-term tests suggested good stability and minimal poisoning effects. High methane content in the product gas was noted with significant carbon dioxide captured in the aqueous byproduct in combination with alkali constituents and the ammonia byproduct derived from proteins in the algae. High conversion of algae to gas products was found with low levels of byproduct water contamination and low to moderate loss of carbon in the mineral separation step.

  14. Iodine-xenon, chemical, and petrographie studies of Semarkona chondrules: Evidence for the timing of aqueous alteration

    USGS Publications Warehouse

    Swindle, T.D.; Grossman, J.N.; Olinger, C.T.; Garrison, D.H.

    1991-01-01

    We have performed INAA, petrographie, and noble gas analyses on seventeen chondrules from the Semarkona meteorite (LL3.0) primarily to study the relationship of the I-Xe system to other measured properties. We observe a range of ???10 Ma in apparent I-Xe ages. The three latest apparent ages fall in a cluster, suggesting the possibility of a common event. The initial 129I/127I ratio (R0) is apparently related to chondrule type and/or mineralogy, with nonporphyritic and pyroxene-rich chondrules showing evidence for lower R0'S (later apparent I-Xe ages) than porphyritic and olivine-rich chondrules. In addition, chondrules with sulfides on or near the surface have lower R0S than other chondrules. The 129Xe/132Xe ratio in the trapped Xe component anticorrelates with R0, consistent with evolution of a chronometer in a closed system or in multiple similar systems. On the basis of these correlations, we conclude that the variations in R0 represent variations in ages, and that later event(s), possibly aqueous alteration, preferentially affected chondrules with nonporphyritic textures and/or sulfide-rich exteriors about 10 Ma after the formation of the chondrules. ?? 1991.

  15. Iodine-xenon, chemical, and petrographic studies of Semarkona chondrules - Evidence for the timing of aqueous alteration

    NASA Technical Reports Server (NTRS)

    Swindle, T. D.; Grossman, J. N.; Olinger, C. T.; Garrison, D. H.

    1991-01-01

    The relationship of the I-Xe system of the Semarkona meteorite to other measured properties is investigated via INAA, petrographic, and noble-gas analyses on 17 chondrules from the meteorite. A range of not less than 10 Ma in apparent I-Xe ages is observed. The three latest apparent ages fall in a cluster, suggesting the possibility of a common event. It is argued that the initial I-129/I-127 ratio (R0) is related to chondrule type and/or mineralogy, with nonporphyritic and pyroxene-rich chondrules showing evidence for lower R0s than porphyritic and olivine-rich chondrules. Chondrules with sulfides on or near the surface have lower R0s than other chondrules. The He-129/Xe-132 ratio in the trapped Xe component anticorrelates with R0, consistent with the evolution of a chronometer in a closed system or in multiple systems. It is concluded that the variations in R0 represent variations in ages, and that later events, possibly aqueous alteration, preferentially affected chondrules with nonporphyritic textures and/or sulfide-rich exteriors about 10 Ma after the formation of the chondrules.

  16. Solvent effects on chemical processes. I: Solubility of aromatic and heterocyclic compounds in binary aqueous-organic solvents.

    PubMed

    Khossravi, D; Connors, K A

    1992-04-01

    The standard free energy change (delta G0) for equilibrium dissolution in binary solvent mixtures is written as a sum of effects arising from solvent-solvent interactions (the general medium effect), solvent-solute interactions (the solvation effect), and solute-solute interactions (the intersolute effect). The general medium effect is given by gA gamma, where g is a curvature correction factor to the surface tension (gamma) and A is the molecular cavity surface area. A new feature is the definition of gamma to be that value appropriate to the equilibrium mean solvation shell composition. The solvation effect is modeled by stoichiometric stepwise competitive equilibria between the two solvent components for the solute. The intersolute effect includes the crystal energy and solution phase interactions. In this work, water was solvent component 1, and various miscible organic cosolvents served as solvent component 2. Relating all data to the fully aqueous solution gives an explicit expression for delta M delta G0, the solvent effect on the free energy change, as a function of the mole fractions x1 and x2. This function is a binding isotherm. Nonlinear regression leads (for a two-step solvation scheme) to estimates of the solvation exchange constants K1 and K2 and the parameter gA. This relationship was applied to 44 systems comprising combinations of 31 solutes and eight organic cosolvents. Curve fits were good to excellent, and most of the parameter estimates had physically reasonable magnitudes.

  17. Adsorption of nitrate from aqueous solution by magnetic amine-crosslinked biopolymer based corn stalk and its chemical regeneration property.

    PubMed

    Song, Wen; Gao, Baoyu; Xu, Xing; Wang, Fang; Xue, Nan; Sun, Shenglei; Song, Wuchang; Jia, Ruibao

    2016-03-05

    A novel adsorbent of magnetic amine-crosslinked biopolymer based corn stalk (MAB-CS) was synthesized and used for nitrate removal from aqueous solution. The characters and adsorption mechanisms of this bio-adsorbent were determined by using VSM, TGA, XRD, SEM, TEM, FT-IR and XPS, respectively. The results revealed that the saturated magnetization of MAB-CS reached 6.25 emu/g. Meanwhile, the studies of various factors indicated that this novel magnetic bio-adsorbent performed well over a considerable wide pH range of 6.0 ∼ 9.0, and the presence of PO4(3-) and SO4(2-) would markedly decrease the nitrate removal efficiency. Furthermore, the nitrate adsorption by MAB-CS perfectly fitted the Langmuir isotherm model (R(2)=0.997-0.999) and pseudo second order kinetic model (R(2)=0.953-0.995). The calculated nitrate adsorption capacity of MAB-CS was 102.04 mg/g at 318 K by Langmuir model, and thermodynamic study showed that nitrate adsorption is an spontaneous endothermic process. The regeneration experiments indicated its merit of regeneration and stability with the recovery efficient of 118 ∼ 147%. By integrating the experimental results, it was found that the removal of nitrate was mainly via electrostatic attraction and ion exchange. And this novel bio-adsorbent prepared in this work could achieve effective removal of nitrate and rapid separation from effluents simultaneously.

  18. Real-time detection of concealed chemical hazards under ambient light conditions using Raman spectroscopy.

    PubMed

    Cletus, Biju; Olds, William; Fredericks, Peter M; Jaatinen, Esa; Izake, Emad L

    2013-07-01

    Current concerns regarding terrorism and international crime highlight the need for new techniques for detecting unknown and hazardous substances. A novel Raman spectroscopy-based technique, spatially offset Raman spectroscopy (SORS), was recently devised for noninvasively probing the contents of diffusely scattering and opaque containers. Here, we demonstrate a modified portable SORS sensor for detecting concealed substances in-field under different background lighting conditions. Samples including explosive precursors, drugs, and an organophosphate insecticide (chemical warfare agent surrogate) were concealed inside diffusely scattering packaging including plastic, paper, and cloth. Measurements were carried out under incandescent and fluorescent light as well as under daylight to assess the suitability of the probe for different real-life conditions. In each case, it was possible to identify the substances against their reference Raman spectra in less than 1 min. The developed sensor has potential for rapid detection of concealed hazardous substances in airports, mail distribution centers, and customs checkpoints.

  19. Optimizing chemical conditioning for odour removal of undigested sewage sludge in drying processes.

    PubMed

    Vega, Esther; Monclús, Hèctor; Gonzalez-Olmos, Rafael; Martin, Maria J

    2015-03-01

    Emission of odours during the thermal drying in sludge handling processes is one of the main sources of odour problems in wastewater treatment plants. The objective of this work was to assess the use of the response surface methodology as a technique to optimize the chemical conditioning process of undigested sewage sludges, in order to improve the dewaterability, and to reduce the odour emissions during the thermal drying of the sludge. Synergistic effects between inorganic conditioners (iron chloride and calcium oxide) were observed in terms of sulphur emissions and odour reduction. The developed quadratic models indicated that optimizing the conditioners dosage is possible to increase a 70% the dewaterability, reducing a 50% and 54% the emission of odour and volatile sulphur compounds respectively. The optimization of the conditioning process was validated experimentally.

  20. Combined physical and chemical methods to control lesser mealworm beetles under laboratory conditions.

    PubMed

    Wolf, Jônatas; Potrich, Michele; Lozano, Everton R; Gouvea, Alfredo; Pegorini, Carla S

    2015-06-01

    The lesser mealworm beetle, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), is an important insect pest. The insect acts as a disease vector and reservoir, negatively affecting the health of birds and humans, and harming poultry husbandry. Controlling the lesser mealworm is generally based on using synthetic chemical insecticides, which are sometimes ineffective, and is limited due to market concerns regarding the toxicity of chemical residues in food products. In this context, the present study aimed to evaluate the potential for the combination of physical and chemical methods to control A. diaperinus. Bioassays were conducted using poultry bedding and known populations of beetle adults and larvae. The treatments consisted of the isolated application of 400 g/m2 hydrated lime; 20% added moisture (distilled water); temperature increase to 45°C; an insecticide composed of cypermethrin, chlorpyrifos, and citronellal; and a combination of these factors. Beetle mortality was measured at 7 and 10 d of treatment. The hydrated lime and moisture treatments alone did not control A. diaperinus. Raising the temperature of the poultry bedding to 45°C effectively controlled both larvae (90±6%) and adults (90±4%). The use of insecticide provided adequate control of A. diaperinus in the conditions of the bioassay (93±2% and 68±5% for adults and larvae, respectively). The combination of the studied factors led to the total control of larvae and adults after 7 d of treatment.

  1. Application of pervaporation and vapor permeation processes to separate aqueous ethanol solution through chemically modified Nylon 4 membranes

    SciTech Connect

    Wang, Y.H.; Teng, M.Y.; Lee, K.R.; Wang, D.M.; Lai, J.Y.

    1998-08-01

    The pervaporation performance of a Nylon 4 membrane, chemically grafted by N,N-dimethylaminoethyl methacrylate (DMAEM), DMAEM-g-N4, was studied by measurement of the permeation ratio and the pervaporation separation index. It was found that the water permselectivity and permeation rate for the chemically modified Nylon 4 membrane were higher than those of the unmodified Nylon 4 membrane. Optimum pervaporation results, a separation factor of 28.3, and a permeation rate of 439 g/m{sup 2}{center_dot}h, were obtained when the degree of grafting was 12.7%. It was also found that all the permeation ratios at low temperature were less than unity. In addition, compared with pervaporation, vapor permeation effectively increases the permselectivity of water.

  2. Behavioral response of Corophium volutator relative to experimental conditions, physical and chemical disturbances.

    PubMed

    Hellou, Jocelyne; Cheeseman, Kerri; Jouvenelle, Marie-Laure; Robertson, Sarah

    2005-12-01

    The preference/avoidance behavioral response of a widely used amphipod in toxicity tests, Corophium volutator, was investigated in relation to the presence of anthropogenic physical or chemical materials in sediments. Exposure conditions, including the density of amphipods, the depth of sediments, amount of overlying water, and exposure time, were examined for their influence on amphipods' preference for field sediments and avoidance of coarse sand. It was shown that these variables did not affect the response; thus, conditions similar to published standard toxicity tests were chosen. A gradient of sediments spiked with potential habitat disturbances that can be found on a beach or in contaminated sediments, such as those in harbors, were tested. These substances included sand, seaweed, burned wood, coal, crankcase oil, and diesel oil. To enhance the interpretation of results and decrease the variability observed when tests were conducted at different times over the summer, exposures were performed over a gradient of spike material in reference sediments. We conclude that physical obstacles added to reference sediments lead to less correlation with the behavioral response than observed with chemical interferences. Amphipods' behavior ranked harbor sediments similarly to previous studies concerning the health of intertidal mussels collected in proximity to the sediments sites. For five sites, preference of reference sediments was observed until the level of polycyclic aromatic hydrocarbons in diluted harbor sediments reached the Canadian Council of Ministers of the Environment sediment quality guidelines.

  3. Effects of biomass types and carbonization conditions on the chemical characteristics of hydrochars.

    PubMed

    Cao, Xiaoyan; Ro, Kyoung S; Libra, Judy A; Kammann, Claudia I; Lima, Isabel; Berge, Nicole; Li, Liang; Li, Yuan; Chen, Na; Yang, John; Deng, Baolin; Mao, Jingdong

    2013-10-02

    Effects of biomass types (bark mulch versus sugar beet pulp) and carbonization processing conditions (temperature, residence time, and phase of reaction medium) on the chemical characteristics of hydrochars were examined by elemental analysis, solid-state ¹³C NMR, and chemical and biochemical oxygen demand measurements. Bark hydrochars were more aromatic than sugar beet hydrochars produced under the same processing conditions. The presence of lignin in bark led to a much lower biochemical oxygen demand (BOD) of bark than sugar beet and increasing trends of BOD after carbonization. Compared with those prepared at 200 °C, 250 °C hydrochars were more aromatic and depleted of carbohydrates. Longer residence time (20 versus 3 h) at 250 °C resulted in the enrichment of nonprotonated aromatic carbons. Both bark and sugar beet pulp underwent deeper carbonization during water hydrothermal carbonization than during steam hydrothermal carbonization (200 °C, 3 h) in terms of more abundant aromatic C but less carbohydrate C in water hydrochars.

  4. Chemical boundary conditions for the classification of aerosol particles using computer controlled electron probe microanalysis.

    PubMed

    Anaf, Willemien; Horemans, Benjamin; Van Grieken, René; De Wael, Karolien

    2012-11-15

    A method for the classification of individual aerosol particles using computer controlled electron probe microanalysis is presented. It is based on chemical boundary conditions (CBC) and enables quick and easy processing of a large set of elemental concentration data (mass%), derived from the X-ray spectra of individual particles. The particles are first classified into five major classes (sea salt related, secondary inorganic, minerals, iron-rich and carbonaceous), after which advanced data mining can be performed by examining the elemental composition of particles within each class into more detail (e.g., by ternary diagrams). The CBC method is validated and evaluated by comparing its results with the output obtained with hierarchical cluster analysis (HCA) for well-known standard particles as well as real aerosol particles collected with a cascade impactor. The CBC method gives reliable results and has a major advantage compared to HCA. CBC is based on boundary conditions that are derived from chemical logical thinking and does not require a translation of a mathematical algorithm output as does HCA. Therefore, the CBC method is more objective and enables comparison between samples without intermediate steps.

  5. A continuum analysis of chemical nonequilibrium under hypersonic low-density flight conditions

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.

    1986-01-01

    Results of employing the continuum model of Navier-Stokes equations under the low-density flight conditions are presented. These results are obtained with chemical nonequilibrium and multicomponent surface slip boundary conditions. The conditions analyzed are those encountered by the nose region of the Space Shuttle Orbiter during reentry. A detailed comparison of the Navier-Stokes (NS) results is made with the viscous shock-layer (VSL) and direct simulation Monte Carlo (DSMC) predictions. With the inclusion of new surface-slip boundary conditions in NS calculations, the surface heat transfer and other flowfield quantities adjacent to the surface are predicted favorably with the DSMC calculations from 75 km to 115 km in altitude. This suggests a much wider practical range for the applicability of Navier-Stokes solutions than previously thought. This is appealing because the continuum (NS and VSL) methods are commonly used to solve the fluid flow problems and are less demanding in terms of computer resource requirements than the noncontinuum (DSMC) methods.

  6. Study of CdS epitaxial films chemically deposited from aqueous solutions on InP single crystals

    SciTech Connect

    Froment, M.; Bernard, M.C.; Cortes, R.; Mokili, B.; Lincot, D.

    1995-08-01

    Epitaxial growth of cadmium sulfide on InP single crystals is achieved by chemical bath deposition (CBD) in ammonia solutions at near room temperature. A better understanding of the correlations between the deposition parameters (temperature, bath composition) and the epitaxial quality is obtained by using electron diffraction and transmission techniques, x-ray diffraction, in combination with Raman spectroscopy. They are supplemented by electrochemical impedance and photocurrent experiments which give information on energetic structures between InP and CBD-CdS. Direct relations between the substrate properties and the growth habits of the CdS film (hexagonal vs. cubic, epitaxial vs. polycrystalline) are found.

  7. Interpopulational Variations in Sexual Chemical Signals of Iberian Wall Lizards May Allow Maximizing Signal Efficiency under Different Climatic Conditions

    PubMed Central

    2015-01-01

    Sexual signals used in intraspecific communication are expected to evolve to maximize efficacy under a given climatic condition. Thus, chemical secretions of lizards might evolve in the evolutionary time to ensure that signals are perfectly tuned to local humidity and temperature conditions affecting their volatility and therefore their persistence and transmission through the environment. We tested experimentally whether interpopulational altitudinal differences in chemical composition of femoral gland secretions of male Iberian wall lizards (Podarcis hispanicus) have evolved to maximize efficacy of chemical signals in different environmental conditions. Chemical analyses first showed that the characteristics of chemical signals of male lizards differed between two populations inhabiting environments with different climatic conditions in spite of the fact that these two populations are closely related genetically. We also examined experimentally whether the temporal attenuation of the chemical stimuli depended on simulated climatic conditions. Thus, we used tongue-flick essays to test whether female lizards were able to detect male scent marks maintained under different conditions of temperature and humidity by chemosensory cues alone. Chemosensory tests showed that chemical signals of males had a lower efficacy (i.e. detectability and persistence) when temperature and dryness increase, but that these effects were more detrimental for signals of the highest elevation population, which occupies naturally colder and more humid environments. We suggest that the abiotic environment may cause a selective pressure on the form and expression of sexual chemical signals. Therefore, interpopulational differences in chemical profiles of femoral secretions of male P. hispanicus lizards may reflect adaptation to maximize the efficacy of the chemical signal in different climates. PMID:26121693

  8. Interpopulational Variations in Sexual Chemical Signals of Iberian Wall Lizards May Allow Maximizing Signal Efficiency under Different Climatic Conditions.

    PubMed

    Martín, José; Ortega, Jesús; López, Pilar

    2015-01-01

    Sexual signals used in intraspecific communication are expected to evolve to maximize efficacy under a given climatic condition. Thus, chemical secretions of lizards might evolve in the evolutionary time to ensure that signals are perfectly tuned to local humidity and temperature conditions affecting their volatility and therefore their persistence and transmission through the environment. We tested experimentally whether interpopulational altitudinal differences in chemical composition of femoral gland secretions of male Iberian wall lizards (Podarcis hispanicus) have evolved to maximize efficacy of chemical signals in different environmental conditions. Chemical analyses first showed that the characteristics of chemical signals of male lizards differed between two populations inhabiting environments with different climatic conditions in spite of the fact that these two populations are closely related genetically. We also examined experimentally whether the temporal attenuation of the chemical stimuli depended on simulated climatic conditions. Thus, we used tongue-flick essays to test whether female lizards were able to detect male scent marks maintained under different conditions of temperature and humidity by chemosensory cues alone. Chemosensory tests showed that chemical signals of males had a lower efficacy (i.e. detectability and persistence) when temperature and dryness increase, but that these effects were more detrimental for signals of the highest elevation population, which occupies naturally colder and more humid environments. We suggest that the abiotic environment may cause a selective pressure on the form and expression of sexual chemical signals. Therefore, interpopulational differences in chemical profiles of femoral secretions of male P. hispanicus lizards may reflect adaptation to maximize the efficacy of the chemical signal in different climates.

  9. Assessment Of Chemical Dispersant Effectiveness In A Wave Tank Under Regular Non-Breaking And Breaking Wave Conditions

    EPA Science Inventory

    Current chemical dispersant effectiveness tests for product selection are commonly performed with bench-scale testing apparatus. However, for the assessment of oil dispersant effectiveness under real sea state conditions, test protocols are required to have hydrodynamic conditio...

  10. Barrier crossing with concentration boundary conditions in biological channels and chemical reactions

    NASA Astrophysics Data System (ADS)

    Barcilon, Victor; Chen, Duanpin; Eisenberg, Robert S.; Ratner, Mark A.

    1993-01-01

    Ions move into biological cells through pores in proteins called ionic channels, driven by gradients of potential and concentration imposed across the channel, impeded by potential barriers and friction within the pore. It is tempting to apply to channels the chemical theory of barrier crossing, but important issues must first be solved: Concentration boundary conditions must be used and flux must be predicted for applied potentials of all sizes and for barriers of all shapes, in particular, for low barriers. We use a macroscopic analysis to describe the flux as a convolution integral of a mathematically defined adjoint function, a Green's function. It so happens that the adjoint function also describes the first-passage time of a single particle moving between boundary conditions independent of concentration. The (experimentally observable) flux is computed from analytical formulas, from simulations of discrete random walks, and from simulations of the Langevin or reduced Langevin equations, with indistinguishable results. If the potential barrier has a single, large, parabolic peak, away from either boundary, an approximate expression reminiscent of Kramers' formula can be used to determine the flux. The fluxes predicted can be compared with measurements of current through single channels under a wide range of experimental conditions.

  11. Aerosol physical, chemical and optical properties observed in the ambient atmosphere during haze pollution conditions

    NASA Astrophysics Data System (ADS)

    Li, Zhengqiang; Xie, Yisong; Li, Donghui; Li, Kaitao; Zhang, Ying; Li, Li; Lv, Yang; Qie, Lili; Xu, Hua

    Aerosol’s properties in the ambient atmosphere may differ significantly from sampling results due to containing of abundant water content. We performed sun-sky radiometer measurements in Beijing during 2011 and 2012 winter to obtain distribution of spectral and angular sky radiance. The measurements are then used to retrieve aerosol physical, chemical and optical properties, including single scattering albedo, size distribution, complex refractive indices and aerosol component fractions identified as black carbon, brown carbon, mineral dust, ammonium sulfate-like components and water content inside particle matters. We found that during winter haze condition aerosol is dominated by fine particles with center radius of about 0.2 micron. Fine particles contribute about 93% to total aerosol extinction of solar light, and result in serious decrease of atmospheric visibility during haze condition. The percentage of light absorption of haze aerosol can up to about 10% among its total extinction, much higher than that of unpolluted conditions, that causes significant radiative cooling effects suppressing atmospheric convection and dispersion of pollutants. Moreover, the average water content occupies about one third of the ambient aerosol in volume which suggests the important effect of ambient humidity in the formation of haze pollution.

  12. Efficient and selective chemical transformations under flow conditions: The combination of supported catalysts and supercritical fluids.

    PubMed

    Burguete, M Isabel; García-Verdugo, Eduardo; Luis, Santiago V

    2011-01-01

    This paper reviews the current trends in the combined use of supported catalytic systems, either on solid supports or in liquid phases and supercritical fluids (scFs), to develop selective and enantioselective chemical transformations under continuous and semi-continuous flow conditions. The results presented have been selected to highlight how the combined use of those two elements can contribute to: (i) Significant improvements in productivity as a result of the enhanced diffusion of substrates and reagents through the interfaces favored by the scF phase; (ii) the long term stability of the catalytic systems, which also contributes to the improvement of the final productivity, as the use of an appropriate immobilization strategy facilitates catalyst isolation and reuse; (iii) the development of highly efficient selective or, when applicable, enantioselective chemical transformations. Although the examples reported in the literature and considered in this review are currently confined to a limited number of fields, a significant development in this area can be envisaged for the near future due to the clear advantages of these systems over the conventional ones.

  13. Chemical Quantification of Atomic-Scale EDS Maps under Thin Specimen Conditions

    DOE PAGES

    Lu, Ping; Romero, Eric; Lee, Shinbuhm; ...

    2014-10-13

    We report our effort to quantify atomic-scale chemical maps obtained by collecting energy-dispersive X-ray spectra (EDS) using scanning transmission electron microscopy (STEM) (STEM-EDS). Under a thin specimen condition and when the EDS scattering potential is localized, the X-ray counts from atomic columns can be properly counted by fitting Gaussian peaks at the atomic columns, and can then be used for site-by-site chemical quantification. The effects of specimen thickness and X-ray energy on the Gaussian peak-width are investigated by using SrTiO3 (STO) as a model specimen. The relationship between the peak-width and spatial-resolution of an EDS map is also studied. Furthermore,more » the method developed by this work is applied to study a Sm-doped STO thin film and antiphase boundaries present within the STO film. We find that Sm atoms occupy both Sr and Ti sites but preferably the Sr sites, and Sm atoms are relatively depleted at the antiphase boundaries likely due to the effect of strain.« less

  14. Chemical Quantification of Atomic-Scale EDS Maps under Thin Specimen Conditions

    SciTech Connect

    Lu, Ping; Romero, Eric; Lee, Shinbuhm; MacManus-Driscoll, Judith L.; Jia, Quanxi

    2014-10-13

    We report our effort to quantify atomic-scale chemical maps obtained by collecting energy-dispersive X-ray spectra (EDS) using scanning transmission electron microscopy (STEM) (STEM-EDS). Under a thin specimen condition and when the EDS scattering potential is localized, the X-ray counts from atomic columns can be properly counted by fitting Gaussian peaks at the atomic columns, and can then be used for site-by-site chemical quantification. The effects of specimen thickness and X-ray energy on the Gaussian peak-width are investigated by using SrTiO3 (STO) as a model specimen. The relationship between the peak-width and spatial-resolution of an EDS map is also studied. Furthermore, the method developed by this work is applied to study a Sm-doped STO thin film and antiphase boundaries present within the STO film. We find that Sm atoms occupy both Sr and Ti sites but preferably the Sr sites, and Sm atoms are relatively depleted at the antiphase boundaries likely due to the effect of strain.

  15. Synthesis of iron oxide nanorods via chemical scavenging and phase transformations of intermediates at ambient conditions

    NASA Astrophysics Data System (ADS)

    Deshmukh, Ruchi; Mehra, Anurag; Thaokar, Rochish

    2017-01-01

    Chemically induced shape transformations of isotropic seeds, comprised of iron oxyhydroxides and iron oxide borate into nanorods, is reported. Transient growth studies show that the nanorods are formed via phase transformation and aggregation of various metastable species. Addition of tetra- methyl-ammonium hydroxide (TMAH) to the in situ synthesized seeds ensures a typical reaction pathway that favors formation of magnetite (Fe 3 O 4) via the steps of chemical etching, phase transformation of intermediates, and crystal consolidation. Whereas, with addition of sodium hydroxide (NaOH), either magnetite (Fe 3 O 4) or a mixture of ( γ-Fe 2 O 3 + α-FeOOH) is obtained. The shape with both the additives is always that of nanorods. When the seeds treated with TMAH were aged in an ultrasonication bath, rods with almost twice the length and diameter (length = 2800 nm, diameter = 345 nm) are obtained as compared to the sample aged without ultrasonication (length = 1535 nm, diameter = 172 nm). The morphology of nanostructures depending upon other experimental conditions such as, aging the sample at 60 ∘C, seeds synthesized under ultrasonication/ stirring or externally added are also examined and discussed in detail. All the samples show high coercivity and strong ferromagnetic behavior at room temperature and should be promising candidates as ferro-fluids for various applications.

  16. A Molecular Dynamics Study of Chemical Reactions of Solid Pentaerythritol Tetranitrate at Extreme Conditions

    SciTech Connect

    Wu, C J; Manaa, M R; Fried, L E

    2006-05-30

    We have carried out density functional based tight binding (DFTB) molecular dynamics (MD) simulation to study energetic reactions of solid Pentaerythritol Tetranitrate (PETN) at conditions approximating the Chapman-Jouguet (CJ) detonation state. We found that the initial decomposition of PETN molecular solid is characterized by uni-molecular dissociation of the NO{sub 2}groups. Interestingly, energy release from this powerful high explosive was found to proceed in several stages. The large portion of early stage energy release was found to be associated with the formation of H{sub 2}O molecules within a few picoseconds of reaction. It took nearly four times as long for majority of CO{sub 2} products to form, accompanied by a slow oscillatory conversion between CO and CO{sub 2}. The production of N{sub 2} starts after NO{sub 2} loses its oxygen atoms to hydrogen or carbon atoms to form H{sub 2}O or CO. We identified many intermediate species that emerge and contribute to reaction kinetics, and compared our simulation with a thermo-chemical equilibrium calculation. In addition, a detailed chemical kinetics of formation of H{sub 2}O, CO, and CO{sub 2} were developed. Rate constants of formations of H{sub 2}O, CO{sub 2} and N{sub 2} were reported.

  17. Efficient and selective chemical transformations under flow conditions: The combination of supported catalysts and supercritical fluids

    PubMed Central

    Burguete, M Isabel; García-Verdugo, Eduardo

    2011-01-01

    Summary This paper reviews the current trends in the combined use of supported catalytic systems, either on solid supports or in liquid phases and supercritical fluids (scFs), to develop selective and enantioselective chemical transformations under continuous and semi-continuous flow conditions. The results presented have been selected to highlight how the combined use of those two elements can contribute to: (i) Significant improvements in productivity as a result of the enhanced diffusion of substrates and reagents through the interfaces favored by the scF phase; (ii) the long term stability of the catalytic systems, which also contributes to the improvement of the final productivity, as the use of an appropriate immobilization strategy facilitates catalyst isolation and reuse; (iii) the development of highly efficient selective or, when applicable, enantioselective chemical transformations. Although the examples reported in the literature and considered in this review are currently confined to a limited number of fields, a significant development in this area can be envisaged for the near future due to the clear advantages of these systems over the conventional ones. PMID:22043246

  18. Review and analysis of high temperature chemical reactions and the effect of non-equilibrium conditions

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1986-01-01

    Chemical reactions at high temperatures have been considered extensively because of their importance to the heating effects on re-entry of space vehicles. Data on these reactions however, are not abundant and even when found there are discrepancies in data collected by various investigators. In particular, data for recombination reactions are calculated from the dissociation reactions or vice versa through the equilibrium constant. This involves the use of the principle of detailed balancing. This principle is discussed in reference to conditions where it is valid as well as to those where it is not valid. Related topics that merit further study or for which applicable information was available are briefly mentioned in an appendix to this report.

  19. Transcriptome analysis of the phytobacterium Xylella fastidiosa growing under xylem-based chemical conditions.

    PubMed

    Ciraulo, Maristela Boaceff; Santos, Daiene Souza; Rodrigues, Ana Claudia de Freitas Oliveira; de Oliveira, Marcus Vinícius; Rodrigues, Tiago; de Oliveira, Regina Costa; Nunes, Luiz R

    2010-01-01

    Xylella fastidiosa is a xylem-limited bacterium responsible for important plant diseases, like citrus-variegated chlorosis (CVC) and grapevine Pierce's disease (PD). Interestingly, in vitro growth of X. fastidiosa in chemically defined media that resemble xylem fluid has been achieved, allowing studies of metabolic processes used by xylem-dwelling bacteria to thrive in such nutrient-poor conditions. Thus, we performed microarray hybridizations to compare transcriptomes of X. fastidiosa cells grown in 3G10-R, a medium that resembles grape sap, and in Periwinkle Wilt (PW), the complex medium traditionally used to cultivate X. fastidiosa. We identified 299 transcripts modulated in response to growth in these media. Some 3G10R-overexpressed genes have been shown to be upregulated in cells directly isolated from infected plants and may be involved in plant colonization, virulence and environmental competition. In contrast, cells cultivated in PW show a metabolic switch associated with increased aerobic respiration and enhanced bacterial growth rates.

  20. Radiative flow of a tangent hyperbolic fluid with convective conditions and chemical reaction

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Qayyum, Sajid; Ahmad, Bashir; Waqas, Muhammad

    2016-12-01

    The objective of present paper is to examine the thermal radiation effects in the two-dimensional mixed convection flow of a tangent hyperbolic fluid near a stagnation point. The analysis is performed in the presence of heat generation/absorption and chemical reaction. Convective boundary conditions for heat and mass transfer are employed. The resulting partial differential equations are reduced into nonlinear ordinary differential equations using appropriate transformations. Series solutions of momentum, energy and concentration equations are computed. The characteristics of various physical parameters on the distributions of velocity, temperature and concentration are analyzed graphically. Numerical values of skin friction coefficient, local Nusselt and Sherwood numbers are computed and examined. It is observed that larger values of thermal and concentration Biot numbers enhance the temperature and concentration distributions.

  1. The Standard Chemical-Thermodynamic Properties of Phosphorus and Some of its Key Compounds and Aqueous Species: An Evaluation of Differences between the Previous Recommendations of NBS/NIST and CODATA

    SciTech Connect

    Rard, J A; Wolery, T J

    2007-01-30

    The aqueous chemistry of phosphorus is dominated by P(V), which under typical environmental conditions (and depending on pH and concentration) can be present as the orthophosphate ions H{sub 3}PO{sub 4}{sup 0}(aq), H{sub 2}PO{sub 4}{sup -}(aq), HPO{sub 4}{sup 2-}(aq), or PO{sub 4}{sup 3-}(aq). Many divalent, trivalent, and tetravalent metal ions form sparingly soluble orthophosphate phases that, depending on the solution pH and concentrations of phosphate and metal ions, can be solubility limiting phases. Geochemical and chemical engineering modeling of solubilities and speciation requires comprehensive thermodynamic databases that include the standard thermodynamic properties for the aqueous species and solid compounds. The most widely used sources for standard thermodynamic properties are the NBS (now NIST) Tables (from 1982 and earlier; with a 1989 erratum) and the final CODATA evaluation (1989). However, a comparison of the reported enthalpies of formation and Gibbs energies of formation for key phosphate compounds and aqueous species, especially H{sub 2}PO{sub 4}{sup -}(aq) and HPO{sub 4}{sup 2-}(aq), shows a systematic and nearly constant difference of 6.3 to 6.9 kJ {center_dot} mol{sup -1} per phosphorus atom between these two evaluations. The existing literature contains numerous studies (including major data summaries) that are based on one or the other of these evaluations. In this report we examine and identify the origin of this difference and conclude that the CODATA evaluation is more reliable. Values of the standard entropies of the H{sub 2}PO{sub 4}{sup -}(aq), HPO{sub 4}{sup 2-}(aq), and PO{sub 4}{sup 3-}(aq) ions at 298.15 K and p{sup o} = 1 bar were re-examined in the light of more recent information and data not considered in the CODATA review, and a slightly different value of S{sub m}{sup o}(H{sub 2}PO{sub 4}{sup -}, aq, 298.15 K) = 90.6 {+-} 1.5 J {center_dot} K{sup -1} mol{sup -1} was obtained.

  2. Permafrost conditions in peatlands regulate magnitude, timing, and chemical composition of catchment dissolved organic carbon export.

    PubMed

    Olefeldt, David; Roulet, Nigel T

    2014-10-01

    Permafrost thaw in peatlands has the potential to alter catchment export of dissolved organic carbon (DOC) and thus influence downstream aquatic C cycling. Subarctic peatlands are often mosaics of different peatland types, where permafrost conditions regulate the hydrological setting of each type. We show that hydrological setting is key to observed differences in magnitude, timing, and chemical composition of DOC export between permafrost and nonpermafrost peatland types, and that these differences influence the export of DOC of larger catchments even when peatlands are minor catchment components. In many aspects, DOC export from a studied peatland permafrost plateau was similar to that of a forested upland catchment. Similarities included low annual export (2-3 g C m(-2) ) dominated by the snow melt period (~70%), and how substantial DOC export following storms required wet antecedent conditions. Conversely, nonpermafrost fens had higher DOC export (7 g C m(-2) ), resulting from sustained hydrological connectivity during summer. Chemical composition of catchment DOC export arose from the mixing of highly aromatic DOC from organic soils from permafrost plateau soil water and upland forest surface horizons with nonaromatic DOC from mineral soil groundwater, but was further modulated by fens. Increasing aromaticity from fen inflow to outlet was substantial and depended on both water residence time and water temperature. The role of fens as catchment biogeochemical hotspots was further emphasized by their capacity for sulfate retention. As a result of fen characteristics, a 4% fen cover in a mixed catchment was responsible for 34% higher DOC export, 50% higher DOC concentrations and ~10% higher DOC aromaticity at the catchment outlet during summer compared to a nonpeatland upland catchment. Expansion of fens due to thaw thus has potential to influence landscape C cycling by increasing fen capacity to act as biogeochemical hotspots, amplifying aquatic C cycling, and

  3. INITIAL CHEMICAL AND RESERVOIR CONDITIONS AT LOS AZUFRES WELLHEAD POWER PLANT STARTUP

    SciTech Connect

    Kruger, P.; Semprini, L.; Verma, S.; Barragan, R.; Molinar, R.; Aragon, A.; Ortiz, J.; Miranda, C.

    1985-01-22

    One of the major concerns of electric utilities in installing geothermal power plants is not only the longevity of the steam supply, but also the potential for changes in thermodynamic properties of the resource that might reduce the conversion efficiency of the design plant equipment. Production was initiated at Los Azufres geothermal field with wellhead generators not only to obtain electric energy at a relatively early date, but also to acquire needed information about the resource so that plans for large central power plants could be finalized. Commercial electric energy production started at Los Azufres during the summer of 1982 with five 5-MWe wellhead turbine-generator units. The wells associated with these units had undergone extensive testing and have since been essentially in constant production. The Los Azufres geothermal reservoir is a complex structural and thermodynamic system, intersected by at least 4 major parallel faults and producing geothermal fluids from almost all water to all steam. The five wellhead generators are associated with wells of about 30%, 60%, and 100% steam fraction. A study to compile existing data on the chemical and reservoir conditions during the first two years of operation has been completed. Data have been compiled on mean values of wellhead and separator pressures, steam and liquid flowrates, steam fraction, enthalpy, and pertinent chemical components. The compilation serves both as a database of conditions during the start-up period and as an initial point to observe changes with continued and increased production. Current plans are to add additional wellhead generators in about two years followed by central power plants when the data have been sufficiently evaluated for optimum plant design. During the next two years, the data acquired at the five 5-MWe wellhead generator units can be compared to this database to observe any significant changes in reservoir behavior at constant production.

  4. Aqueous phase processing of secondary organic aerosol from isoprene photooxidation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Monod, A.; Tritscher, T.; Praplan, A. P.; DeCarlo, P. F.; Temime-Roussel, B.; Quivet, E.; Marchand, N.; Dommen, J.; Baltensperger, U.

    2012-07-01

    Transport of reactive air masses into humid and wet areas is highly frequent in the atmosphere, making the study of aqueous phase processing of secondary organic aerosol (SOA) very relevant. We have investigated the aqueous phase processing of SOA generated from gas-phase photooxidation of isoprene using a smog chamber. The SOA collected on filters was extracted by water and subsequently oxidized in the aqueous phase either by H2O2 under dark conditions or by OH radicals in the presence of light, using a photochemical reactor. Online and offline analytical techniques including SMPS, HR-AMS, H-TDMA, TD-API-AMS, were employed for physical and chemical characterization of the chamber SOA and nebulized filter extracts. After aqueous phase processing, the particles were significantly more hygroscopic, and HR-AMS data showed higher signal intensity at m/z 44 and a lower signal intensity at m/z 43, thus showing the impact of aqueous phase processing on SOA aging, in good agreement with a few previous studies. Additional offline measurement techniques (IC-MS, APCI-MS2 and HPLC-APCI-MS) permitted the identification and quantification of sixteen individual chemical compounds before and after aqueous phase processing. Among these compounds, small organic acids (including formic, glyoxylic, glycolic, butyric, oxalic and 2,3-dihydroxymethacrylic acid (i.e. 2-methylglyceric acid)) were detected, and their concentrations significantly increased after aqueous phase processing. In particular, the aqueous phase formation of 2-methylglyceric acid and trihydroxy-3-methylbutanal was correlated with the consumption of 2,3-dihydroxy-2-methyl-propanal, and 2-methylbutane-1,2,3,4-tetrol, respectively, and an aqueous phase mechanism was proposed accordingly. Overall, the aging effect observed here was rather small compared to previous studies, and this limited effect could possibly be explained by the lower liquid phase OH concentrations employed here, and/or the development of oligomers

  5. Chemical evolution of RNA under hydrothermal conditions and the role of thermal copolymers of amino acids for the prebiotic degradation and formation of RNA

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Nagahama, M.; Kuranoue, K.

    2005-01-01

    The roles of thermal copolymers of amino acids (TCAA) were studied for the prebiotic degradation of RNA. A weak catalytic ability of TCAA consisted of Glu, L-Ala, L-Val, L-Glu, L-Asp, and optionally L-His was detected for the cleavage of the ribose phosphodiester bond of a tetranucleotide (5'-dCrCdGdG) in aqueous solution at 80 degees C. The rate constants of the disappearance of 5'-dCrCdGdG were determined in aqueous solutions using different pH buffer and TCAA. The degradation rates were enhanced 1.3-3.0 times in the presence of TCAA at pH 7.5 and 8.0 at 80 degrees C, while the hydrolysis of oligoguanylate (oligo(G)) was accelerated about 1.6 times at pH 8.0. A weak inhibitory activity for the cleavage of oligo(G) was detected in the presence of 0.055 M TCAA-Std. On the other hand, our recent study on the influences of TCAA for the template-directed reaction of oligo(G) on a polycytidylic acid template showed that TCAA has an acceleration activity for the degradation of the activated nucleotide monomer and an acceleration activity for the formation of G5' ppG capped oligo(G). This series of studies suggest that efficient and selective catalytic or inhibitory activities for either the degradation or formation of RNA under hydrothermal conditions could have hardly emerged from the simple thermal condensation products of amino acids. A scenario is going to be deduced on the chemical evolution of enzymatic activities and RNA molecules concerning hydrothermal earth conditions. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  6. Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation--application in methylene blue adsorption from aqueous solution.

    PubMed

    Deng, Hui; Yang, Le; Tao, Guanghui; Dai, Jiulei

    2009-07-30

    The activated carbon prepared from cotton stalk with ZnCl(2) as activation was investigated under microwave radiation. Effects on the yield and adsorption capacities of activated carbon were evaluated then, such as, microwave power, microwave radiation time and the impregnation ratio of ZnCl(2). It indicated that the optimum conditions were as follows: microwave power of 560 W, microwave radiation time of 9 min and the impregnation ratio of ZnCl(2) was 1.6g/g. Iodine number, amount of methylene blue adsorption and the yield of activated carbon prepared under optimum conditions were 972.92 mg/g, 193.50mg/g and 37.92%, respectively. Laboratory prepared activated carbons were characterized by pH(ZPC), SEM, FT-IR, S(BET) and pore structural parameters. Then they were used as adsorbent for the removal of methylene blue from aqueous solutions under varying conditions of initial concentration, carbon dosage and pH. It indicated that Langmuir isotherm was fitter than Freundlich isotherm and Temkin isotherm.

  7. Chemical Characterization of Extrasolar Super-Earths - Interiors, Atmospheres, and Formation Conditions

    NASA Astrophysics Data System (ADS)

    Madhusudhan, Nikku; Lee, K.; Uts, I.; Mousis, O.

    2013-01-01

    Recent observations are allowing unprecedented measurements of masses and radii of low-mass transiting extrasolar planets, particularly super-Earths which are defined as planets with masses between 1 and 10 Earth masses. The observed masses, radii, and temperatures of super-Earths provide constraints on their interior structures, geophysical conditions, as well as their atmospheric compositions. Some of the most recently detected super-Earths span a wide gamut of possible compositions, from super-Mercuries and lava planets to water worlds with thick volatile envelopes. In this work, we report joint constraints on the interior and atmospheric compositions of several super-Earths and discuss their possible formation scenarios using new and comprehensive hybrid models of their interiors, non-gray atmospheres, and formation conditions. Our model constraints are based on the masses and visible radii, as well as the latest infrared measurements of transmission and emission spectrophotometry where available, in addition to revised estimates of the stellar parameters. We will present a comparative analysis of several transiting super-Earths currently known and will discuss in detail two super-Earths (GJ 1214b and 55 Cancri e) which have atmospheric data available and which represent two distinct end members in the thermo-chemical phase space of super-Earth conditions. We will also discuss the implications of our results for the diversity of geochemical and geophysical conditions on super-Earths. We will conclude with comments on new observational, theoretical, and experimental efforts that are critical to detailed characterization of super-Earths.

  8. Atomistic Simulations of Chemical Reactivity of TATB Under Thermal and Shock Conditions

    SciTech Connect

    Manaa, M R; Reed, E J; Fried, L E

    2009-09-23

    The study of chemical transformations that occur at the reactive shock front of energetic materials provides important information for the development of predictive models at the grain-and continuum scales. A major shortcoming of current high explosives models is the lack of chemical kinetics data of the reacting explosive in the high pressure and temperature regimes. In the absence of experimental data, long-time scale atomistic molecular dynamics simulations with reactive chemistry become a viable recourse to provide an insight into the decomposition mechanism of explosives, and to obtain effective reaction rate laws. These rates can then be incorporated into thermo-chemical-hydro codes (such as Cheetah linked to ALE3D) for accurate description of the grain and macro scales dynamics of reacting explosives. In this talk, I will present quantum simulations of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) crystals under thermal decomposition (high density and temperature) and shock compression conditions. This is the first time that condensed phase quantum methods have been used to study the chemistry of insensitive high explosives. We used the quantum-based, self-consistent charge density functional tight binding method (SCC{_}DFTB) to calculate the interatomic forces for reliable predictions of chemical reactions, and to examine electronic properties at detonation conditions for a relatively long time-scale on the order of several hundreds of picoseconds. For thermal decomposition of TATB, we conducted constant volume-temperature simulations, ranging from 0.35 to 2 nanoseconds, at {rho} = 2.87 g/cm{sup 3} at T = 3500, 3000, 2500, and 1500 K, and {rho} = 2.9 g/cm{sup 3} and 2.72 g/cm{sup 3}, at T = 3000 K. We also simulated crystal TATB's reactivity under steady overdriven shock compression using the multi-scale shock technique. We conducted shock simulations with specified shock speeds of 8, 9, and 10 km/s for up to 0.43 ns duration, enabling us to track the

  9. Chemical and toxicological evaluation of an emerging pollutant (enrofloxacin) by catalytic wet air oxidation and ozonation in aqueous solution.

    PubMed

    Li, Yan; Zhang, Feifang; Liang, Xinmiao; Yediler, Ayfer

    2013-01-01

    This study evaluates the degradation efficiency of enrofloxacin (ENR) by catalytic wet air oxidation (CWAO) and ozonation. Results obtained by CWAO experiments show that 99.5% degradation, 37.0% chemical oxidation demand (COD) removal and 51.0% total organic carbon (TOC) conversion were obtained when 100 mol% FeCl(3) and 25 mol% NaNO(2) at 150 °C under 0.5 MPa oxygen pressure after 120 min are used. The degradation products are identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), gas chromatography-mass spectrometry (GC-MS) and ion chromatography (IC). The oxidation end products, F(-), NO(3)(-) and NH(4)(+) were determined by IC. The BOD(5)/COD ratio as a measure of the biodegradability of the parent compound increased from 0.01 to 0.12 after 120 min of reaction time, indicating an improved biodegradability of the parent compound. The inhibition of bioluminescence of the marine bacteria V. fischeri decreased from 43% to 12% demonstrating a loss in toxicity of ENR during CWAO. Ozonation of 0.2 mM ENR was carried out with an ozone concentration of 7.3 g m(-3) at pH 7. ENR decomposition with a degradation rate of 87% was obtained corresponding to the reaction time. Moderate changes in COD (18%) and TOC (17%) removal has been observed. The bioluminescence inhibition increased from 8% to 50%, due to the generation of toxic degradation products during ozonation. In comparison to the widely use of well developed method of ozonation CWAO exhibits better performance in terms of COD, TOC removals and generates less toxic products.

  10. Discrimination of conspecific sex and reproductive condition using chemical cues in axolotls ( Ambystoma mexicanum).

    PubMed

    Park, D; McGuire, J M; Majchrzak, A L; Ziobro, J M; Eisthen, H L

    2004-05-01

    Chemosensory cues play an important role in the daily lives of salamanders, mediating foraging, conspecific recognition, and territorial advertising. We investigated the behavioral effects of conspecific whole-body odorants in axolotls, Ambystoma mexicanum, a salamander species that is fully aquatic. We found that males increased general activity when exposed to female odorants, but that activity levels in females were not affected by conspecific odorants. Although males showed no difference in courtship displays across testing conditions, females performed courtship displays only in response to male odorants. We also found that electro-olfactogram responses from the olfactory and vomeronasal epithelia were larger in response to whole-body odorants from the opposite sex than from the same sex. In males, odorants from gravid and recently spawned females evoked different electro-olfactogram responses at some locations in the olfactory and vomeronasal epithelia; in general, however, few consistent differences between the olfactory and vomeronasal epithelia were observed. Finally, post hoc analyses indicate that experience with opposite-sex conspecifics affects some behavioral and electrophysiological responses. Overall, our data indicate that chemical cues from conspecifics affect general activity and courtship behavior in axolotls, and that both the olfactory and vomeronasal systems may be involved in discriminating the sex and reproductive condition of conspecifics.

  11. Using capillary electrophoresis to study the chemical conditions within cracks in aluminum alloys.

    PubMed

    Cooper, K R; Kelly, R G

    1999-07-30

    The environment-assisted cracking (EAC) susceptibility of some aluminum alloys used for airplane structural components currently limits their use in the peak strength condition. Understanding the mechanism of EAC will facilitate the development of crack-resistant alloys with optimum mechanical properties. One component towards understanding the fundamental processes responsible for EAC is a comprehensive knowledge of the chemical conditions within cracks. The present work uses capillary electrophoresis (CE) to quantify the crack chemistry in order to provide insight into the nature of the mechanism controlling cracking. The highly restricted geometry of cracks in metals means that a crack typically contains less than 10 microliters of solution. The high mass sensitivity combined with the inherently robust nature of CE makes it an ideal analytical technique for this application. Complicating factors in the accurate determination of the crack environment include high levels of sodium present from the test solution. Low sample volume and analyte matrix complexity necessitated the development of specific sampling, extraction and analysis methods. Analysis of the crack solutions in EAC-susceptible material revealed high levels of Al3+, Mg2+, Zn2+, and Cl- near the crack tip. Cations arise from the anodic dissolution of the alloy, whereas chloride ingress from the external environment occurs to maintain solution electroneutrality within the crack. In contrast, EAC-resistant material exhibited significantly lower concentrations of dissolution products.

  12. Chemical conditioning of electrode reservoirs during electrokinetic soil flushing of Pb-contaminated silt loam

    SciTech Connect

    Reed, B.E.; Berg, M.T.; Hatfield, J.H.; Thompson, J.C.

    1995-11-01

    The in-situ remediation of a lead-contaminated soil (silt loam, K{sub H} = 5 {times} 10{sup {minus}8} cm/s, soil Pb = 1,000 mg/kg) by electrokinetic (EK) soil flushing [60 V (DC)] was studied. Research focused on the chemical conditioning of the electrode reservoirs with either 500 {micro}S/cm (as NaNO{sub 3}, baseline behavior), acetic acid (HAc), HCl, or EDTA. For baseline tests there were significant amounts of lead transported through the soil, but the Pb precipitated or was readsorbed on the soil adjacent to the cathode because of the high soil pH in that region. The addition of 1 M HAc to the cathode reservoir prevented the formation of the basic conditions in the soil, and about 65% of the Pb was transported into the cathode. When HCl was added to the anode and HAc was added to the cathode, more than 75% of the lead resided in the cathode. Pb removals in the EDTA experiments were greater than those observed in the baseline experiments and were similar to those observed in the HCl-HAc experiments. A low anode reservoir pH resulting from a high current was the most likely reason.

  13. SONOCHEMICAL DECHLORINATION OF HAZARDOUS WASTES IN AQUEOUS SYSTEMS. (R825513C004)

    EPA Science Inventory

    Physical processes resulting from ultrasonication of aqueous solutions and suspensions produce extreme conditions that can affect the chemistry of dissolved and suspended chemicals. The purpose of this work was to explore the use of sonochemistry in treating chlorinated chemic...

  14. Effect of Reaction Time and Temperature on Chemical, Structural, Optical, and Photoelectrical Properties of PbS Thin Films Chemically Deposited from the Pb(OAc)2-NaOH-TU-TEA Aqueous System

    NASA Astrophysics Data System (ADS)

    Castelo-González, O. A.; Sotelo-Lerma, M.; García-Valenzuela, J. A.

    2017-01-01

    Lead sulfide (PbS) thin films have been deposited on float glass substrates by the chemical bath deposition technique using a Pb(CH3COO)2-NaOH-(NH2)2CS-N(CH2CH2OH)3 definite aqueous system. The chemical and structural characteristics, as well as the variation of the optical and photoelectrical properties, were studied as functions of reaction time and temperature. For this purpose, the following characterization techniques were employed: x-ray diffraction analysis, x-ray photoelectron spectroscopy, ultraviolet-visible-near infrared spectrophotometry, and dark and light current measurements. Based on the results, it was observed that increase in the reaction temperature increased the deposition rate of the PbS thin film (associated with the cubic crystalline structure); increase of this parameter from 40°C to 70°C (with reaction time of 60 min) led to an increase of the thickness from ˜129 nm to ˜459 nm and the crystallite size ( D) from 15.3 nm to 20.2 nm; on the other hand, increase in temperature decreased the energy bandgap ( E g) from 1.66 eV to 0.51 eV and the relative photosensitivity factor ( S ph) from 0.468 to 0.032. A similar effect was obtained with increase of the reaction time for given temperature.

  15. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    PubMed Central

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-01-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition. PMID:27222322

  16. A method for simultaneous analysis of phytosterols and phytosterol esters in tobacco leaves using non aqueous reversed phase chromatography and atmospheric pressure chemical ionization mass spectrometry detector.

    PubMed

    Ishida, Naoyuki

    2014-05-02

    While numerous analytical methods for phytosterols have been reported, the similar polarity and large molecules of phytosterol esters have made the methods lengthy and complicated. For this reason, an analytical method that could completely separate phytosterol esters including the higher fatty acids such as palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid in addition to phytosterols without preliminary separation was developed. The separation was accomplished by non-aqueous reversed phase chromatography technique using only acetone and acetonitrile. An atmospheric pressure chemical ionization/mass spectrometry detector configured at selected ion monitoring mode was hyphenated with the separation system to detect phytosterols and phytosterol esters. Twenty-four types of these were consequently separated and then identified with their authentic components. The calibration curve was drawn in the range of about 5 to 25,000 ng/mL with a regression coefficient over 0.999. The limit of detection and limit of quantification, respectively, ranged from 0.9 to 3.0 ng/mL and from 3.0 to 11.0 ng/mL. Recovery rates ranged from 80 to 120%. The quantification results were subjected to statistical analysis and hierarchical clustering analysis, and were used to determine the differences in the amounts of phytosterols and phytosterol esters across tobacco leaves. The newly developed method succeeded in clarifying the whole composition of phytosterols and phytosterol esters in tobacco leaves and in explaining compositional differences across the variety of tobacco leaves.

  17. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    NASA Astrophysics Data System (ADS)

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-05-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition.

  18. Effect of precursor solutions stirring on deep level defects concentration and spatial distribution in low temperature aqueous chemical synthesis of zinc oxide nanorods

    SciTech Connect

    Alnoor, Hatim Chey, Chan Oeurn; Pozina, Galia; Willander, Magnus; Nur, Omer; Liu, Xianjie; Khranovskyy, Volodymyr

    2015-08-15

    Hexagonal c-axis oriented zinc oxide (ZnO) nanorods (NRs) with 120-300 nm diameters are synthesized via the low temperature aqueous chemical route at 80 °C on silver-coated glass substrates. The influence of varying the precursor solutions stirring durations on the concentration and spatial distributions of deep level defects in ZnO NRs is investigated. Room temperature micro-photoluminesnce (μ-PL) spectra were collected for all samples. Cathodoluminescence (CL) spectra of the as-synthesized NRs reveal a significant change in the intensity ratio of the near band edge emission (NBE) to the deep-level emission (DLE) peaks with increasing stirring durations. This is attributed to the variation in the concentration of the oxygen-deficiency with increasing stirring durations as suggested from the X-ray photoelectron spectroscopy analysis. Spatially resolved CL spectra taken along individual NRs revealed that stirring the precursor solutions for relatively short duration (1-3 h), which likely induced high super saturation under thermodynamic equilibrium during the synthesis process, is observed to favor the formation of point defects moving towards the tip of the NRs. In contrary, stirring for longer duration (5-15 h) will induce low super saturation favoring the formation of point defects located at the bottom of the NRs. These findings demonstrate that it is possible to control the concentration and spatial distribution of deep level defects in ZnO NRs by varying the stirring durations of the precursor solutions.

  19. Chemical equilibrium model for interfacial activity of crude oil in aqueous alkaline solution: the effects of pH, alkali and salt

    SciTech Connect

    Chan, M.; Yen, T.F.

    1980-11-01

    A chemical equilibrium model for interfacial activity of crude in aqueous alkaline solution is proposed. The model predicts the observed effects of pH and concentrations of alkali and salt on the interfacial tension (IFT). The model proposed was shown to describe the observed effects of acid content, pH, and sodium ions on the interfacial activity of crude oil in water. Once the pH of the interface reaches the pKa of the acids, sometimes with the help of addition of some salt, the IFT experiences a sudden steep drop to the range of 10/sup -2/ dynes/cm. After that, further addition of sodium either in the form of NaOH or NaCl is going to increase the IFT due to a shift of equilibriumn to the formation of undissociated soap. This was confirmed by the difference in the observed effect of sodium on the IFT of the extracted soap molecules which are dissociated easily and those which are associated highly and precipitated easily. These soap molecules have dissociation constant values ranging from below 10/sup -2/ to above one. 13 references.

  20. Effect of precursor solutions stirring on deep level defects concentration and spatial distribution in low temperature aqueous chemical synthesis of zinc oxide nanorods

    NASA Astrophysics Data System (ADS)

    Alnoor, Hatim; Chey, Chan Oeurn; Pozina, Galia; Liu, Xianjie; Khranovskyy, Volodymyr; Willander, Magnus; Nur, Omer

    2015-08-01

    Hexagonal c-axis oriented zinc oxide (ZnO) nanorods (NRs) with 120-300 nm diameters are synthesized via the low temperature aqueous chemical route at 80 °C on silver-coated glass substrates. The influence of varying the precursor solutions stirring durations on the concentration and spatial distributions of deep level defects in ZnO NRs is investigated. Room temperature micro-photoluminesnce (μ-PL) spectra were collected for all samples. Cathodoluminescence (CL) spectra of the as-synthesized NRs reveal a significant change in the intensity ratio of the near band edge emission (NBE) to the deep-level emission (DLE) peaks with increasing stirring durations. This is attributed to the variation in the concentration of the oxygen-deficiency with increasing stirring durations as suggested from the X-ray photoelectron spectroscopy analysis. Spatially resolved CL spectra taken along individual NRs revealed that stirring the precursor solutions for relatively short duration (1-3 h), which likely induced high super saturation under thermodynamic equilibrium during the synthesis process, is observed to favor the formation of point defects moving towards the tip of the NRs. In contrary, stirring for longer duration (5-15 h) will induce low super saturation favoring the formation of point defects located at the bottom of the NRs. These findings demonstrate that it is possible to control the concentration and spatial distribution of deep level defects in ZnO NRs by varying the stirring durations of the precursor solutions.

  1. Aqueous Chemical Solution Deposition of Novel, Thick and Dense Lattice-Matched Single Buffer Layers Suitable for YBCO Coated Conductors: Preparation and Characterization

    PubMed Central

    Narayanan, Vyshnavi; Van Steenberge, Sigelinde; Lommens, Petra; Van Driessche, Isabel

    2012-01-01

    In this work we present the preparation and characterization of cerium doped lanthanum zirconate (LCZO) films and non-stoichiometric lanthanum zirconate (LZO) buffer layers on metallic Ni-5% W substrates using chemical solution deposition (CSD), starting from aqueous precursor solutions. La2Zr2O7 films doped with varying percentages of Ce at constant La concentration (La0.5CexZr1−xOy) were prepared as well as non-stoichiometric La0.5+xZr0.5−xOy buffer layers with different percentages of La and Zr ratios. The variation in the composition of these thin films enables the creation of novel buffer layers with tailored lattice parameters. This leads to different lattice mismatches with the YBa2Cu3O7−x (YBCO) superconducting layer on top and with the buffer layers or substrate underneath. This possibility of minimized lattice mismatch should allow the use of one single buffer layer instead of the current complicated buffer architectures such as Ni-(5% W)/LZO/LZO/CeO2. Here, single, crack-free LCZO and non-stoichiometric LZO layers with thicknesses of up to 140 nm could be obtained in one single CSD step. The crystallinity and microstructure of these layers were studied by XRD, and SEM and the effective buffer layer action was studied using XPS depth profiling.

  2. Evaluating the potential for quantitative monitoring of in situ chemical oxidation of aqueous-phase TCE using in-phase and quadrature electrical conductivity

    NASA Astrophysics Data System (ADS)

    Hort, R. D.; Revil, A.; Munakata-Marr, J.; Mao, D.

    2015-07-01

    Electrical resistivity measurements can potentially be used to remotely monitor fate and transport of ionic oxidants such as permanganate (MnO4-) during in situ chemical oxidation (ISCO) of contaminants like trichloroethene (TCE). Time-lapse two-dimensional bulk conductivity and induced polarization surveys conducted during a sand tank ISCO simulation demonstrated that MnO4- plume movement could be monitored in a qualitative manner using bulk conductivity tomograms, although chargeability was below sensitivity limits. We also examined changes to in-phase and quadrature electrical conductivity resulting from ion injection, MnO2 and Cl- production, and pH change during TCE and humate oxidation by MnO4- in homogeneous aqueous solutions and saturated porous media samples. Data from the homogeneous samples demonstrated that inversion of the sand tank resistivity data using a common Tikhonov regularization approach was insufficient to recover an accurate conductivity distribution within the tank. While changes to in-phase conductivity could be successfully modeled, quadrature conductivity values could not be directly related to TCE oxidation product or MnO4- concentrations at frequencies consistent with field induced polarization surveys, limiting the utility of quadrature conductivity for monitoring ISCO.

  3. Basalt and olivine dissolution under cold, salty, and acidic conditions: What can we learn about recent aqueous weathering on Mars?

    NASA Astrophysics Data System (ADS)

    Hausrath, E. M.; Brantley, S. L.

    2010-12-01

    To test which variables may be important for weathering on Mars, the effects of temperature (22°C, 6°C, and -19°C), high ionic strength, and oxygen concentrations were investigated in batch dissolution experiments containing forsterite, fayalite, and basalt glass. CaCl2-NaCl-H2O brine can remain liquid to temperatures of -55°C and thus may be liquid in the cold, dry climate that currently characterizes Mars. To understand weathering under such conditions, dissolution rates were measured in experiments in distilled water with and without CaCl2 and NaCl. As observed by others, dissolution rates increased with temperature, and only fayalite dissolution was significantly affected by the presence or absence of oxygen. Enhanced fayalite dissolution under anoxic conditions suggests that Fe-rich olivine would dissolve more rapidly than Mg-rich olivine on Mars. Dissolution in the two most dilute experimental solutions (deionized water and CaCl2-NaCl-H2O solution of ionic strength = 0.7 m) were the same within uncertainty, but apparent dissolution rate constants in CaCl2-NaCl-H2O brines were significantly slower. Steady silica concentrations are decreased in the brines, consistent with other work, and precipitation rates of silica decrease with decreasing temperatures. These results suggest that enhanced silica precipitation could be an indicator of high ionic strength solutions on Mars. Consistent with these observations, weathering of basalt has been observed to sometimes be accompanied by precipitated layers of silica in cold, dry environments on Earth. If dissolution on Mars occurs or occurred under conditions similar to our experiments, cation leaching would be expected to be accompanied by silica precipitates on weathering surfaces.

  4. Electric Current Activated Combustion Synthesis and Chemical Ovens Under Terrestrial and Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Unuvar, C.; Fredrick, D.; Anselmi-Tamburini, U.; Manerbino, A.; Guigne, J. Y.; Munir, Z. A.; Shaw, B. D.

    2004-01-01

    Combustion synthesis (CS) generally involves mixing reactants together (e.g., metal powders) and igniting the mixture. Typically, a reaction wave will pass through the sample. In field activated combustion synthesis (FACS), the addition of an electric field has a marked effect on the dynamics of wave propagation and on the nature, composition, and homogeneity of the product as well as capillary flow, mass-transport in porous media, and Marangoni flows, which are influenced by gravity. The objective is to understand the role of an electric field in CS reactions under conditions where gravity-related effects are suppressed or altered. The systems being studied are Ti+Al and Ti+3Al. Two different ignition orientations have been used to observe effects of gravity when one of the reactants becomes molten. This consequentially influences the position and concentration of the electric current, which in turn influences the entire process. Experiments have also been performed in microgravity conditions. This process has been named Microgravity Field Activated Combustion Synthesis (MFACS). Effects of gravity have been demonstrated, where the reaction wave temperature and velocity demonstrate considerable differences besides the changes of combustion mechanisms with the different high currents applied. Also the threshold for the formation of a stable reaction wave is increased under zero gravity conditions. Electric current was also utilized with a chemical oven technique, where inserts of aluminum with minute amounts of tungsten and tantalum were used to allow observation of effects of settling of the higher density solid particles in liquid aluminum at the present temperature profile and wave velocity of the reaction.

  5. Four chemical methods of porcelain conditioning and their influence over bond strength and surface integrity

    PubMed Central

    Stella, João Paulo Fragomeni; Oliveira, Andrea Becker; Nojima, Lincoln Issamu; Marquezan, Mariana

    2015-01-01

    OBJECTIVE: To assess four different chemical surface conditioning methods for ceramic material before bracket bonding, and their impact on shear bond strength and surface integrity at debonding. METHODS: Four experimental groups (n = 13) were set up according to the ceramic conditioning method: G1 = 37% phosphoric acid etching followed by silane application; G2 = 37% liquid phosphoric acid etching, no rinsing, followed by silane application; G3 = 10% hydrofluoric acid etching alone; and G4 = 10% hydrofluoric acid etching followed by silane application. After surface conditioning, metal brackets were bonded to porcelain by means of the Transbond XP system (3M Unitek). Samples were submitted to shear bond strength tests in a universal testing machine and the surfaces were later assessed with a microscope under 8 X magnification. ANOVA/Tukey tests were performed to establish the difference between groups (α= 5%). RESULTS: The highest shear bond strength values were found in groups G3 and G4 (22.01 ± 2.15 MPa and 22.83 ± 3.32 Mpa, respectively), followed by G1 (16.42 ± 3.61 MPa) and G2 (9.29 ± 1.95 MPa). As regards surface evaluation after bracket debonding, the use of liquid phosphoric acid followed by silane application (G2) produced the least damage to porcelain. When hydrofluoric acid and silane were applied, the risk of ceramic fracture increased. CONCLUSIONS: Acceptable levels of bond strength for clinical use were reached by all methods tested; however, liquid phosphoric acid etching followed by silane application (G2) resulted in the least damage to the ceramic surface. PMID:26352845

  6. [Adsorption of calcium ion from aqueous solution using Na(+)-conditioned clinoptilolite for hot-water softening].

    PubMed

    Zhang, Shuo; Wang, Dong; Chen, Yuan-Chao; Zhang, Xing-Wen; Chen, Gui-Jun

    2015-02-01

    This work investigated adsorptive removal of calcium ion (Ca2+) by virtue of Na(+) -conditioned clinoptilolite simulating the process of softening for industrial hot-water system. Influential factors such as the activation/regeneration of sorbent and solution pH were tested. The kinetics/thermodynamics for adsorption of Ca2+ were analyzed and discussed. Results showed that: (1) The adsorption rate was in good agreement with the pseudo-second order kinetic models, and the process of adsorption better followed the Langmuir model; (2) Higher solution temperature allowed an enhanced efficiency on Ca2+ removal, albeit the maximum adsorption capacity of Na(+)-conditioned clinoptilolite was hardly affected; (3) The process of adsorption was dominated by chemisorption, and also characterized by entropy increase with spontaneous/endothermic nature; (4) Solution temperature was suggested to be controlled within the range of 6 to 10, and more than 9 times of sorbent regeneration could be ensured for an effective adsorption towards Ca2+ with initial concentration less than 20 mg x L(-1). It was demonstrated that the activated clinoptilolite should be a promising alternative adsorbent for industrial hot-water softening.

  7. Phytoplankton communities of polar regions--Diversity depending on environmental conditions and chemical anthropopressure.

    PubMed

    Kosek, Klaudia; Polkowska, Żaneta; Żyszka, Beata; Lipok, Jacek

    2016-04-15

    The polar regions (Arctic and Antarctic) constitute up to 14% of the biosphere and offer some of the coldest and most arid Earth's environments. Nevertheless several oxygenic phototrophs including some higher plants, mosses, lichens, various algal groups and cyanobacteria, survive that harsh climate and create the base of the trophic relationships in fragile ecosystems of polar environments. Ecosystems in polar regions are characterized by low primary productivity and slow growth rates, therefore they are more vulnerable to disturbance, than those in temperate regions. From this reason, chemical contaminants influencing the growth of photoautotrophic producers might induce serious disorders in the integrity of polar ecosystems. However, for a long time these areas were believed to be free of chemical contamination, and relatively protected from widespread anthropogenic pressure, due their remoteness and extreme climate conditions. Nowadays, there is a growing amount of data that prove that xenobiotics are transported thousands of kilometers by the air and ocean currents and then they are deposed in colder regions and accumulate in many environments, including the habitats of marine and freshwater cyanobacteria. Cyanobacteria (blue green algae), as a natural part of phytoplankton assemblages, are globally distributed, but in high polar ecosystems they represent the dominant primary producers. These microorganisms are continuously exposed to various concentration levels of the compounds that are present in their habitats and act as nourishment or the factors influencing the growth and development of cyanobacteria in other way. The most common group of contaminants in Arctic and Antarctic are persistent organic pollutants (POPs), characterized by durability and resistance to degradation. It is important to determine their concentrations in all phytoplankton species cells and in their environment to get to know the possibility of contaminants to transfer to higher

  8. Metabolic profiling of Lolium perenne shows functional integration of metabolic responses to diverse subtoxic conditions of chemical stress.

    PubMed

    Serra, Anne-Antonella; Couée, Ivan; Renault, David; Gouesbet, Gwenola; Sulmon, Cécile

    2015-04-01

    Plant communities are confronted with a great variety of environmental chemical stresses. Characterization of chemical stress in higher plants has often been focused on single or closely related stressors under acute exposure, or restricted to a selective number of molecular targets. In order to understand plant functioning under chemical stress conditions close to environmental pollution conditions, the C3 grass Lolium perenne was subjected to a panel of different chemical stressors (pesticide, pesticide degradation compound, polycyclic aromatic hydrocarbon, and heavy metal) under conditions of seed-level or root-level subtoxic exposure. Physiological and metabolic profiling analysis on roots and shoots revealed that all of these subtoxic chemical stresses resulted in discrete physiological perturbations and complex metabolic shifts. These metabolic shifts involved stressor-specific effects, indicating multilevel mechanisms of action, such as the effects of glyphosate and its degradation product aminomethylphosphonic acid on quinate levels. They also involved major generic effects that linked all of the subtoxic chemical stresses with major modifications of nitrogen metabolism, especially affecting asparagine, and of photorespiration, especially affecting alanine and glycerate. Stress-related physiological effects and metabolic adjustments were shown to be integrated through a complex network of metabolic correlations converging on Asn, Leu, Ser, and glucose-6-phosphate, which could potentially be modulated by differential dynamics and interconversion of soluble sugars (sucrose, trehalose, fructose, and glucose). Underlying metabolic, regulatory, and signalling mechanisms linking these subtoxic chemical stresses with a generic impact on nitrogen metabolism and photorespiration are discussed in relation to carbohydrate and low-energy sensing.

  9. Interaction of chemical and physical processes during deformation at fluid-present conditions: a case study from an anorthosite-leucogabbro deformed at amphibolite facies conditions

    NASA Astrophysics Data System (ADS)

    Svahnberg, Henrik; Piazolo, Sandra

    2013-03-01

    We present microstructural and chemical analyses of chemically zoned and recrystallized plagioclase grains in variably strained samples of a naturally deformed anorthosite-leucogabbro, southern West Greenland. The recorded microstructures formed in the presence of fluids at mid-crustal conditions (620-640 °C, 7.4-8.6 kbar). Recrystallized plagioclase grains (average grain size 342 μm) with a random crystallographic orientation are volumetrically dominant in high-strain areas. They are characterized by asymmetric chemical zoning (An80 cores and An64 rims) that are directly associated with areas exhibiting high amphibole content and phase mixing. Analyses of zoning indicate anisotropic behaviour of bytownite plagioclase with a preferred replacement in the < {0 10} rangle direction and along the (001) plane. In areas of high finite strain, recrystallization of plagioclase dominantly occurred by bulging recrystallization and is intimately linked to the chemical zoning. The lack of CPO as well as the developed asymmetric zoning can be explained by the activity of grain boundary sliding accommodated by dissolution and precipitation creep (DPC). In low-strain domains, grain size is on average larger and the rim distribution is not related to the inferred stress axes indicating chemically induced grain replacement instead of stress-related DPC. We suggest that during deformation, in high-strain areas, pre-existing phase mixture and stress induced DPC-caused grain rotations that allowed a deformation-enhanced heterogeneous fluid influx. This resulted in local plagioclase replacement through interface-coupled dissolution and precipitation and chemically induced grain boundary migration, accompanied by bulging recrystallization, along with neocrystallization of other phases. This study illustrates a strong interaction and feedback between physical and chemical processes where the amount of stress and fluids dictates the dominant active process. The interaction is a cause of

  10. Soil structure, colloids, and chemical transport as affected by short-term reducing conditions: a laboratory study

    NASA Astrophysics Data System (ADS)

    de-Campos, A. B.; Mamedov, A. I.; Huang, C.; Wagner, L. E.

    2008-12-01

    Upland soils in the Midwestern US often undergo reducing conditions when soils are temporally flooded during the spring and remain water saturated for days or weeks. Short-term reducing conditions change the chemistry of the soil and may affect soil structure and solution chemical transport. The effects of short-term reducing conditions on chemical and physical properties of the soils, colloids, and associated chemical/nutrients transport are still not well understood and was the objective of our study. A biogeochemical reactor was built to achieve reducing conditions. Three cultivated and three uncultivated soils with different organic carbon contents were incubated in the reactor for 1 hour and 3 days under anaerobic conditions. Effects of the redox state on soil structure (pore size distribution) and drainable porosity, colloids mobility, and chemical transport were determined using high energy moisture characteristic and analytical methods. After each treatment, the soil solution was collected for redox potential (Eh), pH, and electrical conductivity (EC) measurements, and chemical analysis of metals (Ca, Mg, K), nutrients (N, P), and dissolved organic carbon. Strongly reducing conditions were achieved after 3 days of incubation and were followed by a decrease in soil porosity and an increase in pH, EC, clay dispersion, swelling, colloids mobility, and associated chemical transport. The trend for each soil depended on their initial structural stability and chemical properties. The structure of cultivated soils and the leaching of nutrients and carbon from uncultivated soils were more sensitive to the redox state. A strong correlation was found between changes in Eh and drainable porosity. The role of short-term reducing conditions on changes in redox sensitive elements, organic matter decomposition, pH, and EC and their influence on soil structure and soil particles or colloids/chemical transport for both soil groups are discussed in the paper. This study

  11. Chemical and Physical Reactions of Wellbore Cement under CO2 Storage Conditions: Effects of Cement Additives

    NASA Astrophysics Data System (ADS)

    Kutchko, B. G.; Strazisar, B. R.; Huerta, N.; Lowry, G. V.; Dzombak, D. A.; Thaulow, N.

    2008-12-01

    Sequestration of CO2 into geologic formations requires long-term storage and low leakage rates to be effective. Active and abandoned wells in candidate storage formations must be evaluated as potential leakage points. Wellbore integrity is an important part of an overall integrated assessment program being developed at NETL to assess potential risks at CO2 storage sites. Such a program is needed for ongoing policy and regulatory decisions for geologic carbon sequestration. The permeability and integrity of the cement in the well is a primary factor affecting its ability to prevent leakage. Cement must be able to maintain low permeability over lengthy exposure to reservoir conditions in a CO2 injection and storage scenario. Although it is known that cement may be altered by exposure to CO2, the results of ongoing research indicate that cement curing conditions, fluid properties, and cement additives play a significant role in the rate of alteration and reaction. The objective of this study is to improve understanding of the factors affecting wellbore cement integrity for large-scale geologic carbon sequestration projects. Due to the high frequency use of additives (pozzolan) in wellbore cement, it is also essential to understand the reaction of these cement-pozzolan systems upon exposure to CO2 under sequestration conditions (15.5 MPa and 50°C). Laboratory experiments were performed to determine the physical and chemical changes, as well as the rate of alteration of commonly used pozzolan-cement systems under simulated sequestration reservoir conditions, including both supercritical CO2 and CO2-saturated brine. The rate of alteration of the cement-pozzolan systems is considerably faster than with neat cement. However, the alteration of physical properties is much less significant with the pozzolanic blends. Permeability of a carbonated pozzolanic cement paste remains sufficiently small to block significant vertical migration of CO2 in a wellbore. All of the

  12. Optimization of conditions for Cu(II) adsorption on D151 resin from aqueous solutions using response surface methodology and its mechanism study.

    PubMed

    Zhang, Hao; Xiong, Chunhua; Liu, Fang; Zheng, Xuming; Jiang, Jianxiong; Zheng, Qunxiong; Yao, Caiping

    2014-01-01

    An experimental study on the removal of Cu(II) from aqueous solutions by D151 resin was carried out in a batch system. The response surface methodology (RSM)-guided optimization indicated that the optimal adsorption conditions are: temperature of 35 °C, pH of 5.38, and initial Cu(II) concentration of 0.36 mg/mL, and the predicted adsorption capacity from the model reached 328.3 mg/g. At optimum adsorption conditions, the adsorption capacity of Cu(II) was 321.6 mg/g, which obtained from real experiments what were in close agreement with the predicted value. The adsorption isotherms data fitted the Langmuir model well, and the correlation coefficient has been evaluated. The calculation data of thermodynamic parameters (ΔG, ΔS, and ΔH) confirmed that the adsorption process was endothermic and spontaneous in nature. The desorption study revealed that Cu(II) can be effectively eluted by 1 mol/l HCl solution, and the recovery was 100%. Moreover, the characterization was undertaken by infrared (IR) spectroscopy.

  13. Removal of cobalt ions from aqueous solutions by polymer assisted ultrafiltration using experimental design approach. part 1: optimization of complexation conditions.

    PubMed

    Cojocaru, Corneliu; Zakrzewska-Trznadel, Grazyna; Jaworska, Agnieszka

    2009-09-30

    The polymer assisted ultrafiltration process combines the selectivity of the chelating agent with the filtration ability of the membrane acting in synergy. Such hybrid process (complexation-ultrafiltration) is influenced by several factors and therefore the application of experimental design for process optimization using a reduced number of experiments is of great importance. The present work deals with the investigation and optimization of cobalt ions removal from aqueous solutions by polymer enhanced ultrafiltration using experimental design and response surface methodological approach. Polyethyleneimine has been used as chelating agent for cobalt complexation and the ultrafiltration experiments were carried out in dead-end operating mode using a flat-sheet membrane made from regenerated cellulose. The aim of this part of experiments was to find optimal conditions for cobalt complexation, i.e. the influence of initial concentration of cobalt in feed solution, polymer/metal ratio and pH of feed solution, on the rejection efficiency and binding capacity of the polymer. In this respect, the central compositional design has been used for planning the experiments and for construction of second-order response surface models applicable for predictions. The analysis of variance has been employed for statistical validation of regression models. The optimum conditions for maximum rejection efficiency of 96.65% has been figured out experimentally by gradient method and was found to be as follows: [Co(2+)](0)=65 mg/L, polymer/metal ratio=5.88 and pH 6.84.

  14. Selective adsorption and recycle of Cu(2+) from aqueous solution by modified sugarcane bagasse under dynamic condition.

    PubMed

    Chen, Jia-Dong; Yu, Jun-Xia; Wang, Fen; Tang, Jia-Qi; Zhang, Yue-Fei; Xu, Yuan-Lai; Chi, Ru-An

    2017-02-20

    Tetraethylenepentamine modified sugarcane bagasse was prepared and applied to test its feasibility in removing and recovering Cu(2+) from wastewater under dynamic condition. Results showed that the Cu(2+) could be selectively absorbed from wastewater by the modified SCB fixed bed column. To understand the adsorption mechanism, Cd(2+) had been selected as the model interfering ion to investigate how co-ions influence the adsorption of Cu(2+) on the sorbent. It was observed that the adsorption capacity of the sorbent for Cu(2+) (0.26 mmol g(-1)) was significantly higher than that of Cd(2+) (0.03 mmol g(-1)), even when the Cd(2+) initial concentration was 100 times higher than that of Cu(2+) in the binary system. This finding indicated that the presence of Cd(2+) in the solution exerted negligible influence on the adsorption of Cu(2+) on the modified SCB. The selectivity of the modified sorbent was further confirmed in the Cu/Cd/Mg/Pb/K quinary system. Further analysis to dynamic adsorption experiment illustrated that, due to the presence of amine groups, the modified SCB showed strong coordination ability to Cu(2+), which allowed the other adsorbed ions (e.g., Cd(2+)) desorbed. This high adsorption selectivity toward Cu(2+) suggested that this prepared sorbent would be a promising candidate for removing and recovering Cu(2+) from wastewater.

  15. Experimental investigation and planetary implications of the stability of clathrate hydrates in aqueous solution at icy satellite conditions

    NASA Astrophysics Data System (ADS)

    Dunham, M.; Choukroun, M.; Barmatz, M.; Hodyss, R. P.; Smythe, W. D.

    2012-12-01

    Clathrate hydrates consist of hydrogen-bonded water molecules forming cages in which gas molecules are trapped individually. They are among the favored volatile reservoirs in solar system bodies, and are expected to play an important role in many processes: accretion of volatiles in planetesimals, outgassing on Titan, Enceladus, and comets. Their insulating thermal properties and high mechanical strength also bear important implications for understanding the evolution of icy satellites like Europa. However, the conditions allowing for their formation and/or their dissociation and the release of volatiles to the atmosphere (Titan) or the plumes (Enceladus) are still poorly understood. This is mainly because of a lack of knowledge on the stability of mixed clathrate hydrates in presence of anti-freeze agents such as ammonia. We have developed a high-pressure cryogenic calorimeter to address this deficiency in the literature. This liquid nitrogen - cooled Setaram BT2.15 calorimeter is located at the JPL Ice Physics Laboratory. The temperature range achievable with this instrument is 77-473 K. This calorimeter uses Calvet elements (3D arrays of thermocouples) to measure the heat flow required to follow a predefined heating rate within a sample and a reference cell with a resolution of 0.1 μW. A gas handling system has been designed and fabricated in house to reach pressures up to 100 bars, corresponding to several km depth in icy satellites. The thermodynamic properties of CO2 and CH4 clathrates with ammonia are under investigation, and the results will be used to constrain a statistical thermodynamic model of clathrates for applications to planetary environments. Preliminary results will be shown at the meeting. This work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Support from the Minnesota Space Grant Consortium, the NASA Outer Planets Research program, and government sponsorship are gratefully

  16. Stability of an aqueous quadrupole micro-trap

    SciTech Connect

    Park, Jae Hyun; Krstić, Predrag S.

    2012-01-01

    Recently demonstrated functionality of an aqueous quadrupole micro- or nano-trap opens a new avenue for applications of the Paul traps, like is confinement of a charged biomolecule which requires water environment for its chemical stability. Besides strong viscosity forces, motion of a charged particle in the aqueous trap is subject to dielectrophoretic and electrophoretic forces. In this study, we describe the general conditions for stability of a charged particle in an aqueous quadrupole trap. We find that for the typical micro-trap parameters, effects of both dielectrophoresis and electrophoresis significantly influence the trap stability. In particular, the aqueous quadrupole trap could play of a role of a synthetic virtual nanopore for the 3rd generation of DNA sequencing technology.

  17. Stability of an aqueous quadrupole micro-trap

    DOE PAGES

    Park, Jae Hyun; Krstić, Predrag S.

    2012-01-01

    Recently demonstrated functionality of an aqueous quadrupole micro- or nano-trap opens a new avenue for applications of the Paul traps, like is confinement of a charged biomolecule which requires water environment for its chemical stability. Besides strong viscosity forces, motion of a charged particle in the aqueous trap is subject to dielectrophoretic and electrophoretic forces. In this study, we describe the general conditions for stability of a charged particle in an aqueous quadrupole trap. We find that for the typical micro-trap parameters, effects of both dielectrophoresis and electrophoresis significantly influence the trap stability. In particular, the aqueous quadrupole trap couldmore » play of a role of a synthetic virtual nanopore for the 3rd generation of DNA sequencing technology.« less

  18. Influence of Aerosol Chemical Composition on Heterogeneous Ice Formation under Mid-Upper Troposphere Conditions

    NASA Astrophysics Data System (ADS)

    Kanji, Z. A.; Niemand, M.; Saathoff, H.; Möhler, O.; Chou, C.; Abbatt, J.; Stetzer, O.

    2011-12-01

    Aerosols are involved in cooling/warming the atmosphere directly via interaction with incoming solar radiation (aerosol direct effect), or via their ability to act as cloud condensation or ice nuclei (IN) and thus play a role in cloud formation (indirect effect). In particular, the physical properties of aerosols such as size and solubility and chemical composition can influence their behavior and fate in the atmosphere. Ice nucleation taking place via IN is termed as heterogeneous ice nucleation and can take place with via deposition (ice forming on IN directly from the vapor phase), condensation/immersion (freezing via formation of the liquid phase on IN) or condensation (IN colliding with supercooled liquid drops). This presentation shows how the chemical composition and surface area of various tropospherically relevant aerosols influence conditions of temperature (T) and relative humidity (RH) required for heterogeneous ice formation conditions in the mid-upper troposphere regime (253 - 220K)? Motivation for this comes first from, the importance of being able to predict ice formation accurately so as to understand the hydrological cycle since the ice is the primary initiator of precipitation forming clouds. Second, the tropospheric budget of water vapour, an especially active greenhouse gas is strongly influenced by ice nucleation and growth. Third, ice surfaces in the atmosphere act as heterogeneous surfaces for chemical reactions of trace gases (e.g., SO2, O3, NOx and therefore being able to accurately estimate ice formation rates and quantify ice surface concentrations will allow a more accurate calculation of trace gas budgets in the troposphere. Ice nucleation measurements were conducted using a self-developed continuous flow diffusion chamber and static chamber. A number of tropospherically relevant particulates with naturally-varying and laboratory-modified surface chemistry/structure were investigated for their ice formation efficiency based on highest

  19. Polar organic chemical integrative samplers for pesticides monitoring: impacts of field exposure conditions.

    PubMed

    Lissalde, Sophie; Mazzella, Nicolas; Mazellier, Patrick

    2014-08-01

    This study focuses on how Polar Organic Chemical Integrative Samplers (POCIS) work in real environmental conditions. A selection of 23 polar pesticides and 8 metabolites were investigated by exposure of triplicates of integrative samplers in two rivers in France for successive 14-day periods. The pesticides and metabolites were trapped not only in Oasis HLB sorbent but also in the polyethersulfone (PES) membrane of the POCIS. The distribution of pesticides depended on the molecular structure. The use of the Performance Reference Compound (PRC) is also discussed here. The impact of some environmental parameters and exposure setup on the transfer of pesticides in POCIS sorbent was studied: river flow rate, biofouling on membranes, sampler holding design and position in the stream. Results show a significant impact of river flow velocity on PRC desorption, especially for values higher than 4 cm·s(-1). Some fouling was observed on the PES membrane which could potentially have an impact on molecule accumulation in the POCIS. Finally, the positioning of the sampler in the river did not have significant effects on pesticide accumulation, when perpendicular exposures were used (sampler positioning in front of the water flow). The POCIS with PRC correction seems to be a suitable tool for estimating time-weighted average (TWA) concentrations, for all the molecules except for one of the nine pesticides analyzed in these two French rivers.

  20. Transcriptome Analysis of the Phytobacterium Xylella fastidiosa Growing under Xylem-Based Chemical Conditions

    PubMed Central

    Ciraulo, Maristela Boaceff; Santos, Daiene Souza; Rodrigues, Ana Claudia de Freitas Oliveira; de Oliveira, Marcus Vinícius; Rodrigues, Tiago; de Oliveira, Regina Costa; Nunes, Luiz R.

    2010-01-01

    Xylella fastidiosa is a xylem-limited bacterium responsible for important plant diseases, like citrus-variegated chlorosis (CVC) and grapevine Pierce's disease (PD). Interestingly, in vitro growth of X. fastidiosa in chemically defined media that resemble xylem fluid has been achieved, allowing studies of metabolic processes used by xylem-dwelling bacteria to thrive in such nutrient-poor conditions. Thus, we performed microarray hybridizations to compare transcriptomes of X. fastidiosa cells grown in 3G10-R, a medium that resembles grape sap, and in Periwinkle Wilt (PW), the complex medium traditionally used to cultivate X. fastidiosa. We identified 299 transcripts modulated in response to growth in these media. Some 3G10R-overexpressed genes have been shown to be upregulated in cells directly isolated from infected plants and may be involved in plant colonization, virulence and environmental competition. In contrast, cells cultivated in PW show a metabolic switch associated with increased aerobic respiration and enhanced bacterial growth rates. PMID:20625415

  1. Particle emissions from a marine engine: chemical composition and aromatic emission profiles under various operating conditions.

    PubMed

    Sippula, O; Stengel, B; Sklorz, M; Streibel, T; Rabe, R; Orasche, J; Lintelmann, J; Michalke, B; Abbaszade, G; Radischat, C; Gröger, T; Schnelle-Kreis, J; Harndorf, H; Zimmermann, R

    2014-10-07

    The chemical composition of particulate matter (PM) emissions from a medium-speed four-stroke marine engine, operated on both heavy fuel oil (HFO) and distillate fuel (DF), was studied under various operating conditions. PM emission factors for organic matter, elemental carbon (soot), inorganic species and a variety of organic compounds were determined. In addition, the molecular composition of aromatic organic matter was analyzed using a novel coupling of a thermal-optical carbon analyzer with a resonance-enhanced multiphoton ionization (REMPI) mass spectrometer. The polycyclic aromatic hydrocarbons (PAHs) were predominantly present in an alkylated form, and the composition of the aromatic organic matter in emissions clearly resembled that of fuel. The emissions of species known to be hazardous to health (PAH, Oxy-PAH, N-PAH, transition metals) were significantly higher from HFO than from DF operation, at all engine loads. In contrast, DF usage generated higher elemental carbon emissions than HFO at typical load points (50% and 75%) for marine operation. Thus, according to this study, the sulfur emission regulations that force the usage of low-sulfur distillate fuels will also substantially decrease the emissions of currently unregulated hazardous species. However, the emissions of soot may even increase if the fuel injection system is optimized for HFO operation.

  2. Chemical looping combustion in a rotating bed reactor--finding optimal process conditions for prototype reactor.

    PubMed

    Håkonsen, Silje Fosse; Blom, Richard

    2011-11-15

    A lab-scale rotating bed reactor for chemical looping combustion has been designed, constructed, and tested using a CuO/Al(2)O(3) oxygen carrier and methane as fuel. Process parameters such as bed rotating frequency, gas flows, and reactor temperature have been varied to find optimal performance of the prototype reactor. Around 90% CH(4) conversion and >90% CO(2) capture efficiency based on converted methane have been obtained. Stable operation has been accomplished over several hours, and also--stable operation can be regained after intentionally running into unstable conditions. Relatively high gas velocities are used to avoid fully reduced oxygen carrier in part of the bed. Potential CO(2) purity obtained is in the range 30 to 65%--mostly due to air slippage from the air sector--which seems to be the major drawback of the prototype reactor design. Considering the prototype nature of the first version of the rotating reactor setup, it is believed that significant improvements can be made to further avoid gas mixing in future modified and up-scaled reactor versions.

  3. Iron isotope fractionation among magnetite, pyrrhotite, chalcopyrite, rhyolite melt and aqueous fluid at magmatic-hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Bilenker, L. D.; Simon, A.; Lundstrom, C.; Gajos, N.

    2012-12-01

    Fractionation of non-traditional stable isotopes (NTSI) such as Fe in magmatic systems is a relatively understudied subject. The fractionation of Fe stable isotopes has been quantified in some natural igneous samples, but there is a paucity of experimental data that could provide further insight into the causative processes of the observed fractionation. Substantial experimental work has been performed at higher temperatures pertaining to the formation of chondrites and the Earth's core, but only a handful of studies have addressed crustal rocks. To fill this knowledge gap, we performed isothermal, isobaric experiments containing mineral (e.g., magnetite, Fe-sulfides) and fluid, or mineral, rhyolite melt, and fluid assemblages to quantify equilibrium fractionation factors (α). These data, to our knowledge, are the first data that quantify the effect of a fluid phase on iron isotope fractionation at conditions appropriate for evolving magmatic systems. Charges were run inside gold capsules held in a René-41 cold seal vessel, and heated to 400, 600, or 800°C at 150 MPa for mineral-fluid, and 800°C and 100 MPa for mineral-melt-fluid runs. Use of the René vessel fixed the fO2 at the NNO buffer, an oxidation state consistent with arc magmas. The isotopic compositions of the starting and quenched phases were obtained by using a Multi-Collector Plasma Mass Spectrometer (MC-ICP-MS). Equilibrium was assessed by performing time-series runs and the three-isotope method, used only once before in a similar Fe isotope study. Correlation between Fe isotope mass and oxidation state is also being explored. Magnetite-fluid results indicate enrichment of heavy Fe isotopes in the mineral relative to the fluid, consistent with measurements of felsic igneous rocks. Magnetite-melt-fluid relationships are also consistent with measurements of natural samples. In the latter assemblage, over the course of the run, the rhyolite melt becomes heavy relative to the fluid while magnetite

  4. Multianalyte determination of 24 cytostatics and metabolites by liquid chromatography-electrospray-tandem mass spectrometry and study of their stability and optimum storage conditions in aqueous solution.

    PubMed

    Negreira, Noelia; Mastroianni, Nicola; López de Alda, Miren; Barceló, Damià

    2013-11-15

    A multianalyte liquid chromatography-electrospray-tandem mass spectrometry (LC-ESI-MS/MS) method for determination of 19 cytostatics and 5 metabolites, from 6 different therapeutic families, has been developed, and the structures of the main characteristic fragment ions have been proposed. Instrumental limits of detection and quantification are in the range 0.1-10.3 and 1.0-34.3 ng mL(-1), respectively. Moreover, the stability of the compounds in aqueous solution was investigated in order to establish the best conditions for preparation and storage of both calibration standards and water samples. Dimethylsulphoxide (DMSO) was selected as solvent for preparation of the stock solutions. At room temperature (25 °C), 11 of the 24 target compounds were shown to be unstable in water (percentage of organic solvent 4%), with concentration losses greater than 20% in less than 24 h. At 4 °C (typical storage temperature for water samples) all compounds, except MTIC and chlorambucil, were stable for 24h, but the number of stable compounds decreased to 10 after 9 days. Freezing of the aqueous solutions improved considerably the stability of various compounds: after 3 months of storage at -20 °C, 10 compounds, namely, 5-fluorouracil, carboplatin, gemcitabine, temozolomide, vincristine, vinorelbine, ifosfamide, cyclophosphamide, etoposide, and capecitabine, remained stable (in contrast to only carboplatin and capecitabine at 4 °C). The addition of acid improved the stability of methotrexate and its metabolite hydroxy-methotrexate but not that of the rest of compounds. The addition of organic solvent (50% methanol or DMSO) prevented the degradation at 4 °C of the otherwise unstable compounds oxaliplatin, methotrexate, erlotinib, doxorubicin, tamoxifen, and paclitaxel. To the authors' knowledge, five of the analytes investigated have never been searched for in the aquatic environment (imatinib, 6α-hydroxypaclitaxel, endoxifen, (Z)4-hydroxytamoxifen, and temozolomide), and for

  5. Aqueous Conditions and Habitability Associated with Formation of a Serpentinite: Using Analyses of Ferric Iron and Stable Carbon Isotopes to Reconstruct Hydrogen Production

    NASA Astrophysics Data System (ADS)

    Greenberger, R. N.; Mustard, J. F.; Cloutis, E.; Pratt, L. M.; Sauer, P. E.; Mann, P.; Turner, K.; Dyar, M. D.

    2014-12-01

    Serpentine deposits on Mars have generated significant interest because byproducts of serpentinization, H2 and CH4, can be important energy sources for subsurface microbial communities. H2 is produced through Fe2+ oxidation to form magnetite and Fe3+-bearing serpentine. In serpentine, Fe3+ goes into octahedral sites first, then tetrahedral sites [Marcaillou et al., 2011, EPSL]. We use Fe oxidation state and coordination in an Early Ordovician serpentinite in Norbestos, Quebec, as proxies for H2 production and stable isotopes of carbonates to understand past aqueous conditions at the Canadian Space Agency's 2012 Mars Methane Analogue Mission site. Rock outcrops were imaged with a visible hyperspectral imager (420-720 nm), and samples were imaged in the laboratory with the same imager and a near infrared imager (650-1100 nm). Other analyses determined major element chemistry (ICP-AES and C analyses), mineralogy (XRD), Fe phases (Mössbauer spectroscopy), and stable isotopes of carbonates. Fe oxidation state and coordination (tetrahedral vs octahedral) were mapped in samples and outcrops using imaging data. We focused on locations with tetrahedral Fe3+ in serpentine as these are the most serpentinized sites with maximum H2 production. Carbonate samples from ~100-200 m south of a shear zone are enriched in 13C (δ13C up to +16.12‰ vs VPDB) resulting from production of CH4 depleted in 13C in a system closed to C addition but open to CH4 escape. This alteration occurred at elevated temperatures and low water/rock ratios. In the shear zone, lower δ13C values (most < +2‰) positively correlated with δ18O likely result from kinetic fractionation under recent low temperature conditions. Spectroscopy suggests that much of this deposit underwent advanced serpentinization to produce significant H2. Isotopic signatures of carbonates precipitated during serpentinization outside the shear zone illuminate the temperatures (elevated) and chemistries of fluids (high Ca2+, low CO

  6. Interaction of carbon nanotubes and diamonds under hot-filament chemical vapor deposition conditions

    NASA Astrophysics Data System (ADS)

    Shankar, Nagraj

    A composite of CNTs and diamond can be expected to have unique mechanical, electrical and thermal properties due to the synergetic combination of the excellent properties of these two allotropes of carbon. The composite may find applications in various fields that require a combination of good mechanical, thermal, electrical and optical properties such as, wear-resistant coatings, thermal management of integrated chips (ICs), and field emission devices. This research is devoted to the experimental studies of phase stability of diamond and CNTs under chemical vapor deposition conditions to investigate the possibility of combining these materials to produce a hybrid composite. Growth of the hybrid material is investigated by starting with a pre-existing film of CNTs and subsequently growing diamond on it. The diamond growth phase space is systematically scanned to determine optimal conditions where diamond nucleates on the CNT without destroying it. Various techniques including SEM, TEM, and Micro Raman spectroscopy are used to characterize the hybrid material. A selective window where the diamond directly nucleates on the CNT without destroying the underlying CNT network is identified. Based on the material characterization, a growth mechanism based on etching of CNT at the defective sites to produce sp3 dangling bonds onto which diamond nucleates is proposed. Though a hybrid material is synthesized, the nucleation density of diamond on the CNTs is low and highly non-homogenous. Improvements to the CNT dispersion in the hybrid material are investigated in order to produce a homogenous material with predictable CNT loading fractions and to probe the low nucleation density of diamond on the CNT. The effect of several dispersion techniques and solvents on CNT surface homogeneity is studied using SEM, and a novel, vacuum drying based approach using CNT/dichlorobenzene dispersions is suggested. SEM and Raman analysis of the early stage nucleation are used to develop a

  7. Sonochemical dechlorination of hazardous wastes in aqueous systems

    SciTech Connect

    Catallo, W.J.; Junk, T.

    1995-12-31

    Physical processes resulting from ultrasonication of aqueous solutions and suspensions produce extreme conditions that can affect the chemistry of dissolved and suspended chemicals. The purpose of this work was to explore the use of sonochemistry in treating chlorinated chemicals in water. The compounds examined for susceptibility to aqueous sonochemical transformation were chlorpyrifos, 3,3{prime},4,4{prime}-tetrachloroazoxybenzene, 2-chlorobiphenyl, 2,4,8-trichlorodibenzofuran, lindane (hexachlorocyclohexane, {gamma}-isomer), hexachlorobenzene, aldrin, and a complex mixture of chlorinated olefins, paraffins, and aromatics from a Louisiana Superfund Site. It was fond that many chemicals were dechlorinated and/or otherwise transformed by sonochemical treatment under minimal conditions. Evidence for sonochemical transformation and dechlorination of the target chemicals and mixtures was obtained from controlled experiments measuring (1) increases in titratable chloride from sonochemical treatment, (2) decreases in pH, (3) changes in aqueous phase UV/visible absorption spectra, (4) changes in aqueous electrochemistry, and (5) generation of sonolysis products and/or decreases in target compounds vs appropriate control in internally standardized GC-MS analysis of extracts.

  8. Chemical and microbiological parameters and sensory attributes of a typical Sicilian salami ripened in different conditions.

    PubMed

    Moretti, Vittorio Maria; Madonia, Giuseppe; Diaferia, Carlo; Mentasti, Tiziana; Paleari, Maria Antonietta; Panseri, Sara; Pirone, Giuseppe; Gandini, Gustavo

    2004-04-01

    A study was carried out on a typical Sicilian salami prepared from meat of the local Nero Siciliano pig in order to characterize this typical product. One formulation of salami was divided in two batches and ripened in two different environments, a traditional sicilian room (TR) and a controlled industrial ripening room (RR). Microbiological and physico-chemical analysis were performed on raw mixture and after 7 and 90 days of ripening. Sensory analysis was carried out on salami at the end of ripening, and flavour compounds were extracted by simultaneous distillation-extraction and analysed by gas chromatography/mass spectrometry. Commercial salami prepared from meat from white pig were purchased locally and used as comparative samples. The experimental salami at the end of ripening was characterized by a high level of fat and low level of moisture. Fatty acid analysis showed that experimental salami contained a higher percentage of oleic acid, vaccenic acid and palmitic acid and a lower percentage of stearic acid and linoleic acid, when compared to commercial salami (P<0.05). No significant differences were found in fatty acid composition of the experimental salami between the two types of ripening. Instrumental analysis of flavour volatile compounds in the experimental salami demonstrated that traditionally ripened salami contained the most volatiles, especially aldehydes (8217 vs. 3104 ng g(-1), P<0.05). Sensory analysis showed no significant differences as a consequence of different ripening conditions for firmness, saltiness, acidity, cohesiveness and elasticity. In contrast, there were significant differences for hardness and rancidity, which were higher in TR salami compared with RR and commercial salami. Lactic acid bacteria and Micrococcaceae counts were higher in controlled ripened salami although the hygienic quality of both products was satisfactory. The use of a controlled room for the ripening of this typical salami seems to be a potential

  9. Hybrid molecularly imprinted poly(methacrylic acid-TRIM)-silica chemically modified with (3-glycidyloxypropyl)trimethoxysilane for the extraction of folic acid in aqueous medium.

    PubMed

    de Oliveira, Fernanda Midori; Segatelli, Mariana Gava; Tarley, César Ricardo Teixeira

    2016-02-01

    In the present study a hybrid molecularly imprinted poly(methacrylic acid-trimethylolpropane trimethacrylate)-silica (MIP) was synthesized and modified with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) with posterior opening of epoxy ring to provide hydrophilic properties of material in the extraction of folic acid from aqueous medium. The chemical and structural aggregates of hybrid material were characterized by means of Fourier Transform Infrared (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Thermogravimetric analysis (TGA) and textural data. Selectivity data of MIP were compared to non-imprinted polymer (NIP) through competitive sorption studies in the presence of caffeine, paracetamol or 4-aminobenzamide yielding relative selectivity coefficients (k′) higher than one unit, thus confirming the selective character of MIP even in the presence of structurally smaller compounds than the folic acid. The lower hydrophobic sorption by bovine serum albumin (BSA) in the MIP as compared to unmodified MIP proves the hydrophilicity of polymer surface by using GPTMS with opening ring. Under acid medium(pH 1.5) the sorption of folic acid onto MIP from batch experiments was higher than the one achieved for NIP. Equilibrium sorption of folic acid was reached at 120 min for MIP, NIP and MIP without GPTMS and kinetic sorption data were well described by pseudo-second-order, Elovich and intraparticle diffusion models. Thus, these results indicate the existence of different binding energy sites in the polymers and a complex mechanism consisting of both surface sorption and intraparticle transport of folic acid within the pores of polymers.

  10. Defect formation in aqueous environment: Theoretical assessment of boron incorporation in nickel ferrite under conditions of an operating pressurized-water nuclear reactor (PWR)

    NASA Astrophysics Data System (ADS)

    Rák, Zs.; Bucholz, E. W.; Brenner, D. W.

    2015-06-01

    A serious concern in the safety and economy of a pressurized water nuclear reactor is related to the accumulation of boron inside the metal oxide (mostly NiFe2O4 spinel) deposits on the upper regions of the fuel rods. Boron, being a potent neutron absorber, can alter the neutron flux causing anomalous shifts and fluctuations in the power output of the reactor core. This phenomenon reduces the operational flexibility of the plant and may force the down-rating of the reactor. In this work an innovative approach is used to combine first-principles calculations with thermodynamic data to evaluate the possibility of B incorporation into the crystal structure of NiFe2O4 , under conditions typical to operating nuclear pressurized water nuclear reactors. Analyses of temperature and pH dependence of the defect formation energies indicate that B can accumulate in NiFe2O4 as an interstitial impurity and may therefore be a major contributor to the anomalous axial power shift observed in nuclear reactors. This computational approach is quite general and applicable to a large variety of solids in equilibrium with aqueous solutions.

  11. Greener Synthesis and Chemical transformations Using Sustainable Alternative Methods and Applications of Nano-Catalysts

    EPA Science Inventory

    The presentation summarizes our sustainable chemical synthesis activity involving benign alternatives, namely greener reaction medium in aqueous or solventfree conditions and using alternative activation via microwave or photocatalytic activation. Eco-friendly synthesis of nanoma...

  12. Greener Syntheses and Chemical Transformations: Sustainable Alternative Methods and Applications of Nano-Catalysts. (Florence, Italy)

    EPA Science Inventory

    The presentation summarizes our sustainable chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions. The synthesis of heterocyclic compounds, coupling reactions, and a vari...

  13. Greener Syntheses and Chemical Transformations Using SustainableAlternative Methods and Nano-Catalysts

    EPA Science Inventory

    The presentation summarizes our sustainable chemical synthesis activity involving benign alternatives, namely greener reaction medium in aqueous or solventfree conditions and using alternative activation via microwave or photocatalytic activation. Eco-friendly synthesis of nanoma...

  14. Sustainable 'Greener' Methods for Chemical Transformations and Applications of Nano-Catalysts

    EPA Science Inventory

    The presentation summarizes our sustainable chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 Synthesis of heterocyclic compounds, coupling reactions, and name reac...

  15. Greener Syntheses and Chemical Transformations: Sustainable Alternative Methods and Applications of Nano-Catalysts

    EPA Science Inventory

    The presentation summarizes our sustainable chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a var...

  16. The Effect of Cooperative Learning Approach Based on Conceptual Change Condition on Students' Understanding of Chemical Equilibrium Concepts

    ERIC Educational Resources Information Center

    Bilgin, Ibrahim; Geban, Omer

    2006-01-01

    The purpose of this study is to investigate the effects of the cooperative learning approach based on conceptual change conditions over traditional instruction on 10th grade students' conceptual understanding and achievement of computational problems related to chemical equilibrium concepts. The subjects of this study consisted of 87 tenth grade…

  17. Effects of different extrusion conditions on the chemical and toxicological fate of fumonisin B1 in maize: a review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of experiments to investigate the chemical and toxicological fate of fumonisin B1 (FB1) under different extrusion conditions using both single- and twin-screw extruders is described. Maize grits were contaminated with FB1 at different concentrations by fermentation with Fusarium verticilli...

  18. Transport and Fate of Bacteria in Porous Media: Coupled Effects of Chemical Conditions and Pore Space Geometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experimental and theoretical studies were undertaken to explore the coupling effects of chemical conditions and pore space geometry on bacteria transport in porous media. The retention of Escherichia coli D21g was investigated in a series of batch and column experiments with solutions of different i...

  19. [Extraction of alpha-cypermethrin from aqueous methanol solutions].

    PubMed

    Shormanov, V K; Chigareva, E N; Belousova, O V

    2010-01-01

    Alpha cypermethrin was extracted from aqueous methanol solutions using hydrophobic organic solvents. The efficiency of extraction was shown to depend on the chemical nature of the solvent, the water to methanol ratio, and saturation of the aqueous methanol layer with an electrolyte. Optimal extraction of alpha-cypermethrin was achieved using toluene as the solvent under desalinization conditions. The extraction factor for the removal of the sought amount of alpha-cypermethrin from the water-methanol solution (4:1) using various solvents was calculated.

  20. Aqueous-phase chemical processes in deliquescent sea-salt aerosols: A mechanism that couples the atmospheric cycles of S and sea salt

    SciTech Connect

    Chameides, W.L.; Stelson, A.W. )

    1992-12-20

    The aqueous-phase chemistry of deliquescent sea-salt aerosols in the remote marine boundary layer is investigated with a steady state box model. The model simulates the scavenging of soluble and reactive gaseous species by the sea-salt aerosols, the chemical reactions of these species and sea-salt ions in the deliquescent solution, and changes in the aerosol composition that occur as a result of these processes. The calculations indicate that deliquescent sea-salt aerosols are strongly buffered with a pH that remains close to 8 until the amount of acid added to the aerosol solution exceeds the alkalinity of sea salt. The oxidation of chloride by O[sub 3] and by free radicals is found to proceed at extremely slow rates, and thus these reactions cannot explain the high-chloride deficits recently observed over the North Atlantic Ocean. On the other hand, the oxidation of dissolved S[sub IV] by O[sub 3] in sea-salt aerosols is found to proceed at rates approaching 0.1 eq L[sup [minus]1] hr[sup [minus]1] and appears to be sufficiently rapid to qualitatively explain the observations of nss-SO[sub 4][sup +] in sea-salt aerosols over the North Atlantic Ocean. The calculations suggest the existence of a removal mechanism for atmospheric S that is largely controlled by the alkalinity of seawater and the flux of this alkalinity into the atmosphere in sea salt. It is estimated that this process will and ultimately remove about (1-4) [times] 10[sup 11]moles of SO[sub 2] from the atmosphere annually. Comparison of this loss rate with other elements of the atmospheric S cycle suggests that sea salt may remove a significant amount of S from the marine atmosphere and thereby depress the SO[sub 2] concentration in the marine boundary layer and limit the number of cloud condensation nuclei generated from the oxidation of SO[sub 2]. 59 refs., 11 figs., 7 tabs.

  1. One-electron reduction of tris(2,2 prime -bipyrimidine)ruthenium(2+) ion in aqueous solution. A photochemical, radiation chemical, and electrochemical study

    SciTech Connect

    Neshvad, G.; Hoffman, M.Z. ); Mulazzani, Q.G.; Ciano, M.; D'Angelantonio, M. ); Venturi, M. Univ. di Bologna )

    1989-08-10

    The reduction of Ru(bpm){sub 3}{sup 2+} in aqueous solution has been investigated by use of photochemical, radiation chemical, and electrochemical techniques. The luminescent excited state of the substrate, *Ru(bpm){sub 3}{sup 2+}, has a lifetime ({tau}{sub 0}) of 0.081 {mu}s and a standard reduction potential of {approximately} 1.2 V; it is quenched by electron donors (D) such as ethylenediaminetetraacetic acid (EDTA), triethanolamine (TEOA), ascorbate ion, deprotonated cysteine, and reduced glutathione with values of k{sub q} that depend on the pH of the solution and the reducing ability of the quencher. The one-electron-reduced species, Ru(bpm){sub 3}{sup +}, is formed in the quenching reaction; it is also produced electrochemically and from the reaction of radiolytically generated CO{sub 2}{sup {center dot}{minus}} with Ru(bpm){sub 3}{sup 2+} (k = 6.7 {times} 10{sup 9} M{sup {minus}1} s{sup {minus}1}). Ru(bpm){sub 3}{sup +} is a good reducing agent (E{sub ox}{sup 0} = 0.73 V) and reduces MV{sup 2+} (methylviologen) to MV{sup {center dot}+} (k = 1.0 {times} 10{sup 9} M{sup {minus}1} s{sup {minus}1}). Ru(bpm){sub 3}{sup +} also undergoes protonation; its acidic form (pK{sub a} 6.3) is a milder reducing agent (E{sub ox}{sup 0} = 0.50 V) but is still capable of reducing MV{sup 2+} (k = 1.0 {times} 10{sup 6} M{sup {minus}1} s{sup {minus}1}). Both forms of Ru(bpm){sub 3}{sup +} are unstable with respect to long-term storage; it is likely they engage in disproportionation and/or reaction with the solvent. The continuous photolysis of a solution containing Ru(bpm){sub 3}{sup 2+}, MV{sup 2+}, and a sacrificial reductive quencher (EDTA, TEOA) generates MV{sup {center dot}+}. Values of {eta}{sub ce} of 0.64 and {approximately}0.7 for TEOA and EDTA, respectively, in alkaline solution have been obtained.

  2. Study of Chemical Surface Structure of Natural Sorbents Used for Removing of Pb2+ Ions from Model Aqueous Solutions (part Ii)

    NASA Astrophysics Data System (ADS)

    Bożęcka, Agnieszka; Bożęcki, Piotr; Sanak-Rydlewska, Stanisława

    2014-03-01

    This article presents the results of the chemical structure research of organic sorbent surface such as walnut shells, plums stones and sunflower hulls with using such methods as infrared spectrometry (FTIR) and elemental analysis. Based on the IR spectra identification of functional groups present on the surface of studied materials has been done as well as determination of their effect on the sorption mechanism of Pb2+ ions from aqueous model solutions W artykule przedstawiono wyniki badań chemicznej struktury powierzchni sorbentów organicznych takich jak: łupiny orzecha włoskiego, pestki śliwek oraz łuski słonecznika z wykorzystaniem metody spektrometrii w podczerwieni (FTIR) oraz analizy elementarnej. W oparciu o uzyskane widma IR dokonano identyfikacji grup funkcyjnych obecnych na powierzchni tych materiałów i określono ich wpływ na mechanizm sorpcji jonów Pb2+ z modelowych roztworów wodnych. Analiza elementarna wykazała, że spośród badanych sorbentów, największą zawartość węgla (49,91%) i wodoru (5,93%) mają pestki śliwek. Najwięcej azotu (1,59%) zawierają łuszczyny słonecznika (tabela 1). Zawartość siarki we wszystkich badanych materiałach jest znikoma, dlatego nie udało się jej oznaczyć tą metodą. Obecność pozostałych pierwiastków może świadczyć o istnieniu zarówno alifatycznych jak i aromatycznych połączeń organicznych. Potwierdzeniem tego są również zarejestrowane widma IR (rysunki 1-3). W oparciu o uzyskane wyniki można przypuszczać także, iż udział procesu wymiany jonowej w sorpcji ołowiu z roztworów wodnych jest znaczący. Świadczą o tym m.in. intensywności pasm na widmach IR dla próbek badanych materiałów po ich kontakcie z roztworami jonów Pb2+ (rysunki 4-6).

  3. Experimental study of physical and chemical melting conditions of rare-metal granites at the Voznesenka ore cluster, Primorye region

    NASA Astrophysics Data System (ADS)

    Aksyuk, A. M.; Konyshev, A. A.; Korzhinskaya, V. S.; Shapovalov, Yu. B.

    2016-09-01

    The melting of two basic granite varieties in the Voznesenka Complex such as Yaroslavka biotite granite and Voznesenka Li-F granite was subject to experimental studies to analyze and to compare the conditions of their physicochemical formation. The experiments were conducted at 550-700°C and 50-500 MPa in pure water and in 0.1 and 1 m HF aqueous fluorine-bearing solutions. The melting temperature of Voznesenka Li-F granites was 60-70°C lower than that of Yaroslavka biotite granites. The temperature decreased by almost 100°C from the completion of biotite granite crystallization to the completion of Li-F granite crystallization.

  4. Quantum chemical calculations and spectroscopic measurements of spectroscopic and thermodynamic properties of given uranyl complexes in aqueous solutions with possible environmental and industrial applications

    NASA Astrophysics Data System (ADS)

    Višňak, Jakub; Sobek, Lukáš

    2016-11-01

    A brief introduction into computational methodology and preliminary results for spectroscopic (excitation energies, vibrational frequencies in ground and excited electronic states) and thermodynamic (stability constants, standard enthalpies and entropies of complexation reactions) properties of some 1:1, 1:2 and 1:3 uranyl sulphato- and selenato- complexes in aqueos solutions will be given. The relativistic effects are included via Effective Core Potential (ECP), electron correlation via (TD)DFT/B3LYP (dispersion interaction corrected) and solvation is described via explicit inclusion of one hydration sphere beyond the coordinated water molecules. We acknowledge limits of this approximate description - more accurate calculations (ranging from semi-phenomenological two-component spin-orbit coupling up to four-component Dirac-Coulomb-Breit hamiltonian) and Molecular Dynamics simulations are in preparation. The computational results are compared with the experimental results from Time-resolved Laser-induced Fluorescence Spectroscopy (TRLFS) and UV-VIS spectroscopic studies (including our original experimental research on this topic). In case of the TRLFS and UV-VIS speciation studies, the problem of complex solution spectra decomposition into individual components is ill-conditioned and hints from theoretical chemistry could be very important. Qualitative agreement between our quantum chemical calculations of the spectroscopic properties and experimental data was achieved. Possible applications for geochemical modelling (e.g. safety studies of nuclear waste repositories, modelling of a future mining site) and analytical chemical studies (including natural samples) are discussed.

  5. Electrochemical studies of Copper, Tantalum and Tantalum Nitride surfaces in aqueous solutions for applications in chemical-mechanical and electrochemical-mechanical planarization

    NASA Astrophysics Data System (ADS)

    Sulyma, Christopher Michael

    This report will investigate fundamental properties of materials involved in integrated circuit (IC) manufacturing. Individual materials (one at a time) are studied in different electrochemical environmental solutions to better understand the kinetics associated with the polishing process. Each system tries to simulate a real CMP environment in order to compare our findings with what is currently used in industry. To accomplish this, a variety of techniques are used. The voltage pulse modulation technique is useful for electrochemical processing of metal and alloy surfaces by utilizing faradaic reactions like electrodeposition and electrodissolution. A theoretical framework is presented in chapter 4 to facilitate quantitative analysis of experimental data (current transients) obtained in this approach. A typical application of this analysis is demonstrated for an experimental system involving electrochemical removal of copper surface layers, a relatively new process for abrasive-free electrochemical mechanical planarization of copper lines used in the fabrication of integrated circuits. Voltage pulse modulated electrodissolution of Cu in the absence of mechanical polishing is activated in an acidic solution of oxalic acid and hydrogen peroxide. The current generated by each applied voltage step shows a sharp spike, followed by a double-exponential decay, and eventually attains the rectangular shape of the potential pulses. For the second system in chapter 5, open-circuit potential measurements, cyclic voltammetry and Fourier transform impedance spectroscopy have been used to study pH dependent surface reactions of Cu and Ta rotating disc electrodes (RDEs) in aqueous solutions of succinic acid (SA, a complexing agent), hydrogen peroxide (an oxidizer), and ammonium dodecyl sulfate (ADS, a corrosion inhibitor for Cu). The surface chemistries of these systems are relevant for the development of a single-slurry approach to chemical mechanical planarization (CMP) of Cu

  6. Population dynamics, information transfer, and spatial organization in a chemical reaction network under spatial confinement and crowding conditions.

    PubMed

    Bellesia, Giovanni; Bales, Benjamin B

    2016-10-01

    We investigate, via Brownian dynamics simulations, the reaction dynamics of a generic, nonlinear chemical network under spatial confinement and crowding conditions. In detail, the Willamowski-Rossler chemical reaction system has been "extended" and considered as a prototype reaction-diffusion system. Our results are potentially relevant to a number of open problems in biophysics and biochemistry, such as the synthesis of primitive cellular units (protocells) and the definition of their role in the chemical origin of life and the characterization of vesicle-mediated drug delivery processes. More generally, the computational approach presented in this work makes the case for the use of spatial stochastic simulation methods for the study of biochemical networks in vivo where the "well-mixed" approximation is invalid and both thermal and intrinsic fluctuations linked to the possible presence of molecular species in low number copies cannot be averaged out.

  7. Population dynamics, information transfer, and spatial organization in a chemical reaction network under spatial confinement and crowding conditions

    NASA Astrophysics Data System (ADS)

    Bellesia, Giovanni; Bales, Benjamin B.

    2016-10-01

    We investigate, via Brownian dynamics simulations, the reaction dynamics of a generic, nonlinear chemical network under spatial confinement and crowding conditions. In detail, the Willamowski-Rossler chemical reaction system has been "extended" and considered as a prototype reaction-diffusion system. Our results are potentially relevant to a number of open problems in biophysics and biochemistry, such as the synthesis of primitive cellular units (protocells) and the definition of their role in the chemical origin of life and the characterization of vesicle-mediated drug delivery processes. More generally, the computational approach presented in this work makes the case for the use of spatial stochastic simulation methods for the study of biochemical networks in vivo where the "well-mixed" approximation is invalid and both thermal and intrinsic fluctuations linked to the possible presence of molecular species in low number copies cannot be averaged out.

  8. Chemical sludge conditioning in combination with different conventional and alternative dewatering devices: chamber filter press, decanter and Bucher press.

    PubMed

    Schaum, Christian; Cornel, Peter; Faria, Pedro; Recktenwald, Michael; Norrlöw, Olof

    2008-11-01

    The Kemicond process for sludge conditioning consists of chemical treatment with sulphuric acid and hydrogen peroxide at a pH-value of approximately 4 followed by a dewatering unit. It is shown that chemical treatment can improve the dewaterability of ferruginous digested sludge. It is concluded that the Fenton process as well as the oxidation of organics and the formation of iron hydroxo complexes are important reaction mechanisms. Furthermore, the organic matter changes through the acidic oxidative process. With the improvement in dewaterability, it is possible to achieve an increase in TS concentration, which affects a reduction of the sludge volume. Cost savings for sludge disposal can amortize the additional investment and operational costs for chemical treatment.

  9. Low-thrust chemical propulsion system propellant expulsion and thermal conditioning study. Executive summary

    NASA Technical Reports Server (NTRS)

    Merino, F.; Wakabayashi, I.; Pleasant, R. L.; Hill, M.

    1982-01-01

    Preferred techniques for providing abort pressurization and engine feed system net positive suction pressure (NPSP) for low thrust chemical propulsion systems (LTPS) were determined. A representative LTPS vehicle configuration is presented. Analysis tasks include: propellant heating analysis; pressurant requirements for abort propellant dump; and comparative analysis of pressurization techniques and thermal subcoolers.

  10. THE INSTABILITY OF ESTROGENIC CHEMICALS DURING LABORATORY STATIC EXPOSURE CONDITIONS WITH MALE FATHEAD MINNOWS

    EPA Science Inventory

    Endocrine disrupting chemicals (EDCs) such as Para-nonylphenol (NP), estradiol (E2), estrone (E1), estriol (E3) and ethynylestradiol (EE2) are shown to be ubiquitous in surface waters, sediments and sludge. These EDCs are known to induce vitellogenin gene (Vg) expression in male...

  11. Chemical bath deposition of ZnO nanowires at near-neutral pH conditions without hexamethylenetetramine (HMTA): understanding the role of HMTA in ZnO nanowire growth.

    PubMed

    McPeak, Kevin M; Le, Thinh P; Britton, Nathan G; Nickolov, Zhorro S; Elabd, Yossef A; Baxter, Jason B

    2011-04-05

    Chemical bath deposition (CBD) is an inexpensive and reproducible method for depositing ZnO nanowire arrays over large areas. The aqueous Zn(NO(3))(2)-hexamethylenetetramine (HMTA) chemistry is one of the most common CBD chemistries for ZnO nanowire synthesis, but some details of the reaction mechanism are still not well-understood. Here, we report the use of in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy to study HMTA adsorption from aqueous solutions onto ZnO nanoparticle films and show that HMTA does not adsorb on ZnO. This result refutes earlier claims that the anisotropic morphology arises from HMTA adsorbing onto and capping the ZnO {10 1 0} faces. We conclude that the role of HMTA in the CBD of ZnO nanowires is only to control the saturation index of ZnO. Furthermore, we demonstrate the first deposition of ZnO nanowire arrays at 90 °C and near-neutral pH conditions without HMTA. Nanowires were grown using the pH buffer 2-(N-morpholino)ethanesulfonic acid (MES) and continuous titratation with KOH to maintain the same pH conditions where growth with HMTA occurs. This semi-batch synthetic method opens many new opportunities to tailor the ZnO morphology and properties by independently controlling temperature and pH.

  12. Boundary conditions for the paleoenvironment: Chemical and Physical Processes in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Schloerb, F. P.; Ziurys, L. M.

    1986-01-01

    The present research includes searches for important new interstellar constituents; observations relevant to differentiating between different models for the chemical processes that are important in the interstellar environment; and coordinated studies of the chemistry, physics, and dynamics of molecular clouds which are the sites or possible future sites of star formation. Recent research has included the detection and study of four new interstellar molecules; searches which have placed upper limits on the abundance of several other potential constituents of interstellar clouds; quantitative studies of comparative molecular abundances in different types of interstellar clouds; investigation of reaction pathways for astrochemistry from a comparison of theory and the observed abundance of related species such as isomers and isotopic variants; studies of possible tracers of energenic events related to star formation, including silicon and sulfur containing molecules; and mapping of physical, chemical, and dynamical properties over extended regions of nearby cold molecular clouds.

  13. Dependence of electro-optical properties on the deposition conditions of chemical bath deposited CdS thin films

    SciTech Connect

    Dona, J.M.; Herrero, J.

    1997-11-01

    Lately, there has been a sharp increase in the publication of papers on chemical bath deposition of CdS thin films and related materials due to successful results obtained using this method to fabricate CdS thin-film buffer layers for CuInSe{sub 2}- and CdTe-based polycrystalline thin-film solar cells. Generally, these papers focus on previously proposed methods of studying film characteristics without a systematic study of the influence of deposition conditions on film characteristics. In this paper the authors present an exhaustive study of the chemical bath-deposited CdS thin films electro-optical properties dependence on deposition variables. The authors propose not only a set of conditions for obtaining CdS thin films by this method but additionally, suitable deposition process conditions for certain application requirements, such as buffer layers for thin-film solar cells. The observed electro-optical characteristics dependence on the deposition variables corroborates the chemical mechanism that they proposed previously for this process.

  14. Assessment of chemical dispersant effectiveness in a wave tank under regular non-breaking and breaking wave conditions.

    PubMed

    Li, Zhengkai; Lee, Kenneth; King, Thomas; Boufadel, Michel C; Venosa, Albert D

    2008-05-01

    Current chemical dispersant effectiveness tests for product selection are commonly performed with bench-scale testing apparatus. However, for the assessment of oil dispersant effectiveness under real sea state conditions, test protocols are required to have hydrodynamic conditions closer to the natural environment, including transport and dilution effects. To achieve this goal, Fisheries and Oceans Canada and the US Environmental Protection Agency (EPA) designed and constructed a wave tank system to study chemical dispersant effectiveness under controlled mixing energy conditions (regular non-breaking, spilling breaking, and plunging breaking waves). Quantification of oil dispersant effectiveness was based on observed changes in dispersed oil concentrations and oil-droplet size distribution. The study results quantitatively demonstrated that total dispersed oil concentration and breakup kinetics of oil droplets in the water column were strongly dependent on the presence of chemical dispersants and the influence of breaking waves. These data on the effectiveness of dispersants as a function of sea state will have significant implications in the drafting of future operational guidelines for dispersant use at sea.

  15. Sustainable Applications of Nano-Catalysts and Alternative Methods in the Greener Synthesis and Transformations of Chemical

    EPA Science Inventory

    The presentation summarizes our sustainable chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a var...

  16. Performance of Chemically Treated Jute Geotextile in Unpaved Roads at Different in situ Conditions

    NASA Astrophysics Data System (ADS)

    Midha, Vinay Kumar; Joshi, Shubham; Suresh Kumar, S.

    2017-02-01

    Biodegradable jute geotextiles are an effective reinforcing material for unpaved roads, but its serviceability is limited because of faster microbial degradation. Different methods are in use to improve the serviceability of jute geotextiles. In this paper, influence of chemical treatment (transesterification and bitumen coating), road design and rainfall intensity on the time dependent serviceability of jute geotextiles has been studied. Chemically treated jute geotextiles, were laid in unpaved road designs with and without sand layer, for 30, 60 and 90 days' duration, and subjected to simulated rainfall intensities of 50 and 100 mm/h. With increase in time of usage, tensile strength and puncture resistance decrease due to microbial attack, and pore size decreases due to clogging of soil in jute geotextiles. Chemical treatment was observed to have greater influence on the serviceability, followed by the presence of sand layer in road design and the rainfall intensity. Further, overall performance of bitumen coated jute geotextiles was observed to be better than transesterified jute geotextile, due to its hydrophobic nature.

  17. Chemical conversion of cisplatin and carboplatin with histidine in a model protein crystallized under sodium iodide conditions

    SciTech Connect

    Tanley, Simon W. M.; Helliwell, John R.

    2014-08-29

    Crystals of HEWL with cisplatin and HEWL with carboplatin grown in sodium iodide conditions both show a partial chemical transformation of cisplatin or carboplatin to a transiodoplatin (PtI{sub 2}X{sub 2}) form. The binding is only at the N{sup δ} atom of His15. A further Pt species (PtI{sub 3}X) is also seen, in both cases bound in a crevice between symmetry-related protein molecules. Cisplatin and carboplatin are platinum anticancer agents that are used to treat a variety of cancers. Previous X-ray crystallographic studies of carboplatin binding to histidine in hen egg-white lysozyme (HEWL) showed a partial chemical conversion of carboplatin to cisplatin owing to the high sodium chloride concentration used in the crystallization conditions. Also, the co-crystallization of HEWL with carboplatin in sodium bromide conditions resulted in the partial conversion of carboplatin to the transbromoplatin form, with a portion of the cyclobutanedicarboxylate (CBDC) moiety still present. The results of the co-crystallization of HEWL with cisplatin or carboplatin in sodium iodide conditions are now reported in order to determine whether the cisplatin and carboplatin converted to the iodo form, and whether this took place in a similar way to the partial conversion of carboplatin to cisplatin in NaCl conditions or to transbromoplatin in NaBr conditions as seen previously. It is reported here that a partial chemical transformation has taken place to a transplatin form for both ligands. The NaI-grown crystals belonged to the monoclinic space group P2{sub 1} with two molecules in the asymmetric unit. The chemically transformed cisplatin and carboplatin bind to both His15 residues, i.e. in each asymmetric unit. The binding is only at the N{sup δ} atom of His15. A third platinum species is also seen in both conditions bound in a crevice between symmetry-related molecules. Here, the platinum is bound to three I atoms identified based on their anomalous difference electron densities

  18. The effect of chemical composition and austenite conditioning on the transformation behavior of microalloyed steels

    SciTech Connect

    Mousavi Anijdan, S.H.; Rezaeian, Ahmad; Yue, Steve

    2012-01-15

    In this investigation, by using continuous cooling torsion (CCT) testing, the transformation behavior of four microalloyed steels under two circumstances of austenite conditioning and non-conditioning was studied. A full scale hot-rolling schedule containing a 13-pass deformation was employed for the conditioning of the austenite. The CCT tests were then employed till temperature of {approx} 540 Degree-Sign C and the flow curves obtained from this process were analyzed. The initial and final microstructures of the steels were studied by optical and electron microscopes. Results show that alloying elements would decrease the transformation temperature. This effect intensifies with the gradual increase of Mo, Nb and Cu as alloying elements added to the microalloyed steels. As well, austenite conditioning increased the transformation start temperature due mainly to the promotion of polygonal ferrite formation that resulted from a pancaked austenite. The final microstructures also show that CCT alone would decrease the amount of bainite by inducing ferrite transformation in the two phase region. In addition, after the transformation begins, the deformation might result in the occurrence of dynamic recrystallization in the ferrite region. This could lead to two different ferrite grain sizes at the end of the CCT. Moreover, the Nb bearing steels show no sign of decreasing the strength level after the transformation begins in the non-conditioned situation and their microstructure is a mix of polygonal ferrite and bainite indicating an absence of probable dynamic recrystallization in this condition. In the conditioned cases, however, these steels show a rapid decrease of the strength level and their final microstructures insinuate that ferrite could have undergone a dynamic recrystallization due to deformation. Consequently, no bainite was seen in the austenite conditioned Nb bearing steels. The pancaking of austenite in the latest cases produced fully polygonal ferrite

  19. EMERGING TECHNOLOGY BULLETIN: REMOVAL OF PHENOL FROM AQUEOUS SOLUTIONS USING HIGH ENERGY ELECTRON BEAM IRRADIATION

    EPA Science Inventory

    Irradiation of aqueous solutions with high-energy electrons results in the formation of the aqueous electron, hydrogen radical, H-, and the hydroxyl radical, OH-. These reactive transient species initiate chemical reactions capable of destroying organic compounds in aqueous solut...

  20. Hexacoordinate Ru-based olefin metathesis catalysts with pH-responsive N-heterocyclic carbene (NHC) and N-donor ligands for ROMP reactions in non-aqueous, aqueous and emulsion conditions

    PubMed Central

    Balof, Shawna L; Nix, K Owen; Olliff, Matthew S; Roessler, Sarah E; Saha, Arpita; Müller, Kevin B; Behrens, Ulrich; Valente, Edward J

    2015-01-01

    Summary Three new ruthenium alkylidene complexes (PCy3)Cl2(H2ITap)Ru=CHSPh (9), (DMAP)2Cl2(H2ITap)Ru=CHPh (11) and (DMAP)2Cl2(H2ITap)Ru=CHSPh (12) have been synthesized bearing the pH-responsive H2ITap ligand (H2ITap = 1,3-bis(2’,6’-dimethyl-4’-dimethylaminophenyl)-4,5-dihydroimidazol-2-ylidene). Catalysts 11 and 12 are additionally ligated by two pH-responsive DMAP ligands. The crystal structure was solved for complex 12 by X-ray diffraction. In organic, neutral solution, the catalysts are capable of performing standard ring-opening metathesis polymerization (ROMP) and ring closing metathesis (RCM) reactions with standard substrates. The ROMP with complex 11 is accelerated in the presence of two equiv of H3PO4, but is reduced as soon as the acid amount increased. The metathesis of phenylthiomethylidene catalysts 9 and 12 is sluggish at room temperature, but their ROMP can be dramatically accelerated at 60 °C. Complexes 11 and 12 are soluble in aqueous acid. They display the ability to perform RCM of diallylmalonic acid (DAMA), however, their conversions are very low amounting only to few turnovers before decomposition. However, both catalysts exhibit outstanding performance in the ROMP of dicyclopentadiene (DCPD) and mixtures of DCPD with cyclooctene (COE) in acidic aqueous microemulsion. With loadings as low as 180 ppm, the catalysts afforded mostly quantitative conversions of these monomers while maintaining the size and shape of the droplets throughout the polymerization process. Furthermore, the coagulate content for all experiments stayed <2%. This represents an unprecedented efficiency in emulsion ROMP based on hydrophilic ruthenium alkylidene complexes. PMID:26664616

  1. Impact of oxygen cut off and starvation conditions on biological activity and physico-chemical properties of activated sludge.

    PubMed

    Villain, Maud; Clouzot, Ludiwine; Guibaud, Gilles; Marrot, Benoit

    2013-01-01

    Physico-chemical and biological parameters were monitored both throughout different oxygen cut off and starvation (OCS) times (6 h-72 h) and after the restoration of normal operational conditions. Sludge apparent viscosity and soluble extracellular polymeric substances (EPS) characteristics were measured to determine the activated sludge (AS) properties. Oxygen transfer, biological activity with specific oxygen uptake rate (SOUR) measurements during endogenous/exogenous conditions (without any external substrate/with external substrate consumption) and chemical oxygen demand (COD) removal were measured to assess the AS performances. During the different stress times, AS deflocculated as a decrease of apparent viscosity was observed and microorganisms biodegraded the released EPS to survive. After aeration return, and under endogenous conditions, size exclusion chromatographic fingerprints of soluble EPS were modified and macromolecules probably of type humic-like substances appeared in significant quantities. These new macromolecules presumably acted as biosurfactants. Consequently, the liquid surface tension, as well as the oxygen transfer rate (OTR), decreased. Under exogenous conditions, high biological activity (SOUR = 11.8 +/- 2.1 mg(O2 x g(MLVSS)(-1) x h(-1)) compensated the decrease of oxygen transfer. Finally, AS biomass maintained a constant COD degradation rate (15.7 +/- 1.9 mg(O2) x g(MLVSS)(-1) x h(-1)) before and after the disturbances for all times tested. This work demonstrates that AS microorganisms can counteract concomitant oxygen and nutrients shortage when the duration of such a condition does not exceed 72 h. Dissociation of endogenous/exogenous conditions appears to offer an ideal laboratory model to study EPS and biomass activity effects on oxygen transfer.

  2. Solving Heat Conduction Problems in Movable Boundary Domains under Intensive Physical-Chemical Transformation Conditions

    NASA Astrophysics Data System (ADS)

    Garashchenko, A. N.; Rudzinsky, V. P.; Garashchenko, N. A.

    2016-02-01

    Results of solving problems of simulating temperature fields in domains with movable boundaries of characteristic zones of intensive physical-chemical and thermomechanical transformations to be realized in materials upon high-temperature heating have been presented. Intumescent fire-protective coatings based on organic and mineral materials are the object of study. Features of numerical realization of input equation systems taking into account, in particular, a dynamics of considerable increase and subsequent decrease of the intumescent layer thickness have been considered. Example calculations for structures of metal and wood protected with various coatings are given. Results of calculating two-dimensional temperature fields in polymer composite square-shaped structures with internal cruciform load-bearing elements have been presented. The intumescent coating is arranged on the external surface of a structure. The solution of the above-listed problems is of important significance to provide fire protection of different-purpose structures and products.

  3. The Pd-catalyzed hydrodechlorination of chlorophenols in aqueous solutions under mild conditions: a promising approach to practical use in wastewater.

    PubMed

    Xia, Chuanhai; Liu, Ying; Zhou, Shiwei; Yang, Cuiyun; Liu, Sujing; Xu, Jie; Yu, Junbao; Chen, Jiping; Liang, Xinmiao

    2009-09-30

    Catalytic hydrotreating of chlorophenols was carried out in water with Pd/C at 25 degrees C under atmospheric pressure. 1.0% (w/w) monocholophenols was completely dechlorinated within 60 min. Phenol, cyclohexanone and cyclohexanol were formed. In contrast to the dechlorination of monochlorophenols, the hydrogenation reaction of polychlorinated phenols became difficult and reaction rates were strongly dependent upon the number of the chlorine atoms. The solvent property had a considerably important influence on the dechlorination reaction. Water as a solvent showed more advantages than organic solvents. It was much easier to be hydrodechlorinated for chlorophenols in aqueous solutions. However, the presence of THF, dioxane, DMSO or DMF in water was disadvantageous to the reaction and easily to cause Pd/C deactivation. Additionally, when different halogenated organic compounds were present in aqueous solution, the dehalogenation reaction was the competitive hydrogenation process.

  4. Effect of preparation conditions on physic-chemical properties of tin-doped nanocrystalline indium oxide

    NASA Astrophysics Data System (ADS)

    Malinovskaya, T. D.; Sachkov, V. I.; Zhek, V. V.; Nefedov, R. A.

    2016-01-01

    In this paper the results of investigation of phase formation and change of concentration of free electrons (Ne) in indium tin oxide system during heat treatment of coprecipitated hydroxides of indium and tin from nitric and hydrochloric solutions and also, for comparison melts of salts nitrates by an alkaline reactant (NH4OH) are considered.The performed investigation allowed to set the optimal condition of preparation of polycrystalline tin-doped indium oxide with maximal electron concentration.

  5. Evaluation of the migration of chemicals from baby bottles under standardised and duration testing conditions.

    PubMed

    Onghena, Matthias; Van Hoeck, Els; Negreira, Noelia; Quirynen, Laurent; Van Loco, Joris; Covaci, Adrian

    2016-05-01

    After the prohibition of bisphenol-A-containing polycarbonate baby bottles in the European Union (EU), alternative materials, such as polypropylene, polyethersulphone, Tritan™ copolyester, etc., have appeared on the market. Based on an initial screening and in vitro toxicity assessment, the most toxic migrating compounds were selected to be monitored and quantified using validated GC- and LC-QqQ-MS methods. The effect of several 'real-life-use conditions', such as microwave, sterilisation and dishwasher, on the migration of different contaminants was evaluated by means of duration tests. These results were compared with a reference treatment (filling five times with pre-heated simulant at 40°C) and with the legal EU 'repetitive-use conditions' (three migrations, 2 h at 70°C). Analysis of the third migration step of the EU repetitive-use conditions (which has to comply with the EU legislative migration limits) showed that several non-authorised compounds were observed in some baby bottles exceeding 10 µg kg(-1). However, all authorised compounds were detected well below their respective specific migration limits (SMLs). The reference experiment confirmed the migration of some of the compounds previously detected in the EU repetitive-use experiment, though at lower concentrations. Analysis of extracts from the microwave and dishwasher experiments showed a reduction in the migration during the duration tests. In general, the concentrations found were low and comparable with the reference experiment. Similar observations were made for the two sterilisation types: steam and cooking sterilisation. However, steam sterilisation seems to be more recommended for daily use of baby bottles, since it resulted in a lower release of substances afterwards. Repeated use of baby bottles under 'real-life' conditions showed no increase in the migration of investigated compounds and, after some time, the migration of these compounds even became negligible.

  6. Pu Sorption, Desorption and Intrinsic Colloid Stability under Granitic Chemical Conditions

    SciTech Connect

    Zhao, Pihong; Zavarin, Mavrik; Dai, Zurong; Kersting, Annie B.

    2014-09-04

    This progress report (M4FT-14LL0807031) describes research conducted at LLNL as part of the Crystalline Repository effort within the UFD program. Part I describes the dissolution kinetics of intrinsic Pu colloids synthesized in an alkaline solution. Part II describes the morphology and dissolution characteristics of various forms of Pu oxides prepared over a range of solution and temperature conditions. Proposed FY15 activities are identified.

  7. Variations in chemical sexual signals of Psammodromus algirus lizards along an elevation gradient may reflect altitudinal variation in microclimatic conditions.

    PubMed

    Martín, José; Javier Zamora-Camacho, Francisco; Reguera, Senda; López, Pilar; Moreno-Rueda, Gregorio

    2017-04-01

    Chemical signals used in intraspecific communication are expected to evolve or to show phenotipic plasticity to maximize efficacy in the climatic conditions of a given environment. Elevational environmental gradients in mountains provide a good opportunity to test this hypothesis by examining variation in characteristics of signals in species found across different elevations with different climatic conditions. We analyzed by gas chromatography-mass spectrometry (GC-MS) the lipophilic fraction of the femoral gland secretions of male lizards Psammodromus algirus (Fam. Lacertidae) from six localities located along a 2200 m elevational gradient at Sierra Nevada Mountains (SE Spain). There was elevational clinal variation in climatic variables, number of femoral pores and in the relative proportions of some classes of compounds (i.e., ethyl esters of fatty acids, waxy esters, and aldehydes) but not others. We discuss how this variation would result in different physicochemical properties of the entire femoral secretion, which might help optimize the efficacy of chemical signals under the particular microclimatic conditions at each elevation.

  8. Variations in chemical sexual signals of Psammodromus algirus lizards along an elevation gradient may reflect altitudinal variation in microclimatic conditions

    NASA Astrophysics Data System (ADS)

    Martín, José; Javier Zamora-Camacho, Francisco; Reguera, Senda; López, Pilar; Moreno-Rueda, Gregorio

    2017-04-01

    Chemical signals used in intraspecific communication are expected to evolve or to show phenotipic plasticity to maximize efficacy in the climatic conditions of a given environment. Elevational environmental gradients in mountains provide a good opportunity to test this hypothesis by examining variation in characteristics of signals in species found across different elevations with different climatic conditions. We analyzed by gas chromatography-mass spectrometry (GC-MS) the lipophilic fraction of the femoral gland secretions of male lizards Psammodromus algirus (Fam. Lacertidae) from six localities located along a 2200 m elevational gradient at Sierra Nevada Mountains (SE Spain). There was elevational clinal variation in climatic variables, number of femoral pores and in the relative proportions of some classes of compounds (i.e., ethyl esters of fatty acids, waxy esters, and aldehydes) but not others. We discuss how this variation would result in different physicochemical properties of the entire femoral secretion, which might help optimize the efficacy of chemical signals under the particular microclimatic conditions at each elevation.

  9. Chemical changes exhibited by latent fingerprints after exposure to vacuum conditions.

    PubMed

    Bright, Nicholas J; Willson, Terry R; Driscoll, Daniel J; Reddy, Subrayal M; Webb, Roger P; Bleay, Stephen; Ward, Neil I; Kirkby, Karen J; Bailey, Melanie J

    2013-07-10

    The effect of vacuum exposure on latent fingerprint chemistry has been evaluated. Fingerprints were analysed using a quartz crystal microbalance to measure changes in mass, gas chromatography mass spectrometry to measure changes in lipid composition and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) to determine changes in the content of water, fatty acids and their esters after exposure to vacuum. The results are compared with samples aged under ambient conditions. It was found that fingerprints lose around 26% of their mass when exposed to vacuum conditions, equivalent to around 5 weeks ageing under ambient conditions. Further exposure to vacuum causes a significant reduction in the lipid composition of a fingerprint, in particular with the loss of tetradecanoic and pentadecanoic acid, that was not observed in ambient aged samples. There are therefore implications for sequence in which fingerprint development procedures (for example vacuum metal deposition) are carried out, as well as the use of vacuum based methods such as secondary ion mass spectrometry (SIMS) and matrix-assisted laser desorption ionisation (MALDI) in the study of fingerprint chemistry.

  10. Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr (VI) from aqueous solution: Effects of production conditions and particle size.

    PubMed

    Han, Yitong; Cao, Xi; Ouyang, Xin; Sohi, Saran P; Chen, Jiawei

    2016-02-01

    Magnetic biochar was made from peanut hull biomass using iron chloride in a simplified aqueous phase approach and pyrolysis at alternative peak temperatures (450-650 °C). Magnetic biochar showed an extreme capacity for adsorption of hexavalent chromium Cr (VI) from aqueous solution, which was 1-2 orders of magnitude higher compared to standard (non-magnetic) biochar from the same feedstock. Adsorption increased with pyrolysis temperature peaking at 77,542 mg kg(-1) in the sample pyrolysed at 650 °C. In contrast to magnetic biochar, the low adsorption capacity of standard biochar decreased with increasing pyrolysis temperature. The fine particle size of magnetic biochar and low aqueous pH were also important for adsorption. Surfaces of products from batch adsorption experiments were characterized by scanning electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction, X-ray photoelectron spectroscopy and vibrating sample magnetometer. This revealed that γ-Fe2O3 was crucial to the properties (adsorbance and magnetism) of magnetic biochar. The removal mechanism was the Cr (VI) electrostatic attracted on protonated -OH on γ-Fe2O3 surface and it could be desorbed by alkaline solution. Findings suggest that pyrolysis has potential to create effective, magnetically recoverable adsorbents relevant to environmental application.

  11. All-aqueous multiphase microfluidics

    PubMed Central

    Song, Yang; Sauret, Alban; Cheung Shum, Ho

    2013-01-01

    Immiscible aqueous phases, formed by dissolving incompatible solutes in water, have been used in green chemical synthesis, molecular extraction and mimicking of cellular cytoplasm. Recently, a microfluidic approach has been introduced to generate all-aqueous emulsions and jets based on these immiscible aqueous phases; due to their biocompatibility, these all-aqueous structures have shown great promises as templates for fabricating biomaterials. The physico-chemical nature of interfaces between two immiscible aqueous phases leads to unique interfacial properties, such as an ultra-low interfacial tension. Strategies to manipulate components and direct their assembly at these interfaces needs to be explored. In this paper, we review progress on the topic over the past few years, with a focus on the fabrication and stabilization of all-aqueous structures in a multiphase microfluidic platform. We also discuss future efforts needed from the perspectives of fluidic physics, materials engineering, and biology for fulfilling potential applications ranging from materials fabrication to biomedical engineering. PMID:24454609

  12. Physico-chemical conditions for plankton in Lake Timsah, a saline lake on the Suez Canal

    NASA Astrophysics Data System (ADS)

    El-Serehy, H. A. H.; Sleigh, M. A.

    1992-02-01

    Lake Timsah receives high salinity water from the Suez Canal, mainly from the south, and freshwater from a Nile canal and other sources, producing a salinity stratification with surface salinities of 20-40‰ and over 40‰ in deeper water. Water temperature at a depth of 50-70 cm fell to below 20 °C in winter and rose to above 30 °C in summer; oxygen concentration at the same depth ranged between 6-10 mg l -1 and the pH was 8·1-8·3, and at mid-day this water was supersaturated with oxygen through 6-8 months of the year. The main chemical nutrients reached their highest levels in winter (December-February) and their lowest levels in summer (May-August), silicate varying between 1-7 μ M, phosphate between 0·1 and 0·8 μ M and nitrate between 4-10 μ M; nitrite varied in a more complex manner, usually between 0·25 and 0·4 μ M. The atomic ratio of N/P was generally well above the Redfield ratio level, except for a few months in midwinter. These nutrient concentrations are high in comparison with those of unpolluted seas of the region, but are typical of the more eutrophic coastal waters in most parts of the world.

  13. A summary of selected chemical-quality conditions in 68 California streams 1950-72

    USGS Publications Warehouse

    Irwin, George A.; Lemons, Michael

    1975-01-01

    Water from California streams has been analyzed for concentrations of selected chemical constituents since the early 1950's. This summary includes about 1,200 water years of data from 88 sampling sites on 66 streams. Results of this summary show that about 80 percent of the sites had a mean dissolved-solids concentration of 400 milligrams per litre or less. All the sites that had mean concentrations ranging from 601 to 800 milligrams per litre were in either the South Coastal or Central Coastal subregions. Results of regression analysis between specific conductance and calcium, magnesium, sodium, bicarbonate, dissolved solids, and hardness usually indicated a high percentage of explained variance. Other constituents, such as potassium, sulfate, chloride, and particularly nitrate, were not as frequently highly associated with specific conductance. At sites where the water discharge was highly regulated, the variation in specific conductance that was explained as a function of discharge ranged from 0 to more than 90 percent. Whereas at the unregulated sites, the explained variance ranged from 50 to more than 90 percent.

  14. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    NASA Astrophysics Data System (ADS)

    Angermann, Heike

    2014-09-01

    The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution Dit(E), and density Dit,min of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly based on concentrated solutions. Therefore, special attention was put on the development of more environmentally acceptable processes, utilizing e.g. hot pure water with low contents of oxygen or hydrochloric acid, and of ozone, working at ambient temperatures. According to our results, these methods could be a high quality and low cost alternative to current approaches with liquid chemicals for the preparation of hydrophobic Si substrate surfaces and ultra-thin passivating oxide layers. As demonstrated for selected examples, the effect of optimized wet-chemical pre-treatments can be preserved during subsequent soft plasma enhanced chemical vapor depositions of Si oxides (SiOx), or amorphous materials such as Si (a-Si:H), Si nitride (a

  15. A comparison of conditional random fields and structured support vector machines for chemical entity recognition in biomedical literature

    PubMed Central

    2015-01-01

    Background Chemical compounds and drugs (together called chemical entities) embedded in scientific articles are crucial for many information extraction tasks in the biomedical domain. However, only a very limited number of chemical entity recognition systems are publically available, probably due to the lack of large manually annotated corpora. To accelerate the development of chemical entity recognition systems, the Spanish National Cancer Research Center (CNIO) and The University of Navarra organized a challenge on Chemical and Drug Named Entity Recognition (CHEMDNER). The CHEMDNER challenge contains two individual subtasks: 1) Chemical Entity Mention recognition (CEM); and 2) Chemical Document Indexing (CDI). Our study proposes machine learning-based systems for the CEM task. Methods The 2013 CHEMDNER challenge organizers provided a manually annotated 10,000 UTF8-encoded PubMed abstracts according to a predefined annotation guideline: a training set of 3,500 abstracts, a development set of 3,500 abstracts and a test set of 3,000 abstracts. We developed machine learning-based systems, based on conditional random fields (CRF) and structured support vector machines (SSVM) respectively, for the CEM task for this data set. The effects of three types of word representation (WR) features, generated by Brown clustering, random indexing and skip-gram, on both two machine learning-based systems were also investigated. The performance of our system was evaluated on the test set using scripts provided by the CHEMDNER challenge organizers. Primary evaluation measures were micro Precision, Recall, and F-measure. Results Our best system was among the top ranked systems with an official micro F-measure of 85.05%. Fixing a bug caused by inconsistent features marginally improved the performance (micro F-measure of 85.20%) of the system. Conclusions The SSVM-based CEM systems outperformed the CRF-based CEM systems when using the same features. Each type of the WR feature was

  16. Influence of synthesis conditions on the crystallinity of hydroxyapatite obtained by chemical deposition

    NASA Astrophysics Data System (ADS)

    Toropkov, N. E.; Vereshchagin, V. I.; Petrovskaya, T. S.; Antonkin, N. S.

    2016-11-01

    The hydroxyapatite synthesis on a variety of substrates under various conditions was studied. It was shown that the increase in the temperature of the reaction medium increases the amount of nanocrystalline phase with an average crystallite size of 25 nm. Studies revealed that in addition to the pure hydroxyapatite, β-Ca3(PO4)2 along with calcium carbonates and carbonate-substituted hydroxyapatites were formed. A significant increase in phase crystallinity during the heating of reactants up to the reaction temperature was shown.

  17. Emission characteristics of nitrogen- and sulfur-containing odorous compounds during different sewage sludge chemical conditioning processes.

    PubMed

    Liu, Huan; Luo, Guang-Qian; Hu, Hong-Yun; Zhang, Qiang; Yang, Jia-Kuan; Yao, Hong

    2012-10-15

    Chemical conditioners are often used to enhance sewage sludge dewaterability through altering sludge properties and flocs structure, both affect odorous compounds emissions not only during sludge conditioning but also in subsequent sludge disposal. This study was to investigate emission characteristics of ammonia (NH(3)), sulfur dioxide (SO(2)), hydrogen sulfide (H(2)S) and carbonyl sulfide (COS) generated from sewage sludge conditioned by three representative conditioners, i.e., organic polymers, iron salts and skeleton builders, F-S (Fenton's reagent and skeleton builders) composite conditioner. The results demonstrate that polyacrylamide (PAM) has an insignificant effect on emission characteristics of nitrogen- and sulfur-containing odorous compounds, because the properties, sulfur and nitrogen speciations are similar in PAM-conditioned sludge and raw sludge (RS). Significant increases of SO(2) and H(2)S emissions in the H(2)SO(4) conditioning process were observed due to the accelerated decomposition of sulfur-containing amino acids in acidic environment. Fenton peroxidation facilitates the formation of COS. CaO can reduce sulfur-containing gases emission via generation of calcium sulfate. However, under strong alkaline conditions, free ammonia or protonated amine in sludge can be easily converted to volatile ammonia, resulting in a significant release of NH(3).

  18. Rapid adsorption of toxic Pb(II) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique.

    PubMed

    Mubarak, Nabisab Mujawar; Sahu, Jaya Narayan; Abdullah, Ezzat Chan; Jayakumar, Natesan Subramanian

    2016-07-01

    Multiwall carbon nanotubes (MWCNTs) were synthesized using a tubular microwave chemical vapor deposition technique, using acetylene and hydrogen as the precursor gases and ferrocene as catalyst. The novel MWCNT samples were tested for their performance in terms of Pb(II) binding. The synthesized MWCNT samples were characterized using Fourier Transform Infrared (FT-IR), Brunauer, Emmett and Teller (BET), Field Emission Scanning Electron Microscopy (FESEM) analysis, and the adsorption of Pb(II) was studied as a function of pH, initial Pb(II) concentration, MWCNT dosage, agitation speed, and adsorption time, and process parameters were optimized. The adsorption data followed both Freundlich and Langmuir isotherms. On the basis of the Langmuir model, Qmax was calculated to be 104.2mg/g for the microwave-synthesized MWCNTs. In order to investigate the dynamic behavior of MWCNTs as an adsorbent, the kinetic data were modeled using pseudo first-order and pseudo second-order equations. Different thermodynamic parameters, viz., ∆H(0), ∆S(0) and ∆G(0) were evaluated and it was found that the adsorption was feasible, spontaneous and endothermic in nature. The statistical analysis revealed that the optimum conditions for the highest removal (99.9%) of Pb(II) are at pH5, MWCNT dosage 0.1g, agitation speed 160r/min and time of 22.5min with the initial concentration of 10mg/L. Our results proved that microwave-synthesized MWCNTs can be used as an effective Pb(II) adsorbent due to their high adsorption capacity as well as the short adsorption time needed to achieve equilibrium.

  19. Low-thrust chemical propulsion system propellant expulsion and thermal conditioning study

    NASA Technical Reports Server (NTRS)

    Merino, F.; Wakabayashi, I.; Pleasant, R. L.; Hill, M.

    1982-01-01

    Thermal conditioning systems for satisfying engine net positive suction pressure (NPSP) requirements, and propellant expulsion systems for achieving propellant dump during a return-to-launch site (RTLS) abort were studied for LH2/LO2 and LCH4/LO2 upper stage propellant combinations. A state-of-the-art thermal conditioning system employing helium injection beneath the liquid surface shows the lowest weight penalty for LO2 and LCH4. A technology system incorporating a thermal subcooler (heat exchanger) for engine NPSP results in the lowest weight penalty for the LH2 tank. A preliminary design of two state-of-the-art and two new technology systems indicates a weight penalty difference too small to warrant development of a LH2 thermal subcooler. Analysis results showed that the LH2/LO2 propellant expulsion system is optimized for maximum dump line diameters, whereas the LCH4/LO2 system is optimized for minimum dump line diameter (LCH4) and maximum dump line diameter (LO2). The primary uncertainty is the accurate determination of two-phase flow rates through the dump system; experimentation is not recommended because this uncertainty is not considered significant.

  20. Chemical characterization and in vitro toxicity of diesel exhaust particulate matter generated under varying conditions

    PubMed Central

    Cox, David P.; Drury, Bertram E.; Gould, Timothy R.; Kavanagh, Terrance J.; Paulsen, Michael H.; Sheppard, Lianne; Simpson, Christopher D.; Stewart, James A.; Larson, Timothy V.; Kaufman, Joel D.

    2014-01-01

    Epidemiologic studies have linked diesel exhaust (DE) to cardiovascular and respiratory morbidity and mortality, as well as lung cancer. DE composition is known to vary with many factors, although it is unclear how this influences toxicity. We generated eight DE atmospheres by applying a 2×2×2 factorial design and altering three parameters in a controlled exposure facility: (1) engine load (27 vs 82 %), (2) particle aging (residence time ~5 s vs ~5 min prior to particle collection), and (3) oxidation (with or without ozonation during dilution). Selected exposure concentrations of both diesel exhaust particles (DEPs) and DE gases, DEP oxidative reactivity via DTT activity, and in vitro DEP toxicity in murine endothelial cells were measured for each DE atmosphere. Cell toxicity was assessed via measurement of cell proliferation (colony formation assay), cell viability (MTT assay), and wound healing (scratch assay). Differences in DE composition were observed as a function of engine load. The mean 1-nitropyrene concentration was 15 times higher and oxidative reactivity was two times higher for low engine load versus high load. There were no substantial differences in measured toxicity among the three DE exposure parameters. These results indicate that alteration of applied engine load shifts the composition and can modify the biological reactivity of DE. While engine conditions did not affect the selected in vitro toxicity measures, the change in oxidative reactivity suggests that toxicological studies with DE need to take into account engine conditions in characterizing biological effects. PMID:26539254

  1. Computational Tools for Simulating Thermal-hydrological-chemical Conditions in the Martian Subsurface

    NASA Astrophysics Data System (ADS)

    Painter, S.; Boice, D.; Browning, L.; Dinwiddie, C.; Pickett, D.

    2002-09-01

    Methods for simulating non-isothermal, multiphase flow and geochemical transport in unsaturated porous media have matured in recent years, and are now used in a range of advanced terrestrial applications. Similar computational tools have a range of potential applications in Mars research. They may be used, for example, to support data analysis, to test hypotheses regarding the evolution and current state of subsurface hydrological systems, and to understand the potential for undesirable perturbations during future drilling or sample collection activities. We describe ongoing efforts to adapt computational hydrology tools to the conditions of the Martian subsurface in a new simulation code MARSFLO. Initial versions of MARSFLO will simulate heat transport, the dynamics of multiple fluid phases (ice, water, water vapor, and CO2), and the evolution of solute concentration in the absence of geochemical reactions. The general modeling strategy is to use equilibrium constraints to reduce the system to four highly non-linear coupled conservation equations, which are then solved using an integral-finite-difference method and fully implicit time stepping. The required constitutive relationships are developed from the theory of freezing terrestrial soils and modified for Martian conditions. Data needs, potential applications, and plans to include multi-component reactive transport are also discussed. This work was funded by the Southwest Research Initiative on Mars (SwIM).

  2. Chemical and physical studies of type 3 chondrites. IX. Thermoluminescence and hydrothermal annealing experiments and their relationship to metamorphism and aqueous alteration in type < 3. 3 ordinary chondrites

    SciTech Connect

    Guimon, R.K.; Lofgren, G.E.; Sears, D.W.G.

    1988-01-01

    Samples of four type 3 chondrites have been annealed at 400-850/sup 0/C and 0.77-1 kbar for 10-500 h in the presence of various amounts of water (0-10 wt.%) and sodium disilicate (0-2 molal) and their thermoluminescence properties measured. After annealing for > 20 h at temperatures > 600/sup 0/C, the TL sensitivity of the samples increased by factors of up to 40. After annealing at < 600/sup 0/C for 10-500 h, or relatively short periods at high temperatures (e.g., less than or equal to 20 h at 850/sup 0/C), the TL sensitivity of the samples decreased by up to 2 orders of magnitude (depending on the original value). The TL peak temperatures observed in the present experiments are consistent with a low form of feldspar (the TL phosphor) being produced at < 800/sup 0/C and a high form being produced at > 800/sup 0/C. When both high and low forms were present originally, the low-form was destroyed preferentially. The authors suggest that these data are consistent with the TL-metamorphism trends observed in type > 3.2 chondrites, being due to the formation of feldspar by the devitrification of chondrule glass during metamorphism. For types < 3.2, the TL data are equally consistent with these types experiencing lower levels of metamorphism than the higher types, or with type 3.0 being produced from higher types by aqueous alteration. The presence of water with non-terrestrial D/H ratios, and petrographic evidence for aqueous alteration in Semarkona, lead to favoring the aqueous alteration hypothesis.

  3. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    SciTech Connect

    Yu, Lu; Smith, Jeremy; Laskin, Alexander; Anastasio, Cort N.; Laskin, Julia; Zhang, Qi

    2014-01-01

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol and two methoxy-phenols (syringol and guaiacol) with two major aqueous phase oxidants – the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical (•OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), desorption electrospray ionization mass spectrometry (DESIMS), and ion chromatography (IC). A large number of oxygenated molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O/C) ratios of phenolic aqSOA are in the range of 0.85-1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than •OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenol had reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O/C ratio. In addition, the aqSOA shows enhanced light absorption in the UV-vis region, suggesting that aqueous-phase reactions of phenols are likely an important source of brown carbon in the atmosphere, especially in regions influenced by biomass burning.

  4. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    DOE PAGES

    Yu, L.; Smith, J.; Laskin, A.; ...

    2014-08-19

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol and two methoxy-phenols (syringol and guaiacol) with two major aqueous phase oxidants – the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical (·OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenated molecules are identified,more » including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85–1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than ·OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenol had reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV-vis region, suggesting that aqueous-phase reactions of phenols are likely an important source of brown carbon in the atmosphere, especially in regions influenced by biomass burning.« less

  5. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    DOE PAGES

    Yu, L.; Smith, J.; Laskin, A.; ...

    2014-12-23

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol (compound with formula C6H5OH)), guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol) with two major aqueous-phase oxidants – the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical (· OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenatedmore » molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85–1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than · OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenolic compound has reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV–visible region, suggesting that aqueous-phase reactions of phenols may contribute to formation of secondary brown carbon in the atmosphere, especially in regions influenced by biomass burning.« less

  6. Emergence of Photoautotrophic Minimal Protocell-Like Supramolecular Assemblies, "Jeewanu" Synthesied Photo Chemically in an Irradiated Sterilised Aqueous Mixture of Some Inorganic and Organic Substances

    NASA Astrophysics Data System (ADS)

    Gupta, Vinod Kumar

    2014-12-01

    Sunlight exposed sterilised aqueous mixture of ammonium molybdate, diammonium hydrogen phosphate, biological minerals and formaldehyde showed photochemical formation of self-sustaining biomimetic protocell-like supramolecular assemblies "Jeewanu" (Bahadur and Ranganayaki J Brit Interplanet Soc 23:813-829 1970). The structural and functional characteristics of Jeewanu suggests that in possible prebiotic atmosphere photosy nergistic collaboration of non-linear processes at mesoscopic level established autocatalytic pathways on mineral surfaces by selforganisation and self recognition and led to emergence of similar earliest energy transducing supramolecular assemblies which might have given rise to common universal ancestor on the earth or elsewhere.

  7. Vanadium Flow Battery Electrolyte Synthesis via Chemical Reduction of V2O5 in Aqueous HCl and H2SO4.

    SciTech Connect

    Small, Leo J.; Pratt, Harry; Staiger, Chad; Martin, Rachel Irene; Anderson, Travis Mark; Chalamala, Babu; Soundappan, Thiagarajan; Tiwari, Monika; Subarmanian, Venkat R.

    2017-01-01

    We report a simple method to synthesize V 4+ (VO 2+ ) electrolytes as feedstock for all- vanadium redox flow batteries (RFB). By dissolving V 2 O 5 in aqueous HCl and H 2 SO 4 , subsequently adding glycerol as a reducing agent, we have demonstrated an inexpensive route for electrolyte synthesis to concentrations >2.5 M V 4+ (VO 2+ ). Electrochemical analysis and testing of laboratory scale RFB demonstrate improved thermal stability across a wider temperature range (-10-65 degC) for V 4+ (VO 2+ ) electrolytes in HCl compared to in H 2 SO 4 electrolytes.

  8. Electronic and chemical structure of the H2O/GaN(0001) interface under ambient conditions

    SciTech Connect

    Zhang, Xueqiang; Ptasinska, Sylwia

    2016-04-25

    We employed ambient pressure X-ray photoelectron spectroscopy to investigate the electronic and chemical properties of the H2O/GaN(0001) interface under elevated pressures and/or temperatures. A pristine GaN(0001) surface exhibited upward band bending, which was partially flattened when exposed to H2O at room temperature. However, the GaN surface work function was slightly reduced due to the adsorption of molecular H2O and its dissociation products. At elevated temperatures, a negative charge generated on the surface by a vigorous H2O/GaN interfacial chemistry induced an increase in both the surface work function and upward band bending. We tracked the dissociative adsorption of H2O onto the GaN(0001) surface by recording the core-level photoemission spectra and obtained the electronic and chemical properties at the H2O/GaN interface under operando conditions. In conclusion, our results suggest a strong correlation between the electronic and chemical properties of the material surface, and we expect that their evolutions lead to significantly different properties at the electrolyte/ electrode interface in a photoelectrochemical solar cell.

  9. Electronic and chemical structure of the H2O/GaN(0001) interface under ambient conditions

    DOE PAGES

    Zhang, Xueqiang; Ptasinska, Sylwia

    2016-04-25

    We employed ambient pressure X-ray photoelectron spectroscopy to investigate the electronic and chemical properties of the H2O/GaN(0001) interface under elevated pressures and/or temperatures. A pristine GaN(0001) surface exhibited upward band bending, which was partially flattened when exposed to H2O at room temperature. However, the GaN surface work function was slightly reduced due to the adsorption of molecular H2O and its dissociation products. At elevated temperatures, a negative charge generated on the surface by a vigorous H2O/GaN interfacial chemistry induced an increase in both the surface work function and upward band bending. We tracked the dissociative adsorption of H2O onto themore » GaN(0001) surface by recording the core-level photoemission spectra and obtained the electronic and chemical properties at the H2O/GaN interface under operando conditions. In conclusion, our results suggest a strong correlation between the electronic and chemical properties of the material surface, and we expect that their evolutions lead to significantly different properties at the electrolyte/ electrode interface in a photoelectrochemical solar cell.« less

  10. Electronic and chemical structure of the H2O/GaN(0001) interface under ambient conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Xueqiang; Ptasinska, Sylwia

    2016-04-01

    We employed ambient pressure X-ray photoelectron spectroscopy to investigate the electronic and chemical properties of the H2O/GaN(0001) interface under elevated pressures and/or temperatures. A pristine GaN(0001) surface exhibited upward band bending, which was partially flattened when exposed to H2O at room temperature. However, the GaN surface work function was slightly reduced due to the adsorption of molecular H2O and its dissociation products. At elevated temperatures, a negative charge generated on the surface by a vigorous H2O/GaN interfacial chemistry induced an increase in both the surface work function and upward band bending. We tracked the dissociative adsorption of H2O onto the GaN(0001) surface by recording the core-level photoemission spectra and obtained the electronic and chemical properties at the H2O/GaN interface under operando conditions. Our results suggest a strong correlation between the electronic and chemical properties of the material surface, and we expect that their evolutions lead to significantly different properties at the electrolyte/electrode interface in a photoelectrochemical solar cell.

  11. Electronic and chemical structure of the H2O/GaN(0001) interface under ambient conditions

    PubMed Central

    Zhang, Xueqiang; Ptasinska, Sylwia

    2016-01-01

    We employed ambient pressure X-ray photoelectron spectroscopy to investigate the electronic and chemical properties of the H2O/GaN(0001) interface under elevated pressures and/or temperatures. A pristine GaN(0001) surface exhibited upward band bending, which was partially flattened when exposed to H2O at room temperature. However, the GaN surface work function was slightly reduced due to the adsorption of molecular H2O and its dissociation products. At elevated temperatures, a negative charge generated on the surface by a vigorous H2O/GaN interfacial chemistry induced an increase in both the surface work function and upward band bending. We tracked the dissociative adsorption of H2O onto the GaN(0001) surface by recording the core-level photoemission spectra and obtained the electronic and chemical properties at the H2O/GaN interface under operando conditions. Our results suggest a strong correlation between the electronic and chemical properties of the material surface, and we expect that their evolutions lead to significantly different properties at the electrolyte/electrode interface in a photoelectrochemical solar cell. PMID:27108711

  12. Chemical Profiling of Jatropha Tissues under Different Torrefaction Conditions: Application to Biomass Waste Recovery

    PubMed Central

    Watanabe, Taiji; Shino, Amiu; Akashi, Kinya; Kikuchi, Jun

    2014-01-01

    Gradual depletion of the world petroleum reserves and the impact of environmental pollution highlight the importance of developing alternative energy resources such as plant biomass. To address these issues, intensive research has focused on the plant Jatropha curcas, which serves as a rich source of biodiesel because of its high seed oil content. However, producing biodiesel from Jatropha generates large amounts of biomass waste that are difficult to use. Therefore, the objective of our research was to analyze the effects of different conditions of torrefaction on Jatropha biomass. Six different types of Jatropha tissues (seed coat, kernel, stem, xylem, bark, and leaf) were torrefied at four different temperature conditions (200°C, 250°C, 300°C, and 350°C), and changes in the metabolite composition of the torrefied products were determined by Fourier transform-infrared spectroscopy and nuclear magnetic resonance analyses. Cellulose was gradually converted to oligosaccharides in the temperature range of 200°C–300°C and completely degraded at 350°C. Hemicellulose residues showed different degradation patterns depending on the tissue, whereas glucuronoxylan efficiently decomposed between 300°C and 350°C. Heat-induced depolymerization of starch to maltodextrin started between 200°C and 250°C, and oligomer sugar structure degradation occurred at higher temperatures. Lignin degraded at each temperature, e.g., syringyl (S) degraded at lower temperatures than guaiacyl (G). Finally, the toxic compound phorbol ester degraded gradually starting at 235°C and efficiently just below 300°C. These results suggest that torrefaction is a feasible treatment for further processing of residual biomass to biorefinery stock or fertilizer. PMID:25191879

  13. Chemical profiling of Jatropha tissues under different torrefaction conditions: application to biomass waste recovery.

    PubMed

    Watanabe, Taiji; Shino, Amiu; Akashi, Kinya; Kikuchi, Jun

    2014-01-01

    Gradual depletion of the world petroleum reserves and the impact of environmental pollution highlight the importance of developing alternative energy resources such as plant biomass. To address these issues, intensive research has focused on the plant Jatropha curcas, which serves as a rich source of biodiesel because of its high seed oil content. However, producing biodiesel from Jatropha generates large amounts of biomass waste that are difficult to use. Therefore, the objective of our research was to analyze the effects of different conditions of torrefaction on Jatropha biomass. Six different types of Jatropha tissues (seed coat, kernel, stem, xylem, bark, and leaf) were torrefied at four different temperature conditions (200°C, 250°C, 300°C, and 350°C), and changes in the metabolite composition of the torrefied products were determined by Fourier transform-infrared spectroscopy and nuclear magnetic resonance analyses. Cellulose was gradually converted to oligosaccharides in the temperature range of 200°C-300°C and completely degraded at 350°C. Hemicellulose residues showed different degradation patterns depending on the tissue, whereas glucuronoxylan efficiently decomposed between 300°C and 350°C. Heat-induced depolymerization of starch to maltodextrin started between 200°C and 250°C, and oligomer sugar structure degradation occurred at higher temperatures. Lignin degraded at each temperature, e.g., syringyl (S) degraded at lower temperatures than guaiacyl (G). Finally, the toxic compound phorbol ester degraded gradually starting at 235°C and efficiently just below 300°C. These results suggest that torrefaction is a feasible treatment for further processing of residual biomass to biorefinery stock or fertilizer.

  14. Physical properties, chemical composition, and cloud forming potential of particulate emissions from a marine diesel engine at various load conditions.

    PubMed

    Petzold, A; Weingartner, E; Hasselbach, J; Lauer, P; Kurok, C; Fleischer, F

    2010-05-15

    Particulate matter (PM) emissions from one serial 4-stroke medium-speed marine diesel engine were measured for load conditions from 10% to 110% in test rig studies using heavy fuel oil (HFO). Testing the engine across its entire load range permitted the scaling of exhaust PM properties with load. Emission factors for particle number, particle mass, and chemical compounds were determined. The potential of particles to form cloud droplets (cloud condensation nuclei, CCN) was calculated from chemical composition and particle size. Number emission factors are (3.43 +/- 1.26) x 10(16) (kg fuel)(-1) at 85-110% load and (1.06 +/- 0.10) x 10(16) (kg fuel)(-1) at 10% load. CCN emission factors of 1-6 x 10(14) (kg fuel)(-1) are at the lower bound of data reported in the literature. From combined thermal and optical methods, black carbon (BC) emission factors of 40-60 mg/(kg fuel) were determined for 85-100% load and 370 mg/(kg fuel) for 10% load. The engine load dependence of the conversion efficiency for fuel sulfur into sulfate of (1.08 +/- 0.15)% at engine idle to (3.85 +/- 0.41)% at cruise may serve as input to global emission calculations for various load conditions.

  15. The Physical and Chemical Conditions in Luminous Galaxies: A Systematic IR Analysis

    NASA Astrophysics Data System (ADS)

    Gonzalez-Alfonso, Eduardo

    Star formation, in both its normal and active burst phases, drives and is driven by the physical conditions in galaxies that are forming stars, from massive outflows to the heating of dust. It also governs the evolution of metallicity, enrichment of the IGM, and many other processes. To better understand the physical conditions that initiate - and quench - star formation, including its apparent symbiotic relationship with AGN activity in later-stage mergers, we propose the first large and coherent radiative transfer study of the extreme objects that are forming stars most rapidly: the luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs). Our study will be based on radiative transfer modeling of all (U)LIRGs with reliable archival Herschel/SPIRE and PACS molecular spectra. Our goals are to (1) model the conditions in the dense circumnuclear gas clouds as a function of LFIR, M(H2), and merger stage, and to derive star formation rates (SFR), radiation pressure, dust and gas temperatures, optical depths, and gas depletion rates; (2) understand the nuclear molecular outflow/inflow phenomena and how and why they differ for LIRGS (log[LIR/Lsun] > 11) and ULIRGs (log[LIR/Lsun] > 12); and (3) test the reality of the two putative modes of star formation (main sequence and starburst) as a function of galaxy luminosity and merger stage, quantify the differences, and reveal the physical causes (merger properties, IMF differences, etc.) Our modeling will emphasize radiatively excited molecular species - key diagnostics of the ISM components in star forming galaxies - and will include atomic features and the UV-submmillimeter continua. We have successfully used our radiative transfer code to probe compact components as small as tens of parsecs in diameter, scales that cannot be distinguished by the far-IR beams of any past or near future observatories. We will include photoionization modeling of the mid-IR lines and template modeling of PAH features for those objects

  16. Determination of formal kinetic constants of thermal decomposition of aqueous hydrogen peroxide solution in a mixture of magnetic powder, based on experimental thermogram, obtained in adiabatic conditions

    NASA Astrophysics Data System (ADS)

    Zaripov, Jamshed; Borisov, Boris; Bondarchuk, Sergey

    2014-08-01

    Process of thermal decomposition of hydrogen peroxide aqueous solution with the addition of magnetic powder in the form of toner for printers and lanthanum manganite were considered. Obtained resulting from an experiment in the Dewar container conducted thermogram analyzed using mass balance equations and heat. Formal kinetic parameters determined, and conclude that the magnetic powder in the mixture does not have catalytic properties. The described technique is recommended as a rapid analysis of the kinetics of the various reactions to substances having predefined thermal and thermodynamic properties.

  17. Impact of operating conditions on the removal of endocrine disrupting chemicals by membrane photocatalytic reactor.

    PubMed

    López Fernández, Raquel; Coleman, Heather M; Le-Clech, Pierre

    2014-08-01

    This study focuses on the performance of a submerged membrane photocatalytic reactor for the removal of 17beta-oestradiol (E2) in the presence of humic acid (HA). In addition to the impact of operating parameters, such as membrane pore size, ultraviolet (UV) intensity and hydraulic retention time (HRT), the influence of long-term operation was also assessed by advanced characterization of the fouling layer formed on the membrane. The tighter (0.04 microm) hollow fibre polyvinylydene fluoride (PVDF) membrane was found to exhibit not only higher HA removal than the (0.2 microm) module (85% and 75%, respectively), but also greater transmembrane pressure (TMP) values and higher irreversible fouling. Long-term operation conditions have been simulated by conducting an ageing catalyst process and demonstrated a decrease in performance obtained with time. The artificially aged TiO2 resulted in higher TMP values and lower HA removals (about 10-20% decrease) compared with the non-aged catalyst. For E2 removal in the presence of HA, the passive adsorption of the oestrogen onto the organic matter was found to be significant (40% of the E2 adsorbed after I h), demonstrating the importance of the nature of the water matrix for this type of treatment process. An increase in the UV light intensity was observed to favour the E2 elimination, leading to more than 90% removal when using 64 W combined with PVDF membrane and an HRT of 3 h.

  18. Effects of spray-drying conditions on the chemical, physical, and sensory properties of cheese powder.

    PubMed

    Koca, Nurcan; Erbay, Zafer; Kaymak-Ertekin, Figen

    2015-05-01

    Dairy powders are produced to increase the shelf life of fresh dairy products and for use as flavoring agents. In this study, 24 cheese powders produced under 7 different conditions were used to investigate the effects of spray-drying parameters (e.g., inlet air temperature, atomization pressure, and outlet air temperature) on the quality of white cheese powder. Composition, color, physical properties, reconstitution, and sensory characteristics of white cheese powders were determined. The results revealed that the white cheese powders produced in this study had low moisture content ratios and water activity values. High outlet air temperatures caused browning and enhanced Maillard reactions. Additionally, high outlet air temperatures increased wettability and dispersibility and decreased the solubility of white cheese powders. Free fat content was positively correlated with inlet air temperature and negatively correlated with outlet air temperature and atomization pressure. Sensory analyses revealed that white cheese powder samples had acceptable sensory characteristics with the exception of the sample produced at an outlet air temperature of 100°C, which had high scores for scorched flavor and color and low scores for cheese flavor.

  19. Detection of chemical signatures from TNT buried in sand at various ambient conditions: phase II

    NASA Astrophysics Data System (ADS)

    Báez, Bibiana; Florián, Vivian; Hernández-Rivera, Samuel P.; Cabanzo, Andrea; Correa, Sandra; Irrazabal, Maik; Briano, Julio G.; Castro, Miguel E.

    2006-05-01

    New analytical methods have been developed and existing methods have been improved for the detection of explosives and their degradation products by increasing their sensitivity and selectivity. Some of the analytical methods available for detection of explosives and degradation products are gas chromatography, mass spectrometry, high performance liquid chromatography, and gas chromatography with mass spectrometry. This work presents the design and development of the experiments for the detection of the spectroscopic signature of TNT buried in sand and its degradation products. These experiments are conducted using a series of soil tanks with controlled environmental conditions such as: temperature, soil moisture content, relative humidity and radiation (UV and VIS). Gas chromatography and solid-liquid extraction with acetonitrile were used for the analysis of explosives. Sampling of tanks was performed in three points on the surface. The results show that TNT and 2,4-DNT are the main explosives that reach the surface of tanks. Temperature and water content play a most important role in the degradation and diffusion of TNT. Finally, the tanks were disassembled and sampling in deep with the objective to obtain a concentration profile. The results demonstrated that the highest concentration was located at 5 cm from surface.

  20. Interaction between chitosan and oil under stomach and duodenal digestive chemical conditions.

    PubMed

    Rodríguez, María Susana; Albertengo, Liliana Elena

    2005-11-01

    Chitosan, the N acetylated derivative of chitin, has an effect on the absorption of dietary lipids, but there is not enough scientific knowledge about the mechanism. To study the interaction between chitosan and oil, the action of this biopolymer has been evaluated through an experimental model of the stomach and duodenum tract, although the enzimatic activity had not been evaluated. We microscopically confirmed that chitosan in a hychloridic acid medium (pH 1.0-2.0) emulsified lipids and the emulsion was a water in oil in water type (w/o/w). When the pH value and speed of agitation were increased to mirror the duodenum medium conditions under which lipids are absorbed, the emulsion capacity was better with an increased number of droplets and the emulsion continued as the w/o/w type. At pH 6.2, chitosan precipitated and lipids were entrapped in the formed flocculus. The binding oil was quantitatively determined, and we also demonstrate that a larger oil quantity induced less retention, while the chitosan characteristics had no influence. These observations allow us to postulate that the interaction between chitosan and oil inhibited duodenal absorption and enhanced lipid excretion.

  1. Photoacoustic physio-chemical analysis of liver conditions in animal and human subjects

    NASA Astrophysics Data System (ADS)

    Wang, Xueding; Xu, Guan; Tian, Chao; Wan, Shanshan; Welling, Theodore H.; Lok, Anna S. F.; Rubin, Jonathan M.

    2016-03-01

    Non-alcoholic fatty liver disease (NAFLD) is a common liver disease affecting 30% of the population in the United States. Biopsy is the gold standard for diagnosing NAFLD. Liver histology assesses the amount of fat, and determines type and extent of cell injury, inflammation and fibrosis. However, liver biopsy is invasive and is limited by sampling error. Current radiological diagnostic modalities can evaluate the 'physical' morphology in liver by quantifying the backscattered US signals, but cannot interrogate the 'histochemical' components forming these backscatterers. For example, ultrasound (US) imaging can detect the presence of fat but cannot differentiate steatosis alone from steatohepatitis. Our previous study of photoacoustic physiochemical analysis (PAPCA) has demonstrated that this method can characterize the histological changes in livers during the progression of NAFLD in animal models. In this study, we will further validate PAPCA with human livers. Ex vivo human liver samples with steatosis, fibrosis and cirrhosis will be scanned using optical illumination at wavelengths of 680-1700 nm and compared to histology results. In vivo study on human subjects with confirmed steatosis is planned using our PA-ultrasound (US) parallel imaging system based on Verasonic US imaging flatform with an L7-4 probe. 10 mJ/cm2 per pulse optical energy at 755 nm will be delivered to the skin surface, which is under the safety limit of American National Standard Institute. Preliminary study with ex vivo human tissue has demonstrated the potential of the proposed approach in differentiating human liver conditions.

  2. Effects of Atmospheric Conditions and the Land/Atmospheric Interface on Transport of Chemical Vapors from Subsurface Sources

    NASA Astrophysics Data System (ADS)

    Rice, A. K.; Smits, K. M.; Cihan, A.; Howington, S. E.; Illangasekare, T. H.

    2013-12-01

    Understanding the movement of chemical vapors and gas through variably saturated soil subjected to atmospheric thermal and mass flux boundary conditions at the land/atmospheric interface is important to many applications, including landmine detection, methane leakage during natural gas production from shale and CO2 leakage from deep geologic storage. New, advanced technologies exist to sense chemical signatures and gas leakage at the land/atmosphere interface, but interpretation of sensor signals remains a challenge. Chemical vapors are subject to numerous interactions while migrating through the soil environment, masking source conditions. The process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal quantification of other processes, such as convective gas flow and temporal or spatial variation in soil moisture. Vapor migration is affected by atmospheric conditions (e.g. humidity, temperature, wind velocity), soil thermal and hydraulic properties and contaminant properties, all of which are physically and thermodynamically coupled. The complex coupling of two drastically different flow regimes in the subsurface and atmosphere is commonly ignored in modeling efforts, or simplifying assumptions are made to treat the systems as de-coupled. Experimental data under controlled laboratory settings are lacking to refine the theory for proper coupling and complex treatment of vapor migration through porous media in conversation with atmospheric flow and climate variations. Improving fundamental understanding and accurate quantification of these processes is not feasible in field settings due to lack of controlled initial and boundary conditions and inability to fully characterize the subsurface at all relevant scales. The goal of this work is to understand the influence of changes in atmospheric conditions to transport of vapors through variably saturated soil. We have developed a tank apparatus

  3. Influence of Aqueous-Salt Conditions on the Structure and Dynamics of the Monomeric and Novel Dimeric forms of the Alzheimer s ABeta21-30 protein fragment

    NASA Astrophysics Data System (ADS)

    Smith, Micholas Dean

    The behavior of the Alzheimer's related peptide Abeta is the subject of much study. In typical computational studies the environment local to the peptide is assumed to be pure water; however, in vivo the peptide is found in the extracellular space near the plasma membrane which is rich in ionic species. In this thesis, the hypothesis that the presence of group I/IIA salts will result in increased sampling of disordered structures as well as modify the dynamics of meta-stable structural motifs in the small folding nucleus of the Abeta peptide (Abeta21-30) is examined under a variety of ionic environments and was shown that of the tested salts, CaCl2 (and MgCl2, to a much lesser degree) did increase the propensity for disordered states; while, the group IA salts, KCl and NaCl, had little effect on the secondary structure of the peptide. Further, study of three familial mutations of this peptide region is also performed under aqueous salt-environments to elucidate further mechanistic details of how aqueous salts modify the region's behavior. Finally, as experimental results have highlighted that aggregation rates of the full-length peptide are modified by the presence of CaCl2, this work examines novel dimers states of Abeta21-30 and their stabilities when exposed to CaCl2.

  4. In situ study of mass transfer in aqueous solutions under high pressures via Raman spectroscopy: A new method for the determination of diffusion coefficients of methane in water near hydrate formation conditions

    USGS Publications Warehouse

    Lu, W.J.; Chou, I.-Ming; Burruss, R.C.; Yang, M.Z.

    2006-01-01

    A new method was developed for in situ study of the diffusive transfer of methane in aqueous solution under high pressures near hydrate formation conditions within an optical capillary cell. Time-dependent Raman spectra of the solution at several different spots along the one-dimensional diffusion path were collected and thus the varying composition profile of the solution was monitored. Diffusion coefficients were estimated by the least squares method based on the variations in methane concentration data in space and time in the cell. The measured diffusion coefficients of methane in water at the liquid (L)-vapor (V) stable region and L-V metastable region are close to previously reported values determined at lower pressure and similar temperature. This in situ monitoring method was demonstrated to be suitable for the study of mass transfer in aqueous solution under high pressure and at various temperature conditions and will be applied to the study of nucleation and dissolution kinetics of methane hydrate in a hydrate-water system where the interaction of methane and water would be more complicated than that presented here for the L-V metastable condition. ?? 2006 Society for Applied Spectroscopy.

  5. In situ study of mass transfer in aqueous solutions under high pressures via Raman spectroscopy: a new method for the determination of diffusion coefficients of methane in water near hydrate formation conditions.

    PubMed

    Lu, W J; Chou, I M; Burruss, R C; Yang, M Z

    2006-02-01

    A new method was developed for in situ study of the diffusive transfer of methane in aqueous solution under high pressures near hydrate formation conditions within an optical capillary cell. Time-dependent Raman spectra of the solution at several different spots along the one-dimensional diffusion path were collected and thus the varying composition profile of the solution was monitored. Diffusion coefficients were estimated by the least squares method based on the variations in methane concentration data in space and time in the cell. The measured diffusion coefficients of methane in water at the liquid (L)-vapor (V) stable region and L-V metastable region are close to previously reported values determined at lower pressure and similar temperature. This in situ monitoring method was demonstrated to be suitable for the study of mass transfer in aqueous solution under high pressure and at various temperature conditions and will be applied to the study of nucleation and dissolution kinetics of methane hydrate in a hydrate-water system where the interaction of methane and water would be more complicated than that presented here for the L-V metastable condition.

  6. Electronic and Chemical State of Aluminum from the Single- (K) and Double-Electron Excitation (KLII&III, KLI) X-ray Absorption Near-Edge Spectra of α-Alumina, Sodium Aluminate, Aqueous Al(3+)·(H2O)6, and Aqueous Al(OH)4(-).

    PubMed

    Fulton, John L; Govind, Niranjan; Huthwelker, Thomas; Bylaska, Eric J; Vjunov, Aleksei; Pin, Sonia; Smurthwaite, Tricia D

    2015-07-02

    We probe, at high energy resolution, the double electron excitation (KLII&II) X-ray absorption region that lies approximately 115 eV above the main Al K-edge (1566 eV) of α-alumina and sodium aluminate. The two solid standards, α-alumina (octahedral) and sodium aluminate (tetrahedral), are compared to aqueous species that have the same Al coordination symmetries, Al(3+)·6H2O (octahedral) and Al(OH)4(-) (tetrahedral). For the octahedral species, the edge height of the KLII&III-edge is approximately 10% of the main K-edge; however, the edge height is much weaker (3% of K-edge height) for Al species with tetrahedral symmetry. For the α-alumina and aqueous Al(3+)·6H2O the KLII&III spectra contain white line features and extended absorption fine structure (EXAFS) that mimics the K-edge spectra. The KLII&III-edge feature interferes with an important region in the EXAFS spectra of the crystalline and aqueous standards. The K-edge spectra and K-edge energy positions are predicted using time-dependent density functional theory (TDDFT). The TDDFT calculations for the K-edge X-ray absorption near-edge spectra (XANES) reproduce the observed transitions in the experimental spectra of the four Al species. The KLII&II and KLI onsets and their corresponding chemical shifts for the four standards are estimated using the delta self-consistent field (ΔSCF) method.

  7. A Study on the Aqueous Formation of Secondary Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Sinclair, K.; Tsigaridis, K.

    2013-12-01

    The effect aerosols have on radiative forcing in the atmosphere is recognized as one of the largest uncertainties in the radiation budget. About 80% of organic aerosol mass in the atmosphere is estimated to be created though secondary processes. Recently, the aqueous formation of secondary organic aerosols (SOA) has become recognized as important when considering the source, transformation and radiative impacts of SOA. This work focuses on implementing a mechanism for aqueous SOA formation that can be used in atmospheric chemistry and models of all scales, from box to global. A box model containing a simplified chemical mechanism for the aqueous production of precursors of aqueous SOA (Myriokefalitakis et al. (2011) is coupled to gas-phase chemistry which uses the carbon bond mechanism (CBM) IV is presented. The model implements aqueous chemistry of soluble gases, both in-cloud and aerosol water, including organic compounds such as glyoxal and methylglyoxal, which have been shown as potentially significant sources for dissolved secondary organic aerosols. This mechanism implements aqueous phase mass transfer and molecular dissociation. The model's performance is evaluated against previous box model studies from the literature. A comparison is conducted between the detailed GAMMA model (McNeill et al., 2012), which is constrained with chamber experiments and the one developed here. The model output under different atmospheric conditions is explored and differences and sensitivities are assessed. The objective of this work is to create a robust framework for simulating aqueous phase formation of SOA and maximizing the computational efficiency of the model, while maintaining accuracy, in order to later use the exact mechanism in global climate simulations.

  8. The IUPAC aqueous and non-aqueous experimental pKa data repositories of organic acids and bases

    NASA Astrophysics Data System (ADS)

    Slater, Anthony Michael

    2014-10-01

    Accurate and well-curated experimental pKa data of organic acids and bases in both aqueous and non-aqueous media are invaluable in many areas of chemical research, including pharmaceutical, agrochemical, specialty chemical and property prediction research. In pharmaceutical research, pKa data are relevant in ligand design, protein binding, absorption, distribution, metabolism, elimination as well as solubility and dissolution rate. The pKa data compilations of the International Union of Pure and Applied Chemistry, originally in book form, have been carefully converted into computer-readable form, with value being added in the process, in the form of ionisation assignments and tautomer enumeration. These compilations offer a broad range of chemistry in both aqueous and non-aqueous media and the experimental conditions and original reference for all pKa determinations are supplied. The statistics for these compilations are presented and the utility of the computer-readable form of these compilations is examined in comparison to other pKa compilations. Finally, information is provided about how to access these databases.

  9. The IUPAC aqueous and non-aqueous experimental pKa data repositories of organic acids and bases.

    PubMed

    Slater, Anthony Michael

    2014-10-01

    Accurate and well-curated experimental pKa data of organic acids and bases in both aqueous and non-aqueous media are invaluable in many areas of chemical research, including pharmaceutical, agrochemical, specialty chemical and property prediction research. In pharmaceutical research, pKa data are relevant in ligand design, protein binding, absorption, distribution, metabolism, elimination as well as solubility and dissolution rate. The pKa data compilations of the International Union of Pure and Applied Chemistry, originally in book form, have been carefully converted into computer-readable form, with value being added in the process, in the form of ionisation assignments and tautomer enumeration. These compilations offer a broad range of chemistry in both aqueous and non-aqueous media and the experimental conditions and original reference for all pKa determinations are supplied. The statistics for these compilations are presented and the utility of the computer-readable form of these compilations is examined in comparison to other pKa compilations. Finally, information is provided about how to access these databases.

  10. Seizure modeling of Pb(II) and Cd(II) from aqueous solution by chemically modified sugarcane bagasse fly ash: isotherms, kinetics, and column study.

    PubMed

    Shah, Bhavna; Mistry, Chirag; Shah, Ajay

    2013-04-01

    Heavy metal pollution is a common environmental problem all over the world. The purpose of the research is to examine the applicability of bagasse fly ash (BFA)-an agricultural waste of sugar industry used for the synthesis of zeolitic material. The zeolitic material are used for the uptake of Pb(II) and Cd(II) heavy metal. Bagasse fly ash is used as a native material for the synthesis of zeolitic materials by conventional hydrothermal treatment without (conventional zeolitic bagasse fly ash (CZBFA)) and with electrolyte (conventional zeolitic bagasse fly ash in electrolyte media (ECZBFA)) media. Heavy metal ions Pb(II) and Cd(II) were successfully seized from aqueous media using these synthesized zeolitic materials. In this study, the zeolitic materials were well characterized by different instrumental methods such as Brunauer-Emmett-Teller, XRF, Fourier transform infrared spectroscopy, powder X-ray diffraction, and scanning electron microscopic microphotographs. The presence of analcime, phillipsite, and zeolite P in adsorbents confirms successful conversion of native BFA into zeolitic materials. Seizure modeling of Pb(II) and Cd(II) was achieved by batch sorption experiments, isotherms, and kinetic studies. These data were used to compare and evaluate the zeolitic materials as potential sorbents for the uptake of heavy metal ions from an aqueous media. The Langmuir isotherm correlation coefficient parameters best fit the equilibrium data which indicate the physical sorption. Pseudo-second-order and intra-particle diffusion model matches best which indicates that the rate of sorption was controlled by film diffusion. The column studies were performed for the practical function of sorbents, and breakthrough curves were obtained, which revealed higher sorption capacity as compared to batch method. Synthesized zeolitic material (CZBFA and ECZBFA), a low-cost sorbent, was proven as potential sorbent for the uptake of Pb(II) and Cd(II) heavy metal ions.

  11. Protective effect of conditioning agents on Afro-ethnic hair chemically treated with thioglycolate-based straightening emulsion.

    PubMed

    Dias, Tania Cristina de Sá; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles

    2008-06-01

    Straightening is a chemical process by which excessively curly hair is straightened in an irreversible way. Generally, products are formulated as emulsions with high pH value (9.0-12.0), which, after applied on hair, cause considerable damage, making it dry and fragile. This research work evaluated the protective effect of lauryl PEG/PPG-18/18 methicone, cyclopentasiloxane (and) PEG-12 dimethicone cross-polymer, jojoba oil, and aqua (and) cystine bis-PG propyl silanetriol, as conditioning agents, on Afro-ethnic hair locks treated with thioglycolate-based straightening emulsions by protein loss, combability, and traction to rupture. Standard Afro-ethnic hair locks were prepared following a protocol for straightening emulsion application. Considering the assays performed, the addition of conditioning agents to the straightening emulsion with ammonium thioglycolate benefited the hair fiber, thus diminishing protein loss, protecting the hair thread, and improving resistance to breakage. Jojoba oil and lauryl PEG/PPG-18/18 methicone were the conditioning agents that presented the best results. Straightening emulsions with ammonium thioglycolate containing aqua (and) cystine bis-PG propyl silanetriol and cyclopentasiloxane (and) PEG-12 dimethicone cross-polymer were the ones that provided higher breakage resistance of the thread.

  12. Chemical reaction conditions in a Danish 80 MW{sub th} CFB-boiler co-firing straw and coal

    SciTech Connect

    Hansen, P.F.B.

    1997-12-31

    Future boilers to be constructed in Denmark including boilers intended for energy conversion of biomass (straw and wood chips) will be designed for Ultra Super Critical steam data. The high steam temperatures and subsequently metal temperatures in the superheaters will increase the corrosion hazard significantly. Severe superheater corrosion observed in the convective path and on test tubes inserted into the loop seal of a Danish 80 MW{sub th} Ahlstroem Pyroflow CFB boiler co-firing coal and straw initiated this study on the conditions under which the chemical reactions occur and deposits form. Load changes--caused by variations in public demand for district heating shifts the reaction conditions in the loop seal between predominantly reducing and predominantly oxidizing conditions. Furthermore the external particle circulation rate and the local temperatures are strongly affected. Deposits collected in the loop seal on temperature controlled probes reveals Cl concentrations more than Twenty Thousand times higher than found in the surrounding bed material. The results are discussed and suggestions on how to reduce high temperature corrosion and superheater fouling are presented.

  13. Chemical Soil Physics Phenomena for Chemical Sensing of Buried UXO

    SciTech Connect

    Phelan, James, M.; Webb, Stephen W.

    1999-06-14

    Technology development efforts are under way to apply chemical sensors to discriminate inert ordnance and clutter from live munitions that remain a threat to reutilization of military ranges. However, the chemical signature is affected by multiple environmental phenomena that can enhance or reduce its presence and transport behavior, and can affect the distribution of the chemical signature in the environment. For example, the chemical can be present in the vapor, aqueous, and solid phases. The distribution of the chemical among these phases, including the spatial distribution, is key in designing appropriate detectors, e.g., gas, aqueous or solid phase sampling instruments. A fundamental understanding of the environmental conditions that affect the chemical signature is needed to describe the favorable and unfavorable conditions of a chemical detector based survey to minimize the consequences of a false negative. UXO source emission measurements are being made to estimate the chemical flux from a limited set of ordnance items. Phase partitioning analysis has been completed to show what the expected concentrations of chemical analytes would be fi-om total concentrations measured in the soil. The soil moisture content in the dry region has been shown to be critical in the attenuation of soil gas concentrations by increased sorption to soil particles. Numerical simulation tools have been adapted to include surface boundary conditions such as solar radiation, surface boundary layer (which is a function of wind speed), precipitation and evaporation, and plant cover/root density to allow transport modeling and evaluate long term processes. Results of this work will provide performance targets for sensor developers and support operational decisions regarding field deployments.

  14. Chemical repair of base lesions, AP-sites, and strand breaks on plasmid DNA in dilute aqueous solution by ascorbic acid

    SciTech Connect

    Hata, Kuniki; Urushibara, Ayumi; Yamashita, Shinichi; Shikazono, Naoya; Yokoya, Akinari; Katsumura, Yosuke

    2013-05-03

    Highlights: •We report a novel mechanism of radiation protection of DNA by chemical activity of ascorbic acid. •The “chemical repair” of DNA damage was revealed using biochemical assay and chemical kinetics analysis. •We found that ascorbic acid significantly repairs precursors of nucleobase lesions and abasic sites. •However, ascorbic acid seldom repairs precursors of DNA-strand breaks. -- Abstract: We quantified the damage yields produced in plasmid DNA by γ-irradiation in the presence of low concentrations (10–100 μM) of ascorbic acid, which is a major antioxidant in living systems, to clarify whether it chemically repairs radiation damage in DNA. The yield of DNA single strand breaks induced by irradiation was analyzed with agarose gel electrophoresis as conformational changes in closed circular plasmids. Base lesions and abasic sites were also observed as additional conformational changes by treating irradiated samples with glycosylase proteins. By comparing the suppression efficiencies to the induction of each DNA lesion, in addition to scavenging of the OH radicals derived from water radiolysis, it was found that ascorbic acid promotes the chemical repair of precursors of AP-sites and base lesions more effectively than those of single strand breaks. We estimated the efficiency of the chemical repair of each lesion using a kinetic model. Approximately 50–60% of base lesions and AP-sites were repaired by 10 μM ascorbic acid, although strand breaks were largely unrepaired by ascorbic acid at low concentrations. The methods in this study will provide a route to understanding the mechanistic aspects of antioxidant activity in living systems.

  15. Kinetic studies of chemical shrinkage and residual stress formation in thermoset epoxy adhesives under confined curing conditions

    NASA Astrophysics Data System (ADS)

    Schumann, M.; Geiß, P. L.

    2015-05-01

    Faultless processing of thermoset polymers in demanding applications requires a profound mastering of the curing kinetics considering both the physico-chemical changes in the transition from the liquid to the solid state and the consolidation of the polymers network in the diffusion controlled curing regime past the gel point. Especially in adhesive joints shrinkage stress occurring at an early state of the curing process under confined conditions is likely to cause defects due to local debonding and thus reduce their strength and durability1. Rheometry is considered the method of choice to investigate the change of elastic and viscous properties in the progress of curing. Drawbacks however relate to experimental challenges in accessing the full range of kinetic parameters of thermoset resins with low initial viscosity from the very beginning of the curing reaction to the post-cure consolidation of the polymer due to the formation of secondary chemical bonds. Therefore the scope of this study was to interrelate rheological data with results from in-situ measur