Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.
2017-09-12
A combined hydrothermal liquefaction (HTL) and catalytic hydrothermal gasification (CHG) system and process are described that convert various biomass-containing sources into separable bio-oils and aqueous effluents that contain residual organics. Bio-oils may be converted to useful bio-based fuels and other chemical feedstocks. Residual organics in HTL aqueous effluents may be gasified and converted into medium-BTU product gases and directly used for process heating or to provide energy.
Experimental infrared measurements for hydrocarbon pollutant determination in subterranean waters
NASA Astrophysics Data System (ADS)
Lay-Ekuakille, A.; Palamara, I.; Caratelli, D.; Morabito, F. C.
2013-01-01
Subterranean waters are often polluted by industrial and anthropic effluents that are drained in subsoil. To prevent and control pollution, legislations of different developed countries require an online monitoring measurement, especially for detecting organic solvents (chlorinated and unchlorinated ones). Online measurements include both real-time and no real-time measurements. In general, it is difficult to implement real-time measurements in stricto sensu for online acquisitions on aqueous effluents since they need to be processed by a modeling. This research presents an experimental measurement system based on infrared (IR) spectroscopy for aqueous effluents containing hydrocarbons and capable of displaying excellent values of pollutant concentrations even in instable conditions; the system is able to detect pollutants either in laminar or turbulent flow. The results show the possibility of avoiding the use of "Pitot tube" that is employed to create a stagnation point in order to convert kinetic energy into potential one. This conversion allows the transformation of a turbulent flow in a laminar flow making easy measurement of pollutants included in an aqueous effluent. Obviously, "Pitot tube" is also used for other fluid effluents. The obtained results have been compared with those produced by means of sophisticated IR instrumentation for laboratory applications.
Experimental infrared measurements for hydrocarbon pollutant determination in subterranean waters.
Lay-Ekuakille, A; Palamara, I; Caratelli, D; Morabito, F C
2013-01-01
Subterranean waters are often polluted by industrial and anthropic effluents that are drained in subsoil. To prevent and control pollution, legislations of different developed countries require an online monitoring measurement, especially for detecting organic solvents (chlorinated and unchlorinated ones). Online measurements include both real-time and no real-time measurements. In general, it is difficult to implement real-time measurements in stricto sensu for online acquisitions on aqueous effluents since they need to be processed by a modeling. This research presents an experimental measurement system based on infrared (IR) spectroscopy for aqueous effluents containing hydrocarbons and capable of displaying excellent values of pollutant concentrations even in instable conditions; the system is able to detect pollutants either in laminar or turbulent flow. The results show the possibility of avoiding the use of "Pitot tube" that is employed to create a stagnation point in order to convert kinetic energy into potential one. This conversion allows the transformation of a turbulent flow in a laminar flow making easy measurement of pollutants included in an aqueous effluent. Obviously, "Pitot tube" is also used for other fluid effluents. The obtained results have been compared with those produced by means of sophisticated IR instrumentation for laboratory applications.
Methods for removing contaminants from algal oil
Lupton, Francis Stephen
2016-09-27
Methods for removing contaminants from algal oil are provided. In an embodiment, a method comprises the steps of combining a sulfuric acid-aqueous solution that has a pH of about 1 or less with a contaminant-containing algal oil at treatment conditions effective to form an effluent. The effluent comprises a treated algal oil phase and contaminants in an acidic aqueous phase. The contaminants comprise metals, phosphorus, or combinations thereof. The acidic aqueous phase is removed from the effluent to form a contaminant-depleted algal oil.
Method and system for extraction of chemicals from aquifer remediation effluent water
McMurtrey, Ryan D.; Ginosar, Daniel M.; Moor, Kenneth S.; Shook, G. Michael; Barker, Donna L.
2003-01-01
A method and system for extraction of chemicals from an groundwater remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating groundwater contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.
Case, F.N.; Ketchen, E.E.
1975-10-14
A method is provided for treating organic waste material dissolved or dispersed in an aqueous effluent, which comprises contacting the effluent with an inert particulate carbonaceous sorbent at an oxygen pressure up to 2000 psi, irradiating the resultant mixture with high energy radiation until a decolorized liquid is produced, and then separating the decolorized liquid.
Integrated process for the removal of emulsified oils from effluents in the steel industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benito, J.M.; Rios, G.; Gutierrez, B.
1999-11-01
Emulsified oils contained in aqueous effluents from cold-rolling mills of the steel industry can be effectively removed via an integrated process consisting of a coagulation/flocculation stage followed by ultrafiltration of the resulting aqueous phase. The effects of CaCl{sub 2}, NaOH, and lime on the stability of different industrial effluents were studied in the coagulation experiments. The flocculants tested were inorganic prehydrolyzed aluminum salts and quaternary polyamines. Ultrafiltration of the aqueous phase from the coagulation/flocculation stage was carried out in a stirred cell using Amicon PM30 and XM300 organic membranes. Permeate fluxes were measured for industrial effluents to which the indicatedmore » coagulants and flocculants had been added. Oil concentrations in the permeate were 75% lower than the limits established by all European Union countries. Complete regeneration of the membrane was accomplished with an aqueous solution of a commercial detergent.« less
NASA Technical Reports Server (NTRS)
Brooks, R. L. (Inventor)
1979-01-01
A multipoint fluid sample collection and distribution system is provided wherein the sample inputs are made through one or more of a number of sampling valves to a progressive cavity pump which is not susceptible to damage by large unfiltered particles. The pump output is through a filter unit that can provide a filtered multipoint sample. An unfiltered multipoint sample is also provided. An effluent sample can be taken and applied to a second progressive cavity pump for pumping to a filter unit that can provide one or more filtered effluent samples. The second pump can also provide an unfiltered effluent sample. Means are provided to periodically back flush each filter unit without shutting off the whole system.
Midorikawa, I; Aoki, H; Omori, A; Shimizu, T; Kawaguchi, Y; Kassai, K; Murakami, T
2008-01-01
High purity phosphorus was recovered from municipal wastewater secondary effluent as phosphate, using a newly developed phosphorus adsorption and recovery system. A high-speed adsorbent having a unique porous structure was used in this system. The secondary effluent, showing total phosphorus (TP) of 0.1-2.1 mg P/L, was passed through an adsorbent packed column at high space velocity (SV) of 15 h(-1). The TP of the treated water was as low as 0.02-0.04 mg P/L, indicating that 97% of phosphorus in the secondary effluent was removed. The removed phosphorus was desorbed from the adsorbent by passing a sodium hydroxide aqueous solution through the column. Calcium hydroxide was added to this solution to precipitate the phosphorus as calcium phosphate. This precipitate was neutralized with hydrochloric acid aqueous solution, washed with water, and then solid-liquid separation was performed for the phosphorus recovery. The main constituent of the recovered phosphorus was apatite-type calcium phosphate, with 16% phosphorus content, which matched that of high-grade phosphorus ore. The hazardous elements content of the recovered phosphorus was exceedingly low. Therefore the recovered phosphorus can be applied to an alternative for phosphorus ore, or to a phosphate fertilizer. IWA Publishing 2008.
Sherwood correlation for dissolution of pooled NAPL in porous media
NASA Astrophysics Data System (ADS)
Aydin Sarikurt, Derya; Gokdemir, Cagri; Copty, Nadim K.
2017-11-01
The rate of interphase mass transfer from non-aqueous phase liquids (NAPLs) entrapped in the subsurface into the surrounding mobile aqueous phase is commonly expressed in terms of Sherwood (Sh) correlations that are expressed as a function of flow and porous media properties. Because of the lack of precise methods for the estimation of the interfacial area separating the NAPL and aqueous phases, most studies have opted to use modified Sherwood expressions that lump the interfacial area into the interphase mass transfer coefficient. To date, there are only two studies in the literature that have developed non-lumped Sherwood correlations; however, these correlations have undergone limited validation. In this paper controlled dissolution experiments from pooled NAPL were conducted. The immobile NAPL mass is placed at the bottom of a flow cell filled with porous media with water flowing horizontally on top. Effluent aqueous phase concentrations were measured for a wide range of aqueous phase velocities and for two different porous media. To interpret the experimental results, a two-dimensional pore network model of the NAPL dissolution kinetics and aqueous phase transport was developed. The observed effluent concentrations were then used to compute best-fit mass transfer coefficients. Comparison of the effluent concentrations computed with the two-dimensional pore network model to those estimated with one-dimensional analytical solutions indicates that the analytical model which ignores the transport in the lateral direction can lead to under-estimation of the mass transfer coefficient. Based on system parameters and the estimated mass transfer coefficients, non-lumped Sherwood correlations were developed and compared to previously published data. The developed correlations, which are a significant improvement over currently available correlations that are associated with large uncertainties, can be incorporated into future modeling studies requiring non-lumped Sh expressions.
Whole Effluent Toxicity (WET) describes the aggregate toxic effect of an aqueous sample (e.g., whole effluent wastewater discharge) as measured by an organism's response upon exposure to the sample (e.g., lethality, impaired growth, or reproduction).
Guo, Mengzhe; Liang, Junling; Wu, Shihua
2010-08-13
In this work, we have developed a novel hybrid two-dimensional counter-current chromatography and liquid chromatography (2D CCC x LC) system for the continuous purification of arctiin from crude extract of Arctium lappa. The first dimensional CCC column has been designed to fractionalize crude complex extract into pure arctiin effluent using a one-component organic/salt-containing system, and the second dimensional LC column has been packed with macroporous resin for on-line adsorption, desalination and desorption of arctiin which was effluent purified from the first CCC dimension. Thus, the crude arctiin mixture has been purified efficiently and conveniently by on-line CCC x LC in spite of the use of a salt-containing solvent system in CCC separation. As a result, high purity (more than 97%) of arctiin has been isolated by repeated injections both using the ethyl acetate-8% sodium chloride aqueous solution and butanol-1% sodium chloride aqueous solution. By contrast with the traditional CCC processes using multi-component organic/aqueous solvent systems, the present on-line CCC x LC process only used a one-component organic solvent and thus the solvent is easier to recover and regenerate. All of used solvents such as ethyl acetate, n-butanol and NaCl aqueous solution are low toxicity and environment-friendly. Moreover, the lower phase of salt-containing aqueous solution used as mobile phase, only contained minor organic solvent, which will save much organic solvent in continuous separation. In summary, our results indicated that the on-line hybrid 2D CCC x LC system using one-component organic/salt-containing aqueous solution is very promising and powerful tool for high-throughput purification of arctiin from fruits of A. lappa. 2010 Elsevier B.V. All rights reserved.
Riverbank filtration potential of pharmaceuticals in a wastewater-impacted stream
Bradley, Paul M.; Barber, Larry B.; Duris, Joseph W.; Foreman, William T.; Furlong, Edward T.; Hubbard, Laura E.; Hutchinson, Kasey J.; Keefe, Steffanie H.; Kolpin, Dana W.
2014-01-01
Pharmaceutical contamination of shallow groundwater is a substantial concern in effluent-dominated streams, due to high aqueous mobility, designed bioactivity, and effluent-driven hydraulic gradients. In October and December 2012, effluent contributed approximately 99% and 71%, respectively, to downstream flow in Fourmile Creek, Iowa, USA. Strong hydrologic connectivity was observed between surface-water and shallow-groundwater. Carbamazepine, sulfamethoxazole, and immunologically-related compounds were detected in groundwater at greater than 0.02 μg L−1 at distances up to 6 m from the stream bank. Direct aqueous-injection HPLC-MS/MS revealed 43% and 55% of 110 total pharmaceutical analytes in surface-water samples in October and December, respectively, with 16% and 6%, respectively, detected in groundwater approximately 20 m from the stream bank. The results demonstrate the importance of effluent discharge as a driver of local hydrologic conditions in an effluent-impacted stream and thus as a fundamental control on surface-water to groundwater transport of effluent-derived pharmaceutical contaminants.
NASA Astrophysics Data System (ADS)
Bradley, P. M.; Barber, L. B.; Duris, J. W.; Foreman, W. T.; Furlong, E. T.; Hubbard, L. E.; Hutchinson, K. J.; Keefe, S. H.; Kolpin, D. W.
2014-12-01
Wastewater pharmaceutical contamination of shallow groundwater is a substantial concern in effluent-dominated streams, due to aqueous mobility and designed bioactivity of pharmaceuticals and due to effluent-driven hydraulic gradients. Improved understanding of the environmental fate and transport of wastewater-derived pharmaceuticals is essential for effective protection of vital aquatic ecosystem services, environmental health, and drinking-water supplies. Substantial longitudinal (downstream) transport of pharmaceutical contaminants has been documented in effluent-impacted streams. The comparative lack of information on vertical and lateral transport (infiltration) of wastewater contaminants from surface-water to hyporheic and shallow groundwater compartments is a critical scientific data gap, given the potential for contamination of groundwater supplies in effluent-impacted systems. Growing dependencies on bank filtration and artificial recharge applications for release of wastewater to the environment and for pretreatment of poor-quality surface-water for drinking water emphasize the critical need to better understand the exchange of wastewater contaminants, like pharmaceuticals, between surface-water and groundwater compartments. The potential transport of effluent-derived pharmaceutical contaminants from surface-water to hyporheic-water and shallow groundwater compartments was examined in a wastewater-treatment-facility (WWTF) impacted stream in Ankeny, Iowa under effluent-dominated (71-99% of downstream flow) conditions. Strong hydraulic gradients and hydrologic connectivity were evident between surface-water and shallow-groundwater compartments in the vicinity of the WWTF outfall. Carbamazepine, sulfamethoxazole, and immunologically-related compounds were detected in groundwater 10-20 meters from the stream bank. Direct aqueous-injection HPLC-MS/MS revealed high percentage detections of pharmaceuticals (110 total analytes) in surface-water and groundwater samples. The results demonstrate the importance of effluent discharge as a driver of local hydrologic conditions in an effluent-impacted stream and thus as a fundamental control on surface-water to groundwater transport of effluent-derived pharmaceutical contaminants.
Richards, Samia; Withers, Paul J A; Paterson, Eric; McRoberts, Colin W; Stutter, Marc
2017-04-01
Contaminants in septic tank effluent (STE) are expected to be removed by the soil system before discharging to the environment. However, potential contaminants such as phosphorus (P), caffeine and artificial sweeteners do find their way to watercourses impacting aquatic eco systems. In this study, the attenuation of STE P, caffeine and saccharin were investigated in untreated soil and in soil with reduced microbial activity, in aqueous solutions and in the complex matrix of STE. Time series sorption and desorption experiments using batch equilibrium and a column experiment of STE P attenuation were conducted. The results revealed that the soil distribution coefficients (K d ) were: P 81.57 > caffeine 22.16 > saccharin 5.98 cm 3 /g, suggesting greater soil affinity to P adsorption. The data revealed that 80% of saccharin and 33% of caffeine attenuation was associated with microbial activities rather than adsorption processes. However, a complete removal of saccharin and caffeine did not occur during the equilibration period, suggesting their leaching potential. The dominant mechanism of P attenuation was adsorption (chemical and physical), yielding P retention of >73% and 35% for P in aqueous solution and in STE matrix, respectively, for batch equilibrium. The soil in the column acted as effluent P sink retaining 125 μg P/g soil of effluent P. The attenuation of P, caffeine and saccharin in the aqueous solution was greater than in STE, suggesting that the complex composition of STE reduced soil adsorption ability, and that other substances present in STE may be competing for soil binding sites. The data revealed that caffeine and P had similarities in the interaction with soils and thus caffeine may be considered as a STE tracer of anthropogenic source of P in receiving waters. Copyright © 2017 Elsevier Ltd. All rights reserved.
Verplanck, P.L.; Taylor, Howard E.; Nordstrom, D. Kirk; Barber, L.B.
2005-01-01
In many surface waters, sewage treatment plant (STP) effluent is a substantial source of both regulated and unregulated contaminants, including a suite of complex organic compounds derived from household chemicals, pharmaceutical, and industrial and medical byproducts. In addition, STP effluents in some urban areas have also been shown to have a positive gadolinium (Gd) anomaly in the rare earth element (REE) pattern, with the Gd derived from its use in medical facilities. REE concentrations are relatively easy to measure compared to many organic wastewater compounds and may provide a more widely utilized tracer of STP effluents. To evaluate whether sewage treatment plant-associated Gd is a useful tracer of treatment plant effluent, an investigation of the occurrence, fate, and transport of rare earth elements was undertaken. The rare earth element patterns of four of five STP effluents sampled display positive Gd anomalies. The one site that did not have a Gd anomaly serves a small community, population 1200, with no medical facilities. Biosolids from a large metropolitan STP are not enriched in Gd even though the effluent is, suggesting that a substantial fraction of Gd remains in the aqueous phase through routine treatment plant operation. To evaluate whether STP-derived Gd persists in the fluvial environment, a 14-km study reach downstream of an STP was sampled. Gadolinium anomalies were present at all five downstream sites, but the magnitude of the anomaly decreased. Effluent from STPs is a complex mixture of organic and inorganic constituents, and to better understand the chemical interactions and their effect on REEs, the aqueous speciation was modeled using comprehensive chemical analyses of water samples collected downstream of STP input. These calculations suggest that the REEs will likely remain dissolved because phosphate and carbonate complexes dominate over free REE ions. This study supports the application of Gd anomalies as a useful tracer of urban wastewater.
Verplanck, Philip L; Taylor, Howard E; Nordstrom, D Kirk; Barber, Larry B
2005-09-15
In many surface waters, sewage treatment plant (STP) effluent is a substantial source of both regulated and unregulated contaminants, including a suite of complex organic compounds derived from household chemicals, pharmaceuticals, and industrial and medical byproducts. In addition, STP effluents in some urban areas have also been shown to have a positive gadolinium (Gd) anomaly in the rare earth element (REE) pattern, with the Gd derived from its use in medical facilities. REE concentrations are relatively easy to measure compared to many organic wastewater compounds and may provide a more widely utilized tracer of STP effluents. To evaluate whether sewage treatment plant-associated Gd is a useful tracer of treatment plant effluent, an investigation of the occurrence, fate, and transport of rare earth elements was undertaken. The rare earth element patterns of four of five STP effluents sampled display positive Gd anomalies. The one site that did not have a Gd anomaly serves a small community, population 1200, with no medical facilities. Biosolids from a large metropolitan STP are not enriched in Gd even though the effluent is, suggesting that a substantial fraction of Gd remains in the aqueous phase through routine treatment plant operation. To evaluate whether STP-derived Gd persists in the fluvial environment, a 14-km study reach downstream of an STP was sampled. Gadolinium anomalies were present at all five downstream sites, but the magnitude of the anomaly decreased. Effluent from STPs is a complex mixture of organic and inorganic constituents, and to better understand the chemical interactions and their effect on REEs, the aqueous speciation was modeled using comprehensive chemical analyses of water samples collected downstream of STP input. These calculations suggest that the REEs will likely remain dissolved because phosphate and carbonate complexes dominate over free REE ions. This study supports the application of Gd anomalies as a useful tracer of urban wastewater.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-07
.... SUMMARY: EPA Region 10 today issues a final action for six effluent limits for produced water under the... hydrocarbons (TAH), total aqueous hydrocarbons (TAqH), silver, and whole effluent toxicity (WET), pursuant to the provisions of the Clean Water Act (CWA or ``the Act''), 33 U.S.C. 1251. The Permit continues to...
COMPONENTS IDENTIFIED IN ENERGY-RELATED WASTES AND EFFLUENTS
A state-of-the-art review of the characterization of solid wastes and aqueous effluents generated by energy-related processes was conducted. The reliability of these data was evaluated according to preselected criteria or sample source, sampling and analytical methodology, and da...
Ozonation and H2O2/UV treatment of clofibric acid in water: a kinetic investigation.
Andreozzi, Roberto; Caprio, Vincenzo; Marotta, Raffaele; Radovnikovic, Anita
2003-10-31
The presence of pharmaceuticals or their active metabolites in surface and ground waters has been recently reported as mainly due to an incomplete removal of these pollutants in sewage treatment plants (STP). Advanced oxidation processes may represent a suitable tool to reduce environmental release of these species by enhancing the global efficiency of reduction of pharmaceuticals in the municipal sewage plant effluents. The present work aims at assessing the kinetics of abatement from aqueous solutions of clofibric acid (a metabolite of the blood lipid regulator clofibrate) which has been found in surface, ground and drinking waters. Ozonation and hydrogen peroxide photolysis are capable of fast removal of this species in aqueous solution, with an almost complete conversion of the organic chlorine content into chloride ions for the investigated reaction conditions. A validation of assessed kinetics at clofibric acid concentrations as low as those found in STP effluents is presented for both systems.
Kofinas, Peter; Kioussis, Dimitri R
2003-01-15
This work reports on the features of a sorption processes for the ultimate removal and recovery of reactive phosphorus from aquaculture and poultry production wastewater effluents. The sorbent used was a cross-linked polyamine (PAA-HCl) polymeric hydrogel. The PAA-HCl hydrogels were prepared by chemically cross-linking aqueous solutions of linear PAA-HCl chains with epichlorohydrin (EPI). The phosphorus binding capacity of the gels was measured in standard aqueous solutions as a function of ionic strength. Equilibrium PO4(3-), loadings of 100 mg anion/g gel were obtained. The regeneration ability of the gels was demonstrated by release of the bound phosphorus anions upon washing with 1-2 M NaOH solution, providing opportunities to recover and reuse the gel over multiple cycles. The ionic polyamine gels have been demonstrated to be appropriate materials for treating poultry and aquaculture wastewater effluents. Upon treatment phosphorus anion concentrations were reduced to levels suitable for discharge into natural surface waters.
242-A Evaporator quality assurance plan. Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basra, T.S.
1995-05-04
The purpose of this quality assurance project plan (Plan) is to provide requirements for activities pertaining to sampling, shipping, and analyses associated with candidate feed tank samples for the 242-A Evaporator project. The purpose of the 242-A Evaporator project is to reduce the volume of aqueous waste in the Double Shell Tank (DST) System and will result in considerable savings to the disposal of mixed waste. The 242-A Evaporator feed stream originates from DSTs identified as candidate feed tanks. The 242-A Evaporator reduces the volume of aqueous waste contained in DSTs by boiling off water and sending the condensate (calledmore » process condensate) to the Liquid Effluent Retention Facility (LEPF) storage basin where it is stored prior to treatment in the Effluent Treatment Facility (ETF). The objective of this quality assurance project plan is to provide the planning, implementation, and assessment of sample collection and analysis, data issuance, and validation activities for the candidate feed tanks.« less
Sashidhar, R B; Selvi, S Kalaignana; Vinod, V T P; Kosuri, Tanuja; Raju, D; Karuna, R
2015-10-01
An ecofriendly green chemistry method using a natural biopolymer, Gum Kondagogu (GK) for the removal of U (VI) from aqueous, simulated nuclear effluents was studied. The adsorption characteristic of GK towards U (VI) from aqueous solution was studied at varied pH, contact time, adsorbent dose, initial U (VI) concentration and temperature using UV-Visible spectroscopy and ICP-MS. Maximum adsorption was seen at pH 4, 0.1% GK with 60 min contact time at room temperature. The GK- U (VI) composite was characterized by FT-IR, zeta potential, TEM and SEM-EDAX. The Langmuir isotherm was found to be 487 mg of U (VI) g(-1) of GK. The adsorption capacity and (%) of U (VI) was found to be 490 ± 5.4 mg g(-1) and 98.5%. Moreover adsorption of U (VI) by GK was not influenced by other cations present in the simulated effluents. The adsorbed U (VI) was efficiently stripped from composite using 1 M HCl. Copyright © 2015 Elsevier Ltd. All rights reserved.
FIELD TESTING AND EVALUATION OF ZERPOL® AT PIONEER METAL FINISHING
The project examines the Zerpol® process. The Zerpol® process, as used in metal plating operations, captures all aqueous effluent from the manufacturing operations, conditions the effluent to remove any metal or cyanide that may be present, and permits the reuse of the ...
Sharp, David W.
1980-01-01
In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.
Method and apparatus for destroying organic contaminants in aqueous liquids
Donaldson, T.L.; Wilson, J.H.
1993-09-21
A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing. 2 figures.
Method and apparatus for destroying organic contaminants in aqueous liquids
Donaldson, Terrence L.; Wilson, James H.
1993-01-01
A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing.
Karaolia, Popi; Michael, Irene; García-Fernández, Irene; Agüera, Ana; Malato, Sixto; Fernández-Ibáñez, Pilar; Fatta-Kassinos, Despo
2014-01-15
The presence of pathogenic antibiotic-resistant bacteria in aquatic environments has become a health threat in the last few years. Their presence has increased due to the presence of antibiotics in wastewater effluents, which are not efficiently removed by conventional wastewater treatments. As a result there is a need to study the possible ways of removal of the mixtures of antibiotics present in wastewater effluents and the antibiotic-resistant bacteria, which may also spread the antibiotic resistance genes to other bacterial populations. In this study the degradation of a mixture of antibiotics i.e. sulfamethoxazole and clarithromycin, the disinfection of total enterococci and the removal of those resistant to: a) sulfamethoxazole, b) clarithromycin and c) to both antibiotics have been examined, along with the toxicity of the whole effluent mixture after treatment to the luminescent aquatic bacterium Vibrio fischeri. Solar Fenton treatment (natural solar driven oxidation) using Fenton reagent doses of 50 mg L(-1) of hydrogen peroxide and 5 mg L(-1) of Fe(3+) in a pilot-scale compound parabolic collector plant was used to examine the disinfection and antibiotic resistance removal efficiency in different aqueous matrices, namely distilled water, simulated and real wastewater effluents. There was a faster complete removal of enterococci and of antibiotics in all aqueous matrices by applying solar Fenton when compared to photolytic treatment of the matrices. Sulfamethoxazole was more efficiently degraded than clarithromycin in all three aqueous matrices (95% removal of sulfamethoxazole and 70% removal of clarithromycin in real wastewater). The antibiotic resistance of enterococci towards both antibiotics exhibited a 5-log reduction with solar Fenton in real wastewater effluent. Also after solar Fenton treatment, there were 10 times more antibiotic-resistant enterococci in the presence of sulfamethoxazole than in the presence of clarithromycin. Finally, the toxicity of the treated wastewater to V. fischeri remained very low throughout the treatment time. © 2013.
Hinkle, S.R.; Böhlke, J.K.; Fisher, L.H.
2008-01-01
Septic tank systems are an important source of NO3- to many aquifers, yet characterization of N mass balance and isotope systematics following septic tank effluent discharge into unsaturated sediments has received limited attention. In this study, samples of septic tank effluent before and after transport through single-pass packed-bed filters (sand filters) were evaluated to elucidate mass balance and isotope effects associated with septic tank effluent discharge to unsaturated sediments. Chemical and isotopic data from five newly installed pairs and ten established pairs of septic tanks and packed-bed filters serving single homes in Oregon indicate that aqueous solute concentrations are affected by variations in recharge (precipitation, evapotranspiration), NH4+ sorption (primarily in immature systems), nitrification, and gaseous N loss via NH3 volatilization and(or) N2 or N2O release during nitrification/denitrification. Substantial NH4+ sorption capacity was also observed in laboratory columns with synthetic effluent. Septic tank effluent ??15N-NH4+ values were almost constant and averaged + 4.9??? ?? 0.4??? (1 ??). In contrast, ??15N values of NO3- leaving mature packed-bed filters were variable (+ 0.8 to + 14.4???) and averaged + 7.2??? ?? 2.6???. Net N loss in the two networks of packed-bed filters was indicated by average 10-30% decreases in Cl--normalized N concentrations and 2-3??? increases in ??15N, consistent with fractionation accompanying gaseous N losses and corroborating established links between septic tank effluent and NO3- in a local, shallow aquifer. Values of ??18O-NO3- leaving mature packed-bed filters ranged from - 10.2 to - 2.3??? (mean - 6.4??? ?? 1.8???), and were intermediate between a 2/3 H2O-O + 1/3 O2-O conceptualization and a 100% H2O-O conceptualization of ??18O-NO3- generation during nitrification.
Ren, Meijie; Horn, Harald; Frimmel, Fritz H
2017-10-15
The influence of ionic strengthen and dissolved organic matter (DOM) on the aggregation of TiO 2 nanoparticles (NPs) in municipal effluent was investigated. The results demonstrated that DOM promoted the mobility of NPs in aquatic system by synergism between static repulsion and steric effect, while electrolytes were opposite by charge-neutralization. The physical-chemical characteristics of DOM played the major role on the mobility of NPs. Bovine serum albumin (BSA) showed the strongest enhancement on the mobility of TiO 2 NPs. High adsorption of BSA introduced vast negative charges on the TiO 2 NPs' surface, leading to static repulsion and neutralizing positive charges of electrolytes in surrounding as well. By contrast, another protein α-amylase retarded the aggregation rate of TiO 2 NPs through steric repulsion of the long-chain construction. Humic substances (Fulvic acid and alginate) also reflected the combination of static repulsion and steric effect. However, in the high electrolytes concentration (especially Ca 2+ ), the long-chain aliphatic compounds were prone to form calcium bridge which increased the hydrodynamic diameter of TiO 2 aggregates consequently. Sodium dodecylbenzene sulfonate (SDBS) showed low adsorption capacity, while the unabsorbed SDBS retarded the aggregates caused by the changes of pH and electrolytes. These data indicated that decreasing of DOC concentration in aqueous system was important to reduce the mobility and potential risk of NPs in aqueous system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Apparatus and method for extraction of chemicals from aquifer remediation effluent water
McMurtrey, Ryan D.; Ginosar, Daniel M.; Moor, Kenneth S.; Shook, G. Michael; Moses, John M.; Barker, Donna L.
2002-01-01
An apparatus and method for extraction of chemicals from an aquifer remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating aquifers contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.
21 CFR 173.300 - Chlorine dioxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... hypochlorite and hydrochloric acid. (ii) Treating an aqueous solution of sodium chlorate with hydrogen peroxide... electrolysis. (2) The generator effluent contains at least 90 percent (by weight) of chlorine dioxide with...
21 CFR 173.300 - Chlorine dioxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... chlorate with hydrogen peroxide in the presence of sulfuric acid. (iii) Treating an aqueous solution of sodium chlorite by electrolysis. (2) The generator effluent contains at least 90 percent (by weight) of...
21 CFR 173.300 - Chlorine dioxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... chlorate with hydrogen peroxide in the presence of sulfuric acid. (iii) Treating an aqueous solution of sodium chlorite by electrolysis. (2) The generator effluent contains at least 90 percent (by weight) of...
Toledano Garcia, Diego; Ozer, Lütfiye Y; Parrino, Francesco; Ahmed, Menatalla; Brudecki, Grzegorz Przemyslaw; Hasan, Shadi W; Palmisano, Giovanni
2018-06-06
Photocatalysis and photocatalytic ozonation under visible light have been applied for the purification of a complex aqueous matrix such as the grey water of Masdar City (UAE), by using N-doped brookite-rutile catalysts. Preliminary runs on 4-nitrophenol (4-NP) solutions allowed to test the reaction system in the presence of a model pollutant and to afford the relevant kinetic parameters of the process. Subsequently, the remediation of grey water effluent has been evaluated in terms of the reduction of total organic carbon (TOC) and bacterial counts. The concentration of the most abundant inorganic ionic species in the effluent has been also monitored during reaction. Photocatalytic ozonation under visible light allowed to reduce the TOC content of the grey water by ca. 60% in the optimized experimental conditions and to reduce the total bacterial count by ca. 97%. The extent of TOC mineralization reached ca. 80% when the photocatalytic ozonation occurred downstream to a preliminary electro-membrane bioreactor (eMBR). Coupling the two processes enhanced the global efficiency. In fact, the eMBR treatment lowered the turbidity and the organic load of the effluent entering the photocatalytic ozonation treatment, which in turn enhanced the extent of purification and disinfection. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tang, Bing; Yu, Guojun; Fang, Jianzhang; Shi, Taihong
2010-05-15
An emulsion liquid membrane (ELM)-crystallization process, using hypophosphorous acid as a reducing agent in the internal aqueous phase, has been developed for the purpose of recovering high-purity silver directly from dilute industrial effluents (waste rinse water). After pretreatment with HNO(3), silver in waste rinse water can be reliably recovered with high efficiency through the established process. The main parameters in the process of ELM-crystallization include the concentration of carrier in the membrane phase, the concentration of reducing agent in the internal aqueous phase, and the treatment ratio, which influence the recovery efficiency to various extents and must be controlled carefully. The results indicated that more than 99.5% (wt.) of the silver ions in the external aqueous phase were extracted by the ELM-crystallization process, with an average efficiency of recovery of 99.24% (wt.) and a purity of 99.92% (wt.). The membrane phase can be used repeatedly without loss of the efficiency of recovery. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Zeng, Lixi; Li, Huijuan; Wang, Thanh; Gao, Yan; Xiao, Ke; Du, Yuguo; Wang, Yawei; Jiang, Guibin
2013-01-15
Sewage treatment plants (STP) are an important source of short chain chlorinated paraffins (SCCPs) to the ambient environment through discharge of effluent and application of sludge. In this work, a field study was conducted to determine the behavior and possible removal of SCCPs during the sewage treatment process in an advanced municipal STP in Beijing, China. SCCPs were detected in all sewage water and sludge samples, and 97% of the initial mass loading in raw sewage was found to be associated with suspended matter. The total concentrations in raw influent, tertiary effluent, and dewatered sludge were 184 ± 19 ng/L, 27 ± 6 ng/L, and 15.6 ± 1.4 μg/g dry weight (d.w.), respectively. The dissolved concentrations of total SCCPs (∑SCCPs) significantly decreased during mechanical, biological, and chemical treatments. SCCP homologue profiles in aqueous phase were distinctly different from those in solid phase. Along the treatment process, the relative abundance of shorter chain and lower chlorinated congeners gradually increased in sewage water, but no obvious variations of homologue profiles were found in sludge. Mass flow analysis indicated, the removal efficiency in aqueous phase for ∑SCCPs was 82.2%, and the congener-specific removal efficiencies were positively related to their solid-water partition coefficients (K(d)). Mass balance results indicated that 0.8% and 72.6% of the initial SCCP mass loading were ultimately found in the effluents and dewatered sludge, respectively, while the remaining 26.6% was lost mainly due to biodegradation/biotransformation. It was suggested that the activated sludge system including basic anaerobic-anoxic-aerobic processes played an effective role in removing SCCPs from the wastewater, while the sorption to sludge by hydrophobic interactions was an important fate of SCCPs during the sewage treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binovi, R.D.; Ng, E.K.; Tetla, R.A.
1987-01-01
This is a report of a survey of the Victor Wastewater Reclamation Authority Sewerage system, the sewage treatment plant, and effluent from the various operations at George AFB, California. The scope of work included the characterization of the wastewater from George AFB, as well as characterization of effluents from 29 oil/water separators servicing industrial operations on base, flow measurements at three locations on base, a microbiological evaluation of aeration basin foam, bench-scale activated-sludge studies, and a review of results from previous surveys. Recommendations: (1) AFFF (Aqueous Film Forming Foam) should never be discharged to the sewer. (2) Programming for pretreatmentmore » should proceed at selected operations. (3) More waste and wastestream analysis be performed. (4) Upgrade waste accumulation points. (5) Implement an aggressive inspection program for oil/water separators. (6) Cut down on nonessential washing.« less
NASA Technical Reports Server (NTRS)
Verostko, Charles E. (Inventor); Atwater, James E. (Inventor); Akse, James R. (Inventor); DeHart, Jeffrey L. (Inventor); Wheeler, Richard R. (Inventor)
1998-01-01
A "reagentless" chemiluminescent biosensor and method for the determination of hydrogen peroxide, ethanol and D-glucose in water is disclosed. An aqueous stream is basified by passing it through a solid phase base bed. Luminol is then dissolved in the basified effluent at a controlled rate. Oxidation of the luminol is catalyzed by the target chemical to produce emitted light. The intensity of the emitted light is detected as a measure of the target chemical concentration in the aqueous stream. The emitted light can be transmitted by a fiber optic bundle to a remote location from the aqueous stream for a remote reading of the target chemical concentration.
Hinkle, Stephen R; Böhlke, J K; Fisher, Lawrence H
2008-12-15
Septic tank systems are an important source of NO3(-) to many aquifers, yet characterization of N mass balance and isotope systematics following septic tank effluent discharge into unsaturated sediments has received limited attention. In this study, samples of septic tank effluent before and after transport through single-pass packed-bed filters (sand filters) were evaluated to elucidate mass balance and isotope effects associated with septic tank effluent discharge to unsaturated sediments. Chemical and isotopic data from five newly installed pairs and ten established pairs of septic tanks and packed-bed filters serving single homes in Oregon indicate that aqueous solute concentrations are affected by variations in recharge (precipitation, evapotranspiration), NH4+ sorption (primarily in immature systems), nitrification, and gaseous N loss via NH3 volatilization and(or) N2 or N2O release during nitrification/denitrification. Substantial NH4+ sorption capacity was also observed in laboratory columns with synthetic effluent. Septic tank effluent delta15N-NH4+ values were almost constant and averaged +4.9 per thousand+/-0.4 per thousand (1 sigma). In contrast, delta15N values of NO3(-) leaving mature packed-bed filters were variable (+0.8 to +14.4 per thousand) and averaged +7.2 per thousand+/-2.6 per thousand. Net N loss in the two networks of packed-bed filters was indicated by average 10-30% decreases in Cl(-)-normalized N concentrations and 2-3 per thousand increases in delta15N, consistent with fractionation accompanying gaseous N losses and corroborating established links between septic tank effluent and NO3(-) in a local, shallow aquifer. Values of delta18O-NO3(-) leaving mature packed-bed filters ranged from -10.2 to -2.3 per thousand (mean -6.4 per thousand+/-1.8 per thousand), and were intermediate between a 2/3 H2O-O+1/3 O2-O conceptualization and a 100% H2O-O conceptualization of delta18O-NO3(-) generation during nitrification.
Singh, A V; Sharma, Naresh Kumar; Rathore, Abhay S
2012-01-01
A new composite cation exchanger, tamarind sulphonic acid (TSA) resin has been synthesized. The chemically modified TSA ion exchange resin has been used for the removal and preconcentration of Zn2+, Cd2+, Fe2+, Co2+ and Cu2+ ions in aqueous solution and effluent from the Laxmi steel plant in Jodhpur, India. This type of composite represents a new class of hybrid ion exchangers with good ion exchange capacity, stability, reproducibility and selectivity for toxic metal ions found in effluent from the steel industry. The characterization of the resin was carried out by determining the ion-exchange capacity, elemental analysis, pH titration, Fourier transform infrared spectra and thermal analysis. The distribution coefficients (K(d)) of toxic metal ions were determined in a reference aqueous solution and the steel plant effluent at different pH values; the absorbency of different metal ions on the TSA resin was studied for up to 10 cycles. The adsorption of different metal ions on TSA resin follows the order: Co2+ > Cu2+ > Zn2+ > Fe2+ > Cd2+. The ion exchange capacity of TSA resin is 2.87%.
Bradley, Paul M; Barber, Larry B; Clark, Jimmy M; Duris, Joseph W; Foreman, William T; Furlong, Edward T; Givens, Carrie E; Hubbard, Laura E; Hutchinson, Kasey J; Journey, Celeste A; Keefe, Steffanie H; Kolpin, Dana W
2016-10-15
Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem. Published by Elsevier B.V.
Bradley, Paul M.; Barber, Larry B.; Clark, Jimmy M.; Duris, Joseph W.; Foreman, William T.; Furlong, Edward T.; Givens, Carrie E.; Hubbard, Laura E.; Hutchinson, Kasey J.; Journey, Celeste A.; Keefe, Steffanie H.; Kolpin, Dana W.
2016-01-01
Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem.
Laboratory Experiments and Modeling of Pooled NAPL Dissolution in Porous Media
NASA Astrophysics Data System (ADS)
Copty, N. K.; Sarikurt, D. A.; Gokdemir, C.
2017-12-01
The dissolution of non-aqueous phase liquids (NAPLs) entrapped in porous media is commonly modeled at the continuum scale as the product of a chemical potential and an interphase mass transfer coefficient, the latter expressed in terms of Sherwood correlations that are related to flow and porous media properties. Because of the lack of precise estimates of the interface area separating the NAPL and aqueous phase, numerous studies have lumped the interfacial area into the interphase mass transfer coefficient. In this paper controlled dissolution experiments from a pooled NAPL were conducted. The immobile NAPL mass is placed at the bottom of a flow cell filled with porous media with water flowing on top. Effluent aqueous phase concentrations were measured for a wide range of aqueous phase velocities and for two types of porous media. To interpret the experimental results, a two-dimensional pore network model of the NAPL dissolution was developed. The well-defined geometry of the NAPL-water interface and the observed effluent concentrations were used to compute best-fit mass transfer coefficients and non-lumped Sherwood correlations. Comparing the concentrations predicted with the pore network model to simple previously used one-dimensional analytic solutions indicates that the analytic model which ignores the transverse dispersion can lead to over-estimation of the mass transfer coefficient. The predicted Sherwood correlations are also compared to previously published data and implications on NAPL remediation strategies are discussed.
Nödler, Karsten; Tsakiri, Maria; Licha, Tobias
2014-10-10
Attenuation of micro-contaminants is a very complex field in environmental science and evidence suggests that biodegradation rates of micro-contaminants in the aqueous environment depend on the water matrix. The focus of the study presented here is the systematic comparison of biotransformation rates of caffeine, carbamazepine, metoprolol, paracetamol and valsartan in river water microcosms spiked with different proportions of treated effluent (0%, 0.1%, 1%, and 10%). Biotransformation was identified as the dominating attenuation process by the evolution of biotransformation products such as atenolol acid and valsartan acid. Significantly decreasing biotransformation rates of metoprolol were observed at treated effluent proportions ≥ 0.1% whereas significantly increasing biotransformation rates of caffeine and valsartan were observed in the presence of 10% treated effluent. Potential reasons for the observations are discussed and the addition of adapted microorganisms via the treated effluent was suggested as the most probable reason. The impact of additional phosphorus on the biodegradation rates was tested and the experiments revealed that phosphorus-limitation was not responsible.
WASTEWATER TREATMENT AND ITS MANAGEMENT OF ENDOCRINE DISRUPTING CHEMICALS
Research has shown that wastewater treatment (WWT) can be a significant source of endocrine disrupting chemicals (EDCs) to the environment. WWT can include centralized wastewater treatment plants (WWTPs) or on-site WWT technologies. EDCs found in WWT effluents (aqueous and biosol...
Kheriji, Jamel; Tabassi, Dorra; Hamrouni, Béchir
2015-01-01
Industrial effluents loaded with cadmium have contributed to the pollution of the environment and health troubles for humans. Therefore, these effluents need treatment to reduce cadmium concentration before releasing them to public sewage. The purpose of the research is to study the major role of reverse osmosis (RO) and nanofiltration (NF) processes, which can contribute to the removal of cadmium ions from model water and wastewater from the battery industry. For this reason, two RO and two nanofiltration membranes have been used. The effects of feed pressure, concentration, ionic strength, nature of anion associated with cadmium and pH on the retention of Cd(II) were studied with model solutions. Thereafter, NF and RO membranes were used to reduce cadmium ions and total salinity of battery industry effluent. Among these membranes, there are only three which eliminate more than 95% of cadmium. This was found to depend on operating conditions. It is worth noting that the Spiegler-Kedem model was applied to fit the experimental results.
Toxicity of textile dyes and their degradation by the enzyme horseradish peroxidase (HRP).
Ulson de Souza, Selene Maria Arruda Guelli; Forgiarini, Eliane; Ulson de Souza, Antônio Augusto
2007-08-25
The enzyme peroxidase is known for its capacity to remove phenolic compounds and aromatic amines from aqueous solutions and also to decolorize textile effluents. This study evaluates the potential of the enzyme horseradish peroxidase (HRP) in the decolorization of textile dyes and effluents. Some factors such as pH and the amount of H(2)O(2) and the enzyme were evaluated in order to determine the optimum conditions for the enzyme performance. For the dyes tested, the results indicated that the decolorization of the dye Remazol Turquoise Blue G 133% was approximately 59%, and 94% for the Lanaset Blue 2R; for the textile effluent, the decolorization was 52%. The tests for toxicity towards Daphnia magna showed that there was a reduction in toxicity after the enzymatic treatment. However, the toxicity of the textile effluent showed no change towards Artemia salina after the enzyme treatment. This study verifies the viability of the use of the enzyme horseradish peroxidase in the biodegradation of textile dyes.
Yan, Jingchun; Gao, Weiguo; Qian, Linbo; Han, Lu; Chen, Yun; Chen, Mengfang
2015-01-01
The combination of surfactant enhanced soil washing and degradation of nitrobenzene (NB) in effluent with persulfate was investigated to remediate NB contaminated soil. Aqueous solution of sodium dodecylbenzenesulfonate (SDBS, 24.0 mmol L-1) was used at a given mass ratio of solution to soil (20:1) to extract NB contaminated soil (47.3 mg kg-1), resulting in NB desorption removal efficient of 76.8%. The washing effluent was treated in Fe2+/persulfate and Fe2+/H2O2 systems successively. The degradation removal of NB was 97.9%, being much higher than that of SDBS (51.6%) with addition of 40.0 mmol L-1 Fe2+ and 40.0 mmol L-1 persulfate after 15 min reaction. The preferential degradation was related to the lone pair electron of generated SO4•−, which preferably removes electrons from aromatic parts of NB over long alkyl chains of SDBS through hydrogen abstraction reactions. No preferential degradation was observed in •OH based oxidation because of its hydrogen abstraction or addition mechanism. The sustained SDBS could be reused for washing the contaminated soil. The combination of the effective surfactant-enhanced washing and the preferential degradation of NB with Fe2+/persulfate provide a useful option to remediate NB contaminated soil. PMID:26266532
The Partitioning of Triclosan between Aqueous and Particulate Phases in the Hudson River Estuary
The distribution of Triclosan within the Hudson River Estuary can be explained by a balance among the overall effluent inputs from municipal sewage treatment facilities, dilution of Triclosan concentrations in the water column with freshwater and seawater inputs, removal of Tricl...
Prelot, Benedicte; Ayed, Imen; Marchandeau, Franck; Zajac, Jerzy
2014-01-01
Sorption performance of cation-exchange resins Amberlite® IRN77 and Amberlite™ IRN9652 toward Cs(I) and Sr(II) has been tested in single-component aqueous solutions and simulated waste effluents containing other monovalent (Effluent 1) or divalent (Effluent 2) metal cations, as well as nitrate, borate, or carbonate anions. The individual sorption isotherms of each main component were measured by the solution depletion method. The differential molar enthalpy changes accompanying the ion-exchange between Cs+ or Sr2+ ions and protons at the resin surface from single-component nitrate solutions were measured by isothermal titration calorimetry and they showed a higher specificity of the two resins toward cesium. Compared to the retention limits of both resins under such idealized conditions, an important depression in the maximum adsorption capacity toward each main component was observed in multication systems. The overall effect of ion exchange process appeared to be an unpredictable outcome of the individual sorption capacities of the two resins toward various cations as a function of the cation charge, size, and concentration. The cesium retention capacity of the resins was diminished to about 25% of the "ideal" value in Effluent 1 and 50% in Effluent 2; a further decrease to about 15% was observed upon concomitant strontium addition. The uptake of strontium by the resins was found to be less sensitive to the addition of other metal components: the greatest decrease in the amount adsorbed was 60% of the ideal value in the two effluents for Amberlite® IRN77 and 75% for Amberlite™ IRN9652. It was therefore demonstrated that any performance tests carried out under idealized conditions should be exploited with much caution to predict the real performance of cation exchange resins under conditions of cation competition.
Stanford, Benjamin D; Amoozegar, Aziz; Weinberg, Howard S
2010-03-01
The impact that varying qualities of wastewater may have on the movement of steroid estrogens through soils into groundwater is little understood. In this study, the steroid estrogens 17beta-estradiol (E2) and estrone (E1) were followed through batch and column studies to examine the impact that organic wastewater constituents from on-site wastewater treatment systems (i.e., septic systems or decentralized systems) may have on influencing the rate of transport of estrogens through soils. Total organic carbon (TOC) content (as a surrogate indicator of overall wastewater quality) and the presence of nonyl-phenol polyethoxylate surfactants (NPEO) at concentrations well below the critical micelle concentration were independently shown to be indicative of earlier breakthrough and less partitioning to soil in batch and column experiments. Both NPEO and wastewater with increasing TOC concentrations led to shifts in the equilibrium of E1 and E2 towards the aqueous phase and caused the analytes to have an earlier breakthrough than in control experiments. The presence of nonylphenols, on the other hand, did not appreciably impact partitioning of E1 or E2. Biodegradation of the steroids in soil was also lower in the presence of septic tank effluents than in an organic-free control water. Furthermore, the data indicate that the rate of movement of E1 and E2 present in septic tank effluent through soils and into groundwater can be decreased by removing the NPEOs and TOC through wastewater treatment prior to sub-surface disposal. This study offers some insights into mechanisms which impact degradation, transformation, and retardation, and shows that TOC and NPEO surfactants play a role in estrogen transport. Copyright 2009 Elsevier Ltd. All rights reserved.
Fassbender, Alex G.
1995-01-01
The invention greatly reduces the amount of ammonia in sewage plant effluent. The process of the invention has three main steps. The first step is dewatering without first digesting, thereby producing a first ammonia-containing stream having a low concentration of ammonia, and a second solids-containing stream. The second step is sending the second solids-containing stream through a means for separating the solids from the liquid and producing an aqueous stream containing a high concentration of ammonia. The third step is removal of ammonia from the aqueous stream using a hydrothermal process.
Toxicity reduction evaluations (TRE) and Toxicity Identification Evaluations (TIE) case examples were the basis of a technical workshop held by SETAC. Techniques to evaluate the mixtures of toxicants by using acute and chronic toxicity endpoints that incorporate marine, estuarine...
This publication is the result of a workshop and it is intended for publication through the SETAC Special Publication Series based on the proceedings from the SETAC sponsored workshop that was titles "Toxicity Identification Evaluation (TIE) Forum: What Works, What Doesn't, ...
SEPARATION OF HAFNIUM FROM ZIRCONIUM
Overholser, L.B.; Barton, C.J. Sr.; Ramsey, J.W.
1960-05-31
The separation of hafnium impurities from zirconium can be accomplished by means of organic solvent extraction. The hafnium-containing zirconium feed material is dissolved in an aqueous chloride solution and the resulting solution is contacted with an organic hexone phase, with at least one of the phases containing thiocyanate. The hafnium is extracted into the organic phase while zirconium remains in the aqueous phase. Further recovery of zirconium is effected by stripping the onganic phase with a hydrochloric acid solution and commingling the resulting strip solution with the aqueous feed solution. Hexone is recovered and recycled by means of scrubbing the onganic phase with a sulfuric acid solution to remove the hafnium, and thiocyanate is recovered and recycled by means of neutralizing the effluent streams to obtain ammonium thiocyanate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzi, Alex D.; McCabe, Daniel J.
The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to themore » LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate, along with entrained, volatile, and semi-volatile metals, such as Hg, As, and Se. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate that get recycled to the melter, and is a key objective of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of earlier tasks was to formulate and prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations and use it in evaporator testing to predict the composition of the effluents from the Effluent Management Facility (EMF) evaporator to aid in planning for their disposition. The objective of this task was to test immobilization options for this evaporator bottoms aqueous stream. This document describes the method used to formulate a simulant of this EMF evaporator bottoms stream, immobilize it, and determine if the immobilized waste forms meet disposal criteria.« less
Oxidation of coal-water slurry feed to hydrogasifier
Lee, Bernard S.
1976-01-01
An aqueous coal slurry is preheated, subjected to partial oxidation and vaporization by injection of high pressure oxygen and is introduced into a top section of a hydrogasifier in direct contact with hot methane-containing effluent gases where vaporization of the slurry is completed. The resulting solids are reacted in the hydrogasifier and the combined gases and vapors are withdrawn and subjected to purification and methanation to provide pipeline gas. The amount of oxygen injected into the slurry is controlled to provide the proper thermal balance whereby all of the water in the slurry can be evaporated in contact with the hot effluent gases from the hydrogasifier.
Evaluation of actinide biosorption by microorganisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Happel, A.M.
1996-06-01
Conventional methods for removing metals from aqueous solutions include chemical precipitation, chemical oxidation or reduction, ion exchange, reverse osmosis, electrochemical treatment and evaporation. The removal of radionuclides from aqueous waste streams has largely relied on ion exchange methods which can be prohibitively costly given increasingly stringent regulatory effluent limits. The use of microbial cells as biosorbants for heavy metals offers a potential alternative to existing methods for decontamination or recovery of heavy metals from a variety of industrial waste streams and contaminated ground waters. The toxicity and the extreme and variable conditions present in many radionuclide containing waste streams maymore » preclude the use of living microorganisms and favor the use of non-living biomass for the removal of actinides from these waste streams. In the work presented here, we have examined the biosorption of uranium by non-living, non-metabolizing microbial biomass thus avoiding the problems associated with living systems. We are investigating biosorption with the long term goal of developing microbial technologies for the remediation of actinides.« less
Chlorbromuron urea herbicide removal by electro-Fenton reaction in aqueous effluents.
Martínez, Susana Silva; Bahena, Cristina Lizama
2009-01-01
The removal of low concentration of chlorbromuron herbicide in aqueous systems was carried out by electro-Fenton process comprised of three-electrode divided and undivided cell with a reticulated vitreous carbon cathode and platinum anode. The electro-Fenton was also carried out in a two-electrode undivided cell in which ferrous ion forms from a sacrificial iron anode. It was observed that the total organic carbon (TOC) removal efficiency was influenced by the cell voltage, the pH of the solution and initial herbicide concentration during the electro-Fenton treatment with a stainless steel anode. The Fe(2+)/Fe(3+) activity in the Fenton chemistry (regardless if it is hydroxyl radical or ferryl ion) was improved by the electrochemical catalysis leading to a TOC analysis below the detection limit (0.2 mg l(-1)) corresponding to a TOC removal over 98%. It was found that TOC removal during chlorbromuron degradation followed apparent first order kinetics. The rate constant was increased by decreasing the initial concentration of chlorbromuron.
Borges, Gabriella Alexandre; Silva, Luciana Pereira; Penido, Jussara Alves; de Lemos, Leandro Rodrigues; Mageste, Aparecida Barbosa; Rodrigues, Guilherme Dias
2016-12-01
This paper reports a green and efficient procedure for extraction of the dyes Malachite Green (MG), Methylene Blue (MB), and Reactive Red 195 (RR) using an aqueous two-phase system (ATPS). An ATPS consists mainly of water, together with polymer and salt, and does not employ any organic solvent. The extraction efficiency was evaluated by means of the partition coefficients (K) and residual percentages (%R) of the dyes, under different experimental conditions, varying the tie-line length (TLL) of the system, the pH, the type of ATPS-forming electrolyte, and the type of ATPS-forming polymer. For MG, the best removal (K = 4.10 × 10(4), %R = 0.0069%) was obtained with the ATPS: PEO 1500 + Na2C4H4O6 (TLL = 50.21% (w/w), pH = 6.00). For MB, the maximum extraction (K = 559.9, %R = 0.258%) was achieved with the ATPS: PEO 400 + Na2SO4 (TLL = 50.31% (w/w), pH = 1.00). Finally for RR, the method that presented the best results (K = 3.75 × 10(4), %R = 0.237%) was the ATPS: PEO 400 + Na2SO4 (TLL = 50.31% (w/w), pH = 6.00). The method was applied to the recovery of these dyes from a textile effluent sample, resulting in values of K of 1.17 × 10(4), 724.1, and 3.98 × 10(4) for MG, MB, and RR, respectively, while the corresponding %R values were 0.0038, 0.154, and 0.023%, respectively. In addition, the ATPS methodology provided a high degree of color removal (96.5-97.95%) from the textile effluent. Copyright © 2016 Elsevier Ltd. All rights reserved.
Expósito, Antonio J; Durán, Antonio; Monteagudo, José M; Acevedo, Alba
2016-05-01
An industrial wastewater effluent coming from a pharmaceutical laboratory has been treated in a semi-industrial autonomous solar compound parabolic collector (CPC) plant. A photo-Fenton process assisted with ferrioxalate has been used. Up to 79% of TOC can be removed in 2 h depending on initial conditions when treating an aqueous effluent containing up to 400 ppm of initial organic carbon concentration (TOC). An initial ratio of Fe(II)/TOC higher than 0.5 guarantees a high removal. It can be seen that most of TOC removal occurs early in the first hour of reaction. After this time, mineralization was very slow, although H2O2 was still present in solution. Indeed it decomposed to form oxygen in inefficient reactions. It is clear that remaining TOC was mainly due to the presence of acetates which are difficult to degrade. Copyright © 2016 Elsevier Ltd. All rights reserved.
ANION EXCHANGE METHOD FOR SEPARATION OF METAL VALUES
Hyde, E.K.; Raby, B.A.
1959-02-10
A method is described for selectively separating radium, bismuth, poloniums and lead values from a metallic mixture of thc same. The mixture is dissolved in aqueous hydrochloric acid and the acidity is adjusted to between 1 to 2M in hydrochloric acid to form the anionic polychloro complexes of polonium and bismuth. The solution is contacted with a first anion exchange resin such as strong base quaternary ammonia type to selectively absorb the polonium and bismuth leaving the radium and lead in the effluent. The effluent, after treatment in hydrochloric acid to increase the hydrochloric acid concentration to 6M is contacted with a second anion exchange iesin of the same type as the above to selectively adsorb the lead leaving the radium in the effluent. Radium is separately recovered from the effluent from the second exchange column. Lead is stripped from the loaded resin of the second column by treatment with 3M hydrochloric acid solution. The loaded resin of the first column is washed with 8M hydrochloric acid solution to recover bismuth and then treated with strong nitric acid solution to recover polonium.
Hasegawa, Hiroshi; Rahman, Ismail M M; Nakano, Masayoshi; Begum, Zinnat A; Egawa, Yuji; Maki, Teruya; Furusho, Yoshiaki; Mizutani, Satoshi
2011-10-15
Aminopolycarboxylate chelants (APCs) are extremely useful for a variety of industrial applications, including the treatment of toxic metal-contaminated solid waste materials. Because non-toxic matrix elements compete with toxic metals for the binding sites of APCs, an excess of chelant is commonly added to ensure the adequate sequestration of toxic metal contaminants during waste treatment operations. The major environmental impacts of APCs are related to their ability to solubilize toxic heavy metals. If APCs are not sufficiently eliminated from the effluent, the aqueous transport of metals can occur through the introduction of APCs into the natural environment, increasing the magnitude of associated toxicity. Although several techniques that focus primarily on the degradation of APCs at the pre-release step have been proposed, methods that recycle not only the processed water, but also provide the option to recover and reuse the metals, might be economically feasible, considering the high costs involved due to the chelants used in metal ion sequestration. In this paper, we propose a separation process for the recovery of metals from effluents that contain an excess of APCs. Additionally, the option of recycling the processed water using a solid phase extraction (SPE) system with an ion-selective immobilized macrocyclic material, commonly known as a molecular recognition technology (MRT) gel, is presented. Simulated effluents containing As(V), Cd(II), Cr(III), Pb(II) or Se(IV) in the presence of APCs at molar ratios of 1:50 in H2O were studied with a flow rate of 0.2 mL min(-1). The 'captured' ions in the SPE system were quantitatively eluted with HNO3. The effects of solution pH, metal-chelant stability constants and matrix elements were assessed. Better separation performance for the metals was achieved with the MRT-SPE compared to other SPE materials. Our proposed technique offers the advantage of a non-destructive separation of both metal ions and chelants compared to conventional treatment options for such effluents. Copyright © 2011 Elsevier Ltd. All rights reserved.
EPA worst case water microcosms for testing phage biocontrol of Salmonella.
McLaughlin, Michael R; Brooks, John P
2008-01-01
A microplate method was developed as a tool to test phages for their ability to control Salmonella in aqueous environments. The method used EPA (U.S. Environmental Protection Agency) worst case water (WCW) in 96-well plates. The WCW provided a consistent and relatively simple defined turbid aqueous matrix, high in total organic carbon (TOC) and total dissolved salts (TDS), to simulate swine lagoon effluent, without the inconvenience of malodor and confounding effects from other biological factors. The WCW was originally defined to simulate high turbidity and organic matter in water for testing point-of-use filtration devices. Use of WCW to simulate lagoon effluent for phage testing is a new and innovative application of this matrix. Control of physical and chemical parameters (TOC, TDS, turbidity, temperature, and pH) allowed precise evaluation of microbiological parameters (Salmonella and phages). In a typical application, wells containing WCW were loaded with Salmonella enterica susp. enterica serovar Typhimurium (ATCC14028) and treated with phages alone and in cocktail combinations. Mean Salmonella inactivation rates (k, where the lower the value, the greater the inactivation) of phage treatments ranged from -0.32 to -1.60 versus -0.004 for Salmonella controls. Mean log(10) reductions (the lower the value, the greater the reduction) of Salmonella phage treatments were -1.60 for phage PR04-1, -2.14 for phage PR37-96, and -2.14 for both phages in a sequential cocktail, versus -0.08 for Salmonella controls. The WCW microcosm system was an effective tool for evaluating the biocontrol potential of Salmonella phages.
Miège, Cécile; Favier, Maxime; Brosse, Corinne; Canler, Jean-Pierre; Coquery, Marina
2006-11-15
Five betablockers (oxprenolol, metoprolol, propranolol, bisoprolol, betaxolol) were analysed in effluents collected over a 3-month period from wastewater treatment plants (WTP) from the Lyon area in France. The analytical protocol consisted of solid phase extraction of the dissolved aqueous phase on HLB cartridges and analysis by gas chromatography coupled with mass detection (GC-MS) after derivatization. Concentrations of metoprolol, propranolol and bisoprolol varied from 45 to 2838ng/L whereas oxprenolol and betaxolol were never detected in these effluent samples. A high variability of betablockers concentrations and fluxes was observed between WTP effluents and within each WTP over the time period studied. Considering a flux per person for a dry weather period, Fontaine plant was pointed out as the less efficient WTP, which might be explained by its type of treatment (biological aerated filters). But we need additional analysis of effluent and influent waters to confirm this hypothesis. A tentative approach of local environmental risk assessment of propranolol based on the calculation of PEC/PNEC (predicted environmental concentration/predicted non effect concentration) ratio approach lead us to conclude on a negligible risk for the downstream rivers (Rhône river at Ternay and Saône river at Couzon Mt d'Or).
Aminot, Yann; Litrico, Xavier; Chambolle, Mélodie; Arnaud, Christine; Pardon, Patrick; Budzindki, Hélène
2015-11-01
Comprehensive source and fate studies of pharmaceuticals in the environment require analytical methods able to quantify a wide range of molecules over various therapeutic classes, in aqueous and solid matrices. Considering this need, the development of an analytical method to determine 53 pharmaceuticals in aqueous phase and in solid matrices using a combination of microwave-assisted extraction, solid phase extraction, and liquid chromatography coupled with tandem mass spectrometry is reported. Method was successfully validated regarding linearity, repeatability, and overall protocol recovery. Method detection limits (MDLs) do not exceed 1 ng L(-1) for 40 molecules in aqueous matrices (6 ng L(-1) for the 13 remaining), while subnanogram per gram MDLs were reached for 38 molecules in solid phase (29 ng g(-1) for the 15 remaining). Losses due to preparative steps were assessed for the 32 analytes associated to their labeled homologue, revealing an average loss of 40 % during reconcentration, the most altering step. Presence of analytes in wastewater treatment plant (WWTP) effluent aqueous phase and suspended solids (SS) as well as in river water, SS, and sediments was then investigated on a periurban river located in the suburbs of Bordeaux, France, revealing a major contribution of WWTP effluent to the river contamination. Sorption on river SS exceeded 5 % of total concentration for amitriptyline, fluoxetine, imipramine, ritonavir, sildenafil, and propranolol and appeared to be submitted to a seasonal influence. Sediment contamination was lower than the one of SS, organic carbon content, and sediment fine element proportion was accountable for the highest measured concentrations.
Fragrance materials such as synthetic musks in aqueous samples, are normally determined by gas chromatography/mass spectrometry in the selected ion monitoring (SIM) mode to provide maximum sensitivity after liquid-liquid extraction of I -L samples. Full-scan mass spectra are requ...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... The laboratory is responsible for maintaining a safe work environment and a current awareness file of... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Determination of Crude Oil... Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT...
Code of Federal Regulations, 2010 CFR
2010-07-01
... environment and a current awareness file of OSHA regulations regarding the safe handling of the chemicals... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Reverse Phase Extraction (RPE) Method... Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND...
METHOD FOR THE RECOVERY OF CESIUM VALUES
Rimshaw, S.J.
1960-02-16
A method is given for recovering Cs/sup 137/ from radioactive waste solutions together with extraneous impurities. Ammonium alum is precipitated in the waste solution. The alum, which carries the cesium, is separated from the supernatant liquid and then dissolved in water. The resulting aqueous solution is then provided with a source of hydroxyl ions, which precipitates aluminum as the hydroxide, and the aluminum hydroxide is separated from the resulting liquid. This liquid, which contains anionic impurities together with ammonium and cesium, is passed through an anion exchange resin bed which removes the anionic impurities. The ammonium in the effluent is removed by destructive distiilation, leaving a substantiaily pure cesium salt in the effluent.
Laboratory scale studies on removal of chromium from industrial wastes.
Baig, M A; Mir, Mohsin; Murtaza, Shazad; Bhatti, Zafar I
2003-05-01
Chromium being one of the major toxic pollutants is discharged from electroplating and chrome tanning processes and is also found in the effluents of dyes, paint pigments, manufacturing units etc. Chromium exists in aqueous systems in both trivalent (Cr(3+)) and hexavalent (Cr(6+)) forms. The hexavalent form is carcinogenic and toxic to aquatic life, whereas Cr(3+) is however comparatively less toxic. This study was undertaken to investigate the total chromium removal from industrial effluents by chemical means in order to achieve the Pakistan NEQS level of 1 mg/L by the methods of reduction and precipitation. The study was conducted in four phases. In phase I, the optimum pH and cost effective reducing agent among the four popular commercial chemicals was selected. As a result, pH of 2 was found to be most suitable and sodium meta bisulfate was found to be the most cost effective reducing agent respectively. Phase II showed that lower dose of sodium meta bisulfate was sufficient to obtain 100% efficiency in reducing Cr(6+) to Cr(3+), and it was noted that reaction time had no significance in the whole process. A design curve for reduction process was established which can act as a tool for treatment of industrial effluents. Phase III studies indicated the best pH was 8.5 for precipitation of Cr(3+) to chromium hydroxide by using lime. An efficiency of 100% was achievable and a settling time of 30 minutes produced clear effluent. Finally in Phase IV actual waste samples from chrome tanning and electroplating industries, when precipitated at pH of 12 gave 100% efficiency at a settling time of 30 minutes and confined that chemical means of reduction and precipitation is a feasible and viable solution for treating chromium wastes from industries.
Garcia, Santos N; Clubbs, Rebekah L; Stanley, Jacob K; Scheffe, Brian; Yelderman, Joe C; Brooks, Bryan W
2013-06-01
Though decentralized on-site technologies are extensively employed for wastewater treatment around the globe, an understanding of effluent water quality impairments associated with these systems remain less understood than effluent discharges from centralized municipal wastewater treatment facilities. Using a unique experimental facility, a novel comparative analysis of effluent water quality was performed from model decentralized aerobic (ATS) and septic (STS) on-site wastewater treatment systems and a centralized municipal wastewater treatment plant (MTP). The ATS and STS units did not benefit from further soil treatment. Each system received common influent wastewater from the Waco, Texas, USA Metropolitan Area Regional Sewerage System. We tested the hypothesis that MTP effluent would exhibit higher water quality than on-site effluents, based on parameters selected for study. A tiered testing approach was employed to assess the three effluent discharges: select routine water quality parameters (Tier I), whole effluent toxicity (Tier II), and select endocrine-active compounds (Tier III). Contrary to our hypothesis, ATS effluent was not statistically different from MTP effluents, based on Tier I and III parameters, but reproductive responses of Daphnia magna were slightly more sensitive to ATS than MTP effluents. STS effluent water quality was identified as most degraded of the three wastewater treatment systems. Parameters used to assess centralized wastewater treatment plant effluent water quality such as whole effluent toxicity and endocrine active substances appear useful for water quality assessments of decentralized discharges. Aerobic on-site wastewater treatment systems may represent more robust options than traditional septic systems for on-site wastewater treatment in watersheds with appreciable groundwater - surface water exchange. Copyright © 2013 Elsevier Ltd. All rights reserved.
Method for removal of metal atoms from aqueous solution using suspended plant cells
Jackson, Paul J.; Torres, deceased, Agapito P.; Delhaize, Emmanuel
1992-01-01
The use of plant suspension cultures to remove ionic metallic species and TNT-based explosives and their oxidation products from aqueous solution is described. Several plant strains were investigated including D. innoxia, Citrus citrus, and Black Mexican Sweet Corn. All showed significant ability to remove metal ions. Ions removed to sub-ppm levels include barium, iron, and plutonium. D. innoxia cells growing in media containing weapons effluent contaminated with Ba.sup.2+ also remove TNT, other explosives and oxidation products thereof from solution. The use of dead, dehydrated cells were also found to be of use in treating waste directly.
Method for removal of explosives from aqueous solution using suspended plant cells
Jackson, Paul J.; Torres, deceased, Agapito P.; Delhaize, Emmanuel
1994-01-01
The use of plant suspension cultures to remove ionic metallic species and TNT-based explosives and their oxidation products from aqueous solution is described. Several plant strains were investigated including D. innoxia, Citrus citrus, and Black Mexican Sweet Corn. All showed significant ability to remove metal ions. Ions removed to sub-ppm levels include barium, iron, and plutonium. D. innoxia cells growing in media containing weapons effluent contaminated with Ba.sup.2+ also remove TNT, other explosives and oxidation products thereof from solution. The use of dead, dehydrated cells was also found to be of use in treating waste directly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamson, D.; Nash, C.; Howe, A.
The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream involves concentrating the condensate in a new evaporator at the Effluent Management Facility (EMF) and returning it to themore » LAW melter. The LMOGC stream will contain components, e.g. halides and sulfates, that are volatile at melter temperatures, have limited solubility in glass waste forms, and present a material corrosion concern. Because this stream will recycle within WTP, these components are expected to accumulate in the LMOGC stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfates in the glass and is a key objective of this program. In order to determine the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, determine the formation and distribution of key regulatoryimpacting constituents, and generate an aqueous stream that can be used in testing of the subsequent immobilization step. This overall program examines the potential treatment and immobilization of the LMOGC stream to enable alternative disposal. The objective of this task was to (1) prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations, (2) demonstrate evaporation in order to predict the final composition of the effluents from the EMF evaporator to aid in planning for their disposition, and (3) generate concentrated evaporator bottoms for use in immobilization testing.« less
Swift adsorptive removal of Congo red from aqueous solution by K1.33Mn8O16 nanowires.
Wu, Junshu; Li, Hongyi; Wang, Jinshu; Li, Zhifei
2013-08-01
A swift and efficient approach to converting organic dye effluents into fresh water could be of substantial benefit. In this study, we presented facile hydrothermal synthesis of K1.33Mn8O16 nanowires in ammonium fluoride (NH4F) aqueous solution. The crystallization process of K1.33Mn8O16 nanowires was investigated. The as-obtained K1.33Mn8O16 nanowires were used for swift adsorptive removal of Congo red from aqueous solution without adjusting pH value at room temperature. Adsorption kinetic experimental data are well described by pseudo-second-order rate kinetic model, and the adsorption isotherm fits Langmuir isotherm model. The present investigation provides an efficient approach to designing and fabricating manganese-based nanomaterials for environmental remediation.
Fragrance materials, such as synthetic musks in aqueous samples, are normally analyzed by GC/MS in the selected ion monitoring (SIM) mode to provide maximum sensitivity after liquid-liquid extraction of 1-L samples. A 1-L sample, however, usually provides too little ana...
Fragrance materials, such as synthetic musks in aqueous samples, are normally analyzed by GC/MS in the selected ion monitoring (SIM) mode to provide maximum sensitivity after liquid-liquid extraction of I -L samples. A I -L sample, however, usually provides too little ana...
This study investigated the stability and transport of CeO2 NPs under the influence of pH, natural/manmade organic matter, and electrolyte (NaCl) concentrations. In column test, effluent concentration of CeO2 NPs was close to the influent at pH 10, while most NPs deposited on san...
Fragrance materials such as synthetic musks in aqueous samples, are normally determined by gas chromatography/mass spectrometry in the selected ion monitoring (SIM) mode to provide maximum sensitivity after liquid-liquid extraction of I -L samples. Full-scan mass spectra are requ...
DC water plasma at atmospheric pressure for the treatment of aqueous phenol.
Yuan, Min-Hao; Narengerile; Watanabe, Takayuki; Chang, Ching-Yuan
2010-06-15
This study investigated the decomposition of aqueous phenol by direct current (DC) water plasma. The operation of DC water plasma was carried out in the absence of inert gases or air injected and cooling-controlled and pressure-controlled devices. The results indicated that 1 mol.% (52.8 g L(-1)) phenol was drastically decomposed by DC water plasma touch with energy efficiencies of 1.9 x 10(-8)-2.2 x 10(-8) mol J(-1). Also, the value of chemical oxygen demand (COD) was reduced from 100 000 mg L(-1) down to 320 mg L(-1) over a short retention time. The maximum decomposition rate of the COD was 258 mg COD min(-1) for the arc power of 0.91 kW. In the effluent analysis, H(2) (63-68%), CO (3.6-6.3%), CO(2) (25.3-28.1%) were major products in the exhaust gas and CH(4), C(2)H(2), HCOOH and C(6)H(6) in trace level. Further, HCOOH and HCHO were observed in the liquid effluents. Within the current paper, the results indicated that the DC water plasma torch is capable of an alternative green technology for phenol wastewater containing high COD.
Tatsi, Kristi; Turner, Andrew
2014-03-01
Thallium is a highly toxic heavy metal whose concentrations and distributions in the aquatic environment are poorly defined. In this study, concentrations of aqueous and total Tl have been measured in water samples from a variety of rivers and effluents (the latter related to historical metal mining) in the county of Cornwall, SW England. Aqueous concentrations ranged from about 13 ng L(-1) in a river whose catchment contained no metal mines to 2,640 ng L(-1) in water abstracted directly from an abandoned mine shaft. Concentrations of Tl in rivers were greatest in the vicinity of mine-related effluents, with a maximum value measured of about 770 ng L(-1). Thallium was not efficiently removed by the conventional, active treatment of mine water, and displayed little interaction with suspended particles. Its mobility in surface waters, coupled with concentrations that are close to a quality guideline of 800 ng L(-1), is cause for concern. Accordingly, we recommend that the metal is more closely monitored in this and other regions impacted by mining activities. Copyright © 2013 Elsevier B.V. All rights reserved.
Sorption and biodegradation of artificial sweeteners in activated sludge processes.
Tran, Ngoc Han; Gan, Jie; Nguyen, Viet Tung; Chen, Huiting; You, Luhua; Duarah, Ankur; Zhang, Lifeng; Gin, Karina Yew-Hoong
2015-12-01
There is limited information on the occurrence and removal of artificial sweeteners (ASs) in biological wastewater treatment plants, and in particular, the contribution of sorption and biodegradation to their removal. This study investigated the fate of ASs in both the aqueous and solid phases in a water reclamation plant (WRP). All the four targeted ASs, i.e. acesulfame (ACE), sucralose (SUC), cyclamate (CYC) and saccharine (SAC), were detected in both the aqueous and solid phases of raw influent and primary effluent samples. The concentrations of CYC and SAC in secondary effluent or MBR permeate were below their method detection limits. ACE and SUC were persistent throughout the WRP, whereas CYC and SAC were completely removed in biological treatment (>99%). Experimental results showed that sorption played a minor role in the elimination of the ASs due to the relatively low sorption coefficients (Kd), where Kd<500L/kg. In particular, the poor removal of ACE and SUC in the WRP may be attributed to their physiochemical properties (i.e. logKow<0 or logD<3.2) and chemical structures containing strong withdrawing electron functional groups in heterocyclic rings (i.e. chloride and sulfonate). Copyright © 2015 Elsevier Ltd. All rights reserved.
Bertin, Lorenzo; Colao, Maria Chiara; Ruzzi, Maurizio; Marchetti, Leonardo; Fava, Fabio
2006-01-01
Background Olive mill wastewater (OMW) is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools. Results The aerobic post-treatment was assessed through a 2 month-continuous feeding with the digested effluent at 50.42 and 2.04 gl-1day-1 of COD and phenol loading rates, respectively. It was found to be a stable process, able to remove 24 and 39% of such organic loads, respectively, and to account for 1/4 of the overall decontamination efficiency displayed by the anaerobic-aerobic integrated system when fed with an amended OMW at 31.74 and 1.70 gl-1day-1 of COD and phenol loading rates, respectively. Analysis of 16S rRNA gene sequences of biomass samples from the aerobic reactor biofilm revealed that it was colonized by Rhodobacterales, Bacteroidales, Pseudomonadales, Enterobacteriales, Rhodocyclales and genera incertae sedis TM7. Some taxons occurring in the influent were not detected in the biofilm, whereas others, such as Paracoccus, Pseudomonas, Acinetobacter and Enterobacter, enriched significantly in the biofilter throughout the treatment. Conclusion The silica-bead packed bed biofilm reactor developed and characterized in this study was able to significantly decontaminate anaerobically digested OMWs. Therefore, the application of an integrated anaerobic-aerobic process resulted in an improved system for valorization and decontamination of OMWs. PMID:16595023
Methods and apparatuses for deoxygenating biomass-derived pyrolysis oil
Baird, Lance Awender; Brandvold, Timothy A.
2015-10-20
Embodiments of methods and apparatuses for deoxygenating a biomass-derived pyrolysis oil are provided. In one example, a method comprises the steps of separating a low-oxygen biomass-derived pyrolysis oil effluent into a low-oxygen-pyoil organic phase stream and an aqueous phase stream. Phenolic compounds are removed from the aqueous phase stream to form a phenolic-rich diluent recycle stream. A biomass-derived pyrolysis oil stream is diluted and heated with the phenolic-rich diluent recycle stream to form a heated diluted pyoil feed stream. The heated diluted pyoil feed stream is contacted with a deoxygenating catalyst in the presence of hydrogen to deoxygenate the heated diluted pyoil feed stream.
DNAPL Dissolution in Bedrock Fractures And Fracture Networks
2011-06-01
were filtered through a 0.2 micron filter and then analyzed via ion chromatography ( Dionex DX-120, Sunnyvale, CA). An additional set of sorption...analyzed via ion chromatography ( Dionex DX-120, Sunnyvale, CA). The effluent pH was monitored periodically with pH test strips. Aqueous DHC...liquid EDTA ethylenediaminetetraacetic acid GC gas chromatograph HPLC high-performance liquid chromatography ISCO in situ chemical oxidation
Electrolytic trapping of iodine from process gas streams
Horner, Donald E.; Mailen, James C.; Posey, Franz A.
1977-01-25
A method for removing molecular, inorganic, and organic forms of iodine from process gas streams comprises the electrolytic oxidation of iodine in the presence of cobalt-III ions. The gas stream is passed through the anode compartment of a partitioned electrolytic cell having a nitric acid anolyte containing a catalytic amount of cobalt to cause the oxidation of effluent iodine species to aqueous soluble species.
40 CFR 141.550 - Is my system required to meet subpart T combined filter effluent turbidity limits?
Code of Federal Regulations, 2011 CFR
2011-07-01
... T combined filter effluent turbidity limits? 141.550 Section 141.550 Protection of Environment... REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Combined Filter Effluent Requirements § 141.550 Is my system required to meet subpart T combined filter effluent turbidity...
40 CFR 141.550 - Is my system required to meet subpart T combined filter effluent turbidity limits?
Code of Federal Regulations, 2014 CFR
2014-07-01
... T combined filter effluent turbidity limits? 141.550 Section 141.550 Protection of Environment... REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Combined Filter Effluent Requirements § 141.550 Is my system required to meet subpart T combined filter effluent turbidity...
40 CFR 141.550 - Is my system required to meet subpart T combined filter effluent turbidity limits?
Code of Federal Regulations, 2013 CFR
2013-07-01
... T combined filter effluent turbidity limits? 141.550 Section 141.550 Protection of Environment... REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Combined Filter Effluent Requirements § 141.550 Is my system required to meet subpart T combined filter effluent turbidity...
40 CFR 141.550 - Is my system required to meet subpart T combined filter effluent turbidity limits?
Code of Federal Regulations, 2012 CFR
2012-07-01
... T combined filter effluent turbidity limits? 141.550 Section 141.550 Protection of Environment... REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Combined Filter Effluent Requirements § 141.550 Is my system required to meet subpart T combined filter effluent turbidity...
40 CFR 141.550 - Is my system required to meet subpart T combined filter effluent turbidity limits?
Code of Federal Regulations, 2010 CFR
2010-07-01
... T combined filter effluent turbidity limits? 141.550 Section 141.550 Protection of Environment... REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Combined Filter Effluent Requirements § 141.550 Is my system required to meet subpart T combined filter effluent turbidity...
Shivaraju, H P; Byrappa, K
2012-07-01
This work deals with the non-biodegradable micro-pollutants degradation by supported photocatalyst based heterogeneous photocatalytic reaction. TiO2 based supported photocatalyst was prepared by the hydrothermal technique to improve the photocatalytic performance along with easy recovery of suspended photocatalyst from aqueous medium after photoreaction. TO2 deposited calcium alumino-silicate beads (CASB) supports were prepared under mild hydrothermal conditions (Temparature-200 degrees C, Duration-24 h). In the present study, industrial dyes such as Amaranth and Brilliant Yellow were used as model micro-pollutants in aqueous solution. A real time pesticide industrial effluent was tested for its photocatalytic removal of organic pollutants using TO2 deposited CASB supported photocatalytic composite as an effective photocatalyst. Photocatalytic degradation of micro-pollutants present in aqueous medium was carried out in a batch photoreactor, at atmospheric pressure and temperature (28 degrees C). The influence of different light sources, irradiation time, catalyst load and catalytic performance is discussed. The photocatalytic degradation of micro-pollutants in aqueous medium was evaluated by determination of COD and %T. Easy separation and recovery of suspended photocatalysts from aqueous solution is the major advantage of hydrothermally prepared supported photocatalytic composite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassery, A.; Universite de Toulouse, Laboratoire de Genie Chimique, Toulouse; CNRS, Laboratoire de Genie Chimique, Toulouse
Within the framework of the dismantling of fast breeder reactors in France several processes are under investigation regarding sodium disposal. One of them, called ELA (radioactive sodium waste treatment process), is based on the implementation of the sodium-water reaction, in a controlled and progressive way, to remove residual sodium. This sodium contains impurities such as sodium hydride, sodium oxide and tritiated sodium hydride. The hydrolysis of these various chemical species leads to the production of a liquid effluent, mainly composed of an aqueous solution of sodium hydroxide, and a gaseous effluent, mainly composed of nitrogen (inert gas), hydrogen and steam.more » The tritium is distributed between these effluents, and, within the gaseous effluent, according to its forms HT and HTO (tritiated water). HTO being 10,000 times more radio-toxic than HT, a precise knowledge of the mechanisms governing the phase distribution of tritium is necessary. This paper presents the first experimental results from a parametric study on the tritium distribution between the various effluents generated during hydrolysis operations. A series of experiments have been performed in order to study the influence of water flow rate, argon flow rate, initial mass and specific activity of the hydrolyzed sodium sample. An important influence of the total tritium concentration in the hydrolyzed sample has been highlighted. As for the phenomena suspected to be responsible for the phase change of tritiated water, in the studied range of parameters, vaporization induced by the heat of reactions seems to be dominant over the evaporation induced by the inert gas flow rate.« less
METHOD OF SEPARATING RARE EARTHS BY ION EXCHANGE
Spedding, F.H.; Powell, J.E.
1960-10-18
A process is given for separating yttrium and rare earth values having atomic numbers of from 57 through 60 and 68 through 71 from an aqueous solution whose pH value can range from 1 to 9. All rare earths and yttrium are first adsorbed on a cation exchange resin, and they are then eluted with a solution of N-hydroxyethylethylenediaminetriacetic acid (HEDTA) in the order of decreasing atomic number, yttrium behaving like element 61; the effluents are collected in fractions. The HEDTA is recovered by elution with ammonia solution and the resin is regenerated with sulfuric acid. Rare earths are precipitated from the various effluents with oxalic acid, and each supernatant is passed over cation exchange resin for adsorption of HEDTA and nonprecipitated rare earths: the oxalic acid is not retained by the resin.
Wood, Joseph; Turner, Paul H
2003-03-01
Near-infrared (NIR) spectroscopy has been applied to determine the conversion of itaconic acid in the effluent stream of a trickle bed reactor. Hydrogenation of itaconic to methyl succinic acid was carried out, with the trickle bed operating in recycle mode. For the first time, NIR spectra of itaconic and methyl succinic acids in aqueous solution, and aqueous mixtures withdrawn from the reactor over a range of reaction times, have been recorded using a fiberoptic sampling probe. The infrared spectra displayed a clear isolated absorption band at a wavenumber of 6186 cm(-1) (wavelength 1.617 microm) resulting from the =C-H bonds of itaconic acid, which was found to decrease in intensity with increasing reaction time. The feature could be more clearly observed from plots of the first derivatives of the spectra. A partial least-squares (PLS) model was developed from the spectra of 13 reference samples and was used successfully to calculate the concentration of the two acids in the reactor effluent solution. Itaconic acid conversions of 23-29% were calculated after 360 min of reaction time. The potential of FT-NIR with fiber-optic sampling for remote monitoring of three-phase catalytic reactors and validation of catalytic reactor models is highlighted in the paper.
Sharma, Pankaj; Kaur, Harleen; Sharma, Monika; Sahore, Vishal
2011-12-01
The effluent water of many industries, such as textiles, leather, paper, printing, cosmetics, etc., contains large amount of hazardous dyes. There is huge number of treatment processes as well as adsorbent which are available for the processing of this effluent water-containing dye content. The applicability of naturally available low cast and eco-friendly adsorbents, for the removal of hazardous dyes from aqueous waste by adsorption treatment, has been reviewed. In this review paper, we have provided a compiled list of low-cost, easily available, safe to handle, and easy-to-dispose-off adsorbents. These adsorbents have been classified into five different categories on the basis of their state of availability: (1) waste materials from agriculture and industry, (2) fruit waste, (3) plant waste, (4) natural inorganic materials, and (5) bioadsorbents. Some of the treated adsorbents have shown good adsorption capacities for methylene blue, congo red, crystal violet, rhodamine B, basic red, etc., but this adsorption process is highly pH dependent, and the pH of the medium plays an important role in the treatment process. Thus, in this review paper, we have made some efforts to discuss the role of pH in the treatment of wastewater.
Houtz, Erika F; Sutton, Rebecca; Park, June-Soo; Sedlak, Margaret
2016-05-15
In late 2014, wastewater effluent samples were collected from eight treatment plants that discharge to San Francisco (SF) Bay in order to assess poly- and perfluoroalkyl substances (PFASs) currently released from municipal and industrial sources. In addition to direct measurement of twenty specific PFAS analytes, the total concentration of perfluoroalkyl acid (PFAA) precursors was also indirectly measured by adapting a previously developed oxidation assay. Effluent from six municipal treatment plants contained similar amounts of total PFASs, with highest median concentrations of PFHxA (24 ng/L), followed by PFOA (23 ng/L), PFBA (19 ng/L), and PFOS (15 ng/L). Compared to SF Bay municipal wastewater samples collected in 2009, the short chain perfluorinated carboxylates PFBA and PFHxA rose significantly in concentration. Effluent samples from two treatment plants contained much higher levels of PFASs: over two samplings, wastewater from one municipal plant contained an average of 420 ng/L PFOS and wastewater from an airport industrial treatment plant contained 560 ng/L PFOS, 390 ng/L 6:2 FtS, 570 ng/L PFPeA, and 500 ng/L PFHxA. The elevated levels observed in effluent samples from these two plants are likely related to aqueous film forming foam (AFFF) sources impacting their influent; PFASs attributable to both current use and discontinued AFFF formulations were observed. Indirectly measured PFAA precursor compounds accounted for 33%-63% of the total molar concentration of PFASs across all effluent samples and the PFAA precursors indicated by the oxidation assay were predominately short-chained. PFAS levels in SF Bay effluent samples reflect the manufacturing shifts towards shorter chained PFASs while also demonstrating significant impacts from localized usage of AFFF. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chairunnisak, A.; Arifin, B.; Sofyan, H.; Lubis, M. R.; Darmadi
2018-03-01
This research focuses on the Chemical Oxygen Demand (COD) treatment in palm oil mill effluent by electrocoagulation and electro-Fenton methods to solve it. Initially, the aqueous solution precipitates in acid condition at pH of about two. This study focuses on the palm oil mill effluent degradation by Fe electrodes in a simple batch reactor. This work is conducted by using different parameters such as voltage, electrolyte concentration of NaCl, volume of H2O2 and operation time. The processing of data resulted is by using response surface method coupled with Box-Behnken design. The electrocoagulation method results in the optimum COD reduction of 94.53% from operating time of 39.28 minutes, 20 volts, and without electrolyte concentration. For electro-Fenton process, experiment points out that voltage 15.78 volts, electrolyte concentration 0.06 M and H2O2 volume 14.79 ml with time 35.92 minutes yield 99.56% degradation. The result concluded that the electro-Fenton process was more effective to degrade COD of the palm-oil-mill effluent compared to electrocoagulation process.
Bhattacharya, Priyankari; Banerjee, Priya; Mallick, Kwonit; Ghosh, Sourja; Majumdar, Swachchha; Mukhopadhyay, Aniruddha; Bandyopadhyay, Sibdas
2013-01-01
Chromium (VI) removal efficiency of a biosorbent prepared from fruit peel of Trewia nudiflora plant was studied. The effect of pH, sorbent dose, initial metal concentration and temperature was studied with synthetic Cr⁺⁶ solution in batch mode. About 278 mg/g of Cr⁺⁶ sorption was obtained at 293 K at an optimum pH of 2.0 and biosorbent dose of 0.75 g/L. Equilibrium sorption data with varying initial concentration of Cr⁺⁶ (22-248 mg/L) at three different temperatures (293-313 K) were analyzed by various isotherms. Biosorption kinetics and thermodynamics were described using standard model equations. Encouraging results were obtained by the application of the biosorptive treatment for removal of Cr⁺⁶ from wastewater collected from common effluent treatment plant of tannery industry. In addition, C⁺⁶r desorption behavior was studied on different systems. Biosorbent was characterized by FESEM, FT-IR and XRD, etc. Effect of the biosorptive treatement with respect to the phytotoxicity of Cr⁺⁶ was analyzed by studying the seed germination behavior and enzyme activity of a pulse seed (Vigna radiata L.). Different concentrations of Cr⁺⁶ solution in both synthetic medium, as well as, in tannery effluent was employed and the results were compared with that of biosorbent treated medium. The study showed that due to efficient removal of Cr⁺⁶ from aqueous phase, considerable enhancement of seed germination, as well as, increase in root length was obtained for the biosorbent treated solutions which were close to that of the control values. Significant decrease (P < 0.01) in POD activity was observed in seeds irrigated with biosorbent treated wastewater compared to untreated wastewater. The study showed that the novel biosorbent prepared might be utilized for abatement of heavy metal toxicity, i.e., Cr⁺⁶ from industrial effluent.
Effluent treatment for nuclear thermal propulsion ground testing
NASA Technical Reports Server (NTRS)
Shipers, Larry R.
1993-01-01
The objectives are to define treatment functions, review concept options, discuss PIPET effluent treatment system (ETS), and outline future activities. The topics covered include the following: reactor exhaust; effluent treatment functions; effluent treatment categories; effluent treatment options; concept evaluation; PIPETS ETS envelope; PIPET effluent treatment concept; and future activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reigel, M.; Cozzi, A.; McCabe, D.
2017-09-08
The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate) from the primary off-gas system. This work examined three waste form formulations based on previous testing with related simulants: 8 wt% ordinary portland cement (OPC), 47 wt% blast furnace slag (BFS), 45 wt% fly ash (FA) known as Cast Stone formulation; 20 wt% Aquaset® II-GH and 80 wt% BFS; 20 wt% OPC and 80 wt% BFS. These tests successfully produced one waste form that set within five days (Cast Stone formulation); however the other twomore » formulations, Aquaset® II-GH/BFS and OPC/BFS, took approximately eight and fourteen days to set, respectively.« less
NASA Astrophysics Data System (ADS)
Lo, Wei-Cheng; Sposito, Garrison; Huang, Yu-Han
2012-03-01
Seismic stimulation, the application of low-frequency stress-pulsing to the boundary of a porous medium containing water and a non-aqueous fluid to enhance the removal of the latter, shows great promise for both contaminated groundwater remediation and enhanced oil recovery, but theory to elucidate the underlying mechanisms lag significantly behind the progress achieved in experimental research. We address this conceptual lacuna by formulating a boundary-value problem to describe pore-pressure pulsing at seismic frequencies that is based on the continuum theory of poroelasticity for an elastic porous medium permeated by two immiscible fluids. An exact analytical solution is presented that is applied numerically using elasticity parameters and hydraulic data relevant to recent proof-of-principle laboratory experiments investigating the stimulation-induced mobilization of trichloroethene (TCE) in water flowing through a compressed sand core. The numerical results indicated that significant stimulation-induced increases of the TCE concentration in effluent can be expected from pore-pressure pulsing in the frequency range of 25-100 Hz, which is in good agreement with what was observed in the laboratory experiments. Sensitivity analysis of our numerical results revealed that the TCE concentration in the effluent increases with the porous medium framework compressibility and the pulsing pressure. Increasing compressibility also leads to an optimal stimulation response at lower frequencies, whereas changing the pulsing pressure does not affect the optimal stimulation frequency. Within the context of our model, the dominant physical cause for enhancement of non-aqueous fluid mobility by seismic stimulation is the dilatory motion of the porous medium in which the solid and fluid phases undergo opposite displacements, resulting in stress-induced changes of the pore volume.
Homem, Vera; Alves, Alice; Alves, Arminda; Santos, Lúcia
2016-01-01
A rapid and simple method for the simultaneous determination of twelve synthetic musks in water samples, using ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) was successfully developed. The influence of seven factors (volume of the extraction solvent and disperser solvent, sample volume, extraction time, ionic strength, type of extraction and disperser solvent) affecting the UA-DLLME extraction efficiency was investigated using a screening design. The significant factors were selected and optimised employing a central composite design: 80 μL of chloroform, 880 μL of acetonitrile, 6 mL of sample volume, 3.5% (wt) of NaCl and 2 min of extraction time. Under the optimised conditions, this methodology was successfully validated for the analysis of 12 synthetic musk compounds in different aqueous samples (tap, sea and river water, effluent and influent wastewater). The proposed method showed enrichment factors between 101 and 115 depending on the analyte, limits of detection in the range of 0.004-54 ng L(-1) and good repeatability (most relative standard deviation values below 10%). No significant matrix effects were found, since recoveries ranged between 71% and 118%. Finally, the method was satisfactorily applied to the analysis of five different aqueous samples. Results demonstrated the existence of a larger amount of synthetic musks in wastewaters than in other water samples (average concentrations of 2800 ng L(-1) in influent and 850 ng L(-1) in effluent). Galaxolide, tonalide and exaltolide were the compounds most detected. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamieson-Hanes, Julia H.; Shrimpton, Heather K.; Veeramani, Harish
A flow-through cell experiment was conducted to evaluate Zn isotope fractionation during ZnS precipitation under microbially-mediated sulfate-reducing conditions. Synthetic groundwater containing 0.90 mM Zn was pumped through a cell containing creek sediment that was biostimulated to promote sulfate reducing conditions. Real-time, in situ X-ray absorption spectroscopy (XAS) was applied at the Zn K-edge to collect spectra via a Kapton® window in the front of the cell over the course of the experiment. Aqueous effluent samples were collected and analysed to determine concentrations of anions and cations, and Zn isotope ratios. The flow rate was increased step-wise during the experiment tomore » modify the residence time and produce changes in the extent of sulfate reduction, which in turn controlled the extent of ZnS precipitation. Greater enrichment in the heavier isotope in the aqueous phase relative to the input solution was associated with more extensive Zn removal. A Rayleigh curve was fit to the isotope data, where ε = -0.27 ± 0.06‰ (2σ). Evaluation of Zn isotope fractionation under controlled flow conditions is critical to improve the efficacy of this powerful analytical technique when applied to natural systems or remediation projects in the field.« less
Liquid secondary waste. Waste form formulation and qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzi, A. D.; Dixon, K. L.; Hill, K. A.
The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during Site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the Integrated Disposal Facility IDF). Waste form testingmore » to support this plan is composed of work in the near term to demonstrate the waste form will provide data as input to a performance assessment (PA) for Hanford’s IDF.« less
PROCESS OF PRODUCING Cm$sup 244$ AND Cm$sup 24$$sup 5$
Manning, W.M.; Studier, M.H.; Diamond, H.; Fields, P.R.
1958-11-01
A process is presented for producing Cm and Cm/sup 245/. The first step of the process consists in subjecting Pu/sup 2339/ to a high neutron flux and subsequently dissolving the irradiated material in HCl. The plutonium is then oxidized to at least the tetravalent state and the solution is contacted with an anion exchange resin, causing the plutonium values to be absorbed while the fission products and transplutonium elements remain in the effluent solution. The effluent solution is then contacted with a cation exchange resin causing the transplutonium, values to be absorbed while the fission products remain in solution. The cation exchange resin is then contacted with an aqueous citrate solution and tbe transplutonium elements are thereby differentially eluted in order of decreasing atomic weight, allowing collection of the desired fractions.
Effluent quality from 200 on-site sewage systems: design values for guidelines.
Charles, K J; Ashbolt, N J; Roser, D J; McGuinness, R; Deere, D A
2005-01-01
The quality of effluent from an on-site sewage treatment system is a critical factor in designing the disposal area and, hence, ensuring the sustained performance of the system. Contaminant concentrations in effluent are typically specified in regulatory guidelines or standards; however, the accuracy of these guideline values are brought into question due to the poor performance of septic tanks and the high failure rates of disposal systems reported here and elsewhere. Results from studies of septic tank effluent quality indicated that the effluent is of poorer quality than currently suggested by guidelines. Aerated wastewater treatment systems were found to perform to accreditation guidelines; however, insufficient nutrient data is presently available to assess nutrient loads. It is proposed that the 80th percentile of system performance be adopted as the design value for sizing effluent disposal areas to minimise failure associated with overloading. For septic tanks this equates to 660 mg L(-1) SS, 330 mg L(-1) BOD, 250 mg L(-1) TN and 36 mg L(-1) TP.
Pathiratne, Asoka; Hemachandra, Chamini K; De Silva, Nimal
2015-12-01
Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of treated effluents originated from four types of industrial activities (two textile industries, three rubber based industries, two common treatment plants of industrial zones, and two water treatment plants) was assessed. Physico-chemical parameters including the heavy metal/metalloid levels of the effluents varied depending on the industry profile, but most of the measured parameters in the effluents were within the specified tolerance limits of Sri Lankan environmental regulations for discharge of industrial effluents into inland surface waters. In the A. cepa test system, the undiluted effluents induced statistically significant root growth retardation, mitosis depression, and chromosomal aberrations in root meristematic cells in most cases in comparison to the dilution water and upstream water signifying effluent induced cytotoxicity and genotoxicity. Ethyl methane sulphonate (a mutagen, positive control) and all the effluents under 1:8 dilution significantly induced total chromosomal aberrations in root meristematic cells in comparison to the dilution water and upstream water indicating inadequacy of expected 1:8 dilutions in the receiving waters for curtailing genotoxic impacts. The results support the use of a practically feasible A. cepa test system for rapid screening of cytotoxicity and genotoxicity of diverse industrial effluents discharging into inland surface waters.
Zhang, Wanhui; Wei, Chaohai; An, Guanfeng
2015-05-01
In this study, we report the performance of a full-scale conventional activated sludge (A-O1-O2) treatment in eliminating polycyclic aromatic hydrocarbons (PAHs). Both aqueous and solid phases along with the coking wastewater treatment processes were analyzed for the presence of 18 PAHs. It was found that the target compounds occurred widely in raw coking wastewater, treated effluent and sludge samples. In the coking wastewater treatment system, 4-5 ring PAHs were the dominant compounds, while 4 rings PAHs predominated in the sludge samples. Over 98% of the PAH removal was achieved in the coking wastewater treatment plant (WWTP), with the total concentration of PAHs being 21.3 ± 1.9 μg L(-1) in the final effluent. During the coking wastewater treatment processes, the association of the lower molecular weight PAH with suspended solids was generally less than 60%, while the association of higher molecular weight PAHs was greater than 90%. High distribution efficiencies (Kdp and Kds) were found, suggesting that adsorption was the potential removal pathway of PAHs. Finally, the mass balances of PAHs in various stages of the coking WWTP were obtained, and the results indicated that adsorption to sludge was the main removal pathway for PAHs in the coking wastewater treatment processes.
NASA Astrophysics Data System (ADS)
Olson, Mitchell R.; Sale, Tom C.
2015-06-01
Soil remediation is often inhibited by subsurface heterogeneity, which constrains contaminant/reagent contact. Use of soil mixing techniques for reagent delivery provides a means to overcome contaminant/reagent contact limitations. Furthermore, soil mixing reduces the permeability of treated soils, thus extending the time for reactions to proceed. This paper describes research conducted to evaluate implications of soil mixing on remediation of non-aqueous phase liquid (NAPL) source zones. The research consisted of column studies and subsequent modeling of field-scale systems. For column studies, clean influent water was flushed through columns containing homogenized soils, granular zero valent iron (ZVI), and trichloroethene (TCE) NAPL. Within the columns, NAPL depletion occurred due to dissolution, followed by either column-effluent discharge or ZVI-mediated degradation. Complete removal of TCE NAPL from the columns occurred in 6-8 pore volumes of flow. However, most of the TCE (> 96%) was discharged in the column effluent; less than 4% of TCE was degraded. The low fraction of TCE degraded is attributed to the short hydraulic residence time (< 4 days) in the columns. Subsequently, modeling was conducted to scale up column results. By scaling up to field-relevant system sizes (> 10 m) and reducing permeability by one-or-more orders of magnitude, the residence time could be greatly extended, potentially for periods of years to decades. Model output indicates that the fraction of TCE degraded can be increased to > 99.9%, given typical post-mixing soil permeability values. These results suggest that remediation performance can be greatly enhanced by combining contaminant degradation with an extended residence time.
King, Jeffrey N.; Decker, Jeremy D.
2018-02-09
Nonhazardous, secondarily treated, domestic wastewater (effluent) has been injected about 1 kilometer below land surface into the Boulder Zone of the Floridan aquifer system at the North District Wastewater Treatment Plant in southeastern Florida. The Boulder Zone contains saline, nonpotable water. Effluent transport out of the injection zone is a risk of underground effluent injection. At the North District Wastewater Treatment Plant, injected effluent was detected outside the Boulder Zone. The U.S. Geological Survey, in cooperation with Miami-Dade Water and Sewer Department, investigated effluent transport from the Boulder Zone to overlying permeable zones in the Floridan aquifer system.One conceptual model is presented to explain the presence of effluent outside of the injection zone in which effluent injected into the Boulder Zone was transported to the Avon Park permeable zone, forced by buoyancy and injection pressure. In this conceptual model, effluent injected primarily into the Boulder Zone reaches a naturally occurring feature (a karst-collapse structure) near an injection well, through which the effluent is transported vertically upward to the uppermost major permeable zone of the Lower Floridan aquifer. The effluent is then transported laterally through the uppermost major permeable zone of the Lower Floridan aquifer to another naturally occurring feature northwest of the North District Wastewater Treatment Plant, through which it is then transported vertically upward into the Avon Park permeable zone. In addition, a leak within a monitoring well, between monitoring zones, allowed interflow between the Avon Park permeable zone and the Upper Floridan aquifer. A groundwater flow and effluent transport simulation of the hydrogeologic system at the North District Wastewater Treatment Plant, based on the hypothesized and non-unique conceptualization of the subsurface hydrogeology and flow system, generally replicated measured effluent constituent concentration trends. The model was calibrated to match observed concentration trends for total ammonium (NH4+) and total dissolved solids.The investigation qualitatively indicates that fractures, karst-collapse structures, faults, or other hydrogeologic features may permit effluent injected into the Boulder Zone to be transported to overlying permeable zones in the Floridan aquifer system. These findings, however, are qualitative because the locations of transport pathways that might exist from the Boulder Zone to the Avon Park permeable zone are largely unknown.
Gremmel, Christoph; Frömel, Tobias; Knepper, Thomas P
2017-02-01
Two quantitative methods using high-performance liquid chromatography (HPLC) combined with triple quadrupole tandem mass spectrometry (MS/MS) were developed to determine perfluoroalkyl and polyfluoroalkyl substances (PFASs) in aqueous samples. The first HPLC-MS/MS method was applied to 47 PFASs of 12 different substance classes with acidic characteristics such as perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs), as well as precursor substances and biotransformation intermediates (e.g., unsaturated fluorotelomer carboxylic acids). In addition, 25 13 C-, 18 O-, and 2 H-labeled PFASs were used as internal standards in this method. The second HPLC-MS/MS method was applied to fluorotelomer alcohols (FTOHs) and perfluorooctane sulfonamidoethanols as these compounds have physicochemical properties different from those of the previous ones. Accuracy between 82% and 110% and a standard deviation in the range from 2% to 22% depending on the substances were determined during the evaluation of repeatability and precision. The method quantification limit after solid-phase extraction ranged from 0.3 to 199 ng/L depending on the analyte and matrix. The HPLC-MS/MS methods developed were suitable for the determination of PFASs in aqueous samples (e.g., wastewater treatment plant effluents or influents after solid-phase extraction). These methods will be helpful in monitoring campaigns to evaluate the relevance of precursor substances as indirect sources of perfluorinated substances in the environment. In one exemplary application in an industrial wastewater treatment plant, FTOHs were found to be the major substance class in the influent; in particular, 6:2-FTOH was the predominant compound in the industrial samples and accounted for 74% of the total PFAS concentration. The increase in the concentration of the transformation products of FTOHs in the corresponding effluent, such as fluorotelomer carboxylic acids, unsaturated fluorotelomer carboxylic acids, n:3 polyfluorinated saturated carboxylic acids (n indicates the number of nonfluorinated carbon atoms), and PFCAs, indicated biotransformation of FTOHs or their derivatives during wastewater treatment. However, only 33 mol% of the total amount of PFASs present in the influent was quantified in the corresponding effluent. Graphical abstract Method development of an HPLC-MS/MS multi-method for the determination of PFASs in aqueos samples.
Linear and crosslinked Polyurethanes based catalysts for reduction of methylene blue.
Sultan, Misbah; Javeed, Asma; Uroos, Maliha; Imran, Muhammad; Jubeen, Farhat; Nouren, Shazia; Saleem, Nazish; Bibi, Ismat; Masood, Rashid; Ahmed, Waqas
2018-02-15
The large amount of synthetic dyes in effluents is a serious concern to be addressed. The chemical reduction is one of the potential way to resolve this problem. In this study, linear and crosslinked polyurethanes i.e. LPUR & CLPUR were synthesized from toluene diisocyanate (TDI), polyethylene glycol (PEG;1000g/mole) and tetraethylenepentamine (TEPA). The structure and morphology of synthesized materials were examined by FTIR, SEM and BET. The CLPUR was found stable in aqueous system with 0.80g/cm 3 density and 16.4998m 2 g -1 surface area. These materials were applied for the reduction of methylene blue in presence of NaBH 4 . Both, polymers catalyzed the process and showed 100% reduction in 16 and 28mins., respectively, while, the reduction rate was significantly low in absence of these materials, even after 120mins. Furthermore, negligible adsorption was observed with only 7% removal of dye. The best reduction rates were observed at low concentration of dye, increasing concentration of NaBH 4 and with more dosage of polymeric catalyst. The kinetic study of process followed zero order kinetics. It was hence concluded that both synthesized polymers played a catalytic role in reduction process. However, stability in aqueous system and better efficiency in reduction process endorsed CLPUR as an optimal choice for further studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Effluent migration from septic tank systems in two different lithologies, Broward County, Florida
Waller, B.G.; Howie, Barbara; Causaras, C.R.
1987-01-01
Two septic tank test sites, one in sand and one in limestone, in Broward County, Florida, were analyzed for effluent migration. Groundwater from shallow wells, both in background areas and hydraulically down-gradient of the septic tank system, was sampled during a 16-month period from April 1983 through August 1984. Water quality indicators were used to determine the effluent affected zone near the septic tank systems. Specific conductance levels and concentrations of chloride, sulfate, ammonium, and nitrate indicated effluent movement primarily in a vertical direction with abrupt dilution as it moved down-gradient. Effluent was detected in the sand to a depth more than 20 ft below the septic tank outlet, but was diluted to near background conditions 50 ft down-gradient from the tank. Effluent in the limestone was detected in all three observation wells to depths exceeding 25 ft below the septic tank outlet and was diluted, but still detectable, 40 ft down-gradient. The primary controls on effluent movement from septic tank systems in Broward County are the lithology and layering of the geologic materials, hydraulic gradients, and the volume and type of use the system receives. (Author 's abstract)
40 CFR 141.551 - What strengthened combined filter effluent turbidity limits must my system meet?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 22 2010-07-01 2010-07-01 false What strengthened combined filter... REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Combined Filter Effluent Requirements § 141.551 What strengthened combined filter effluent turbidity limits must my system...
40 CFR 141.551 - What strengthened combined filter effluent turbidity limits must my system meet?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 24 2013-07-01 2013-07-01 false What strengthened combined filter... REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Combined Filter Effluent Requirements § 141.551 What strengthened combined filter effluent turbidity limits must my system...
40 CFR 141.551 - What strengthened combined filter effluent turbidity limits must my system meet?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 23 2014-07-01 2014-07-01 false What strengthened combined filter... REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Combined Filter Effluent Requirements § 141.551 What strengthened combined filter effluent turbidity limits must my system...
40 CFR 141.551 - What strengthened combined filter effluent turbidity limits must my system meet?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 23 2011-07-01 2011-07-01 false What strengthened combined filter... REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Combined Filter Effluent Requirements § 141.551 What strengthened combined filter effluent turbidity limits must my system...
40 CFR 141.551 - What strengthened combined filter effluent turbidity limits must my system meet?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 24 2012-07-01 2012-07-01 false What strengthened combined filter... REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Combined Filter Effluent Requirements § 141.551 What strengthened combined filter effluent turbidity limits must my system...
Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent
Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong
2015-01-01
Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798
Green Disposal of Waste Bisphenol A
NASA Astrophysics Data System (ADS)
Putman, Lesley; Nyland, Chris; Parson, Kristine
2016-09-01
Bisphenol A (BPA) is an important precursor for polycarbonates and epoxy resins that are used to make products that many would consider essential for modern living. Unfortunately, BPA is an endocrine disrupter and more and more evidence is being uncovered about its negative effects on humans as well as on organisms in the environment. Sustainable chemistry means we take everything into account in designing a chemical process: the risks, the costs, the benefits, and so on. BPA is not likely to be replaced by a less toxic chemical in the foreseeable future, nor is our society willing to give up valuable polycarbonate products. As part of sustainable green chemistry, we want to assure that any toxic chemicals that leave a manufacturing plant pose a minimal risk to the environment. Using a green method to clean up effluent before it is released into the environment would be ideal. In this report, little bluestem seeds are shown to be capable of degrading BPA in aqueous solutions. This gives them the potential to be used in reducing the amount of BPA that may be in effluent. Additionally, an enzyme was isolated that was responsible for degrading BPA and this could also have potential for the treatment of effluent.
Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent.
Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong
2015-01-01
Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.
Occurrence of Pharmaceuticals in Calgary's Wastewater and Related Surface Water.
Chen, M; Cooper, V I; Deng, J; Amatya, P L; Ambrus, D; Dong, S; Stalker, N; Nadeau-Bonilla, C; Patel, J
2015-05-01
The influents/effluents from Calgary's water resource recovery facilities and the surface water were analyzed for pharmaceuticals in the present study. The median concentrations in the effluents for the 15 targeted pharmaceuticals were within the range of 0.006 to 3.32 ppb. Although the wastewater treatment facilities were not designed to remove pharmaceuticals, this study indicates that the wastewater treatment processes are effective in removing some of the pharmaceuticals from the aqueous phase. The removal rate estimated can be 99.5% for caffeine, whereas little or no removal was observed for carbamazepine. Biodegradation, chemical degradation, and sorption could be some of the mechanisms responsible for the removal of pharmaceuticals. The drug residues in downstream surface water could be associated with incomplete removal of pharmaceuticals during the treatment process and may lead to concerns in terms of potential impacts on the aquatic ecosystem. However, this study does not indicate any immediate risks to the downstream aquatic environment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... there any special provision regarding my combined filter effluent? 141.553 Section 141.553 Protection of... Filter Effluent Requirements § 141.553 My system practices lime softening—is there any special provision regarding my combined filter effluent? If your system practices lime softening, you may acidify...
Code of Federal Regulations, 2013 CFR
2013-07-01
... there any special provision regarding my combined filter effluent? 141.553 Section 141.553 Protection of... Filter Effluent Requirements § 141.553 My system practices lime softening—is there any special provision regarding my combined filter effluent? If your system practices lime softening, you may acidify...
Code of Federal Regulations, 2012 CFR
2012-07-01
... there any special provision regarding my combined filter effluent? 141.553 Section 141.553 Protection of... Filter Effluent Requirements § 141.553 My system practices lime softening—is there any special provision regarding my combined filter effluent? If your system practices lime softening, you may acidify...
Code of Federal Regulations, 2010 CFR
2010-07-01
... there any special provision regarding my combined filter effluent? 141.553 Section 141.553 Protection of... Filter Effluent Requirements § 141.553 My system practices lime softening—is there any special provision regarding my combined filter effluent? If your system practices lime softening, you may acidify...
Code of Federal Regulations, 2011 CFR
2011-07-01
... there any special provision regarding my combined filter effluent? 141.553 Section 141.553 Protection of... Filter Effluent Requirements § 141.553 My system practices lime softening—is there any special provision regarding my combined filter effluent? If your system practices lime softening, you may acidify...
Benzina, Ouafa; Daâssi, Dalel; Zouari-Mechichi, Héla; Frikha, Fakher; Woodward, Steve; Belbahri, Lassaad; Rodriguez-Couto, Susana; Mechichi, Tahar
2013-08-01
The aim of this work was to determine the optimal conditions for the decolorization and the detoxification of two effluents from a textile industry-effluent A (the reactive dye bath Bezactive) and effluent B (the direct dye bath Tubantin)-using a laccase mediator system. Response surface methodology (RSM) was applied to optimize textile effluents decolorization. A Box-Behnken design using RSM with the four variables pH, effluent concentration, 1-hydroxybenzotriazole (HBT) concentration, and enzyme (laccase) concentration was used to determine correlations between the effects of these variables on the decolorization of the two effluents. The optimum conditions for pH and concentrations of HBT, effluent and laccase were 5, 1 mM, 50 % and 0.6 U/ml, respectively, for maximum decolorization of effluent A (68 %). For effluent B, optima were 4, 1 mM, 75 %, and 0.6 U/ml, respectively, for maximum decolorization of approximately 88 %. Both effluents were treated at 30 °C for 20 h. A quadratic model was obtained for each decolorization through this design. The experimental and predicted values were in good agreement and both models were highly significant. In addition, the toxicity of the two effluents was determined before and after laccase treatment using Saccharomyces cerevisiae, Bacillus cereus, and germination of tomato seeds.
Removal of organic wastewater contaminants in septic systems using advanced treatment technologies
Wilcox, J.D.; Bahr, J.M.; Hedman, C.J.; Hemming, J.D.C.; Barman, M.A.E.; Bradbury, K.R.
2009-01-01
The detection of pharmaceuticals and other organic wastewater contaminants (OWCs) in ground water and surface-water bodies has raised concerns about the possible ecological impacts of these compounds on nontarget organisms. On-site wastewater treatment systems represent a potentially significant route of entry for organic contaminants to the environment. In this study, effluent samples were collected and analyzed from conventional septic systems and from systems using advanced treatment technologies. Six of 13 target compounds were detected in effluent from at least one septic system. Caffeine, paraxanthine, and acetaminophen were the most frequently detected compounds, and estrogenic activity was detected in 14 of 15 systems. The OWC concentrations were significantly lower in effluent after sand filtration (p < 0.01) or aerobic treatment (p < 0.05) as compared with effluent that had not undergone advanced treatment. In general, concentrations in conventional systems were comparable to those measured in previous studies of municipal wastewater treatment plant (WWTP) influent, and concentrations in systems after advanced treatment were comparable to previously measured concentrations in WWTP effluent. These data indicate that septic systems using advanced treatment can reduce OWCs in treated effluent to similar concentrations as municipal WWTPs. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCabe, Daniel J.; Nash, Charles A.; Adamson, Duane J.
The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it tomore » the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations. That simulant can be used in evaporator testing to predict the composition of the effluents from the Effluent Management Facility (EMF) evaporator to aid in planning for their disposition. This document describes the method used to formulate a simulant of this LAW Melter Off-Gas Condensate stream, which, after pH adjustment, is the feed to the evaporator in the EMF.« less
Hydrogen donor solvent coal liquefaction process
Plumlee, Karl W.
1978-01-01
An indigenous hydrocarbon product stream boiling within a range of from about C.sub.1 -700.degree. F., preferably C.sub.1 -400.degree. F., is treated to produce an upgraded hydrocarbon fuel component and a component which can be recycled, with a suitable donor solvent, to a coal liquefaction zone to catalyze the reaction. In accordance therewith, a liquid hydrocarbon fraction with a high end boiling point range up to about 700.degree. F., preferably up to about 400.degree. F., is separated from a coal liquefaction zone effluent, the separated fraction is contacted with an alkaline medium to provide a hydrocarbon phase and an aqueous extract phase, the aqueous phase is neutralized, and contacted with a peroxygen compound to convert indigenous components of the aqueous phase of said hydrocarbon fraction into catalytic components, such that the aqueous stream is suitable for recycle to the coal liquefaction zone. Naturally occurring phenols and alkyl substituted phenols, found in the aqueous phase, are converted, by the addition of hydroxyl constituents to phenols, to dihydroxy benzenes which, as disclosed in copending Application Ser. Nos. 686,813 now U.S. Pat. No. 4,049,536; 686,814 now U.S. Pat. No. 4,049,537; 686,827 now U.S. Pat. No. 4,051,012 and 686,828, K. W. Plumlee et al, filed May 17, 1976, are suitable hydrogen transfer catalysts.
Occurrence and fate of most prescribed antibiotics in different water environments of Tehran, Iran.
Mirzaei, Roya; Yunesian, Masud; Nasseri, Simin; Gholami, Mitra; Jalilzadeh, Esfandiyar; Shoeibi, Shahram; Mesdaghinia, Alireza
2018-04-01
The presence of most prescribed antibiotic compounds from four therapeutic classes (β-lactam, cephalosporins, macrolides, fluoroquinolones) were studied at two full-scale WWTPs, two rivers, thirteen groundwater resources, and five water treatment plants in Tehran. Analytical methodology was based on high performance liquid chromatography/tandem mass spectrometry after solid-phase extraction. Samples were collected at 33 sample locations on three sampling periods over four months from June to August 2016. None of the target antibiotics were detected in groundwater resources and water treatment plants, while seven out of nine target antibiotics were analyzed in two studied river waters as well as the influent and effluent of wastewater treatment plants at concentrations ranging from
For years, pharmaceuticals have been routinely detected in wastewater treatment plant effluents and freshwater systems. Wastewater effluent serves as a primary source of pharmaceutical compounds to natural waters. Many marine and estuarine systems receive inputs either directly...
Biological treatment of hazardous aqueous wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opatken, E.J.; Howard, H.K.; Bond, J.J.
1987-06-01
Studies were conducted with a rotating biological conractor (RBC) to evaluate the treatability of leachates from the Stringfellow and New Lyme hazardous-waste sites. The leachates were transported from the waste sites to Cincinnati at the United States Environmental Protection Agency's Testing and Evaluation Facility. A series of batches were run with primary effluent from Cincinnati's Mill Creek Sewage Treatment Facility. The paper reports on the results from these experiments and the effectiveness of an RBC to adequately treat leachates from Superfund sites.
Chen, Lei; Han, Zhaoxing; Li, Shuang; Shen, Zhenyao
2016-10-01
The efficacy of traditional effluent trading systems is questionable due to their neglect of seasonal hydrological variation and the creation of upstream hot spots within a watershed. Besides, few studies have been conducted to distinguish the impacts of each influencing factor on effluent trading systems outputs. In this study, a water environmental functional zone-based effluent trading systems framework was configured and a comprehensive analysis of its influencing factors was conducted. This proposed water environmental functional zone-based effluent trading systems was then applied for the control of chemical oxygen demand in the Beiyun River watershed, Beijing, China. Optimal trading results highlighted the integration of water quality constraints and different hydrological seasons, especially for downstream dischargers. The optimal trading of each discharger, in terms of pollutant reduction load and abatement cost, is greatly influenced by environmental and political factors such as background water quality, the location of river assessment points, and tradable discharge permits. In addition, the initial permit allowance has little influence on the market as a whole but does impact the individual discharger. These results provide information that is critical to understanding the impact of policy design on the functionality of an effluent trading systems.
NASA Astrophysics Data System (ADS)
Chen, Lei; Han, Zhaoxing; Li, Shuang; Shen, Zhenyao
2016-10-01
The efficacy of traditional effluent trading systems is questionable due to their neglect of seasonal hydrological variation and the creation of upstream hot spots within a watershed. Besides, few studies have been conducted to distinguish the impacts of each influencing factor on effluent trading systems outputs. In this study, a water environmental functional zone-based effluent trading systems framework was configured and a comprehensive analysis of its influencing factors was conducted. This proposed water environmental functional zone-based effluent trading systems was then applied for the control of chemical oxygen demand in the Beiyun River watershed, Beijing, China. Optimal trading results highlighted the integration of water quality constraints and different hydrological seasons, especially for downstream dischargers. The optimal trading of each discharger, in terms of pollutant reduction load and abatement cost, is greatly influenced by environmental and political factors such as background water quality, the location of river assessment points, and tradable discharge permits. In addition, the initial permit allowance has little influence on the market as a whole but does impact the individual discharger. These results provide information that is critical to understanding the impact of policy design on the functionality of an effluent trading systems.
NEUTRONIC REACTOR OPERATIONAL METHOD AND CORE SYSTEM
Winters, C.E.; Graham, C.B.; Culver, J.S.; Wilson, R.H.
1960-07-19
Homogeneous neutronic reactor systems are described wherein an aqueous fuel solution is continuously circulated through a spherical core tank. The pumped fuel solution-is injected tangentially into the hollow spherical interior, thereby maintaining vigorous rotation of the solution within the tank in the form of a vortex; gaseous radiolytic decomposition products concentrate within the axial vortex cavity. The evolved gas is continuously discharged through a gas- outlet port registering with an extremity of the vortex cavity. and the solution stream is discharged through an annular liquid outlet port concentrically encircling the gas outlet by virtue of which the vortex and its cavity are maintained precisely axially aligned with the gas outlet. A primary heat exchanger extracts useful heat from the hot effluent fuel solution before its recirculation into the core tank. Hollow cylinders and other alternative core- tank configurations defining geometric volumes of revolution about a principal axis are also covered. AEC's Homogeneous Reactor Experiment No. 1 is a preferred embodiment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... wet air pollution control system. The following table presents BAT limitations for sintering operations with wet air pollution control systems: Subpart B—Effluent Limitations (BAT) Regulated parameter... water is co-treated with ironmaking wastewater. 3 Applicable only when sintering process wastewater is...
Code of Federal Regulations, 2014 CFR
2014-07-01
... wet air pollution control system. The following table presents BAT limitations for sintering operations with wet air pollution control systems: Subpart B—Effluent Limitations (BAT) Regulated parameter... water is co-treated with ironmaking wastewater. 3 Applicable only when sintering process wastewater is...
NASA Astrophysics Data System (ADS)
Makarska-Bialokoz, Magdalena
2018-07-01
The specific spectroscopic and redox properties of porphyrins predestine them to fulfill the role of sensors during interacting with different biologically active substances. Monitoring of binding interactions in the systems porphyrin-biologically active compound is a key question not only in the field of physiological functions of living organisms, but also in environmental protection, notably in the light of the rapidly growing drug consumption and concurrently the production of drug effluents. Not always beneficial action of drugs on natural porphyrin systems induces to further studies, with commercially available porphyrins as the model systems. Therefore the binding process between several water-soluble porphyrins and a series of biologically active compounds (e.g. caffeine, guanine, theophylline, theobromine, xanthine, uric acid) has been studied in different aqueous solutions analyzing their absorption and steady-state fluorescence spectra, the porphyrin fluorescence lifetimes and their quantum yields. The magnitude of the binding and fluorescence quenching constants values for particular quenchers decreases in a series: uric acid > guanine > caffeine > theophylline > theobromine > xanthine. In all the systems studied there are characters of static quenching, as a consequence of the π-π-stacked non-covalent and non-fluorescent complexes formation between porphyrins and interacting compounds, accompanied simultaneously by the additional specific binding interactions. The porphyrin fluorescence quenching can be explain by the photoinduced intermolecular electron transfer from aromatic compound to the center of the porphyrin molecule, playing the role of the binding site. Presented results can be valuable for designing of new fluorescent porphyrin chemosensors or monitoring of drug traces in aqueous solutions. The obtained outcomes have also the toxicological and medical importance, providing insight into the interactions of the water-soluble porphyrins with biologically active substances.
Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution.
Hung, Chang-Mao
2009-07-30
Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h(-1).
Facility effluent monitoring plan for the plutonium uranium extraction facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiegand, D.L.
A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of themore » effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.« less
NASA Astrophysics Data System (ADS)
Alhajjar, Bashar J.; Linn Gould, C.; Chesters, Gordon; Harkin, John M.
1990-12-01
The effects of phosphate (P) and zeolite (Z) -built detergents on leaching of N and P through sand columns simulating septic system drainfields were examined in laboratory columns. To simulate mound septic system drainfields, paired sets of columns were dosed intermittently with septic tank effluent from households using P- or Z-built detergent. Two other paired sets of columns were flooded with P- or Z-effluent to simulate new conventional septic system drainfields; after clogging mats or "crusts" developed at infiltration surface, the subsurfaces of the columns were aerated to simulate mature (crusted) conventional septic system drainfields. NO 3 loading in leachate was 1.1 times higher and ortho-P loading was 4.3 times lower when columns were dosed with Z- than with P-effluent. Dosed columns removed P poorly; total phosphorus (TP) loading in leachate was 81 and 19 g m -2 yr -1 with P- and Z-effluent, respectively. In flooded columns 1.3, 2.0 and 1.8 times more NH 4, organic nitrogen (ON) and total nitrogen (TN) respectively, were leached with Z- than with P-effluent; NO 3 leaching was similar. Flooded columns removed P efficiently; TP leached through flooded systems was 2.5 and 1.4 g m -2 yr -1 with P- and Z effluent, respectively. Crusted columns fed Z-effluent leached 1.2, 2.6, 1.4 and 2.1 times more NH 4, NO 3, ON and TN, respectively, than those with P-effluent but 1.8 times less TP. Crusted columns removed P satisfactorily: 8.2 and 4.6 g m -2 yr -1 TP with P- and Z-effluent, respectively. The P-built detergent substantially improves the efficiency of N removal with satisfactory P removal in columns simulating conventional septic system drainfield. Simultaneous removal of N and P under flooded conditions might be explained by precipitation of struvite-type minerals. Dosed system drainfields were less efficient in removing N and P compared to flooded and crusted system drainfelds.
Pehlivanoglu-Mantas, Elif; Hawley, Elisabeth L; Deeb, Rula A; Sedlak, David L
2006-01-01
The probable human carcinogen nitrosodimethylamine (NDMA) is produced when wastewater effluent is disinfected with chlorine. In systems where wastewater effluent is used for landscape or crop irrigation, relatively high chlorine doses (i.e., up to 2,000,mg-min/L) are often used to ensure adequate disinfection and to minimize biofouling in the irrigation system. To assess the formation of NDMA in such systems, samples were collected from several locations in full-scale wastewater treatment systems and their associated irrigation systems. Up to 460 ng/L of NDMA was produced in full-scale systems in which chloramines were formed when wastewater effluent was disinfected with chlorine in the presence of ammonia. Less than 20 ng/L of NDMA was produced in systems that used free chlorine (i.e., HOCl/OCl(-)) for disinfection in the absence of ammonia. The production of NDMA in ammonia-containing systems was correlated with the concentration of NDMA precursors in the wastewater effluent and the overall dose of chlorine applied. Much of the NDMA formation occurred in chlorine contact basins or in storage basins where water that contained chloramines was held after disinfection. When landscape or crop irrigation is practiced with ammonia-containing wastewater effluent, NDMA production can be controlled by use of lower chlorine doses or by application of alternative disinfectants.
Comparing the Life Cycle Energy Consumption, Global ...
Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG) emissions and aqueous nutrient releases of the whole anthropogenic municipal water cycle starting from raw water extraction to wastewater treatment and reuse/discharge for five municipal water and wastewater systems. The assessed options included conventional centralized services and four alternative options following the principles of source-separation and water fit-for-purpose. The comparative life cycle assessment identified that centralized drinking water supply coupled with blackwater energy recovery and on-site greywater treatment and reuse was the most energyand carbon-efficient water service system evaluated, while the conventional (drinking water and sewerage) centralized system ranked as the most energy- and carbon-intensive system. The electricity generated from blackwater and food residuals co-digestion was estimated to offset at least 40% of life cycle energy consumption for water/waste services. The dry composting toilet option demonstrated the lowest life cycle eutrophication potential. The nutrients in wastewater effluent are the dominating contributors for the eutrophication potential for the assessed system configurations. Among the parameters for which variability
Novel use of geochemical models in evaluating treatment trains for aqueous radioactive waste streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abitz, R.J.
1996-12-31
Thermodynamic geochemical models have been applied to assess the relative effectiveness of a variety of reagents added to aqueous waste streams for the removal of radioactive elements. Two aqueous waste streams were examined: effluent derived from the processing of uranium ore and irradiated uranium fuel rods. Simulations of the treatment train were performed to estimate the mass of reagents needed per kilogram of solution, identify pH regions corresponding to solubility minimums, and predict the identity and quantity of precipitated solids. Results generated by the simulations include figures that chart the chemical evolution of the waste stream as reagents are addedmore » and summary tables that list mass balances for all reagents and radioactive elements of concern. Model results were used to set initial reagent levels for the treatment trains, minimizing the number of bench-scale tests required to bring the treatment train up to full-scale operation. Additionally, presentation of modeling results at public meetings helps to establish good faith between the federal government, industry, concerned citizens, and media groups. 18 refs., 3 figs., 1 tab.« less
Ramos-Ramírez, Esthela; Ortega, Norma L Gutiérrez; Soto, Cesar A Contreras; Gutiérrez, Maria T Olguín
2009-12-30
In under-developed countries, industries such as paint and pigment manufacturing, leather tanning, chrome plating and textile processing, usually discharge effluents containing Cr(VI) and Cr(III) into municipal sanitary sewers. It has been reported that Cr(VI) acts as a powerful epithelial irritant and as a human carcinogen. In the present work, hydrotalcite-like compounds with a Mg/Al ratio=2 were synthesized by the sol-gel method. The hydrotalcite-like compounds and their corresponding thermally treated products were characterized by powder X-ray diffraction, infrared spectroscopy and N(2) adsorption. The hydrotalcite-like compounds and the heated solids were used as adsorbents for Cr(VI) in aqueous solutions. Adsorption isotherm studies of Cr(VI) from aqueous solution are described. The adsorbent capacity was determined using the Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherm models. The Cr(VI) adsorption isotherm data fit best to the Langmuir isotherm model. The maximum Cr(VI) uptake by hydrotalcite and the heated solids was determined using the Langmuir equation and was found to range between 26 and 29 mg Cr(VI)/g adsorbent.
Olson, Mitchell R; Sale, Tom C
2015-01-01
Soil remediation is often inhibited by subsurface heterogeneity, which constrains contaminant/reagent contact. Use of soil mixing techniques for reagent delivery provides a means to overcome contaminant/reagent contact limitations. Furthermore, soil mixing reduces the permeability of treated soils, thus extending the time for reactions to proceed. This paper describes research conducted to evaluate implications of soil mixing on remediation of non-aqueous phase liquid (NAPL) source zones. The research consisted of column studies and subsequent modeling of field-scale systems. For column studies, clean influent water was flushed through columns containing homogenized soils, granular zero valent iron (ZVI), and trichloroethene (TCE) NAPL. Within the columns, NAPL depletion occurred due to dissolution, followed by either column-effluent discharge or ZVI-mediated degradation. Complete removal of TCE NAPL from the columns occurred in 6-8 pore volumes of flow. However, most of the TCE (>96%) was discharged in the column effluent; less than 4% of TCE was degraded. The low fraction of TCE degraded is attributed to the short hydraulic residence time (<4 days) in the columns. Subsequently, modeling was conducted to scale up column results. By scaling up to field-relevant system sizes (>10 m) and reducing permeability by one-or-more orders of magnitude, the residence time could be greatly extended, potentially for periods of years to decades. Model output indicates that the fraction of TCE degraded can be increased to >99.9%, given typical post-mixing soil permeability values. These results suggest that remediation performance can be greatly enhanced by combining contaminant degradation with an extended residence time. Copyright © 2015 Elsevier B.V. All rights reserved.
Hydroponic system for the treatment of anaerobic liquid.
Krishnasamy, K; Nair, J; Bäuml, B
2012-01-01
The effluent from anaerobic digestion process has high concentrations of nutrients, particularly nitrogen, essential for plant growth but is not suitable for direct disposal or application due to high chemical oxygen demand (COD), low dissolved oxygen (DO), odour issues and is potentially phytotoxic. This research explored the optimum conditions of anaerobic effluent for application and dilutions of the effluent required to obtain better plant growth. A small-scale hydroponic system was constructed in a glasshouse to test different concentrations of anaerobic effluent against a commercial hydroponic medium as the control for the growth of silverbeet. It was found that the survival of silverbeet was negatively affected at 50% concentration due to low DO and NH(4) toxicity. The concentration of 20% anaerobic liquid was found to be the most efficient with highest foliage yield and plant growth. The hydroponic system with 20% concentrated effluent had better utilisation of nutrients for plant growth and a COD reduction of 95% was achieved during the 50-day growth period. This preliminary evaluation revealed that the growth and development of silverbeet was significantly lower in anaerobic effluent compared with a commercial hydroponic plant growth solution. The nutrient quality of anaerobic effluent could be highly variable with the process and the waste material used and dilution may depend on the nutrient content of the effluent. It is recommended that, a pre-treatment of the effluent to increase DO and reduce ammonium content is required before plant application, and simple dilution by itself is not suitable for optimum plant growth in a hydroponic system.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Specification Test Procedures for Monitoring Systems for Effluent Stream Gas Volumetric Flow Rate E Appendix E... Stream Gas Volumetric Flow Rate 1. Principle and applicability. 1.1Principle. Effluent stream gas... method is applicable to subparts which require continuous gas volumetric flow rate measurement...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Specification Test Procedures for Monitoring Systems for Effluent Stream Gas Volumetric Flow Rate E Appendix E... Stream Gas Volumetric Flow Rate 1. Principle and applicability. 1.1Principle. Effluent stream gas... method is applicable to subparts which require continuous gas volumetric flow rate measurement...
Wei, Liangliang; Qin, Kena; Zhao, Qingliang; Noguera, Daniel R; Xin, Ming; Liu, Chengcai; Keene, Natalie; Wang, Kun; Cui, Fuyi
2016-01-01
The secondary effluent from wastewater treatment plants was reused for industrial cooling water after pre-treatment with a laboratory-scale soil aquifer treatment (SAT) system. Up to a 95.3% removal efficiency for suspended solids (SS), 51.4% for chemical oxygen demand (COD), 32.1% for Cl(-) and 30.0% SO4(2-) were observed for the recharged secondary effluent after the SAT operation, which is essential for controlling scaling and corrosion during the cooling process. As compared to the secondary effluent, the reuse of the 1.5 m depth SAT effluent decreased the corrosion by 75.0%, in addition to a 55.1% decline of the scales/biofouling formation (with a compacted structure). The experimental results can satisfy the Chinese criterion of Design Criterion of the Industrial Circulating Cooling Water Treatment (GB 50050-95), and was more efficient than tertiary effluent which coagulated with ferric chloride. In addition, chemical structure of the scales/biofouling obtained from the cooling system was analyzed.
Micelles as Soil and Water Decontamination Agents.
Shah, Afzal; Shahzad, Suniya; Munir, Azeema; Nadagouda, Mallikarjuna N; Khan, Gul Shahzada; Shams, Dilawar Farhan; Dionysiou, Dionysios D; Rana, Usman Ali
2016-05-25
Contaminated soil and water pose a serious threat to human health and ecosystem. For the treatment of industrial effluents or minimizing their detrimental effects, preventive and remedial approaches must be adopted prior to the occurrence of any severe environmental, health, or safety hazard. Conventional treatment methods of wastewater are insufficient, complicated, and expensive. Therefore, a method that could use environmentally friendly surfactants for the simultaneous removal of both organic and inorganic contaminants from wastewater is deemed a smart approach. Surfactants containing potential donor ligands can coordinate with metal ions, and thus such compounds can be used for the removal of toxic metals and organometallic compounds from aqueous systems. Surfactants form host-guest complexes with the hydrophobic contaminants of water and soil by a mechanism involving the encapsulation of hydrophobes into the self-assembled aggregates (micelles) of surfactants. However, because undefined amounts of surfactants may be released into the aqueous systems, attention must be paid to their own environmental risks as well. Moreover, surfactant remediation methods must be carefully analyzed in the laboratory before field implementation. The use of biosurfactants is the best choice for the removal of water toxins as such surfactants are associated with the characteristics of biodegradability, versatility, recovery, and reuse. This Review is focused on the currently employed surfactant-based soil and wastewater treatment technologies owing to their critical role in the implementation of certain solutions for controlling pollution level, which is necessary to protect human health and ensure the quality standard of the aquatic environment.
Saucier, Caroline; Adebayo, Matthew A; Lima, Eder C; Cataluña, Renato; Thue, Pascal S; Prola, Lizie D T; Puchana-Rosero, M J; Machado, Fernando M; Pavan, Flavio A; Dotto, G L
2015-05-30
Microwave-induced chemical activation process was used to prepare an activated carbon from cocoa shell for efficient removal of two anti-inflammatories, sodium diclofenac (DFC) and nimesulide (NM), from aqueous solutions. A paste was obtained from a mixture of cocoa shell and inorganic components; with a ratio of inorganic: organic of 1 (CSC-1.0). The mixture was pyrolyzed in a microwave oven in less than 10 min. The CSC-1.0 was acidified with a 6 mol L(-1) HCl under reflux to produce MWCS-1.0. The CSC-1.0 and MWCS-1.0 were characterized using FTIR, SEM, N2 adsorption/desorption curves, X-ray diffraction, and point of zero charge (pHpzc). Experimental variables such as initial pH of the adsorbate solutions and contact time were optimized for adsorptive characteristics of MWCS-1.0. The optimum pH for removal of anti-inflammatories ranged between 7.0 and 8.0. The kinetic of adsorption was investigated using general order, pseudo first-order and pseu do-second order kinetic models. The maximum amounts of DCF and NM adsorbed onto MWCS-1.0 at 25 °C are 63.47 and 74.81 mg g(-1), respectively. The adsorbent was tested on two simulated hospital effluents. MWCS-1.0 is capable of efficient removal of DCF and NM from a medium that contains high sugar and salt concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.
Prola, Lizie D T; Machado, Fernando M; Bergmann, Carlos P; de Souza, Felipe E; Gally, Caline R; Lima, Eder C; Adebayo, Matthew A; Dias, Silvio L P; Calvete, Tatiana
2013-11-30
Multi-walled carbon nanotubes (MWCNT) and powder activated carbon (PAC) were used as adsorbents for adsorption of Direct Blue 53 dye (DB-53) from aqueous solutions. The adsorbents were characterised using Raman spectroscopy, N2 adsorption/desorption isotherms, and scanning and transmission electron microscopy. The effects of initial pH, contact time and temperature on adsorption capacity of the adsorbents were investigated. At pH 2.0, optimum adsorption of the dye was achieved by both adsorbents. Equilibrium contact times of 3 and 4 h were achieved by MWCNT and PAC adsorbents, respectively. The general order kinetic model provided the best fit of the experimental data compared to pseudo-first order and pseudo-second order kinetic adsorption models. For DB-53 dye, the equilibrium data (298-323 K) were best fitted to the Sips isotherm model. The maximum sorption capacity for adsorption of the dye occurred at 323 K, with the values of 409.4 and 135.2 mg g(-1) for MWCNT and PAC, respectively. Studies of adsorption/desorption were conducted and the results showed that DB-53 loaded MWCNT could be regenerated (97.85%) using a mixture 50% acetone + 50% of 3 mol L(-1) NaOH. Simulated dye house effluents were used to evaluate the application of the adsorbents for effluent treatment (removal of 99.87% and 97.00% for MWCNT and PAC, respectively, were recorded). Copyright © 2013 Elsevier Ltd. All rights reserved.
Mounteer, A H; Souza, L C; Silva, C M
2007-02-01
Increasingly stringent effluent quality limits for bleached kraft pulp mills pose a great challenge to mill wastewater system managers since these limits can require levels of chemical oxygen demand (COD) removal efficiency rarely reported for biological treatment of these types of effluents. The present study was therefore undertaken to better understand the nature of recalcitrant COD in bleached kraft pulp effluents that persists through the biological treatment system. Bleaching effluents from a Brazilian eucalypt bleached kraft pulp mill were collected and treated in a bench-scale sequencing batch reactor. Organic matter in raw and treated effluents was characterized before and after separation into low and high molecular mass fractions. Biological treatment removed 71% of the COD, with 83% removal of the low molecular mass COD but only 36% removal of the high molecular mass COD. Microorganisms capable of degrading the recalcitrant COD were isolated from enrichment cultures of the original activated sludge fed on fractions of the bleaching effluent that presented low biodegradabilities. Use of a microbial consortium composed of ten of these isolates to treat the biologically treated effluent removed a further 12% of the effluent COD, all from the high molecular mass fraction. Results of this research indicate that microorganisms with potential for degrading recalcitrant COD are present in activated sludge, but that these are not metabolically active during normal activated sludge treatment of mill effluents. The use of biological selectors in the treatment system to promote growth of such microorganisms may enhance removal of recalcitrant organic matter.
Choline-based ionic liquids-enhanced biodegradation of azo dyes.
Sekar, Sudharshan; Surianarayanan, Mahadevan; Ranganathan, Vijayaraghavan; MacFarlane, Douglas R; Mandal, Asit Baran
2012-05-01
Industrial wastewaters such as tannery and textile processing effluents are often characterized by a high content of dissolved organic dyes, resulting in large values of chemical and biological oxygen demand (COD and BOD) in the aquatic systems into which they are discharged. Such wastewater streams are of rapidly growing concern as a major environmental issue in developing countries. Hence there is a need to mitigate this challenge by effective approaches to degrade dye-contaminated wastewater. In this study, several choline-based salts originally developed for use as biocompatible hydrated ionic liquids (i.e., choline sacchrinate (CS), choline dihydrogen phosphate (CDP), choline lactate (CL), and choline tartarate (CT)) have been successfully employed as the cosubstrate with S. lentus in the biodegradation of an azo dye in aqueous solution. We also demonstrate that the azo dye has been degraded to less toxic components coupled with low biomass formation. © 2012 American Chemical Society
Code of Federal Regulations, 2010 CFR
2010-07-01
... loadings, not to exceed 11 percent of the above limitations, are allowed for by-product coke plants which... systems generate an increased effluent volume. (b) By-product cokemaking—merchant. Subpart A Pollutant or... allowed for by-product coke plants which have wet desulfurization systems but only to the extent such...
Effluent Charts Help | ECHO | US EPA
Effluent Charts present dynamic charts and tables of permitted effluent limits, releases, and violations over time for Clean Water Act (CWA) wastewater discharge permits issued under the National Pollutant Discharge Elimination System (NPDES).
Minty, B; Ramsey, E D; Davies, I
2000-12-01
A direct aqueous supercritical fluid extraction (SFE) system was developed which can be directly interfaced to an infrared spectrometer for the determination of oil in water. The technique is designed to provide an environmentally clean, automated alternative to established IR methods for oil in water analysis which require the use of restricted organic solvents. The SFE-FTIR method involves minimum sample handling stages, with on-line analysis of a 500 ml water sample being complete within 15 min. Method accuracy for determining water samples spiked with gasoline, white spirit, kerosene, diesel or engine oil was 81-100% with precision (RSD) ranging from 3 to 17%. An independent evaluation determined a 2 ppm limit of quantification for diesel in industrial effluents. The results of a comparative study involving an established IR method and the SFE-FTIR method indicate that oil levels calculated using an accepted equation which includes coefficients derived from reference hydrocarbon standards may result in significant errors. A new approach permitted the derivation of quantification coefficients for the SFE-FTIR analyses which provided improved results. In situations where the identity of the oil to be analysed is known, a rapid off-line SFE-FTIR system calibration procedure was developed and successfully applied to various oils. An optional in-line silica gel clean-up procedure incorporated within the SFE-FTIR system enables the same water sample to be analysed for total oil content including vegetable oils and selectively for petroleum oil content within a total of 20 min. At the end of an analysis the SFE system is cleaned using an in situ 3 min clean cycle.
A graphene oxide/amidoxime hydrogel for enhanced uranium capture
Wang, Feihong; Li, Hongpeng; Liu, Qi; Li, Zhanshuang; Li, Rumin; Zhang, Hongsen; Liu, Lianhe; Emelchenko, G. A.; Wang, Jun
2016-01-01
The efficient development of selective materials for the recovery of uranium from nuclear waste and seawater is necessary for their potential application in nuclear fuel and the mitigation of nuclear pollution. In this work, a graphene oxide/amidoxime hydrogel (AGH) exhibits a promising adsorption performance for uranium from various aqueous solutions, including simulated seawater. We show high adsorption capacities (Qm = 398.4 mg g−1) and high % removals at ppm or ppb levels in aqueous solutions for uranium species. In the presence of high concentrations of competitive ions such as Mg2+, Ca2+, Ba2+ and Sr2+, AGH displays an enhanced selectivity for uranium. For low uranium concentrations in simulated seawater, AGH binds uranium efficiently and selectively. The results presented here reveal that the AGH is a potential adsorbent for remediating nuclear industrial effluent and adsorbing uranium from seawater. PMID:26758649
NASA Astrophysics Data System (ADS)
Allouche, F.-N.; Yassaa, N.
2018-03-01
The use of inexpensive biological materials, such as marine algae for removing dyes from contaminated industrial effluents appears as a potential alternative method. The aim of this study is to investigate the aptitude of marine macroalgae Posidonia Oceanica local biomass abundant on the coasts of Algeria for selective sorption of methylene blue (MB) from an aqueous solution in batch experiments at 20 °C. A maximum percentage removal of Posidonia oceanica occurs at pH 5. Equilibrium isotherm data were analyzed using the Langmuir and the Freundlich isotherms. The adsorption equilibrium of methylene blue was best describe by Langmuir model than the Freundlich model. The maximum sorption capacity was 357 mgg-1at pH 5. The sorption data were very well described by the pseudo-second-order model. Keywords: Posidonia oceanica, Methylene blue (MB), Biosorption, Isotherm Equilibrium, Kinetics; Modelling.
Nano-adsorbents for the removal of metallic pollutants from water and wastewater.
Sharma, Y C; Srivastava, V; Singh, V K; Kaul, S N; Weng, C H
2009-05-01
Of the variety of adsorbents available for the removal of heavy and toxic metals, activated carbon has been the most popular. A number of minerals, clays and waste materials have been regularly used for the removal of metallic pollutants from water and industrial effluents. Recently there has been emphasis on the application of nanoparticles and nanostructured materials as efficient and viable alternatives to activated carbon. Carbon nanotubes also have been proved effective alternatives for the removal of metallic pollutants from aqueous solutions. Because of their importance from an environmental viewpoint, special emphasis has been given to the removal of the metals Cr, Cd, Hg, Zn, As, and Cu. Separation of the used nanoparticles from aqueous solutions and the health aspects of the separated nanoparticles have also been discussed. A significant number of the latest articles have been critically scanned for the present review to give a vivid picture of these exotic materials for water remediation.
Degradation of high energetic and insensitive munitions compounds by Fe/Cu bimetal reduction.
Koutsospyros, Agamemnon; Pavlov, Julius; Fawcett, Jacqueline; Strickland, David; Smolinski, Benjamin; Braida, Washington
2012-06-15
A reductive technology based on a completely mixed two-phase reactor (bimetallic particles and aqueous stream) was developed for the treatment of aqueous effluents contaminated with nitramines and nitro-substituted energetic materials. Experimental degradation studies were performed using solutions of three high energetics (RDX, HMX, TNT) and three insensitive-munitions components (NTO, NQ, DNAN). The study shows that, on laboratory scale, these energetic compounds are easily degraded in solution by suspensions of bimetallic particles (Fe/Ni and Fe/Cu) prepared by electro-less deposition. The type of bimetal pair (Fe/Cu or Fe/Ni) does not appear to affect the degradation kinetics of RDX, HMX, and TNT. The degradation of all components followed apparent first-order kinetics. The half-lives of all compounds except NTO were under 10 min. Additional parameters affecting the degradation processes were solids loading and initial pH. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-09-11
The Department of Energy (DOE) proposes to eliminate industrial effluent from 27 outfalls at Los Alamos National Laboratory (LANL). The Proposed Action includes both simple and extensive plumbing modifications, which would result in the elimination of industrial effluent being released to the environment through 27 outfalls. The industrial effluent currently going to about half of the 27 outfalls under consideration would be rerouted to LANL`s sanitary sewer system. Industrial effluent from other outfalls would be eliminated by replacing once-through cooling water systems with recirculation systems, or, in a few instances, operational changes would result in no generation of industrial effluent.more » After the industrial effluents have been discontinued, the affected outfalls would be removed from the NPDES Permit. The pipes from the source building or structure to the discharge point for the outfalls may be plugged, or excavated and removed. Other outfalls would remain intact and would continue to discharge stormwater. The No Action alternative, which would maintain the status quo for LANL`s outfalls, was also analyzed. An alternative in which industrial effluent would be treated at the source facilities was considered but dismissed from further analysis because it would not reasonably meet the DOE`s purpose for action, and its potential environmental effects were bounded by the analysis of the Proposed Action and the No Action alternatives.« less
Preetha, Chandrika Ravindran; Gladis, Joseph Mary; Rao, Talasila Prasada; Venkateswaran, Gopala
2006-05-01
Major quantities of uranium find use as nuclear fuel in nuclear power reactors. In view of the extreme toxicity of uranium and consequent stringent limits fixed by WHO and various national governments, it is essential to remove uranium from nuclear power reactor effluents before discharge into environment. Ion imprinted polymer (IIP) materials have traditionally been used for the recovery of uranium from dilute aqueous solutions prior to detection or from seawater. We now describe the use of IIP materials for selective removal of uranium from a typical synthetic nuclear power reactor effluent. The IIP materials were prepared for uranyl ion (imprint ion) by forming binary salicylaldoxime (SALO) or 4-vinylpyridine (VP) or ternary SALO-VP complexes in 2-methoxyethanol (porogen) and copolymerizing in the presence of styrene (monomer), divinylbenzene (cross-linking monomer), and 2,2'-azobisisobutyronitrile (initiator). The resulting materials were then ground and sieved to obtain unleached polymer particles. Leached IIP particles were obtained by leaching the imprint ions with 6.0 M HCl. Control polymer particles were also prepared analogously without the imprint ion. The IIP particles obtained with ternary complex alone gave quantitative removal of uranyl ion in the pH range 3.5-5.0 with as low as 0.08 g. The retention capacity of uranyl IIP particles was found to be 98.50 mg/g of polymer. The present study successfully demonstrates the feasibility of removing uranyl ions selectively in the range 5 microg - 300 mg present in 500 mL of synthetic nuclear power reactor effluent containing a host of other inorganic species.
Michael-Kordatou, I; Michael, C; Duan, X; He, X; Dionysiou, D D; Mills, M A; Fatta-Kassinos, D
2015-06-15
Wastewater reuse is currently considered globally as the most critical element of sustainable water management. The dissolved effluent organic matter (dEfOM) present in biologically treated urban wastewater, consists of a heterogeneous mixture of refractory organic compounds with diverse structures and varying origin, including dissolved natural organic matter, soluble microbial products, endocrine disrupting compounds, pharmaceuticals and personal care products residues, disinfection by-products, metabolites/transformation products and others, which can reach the aquatic environment through discharge and reuse applications. dEfOM constitutes the major fraction of the effluent organic matter (EfOM) and due to its chemical complexity, it is necessary to utilize a battery of complementary techniques to adequately describe its structural and functional character. dEfOM has been shown to exhibit contrasting effects towards various aquatic organisms. It decreases metal uptake, thus potentially reducing their bioavailability to exposed organisms. On the other hand, dEfOM can be adsorbed on cell membranes inducing toxic effects. This review paper evaluates the performance of various advanced treatment processes (i.e., membrane filtration and separation processes, activated carbon adsorption, ion-exchange resin process, and advanced chemical oxidation processes) in removing dEfOM from wastewater effluents. In general, the literature findings reveal that dEfOM removal by advanced treatment processes depends on the type and the amount of organic compounds present in the aqueous matrix, as well as the operational parameters and the removal mechanisms taking place during the application of each treatment technology. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dairy shed effluent treatment and recycling: Effluent characteristics and performance.
Fyfe, Julian; Hagare, Dharma; Sivakumar, Muttucumaru
2016-09-15
Dairy farm milking operations produce considerable amounts of carbon- and nutrient-rich effluent that can be a vital source of nutrients for pasture and crops. The study aim was to characterise dairy shed effluent from a commercial farm and examine the changes produced by treatment, storage and recycling of the effluent through a two-stage stabilisation pond system. The data and insights from the study are broadly applicable to passive pond systems servicing intensive dairy and other livestock operations. Raw effluent contained mostly poorly biodegradable particulate organic material and organically bound nutrients, as well as a large fraction of fixed solids due to effluent recycling. The anaerobic pond provided effective sedimentation and biological treatment, but hydrolysis of organic material occurred predominantly in the sludge and continually added to effluent soluble COD, nutrients and cations. Sludge digestion also suppressed pH in the pond and increased salt levels through formation of alkalinity. High sludge levels significantly impaired pond treatment performance. In the facultative pond, BOD5 concentrations were halved; however smaller reductions in COD showed the refractory nature of incoming organic material. Reductions in soluble N and P were proportional to reductions in respective particulate forms, suggesting that respective removal mechanisms were not independent. Conditions in the ponds were unlikely to support biological nutrient removal. Recycling caused conservative inert constituents to accumulate within the pond system. Material leaving the system was mostly soluble (86% TS) and inert (65% TS), but salt concentrations remained below thresholds for safe land application. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Silage effluent management: a review.
Gebrehanna, M M; Gordon, R J; Madani, A; VanderZaag, A C; Wood, J D
2014-10-01
Silage effluent is a potent wastewater that can be produced when ensiling crops that have a high moisture content (MC). Silage effluent can cause fish-kills and eutrophication due to its high biochemical oxygen demand (BOD) and nutrient content, respectively. It has a high acidity (pH ≈ 3.5-5) making it corrosive to steel and damaging to concrete, which makes handling, storage and disposal a challenge. Although being recognized as a concentrated wastewater, most research has focused on preventing its production. Despite noted imprecision in effluent production models-and therefore limited ability to predict when effluent will flow-there has been little research aimed at identifying effective reactive management options, such as containment and natural treatment systems. Increasing climate variability and intensifying livestock agriculture are issues that will place a greater importance on developing comprehensive, multi-layered management strategies that include both preventative and reactive measures. This paper reviews important factors governing the production of effluent, approaches to minimize effluent flows as well as treatment and disposal options. The challenges of managing silage effluent are reviewed in the context of its chemical constituents. A multi-faceted approach should be utilized to minimize environmental risks associated with silage effluent. This includes: (i) managing crop moisture content prior to ensiling to reduce effluent production, (ii) ensuring the integrity of silos and effluent storages, and (iii) establishing infrastructure for effluent treatment and disposal. A more thorough investigation of constructed wetlands and vegetated infiltration areas for treating dilute silage effluent is needed. In particular, there should be efforts to improve natural treatment system design criteria by identifying pre-treatment processes and appropriate effluent loading rates. There is also a need for research aimed at understanding the effects of repeated land application of effluent on soil quality and crop yields, as spreading is a common disposal practice. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Xueming; Chen, Guohua
Electroflotation (EF) is the flotation using electrolytically generated bubbles of hydrogen and oxygen for separating suspended substances from aqueous phases. This process was first proposed by Elmore in 1905 for flotation of valuable minerals from ores. Compared with the conventional dissolved air flotation (DAF), EF has many advantages, including high flotation efficiency, compact units, easy operation, and less maintenance. Therefore, EF is an attractive alternative to DAF. This technique has been proven very effective in treating oily wastewater or oil-water emulsion, mining wastewater, groundwater, food processing wastewater, restaurant wastewater, industrial sewage, heavy metals containing effluent, and many other water and wastewaters.
Reversed-phase high-performance liquid chromatography of sulfur mustard in water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghuveeran, C.D.; Malhotra, R.C.; Dangi, R.S.
1993-01-01
A reversed-phase high-performance liquid chromatography method for the detection and quantitation of sulfur mustard (HD) in water is described with detection at 200 nm. The detection based on the solubility of HD in water revealed that extremely low quantities of HD (4 to 5 mg/L) only are soluble. Experience shows that water is still the medium of choice for the analysis of HD in water and aqueous effluents in spite of the minor handicap of its half-life of ca. 4 minutes, which only calls for speedy analysis.
Gutiérrez, Gemma; Lobo, Alberto; Benito, José M; Coca, José; Pazos, Carmen
2011-01-30
A process is proposed for the treatment of a waste oil-in-water (O/W) emulsion generated in an industrial copper-rolling operation. The use of demulsifier agents improves the subsequent treatment by techniques such as ultrafiltration (UF) or evaporation. The effluent COD is reduced up to 50% when the O/W emulsion is treated by UF using a flat 30 nm TiO(2) ceramic membrane (ΔP = 0.1 MPa) and up to 70% when it is treated by vacuum evaporation, after an emulsion destabilization pretreatment in both cases. Increases in the UF permeate flux and in the evaporation rate are observed when a chemical demulsifier is used in the pretreatment step. A combined process consisting of destabilization/settling, UF, and vacuum evaporation can yield a very high-quality aqueous effluent that could be used for process cooling or emulsion reformulation. Copyright © 2010 Elsevier B.V. All rights reserved.
Hynninen, P H; Räisänen, R
2001-01-01
Preparative-scale separation of substituted anthraquinones by multiple liquid-liquid partition was studied using isopropylmethyl ketone (IMK)/aqueous phosphate buffer (aq.) as the solvent system and the Hietala apparatus with 100 partition units as the partition equipment. The lower (aq.) phase was chosen as mobile, while the upper (IMK) phase remained stationary. Hence, the principle of stepwise pH-gradient elution could be utilized to separate the components in two complex mixtures of hydroxyanthraquinones and hydroxyanthraquinone carboxylic acids, isolated from the fungus Dermocybe sanguinea. In spite of the nonlinearity of the partition isotherms for these anthraquinones, implying deviations from the Nernst partition law, remarkable separations were achieved for the components in each mixture. Every anthraquinone carboxylic acid showed markedly irregular partition behavior, appearing in the effluent as two more or less resolved concentration zones. Such splitting was attributed to the formation of relatively stable sandwich-dimers, which were in a slow equilibrium with the monomers in the more nonpolar organic phase. At lower pH-values, only the polar monomers were distributed into the mobile aqueous phase and moved forward, whereas the nonpolar sandwich-dimers remained almost entirely in the stationary organic phase and lagged behind. When the pH of the mobile aqueous phase was raised high enough, the firmly linked dimers were monomerized and emerged from the apparatus as a second concentration profile. Intermolecular hydrogen bonding and pi-pi interaction between the pi-systems of two anthraquinone molecules in a parallel orientation were considered responsible for the nonlinear and markedly irregular partition behavior of the natural anthraquinones studied. The nonlinearity of the partition behavior of the hydroxyanthraquinones lacking the carboxyl group, appeared merely as excessive broadening of the experimental concentration profile, which impaired the resolution between the components only insignificantly. Thus, e.g. the main components, dermocybin and emodin, could both be obtained from Separation 1 in a purity of at least 99%.
Method and apparatus for treating gaseous effluents from waste treatment systems
Flannery, Philip A.; Kujawa, Stephan T.
2000-01-01
Effluents from a waste treatment operation are incinerated and oxidized by passing the gases through an inductively coupled plasmas arc torch. The effluents are transformed into plasma within the torch. At extremely high plasma temperatures, the effluents quickly oxidize. The process results in high temperature oxidation of the gases without addition of any mass flow for introduction of energy.
NASA Astrophysics Data System (ADS)
McCraven, S.; Zhou, Q.; Garcia, J.; Gasca, M.; Johnson, T.
2007-12-01
N-Nitrosodimethylamine (NDMA) is an emerging contaminant in groundwater, because of its aqueous miscibility, exceptional animal toxicity, and human carcinogenicity. NDMA detections in groundwater have been tracked to either decomposition of unsymmetrical dimethylhydrazine (UDMH) used in rocket fuel facilities or chlorine disinfection in wastewater reclamation plants. Laboratory experiments on both unsaturated and saturated soil samples have demonstrated that NDMA can be biodegraded by microbial activity, under both aerobic and anaerobic conditions. However, very limited direct evidence for its biodegradation has been found from the field in saturated groundwater. Our research aimed to evaluate photolysis and biodegradation of NDMA occurring along the full travel path - from wastewater reclamation plant effluent, through rivers and spreading grounds, to groundwater. For this evaluation, we established an extensive monitoring network to characterize NDMA concentrations at effluent discharge points, surface water stations, and groundwater monitoring and production wells, during the operation of the Montebello Forebay Groundwater Recharge facilities in Los Angeles County, California. Field monitoring for NDMA has been conducted for more than six years, including 32 months of relatively lower NDMA concentrations in effluent, 43 months of elevated NDMA effluent concentrations, and 7 months with significantly reduced NDMA effluent concentrations. The NDMA effluent concentration increase and significant concentration decrease were caused by changes in treatment processes. The NDMA sampling data imply that significant biodegradation occurred in groundwater, accounting for a 90% mass reduction of NDMA over the six-year monitoring period. In addition, the occurrence of a discrete well monitored effluent release during the study period allowed critical analysis of the fate of NDMA in a well- characterized, localized groundwater flow subsystem. The data indicate that 80% of the recharged NDMA mass was biodegraded in groundwater with the remaining mass pumped out by extraction wells. To reproduce the observation data, a groundwater flow and transport model was developed and calibrated against groundwater elevation and NDMA concentration data. The calibrated half-life of NDMA in groundwater is 69 days, which is consistent with the values obtained through laboratory incubation using soil samples from the Montebello Forebay Spreading Grounds. Given the photolysis of NDMA in surface water and biodegradation in groundwater observed during this study, reclaimed wastewater with limited NDMA concentrations can be safely used for groundwater recharge under the study area conditions.
Hemachandra, Chamini K; Pathiratne, Asoka
2016-09-01
Bioassays for cyto-genotoxicity assessments are generally not required in current textile industry effluent discharge management regulations. The present study applied in vivo plant and fish based toxicity tests viz. Allium cepa test system and Oreochromis niloticus erythrocyte based comet assay and nuclear abnormalities tests in combination with physico-chemical analysis for assessing potential cytotoxic/genotoxic impacts of treated textile industry effluents reaching a major river (Kelani River) in Sri Lanka. Of the treated effluents tested from two textile industries, color in the Textile industry 1 effluents occasionally and color, biochemical oxygen demand and chemical oxygen demand in the Textile industry 2 effluents frequently exceeded the specified Sri Lankan tolerance limits for discharge of industrial effluents into inland surface waters. Exposure of A. cepa bulbs to 100% and 12.5% treated effluents from both industries resulted in statistically significant root growth retardation, mito-depression, and induction of chromosomal abnormalities in root meristematic cells in comparison to the dilution water in all cases demonstrating cyto-genotoxicity associated with the treated effluents. Exposure of O. niloticus to the 100% and 12.5% effluents, resulted in erythrocytic genetic damage as shown by elevated total comet scores and induction of nuclear abnormalities confirming the genotoxicity of the treated effluents even with 1:8 dilution. The results provide strong scientific evidence for the crucial necessity of incorporating cyto-genotoxicity impact assessment tools in textile industry effluent management regulations considering human health and ecological health of the receiving water course under chronic exposure. Copyright © 2016 Elsevier Inc. All rights reserved.
Curneen, S J; Gill, L W
2014-01-15
Short rotation coppiced willow trees can be used to treat on-site wastewater effluent with the advantage that, if planted in a sealed basin and sized correctly, they produce no effluent discharge. This paper has investigated the evapotranspiration rate of four different willow varieties while also monitoring the effects of three different effluent types on each variety. The willow varieties used are all cultivars of Salix viminalis. The effluents applied were primary (septic tank) effluent, secondary treated effluent and rain water (control). The results obtained showed that the addition of effluent had a positive effect on the evapotranspiration. The willows were also found to uptake a high proportion of the nitrogen and phosphorus from the primary and secondary treated effluents added during the first year. The effect of the different effluents on the evapotranspiration rate has been used to design ten full scale on-site treatment systems which are now being monitored. Copyright © 2013 Elsevier Ltd. All rights reserved.
Removal of trivalent chromium from aqueous solution using aluminum oxide hydroxide.
Bedemo, Agaje; Chandravanshi, Bhagwan Singh; Zewge, Feleke
2016-01-01
Water is second most essential for human being. Contamination of water makes it unsuitable for human consumption. Chromium ion is released to water bodies from various industries having high toxicity which affects the biota life in these waters. In this study aluminum oxide hydroxide was tested for its efficiency to remove trivalent chromium from aqueous solutions through batch mode experiments. Chromium concentrations in aqueous solutions and tannery waste water before and after adsorption experiments were determined using flame atomic absorption spectrometry. The effects of pH, contact time, initial concentration and adsorbent dosage on the adsorption of Cr(III) were studied. The study revealed that more than 99 % removal of Cr(III) was achieved over wide range of initial pH (3-10). The optimum conditions for the removal of Cr(III) were found to be at pH 4-6 with 40 g/L adsorbent dose at 60 min of contact time. The adsorption capacity was assessed using Langmuir and Freundlich isotherms. The equilibrium data at varying adsorbent dose obeyed the two isotherms. The adsorbent was found to be efficient for the removal of Cr(III) from tannery waste effluent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-08-01
Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF)more » and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.« less
Jelic, Aleksandra; Fatone, Francesco; Di Fabio, Silvia; Petrovic, Mira; Cecchi, Franco; Barcelo, Damia
2012-09-01
The occurrence and removal of 42 pharmaceuticals, belonging to different therapeutic groups (analgesics and anti-inflammatory drugs, anti-ulcer agent, psychiatric drugs, antiepileptic drug, antibiotics, ß-blockers, diuretics, lipid regulator and cholesterol lowering statin drugs and anti-histamines), were studied in the wastewater and sewage sludge trains of a full scale integrated treatment plant. The plant employs a biological nutrient removal (BNR) process for the treatment of municipal wastewater, and a single-stage mesophilic anaerobic co-digestion for the treatment of wasted activated sludge mixed with the organic fraction of municipal solid waste (OFMSW), followed by a short-cut nitrification-denitrification of the anaerobic supernatant in a sequential batch reactor. Influent and effluent wastewater, as well as thickened, digested and treated sludge were sampled and analyzed for the selected pharmaceuticals in order to study their presence and fate during the treatment. Twenty three compounds were detected in influent and effluent wastewater and eleven in sludge. Infiltration of groundwater in the sewer system led to a dilution of raw sewage, resulting in lower concentrations in wastewater (up to 0.7 μg/L in influent) and sludge (70 ng/g d.w.). Due to the dilution, overall risk quotient for the mixture of pharmaceuticals detected in effluent wastewater was less than one, indicating no direct risk for the aquatic environment. A wide range of removal efficiencies during the treatment was observed, i.e. <20% to 90%. The influent concentrations of the target pharmaceuticals, as polar compounds, were undoubtedly mostly affected by BNR process in the wastewater train, and less by anaerobic-co-digestion. Mass balance calculations showed that less than 2% of the total mass load of the studied pharmaceuticals was removed by sorption. Experimentally estimated distribution coefficients (<500 L/kg) also indicated that the selected pharmaceuticals preferably remain in the aqueous phase, and that biodegradation/transformation is the primary removal mechanism for these compounds during wastewater treatment. Copyright © 2012 Elsevier B.V. All rights reserved.
Petrie, Bruce; McAdam, Ewan J; Whelan, Mick J; Lester, John N; Cartmell, Elise
2013-04-01
An ultra performance liquid chromatography method coupled to a triple quadrupole mass spectrometer was developed to determine nonylphenol and 15 of its possible precursors (nonylphenol ethoxylates and nonylphenol carboxylates) in aqueous and particulate wastewater matrices. Final effluent method detection limits for all compounds ranged from 1.4 to 17.4 ng l(-1) in aqueous phases and from 1.4 to 39.4 ng g(-1) in particulate phases of samples. The method was used to measure the performance of a trickling filter wastewater treatment works, which are not routinely monitored despite their extensive usage. Relatively good removals of nonylphenol were observed over the biological secondary treatment process, accounting for a 53 % reduction. However, only an 8 % reduction in total nonylphenolic compound load was observed. This was explained by a shortening in ethoxylate chain length which initiated production of shorter polyethoxylates ranging from 1 to 4 ethoxylate units in length in final effluents. Modelling the possible impact of trickling filter discharge demonstrated that the nonylphenol environmental quality standard may be exceeded in receiving waters with low dilution ratios. In addition, there is a possibility that the EQS can be exceeded several kilometres downstream of the mixing zone due to the biotransformation of readily degradable short-chained precursors. This accentuates the need to monitor 'non-priority' parent compounds in wastewater treatment works since monitoring nonylphenol alone can give a false indication of process performance. It is thus recommended that future process performance monitoring and optimisation is undertaken using the full suite of nonylphenolic moieties which this method can facilitate.
Farré, Maria José; Insa, Sara; Mamo, Julian; Barceló, Damià
2016-08-05
A new methodology based on on-line solid-phase extraction (SPE) ultra-high-performance-liquid chromatography coupled to a triple quadrupole mass spectrometer (UHPLC-MS-MS) for the determination of 15 individual anthropogenic N-nitrosodimethylamine (NDMA) precursors was developed. On-line SPE was performed by passing 2mL of the water sample through a Hypersil GOLD aQ column and chromatographic separation was done using a Kinetex Biphenyl column using methanol and 0.1% formic acid aqueous solution as a mobile phase. For unequivocal identification and confirmation, two selected reaction monitoring (SRM) transitions were monitored per compound. Quantification was performed by internal standard approach and matrix match calibration. The main advantages of the developed method are high sensitivity (limits of detection in the sub ng/L range), selectivity due to the use of tandem mass spectrometry, precision and minimum sample manipulation as well as fast analytical response. Process efficiency and recovery were also evaluated for all the target compounds. As part of the validation procedure, the method was applied in a sampling campaign for the analysis of influent and secondary effluent of a wastewater treatment plant (WWTP) in Girona, Spain. Additionally, the effluent from a nanofiltration (NF) membrane system used for water recycling was monitored. The percentage of NDMA formation explained by the measured precursors was also quantified. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, J L; Li, Y P; Huang, G H
2014-04-01
In this study, a robust simulation-optimization modeling system (RSOMS) is developed for supporting agricultural nonpoint source (NPS) effluent trading planning. The RSOMS can enhance effluent trading through incorporation of a distributed simulation model and an optimization model within its framework. The modeling system not only can handle uncertainties expressed as probability density functions and interval values but also deal with the variability of the second-stage costs that are above the expected level as well as capture the notion of risk under high-variability situations. A case study is conducted for mitigating agricultural NPS pollution with an effluent trading program in Xiangxi watershed. Compared with non-trading policy, trading scheme can successfully mitigate agricultural NPS pollution with an increased system benefit. Through trading scheme, [213.7, 288.8] × 10(3) kg of TN and [11.8, 30.2] × 10(3) kg of TP emissions from cropped area can be cut down during the planning horizon. The results can help identify desired effluent trading schemes for water quality management with the tradeoff between the system benefit and reliability being balanced and risk aversion being considered.
Cui, Li-Hua; Luo, Shi-Ming; Zhu, Xi-Zhen; Liu, Ying-Hu
2003-01-01
Vertical flow constructed wetlands is a typical ecological sanitation system for sewage treatment. The removal rates for COD, BOD5, SS, TN, and TP were 60%, 80%, 74%, 49% and 79%, respectively, when septic tank effluent was treated by vertical flow filter. So the concentration of COD and BOD5 in the treated effluent could meet the quality standard for irrigation water. After that the treated effluent was used for hydroponic cultivation of water spinach and romaine lettuce, the removal efficiencies of the whole system for COD, BOD5, SS, TN and TP were 71.4%, 97.5%, 96.9%, 86.3%, and 87.4%, respectively. And it could meet the integrated wastewater discharge standard for secondary biological treatment plant. It was found that using treated effluent for hydroponic cultivation of vegetables could reduce the nitrate content in vegetables. The removal rates for total bacteria and coliform index by using vertical flow bed system with cinder substrate were 80%-90% and 85%-96%, respectively.
[Newly Designed Water Treatment Systems for Hospital Effluent].
Azuma, Takashi
2018-01-01
Pharmaceuticals are indispensable to contemporary life. Recently, the emerging problem of pharmaceutical-based pollution of river environments, including drinking water sources and lakes, has begun to receive significant attention worldwide. Because pharmaceuticals are designed to perform specific physiological functions in targeted regions of the human body, there is increasing concern regarding their toxic effects, even at low concentrations, on aquatic ecosystems and human health, via residues in drinking water. Pharmaceuticals are consistently employed in hospitals to treat disease; and Japan, one of the most advanced countries in medical treatment, ranks second worldwide in the quantity of pharmaceuticals employed. Therefore, the development of technologies that minimize or lessen the related environmental risks for clinical effluent is an important task as well as that for sewage treatment plants (STPs). However, there has been limited research on clinical effluent, and much remains to be elucidated. In light of this, we are investigating the occurrence of pharmaceuticals, and the development of water treatment systems for clinical effluent. This review discusses the current research on clinical effluent and the development of advanced water treatment systems targeted at hospital effluent, and explores strategies for future environmental risk assessment and risk management.
Complete physico-chemical treatment for coke plant effluents.
Ghose, M K
2002-03-01
Naturally found coal is converted to coke which is suitable for metallurgical industries. Large quantities of liquid effluents produced contain a large amount of suspended solids, high COD, BOD, phenols, ammonia and other toxic substances which are causing serious pollution problem in the receiving water to which they are discharged. There are a large number of coke plants in the vicinity of Jharia Coal Field (JCF). Characteristics of the effluents have been evaluated. The present effluent treatment systems were found to be inadequate. Physico-chemical treatment has been considered as a suitable option for the treatment of coke plant effluents. Ammonia removal by synthetic zeolite, activated carbon for the removal of bacteria, viruses, refractory organics, etc. were utilized and the results are discussed. A scheme has been proposed for the complete physico-chemical treatment, which can be suitably adopted for the recycling, reuse and safe disposal of the treated effluent. Various unit process and unit operations involved in the treatment system have been discussed. The process may be useful on industrial scale at various sites.
Pettit, William Henry
2001-01-01
A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.
Power recovery system for coal liquefaction process
Horton, Joel R.
1985-01-01
Method and apparatus for minimizing energy required to inject reactant such as coal-oil slurry into a reaction vessel, using high pressure effluent from the latter to displace the reactant from a containment vessel into the reaction vessel with assistance of low pressure pump. Effluent is degassed in the containment vessel, and a heel of the degassed effluent is maintained between incoming effluent and reactant in the containment vessel.
An Atmospheric Pressure Plasma Setup to Investigate the Reactive Species Formation.
Gorbanev, Yury; Soriano, Robert; O'Connell, Deborah; Chechik, Victor
2016-11-03
Non-thermal atmospheric pressure ('cold') plasmas have received increased attention in recent years due to their significant biomedical potential. The reactions of cold plasma with the surrounding atmosphere yield a variety of reactive species, which can define its effectiveness. While efficient development of cold plasma therapy requires kinetic models, model benchmarking needs empirical data. Experimental studies of the source of reactive species detected in aqueous solutions exposed to plasma are still scarce. Biomedical plasma is often operated with He or Ar feed gas, and a specific interest lies in investigation of the reactive species generated by plasma with various gas admixtures (O2, N2, air, H2O vapor, etc.) Such investigations are very complex due to difficulties in controlling the ambient atmosphere in contact with the plasma effluent. In this work, we addressed common issues of 'high' voltage kHz frequency driven plasma jet experimental studies. A reactor was developed allowing the exclusion of ambient atmosphere from the plasma-liquid system. The system thus comprised the feed gas with admixtures and the components of the liquid sample. This controlled atmosphere allowed the investigation of the source of the reactive oxygen species induced in aqueous solutions by He-water vapor plasma. The use of isotopically labelled water allowed distinguishing between the species originating in the gas phase and those formed in the liquid. The plasma equipment was contained inside a Faraday cage to eliminate possible influence of any external field. The setup is versatile and can aid in further understanding the cold plasma-liquid interactions chemistry.
An Atmospheric Pressure Plasma Setup to Investigate the Reactive Species Formation
Gorbanev, Yury; Soriano, Robert; O'Connell, Deborah; Chechik, Victor
2016-01-01
Non-thermal atmospheric pressure ('cold') plasmas have received increased attention in recent years due to their significant biomedical potential. The reactions of cold plasma with the surrounding atmosphere yield a variety of reactive species, which can define its effectiveness. While efficient development of cold plasma therapy requires kinetic models, model benchmarking needs empirical data. Experimental studies of the source of reactive species detected in aqueous solutions exposed to plasma are still scarce. Biomedical plasma is often operated with He or Ar feed gas, and a specific interest lies in investigation of the reactive species generated by plasma with various gas admixtures (O2, N2, air, H2O vapor, etc.) Such investigations are very complex due to difficulties in controlling the ambient atmosphere in contact with the plasma effluent. In this work, we addressed common issues of 'high' voltage kHz frequency driven plasma jet experimental studies. A reactor was developed allowing the exclusion of ambient atmosphere from the plasma-liquid system. The system thus comprised the feed gas with admixtures and the components of the liquid sample. This controlled atmosphere allowed the investigation of the source of the reactive oxygen species induced in aqueous solutions by He-water vapor plasma. The use of isotopically labelled water allowed distinguishing between the species originating in the gas phase and those formed in the liquid. The plasma equipment was contained inside a Faraday cage to eliminate possible influence of any external field. The setup is versatile and can aid in further understanding the cold plasma-liquid interactions chemistry. PMID:27842375
Artificial Sweeteners Reveal Septic System Effluent in Rural Groundwater.
Spoelstra, John; Senger, Natalie D; Schiff, Sherry L
2017-11-01
It has been widely documented that municipal wastewater treatment plant effluents are a major source of artificial sweeteners to surface waters. However, in rural areas, the extent to which septic systems contribute these same compounds to groundwater aquifers is largely unknown. We examined the occurrence of four commonly used artificial sweeteners in an unconfined sand aquifer that serves as a water supply for rural residents, as a receptor of domestic wastewater from septic systems, and as a source of baseflow to the Nottawasaga River, ON, Canada. Groundwater from the Lake Algonquin Sand Aquifer in the southern Nottawasaga River Watershed was collected from private domestic wells and as groundwater seeps discharging along the banks of the Nottawasaga River. Approximately 30% of samples had detectable levels of one or more artificial sweeteners, indicating the presence of water derived from septic system effluent. Using acesulfame concentrations to estimate the fraction of septic effluent in groundwater samples, ∼3.4 to 13.6% of the domestic wells had 1% or more of their well water being derived from septic system effluent. Similarly, 2.0 to 4.7% of the groundwater seeps had a septic effluent contribution of 1% or more. No relationship was found between the concentration of acesulfame and the concentration of nitrate, ammonium, or soluble reactive phosphorus in the groundwater, indicating that septic effluent is not the dominant source of nutrients in the aquifer. It is expected that the occurrence of artificial sweeteners in shallow groundwater is widespread throughout rural areas in Canada. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Hall, Dennis C.; Hillier, D.E.; Nickum, Edward; Dorrance, W.G.
1981-01-01
The use of residential wastewater-treatment systems in Evergreen Meadows, Marshdale, and Herzman Mesa, Colo., has degraded ground-water quality to some extent in each community. Age of community; average lot size; slope of land surface; composition, permeability, and thickness of surficial material; density, size , and orientation of fractures; maintenance of wastewater-treatment systems; and presence of animals are factors possibly contributing to the degradation of ground-water quality. When compared with effluent from aeration-treatment tanks, effluent fom septic-treatment tanks is characterized by greater biochemical oxygen demand and greater concentrations of detergents. When compared with effluent from septic-treatment tanks, effluent from aeration-treatment tanks is characterized by greater concentrations of dissolved oxygen, nitrite, nitrate, sulfate, and dissolved solids. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Bin; Li, Huiying; Du, Xiaoming
2016-02-01
During the process of surfactant enhanced aquifer remediation (SEAR), free phase dense non-aqueous phase liquid (DNAPL) may be mobilized and spread. The understanding of the impact of DNAPL spreading on the SEAR remediation is not sufficient with its positive effect infrequently mentioned. To evaluate the correlation between DNAPL spreading and remediation efficiency, a two-dimensional sandbox apparatus was used to simulate the migration and dissolution process of 1,2-DCA (1,2-dichloroethane) DNAPL in SEAR. Distribution area of DNAPL in the sandbox was determined by digital image analysis and correlated with effluent DNAPL concentration. The results showed that the effluent DNAPL concentration has significantmore » positive linear correlation with the DNAPL distribution area, indicating the mobilization of DNAPL could improve remediation efficiency by enlarging total NAPL-water interfacial area for mass transfer. Meanwhile, the vertical migration of 1,2-DCA was limited within the boundary of aquifer in all experiments, implying that by manipulating injection parameters in SEAR, optimal remediation efficiency can be reached while the risk of DNAPL vertical migration is minimized. This study provides a convenient visible and quantitative method for the optimization of parameters for SEAR project, and an approach of rapid predicting the extent of DNAPL contaminant distribution based on the dissolved DNAPL concentration in the extraction well.« less
Transport and retention of nanoscale C60 aggregates in water-saturated porous media.
Wang, Yonggang; Li, Yusong; Fortner, John D; Hughes, Joseph B; Abriola, Linda M; Pennell, Kurt D
2008-05-15
Experimental and mathematical modeling studies were performed to investigate the transport and retention of nanoscale fullerene aggregates (nC60) in water-saturated porous media. Aqueous suspensions of nC60 aggregates (95 nm diameter, 1 to 3 mg/L) were introduced into columns packed with either glass beads or Ottawa sand at a Darcy velocity of 2.8 m/d. In the presence of 1.0 mM CaCl2, nC60 effluent breakthrough curves (BTCs) gradually increased to a maximum value and then declined sharply upon reintroduction of nC60-free solution. Retention of nC60 in glass bead columns ranged from 8 to 49% of the introduced mass, while up to 77% of the mass was retained in Ottawa sand columns. When nC60 suspensions were prepared in deionized water alone, effluent nC60 BTCs coincided with those of a nonreactive tracer (Br-), with minimal nC60 retention. Observed differences in nC60 transport and retention behavior in glass beads and Ottawa sand were consistent with independent batch retention data and theoretical calculations of electrostatic interactions between nC60 and the solid surfaces. Effluent concentration and retention profile data were accurately simulated using a numerical model that accounted for nC60 attachment kinetics and a limiting retention capacity.
Water reuse at highway rest stations.
DOT National Transportation Integrated Search
1974-01-01
A laboratory biological wastewater treatment system was operated to investigate the effects of wastewater effluent recycle on the treatment system and the effluent water quality. This concept is being investigated for use at highway rest areas in the...
Uranium removal from a contaminated effluent using a combined microbial and nanoparticle system.
Baiget, Mar; Constantí, Magda; López, M Teresa; Medina, Francesc
2013-09-25
Reduction of soluble uranium(VI) to insoluble uranium(IV) for remediating a uranium-contaminated effluent (EF-03) was examined using a biotic and abiotic integrated system. Shewanella putrefaciens was first used and reduced U(VI) in a synthetic medium but not in the EF-03 effluent sample. Subsequently the growth of autochthonous microorganisms was stimulated with lactate. When lactate was supported on active carbon 77% U(VI) was removed in 4 days. Separately, iron nanoparticles that were 50 nm in diameter reduced U(VI) by 60% in 4 hours. The efficiency of uranium(VI) removal was improved to 96% in 30 min by using a system consisting of lactate and iron nanoparticles immobilized on active carbon. Lactate also stimulated the growth of potential uranium-reducing microorganisms in the EF-03 sample. This system can be efficiently used for the bioremediation of uranium-contaminated effluents. Copyright © 2013 Elsevier B.V. All rights reserved.
Iodinated X-ray contrast agents: Photoinduced transformation and monitoring in surface water.
Fabbri, D; Calza, P; Dalmasso, D; Chiarelli, P; Santoro, V; Medana, C
2016-12-01
Conventional wastewater treatment methods have shown to be unsuitable for a complete elimination of iodinated X-ray contrast agents (ICMs), which have thus been found in wastewater treatment plant (WWTP) effluent and in surface water. Once in the surface water, they could be transformed through different processes and form several transformation products that may need to be monitored as well. To this end, we studied the abatement and transformation of ICMs by combining laboratory experiments with in field analyses. We irradiated different aqueous solutions of the selected pollutants in the presence of TiO 2 as photocatalyst, aimed to promote ICMs degradation and to generate photoinduced transformation products (TPs) similar to those occurring in the environment and effluent wastewater. This experimental strategy has been applied to the study of three ICMs, namely iopromide, iopamidol and diatrizoate. A total of twenty-four, ten, and ten TPs were detected from iopamidol, diatrizoate and iopromide, respectively. The analyses were performed using a liquid chromatography-LTQ-FT-Orbitrap mass spectrometer. The mineralization process and acute toxicity evolution were assessed as well over time and revealed a lack of mineralization for all ICMs and the formation of harmful byproducts. After characterizing these transformation products, WWTP effluent and surface water taken from several branches of the Chicago River were analyzed for ICMs and their TPs. HRMS with MS/MS fragmentation was used as a confirmatory step for proper identification of compounds in water and wastewater samples. All three of ICM were detected in the effluent and surface water samples, while no significant amount of TPs were detected. Copyright © 2016 Elsevier B.V. All rights reserved.
Gill, L W; O'Luanaigh, N; Johnston, P M; Misstear, B D R; O'Suilleabhain, C
2009-06-01
The performance of six separate percolation areas was intensively monitored to ascertain the attenuation effects of unsaturated subsoils with respect to on-site wastewater effluent: three sites receiving septic tank effluent, the other three sites receiving secondary treated effluent. The development of a biomat across the percolation areas receiving secondary treated effluent was restricted on these sites compared to those sites receiving septic tank effluent and this created significant differences in terms of the potential nitrogen loading to groundwater. The average nitrogen loading per capita at 1.0m depth of unsaturated subsoil equated to 3.9 g total-N/d for the sites receiving secondary treated effluent, compared to 2.1 g total-N/d for the sites receiving septic tank effluent. Relatively high nitrogen loading was, however, found on the septic tank sites discharging effluent into highly permeable subsoil that counteracted any significant denitrification. Phosphorus removal was generally very good on all of the sites although a clear relationship to the soil mineralogy was determined.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Phosphate... calcium sulfate storage pile runoff facility operated separately or in combination with a water recirculation system designed, constructed and operated to maintain a surge capacity equal to the runoff from...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Phosphate... calcium sulfate storage pile runoff facility operated separately or in combination with a water recirculation system designed, constructed and operated to maintain a surge capacity equal to the runoff from...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Phosphate... calcium sulfate storage pile runoff facility operated separately or in combination with a water recirculation system designed, constructed and operated to maintain a surge capacity equal to the runoff from...
Makarska-Bialokoz, Magdalena
2018-07-05
The specific spectroscopic and redox properties of porphyrins predestine them to fulfill the role of sensors during interacting with different biologically active substances. Monitoring of binding interactions in the systems porphyrin-biologically active compound is a key question not only in the field of physiological functions of living organisms, but also in environmental protection, notably in the light of the rapidly growing drug consumption and concurrently the production of drug effluents. Not always beneficial action of drugs on natural porphyrin systems induces to further studies, with commercially available porphyrins as the model systems. Therefore the binding process between several water-soluble porphyrins and a series of biologically active compounds (e.g. caffeine, guanine, theophylline, theobromine, xanthine, uric acid) has been studied in different aqueous solutions analyzing their absorption and steady-state fluorescence spectra, the porphyrin fluorescence lifetimes and their quantum yields. The magnitude of the binding and fluorescence quenching constants values for particular quenchers decreases in a series: uric acid > guanine > caffeine > theophylline > theobromine > xanthine. In all the systems studied there are characters of static quenching, as a consequence of the π-π-stacked non-covalent and non-fluorescent complexes formation between porphyrins and interacting compounds, accompanied simultaneously by the additional specific binding interactions. The porphyrin fluorescence quenching can be explain by the photoinduced intermolecular electron transfer from aromatic compound to the center of the porphyrin molecule, playing the role of the binding site. Presented results can be valuable for designing of new fluorescent porphyrin chemosensors or monitoring of drug traces in aqueous solutions. The obtained outcomes have also the toxicological and medical importance, providing insight into the interactions of the water-soluble porphyrins with biologically active substances. Copyright © 2018 Elsevier B.V. All rights reserved.
Pharmaceuticals in on-site sewage effluent and ground water, Western Montana
Godfrey, E.; Woessner, W.W.; Benotti, M.J.
2007-01-01
Human use of pharmaceuticals results in the excretion and disposal of compounds that become part of municipal and domestic waste streams. On-site waste water disposal and leaking city sewer systems can provide avenues for the migration of effluent to the underlying aquifers. This research assessed the occurrence and persistence of 22 target pharmaceuticals in septic tank effluent and two shallow, coarse-grained aquifers in western Montana. Twelve compounds (acetaminophen, caffeine, codeine, carbamazepine, cotinine, erythromycin-18, nicotine, paraxanthine, ranitidine, sulfamethoxazole, trimethoprim, and warfarin) were detected in a high school septic tank effluent. Three of the 12 compounds, carbamazepine, sulfamethoxazole, and nicotine, were detected in the underlying sand and gravel aquifer after effluent percolation through a 2.0-m thick sand vadose zone. Sampling of a second sand, gravel, and cobble dominated unconfined aquifer, partially overlain by septic systems and a city sewer system, revealed the presence of caffeine, carbamazepine, cotinine, nicotine, and trimethoprim. The presence of carbamazepine and sulfamethoxazole in these aquifers appears to correlate with local usage based on a reported monthly prescription volume. This work highlights the need for expanding geochemical investigations of sewage waste impacted ground water systems to include sampling for selected pharmaceuticals. ?? 2007 National Ground Water Association.
Pharmaceuticals in on-site sewage effluent and ground water, Western Montana.
Godfrey, Emily; Woessner, William W; Benotti, Mark J
2007-01-01
Human use of pharmaceuticals results in the excretion and disposal of compounds that become part of municipal and domestic waste streams. On-site waste water disposal and leaking city sewer systems can provide avenues for the migration of effluent to the underlying aquifers. This research assessed the occurrence and persistence of 22 target pharmaceuticals in septic tank effluent and two shallow, coarse-grained aquifers in western Montana. Twelve compounds (acetaminophen, caffeine, codeine, carbamazepine, cotinine, erythromycin-18, nicotine, paraxanthine, ranitidine, sulfamethoxazole, trimethoprim, and warfarin) were detected in a high school septic tank effluent. Three of the 12 compounds, carbamazepine, sulfamethoxazole, and nicotine, were detected in the underlying sand and gravel aquifer after effluent percolation through a 2.0-m thick sand vadose zone. Sampling of a second sand, gravel, and cobble dominated unconfined aquifer, partially overlain by septic systems and a city sewer system, revealed the presence of caffeine, carbamazepine, cotinine, nicotine, and trimethoprim. The presence of carbamazepine and sulfamethoxazole in these aquifers appears to correlate with local usage based on a reported monthly prescription volume. This work highlights the need for expanding geochemical investigations of sewage waste impacted ground water systems to include sampling for selected pharmaceuticals.
Jourjon, F; Khaldi, S; Reveillere, M; Thibault, C; Poulard, A; Chretien, P; Bednar, J
2005-01-01
In a more and more regulated and socially pressured environment, the durable management of winery effluents must take into account their characteristics and their potential impact on their natural setting. The object of this exploratory study is to establish an inventory of the microbiological composition of winery effluents coming from different treatment systems. We have observed that winery effluents are charged with micro-organisms, by a factor that ranges from 10(5) to 10(8) UFC/ml, and that the level of "microbiological pollution" is independent of the type of system. The composition of the flora is closely tied to the time of year and therefore to winery activities, so certain micro-organisms will be favoured in certain periods and others will have a tendency to decrease. We have seen that from one year to another our observations remain identical; the flora equilibrium therefore occurs systematically and naturally. Faecal germs are found in very small quantities in winery effluent treatment systems. They represent minor sanitary risks. Good correlations were observed between some micro-organisms and some physical-chemical parameters (COD). It is, however, difficult to use these "easy-to-measure" parameters as reliable markers of certain microbial populations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for by-product coke plants which have wet desulfurization systems but only to the extent such systems... limitations, are allowed for by-product coke plants which include indirect ammonia recovery systems but only..., are allowed for by-product coke plants which have wet desulfurization systems but only to the extent...
Code of Federal Regulations, 2014 CFR
2014-07-01
... for by-product coke plants which have wet desulfurization systems but only to the extent such systems... limitations, are allowed for by-product coke plants which include indirect ammonia recovery systems but only..., are allowed for by-product coke plants which have wet desulfurization systems but only to the extent...
Code of Federal Regulations, 2011 CFR
2011-07-01
... for by-product coke plants which have wet desulfurization systems but only to the extent such systems... limitations, are allowed for by-product coke plants which include indirect ammonia recovery systems but only..., are allowed for by-product coke plants which have wet desulfurization systems but only to the extent...
Code of Federal Regulations, 2012 CFR
2012-07-01
... for by-product coke plants which have wet desulfurization systems but only to the extent such systems... limitations, are allowed for by-product coke plants which include indirect ammonia recovery systems but only..., are allowed for by-product coke plants which have wet desulfurization systems but only to the extent...
USDA-ARS?s Scientific Manuscript database
Currently, Southeast Poultry Research Laboratory (SEPRL) uses an effluent decontamination system (EDS) that serves as an enhancement, or extra barrier for biocontainment. Wastewater effluent from (A)BSL-3E and (A)BSL-2E laboratories is collected in tanks for thermal inactivation (180°F for 30 minut...
Code of Federal Regulations, 2011 CFR
2011-07-01
... times. Subpart C [BCT effluent limitations for unbleached kraft-neutral sulfite semi-chemical (cross recovery) process and/or a combined unbleached kraft and semi-chemical process, wherein the spent semi-chemical cooking liquor is burned within the unbleached kraft chemical recovery system] Pollutant or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... times. Subpart C [BCT effluent limitations for unbleached kraft-neutral sulfite semi-chemical (cross recovery) process and/or a combined unbleached kraft and semi-chemical process, wherein the spent semi-chemical cooking liquor is burned within the unbleached kraft chemical recovery system] Pollutant or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Phosphate... pile runoff facility operated separately or in combination with a water recirculation system designed, constructed and operated to maintain a surge capacity equal to the runoff from the 25-year, 24-hour rainfall...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Phosphate... pile runoff facility operated separately or in combination with a water recirculation system designed, constructed and operated to maintain a surge capacity equal to the runoff from the 25-year, 24-hour rainfall...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Phosphate... pile runoff facility operated separately or in combination with a water recirculation system designed, constructed and operated to maintain a surge capacity equal to the runoff from the 25-year, 24-hour rainfall...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Phosphate... pile runoff facility operated separately or in combination with a water recirculation system designed, constructed and operated to maintain a surge capacity equal to the runoff from the 25-year, 24-hour rainfall...
Pollution control of industrial wastewater from soap and oil industries: a case study.
Abdel-Gawad, S; Abdel-Shafy, M
2002-01-01
Industrial wastewater from soap and oil industries represents a heavy pollution source on their receiving water body. This paper studies a case of pollution control at Tanta Soap and Oil Company, Banha Factory, Egypt. The factory production includes soap, edible oil, and animal fodder. About 4,347 m3/day of industrial wastewater effluent was discharged via gravity sewers to the public sewerage system. Most of the effluent was cooling water because the cooling process in the factory was open circle. In spite of the huge quantity of cooling water being disposed of, disposal of wastewater was violating pertinent legislation. Three procedures were used for controlling the pollution at the Banha Factory. Firstly, all open circuit cooling systems were converted to closed circuit thus reducing the quantity of the discharged wastewater down to 767 m3/day. Secondly, the heavily polluted oil and grease (O&G) wastewater from the refinery unit is treated via two gravity oil separator (GOS) units, dissolved air floatation (DAF), and biological units in order to reduce the high levels of O&G, BOD, COD, and SS to the allowable limits. Thirdly, the heavily polluted waste effluent from the 'red water' saponification unit is treated separately by acidification to convert the emulsified fatty acid to free form in order to be separated through an oil separation unit. The effluent is then passed to liming stage to neutralize excess acidity and precipitate some of the dissolved matters. The mixture is finally clarified and the pH is adjusted to the allowable limits. The effluent wastewater from the three processes is collected and mixed in a final equalization tank for discharging effluent to the public sewerage system. The characteristics of the effluent water are very good with respect to the allowable Egyptian limits for discharging effluent to the public sewerage system.
Fate of individual sewage disposal system wastewater within regolith in mountainous terrain
NASA Astrophysics Data System (ADS)
Dano, Kathleen; Poeter, Eileen; Thyne, Geoff
2008-06-01
In order to improve understanding of the fate of septic tank or individual sewage disposal system (ISDS) effluent in regolith overlying fractured-rock aquifers, effluent from an ISDS in such a setting was tracked via geophysical, hydrological, and geochemical methods. Under typical precipitation conditions, the effluent entered the fractured bedrock within 5 m of the boundary of the constructed infiltration area. During a period of unusually high spring recharge, the plume migrated between 50 and 100 m within the regolith before infiltrating the fractured bedrock. The chemical signature of the effluent is similar to that required to account for the decline in water quality, suggesting a causative relationship (as estimated from mass-balance models of the surface-water chemistry near the mouth of the basin). The elevated salt content of the effluent during periods of high natural recharge to the infiltration area correlates with elevated salt concentrations in surface and groundwater at the basin scale, suggesting that some of the effluent salt load may be stored in the unsaturated zone during dry periods and flushed during periods of elevated natural recharge.
NASA Astrophysics Data System (ADS)
Stivanin de Almeida, Cibele M.; Ribeiro, Anderson S.; Saint'Pierre, Tatiana D.; Miekeley, Norbert
2009-06-01
Inductively coupled plasma optical emission spectrometry and mass spectrometry (ICPMS), the latter hyphenated to flow injection hydride generation, electrothermal vaporization or ion chromatography, have been applied to the chemical characterization of crude oil, aqueous process stream samples and wastewaters from a petroleum refinery, in order to get information on the behavior of selenium and its chemical species along effluent generation and treatment. Multielemental characterization of these effluents by ICPMS revealed a complex composition of most of them, with high salinity and potential spectral and non-spectral interferents present. For this reason, a critical re-assessment of the analytical techniques for the determination of total selenium and its species was performed. Methane was employed as gas in dynamic reaction cell ICPMS and cell parameters were optimized for a simulated brine matrix and for diluted aqueous solutions to match the expected process and treated wastewaters samples. The signal-to-background ratios for 78Se and 80Se were used as criteria in optimization, the first isotope resulting in better detection limits for the simulated brine matrix ( 78Se: 0.07 μg L - 1 , 80Se: 0.31 μg L - 1 ). A large variability in the concentration of selenium (from < 10 μg kg - 1 up to 960 μg kg - 1 ) was observed in 16 of the most frequently processed crude oil samples in the refinery here investigated, which may explain the pronounced concentrations changes of this element measured in aqueous process stream and wastewater samples. Highest concentrations of total selenium were analyzed in samples from the hydrotreater (up to about 1800 μg L - 1 ). The predominance of selenocyanate (SeCN -) was observed in most of the wastewaters so far investigated, but also other species were detected with retention times different from Se(IV), Se(VI) and SeCN -. Colloidal selenium (Se 0) was the only Se-species observed in samples from the atmospheric distillation unit, but was also identified in other samples, most probably formed by the decomposition of SeCN - or other unstable species.
Robertson, John B.
1976-01-01
Aqueous chemical and low-level radioactive effluents have been disposed to seepage ponds since 1952 at the Idaho National Engineering Laboratory. The solutions percolate toward the Snake River Plain aquifer (135 m below) through interlayered basalts and unconsolidated sediments and an extensive zone of ground water perched on a sedimentary layer about 40 m beneath the ponds. A three-segment numerical model was developed to simulate the system, including effects of convection, hydrodynamic dispersion, radioactive decay, and adsorption. Simulated hydraulics and solute migration patterns for all segments agree adequately with the available field data. The model can be used to project subsurface distributions of waste solutes under a variety of assumed conditions for the future. Although chloride and tritium reached the aquifer several years ago, the model analysis suggests that the more easily sorbed solutes, such as cesium-137 and strontium-90, would not reach the aquifer in detectable concentrations within 150 years for the conditions assumed. (Woodard-USGS)
Characterization of Sweetmeat Waste and Its Suitability for Sorption of As(III) in Aqueous Media.
Islam, Md Mirajul; Adak, Asok; Paul, Prabir K
2017-04-01
Presence of arsenic in effluents from mining, mineral processing, and metal plating industries pose a serious health hazard to human beings. In this research, suitability of cheap sweetmeat waste (SMW), which is sweet industry byproduct, was investigated for the treatment of As(III). The physicochemical properties of the sorbent were characterized. The SEM images revealed highly heterogeneous sorbent surface. XRD analysis showed the presence of different polysaccharides mainly containing hydroxyl functional group. FTIR analysis was also performed to confirm the functional groups present in the sorbent. Batch experiments were conducted for kinetic analysis, effect of initial As(III) concentration, sorbent dose, electrolytes, pH, and temperature in order to understand sorption behavior. Presence of electrolyte, solution pH, and temperature were found to affect the performance of the sorbent. The sorption followed pseudo-second order reaction and Langmuir isotherm model best. The studies revealed SMW to be an efficient media for removal of As(III) from aqueous environment.
Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review.
Rubio-Clemente, Ainhoa; Torres-Palma, Ricardo A; Peñuela, Gustavo A
2014-04-15
Due to their carcinogenic, mutagenic and teratogenic potential, the removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous environment using physical, biological and chemical processes has been studied by several researchers. This paper reviews the current state of knowledge concerning PAHs including their physico-chemical properties, input sources, occurrence, adverse effects and conventional and alternative chemical processes applied for their removal from water. The mechanisms and reactions involved in each treatment method are reported, and the effects of various variables on the PAH degradation rate as well as the extent of degradation are also discussed. Extensive literature analysis has shown that an effective way to perform the conversion and mineralization of this type of substances is the application of advanced oxidation processes (AOPs). Furthermore, combined processes, particularly AOPs coupled with biological treatments, seem to be one of the best solutions for the treatment of effluents containing PAHs. Copyright © 2013 Elsevier B.V. All rights reserved.
Wang, Wenqiang
2018-01-01
To exploit the adsorption capacity of commercial powdered activated carbon (PAC) and to improve the efficiency of Cr(VI) removal from aqueous solutions, the adsorption of Cr(VI) by commercial PAC and the countercurrent two-stage adsorption (CTA) process was investigated. Different adsorption kinetics models and isotherms were compared, and the pseudo-second-order model and the Langmuir and Freundlich models fit the experimental data well. The Cr(VI) removal efficiency was >80% and was improved by 37% through the CTA process compared with the conventional single-stage adsorption process when the initial Cr(VI) concentration was 50 mg/L with a PAC dose of 1.250 g/L and a pH of 3. A calculation method for calculating the effluent Cr(VI) concentration and the PAC dose was developed for the CTA process, and the validity of the method was confirmed by a deviation of <5%. Copyright © 2017. Published by Elsevier Ltd.
Degradation of dyes from aqueous solution by Fenton processes: a review.
Nidheesh, Puthiya Veetil; Gandhimathi, Rajan; Ramesh, Srikrishnaperumal Thanga
2013-04-01
Several industries are using dyes as coloring agents. The effluents from these industries are increasingly becoming an environmental problem. The removal of dyes from aqueous solution has a great potential in the field of environmental engineering. This paper reviews the classification, characteristics, and problems of dyes in detail. Advantages and disadvantages of different methods used for dye removal are also analyzed. Among these methods, Fenton process-based advanced oxidation processes are an emerging prospect in the field of dye removal. Fenton processes have been classified and represented as "Fenton circle". This paper analyzes the recent studies on Fenton processes. The studies include analyzing different configurations of reactors used for dye removal, its efficiency, and the effects of various operating parameters such as pH, catalyst concentration, H2O2 concentration, initial dye concentration, and temperature of Fenton processes. From the present study, it can be conclude that Fenton processes are very effective and environmentally friendly methods for dye removal.
NASA Astrophysics Data System (ADS)
Cai, Chun-Xiang; Xu, Jian; Deng, Nian-Fang; Dong, Xue-Wei; Tang, Hao; Liang, Yu; Fan, Xian-Wei; Li, You-Zhi
2016-11-01
The biomass of filamentous fungi is an important cost-effective biomass for heavy metal biosorption. However, use of free fungal cells can cause difficulties in the separation of biomass from the effluent. In this study, we immobilized the living conidia of the heavy metal-resistant Penicillium janthinillum strain GXCR by polyvinyl alcohol (PVA)-sodium alginate (SA) beads to remove heavy metals from an aqueous solution containing a low concentration (70 mg/L) of Cu, Pb, and Cd. The PVA-SA-conidia beads showed perfect characters of appropriate mechanical strength suitable for metal removal from the dynamic wastewater environment, an ideal settleability, easy separation from the solution, and a high metal biosorption and removal rate even after four cycles of successive sorption-desorption of the beads, overcoming disadvantages when fungal biomasses alone are used for heavy metal removal from wastewater. We also discuss the major biosorption-affecting factors, biosorption models, and biosorption mechanisms.
Cai, Chun-Xiang; Xu, Jian; Deng, Nian-Fang; Dong, Xue-Wei; Tang, Hao; Liang, Yu; Fan, Xian-Wei; Li, You-Zhi
2016-01-01
The biomass of filamentous fungi is an important cost-effective biomass for heavy metal biosorption. However, use of free fungal cells can cause difficulties in the separation of biomass from the effluent. In this study, we immobilized the living conidia of the heavy metal-resistant Penicillium janthinillum strain GXCR by polyvinyl alcohol (PVA)-sodium alginate (SA) beads to remove heavy metals from an aqueous solution containing a low concentration (70 mg/L) of Cu, Pb, and Cd. The PVA-SA-conidia beads showed perfect characters of appropriate mechanical strength suitable for metal removal from the dynamic wastewater environment, an ideal settleability, easy separation from the solution, and a high metal biosorption and removal rate even after four cycles of successive sorption-desorption of the beads, overcoming disadvantages when fungal biomasses alone are used for heavy metal removal from wastewater. We also discuss the major biosorption-affecting factors, biosorption models, and biosorption mechanisms. PMID:27848987
Biosorption of Heavy Metals from Aqueous Solution by Bacteria Isolated from Contaminated Soil.
Dhanwal, Pradeep; Kumar, Anil; Dudeja, Shruti; Badgujar, Hemlata; Chauhan, Rohit; Kumar, Abhishek; Dhull, Poonam; Chhokar, Vinod; Beniwal, Vikas
2018-05-01
This study was carried out to analyze the heavy metals biosorption potential of bacteria isolated from soil contaminated with electroplating industrial effluents. Bacterial isolates were screened for their multi-metal biosorption potential against copper, nickel, lead, and chromium. Bacterial isolate CU4A showed the maximum uptake of copper, nickel, lead, and chromium in aqueous solution, with a biosorption efficiency of 87.16 %, 79.62%, 84.92%, and 68.12%, respectively. The bacterial strain CU4A was identified as Bacillus cereus, following 16S rRNA gene sequence analysis. The surface chemical functional groups of bacterial biomass were identified by Fourier transform infrared (FTIR) spectroscopy as hydroxyl, carboxyl, amine, and halide, which may be involved in the biosorption of heavy metals. Analysis with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) confirmed the adsorption of metals on the bacterial cell mass. The results of this study are significant and could be further investigated for the removal of heavy metals from contaminated environments.
NASA Astrophysics Data System (ADS)
Eljiedi, Arwa Alseddig Ahmed; Kamari, Azlan
2017-05-01
Textile effluents are considered as potential sources of water pollution because they contain toxic dyes. In the present study, lala clam shell was used as an alternative low-cost adsorbent for the removal of two harmful dyes, namely methyl orange (MO) and methylene blue (MB) from aqueous solution. Batch adsorption studies were carried out by varying experimental parameters such as solution pH, initial concentration and adsorbent dosage. The optimum pH values for MO and MB removal were pH 2.0 and pH 8.0, respectively. At an initial MO and MB concentration of 20 mg/L, the maximum removal percentage of MO and MB were 18.9 % and 81.3 %, respectively. The adsorption equilibrium data were correlated with both Langmuir and Freundlich isotherm models. The biomass adsorbent was characterised using Field Emission Scanning Electron Microscope (FESEM) and Fourier Transform Infrared Spectrometer (FTIR). Results from this study suggest that lala clam shell, a fishery waste, can be beneficial for water treatment.
Ehsan, Asma; Bhatti, Haq Nawaz; Iqbal, Munawar; Noreen, Saima
2017-02-01
Environmental applications of composites have attracted the interests of researchers due to their excellent adsorption efficiency for pollutants. Native, HCl pre-treated clay and MnFe 2 O 4 /clay composite were investigated as an adsorbent for removal of methyl green from aqueous solution. The adsorption behaviors of dye onto native, HCl pre-treated and composite clays were studied as a function of contact time, adsorbent dose, pH, initial dye concentration and temperature. Maximum dye adsorption of 44 mg/g was achieved at pH of 8, contact time 40 min, adsorbent dose 0.20 g/L and initial dye concentration of 125 mg/L using clay composite. The Langmuir isotherm and pseudo-second-order kinetic model best explained the methyl green dye adsorption onto clay adsorbents. Thermodynamic parameters revealed the endothermic and spontaneous adsorption nature of dye. From results, it is concluded that clay has potential for adsorbing methyl green and can be used for the removal of dyes from industrial effluents.
Code of Federal Regulations, 2010 CFR
2010-07-01
... best practicable control technology currently available. (a) By-product cokemaking—iron and steel... for by-product coke plants which have wet desulfurization systems but only to the extent such systems... limitations, are allowed for by-product coke plants which include indirect ammonia recovery systems but only...
2013-01-01
The aim of this study was to investigate the performance of a two-stage fluidized bed reactor (FBR) system for the post-treatment of secondary wastewater treatment plant effluents (Shahrak Gharb, Tehran, Iran). The proposed treatment scheme was evaluated using pilot-scale reactors (106-L of capacity) filled with PVC as the fluidized bed (first stage) and gravel for the filtration purpose (second stage). Aluminum sulfate (30 mg/L) and chlorine (1 mg/L) were used for the coagulation and disinfection of the effluent, respectively. To monitor the performance of the FBR system, variation of several parameters (biochemical oxygen demand (BOD5), chemical oxygen demand (COD), turbidity, total phosphorous, total coliform and fecal coliform) were monitored in the effluent wastewater samples. The results showed that the proposed system could effectively reduce BOD5 and COD below 1.95 and 4.06 mg/L, respectively. Turbidity of the effluent could be achieved below 0.75 NTU, which was lower than those reported for the disinfection purpose. The total phosphorus was reduced to 0.52 mg/L, which was near the present phosphorous standard for the prevention of eutrophication process. Depending on both microorganism concentration and applied surface loading rates (5–10 m/h), about 35 to 75% and 67 to 97% of coliform were removed without and with the chlorine addition, respectively. Findings of this study clearly confirmed the efficiency of the FBR system for the post-treatment of the secondary wastewater treatment plant effluents without any solid problem during the chlorination. PMID:24499570
NASA Astrophysics Data System (ADS)
Darnell, K. N.; Flemings, P. B.; DiCarlo, D.
2017-06-01
Long-term geological storage of CO2 may be essential for greenhouse gas mitigation, so a number of storage strategies have been developed that utilize a variety of physical processes. Recent work shows that injection of combustion power plant effluent, a mixture of CO2 and N2, into CH4 hydrate-bearing reservoirs blends CO2 storage with simultaneous CH4 production where the CO2 is stored in hydrate, an immobile, solid compound. This strategy creates economic value from the CH4 production, reduces the preinjection complexity since costly CO2 distillation is circumvented, and limits leakage since hydrate is immobile. Here we explore the phase behavior of these types of injections and describe the individual roles of H2O, CO2, CH4, and N2 as these components partition into aqueous, vapor, hydrate, and liquid CO2 phases. Our results show that CO2 storage in subpermafrost or submarine hydrate-forming reservoirs requires coinjection of N2 to maintain two-phase flow and limit plugging.
Machado, Fernando M; Bergmann, Carlos P; Fernandes, Thais H M; Lima, Eder C; Royer, Betina; Calvete, Tatiana; Fagan, Solange B
2011-09-15
Multi-walled carbon nanotubes and powdered activated carbon were used as adsorbents for the successful removal of Reactive Red M-2BE textile dye from aqueous solutions. The adsorbents were characterised by infrared spectroscopy, N(2) adsorption/desorption isotherms and scanning electron microscopy. The effects of pH, shaking time and temperature on adsorption capacity were studied. In the acidic pH region (pH 2.0), the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium at 298K was fixed at 1h for both adsorbents. The activation energy of the adsorption process was evaluated from 298 to 323K for both adsorbents. The Avrami fractional-order kinetic model provided the best fit to the experimental data compared with pseudo-first-order or pseudo-second-order kinetic adsorption models. For Reactive Red M-2BE dye, the equilibrium data were best fitted to the Liu isotherm model. Simulated dyehouse effluents were used to check the applicability of the proposed adsorbents for effluent treatment. Copyright © 2011 Elsevier B.V. All rights reserved.
Nguyen, Luong N; Hai, Faisal I; Price, William E; Leusch, Frederic D L; Roddick, Felicity; Ngo, Hao H; Guo, Wenshan; Magram, Saleh F; Nghiem, Long D
2014-09-01
The removal of four recalcitrant trace organic contaminants (TrOCs), namely carbamazepine, diclofenac, sulfamethoxazole and atrazine by laccase in an enzymatic membrane reactor (EMR) was studied. Laccases are not effective for degrading non-phenolic compounds; nevertheless, 22-55% removal of these four TrOCs was achieved by the laccase EMR. Addition of the redox-mediator syringaldehyde (SA) to the EMR resulted in a notable dose-dependent improvement (15-45%) of TrOC removal affected by inherent TrOC properties and loading rates. However, SA addition resulted in a concomitant increase in the toxicity of the treated effluent. A further 14-25% improvement in aqueous phase removal of the TrOCs was consistently observed following a one-off dosing of 3g/L granular activated carbon (GAC). Mass balance analysis reveals that this improvement was not due solely to adsorption but also enhanced biodegradation. GAC addition also reduced membrane fouling and the SA-induced toxicity of the effluent. Copyright © 2014 Elsevier Ltd. All rights reserved.
Butkovskyi, A; Leal, L Hernandez; Zeeman, G; Rijnaarts, H H M
2017-07-01
The quality of anaerobic sludge and struvite from black water treatment system, aerobic sludge from grey water treatment system and effluents of both systems was assessed for organic micropollutant content in order to ensure safety when reusing these products. Use of anaerobic black water sludge and struvite as soil amendments is recommended based on the low micropollutant content. Aerobic grey water sludge is recommended for disposal, because of the relatively high micropollutant concentrations, exceeding those in sewage sludge. Effluents of black and grey water treatment systems require post-treatment prior to reuse, because the measured micropollutant concentrations in the effluents are above ecotoxicological thresholds. Copyright © 2017 Elsevier Inc. All rights reserved.
Degradation of MDEA in aqueous solution in the thermally activated persulfate system.
Li, Yong-Tao; Yue, Dong; Wang, Bing; Ren, Hong-Yang
2017-03-01
The feasibility of methyldiethanolamine (MDEA) degradation in thermally activated PS system was evaluated. Effects of the PS concentration, pH, activation temperature and reaction time on MDEA degradation were investigated. Simultaneity, the thermodynamic analysis and degradation process were also performed. Several findings were made in this study including the following: the degradation rates of MDEA in thermally activated PS systems were higher than other systems. MDEA could be readily degraded at 40°C with a PS concentration of 25.2 mM, the process of MDEA degradation was accelerated by higher PS dose and reaction temperature, and MDEA degradation and PS consumption followed the pseudo-first-order kinetic model. The thermodynamic analysis showed that the activation process followed an endothermic path of the positive value of [Formula: see text] and spontaneous with the negative value of [Formula: see text], high temperature was favorable to the degradation of MDEA with the apparent activation energy of 87.11 KJ/mol. Combined FT-IR with GC-MS analysis techniques, MDEA could be oxidative degraded after the C-N bond broken to small molecules of organic acids, alcohols or nitro compounds until oxidized to CO 2 and H 2 O. In conclusion, the thermally activated PS process is a promising option for degrading MDEA effluent liquor.
Taylor, Tammy P; Rathfelder, Klaus M; Pennell, Kurt D; Abriola, Linda M
2004-03-01
Alcohol addition has been suggested for use in combination with surfactant flushing to enhance solubilization kinetics and permit density control of dense non-aqueous phase liquid (DNAPL)-laden surfactant plumes. This study examined the effects of adding ethanol (EtOH) to a 4% Tween 80 (polyoxyethylene (20) sorbitan monooleate) solution used to flush tetrachloroethene (PCE)-contaminated porous media. The influence of EtOH concentration, subsurface layering and scale on flushing solution delivery and PCE recovery was investigated through a combination of experimental and mathematical modeling studies. Results of batch experiments demonstrated that the addition of 2.5%, 5% and 10% (wt.) EtOH incrementally increased the PCE solubilization capacity and viscosity of the surfactant solution, while reducing solution density from 1.002 to 0.986 g/cm3. Effluent concentration data obtained from one-dimensional (1-D) column experiments were used to characterize rate-limited micellar solubilization of residual PCE, which was strongly dependent upon flow velocity and weakly dependent upon EtOH concentration. Two-dimensional (2-D) box studies illustrated that minor differences (0.008 g/cm3) between flushing and resident solution density can strongly influence surfactant front propagation. A two-dimensional multiphase simulator, MISER, was used to model the influence of EtOH composition on the aqueous flow field and PCE mass recovery. The ability of the numerical simulator to predict effluent concentrations and front propagation was demonstrated for both 1-D columns and 2-D boxes flushed with EtOH-amended Tween 80 solutions. Results of this study quantify the potential influence of alcohol addition on surfactant solution properties and solubilization capacity, and demonstrate the importance of considering small density variations in remedial design.
Karri, Rama Rao; Sahu, J N
2018-01-15
Zn (II) is one the common pollutant among heavy metals found in industrial effluents. Removal of pollutant from industrial effluents can be accomplished by various techniques, out of which adsorption was found to be an efficient method. Applications of adsorption limits itself due to high cost of adsorbent. In this regard, a low cost adsorbent produced from palm oil kernel shell based agricultural waste is examined for its efficiency to remove Zn (II) from waste water and aqueous solution. The influence of independent process variables like initial concentration, pH, residence time, activated carbon (AC) dosage and process temperature on the removal of Zn (II) by palm kernel shell based AC from batch adsorption process are studied systematically. Based on the design of experimental matrix, 50 experimental runs are performed with each process variable in the experimental range. The optimal values of process variables to achieve maximum removal efficiency is studied using response surface methodology (RSM) and artificial neural network (ANN) approaches. A quadratic model, which consists of first order and second order degree regressive model is developed using the analysis of variance and RSM - CCD framework. The particle swarm optimization which is a meta-heuristic optimization is embedded on the ANN architecture to optimize the search space of neural network. The optimized trained neural network well depicts the testing data and validation data with R 2 equal to 0.9106 and 0.9279 respectively. The outcomes indicates that the superiority of ANN-PSO based model predictions over the quadratic model predictions provided by RSM. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterizing shipboard bilgewater effluent before and after treatment.
McLaughlin, Christine; Falatko, Debra; Danesi, Robin; Albert, Ryan
2014-04-01
Operational discharges from oceangoing vessels, including discharges of bilgewater, release oil into marine ecosystems that can potentially damage marine life, terrestrial life, human health, and the environment. Bilgewater is a mix of oily fluids and other pollutants from a variety of sources onboard a vessel. If bilgewater cannot be retained onboard, it must be treated by an oily water separator before discharge for larger ocean-going vessels. We evaluated the effectiveness of bilgewater treatment systems by analyzing land-based type approval data, collecting and analyzing shipboard bilgewater effluent data, assessing bilgewater effluent concentrations compared to regulatory standards, evaluating the accuracy of shipboard oil content monitors relative to analytical results, and assessing additional pollution reduction benefits of treatment systems. Land-based type approval data were gathered for 20 treatment systems. Additionally, multiple samples of influent and effluent from operational bilgewater treatment systems onboard three vessels were collected and analyzed, and compared to the land-based type approval data. Based on type approval data, 15 treatment systems were performing below 5 ppm oil. Shipboard performance measurements verified land-based type approval data for the three systems that were sampled. However, oil content monitor readings were more variable than actual oil concentration measurements from effluent samples, resulting in false negatives and positives. The treatment systems sampled onboard for this study generally reduced the majority of other potentially harmful pollutants, which are not currently regulated, with the exception of some heavy metal analytes.
NASA Astrophysics Data System (ADS)
King, J. N.; Cunningham, K. J.; Foster, A. L.
2011-12-01
The Miami-Dade Water and Sewer Department (MDWASD) injects effluent approximately one km below land surface into the Boulder Zone (BZ) at the North District Wastewater Treatment Plant (NDWWTP). The BZ is highly conductive and composed of fractured dolomite. MDWASD monitors upward effluent migration 450 m below land surface in the Avon Park Permeable Zone (APPZ). The BZ and APPZ---units within the Floridan aquifer system---are separated by a series of inter-bedded aquifers and leaky confining units with hydraulic conductivities that are orders of magnitude smaller than the BZ. MDWASD injected effluent at the NDWWTP during two distinct periods: (1) July 1997 to September 1999, and (2) August 2004 to January 2011. No effluent was injected between October 1999 and July 2004. A few months after the July 1997 injection, MDWASD observed effluent constituents in the APPZ (Figure 1). Some confinement bypass feature permits effluent constituents to be transported from the BZ to the APPZ. Bypass features may include poorly-cased wells, or natural conduits such as fractures, faults, or karst collapse systems. It is possible to describe confinement bypass features with conductance KA/L, where K is hydraulic conductivity, A is cross-sectional area, and L is length. MDWASD observed a distinct transition in the transport response to injection stress of total dissolved solids (TDS) concentration in the APPZ. The conductance required to describe early system response (1997-1999) is one order-of-magnitude larger than the conductance required to describe late system response (2004-2011). Hypotheses to explain transient conductance include clogging of bypass features by some geochemical or biological process that results from the mixing of effluent with groundwater; dissolution or precipitation; or changes in bypass-feature geometry forced by cyclical changes in aquifer-fluid pressure associated with injection. Hypotheses may be tested with geochemical analyses, tracer tests, hydraulic tomography, or microseismic monitoring.
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
This module describes the following conventional treatment systems and evaluates their use as pretreatment steps for land application: preliminary, primary, secondary, disinfection, and advanced waste treatment. Effluent qualities are summarized, a brief discussion of application systems is given, and cost comparisons are discussed in some detail.…
On-Site Fecal Sludge Treatment with the Anaerobic Digestion Pasteurization Latrine.
Forbis-Stokes, Aaron A; O'Meara, Patrick F; Mugo, Wangare; Simiyu, Gelas M; Deshusses, Marc A
2016-11-01
The Anaerobic Digestion Pasteurization Latrine (ADPL) is a self-contained and energy neutral on-site sanitation system using anaerobic digestion of fecal sludge to generate biogas and then uses the biogas to pasteurize the digester effluent at 65-75°C to produce a safe effluent that can be reused locally as a fertilizer. Two ADPL systems were installed on residential plots with 17 and 35 residents in a peri-urban area outside of Eldoret, Kenya. Each system comprised three toilets built above a floating dome digester and one heat pasteurization system to sanitize the digested effluent. ADPLs are simple systems, with no moving parts and relying on gravity-induced flows. Adoption at the two sites was successful, and residents reported that the systems had little to no odor or flies. ADPLs were monitored for biogas production and temperatures in the pasteurization system. ADPLs serving 17 and 35 residents produced on average 16 and 11 L biogas /person/day (maximum of 20 and 15 L biogas /p/d), respectively. The temperature in the sterilization system was greater than 65°C on 58% and 87% of sampling days during the most stable period of operation. Treated effluent was analyzed periodically for chemical oxygen demand (COD), biochemical oxygen demand (BOD), total ammonia nitrogen (TAN), pH, and fecal coliform (FC). On average, the effluent at the two locations contained 4,540 and 6,450 mg COD/L (an 85% or 89% reduction of the estimated input), 2,050 and 3,970 mg BOD/L, and 2,420 and 4,760 mg NH 3 -N, respectively, and greater than 5 log reductions of FC (nondetectable) in the sterilization tank. Results from this field study show that anaerobic digestion of minimally diluted fecal sludge can provide enough energy to pasteurize digester effluent and that the ADPL may be a suitable option for on-site fecal sludge treatment.
On-Site Fecal Sludge Treatment with the Anaerobic Digestion Pasteurization Latrine
Forbis-Stokes, Aaron A.; O'Meara, Patrick F.; Mugo, Wangare; Simiyu, Gelas M.; Deshusses, Marc A.
2016-01-01
Abstract The Anaerobic Digestion Pasteurization Latrine (ADPL) is a self-contained and energy neutral on-site sanitation system using anaerobic digestion of fecal sludge to generate biogas and then uses the biogas to pasteurize the digester effluent at 65–75°C to produce a safe effluent that can be reused locally as a fertilizer. Two ADPL systems were installed on residential plots with 17 and 35 residents in a peri-urban area outside of Eldoret, Kenya. Each system comprised three toilets built above a floating dome digester and one heat pasteurization system to sanitize the digested effluent. ADPLs are simple systems, with no moving parts and relying on gravity-induced flows. Adoption at the two sites was successful, and residents reported that the systems had little to no odor or flies. ADPLs were monitored for biogas production and temperatures in the pasteurization system. ADPLs serving 17 and 35 residents produced on average 16 and 11 Lbiogas/person/day (maximum of 20 and 15 Lbiogas/p/d), respectively. The temperature in the sterilization system was greater than 65°C on 58% and 87% of sampling days during the most stable period of operation. Treated effluent was analyzed periodically for chemical oxygen demand (COD), biochemical oxygen demand (BOD), total ammonia nitrogen (TAN), pH, and fecal coliform (FC). On average, the effluent at the two locations contained 4,540 and 6,450 mg COD/L (an 85% or 89% reduction of the estimated input), 2,050 and 3,970 mg BOD/L, and 2,420 and 4,760 mg NH3-N, respectively, and greater than 5 log reductions of FC (nondetectable) in the sterilization tank. Results from this field study show that anaerobic digestion of minimally diluted fecal sludge can provide enough energy to pasteurize digester effluent and that the ADPL may be a suitable option for on-site fecal sludge treatment. PMID:27924135
Viancelli, A; Kunz, A; Steinmetz, R L R; Kich, J D; Souza, C K; Canal, C W; Coldebella, A; Esteves, P A; Barardi, C R M
2013-01-01
Swine effluents must be correctly handled to avoid negative environmental impacts. In this study, the profiles of two swine manure treatment systems were evaluated: a solid-liquid separation step, followed by an anaerobic reactor, and an aerobic step (System 1); and a biodigester followed by serial lagoons (System 2). Both systems were described by the assessment of chemical, bacterial and viral parameters. The results showed that in System 1, there was reduction of chemicals (COD, phosphorus, total Kjeldhal nitrogen - TKN - and NH(3)), total coliforms and Escherichia coli; however, the same reduction was not observed for Salmonella sp. Viral particles were significantly reduced but not totally eliminated from the effluent. In System 2, there was a reduction of chemicals, bacteria and viruses with no detection of Salmonella sp., circovirus, parvovirus, and torque teno virus in the effluent. The chemical results indicate that the treated effluent can be reused for cleaning swine facilities. However, the microbiological results show a need of additional treatment to achieve a complete inactivation for cases when direct contact with animals is required. Copyright © 2012 Elsevier Ltd. All rights reserved.
Oil content Monitor/Control system and method
NASA Astrophysics Data System (ADS)
Schmitt, R. F.; Gavin, J. A.; Kempel, F. D.; Waltrick, C. N.
1985-07-01
This patent application discloses an oil content monitor/control unit system which is configured to automatically monitor and control processed effluent from an associated oil/water separator so that if the processed effluent exceeds predetermined in-port or at-sea oil concentration limits, it is either recirculated to an associated oil/water separator via a ship's bilge for additional processing, or diverted to a holding tank for storage. On the other hand, if the oil concentration of the processed effluent is less than determined in-port or at-sea limits, it is discharged overboard.
Guo, Luchen; He, Keli; Wu, Shubiao; Sun, Hao; Wang, Yanfei; Huang, Xu; Dong, Renjie
2016-08-01
The potential of high-rate TN removal in three aerated horizontal subsurface-flow constructed wetlands to treat high-strength anaerobic digestate supernatant was evaluated. Different strategies of intermittent aeration and effluent recirculation were applied to compare their effect on nitrogen depuration performance. Additional glucose supply and iron-activated carbon based post-treatment systems were established and examined, respectively, to further remove nitrate that accumulated in the effluents from aerated wetlands. The results showed that intermittent aeration (1 h on:1 h off) significantly improved nitrification with ammonium removal efficiency of 90% (18.1 g/(m(2)·d)), but limited TN removal efficiency (53%). Even though effluent recirculation (a ratio of 1:1) increased TN removal from 53% to 71%, the effluent nitrate concentration was still high. Additional glucose was used as a post-treatment option and further increased the TN removal to 82%; however, this implementation caused additional organic pollution. Furthermore, the iron-activated carbon system stimulated with a microelectrolysis process achieved greater than 85% effluent nitrate removal and resulted in 86% TN removal. Considering the high TN removal rate, aerated constructed wetlands integrated with a microelectrolysis-driven system show great potential for treating high-strength digestate supernatant. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of recirculation on organic matter removal in a hybrid constructed wetland system.
Ayaz, S C; Findik, N; Akça, L; Erdoğan, N; Kinaci, C
2011-01-01
This research project aimed to determine the technologically feasible and applicable wastewater treatment systems which will be constructed to solve environmental problems caused by small communities in Turkey. Pilot-scale treatment of a small community's wastewater was performed over a period of more than 2 years in order to show applicability of these systems. The present study involves removal of organic matter and suspended solids in serially operated horizontal (HFCW) and vertical (VFCW) sub-surface flow constructed wetlands. The pilot-scale wetland was constructed downstream of anaerobic reactors at the campus of TUBITAK-MRC. Anaerobically pretreated wastewater was introduced into this hybrid two-stage sub-surface flow wetland system (TSCW). Wastewater was first introduced into the horizontal sub-surface flow system and then the vertical flow system before being discharged. Recirculation of the effluent was tested in the system. When the recirculation ratio was 100%, average removal efficiencies for TSCW were 91 +/- 4% for COD, 83 +/- 10% for BOD and 96 +/- 3% for suspended solids with average effluent concentrations of 9 +/- 5 mg/L COD, 6 +/- 3 mg/L BOD and 1 mg/L for suspended solids. Comparing non-recirculation and recirculation periods, the lowest effluent concentrations were obtained with a 100% recirculation ratio. The effluent concentrations met the Turkish regulations for discharge limits of COD, BOD and TSS in each case. The study showed that a hybrid constructed wetland system with recirculation is a very effective method of obtaining very low effluent organic matter and suspended solids concentrations downstream of anaerobic pretreatment of domestic wastewaters in small communities.
Occulti, Fabio; Roda, Giovanni Camera; Berselli, Sara; Fava, Fabio
2008-04-15
A two phases process consisting of a soya lecithin (SL)-based soil washing process followed by the photocatalytic treatment of resulting effluents was developed and applied at the laboratory scale in the remediation of an actual-site soil historically contaminated by 0.65 g/kg of polychlorinated biphenyls (PCBs). Triton X-100 (TX) was employed in the same process as a control surfactant. SL and TX, both applied as 2.25 g/L aqueous solutions, displayed a comparable ability to remove PCBs from the soil. However, SL solution displayed a lower ecotoxicity, a lower ability to mobilize soil constituents and a higher soil detoxification capacity with respect to the TX one. The photocatalytic treatment resulted in marked depletions (from 50% to 70%) of total organic carbon (TOC) and PCBs initially occurring in the SL and TX contaminated effluents. Despite the ability of SL to adversely affect the rate of TOC and PCB photodegradation, higher PCB depletion and dechlorination yields along with lower increases of ecotoxicity were observed in SL-containing effluents with respect to the TX ones at the end of 15 days of treatment. The two phases process developed and tested for the first time in this study seems to have the required features to become, after a proper optimization and scale up, a challenging procedure for the sustainable remediation of actual site, poorly biotreatable PCB-contaminated soils. Copyright 2007 Wiley Periodicals, Inc.
Cloth media filtration and membrane microfiltration: serial operation.
Tooker, Nicholas Brewster; Darby, Jeannie L
2007-02-01
A combined system comprised of a cloth media filter and a membrane microfilter operated in series was used to treat secondary effluent. The study objective was to investigate the effect of premembrane filtration on the maximum sustainable membrane flux, transmembrane pressure, and effluent quality. The maximum sustainable time-averaged flux under predefined operating conditions (i.e., 15-minute process cycle, 24-hour chemical cleaning cycle, and 30-day intensive cleaning cycle) was 127 L/m(2)x h. Typical flux rates for secondary effluent ranged from 40 to 55 L/m(2) x h. Effluent water quality from the combined system was high and independent of membrane flux and influent quality. Average membrane effluent water quality values were 0.04 NTU for turbidity and 1.4 mg/L for 5-day biochemical oxygen demand. Neither total nor fecal coliforms were detected. Based on the results presented herein, prefiltration would provide an annualized cost savings of approximately 12% over microfiltration alone for a 3.8 x 10(3) m(3)/d treatment facility.
NASA Astrophysics Data System (ADS)
Areibat, Lila Elamari Mohamed; Kamari, Azlan
2017-05-01
Wastewater originating from industrial effluents contains many types of pollutants including dyes. Anionic and cationic dyes are very toxic and they can cause several problems to aquatic system. In present study, razor clam shell was used as a potential adsorbent to remove two classes of dyes, namely anionic (Congo red, CR) and cationic (Rhodamine B, RB) dyes from aqueous solution. Batch adsorption experiments were performed to study the effects of three experimental parameters, namely solution pH, adsorbent dosage and initial dye concentration, on adsorption capacity of CR and RB onto razor clam shell. Results indicated that pH 2.0 was optimum pH for adsorbent to adsorb both CR and RB. At an initial concentration of 20 mg/L, the removal percentages of CR and RB were 97% and 38%, respectively. The Freundlich and Langmuir isotherm models were used to describe adsorption behaviour of CR and RB, as well as the relationship between adsorbent and adsorbate. The adsorption equilibrium data were well fitted to Freundlich isotherm model. The separation factor (RL) constants suggest that both CR and RB were favourably adsorbed by razor clam shell. Razor clam shell was characterised by using two techniques, namely Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectrometry (FTIR). Overall, this study suggests that razor clam shell has great potential to be an alternative to expensive adsorbents.
Reina, Alejandro Cabrera; Martínez-Piernas, Ana B; Bertakis, Yannis; Brebou, Christina; Xekoukoulotakis, Nikolaos P; Agüera, Ana; Sánchez Pérez, José Antonio
2018-01-01
This paper deals with the photochemical fate of two representative carbapenem antibiotics, namely imipenem and meropenem, in aqueous solutions under solar radiation. The analytical method employed for the determination of the target compounds in various aqueous matrices, such as ultrapure water, municipal wastewater treatment plant effluents, and river water, at environmentally relevant concentrations, was liquid chromatography coupled with hybrid triple quadrupole-linear ion trap-mass spectrometry. The absorption spectra of both compounds were measured in aqueous solutions at pH values from 6 to 8, and both compounds showed a rather strong absorption band centered at about 300 nm, while their molar absorption coefficient was in the order from 9 × 10 3 -10 4 L mol -1 cm -1 . The kinetics of the photochemical degradation of the target compounds was studied in aqueous solutions under natural solar radiation in a solar reactor with compound parabolic collectors. It was found that the photochemical degradation of both compounds at environmentally relevant concentrations follows first order kinetics and the quantum yield was in the order of 10 -3 mol einsten -1 . Several parameters were studied, such as solution pH, the presence of nitrate ions and humic acids, and the effect of water matrix. In all cases, it was found that the presence of various organic and inorganic constituents in the aqueous matrices do not contribute significantly, either positively or negatively, to the photochemical degradation of both compounds under natural solar radiation. In a final set of photolysis experiments, the effect of the level of irradiance was studied under simulated solar radiation and it was found that the quantum yield for the direct photodegradation of both compounds remained practically constant by changing the incident solar irradiance from 28 to 50 W m -2 . Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Suriyaprabha, R.; Khan, Samreen Heena; Pathak, Bhawana; Fulekar, M. H.
2016-04-01
Treatment of highly concentrated Industrial dye stuff effluents released in the environment is the major issue faced in the era of waste management as well as in water pollution. Though there is availability of conventional techniques in large numbers, there is a need of efficient and effective advance technologies. In account of that, Nanotechnology plays a prominent role to treat the heavy metals, organic and inorganic contaminants using smart materials in nano regime (1 -100 nm). Among these nanomaterials like Iron Oxide (Fe3O4, magnetic nanoparticle) is one of the most promising candidates to remove the heavy metals from the industrial effluent. Fe3O4 is the widely used smart material with magnetic property having high surface area; high surface to volume ratio provides more surface for the chemical reaction for the surface adsorption. Fe3O4 nanoparticles have been synthesized using sonochemical method using ultra frequency in aqueous solution under optimized conditions. The as-synthesized nanoparticle was analyzed using different characterization tool. The Transmission Electron microscope (TEM) images revealed 10-12 nm spherical shape nanoparticles; crystal phase and surface morphology was confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. The functional group were identified by Fourier Transform-Infra Red Spectroscopy (FT-IR), revealed the bending and stretching vibrations associated with Iron Oxide nanoparticle. In present study, for the efficient removal of contaminants, different concentration (10-50 ppm) of dye stuff effluent has been prepared and subjected to adsorption and decolourization at definite time intervals with Fe3O4 nanoparticles. The concentration of Iron oxide and the time (45 mins) was kept fixed for the reaction whereas the concentration of dye stuff effluent was kept varying. It was found that the spherical shaped Fe3O4 proved to be the potential material for the adsorption of corresponding contaminants due to its highly active adsorbing surfaces. The result concluded that the effective adsorption and decolourization of contaminants is observed in different concentration with the maximum time period of 45 mins with the optimized concentration of Fe3O4.
Performance of Hybrid Photocatalytic-Ceramic Membrane System for the Treatment of Secondary Effluent
Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha
2017-01-01
Evaluation of an advanced wastewater treatment system that combines photocatalysis with ceramic membrane filtration for the treatment of secondary effluent was undertaken. The results showed that, after photocatalysis and ceramic membrane filtration, the removal of dissolved organic carbon and UV254 was 60% and 54%, respectively, at a concentration of 4 g/L of TiO2. Dissolved organic matter (DOM) present in the secondary effluent was characterised with a liquid chromatography-organic carbon detector (LC-OCD) technique. The results showed low removal of humics, building blocks, the other oxidation by-products and no removal of biopolymers after TiO2/UV photocatalytic treatment. This suggested that the radical non-selective oxidation mechanisms of TiO2/UV process resulted in secondary effluent in which all of the DOM fractions were present. However, the hybrid system was effective for removing biopolymers with the exception of low molecular weight (LMW) compounds acids, which accumulated from the beginning of the reaction. In addition, monitoring of the DOM fractions with LC-OCD analysis demonstrated that the reduction of the effluent aromaticity was not firmly correlated with the removal of humic substances for the combined processes. PMID:28350320
Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha
2017-03-28
Evaluation of an advanced wastewater treatment system that combines photocatalysis with ceramic membrane filtration for the treatment of secondary effluent was undertaken. The results showed that, after photocatalysis and ceramic membrane filtration, the removal of dissolved organic carbon and UV 254 was 60% and 54%, respectively, at a concentration of 4 g/L of TiO₂. Dissolved organic matter (DOM) present in the secondary effluent was characterised with a liquid chromatography-organic carbon detector (LC-OCD) technique. The results showed low removal of humics, building blocks, the other oxidation by-products and no removal of biopolymers after TiO₂/UV photocatalytic treatment. This suggested that the radical non-selective oxidation mechanisms of TiO₂/UV process resulted in secondary effluent in which all of the DOM fractions were present. However, the hybrid system was effective for removing biopolymers with the exception of low molecular weight (LMW) compounds acids, which accumulated from the beginning of the reaction. In addition, monitoring of the DOM fractions with LC-OCD analysis demonstrated that the reduction of the effluent aromaticity was not firmly correlated with the removal of humic substances for the combined processes.
46 CFR 108.474 - Aqueous film forming foam systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Aqueous film forming foam systems. 108.474 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.474 Aqueous film forming foam systems. Aqueous film forming foam systems may be installed if approved by the Commandant. ...
46 CFR 108.474 - Aqueous film forming foam systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Aqueous film forming foam systems. 108.474 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.474 Aqueous film forming foam systems. Aqueous film forming foam systems may be installed if approved by the Commandant. ...
46 CFR 108.474 - Aqueous film forming foam systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Aqueous film forming foam systems. 108.474 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.474 Aqueous film forming foam systems. Aqueous film forming foam systems may be installed if approved by the Commandant. ...
46 CFR 108.474 - Aqueous film forming foam systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Aqueous film forming foam systems. 108.474 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.474 Aqueous film forming foam systems. Aqueous film forming foam systems may be installed if approved by the Commandant. ...
46 CFR 108.474 - Aqueous film forming foam systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Aqueous film forming foam systems. 108.474 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.474 Aqueous film forming foam systems. Aqueous film forming foam systems may be installed if approved by the Commandant. ...
Physical, toxicological, and energy systems modeling were combined to make estimates of likely ecosystem-level effects due to residual chlorine in sewage effluent. The energy systems model also allowed us to make estimates of the effects of nutrient loading on the estuary both se...
High-speed liquid chromatographic determination of pilocarpine in pharmaceutical dosage forms.
Khalil, S K
1977-11-01
A specific method for the direct determination of pilocarpine in aqueous pharmaceuticals in the presence of decomposition products, methylcellulose, and other ingredients usually present in pharmaceuticals is described. The method involves separation by high-speed liquid chromatography using, in series, octadecylsilane bonded to silica and cyanopropylsilane bonded to silica columns and a tetrahydrofuran-pH 9.2 borate buffer (3:7) eluant. Quantitation is achieved by monitoring the absorbance of the effluent at 254 nm and using a pyridine internal standard and a calibration curve prepared from known concentrations of pilocarpine nitrate. The reproducibility of the retention time and peak area was better than 2.0%.
PRN 93-10: Effluent Discharge Labeling Statements
This notice describes revised effluent discharge labeling statements required on all manufacturing use products and end use products that may be discharged to waters of the United States ormunicipal sewer systems.
Lehmann, Katja; Bell, Thomas; Bowes, Michael J; Amos, Gregory C A; Gaze, Will H; Wellington, Elizabeth M H; Singer, Andrew C
2016-12-01
Most river systems are impacted by sewage effluent. It remains unclear if there is a lower threshold to the concentration of sewage effluent that can significantly change the structure of the microbial community and its mobile genetic elements in a natural river biofilm. We used novel in situ mesocosms to conduct replicated experiments to study how the addition of low-level concentrations of sewage effluent (nominally 2.5 ppm) affects river biofilms in two contrasting Chalk river systems, the Rivers Kennet and Lambourn (high/low sewage impact, respectively). 16S sequencing and qPCR showed that community composition was not significantly changed by the sewage effluent addition, but class 1 integron prevalence (Lambourn control 0.07% (SE ± 0.01), Lambourn sewage effluent 0.11% (SE ± 0.006), Kennet control 0.56% (SE ± 0.01), Kennet sewage effluent 1.28% (SE ± 0.16)) was significantly greater in the communities exposed to sewage effluent than in the control flumes (ANOVA, F = 5.11, p = 0.045) in both rivers. Furthermore, the difference in integron prevalence between the Kennet control (no sewage effluent addition) and Kennet sewage-treated samples was proportionally greater than the difference in prevalence between the Lambourn control and sewage-treated samples (ANOVA (interaction between treatment and river), F = 6.42, p = 0.028). Mechanisms that lead to such differences could include macronutrient/biofilm or phage/bacteria interactions. Our findings highlight the role that low-level exposure to complex polluting mixtures such as sewage effluent can play in the spread of antibiotic resistance genes. The results also highlight that certain conditions, such as macronutrient load, might accelerate spread of antibiotic resistance genes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Miranda, Rita de Cássia M de; Gomes, Edelvio de Barros; Pereira, Nei; Marin-Morales, Maria Aparecida; Machado, Katia Maria Gomes; Gusmão, Norma Buarque de
2013-08-01
Investigations on biodegradation of textile effluent by filamentous fungi strains Curvularia lunata URM 6179 and Phanerochaete chrysosporium URM 6181 were performed in static bioreactors under aerated and non-aerated conditions. Spectrophotometric, HPLC/UV and LC-MS/MS analysis were performed as for to confirm, respectively, decolourisation, biodegradation and identity of compounds in the effluent. Enzymatic assays revealed higher production of enzymes laccase (Lac), lignin peroxidase (LiP) and manganese-dependent peroxidase (MnP) by P. chrysosporium URM 6181 in aerated bioreactor (2020; 39 and 392 U/l, respectively). Both strains decolourised completely the effluent after ten days and biodegradation of the most predominant indigo dye was superior in aerated bioreactor (96%). Effluent treated by P. chrysosporium URM 6181 accumulated a mutagenic metabolite derived from indigo. The C. lunata URM 6179 strain, showed to be more successful for assure the environmental quality of treated effluent. These systems were found very effective for efficient fungal treatment of textile effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.
Health Effects in Fish of Long-Term Exposure to Effluents from Wastewater Treatment Works
Liney, Katherine E.; Hagger, Josephine A.; Tyler, Charles R.; Depledge, Michael H.; Galloway, Tamara S.; Jobling, Susan
2006-01-01
Concern has been raised in recent years that exposure to wastewater treatment effluents containing estrogenic chemicals can disrupt the endocrine functioning of riverine fish and cause permanent alterations in the structure and function of the reproductive system. Reproductive disorders may not necessarily arise as a result of estrogenic effects alone, and there is a need for a better understanding of the relative importance of endocrine disruption in relation to other forms of toxicity. Here, the integrated health effects of long-term effluent exposure are reported (reproductive, endocrine, immune, genotoxic, nephrotoxic). Early life-stage roach, Rutilus rutilus, were exposed for 300 days to treated wastewater effluent at concentrations of 0, 15.2, 34.8, and 78.7% (with dechlorinated tap water as diluent). Concentrations of treated effluents that induced feminization of male roach, measured as vitellogenin induction and histological alteration to gonads, also caused statistically significant alterations in kidney development (tubule diameter), modulated immune function (differential cell count, total number of thrombocytes), and caused genotoxic damage (micronucleus induction and single-strand breaks in gill and blood cells). Genotoxic and immunotoxic effects occurred at concentrations of wastewater effluent lower than those required to induce recognizable changes in the structure and function of the reproductive endocrine system. These findings emphasize the need for multiple biological end points in tests that assess the potential health effects of wastewater effluents. They also suggest that for some effluents, genotoxic and immune end points may be more sensitive than estrogenic (endocrine-mediated) end points as indicators of exposure in fish. PMID:16818251
Du, Hui-ying; Feng, Jie; Guo, Hai-gang; Wang, Feng; Zhang, Ke-qiang
2015-08-01
Field experiments of winter wheat-summer maize rotation were conducted in North China Plain irrigation area to explore the effects of wheat season irrigation with dairy effluent on grain yield, phosphorus uptake, accumulative phosphorus usage efficiency and phosphorus accumulation in soil. The results showed that the irrigation with dairy effluent significantly improved the yields of winter wheat and summer maize. With the increasing of P2O5 carried by dairy effluent into soil, winter wheat yield increased at first and then decreased. When the P2O5 increased 137 kg · hm(-2), winter wheat yield increased to the maximum (7646.4 kg · hm(-2)) and the phosphorus utilization rate was the highest (24.8%). But excessive phosphorus decreased the winter wheat yield and phosphorus utilization efficiency. Summer maize yield and phosphorus uptake increased with the increase of P2O5 carried by dairy effluent. The summer maize yield increased by 2222.4-2628.6 kg · hm(-2) and the phosphorus uptake increased by 13.9-21.1 kg · hm(-2) in contrast to the control (CK). Under conventional phosphorus fertilization at 88 kg · hm(-2), and the summer maize yield increased by 2235.0 kg · hm(-2) compared with CK. As the time of irrigation with dairy effluent increasing, the grain yield increased more significantly. The cumulative phosphorus utilization in this rotation system increased year by year. After six seasons of crop harvest, the cumulative phosphorus utilization rate increased into 40.0%-47.7%. Under the experimental condition, two times of irrigation with the dairy effluents in the winter wheat-summer maize rotation system was the best operating mode.
Aqueous electrolytes for redox flow battery systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Tianbiao; Li, Bin; Wei, Xiaoliang
An aqueous redox flow battery system includes an aqueous catholyte and an aqueous anolyte. The aqueous catholyte may comprise (i) an optionally substituted thiourea or a nitroxyl radical compound and (ii) a catholyte aqueous supporting solution. The aqueous anolyte may comprise (i) metal cations or a viologen compound and (ii) an anolyte aqueous supporting solution. The catholyte aqueous supporting solution and the anolyte aqueous supporting solution independently may comprise (i) a proton source, (ii) a halide source, or (iii) a proton source and a halide source.
Code of Federal Regulations, 2014 CFR
2014-07-01
... exceed 13.3 per cent of the above limitations, shall be provided for process wastewaters from coke oven... (except those from coal charging and coke pushing emission controls), coal tar processing operations and coke plant groundwater remediation systems, but only to the extent such systems generate process...
Code of Federal Regulations, 2013 CFR
2013-07-01
... exceed 13.3 per cent of the above limitations, shall be provided for process wastewaters from coke oven... (except those from coal charging and coke pushing emission controls), coal tar processing operations and coke plant groundwater remediation systems, but only to the extent such systems generate process...
The Design of Exhaust Systems and Discharge Stacks [With Comments].
ERIC Educational Resources Information Center
Clarke, John H.
1963-01-01
An important part of ventilating for safety consists of providing the necessary exhaust systems to remove building contaminants safely. Further, the effluent must be cleaned within practical limits by means of filters, collectors, and scrubbers. Where recirculation is not safe or feasible, the effluent must be discharged to the outside in a manner…
Oron, Gideon; Gillerman, Leonid; Bick, Amos; Manor, Yossi; Buriakovsky, Nisan; Hagin, Joseph
2008-01-01
Field experiments were conducted in agricultural fields in which secondary wastewater of the City of Arad (Israel) is reused for irrigation. For sustainable agricultural production and safe groundwater recharge the secondary effluent is further polished by a combined two-stage membrane pilot system. The pilot membrane system consists of two main in row stages: Ultrafiltration (UF) and Reverse Osmosis (RO). The UF stage is efficient in the removal of the pathogens and suspended organic matter while the successive RO stage provides safe removal of the dissolved solids (salinity). Effluents of various qualities were applied for agricultural irrigation along with continuous monitoring of the membrane system performance. Best agricultural yields were obtained when applying effluent having minimal content of dissolved solids (after the RO stage) as compared with secondary effluent without any further treatment and extended storage. In regions with shallow groundwater reduced soil salinity in the upper productive layers, maintained by extra membrane treatment, will guarantee minimal dissolved solids migration to the aquifers and minimize salinisation processes. (c) IWA Publishing 2008.
Mixotrophic Chlorella sp. UJ-3 cultivation in the typical anaerobic fermentation effluents.
Huo, Shuhao; Kong, Miao; Zhu, Feifei; Zou, Bin; Wang, Feng; Xu, Ling; Zhang, Cunsheng; Huang, Daming
2018-02-01
The growth of mixotrophic Chlorella sp. UJ-3 cultivated in the three typical anaerobic fermentation effluents was investigated in this paper. The results showed that the microalgae grew best under intermediate light intensity for all the types of fermentation effluents. The butyrate type fermentation effluents induced the fastest growth rate for Chlorella sp. UJ-3, with a maximal cell concentration of 3.8×10 7 cells/mL. Under intermediate light intensity, the volatile fatty acids (VFAs) were almost depleted on the fifth day of the cultivation for all the three types of fermentation systems. The ratios of chlorophyll a/b were all increased for the three systems, indicating enhanced energy-capturing capability of the microalgae for photosynthesis after the VFAs were depleted. The highest lipid content was 25.4%dwt achieved in the butyrate type fermentation, and the fatty acid compositions were found to be considerably different for these three types of fermentation systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS... as video cameras, digital scanning sonar, and upweller systems; monitoring of sediment quality...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS... as video cameras, digital scanning sonar, and upweller systems; monitoring of sediment quality...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS... as video cameras, digital scanning sonar, and upweller systems; monitoring of sediment quality...
Waste treatment of kraft effluents by white-rot fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondo, R.
1996-10-01
The residual lignin in unbleached kraft pulp is commonly removed to afford a fully bleached pulp through a multi-stage bleaching process consisting of chlorination and alkaline-extraction stages. The effluent from such a bleaching process is of growing environmental concern because it shows a dark brown color and contains numerous chlorinated organic substances. Moreover, this effluent is not easily recycled within a mill recovery system because of the potential corrosion problems created by its high chlorine content. White-rot fungi have even heavily modified lignin such as kraft lignin and atoms demonstrated that kraft bleaching effluent can be rot fungi, in particular,more » Trametes versicolor and this review lecture, the possibility of the application of kraft effluents will be discussed.« less
Hébert, N; Gagné, F; Cejka, P; Bouchard, B; Hausler, R; Cyr, D G; Blaise, C; Fournier, M
2008-08-01
Municipal sewage effluents are complex mixtures that are known to compromise the health condition of aquatic organisms. The aim of this study was to evaluate the impacts of various wastewater disinfection processes on the immune system of juvenile rainbow trout (Oncorhynchus mykiss). The trout were exposed to a primary-treated effluent for 28 days before and after one of each of the following treatments: ultraviolet (UV) radiation, ozonation and peracetic acid. Immune function was characterized in leucocytes from the anterior head kidney by the following three parameters: phagocytosis activity, natural cytotoxic cells (NCC) function and lymphocyte (B and T) proliferation assays. The results show that the fish mass to length ratio was significantly decreased for the primary-treated and all three disinfection processes. Exposure to the primary-treated effluent led to a significant increase in macrophage-related phagocytosis; the addition of a disinfection step was effective in removing this effect. Both unstimulated and mitogen-stimulated T lymphocyte proliferation in fish decreased dramatically in fish exposed to the ozonated effluent compared to fish exposed to either the primary-treated effluent or to aquarium water. Stimulation of T lymphocytes proliferation was observed with the peracetic acid treatment group. In conclusion, the disinfection strategy used can modify the immune system in fish at the level of T lymphocyte proliferation but was effective to remove the effects on phagocytosis activity.
Drury, Bradley; Rosi-Marshall, Emma
2013-01-01
In highly urbanized areas, wastewater treatment plant (WWTP) effluent can represent a significant component of freshwater ecosystems. As it is impossible for the composition of WWTP effluent to match the composition of the receiving system, the potential exists for effluent to significantly impact the chemical and biological characteristics of the receiving ecosystem. We assessed the impacts of WWTP effluent on the size, activity, and composition of benthic microbial communities by comparing two distinct field sites in the Chicago metropolitan region: a highly urbanized river receiving effluent from a large WWTP and a suburban river receiving effluent from a much smaller WWTP. At sites upstream of effluent input, the urban and suburban rivers differed significantly in chemical characteristics and in the composition of their sediment bacterial communities. Although effluent resulted in significant increases in inorganic nutrients in both rivers, surprisingly, it also resulted in significant decreases in the population size and diversity of sediment bacterial communities. Tag pyrosequencing of bacterial 16S rRNA genes revealed significant effects of effluent on sediment bacterial community composition in both rivers, including decreases in abundances of Deltaproteobacteria, Desulfococcus, Dechloromonas, and Chloroflexi sequences and increases in abundances of Nitrospirae and Sphingobacteriales sequences. The overall effect of the WWTP inputs was that the two rivers, which were distinct in chemical and biological properties upstream of the WWTPs, were almost indistinguishable downstream. These results suggest that WWTP effluent has the potential to reduce the natural variability that exists among river ecosystems and indicate that WWTP effluent may contribute to biotic homogenization. PMID:23315724
Summary and evaluation of the Strategic Defense Initiative Space Power Architecture Study
NASA Technical Reports Server (NTRS)
Edenburn, M. (Editor); Smith, J. M. (Editor)
1989-01-01
The Space Power Architecture Study (SPAS) identified and evaluated power subsystem options for multimegawatt electric (MMWE) space based weapons and surveillance platforms for the Strategic Defense Initiative (SDI) applications. Steady state requirements of less than 1 MMWE are adequately covered by the SP-100 nuclear space power program and hence were not addressed in the SPAS. Four steady state power systems less than 1 MMWE were investigated with little difference between them on a mass basis. The majority of the burst power systems utilized H(2) from the weapons and were either closed (no effluent), open (effluent release) or steady state with storage (no effluent). Closed systems used nuclear or combustion heat source with thermionic, Rankine, turboalternator, fuel cell and battery conversion devices. Open systems included nuclear or combustion heat sources using turboalternator, magnetohydrodynamic, fuel cell or battery power conversion devices. The steady state systems with storage used the SP-100 or Star-M reactors as energy sources and flywheels, fuel cells or batteries to store energy for burst applications. As with other studies the open systems are by far the lightest, most compact and simplist (most reliable) systems. However, unlike other studies the SPAS studied potential platform operational problems caused by effluents or vibration.
Bioprocessing of a stored mixed liquid waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfram, J.H.; Rogers, R.D.; Finney, R.
1995-12-31
This paper describes the development and results of a demonstration for a continuous bioprocess for mixed waste treatment. A key element of the process is an unique microbial strain which tolerates high levels of aromatic solvents and surfactants. This microorganism is the biocatalysis of the continuous flow system designed for the processing of stored liquid scintillation wastes. During the past year a process demonstration has been conducted on commercial formulation of liquid scintillation cocktails (LSC). Based on data obtained from this demonstration, the Ohio EPA granted the Mound Applied Technologies Lab a treatability permit allowing the limited processing of actualmore » mixed waste. Since August 1994, the system has been successfully processing stored, {open_quotes}hot{close_quotes} LSC waste. The initial LSC waste fed into the system contained 11% pseudocumene and detectable quantities of plutonium. Another treated waste stream contained pseudocumene and tritium. Data from this initial work shows that the hazardous organic solvent, and pseudocumene have been removed due to processing, leaving the aqueous low level radioactive waste. Results to date have shown that living cells are not affected by the dissolved plutonium and that 95% of the plutonium was sorbed to the biomass. This paper discusses the bioprocess, rates of processing, effluent, and the implications of bioprocessing for mixed waste management.« less
Paíga, P; Santos, L H M L M; Delerue-Matos, C
2017-02-20
The aim of the present work was to develop and validate a multi-residue method for the analysis of 33 human and veterinary pharmaceuticals (non-steroidal anti-inflammatory drugs (NSAIDs)/analgesics, antibiotics and psychiatric drugs), including some of their metabolites, in several aqueous environmental matrices: drinking water, surface water and wastewaters. The method is based on solid phase extraction (SPE) followed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and it was validated for different aqueous matrices, namely bottled water, tap water, seawater, river water and wastewaters, showing recoveries between 50% and 112% for the majority of the target analytes. The developed analytical methodology allowed method detection limits in the low nanograms per liter level. Method intra- and inter-day precision was under 8% and 11%, respectively, expressed as relative standard deviation. The developed method was applied to the analysis of drinking water (bottled and tap water), surface waters (seawater and river water) and wastewaters (wastewater treatment plant (WWTP) influent and effluent). Due to the selectivity and sensitivity of the optimized method, it was possible to detect pharmaceuticals in all the aqueous environmental matrices considered, including in bottled water at concentrations up to 31ngL -1 (salicylic acid). In general, non-steroidal anti-inflammatory drugs/analgesics was the therapeutic group most frequently detected, with the highest concentrations found in wastewaters (acetaminophen and the metabolite carboxyibuprofen at levels up to 615 and 120μgL -1 , respectively). Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of hot acid hydrolysis and hot chlorine dioxide stage on bleaching effluent biodegradability.
Gomes, C M; Colodette, J L; Delantonio, N R N; Mounteer, A H; Silva, C M
2007-01-01
The hot acid hydrolysis followed by chlorine dioxide (A/D*) and hot chlorine dioxide (D*) technologies have proven very useful for bleaching of eucalyptus kraft pulp. Although the characteristics and biodegradability of effluents from conventional chlorine dioxide bleaching are well known, such information is not yet available for effluents derived from hot acid hydrolysis and hot chorine dioxide bleaching. This study discusses the characteristics and biodegradability of such effluents. Combined whole effluents from the complete sequences DEpD, D*EpD, A/D*EpD and ADEpD, and from the pre-bleaching sequences DEp, D*Ep, A/D*Ep and ADEp were characterized by quantifying their colour, AOX and organic load (BOD, COD, TOC). These effluents were also evaluated for their treatability by simulation of an activated sludge system. It was concluded that treatment in the laboratory sequencing batch reactor was efficient for removal of COD, BOD and TOC of all effluents. However, colour increased after biological treatment, with the greatest increase found for the effluent produced using the AD technology. Biological treatment was less efficient at removing AOX of effluents from the sequences with D*, A/D* and AD as the first stages, when compared to the reference D stage; there was evidence of the lower treatability of these organochlorine compounds from these sequences.
Fate, mass balance, and transport of phosphorus in the septic system drainfields.
Mechtensimer, Sara; Toor, Gurpal S
2016-09-01
Septic systems can be a potential source of phosphorus (P) in shallow groundwater. Our objective was to investigate the fate, mass balance, and transport of P in the drainfield of a drip-dispersal septic system. Drainfields were replicated in lysimeters (152.4 cm long, 91.4 cm wide, and 91.4 cm high). Leachate and effluent samples were collected over 67 events (n = 15 daily; n = 52 weekly flow-weighted) and analyzed for total P (TP), orthophosphate (PO4P), and other P (TP - PO4P). Mean TP was 15 mg L(-1) (84% PO4P; 16% other P) in the effluent and 0.16 mg L(-1) (47% PO4P, 53% other P) in the leachate. After one year, 46.8 g of TP was added with effluent and rainfall to each drainfield, of which, <1% leached, 3.8% was taken up by St. Augustine grass, leaving >95% in the drainfield. Effluent dispersal increased water extractable P (WEP) in the drainfield from <5 to >10 mg kg(-1). Using the P sorption maxima of sand (118 mg kg(-1)) and soil (260 mg kg(-1)), we estimated that ∼18% of the drainfield P sorption capacity was saturated after one year of effluent dispersal. We conclude that despite the low leaching potential of P dispersed with effluent in the first year of drainfield operation, a growing WEP pool in the drainfield and low P sorption capacity of Florida's sandy soils may have the potential to transport P to shallow groundwater in long-running septic systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Khorsandi, Hassan; Alizadeh, Rahimeh; Tosinejad, Horiyeh; Porghaffar, Hadi
2014-01-01
In this descriptive-analytical study, nitrogenous and algal oxygen demand were assessed for effluent from a system of facultative partially mixed lagoons followed by the polishing pond using 120 grab samples over 1 year. Filtered and non-filtered samples of polishing pond effluent were tested in the presence and absence of a nitrification inhibitor. Effective factors, including 5-day biochemical and chemical oxygen demand (BOD and COD), total suspended solids (TSS), dissolved oxygen, chlorophyll A, and temperature, were measured using standard methods for water and wastewater tests. The results were analyzed using repeated measures analysis of variance with SPSS version 16. Findings show that the annual mean of the total 5-day BOD in the effluent from the polishing pond consisted of 44.92% as the algal carbonaceous biochemical oxygen demand (CBOD), 43.61% as the nitrogenous biochemical oxygen demand (NBOD), and 11.47% as the soluble CBOD. According to this study, the annual mean ratios of algal COD and 5-day algal CBOD to TSS were 0.8 and 0.37, respectively. As the results demonstrate, undertaking quality evaluation of the final effluent from the lagoons without considering nitrogenous and algal oxygen demand would undermine effluent quality assessment and interpretation of the performance of the wastewater treatment plant.
El-Gendy, Mervat Morsy Abbas Ahmed; El-Bondkly, Ahmed Mohamed Ahmed
2016-01-01
An analysis of wastewater samples collected from different industrial regions of Egypt demonstrated dangerously high levels of nickel (0.27-31.50mgL(-1)), chromium (1.50-7.41mgL(-1)) and zinc (1.91-9.74mgL(-1)) in the effluents. Alarmingly, these heavy metals are among the most toxic knownones to humans and wildlife. Sixty-nine Actinomycete isolates derived from contaminated sites were evaluated under single, binary, and ternary systems for their biosorption capacity for Ni(2+), Cr(6+) and Zn(2+) from aqueous solutions. The results of the study identified isolates MORSY1948 and MORSY2014 as the most active biosorbents. Phenotypic and chemotypic characterization along with molecular phylogenetic evidence confirmed that the two strains are members of the Nocardiopsis and Nocardia genera, respectively. The results also proved that for both the strains, heavy metal reduction was more efficient with dead rather than live biomass. The affinity of the dead biomass of MORSY1948 strain for Ni(2+), Cr(6+) and Zn(2+) under the optimized pH conditions of 7, 8 and 7, respectively at 40°C temperature with 0.3% biosorbent dosage was found to be as follows: Ni(2+) (87.90%)>Zn(2+) (84.15%)>Cr(6+) (63.75%). However, the dead biomass of MORSY2014 strain under conditions of pH 8 and 50°C temperature with 0.3% biosorbent dose exhibited the highest affinity which was as follows: Cr(6+) (95.22%)>Ni(2+) (93.53%)>Zn(2+) (90.37%). All heavy metals under study were found to be removed from aqueous solutions in entirety when the sorbent dosage was increased to 0.4%. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
An Oil/Water disperser device for use in an oil content Monitor/Control system
NASA Astrophysics Data System (ADS)
Kempel, F. D.
1985-07-01
This patent application discloses an oil content monitor/control unit system, including an oil/water disperser device, which is configured to automatically monitor and control processed effluent from an associated oil/water separator so that if the processed effluent exceeds predetermine in-port or at-sea oil concentration lmits, it is either recirculated to an associated oil/water separator via a ship's bilge for additional processing, or diverted to a holding tank for storage. On the other hand, if the oil concentration of the processed effluent is less than predetermine in-port or at-sea limits, it is discharged overboard. The oil/water disperser device is configured to break up any oil present in the processed effluent into uniform droplets for more accurate sensing of the oil present in the processed effluent into uniform droplets for more accurate sensing of the oil-in-water concentration level thereof. The oil/water disperser device has a flow-actuated variable orifice configured into a spring-loaded polyethylene plunger which provides the uniform distribution of oil droplets.
Zhang, Zhiping; Li, Yameng; Zhang, Huan; He, Chao; Zhang, Quanguo
2017-12-01
Effluent of bio-hydrogen production system also can be adopted to produce methane for further fermentation, cogeneration of hydrogen and methane will significantly improve the energy conversion efficiency. Platanus Orientalis leaves were taken as the raw material for photo- and dark-fermentation bio-hydrogen production. The resulting concentrations of acetic, butyric, and propionic acids and ethanol in the photo- and dark-fermentation effluents were 2966mg/L and 624mg/L, 422mg/L and 1624mg/L, 1365mg/L and 558mg/L, and 866mg/L and 1352mg/L, respectively. Subsequently, we calculated the energy conversion efficiency according to the organic contents of the effluents and their energy output when used as raw material for methane production. The overall energy conversion efficiencies increased by 15.17% and 22.28%, respectively, when using the effluents of photo and dark fermentation. This two-step bio-hydrogen and methane production system can significantly improve the energy conversion efficiency of anaerobic biological treatment plants. Copyright © 2017. Published by Elsevier Ltd.
Assessment of the impact of textile effluents on microbial diversity in Tirupur district, Tamil Nadu
NASA Astrophysics Data System (ADS)
Prabha, Shashi; Gogoi, Anindita; Mazumder, Payal; Ramanathan, AL.; Kumar, Manish
2017-09-01
The expedited advent of urbanization and industrialization for economic growth has adversely affected the biological diversity, which is one of the major concerns of the developing countries. Microbes play a crucial role in decontaminating polluted sites and degrades pollution load of textile effluent. The present study was based on identification of microbial diversity along the Noyaal river of Tirupur area. River water samples from industrial and non-industrial sites and effluent samples of before and after treatment were tested and it was found that microbial diversity was higher in the river water at the industrial site (Kasipalayam) as compared to the non-industrial site (Perur). Similarly, the microbial populations were found to be high in the untreated effluent as compared to the treated one by conventional treatment systems. Similar trends were observed for MBR treatment systems as well. Pseudomonas sp ., Achromobacter sp. (bacterial species) and Aspergillus fumigates (fungal species), found exclusively at the industrial site have been reported to possess decolorization potential of dye effluent, thus can be used for treatment of dye effluent. The comparison of different microbial communities from different dye wastewater sources and textile effluents was done, which showed that the microbes degrade dyestuffs, reduce toxicity of wastewaters, etc. From the study, it can be concluded that the microbial community helps to check on the pollutants and minimize their affect. Therefore, there is a need to understand the systematic variation in microbial diversity with the accumulation of pollution load through monitoring.
Enzyme-linked immunosorbent assay (ELISA) for the anthropogenic marker isolithocholic acid in water.
Baldofski, Stefanie; Hoffmann, Holger; Lehmann, Andreas; Breitfeld, Stefan; Garbe, Leif-Alexander; Schneider, Rudolf J
2016-11-01
Bile acids are promising chemical markers to assess the pollution of water samples with fecal material. This study describes the optimization and validation of a direct competitive enzyme-linked immunosorbent assay for the bile acid isolithocholic acid (ILA). The quantification range of the optimized assay was between 0.09 and 15 μg/L. The assay was applied to environmental water samples. Most studies until now were focused on bile acid fractions in the particulate phase of water samples. In order to avoid tedious sample preparation, we undertook to evaluate the dynamics and significance of ILA levels in the aqueous phase. Very low concentrations in tap and surface water samples made a pre-concentration step necessary for this matrix as well as for wastewater treatment plant (WWTP) effluent. Mean recoveries for spiked water samples were between 97% and 109% for tap water and WWTP influent samples and between 102% and 136% for WWTP effluent samples. 90th percentiles of intra-plate and inter-plate coefficients of variation were below 10% for influents and below 20% for effluents and surface water. ILA concentrations were quantified in the range of 33-72 μg/L in influent, 21-49 ng/L in effluent and 18-48 ng/L in surface water samples. During wastewater treatment the ILA levels were reduced by more than 99%. ILA concentrations of influents determined by ELISA and LC-MS/MS were in good agreement. However, findings in LC-ELISA experiments suggest that the true ILA levels in concentrated samples are lower due to interfering effects of matrix compounds and/or cross-reactants. Yet, the ELISA will be a valuable tool for the performance check and comparison of WWTPs and the localization of fecal matter input into surface waters. Copyright © 2016 Elsevier Ltd. All rights reserved.
Symonds, E M; Verbyla, M E; Lukasik, J O; Kafle, R C; Breitbart, M; Mihelcic, J R
2014-11-15
Wastewater treatment ponds (WTP) are one of the most widespread treatment technologies in the world; however, the mechanisms and extent of enteric virus removal in these systems are poorly understood. Two WTP systems in Bolivia, with similar overall hydraulic retention times but different first stages of treatment, were analyzed for enteric virus removal. One system consisted of a facultative pond followed by two maturation ponds (three-pond system) and the other consisted of an upflow anaerobic sludge blanket (UASB) reactor followed by two maturation (polishing) ponds (UASB-pond system). Quantitative polymerase chain reaction with reverse transcription (RT-qPCR) was used to measure concentrations of norovirus, rotavirus, and pepper mild mottle virus, while cell culture methods were used to measure concentrations of culturable enteroviruses (EV). Limited virus removal was observed with RT-qPCR in either system; however, the three-pond system removed culturable EV with greater efficiency than the UASB-pond system. The majority of viruses were not associated with particles and only a small proportion was associated with particles larger than 180 μm; thus, it is unlikely that sedimentation is a major mechanism of virus removal. High concentrations of viruses were associated with particles between 0.45 and 180 μm in the UASB reactor effluent, but not in the facultative pond effluent. The association of viruses with this size class of particles may explain why only minimal virus removal was observed in the UASB-pond system. Quantitative microbial risk assessment of the treated effluent for reuse for restricted irrigation indicated that the three-pond system effluent requires an additional 1- to 2-log10 reduction of viruses to achieve the WHO health target of <10(-4) disability-adjusted life years (DALYs) lost per person per year; however, the UASB-pond system effluent may require an additional 2.5- to 4.5-log10 reduction of viruses. Copyright © 2014 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... loadings, not to exceed 11 percent of the above limitations, are allowed for by-product coke plants which...-product coke plants which include indirect ammonia recovery systems but only to the extent that such... allowed for by-product coke plants which have wet desulfurization systems but only to the extent such...
Code of Federal Regulations, 2014 CFR
2014-07-01
... loadings, not to exceed 11 percent of the above limitations, are allowed for by-product coke plants which...-product coke plants which include indirect ammonia recovery systems but only to the extent that such... allowed for by-product coke plants which have wet desulfurization systems but only to the extent such...
Code of Federal Regulations, 2013 CFR
2013-07-01
... loadings, not to exceed 11 percent of the above limitations, are allowed for by-product coke plants which...-product coke plants which include indirect ammonia recovery systems but only to the extent that such... allowed for by-product coke plants which have wet desulfurization systems but only to the extent such...
Code of Federal Regulations, 2012 CFR
2012-07-01
... loadings, not to exceed 11 percent of the above limitations, are allowed for by-product coke plants which...-product coke plants which include indirect ammonia recovery systems but only to the extent that such... allowed for by-product coke plants which have wet desulfurization systems but only to the extent such...
Harris, Suvi; Morris, Carol; Morris, Dearbhaile; Cormican, Martin; Cummins, Enda
2014-01-15
The prevalence of antimicrobial resistant (AMR) bacteria is increasing worldwide and remains a significant medical challenge which may lead to antimicrobial redundancy. The contribution of hospital effluent to the prevalence of resistance in wastewater treatment plant (WWTP) effluents is not fully understood. AMR bacteria contained in hospital effluent may be released into the aquatic and soil environments after WWTP processing. Hence, the objective of this study is to identify the extent hospital effluent contributes to contamination of these environments by comparing two WWTPs, one which receives hospital effluent and one which does not. AMR Escherichia coli were monitored in the two WWTPs. A model was developed using these monitored values to predict the effect of hospital effluent within a WWTP. The model predicted levels of AMR E. coli in the aquatic environment and potential bather exposure to AMR E. coli. The model results were highly variable. WWTP influent containing hospital effluent had a higher mean percentage of AMR E. coli; although, there appeared to be no within treatment plant effect on the prevalence of AMR E. coli. Examination of WWTP sludge showed a similar variation. There appeared to be no consistent effect from the presence of hospital effluent. The human exposure assessment model predicted swimmer intake of AMR E. coli between 6 and 193CFU/100ml sea water. It appears that hospital effluent is not the main contributing factor behind the development and persistence of AMR E. coli within WWTPs, although resistance may be too well-developed to identify an influence from hospital effluent. Mitigation needs to focus on the removal of already present resistant bacteria but for new or hospital specific antimicrobials focus needs to be on their limited release within effluents or separate treatment. © 2013.
Caustic Recycling Pilot Unit to Separate Sodium from LLW at Hanford Site - 12279
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pendleton, Justin; Bhavaraju, Sai; Priday, George
As part of the Department of Energy (DOE) sponsored Advanced Remediation Technologies initiative, a scheme was developed to combine Continuous Sludge Leaching (CSL), Near-Tank Cesium Removal (NTCR), and Caustic Recycling Unit (CRU) using Ceramatec technology, into a single system known as the Pilot Near-Tank Treatment System (PNTTS). The Cesium (Cs) decontaminated effluent from the NTCR process will be sent to the caustic recycle process for recovery of the caustic which will be reused in another cycle of caustic leaching in the CSL process. Such an integrated mobile technology demonstration will give DOE the option to insert this process for sodiummore » management at various sites in Hanford, and will minimize the addition of further sodium into the waste tanks. This allows for recycling of the caustic used to remove aluminum during sludge washing as a pretreatment step in the vitrification of radioactive waste which will decrease the Low Level Waste (LLW) volume by as much as 39%. The CRU pilot process was designed to recycle sodium in the form of pure sodium hydroxide. The basis for the design of the 1/4 scale pilot caustic recycling unit was to demonstrate the efficient operation of a larger scale system to recycle caustic from the NTCR effluent stream from the Parsons process. The CRU was designed to process 0.28 liter/minute of NTCR effluent, and generate 10 M concentration of 'usable' sodium hydroxide. The proposed process operates at 40 deg. C to provide additional aluminum solubility and then recover the sodium hydroxide to the point where the aluminum is saturated at 40 deg. C. A system was developed to safely separate and vent the gases generated during operation of the CRU with the production of 10 M sodium hydroxide. Caustic was produced at a rate between 1.9 to 9.3 kg/hr. The CRU was located inside an ISO container to allow for moving of the unit close to tank locations to process the LLW stream. Actual tests were conducted with the NTCR effluent simulant from the Parsons process in the CRU. The modular CRU is easily scalable as a standalone system for caustic recycling, or for NTTS integration or for use as an In-Tank Treatment System to process sodium bearing waste to meet LLW processing needs at the Hanford site. The standalone pilot operation of the CRU to recycle sodium from NTCR effluent places the technology demonstration at TRL level 6. Multiple operations were performed with the CRU to process up to 500 gallons of the NTCR effluent and demonstrate an efficient separation of up to 70 % of the sodium without solids precipitation while producing 10 M caustic. Batch mode operation was conducted to study the effects of chemistry variation, establish the processing rate, and optimize the process operating conditions to recycle caustic from the NTCR effluent. The performance of the CRU was monitored by tracking the density parameter to control the concentration of caustic produced. Different levels of sodium were separated in tests from the effluent at a fixed operating current density and temperature. The voltage of the modules remained stable during the unit operation which demonstrated steady operation to separate sodium from the NTCR effluent. The sodium transfer current efficiency was measured in testing based on the concentration of caustic produced. Measurements showed a current efficiency of 99.8% for sodium transfer from the NTCR effluent to make sodium hydroxide. The sodium and hydroxide contents of the anolyte (NTCR feed) and catholyte (caustic product) were measured before and after each batch test. In two separate batch tests, samples were taken at different levels of sodium separation and analyzed to determine the stability of the NTCR effluent after sodium separation. The stability characteristics and changes in physical and chemical properties of the NTCR effluent chemistry after separation of sodium hydroxide as a function of storage time were evaluated. Parameters such as level of precipitated alumina, total alkalinity, analysis of Al, Na, K, Cs, Fe, OH, nitrate, nitrite, total dissolved and undissolved solids, viscosity, density, and other parameters of the NTCR effluent were measured. Changes in rheology and properties of NTCR stream to support downstream handling of the effluent after sodium separation was the basis for the analysis. The results show that the NTCR effluent is stable without the precipitation of aluminum hydroxide after 70% of the sodium was separated from the effluent. (authors)« less
Neff, Jerry M; Page, David S; Landrum, Peter F; Chapman, Peter M
2013-02-15
This paper reanalyzes data from an earlier study that used effluents from oiled-gravel columns to assess the toxicity of aqueous fractions of weathered crude oil to Pacific herring embryos and larvae. This reanalysis has implications for future similar investigations, including the observance of two distinct dose-response curves for lethal and sublethal endpoints for different exposures in the same experiment, and the need to consider both potency and slope of dose-response curves for components of a toxicant mixture that shows potentially different toxicity mechanisms/causation. Contrary to conclusions of the original study, the aqueous concentration data cannot support the hypothesis that polycyclic aromatic hydrocarbons (PAHs) were the sole cause of toxicity and that oil toxicity increased with weathering. Confounding issues associated with the oiled gravel columns include changes in the concentration and composition of chemicals in exposure water, which interfere with the production of reliable and reproducible results relevant to the field. Copyright © 2012 Elsevier Ltd. All rights reserved.
Calvete, Tatiana; Lima, Eder C; Cardoso, Natali F; Vaghetti, Júlio C P; Dias, Silvio L P; Pavan, Flavio A
2010-08-01
Activated (AC-PW) and non-activated (C-PW) carbonaceous materials were prepared from the Brazilian-pine fruit shell (Araucaria angustifolia) and tested as adsorbents for the removal of reactive orange 16 dye (RO-16) from aqueous effluents. The effects of shaking time, adsorbent dosage and pH on the adsorption capacity were studied. RO-16 uptake was favorable at pH values ranging from 2.0 to 3.0 and from 2.0 to 7.0 for C-PW and AC-PW, respectively. The contact time required to obtain the equilibrium using C-PW and AC-PW as adsorbents was 5 and 4h at 298 K, respectively. The fractionary-order kinetic model provided the best fit to experimental data compared with other models. Equilibrium data were better fit to the Sips isotherm model using C-PW and AC-PW as adsorbents. The enthalpy and entropy of adsorption of RO-16 were obtained from adsorption experiments ranging from 298 to 323 K. Copyright 2010 Elsevier Ltd. All rights reserved.
Health Impacts of Estrogens in the Environment, Considering Complex Mixture Effects
Filby, Amy L.; Neuparth, Teresa; Thorpe, Karen L.; Owen, Richard; Galloway, Tamara S.; Tyler, Charles R.
2007-01-01
Background Environmental estrogens in wastewater treatment work (WwTW) effluents are well established as the principal cause of reproductive disruption in wild fish populations, but their possible role in the wider health effects of effluents has not been established. Objectives We assessed the contribution of estrogens to adverse health effects induced in a model fish species by exposure to WwTW effluents and compared effects of an estrogen alone and as part of a complex mixture (i.e., spiked into effluent). Methods Growth, genotoxic, immunotoxic, metabolic, and endocrine (feminized) responses were compared in fathead minnows (Pimephales promelas) exposed for 21 days to a potent estrogenic effluent, a weakly estrogenic effluent before and after spiking with a steroidal estrogen [17α-ethinyl-estradiol (EE2)], and to EE2 alone. Results In addition to endocrine disruption, effluent exposure induced genotoxic damage, modulated immune function, and altered metabolism; many of these effects were elicited in a sex-specific manner and were proportional to the estrogenic potencies of the effluents. A key finding was that some of the responses to EE2 were modified when it was present in a complex mixture (i.e., spiked into effluent), suggesting that mixture effects may not be easily modeled for effluent discharges or when the chemicals impact on a diverse array of biological axes. Conclusion These data reveal a clear link between estrogens present in effluents and diverse, adverse, and sex-related health impacts. Our findings also highlight the need for an improved understanding of interactive effects of chemical toxicants on biological systems for understanding health effects of environmental mixtures. PMID:18087587
García, María C; Mora, Manuel; Esquivel, Dolores; Foster, John E; Rodero, Antonio; Jiménez-Sanchidrián, César; Romero-Salguero, Francisco J
2017-08-01
The degradation of methylene blue in aqueous solution as a model dye using a non thermal microwave (2.45 GHz) plasma jet at atmospheric pressure has been investigated. Argon has been used as feed gas and aqueous solutions with different concentrations of the dye were treated using the effluent from plasma jet in a remote exposure. The removal efficiency increased as the dye concentration decreased from 250 to 5 ppm. Methylene blue degrades after different treatment times, depending on the experimental plasma conditions. Thus, kinetic constants up to 0.177 min -1 were obtained. The higher the Ar flow, the faster the degradation rate. Optical emission spectroscopy (OES) was used to gather information about the species present in the gas phase, specifically excited argon atoms. Argon excited species and hydrogen peroxide play an important role in the degradation of the dye. In fact, the conversion of methylene blue was directly related to the density of argon excited species in the gas phase and the concentration of hydrogen peroxide in the aqueous liquid phase. Values of energy yield at 50% dye conversion of 0.296 g/kWh were achieved. Also, the use of two plasma applicators in parallel has been proven to improve energy efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
Royer, Betina; Cardoso, Natali F; Lima, Eder C; Vaghetti, Julio C P; Simon, Nathalia M; Calvete, Tatiana; Veses, Renato Cataluña
2009-05-30
The Brazilian pine-fruit shell (Araucaria angustifolia) is a food residue, which was used in natural and carbonized forms, as low-cost adsorbents for the removal of methylene blue (MB) from aqueous solutions. Chemical treatment of Brazilian pine-fruit shell (PW), with sulfuric acid produced a non-activated carbonaceous material (C-PW). Both PW and C-PW were tested as low-cost adsorbents for the removal of MB from aqueous effluents. It was observed that C-PW leaded to a remarkable increase in the specific surface area, average porous volume, and average porous diameter of the adsorbent when compared to PW. The effects of shaking time, adsorbent dosage and pH on adsorption capacity were studied. In basic pH region (pH 8.5) the adsorption of MB was favorable. The contact time required to obtain the equilibrium was 6 and 4h at 25 degrees C, using PW and C-PW as adsorbents, respectively. Based on error function values (F(error)) the kinetic data were better fitted to fractionary-order kinetic model when compared to pseudo-first order, pseudo-second order, and chemisorption kinetic models. The equilibrium data were fitted to Langmuir, Freundlich, Sips and Redlich-Peterson isotherm models. For MB dye the equilibrium data were better fitted to the Sips isotherm model using PW and C-PW as adsorbents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Lirong; Cantrell, Kirk J.; Bacon, Diana H.
2014-02-01
Column experiments were conducted using a wetted sandstone rock installed in a tri-axial core holder to study the flow and transport of organic compounds mobilized by scCO2 under simulated geologic carbon storage (GCS) conditions. The sandstone rock was collected from a formation overlying a deep saline reservoir at a GCS demonstration site. Rock core effluent pressures were set at 0, 500, or 1000 psig and the core temperature was set at 20 or 50°C to simulate the transport to different subsurface depths. The concentrations of the organic compounds in the column effluent and their distribution within the sandstone core weremore » monitored. Results indicate that the mobility though the core sample was much higher for BTEX compounds than for naphthalene. Retention of organic compounds from the vapor phase to the core appeared to be primarily controlled by partitioning from the vapor phase to the aqueous phase. Adsorption to the surfaces of the wetted sandstone was also significant for naphthalene. Reduced temperature and elevated pressure resulted in greater partitioning of the mobilized organic contaminants into the water phase.« less
A Critical Comparison of Methods for the Analysis of Indigo in Dyeing Liquors and Effluents
Buscio, Valentina; Crespi, Martí; Gutiérrez-Bouzán, Carmen
2014-01-01
Indigo is one of the most important dyes in the textile industry. The control of the indigo concentration in dyeing liquors and effluents is an important tool to ensure the reproducibility of the dyed fabrics and also to establish the efficiency of the wastewater treatment. In this work, three analytical methods were studied and validated with the aim to select a reliable, fast and automated method for the indigo dye determination. The first method is based on the extraction of the dye, with chloroform, in its oxidized form. The organic solution is measured by Ultraviolet (UV)-visible spectrophotometry at 604 nm. The second method determines the concentration of indigo in its leuco form in aqueous medium by UV-visible spectrophotometry at 407 nm. Finally, in the last method, the concentration of indigo is determined by redox titration with potassium hexacyanoferrate (K3(Fe(CN)6)). The results indicated that the three methods that we studied met the established acceptance criteria regarding accuracy and precision. However, the third method was considered the most adequate for application on an industrial scale due to its wider work range, which provides a significant advantage over the others. PMID:28788185
Cadmium telluride nanoparticles loaded on activated carbon as adsorbent for removal of sunset yellow
NASA Astrophysics Data System (ADS)
Ghaedi, M.; Hekmati Jah, A.; Khodadoust, S.; Sahraei, R.; Daneshfar, A.; Mihandoost, A.; Purkait, M. K.
2012-05-01
Adsorption is a promising technique for decolorization of effluents of textile dyeing industries but its application is limited due to requirement of high amounts of adsorbent required. The objective of this study was to assess the potential of cadmium telluride nanoparticles loaded onto activated carbon (CdTN-AC) for the removal of sunset yellow (SY) dye from aqueous solution. Adsorption studies were conducted in a batch mode varying solution pH, contact time, initial dye concentration, CdTN-AC dose, and temperature. In order to investigate the efficiency of SY adsorption on CdTN-AC, pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion kinetic models were studied. It was observed that the pseudo-second-order kinetic model fits better than other kinetic models with good correlation coefficient. Equilibrium data were fitted to the Langmuir model. Thermodynamic parameters such as enthalpy, entropy, activation energy, and sticking probability were also calculated. It was found that the sorption of SY onto CdTN-AC was spontaneous and endothermic in nature. The proposed adsorbent is applicable for SY removal from waste of real effluents including pea-shooter, orange drink and jelly banana with efficiency more than 97%.
Bioremoval of the azo dye Congo Red by the microalga Chlorella vulgaris.
Hernández-Zamora, Miriam; Cristiani-Urbina, Eliseo; Martínez-Jerónimo, Fernando; Perales-Vela, Hugo Virgilio; Ponce-Noyola, Teresa; Montes-Horcasitas, María del Carmen; Cañizares-Villanueva, Rosa Olivia
2015-07-01
Discharge of dye-containing wastewater by the textile industry can adversely affect aquatic ecosystems and human health. Bioremoval is an alternative to industrial processes for detoxifying water contaminated with dyes. In this work, active and inactive biomass of the microalga Chlorella vulgaris was assayed for the ability to remove Congo Red (CR) dye from aqueous solutions. Through biosorption and biodegradation processes, Chlorella vulgaris was able to remove 83 and 58 % of dye at concentrations of 5 and 25 mg L(-1), respectively. The maximum adsorption capacity at equilibrium was 200 mg g(-1). The Langmuir model best described the experimental equilibrium data. The acute toxicity test (48 h) with two species of cladocerans indicated that the toxicity of the dye in the effluent was significantly decreased compared to the initial concentrations in the influent. Daphnia magna was the species less sensitive to dye (EC50 = 17.0 mg L(-1)), followed by Ceriodaphnia dubia (EC50 = 3.32 mg L(-1)). These results show that Chlorella vulgaris significantly reduced the dye concentration and toxicity. Therefore, this method may be a viable option for the treatment of this type of effluent.
NASA Astrophysics Data System (ADS)
Pascal, Viel; Laetitia, Dubois; Joël, Lyskawa; Marc, Sallé; Serge, Palacin
2007-01-01
Absorption on resins is often used as secondary step in the treatment of water-based effluents, in order to reach very low concentrations. The separation of the trapped effluents from the resins and the regeneration of the resins for further use create wide volumes of secondary effluents coming from the washings of the resins with chemical reagents. We propose an alternative solution based on a "surface strategy" through adsorption phenomena and electrical control of the expulsion stage. The final goal is to limit or ideally to avoid the use of chemical reagents at the expulsion (or regeneration) stage of the depolluting process. Heavy metal ions were captured on active filters composed by a conducting surface covered by poly-4-vinylpyridine (P 4VP). Due to pyridine groups those polymer films have chelating properties for copper ions. Our strategy for electrical triggering of the copper expulsion in aqueous medium is based on pH sensitive chelating groups. Applying moderate electro-oxidizing conditions generates acidic conditions in the vicinity of the electrode, i.e. "inside" the polymer film. This allows a "switch-off" of the complexing properties of the film from the basic form of pyridine to pyridinium. Interestingly, no buffer washing is necessary to restore (or "switch-on") the complexing properties of the polymer film because the pH of the external medium is left unchanged by the electrochemical effect that affects only the vicinity of the electrode. Switch-on/switch-off cycles are followed and attested by IR spectroscopy and EQCM method.
Chandran, Kartik; Stein, Lisa Y; Klotz, Martin G; van Loosdrecht, Mark C M
2011-12-01
Chemolithoautotrophic AOB (ammonia-oxidizing bacteria) form a crucial component in microbial nitrogen cycling in both natural and engineered systems. Under specific conditions, including transitions from anoxic to oxic conditions and/or excessive ammonia loading, and the presence of high nitrite (NO₂⁻) concentrations, these bacteria are also documented to produce nitric oxide (NO) and nitrous oxide (N₂O) gases. Essentially, ammonia oxidation in the presence of non-limiting substrate concentrations (ammonia and O₂) is associated with N₂O production. An exceptional scenario that leads to such conditions is the periodical switch between anoxic and oxic conditions, which is rather common in engineered nitrogen-removal systems. In particular, the recovery from, rather than imposition of, anoxic conditions has been demonstrated to result in N₂O production. However, applied engineering perspectives, so far, have largely ignored the contribution of nitrification to N₂O emissions in greenhouse gas inventories from wastewater-treatment plants. Recent field-scale measurements have revealed that nitrification-related N₂O emissions are generally far higher than emissions assigned to heterotrophic denitrification. In the present paper, the metabolic pathways, which could potentially contribute to NO and N₂O production by AOB have been conceptually reconstructed under conditions especially relevant to engineered nitrogen-removal systems. Taken together, the reconstructed pathways, field- and laboratory-scale results suggest that engineering designs that achieve low effluent aqueous nitrogen concentrations also minimize gaseous nitrogen emissions.
Heterotrophic denitrification of aquaculture effluent using fluidized sand biofilters
USDA-ARS?s Scientific Manuscript database
The ability to consistently and cost-effectively reduce nitrate-nitrogen loads in effluent from recirculating aquaculture systems would enhance the industry's environmental stewardship and allow improved facility proximity to large markets in sensitive watersheds. Heterotrophic denitrification techn...
Hydroponics reducing effluent's heavy metals discharge.
Rababah, Abdellah; Al-Shuha, Ahmad
2009-01-01
This paper investigates the capacity of Nutrient Film Technique (NFT) to control effluent's heavy metals discharge. A commercial hydroponic system was adapted to irrigate lettuces with primary treated wastewater for studying the potential heavy metals removal. A second commercial hydroponic system was used to irrigate the same type of lettuces with nutrient solution and this system was used as a control. Results showed that lettuces grew well when irrigated with primary treated effluent in the commercial hydroponic system. The NFT-plant system heavy metals removal efficiency varied amongst the different elements, The system's removal efficiency for Cr was more than 92%, Ni more than 85%, in addition to more than 60% reduction of B, Pb, and Zn. Nonetheless, the NFT-plants system removal efficiencies for As, Cd and Cu were lower than 30%. Results show that lettuces accumulated heavy metals in leaves at concentrations higher than the maximum acceptable European and Australian levels. Therefore, non-edible plants such as flowers or pyrethrum are recommended as value added crops for the proposed NFT.
Fuel cell system with combustor-heated reformer
Pettit, William Henry
2000-01-01
A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.
Laboratory studies to characterize the efficacy of sand capping a coal tar-contaminated sediment.
Hyun, Seunghun; Jafvert, Chad T; Lee, Linda S; Rao, P Suresh C
2006-06-01
Placement of a microbial active sand cap on a coal tar-contaminated river sediment has been suggested as a cost effective remediation strategy. This approach assumes that the flux of contaminants from the sediment is sufficiently balanced by oxygen and nutrient fluxes into the sand layer such that microbial activity will reduce contaminant concentrations within the new benthic zone and reduce the contaminant flux to the water column. The dynamics of such a system were evaluated using batch and column studies with microbial communities from tar-contaminated sediment under different aeration and nutrient inputs. In a 30-d batch degradation study on aqueous extracts of coal tar sediment, oxygen and nutrient concentrations were found to be key parameters controlling the degradation rates of polycyclic aromatic hydrocarbons (PAHs). For the five PAHs monitored (naphthalene, fluorene, phenanthrene, anthracene, and pyrene), degradation rates were inversely proportional to molecular size. For the column studies, where three columns were packed with a 20-cm sand layer on the top of a 5 cm of sediment layer, flow was established to sand layers with (1) aerated water, (2) N(2) sparged water, or (3) HgCl(2)-sterilized N(2) sparged water. After steady-state conditions, PAH concentrations in effluents were the lowest in the aerated column, except for pyrene, whose concentration was invariant with all effluents. These laboratory scale studies support that if sufficient aeration can be achieved in the field through either active and passive means, the resulting microbially active sand layer can improve the water quality of the benthic zone and reduce the flux of many, but not all, PAHs to the water column.
Chen, Xinxia; Zhang, Liyan; Wan, Jinzhi; Liang, Bin; Xie, Yu
2010-08-01
To isolate and purify gallic acid and brevifolincarboxylic acid simultaneously by high-speed counter-current chromatography (HSCCC) from a crude extract of Polygonum capitatum. The biphasic solvent system composed of ethyl acetate-n-butanol-0.44% acetic acid (3:1:5) was used at a flow rate of 2.0 mL x min(-1), while the aqueous phase was selected as the mobile phase and the apparatus was rotated at 860 r x min(-1). The effluent was detected at 272 nm. 51.5 mg of gallic acid and 5.9 mg of brevifolincarboxylic acid were separated from 1.07 g of the crude extract with the purities of 99.7% and 97.5%, respectively, while brevifolincarboxylic acid was obtained firstly from the genus Polygonum. The structures of the compounds were identified by ultraviolet spectrometry (UV), infra-red spectrometry (IR), liquid chromatography/mass spectrometry (LC/MS), time-of-flight mass spectrometry( TOF-MS), 1H-nuclear magnetic resonance (NMR) and 13C-NMR. This method is feasible and rapid for isolation and purification of gallice acid and brevifolincarboxylil acid.
Design and experimental study on desulphurization process of ship exhaust
NASA Astrophysics Data System (ADS)
Han, Mingyang; Hao, Shan; Zhou, Junbo; Gao, Liping
2018-02-01
This desulfurization process involves removing sulfur oxides with seawater or alkaline aqueous solutions and then treating the effluent by aeration and pH adjustment before discharging it into the ocean. In the desulfurization system, the spray tower is the key equipment and the venturi tubes are the pretreatment device. The two stages of plates are designed to fully absorb sulfur oxides in exhaust gases. The spiral nozzles atomize and evenly spray the desulfurizers into the tower. This study experimentally investigated the effectiveness of this desulfurization process and the factors influencing it under laboratory conditions, with a diesel engine exhaust used to represent ship exhaust. The experimental results show that this process can effectively absorb the SO2 in the exhaust. When the exhaust flow rate was 25 m3/h and the desulfurizer flow rate was 4 L/min, the sulfur removal efficiency (SRE) reached 99.7%. The flow rate, alkalinity, and temperature of seawater were found to have significant effects on the SRE. Adjusting seawater flow rate (SWR) and alkalinity within certain ranges can substantially improve the SRE.
El-Desoky, Hanaa S; Ghoneim, Mohamed M; El-Sheikh, Ragaa; Zidan, Naglaa M
2010-03-15
The indirect electrochemical removal of pollutants from effluents has become an attractive method in recent years. Removal (decolorization and mineralization) of Levafix Blue CA and Levafix Red CA reactive azo-dyes from aqueous media by electro-generated Fenton's reagent (Fe(2+)/H(2)O(2)) using a reticulated vitreous carbon cathode and a platinum gauze anode was optimized. Progress of oxidation (decolorization and mineralization) of the investigated azo-dyes with time of electro-Fenton's reaction was monitored by UV-visible absorbance measurements, Chemical oxygen demand (COD) removal and HPLC analysis. The results indicated that the electro-Fenton's oxidation system is efficient for treatment of such types of reactive dyes. Oxidation of each of the investigated azo-dyes by electro-generated Fenton's reagent up to complete decolorization and approximately 90-95% mineralization was achieved. Moreover, the optimized electro-Fenton's oxidation was successfully applied for complete decolorization and approximately 85-90% mineralization of both azo-dyes in real industrial wastewater samples collected from textile dyeing house at El-Mahalla El-Kobra, Egypt. (c) 2009 Elsevier B.V. All rights reserved.
CONTINUOUS PRECIPITATION METHOD FOR CONVERSION OF URANYL NITRATE TO URANIUM HEXAFLUORIDE
Reinhart, G.M.; Collopy, T.J.
1962-11-13
A continuous precipitation process is given for converting a uranyl nitrate solution to uranium tetrafluoride. A stream of the uranyl nitrate solution and a stream of an aqueous ammonium hydroxide solution are continuously introduced into an agitated reaction zone maintained at a pH of 5.0 to 6.5. Flow rates are adjusted to provide a mean residence time of the resulting slurry in the reaction zone of at least 30 minutes. After a startup period of two hours the precipitate is recovered from the effluent stream by filtration and is converted to uranium tetrafluoride by reduction to uranium dioxide with hydrogen and reaction of the uranium dioxide with anhydrous hydrogen fluoride. (AEC)
Purification of metal finishing waste waters with zeolites and activated carbons.
Leinonen, H; Lehto, J
2001-02-01
Sixteen zeolites and 5 activated carbons were tested for the removal of nickel, zinc, cadmium, copper, chromium, and cobalt from waste simulants mimicking effluents produced in metal plating plants. The best performances were obtained from 4 zeolites: A, X, L, and ferrierite types and from 2 carbon types made from lignite and peat. The distribution coefficients for these sorbents were in the range of 10,000-440,000 ml/g. Column experiments showed that the most effective zeolites for Zn, Ni, Cu, and Cd were A and X type zeolites. The activated carbons, Hydrodarco 3000 and Norit Row Supra, exhibited good sorption properties for metals in aqueous solutions containing complexing agents.
Proceedings of Shuttle Environmental Effects Program Review. [conferences
NASA Technical Reports Server (NTRS)
Potter, A. E. (Editor)
1980-01-01
Measurements of Titan exhaust cloud effluents are documented and compared, mesoscale and microphysical acid rain models are described, and a submesoscale model is proposed. Various instruments and facilities for measuring ice nuclei and other constituents of solid rocket motor exhaust effluents are discussed. Regional air quality monitoring and rain collection systems are described, and the ecological impact of solid rocket motor exhaust effluents is examined. The potential effect of space shuttle launches is estimated where data are adequate.
Madera, C A; Peña, M R; Mara, D D
2002-01-01
This paper discusses the applicability of effluent reuse in agriculture after treatment in a series of anaerobic, facultative and maturation ponds. The WSP system is located in Ginebra municipality, a small town in southwest Colombia. The total HRT is 12 days. Several samples of the final effluent were taken over a 55 day period and were analysed for E. coli, Streptococcus spp. and helminth eggs. Some additional grab samples were taken to determine the presence of pathogenic bacteria such as Salmonella spp. and Shigella spp. The results showed that the system was able to remove 4 log units of E. coli, 1 log unit of Streptococcus spp. and 100% of helminth eggs. Meanwhile, Salmonella spp. were detected in the effluent of the facultative pond whilst Shigella spp. were not detected in any sample. The main species of helminth eggs encountered were Taenia spp., Ascaris spp., Trichuris spp., Hymenolepis nana, H. diminuta and Enterobius vermicularis. Removal efficiencies were satisfactory despite the relatively short HRT. Nevertheless, WHO guidelines were slightly surpassed in the case of E. coli for unrestricted irrigation. The helminth egg value was always below the maximum WHO limit. Hence, this effluent can be safely used for restricted irrigation provided that field workers are protected from direct contact with wastewater given the presence of Salmonella spp. in the facultative pond effluent.
Sonntag, W.H.; McPherson, B.F.
1984-01-01
Two test discharges of treated-sewage effluent were made to the Loxahatchee River in February and September 1981 from the ENCON sewage-treatment plant to document nutrient loading and downstream transport of the effluent to the estuary under maximum daily discharge allowable by law (4 million gallons per day). Concentrations of total nitrogen in the effluent exceeded background concentrations by as much as 7 times during the February test, while concentrations of total phosphorus exceeded background concentrations by as much as 112 times during the September test. The effluent was transported downstream to the estuary in less than 24 hours. Discharge of treated sewage effluent to the river-estuary system in the 1981 water year accounted for less than 0.5 percent of the total nitrogen and 8 percent of the total phosphorus discharged from the major tributaries to the estuary. If maximum discharges of effluent (4 million gallons per day) were sustained throughout the year, annual nitrogen loading from the effluent would account for 5 to 18 percent of the total nitrogen input by the major tributaries to the estuary. With maximum discharges of effluent, annual phosphorus loading would exceed the amount of phosphorus input by the major tributaries to the estuary by 54 to 167 percent. (USGS)
PRN 95-1: Effluent Discharge Labeling Statements
This notice exempts certain pesticide products from bearing effluent discharge labeling statements specified by P.R. Notice 93-10 for manufacturing use products and end use products that may be discharged to waters of the U.S. or municipal sewer systems.
Sun, Wenjie; Sierra-Alvarez, Reyes; Milner, Lily; Oremland, Ron; Field, Jim A.
2014-01-01
The objective of this study was to explore a bioremediation strategy based on injecting NO3− to support the anoxic oxidation of ferrous iron (Fe(II)) and arsenite (As(III)) in the subsurface as a means to immobilize As in the form of arsenate (As(V)) adsorbed onto biogenic ferric (Fe(III)) (hydr)oxides. Continuous flow sand filled columns were used to simulate a natural anaerobic groundwater and sediment system with co-occurring As(III) and Fe(II) in the presence (SF1) or absence (SF2) of nitrate, respectively. During operation for 250 days, the average influent arsenic concentration of 567 µg l−1 was reduced to 10.6 (±9.6) µg l−1 in the effluent of column SF1. The cumulative removal of Fe(II) and As(III) in SF1 was 6.5–10-fold higher than that in SF2. Extraction and measurement of the mass of iron and arsenic immobilized on the sand packing of the columns was close to the iron and arsenic removed from the aqueous phase during column operation. The dominant speciation of the immobilized iron and arsenic was Fe(III) and As(V) in SF1, compared with Fe(II) and As(III) in SF2. The speciation was confirmed by XRD and XPS. The results indicate that microbial oxidation of As(III) and Fe(II) linked to denitrification resulted in the enhanced immobilization of aqueous arsenic in anaerobic environments by forming Fe(III) (hydr)oxides coated sands with adsorbed As(V). PMID:19764221
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jie; Veeramani, Harish; Qafoku, Nikolla P.
Systematic flow-through column experiments were conducted using sediments and ground water collected from different subsurface localities at the U.S. Department of Energy's Integrated Field Research Challenge site in Rifle, Colorado. The principal purpose of this study is to gain a better understanding of the interactive effects of groundwater geochemistry, sediment mineralogy, and indigenous bacterial community structures on the efficacy of uranium removal from the groundwater with/without acetate amendment. Overall, we find that the subtle variations in the sediments' mineralogy, particle size, redox conditions, as well as contents of metal(loid) co-contaminants showed a pronounced effect on the associated bacterial population andmore » composition, which mainly determines the system's performance with respect to uranium removal. Positive relationship was identified between the abundance of dissimilatory sulfate-reduction genes (i.e., drsA), markers of sulfatereducing bacteria, and the sediments' propensity to sequester aqueous uranium. In contrast, no obvious connections were observed between the abundance of common iron-reducing bacteria, e.g., Geobacter spp., and the sediments' ability to sequester uranium. In the sediments with low bacterial biomass and the absence of sulfate-reducing conditions, abiotic adsorption onto mineral surfaces such as phyllosilicates likely played a relatively major role in the attenuation of aqueous uranium; however, in these scenarios, acetate amendment induced detectable rebounds in the effluent uranium concentrations. The results of this study suggest that reductive immobilization of uranium can be achieved under predominantly sulfate-reducing conditions, and provide insight into the integrated roles of various biogeochemical components in long-term uranium sequestration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jie; Veeramani, Harish; Qafoku, Nikolla P.
Systematic flow-through column experiments were conducted using sediments and ground water collected from different subsurface localities at the U.S. Department of Energy's Integrated Field Research Challenge site in Rifle, Colorado. The principal purpose of this study is to gain a better understanding of the interactive effects of groundwater geochemistry, sediment mineralogy, and indigenous bacterial community structures on the efficacy of uranium removal from the groundwater with/without acetate amendment. Overall, we find that the subtle variations in the sediments' mineralogy, redox conditions, as well as contents of metal(loid) co-contaminants showed a pronounced effect on the associated bacterial population and composition, whichmore » mainly determines the system's performance with respect to uranium removal. Positive relationship was identified between the abundance of dissimilatory sulfate-reduction genes (i.e., drsA), markers of sulfate-reducing bacteria, and the sediments' propensity to sequester aqueous uranium. In contrast, no obvious connections were observed between the abundance of common iron-reducing bacteria, e.g., Geobacter spp., and the sediments' ability to sequester uranium. In the sediments with low bacterial biomass and the absence of sulfate-reducing conditions, abiotic adsorption onto mineral surfaces such as phyllosilicates likely played a relatively major role in the attenuation of aqueous uranium; however, in these scenarios, acetate amendment induced detectable rebounds in the effluent uranium concentrations. Lastly, the results of this study suggest that immobilization of uranium can be achieved under predominantly sulfate-reducing conditions, and provide insight into the integrated roles of various biogeochemical components in long-term uranium sequestration.« less
Metals removal from aqueous solution by iron-based bonding agents.
Deliyanni, Eleni A; Lazaridis, Nikolaos K; Peleka, Efrosini N; Matis, Konstantinos A
2004-01-01
GOAL AND SCOPE AND BACKGROUND: The application of a promising method, termed sorptive flotation, for the removal of chromium(VI) and zinc ions was the aim of the present paper. A special case of sorptive flotation is adsorbing colloid flotation. Suitable sorbent preparation techniques have been developed in the laboratory. Sorptive flotation, consisting of the sorption and flotation processes combined in series, has proved to give fast and satisfactory treatment of the industrial streams and effluents bearing dilute aqueous solutions of zinc and chromium(VI). Goethite has proved to be effective for the removal of chromium(VI) and zinc ions. Also, adsorbing colloid flotation with ferric hydroxide (as the co-precipitant) could be an alternative method to the above-mentioned separation of metal ions. In both cases, chromium(VI) (pH=4) and zinc (pH=7) removal was about 100%. The reasons for selecting the iron-based bonding materials, like goethite and/or in-situ produced ferric hydroxide, are that they are cheap, easily synthesized, suitable both for cation and anion sorption, and, furthermore, that they present low risks for adding a further pollutant to the system. Promising results were obtained. The application of goethite and in-situ produced ferric hydroxide has demonstrated their effectiveness in the removal of heavy metal ions, such as chromium anions and zinc cations. A proposed continuation of current work is the utilization of similar iron oxides, for instance synthesized akaganeite. The comparison between the results reported in this paper with the results reported in the literature, also deserves attention.
Xu, Jie; Veeramani, Harish; Qafoku, Nikolla P.; ...
2016-12-29
Systematic flow-through column experiments were conducted using sediments and ground water collected from different subsurface localities at the U.S. Department of Energy's Integrated Field Research Challenge site in Rifle, Colorado. The principal purpose of this study is to gain a better understanding of the interactive effects of groundwater geochemistry, sediment mineralogy, and indigenous bacterial community structures on the efficacy of uranium removal from the groundwater with/without acetate amendment. Overall, we find that the subtle variations in the sediments' mineralogy, redox conditions, as well as contents of metal(loid) co-contaminants showed a pronounced effect on the associated bacterial population and composition, whichmore » mainly determines the system's performance with respect to uranium removal. Positive relationship was identified between the abundance of dissimilatory sulfate-reduction genes (i.e., drsA), markers of sulfate-reducing bacteria, and the sediments' propensity to sequester aqueous uranium. In contrast, no obvious connections were observed between the abundance of common iron-reducing bacteria, e.g., Geobacter spp., and the sediments' ability to sequester uranium. In the sediments with low bacterial biomass and the absence of sulfate-reducing conditions, abiotic adsorption onto mineral surfaces such as phyllosilicates likely played a relatively major role in the attenuation of aqueous uranium; however, in these scenarios, acetate amendment induced detectable rebounds in the effluent uranium concentrations. Lastly, the results of this study suggest that immobilization of uranium can be achieved under predominantly sulfate-reducing conditions, and provide insight into the integrated roles of various biogeochemical components in long-term uranium sequestration.« less
Kargi, Fikret; Cikla, Sinem
2007-12-01
Biosorption of zinc (II) ions onto pre-treated powdered waste sludge (PWS) was investigated using a completely mixed tank operating in fed-batch mode instead of an adsorption column. Experiments with variable feed flow rate (0.05-0.5 L h(-1)), feed Zn(II) ion concentrations (37.5-275 mg L(-1)) and amount of adsorbent (1-6 g PWS) were performed using fed-batch operation at pH 5 and room temperature (20-25 degrees C). Break-through curves describing variations of aqueous (effluent) zinc ion concentrations with time were determined for different operating conditions. Percent zinc removal from the aqueous phase decreased, but the biosorbed (solid phase) zinc ion concentration increased with increasing feed flow rate and zinc concentration. A modified Bohart-Adams equation was used to determine the biosorption capacity of PWS (q'(s)) and the rate constant (K) for zinc ion biosorption. Biosorption capacity (q'(s)=57.7 g Zn kg(-1) PWS) of PWS in fed-batch operation was found to be comparable with powdered activated carbon (PAC) in column operations. However, the adsorption rate constant (K=9.17 m(3) kg(-1) h(-1)) in fed-batch operation was an order of magnitude larger than those obtained in adsorption columns because of elimination of mass transfer limitations encountered in the column operations. Therefore, a completely mixed tank operated in fed-batch mode was proven to be more advantageous as compared to adsorption columns due to better contact between the phases yielding faster adsorption rates.
Tracking the Key Constituents of Concern of the WTP LAW Stream
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mabrouki, Ridha B.; Matlack, Keith S.; Abramowitz, Howard
The testing results presented in the present report were also obtained on a DM10 melter system operated with the primary WTP LAW offgas system components with recycle, as specified in the statement of work (SOW) [6] and detailed in the Test Plan for this work [7]. The primary offgas system components include the SBS, the WESP, and a recycle system that allows recycle of liquid effluents back to the melter, as in the present baseline for the WTP LAW vitrification. The partitioning of technetium and other key constituents between the glass waste form, the offgas system liquid effluents, the offgasmore » stream that exits the WESP, and the liquid condensate from the vacuum evaporator were quantified in this work. The tests employed three different LAW streams spanning a range of waste compositions anticipated for WTP. Modifications to the offgas system and operational strategy were made to expedite the approach to steady state concentrations of key constituents in the glass and offgas effluent solutions during each test.« less
Nitrogen removal from wastewater by an aerated subsurface-flow constructed wetland in cold climates.
Redmond, Eric D; Just, Craig L; Parkin, Gene F
2014-04-01
The objective of this study was to assess the role of cyclic aeration, vegetation, and temperature on nitrogen removal by subsurface-flow engineered wetlands. Aeration was shown to enhance total nitrogen and ammonia removal and to enhance removal of carbonaceous biochemical oxygen demand, chemical oxygen demand, and phosphorus. Effluent ammonia and total nitrogen concentrations were significantly lower in aerated wetland cells when compared with unaerated cells. There was no significant difference in nitrogen removal between planted and unplanted cells. Effluent total nitrogen concentrations ranged from 9 to 12 mg N/L in the aerated cells and from 23 to 24 mg N/L in unaerated cells. Effluent ammonia concentrations ranged from 3 to 7 mg N/L in aerated wetland cells and from 22 to 23 mg N/L in unaerated cells. For the conditions tested, temperature had only a minimal effect on effluent ammonia or total nitrogen concentrations. The tanks-in-series and the PkC models predicted the general trends in effluent ammonia and total nitrogen concentrations, but did not do well predicting short-term variability. Rate coefficients for aerated systems were 2 to 10 times greater than those for unaerated systems.
Park, Young-Tae; Lee, Hongkyun; Yun, Hyun-Shik; Song, Kyung-Guen; Yeom, Sung-Ho; Choi, Jaeyoung
2013-12-01
In this study, the microalgae culture system to combined active treatment system and pipe inserted microalgae reactor (PIMR) was investigated. After pretreated AMD in active treatment system, the effluent load to PIMR in order to Nephroselmis sp. KGE 8 culture. In experiment, effect of iron on growth and lipid accumulation in microalgae were inspected. The 2nd pretreatment effluent was economic feasibility of microalgae culture and lipid accumulation. The growth kinetics of the microalgae are modeled using logistic growth model and the model is primarily parameterized from data obtained through an experimental study where PIMR were dosed with BBM, BBM added 10 mg L(-1) iron and 2nd pretreatment effluent. Moreover, the continuous of microalgae culture in PIMR can be available. Overall, this study indicated that the use of pretreated AMD is a viable method for culture microalgae and lipid accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gong, Tingting; Zhang, Xiangru
2015-01-01
The use of seawater for toilet flushing introduces high levels of inorganic ions, including iodide ions, into a city's wastewater treatment systems, resulting in saline wastewater effluents. Chlorination is widely used in disinfecting wastewater effluents owing to its low cost and high efficiency. During chlorination of saline wastewater effluents, iodide may be oxidized to hypoiodous acid, which may further react with effluent organic matter to form iodinated disinfection byproducts (DBPs). Iodinated DBPs show significantly higher toxicity than their brominated and chlorinated analogues and thus have been drawing increasing concerns. In this study, polar iodinated DBPs were detected in chlorinated saline wastewater effluents using a novel precursor ion scan method. The major polar iodinated DBPs were identified and quantified, and their organic precursors and formation pathways were investigated. The formation of iodinated DBPs under different chlorine doses and contact times was also studied. The results indicated that a few polar iodinated DBPs were generated in the chlorinated saline primary effluent, but few were generated in the chlorinated saline secondary effluent. Several major polar iodinated DBPs in the chlorinated saline primary effluent were proposed with structures, among which a new group of polar iodinated DBPs, iodo-trihydroxybenzenesulfonic acids, were identified and quantified. The organic precursors of this new group of DBPs were found to be 4-hydroxybenzenesulfonic acid and 1,2,3-trihydroxybenzene, and the formation pathways of these new DBPs were tentatively proposed. Both chlorine dose and contact time affected the formation of iodinated DBPs in the chlorinated saline wastewater effluents.
POLISHING EFFLUENT FROM A PERCHLORATE-REDUCING ANAEROBIC BIOLOGICAL CONTACTOR
The U.S. Environmental Protection Agency undertook at 3 ½ year pilot-scale biological perchlorate treatment study that included two long (311 and 340 days) examinations of anaerobic effluent polishing. The polishing system consisted of hydrogen peroxide addition and aeration, fo...
Liang, Chenju; Lee, I-Ling
2008-09-10
In situ chemical oxidation (ISCO) is considered a reliable technology to treat groundwater contaminated with high concentrations of organic contaminants. An ISCO oxidant, persulfate anion (S(2)O(8)(2-)) can be activated by ferrous ion (Fe(2+)) to generate sulfate radicals (E(o)=2.6 V), which are capable of destroying trichloroethylene (TCE). The property of polarity inhibits S(2)O(8)(2-) or sulfate radical (SO(4)(-)) from effectively oxidizing separate phase TCE, a dense non-aqueous phase liquid (DNAPL). Thus the oxidation primarily takes place in the aqueous phase where TCE is dissolved. A bench column study was conducted to demonstrate a conceptual remediation method by flushing either S(2)O(8)(2-) or Fe(2+) through a soil column, where the TCE DNAPL was present, and passing the dissolved mixture through either a Fe(2+) or S(2)O(8)(2-) fluid sparging curtain. Also, the effect of a solubility enhancing chemical, hydroxypropyl-beta-cyclodextrin (HPCD), was tested to evaluate its ability to increase the aqueous TCE concentration. Both flushing arrangements may result in similar TCE degradation efficiencies of 35% to 42% estimated by the ratio of TCE degraded/(TCE degraded+TCE remained in effluent) and degradation byproduct chloride generation rates of 4.9 to 7.6 mg Cl(-) per soil column pore volume. The addition of HPCD did greatly increase the aqueous TCE concentration. However, the TCE degradation efficiency decreased because the TCE degradation was a lower percentage of the relatively greater amount of dissolved TCE by HPCD. This conceptual treatment may serve as a reference for potential on-site application.
Penduka, Dambudzo; Okoh, Anthony I.
2011-01-01
We assessed the anti-Listerial activities of crude n-hexane and aqueous extracts of Garcinia kola seeds against a panel of 42 Listeria isolates previously isolated from wastewater effluents in the Eastern Cape Province of South Africa and belonging to Listeria monocytogenes, Listeria grayi and Listeria ivanovii species. The n-hexane fraction was active against 45% of the test bacteria with zones of inhibition ranging between 8–17 mm, while the aqueous fraction was active against 29% with zones of inhibition ranging between 8–11 mm. The minimum inhibitory concentrations (MIC) were within the ranges of 0.079–0.625 mg/mL for the n-hexane extract and 10 to >10 mg/mL for the aqueous extract. The rate of kill experiment carried out for the n-hexane extract only, revealed complete elimination of the initial bacterial population for L. grayi (LAL 15) at 3× and 4× MIC after 90 and 60 min; L. monocytogenes (LAL 8) at 3× and 4× MIC after 60 and 15 min; L. ivanovii (LEL 18) at 3× and 4× MIC after 120 and 15 min; L. ivanovii (LEL 30) at 2, 3 and 4× MIC values after 105, 90 and 15 min exposure time respectively. The rate of kill activities were time- and concentration-dependant and the extract proved to be bactericidal as it achieved a more than 3log10 decrease in viable cell counts after 2 h exposure time for all of the four test organisms at 3× and 4× MIC values. The results therefore show the potential presence of anti-Listerial compounds in Garcinia kola seeds that can be exploited in effective anti-Listerial chemotherapy. PMID:22072929
Penduka, Dambudzo; Okoh, Anthony I
2011-01-01
We assessed the anti-Listerial activities of crude n-hexane and aqueous extracts of Garcinia kola seeds against a panel of 42 Listeria isolates previously isolated from wastewater effluents in the Eastern Cape Province of South Africa and belonging to Listeria monocytogenes, Listeria grayi and Listeria ivanovii species. The n-hexane fraction was active against 45% of the test bacteria with zones of inhibition ranging between 8-17 mm, while the aqueous fraction was active against 29% with zones of inhibition ranging between 8-11 mm. The minimum inhibitory concentrations (MIC) were within the ranges of 0.079-0.625 mg/mL for the n-hexane extract and 10 to >10 mg/mL for the aqueous extract. The rate of kill experiment carried out for the n-hexane extract only, revealed complete elimination of the initial bacterial population for L. grayi (LAL 15) at 3× and 4× MIC after 90 and 60 min; L. monocytogenes (LAL 8) at 3× and 4× MIC after 60 and 15 min; L. ivanovii (LEL 18) at 3× and 4× MIC after 120 and 15 min; L. ivanovii (LEL 30) at 2, 3 and 4× MIC values after 105, 90 and 15 min exposure time respectively. The rate of kill activities were time- and concentration-dependant and the extract proved to be bactericidal as it achieved a more than 3log(10) decrease in viable cell counts after 2 h exposure time for all of the four test organisms at 3× and 4× MIC values. The results therefore show the potential presence of anti-Listerial compounds in Garcinia kola seeds that can be exploited in effective anti-Listerial chemotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suriyaprabha, R., E-mail: sooriyarajendran@gmail.com; Khan, Samreen Heena; Pathak, Bhawana
2016-04-13
Treatment of highly concentrated Industrial dye stuff effluents released in the environment is the major issue faced in the era of waste management as well as in water pollution. Though there is availability of conventional techniques in large numbers, there is a need of efficient and effective advance technologies. In account of that, Nanotechnology plays a prominent role to treat the heavy metals, organic and inorganic contaminants using smart materials in nano regime (1 -100 nm). Among these nanomaterials like Iron Oxide (Fe{sub 3}O{sub 4}, magnetic nanoparticle) is one of the most promising candidates to remove the heavy metals from themore » industrial effluent. Fe{sub 3}O{sub 4} is the widely used smart material with magnetic property having high surface area; high surface to volume ratio provides more surface for the chemical reaction for the surface adsorption. Fe{sub 3}O{sub 4} nanoparticles have been synthesized using sonochemical method using ultra frequency in aqueous solution under optimized conditions. The as-synthesized nanoparticle was analyzed using different characterization tool. The Transmission Electron microscope (TEM) images revealed 10-12 nm spherical shape nanoparticles; crystal phase and surface morphology was confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. The functional group were identified by Fourier Transform-Infra Red Spectroscopy (FT-IR), revealed the bending and stretching vibrations associated with Iron Oxide nanoparticle. In present study, for the efficient removal of contaminants, different concentration (10-50 ppm) of dye stuff effluent has been prepared and subjected to adsorption and decolourization at definite time intervals with Fe{sub 3}O{sub 4} nanoparticles. The concentration of Iron oxide and the time (45 mins) was kept fixed for the reaction whereas the concentration of dye stuff effluent was kept varying. It was found that the spherical shaped Fe{sub 3}O{sub 4} proved to be the potential material for the adsorption of corresponding contaminants due to its highly active adsorbing surfaces. The result concluded that the effective adsorption and decolourization of contaminants is observed in different concentration with the maximum time period of 45 mins with the optimized concentration of Fe{sub 3}O{sub 4}.« less
Matias, M S; Melegari, S P; Vicentini, D S; Matias, W G; Ricordel, C; Hauchard, D
2015-08-15
Nanoscience is a field that has stood out in recent years. The accurate long-term health and environmental risks associated with these emerging materials are unknown. Therefore, this work investigated how to eliminate silver nanoparticles (AgNPs) from synthetic effluents by electrocoagulation (EC) due to the widespread use of this type of nanoparticle (NP) in industry and its potential inhibition power over microorganisms responsible for biological treatment in effluent treatment plants. Synthesized AgNPs were studied via four different routes by chemical reduction in aqueous solutions to simulate the chemical variations of a hypothetical industrial effluent, and efficiency conditions of the EC treatment were determined. All routes used silver nitrate as the source of silver ions, and two synthesis routes were studied with sodium citrate as a stabilizer. In route I, sodium citrate functioned simultaneously as the reducing agent and stabilizing agent, whereas route II used sodium borohydride as a reducing agent. Route III used D-glucose as the reducing agent and sodium pyrophosphate as the stabilizer; route IV used sodium pyrophosphate as the stabilizing agent and sodium borohydride as the reducing agent. The efficiency of the EC process of the different synthesized solutions was studied. For route I, after 85 min of treatment, a significant decrease in the plasmon resonance peak of the sample was observed, which reflects the efficiency in the mass reduction of AgNPs in the solution by 98.6%. In route II, after 12 min of EC, the absorbance results reached the detection limit of the measurement instrument, which indicates a minimum reduction of 99.9% of AgNPs in the solution. During the 4 min of treatment in route III, the absorbance intensities again reached the detection limit, which indicates a minimum reduction of 99.8%. In route IV, after 10 min of treatment, a minimum AgNP reduction of 99.9% was observed. Based on these results, it was possible to verify that the solutions containing citrate considerably increased the necessary times required to eliminate AgNPs from the synthesized effluent, whereas solutions free of this reagent showed better results on floc formation and, therefore, are best for the treatment. The elimination of AgNPs from effluents by EC proved effective for the studied routes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yang, Y; Zhang, L; Zhao, Y Q; Wang, S P; Guo, X C; Guo, Y; Wang, L; Ren, Y X; Wang, X C
2011-01-01
This study was conducted to examine the possibility of using construction solid waste (CSW), an inevitable by-product of the construction and demolition process, as the main substrate in a laboratory scale multi-stage constructed wetland system (CWs) to improve phosphorus (P) removal from secondary sewage effluent. A tidal-flow operation strategy was employed to enhance the wetland aeration. This will stimulate aerobic biological processes and benefit the organic pollutants decomposition and nitrification process for ammoniacal-nitrogen (NH(+)(4)-N) removal. The results showed that the average P concentration in the secondary sewage effluent was reduced from 1.90 mg-P/L to 0.04 mg-P/L. CSW presents excellent P removal performance. The average NH(+)(4)-N concentration was reduced from 9.94 mg-N/L to 1.0 mg-N/L through nitrification in the system. The concentration of resultant nitrite and nitrate in the effluent of the CSW based CWs ranged from 0.1 to 2.4 mg-N/L and 0.01 to 0.8 mg-N/L, respectively. The outcome of this study has shown that CSW can be successfully used to act as main substrate in CWs. The application of CSW based CWs on improving N and P removals from secondary sewage effluent presents a win-win scenario. Such the reuse of CSW will benefit both the CSW disposal and nutrient control from wastewater. More significantly, such the application can transfer the CSW from a 'waste' to 'useful' material and can ease the pressure of construction waste solid management. Meanwhile, the final effluent from the CSW-based CWs can be used as non-potable water source in landscape irrigation, agriculture and industrial process.
De, Mriganka; Toor, Gurpal S
2016-11-01
Septic systems can be a major source of nitrogen (N) in shallow groundwater. We designed an in situ engineered drainfield with aerobic-anaerobic (sand-woodchips) and anaerobic (elemental sulfur-oyster shell) media to remove N in the vadose zone and reduce N transport to groundwater. Effluent was dispersed on top of the engineered drainfield (3.72 m infiltrative surface) and then infiltrated through the aerobic-anaerobic and anaerobic media before reaching natural soil. Water samples were collected over 64 sampling events (May 2012-December 2013) from three parts of the drainfield: (i) a suction cup lysimeter installed at the sand-woodchips interface, (ii) a pipe after effluent passed through the aerobic-anaerobic media, and (iii) a tank containing anaerobic media. In the effluent, most of the total N (66 mg L) was present as NH-N (88.8%), whereas at the sand-woodchips interface the dominant N form was NO-N (31 mg L; 85% of total N). As the effluent passed through the aerobic-anaerobic media in the drainfield, heterotrophic denitrification reduced NO-N to 5.4 mg L. In the tank containing anaerobic media, autotrophic denitrification, facilitated by elemental sulfur, further reduced NO-N to 1 mg L. Overall, 90% of total added N was removed as the effluent passed through the aerobic-anaerobic and anaerobic media within the engineered drainfield. We conclude that the use of multiple electron donors from external media (sand-woodchips and elemental sulfur-oyster shell) was effective at removing N in the engineered drainfield and will reduce the risk of groundwater N contamination from septic systems in areas with shallow groundwater. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Cavallin, Jenna E.; Jensen, Kathleen M.; Kahl, Michael D.; Villeneuve, Daniel L.; Lee, Kathy E.; Schroeder, Anthony L.; Mayasich, Joe; Eid, Evan P.; Nelson, Krysta R.; Milsk, Rebecca Y.; Blackwell, Brett R.; Berninger, Jason P.; LaLone, Carlie A.; Blanskma, Chad; Jicha, Terri M.; Elonen, Colleen M.; Johnson, Rodney C.; Ankley, Gerald T.
2016-01-01
Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds, such as estrogens, which can affect the hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined reproductive effects in fathead minnows exposed for 21 d to a historically estrogenic WWTP effluent. Fathead minnow breeding pairs were held in control water or 1 of 3 effluent concentrations (5%, 20%, and 100%) in a novel onsite, flow-through system providing real-time exposure. The authors examined molecular and biochemical endpoints representing key events along adverse outcome pathways linking estrogen receptor activation and other molecular initiating events to reproductive impairment. In addition, the authors used chemical analysis of the effluent to construct a chemical-gene interaction network to aid in targeted gene expression analyses and identifying potentially impacted biological pathways. Cumulative fecundity was significantly reduced in fish exposed to 100% effluent but increased in those exposed to 20% effluent, the approximate dilution factor in the receiving waters. Plasma vitellogenin concentrations in males increased in a dose-dependent manner with effluent concentration; however, male fertility was not impacted. Although in vitro analyses, analytical chemistry, and biomarker responses confirmed the effluent was estrogenic, estrogen receptor agonists were unlikely the primary driver of impaired reproduction. The results provide insights into the significance of pathway-based effects with regard to predicting adverse reproductive outcomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murata, Tomonori; Yamauchi, Kiyoshi
2008-02-01
Thyroid system-disrupting activity in effluents from municipal domestic sewage treatment plants was detected using three in vitro assays and one in vivo assay. Contaminants in the effluents were extracted by solid-phase extraction (SPE) and eluted stepwise with different organic solvents. The majority of the thyroid system-disrupting activity was detected in the dichloromethane/methanol (1/1) fraction after SPE in all three in vitro assays: competitive assays of 3,3',5-[{sup 125}I]triiodo-L-thyronine ([{sup 125}I]T{sub 3}) binding to the plasma protein transthyretin (TTR assay) and thyroid hormone receptor (TR assay) and T{sub 3}-dependent luciferase assay (Luc assay). Subsequent reverse-phase high-performance liquid chromatography (RP-HPLC) of the dichloromethane/methanolmore » (1/1) fraction separated contaminants potent in the TR and Luc assays from those potent in the TTR assay. The contaminants potent in the TR and Luc assays were also potent in an in vivo short-term gene expression assay in Xenopus laevis (Tadpole assay). The present study demonstrated that the effluents from domestic sewage treatment plants contain contaminants with T{sub 3}-like activity of {approx} 10{sup -10} M T{sub 3}-equivalent concentration (T{sub 3}EQ) and that the TR and Luc assays are powerful in vitro bioassays for detecting thyroid system-disrupting activity in effluents. The availability and applicability of these bioassays for screening contaminants with thyroid system-disrupting activity in the water environment are discussed.« less
Sigge, G O; Britz, T J; Fouri, P C; Barnardt, C A; Strydom, R
2001-01-01
UASB treatment of cannery effluents was shown to be feasible. However, the treated effluent still does not allow direct discharge to a water system and a further form of post-treatment is necessary to reduce the COD to lower than the legal limit of 75 mg/l. The use of ozone, hydrogen peroxide and granular activated carbon were used singly or in combination to assess the effectiveness as post-treatment options for the UASB treated alkaline fruit cannery effluent. Colour reduction in the effluent ranged from 15% to 92% and COD reductions of 26-91% were achieved. Combinations of ozone and hydrogen peroxide gave better results than either oxidant singly. The best results were achieved by combining ozone, hydrogen peroxide and granular activated carbon, and COD levels were reduced to levels sufficiently below the 75 mg/l limit.
Saucier, Caroline; Karthickeyan, P; Ranjithkumar, V; Lima, Eder C; Dos Reis, Glaydson S; de Brum, Irineu A S
2017-02-01
Activated carbon (AC)/CoFe 2 O 4 nanocomposites, MAC-1 and MAC-2, were prepared by a simple pyrolytic method using a mixture of iron(III)/cobalt(II) benzoates and iron(III)/cobalt(II) oxalates, respectively, and were used as efficient adsorbents for the removal of amoxicillin (AMX) and paracetamol (PCT) of aqueous effluents. The synthesized nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The sizes of cobalt ferrite nanoparticles formed from benzoates of iron(III)/cobalt(II) and oxalates of iron(III)/cobalt(II) precursors were in the ranges of 5-80 and 6-27 nm, respectively. The saturation magnetization (M s ), remanence (M r ) and coercivity (H c ) of the MAC-2 nanocomposites were found to be 3.07 emu g -1 , 1.36 emu g -1 and 762.49 Oe; for MAC-1, they were 0.2989 emu g -1 , 0.0466 emu g -1 and 456.82 Oe. The adsorption kinetics and isotherm studies were investigated, and the results showed that the as-prepared nanocomposites MAC-1 and MAC-2 could be utilized as an efficient, magnetically separable adsorbent for environmental cleanup. The maximum sorption capacities obtained were 280.9 and 444.2 mg g -1 of AMX for MAC-1 and MAC-2, respectively, and 215.1 and 399.9 mg g -1 of PCT using MAC-1 and MAC-2, respectively. Both adsorbents were successfully used for simulated hospital effluents, removing at least 93.00 and 96.77% for MAC-1 and MAC-2, respectively, of a mixture of nine pharmaceuticals with high concentrations of sugars, organic components and saline concentrations.
Miralles-Cuevas, S; Oller, I; Pérez, J A Sánchez; Malato, S
2014-11-01
In recent years, membrane technologies (nanofiltration (NF)/reverse osmosis (RO)) have received much attention for micropollutant separation from Municipal Wastewater Treatment Plant (MWTP) effluents. Practically all micropollutants are retained in the concentrate stream, which must be treated. Advanced Oxidation Processes (AOPs) have been demonstrated to be a good option for the removal of microcontaminants from water systems. However, these processes are expensive, and therefore, are usually combined with other techniques (such as membrane systems) in an attempt at cost reduction. One of the main costs in solar photo-Fenton comes from reagent consumption, mainly hydrogen peroxide and chemicals for pH adjustment. Thus, in this study, solar photo-Fenton was used to treat a real MWTP effluent with low initial iron (less than 0.2 mM) and hydrogen peroxide (less than 2 mM) concentrations. In order to work at neutral pH, iron complexing agents (EDDS and citrate) were used in the two cases studied: direct treatment of the MWTP effluent and treatment of the concentrate stream generated by NF. The degradation of five pharmaceuticals (carbamazepine, flumequine, ibuprofen, ofloxacin and sulfamethoxazole) spiked in the effluent at low initial concentrations (μg L(-1)) was monitored as the main variable in the pilot-plant-scale photo-Fenton experiments. In both effluents, pharmaceuticals were efficiently removed (>90%), requiring low accumulated solar energy (2 kJUV L(-1), key parameter in scaling up the CPC photoreactor) and low iron and hydrogen peroxide concentrations (reagent costs, 0.1 and 1.5 mM, respectively). NF provided a clean effluent, and the concentrate was positively treated by solar photo-Fenton with no significant differences between the direct MWTP effluent and NF concentrate treatments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fan, Lu; Brett, Michael T; Jiang, Wenju; Li, Bo
2017-10-01
The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L -1 . Nitrate (NO 3 - ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 - + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. Copyright © 2017 Elsevier Ltd. All rights reserved.
Instrumentation of sampling aircraft for measurement of launch vehicle effluents
NASA Technical Reports Server (NTRS)
Wornom, D. E.; Woods, D. C.; Thomas, M. E.; Tyson, R. W.
1977-01-01
An aircraft was selected and instrumented to measure effluents emitted from large solid propellant rockets during launch activities. The considerations involved in aircraft selection, sampling probes, and instrumentation are discussed with respect to obtaining valid airborne measurements. Discussions of the data acquisition system used, the instrument power system, and operational sampling procedures are included. Representative measurements obtained from an actual rocket launch monitoring activity are also presented.
Ben-shalom, Miriam; Shandalov, Semion; Brenner, Asher; Oron, Gideon
2014-01-01
Three pilot-scale duckweed pond (DP) wastewater treatment systems were designed and operated to examine the effect of aeration and effluent recycling on treatment efficiency. Each system consisted of two DPs in series fed by pre-settled domestic sewage. The first system (duckweed+ conventional treatment) was 'natural' and included only duckweed plants. The second system (duckweed aeration) included aeration in the second pond. The third system (duckweed+ aeration+ circulation) included aeration in the second pond and effluent recycling from the second to the first pond. All three systems demonstrated similarly efficient removal of organic matter and nutrients. Supplemental aeration had no effect on either dissolved oxygen levels or on pollutant removal efficiencies. Although recycling had almost no influence on nutrient removal efficiencies, it had a positive impact on chemical oxygen demand and total suspended solids removals due to equalization of load and pH, which suppressed algae growth. Recycling also improved the appearance and growth rate of the duckweed plants, especially during heavy wastewater loads.
Membrane separation for non-aqueous solution
NASA Astrophysics Data System (ADS)
Widodo, S.; Khoiruddin; Ariono, D.; Subagjo; Wenten, I. G.
2018-01-01
Membrane technology has been widely used in a number of applications competing with conventional technologies in various ways. Despite the enormous applications, they are mainly used for the aqueous system. The use of membrane-based processes in a non-aqueous system is an emerging area. This is because developed membranes are still limited in separations involving aqueous solution which show several drawbacks when implemented in a non-aqueous system. The purpose of this paper is to provide a review of the current application of membrane processes in non-aqueous solutions, such as mineral oil treatment, vegetable oil processing, and organic solvent recovery. Developments of advanced membrane materials for the non-aqueous solutions such as super-hydrophobic and organic solvent resistant membranes are reviewed. In addition, challenges and future outlook of membrane separation for the non-aqueous solution are discussed.
An expert system for water quality modelling.
Booty, W G; Lam, D C; Bobba, A G; Wong, I; Kay, D; Kerby, J P; Bowen, G S
1992-12-01
The RAISON-micro (Regional Analysis by Intelligent System ON a micro-computer) expert system is being used to predict the effects of mine effluents on receiving waters in Ontario. The potential of this system to assist regulatory agencies and mining industries to define more acceptable effluent limits was shown in an initial study. This system has been further developed so that the expert system helps the model user choose the most appropriate model for a particular application from a hierarchy of models. The system currently contains seven models which range from steady state to time dependent models, for both conservative and nonconservative substances in rivers and lakes. The menu driven expert system prompts the model user for information such as the nature of the receiving water system, the type of effluent being considered, and the range of background data available for use as input to the models. The system can also be used to determine the nature of the environmental conditions at the site which are not available in the textual information database, such as the components of river flow. Applications of the water quality expert system are presented for representative mine sites in the Timmins area of Ontario.
Nitrogen distribution in a tropical urbanized estuarine system in northeastern Brazil.
Dos Santos, Celimarcos Bezerra; Silva, Maria Aparecida Macêdo; de Souza, Marcelo F Landim; da Silva, Daniela Mariano Lopes
2018-01-08
Nitrogen enters estuaries mostly through fluvial discharge and tide, although anthropogenic sources are known to influence the amount of this element in these aquatic ecosystems. Thus, the objective of this work was to verify which river (Cachoeira, Fundão, and/or Santana) exerts greater influence on the distribution of dissolved N forms (Dissolved Organic Nitrogen and Dissolved Inorganic Nitrogen = NH 3 /NH 4 + , NO 2 - , and NO 3 - ) along a tropical urbanized estuarine system in northeastern Brazil. The studies estuarine system lies with in urban municipality, and the upper portion of the Cachoeira river estuary receives the treated effluent from this municipality through a sewage treatment station and untreated effluents from nearby villages. The selected sampling stations were located near the outfall of the rivers in the estuaries to the treatment plant and the villages. Of all the nitrogen forms, dissolved organic nitrogen (DON) prevailed in the estuarine system, followed by nitrate (NO 3 - ) as the main inorganic form. The highest concentrations were recorded in the fluvial portion and upper estuary of Cachoeira river in the dry season. Based on the N concentrations found in the estuarine system, Cachoeira river has the greatest anthropogenic influence due to the amount of untreated effluents from the villages and treated effluents from the sewage treatment plant (STP) in the upper portion of the estuary.
In February 2003 the U.S.EPA published a final rule on National Polllutant Discharge Elimination System Permit Regulation and Effluent Limitation Guidelines and Standards for Concentrated Animal Feeding Operations (CAFOs). Manure and wastewater from CAFOs have the potential to c...
Zhang, Chang-Ping; Gu, Ping; Zhao, Jun; Zhang, Dong; Deng, Yue
2009-08-15
The removal of cesium from an aqueous solution by an adsorption-microfiltration (AMF) process was investigated in jar tests and lab-scale tests. The adsorbent was K(2)Zn(3)[Fe(CN)(6)](2). The obtained cesium data in the jar test fit a Freundlich-type isotherm well. In the lab-scale test, the mean cesium concentration of the raw water and the effluent were 106.87 microg/L and 0.59 microg/L, respectively, the mean removal of cesium was 99.44%, and the mean decontamination factors (DF) and concentration factors (CF) were 208 and 539, respectively. The removal of cesium in the lab-scale test was better than that in the jar test because the old adsorbents remaining in the reactor still had adsorption capacity with the premise of no significant desorption being observed, and the continuous renewal of the adsorbent surface improved the adsorption capacity of the adsorbent. Some of the suspended solids were deposited on the bottom of the reactor, which would affect the mixing of adsorbents with the raw water and the renewing of the adsorbent surface. Membrane fouling was the main physical fouling mechanism, and the cake layer was the main filtration resistance. Specific flux (SF) decreased step by step during the whole period of operation due to membrane fouling and concentration polarization. The quality of the effluent was good and the turbidity remained lower than 0.1NTU, and the toxic anion, CN(-), could not be detected because of its low concentration, this indicated that the effluent was safe. The AMF process was feasible for practical application in the treatment of liquid waste containing cesium.
Self-inhibition can limit biologically enhanced TCE dissolution from a TCE DNAPL.
Haest, P J; Springael, D; Seuntjens, P; Smolders, E
2012-11-01
Biodegradation of trichloroethene (TCE) near a Dense Non Aqueous Phase Liquid (DNAPL) can enhance the dissolution rate of the DNAPL by increasing the concentration gradient at the DNAPL-water interface. Two-dimensional flow-through sand boxes containing a TCE DNAPL and inoculated with a TCE dechlorinating consortium were set up to measure this bio-enhanced dissolution under anaerobic conditions. The total mass of TCE and daughter products in the effluent of the biotic boxes was 3-6 fold larger than in the effluent of the abiotic box. However, the mass of daughter products only accounted for 19-55% of the total mass of chlorinated compounds in the effluent, suggesting that bio-enhanced dissolution factors were maximally 1.3-2.2. The enhanced dissolution most likely primarily resulted from variable DNAPL distribution rather than biodegradation. Specific dechlorination rates previously determined in a stirred liquid medium were used in a reactive transport model to identify the rate limiting factors. The model adequately simulated the overall TCE degradation when predicted resident microbial numbers approached observed values and indicated an enhancement factor for TCE dissolution of 1.01. The model shows that dechlorination of TCE in the 2D box was limited due to the short residence time and the self-inhibition of the TCE degradation. A parameter sensitivity analysis predicts that the bio-enhanced dissolution factor for this TCE source zone can only exceed a value of 2 if the TCE self-inhibition is drastically reduced (when a TCE tolerant dehalogenating community is present) or if the DNAPL is located in a low-permeable layer with a small Darcy velocity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Risk assessment for drugs of abuse in the Dutch watercycle.
van der Aa, Monique; Bijlsma, Lubertus; Emke, Erik; Dijkman, Ellen; van Nuijs, Alexander L N; van de Ven, Bianca; Hernández, Felix; Versteegh, Ans; de Voogt, Pim
2013-04-01
A screening campaign of drugs of abuse (DOA) and their relevant metabolites in the aqueous environment was performed in the Netherlands. The presence of DOA, together with the potential risks for the environment and the possible human exposure to these compounds through consumption of drinking water was investigated. Sewage water (influent and effluent), surface water of the rivers Rhine and Meuse, and drinking water (raw and finished) were analysed by four different laboratories using fully in-house validated methods for a total number of 34 DOA and metabolites. In this way, data reported for several compounds could also be confirmed by other laboratories, giving extra confidence to the results obtained in this study. In total 17 and 22 DOA were detected and quantified in influent and effluent sewage samples, respectively. The tranquilizers oxazepam and temazepam, and cocaine and its metabolite benzoylecgonine were found in high concentrations in sewage water. Nine compounds were possibly not efficiently removed during treatment and were detected in surface waters. The results indicated that substantial fractions of the total load of DOA and metabolites in the rivers Rhine and Meuse enter the Netherlands from abroad. For some compounds, loads appear to increase going downstream, which is caused by a contribution from Dutch sewage water effluents. As far as data are available, no environmental effects are expected of the measured DOA in surface waters. In raw water, three DOA were detected, whereas in only one finished drinking water out of the 17 tested, benzoylecgonine was identified, albeit at a concentration below the limit of quantification (<1 ng/L). Concentrations were well below the general signal value of 1 μg/L, which is specified for organic compounds of anthropogenic origin in the Dutch Drinking Water Act. Copyright © 2013 Elsevier Ltd. All rights reserved.
Anirudhan, T S; Unnithan, Maya R
2007-01-01
The performance of a new anion exchanger (AE) prepared from coconut coir pith (CP), for the removal of arsenic(V) [As(V)] from aqueous solutions was evaluated in this study. The adsorbent (CP-AE) carrying dimethylaminohydroxypropyl weak base functional group was synthesized by the reaction of CP with epichlorohydrin and dimethylamine followed by treatment of hydrochloric acid. IR spectroscopy results confirm the presence of -NH(+)(CH(3))(2)Cl(-) group in the adsorbent. XRD studies confirm the decrease of crystallinity in CP-AE compared to CP, and it favours the protrusion of the functional group into the aqueous medium. Batch experiments were conducted to examine the efficiency of the adsorbent on As(V) removal. Maximum removal of 99.2% was obtained for an initial concentration of 1 mgl(-1) As(V) at pH 7.0 and an adsorbent dose of 2 gl(-1). The kinetics of sorption of As(V) onto CP-AE was described using the pseudo-second-order model. The equilibrium isotherms were determined for different temperatures and the results were analysed using the Langmuir equation. The temperature dependence indicates an exothermic process. Utility of the adsorbent was tested by removing As(V) from simulated groundwater. Regeneration studies were performed using 0.1N HCl. Batch adsorption-desorption studies illustrate that CP-AE could be used to remove As(V) from ground water and other industrial effluents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez-Gonzalez, Sergio Efrain; Carbajal-Arizaga, Gregorio Guadalupe; Manriquez-Gonzalez, Ricardo
Highlights: • Corpuscular sulphonic acid-functionalized silica holds improved uptake of chromium. • Mesopores on adsorbent facilitate (CH{sub 3}COO){sub 2}Cr{sup +} ion uptake on sulphonate sites. • Formation of chromium acetate sulphonate complex proposed from XPS results. • Fixed bed chromium uptake results suggest potential industrial use. - Abstract: A high capacity hybrid silica adsorbent was synthesized via sol–gel processing with sulphonic acid groups as trivalent chromium complex ions chelators from aqueous solutions. The synthesis included co-condensation of tetraethoxysilane (TEOS) with 3-(mercaptopropyl)trimethoxysilane (MPS), and oxidation of thiol to sulphonic acid groups. Chromium uptake kinetic, batch and fixed-bed experiments were performed tomore » assess the removal of this metal from aqueous solutions. {sup 13}C, {sup 29}Si CPMAS NMR, FTIR, XPS were used to characterize the adsorbent structure and the nature of chromium complexes on the adsorbent surface. Chromium maximum uptake was obtained at pH 3 (72.8 mg/g). Elemental analysis results showed ligand density of 1.48 mmol sulphonic groups/g. About 407 mL of Cr(III) solution (311 mg/L) were treated to breakthrough point reaching ≤0.06 mg/L at the effluent. These results comply with USEPA regulation for chromium concentration in drinking water (≤0.1 mg/L). The adsorbent shows potential to be used in chromium separations to the industrial level.« less
Ho, W S Winston
2003-03-01
This paper reviews recent advances in supported liquid membranes (SLMs) with strip dispersion for removal and recovery of metals including chromium, copper, zinc, and strontium; it also discusses potential applications of SLMs for removal and recovery of other materials, including cobalt and penicillin G. The technology for chromium that we developed, not only removes the Cr(VI) from about 100-1,000 ppm to less than 0.05 ppm in the treated effluent allowable for discharge or recycle, but also recovers the chromium product at a high concentration of about 20% Cr(VI) (62.3% Na(2)CrO(4)) suitable for resale or reuse. In other words, we have achieved the goals of zero discharge and no sludge. The stability of the SLM is ensured by a modified SLM with strip dispersion, where the aqueous strip solution is dispersed in the organic membrane solution in a mixer. The strip dispersion formed is circulated from the mixer to the membrane module to provide a constant supply of the organic solution to the membrane pores. The copper SLM system that we have identified, not only removed the copper from 150 ppm in the inlet feed to less than 0.15 ppm in the treated feed, but also recovered the copper at a high concentration of greater than 10,000 ppm in the strip solution. For the zinc SLM system identified, zinc at an inlet feed concentration of 550 ppm was removed to less than 0.3 ppm in the treated feed, whereas a high zinc concentration of more than 17,000 ppm was recovered in the strip solution. For strontium removal, we synthesized a family of new extractants, alkyl phenylphosphonic acids. The SLM removed radioactive (90)Sr to the target of 8 pCi/L or lower from feed solutions of 300-1,000 pCi/L. The SLM removed cobalt from about 525 ppm to 0.7 ppm in the treated feed solution, concentrating it to at least 30,000 ppm in the aqueous strip solution. Concerning penicillin G recovery, the SLM removed penicillin G from a feed of 8,840 ppm and concentrated it to a high concentration of 41,011 ppm in the aqueous strip solution with a high recovery of about 93%.
Moraes, M A B; Carmo, C F; Tabata, Y A; Vaz-Dos-Santos, A M; Mercante, C T J
2016-01-01
The phosphorus and nitrogen discharge via effluent of intensive trout farming system was quantified through the use of environmental indicators. The nutrient loads, the mass balance, the estimated amount of nutrients in feed and the amount of nutrients converted in fish biomass were calculated based on the concentrations of phosphorus (P) and nitrogen (N) in the feed and in the water. Of the offered feed, 24.75 kg were available as P and 99.00 kg as N, of these, 9.32 kg P (38%) and 29.12 kg N (25%) were converted into fish biomass and 15.43 kg P (62%) and 69.88 kg N (75%) were exported via effluent. The loads and the mass balance show the excessive discharge of nutrients via effluent, corroborated by the feed conversion ratio (2.12:1) due to the low efficiency of feed utilization, therefore, it is proposed the use of this zootechnical parameter as environmental indicator. In addition, feed management practices are not adequate, highlighting the low frequency of feeding during the day, excessive amount and low quality of feed offered. These results demonstrate the need for adequate feed management and the need for careful monitoring of effluent.
Removal of pharmaceuticals from secondary effluents by an electro-peroxone process.
Yao, Weikun; Wang, Xiaofeng; Yang, Hongwei; Yu, Gang; Deng, Shubo; Huang, Jun; Wang, Bin; Wang, Yujue
2016-01-01
This study compared the removal of pharmaceuticals from secondary effluents of wastewater treatment plants (WWTPs) by conventional ozonation and the electro-peroxone (E-peroxone) process, which involves electrochemically generating H2O2 in-situ from O2 in sparged O2 and O3 gas mixture (i.e., ozone generator effluent) during ozonation. Several pharmaceuticals with kO3 ranging from <0.1 to 6.8 × 10(5) M(-1) s(-1) were spiked into four secondary effluents collected from different WWTPs, and then treated by ozonation and the E-peroxone process. Results show that both processes can rapidly remove ozone reactive pharmaceuticals (diclofenac and gemfibrozil), while the E-peroxone process can considerably accelerate the removal of ozone-refractory pharmaceuticals (e.g., ibuprofen and clofibric acid) via indirect oxidation with OH generated from the reaction of sparged O3 with electro-generated H2O2. Compared with ozonation, the E-peroxone process enhanced the removal kinetics of ozone-refractory pharmaceuticals in the four secondary effluents by ∼40-170%, and the enhancement was more pronounced in secondary effluents that had relatively lower effluent organic matter (EfOM). Due to its higher efficiency for removing ozone-refractory pharmaceuticals, the E-peroxone process reduced the reaction time and electrical energy consumption required to remove ≥90% of all spiked pharmaceuticals from the secondary effluents as compared to ozonation. These results indicate that the E-peroxone process may provide a simple and effective way to improve existing ozonation system for pharmaceutical removal from secondary effluents. Copyright © 2015 Elsevier Ltd. All rights reserved.
The development of a code of practice for single house on-site wastewater treatment in Ireland.
Gill, L W
2011-01-01
The performance of six separate percolation areas was intensively monitored to ascertain the attenuation effects of unsaturated subsoils with respect to on-site wastewater effluent: three sites receiving septic tank effluent, the other three sites receiving secondary treated effluent. The development of a biomat across the percolation areas receiving secondary treated effluent was restricted on these sites compared to those sites receiving septic tank effluent. This created significant differences in terms of the hydraulic loading on the percolation areas with implications for the transport and attenuation of indicator microorganisms and nitrogen down through the subsoils and into the groundwater. The results of this work have formed a large input into the production of a new Code of Practice Wastewater Treatment and Disposal Systems Serving Single Houses. This has led to changes in the design of on-site hydraulic loading from 180 L per capita per day (L/c.d) down to 150 L/c.d. The range of acceptable subsoils receiving septic tank effluent has narrowed for more highly permeable subsoils following a series of tracer studies using bacteriophages. However, the range has been extended for lower permeability subsoils (range 0.08 down to 0.06 m/d) receiving secondary treated effluent in order to encourage the effluent to spread further along the trenches. The maximum individual length of percolation trenches receiving secondary effluent has also been reduced to 10 m to encourage dispersion on a wider area. This paper thus highlights how research can directly feed into a Code of Practice.
300 area TEDF NPDES Permit Compliance Monitoring Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loll, C.M.
1995-09-05
This document presents the 300 Area Treated Effluent Disposal Facility (TEDF) National Pollutant Discharge Elimination System (NPDES) Permit Compliance Monitoring Plan (MP). The MP describes how ongoing monitoring of the TEDF effluent stream for compliance with the NPDES permit will occur. The MP also includes Quality Assurance protocols to be followed.
40 CFR 125.67 - Increase in effluent volume or amount of pollutants discharged.
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Criteria for Modifying the Secondary Treatment Requirements Under Section 301(h) of the Clean Water Act § 125.67 Increase in effluent volume or amount of pollutants discharged. (a) No modified...
40 CFR 125.67 - Increase in effluent volume or amount of pollutants discharged.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Criteria for Modifying the Secondary Treatment Requirements Under Section 301(h) of the Clean Water Act § 125.67 Increase in effluent volume or amount of pollutants discharged. (a) No modified...
1999-11-01
Drinking water processing plant , Analysis, Calculation model, Field experiment 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION...sewage effluents and from the sewer of the municipal sewage treatment plant in Berlin-Ruhleben. In the field trials, the MDWPUs that both apply reverse...waste water samples, along the municipal sewer system and In the influents and effluents of the receiving sewage treatment plants . To estimate the
Surface wastewater in Samara and their impact on water basins as water supply sources
NASA Astrophysics Data System (ADS)
Strelkov, Alexander; Shuvalov, Mikhail; Gridneva, Marina
2017-10-01
The paper gives an overview of surface wastewater outlets in Samara through the rainwater sewer system into the Saratov water reservoir and the Samara river. The rainwater sewer system in Samara is designed and executed according to a separate scheme, except for the old part of the city, where surface run-off is dumped into the sewer system through siphoned drain. The rainwater system disposes of surface, drainage, industrial clean-contamined waters, emergency and technology discharges from the city’s heat supply and water supply systems. The effluent discharge is carried out by means of separate wastewater outlets into ravines or directly into the Samara river and the Saratov water reservoir without cleaning. The effluent discharge is carried out through the rainwater sewer system with 17 wastewater outlets into the Saratov water reservoir. In the Samara river, surface runoff drainage and clean-contamined water of industrial enterprises is carried out through 14 wastewater outlets. This study emphasizes the demand to arrange effluent discharge and construction of sewage treatment plants to prevent contamination of water objects by surface run-off from residential areas and industrial territories.
Biomass production and nutrient removal potential of water hyacinth cultured in sewage effluent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, K.R.; Hueston, F.M.; McKinn, T.
1985-05-01
Growth and nutrient uptake of water hyacinth (Eichhornia crassipes (Mart Solms)) cultured in sewage effluent were measured over a period of one year in a prototype wastewater treatment system which has been in operation at Walt Disney World near Orlando, Florida. Annual productivity of water hyacinth cultured in primary sewage effluent (Channel II) was found to be in the range of 5 to 27 g dry wt/m/sup 2/ day (23.6 dry tons/acre yr). Average growth rate during the months of May through October 1982 for hyacinth cultured in Channel II (primary sewage effluent) and Channel I (treated primary sewage effluentmore » leaving Channel II) was about 16 g dry wt/m/sup 2/ (27 dry tons/acre yr), compared to the growth rate of 13 g dry wt/m/sup 2/ (22 dry tons/acre yr) for hyacinths cultured in secondary sewage effluent. Plants cultured in secondary sewage effluent generally had longer roots than the plants cultured in primary sewage effluent. A significant relationship was observed between the growth rate of hyacinth and the solar radiation. N and P concentration of the plant tissue were higher in the hyacinths cultured during winter months compared to the plants grown in summer months. Average N and P concentration of the plants cultured im primary sewage effluent were found to be 3.7% N and 0.94% P, respectively, while the plants cultured in secondary sewage effluent had a total N and P content of 2.8% N and 0.79% P. Nutrient ratios of the major plant nurtrients were found to be approximately the same as the nutrient ratios in the sewage effluent. Annual N and P uptake rates of hyacinth cultured in sewage effluent were found to be in the range of 1176 to 1193 kg N/ha yr and 321 to 387 kg P/ha yr, respectively.« less
Elimination of Two Hormones by Ultrasonic and Ozone Combined Processes
NASA Astrophysics Data System (ADS)
Mingcan Cui,; Younggyu Son,; Myunghee Lim,; Seungmin Na,; Jeehyeong Khim,
2010-07-01
A direct ultrasonic (US) and ozone (O3) combination (US/O3) process for the removal of two hormones, estrone (E1) and estriol (E3), in aqueous solutions was investigated. These two hormones were detected in a wastewater treatment plant effluent in Korea. It was found that the ultrasonic/ozone process showed a higher removal performance than the US and O3 process even though the O3 process also showed approximately the same removal efficiency after 60 min. Chemical oxygen demand/total organic carbon (CODcr/TOC) ratios for E1 and E3 decreased, indicating that biodegradability could be increased significantly in the US/O3 process. The optimal pH condition was determined above the neutral pH condition.
Removal of nitrosamines from waste water by potassium ferrate oxidation.
Bartzatt, R; Nagel, D
1991-01-01
Potassium ferrate (K2FeO4) is useful in the advanced treatment of waste water. Additional evidence of this capability is presented in this study. Potassium ferrate is a very strong oxidant and is highly soluble in water. The nitrosamine studied in this work was toxic and was a potent pancreatic tumorigen in laboratory animals. Nitrosamines, which are potent carcinogens, are widespread throughout the environment and can be eliminated from waste water effluent by the action of potassium ferrate. Potassium ferrate and the nitrosamine was placed in aqueous solution and allowed to react to completion. Analysis by photospectroscopy revealed that the nitrosamine was completely degraded. This result suggests that potassium ferrate is useful for decontamination of some waste water collections.
Schreffler, Curtis L.; Galeone, Daniel G.; Veneziale, John M.; Olson, Leif E.; O'Brien, David L.
2005-01-01
An increasing number of communities in Pennsylvania are implementing land-treatment systems to dispose of treated sewage effluent. Disposal of treated effluent by spraying onto the land surface, instead of discharging to streams, may recharge the ground-water system and reduce degradation of stream-water quality. The U.S. Geological Survey (USGS), in cooperation with the Pennsylvania Department of Environmental Protection (PaDEP) and the Chester County Water Resources Authority (CCWRA) and with assistance from the New Garden Township Sewer Authority, conducted a study from October 1997 through December 2001 to assess the effects of spray irrigation of secondary treated sewage effluent on the water quantity and quality and the fate and transport of nitrogen in a 38-acre watershed in New Garden Township, Chester County, Pa. On an annual basis, the spray irrigation increased the recharge to the watershed. Compared to the annual recharge determined for the Red Clay Creek watershed above the USGS streamflow-gaging station (01479820) near Kennett Square, Pa., the spray irrigation increased annual recharge in the study watershed by approximately 8.8 in. (inches) in 2000 and 4.3 in. in 2001. For 2000 and 2001, the spray irrigation increased recharge 65-70 percent more than the recharge estimates determined for the Red Clay Creek watershed. The increased recharge was equal to 30-39 percent of the applied effluent. The spray-irrigated effluent increased base flow in the watershed. The magnitude of the increase appeared to be related to the time of year when the application rates increased. During the late fall through winter and into the early spring period, when application rates were low, base flow increased by approximately 50 percent over the period prior to effluent application. During the early spring through summer to the late fall period, when application rates were high, base flow increased by approximately 200 percent over the period prior to effluent application. The spray-irrigated effluent affected the ground-water quality of the shallow aquifer differently on the hilltop and hillside topographic settings of the watershed where spray irrigation was being applied (application area). Concentrations of nitrate-nitrogen (nitrate N) and chloride (Cl) in the effluent were higher than concentrations of these constituents in shallow ground water from wells on the hilltop and hillside prior to start of spray irrigation. In water from wells on the hilltop, concentrations of nitrate N and Cl increased in samples collected during effluent application compared to samples collected prior to effluent application. Also, increasing trends in concentration of these two constituents were evident through the study period. In water from wells on the hillside, which were on the eastern part of the application area, nitrate N and Cl concentrations increased in samples collected during effluent application compared to samples collected prior to effluent application. Also, increasing trends in concentration of these two constituents were evident through the study period. However, on the hillside of the western application area, the ground-water quality was not affected by the spray-irrigated effluent because of the greater thickness of unconsolidated material and higher amounts of clay present in those unconsolidated sands. Although nitrate N concentrations increased in water from hilltop and hillside wells in the application area, the nitrate N concentrations were below the effluent concentration. A combination of plant uptake, biological activity, and denitrification may be the processes accounting for the lower nitrate N concentrations in shallow ground water compared to the spray-irrigated effluent. Cl concentrations in water from hilltop western application area well Ch-5173 increased during the study period but were an order of magnitude less than the input effluent concentration. Cl concentrations in shallow ground water in the e
CARBON DIOXIDE SEPARATION BY PHASE ENHANCED GAS-LIQUID ABSORPTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang Hu
A new process called phase enhanced gas-liquid absorption has been developed in its early stage. It was found that adding another phase into the absorption system of gas/aqueous phase could enhance the absorption rate. A system with three phases was studied. In the system, gas phase was carbon dioxide. Two liquid phases were used. One was organic phase. Another was aqueous phase. By addition of organic phase into the absorption system of CO{sub 2}-aqueous phase, the absorption rate of CO{sub 2} was increased significantly. CO{sub 2} finally accumulated into aqueous phase. The experimental results proved that (1) Absorption rate ofmore » carbon dioxide was enhanced by adding organic phase into gas aqueous phase system; (2) Organic phase played the role of transportation of gas solute (CO{sub 2}). Carbon dioxide finally accumulated into aqueous phase.« less
Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials
Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael
2015-07-14
Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.
2014-01-01
Microbial fuel cells (MFCs) are a promising technology for energy-efficient domestic wastewater treatment, but the effluent quality has typically not been sufficient for discharge without further treatment. A two-stage laboratory-scale combined treatment process, consisting of microbial fuel cells and an anaerobic fluidized bed membrane bioreactor (MFC-AFMBR), was examined here to produce high quality effluent with minimal energy demands. The combined system was operated continuously for 50 days at room temperature (∼25 °C) with domestic wastewater having a total chemical oxygen demand (tCOD) of 210 ± 11 mg/L. At a combined hydraulic retention time (HRT) for both processes of 9 h, the effluent tCOD was reduced to 16 ± 3 mg/L (92.5% removal), and there was nearly complete removal of total suspended solids (TSS; from 45 ± 10 mg/L to <1 mg/L). The AFMBR was operated at a constant high permeate flux of 16 L/m2/h over 50 days, without the need or use of any membrane cleaning or backwashing. Total electrical energy required for the operation of the MFC-AFMBR system was 0.0186 kWh/m3, which was slightly less than the electrical energy produced by the MFCs (0.0197 kWh/m3). The energy in the methane produced in the AFMBR was comparatively negligible (0.005 kWh/m3). These results show that a combined MFC-AFMBR system could be used to effectively treat domestic primary effluent at ambient temperatures, producing high effluent quality with low energy requirements. PMID:24568605
Pulsed corona discharge oxidation of aqueous carbamazepine micropollutant.
Ajo, Petri; Krzymyk, Ewelina; Preis, Sergei; Kornev, Iakov; Kronberg, Leif; Louhi-Kultanen, Marjatta
2016-08-01
The anti-epileptic drug carbamazepine (CBZ) receives growing attention due to slow biodegradation and inherent accumulation in the aquatic environment. The application of a gas-phase pulsed corona discharge (PCD) was investigated to remove CBZ from synthetic solutions and spiked wastewater effluent from a municipal wastewater treatment facility. The treated water was showered between high voltage (HV) wires and grounded plate electrodes, to which ultra-short HV pulses were applied. CBZ was readily oxidized and 1-(2-benzaldehyde)-4-hydroquinazoline-2-one (BQM) and 1-(2-benzaldehyde)-4-hydro-quinazoline-2,4-dione (BQD) were identified as the most abundant primary transformation products, which, contrary to CBZ ozonation data available in the literature, were further easily oxidized with PCD: BQM and BQD attributed to only a minor portion of the target compound oxidized. In concentrations commonly found in wastewater treatment plant effluents (around 5 µg L(-1)), up to 97% reduction in CBZ concentration was achieved at mere 0.3 kW h m(-3) energy consumption, and over 99.9% was removed at 1 kW h m(-3). The PCD application proved to be efficient in the removal of both the parent substance and its known transformation products, even with the competing reactions in the complex composition of wastewater.
Bioavailability of cyanide and metal-cyanide mixtures to aquatic life.
Redman, Aaron; Santore, Robert
2012-08-01
Cyanide can be toxic to aquatic organisms, and the U.S. Environmental Protection Agency has developed ambient water-quality criteria to protect aquatic life. Recent work suggests that considering free, rather than total, cyanide provides a more accurate measure of the biological effects of cyanides and provides a basis for water-quality criteria. Aquatic organisms are sensitive to free cyanide, although certain metals can form stable complexes and reduce the amount of free cyanide. As a result, total cyanide is less toxic when complexing metals are present. Cyanide is often present in complex effluents, which requires understanding how other components within these complex effluents can affect cyanide speciation and bioavailability. The authors have developed a model to predict the aqueous speciation of cyanide and have shown that this model can predict the toxicity of metal-cyanide complexes in terms of free cyanide in solutions with varying water chemistry. Toxicity endpoints based on total cyanide ranged over several orders of magnitude for various metal-cyanide mixtures. However, predicted free cyanide concentrations among these same tests described the observed toxicity data to within a factor of 2. Aquatic toxicity can be well-described using free cyanide, and under certain conditions the toxicity was jointly described by free cyanide and elevated levels of bioavailable metals. Copyright © 2012 SETAC.
Secondary Waste Simulant Development for Cast Stone Formulation Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Renee L.; Westsik, Joseph H.; Rinehart, Donald E.
Washington River Protection Solutions, LLC (WRPS) funded Pacific Northwest National Laboratory (PNNL) to conduct a waste form testing program to implement aspects of the Secondary Liquid Waste Treatment Cast Stone Technology Development Plan (Ashley 2012) and the Hanford Site Secondary Waste Roadmap (PNNL 2009) related to the development and qualification of Cast Stone as a potential waste form for the solidification of aqueous wastes from the Hanford Site after the aqueous wastes are treated at the Effluent Treatment Facility (ETF). The current baseline is that the resultant Cast Stone (or grout) solid waste forms would be disposed at the Integratedmore » Disposal Facility (IDF). Data and results of this testing program will be used in the upcoming performance assessment of the IDF and in the design and operation of a solidification treatment unit planned to be added to the ETF. The purpose of the work described in this report is to 1) develop simulants for the waste streams that are currently being fed and future WTP secondary waste streams also to be fed into the ETF and 2) prepare simulants to use for preparation of grout or Cast Stone solid waste forms for testing.« less
Hydrocarbon removal from bilgewater by a combination of air-stripping and photocatalysis.
Cazoir, D; Fine, L; Ferronato, C; Chovelon, J-M
2012-10-15
In order to prevent hydrocarbon discharge at sea from the bilge of ships, the International Maritime Organization (IMO) enacted the MARPOL 73/78 convention in which effluents are now limited to those with maximum oil content of 15 ppmv. Thus, photocatalysis and air-stripping were combined for the hydrocarbon removal from a real oily bilgewater sample and an original monitoring of both aqueous and gaseous phases was performed by GC/MS to better understand the process. Our results show that the hydrocarbon oil index [HC] can be reduced to its maximum permissible value of 15 ppmv (MARPOL) in only 8.5h when photocatalysis and air-stripping are used together in a synergistic way, as against 17 h when photocatalysis is used alone. However, this air-assisted photocatalytic process emits a large quantity of volatile organic compounds (VOC) and, within the first four hours, ca. 10% of the hydrocarbon removal in the aqueous phase is actually just transferred into the gaseous one. Finally, we highlight that the n-alkanes with a number of carbon atoms higher than 15 (N(C)>15) are those which most decrease the rate of [HC] removal. Copyright © 2012 Elsevier B.V. All rights reserved.
The Removal of Cu (II) from Aqueous Solution using Sodium Borohydride as a Reducing Agent
NASA Astrophysics Data System (ADS)
Sithole, N. T.; Ntuli, F.; Mashifana, T.
2018-03-01
The removal and recovery of metals from wastewater has been a subject of significant importance due the negative impact these toxic metals have on human health and the environment as a result of water and soil pollution. Increased use of the metals and chemicals in the process industries has resulted in generation of large quantity of effluents that contains high level of toxic metals and other pollutants. The objective of this work was to recover of Cu in its elemental form as metallic powder from aqueous solution using NaBH4 as a reducing agent. Reductive precipitation was achieved in a batch reactor at 65°C using Cu powder as a seeding material. This study also investigated the effect of concentration of sodium borohydride (NaBH4) as a reducing agent. The amount of NaBH4 was varied based on mole ratios which are 1:1, 1:0.25 and 1:0.1 to recover Cu from synthetic wastewater. The results obtained showed that sodium borohydride is an effective reducing agent to recover Cu from wastewater. The optimum concentration of NaBH4 that gives the best results the 1:1 molar ratio with over 99% Cu removal.
Olatunji, Michael Adekunle; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd; Mahmud, Habibun Nabi Muhammad Ekramul
2016-01-01
A radiotracer study was conducted to investigate the removal characteristics of cadmium (109Cd) from aqueous solution by polypyrrole/ sawdust composite. Several factors such as solution pH, sorbent dosage, initial concentration, contact time, temperature and interfering metal ions were found to have influence on the adsorption process. The kinetics of adsorption was relatively fast, reaching equilibrium within 3 hours. A lowering of the solution pH reduced the removal efficiency from 99.3 to ~ 46.7% and an ambient temperature of 25°C was found to be optimum for maximum adsorption. The presence of sodium and potassium ions inhibited 109Cd removal from its aqueous solution. The experimental data for 109Cd adsorption showed a very good agreement with the Langmuir isotherm and a pseudo-first order kinetic model. The surface condition of the adsorbent before and after cadmium loading was investigated using BET, FESEM and FTIR. Considering the low cost of the precursor’s materials and the toxicity of 109Cd radioactive metal, polypyrrole synthesized on the sawdust of Dryobalanops aromatic could be used as an efficient adsorbent for the removal of 109Cd radioisotope from radionuclide-containing effluents. PMID:27706232
Exploratory studies on some electrochemical cell systems
NASA Astrophysics Data System (ADS)
Chaudhuri, Srikumar; Guha, D.
Exploratory studies were conducted on cell systems with different metal anodes, and iodine and sulphur mixed with graphite powder in a polymer matrix as cathodes, using different electrolytes in non-aqueous and aqueous media as ionic charge carriers. The electrical conductance of the electrolyte solutions in aqueous and non-aqueous solvents, the open circuit voltage (OCV) and short circuit current (SCC) for the different cell systems were measured. To date, the non-aqueous solvents used in our studies were dimethylformamide, formamide, dioxan, and nitrobenzene, and the electrolytes used were potassium iodide, caustic potash, cetyltrimethylammonium bromide (CTAB), sodium lauryl sulphate (SLS) and calcium chloride. These electrolytes were used in both non-aqueous and aqueous media. In general, aqueous electrolyte solutions gave a better performance than non-aqueous electrolyte solutions. Of the aqueous electrolytes, the highest conductance was shown by potassium chloride solution in water (conductance=0.0334 mho). However, the best OCV and SCC were shown by aluminium as anode and iodine as cathode with a saturated solution of caustic potash in water. The OCV was 1.85 V and the SCC was 290 mA cm -2. The highest conductance among the non-aqueous systems was shown by caustic potash in formamide. (Conductance=0.013 mho.) The best OCV and SCC, however, were shown by a zinc anode and iodine cathode with saturated potassium chloride in formamide, having an OCV of 1.55 V and an SCC of 150 mA cm -2. Further studies are in progress to obtain detailed performance data and recharging characteristics of some of the more promising systems reported here.
Vajda, Alan M.; Kumar, Anupama; Woods, Marianne; Williams, Mike; Doan, Hai; Tolsher, Peter; Kookana, Rai S.; Barber, Larry B.
2016-01-01
The contamination of major continental river systems by endocrine-active chemicals (EACs) derived from the discharge of wastewater treatment plant (WWTP) effluents can affect human and ecosystem health. As part of a long-term effort to develop a native fish model organism for assessment of endocrine disruption in Australia's largest watershed, the Murray-Darling River Basin, the present study evaluated endocrine disruption in adult males of the native Australian Murray rainbowfish (Melanotaenia fluviatilis) exposed to effluent from an activated sludge WWTP and water from the Murray River during a 28-d, continuous-flow, on-site experiment. Analysis of the WWTP effluent and river water detected estrone and 17β-estradiol at concentrations up to approximately 25 ng L−1. Anti-estrogenicity of effluent samples was detected in vitro using yeast-based bioassays (yeast estrogen screen) throughout the experiment, but estrogenicity was limited to the first week of the experiment. Histological evaluation of the testes indicated significant suppression of spermatogenesis by WWTP effluent after 28 d of exposure. Plasma vitellogenin concentrations and expression of vitellogenin messenger RNA in liver were not significantly affected by exposure to WWTP effluent. The combination of low contaminant concentrations in the WWTP effluent, limited endocrine disrupting effects in the Murray rainbowfish, and high in-stream dilution factors (>99%) suggest minimal endocrine disruption impacts on native Australian fish in the Murray River downstream from the WWTP outfall.
Sheets, Johnathon P; Yang, Liangcheng; Ge, Xumeng; Wang, Zhiwu; Li, Yebo
2015-10-01
Effective treatment and reuse of the massive quantities of agricultural and food wastes generated daily has the potential to improve the sustainability of food production systems. Anaerobic digestion (AD) is used throughout the world as a waste treatment process to convert organic waste into two main products: biogas and nutrient-rich digestate, called AD effluent. Biogas can be used as a source of renewable energy or transportation fuels, while AD effluent is traditionally applied to land as a soil amendment. However, there are economic and environmental concerns that limit widespread land application, which may lead to underutilization of AD for the treatment of agricultural and food wastes. To combat these constraints, existing and novel methods have emerged to treat or reuse AD effluent. The objective of this review is to analyze several emerging methods used for efficient treatment and reuse of AD effluent. Overall, the application of emerging technologies is limited by AD effluent composition, especially the total solid content. Some technologies, such as composting, use the solid fraction of AD effluent, while most other technologies, such as algae culture and struvite crystallization, use the liquid fraction. Therefore, dewatering of AD effluent, reuse of the liquid and solid fractions, and land application could all be combined to sustainably manage the large quantities of AD effluent produced. Issues such as pathogen regrowth and prevalence of emerging organic micro-pollutants are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Biomass production and nutrient removal potential of water hyacinth cultured in sewage effluent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, K.R.; Hueston, F.M.; McKim, T.
1985-05-01
Growth and nutrient uptake of water hyacinth (Eichhornia crassipes (Mart) Solms) cultured in sewage effluent were measured over a period of 1 year in a prototype wastewater treatment system which has been in operation at Walt Disney World near Orlando, Florida. Annual productivity of water hyacinth cultured in primary sewage effluent (Channel II) was found to be in the range of 5 to 27 g dry wt m/sup -2/ day/sup -1/ (23.6 dry tons acre/sup -1/ yr/sup -1/). Average growth rate during the months of May through October 1982 for hyacinth cultured in Channel II (primary sewage effluent) and Channelmore » I (treated primary sewage effluent leaving Channel II) was about 16 g dry wt m/sup -2/ day/sup -1/ (27 dry tons acre/sup -1/ yr/sup -1/), compared to the growth rate of 13 g dry wt m/sup -2/ day/sup -1/ (22 dry tons acre/sup -1/ yr/sup -1/) for hyacinths cultured in secondary sewage effluent. Plants cultured in secondary sewage effluent generally had longer roots than the plants cultured in primary sewage effluent. A significant relationship was observed between the growth rate of hyacinth and the solar radiation. Nitrogen and P concentration of the plant tissue were higher in the hyacinths cultured during winter months compared to the plants grown in summer months. Average N and P concentration of the plants cultured in primary sewage effluent were found to be 3.7 percent N and 0.94 percent P, respectively, while the plants cultured in secondary sewage effluent had a total N and P content of 2.8 percent N and 0.79 percent P. Nutrient ratios of the major plant nutrients were found to be approximately the same as the nutrient ratios in the sewage effluent. Annual N and P uptake rates of hyacinth cultured in sewage effluent were found to be in the range of 1176 to 1193 kg N ha/sup -1/ yr/sup -1/ and 321 to 387 kg P ha/sup -1/ yr/sup -1/, respectively.« less
NASA Astrophysics Data System (ADS)
Kon, Hisao; Watanabe, Masahiro
This study focuses on effluent COD concentration from wastewater treatment in regards to the reduction of pathogenic bacteria and trace substances in public waters. The main types of secondary wastewater treatment were conventional activated sludge processes. Recently, however, advance wastewater treatment processes have been developed aimed at the removal of nitrogen and phosphorus, and the effluent quality of these processes was analyzed in this study. Treatment processes for water reclamation that make effluent to meet the target water quality for reuse purposes were selected and also optimum design parameters for these processes were proposed. It was found that the treatment cost to water reclamation was greatly affected by the effluent COD of the secondary treatment. It is important to maintain low COD concentration in the secondary treated effluent. Therefore, it is considered that adequate cost benefits would be obtained by achieving target COD quality through shifting from a conventional activated sludge process to an advanced treatment process.
Temporal and spatial variability in the estrogenicity of a municipal wastewater effluent.
Hemming, Jon M; Allen, H Joel; Thuesen, Kevin A; Turner, Philip K; Waller, William T; Lazorchak, James M; Lattier, David; Chow, Marjorie; Denslow, Nancy; Venables, Barney
2004-03-01
The estrogenicity of a municipal wastewater effluent was monitored using the vitellogenin biomarker in adult male fathead minnows (Pimephales promelas). The variability in the expression of vitellogenin was evident among the monitoring periods. Significant (alpha< or =0.05) increases in plasma vitellogenin concentrations were detected in March and December, but not in August or June. Additionally, the magnitude of expression was variable. Variability in the spatial scale was also evident during the March and June exposure months. Concurrent exposures in both the creek receiving the effluent from a wastewater treatment plant and an experimental wetland showed estrogenicity to be different with distance from the respective effluent inflow sites. March exposures showed estrogenicity to be somewhat persistent in the receiving creek (>600 m), but to decrease rapidly within the experimental wetland (<40 m). Results are discussed relative to the monitoring season, to the spatial distribution of the response in both receiving systems, and to possible causative factors contributing to the effluent estrogenicity.
Liu, Zhiguo; Stromberg, David; Liu, Xuming; Liao, Wei; Liu, Yan
2015-03-21
A new multiple-stage treatment process was developed via integrating electrocoagulation with biogas pumping to simultaneously reclaim anaerobic digestion effluent and clean up biogas. The 1st stage of electrocoagulation treatment under the preferred reaction condition led to removal efficiencies of 30%, 81%, 37% and >99.9% for total solids, chemical oxygen demand, total nitrogen and total phosphorus, respectively. Raw biogas was then used as a reactant and pumped into the effluent to simultaneously neutralize pH of the effluent and remove H2S in the biogas. The 2nd stage of electrocoagulation treatment on the neutralized effluent showed that under the selected reaction condition, additional 60% and 10% of turbidity and chemical oxygen demand were further removed. The study concluded a dual-purpose approach for the first time to synergistically combine biogas purification and water reclamation for anaerobic digestion system, which well addresses the downstream challenges of anaerobic digestion technology. Copyright © 2014 Elsevier B.V. All rights reserved.
A simple respirogram-based approach for the management of effluent from an activated sludge system.
Li, Zhi-Hua; Zhu, Yuan-Mo; Yang, Cheng-Jian; Zhang, Tian-Yu; Yu, Han-Qing
2018-08-01
Managing wastewater treatment plant (WWTP) based on respirometric analysis is a new and promising field. In this study, a multi-dimensional respirogram space was constructed, and an important index R es/t (ratio of in-situ respiration rate to maximum respiration rate) was derived as an alarm signal for the effluent quality control. A smaller R es/t value suggests better effluent. The critical R' es/t value used for determining whether the effluent meets the regulation depends on operational conditions, which were characterized by temperature and biomass ratio of heterotrophs to autotrophs. With given operational conditions, the critical R' es/t value can be calculated from the respirogram space and effluent conditions required by the discharge regulation, with no requirement for calibration of parameters or any additional measurements. Since it is simple, easy to use, and can be readily implemented online, this approach holds a great promise for applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bastos, R K X; Calijuri, M L; Bevilacqua, P D; Rios, E N; Dias, E H O; Capelete, B C; Magalhães, T B
2010-01-01
The results of a 20-month period study in Brazil were analyzed to compare horizontal-flow constructed wetlands (CW) and waste stabilization pond (WSP) systems in terms of land area requirements and performance to produce effluent qualities for surface water discharge, and for wastewater use in agriculture and/or aquaculture. Nitrogen, E. coli and helminth eggs were more effectively removed in WSP than in CW. It is indicated that CW and WSP require similar land areas to achieve a bacteriological effluent quality suitable for unrestricted irrigation (10(3) E. coli per 100 mL), but CW would require 2.6 times more land area than ponds to achieve quite relaxed ammonia effluent discharge standards (20 mg NH(3) L(-1)), and, by far, more land than WSP to produce an effluent complying with the WHO helminth guideline for agricultural use (< or =1 egg per litre).
Huong, Luu Quynh; Madsen, Henry; Anh, Le Xuan; Ngoc, Pham Thi; Dalsgaard, Anders
2014-02-01
Biogas digesters are widely promoted and increasingly used to treat and generate gas from pig slurry worldwide. The objective of this study was to describe manure management practices with focus on biogas digestion among small scale pig farmers in Hue (50 farmers) and Hanoi (96 farmers) and to assess fecal contamination levels in biogas effluent. Results showed that 84% of the farmers in Hanoi and 42% in Hue used both pig slurry and human excreta for biogas production. Biogas digestion only reduced E. coli concentrations by 1 to 2 log units to 3.70 ± 0.84 Escherichia coli (log10) cfu/ml on average in effluent as compared with raw slurry. Biogas effluent was commonly used to fertilize vegetables or discharged directly into the garden or aquatic recipients. Reduced problems with bad smells and flies were reported as main reasons for establishing a biogas digester. Further studies are needed to assess human and animal health hazards associated with the discharge and use of biogas effluent from small-scale biogas systems. © 2013.
Garcia, J C; Oliveira, J L; Silva, A E C; Oliveira, C C; Nozaki, J; de Souza, N E
2007-08-17
This work investigated the treatability of real textile effluents using several systems involving advanced oxidation processes (AOPs) such as UV/H2O2, UV/TiO2, UV/TiO2/H2O2, and UV/Fe2+/H2O2. The efficiency of each technique was evaluated according to the reduction levels observed in the UV absorbance of the effluents, COD, and organic nitrogen reduction, as well as mineralization as indicated by the formation of ammonium, nitrate, and sulfate ions. The results indicate the association of TiO2 and H2O2 as the most efficient treatment for removing organic pollutants from textile effluents. In spite of their efficiency, Fenton reactions based treatment proved to be slower and exhibited more complicated kinetics than the ones using TiO2, which are pseudo-first-order reactions. Decolorization was fast and effective in all the experiments despite the fact that only H2O2 was used.
Lime enhanced chromium removal in advanced integrated wastewater pond system.
Tadesse, I; Isoaho, S A; Green, F B; Puhakka, J A
2006-03-01
The removal of trivalent chromium from a combined tannery effluent in horizontal settling tanks and subsequent Advanced Integrated Wastewater Pond System (AIWPS) reactors was investigated. The raw combined effluent from Modjo tannery had pH in the range of 11.2-12. At this pH, a trivalent chromium removal of 46-72% was obtained in the horizontal settling tanks after a one-day detention time. Trivalent chromium precipitated as chromium hydroxide, Cr(OH)3. 58-95% Cr(III) was removed in the advanced facultative pond (AFP) where the water column pH of 7.2-8.4 was close to pH 8, which is the optimum precipitation pH for trivalent chromium. Chromium removals in the secondary facultative pond (SFP) and maturation pond (MP) were 30-50% and 6-16%, respectively. With Cr(III) concentration of 0.2-0.8 mg/l in the final treated effluent, the AIWPS preceded by horizontal settling tanks produced effluent that could easily meet most of the current Cr(III) discharge limits to receive water bodies.
Pintado-Herrera, Marina G; González-Mazo, Eduardo; Lara-Martín, Pablo A
2014-12-03
This work presents the development, optimization and validation of a multi-residue method for the simultaneous determination of 102 contaminants, including fragrances, UV filters, repellents, endocrine disruptors, biocides, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and several types of pesticides in aqueous matrices. Water samples were processed using stir bar sorptive extraction (SBSE) after the optimization of several parameters: agitation time, ionic strength, presence of organic modifiers, pH, and volume of the derivatizing agent. Target compounds were extracted from the bars by liquid desorption (LD). Separation, identification and quantification of analytes were carried out by gas chromatography (GC) coupled to time-of-flight (ToF-MS) mass spectrometry. A new ionization source, atmospheric pressure gas chromatography (APGC), was tested. The optimized protocol showed acceptable recovery percentages (50-100%) and limits of detection below 1ngL(-1) for most of the compounds. Occurrence of 21 out of 102 analytes was confirmed in several environmental aquatic matrices, including seawater, sewage effluent, river water and groundwater. Non-target compounds such as organophosphorus flame retardants were also identified in real samples by accurate mass measurement of their molecular ions using GC-APGC-ToF-MS. To the best of our knowledge, this is the first time that this technique has been applied for the analysis of contaminants in aquatic systems. By employing lower energy than the more widely used electron impact ionization (EI), AGPC provides significant advantages over EI for those substances very susceptible to high fragmentation (e.g., fragrances, pyrethroids). Copyright © 2014 Elsevier B.V. All rights reserved.
Sun, W.; Sierra-Alvarez, R.; Milner, L.; Oremland, R.; Field, J.A.
2009-01-01
The objective of this study was to explore a bioremediation strategy based on injecting NO3- to support the anoxic oxidation of ferrous iron (Fe(II)) and arsenite (As(III)) in the subsurface as a means to immobilize As in the form of arsenate (As(V)) adsorbed onto biogenic ferric (Fe(III)) (hydr)oxides. Continuous flows and filled columns were used to simulate a natural anaerobic groundwater and sediment system with co-occurring As(III) and Fe(II) in the presence (column SF1) or absence (column SF2) of nitrate, respectively. During operation for 250 days, the average influent arsenic concentration of 567 ??g L-1 was reduced to 10.6 (??9.6) ??g L-1 in the effluent of column SF1. The cumulative removal of Fe(II) and As(III) in SF1 was 6.5 to 10-fold higher than that in SF2. Extraction and measurement of the mass of iron and arsenic immobilized on the sand packing of the columns were close to the iron and arsenic removed from the aqueous phase during column operation. The dominant speciation of the immobilized iron and arsenic was Fe(III) and As(V) in SF1, compared with Fe(II) and As(III) in SF2. The speciation was confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicate that microbial oxidation of As(III) and Fe(II) linked to denitrification resulted in the enhanced immobilization of aqueous arsenic in anaerobic environments by forming Fe(III) (hydr)oxide coated sands with adsorbed As(V). ?? 2009 American Chemical Society.
Implementing the NPDES program: An update on the WET ...
The U.S. EPA has utilized the Clean Water Act - National Pollutant Discharge Elimination System permitting program to protect waters of the U.S for over 40 years. NPDES permit effluent limitations serve as the primary mechanism for controlling discharges of pollutants to receiving waters. When developing effluent limitations for an NPDES permit, a permit writer must consider limits based on both the technology available to control the pollutants (i.e., technology-based effluent limits) and limits that are protective of the water quality standards of the receiving water (i.e., water quality-based effluent limits). WET testing is one of the water quality-based effluent limitation mechanisms available to permit writers that is useful in determining how the additive, synergistic and compounding effects of toxic effluents effect streams. This presentation will provide an overview of the current EPA NPDES permit program direction for increasing the efficacy of NPDES permits program administered by the U.S. EPA and States. The training implementation plan is expected to provide permit writers with a clearer understanding of WET requirements as established via the U.S. EPA WET test manuals, NPDES permitting regulatory authorities, and the WET science which has been long established. not applicable
Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system
Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Meyer, M.T.
2010-01-01
During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. ?? 2009 SETAC.
Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system.
Conn, Kathleen E; Siegrist, Robert L; Barber, Larry B; Meyer, Michael T
2010-02-01
During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. Copyright 2009 SETAC.
Patange, Apurva; Boehm, Daniela; Giltrap, Michelle; Lu, Peng; Cullen, P J; Bourke, Paula
2018-08-01
Generation of wastewater is one of the main environmental sustainability issues across food sector industries. The constituents of food process effluents are often complex and require high energy and processing for regulatory compliance. Wastewater streams are the subject of microbiological and chemical criteria, and can have a significant eco-toxicological impact on the aquatic life. Thus, innovative treatment approaches are required to mitigate environmental impact in an energy efficient manner. Here, dielectric barrier discharge atmospheric cold plasma (ACP) was evaluated for control of key microbial indicators encountered in food industry effluent. This study also investigated the eco-toxicological impact of cold plasma treatment of the effluents using a range of aquatic bioassays. Continuous ACP treatment was applied to synthetic dairy and meat effluents. Microbial inactivation showed treatment time dependence with significant reduction in microbial populations within 120 s, and to undetectable levels after 300 s. Post treatment retention time emerged as critical control parameter which promoted ACP bacterial inactivation efficiency. Moreover, ACP treatment for 20 min achieved significant reduction (≥2 Log 10 ) in Bacillus megaterium endospores in wastewater effluent. Acute aquatic toxicity was assessed using two fish cell lines (PLHC-1 and RTG-2) and a crustacean model (Daphnia magna). Untreated effluents were toxic to the aquatic models, however, plasma treatment limited the toxic effects. Differing sensitivities were observed to ACP treated effluents across the different test bio-assays in the following order: PLHC-1 > RTG-2 ≥ D. magna; with greater sensitivity retained to plasma treated meat effluent than dairy effluent. The toxic effects were dependent on concentration and treatment time of the ACP treated effluent; with 30% cytotoxicity in D. magna and fish cells observed after 24 h of exposure to ACP treated effluent for concentrations up to 5%. The findings suggest the need to employ wider variety of aquatic organisms for better understanding and complete toxicity evaluation of long-term effects. The study demonstrates the potential to tailor ACP system parameters to control pertinent microbial targets (mono/poly-microbial, vegetative or spore form) found in complex and nutritious wastewater effluents whilst maintaining a safe eco-toxicity profile for aquatic species. Copyright © 2018 Elsevier B.V. All rights reserved.
Li, Caixia; Chen, Qiyu; Zhang, Xiaoyan; Snyder, Shane A; Gong, Zhiyuan; Lam, Siew Hong
2017-12-11
Comprehensive monitoring of water pollution is challenging. With the increasing amount and types of anthropogenic compounds being released into water, there are rising concerns of undetected toxicity. This is especially true for municipal wastewater effluents that are discharged to surface waters. This study was designed to integrate zebrafish toxicogenomics, targeted gene expression, and morphological analyses, for toxicity evaluation of effluent discharged from two previously characterized wastewater treatment plants (WWTPs) in Pima County, Arizona, and their receiving surface water. Zebrafish embryos were exposed to organic extracts from the WWTP1 effluent that were reconstituted to represent 1× and 0.5× of the original concentration. Microarray analyses identified deregulated gene probes that mapped to 1666, 779, and 631 unique human homologs in the 1×, 0.5×, and the intersection of both groups, respectively. These were associated with 18 cellular and molecular functions ranging from cell cycle to metabolism and are involved in the development and function of 10 organ systems including nervous, cardiovascular, haematological, reproductive, and hepatic systems. Superpathway of cholesterol biosynthesis, retinoic acid receptor activation, glucocorticoid receptor and prolactin signaling were among the top 11 perturbed canonical pathways. Real-time quantitative PCR validated the expression changes of 12 selected genes. These genes were then tested on zebrafish embryos exposed to the reconstituted extract of water sampled downstream of WWTP1 and another nearby WWTP2. The expression of several targeted genes were significantly affected by the WWTP effluents and some of the downstream receiving waters. Morphological analyses using four transgenic zebrafish lines revealed potential toxicity associated with nervous, hepatic, endothelial-vascular and myeloid systems. This study demonstrated how information can be obtained using adverse outcome pathway framework to derive biological effect-based monitoring tools. This integrated approach using zebrafish can supplement analytical chemistry to provide more comprehensive monitoring of discharged effluents and their receiving waters. Copyright © 2017 Elsevier Ltd. All rights reserved.
Woodard, Kenneth R; French, Edwin C; Sweat, Lewin A; Graetz, Donald A; Sollenberger, Lynn E; Macoon, Bisoondat; Portier, Kenneth M; Rymph, Stuart J; Wade, Brett L; Prine, Gordon M; Van Horn, Harold H
2003-01-01
In northern Florida, year-round forage systems are used in dairy effluent sprayfields to reduce nitrate leaching. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentration below the rooting zone for two perennial, sod-based, triple-cropping systems over four 12-mo cycles (1996-2000). The soil is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzip-samment). Effluent N rates were 500, 690, and 910 kg ha(-1) per cycle. Differences in N removal between a corn (Zea mays L.)-bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (CBR) and corn-perennial peanut (Arachis glabrata Benth.)-rye system (CPR) were primarily related to the performance of the perennial forages. Nitrogen removal of corn (125-170 kg ha(-1)) and rye (62-90 kg ha(-1)) was relatively stable between systems and among cycles. The greatest N removal was measured for CBR in the first cycle (408 kg ha(-1)), with the bermudagrass removing an average of 191 kg N ha(-1). In later cycles, N removal for bermudagrass declined because dry matter (DM) yield declined. Yield and N removal of perennial peanut increased over the four cycles. Nitrate N concentrations below the rooting zone were lower for CBR than CPR in the first two cycles, but differences were inconsistent in the latter two. The CBR system maintained low NO3(-)-N leaching in the first cycle when the bermudagrass was the most productive; however, it was not a sustainable system for long-term prevention of NO3(-)-N leaching due to declining bermudagrass yield in subsequent cycles. For CPR, effluent N rates > or = 500 kg ha(-1) yr(-1) have the potential to negatively affect ground water quality.
This report is a product of the U.S. EPA's Environmental Technoloy Verification (ETV) Program and is focused on the Smart Sonics Ultrasonic Aqueous Cleaning Systems. The verification is based on three main objectives. (1) The Smart Sonic Aqueous Cleaning Systems, Model 2000 and...
Kulkarni, Sayali; Misra, Chitra Seetharam; Gupta, Alka; Ballal, Anand; Apte, Shree Kumar
2016-08-15
Deinococcus radiodurans and Escherichia coli expressing either PhoN, a periplasmic acid phosphatase, or PhoK, an extracellular alkaline phosphatase, were evaluated for uranium (U) bioprecipitation under two specific geochemical conditions (GCs): (i) a carbonate-deficient condition at near-neutral pH (GC1), and (ii) a carbonate-abundant condition at alkaline pH (GC2). Transmission electron microscopy revealed that recombinant cells expressing PhoN/PhoK formed cell-associated uranyl phosphate precipitate under GC1, whereas the same cells displayed extracellular precipitation under GC2. These results implied that the cell-bound or extracellular location of the precipitate was governed by the uranyl species prevalent at that particular GC, rather than the location of phosphatase. MINTEQ modeling predicted the formation of predominantly positively charged uranium hydroxide ions under GC1 and negatively charged uranyl carbonate-hydroxide complexes under GC2. Both microbes adsorbed 6- to 10-fold more U under GC1 than under GC2, suggesting that higher biosorption of U to the bacterial cell surface under GC1 may lead to cell-associated U precipitation. In contrast, at alkaline pH and in the presence of excess carbonate under GC2, poor biosorption of negatively charged uranyl carbonate complexes on the cell surface might have resulted in extracellular precipitation. The toxicity of U observed under GC1 being higher than that under GC2 could also be attributed to the preferential adsorption of U on cell surfaces under GC1. This work provides a vivid description of the interaction of U complexes with bacterial cells. The findings have implications for the toxicity of various U species and for developing biological aqueous effluent waste treatment strategies. The present study provides illustrative insights into the interaction of uranium (U) complexes with recombinant bacterial cells overexpressing phosphatases. This work demonstrates the effects of aqueous speciation of U on the biosorption of U and the localization pattern of uranyl phosphate precipitated as a result of phosphatase action. Transmission electron microscopy revealed that location of uranyl phosphate (cell associated or extracellular) was primarily influenced by aqueous uranyl species present under the given geochemical conditions. The data would be useful for understanding the toxicity of U under different geochemical conditions. Since cell-associated precipitation of metal facilitates easy downstream processing by simple gravity-based settling down of metal-loaded cells, compared to cumbersome separation techniques, the results from this study are of considerable relevance to effluent treatment using such cells. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Kulkarni, Sayali; Misra, Chitra Seetharam; Gupta, Alka; Ballal, Anand
2016-01-01
ABSTRACT Deinococcus radiodurans and Escherichia coli expressing either PhoN, a periplasmic acid phosphatase, or PhoK, an extracellular alkaline phosphatase, were evaluated for uranium (U) bioprecipitation under two specific geochemical conditions (GCs): (i) a carbonate-deficient condition at near-neutral pH (GC1), and (ii) a carbonate-abundant condition at alkaline pH (GC2). Transmission electron microscopy revealed that recombinant cells expressing PhoN/PhoK formed cell-associated uranyl phosphate precipitate under GC1, whereas the same cells displayed extracellular precipitation under GC2. These results implied that the cell-bound or extracellular location of the precipitate was governed by the uranyl species prevalent at that particular GC, rather than the location of phosphatase. MINTEQ modeling predicted the formation of predominantly positively charged uranium hydroxide ions under GC1 and negatively charged uranyl carbonate-hydroxide complexes under GC2. Both microbes adsorbed 6- to 10-fold more U under GC1 than under GC2, suggesting that higher biosorption of U to the bacterial cell surface under GC1 may lead to cell-associated U precipitation. In contrast, at alkaline pH and in the presence of excess carbonate under GC2, poor biosorption of negatively charged uranyl carbonate complexes on the cell surface might have resulted in extracellular precipitation. The toxicity of U observed under GC1 being higher than that under GC2 could also be attributed to the preferential adsorption of U on cell surfaces under GC1. This work provides a vivid description of the interaction of U complexes with bacterial cells. The findings have implications for the toxicity of various U species and for developing biological aqueous effluent waste treatment strategies. IMPORTANCE The present study provides illustrative insights into the interaction of uranium (U) complexes with recombinant bacterial cells overexpressing phosphatases. This work demonstrates the effects of aqueous speciation of U on the biosorption of U and the localization pattern of uranyl phosphate precipitated as a result of phosphatase action. Transmission electron microscopy revealed that location of uranyl phosphate (cell associated or extracellular) was primarily influenced by aqueous uranyl species present under the given geochemical conditions. The data would be useful for understanding the toxicity of U under different geochemical conditions. Since cell-associated precipitation of metal facilitates easy downstream processing by simple gravity-based settling down of metal-loaded cells, compared to cumbersome separation techniques, the results from this study are of considerable relevance to effluent treatment using such cells. PMID:27287317
Lourenzi, Cledimar Rogério; Ceretta, Carlos Alberto; Tiecher, Tadeu Luis; Lorensini, Felipe; Cancian, Adriana; Stefanello, Lincon; Girotto, Eduardo; Vieira, Renan Costa Beber; Ferreira, Paulo Ademar Avelar; Brunetto, Gustavo
2015-04-01
Successive swine effluent applications can substantially increase the transfer of phosphorus (P) forms in runoff. The aim of this study was to evaluate P accumulation in the soil and transfer of P forms in surface runoff from a Hapludalf soil under no-tillage subjected to successive swine effluent applications. This research was carried out in the Agricultural Engineering Department of the Federal University of Santa Maria, Brazil, from 2004 to 2007, on a Typic Hapludalf soil. Swine effluent rates of 0, 20, 40, and 80 m3 ha(-1) were broadcast over the soil surface prior to sowing of different species in a crop rotation. Soil samples were collected in stratified layers, and the levels of available P were determined. Samples of water runoff from the soil surface were collected throughout the period, and the available, soluble, particulate, and total P were measured. Successive swine effluent applications led to increases in P availability, especially in the soil surface, and P migration through the soil profile. Transfer of P forms was closely associated with runoff, which is directly related to rainfall volume. Swine effluent applications also reduced surface runoff. These results show that in areas with successive swine effluent applications, practices that promote higher water infiltration into the soil are required, e.g., crop rotation and no-tillage system.
Siqueira, Ionara Rodrigues; Vanzella, Cláudia; Bianchetti, Paula; Rodrigues, Marco Antonio Siqueira; Stülp, Simone
2011-01-01
The leather industry is a major producer of wastewaters and releases large quantities of many different chemical agents used in hide processing into the environment. Since the central nervous system is sensitive to many different contaminants, our aim was to investigate the neurobehavioral effects of exposure of mice to tannery effluents using animal models of depression and anxiety, namely forced swim and elevated plus-maze. In order to propose a clean technology for the treatment of this effluent, we also investigated the exposure of mice to effluents treated by photoelectrooxidation process (PEO). Adult male Swiss albino mice (CF1 strain) were given free access to water bottles containing an effluent treated by a tannery (non-PEO) or PEO-treated tannery wastewater (0.1 and 1% in drinking water). Exposure to tannery wastewater induced behavioural changes in the mice in elevated plus-maze. Exposure to non-PEO 1% decreased the percentage of time spent in the open arms, indicating anxiety-like behaviour. Exposure to tannery wastewater did not alter immobility time in the forced swim test, suggesting that tannery effluents did not induce depression-like behaviour in the mice. These behavioural data suggest that non-PEO tannery effluent has an anxiogenic effect, whereas PEO-treated tannery effluents do not alter anxiety levels. Copyright © 2011 Elsevier Inc. All rights reserved.
Epicoccum nigrum and Cladosporium sp. for the treatment of oily effluent in an air-lift reactor.
Queissada, Daniel Delgado; da Silva, Flávio Teixeira; Penido, Juliana Sundfeld; Siqueira, Carolina Dell'Aquila; de Paiva, Tereza Cristina Brazil
2013-01-01
The metalworking industry is responsible for one of the most complex and difficult to handle oily effluents. These effluents consist of cutting fluids, which provide refrigeration and purification of metallic pieces in the machining system. When these effluents are biologically treated, is important to do this with autochthonous microorganisms; the use of these microorganisms (bioaugmentation) tends to be more efficient because they are already adapted to the existing pollutants. For this purpose, this study aimed to use two indigenous microorganisms, Epicoccum nigrum and Cladosporium sp. for metalworking effluent treatment using an air-lift reactor; the fungus Aspergillus niger (laboratory strain) was used as a reference microorganism. The original effluent characterization presented considerable pollutant potential. The color of the effluent was 1495 mg Pt/L, and it contained 59 mg/L H2O2, 53 mg/L total phenols, 2.5 mgO2/L dissolved oxygen (DO), and 887 mg/L oil and grease. The COD was 9147 mgO2/L and the chronic toxicity factor was 1667. Following biotreatment, the fungus Epicoccum nigrum was found to be the most efficient in reducing (effective reduction) the majority of the parameters (26% COD, 12% H2O2, 59% total phenols, and 40% oil and grease), while Cladosporium sp. was more efficient in color reduction (77%).
Epicoccum nigrum and Cladosporium sp. for the treatment of oily effluent in an air-lift reactor
Queissada, Daniel Delgado; da Silva, Flávio Teixeira; Penido, Juliana Sundfeld; Siqueira, Carolina Dell’Aquila; de Paiva, Tereza Cristina Brazil
2013-01-01
The metalworking industry is responsible for one of the most complex and difficult to handle oily effluents. These effluents consist of cutting fluids, which provide refrigeration and purification of metallic pieces in the machining system. When these effluents are biologically treated, is important to do this with autochthonous microorganisms; the use of these microorganisms (bioaugmentation) tends to be more efficient because they are already adapted to the existing pollutants. For this purpose, this study aimed to use two indigenous microorganisms, Epicoccum nigrum and Cladosporium sp. for metalworking effluent treatment using an air-lift reactor; the fungus Aspergillus niger (laboratory strain) was used as a reference microorganism. The original effluent characterization presented considerable pollutant potential. The color of the effluent was 1495 mg Pt/L, and it contained 59 mg/L H2O2, 53 mg/L total phenols, 2.5 mgO2/L dissolved oxygen (DO), and 887 mg/L oil and grease. The COD was 9147 mgO2/L and the chronic toxicity factor was 1667. Following biotreatment, the fungus Epicoccum nigrum was found to be the most efficient in reducing (effective reduction) the majority of the parameters (26% COD, 12% H2O2, 59% total phenols, and 40% oil and grease), while Cladosporium sp. was more efficient in color reduction (77%). PMID:24294260
Kristofco, Lauren A; Brooks, Bryan W
2017-08-15
Concentration of the global population is increasingly occurring in megacities and other developing regions, where access to medicines is increasing more rapidly than waste management systems are implemented. Because freshwater and coastal systems are influenced by wastewater effluent discharges of differential quality, exposures in aquatic systems must be considered. Here, we performed a global scanning assessment of antihistamines (AHs), a common class of medicines, in surface waters and effluents. Antihistamines were identified, literature occurrence and ecotoxicology data on AHs collated, therapeutic hazard values (THVs) calculated, and environmental exposure distributions (EEDs) of AHs compared to ecotoxicity thresholds and drug specific THVs to estimate hazards in surface waters and effluents. Literature searches of 62 different AHs in environmental matrices identified 111 unique occurrence publications of 24 specific AHs, largely from Asia-Pacific, Europe, and North America. However, the majority of surface water (63%) and effluent (85%) observations were from Europe and North America, which highlights relatively limited information from many regions, including developing countries and rapidly urbanizing areas in Africa, Latin America and Asia. Less than 10% of all observations were for estuarine or marine systems, though the majority of human populations reside close to coastal habitats. EED 5 th and 95 th centiles for all AHs were 2 and 212ng/L in surface water, 5 and 1308ng/L in effluent and 6 and 4287ng/L in influent, respectively. Unfortunately, global hazards and risks of AHs to non-target species remain poorly understood. However, loratadine observations in surface waters exceeded a THV without an uncertainty factor 40% of the time, indicating future research is needed to understand aquatic toxicology, hazards and risks associated with this AH. This unique global scanning study further illustrates the utility of global assessments of pharmaceuticals and other contaminants to identify chemicals requiring toxicology study and regions where environmental monitoring, assessment and management efforts appear limited and necessary. Copyright © 2017. Published by Elsevier B.V.
Method and system for the removal of oxides of nitrogen and sulfur from combustion processes
Walsh, John V.
1987-12-15
A process for removing oxide contaminants from combustion gas, and employing a solid electrolyte reactor, includes: (a) flowing the combustion gas into a zone containing a solid electrolyte and applying a voltage and at elevated temperature to thereby separate oxygen via the solid electrolyte, (b) removing oxygen from that zone in a first stream and removing hot effluent gas from that zone in a second stream, the effluent gas containing contaminant, (c) and pre-heating the combustion gas flowing to that zone by passing it in heat exchange relation with the hot effluent gas.
Controlled decomposition and oxidation: A treatment method for gaseous process effluents
NASA Technical Reports Server (NTRS)
Mckinley, Roger J. B., Sr.
1990-01-01
The safe disposal of effluent gases produced by the electronics industry deserves special attention. Due to the hazardous nature of many of the materials used, it is essential to control and treat the reactants and reactant by-products as they are exhausted from the process tool and prior to their release into the manufacturing facility's exhaust system and the atmosphere. Controlled decomposition and oxidation (CDO) is one method of treating effluent gases from thin film deposition processes. CDO equipment applications, field experience, and results of the use of CDO equipment and technological advances gained from the field experiences are discussed.
NASA Astrophysics Data System (ADS)
Carey, Richard O.; Migliaccio, Kati W.
2009-08-01
Excessive nutrient loading (considering nitrogen and phosphorus) is a major ongoing threat to water quality and here we review the impact of nutrient discharges from wastewater treatment plants (WWTPs) to United States (U.S.) freshwater systems. While urban and agricultural land uses are significant nonpoint nutrient contributors, effluent from point sources such as WWTPs can overwhelm receiving waters, effectively dominating hydrological characteristics and regulating instream nutrient processes. Population growth, increased wastewater volumes, and sustainability of critical water resources have all been key factors influencing the extent of wastewater treatment. Reducing nutrient concentrations in wastewater is an important aspect of water quality management because excessive nutrient concentrations often prevent water bodies from meeting designated uses. WWTPs employ numerous physical, chemical, and biological methods to improve effluent water quality but nutrient removal requires advanced treatment and infrastructure that may be economically prohibitive. Therefore, effluent nutrient concentrations vary depending on the particular processes used to treat influent wastewater. Increasingly stringent regulations regarding nutrient concentrations in discharged effluent, along with greater freshwater demand in populous areas, have led to the development of extensive water recycling programs within many U.S. regions. Reuse programs provide an opportunity to reduce or eliminate direct nutrient discharges to receiving waters while allowing for the beneficial use of reclaimed water. However, nutrients in reclaimed water can still be a concern for reuse applications, such as agricultural and landscape irrigation.
Fate of human viruses in groundwater recharge systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughn, J.M.; Landry, E.F.
1980-03-01
The overall objective of this research program was to determine the ability of a well-managed tertiary effluent-recharge system to return virologically acceptable water to the groundwater aquifer. The study assessed the quality of waters renovated by indigenous recharge operations and investigated a number of virus-soil interrelationships. The elucidation of the interactions led to the establishment of basin operating criteria for optimizing virus removal. Raw influents, chlorinated tertiary effluents, and renovated wastewater from the aquifer directly beneath a uniquely designed recharge test basin were assayed on a weekly basis for the presence of human enteroviruses and coliform bacteria. High concentrations ofmore » viruses were routinely isolated from influents but were isolated only on four occasions from tertiary-treated sewage effluents. In spite of the high quality effluent being recharged, viruses were isolated from the groundwater observation well, indicating their ability to penetrate the unsaturated zone. Results of poliovirus seeding experiments carried out in the test basin clearly indicated the need to operate recharge basins at low (e.g. 1 cm/h) infiltration rates in areas having soil types similar to those found at the study site. The method selected for reducing the test basin infiltration rate involved clogging the basin surface with settled organic material from highly turbid effluent. Alternative methods for slowing infiltration rates are discussed in the text.« less
Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael
Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One systemmore » operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.« less
Effects of pulp and paper mill effluents on reproductive success of largemouth bass.
Sepúlveda, Maria S; Quinn, Brian P; Denslow, Nancy D; Holm, Stewart E; Gross, Timothy S
2003-01-01
This study evaluated the effects of bleached and unbleached kraft mill effluent on reproductive success of largemouth bass (Micropterus salmoides). Bass were exposed to effluent concentrations (0, 10, 20, 40, or 80%) for 28 and 56 d. Parameters measured included hepatosomatic index (HSI) and gonadosomatic index (GSI) and plasma concentrations of 17beta-estradiol (E2), 11-ketotestosterone (11-KT), and vitellogenin (VTG). At the end of the 56-d period, bass were moved to hatchery ponds to evaluate spawning success. Spawning mats with eggs either were brought indoors for evaluation of fecundities, hatchabilities, and egg and fry size (measured at age 3 d), or were left in ponds and fry number and size recorded (average age of 14 d). Effluent exposure was verified by measuring resin acids (isopimaric, abietic. and dehydroabietic acids) in bile. Compared to controls, exposed bass had greater concentrations of resin acids in bile. In general, exposed females had lower concentrations of E2 and VTG (> or = 20% effluent), whereas males had lower concentrations of 11-KT (> or = 20% effluent) and increased E2 (> or = 20% effluent). The HSI values increased in females (> or = 10% effluent), and GSI values decreased in both sexes (> or = 40% effluent). Fecundity, egg size, and hatchability did not differ across treatments, but an increase in the frequency of fry abnormalities and a decrease in fry weights was observed at effluent exposures of 40% and higher. However, results from the pond study, revealed a significant reduction in fry growth and survival (> or = 10%). This decline may have been caused by an increased frequency of deformities, in conjunction with alterations of growth. These changes could have resulted from alterations in egg quality because of failure of parental reproductive systems, from acute embryo toxicity after translocation of contaminants from the mother to the developing embryo, or from both.
Driessnack, Melissa K; Dubé, Monique G; Rozon-Ramilo, Lisa D; Jones, Paul D; Wiramanaden, Cheryl I E; Pickering, Ingrid J
2011-08-01
Northern Saskatchewan, Canada is home to a uranium milling operation that discharges a complex milling effluent containing nutrients, cations and anions, and many metals including selenium (Se). Se has the potential to accumulate in a system even when water concentrations are low. This study evaluated the effects of treated uranium milling effluent and contaminated sediment in combination and in isolation to determine the contribution and importance of each source to fathead minnow (Pimephales promelas) reproduction and survival. Trios of fathead minnows were allocated to one of four treatments for 21-days where the following were evaluated; survival (adult and 5 day larval), larval deformities, reproductive effects (egg production, spawning events) and metal tissue burdens (muscle, gonad, eggs and larvae). In addition Se speciation analysis was conducted on fish tissues. Effects were solely effluent-mediated with little contribution observed due to the presence of contaminated sediments. The contaminated sediments tested were taken from the actual receiving environment and represented the sediment composition found in greatest abundance. Results showed egg production significantly increased in the effluent treatments compared to the reference water treatments. Although egg production increased following effluent exposure, there was reduced hatching and larval survival and a significant increase in skeletal deformities in 5 day old larvae. Despite these effects on the offspring, when examined in an integrated manner relative to increased egg production, the mean number of normal larvae did not differ among treatments. Total selenium significantly increased in the effluent exposed, algae, female muscle, gonad, eggs and larvae in addition to other metals. A shift in the proportion of species of selenium was evident with changing exposure conditions. Biofilm/algae was key in the transfer of available Se into the food chain from the water and a source of direct dietary exposure in fish and possibly invertebrates.
Results of the GCMS Effluent Gas Analysis for the Brine Processing Test
NASA Technical Reports Server (NTRS)
Delzeit, Lance; Lee, Jeffrey; Flynn, Michael; Fisher, John; Shaw, Hali; Kawashima, Brian; Beeler, David; Harris, Linden
2015-01-01
The effluent gas for the Paragon Ionomer Water Processor (IWP), UMPQUA Ultrasonic Brine Dewatering System (UBDS), and the NASA Brine Evaporation Bag (BEB) were analyzed using Headspace GCMS Analysis in the recent AES FY14 Brine Processing Test. The results from the analysis describe the number and general chemical species of the chemicals produced. Comparisons were also made between the different chromatograms for each system, and an explanation of the differences in the results is reported.
Colorado Springs dedicates zero-discharge coal plant. [Ray D. Nixon plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hennessy, M.; Zeien, C.T.
1980-12-01
The zero-discharge Ray D. Nixon coal-fired power plant was designed to treat and recycle effluents in a region with limited water supplies. The site purchase included groundwater rights and some diversion rights, but a properly-managed local aquifer was determined to be adequate. The closed-loop design recovers 95 percent of the water for reuse. The overall water-management system produces adequate water and treats effluents at less cost and with higher water-quality protection than alternate systems. (DCK)
NASA Technical Reports Server (NTRS)
Krumins, Valdis; Hummerick, Mary; Levine, Lanfang; Strayer, Richard; Adams, Jennifer L.; Bauer, Jan
2002-01-01
A fixed-film (biofilm) reactor was designed and its performance was determined at various retention times. The goal was to find the optimal retention time for recycling plant nutrients in an advanced life support system, to minimize the size, mass, and volume (hold-up) of a production model. The prototype reactor was tested with aqueous leachate from wheat crop residue at 24, 12, 6, and 3 h hydraulic retention times (HRTs). Biochemical oxygen demand (BOD), nitrates and other plant nutrients, carbohydrates, total phenolics, and microbial counts were monitored to characterize reactor performance. BOD removal decreased significantly from 92% at the 24 h HRT to 73% at 3 h. Removal of phenolics was 62% at the 24 h retention time, but 37% at 3 h. Dissolved oxygen concentrations, nitric acid consumption, and calcium and magnesium removals were also affected by HRT. Carbohydrate removals, carbon dioxide (CO2) productions, denitrification, potassium concentrations, and microbial counts were not affected by different retention times. A 6 h HRT will be used in future studies to determine the suitability of the bioreactor effluent for hydroponic plant production.
Zakrzewski, Robert; Ciesielski, Witold
2005-09-25
The reaction between iodine and azide ions induced by thiopental was utilized as a postcolumn reaction for chromatographic determination of thiopental. The method is based on the separation of thiopental on an Nova-Pak CN HP column with an acetonitrile-aqueous solution of sodium azide as a mobile phase, followed by spectrophotometric measurement of the residual iodine (lambda=350 nm) from the postcolumn iodine-azide reaction induced by thiopental after mixing an iodine solution containing iodide ions with the column effluent containing azide ions and thiopental. Chromatograms obtained for thiopental showed negative peaks as a result of the decrease in background absorbance. The detection limit (defined as S/N=3) was 20 nM (0.4 pmol injected amount) for thiopental. Calibration graphs, plotted as peak area versus concentrations, were linear from 40 nM. The elaborated method was applied to determine thiopental in urine samples. The detection limit (defined as S/N=3) was 0.025 nmol/ml urine. Calibration graphs, plotted as peak area versus concentrations, were linear from 0.05 nmol/ml urine. Authentic urine samples were analyzed, thiopental was determined at nmol/ml urine level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fields, M.K.; Davis, R.P.
1992-08-01
A wastewater characterization survey was conducted by members of the Armstrong Laboratory Occupational and Environmental Health directorate Water Quality Function from 28 Oct 91 - 7 Nov 91 at Whiteman AFB, MO. The purpose of the survey was to identify and characterize the wastewater, determine the appropriateness of present disposal methods, determine the need for routine sampling or monitoring and recommend parameters for wastewater analysis. Results of the sampling showed metals and volatile organic discharge in varying concentrations throughout the base. Recommendations are: (1) evaluation of industrial operations and chemical disposal procedures at designated sites; (2) routine monitoring of themore » discharge from the Hospital and Audiovisual for silver; (3) excavation and sediment disposal at the Transportation Washrack and WWTP Effluent discharge point; (4) collection and analyses of sludge at oil water separators, to include the oil and water side; (5) evaluation of the sanitary sewer system for corrosion and sediment buildup by a mobile Reveal and Seal Unit; (6) background soil sample collection and analyses; and (7) pretreatment of Aqueous Film Forming Foam discharge and notification of the Base Bioenvironmental Engineer, Environmental Coordinator, and WWTP personnel when discharge occurs.« less
The application of textile sludge adsorbents for the removal of Reactive Red 2 dye.
Sonai, Gabriela G; de Souza, Selene M A Guelli U; de Oliveira, Débora; de Souza, Antônio Augusto U
2016-03-01
Sludge from the textile industry was used as a low-cost adsorbent to remove the dye Reactive Red 2 from an aqueous solution. Adsorbents were prepared through the thermal and chemical treatment of sludge originating from physical-chemical (PC) and biological (BIO) effluent treatment processes. The adsorbent characterization was carried out through physical-chemical analysis, X-ray fluorescence (XRF) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, pHPZC determination, Boehm titration method, Brunauer-Emmett-Teller (BET) surface area analysis and scanning electron microscopy (SEM). Batch kinetic experiments and adsorption isotherm modeling were conducted under different pH and temperature conditions. The results for the kinetic studies indicate that the adsorption processes associated with these systems can be described by a pseudo-second-order model and for the equilibrium data the Langmuir model provided the best fit. The adsorption was strongly dependent on the pH but not on the temperature within the ranges studied. The maxima adsorption capacities were 159.3 mg g(-1) for the BIO adsorbent and 213.9 mg g(-1) for PC adsorbent at pH of 2 and 25 °C. Copyright © 2015 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-07-01
... discharge of process wastewater pollutants to navigable waters. (b) Process waste water pollutants from a cooling water recirculation system designed, constructed and operated to maintain a surge capacity equal... cause the water level in the pond to rise into the surge capacity. Process waste water must be treated...
Code of Federal Regulations, 2013 CFR
2013-07-01
... discharge of process wastewater pollutants to navigable waters. (b) Process waste water pollutants from a cooling water recirculation system designed, constructed and operated to maintain a surge capacity equal... cause the water level in the pond to rise into the surge capacity. Process waste water must be treated...
Code of Federal Regulations, 2014 CFR
2014-07-01
... shall be no discharge of process wastewater pollutants to navigable waters. (b) Process waste water pollutants from a cooling water recirculation system designed, constructed and operated to maintain a surge... precipitation events cause the water level in the pond to rise into the surge capacity. Process waste water must...
Code of Federal Regulations, 2014 CFR
2014-07-01
... process waste water pollutants to navigable waters. (b) Process waste water pollutants from a cooling water recirculation system designed, constructed and operated to maintain a surge capacity equal to the... water level in the pond to rise into the surge capacity. Process waste water must be treated and...
Code of Federal Regulations, 2012 CFR
2012-07-01
... process waste water pollutants to navigable waters. (b) Process waste water pollutants from a cooling water recirculation system designed, constructed and operated to maintain a surge capacity equal to the... water level in the pond to rise into the surge capacity. Process waste water must be treated and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... shall be no discharge of process wastewater pollutants to navigable waters. (b) Process waste water pollutants from a cooling water recirculation system designed, constructed and operated to maintain a surge... precipitation events cause the water level in the pond to rise into the surge capacity. Process waste water must...
Code of Federal Regulations, 2014 CFR
2014-07-01
... discharge of process wastewater pollutants to navigable waters. (b) Process waste water pollutants from a cooling water recirculation system designed, constructed and operated to maintain a surge capacity equal... cause the water level in the pond to rise into the surge capacity. Process waste water must be treated...
Code of Federal Regulations, 2013 CFR
2013-07-01
... process waste water pollutants to navigable waters. (b) Process waste water pollutants from a cooling water recirculation system designed, constructed and operated to maintain a surge capacity equal to the... water level in the pond to rise into the surge capacity. Process waste water must be treated and...
Code of Federal Regulations, 2012 CFR
2012-07-01
... shall be no discharge of process wastewater pollutants to navigable waters. (b) Process waste water pollutants from a cooling water recirculation system designed, constructed and operated to maintain a surge... precipitation events cause the water level in the pond to rise into the surge capacity. Process waste water must...
Code of Federal Regulations, 2010 CFR
2010-07-01
... pile runoff facility operated separately or in combination with a water recirculation system designed, constructed and operated to maintain a surge capacity equal to the runoff from the 25-year, 24-hour rainfall..., whenever chronic or catastrophic precipitation events cause the water level to rise into the surge capacity...
Code of Federal Regulations, 2010 CFR
2010-07-01
... to the runoff from the 25-year, 24-hour rainfall event may be discharged, after treatment to the standards set forth in paragraph (c) of this section, whenever chronic or catastrophic precipitation events... pile runoff facility, operated separately or in combination with a water recirculation system, which is...
Code of Federal Regulations, 2010 CFR
2010-07-01
... to the runoff from the 25-year, 24-hour rainfall event may be discharged, after treatment to the standards set forth in paragraph (c) of this section, whenever chronic or catastrophic precipitation events... pile runoff facility, operated separately or in combination with a water recirculation system, which is...
Method for inhibiting corrosion in aqueous systems
DeMonbrun, James R.; Schmitt, Charles R.; Schreyer, James M.
1980-01-01
This invention is a method for inhibiting corrosion in aqueous systems containing components composed of aluminum, copper, iron, or alloys thereof. The method comprises (a) incorporating in the aqueous medium 2-10 ppm by weight of tolyltriazole; an effective amount of a biodegradable organic biocide; 500-1000 ppm by weight of sodium metasilicate; 500-2000 ppm by weight of sodium nitrite; and 500-2000 ppm by weight of sodium tetraborate, all of these concentrations being based on the weight of water in the system; and (b) maintaining the pH of the resulting system in the range of 7.5 to 8.0. The method permits longterm operation with very low corrosion rates and bacteria counts. All of the additives to the system are biodegradable, permitting the treated aqueous medium to be discharged to the environment without violating current regulations. The method has special application to solar systems in which an aqueous medium is circulated through aluminum-alloy heat exchangers.
Self-Contained AFFF Sprinkler System,
1982-05-01
aqueous film forming foam ( AFFF ). Such systems are...supply. Extinguishing Agents All fire tests were run with a pre-mixed solution of 6% aqueous film forming foam ( AFFF ) agent in accordance with MIL-F...Applying Aqueous Film Forming Foam on Large-Scale Fires", Civil and Environmental Engineering Development Office (Air Force Systems Command) Report
Sigge, G O; Britz, J; Fourie, P C; Barnardt, C A; Strydom, R
2002-01-01
UASB treatment of fruit cannery and winery effluents was shown to be feasible. However, the treated effluents still have residual COD levels well above the legal limit of 75 mg.l(-1) for direct discharge to a water system and a form of post-treatment is necessary to reduce the COD further. Ozone and ozone/hydrogen peroxide were used in combination with a granular activated carbon contacting column to assess the effectiveness as a post-treatment option for the UASB treated fruit cannery and winery effluent. Colour reduction in the effluents ranged from 66 to 90% and COD reductions of 27-55% were achieved. The combination of ozone and hydrogen peroxide gave better results than ozonation alone. Significant progress was thus made in achieving the legal limit of 75 mg.l(-1).
Chemical Sensors Based on IR Spectroscopy and Surface-Modified Waveguides
NASA Technical Reports Server (NTRS)
Lopez, Gabriel P.; Niemczyk, Thomas
1999-01-01
Sol-gel processing techniques have been used to apply thin porous films to the surfaces of planar infrared (IR) waveguides to produce widely useful chemical sensors. The thin- film coating serves to diminish the concentration of water and increase the concentration of the analyte in the region probed by the evanescent IR wave. These porous films are composed of silica, and therefore, conventional silica surface modification techniques can be used to give the surface a specific functional character. The sol-gel film was surface-modified to make the film highly hydrophobic. These sensors were shown to be capable of detecting non-polar organic analytes, such as benzonitrile, in aqueous solution with detection limits in the ppb range. Further, these porous sol-gel structures allow the analytes to diffuse into and out of the films rapidly, thus reaching equilibrium in less than ten seconds. These sensors are unique because of the fact that their operation is based on the measurement of an IR absorption spectrum. Thus, these sensors are able to identify the analytes as well as measure concentration with high sensitivity. These developments have been documented in previous reports and publications. Recently, we have also targeted detection of the polar organic molecules acetone and isopropanol in aqueous solution. Polar organics are widely used in industrial and chemical processes, hence it is of interest to monitor their presence in effluents or decontamination process flows. Although large improvements in detection limits were expected with non-polar organic molecules in aqueous solutions using very hydrophobic porous sol-gel films on silicon attenuated total reflectance (Si ATR) waveguides, it was not as clear what the detection enhancements might be for polar organic molecules. This report describes the use of modified sol-gel-coated Si ATR sensors for trace detection and quantitation of small polar organic molecules in aqueous solutions. The detection of both acetone and isopropanol molecules in aqueous solution has been previously reported for chalcogenide fiber optic sensors. The sol-gel film was produced using a mixture of ethyltriethoxysilane and tetraethoxysilane and the surface modification was carried out using trimethylchlorosilane. We have demonstrated that this film concentrates the target polar analytes from aqueous solution in the region probed by the evanescent wave to improve detection limits by as much as a factor of 450.
NASA Technical Reports Server (NTRS)
1991-01-01
Stennis Space Center's aquaculture research program has led to an attractive wastewater treatment for private homes. The system consists of a septic tank or tanks for initial sewage processing and a natural secondary treatment facility for further processing of septic tanks' effluent, consisting of a narrow trench, which contains marsh plants and rocks, providing a place for microorganisms. Plants and microorganisms absorb and digest, thus cleansing partially processed wastewater. No odors are evident and cleaned effluent may be discharged into streams or drainage canals. The system is useful in rural areas, costs about $1,900, and requires less maintenance than mechanical systems.
Nikoonahad, Ali; Ghaneian, Mohammad Taghi; Mahvi, Amir Hossein; Ehrampoush, Mohammad Hassan; Ebrahimi, Ali Asghar; Lotfi, Mohammad Hassan; Salamehnejad, Sima
2017-12-01
Biological Aerated Filter (BAF) reactors due to their plentiful biomass, high shockability, high efficiency, good filtration, availability and lack of need for large land areas, are enjoying from great importance in advanced wastewater treatment. Therefore, in this study, Polystyrene Coated by Sand (PCS) was produced as a novel media and its application in a modified down-flow BAF structure for advanced wastewater treatment was assessed in two steps. In step one, the backwash effluent did not return to the system, while in step two backwash effluent returned to increase the water reuse efficiency. The backwash process was also studied through three methods of Top Backwashing (TB), Bottom Backwashing (BB), as well as Top and Bottom Backwashing Simultaneously (TBBS). The results showed that return of backwash effluent had no significant effect on the BAF effluent quality. In the second step similar to the first one with slight differences, the residual average concentrations of TSS, BOD 5 , and COD at the effluent were about 2.5, 8.2, and 25.5 mg/L, respectively. Additionally, in step two, the mean volume of disposal sludge/volume of treated water (v ds /v tw ) decreased a large extent to about 0.088%. In other words, the water reuse has increased to more than 99.91%. The backwash time in methods of TB and BB were 65 and 35 min, respectively; however, it decreased in TBBS methods to 25 min. The concentrations of most effluent parameters in this system are in concordance with the 2012 EPA Agriculture Standards, even for irrigation of Non-processed agricultural crops and livestock water consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, J L; Li, Y P; Huang, G H; Baetz, B W; Liu, J
2017-06-01
In this study, a Bayesian estimation-based simulation-optimization modeling approach (BESMA) is developed for identifying effluent trading strategies. BESMA incorporates nutrient fate modeling with soil and water assessment tool (SWAT), Bayesian estimation, and probabilistic-possibilistic interval programming with fuzzy random coefficients (PPI-FRC) within a general framework. Based on the water quality protocols provided by SWAT, posterior distributions of parameters can be analyzed through Bayesian estimation; stochastic characteristic of nutrient loading can be investigated which provides the inputs for the decision making. PPI-FRC can address multiple uncertainties in the form of intervals with fuzzy random boundaries and the associated system risk through incorporating the concept of possibility and necessity measures. The possibility and necessity measures are suitable for optimistic and pessimistic decision making, respectively. BESMA is applied to a real case of effluent trading planning in the Xiangxihe watershed, China. A number of decision alternatives can be obtained under different trading ratios and treatment rates. The results can not only facilitate identification of optimal effluent-trading schemes, but also gain insight into the effects of trading ratio and treatment rate on decision making. The results also reveal that decision maker's preference towards risk would affect decision alternatives on trading scheme as well as system benefit. Compared with the conventional optimization methods, it is proved that BESMA is advantageous in (i) dealing with multiple uncertainties associated with randomness and fuzziness in effluent-trading planning within a multi-source, multi-reach and multi-period context; (ii) reflecting uncertainties existing in nutrient transport behaviors to improve the accuracy in water quality prediction; and (iii) supporting pessimistic and optimistic decision making for effluent trading as well as promoting diversity of decision alternatives. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cerrillo, Míriam; Viñas, Marc; Bonmatí, August
2016-09-01
The combination of the anaerobic digestion (AD) process with a microbial electrolysis cell (MEC) coupled to an ammonia stripping unit as a post-treatment was assessed both in series operation, to improve the quality of the effluent, and in loop configuration recirculating the effluent, to increase the AD robustness. The MEC allowed maintaining the chemical oxygen demand removal of the whole system of 46±5% despite the AD destabilization after doubling the organic and nitrogen loads, while recovering 40±3% of ammonia. The AD-MEC system, in loop configuration, helped to recover the AD (55% increase in methane productivity) and attained a more stable and robust operation. The microbial population assessment revealed an enhancement of AD methanogenic archaea numbers and a shift in eubacterial population. The AD-MEC combined system is a promising strategy for stabilizing AD against organic and nitrogen overloads, while improving the quality of the effluent and recovering nutrients for their reutilization. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cold climate performance analysis of on-site domestic wastewater treatment systems.
Williamson, Eric
2010-06-01
Household on-site septic systems with secondary wastewater treatment in Anchorage, Alaska, were sampled and analyzed for performance parameters during the winter to spring months. System types included intermittent dosing sand filters (ISF), three types of recirculating trickling filters (RTF), and suspended-growth aeration tanks. Total nitrogen from the trickling filter and aeration tank effluent was fairly uniform, at approximately 30 mg/L. Total suspended solids (TSS) means were mostly less than 15 mg/L. The 5-day biochemical oxygen demand (BODs) showed considerable variability, with means ranging from 9.2 mg/ L for ISFs up to 39.5 mg/L for one type of RTF, even though this type has shown excellent results in several test programs. The data suggested that effluent temperature within the sample range had almost no effect on effluent concentrations of BOD5 or TSS and only a small effect on the removal of total nitrogen. Non-climatic factors were probably of equal importance to treatment results.
Cheng, Jia; Zhu, Xiuping; Ni, Jinren; Borthwick, Alistair
2010-04-01
An integrated system of two-stage microbial fuel cells (MFCs) and immobilized biological aerated filters (I-BAFs) was used to treat palm oil mill effluent (POME) at laboratory scale. By replacing the conventional two-stage up-flow anaerobic sludge blanket (UASB) with a newly proposed upflow membrane-less microbial fuel cell (UML-MFC) in the integrated system, significant improvements on NH(3)-N removal were observed and direct electricity generation implemented in both MFC1 and MFC2. Moreover, the coupled iron-carbon micro-electrolysis in the cathode of MFC2 further enhanced treatment efficiency of organic compounds. The I-BAFs played a major role in further removal of NH(3)-N and COD. For influent COD and NH(3)-N of 10,000 and 125 mg/L, respectively, the final effluents COD and NH(3)-N were below 350 and 8 mg/L, with removal rates higher than 96.5% and 93.6%. The GC-MS analysis indicated that most of the contaminants were satisfactorily biodegraded by the integrated system. Copyright 2009 Elsevier Ltd. All rights reserved.
Boruah, Purna K; Sharma, Bhagyasmeeta; Hussain, Najrul; Das, Manash R
2017-02-01
Spillage of effluents containing high concentration levels of pesticides into water has been considered as one of the serious environmental problems. In this study Fe 3 O 4 /reduced graphene oxide (rGO) nanocomposite has been efficiently utilized for the adsorption of five harmful pesticides namely ametryn, prometryn, simazine, simeton and atrazine in an aqueous medium. Electrostatic interaction between the pesticides and Fe 3 O 4 /rGO nanocomposite was analyzed by the zeta potential analysis, which is strongly related to the adsorption capacity of the adsorbent. The kinetics parameters of adsorption followed the pseudo second-order linear model. The adsorption isotherm studies show that, the maximum adsorption capacity of 54.8 mg g -1 is achieved at pH 5 and it was enhanced in the presence of different ions (Mg 2+ , Ca 2+ , Na + and SO 4 2 ) and maximum (63.7 mg g -1 ) for ametryn adsorption was found in seawater medium. Thermodynamic parameter shows that, the adsorption process is physisorption and spontaneity in nature. The mechanism of the adsorption process was established by the DRIFT spectroscopy analysis. Efficient adsorption (93.61%) of pesticides was observed due to electrostatic, hydrophobic and π-π interactions of composite towards the heterocyclic conjugation of pesticide molecules. Further, Fe 3 O 4 /rGO nanocomposite was easily and rapidly separated from an aqueous medium using the external magnet for reuse and 88.66% adsorption efficiency was observed up to seven cycles. Copyright © 2016 Elsevier Ltd. All rights reserved.
García-Ripoll, A; Amat, A M; Arques, A; Vicente, R; Ballesteros Martín, M M; Pérez, J A Sánchez; Oller, I; Malato, S
2009-03-15
Experiments based on Vibrio fischeri, activated sludge and Pseudomonas putida have been employed to check variation in the biocompatibility of an aqueous solution of a commercial pesticide, along solar photo-oxidative process (TiO(2) and Fenton reagent). Activated sludge-based experiments have demonstrated a complete detoxification of the solution, although important toxicity is still detected according to the more sensitive V. fischeri assays. In parallel, the biodegradability of organic matter is strongly enhanced, with BOD(5)/COD ratio above 0.8. Bioassays run with P. putida have given similar trends, remarking the convenience of using P. putida culture as a reliable and reproducible method for assessing both toxicity and biodegradability, as a substitute to other more time consuming methods.
NASA Astrophysics Data System (ADS)
Miranda-Andrades, Jarol R.; Khan, Sarzamin; Toloza, Carlos A. T.; Romani, Eric C.; Freire Júnior, Fernando L.; Aucelio, Ricardo Q.
2017-12-01
Thiomersal is employed as preservative in vaccines, cosmetic and pharmaceutical products due to its capacity to inhibit bacterial growth. Thiomersal contains 49.55% of mercury in its composition and its highly toxic ethylmercury degradation product has been linked to neurological disorders. The photo-degradation of thiomersal has been achieved by visible light using graphene quantum dots as catalysts. The generated mercury cold vapor (using adjusted experimental conditions) was detected by multipath atomic absorption spectrometry allowing the quantification of thiomersal at values as low as 20 ng L- 1 even in complex samples as aqueous effluents of pharmaceutical industry and urine. A kinetic study (pseudo-first order with k = 0.11 min- 1) and insights on the photo-degradation process are presented.
Freeze-thawing behaviour of highly concentrated aqueous alkali chloride-glucose systems.
Kajiwara, K; Motegi, A; Murase, N
2001-01-01
The freeze-thawing behaviour of highly concentrated aqueous alkali chloride-glucose systems was investigated by differential scanning calorimetry (DSC). In the aqueous NaCl-glucose solution system, single or double glass transitions followed by the corresponding devitrification exotherms were observed during rewarming. In the aqueous KCl-glucose solution system, on the other hand, a single glass transition followed by an exotherm was observed during rewarming. The presence of double glass transitions observed for a certain composition of the aqueous NaCl-glucose solution was taken as an evidence for the liquid-liquid immiscibility at low temperatures. Two kinds of crystallisation accompanied by exotherms during rewarming were identified by X-ray diffraction as ice and ice/NaCl x 2H(2)O, or ice/KCl eutectic component.
Coliform Bacteria and Nitrogen Fixation in Pulp and Paper Mill Effluent Treatment Systems
Gauthier, Francis; Neufeld, Josh D.; Driscoll, Brian T.; Archibald, Frederick S.
2000-01-01
The majority of pulp and paper mills now biotreat their combined effluents using activated sludge. On the assumption that their wood-based effluents have negligible fixed N, and that activated-sludge microorganisms will not fix significant N, these mills routinely spend large amounts adding ammonia or urea to their aeration tanks (bioreactors) to permit normal biomass growth. N2 fixation in seven Eastern Canadian pulp and paper mill effluent treatment systems was analyzed using acetylene reduction assays, quantitative nitrogenase (nifH) gene probing, and bacterial isolations. In situ N2 fixation was undetectable in all seven bioreactors but was present in six associated primary clarifiers. One primary clarifier was studied in greater detail. Approximately 50% of all culturable cells in the clarifier contained nifH, of which >90% were Klebsiella strains. All primary-clarifier coliform bacteria growing on MacConkey agar were identified as klebsiellas, and all those probed contained nifH. In contrast, analysis of 48 random coliform isolates from other mill water system locations showed that only 24 (50%) possessed the nifH gene, and only 13 (27%) showed inducible N2-fixing activity. Thus, all the pulp and paper mill primary clarifiers tested appeared to be sites of active N2 fixation (0.87 to 4.90 mg of N liter−1 day−1) and a microbial community strongly biased toward this activity. This may also explain why coliform bacteria, especially klebsiellas, are indigenous in pulp and paper mill water systems. PMID:11097883
Food webs of two intermittently open estuaries receiving 15N-enriched sewage effluent
NASA Astrophysics Data System (ADS)
Hadwen, Wade L.; Arthington, Angela H.
2007-01-01
Carbon and nitrogen stable isotope signatures were used to assess the response of food webs to sewage effluent discharged into two small intermittently open estuaries in northern New South Wales, Australia. One of these systems, Tallows Creek, has a history of direct sewage inputs, whilst the other, Belongil Creek, receives wastewater via an extensive wetland treatment system. The food webs of both systems were driven by algal sources of carbon, reflecting high autotrophic productivity in response to the nutrients entering the system from sewage effluent. All aquatic biota collected from Tallows Creek had significantly enriched δ15N signatures relative to their conspecifics from Belongil Creek, indicating that sewage nitrogen had been assimilated and transferred throughout the Tallows Creek food web. These δ15N values were higher than those reported from studies in permanently open estuaries receiving sewage effluent. We suggest that these enriched signatures and the transfer of nitrogen throughout the entire food web reflect differences in hydrology and associated nitrogen cycling processes between permanently open and intermittently open estuaries. Although all organisms in Tallows Creek were generally 15N-enriched, isotopically light (less 15N-enriched) individuals of estuary perchlet ( Ambassis marianus) and sea mullet ( Mugil cephalus) were also collected. These individuals were most likely recent immigrants into Tallows Creek, as this system had only recently been opened to the ocean. This isotopic discrimination between resident (enriched) and immigrant (significantly less enriched) individuals can provide information on fish movement patterns and the role of heavily polluted intermittently open estuaries in supporting commercially and recreationally valuable estuarine species.
Liew, Wai Loan; Kassim, Mohd Azraai; Muda, Khalida; Loh, Soh Kheang; Affam, Augustine Chioma
2015-02-01
The Malaysian palm oil industry is a major revenue earner and the country is ranked as one of the largest producers in the world. However, growth of the industry is synonymous with a massive production of agro-industrial wastewater. As an environmental protection and public health concern, the highly polluting palm oil mill effluent (POME) has become a major attention-grabber. Hence, the industry is targeting for POME pollution abatement in order to promote a greener image of palm oil and to achieve sustainability. At present, most palm oil mills have adopted the ponding system for treatment. Due to the successful POME pollution abatement experiences, Malaysia is currently planning to revise the effluent quality standards towards a more stringent discharge limits. Hence, the current trend of POME research focuses on developing tertiary treatment or polishing systems for better effluent management. Biotechnologically-advanced POME tertiary (polishing) technologies as well as other physicochemical methods are gaining much attention as these processes are the key players to push the industry towards the goal of environmental sustainability. There are still ongoing treatment technologies being researched and the outcomes maybe available in a while. However, the research completed so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the new standards. To this end, the most feasible technology could be the combination of advanced biological processes (bioreactor systems) with extended aeration, followed by solids separation prior to discharge. Chemical dosing is favoured only if effluent of higher quality is anticipated. Copyright © 2014 Elsevier Ltd. All rights reserved.
Huete, A; de Los Cobos-Vasconcelos, D; Gómez-Borraz, T; Morgan-Sagastume, J M; Noyola, A
2018-06-15
The direct anaerobic treatment of municipal wastewater represents an adapted technology to the conditions of developing countries. In order to get an increased acceptance of this technology, a proper control of dissolved methane in the anaerobic effluents should be considered, as methane is a potent greenhouse gas. In this study, a pilot-scale system was operated for 168 days to recover dissolved methane from an effluent of an upflow anaerobic sludge blanket reactor and then oxidize it in a compost biofilter. The system operated at a constant air (0.9 m 3 /h ±0.09) and two air-to anaerobic effluent ratio (1:1 and 1:2). In both conditions (CH 4 concentration of 2.7 ± 0.87 and 4.3% ± 1.14, respectively) the desorption column recovered 99% of the dissolved CH 4 and approximately 30% ± 8.5 of H 2 S, whose desorption was limited due to the high pH (>8) of the effluent. The biofilter removed 70% ± 8 of the average CH 4 load (60 gCH 4 /m 3 h ± 13) and 100% of the H 2 S load at an empty bed retention time of 23 min. The average temperature inside the biofilter was 42 ± 9 °C due to the CH 4 oxidation reaction, indicating that temperature and moisture control is particularly important for CH 4 removal in compost biofilters. The system may achieve a 54% reduction of greenhouse gas emissions from dissolved CH 4 in this particular case. Copyright © 2017 Elsevier Ltd. All rights reserved.
dos Santos, Luciana Urbano; Alves, Delma Pegolo; Guaraldo, Ana Maria Aparecida; Cantusio Neto, Romeu; Durigan, Mauricio; Franco, Regina Maura Bueno
2013-01-01
Giardia duodenalis is a protozoan of public health interest that causes gastroenteritis in humans and other animals. In the city of Campinas in southeast Brazil, giardiasis is endemic, and this pathogen is detected at high concentrations in wastewater effluents, which are potential reservoirs for transmission. The Samambaia wastewater treatment plant (WWTP) in the city of Campinas employs an activated sludge system for sewage treatment and ultraviolet (UV) light for disinfection of effluents. To evaluate this disinfection process with respect to inactivating G. duodenalis cysts, two sample types were investigated: (i) effluent without UV disinfection (EFL) and (ii) effluent with UV disinfection (EFL+UV). Nude immunodeficient BALB/c mice were intragastrically inoculated with a mean dose of 14 cysts of G. duodenalis recovered from effluent from this WWTP, EFL, or EFL+UV. All animals inoculated with G. duodenalis cysts developed the infection, but animals inoculated with UV-exposed cysts released a lower average concentration of cysts in their faeces than animals inoculated with cysts that were not UV disinfected. Trophozoites were also observed in both groups of animals. These findings suggest that G. duodenalis cysts exposed to UV light were damaged but were still able to cause infection. PMID:27335858
Pipolo, Marco; Martins, Rui C; Quinta-Ferreira, Rosa M; Costa, Raquel
2017-03-01
The discharge of poorly decontaminated winery wastewater remains a serious environmental problem in many regions, and the industry is welcoming improved treatment methods. Here, an innovative decontamination approach integrating Fenton's process with biofiltration by Asian clams is proposed. The potential of this approach was assessed at the pilot scale using real effluent and by taking an actual industrial treatment system as a benchmark. Fenton peroxidation was observed to remove 84% of the effluent's chemical oxygen demand (COD), reducing it to 205 mg L. Subsequent biofiltration decreased the effluent's COD to approximately zero, well below the legal discharge limit of 150 mg L, in just 3 d. The reduction of the effluent's organic load through Fenton's process did not decrease its toxicity toward , but the effluent was much less harmful after biofiltration. The performance of the treatment proposed exceeded that of the integrated Fenton's process-sequencing batch reactor design implemented in the winery practice, where a residence time of around 10 d in the biological step typically results in 80 to 90% of COD removal. The method proposed is effective and compatible with typical winery budgets and potentially contributes to the management of a nuisance species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
State of the art: wastewater management in the beverage industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joyce, M.E.; Scaief, J.F.; Cochrane, M.W.
The water pollution impact caused by the wastes from the beverage industry and the methods available to combat the associated problems were studied. The size of each industry is discussed along with production processes, wastewater sources and effluent characteristics. Wastewater management techniques are described in terms of in-plant recycling, by-product recovery and end-of-pipe treatment along with the economics of treatment. The malt liquor, malting, soft drinks and flavoring industries primarily dispose of their effluents in municipal sewers. In-plant recycling and by-product recovery techniques have been developed in these industries to reduce their raw waste load. The wine and brandy andmore » distilled spirits industries in many cases must treat their own effluents so they have developed wastewater management systems including industry-owned treatment plants that yield good effluents. The technology to adequately treat rum distillery wastewater has not been demonstrated. The information basis for this study was a literature search, an effluent guidelines report done for EPA, limited site visits, personal communications and an unpublished report conducted for EPA that included questionaire surveys of the industries.« less
Use of COD, TOC, and Fluorescence Spectroscopy to Estimate BOD in Wastewater.
Christian, Evelyn; Batista, Jacimaria R; Gerrity, Daniel
2017-02-01
Common to all National Pollutant Discharge Elimination System (NPDES) permits in the United States is a limit on biochemical oxygen demand (BOD). Chemical oxygen demand (COD), total organic carbon (TOC), and fluorescence spectroscopy are also capable of quantifying organic content, although the mechanisms of quantification and the organic fractions targeted differ for each test. This study explores correlations between BOD5 and these alternate test procedures using facility influent, primary effluent, and facility effluent samples from a full-scale water resource recovery facility. Relative reductions of the water quality parameters proved to be strong indicators of their suitability as surrogates for BOD5. Suitable correlations were generally limited to the combined datasets for the three sampling locations or the facility effluent alone. COD exhibited relatively strong linear correlations with BOD5 when considering the three sample points (r = 0.985) and the facility effluent alone (r = 0.914), while TOC exhibited a suitable linear correlation with BOD5 in the facility effluent (r = 0.902). Exponential regressions proved to be useful for estimating BOD5 based on TOC or fluorescence (r > 0.95).
Mullins, Darragh; Coburn, Derek; Hannon, Louise; Jones, Edward; Clifford, Eoghan; Glavin, Martin
2018-03-01
Wastewater treatment facilities are continually challenged to meet both environmental regulations and reduce running costs (particularly energy and staffing costs). Improving the efficiency of operational monitoring at wastewater treatment plants (WWTPs) requires the development and implementation of appropriate performance metrics; particularly those that are easily measured, strongly correlate to WWTP performance, and can be easily automated, with a minimal amount of maintenance or intervention by human operators. Turbidity is the measure of the relative clarity of a fluid. It is an expression of the optical property that causes light to be scattered and absorbed by fine particles in suspension (rather than transmitted with no change in direction or flux level through a fluid sample). In wastewater treatment, turbidity is often used as an indicator of effluent quality, rather than an absolute performance metric, although correlations have been found between turbidity and suspended solids. Existing laboratory-based methods to measure turbidity for WWTPs, while relatively simple, require human intervention and are labour intensive. Automated systems for on-site measuring of wastewater effluent turbidity are not commonly used, while those present are largely based on submerged sensors that require regular cleaning and calibration due to fouling from particulate matter in fluids. This paper presents a novel, automated system for estimating fluid turbidity. Effluent samples are imaged such that the light absorption characteristic is highlighted as a function of fluid depth, and computer vision processing techniques are used to quantify this characteristic. Results from the proposed system were compared with results from established laboratory-based methods and were found to be comparable. Tests were conducted using both synthetic dairy wastewater and effluent from multiple WWTPs, both municipal and industrial. This system has an advantage over current methods as it provides a multipoint analysis that can be easily repeated for large volumes of wastewater effluent. Although the system was specifically designed and tested for wastewater treatment applications, it could have applications such as in drinking water treatment, and in other areas where fluid turbidity is an important measurement.
Removal of Nutrients from Septic Effluent with Re-circulated Hybrid Tidal Flow Constructed Wetland
Lihua Cui; Jigkun Feng; Ying Ouyang; Peiwen Deng
2012-01-01
Hybrid tidal flow constructed wetland (CW) with recirculation is an improved biological and engineering technique for removal of excess nutrients and certain pollutants from wastewater. This study investigated the removal efficiency of total phosphorus (TP), ammonia-nitrogen (NH3-N), and total nitrogen (TN) from septic tank effluent with the hybrid tidal flow CW system...
Synder, J W; Mains, C N; Anderson, R E; Bissonnette, G K
1995-01-01
The water quality of 24 rural, domestic groundwater supplies treated with point-of-use, powdered activated carbon (PAC) filters was monitored to determine how such treatment might impact the bacteriological quality of private, residential drinking water supplies. Heterotrophic-plate-count (HPC) and total coliform analyses were performed on raw, PAC-treated, and overnight or stagnant (first-draw) PAC-treated water samples. Densities of HPC bacteria were elevated by 0.86 and 0.20 orders of magnitude for spring and well water systems, respectively, in PAC-treated effluents following overnight stagnation compared with levels in untreated treated effluents. Densities of HPC bacteria in PAC-treated effluents were significantly reduced (P < 0.01) below influent levels, however, after the point-of-use device was flushed for 2 min. While PAC significantly reduced the number of coliforms in product waters (P < 0.01), these indicator organisms were still detected in some effluents. Seasonal variations were evident in microbial counts from spring but not well water systems. It appears that aside from periods following stagnant-water use, such as overnight, PAC treatment does not compromise the bacteriological quality of drinking water obtained from underground sources. PMID:8534096
Pollution characterization of liquid waste of the factory complex Fertial (Arzew, Algeria).
Redouane, Fares; Mourad, Lounis
2016-03-01
The industrial development in Algeria has made a worrying situation for all socioeconomic stakeholders. Indeed, this economic growth is marked in recent years by the establishment of factories and industrial plants that discharge liquid waste in marine shorelines. These releases could destabilize the environmental balance in the coming years, hence the need to support the processing of all sources of pollution. Remediation of such discharges requires several steps of identifying the various pollutants to their treatments. Therefore, the authors conducted this first work of characterization of industrial effluents generated by the mineral fertilizer factory complex Fertial (Arzew), and discussed the pollution load generated by this type of industry. This monitoring would establish a tool for reflection and decision support developed by a management system capable of ensuring effective and sustainable management of effluents from industrial activities of Fertial. The authors conducted this first work of characterization of industrial effluents generated by the mineral fertilizer factory complex Fertial (Arzew), and discussed the pollution load generated by this type of industry. This monitoring would establish a tool for reflection and decision support developed by a management system capable of ensuring effective and sustainable management of effluents from industrial activities of Fertial.
Cho, Hyun Uk; Kim, Young Mo; Choi, Yun-Nam; Xu, Xu; Shin, Dong Yun; Park, Jong Moon
2015-05-01
The objective of this study was to investigate the feasibility of applying volatile fatty acids (VFAs) produced from low-cost organic waste to the major carbon sources of microalgae cultivation for highly efficient biofuel production. An integrated process that consists of a sewage sludge fermentation system producing VFAs (SSFV) and mixotrophic cultivation of Chlorella vulgaris (C. vulgaris) was operated to produce microbial lipids economically. The effluents from the SSFV diluted to different concentrations at the level of 100%, 50%, and 15% were prepared for the C. vulgaris cultivation and the highest biomass productivity (433±11.9 mg/L/d) was achieved in the 100% culture controlling pH at 7.0. The harvested biomass included lipid contents ranging from 12.87% to 20.01% under the three different effluent concentrations with and without pH control. The composition of fatty acids from C. vulgaris grown on the effluents from the SSFV complied with the requirements of high-quality biodiesel. These results demonstrated that VFAs produced from the SSFV are favorable carbon sources for cultivating C. vulgaris. Copyright © 2014 Elsevier Ltd. All rights reserved.
Feasibility study on the utilization of rubber latex effluent for producing bacterial biopolymers.
Tang, S N; Fakhru'l-Razi, A; Hassan, M A; Karim, M I
1999-01-01
Rubber latex effluent is a polluting source that has a high biochemical oxygen demand (BOD). It is estimated that about 100 million liters of effluent are discharged daily from rubber processing factories. Utilization of this effluent such as the use of a coupled system not only can reduce the cost of treatment but also yield a fermentation feedstock for the production of bioplastic. This study initially was carried out to increase the production of organic acids by anaerobic treatment of rubber latex effluent. It was found that through anaerobic treatment the concentration of organic acids did not increase. Consequently, separation of organic acids from rubber latex effluent by anion exchange resin was examined as a preliminary study of recovering acetic and propionic acids. However, the suspended solids (SS) content in the raw effluent was rather high which partially blocked the ion-exchange columns. Lime was used to remove the SS in the rubber latex effluent. After the lime precipitation process, organic acids were found to adsorb strongly onto the anion exchange resin. Less adsorption of organic acids onto the resin was observed before the lime precipitation. This was probably due to more sites being occupied by colloidal particles on the resin thus inhibiting the adsorption of organic acids. The initial concentration of organic acids in the raw effluent was 3.9 g/L. After ion exchange, the concentration of the organic acids increased to 27 g/L, which could be utilized for production of polyhydroxyalkanoates (PHA). For PHA accumulation stage, concentrated rubber latex effluent obtained from ion exchange resins and synthetic acetic acid were used as the carbon source. Quantitative analyses from fed batch culture via HPLC showed that the accumulation of PHA in Alcaligenes eutrophus was maximum with a concentration of 1.182 g/L when cultivated on synthetic acetic acid, corresponding to a yield of 87% based on its cell dry weight. The dry cell weight increased from 0.71 to 1.67 g/L. On the other hand, using concentrated rubber latex effluent containing acetic and propionic acids resulted in reduced PHA content by dry weight (14%) but the dry cell weight increased from 0.49 to 1.30 g/L. The results clearly indicated that the cells grow well in rubber latex effluent but no PHA was accumulated. This could be due to the high concentration of propionic acid in culture broth or other factors such as heavy metals. Thus further work is required before rubber latex effluent can be utilized as a substrate for PHA production industrially.
Modeling effluent distribution and nitrate transport through an on-site wastewater system.
Hassan, G; Reneau, R B; Hagedorn, C; Jantrania, A R
2008-01-01
Properly functioning on-site wastewater systems (OWS) are an integral component of the wastewater system infrastructure necessary to renovate wastewater before it reaches surface or ground waters. There are a large number of factors, including soil hydraulic properties, effluent quality and dispersal, and system design, that affect OWS function. The ability to evaluate these factors using a simulation model would improve the capability to determine the impact of wastewater application on the subsurface soil environment. An existing subsurface drip irrigation system (SDIS) dosed with sequential batch reactor effluent (SBRE) was used in this study. This system has the potential to solve soil and site problems that limit OWS and to reduce the potential for environmental degradation. Soil water potentials (Psi(s)) and nitrate (NO(3)) migration were simulated at 55- and 120-cm depths within and downslope of the SDIS using a two-dimensional code in HYDRUS-3D. Results show that the average measured Psi(s) were -121 and -319 cm, whereas simulated values were -121 and -322 cm at 55- and 120-cm depths, respectively, indicating unsaturated conditions. Average measured NO(3) concentrations were 0.248 and 0.176 mmol N L(-1), whereas simulated values were 0.237 and 0.152 mmol N L(-1) at 55- and 120-cm depths, respectively. Observed unsaturated conditions decreased the potential for NO(3) to migrate in more concentrated plumes away from the SDIS. The agreement (high R(2) values approximately 0.97) between the measured and simulated Psi(s) and NO(3) concentrations indicate that HYDRUS-3D adequately simulated SBRE flow and NO(3) transport through the soil domain under a range of environmental and effluent application conditions.
Performance of hybrid constructed wetland systems for treating septic tank effluent.
Cui, Li-hua; Liu, Wen; Zhu, Xi-zhen; Ma, Mei; Huang, Xi-hua; Xia, Yan-yang
2006-01-01
The integrated wetland systems were constructed by combining horizontal-flow and vertical-flow bed, and their purification efficiencies for septic tank effluent were detected when the hydraulic retention time (HRT) was 1 d, 3 d, 5 d under different seasons. The results showed that the removal efficiencies of the organics, phosphorus were steady in the hybrid systems, but the removal efficiency of total nitrogen was not steady due to high total nitrogen concentration in the septic tank effluent. The average removal rates of COD (chemical oxygen demand) were 89%, 87%, 83%, and 86% in summer, autumn, winter and spring, respectively, and it was up to 88%, 85%, 73%, and 74% for BOD5 (5 d biochemical oxygen demand) removal rate in four seasons. The average removal rates of TP (total phosphorous) could reach up to 97%, 98%, 95%, 98% in four seasons, but the removal rate of TN (total nitrogen) was very low. The results of this study also indicated that the capability of purification was the worst in winter. Cultivating with plants could improve the treated effluent quality from the hybrid systems. The results of the operation of the horizontal-flow and vertical-flow cells (hybrid systems) showed that the removal efficiencies of the organics, TP and TN in horizontal-flow and vertical-flow cells were improved significantly with the extension of HRT under the same season. The removal rate of 3 d HRT was obviously higher than that of 1 d HRT, and the removal rate of 5 d HRT was better than that of 3 d HRT, but the removal efficiency was not very obvious with the increment of HRT. Therefore, 3 d HRT might be recommended in the actual operation of the hybrid systems for economic and technical reasons.
Remediation of anionic dye from aqueous system using bio-adsorbent prepared by microwave activation.
Sharma, Arush; Sharma, Gaurav; Naushad, Mu; Ghfar, Ayman A; Pathania, Deepak
2018-04-01
The present study was attempted to ascertain the possible application of activated carbon as a cost-effective and eco-friendly adsorbent prepared via microwave-assisted chemical activation. The activated carbon was characterized using different techniques. The various adsorption parameters have been optimized to examine the viability of activated carbon as a plausible sorbent for the remediation of Congo red (CR) dye from the aquatic system. The equilibrium data adequately fitted to the Langmuir isotherm with better R 2 (0.994). The maximum adsorption capacity (q m ) of activated carbon was recorded to be 68.96 mg/g. Additionally, sorptional kinetic data were examined by reaction-based and diffusion-based models such as pseudo-first-order and pseudo-second-order equations, and Elovich, intra-particle diffusion, and Dumwald-Wagner models, respectively. The computed values of thermodynamic parameters such as free energy change (ΔG 0 ), enthalpy change (ΔH 0 ) and entropy change (ΔS 0 ) were recorded as -3.63, 42.47 and 152.07 J/mol K, respectively, at 30°C, which accounted for a favorable, spontaneous and endothermic process. The regeneration study emphasized that the percentage uptake declined from 90.35% to 83.45% after six cycles of testing. So, our findings implied that activated carbon produced from biomass must be cost-effectively used as an adsorbent for detoxifying the CR dye from industrial effluents.
NASA Astrophysics Data System (ADS)
Jamieson-Hanes, Julia H.; Lentz, Adam M.; Amos, Richard T.; Ptacek, Carol J.; Blowes, David W.
2014-10-01
A series of replicate flow-through cell experiments was conducted to characterize Cr isotope fractionation during Cr(VI) treatment by granular zero-valent iron (ZVI). Synthetic groundwater containing 50 mg L-1 Cr(VI) was pumped upward through a custom-made cell packed with ZVI under anaerobic conditions. The geochemical evolution of the system was monitored using pH and redox measurements, while aqueous effluent samples were retained for analysis of cations and Cr isotopes. Real-time, in situ X-ray absorption near edge structure (XANES) spectroscopy collected via a Kapton® window in the cell provided additional information on the speciation of the reaction products. Increases in δ53Cr values corresponding to decreases in Cr(VI) concentration suggested the occurrence of redox processes. Spectroscopic results correlated well with the isotope data, indicating reduction of Cr(VI) to Cr(III). The isotope data did not appear to follow a single trend. A two-stage system was proposed to explain the complex isotope trend, where the rapid Cr removal was associated with very little fractionation (ε = -0.2‰), whereas slower removal was associated with a greater degree of fractionation (ε = -1.2‰ to -1.5‰). Reactive transport modeling was used to quantify distinct isotope fractionation values (ε), differentiated by a significant change in the Cr removal rate.
Liang, L; Lazoff, S; Chan, C; Horvat, M; Woods, J S
1998-11-01
A method for trace determination of total arsenic in ambient waters is described. Arsenic is separated on-line from a large volume water sample by hydride generation and purging, pre-collected on a Pd coated pyrolytic platform cuvette using a simple and inexpensive system, and finally detected by GFAAS. Instrument parameters, hydride generation, transportation, and collection were optimized. The analytical behavior for major species including As(3+), As(5+), monomethyl As (MMA), and dimethyl As (DMA) were investigated individually. Problems arising from use of the system were discussed and eliminated. The necessity of sample digestion and an efficient digestion method were studied. Sample digestion for water with low organic content such as tap water and clean ground water and some clean surface water can be omitted. The method detection limit (MDL) is 0.3 ng l(-1) for a 25 ml water sample. Recoveries close to 100% with R.S.D.<5% can be easily achieved. Typical aqueous samples including tap, ground, lake, river, rain, sewage effluent, and saline water from different origins in the US, China, and Canada were collected and analyzed using ultra clean sampling and analysis techniques. The background levels of As in most water analyzed were established for the first time, and found to be far above the EPA's health effect criteria, 18 ng l(-1).
da Silva, Júlio César Cardoso; Bispo, Glayson Leonardo; Pavanelli, Sérgio Pinton; Afonso, Robson José de Cássia Franco; Augusti, Rodinei
2012-06-15
Dyes have been widely used to accentuate or to provide different colors to foods. However, the high concentrations of dyes in effluents from the food industries can cause serious and unpredictable damages to aquatic life in general. Furthermore, since conventional biological treatments have been shown to be ineffective, the use of advanced oxidation processes to promote the depletion of such dyes in water bodies has turned out to be mandatory. The degradation of the food dye Brilliant Blue by ozone in aqueous solution is reported herein. The overall process was monitored in real time by using direct infusion electrospray ionization high-resolution mass spectrometry in the negative ion mode, ESI(-)-HRMS. Preliminary results (visual inspection and UV-vis spectra) showed the high efficiency of ozonation in causing the decoloration of an aqueous solution of the dye whereas TOC (total organic carbon) measurements revealed that such an oxidation process was unable to promote its complete mineralization. ESI(-)-HRMS data showed that the substrate consumption occurred concomitantly with the appearance of four by-products, all of them produced by an initial attack of hydroxyl radicals (generated via the decomposition of ozone) on the two imino moieties of the dye molecule. Structures were proposed for all the by-products based mainly on the high-resolution mass measurements and on the characteristic reactivity of typical functional groups towards hydroxyl radicals. An unprecedented degradation route of Brilliant Blue by ozone in aqueous solution could thus be proposed. A greater ecotoxicity against Artemia salina was observed for the by-products than for the original dye. This indicates that the identification of by-products arising from oxidation treatments is of primary importance since such compounds can be more hazardous than the precursor itself. Copyright © 2012 John Wiley & Sons, Ltd.
The treatment performance of different subsoils in Ireland receiving on-site wastewater effluent.
Gill, L W; O'Súlleabháin, C; Misstear, B D R; Johnston, P J
2007-01-01
Current Irish guidelines require a comprehensive site assessment of a percolation area for wastewater disposal before planning permission is granted for dwellings in rural areas. For a site to be deemed suitable, the subsoil must have a percolation value equivalent to a field saturated hydraulic conductivity in the range 0.08 to 4.2 m d(-1) using a falling head percolation test. A minimum of 1.2 m of unsaturated subsoil must also exist below the invert of the percolation area receiving effluent from a septic tank (or 0.6 m for secondary treated effluent). During a 2-yr period, the three-dimensional performance of four percolation areas treating domestic wastewater was monitored. At each site samples were taken at 0, 10, and 20 m along each of the four percolation trenches at depths of 0.3, 0.6, and 1.0 m below each trench to ascertain the attenuation effects of the unsaturated subsoil. The two sites with septic tanks installed performed at least as well as the other two sites with secondary treatment systems installed and appeared to discharge a better quality effluent in terms of nutrient load. An average of 2.1 and 6.8 g total N d(-1) remained after passing through 1-m depth of subsoil beneath the trenches receiving septic tank effluent compared with 12.7 and 16.7 g total N d(-1) on the sites receiving secondary effluent. The research also indicates that the septic tank effluent was of an equivalent quality to the secondary treated effluent in terms of indicator bacteria (E. coli) after percolating through 0.6-m depth of unsaturated subsoil.
Neal, Colin; Jarvie, Helen P; Withers, Paul J A; Whitton, Brian A; Neal, Margaret
2010-03-01
The relationship between soluble and particulate phosphorus was examined for 9 major UK rivers including 26 major tributaries and 68 monitoring points, covering wide-ranging rural and agricultural/urban impacted systems with catchment areas varying from 1 to 6000km(2) scales. Phosphorus concentrations in Soluble Reactive (SRP), Total Dissolved (TDP), Total (TP), Dissolved Hydrolysable (DHP) and Particulate (PP) forms correlated with effluent markers (sodium and boron) and SRP was generally dominant signifying the importance of sewage sources. Low flows were particularly enriched in SRP, TDP and TP for average SRP>100microg/l indicating low effluent dilution. At particularly low average concentrations, SRP increased with flow but effluent sources were still implicated as the effluent markers (boron in particular) increased likewise. For rural areas, DHP had proportionately high concentrations and SRP+DHP concentrations could exceed environmental thresholds currently set for SRP. Given DHP has a high bioavailability the environmental implications need further consideration. PP concentrations were generally highest at high flows but PP in the suspended solids was generally at its lowest and in general PP correlated with particulate organic carbon and more so than the suspended sediment in total. Separation of pollutant inputs solely between effluent and diffuse (agriculture) components is misleading, as part of the "diffuse" term comprises effluents flushed from the catchments during high flow. Effluent sources of phosphorus supplied directly or indirectly to the river coupled with within-river interactions between water/sediment/biota largely determine pollutant levels. The study flags the fundamental need of placing direct and indirect effluent sources and contaminated storage with interchange to/from the river at the focus for remediation strategies for UK rivers in relation to eutrophication and the WFD.
NASA Astrophysics Data System (ADS)
Pepich, Barry V.; Callis, James B.; Danielson, J. D. Sheldon; Gouterman, Martin
1986-05-01
A method for detection of capillary gas chromatographic (C-GC) effluent using supersonic jet spectroscopy is described. A novel concept is introduced which overcomes four major obstacles: (i) high temperature of the GC; (ii) low GC flow rate; (iii) low dead volume requirement; and (iv) duty factor mismatch to a pulsed laser. The effluent from the C-GC flows into a low dead volume antechamber into which a pulsed valve, operating at 5 Hz, discharges high-pressure inert gas for 600 μs. The antechamber feeds through a small orifice into a high-vacuum chamber; here an isentropic expansion takes place which causes marked cooling of the GC effluent. The fluorescence of the effluent is then excited by a synchronously pulsed dye laser. With iodine vapor in helium (2 ml/min) modeling the GC effluent, the fluorescence of the cooled molecules is monitored with different delay times between opening of the pulsed valve and firing of the laser. With a glass wool plug inserted in the antechamber to promote mixing between the high-pressure pulse gas and the iodine, the observed pressure variation with time follows a simple gas-dynamic model. Operating in this pulsed mode it is found that the effluent concentration increases by a factor of 7 while the rotational temperature drops from 373 to 7 K. The overall fluorescence intensity actually increases nearly 30-fold because the temperature drop narrows the absorption bands. Tests on acenaphthene chromatographed on a 15-m capillary column show that the antechamber does not degrade resolution and that the high-pressure pulses act to reduce C-GC retention times, presumably through a Venturi effect. The antechamber can be operated with GC effluent temperatures above 200 °C without adversely affecting the pulsed valve.
NASA Astrophysics Data System (ADS)
Thompson, Russell G.; Singleton, F. D., Jr.
1986-04-01
With the methodology recommended by Baumol and Oates, comparable estimates of wastewater treatment costs and industry outlays are developed for effluent standard and effluent tax instruments for pollution abatement in five hypothetical organic petrochemicals (olefins) plants. The computational method uses a nonlinear simulation model for wastewater treatment to estimate the system state inputs for linear programming cost estimation, following a practice developed in a National Science Foundation (Research Applied to National Needs) study at the University of Houston and used to estimate Houston Ship Channel pollution abatement costs for the National Commission on Water Quality. Focusing on best practical and best available technology standards, with effluent taxes adjusted to give nearly equal pollution discharges, shows that average daily treatment costs (and the confidence intervals for treatment cost) would always be less for the effluent tax than for the effluent standard approach. However, industry's total outlay for these treatment costs, plus effluent taxes, would always be greater for the effluent tax approach than the total treatment costs would be for the effluent standard approach. Thus the practical necessity of showing smaller outlays as a prerequisite for a policy change toward efficiency dictates the need to link the economics at the microlevel with that at the macrolevel. Aggregation of the plants into a programming modeling basis for individual sectors and for the economy would provide a sound basis for effective policy reform, because the opportunity costs of the salient regulatory policies would be captured. Then, the government's policymakers would have the informational insights necessary to legislate more efficient environmental policies in light of the wealth distribution effects.
Treatment of septic tank effluents by a full-scale capillary seepage soil biofiltration system.
Fan, Chihhao; Chang, Fang-Chih; Ko, Chun-Han; Teng, Chia-Ji; Chang, Tzi-Chin; Sheu, Yiong-Shing
2009-03-01
The purpose of this study is to evaluate the efficiency of septic tank effluent treatment by an underground capillary seepage soil biofiltration system in a suburban area of Taipei, Taiwan. In contrast to traditional subsurface wastewater infiltration systems, capillary seepage soil biofiltration systems initially draw incoming influent upwards from the distribution pipe by capillary and siphonage actions, then spread influent throughout the soil biofiltration bed. The underground capillary seepage soil biofiltration system consists of a train of underground treatment units, including one wastewater distribution tank, two capillary seepage soil biofiltration units in series, and a discharge tank. Each capillary seepage soil biofiltration unit contains one facultative digestion tank and one set of biofiltration beds. At the flow rate of 50 m3/day, average influent concentrations of biochemical oxygen demand (BOD), suspended solid (SS), ammonia nitrogen (NH3-N), and total phosphates (TP), were 36.15 mg/L, 29.14 mg/L, 16.05 mg/L, and 1.75 mg/L, respectively. After 1.5 years of system operation, the measured influent and effluent results show that the treatment efficiencies of the soil biofiltration system for BOD, SS, NH3-N, TP, and total coliforms are 82.96%, 60.95%, 67.17%, 74.86%, and 99.99%, respectively.
Hama, T; Aoki, T; Osuga, K; Sugiyama, S; Iwasaki, D
2012-01-01
Japanese paddy rice systems commonly adopt the rotation of vegetables, wheat and soybeans with paddy rice. Crop rotation may, however, increase the nutrient load in effluent discharged from the district because more fertilizer is applied to the rotation crops than is applied to paddy crops. We investigated a paddy-field district subject to collective crop rotation and quantified the annual nutrient load of effluent from the district in three consecutive years. The total annual exports of nitrogen and phosphorus over the investigation period ranged from 30.3 to 40.6 kg N ha(-1) and 2.62 to 3.13 kg P ha(-1). The results suggest that rotation cropping increases the effluent nutrient load because applied fertilizer is converted to nitrate, and surface runoff is increased due to the absence of shuttering boards at the field outlets.
Nie, J Y; Zhu, N W; Zhao, K; Wu, L; Hu, Y H
2011-01-01
Soil columns were set up to survey the bacterial community in the soil for septic tank effluent treatment. When bio-clogging occurred in the soil columns, the effluent from the columns was in poorer quality. To evaluate changes of the soil bacterial community in response to bio-clogging, the bacterial community was characterized by DNA gene sequences from soil samples after polymerase chain reaction coupled with denaturing gradient gel electrophoresis process. Correspondence analysis showed that Proteobacteria related bacteria were the main bacteria within the soil when treating septic tank effluent. However, Betaproteobacteria related bacteria were the dominant microorganisms in the normal soil, whereas Alphaproteobacteria related bacteria were more abundant in the clogged soil. This study provided insight into changes of the soil bacterial community in response to bio-clogging. The results can supply some useful information for the design and management of soil infiltration systems.
Effluent Treatment Technologies in the Iron and Steel Industry - A State of the Art Review.
Das, Pallabi; Mondal, Gautam C; Singh, Siddharth; Singh, Abhay K; Prasad, Bably; Singh, Krishna K
2018-05-01
Iron and steel industry is the principal driving force propelling economic and technological growth of a nation. However, since its inception this industry is associated with widespread environmental pollution and enormous water consumption. Different units of a steel plant discharge effluents loaded with toxic, hazardous pollutants, and unutilized components which necessitates mitigation. In this paper, pollutant removal efficiency, effluent volume product quality, and economic feasibility of existing treatments are studied vis-à-vis their merits, demerits, and innovations to access their shortcomings which can be overcome with new technology to identify future research directions. While conventional methods are inadequate for complete remediation and water reclamation, the potential of advanced treatments, like membrane separation, remains relatively untapped. It is concluded that integrated systems combining membrane separation with chemical treatments can guarantee a high degree of contaminant removal, reusability of effluents concurrently leading to process intensification ensuring ecofriendliness and commercial viability.
Decoloration and detoxification of effluents by ionizing radiation
NASA Astrophysics Data System (ADS)
Borrely, Sueli I.; Morais, Aline V.; Rosa, Jorge M.; Badaró-Pedroso, Cintia; da Conceição Pereira, Maria; Higa, Marcela C.
2016-07-01
Three distinct textile samples were investigated for color and toxicity (S1-chemical/textile industry; S2-final textile effluent; S3 - standard textile produced effluent-untreated blue). Radiation processing of these samples were carried out at Dynamitron Electron Beam Accelerator and color and toxicity removal were determined: color removal by radiation was 96% (40 kGy, S1); 55% (2.5 kGy, S2) and 90% (2.5 kGy, S3). Concerning toxicity assays, Vibrio fischeri luminescent bacteria demonstrated higher reduction after radiation than the other systems: removal efficiencies were 33% (20 kGy, S1); 55% (2.5 kGy, S2) and 33% (2.5 kGy, S3). Daphnia similis and Brachionus plicatilis fitted well for S3 effluents. Hard toxic volumes into biological treatment plant may be avoided if radiation would be previously applied in a real plant. Results reveled how indispensable is to run toxicity to more than one living-organism.
Maupin, Molly A.; Ivahnenko, Tamara
2011-01-01
Data from the United States Environmental Protection Agency Permit Compliance System national database were used to calculate annual total nitrogen (TN) and total phosphorus (TP) loads to surface waters from municipal and industrial facilities in six major regions of the United States for 1992, 1997, and 2002. Concentration and effluent flow data were examined for approximately 118,250 facilities in 45 states and the District of Columbia. Inconsistent and incomplete discharge locations, effluent flows, and effluent nutrient concentrations limited the use of these data for calculating nutrient loads. More concentrations were reported for major facilities, those discharging more than 1 million gallons per day, than for minor facilities, and more concentrations were reported for TP than for TN. Analytical methods to check and improve the quality of the Permit Compliance System data were used. Annual loads were calculated using "typical pollutant concentrations" to supplement missing concentrations based on the type and size of facilities. Annual nutrient loads for over 26,600 facilities were calculated for at least one of the three years. Sewage systems represented 74% of all TN loads and 58% of all TP loads. This work represents an initial set of data to develop a comprehensive and consistent national database of point-source nutrient loads. These loads can be used to inform a wide range of water-quality management, watershed modeling, and research efforts at multiple scales.
Data analysis and interpretation related to space system/environment interactions at LEO altitude
NASA Technical Reports Server (NTRS)
Raitt, W. John; Schunk, Robert W.
1991-01-01
Several studies made on the interaction of active systems with the LEO space environment experienced from orbital or suborbital platforms are covered. The issue of high voltage space interaction is covered by theoretical modeling studies of the interaction of charged solar cell arrays with the ionospheric plasma. The theoretical studies were complemented by experimental measurements made in a vacuum chamber. The other active system studied was the emission of effluent from a space platform. In one study the emission of plasma into the LEO environment was studied by using initially a 2-D model, and then extending this model to 3-D to correctly take account of plasma motion parallel to the geomagnetic field. The other effluent studies related to the releases of neutral gas from an orbiting platform. One model which was extended and used determined the density, velocity, and energy of both an effluent gas and the ambient upper atmospheric gases over a large volume around the platform. This model was adapted to study both ambient and contaminant distributions around smaller objects in the orbital frame of reference with scale sizes of 1 m. The other effluent studies related to the interaction of the released neutral gas with the ambient ionospheric plasma. An electrostatic model was used to help understand anomalously high plasma densities measured at times in the vicinity of the space shuttle orbiter.
Mubedi, Josué Ilunga; Devarajan, Naresh; Le Faucheur, Séverine; Mputu, John Kayembe; Atibu, Emmanuel K; Sivalingam, Periyasamy; Prabakar, Kandasamy; Mpiana, Pius T; Wildi, Walter; Poté, John
2013-10-01
Physicochemical and ecotoxicological analyses have been performed to assess the quality of sediments receiving untreated hospital effluents from Indian and Democratic Republic of Congo (DRC) hospitals. The sediments were collected monthly and characterized for grain size, organic matter, total organic carbon, total carbon, nitrogen, phosphorus, toxic metals and ecotoxicity. The results highlight the high concentration of toxic metals from the Indian hospital effluent receiving systems, especially for Cr, Cu, As, Zn and Hg. On the other hand, the metal concentrations in the sediment receiving system from DRC are low (e.g. maximum Hg and Zn concentration were 0.46 and 48.84 mg kg(-1) respectively). Ostracods exposed to sediment samples H2 (September month sample) and H3 (June and September month samples) were found dead after 6d of exposure whereas the higher mortality rate for Congo sediments was 23% but was accompanied with 33 ± 7% of growth inhibition. The results of this study show the variation of sediment composition on toxic metal levels as well as toxicity related to both, the type of hospitals and the sampling period. Additionally, hospital effluent disposal practices at the study sites can lead to the pollution of water resources and may generate risks for aquatic organisms and human health. Copyright © 2013 Elsevier Ltd. All rights reserved.
Influence of operational conditions on the performance of a mesh filter activated sludge process.
Fuchs, W; Resch, C; Kernstock, M; Mayer, M; Schoeberl, P; Braun, R
2005-03-01
Recently, a new type of wastewater treatment system became the focus of scientific research, the mesh filter activated sludge system. It is a modification of the membrane bioreactor where a membrane filtration process serves to separate the sludge from the purified effluent. The difference is that a mesh filter is used instead of the membrane. Due to the much larger pore size of the mesh, the effluent is not of the same excellent quality as with membrane bioreactors. Nevertheless, it still resembles the quality of the now most widely used standard treatment system, where settling tanks are used to retain the activated sludge. At the same time, the new system features all the other advantages of membrane bioreactors including elevated sludge concentrations resulting in decreased volumina of basins and complete substitution of the settling tank. Therefore, this process presents a potential future alternative where a small footprint of the plant is required. However, so far only a few preliminary studies on this innovative process type have been done. In this paper, the effects of suspended solids concentration, flux rate as well as aeration rate on the effluent quality are discussed. Furthermore, the characteristic of the sludge floc was identified as a factor of vital importance. Therefore, another influencing parameter, the food to microorganism (F/M) ratio, which is known to have a significant effect on floc characteristics, was studied. The main result demonstrated that the process was very effective under most of the operation conditions. The suspended solids concentration in the effluent was below 12 mg l(-1), the average COD in the effluent was between 24 and 45 mg l(-1) and the BOD(5) was lower than 5 mg l(-1). High flux rates of up to 150 l m(-2)h(-1) were also achieved.
Treatment of a Textile Effluent from Dyeing with Cochineal Extracts Using Trametes versicolor Fungus
Arroyo-Figueroa, Gabriela; Ruiz-Aguilar, Graciela M. L.; López-Martínez, Leticia; González-Sánchez, Guillermo; Cuevas-Rodríguez, Germán; Rodríguez-Vázquez, Refugio
2011-01-01
Trametes versicolor (Tv) fungus can degrade synthetic dyes that contain azo groups, anthraquinone, triphenylmethane polymers, and heterocyclic groups. However, no references have been found related to the degradation of natural dyes, such as the carminic acid that is contained in the cochineal extract. Experiments to determine the decolorization of the effluent used in the cotton dyeing process with cochineal extract by means of Tv fungus were done. Treatments to determine decolorization in the presence or absence of Kirk's medium, glucose, and fungus, with an addition of 50% (v v-1) of nonsterilized effluent were performed. Physicochemical characterization was performed at the start and end of the treatment. Degradation kinetics were determined. A direct relationship was found between the dry weight of fungi, pH, and the decolorization system, with higher decolorization at lower pH levels (pH ~4.3). High decolorization (81% ± 0.09; 88% ± 0.17; and 99% ± 0.04) for three of the eight treatments (Kirk's medium without glucose, Kirk's medium with glucose, and without medium with glucose, respectively) was found. Toxicity tests determined an increase in the initial effluent toxicity (7.33 TU) compared with the final treatment (47.73 TU) in a period of 11 days. For this system, a degradation sequence of the carminic acid structure present in the effluent by the Tv fungus is suggested, in which it is seen that metabolites still containing aromatic structures are generated. PMID:21552764
NASA Astrophysics Data System (ADS)
Navarro, Vicente; García, Beatriz; Sánchez, David; Asensio, Laura
2011-04-01
SummaryAt the present time there is not enough information available to develop a quantitative model on how inundation takes place in the 1490 ha area of Tablas de Daimiel National Park (Central Spain) located upstream of Morenillo Dam. Given that it is the most important area in the Park from an ecological standpoint, this is a major concern, as it has not been possible to assess the potential effectiveness of the interventions geared towards improving its current state. As a result, it is not feasible to simulate the hydrologic response to the application of treated sewage effluents, an initiative recently implemented by the Public Administration responsible for water management in the Guadiana River Basin, where the Park is located. To help solve this problem, a simplified model of the hydrologic behaviour of the system has been developed focusing on the characterisation of the main trends of the inundation process. Field data from 12 drying processes were used to identify the model parameters. Later, the evolution of the system was examined after the application of treated sewage effluents, assuming the hypothesis of a dry climate. The results show that the 10 Mm 3 of available effluents is sufficient to improve from 2 ha to 60 ha the inundation condition of the areas considered to be high-priority. This therefore demonstrates that, from a hydrologic point of view, it is highly advisable to use treated sewage effluents.
Arroyo-Figueroa, Gabriela; Ruiz-Aguilar, Graciela M L; López-Martínez, Leticia; González-Sánchez, Guillermo; Cuevas-Rodríguez, Germán; Rodríguez-Vázquez, Refugio
2011-05-05
Trametes versicolor (Tv) fungus can degrade synthetic dyes that contain azo groups, anthraquinone, triphenylmethane polymers, and heterocyclic groups. However, no references have been found related to the degradation of natural dyes, such as the carminic acid that is contained in the cochineal extract. Experiments to determine the decolorization of the effluent used in the cotton dyeing process with cochineal extract by means of Tv fungus were done. Treatments to determine decolorization in the presence or absence of Kirk's medium, glucose, and fungus, with an addition of 50% (v v-1) of nonsterilized effluent were performed. Physicochemical characterization was performed at the start and end of the treatment. Degradation kinetics were determined. A direct relationship was found between the dry weight of fungi, pH, and the decolorization system, with higher decolorization at lower pH levels (pH ~4.3). High decolorization (81% ± 0.09; 88% ± 0.17; and 99% ± 0.04) for three of the eight treatments (Kirk's medium without glucose, Kirk's medium with glucose, and without medium with glucose, respectively) was found. Toxicity tests determined an increase in the initial effluent toxicity (7.33 TU) compared with the final treatment (47.73 TU) in a period of 11 days. For this system, a degradation sequence of the carminic acid structure present in the effluent by the Tv fungus is suggested, in which it is seen that metabolites still containing aromatic structures are generated.
Kumar, Abhishek; Clement, Shibu; Agrawal, V P
2010-07-15
An attempt is made to address a few ecological and environment issues by developing different structural models for effluent treatment system for electroplating. The effluent treatment system is defined with the help of different subsystems contributing to waste minimization. Hierarchical tree and block diagram showing all possible interactions among subsystems are proposed. These non-mathematical diagrams are converted into mathematical models for design improvement, analysis, comparison, storage retrieval and commercially off-the-shelf purchases of different subsystems. This is achieved by developing graph theoretic model, matrix models and variable permanent function model. Analysis is carried out by permanent function, hierarchical tree and block diagram methods. Storage and retrieval is done using matrix models. The methodology is illustrated with the help of an example. Benefits to the electroplaters/end user are identified. 2010 Elsevier B.V. All rights reserved.
Prakash, Jyotsana; Gupta, Rahul Kumar; Xx, Priyanka; Kalia, Vipin Chandra
2018-05-01
Biodiesel industrial effluent rich in crude glycerol (CG) was processed to produce value-added product. Under continuous culture system, Bacillus amyloliquefaciens strain CD16 immobilized within its biofilm, produced 3.2 L H 2 /day/L feed, over a period of 60 days at a hydraulic retention time of 2 days. The effective H 2 yield by B. amyloliquefaciens strain CD16 was 165 L/L CG. This H 2 yield was 1.18-fold higher than that observed with non-biofilm forming Bacillus thuringiensis strain EGU45. Bioprocessing of the effluent released after this stage, by recycling it up to 25% did not have any adverse effect on H 2 production by strain EGU45; however, a 25% reduction in yield was recorded with strain CD16. Biofilm forming H 2 producers thus proved effective as self-immobilizing system leading to enhanced process efficiency.
Identifying fluorescent pulp mill effluent in the Gulf of Maine and its watershed
Cawley, Kaelin M.; Butler, Kenna D.; Aiken, George R.; Larsen, Laurel G.; Huntington, Thomas G.; McKnight, Diane M.
2012-01-01
Using fluorescence spectroscopy and parallel factor analysis (PARAFAC) we characterized and modeled the fluorescence properties of dissolved organic matter (DOM) in samples from the Penobscot River, Androscoggin River, Penobscot Bay, and the Gulf of Maine (GoM). We analyzed excitation-emission matrices (EEMs) using an existing PARAFAC model (Cory and McKnight, 2005) and created a system-specific model with seven components (GoM PARAFAC). The GoM PARAFAC model contained six components similar to those in other PARAFAC models and one unique component with a spectrum similar to a residual found using the Cory and McKnight (2005) model. The unique component was abundant in samples from the Androscoggin River immediately downstream of a pulp mill effluent release site. The detection of a PARAFAC component associated with an anthropogenic source of DOM, such as pulp mill effluent, demonstrates the importance for rigorously analyzing PARAFAC residuals and developing system-specific models.
W-007H B Plant Process Condensate Treatment Facility. Revision 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rippy, G.L.
1995-01-20
B Plant Process Condensate (BCP) liquid effluent stream is the condensed vapors originating from the operation of the B Plant low-level liquid waste concentration system. In the past, the BCP stream was discharged into the soil column under a compliance plan which expired January 1, 1987. Currently, the BCP stream is inactive, awaiting restart of the E-23-3 Concentrator. B Plant Steam Condensate (BCS) liquid effluent stream is the spent steam condensate used to supply heat to the E-23-3 Concentrator. The tube bundles in the E-23-3 Concentrator discharge to the BCS. In the past, the BCS stream was discharged into themore » soil column. Currently, the BCS stream is inactive. This project shall provide liquid effluent systems (BCP/BCS/BCE) capable of operating for a minimum of 20 years, which does not include the anticipated decontamination and decommissioning (D and D) period.« less
Kapse, Gaurav; Patoliya, Pruthvi; Samadder, S R
2017-03-01
The huge quantity of effluent generated in coal washing processes contains large amount of suspended and dissolved solids, clay minerals, coal fines and other impurities associated with raw coal. The present system of recirculation of the effluent is found to be ineffective in removing colloidal fines, which is the major part of the impurities present in washery effluent. Hence, there is a need for the assessment of a better technique for an efficient removal of these impurities. This study deals with detailed characterisation of coal washery effluent and fine particles present in it. For efficient removal of impurities, the suitability of biocoag-flocculation process using Moringa oleifera seed biomass as a natural coagulant was examined. Various doses of M. oleifera ranging from 0.2 to 3 mL/L were used in order to determine the optimal conditions. The impact of the variations in pH of the effluent (2-10), contact time (5-30 min), settlement time (5-50 min), temperature (10-50 °C) and the effluent dilution (1:0-1:5) was also assessed to optimise the treatment process. Post treatment analysis was carried out for determination of the different parameters such as pH, conductivity, turbidity, solids and settling velocity. Excellent reduction in turbidity (97.42%) and suspended solids (97.78%) was observed at an optimum dose of M. oleifera seed coagulant of 0.8 mL/L with an optimum contact time of 15 and at 20 min of settling time. In comparison with very few past studies of M. oleifera in the treatment of coal washery effluent with high dose and inadequate removal, this study stands to be a major highlight with low dose and high removal of the impurities. M. oleifera coagulant is considered to be an environment-friendly material, therefore, its application is recommended for simple and efficient treatment of coal washery effluent.
Role of effluent organic matter in the photochemical degradation of compounds of wastewater origin.
Bodhipaksha, Laleen C; Sharpless, Charles M; Chin, Yu-Ping; MacKay, Allison A
2017-03-01
The photoreactivity of treated wastewater effluent organic matter differs from that of natural organic matter, and the indirect phototransformation rates of micropollutants originating in wastewater are expected to depend on the fractional contribution of wastewater to total stream flow. Photodegradation rates of four common compounds of wastewater origin (sulfamethoxazole, sulfadimethoxine, cimetidine and caffeine) were measured in river water, treated municipal wastewater effluent and mixtures of both to simulate various effluent-stream water mixing conditions that could occur in environmental systems. Compounds were chosen for their unique photodegradation pathways with the photochemically produced reactive intermediates, triplet-state excited organic matter ( 3 OM*), singlet oxygen ( 1 O 2 ), and hydroxyl radicals (OH). For all compounds, higher rates of photodegradation were observed in effluent relative to upstream river water. Sulfamethoxazole degraded primarily via direct photolysis, with some contribution from OH and possibly from carbonate radicals and other unidentified reactive intermediates in effluent-containing samples. Sulfadimethoxine also degraded mainly by direct photolysis, and natural organic matter appeared to inhibit this process to a greater extent than predicted by light screening. In the presence of effluent organic matter, sulfadimethoxine showed additional reactions with OH and 1 O 2 . In all water samples, cimetidine degraded by reaction with 1 O 2 (>95%) and caffeine by reaction with OH (>95%). In river water mixtures, photodegradation rate constants for all compounds increased with increasing fractions of effluent. A conservative mixing model was able to predict reaction rate constants in the case of hydroxyl radical reactions, but it overestimated rate constants in the case of 3 OM* and 1 O 2 pathways. Finally, compound degradation rate constants normalized to the rate of light absorption by water correlated with E 2 /E 3 ratios (sample absorbance at 254 nm divided by sample absorbance at 365 nm), suggesting that organic matter optical properties may hold promise to predict indirect compound photodegradation rates for various effluent mixing ratios. Copyright © 2016 Elsevier Ltd. All rights reserved.
Colloids as a sink for certain pharmaceuticals in the aquatic environment.
Maskaoui, Khalid; Zhou, John L
2010-05-01
The occurrence and fate of pharmaceuticals in the aquatic environment is recognized as one of the emerging issues in environmental chemistry and as a matter of public concern. Existing data tend to focus on the concentrations of pharmaceuticals in the aqueous phase, with limited studies on their concentrations in particulate phase such as sediments. Furthermore, current water quality monitoring does not differentiate between soluble and colloidal phases in water samples, hindering our understanding of the bioavailability and bioaccumulation of pharmaceuticals in aquatic organisms. In this study, an investigation was conducted into the concentrations and phase association (soluble, colloidal, suspended particulate matter or SPM) of selected pharmaceuticals (propranolol, sulfamethoxazole, meberverine, thioridazine, carbamazepine, tamoxifen, indomethacine, diclofenac, and meclofenamic acid) in river water, effluents from sewage treatment works (STW), and groundwater in the UK. The occurrence and phase association of selected pharmaceuticals propranolol, sulfamethoxazole, meberverine, thioridazine, carbamazepine, tamoxifen, indomethacine, diclofenac, and meclofenamic acid in contrasting aquatic environments (river, sewage effluent, and groundwater) were studied. Colloids were isolated by cross-flow ultrafiltration (CFUF). Water samples were extracted by solid-phase extraction (SPE), while SPM was extracted by microwave. All sample extracts were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the multiple reaction monitoring. Five compounds propranolol, sulfamethoxazole, carbamazepine, indomethacine, and diclofenac were detected in all samples, with carbamazepine showing the highest concentrations in all phases. The highest concentrations of these compounds were detected in STW effluents, confirming STW as a key source of these compounds in the aquatic environments. The calculation of partition coefficients of pharmaceuticals between SPM and filtrate (observed partition coefficients, Kobsp, Kobsoc), between SPM and soluble phase (intrinsic partition coefficients, Kintp, Kintoc), and between colloids and soluble phase (Kcoc) showed that intrinsic partition coefficients (Kintp, Kintoc) are between 25% and 96%, and between 18% and 82% higher than relevant observed partition coefficients values, and are much less variable. Secondly, Kcoc values are 3-4 orders of magnitude greater than Kintoc values, indicating that aquatic colloids are substantially more powerful sorbents for accumulating pharmaceuticals than sediments. Furthermore, mass balance calculations of pharmaceutical concentrations demonstrate that between 23% and 70% of propranolol, 17-62% of sulfamethoxazole, 7-58% of carbamazepine, 19-84% of indomethacine, and 9-74% of diclofenac are present in the colloidal phase. The results provide direct evidence that sorption to colloids provides an important sink for the pharmaceuticals in the aquatic environment. Such strong pharmaceutical/colloid interactions may provide a long-term storage of pharmaceuticals, hence, increasing their persistence while reducing their bioavailability in the environment. Pharmaceutical compounds have been detected not only in the aqueous phase but also in suspended particles; it is important, therefore, to have a holistic approach in future environmental fate investigation of pharmaceuticals. For example, more research is needed to assess the storage and long-term record of pharmaceutical residues in aquatic sediments by which benthic organisms will be most affected. Aquatic colloids have been shown to account for the accumulation of major fractions of total pharmaceutical concentrations in the aquatic environment, demonstrating unequivocally the importance of aquatic colloids as a sink for such residues in the aquatic systems. As aquatic colloids are abundant, ubiquitous, and highly powerful sorbents, they are expected to influence the bioavailability and bioaccumulation of such chemicals by aquatic organisms. It is therefore critical for colloids to be incorporated into water quality models for prediction and risk assessment purposes.
Eramo, Alessia; Delos Reyes, Hannah; Fahrenfeld, Nicole L.
2017-01-01
Combined sewer overflows (CSOs) degrade water quality through the release of microbial contaminants in CSO effluent. Improved understanding of the partitioning of microbial contaminants onto settleable particles can provide insight into their fate in end-of-pipe treatment systems or following release during CSO events. Sampling was performed across the hydrograph for three storm events as well as during baseflow and wet weather in three surface waters impacted by CSO. qPCR was performed for select antibiotic resistance genes (ARG) and a marker gene for human fecal indicator organisms (BacHum) in samples processed the partitioning of microbial contaminants on settleable particles versus suspended in the aqueous phase. Amplicon sequencing was performed on both fractions of storm samples to further define the timing and partitioning of microbial contaminants released during CSO events. Samples collected at the CSO outfall exhibited microbial community signatures of wastewater at select time points early or late in the storm events. CSOs were found to be a source of ARG. In surrounding surface waters, sul1 was higher in samples from select locations during wet weather compared to baseflow. Otherwise, ARG concentrations were variable with no differences between baseflow and wet weather conditions. The majority of ARG at the CSO outfall were observed on the attached fraction of samples: 64–79% of sul1 and 59–88% of tet(G). However, the timing of peak ARG and human fecal indicator marker gene BacHum did not necessarily coincide with observation of the microbial signature of wastewater in CSO effluent. Therefore, unit processes that remove settleable particles (e.g., hydrodynamic separators) operated throughout a CSO event would achieve up to (0.5–0.9)-log removal of ARG and fecal indicators by removing the attached fraction of measured genes. Secondary treatment would be required if greater removal of these targets is needed. PMID:29104562
Biphasic catalysis in water/carbon dioxide micellar systems
Jacobson, Gunilla B.; Tumas, William; Johnston, Keith P.
2002-01-01
A process is provided for catalyzing an organic reaction to form a reaction product by placing reactants and a catalyst for the organic reaction, the catalyst of a metal complex and at least one ligand soluble within one of the phases of said aqueous biphasic system, within an aqueous biphasic system including a water phase, a dense phase fluid, and a surfactant adapted for forming an emulsion or microemulsion within the aqueous biphasic system, the reactants soluble within one of the phases of the aqueous biphasic system and convertible in the presence of the catalyst to a product having low solubility in the phase in which the catalyst is soluble; and, maintaining the aqueous biphasic system under pressures, at temperatures, and for a period of time sufficient for the organic reaction to occur and form the reaction product and to maintain sufficient density on the dense phase fluid, the reaction product characterized as having low solubility in the phase in which the catalyst is soluble.
Abbasian, Mojtaba; Jaymand, Mehdi; Niroomand, Pouneh; Farnoudian-Habibi, Amir; Karaj-Abad, Saber Ghasemi
2017-02-01
A series of chitosan-grafted polyaniline derivatives {chitosan-g-polyaniline (CS-g-PANI), chitosan-g-poly(N-methylaniline) (CS-g-PNMANI), and chitosan-g-poly(N-ethylaniline) (CS-g-PNEANI)} were synthesized by in situ chemical oxidation polymerization method. The synthesized copolymers were analyzed by means of Fourier transform infrared (FTIR), and ultraviolet-visible (UV-vis) spectroscopies, thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FE-SEM). These copolymers were applied as adsorbent for removal of acid red 4 (AR4) and direct red 23 (DR23) from aqueous solutions. The adsorption processes were optimized in terms of pH, adsorbent amount, and dyes concentrations. The maximum adsorption capacities (Q m ) for the synthesized copolymers were calculated, and among them the CS-g-PNEANI sample showed highest Q m for both AR4 (98mgg -1 ) and DR23 (112mgg -1 ) dyes. The adsorption kinetics of AR4 and DR23 dyes follow the pseudo-second order kinetic model. The regeneration and reusability tests revealed that the synthesized adsorbents had the relatively good reusability after five repetitions of the adsorption-desorption cycles. As the results, it is expected that the CS-g-PANIs find application for removal of reactive dyes (especially anionic dyes) from industrial effluents mainly due to their low production costs and high adsorption effectiveness. Copyright © 2016 Elsevier B.V. All rights reserved.
Sorption-desorption of carbamazepine by palygorskite-montmorillonite (PM) filter medium.
Berhane, Tedros M; Levy, Jonathan; Krekeler, Mark P S; Danielson, Neil D; Stalcup, Apryll
2015-01-23
Palygorskite-montmorillonite (PM) was studied as a potential sewage treatment effluent filter material for carbamazepine. Batch sorption experiments were conducted as a function of granule size (0.3-0.6, 1.7-2.0 and 2.8mm) and different sewage effluent conditions (pH, ionic strength and temperature). Results showed PM had a mix of fibrous and plate-like morphologies. Sorption and desorption isotherms were fitted to the Freundlich model. Sorption is granule size-dependent and the medium granule size would be an appropriate size for optimizing both flow and carbamazepine retention. Highest and lowest sorption capacities corresponded to the smallest and the largest granule sizes, respectively. The lowest and the highest equilibrium aqueous (Ce) and sorbed (qe) carbamazepine concentrations were 0.4 mg L(-1) and 4.5 mg L(-1), and 0.6 mg kg(-1) and 411.8 mg kg(-1), respectively. Observed higher relative sorption at elevated concentrations with a Freundlich exponent greater than one, indicated cooperative sorption. The sorption-desorption hysteresis (isotherm non-singularity) indicated irreversible sorption. Higher sorption observed at higher rather than at lower ionic strength conditions is likely due to a salting-out effect. Negative free energy and the inverse sorption capacity-temperature relationship indicated the carbamazepine sorption process was favorable or spontaneous. Solution pH had little effect on sorption. Copyright © 2014 Elsevier B.V. All rights reserved.
Iron-based catalysts for photocatalytic ozonation of some emerging pollutants of wastewater.
Espejo, Azahara; Beltrán, Fernando J; Rivas, Francisco J; García-Araya, Juan F; Gimeno, Olga
2015-01-01
A synthetic secondary effluent containing an aqueous mixture of emerging contaminants (ECs) has been treated by photocatalytic ozonation using Fe(3+) or Fe3O4 as catalysts and black light lamps as the radiation source. For comparative purposes, ECs have also been treated by ultraviolet radiation (UVA radiation, black light) and ozonation (pH 3 and 7). With the exception of UVA radiation, O3-based processes lead to the total removal of ECs in the mixture. The time taken to achieve complete degradation depends on the oxidation process applied. Ozonation at pH 3 is the most effective technique. The addition of iron based catalysts results in a slight inhibition of the parent compounds degradation rate. However, a positive effect is experienced when measuring the total organic carbon (TOC) and the chemical oxygen demand (COD) removals. Photocatalytic oxidation in the presence of Fe(3+) leads to 81% and 88% of TOC and COD elimination, respectively, compared to only 23% and 29% of TOC and COD removals achieved by single ozonation. The RCT concept has been used to predict the theoretical ECs profiles in the homogeneous photocatalytic oxidation process studied. Treated wastewater effluent was toxic to Daphnia magna when Fe(3+) was used in photocatalytic ozonation. In this case, toxicity was likely due to the ferryoxalate formed in the process. Single ozonation significantly reduced the toxicity of the treated wastewater.
Zhao, Shichen; Yan, Jingchun; Qian, Linbo; Chen, Mengfang
2015-01-01
The presence of organic contaminants in industrial effluents is an environmental concern of increasing global importance. One innovative technology for treating contaminated industrial effluents is nanoscale zero-valent iron supported on biochar (nZVI/BC). Based on Transmission Electron Microscopy, X-Ray Diffraction, and Brunauer-Emmett-Teller characterizations, the nZVI was well dispersed on the biochar and aggregation was dramatically reduced. Methyl orange (MO) served as the representative organic contaminant for verifying the effectiveness of the composite. Using decolorization efficiency as an indicator of treatment effectiveness, increasing doses of nZVI/BC yielded progressively better results with 98.51% of MO decolorized by 0.6 g/L of composite at an nZVI/BC mass ratio of 1:5. The superior decolorization efficiency of the nZVI/BC was attributed to the increase in the dispersion and reactivity of nZVI while biochar increasing the contact area with contaminant and the adsorption of composites. Additionally, the buffering function of acid-washed biochar could be in favor of maintaining the reactivity of nZVI. Furthermore, the aging nZVI/BC for 30 day was able to maintain the removal efficiency indicating that the oxidation of nZVI may be delayed in the presence of biochar. Therefore, the composite of nZVI/BC could represent an effective functional material for treating wastewater containing organic dyes in the future. PMID:26204523
Venkatesan, Arjun K; Gan, Wenhui; Ashani, Harsh; Herckes, Pierre; Westerhoff, Paul
2018-04-15
Phosphorus (P) is an important and often limiting element in terrestrial and aquatic ecosystem. A lack of understanding of its distribution and structures in the environment limits the design of effective P mitigation and recovery approaches. Here we developed a robust method employing size exclusion chromatography (SEC) coupled to an ICP-MS to determine the molecular weight (MW) distribution of P in environmental samples. The most abundant fraction of P varied widely in different environmental samples: (i) orthophosphate was the dominant fraction (93-100%) in one lake, two aerosols and DOC isolate samples, (ii) species of 400-600 Da range were abundant (74-100%) in two surface waters, and (iii) species of 150-350 Da range were abundant in wastewater effluents. SEC-DOC of the aqueous samples using a similar SEC column showed overlapping peaks for the 400-600 Da species in two surface waters, and for >20 kDa species in the effluents, suggesting that these fractions are likely associated with organic matter. The MW resolution and performance of SEC-ICP-MS agreed well with the time integrated results obtained using conventional ultrafiltration method. Results show that SEC in combination with ICP-MS and DOC has the potential to be a powerful and easy-to-use method in identifying unknown fractions of P in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
ON-SITE SOLID-PHASE EXTRACTION AND LABORATORY ...
Fragrance materials such as synthetic musks in aqueous samples, are normally determined by gas chromatography/mass spectrometry in the selected ion monitoring (SIM) mode to provide maximum sensitivity after liquid-liquid extraction of I -L samples. Full-scan mass spectra are required to verify that a target analyte has been found by comparison with the mass spectra of fragrance compounds in the NIST mass spectral library. A I -L sample usually provides insufficient analyte for full scan data acquisition. This paper describes an on-site extraction method developed at the U.S. Environmental Protection Agency (USEPA)- Las Vegas Nevada - for synthetic musks from 60 L of wastewater effluent. Such a large sample volume permits high-quality, full-scan mass spectra to be obtained for a wide array of synthetic musks. Quantification of these compounds was achieved from the full-scan data directly, without the need to acquire SIM data. The detection limits obtained with this method are an order of magnitude lower than those obtained from liquid-liquid and other solid phase extraction methods. This method is highly reproducible, and recoveries ranged from 80 to 97% in spiked sewage treatment plant effluent. The high rate of sorbent-sample mass transfer eliminated the need for a methanolic activation step, which reduced extraction time, labor, and solvent use, More samples could be extracted in the field at lower cost. After swnple extraction, the light- weight cartridges ar
Soil water nitrate and ammonium dynamics under a sewage effluent irrigated eucalypt plantation.
Livesley, S J; Adams, M A; Grierson, P F
2007-01-01
Managed forests and plantations are appropriate ecosystems for land-based treatment of effluent, but concerns remain regarding nutrient contamination of ground- and surface waters. Monthly NO3-N and NH4-N concentrations in soil water, accumulated soil N, and gross ammonification and nitrification rates were measured in the second year of a second rotation of an effluent irrigated Eucalyptus globulus plantation in southern Western Australia to investigate the separate and interactive effects of drip and sprinkler irrigation, effluent and water irrigation, irrigation rate, and harvest residues retention. Nitrate concentrations of soil water were greater under effluent irrigation than water irrigation but remained <15 mg L(-1) when irrigated at the normal rate (1.5-2.0 mm d(-1)), and there was little evidence of downward movement. In contrast, NH4-N concentrations of soil water at 30 and 100 cm were generally greater under effluent irrigation than water irrigation when irrigated at the normal rate because of direct effluent NH4-N input and indirect ammonification of soil organic N. Drip irrigation of effluent approximately doubled peak NO3-N and NH4-N concentrations in soil water. Harvest residue retention reduced concentrations of soil water NO3-N at 30 cm during active sprinkler irrigation, but after 1 yr of irrigation there was no significant difference in the amount of N stored in the soil system, although harvest residue retention did enhance the "nitrate flush" in the following spring. Gross mineralization rates without irrigation increased with harvest residue retention and further increased with water irrigation. Irrigation with effluent further increased gross nitrification to 3.1 mg N kg(-1) d(-1) when harvest residues were retained but had no effect on gross ammonification, which suggested the importance of heterotrophic nitrification. The downward movement of N under effluent irrigation was dominated by NH4-N rather than NO3-N. Improving the capacity of forest soils to store and transform N inputs through organic matter management must consider the dynamic equilibrium between N input, uptake, and immobilization according to soil C status, and the effect changing microbial processes and environmental conditions can have on this equilibrium.
Oliveira, Tiago S; Murphy, Mark; Mendola, Nicholas; Wong, Virginia; Carlson, Doreen; Waring, Linda
2015-06-15
Two USEPA Regional Laboratories developed direct-injection LC/MS/MS methods to measure Pharmaceuticals and Personal Care Products (PPCPs) in water matrices. Combined, the laboratories were prepared to analyze 185 PPCPs (with 74 overlapping) belonging to more than 20 therapeutical categories with reporting limits at low part-per-trillion. In partnership with Suffolk County in NY, the laboratories conducted PPCP analysis on 72 samples belonging to 4 Water Systems (WS). Samples were collected at different stages of the WS (hospital effluents, WWTP influents/effluents) to assess PPCP relevance in hospital discharges, impact on WWTP performance and potential ecological risk posed by analytes not eliminated during treatment. Major findings include: a) acceptable accuracy between the two laboratories for most overlapping PPCPs with better agreement for higher concentrations; b) the measurement of PPCPs throughout all investigated WS with total PPCP concentrations ranging between 324 and 965 μg L(-1) for hospital effluent, 259 and 573 μg L(-1) for WWTP influent and 19 and 118 μg L(-1) for WWTP effluent; c) the variable contribution of hospital effluents to the PPCP loads into the WWTP influents (contribution ranging between 1% (WS-2) and 59% (WS-3); d) the PPCP load reduction after treatment for all WS reaching more than 95% for WS using activated sludge processes (WS-2 and WS-4), with inflow above 6500 m(3) d(-1), and having a lower percentage of hospital effluent in the WWTP influent; e) the relevance of four therapeutical categories for the PPCP load in WWTP effluents (analgesics, antidiabetics, antiepileptics and psychoanaleptics); and f) the risk quotients calculated using screening-level Predicted Non Effect Concentration indicate that WWTP effluents contain 33 PPCPs with potential medium to high ecological risk. To our knowledge no other monitoring investigation published in the scientific literature uses direct-injection methods to cover as many PPCPs and therapeutical categories in different types of WS. Copyright © 2015 Elsevier B.V. All rights reserved.