[Abnormal of tear lipid layer and recent advances in clinical study of dry eye].
Xiao, Xin-Ye; Liu, Zu-Guo
2012-03-01
Dry eye is a common disease in the ophthalmological clinic, which is related to the dysfunction of tear film. The tear film is composed of lipid layer, aqueous layer and mucin layer (or lipid layer, aqueous/mucin layer). The lipid of the outmost layer derived from Meibomian gland and distributed on the tear film after blinking can decrease the evaporation and stabilize the tear film. The thickness, quality, and distribution of lipid layer are impaired in many dry eye patients, hence restoring the physiological function of lipid layer may be crucial for the treatment of this kind of dry eye. The lipid artificial tears manifest great effects on increasing lipid layer thickness, stabilizing tear film, improving Meibomian gland dysfunction, and promoting tear film distribution.
NASA Technical Reports Server (NTRS)
Treiman, Allan H.; Fuks, Kelly H.; Murchie, Scott
1995-01-01
A packet of relatively resistant layers, totaling approx. 400 m thickness, is present at the tops of the chasma walls throughout Valles Marineris. The packet consists of an upper dark layer (approx. 50 m thick), a central bright layer (approx. 250 m thick), and a lower dark layer (approx. 100 m thick). The packet appears continuous and of nearly constant thickness and depth below ground surface over the whole Valles system (4000 km E-W, 800 km N-S), independent of elevation (3-10 km) and age of plateau surface (Noachian through upper Hesperian). The packet continues undisturbed beneath the boundary between surface units of Noachian and Hesperian ages, and continues undisturbed beneath impact craters transected by chasma walls. These attributes are not consistent with layer formation by volcanic or sedimentary deposition, and are consistent with layer formation in situ, i.e., by diagenesis, during or after upper Hesperian time. Diagenesis seems to require the action of aqueous solutions in the near subsurface, which are not now stable in the Valles Marineris area. To permit the stability of aqueous solutions, Mars must have had a fairly dense atmosphere, greater than or equal to 1 bar CO2, when the layers formed. Obliquity variations appear to be incapable of producing such a massive atmosphere so late in Mars' history.
Shin, Jin-Ha; Yun, Sook Young; Lee, Chang Hyoung; Park, Hwa-Sun; Suh, Su-Jeong
2015-11-01
Anodization of aluminum is generally divided up into two types of anodic aluminum oxide structures depending on electrolyte type. In this study, an anodization process was carried out in two steps to obtain high dielectric strength and break down voltage. In the first step, evaporated high purity Al on Si wafer was anodized in oxalic acidic aqueous solution at various times at a constant temperature of 5 degrees C. In the second step, citric acidic aqueous solution was used to obtain a thickly grown sub-barrier layer. During the second anodization process, the anodizing potential of various ranges was applied at room temperature. An increased thickness of the sub-barrier layer in the porous matrix was obtained according to the increment of the applied anodizing potential. The microstructures and the growth of the sub-barrier layer were then observed with an increasing anodizing potential of 40 to 300 V by using a scanning electron microscope (SEM). An impedance analyzer was used to observe the change of electrical properties, including the capacitance, dissipation factor, impedance, and equivalent series resistance (ESR) depending on the thickness increase of the sub-barrier layer. In addition, the breakdown voltage was measured. The results revealed that dielectric strength was improved with the increase of sub-barrier layer thickness.
Zhang, Lu; Alfano, Joy; Race, Doran; Davé, Rajesh N
2018-05-30
In spite of significant recent interest in polymeric films containing poorly water-soluble drugs, dissolution mechanism of thicker films has not been investigated. Consequently, release mechanisms of poorly water-soluble drugs from thicker hydroxypropyl methylcellulose (HPMC) films are investigated, including assessing thickness above which they exhibit zero-order drug release. Micronized, surface modified particles of griseofulvin, a model drug of BSC class II, were incorporated into aqueous slurry-cast films of different thicknesses (100, 500, 1000, 1500 and 2000 μm). Films 1000 μm and thicker were formed by either stacking two or more layers of ~500 μm, or forming a monolithic thick film. Compared to monolithic thick films, stacked films required simpler manufacturing process (easier casting, short drying time) and resulted in better critical quality attributes (appearance, uniformity of thickness and drug per unit area). Both the film forming approaches exhibited similar release profiles and followed the semi-empirical power law. As thickness increased from 100 μm to 2000 μm, the release mechanism changed from Fickian diffusion to zero-order release for films ≥1000 μm. The diffusional power law exponent, n, achieved value of 1, confirming zero-order release, whereas the percentage drug release varied linearly with sample surface area, and sample thickness due to fixed sample diameter. Thus, multi-layer hydrophilic polymer aqueous slurry-cast thick films containing poorly water-soluble drug particles provide a convenient dosage form capable of zero-order drug release with release time modulated through number of layers. Copyright © 2018 Elsevier B.V. All rights reserved.
Huang, Yuan; Sutter, Eli; Wu, Liangmei; Xu, Hong; Bao, Lihong; Gao, Hong-Jun; Zhou, Xingjiang; Sutter, Peter
2018-06-21
Layered semiconductors show promise as channel materials for field-effect transistors (FETs). Usually, such devices incorporate solid back or top gate dielectrics. Here, we explore de-ionized (DI) water as a solution top gate for field-effect switching of layered semiconductors including SnS2, MoS2, and black phosphorus. The DI water gate is easily fabricated, can sustain rapid bias changes, and its efficient coupling to layered materials provides high on-off current ratios, near-ideal sub-threshold swing, and enhanced short-channel behavior even for FETs with thick, bulk-like channels where such control is difficult to realize with conventional back-gating. Screening by the high-k solution gate eliminates hysteresis due to surface and interface trap states and substantially enhances the field-effect mobility. The onset of water electrolysis sets the ultimate limit to DI water gating at large negative gate bias. Measurements in this regime show promise for aqueous sensing, demonstrated here by the amperometric detection of glucose in aqueous solution. DI water gating of layered semiconductors can be harnessed in research on novel materials and devices, and it may with further development find broad applications in microelectronics and sensing.
Modeling uptake of hydrophobic organic contaminants into polyethylene passive samplers.
Thompson, Jay M; Hsieh, Ching-Hong; Luthy, Richard G
2015-02-17
Single-phase passive samplers are gaining acceptance as a method to measure hydrophobic organic contaminant (HOC) concentration in water. Although the relationship between the HOC concentration in water and passive sampler is linear at equilibrium, mass transfer models are needed for nonequilibrium conditions. We report measurements of organochlorine pesticide diffusion and partition coefficients with respect to polyethylene (PE), and present a Fickian approach to modeling HOC uptake by PE in aqueous systems. The model is an analytic solution to Fick's second law applied through an aqueous diffusive boundary layer and a polyethylene layer. Comparisons of the model with existing methods indicate agreement at appropriate boundary conditions. Laboratory release experiments on the organochlorine pesticides DDT, DDE, DDD, and chlordane in well-mixed slurries support the model's applicability to aqueous systems. In general, the advantage of the model is its application in the cases of well-agitated systems, low values of polyethylene-water partioning coefficients, thick polyethylene relative to the boundary layer thickness, and/or short exposure times. Another significant advantage is the ability to estimate, or at least bound, the needed exposure time to reach a desired CPE without empirical model inputs. A further finding of this work is that polyethylene diffusivity does not vary by transport direction through the sampler thickness.
NASA Astrophysics Data System (ADS)
Fan, Fuqiang; Fang, Guoqing; Zhang, Ruixue; Xu, Yanhui; Zheng, Junwei; Li, Decheng
2014-08-01
A series of core-shell carbon coated amorphous CoSnO3 (CoSnO3@C) with different carbon content are synthesized. Effects of carbon content and coating carbon thickness on the physical and electrochemical performances of the samples were studied in detail. The samples were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), galvanostatic charge-discharge and AC impedance spectroscopy, respectively. The results indicate that controlling the concentration of aqueous glucose solution influences the generation of in-situ carbon layer thickness. The optimal concentration of aqueous glucose solution, carbon content and carbon layer thickness are suggested as 0.25 M, 35.1% and 20 nm, respectively. CoSnO3@C composite prepared under the optimal conditions exhibits excellent cycling performance, whose reversible capacity could reach 491 mA h g-1 after 100 cycles.
NASA Astrophysics Data System (ADS)
Huang, Jinxin; Clarkson, Eric; Kupinski, Matthew; Rolland, Jannick P.
2014-03-01
The prevalence of Dry Eye Disease (DED) in the USA is approximately 40 million in aging adults with about $3.8 billion economic burden. However, a comprehensive understanding of tear film dynamics, which is the prerequisite to advance the management of DED, is yet to be realized. To extend our understanding of tear film dynamics, we investigate the simultaneous estimation of the lipid and aqueous layers thicknesses with the combination of optical coherence tomography (OCT) and statistical decision theory. In specific, we develop a mathematical model for Fourier-domain OCT where we take into account the different statistical processes associated with the imaging chain. We formulate the first-order and second-order statistical quantities of the output of the OCT system, which can generate some simulated OCT spectra. A tear film model, which includes a lipid and aqueous layer on top of a rough corneal surface, is the object being imaged. Then we further implement a Maximum-likelihood (ML) estimator to interpret the simulated OCT data to estimate the thicknesses of both layers of the tear film. Results show that an axial resolution of 1 μm allows estimates down to nanometers scale. We use the root mean square error of the estimates as a metric to evaluate the system parameters, such as the tradeoff between the imaging speed and the precision of estimation. This framework further provides the theoretical basics to optimize the imaging setup for a specific thickness estimation task.
METHOD FOR ELECTRODEPOSITING POLONIUM
Wehrmann, R.F.
1960-08-30
The deposition of a thick uniform layer of polonium metal from aqueous solutions can be carried out by electrolyzing an aqueous solution of 1 N hydrofluoric acid containing about 0.13 curie of polonium per cubic centimeter of solution with platinum electrodes and a current density of about 1.2 ma/cm/sup 2/ of cathode surface.
Fluorescent solute-partitioning characterization of layered soft contact lenses.
Dursch, T J; Liu, D E; Oh, Y; Radke, C J
2015-03-01
Partitioning of aqueous packaging, wetting, and care-solution agents into and out of soft contact lenses (SCLs) is important for improving wear comfort and also for characterizing lens physico-chemical properties. We illustrate both features of partitioning by application of fluorescent-solute partitioning into DAILIES TOTAL1® (delefilcon A) water-gradient SCLs, which exhibit a layered structure of a silicone-hydrogel (SiHy) core sandwiched between thin surface-gel layers. Two-photon fluorescence confocal laser-scanning microscopy and attenuated total-reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) characterize the lens and assess uptake profiles of six prototypical fluorescent solutes. Comparison of solute uptake in a SiHy-core prototype lens (i.e., O2OPTIX(TM)) validates the core SiHy structure of DAILIESTOTAL1®. To establish surface-layer charge, partition coefficients and water contents are obtained for aqueous pH values of 4 and 7.4. Solute fluorescence-intensity profiles clearly confirm a layered structure for the DAILIES TOTAL1® lenses. In all cases, aqueous solute partition coefficients are greater in the surface layers than in the SiHy core, signifying higher water in the surface gels. ATR-FTIR confirms surface-layer mass water contents of 82±3%. Water uptake and hydrophilic-solute uptake at pH 4 compared with that at pH 7.4 reveal that the surface-gel layers are anionic at physiologic pH 7.4, whereas both the SiHy core and O2OPTIX™ (lotrafilcon B) are nonionic. We successfully confirm the layered structure of DAILIES TOTAL1®, consisting of an 80-μm-thick SiHy core surrounded by 10-μm-thick polyelectrolyte surface-gel layers of significantly greater water content and aqueous solute uptake compared with the core. Accordingly, fluorescent-solute partitioning in SCLs provides information on gel structure and composition, in addition to quantifying uptake and release amounts and rates. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Polymer thin film as coating layer to prevent corrosion of metal/metal oxide film
NASA Astrophysics Data System (ADS)
Sarkar, Suman; Kundu, Sarathi
2018-04-01
Thin film of polymer is used as coating layer and the corrosion of metal/metal oxide layer is studied with the variation of the thickness of the coating layer. The thin layer of polystyrene is fabricated using spin coating method on copper oxide (CuO) film which is deposited on glass substrate using DC magnetron sputtering technique. Thickness of the polystyrene and the CuO layers are determined using X-ray reflectivity (XRR) technique. CuO thin films coated with the polystyrene layer are exposed to acetic acid (2.5 v/v% aqueous CH3COOH solution) environments and are subsequently analyzed using UV-Vis spectroscopy and atomic force microscopy (AFM). Surface morphology of the film before and after interaction with the acidic environment is determined using AFM. Results obtained from the XRR and UV-Vis spectroscopy confirm that the thin film of polystyrene acts as an anticorrosion coating layer and the strength of the coating depends upon the polymer layer thickness at a constant acid concentration.
Shiojima, Taro; Inoue, Yuuki; Kyomoto, Masayuki; Ishihara, Kazuhiko
2016-08-01
A highly efficient methodology for preparing a poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) layer on the surface of poly(ether ether ketone) (PEEK) was examined by photoinduced and self-initiated graft polymerization. To enhance the polymerization rate, we demonstrated the effects of inorganic salt additives in the feed monomer solution on thickness of grafted PMPC layer. Photoinduced polymerization occurred and the PMPC graft layer was successfully formed on the PEEK surface, regardless of inorganic salt additives. Moreover, it was clearly observed that the addition of inorganic salt enhanced the grafting thickness of PMPC layer on the surface even when the photoirradiation time was shortened. The addition of inorganic salt additives in the feed monomer solution enhanced the polymerization rate of MPC and resulted in thicker PMPC layers. In particular, we evaluated the effect of NaCl concentration and how this affected the polymerization rate and layer thickness. We considered that this phenomenon was due to the hydration of ions in the feed monomer solution and subsequent apparent increase in the MPC concentration. A PMPC layer with over 100-nm-thick, which was prepared by 5-min photoirradiation in 2.5mol/L inorganic salt aqueous solution, showed good wettability and protein adsorption resistance compared to that of untreated PEEK. Hence, we concluded that the addition of NaCl into the MPC feed solution would be a convenient and efficient method for preparing a graft layer on PEEK. Photoinduced and self-initiated graft polymerization on the PEEK surface is one of the several methodologies available for functionalization. However, in comparison with free-radical polymerization, the efficiency of polymerization at the solid-liquid interface is limited. Enhancement of the polymerization rate for grafting could solve the problem. In this study, we observed the acceleration of the polymerization rate of MPC in an aqueous solution by the addition of inorganic salt. The salt itself did not show any adverse effects on the radical polymerization; however, the apparent concentration of the monomer in feed may be increased due to the hydration of ions attributed to salt additives. We could obtain PMPC-grafted PEEK with sufficient PMPC thickness to obtain good functionality with only 5-min photoirradiation by using 2.5mol/L NaCl in the feed solution. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Murchie, S.L.; Mustard, J.F.; Ehlmann, B.L.; Milliken, R.E.; Bishop, J.L.; McKeown, N.K.; Noe Dobrea, E.Z.; Seelos, F.P.; Buczkowski, D.L.; Wiseman, S.M.; Arvidson, R. E.; Wray, J.J.; Swayze, G.; Clark, R.N.; Des Marais, D.J.; McEwen, A.S.; Bibring, J.-P.
2009-01-01
Martian aqueous mineral deposits have been examined and characterized using data acquired during Mars Reconnaissance Orbiter's (MRO) primary science phase, including Compact Reconnaissance Imaging Spectrometer for Mars hyperspectral images covering the 0.4-3.9 ??m wavelength range, coordinated with higher-spatial resolution HiRISE and Context Imager images. MRO's new high-resolution measurements, combined with earlier data from Thermal Emission Spectrometer; Thermal Emission Imaging System; and Observatoire pour la Min??ralogie, L'Eau, les Glaces et l'Activiti?? on Mars Express, indicate that aqueous minerals are both diverse and widespread on the Martian surface. The aqueous minerals occur in 9-10 classes of deposits characterized by distinct mineral assemblages, morphologies, and geologic settings. Phyllosilicates occur in several settings: in compositionally layered blankets hundreds of meters thick, superposed on eroded Noachian terrains; in lower layers of intracrater depositional fans; in layers with potential chlorides in sediments on intercrater plains; and as thousands of deep exposures in craters and escarpments. Carbonate-bearing rocks form a thin unit surrounding the Isidis basin. Hydrated silica occurs with hydrated sulfates in thin stratified deposits surrounding Valles Marineris. Hydrated sulfates also occur together with crystalline ferric minerals in thick, layered deposits in Terra Meridiani and in Valles Marineris and together with kaolinite in deposits that partially infill some highland craters. In this paper we describe each of the classes of deposits, review hypotheses for their origins, identify new questions posed by existing measurements, and consider their implications for ancient habitable environments. On the basis of current data, two to five classes of Noachian-aged deposits containing phyllosilicates and carbonates may have formed in aqueous environments with pH and water activities suitable for life. Copyright 2009 by the American Geophysical Union.
Non-destructive characterization of corroded glass surfaces by spectroscopic ellipsometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaspar, Tiffany C.; Reiser, Joelle T.; Ryan, Joseph V.
Characterization of the alteration layers that form on glass surfaces during corrosion processes provides valuable information on both the mechanisms and rate of glass alteration. In recent years, state-of-the-art materials and surface characterization techniques have been employed to study various aspects of the alteration layers that result from corrosion. In most cases, these techniques are destructive and thus can only be employed at the end of the corrosion experiment. We show that the alteration layers can be investigated by non-destructive spectroscopic ellipsometry (SE), which provides pertinent information on alteration layer thickness, morphology, and, through correlation of the index of refraction,more » porosity. SE measurements of silicate glass coupons altered in aqueous solutions of pH 3, 5, 7, 9, and 11 at 90 °C for 7 days are compared to cross-sectional secondary electron microscopy images. In most cases, quantitative agreement of the alteration layer thickness is obtained. The fractional porosity calculated from the index of refraction is lower than the porosity calculated from elemental analysis of the aqueous solutions, indicating that the alteration layer has compacted during corrosion or the subsequent supercritical CO 2 drying process. Our results confirm the utility of performing non-destructive SE measurements on corroded glass surfaces.« less
Non-destructive characterization of corroded glass surfaces by spectroscopic ellipsometry
Kaspar, Tiffany C.; Reiser, Joelle T.; Ryan, Joseph V.; ...
2017-11-03
Characterization of the alteration layers that form on glass surfaces during corrosion processes provides valuable information on both the mechanisms and rate of glass alteration. In recent years, state-of-the-art materials and surface characterization techniques have been employed to study various aspects of the alteration layers that result from corrosion. In most cases, these techniques are destructive and thus can only be employed at the end of the corrosion experiment. We show that the alteration layers can be investigated by non-destructive spectroscopic ellipsometry (SE), which provides pertinent information on alteration layer thickness, morphology, and, through correlation of the index of refraction,more » porosity. SE measurements of silicate glass coupons altered in aqueous solutions of pH 3, 5, 7, 9, and 11 at 90 °C for 7 days are compared to cross-sectional secondary electron microscopy images. In most cases, quantitative agreement of the alteration layer thickness is obtained. The fractional porosity calculated from the index of refraction is lower than the porosity calculated from elemental analysis of the aqueous solutions, indicating that the alteration layer has compacted during corrosion or the subsequent supercritical CO 2 drying process. Our results confirm the utility of performing non-destructive SE measurements on corroded glass surfaces.« less
NASA Astrophysics Data System (ADS)
Wang, Fenghe; Peng, Erwin; Liu, Feng; Li, Pingjing; Fong Yau Li, Sam; Xue, Jun Min
2016-10-01
To obtain suitable T 1 contrast agents for magnetic resonance imaging (MRI) application, aqueous Gd2O3 nanoparticles (NPs) with high longitudinal relativity (r 1) are demanded. High quality Gd2O3 NPs are usually synthesized through a non-hydrolytic route which requires post-synthetic modification to render the NPs water soluble. The current challenge is to obtain aqueous Gd2O3 NPs with high colloidal stability and enhanced r 1 relaxivity. To overcome this challenge, fluorescence-tagged amphiphilic brush copolymer (AFCP) encapsulated Gd2O3 NPs were proposed as suitable T 1 contrast agents. Such a coating layer provided (i) superior aqueous stability, (ii) biocompatibility, as well as (iii) multi-modality (conjugation with fluorescence dye). The polymeric coating layer thickness was simply adjusted by varying the phase-transfer parameters. By reducing the coating thickness, i.e. the distance between the paramagnetic centre and surrounding water protons, the r 1 relaxivity could be enhanced. In contrast, a thicker polymeric layer coating prevents Gd3+ ions leakage, thus improving its biocompatibility. Therefore, it is important to strike a balance between the biocompatibility and the r 1 relaxivity behaviour. Lastly, by conjugating fluorescence moiety, an additional imaging modality was enabled, as demonstrated from the cell-labelling experiment.
Enhancement of the conductivity of nanomaterial layers by laser irradiation
NASA Astrophysics Data System (ADS)
Ichkitidze, Levan P.; Glukhova, Olga E.; Savostyanov, Georgy V.; Gerasimenko, Alexander Yu.; Podgaetsky, Vitaly M.; Selishchev, Sergey V.; Zhurbina, Natalia N.
2017-07-01
The conductivity of layers (thickness 0.5 ÷ 50 μm) of composite nanomaterials consisting of bovine serum albumin (BSA) with single-walled carbon nanotubes (SWCNTs) has been studied. The aqueous dispersion of BSA / SWCNT was deposited on different substrates using the silk screening method. Conductivity was increased (30 ÷ 700) % by laser irradiation of the layers when they were in the liquid state. The investigated layers are promising for use in medical practice.
Investigation of Fumed Silica/Aqueous NaCl Superdielectric Material.
Jenkins, Natalie; Petty, Clayton; Phillips, Jonathan
2016-02-20
A constant current charge/discharge protocol which showed fumed silica filled to the point of incipient wetness with aqueous NaCl solution to have dielectric constants >10⁸ over the full range of dielectric thicknesses of 0.38-3.9 mm and discharge times of 0.25->100 s was studied, making this material another example of a superdielectric. The dielectric constant was impacted by both frequency and thickness. For time to discharge greater than 10 s the dielectric constant for all thicknesses needed to be fairly constant, always >10⁸, although trending higher with increasing thickness. At shorter discharge times the dielectric constant consistently decreased, with decreasing time to discharge. Hence, it is reasonable to suggest that for time to discharge >10 s the dielectric constant at all thicknesses will be greater than 10⁸. This in turn implies an energy density for a 5 micron thick dielectric layer in the order of 350 J/cm³ for discharge times greater than 10 s.
Investigation of Fumed Silica/Aqueous NaCl Superdielectric Material
Jenkins, Natalie; Petty, Clayton; Phillips, Jonathan
2016-01-01
A constant current charge/discharge protocol which showed fumed silica filled to the point of incipient wetness with aqueous NaCl solution to have dielectric constants >108 over the full range of dielectric thicknesses of 0.38–3.9 mm and discharge times of 0.25–>100 s was studied, making this material another example of a superdielectric. The dielectric constant was impacted by both frequency and thickness. For time to discharge greater than 10 s the dielectric constant for all thicknesses needed to be fairly constant, always >109, although trending higher with increasing thickness. At shorter discharge times the dielectric constant consistently decreased, with decreasing time to discharge. Hence, it is reasonable to suggest that for time to discharge >10 s the dielectric constant at all thicknesses will be greater than 109. This in turn implies an energy density for a 5 micron thick dielectric layer in the order of 350 J/cm3 for discharge times greater than 10 s. PMID:28787918
NASA Astrophysics Data System (ADS)
Waldbillig, D.; Kesler, O.
A method for manufacturing metal-supported SOFCs with atmospheric plasma spraying (APS) is presented, making use of aqueous suspension feedstock for the electrolyte layer and dry powder feedstock for the anode and cathode layers. The cathode layer was deposited first directly onto a metal support, in order to minimize contact resistance, and to allow the introduction of added porosity. The electrolyte layers produced by suspension plasma spraying (SPS) were characterized in terms of thickness, permeability, and microstructure, and the impact of substrate morphology on electrolyte properties was investigated. Fuel cells produced by APS were electrochemically tested at temperatures ranging from 650 to 750 °C. The substrate morphology had little effect on open circuit voltage, but substrates with finer porosity resulted in lower kinetic losses in the fuel cell polarization.
Confocal micro-Raman spectroscopy of black soap films
NASA Astrophysics Data System (ADS)
Lecourt, B.; Capelle, F.; Adamietz, F.; Malaplate, A.; Blaudez, D.; Kellay, H.; Turlet, J. M.
1998-01-01
Black soap films from aqueous solutions of sodium dodecyl sulphate are studied by micro-Raman confocal spectroscopy. At the end of the draining process films of different thicknesses are obtained depending on the experimental conditions: Working in a closed humidified chamber leads to common black films while, under evaporation or in the presence of electrolyte, Newton black films are observed. From the Raman spectra of these films, quantitative information is deduced about the conformational and lateral order of the aliphatic surfactant chains, as well as the thickness of the residual water layer. More accurate measurements of the thickness of these ultimate films have been carried out by transmission ellipsometry and their effective refractive index measured by Brewster angle reflectivity. The thinner films present higher molecular organization and their aqueous core exhibits unusual spectral features.
NASA Astrophysics Data System (ADS)
Godelitsas, A.; Kokkoris, M.; Chatzitheodoridis, E.; Misaelides, P.
2008-05-01
The surface of a typical Greek (Thassian) dolomitic marble was studied after interaction with U- and Th-containing aqueous solutions (1000 mg/L, free-drift experiments for 1 week at atmospheric PCO2), using 12C-RBS and Laser μ-Raman spectroscopy. Powder-XRD and SEM-EDS were also applied to investigate the phases deposited on the surface of the interacted samples. The obtained results indicated a considerable removal of U from the aqueous medium mainly due to massive surface precipitation of amorphous UO2-hydroxide phases forming a relatively thick (μm-sized) coating on the carbonate substrate. The interaction of Th with dolomitic marble surface is also intense leading to a formation of an amorphous Th-hydroxide layer of similar thickness but of significantly lower elemental atomic proportion.
NASA Astrophysics Data System (ADS)
Gapon, I. V.; Petrenko, V. I.; Soltwedel, O.; Khaydukov, Yu N.; Kubovcikova, M.; Kopcansky, P.; Bulavin, L. A.; Avdeev, M. V.
2018-03-01
Structural organization of nanoparticles from aqueous ferrofluids on free liquid surface was studied by X-ray reflectometry. The observed layered structure at interface is associated with the evaporation of the solvent. By orienting an external magnetic during evaporation of the aqueos ferrofluids their structural organization can be manipulated. For a magnetic field applied perpendicular to the surface a more pronounced ordering along the surface normal is observed as in the case of a parallel field. Independent on the orientation of the magantic field a ∼ 20 μm thick surface layer of depleted nanoparticle concentration is found at the interface.
Chen, Ying; Bylaska, Eric J.; Weare, John H.
2017-03-31
Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite (α-Fe(OOH). Ab-initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Here, several exchange correlation functionals were employed (PBE96, PBE96+Grimme, and PBE0) in the simulations of a (3 x 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a=30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ying; Bylaska, Eric J.; Weare, John H.
Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite (α-Fe(OOH). Ab-initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Here, several exchange correlation functionals were employed (PBE96, PBE96+Grimme, and PBE0) in the simulations of a (3 x 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a=30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick).
NASA Astrophysics Data System (ADS)
Huang, Jinxin; Yuan, Qun; Tankam, Patrice; Clarkson, Eric; Kupinski, Matthew; Hindman, Holly B.; Aquavella, James V.; Rolland, Jannick P.
2015-03-01
In biophotonics imaging, one important and quantitative task is layer-thickness estimation. In this study, we investigate the approach of combining optical coherence tomography and a maximum-likelihood (ML) estimator for layer thickness estimation in the context of tear film imaging. The motivation of this study is to extend our understanding of tear film dynamics, which is the prerequisite to advance the management of Dry Eye Disease, through the simultaneous estimation of the thickness of the tear film lipid and aqueous layers. The estimator takes into account the different statistical processes associated with the imaging chain. We theoretically investigated the impact of key system parameters, such as the axial point spread functions (PSF) and various sources of noise on measurement uncertainty. Simulations show that an OCT system with a 1 μm axial PSF (FWHM) allows unbiased estimates down to nanometers with nanometer precision. In implementation, we built a customized Fourier domain OCT system that operates in the 600 to 1000 nm spectral window and achieves 0.93 micron axial PSF in corneal epithelium. We then validated the theoretical framework with physical phantoms made of custom optical coatings, with layer thicknesses from tens of nanometers to microns. Results demonstrate unbiased nanometer-class thickness estimates in three different physical phantoms.
NASA Astrophysics Data System (ADS)
Muthusubramanian, N.; Galan, E.; Maity, C.; Eelkema, R.; Grozema, F. C.; van der Zant, H. S. J.
2016-07-01
We present a method to fabricate insulated gold mechanically controlled break junctions (MCBJ) by coating the metal with a thin layer of aluminum oxide using plasma enhanced atomic layer deposition. The Al2O3 thickness deposited on the MCBJ devices was varied from 2 to 15 nm to test the suppression of leakage currents in deionized water and phosphate buffered saline. Junctions coated with a 15 nm thick oxide layer yielded atomically sharp electrodes and negligible conductance counts in the range of 1 to 10-4 G0 (1 G0 = 77 μS), where single-molecule conductances are commonly observed. The insulated devices were used to measure the conductance of an amphiphilic oligophenylene ethynylene derivative in deionized water.
On the Existence of Our Metals-Based Civilization: I. Phase Space Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.D. Macdonald
2005-06-22
The stability of the barrier layers of bilayer passive films that form on metal and alloy surfaces, when in contact with oxidizing aqueous environments, is explored within the framework of the Point Defect Model (PDM) using phase-space analysis (PSA), in which the rate of growth of the barrier layer into the metal, (dL{sup +}/dt), and the barrier layer dissolution rate, (dL{sup -}/dt), are plotted simultaneously against the barrier layer thickness. A point of intersection of dL{sup -}/dt with dL{sup +}/dt indicates the existence of a metastable barrier layer with a steady state thickness greater than zero. If dL{sup -}/dt >more » (dL{sup +}/dt){sub L=0}, where the latter quantity is the barrier layer growth rate at zero barrier layer thickness, the barrier layer cannot exist, even as a metastable phase, as the resulting thickness would be negative. Under these conditions, the surface is depassivated and the metal may corrode at a rapid rate. Depassivation may result from a change in the oxidation state of the cation upon dissolution of the barrier layer, such that the dissolution rate becomes highly potential dependent (as in the case of transpassive dissolution of chromium-containing alloys, for example, in which the reaction Cr{sub 2}O{sub 3} + 5H{sub 2}O {yields} 2CrO{sub 4}{sup 2-} + 10H {sup +} + 6e{sup -} results in the destruction of the film), or by the action of some solution-phase species (e.g., H{sup +}, Cl{sup -}) that enhances the dissolution rate to the extent that dL{sup -}/dt > (dL{sup +}/dt){sub L=0}. The boundaries for depassivation may be plotted in potential-pH space to develop Kinetic Stability Diagrams (KSDs) as alternatives to the classical Pourbaix diagrams for describing the conditions under which metals or alloys exist in contact with an aqueous environment. The advantage of KSDs is that they provide kinetic descriptions of the state of a metal or alloy that is in much closer concert with the kinetic phenomenon of passivity and depassivation than are equilibrium thermodynamic diagrams. Thus, KSDs more accurately account for the limits of passivity in highly acidic systems, where acid depassivation occurs, and at high potentials, where transition to the transpassive state may occur in some systems. In any event, phase space analysis of the PDM permits specification of the conditions over which reactive metals will remain passive in contact with aqueous systems and hence of the conditions that must be met for the existence of our metals-based civilization.« less
Effect of thickness on electrical properties of SILAR deposited SnS thin films
NASA Astrophysics Data System (ADS)
Akaltun, Yunus; Astam, Aykut; Cerhan, Asena; ćayir, Tuba
2016-03-01
Tin sulfide (SnS) thin films of different thickness were prepared on glass substrates by successive ionic layer adsorption and reaction (SILAR) method at room temperature using tin (II) chloride and sodium sulfide aqueous solutions. The thicknesses of the films were determined using spectroscopic ellipsometry measurements and found to be 47.2, 65.8, 111.0, and 128.7nm for 20, 25, 30 and 35 deposition cycles respectively. The electrical properties of the films were investigated using d.c. two-point probe method at room temperature and the results showed that the resistivity was found to decrease with increasing film thickness.
Hybrid ZnO/phthalocyanine photovoltaic device with highly resistive ZnO intermediate layer.
Izaki, Masanobu; Chizaki, Ryo; Saito, Takamasa; Murata, Kazufumi; Sasano, Junji; Shinagawa, Tsutomu
2013-10-09
We report a hybrid photovoltaic device composed of a 3.3 eV bandgap zinc oxide (ZnO) semiconductor and metal-free phthalocyanine layers and the effects of the insertion of the highly resistive ZnO buffer layer on the electrical characteristics of the rectification feature and photovoltaic performance. The hybrid photovoltaic devices have been constructed by electrodeposition of the 300 nm thick ZnO layer in a simple zinc nitrate aqueous solution followed by vacuum evaporation of 50-400 nm thick-phthalocyanine layers. The ZnO layers with the resistivity of 1.8 × 10(3) and 1 × 10(8) Ω cm were prepared by adjusting the cathodic current density and were installed into the hybrid photovoltaic devices as the n-type and buffer layer, respectively. The phthalocyanine layers with the characteristic monoclinic lattice showed a characteristic optical absorption feature regardless of the thickness, but the preferred orientation changed depending on the thickness. The ZnO buffer-free hybrid 50 nm thick phthalocyanine/n-ZnO photovoltaic device showed a rectification feature but possessed a poor photovoltaic performance with a conversion efficiency of 7.5 × 10(-7) %, open circuit voltage of 0.041 V, and short circuit current density of 8.0 × 10(-5) mA cm(-2). The insertion of the ZnO buffer layer between the n-ZnO and phthalocyanine layers induced improvements in both the rectification feature and photovoltaic performance. The excellent rectification feature with a rectification ratio of 3188 and ideally factor of 1.29 was obtained for the hybrid 200 nm thick phthalocyanine/ZnO buffer/n-ZnO photovoltaic device, and the hybrid photovoltaic device possessed an improved photovoltaic performance with the conversion efficiency of 0.0016%, open circuit voltage of 0.31 V, and short circuit current density of 0.015 mA cm(-2).
NASA Astrophysics Data System (ADS)
Yang, Wanliang; Li, Baoshan
2014-01-01
A novel liquid template corrosion (LTC) method has been developed for the synthesis of layered silica materials with a variety of morphologies, including hollow nanospheres, trilobite-like nanoparticles, spherical particles and a film resembling the van Gogh painting `Starry Night'. Lamellar micelles and microemulsion droplets are first formed in an oil-water (O/W) mixture of ethyl acetate (EA), cetyltrimethylammonium bromide (CTAB) and water. After adding aqueous ammonia the EA becomes hydrolyzed, which results in corrosion of microemulsion droplets. These droplets subsequently act as templates for the synthesis of silica formed by hydrolysis of tetraethyl orthosilicate. The morphological evolution of silica can be tuned by varying the concentration of aqueous ammonia which controls the degree of corrosion of the microemulsion droplet templates. A possible mechanism is proposed to explain why the LTC approach affords layered silica nanostructured materials with various morphologies and nanolayer thickness (2.6-4.5 nm), rather than the usual ordered mesostructures formed in the absence of EA. Our method provides a simple way to fabricate a variety of building blocks for assembling nanomaterials with novel structures and functionality, which are not available using conventional template methods.A novel liquid template corrosion (LTC) method has been developed for the synthesis of layered silica materials with a variety of morphologies, including hollow nanospheres, trilobite-like nanoparticles, spherical particles and a film resembling the van Gogh painting `Starry Night'. Lamellar micelles and microemulsion droplets are first formed in an oil-water (O/W) mixture of ethyl acetate (EA), cetyltrimethylammonium bromide (CTAB) and water. After adding aqueous ammonia the EA becomes hydrolyzed, which results in corrosion of microemulsion droplets. These droplets subsequently act as templates for the synthesis of silica formed by hydrolysis of tetraethyl orthosilicate. The morphological evolution of silica can be tuned by varying the concentration of aqueous ammonia which controls the degree of corrosion of the microemulsion droplet templates. A possible mechanism is proposed to explain why the LTC approach affords layered silica nanostructured materials with various morphologies and nanolayer thickness (2.6-4.5 nm), rather than the usual ordered mesostructures formed in the absence of EA. Our method provides a simple way to fabricate a variety of building blocks for assembling nanomaterials with novel structures and functionality, which are not available using conventional template methods. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr04733d
Preparation of osmium targets with carbon backing
NASA Astrophysics Data System (ADS)
Fremont, Georges; Ngono-Ravache, Yvette; Schmitt, Christelle; Stodel, Christelle
2018-05-01
For nuclear reaction studies, thin metallic osmium targets, either natural or isotopically enriched (Os-192) of 200-300 µg/cm2 thicknesses deposited on a thin carbon backing are required. A challenging method was successfully performed at GANIL involving firstly the preparation of an aqueous solution of osmium tetrachloride, then its electro-deposition onto a thick copper backing (100 µm); this process was followed by the evaporation of a thin carbon layer (≈40 µg/cm²) and finally the dissolution of the copper material.
NASA Astrophysics Data System (ADS)
Wiśniewska, Małgorzata; Chibowski, Stanisław; Urban, Teresa
2014-11-01
The effects of solution pH and the content of cationic groups in polyacrylamide (PAM) macromolecules on the stability mechanism of aqueous alumina suspension were investigated. The following experimental techniques were applied: spectrophotometry, potentiometric titration, microelectrophoresis, viscosimetry and turbidimetry. They enable determination of polymer adsorbed amount, surface charge density and zeta potential of solid particles in the presence and absence of PAM, as well as thickness of polymer adsorption layer, size of macromolecules in the solution and stability of the Al2O3-polymer systems, respectively. The obtained results indicate that adsorption of PAM increases with the increasing pH, whereas the thickness of polymeric adsorption layer decreases. Additionally, the greater the number of cationic groups in the PAM chains is, the higher adsorption was found. The polymer presence influences on the alumina suspension stability. At pH 3 and 6 the slight deterioration of stability conditions of solid particle covered with polyacrylamide was observed. At pH 9 the systems containing polymer are unstable, similarly to the suspension without PAM, but the mechanism of their destabilization is different.
NASA Astrophysics Data System (ADS)
Tully, Katherine C.; Whitacre, Jay F.; Litster, Shawn
2014-02-01
This paper presents in-situ spatiotemporal measurements of the electrolyte phase potential within an electric double layer capacitor (EDLC) negative electrode as envisaged for use in an aqueous hybrid battery for grid-scale energy storage. The ultra-thick electrodes used in these batteries to reduce non-functional material costs require sufficiently fast through-plane mass and charge transport to attain suitable charging and discharging rates. To better evaluate the through-plane transport, we have developed an electrode scaffold (ES) for making in situ electrolyte potential distribution measurements at discrete known distances across the thickness of an uninterrupted EDLC negative electrode. Using finite difference methods, we calculate local current, volumetric charging current and charge storage distributions from the spatiotemporal electrolyte potential measurements. These potential distributions provide insight into complex phenomena that cannot be directly observed using other existing methods. Herein, we use the distributions to identify areas of the electrode that are underutilized, assess the effects of various parameters on the cumulative charge storage distribution, and evaluate an effectiveness factor for charge storage in EDLC electrodes.
NASA Astrophysics Data System (ADS)
Matsui, Masaki; Dokko, Kaoru; Akita, Yasuhiro; Munakata, Hirokazu; Kanamura, Kiyoshi
2012-07-01
Surface layer formation processes on a LiCoO2 thin film electrode in a non-aqueous electrolyte containing lithium bis(oxalate)borate (LiBOB) were investigated using in situ FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). The in situ FTIR spectra of the electrolyte solution containing LiBOB showed that the adsorption of BOB anions on the electrode surface occurred during the charge process of the LiCoO2 thin film electrode above 4.0 V. XPS analysis for the LiCoO2 thin film electrode charged in an electrolyte containing LiBOB suggested that the adsorbed BOB anions on the electrode surface prevent the continuous decomposition of hexafluorophosphate (PF6) anions resulting in the formation of a very thin surface layer containing organic species, while the LiCoO2 charged in a LiPF6 solution had a relatively thick surface layer containing organic species and inorganic species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muthusubramanian, N.; Zant, H. S. J. van der; Galan, E.
We present a method to fabricate insulated gold mechanically controlled break junctions (MCBJ) by coating the metal with a thin layer of aluminum oxide using plasma enhanced atomic layer deposition. The Al{sub 2}O{sub 3} thickness deposited on the MCBJ devices was varied from 2 to 15 nm to test the suppression of leakage currents in deionized water and phosphate buffered saline. Junctions coated with a 15 nm thick oxide layer yielded atomically sharp electrodes and negligible conductance counts in the range of 1 to 10{sup −4} G{sub 0} (1 G{sub 0} = 77 μS), where single-molecule conductances are commonly observed. The insulated devices were usedmore » to measure the conductance of an amphiphilic oligophenylene ethynylene derivative in deionized water.« less
NASA Astrophysics Data System (ADS)
Steitz, Roland; Schemmel, Sebastian; Shi, Hongwei; Findenegg, Gerhard H.
2005-03-01
The boundary layer of aqueous surfactants and amphiphilic triblock copolymers against flat solid surfaces of different degrees of hydrophobicity was investigated by neutron reflectometry (NR), grazing incidence small angle neutron scattering (GISANS) and atomic force microscopy (AFM). Solid substrates of different hydrophobicities were prepared by appropriate surface treatment or by coating silicon wafers with polymer films of different chemical natures. For substrates coated with thin films (20-30 nm) of deuterated poly(styrene) (water contact angle \\theta_{\\mathrm {w}} \\approx 90^\\circ ), neutron reflectivity measurements on the polymer/water interface revealed a water depleted liquid boundary layer of 2-3 nm thickness and a density about 90% of the bulk water density. No pronounced depletion layer was found at the interface of water against a less hydrophobic polyelectrolyte coating (\\theta_{\\mathrm {w}} \\approx 63^\\circ ). It is believed that the observed depletion layer at the hydrophobic polymer/water interface is a precursor of the nanobubbles which have been observed by AFM at this interface. Decoration of the polymer coatings by adsorbed layers of nonionic CmEn surfactants improves their wettability by the aqueous phase at surfactant concentrations well below the critical micellar concentration (CMC) of the surfactant. Here, GISANS experiments conducted on the system SiO2/C8E4/D2O reveal that there is no preferred lateral organization of the C8E4 adsorption layers. For amphiphilic triblock copolymers (PEO-PPO-PEO) it is found that under equilibrium conditions they form solvent-swollen brushes both at the air/water and the solid/water interface. In the latter case, the brushes transform to uniform, dense layers after extensive rinsing with water and subsequent solvent evaporation. The primary adsorption layers maintain properties of the precursor brushes. In particular, their thickness scales with the number of ethylene oxide units (EO) of the block copolymer. In the case of dip-coating without subsequent rinsing, surface patterns of the presumably crystalline polymer on top of the primary adsorption layer develop upon drying under controlled conditions. The morphology depends mainly on the nominal surface coverage with the triblock copolymer. Similar morphologies are found on bare and polystyrene-coated silicon substrates, indicating that the surface patterning is mainly driven by segregation forces within the polymer layers and not by interactions with the substrate.
Multimodal imaging of ocular surface of dry eye subjects
NASA Astrophysics Data System (ADS)
Zhang, Aizhong; Salahura, Gheorghe; Kottaiyan, Ranjini; Yoon, Geunyoung; Aquavella, James V.; Zavislan, James M.
2016-03-01
To study the relationship between the corneal lipid layer and the ocular surface temperature (OST), we conducted a clinical trial for 20 subjects. Subjects were clinically screened prior to the trial. Of the 20 subjects, 15 have Meibomian gland dysfunction (MGD), and 5 have aqueous-deficient dry eye (ADDE). A custom, circularly polarized illumination video tearscope measured the lipid layer thickness of the ocular tear film. A long-wave infrared video camera recorded the dynamic thermal properties of the ocular team film. The results of these two methods were analyzed and compared. Using principal component analysis (PCA) of the lipid layer distribution, we find that the 20 subjects could be categorized into five statistically significant groups, independent of their original clinical classification: thin (6 subjects), medium (5 subjects), medium and homogenous (3 subjects), thick (4 subjects), and very thick (2 subjects) lipids, respectively. We also conducted PCA of the OST data, and recategorized the subjects into two thermal groups by k-means clustering: one includes all ADDE subjects and some MGD subjects; the other includes the remaining MGD subjects. By comparing these two methods, we find that dry eye subjects with thin (<= 40 nm) lipids have significantly lower OST, and a larger OST drop range, potentially due to more evaporation. However, as long as the lipid layer is not thin (> 40 nm), there is no strong correlation between the lipid layer thickness and heterogeneity and the OST patterns.
Thermotropic phase transition in an adsorbed melissic acid film at the n-hexane-water interface
NASA Astrophysics Data System (ADS)
Tikhonov, A. M.
2017-06-01
A reversible thermotropic phase transition in an adsorption melissic acid film at the interface between n-hexane and an aqueous solution of potassium hydroxide (pH ≈ 10) is investigated by X-ray reflectometry and diffuse scattering using synchrotron radiation. The experimental data indicate that the interface "freezing" transition is accompanied not only by the crystallization of the Gibbs monolayer but also by the formation of a planar smectic structure in the 300-Å-thick adsorption film; this structure is formed by 50-Å-thick layers.
Nonflat equilibrium liquid shapes on flat surfaces.
Starov, Victor M
2004-01-15
The hydrostatic pressure in thin liquid layers differs from the pressure in the ambient air. This difference is caused by the actions of surface forces and capillary pressure. The manifestation of the surface force action is the disjoining pressure, which has a very special S-shaped form in the case of partial wetting (aqueous thin films and thin films of aqueous electrolyte and surfactant solutions, both free films and films on solid substrates). In thin flat liquid films the disjoining pressure acts alone and determines their thickness. However, if the film surface is curved then both the disjoining and the capillary pressures act simultaneously. In the case of partial wetting their simultaneous action results in the existence of nonflat equilibrium liquid shapes. It is shown that in the case of S-shaped disjoining pressure isotherm microdrops, microdepressions, and equilibrium periodic films exist on flat solid substrates. Criteria are found for both the existence and the stability of these nonflat equilibrium liquid shapes. It is shown that a transition from thick films to thinner films can go via intermediate nonflat states, microdepressions and periodic films, which both can be more stable than flat films within some range of hydrostatic pressure. Experimental investigations of shapes of the predicted nonflat layers can open new possibilities of determination of disjoining pressure in the range of thickness in which flat films are unstable.
Piao, Jun-Yu; Liu, Xiao-Chan; Wu, Jinpeng; Yang, Wanli; Wei, Zengxi; Ma, Jianmin; Duan, Shu-Yi; Lin, Xi-Jie; Xu, Yan-Song; Cao, An-Min; Wan, Li-Jun
2018-06-28
Surface cobalt doping is an effective and economic way to improve the electrochemical performance of cathode materials. Herein, by tuning the precipitation kinetics of Co 2+ , we demonstrate an aqueous-based protocol to grow uniform basic cobaltous carbonate coating layer onto different substrates, and the thickness of the coating layer can be adjusted precisely in nanometer accuracy. Accordingly, by sintering the cobalt-coated LiNi 0.5 Mn 1.5 O 4 cathode materials, an epitaxial cobalt-doped surface layer will be formed, which will act as a protective layer without hindering charge transfer. Consequently, improved battery performance is obtained because of the suppression of interfacial degradation.
pH-sensitive ion-selective field-effect transistor with zirconium dioxide film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlasov, Yu.G.; Bratov, A.V.; Tarantov, Yu.A.
1988-09-20
Miniature semiconductor pH sensors for liquid media, i.e., ion-selective field-effect transistors (ISFETs), are silicon field-effect transistors with a two-layer dielectric consisting of a passivating SiO/sub 2/ layer adjoining the silicon and a layer of pH-sensitive material in contact with the electrolyte solution to be tested. This study was devoted to the characteristics of pH-sensitive ISFETs with ZrO/sub 2/ films. The base was p-type silicon (KDB-10) with a (100) surface orientation. A ZrO/sub 2/ layer 10-50 nm thick was applied over the SiO/sub 2/ layer by electron-beam deposition. The measurements were made in aqueous KNO/sub 3/ or KCl solutions.
When sticky fluids don't stick: yield-stress fluid drops on heated surfaces
NASA Astrophysics Data System (ADS)
Blackwell, Brendan; Wu, Alex; Ewoldt, Randy
2016-11-01
Yield-stress fluids, including gels and pastes, are effectively fluid at high stress and solid at low stress. In liquid-solid impacts, these fluids can stick and accumulate where they impact; this sticky behavior motivates several applications of these rheologically-complex materials. Here we describe experiments with aqueous yield stress fluids that are more 'sticky' than water at room temperature (e.g. supporting larger coating thicknesses), but are less 'sticky' at higher temperatures. Specifically, we study the conditions for aqueous yield stress fluids to bounce and slide on heated surfaces when water sticks. Here we present high-speed imaging and color interferometry to observe the thickness of the vapor layer between the drop and the surface during both stick and non-stick events. We use these data to gain insight into the physics behind the phenomenon of the yield-stress fluids bouncing and sliding, rather than sticking, on hot surfaces.
Method for long-term preservation of thin-layer polyacrylamide gels by producing a gelatine coating.
Hofmann, K
1991-02-01
Thin-layer polyacrylamide gels can be preserved and stored for unlimited periods by covering them with a gelatine coating. The method is inexpensive and simple. After air-drying, the gel is immersed in an aqueous 10% solution of highly viscous gelatine between 55 and 60 degrees C. The coated gel is dried by hanging it in air. The method was checked successfully with gels of different thicknesses (0.15-0.50 mm) and after using different staining methods, e.g., with silver, Coomassie Brilliant Blue and pseudoperoxidase.
NASA Astrophysics Data System (ADS)
Fontana, Pietro; Pettit, Donald; Cristoforetti, Samantha
2015-10-01
Crystallization from aqueous sodium chloride solutions as thin liquid sheets, 0.2-0.7 mm thick, with two free surfaces supported by a wire frame, thick liquid layers, 4-6 mm thick, with two free surfaces supported by metal frame, and hemispherical sessile drops, 20-32 mm diameter, supported by a flat polycarbonate surface or an initially flat gelatin film, were carried out under microgravity on the International Space Station (ISS). Different crystal morphologies resulted based on the fluid geometry: tabular hoppers, hopper cubes, circular [111]-oriented crystals, and dendrites. The addition of polyethylene glycol (PEG-3350) inhibited the hopper growth resulting in flat-faced surfaces. In sessile drops, 1-4 mm tabular hopper crystals formed on the free surface and moved to the fixed contact line at the support (polycarbonate or gelatin) self-assembling into a shell. Ring formation created by sessile drop evaporation to dryness was observed but with crystals 100 times larger than particles in terrestrially formed coffee rings. No hopper pyramids formed. By choosing solution geometries offered by microgravity, we found it was possible to selectively grow crystals of preferred morphologies.
Modeling solute clustering in the diffusion layer around a growing crystal.
Shiau, Lie-Ding; Lu, Yung-Fang
2009-03-07
The mechanism of crystal growth from solution is often thought to consist of a mass transfer diffusion step followed by a surface reaction step. Solute molecules might form clusters in the diffusion step before incorporating into the crystal lattice. A model is proposed in this work to simulate the evolution of the cluster size distribution due to the simultaneous aggregation and breakage of solute molecules in the diffusion layer around a growing crystal in the stirred solution. The crystallization of KAl(SO(4))(2)12H(2)O from aqueous solution is studied to illustrate the effect of supersaturation and diffusion layer thickness on the number-average degree of clustering and the size distribution of solute clusters in the diffusion layer.
Nonuniform concentration - A mechanism for drag reduction.
NASA Technical Reports Server (NTRS)
Rivard, W. C.; Kulinski, E. S.
1972-01-01
A large reduction in drag coefficient has been observed in certain external flows of aqueous solutions with high molecular weight polymer additives. A change in the near wake configuration is phenomenologically responsible for the drag reduction, but the underlying mechanism is presently unknown. An analogy to known phenomena in particulate suspensions is drawn which suggests nonuniform concentration of the polymer additive as an explanation. An analysis of the boundary layer on a sphere with varying viscosity was made to investigate the effect. The results indicate early transition to turbulence for concentration variations whose length scale is small compared with the momentum boundary layer thickness. Stabilization and delayed transition are indicated for thicker concentration layers. Observations are suggested for the thin concentration layers.
Aqueous processing of low-band-gap polymer solar cells using roll-to-roll methods.
Andersen, Thomas R; Larsen-Olsen, Thue T; Andreasen, Birgitta; Böttiger, Arvid P L; Carlé, Jon E; Helgesen, Martin; Bundgaard, Eva; Norrman, Kion; Andreasen, Jens W; Jørgensen, Mikkel; Krebs, Frederik C
2011-05-24
Aqueous nanoparticle dispersions of a series of three low-band-gap polymers poly[4,8-bis(2-ethylhexyloxy)benzo(1,2-b:4,5-b')dithiophene-alt-5,6-bis(octyloxy)-4,7-di(thiophen-2-yl)(2,1,3-benzothiadiazole)-5,5'-diyl] (P1), poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] (P2), and poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (P3) were prepared using ultrasonic treatment of a chloroform solution of the polymer and [6,6]-phenyl-C(61)-butyric acid methyl ester ([60]PCBM) mixed with an aqueous solution of sodium dodecylsulphate (SDS). The size of the nanoparticles was established using small-angle X-ray scattering (SAXS) of the aqueous dispersions and by both atomic force microscopy (AFM) and using both grazing incidence SAXS (GISAXS) and grazing incidence wide-angle X-ray scattering (GIWAXS) in the solid state as coated films. The aqueous dispersions were dialyzed to remove excess detergent and concentrated to a solid content of approximately 60 mg mL(-1). The formation of films for solar cells using the aqueous dispersion required the addition of the nonionic detergent FSO-100 at a concentration of 5 mg mL(-1). This enabled slot-die coating of high quality films with a dry thickness of 126 ± 19, 500 ± 25, and 612 ± 22 nm P1, P2, and P3, respectively for polymer solar cells. Large area inverted polymer solar cells were thus prepared based on the aqueous inks. The power conversion efficiency (PCE) reached for each of the materials was 0.07, 0.55, and 0.15% for P1, P2, and P3, respectively. The devices were prepared using coating and printing of all layers including the metal back electrodes. All steps were carried out using roll-to-roll (R2R) slot-die and screen printing methods on flexible substrates. All five layers were processed using environmentally friendly methods and solvents. Two of the layers were processed entirely from water (the electron transport layer and the active layer).
Collective Behavior of Amoebae in Thin Films
NASA Astrophysics Data System (ADS)
Bae, Albert
2005-03-01
We have discovered new aspects of social behavior in Dictyostelium discoideum by culturing high density colonies in liquid media depleted of nutrients in confined geometries by using three different preparations: I. thin (15-40um thick) and II. ultrathin (<3um) films of liquid media with a mineral oil overlayer, and III. microfluidic chambers fabricated in PDMS (˜7um tall). We find greatly reduced, if not eliminated, cell on cell layering in the microfluidic system when compared to the wetting layer preparations. The ultrathin films reveal robust behavior of cells despite flattening that increased their areas by over an order of magnitude. We also observed that the earliest synchronized response of cells following the onset of starvation, a precursor to aggregation, was hastened by reducing the thickness of the aqueous culture layer. We were surprised to find that the threshold concentration for aggregation was raised by thin film confinement when compared to bulk behavior. Finally, both the ultra thin and microfluidic preparations reveal, with new clarity, vortex states of aggregation.
Performance, stability and operation voltage optimization of screen-printed aqueous supercapacitors
Lehtimäki, Suvi; Railanmaa, Anna; Keskinen, Jari; Kujala, Manu; Tuukkanen, Sampo; Lupo, Donald
2017-01-01
Harvesting micropower energy from the ambient environment requires an intermediate energy storage, for which printed aqueous supercapacitors are well suited due to their low cost and environmental friendliness. In this work, a systematic study of a large set of devices is used to investigate the effect of process variability and operating voltage on the performance and stability of screen printed aqueous supercapacitors. The current collectors and active layers are printed with graphite and activated carbon inks, respectively, and aqueous NaCl used as the electrolyte. The devices are characterized through galvanostatic discharge measurements for quantitative determination of capacitance and equivalent series resistance (ESR), as well as impedance spectroscopy for a detailed study of the factors contributing to ESR. The capacitances are 200–360 mF and the ESRs 7.9–12.7 Ω, depending on the layer thicknesses. The ESR is found to be dominated by the resistance of the graphite current collectors and is compatible with applications in low-power distributed electronics. The effects of different operating voltages on the capacitance, leakage and aging rate of the supercapacitors are tested, and 1.0 V found to be the optimal choice for using the devices in energy harvesting applications. PMID:28382962
Esteve-Adell, Iván; Bakker, Nadia; Primo, Ana; Hensen, Emiel; García, Hermenegildo
2016-12-14
Pt nanoparticles (NPs) strongly grafted on few-layers graphene (G) have been prepared by pyrolysis under inert atmosphere at 900 °C of chitosan films (70-120 nm thickness) containing adsorbed H 2 PtCl 6 . Preferential orientation of exposed Pt facets was assessed by X-ray diffraction of films having high Pt loading where the 111 and 222 diffraction lines were observed and also by SEM imaging comparing elemental Pt mapping with the image of the 111 oriented particles. Characterization techniques allow determination of the Pt content (from 45 ng to 1 μg cm -2 , depending on the preparation conditions), particle size distribution (9 ± 2 nm), and thickness of the films (12-20 nm). Oriented Pt NPs on G exhibit at least 2 orders of magnitude higher catalytic activity for aqueous-phase reforming of ethylene glycol to H 2 and CO 2 compared to analogous samples of randomly oriented Pt NPs supported on preformed graphene. Oriented [Formula: see text]/fl-G undergoes deactivation upon reuse, the most probable cause being Pt particle growth, probably due to the presence of high concentrations of carboxylic acids acting as mobilizing agents during the course of the reaction.
Three-dimensional atom probe tomography of oxide, anion, and alkanethiolate coatings on gold.
Zhang, Yi; Hillier, Andrew C
2010-07-15
We have used three-dimensional atom probe tomography to analyze several nanometer-thick and monomolecular films on gold surfaces. High-purity gold wire was etched by electropolishing to create a sharp tip suitable for field evaporation with a radius of curvature of <100 nm. The near-surface region of a freshly etched gold tip was examined with the atom probe at subnanometer spatial resolution and with atom-level composition accuracy. A thin contaminant layer, primarily consisting of water and atmospheric gases, was observed on a fresh tip. This sample exhibited crystalline lattice spacings consistent with the interlayer spacing of {200} lattice planes of bulk gold. A thin oxide layer was created on the gold surface via plasma oxidation, and the thickness and composition of this layer was measured. Clear evidence of a nanometer-thick oxide layer was seen coating the gold tip, and the atomic composition of the oxide layer was consistent with the expected stoichiometry for gold oxide. Monomolecular anions layers of Br(-) and I(-) were created via adsorption from aqueous solutions onto the gold. Atom probe data verified the presence of the monomolecular anion layers on the gold surface, with ion density values consistent with literature values. A hexanethiolate monolayer was coated onto the gold tip, and atom probe analysis revealed a thin film whose ion fragments were consistent with the molecular composition of the monolayer and a surface coverage similar to that expected from literature. Details of the various coating compositions and structures are presented, along with discussion of the reconstruction issues associated with properly analyzing these thin-film systems.
NASA Astrophysics Data System (ADS)
Brown, Matthew A.; Abbas, Zareen; Kleibert, Armin; Green, Richard G.; Goel, Alok; May, Sylvio; Squires, Todd M.
2016-01-01
The structure of the electrical double layer has been debated for well over a century, since it mediates colloidal interactions, regulates surface structure, controls reactivity, sets capacitance, and represents the central element of electrochemical supercapacitors. The surface potential of such surfaces generally exceeds the electrokinetic potential, often substantially. Traditionally, a Stern layer of nonspecifically adsorbed ions has been invoked to rationalize the difference between these two potentials; however, the inability to directly measure the surface potential of dispersed systems has rendered quantitative measurements of the Stern layer potential, and other quantities associated with the outer Helmholtz plane, impossible. Here, we use x-ray photoelectron spectroscopy from a liquid microjet to measure the absolute surface potentials of silica nanoparticles dispersed in aqueous electrolytes. We quantitatively determine the impact of specific cations (Li+ , Na+ , K+ , and Cs+ ) in chloride electrolytes on the surface potential, the location of the shear plane, and the capacitance of the Stern layer. We find that the magnitude of the surface potential increases linearly with the hydrated-cation radius. Interpreting our data using the simplest assumptions and most straightforward understanding of Gouy-Chapman-Stern theory reveals a Stern layer whose thickness corresponds to a single layer of water molecules hydrating the silica surface, plus the radius of the hydrated cation. These results subject electrical double-layer theories to direct and falsifiable tests to reveal a physically intuitive and quantitatively verified picture of the Stern layer that is consistent across multiple electrolytes and solution conditions.
Pattekari, P.; Zheng, Z.; Zhang, X.; Levchenko, T.; Torchilin, V.
2015-01-01
Nano-encapsulation of poorly soluble anticancer drug was developed with sonication assisted layer-by-layer polyelectrolyte coating (SLbL). We changed the strategy of LbL-encapsulation from making microcapsules with many layers in the walls for encasing highly soluble materials to using very thin polycation / polyanion coating on low soluble nanoparticles to provide their good colloidal stability. SLbL encapsulation of paclitaxel resulted in stable 100-200 nm diameter colloids with high electrical surface ξ-potential (of -45 mV) and drug content in the nanoparticles of 90 wt %. In the top-down approach, nanocolloids were prepared by rupturing powder of paclitaxel using ultrasonication and simultaneous sequential adsorption of oppositely charged biocompatible polyelectrolytes. In the bottom-up approach paclitaxel was dissolved in organic solvent (ethanol or acetone), and drug nucleation was initiated by gradual worsening the solution with the addition of aqueous polyelectrolyte assisted by ultrasonication. Paclitaxel release rates from such nanocapsules were controlled by assembling multilayer shells with variable thicknesses and are in the range of 10-20 hours. PMID:21442095
NASA Astrophysics Data System (ADS)
Shah, Kwok Wei; Sreethawong, Thammanoon; Liu, Shu-Hua; Zhang, Shuang-Yuan; Tan, Li Sirh; Han, Ming-Yong
2014-09-01
Various metal (Ag, Au, and Pt)@thiol-functionalized silica (SiO2-SH) nanoparticles (NPs) are successfully prepared at room temperature by a facile, efficient, functional, universal and scalable coating process in alcohol-free aqueous solution using pre-hydrolyzed 3-(mercaptopropyl)trimethoxysilane (MPTMS). The controlled pre-hydrolysis of the silane precursor in water and the consecutive condensation processes are the key to achieve the effective and uniform silica coating on metal NPs in aqueous solution. The thickness of the silica shell is tuned by simply varying the coating time. The silica shell can act as an effective protecting layer for Ag NPs in Ag@SiO2-SH NPs under conditions for silica coating in aqueous solution; however, it leads to a directional dissolution of Ag NPs in a more strongly basic ammonia solution. The environmentally friendly silica coating process in water is also applied to prepare highly surface-enhanced Raman scattering (SERS)-active Ag@SiO2-SH NPs with different types of Raman molecules for highly sensitive SERS-based applications in various fields.Various metal (Ag, Au, and Pt)@thiol-functionalized silica (SiO2-SH) nanoparticles (NPs) are successfully prepared at room temperature by a facile, efficient, functional, universal and scalable coating process in alcohol-free aqueous solution using pre-hydrolyzed 3-(mercaptopropyl)trimethoxysilane (MPTMS). The controlled pre-hydrolysis of the silane precursor in water and the consecutive condensation processes are the key to achieve the effective and uniform silica coating on metal NPs in aqueous solution. The thickness of the silica shell is tuned by simply varying the coating time. The silica shell can act as an effective protecting layer for Ag NPs in Ag@SiO2-SH NPs under conditions for silica coating in aqueous solution; however, it leads to a directional dissolution of Ag NPs in a more strongly basic ammonia solution. The environmentally friendly silica coating process in water is also applied to prepare highly surface-enhanced Raman scattering (SERS)-active Ag@SiO2-SH NPs with different types of Raman molecules for highly sensitive SERS-based applications in various fields. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03306j
Curing mechanism of flexible aqueous polymeric coatings.
Irfan, Muhammad; Ahmed, Abid Riaz; Kolter, Karl; Bodmeier, Roland; Dashevskiy, Andriy
2017-06-01
The objective of this study was to explain curing phenomena for pellets coated with a flexible polymeric coating based on poly(vinyl acetate) (Kollicoat® SR 30D) with regard to the effect of starter cores, thickness of drug layer, adhesion of coating to drug-layered-cores as well as coating properties. In addition, appropriate approaches to eliminate the curing effect were identified. Sugar or MCC cores were layered with the model drugs carbamazepine, theophylline, propranolol HCl, tramadol HCl and metoprolol HCl using HPMC (5 or 25% w/w, based on drug) as a binder. Drug-layered pellets were coated with Kollicoat® SR 30D in a fluidized bed coater using TEC (10% w/w) as plasticizer and talc (35-100% w/w) as anti-tacking agent. Drug release, pellet properties (morphology, water uptake-weight loss and osmolality) and adhesion of the coating to the drug layer were investigated as a function of curing at 60°C or 60°C/75% RH for 24h. The film formation of the aqueous dispersion of Kollicoat® SR 30D was complete, and therefore, a strong curing effect (decrease in drug release) at elevated temperature and humidity (60°C/75% RH) could not be explained by the well-known hydroplasticization and the further gradual coalescence of the colloidal polymer particles. According to the provided mechanistic explanation, the observed curing effect was associated with (1) high flexibility of coating, (2) adhesion between coating and drug layer, (3) water retaining properties of the drug layer, and (4) osmotically active cores. Unwanted curing effects could be minimized/eliminated by the addition of talc or/and pore-forming water soluble polymers in the coating, increasing binder amount or applying an intermediate coating, by increasing the thickness of drug layer or using non-osmotic cores. A new insight into curing phenomena mainly associated with the adhesion between drug layer and coating was provided. Appropriate approaches to avoid unwanted curing effect were identified. Copyright © 2017 Elsevier B.V. All rights reserved.
The ocular surface and tear film and their dysfunction in dry eye disease.
Rolando, M; Zierhut, M
2001-03-01
The ocular surface, tear film, lacrimal glands, and eyelids act as a functional unit to preserve the quality of the refractive surface of the eye and to resist injury and protect the eye against changing bodily and environmental conditions. Events that disturb the homeostasis of this functional unit can result in a vicious cycle of ocular surface disease. The tear film is the most dynamic structure of the functional unit, and its production and turnover is essential to maintaining the health of the ocular surface. Classically, the tear film is reported to be composed of three layers: the mucin, aqueous, and lipid layers. The boundaries and real thickness of such layers is still under discussion. A dysfunction of any of these layers can result in dry eye disease.
Xu, Wenjie; Chen, Zhenyi; Chen, Na; Zhang, Heng; Liu, Shupeng; Hu, Xinmao; Wen, Jianxiang; Wang, Tingyun
2017-01-01
A taper-fiber SERS nanoprobe modified by gold nanoparticles (Au-NPs) with ultrathin alumina layers was fabricated and its ability to perform remote Raman detection was demonstrated. The taper-fiber nanoprobe (TFNP) with a nanoscale tip size under 80 nm was made by heated pulling combined with the chemical etching method. The Au-NPs were deposited on the TFNP surface with the electrostatic self-assembly technology, and then the TFNP was wrapped with ultrathin alumina layers by the atomic layer deposition (ALD) technique. The results told us that with the increasing thickness of the alumina film, the Raman signals decreased. With approximately 1 nm alumina film, the remote detection limit for R6G aqueous solution reached 10−6 mol/L. PMID:28245618
Huygens Crater: Insights into Noachian Volcanism, Stratigraphy, and Aqueous Processes
NASA Technical Reports Server (NTRS)
Ackiss, S. E.; Wray, J. J.; Seelos, K. D.; Niles, P. B.
2015-01-01
Huygens crater is a well preserved peak ring structure on Mars centered at 13.5 deg S, 55.5 deg E in the Noachian highlands between Terras Tyrrhena and Sabaea near the NW rim of Hellas basin. With a diameter of approximately 470 km, it uplifted and exhumed pre-Noachian crustal materials from depths greater than 25 km, penetrating below the thick, ubiquitous layer of Hellas ejecta. In addition, Huygens served as a basin for subsequent aqueous activity, including erosion/deposition by fluvial valley networks and subsurface alteration that is now exposed by smaller impacts. Younger mafic-bearing plains that partially cover the basin floor and surrounding intercrater areas were likely emplaced by later volcanism.
Factors that Influence the Formation and Stability of Thin, Cryo-EM Specimens
Glaeser, Robert M.; Han, Bong-Gyoon; Csencsits, Roseann; ...
2015-09-17
Poor consistency of the ice thickness from one area of a cryo-electron microscope (cryo-EM) specimen grid to another, from one grid to the next, and from one type of specimen to another, motivates a reconsideration of how to best prepare suitably thin specimens. We first review the three related topics of wetting, thinning, and stability against dewetting of aqueous films spread over a hydrophilic substrate. Furthermore, we then suggest that the importance of there being a surfactant monolayer at the air-water interface of thin, cryo-EM specimens has been largely underappreciated. In fact, a surfactant layer (of uncontrolled composition and surfacemore » pressure) can hardly be avoided during standard cryo-EM specimen preparation. Thus it is suggested that better control over the composition and properties of the surfactant layer may result in more reliable production of cryo-EM specimens with the desired thickness.« less
Factors that Influence the Formation and Stability of Thin, Cryo-EM Specimens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glaeser, Robert M.; Han, Bong-Gyoon; Csencsits, Roseann
Poor consistency of the ice thickness from one area of a cryo-electron microscope (cryo-EM) specimen grid to another, from one grid to the next, and from one type of specimen to another, motivates a reconsideration of how to best prepare suitably thin specimens. We first review the three related topics of wetting, thinning, and stability against dewetting of aqueous films spread over a hydrophilic substrate. Furthermore, we then suggest that the importance of there being a surfactant monolayer at the air-water interface of thin, cryo-EM specimens has been largely underappreciated. In fact, a surfactant layer (of uncontrolled composition and surfacemore » pressure) can hardly be avoided during standard cryo-EM specimen preparation. Thus it is suggested that better control over the composition and properties of the surfactant layer may result in more reliable production of cryo-EM specimens with the desired thickness.« less
Design of matching layers for high-frequency ultrasonic transducers
Fei, Chunlong; Ma, Jianguo; Chiu, Chi Tat; Williams, Jay A.; Fong, Wayne; Chen, Zeyu; Zhu, BenPeng; Xiong, Rui; Shi, Jing; Hsiai, Tzung K.; Shung, K. Kirk; Zhou, Qifa
2015-01-01
Matching the acoustic impedance of high-frequency (≥100 MHz) ultrasound transducers to an aqueous loading medium remains a challenge for fabricating high-frequency transducers. The traditional matching layer design has been problematic to establish high matching performance given requirements on both specific acoustic impedance and precise thickness. Based on both mass-spring scheme and microwave matching network analysis, we interfaced metal-polymer layers for the matching effects. Both methods hold promises for guiding the metal-polymer matching layer design. A 100 MHz LiNbO3 transducer was fabricated to validate the performance of the both matching layer designs. In the pulse-echo experiment, the transducer echo amplitude increased by 84.4% and its −6dB bandwidth increased from 30.2% to 58.3% comparing to the non-matched condition, demonstrating that the matching layer design method is effective for developing high-frequency ultrasonic transducers. PMID:26445518
Aqueous-based thick photoresist removal for bumping applications
NASA Astrophysics Data System (ADS)
Moore, John C.; Brewer, Alex J.; Law, Alman; Pettit, Jared M.
2015-03-01
Cleaning processes account for over 25% of processing in microelectronic manufacturing [1], suggesting electronics to be one of the most chemical intensive markets in commerce. Industry roadmaps exist to reduce chemical exposure, usage, and waste [2]. Companies are encouraged to create a safer working environment, or green factory, and ultimately become certified similar to LEED in the building industry [3]. A significant step in this direction is the integration of aqueous-based photoresist (PR) strippers which eliminate regulatory risks and cut costs by over 50%. One of the largest organic solvent usages is based upon thick PR removal during bumping processes [4-6]. Using market projections and the benefits of recycling, it is estimated that over 1,000 metric tons (mt) of residuals originating from bumping processes are incinerated or sent to a landfill. Aqueous-based stripping would eliminate this disposal while also reducing the daily risks to workers and added permitting costs. Positive-tone PR dissolves in aqueous strippers while negative-tone systems are lifted-off from the substrate, bumps, pillars, and redistribution layers (RDL). While the wafers are further processed and rinsed, the lifted-off PR is pumped from the tank, collected onto a filter, and periodically back-flushed to the trash. The PR solids become a non-hazardous plastic waste while the liquids are mixed with the developer stream, neutralized, filtered, and in most cases, disposed to the sewer. Regardless of PR thickness, removal processes may be tuned to perform in <15min, performing at rates nearly 10X faster than solvents with higher bath lives. A balanced formula is safe for metals, dielectrics, and may be customized to any fab.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Guannan; Shi, Chengwu, E-mail: shicw506@foxmail.com; Zhang, Zhengguo
The TiO{sub 2} nanorod arrays with the length of 70 nm, the diameter of 20 nm, and the areal density of 1000 µm{sup −2} were firstly prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 60 min. Over-500 nm-thickness CH{sub 3}NH{sub 3}PbI{sub 3−x}Br{sub x} absorber layers were successfully obtained by sequential deposition routes using 1.7 M PbI{sub 2}·DMSO complex precursor solution and 0.465 M isopropanol solution of the methylammonium halide mixture with the molar ratio of CH{sub 3}NH{sub 3}I/CH{sub 3}NH{sub 3}Br=85/15. The perovskite solar cellsmore » based on the TiO{sub 2} nanorod array and 560 nm-thickness CH{sub 3}NH{sub 3}PbI{sub 3−x}Br{sub x} absorber layer exhibited the best photoelectric conversion efficiency (PCE) of 15.93%, while the corresponding planar perovskite solar cells without the TiO{sub 2} nanorod array and with 530 nm-thickness CH{sub 3}NH{sub 3}PbI{sub 3−x}Br{sub x} absorber layer gave the best PCE of 12.82% at the relative humidity of 50–54%. - Graphical abstract: The TiO{sub 2} nanorod arrays with the length of 70 nm, the diameter of 20 nm, and the areal density of 1000 µm{sup −2} were prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 60 min. The optimal annealing temperature of TiO{sub 2} nanorod arrays was 450 °C. The perovskite solar cells based on the TiO{sub 2} nanorod array and 560 nm-thickness CH{sub 3}NH{sub 3}PbI{sub 3−x}Br{sub x} absorber layer exhibited the best photoelectric conversion efficiency (PCE) of 15.93% and the average PCE of 13.41±2.52%, while the corresponding planar perovskite solar cells without the TiO{sub 2} nanorod array and with 530 nm-thickness CH{sub 3}NH{sub 3}PbI{sub 3−x}Br{sub x} absorber layer gave the best PCE of 12.82% and the average PCE of 10.54±2.28% at the relative humidity of 50–54%. - Highlights: • Preparation of TiO{sub 2} nanorod array with length of 70 nm and density of 1000 µm{sup −2}. • Influence of annealing temperatures on the -OH content of TiO{sub 2} nanorod arrays. • Preparation of over-500 nm-thickness CH{sub 3}NH{sub 3}PbI{sub 3−x}Br{sub x} absorber layer. • Combination of short-length TiO{sub 2} nanorod array and high-thickness perovskite layer. • The best and average PCE with TiO{sub 2} array of 15.93% and 13.41±2.52% at 50–54% RH.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warnat, Stephan, E-mail: stephan.warnat@dal.ca; Forbrigger, Cameron; Hubbard, Ted
A method to enhance thermal microelectromechanical systems (MEMS) actuators in aqueous media by using dielectric encapsulation layers is presented. Aqueous media reduces the available mechanical energy of the thermal actuator through an electrical short between actuator structures. Al{sub 2}O{sub 3} and TiO{sub 2} laminates with various thicknesses were deposited on packaged PolyMUMPs devices to electrically separate the actuator from the aqueous media. Atomic layer deposition was used to form an encapsulation layer around released MEMS structures and the package. The enhancement was assessed by the increase of the elastic energy, which is proportional to the mechanical stiffness of the actuatormore » and the displacement squared. The mechanical stiffness of the encapsulated actuators compared with the noncoated actuators was increased by factors ranging from 1.45 (for 45 nm Al{sub 2}O{sub 3} + 20 nm TiO{sub 2}) to 1.87 (for 90 nm Al{sub 2}O{sub 3} + 40 nm TiO{sub 2}). Displacement measurements were made for all laminate combinations in filtered tap water and seawater by using FFT based displacement measurement technique with a repeatability of ∼10 nm. For all laminate structures, the elastic energy increased and enhanced the actuator performance: In seawater, the mechanical output energy increased by factors ranging from 5 (for 90 nm Al{sub 2}O{sub 3}) to 11 (for 90 nm Al{sub 2}O{sub 3} + 40 nm TiO{sub 2}). The authors also measured the long-term actuator stability/reliability in seawater. Samples were stored for 29 days in seawater and tested for 17 days in seawater. Laminates with TiO{sub 2} layers allowed constant operation over the entire measurement period.« less
Hybrid Cu(2)O diode with orientation-controlled C(60) polycrystal.
Izaki, Masanobu; Saito, Takamasa; Ohata, Tatsuya; Murata, Kazufumi; Fariza, Binti Mohamad; Sasano, Junji; Shinagawa, Tsutomu; Watase, Seiji
2012-07-25
We report on a hybrid diode composed of a 2.1 eV bandgap p-cupric oxide (Cu2O) semiconductor and fullerene (C60) layer with a face-centered cubic configuration. The hybrid diode has been constructed by electrodeposition of the 500 nm thick Cu2O layer in a basic aqueous solution containing a copper acetate hydrate and lactic acid followed by a vacuum evaporation of the 50 nm thick C60 layer at the evaporation rate from 0.25 to 1.0 Å/s. The C60 layers prepared by the evaporation possessed a face-centered cubic configuration with the lattice constant of 14.19 A, and the preferred orientation changed from random to (111) plane with decrease in the C60 evaporation rate from 1.0 to 0.25 Å/s. The hybrid p-Cu2O/C60 diode showed a rectification feature regardless of the C60 evaporation rate, and both the rectification ratio and forward current density improved with decrease in the C60 evaporation rate. The excellent rectification with the ideality factor of approximately 1 was obtained for the 500 nm thick (111)-Cu2O/50 nm thick (111)-fcc-C60/bathocuproine (BCP) diode at the C60 evaporation rate of 0.25 Å /s. The hybrid Cu2O/C60 diode prepared by stacking the C60 layer at the evaporation rate of 0.25 Å/s revealed the photovoltaic performance of 8.7 × 10(-6)% in conversion efficiency under AM1.5 illumination, and the conversion efficiency changed depending on the C60 evaporation rate.
Penetration of Chlorhexidine into Human Skin ▿
Karpanen, T. J.; Worthington, T.; Conway, B. R.; Hilton, A. C.; Elliott, T. S. J.; Lambert, P. A.
2008-01-01
This study evaluated a model of skin permeation to determine the depth of delivery of chlorhexidine into full-thickness excised human skin following topical application of 2% (wt/vol) aqueous chlorhexidine digluconate. Skin permeation studies were performed on full-thickness human skin using Franz diffusion cells with exposure to chlorhexidine for 2 min, 30 min, and 24 h. The concentration of chlorhexidine extracted from skin sections was determined to a depth of 1,500 μm following serial sectioning of the skin using a microtome and analysis by high-performance liquid chromatography. Poor penetration of chlorhexidine into skin following 2-min and 30-min exposures to chlorhexidine was observed (0.157 ± 0.047 and 0.077 ± 0.015 μg/mg tissue within the top 100 μm), and levels of chlorhexidine were minimal at deeper skin depths (less than 0.002 μg/mg tissue below 300 μm). After 24 h of exposure, there was more chlorhexidine within the upper 100-μm sections (7.88 ± 1.37 μg/mg tissue); however, the levels remained low (less than 1 μg/mg tissue) at depths below 300 μm. There was no detectable penetration through the full-thickness skin. The model presented in this study can be used to assess the permeation of antiseptic agents through various layers of skin in vitro. Aqueous chlorhexidine demonstrated poor permeation into the deeper layers of the skin, which may restrict the efficacy of skin antisepsis with this agent. This study lays the foundation for further research in adopting alternative strategies for enhanced skin antisepsis in clinical practice. PMID:18676882
The brilliant beauty of the eye: light reflex from the cornea and tear film.
Goto, Eiki
2006-12-01
Light reflex from the cornea and tear film as contributors to beautiful eyes ("eye sparkling") are reviewed. A systematic literature review was conducted using "Purkinje-Sanson image," "corneal light reflex," "corneal topography," "corneal wavefront aberration," and "tear interference image" as search terms. Articles on corneal surface regularity and stability and tear interferometry of the precorneal tear lipid layer were reviewed. PS-1 image, that is light reflex from the cornea and tear film, is widely used in practical ophthalmic examination. To achieve a brilliant beauty of the eye ("eye sparkling"), it is important that the tear film (aqueous layer) surface is smooth and stable with adequate tear volume and that the tear lipid layer is present in adequate thickness.
Microfluidic Controlled Conformal Coating of Particles
NASA Astrophysics Data System (ADS)
Tsai, Scott; Wexler, Jason; Wan, Jiandi; Stone, Howard
2011-11-01
Coating flows are an important class of fluid mechanics problems. Typically a substrate is coated with a moving continuous film, but it is also possible to consider coating of discrete objects. In particular, in applications involving coating of particles that are useful in drug delivery, the coatings act as drug-carrying vehicles, while in cell therapy a thin polymeric coating is required to protect the cells from the host's immune system. Although many functional capabilities have been developed for lab-on-a-chip devices, a technique for coating has not been demonstrated. We present a microfluidic platform developed to coat micron-size spheres with a thin aqueous layer by magnetically pulling the particles from the aqueous phase to the non-aqueous phase in a co-flow. Coating thickness can be adjusted by the average fluid speed and the number of beads encapsulated inside a single coat is tuned by the ratio of magnetic to interfacial forces acting on the beads.
NASA Astrophysics Data System (ADS)
Xiao, Guannan; Shi, Chengwu; Zhang, Zhengguo; Li, Nannan; Li, Long
2017-05-01
The TiO2 nanorod arrays with the length of 70 nm, the diameter of 20 nm, and the areal density of 1000 μm-2 were firstly prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 60 min. Over-500 nm-thickness CH3NH3PbI3-xBrx absorber layers were successfully obtained by sequential deposition routes using 1.7 M PbI2·DMSO complex precursor solution and 0.465 M isopropanol solution of the methylammonium halide mixture with the molar ratio of CH3NH3I/CH3NH3Br=85/15. The perovskite solar cells based on the TiO2 nanorod array and 560 nm-thickness CH3NH3PbI3-xBrx absorber layer exhibited the best photoelectric conversion efficiency (PCE) of 15.93%, while the corresponding planar perovskite solar cells without the TiO2 nanorod array and with 530 nm-thickness CH3NH3PbI3-xBrx absorber layer gave the best PCE of 12.82% at the relative humidity of 50-54%.
NASA Astrophysics Data System (ADS)
Din, Rameez Ud; Piotrowska, Kamila; Gudla, Visweswara Chakravarthy; Jellesen, Morten Stendahl; Ambat, Rajan
2015-11-01
The surface treatment of aluminium alloys under steam containing KMnO4 and HNO3 resulted in the formation of an oxide layer having a thickness of up to 825 nm. The use of KMnO4 and HNO3 in the steam resulted in incorporation of the respective chemical species into the oxide layer. Steam treatment with solution containing HNO3 caused dissolution of Cu and Si from the intermetallic particles in the aluminium substrate. The growth rate of oxide layer was observed to be a function of MnO4- and NO3- ions present in the aqueous solution. The NO3- ions exhibit higher affinity towards the intermetallic particles resulting in poor coverage by the steam generated oxide layer compared to the coating formed using MnO4- ions. Further, increase in the concentration of NO3- ions in the solution retards precipitation of the steam generated aluminium hydroxide layer.
Yadav, Amrita R.; Sriram, Rashmi; Carter, Jared A.; Miller, Benjamin L.
2014-01-01
The uniformity of aminosilane layers typically used for the modification of hydroxyl bearing surfaces such as silicon dioxide is critical for a wide variety of applications, including biosensors. However, in spite of many studies that have been undertaken on surface silanization, there remains a paucity of easy-to-implement deposition methods reproducibly yielding smooth aminosilane monolayers. In this study, solution- and vapor-phase deposition methods for three aminoalkoxysilanes differing in the number of reactive groups (3-aminopropyl triethoxysilane (APTES), 3-aminopropyl methyl diethoxysilane (APMDES) and 3-aminopropyl dimethyl ethoxysilane (APDMES)) were assessed with the aim of identifying methods that yield highly uniform and reproducible silane layers that are resistant to minor procedural variations. Silane film quality was characterized based on measured thickness, hydrophilicity and surface roughness. Additionally, hydrolytic stability of the films was assessed via these thickness and contact angle values following desorption in water. We found that two simple solution-phase methods, an aqueous deposition of APTES and a toluene based deposition of APDMES, yielded high quality silane layers that exhibit comparable characteristics to those deposited via vapor-phase methods. PMID:24411379
Deliquescence and efflorescence of small particles.
McGraw, Robert; Lewis, Ernie R
2009-11-21
We examine size-dependent deliquescence/efflorescence phase transformation for particles down to several nanometers in size. Thermodynamic properties of inorganic salt particles, coated with aqueous solution layers of varying thickness and surrounded by vapor, are analyzed. A thin layer criterion (TLC) is introduced to define a limiting deliquescence relative humidity (RH(D)) for small particles. This requires: (1) equality of chemical potentials between salt in an undissolved core, and thin adsorbed solution layer, and (2) equality of chemical potentials between water in the thin layer and vapor phase. The usual bulk deliquescence conditions are recovered in the limit of large dry particle size. Nanosize particles are found to deliquesce at relative humidity just below the RH(D) on crossing a nucleation barrier, located at a critical solution layer thickness. This barrier vanishes precisely at the RH(D) defined by the TLC. Concepts and methods from nucleation theory including the kinetic potential, self-consistent nucleation theory, nucleation theorems, and the Gibbs dividing surface provide theoretical foundation and point to unifying features of small particle deliquescence/efflorescence processes. These include common thermodynamic area constructions, useful for interpretation of small particle water uptake measurements, and a common free-energy surface, with constant RH cross sections describing deliquescence and efflorescence related through the nucleation theorem.
Greathouse, Jeffery A.; Hart, David; Bowers, Geoffrey M.; ...
2015-07-20
In geologic settings relevant to a number of extraction and potential sequestration processes, nanopores bounded by clay mineral surfaces play a critical role in the transport of aqueous species. Solution structure and dynamics at clay–water interfaces are quite different from their bulk values, and the spatial extent of this disruption remains a topic of current interest. We have used molecular dynamics simulations to investigate the structure and diffusion of aqueous solutions in clay nanopores approximately 6 nm thick, comparing the effect of clay composition with model Na-hectorite and Na-montmorillonite surfaces. In addition to structural properties at the interface, water andmore » ion diffusion coefficients were calculated within each aqueous layer at the interface, as well as in the central bulk-like region of the nanopore. The results show similar solution structure and diffusion properties at each surface, with subtle differences in sodium adsorption complexes and water structure in the first adsorbed layer due to different arrangements of layer hydroxyl groups in the two clay models. Interestingly, the extent of surface disruption on bulk-like solution structure and diffusion extends to only a few water layers. Additionally, a comparison of sodium ion residence times confirms similar behavior of inner-sphere and outer-sphere surface complexes at each clay surface, but ~1% of sodium ions adsorb in ditrigonal cavities on the hectorite surface. Thus, the presence of these anhydrous ions is consistent with highly immobile anhydrous ions seen in previous nuclear magnetic resonance spectroscopic measurements of hectorite pastes.« less
NASA Astrophysics Data System (ADS)
Schmid, M.; Willert-Porada, M.
2017-05-01
Silica coatings on zinc particles as anode material for alkaline zinc air batteries are expected to reduce early formation of irreversible ZnO passivation layers during discharge by controlling zinc dissolution and precipitation of supersaturated zincates, Zn(OH)42-. Zinc particles were coated with SiO2 (thickness: 15 nm) by chemical solution deposition and with Zn2SiO4 (thickness: 20 nm) by chemical vapor deposition. These coatings formed a Si(OH)4 gel in aqueous KOH and retarded hydrogen evolution by 40%. By treatment in aqueous KOH and drying afterwards, the silica coatings were changed into ZnO-K2O·SiO2 layers. In this work, the electrochemical performance of such coated zinc particles is investigated by different electrochemical methods in order to gain a deeper understanding of the mechanisms of the coatings, which reduce zinc passivation. In particular, zinc utilization and changes in internal resistance are investigated. Moreover, methods for determination of diffusion coefficients, charge carrier numbers and activation energies for electrochemical oxidation are determined. SiO2-coated zinc particles show improved discharge capacity (CVD-coated zinc: 69% zinc utilization, CSD-coated zinc: 62% zinc utilization) as compared to as-received zinc (57% zinc utilization) at C/20 rate, by reducing supersaturation of zincates. Additionally, KOH-modified SiO2-coated zinc particles enhance rechargeability after 100% depth-of-discharge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manohara, G.V.; Vishnu Kamath, P., E-mail: vishnukamath8@hotmail.com; Milius, Wolfgang
2012-12-15
Acetate-intercalated layered double hydroxides (LDHs) of Ni and Al undergo reversible hydration in the solid state in response to the ambient humidity. The LDH with a high layer charge (0.33/formula unit) undergoes facile hydration in a single step, whereas the LDH with a lower layer charge (0.24/formula unit) exhibits an ordered interstratified intermediate, comprising the hydrated and dehydrated layers stacked alternatively. This phase, also known as the staged S-2 phase, coexists with the end members suggesting the existence of a solution-type equilibrium between the S-2 phase and the end members of the hydration cycle. These LDHs also undergo facile aqueousmore » exfoliation into 2-5 nm-thick tactoids with a radial dimension of 0.2-0.5 {mu}m. - Graphical abstract: Schematic of the hydrated, dehydrated and interstratified phases observed during the hydration-dehydration of Ni/Al-CH{sub 3}COO LDH. Highlights: Black-Right-Pointing-Pointer Ni/Al-acetate LDHs were synthesized by HPFS method by hydrolysis of acetamide. Black-Right-Pointing-Pointer Intercalated acetate ion shows reversible hydration with variation in humidity. Black-Right-Pointing-Pointer An ordered interstratified phase was observed during hydration/dehydration cycle. Black-Right-Pointing-Pointer A solution type equilibrium is observed between hydration-dehydration phases. Black-Right-Pointing-Pointer These LDHs undergo facile aqueous exfoliation.« less
Synthesis and colloidal properties of anisotropic hydrothermal barium titanate
NASA Astrophysics Data System (ADS)
Yosenick, Timothy James
2005-11-01
Nanoparticles of high dielectric constant materials, especially BaTiO3, are required to achieve decreased layer thickness in multilayer ceramic capacitors (MLCCs). Tabular metal nanoparticles can produce thin metal layers with low surface roughness via electrophoretic deposition (EPD). To achieve similar results with dielectric layers requires the synthesis and dispersion of tabular BaTiO3 nanoparticles. The goal of this study was to investigate the deposition of thin BaTiO3 layers using a colloidal process. The synthesis, interfacial chemistry and colloidal properties of hydrothermal BaTiO3 a model particle system, was investigated. After characterization of the material system particulates were deposited to form thin layers using EPD. In the current study, the synthesis of BaTiO3 has been investigated using a hydrothermal route. TEM and AFM analyses show that the synthesized particles are single crystal with a majority of the particle having a <111> zone axis and {111} large face. The particles have a median thickness of 5.8 +/- 3.1 nm and face diameter of 27.1 +/- 12.3 nm. Particle growth was likely controlled by the formation of {111} twins and the synthesis pH which stabilizes the {111} face during growth. With limited growth in the <111> direction, the particles developed a plate-like morphology. Physical property characterization shows the powder was suitable for further processing with high purity, low hydrothermal defect concentration, and controlled stoichiometry. TEM observations of thermally treated powders indicate that the particles begin to loose the plate-like morphology by 900 °C. The aqueous passivation, dispersion, and doping of nanoscale BaTiO 3 powders was investigated. Passivation BaTiO3 was achieved through the addition of oxalic acid. The oxalic acid selectively adsorbs onto the particle surface and forms a chemically stable 2-3 nm layer of barium oxalate. The negative surface charge of the oxalate effectively passivated the BaTiO3 providing a surface suitable for the use of a cationic dispersant, polyethylenimine (PEI). Rheological properties indicate the presence of an oxalate-PEI interaction which can be detrimental to dispersion. With a better understanding of the aqueous surface chemistry of BaTiO3 the surface chemistry was manipulated to control the adsorption of aqueous soluble complexes of Co, Nb, and Bi, three common dopants in the processing of BaTiO3 Surface charge, TEM, and EDS analysis showed that while in suspension the dopants selectively absorbed onto the particle surface forming an engineered coating. (Abstract shortened by UMI.)
Surface plasmon-assisted microscope.
Borejdo, Julian; Gryczynski, Zygmunt; Fudala, Rafal; Joshi, Chaitanya R; Borgmann, Kathleen; Ghorpade, Anuja; Gryczynski, Ignacy
2018-06-01
Total internal reflection microscopy (TIRF) has been a powerful tool in biological research. The most valuable feature of the method has been the ability to image 100- to 200-nm-thick layer of cell features adjacent to a coverslip, such as membrane lipids, membrane receptors, and structures proximal-to-basal membranes. Here, we demonstrate an alternative method of imaging thin-layer proximal-to-basal membranes by placing a sample on a high refractive index coverslip covered by a thin layer of gold. The sample is illuminated using the Kretschmann method (i.e., from the top to an aqueous medium). Fluorophores that are close to the metal surface induce surface plasmons in the metal film. Fluorescence from fluorophores near the metal surface couple with surface plasmons allowing them to penetrate the metal surface and emerge at a surface plasmon coupled emission angle. The thickness of the detection layer is further reduced in comparison with TIRF by metal quenching of fluorophores at a close proximity (below 10 nm) to a surface. Fluorescence is collected by a high NA objective and imaged by EMCCD or converted to a signal by avalanche photodiode fed by a single-mode optical fiber inserted in the conjugate image plane of the objective. The system avoids complications of through-the-objective TIRF associated with shared excitation and emission light path, has thin collection thickness, produces excellent background rejection, and is an effective method to study molecular motion. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Dong, Chaoqing; Irudayaraj, Joseph
2012-10-11
Aqueous quantum dots (QDs) directly synthesized with various thiol ligands have been investigated as imaging probes in living cells. However, the effect of the surface chemistry of these ligands on QDs' cellular uptakes and their intracellular fate remains poorly understood. In this work, four CdTe QDs were directly synthesized under aqueous conditions using four different thiols as stabilizers and their interactions with cells were investigated. Fluorescence correlation spectroscopy (FCS), X-ray photoelectron spectroscopy (XPS), and zeta potential measurements on QDs primarily show that the surface structure of these QDs is highly dependent on the thiol ligands used in the preparation of QDs' precursors, including its layer thicknesses, densities, and surface charges. Subsequently, FCS integrated with the maximum-entropy-method-based FCS (MEMFCS) was used to investigate the concentration distribution and dynamics of these QDs in living A-427 cells. Our findings indicate that QDs' surface characteristics affect cell membrane adsorption and subsequent internalization. More critically, we show that the cellular uptake of aqueous QDs is dependent on their hydrodynamic diameter and might have the potential to escape trapped environments to accumulate in the cytoplasm.
NASA Astrophysics Data System (ADS)
Guzenko, Nataliia; Gabchak, Oleksandra; Pakhlov, Evgenij
The complexation of polyhexamethylenguanidine hydrochloride (PHMG) and sodium carboxymethylcellulose (CMC) was investigated for different conditions. Mixing of equiconcentrated aqueous solutions of the polyelectrolytes was found to result in the formation of an insoluble interpolyelectrolyte complex with an overweight of carboxymethylcellulose. A step-by-step formation of stable, irreversibly adsorbed multilayer film of the polymers was demonstrated using the quartz crystal microbalance method. Unusually thick polymer shells with a large number of loops and tails of the polyanion were formed by the method of layer-by-layer self-assembly of PHMG and CMC on spherical CaCO3 particles. Hollow multilayer capsules stable in neutral media were obtained by dissolution of the inorganic matrix in EDTA solution.
Exploring the Nature of Cellulose Microfibrils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Ying; Burger, Christian; Ma, Hongyang
2015-03-20
Ultrathin cellulose microfibril fractions were extracted from spruce wood powder using combined delignification, TEMPO-catalyzed oxidation, and sonication processes. Small-angle X-ray scattering of these microfibril fractions in a “dilute” aqueous suspension (concentration 0.077 wt %) revealed that their shape was in the form of nanostrip with 4 nm width and only about 0.5 nm thicknesses. We found that these dimensions were further confirmed by TEM and AFM measurements. The 0.5 nm thickness implied that the nanostrip could contain only a single layer of cellulose chains. At a higher concentration (0.15 wt %), SAXS analysis indicated that these nanostrips aggregated into amore » layered structure. The X-ray diffraction of samples collected at different preparation stages suggested that microfibrils were delaminated along the (110) planes from the Iβ cellulose crystals. Moreover, the degree of oxidation and solid-state 13C NMR characterizations indicated that, in addition to the surface molecules, some inner molecules of microfibrils were also oxidized, facilitating the delamination into cellulose nanostrips.« less
Exploring the nature of cellulose microfibrils.
Su, Ying; Burger, Christian; Ma, Hongyang; Chu, Benjamin; Hsiao, Benjamin S
2015-04-13
Ultrathin cellulose microfibril fractions were extracted from spruce wood powder using combined delignification, TEMPO-catalyzed oxidation, and sonication processes. Small-angle X-ray scattering of these microfibril fractions in a "dilute" aqueous suspension (concentration 0.077 wt %) revealed that their shape was in the form of nanostrip with 4 nm width and only about 0.5 nm thicknesses. These dimensions were further confirmed by TEM and AFM measurements. The 0.5 nm thickness implied that the nanostrip could contain only a single layer of cellulose chains. At a higher concentration (0.15 wt %), SAXS analysis indicated that these nanostrips aggregated into a layered structure. The X-ray diffraction of samples collected at different preparation stages suggested that microfibrils were delaminated along the (11̅0) planes from the Iβ cellulose crystals. The degree of oxidation and solid-state (13)C NMR characterizations indicated that, in addition to the surface molecules, some inner molecules of microfibrils were also oxidized, facilitating the delamination into cellulose nanostrips.
Domain growth kinetics in stratifying foam films
NASA Astrophysics Data System (ADS)
Zhang, Yiran; Sharma, Vivek
2015-11-01
Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Typical foam films consist of two surfactant-laden surfaces that are ~ 5 nm - 10 micron apart. Sandwiched between these interfacial layers is a fluid that drains primarily under the influence of viscous and interfacial forces, including disjoining pressure. Interestingly, a layered ordering of micelles inside the foam films (thickness <100 nm) leads to a stepwise thinning phenomena called stratification, which results in a thickness-dependent variation in reflected light intensity, visualized as progressively darker shades of gray. Thinner, darker domains spontaneously grow within foam films. We show that the domain expansion dynamics exhibit two distinct growth regimes with characteristic scaling laws. Though several studies have focused on the expansion dynamics of isolated domains that exhibit a diffusion-like scaling, the change in expansion kinetics observed after domains contact with the Plateau border has not been reported and analyzed before.
NASA Astrophysics Data System (ADS)
Ram, S. D. Gopal; Ravi, G.; Athimoolam, A.; Mahalingam, T.; Kulandainathan, M. Anbu
2011-12-01
Tuning the morphology, size and aspect ratio of free standing ZnO nanostructured arrays by a simple hydrothermal method is reported. Pre-coated ZnO seed layers of two different thicknesses (≈350 nm or 550 nm) were used as substrates to grow ZnO nanostructures for the study. Various parameters such as chemical ambience, pH of the solution, strength of the Zn2+ atoms and thickness of seed bed are varied to analyze their effects on the resultant ZnO nanostructures. Vertically oriented hexagonal nanorods, multi-angular nanorods, hexagonal diskette and popcorn-like nanostructures are obtained by altering the experimental parameters. All the produced nanostructures were analysed by X-ray powder diffraction analysis and found to be grown in the (002) orientation of wurtzite ZnO. The texture co-efficient of ZnO layer was improved by combining a thick seed layer with higher cationic strength. Surface morphological studies reveal various nanostructures such as nanorods, diskettes and popcorn-like structures based on various preparation conditions. The optical property of the closest packed nanorods array was recorded by UV-VIS spectrometry, and the band gap value simulated from the results reflect the near characteristic band gap of ZnO. The surface roughness profile taken from the Atomic Force Microscopy reveals a roughness of less than 320 nm.
Besar, Kalpana; Ardoña, Herdeline Ann M; Tovar, John D; Katz, Howard E
2015-12-22
π-Conjugated peptide materials are attractive for bioelectronics due to their unique photophysical characteristics, biofunctional interfaces, and processability under aqueous conditions. In order to be relevant for electrical applications, these types of materials must be able to support the passage of current and the transmission of applied voltages. Presented herein is an investigation of both the current and voltage transmission activities of one-dimensional π-conjugated peptide nanostructures. Observations of the nanostructures as both semiconducting and gate layers in organic field-effect transistors (OFETs) were made, and the effect of systematic changes in amino acid composition on the semiconducting/conducting functionality of the nanostructures was investigated. These molecular variations directly impacted the hole mobility values observed for the nanomaterial active layers over 3 orders of magnitude (∼0.02 to 5 × 10(-5) cm(2) V(-1) s(-1)) when the nanostructures had quaterthiophene cores and the assembled peptide materials spanned source and drain electrodes. Peptides without the quaterthiophene core were used as controls and did not show field-effect currents, verifying that the transport properties of the nanostructures rely on the semiconducting behavior of the π-electron core and not just ionic rearrangements. We also showed that the nanomaterials could act as gate electrodes and assessed the effect of varying the gate dielectric layer thickness in devices where the conventional organic semiconductor pentacene spanned the source and drain electrodes in a top-contact OFET, showing an optimum performance with 35-40 nm dielectric thickness. This study shows that these peptides that self-assemble in aqueous environments can be used successfully to transmit electronic signals over biologically relevant distances.
NASA Astrophysics Data System (ADS)
Bitsch, Boris; Gallasch, Tobias; Schroeder, Melanie; Börner, Markus; Winter, Martin; Willenbacher, Norbert
2016-10-01
We introduce a novel formulation concept to prepare high capacity graphite electrodes for lithium ion batteries. The concept is based on the capillary suspension phenomenon: graphite and conductive agent are dispersed in an aqueous binder solution and the organic solvent octanol is added as immiscible, secondary fluid providing the formation of a sample-spanning network resulting in unique stability and coating properties. No additional processing steps compared to conventional slurry preparation are required. The resulting ultra-thick electrodes comprise mass loadings of about 16.5 mg cm-2, uniform layer thickness, and superior edge contours. The adjustment of mechanical energy input ensures uniform distribution of the conductive agent and sufficient electronic conductivity of the final dry composite electrode. The resulting pore structure is due to the stable network provided by the secondary fluid which evaporates residue-free during drying. Constant current-constant potential (CC-CP) cycling clearly indicates that the corresponding microstructure significantly improves the kinetics of reversible Li+ (de-) intercalation. A double layer electrode combining a conventionally prepared layer coated directly onto the Cu current collector with an upper layer stabilized with octanol was prepared applying wet-on-wet coating. CC-CP cycling data confirms that staged porosity within the electrode cross section results in superior electrochemical performance.
Aqueous enzymatic extraction of Moringa oleifera oil.
Mat Yusoff, Masni; Gordon, Michael H; Ezeh, Onyinye; Niranjan, Keshavan
2016-11-15
This paper reports on the extraction of Moringa oleifera (MO) oil by using aqueous enzymatic extraction (AEE) method. The effect of different process parameters on the oil recovery was discovered by using statistical optimization, besides the effect of selected parameters on the formation of its oil-in-water cream emulsions. Within the pre-determined ranges, the use of pH 4.5, moisture/kernel ratio of 8:1 (w/w), and 300stroke/min shaking speed at 40°C for 1h incubation time resulted in highest oil recovery of approximately 70% (goil/g solvent-extracted oil). These optimized parameters also result in a very thin emulsion layer, indicating minute amount of emulsion formed. Zero oil recovery with thick emulsion were observed when the used aqueous phase was re-utilized for another AEE process. The findings suggest that the critical selection of AEE parameters is key to high oil recovery with minimum emulsion formation thereby lowering the load on the de-emulsification step. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Choi, Hwa-Jeong; Song, Young-Min; Chung, Ildoo; Ryu, Kwang-Sun; Jo, Nam-Ju
2009-02-01
Conducting polymers (CPs), such as polypyrrole, polythiophene, and polyaniline, are unique in that they have switchable properties due to their two or more mechanically stable oxidation states. Thus, their films or coatings can be easily switched by the application of a small voltage and current to change their volume during electrochemical redox processes. In particular, polypyrrole (PPy) has been studied most extensively because of its high electrical conductivity and good environmental stability under ambient conditions. In this work, we have studied a new CP actuator, fully polymeric, assembled with two PPy film electrodes and a solid polymer electrolyte (SPE), polyurethane/Mg(ClO4)2. Polyurethanes (PUs) were synthesized from 4,4'-diphenylmethane diisocyanate (MDI), 1,4-butanediol (1,4-BD) and three types of polyol: poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), and PPG-block-PEG-block-PPG (PPG-co-PEG). The chemical polymerization of PPy by immersion in Py monomer aqueous solution and oxidant aqueous solution is an adequate method to prepare PU/PPy composite film as an actuator. To find the proper thickness of the PPy coating layer for actuation, we measured the displacements of the actuators according to the thickness of the PPy coating layer. The displacement of all actuators is discussed in connection with the properties of the SPE and PPy. All the results obtained in this work show the feasibility of electrochemomechanical devices based on PPy and SPE film being able to work in air.
Total reflection infrared spectroscopy of water-ice and frozen aqueous NaCl solutions.
Walker, Rachel L; Searles, Keith; Willard, Jesse A; Michelsen, Rebecca R H
2013-12-28
Liquid-like and liquid water at and near the surface of water-ice and frozen aqueous sodium chloride films were observed using attenuated total reflection infrared spectroscopy (ATR-IR). The concentration of NaCl ranged from 0.0001 to 0.01 M and the temperature varied from the melting point of water down to 256 K. The amount of liquid brine at the interface of the frozen films with the germanium ATR crystal increased with salt concentration and temperature. Experimental spectra are compared to reflection spectra calculated for a simplified morphology of a uniform liquid layer between the germanium crystal and the frozen film. This morphology allows for the amount of liquid observed in an experimental spectrum to be converted to the thickness of a homogenous layer with an equivalent amount of liquid. These equivalent thickness ranges from a nanometer for water-ice at 260 K to 170 nm for 0.01 M NaCl close to the melting point. The amounts of brine observed are over an order of magnitude less than the total liquid predicted by equilibrium thermodynamic models, implying that the vast majority of the liquid fraction of frozen solutions may be found in internal inclusions, grain boundaries, and the like. Thus, the amount of liquid and the solutes dissolved in them that are available to react with atmospheric gases on the surfaces of snow and ice are not well described by thermodynamic equilibrium models which assume the liquid phase is located entirely at the surface.
Yadav, Amrita R; Sriram, Rashmi; Carter, Jared A; Miller, Benjamin L
2014-02-01
The uniformity of aminosilane layers typically used for the modification of hydroxyl bearing surfaces such as silicon dioxide is critical for a wide variety of applications, including biosensors. However, in spite of many studies that have been undertaken on surface silanization, there remains a paucity of easy-to-implement deposition methods reproducibly yielding smooth aminosilane monolayers. In this study, solution- and vapor-phase deposition methods for three aminoalkoxysilanes differing in the number of reactive groups (3-aminopropyl triethoxysilane (APTES), 3-aminopropyl methyl diethoxysilane (APMDES) and 3-aminopropyl dimethyl ethoxysilane (APDMES)) were assessed with the aim of identifying methods that yield highly uniform and reproducible silane layers that are resistant to minor procedural variations. Silane film quality was characterized based on measured thickness, hydrophilicity and surface roughness. Additionally, hydrolytic stability of the films was assessed via these thickness and contact angle values following desorption in water. We found that two simple solution-phase methods, an aqueous deposition of APTES and a toluene based deposition of APDMES, yielded high quality silane layers that exhibit comparable characteristics to those deposited via vapor-phase methods. Copyright © 2013 Elsevier B.V. All rights reserved.
Ademi, Abdulakim; Grozdanov, Anita; Paunović, Perica; Dimitrov, Aleksandar T
2015-01-01
Summary A model consisting of an equation that includes graphene thickness distribution is used to calculate theoretical 002 X-ray diffraction (XRD) peak intensities. An analysis was performed upon graphene samples produced by two different electrochemical procedures: electrolysis in aqueous electrolyte and electrolysis in molten salts, both using a nonstationary current regime. Herein, the model is enhanced by a partitioning of the corresponding 2θ interval, resulting in significantly improved accuracy of the results. The model curves obtained exhibit excellent fitting to the XRD intensities curves of the studied graphene samples. The employed equation parameters make it possible to calculate the j-layer graphene region coverage of the graphene samples, and hence the number of graphene layers. The results of the thorough analysis are in agreement with the calculated number of graphene layers from Raman spectra C-peak position values and indicate that the graphene samples studied are few-layered. PMID:26665083
Hernandez-Pascacio, Jorge; Piñeiro, Ángel; Ruso, Juan M; Hassan, Natalia; Campbell, Richard A; Campos-Terán, José; Costas, Miguel
2016-07-05
The spontaneous aggregation of α-cyclodextrin (α-CD) molecules in the bulk aqueous solution and the interactions of the resulting aggregates at the liquid/air interface have been studied at 283 K using a battery of techniques: transmission electron microscopy, dynamic light scattering, dynamic surface tensiometry, Brewster angle microscopy, neutron reflectometry, and ellipsometry. We show that α-CD molecules spontaneously form aggregates in the bulk that grow in size with time. These aggregates adsorb to the liquid/air interface with their size in the bulk determining the adsorption rate. The material that reaches the interface coalesces laterally to form two-dimensional domains on the micrometer scale with a layer thickness on the nanometer scale. These processes are affected by the ages of both the bulk and the interface. The interfacial layer formed is not in fast dynamic equilibrium with the subphase as the resulting morphology is locked in a kinetically trapped state. These results reveal a surprising complexity of the parallel physical processes taking place in the bulk and at the interface of what might have seemed initially like a simple system.
Ion Diffusion-Directed Assembly Approach to Ultrafast Coating of Graphene Oxide Thick Multilayers.
Zhao, Xiaoli; Gao, Weiwei; Yao, Weiquan; Jiang, Yanqiu; Xu, Zhen; Gao, Chao
2017-10-24
The layer-by-layer (LbL) assembly approach has been widely used to fabricate multilayer coatings on substrates with multiple cycles, whereas it is hard to access thick films efficiently. Here, we developed an ion diffusion-directed assembly (IDDA) strategy to rapidly make multilayer thick coatings in one step on arbitrary substrates. To achieve multifunctional coatings, graphene oxide (GO) and metallic ions were selected as the typical building blocks and diffusion director in IDDA, respectively. With diffusion of metallic ions from substrate to negatively charged GO dispersion spontaneously (i.e., from high-concentration region to low-concentration region), GO was assembled onto the substrate sheet-by-sheet via sol-gel transformation. Because metallic ions with size of subnanometers can diffuse directionally and freely in the aqueous dispersion, GO was coated on the substrate efficiently, giving rise to films with desired thickness up to 10 μm per cycle. The IDDA approach shows three main merits: (1) high efficiency with a μm-scale coating rate; (2) controllability over thickness and evenness; and (3) generality for substrates of plastics, metals and ceramics with any shapes and morphologies. With these merits, IDDA strategy was utilized in the efficient fabrication of functional graphene coatings that exhibit outstanding performance as supercapacitors, electromagnetic interference shielding textiles, and anticorrosion coatings. This IDDA approach can be extended to other building blocks including polymers and colloidal nanoparticles, promising for the scalable production and application of multifunctional coatings.
Pillai, Karthik; Navarro Arzate, Fernando; Zhang, Wei; Renneckar, Scott
2014-01-01
Woody materials are comprised of plant cell walls that contain a layered secondary cell wall composed of structural polymers of polysaccharides and lignin. Layer-by-layer (LbL) assembly process which relies on the assembly of oppositely charged molecules from aqueous solutions was used to build a freestanding composite film of isolated wood polymers of lignin and oxidized nanofibril cellulose (NFC). To facilitate the assembly of these negatively charged polymers, a positively charged polyelectrolyte, poly(diallyldimethylammomium chloride) (PDDA), was used as a linking layer to create this simplified model cell wall. The layered adsorption process was studied quantitatively using quartz crystal microbalance with dissipation monitoring (QCM-D) and ellipsometry. The results showed that layer mass/thickness per adsorbed layer increased as a function of total number of layers. The surface coverage of the adsorbed layers was studied with atomic force microscopy (AFM). Complete coverage of the surface with lignin in all the deposition cycles was found for the system, however, surface coverage by NFC increased with the number of layers. The adsorption process was carried out for 250 cycles (500 bilayers) on a cellulose acetate (CA) substrate. Transparent free-standing LBL assembled nanocomposite films were obtained when the CA substrate was later dissolved in acetone. Scanning electron microscopy (SEM) of the fractured cross-sections showed a lamellar structure, and the thickness per adsorption cycle (PDDA-Lignin-PDDA-NC) was estimated to be 17 nm for two different lignin types used in the study. The data indicates a film with highly controlled architecture where nanocellulose and lignin are spatially deposited on the nanoscale (a polymer-polymer nanocomposites), similar to what is observed in the native cell wall. PMID:24961302
2011-07-01
cameras were installed around the test pan and an underwater GoPro ® video camera recorded the fire from below the layer of fuel. 3.2.2. Camera Images...Distribution A: Approved for public release; distribution unlimited. 3.2.3. Video Images A GoPro video camera with a wide angle lens recorded the tests...camera and the GoPro ® video camera were not used for fire suppression experiments. 3.3.2. Test Pans Two ¼-in thick stainless steel test pans were
NASA Astrophysics Data System (ADS)
Morgenstern, R.; Scharf, I.; Lampke, T.
2018-06-01
The age-hardenable aluminium alloy EN AW-7075 exhibits outstanding specific mechanical properties and therefore offers a high potential for lightweight construction. Anodising in aqueous oxalic acid solutions is suitable to produce a protective oxide ceramic conversion layer on this alloy. This study examines the influence of the precipitation state of the substrate alloy on microstructure and properties of anodic oxide layers. Therefore, EN AW-7075 sheets in the heat treatment conditions T4, T6 and T73 were anodized in 0.8 M oxalic acid solution at constant voltage. The current efficiency was determined on the basis of the electrical charge quantity, coating thickness and coating mass. Instrumented indentation tests were applied in order to evaluate the coating hardness. The microstructure of the anodic oxide layer was illustrated using field emission electron microscopy. It was shown that the current efficiency strongly depends on the heat treatment condition.
NASA Astrophysics Data System (ADS)
Takeuchi, M.; Shimizu, H.; Kajitani, R.; Kawasaki, K.; Kumagai, Y.; Koukitu, A.; Aoyagi, Y.
2007-01-01
The growth of N-polar AlN layers on c-plane sapphire is reported. Low-temperature AlN (LT-AlN) layers were used as seeding buffer layers with pre-nitridation for sapphire. To avoid strong vapor-phase reaction between trimethylaluminum (TMA) and ammonia (NH 3) and to improve the crystalline quality, low-pressure flow-modulated (FM) metal-organic chemical vapor deposition (MOCVD) technique was introduced with careful optimization of the FM sequence. The surface morphologies and the crystalline quality defined by the X-ray diffraction (XRD) (0 0 2) and (1 0 0) rocking curve measurements strongly depended on the LT-AlN thickness and on the TMA coverage per cycle of the FM growth. The sample showing the best XRD data with a good morphology was almost completely etched in aqueous KOH solution owing to N-polarity. From the plan-view transmission electron microscopy (TEM) observation, the dislocation density was counted to be about 3×10 10 cm -2.
Few-layer bismuth selenides exfoliated by hemin inhibit amyloid-β1–42 fibril formation
Peng, Jian; Xiong, Yunjing; Lin, Zhiqin; Sun, Liping; Weng, Jian
2015-01-01
Inhibiting amyloid-β (Aβ) fibril formation is the primary therapeutic strategy for Alzheimer’s disease. Several small molecules and nanomaterials have been used to inhibit Aβ fibril formation. However, insufficient inhibition efficiency or poor metabolization limits their further applications. Here, we used hemin to exfoliate few-layer Bi2Se3 in aqueous solution. Then we separated few-layer Bi2Se3 with different sizes and thicknesses by fractional centrifugation, and used them to attempt to inhibit Aβ1-42 aggregation. The results show that smaller and thinner few-layer Bi2Se3 had the highest inhibition efficiency. We further investigated the interaction between few-layer Bi2Se3 and Aβ1-42 monomers. The results indicate that the inhibition effect may be due to the high adsorption capacity of few-layer Bi2Se3 for Aβ1−42 monomers. Few-layer Bi2Se3 also decreased Aβ-mediated peroxidase-like activity and cytotoxicity according to in vitro neurotoxicity studies under physiological conditions. Therefore, our work shows the potential for applications of few-layer Bi2Se3 in the biomedical field. PMID:26018135
Total reflection infrared spectroscopy of water-ice and frozen aqueous NaCl solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Rachel L.; Searles, Keith; Willard, Jesse A.
2013-12-28
Liquid-like and liquid water at and near the surface of water-ice and frozen aqueous sodium chloride films were observed using attenuated total reflection infrared spectroscopy (ATR-IR). The concentration of NaCl ranged from 0.0001 to 0.01 M and the temperature varied from the melting point of water down to 256 K. The amount of liquid brine at the interface of the frozen films with the germanium ATR crystal increased with salt concentration and temperature. Experimental spectra are compared to reflection spectra calculated for a simplified morphology of a uniform liquid layer between the germanium crystal and the frozen film. This morphologymore » allows for the amount of liquid observed in an experimental spectrum to be converted to the thickness of a homogenous layer with an equivalent amount of liquid. These equivalent thickness ranges from a nanometer for water-ice at 260 K to 170 nm for 0.01 M NaCl close to the melting point. The amounts of brine observed are over an order of magnitude less than the total liquid predicted by equilibrium thermodynamic models, implying that the vast majority of the liquid fraction of frozen solutions may be found in internal inclusions, grain boundaries, and the like. Thus, the amount of liquid and the solutes dissolved in them that are available to react with atmospheric gases on the surfaces of snow and ice are not well described by thermodynamic equilibrium models which assume the liquid phase is located entirely at the surface.« less
V6O13 films by control of the oxidation state from aqueous precursor to crystalline phase.
Peys, Nick; Ling, Yun; Dewulf, Daan; Gielis, Sven; De Dobbelaere, Christopher; Cuypers, Daniel; Adriaensens, Peter; Van Doorslaer, Sabine; De Gendt, Stefan; Hardy, An; Van Bael, Marlies K
2013-01-28
An aqueous deposition process for V(6)O(13) films is developed whereby the vanadium oxidation state is continuously controlled throughout the entire process. In the precursor stage, a controlled wet chemical reduction of the vanadium(V) source with oxalic acid is achieved and monitored by (51)Vanadium Nuclear Magnetic Resonance ((51)V-NMR) and Ultraviolet-Visible (UV-Vis) spectroscopy. The resulting vanadium(IV) species in the aqueous solution are identified as mononuclear citrato-oxovanadate(IV) complexes by Electron Paramagnetic Resonance (EPR) and Fourier Transform Infra-Red (FTIR) spectroscopy. This precursor is successfully employed for the deposition of uniform, thin films. The optimal deposition and annealing conditions for the formation of crystalline V(6)O(13), including the control of the vanadium oxidation state, are determined through an elaborate study of processing temperature and O(2) partial pressure. To ensure a sub 100 nm adjustable film thickness, a non-oxidative intermediate thermal treatment is carried out at the end of each deposition cycle, allowing maximal precursor decomposition while still avoiding V(IV) oxidation. The resulting surface hydrophilicity, indispensable for the homogeneous deposition of the next layer, is explained by an increased surface roughness and the increased availability of surface vanadyl groups. Crystalline V(6)O(13) with a preferential (002) orientation is obtained after a post deposition annealing in a 0.1% O(2) ambient for thin films with a thickness of 20 nm.
Emplacement of Widespread Fe/Mg Phyllosilicate Layer in West Margaritifer Terra, Mars
NASA Astrophysics Data System (ADS)
Seelos, K. D.; Maxwell, R. E.; Seelos, F. P.; Buczkowski, D.; Viviano-Beck, C. E.
2017-12-01
West Margaritifer Terra is located at the eastern end of Valles Marineris at the complex intersection of chaos terrains, cratered highlands, and multiple generations of outflow channels. Adjacent regions host layered phyllosilicates thought to indicate early Mars pedogenic and/or ground water-based alteration (e.g., Le Deit et al., 2012), and indeed, hydrologic modeling supports prolonged aqueous activity in the Noachian and Hesperian eras (Andrews-Hanna and Lewis, 2011). The remnant high-standing plateaus in West Margaritifer (0-15°S, 325-345°E) host numerous phyllosilicate-bearing outcrops as well and are the focus of this study. Here, we performed a systematic mapping and characterization of mineralogy and morphology of these deposits in order to assess similarity to other layered phyllosilicates and evaluate potential formation mechanisms. Utilizing multiple remote sensing datasets, we identified three types of phyllosilicate exposures distributed throughout the region: 1) along upper chaos fracture walls, 2) in erosional windows on the plains, and 3) in crater walls and ejecta. Outcrops are spectrally indicative of Fe/Mg smectite (most similar to saponite) and only rare, isolated occurrences of Al-phyllosilicate were observed. Morphologically, the layer is a few to 10 m thick, light-toned, polygonally fractured at decameter scales, and vertical subparallel banding is evident in places. These characteristics were used along with spatial distribution, elevation, and geologic context to evaluate 4 potential formation mechanisms: fluvio-lacustrine, pedogenesis, diagenesis, and hydrothermal alteration. We find that the widespread distribution and spectral homogeneity of the layer favors formation via groundwater alteration and/or pedogenic weathering. This is consistent with interpretations of similar layered phyllosilicates in NW Noachis Terra and the Valles Marineris plains to the west, and significantly extends the area over which these aqueous processes operated in Noachian times.
A Novel Approach Toward Fabrication of High Performance Thin Film Composite Polyamide Membranes.
Khorshidi, Behnam; Thundat, Thomas; Fleck, Brian A; Sadrzadeh, Mohtada
2016-02-29
A practical method is reported to enhance water permeability of thin film composite (TFC) polyamide (PA) membranes by decreasing the thickness of the selective PA layer. The composite membranes were prepared by interfacial polymerization (IP) reaction between meta-phenylene diamine (MPD)-aqueous and trimesoyl chloride (TMC)-organic solvents at the surface of polyethersulfone (PES) microporous support. Several PA TFC membranes were prepared at different temperatures of the organic solution ranging from -20 °C to 50 °C. The physico-chemical and morphological properties of the synthesized membranes were carefully characterized using serval analytical techniques. The results confirmed that the TFC membranes, synthesized at sub-zero temperatures of organic solution, had thinner and smoother PA layer with a greater degree of cross-linking and wettability compared to the PA films prepared at 50 °C. We demonstrated that reducing the temperature of organic solution effectively decreased the thickness of the PA active layer and thus enhanced water permeation through the membranes. The most water permeable membrane was prepared at -20 °C and exhibited nine times higher water flux compared to the membrane synthesized at room temperature. The method proposed in this report can be effectively applied for energy- and cost-efficient development of high performance nanofiltration and reverse osmosis membranes.
NASA Astrophysics Data System (ADS)
Pan, R.; Jeffries, J. B.; Dreier, T.; Schulz, C.
2016-01-01
A multi-wavelength near-infrared (NIR) diode laser absorption sensor has been developed and demonstrated for real-time monitoring of the thickness, solute concentration, and temperature of thin films of urea-water solutions. The sensor monitors the transmittance of three near-infrared diode lasers through the thin liquid film. Film thickness, urea mass fraction, and liquid temperature were determined from measured transmittance ratios of suitable combinations of lasers. Available laser wavelengths were selected depending on the variation of the NIR absorption spectrum of the solution with temperature and solute concentration. The spectral database was measured by a Fourier transform infrared spectrometer in the range 5500-8000 cm-1 for urea solutions between 5 and 40 wt% and temperatures between 298 and 338 K. A prototype sensor was constructed, and the sensor concept was first validated with measurements using a calibration cell providing liquid layers of variable thickness (200-1500 µm), urea mass fraction (5-40 wt%) and temperature (298-318 K). Temporal variations of film thickness and urea concentration were captured during the constant-temperature evaporation of a liquid film deposited on an optically polished heated quartz flat.
Convective diffusion in protein crystal growth
NASA Technical Reports Server (NTRS)
Baird, J. K.; Meehan, E. J., Jr.; Xidis, A. L.; Howard, S. B.
1986-01-01
A protein crystal modeled as a flat plate suspended in the parent solution, with the normal to the largest face perpendicular to gravity and the protein concentration in the solution adjacent to the plate taken to be the equilibrium solubility, is studied. The Navier-Stokes equation and the equation for convective diffusion in the boundary layer next to the plate are solved to calculate the flow velocity and the protein mass flux. The local rate of growth of the plate is shown to vary significantly with depth due to the convection. For an aqueous solution of lysozyme at a concentration of 40 mg/ml, the boundary layer at the top of a 1-mm-high crystal has a thickness of 80 microns at 1 g, and 2570 microns at 10 to the -6th g.
Polyethylene-Glycol-Mediated Self-Assembly of Magnetite Nanoparticles at the Liquid/Vapor Interface
Vaknin, David; Wang, Wenjie; Islam, Farhan; ...
2018-03-23
It is shown that magnetite nanoparticles (MagNPs) grafted with polyethylene glycol (PEG) self-assemble and short-range-order as 2D films at surfaces of aqueous suspensions by manipulating salt concentrations. Synchrotron X-ray reflectivity and grazing-incidence small angle X-ray scattering studies reveal that K 2CO 3 induces the migration of the PEG-MagNPs to the liquid/vapor interface to form a Gibbs layer of monoparticle in thickness. As the salt concentration and/or nanoparticle concentration increase, the surface-adsorbed nanoparticles become more organized. And further increase in salt concentration leads to the growth of an additional incomplete nanoparticle layer contiguous to the first one at the vapor/liquid interfacemore » that remains intact.« less
Polyethylene-Glycol-Mediated Self-Assembly of Magnetite Nanoparticles at the Liquid/Vapor Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaknin, David; Wang, Wenjie; Islam, Farhan
It is shown that magnetite nanoparticles (MagNPs) grafted with polyethylene glycol (PEG) self-assemble and short-range-order as 2D films at surfaces of aqueous suspensions by manipulating salt concentrations. Synchrotron X-ray reflectivity and grazing-incidence small angle X-ray scattering studies reveal that K 2CO 3 induces the migration of the PEG-MagNPs to the liquid/vapor interface to form a Gibbs layer of monoparticle in thickness. As the salt concentration and/or nanoparticle concentration increase, the surface-adsorbed nanoparticles become more organized. And further increase in salt concentration leads to the growth of an additional incomplete nanoparticle layer contiguous to the first one at the vapor/liquid interfacemore » that remains intact.« less
Ultrathin cellulose nanosheet membranes for superfast separation of oil-in-water nanoemulsions
NASA Astrophysics Data System (ADS)
Zhou, Ke; Zhang, Qiu Gen; Li, Hong Mei; Guo, Nan Nan; Zhu, Ai Mei; Liu, Qing Lin
2014-08-01
Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective separation of oil-in-water nanoemulsions. The newly developed ultrathin cellulose membranes have a wide application in oily wastewater treatment, separation and purification of nanomaterials.Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective separation of oil-in-water nanoemulsions. The newly developed ultrathin cellulose membranes have a wide application in oily wastewater treatment, separation and purification of nanomaterials. Electronic supplementary information (ESI) available: Stability of cyclohexane-in-water nanoemulsion at room temperature; analysis of the oil concentration in the permeate using GC; SEM images of the cellulose nanosheet membranes with different thicknesses. See DOI: 10.1039/c4nr03227f
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yong; Axnanda, Stephanus; Crumlin, Ethan J.
Some rcent advances of ambient pressure X-ray photoelectron spectroscopy (AP-XPS) have enabled the chemical composition and the electrical potential profile at a liquid/electrode interface under electrochemical reaction conditions to be directly probed. In this work, we apply this operando technique to study the surface chemical composition evolution on a Co metal electrode in 0.1 M KOH aqueous solution under various electrical biases. It is found that an ~12.2 nm-thick layer of Co(OH) 2 forms at a potential of about -0.4 V Ag/AgCl, and upon increasing the anodic potential to about +0.4 V Ag/AgCl, this layer is partially oxidized into cobaltmore » oxyhydroxide (CoOOH). A CoOOH/Co(OH) 2 mixture layer is formed on the top of the electrode surface. Finally, the oxidized surface layer can be reduced to Co0 at a cathodic potential of -1.35 VAg/Cl. Our observations indicate that the ultrathin layer containing cobalt oxyhydroxide is the active phase for oxygen evolution reaction (OER) on a Co electrode in an alkaline electrolyte, consistent with previous studies.« less
Dynamic response of gold nanoparticle chemiresistors to organic analytes in aqueous solution.
Müller, Karl-Heinz; Chow, Edith; Wieczorek, Lech; Raguse, Burkhard; Cooper, James S; Hubble, Lee J
2011-10-28
We investigate the response dynamics of 1-hexanethiol-functionalized gold nanoparticle chemiresistors exposed to the analyte octane in aqueous solution. The dynamic response is studied as a function of the analyte-water flow velocity, the thickness of the gold nanoparticle film and the analyte concentration. A theoretical model for analyte limited mass-transport is used to model the analyte diffusion into the film, the partitioning of the analyte into the 1-hexanethiol capping layers and the subsequent swelling of the film. The degree of swelling is then used to calculate the increase of the electron tunnel resistance between adjacent nanoparticles which determines the resistance change of the film. In particular, the effect of the nonlinear relationship between resistance and swelling on the dynamic response is investigated at high analyte concentration. Good agreement between experiment and the theoretical model is achieved. This journal is © the Owner Societies 2011
Mahajan, Amit; Pinho, Rui; Dolhen, Morgane; Costa, M Elisabete; Vilarinho, Paula M
2016-05-31
A current challenge for the fabrication of functional oxide-based devices is related with the need of environmental and sustainable materials and processes. By considering both lead-free ferroelectrics of potassium sodium niobate (K0.5Na0.5NbO3, KNN) and aqueous-based electrophoretic deposition here we demonstrate that an eco-friendly aqueous solution-based process can be used to produce KNN thick coatings with improved electromechanical performance. KNN thick films on platinum substrates with thickness varying between 10 and 15 μm have a dielectric permittivity of 495, dielectric losses of 0.08 at 1 MHz, and a piezoelectric coefficient d33 of ∼70 pC/N. At TC these films display a relative permittivity of 2166 and loss tangent of 0.11 at 1 MHz. A comparison of the physical properties between these films and their bulk ceramics counterparts demonstrates the impact of the aqueous-based electrophoretic deposition (EPD) technique for the preparation of lead-free ferroelectric thick films. This opens the door to the possible development of high-performance, lead-free piezoelectric thick films by a sustainable low-cost process, expanding the applicability of lead-free piezoelectrics.
NASA Astrophysics Data System (ADS)
Li, Ping; Guo, Xinzhuan; Chen, Sibo; Wang, Chao; Yang, Junlong; Zhou, Xingfan
2018-02-01
In order to investigate the origin of the high conductivity anomalies geophysically observed in the mid-lower crust of Tibet Plateau, the electrical conductivity of plagioclase-NaCl-water system was measured at 1.2 GPa and 400-900 K. The relationship between electrical conductivity and temperature follows the Arrhenius law. The bulk conductivity increases with the fluid fraction and salinity, but is almost independent of temperature (activation enthalpy less than 0.1 eV). The conductivity of plagioclase-NaCl-water system is much lower than that of albite-NaCl-water system with similar fluid fraction and salinity, indicating a strong effect of the major mineral phase on the bulk conductivity of the brine-bearing system. The high conductivity anomalies of 10-1 and 100 S/m observed in the mid-lower crust of Tibet Plateau can be explained by the aqueous fluid with a volume fraction of 1 and 9%, respectively, if the fluid salinity is 25%. The anomaly value of 10-1 S/m can be explained by the aqueous fluid with a volume fraction of 6% if the salinity is 10%. In case of Southern Tibet where the heat flow is high, the model of a thin layer of brine-bearing aqueous fluid with a high salinity overlying a thick layer of partial melt is most likely to prevail.
Correlation between aqueous flare and residual visual field area in retinitis pigmentosa.
Nishiguchi, Koji M; Yokoyama, Yu; Kunikata, Hiroshi; Abe, Toshiaki; Nakazawa, Toru
2018-06-01
To investigate the relationship between aqueous flare, visual function and macular structures in retinitis pigmentosa (RP). Clinical data from 123 patients with RP (227 eyes), 35 patients with macular dystrophy (68 eyes) and 148 controls (148 eyes) were analysed. The differences in aqueous flare between clinical entities and the correlation between aqueous flare (measured with a laser flare cell meter) versus visual acuity, visual field area (Goldmann perimetry) and macular thickness (optical coherence tomography) in patients with RP were determined. Influence of selected clinical data on flare was assessed using linear mixed-effects model. Aqueous flare was higher in patients with RP than patients with macular dystrophy or controls (p=7.49×E-13). Aqueous flare was correlated with visual field area (R=-0.379, p=3.72×E-9), but not with visual acuity (R=0.083, p=0.215). Macular thickness (R=0.234, p=3.74×E-4), but not foveal thickness (R=0.122, p=0.067), was positively correlated with flare. Flare was not affected by the presence of macular complications. All these associations were maintained when the right and the left eyes were assessed separately. Analysis by linear mixed-effects model revealed that age (p=8.58×E-5), visual field area (p=8.01×E-7) and average macular thickness (p=0.037) were correlated with flare. Aqueous flare and visual field area were correlated in patients with RP. Aqueous flare may reflect the degree of overall retinal degeneration more closely than the local foveal impairment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Astrophysics Data System (ADS)
Pokrovsky, Oleg S.; Schott, Jacques
2000-10-01
Surfaces of natural and synthetic forsterite (Fo 91 and Fo 100) in aqueous solutions at 25°C were investigated using surface titrations in batch and limited residence time reactors, column filtration experiments, electrokinetic measurements (streaming potential and electrophoresis techniques), Diffuse Reflectance Infrared Spectroscopy (DRIFT), and X-ray Photoelectron Spectroscopy (XPS). At pH < 9, a Mg-depleted, Si-rich layer (<20 Å thick) is formed on the forsterite surface due to a Mg 2+ ↔ H + exchange reaction. Electrokinetic measurements yield a pH IEP value of 4.5 corresponding to the dominance of SiO 2 in the surface layer at pH < 9. In contrast, surface titrations of fresh powders give an apparent pH PZC of about 10 with the development of a large positive charge (up to 10 -4 mol/m 2 or 10 C/m 2) in the acid pH region. This may be explained by penetration of H + into the first unit cells of forsterite surface. The surface charge of acid-reacted forsterite is one or two orders of magnitude lower than that of unreacted forsterite with an apparent pH PZC at around 6.5 and a pH IEP value of 2.1 which is close to that for amorphous silica and reflects the formation of a silica-rich layer on the surface. XPS analyses indicate the penetration of hydrogen into the surface and the polymerization of silica tetrahedra in this leached layer. At pH > 10, a Si-deficient, Mg-rich surface layer is formed as shown by XPS analyses and the preferential Si release from the surface during column filtration experiments.
Zhao, Jing; Wang, Ya Xing; Zhang, Qi; Wei, Wen Bin; Xu, Liang; Jonas, Jost B
2018-03-13
To study macular choroidal layer thickness, 3187 study participants from the population-based Beijing Eye Study underwent spectral-domain optical coherence tomography with enhanced depth imaging for thickness measurements of the macular small-vessel layer, including the choriocapillaris, medium-sized choroidal vessel layer (Sattler's layer) and large choroidal vessel layer (Haller's layer). In multivariate analysis, greater thickness of all three choroidal layers was associated (all P < 0.05) with higher prevalence of age-related macular degeneration (AMD) (except for geographic atrophy), while it was not significantly (all P > 0.05) associated with the prevalence of open-angle glaucoma or diabetic retinopathy. There was a tendency (0.07 > P > 0.02) toward thinner choroidal layers in chronic angle-closure glaucoma. The ratio of small-vessel layer thickness to total choroidal thickness increased (P < 0.001; multivariate analysis) with older age and longer axial length, while the ratios of Sattler's layer and Haller's layer thickness to total choroidal thickness decreased. A higher ratio of small-vessel layer thickness to total choroidal thickness was significantly associated with a lower prevalence of AMD (early type, intermediate type, late geographic type). Axial elongation-associated and aging-associated choroidal thinning affected Haller's and Sattler's layers more markedly than the small-vessel layer. Non-exudative and exudative AMD, except for geographic atrophy, was associated with slightly increased choroidal thickness.
Improved Bilayer Resist System Using Contrast-Enhanced Lithography With Water-Soluble Photopolymer
NASA Astrophysics Data System (ADS)
Sasago, Masaru; Endo, Masayuki; Hirai, Yoshihiko; Ogawa, Kazufurni; Ishihara, Takeshi
1986-07-01
A new water-soluble contract enhanced material, WSP (Water-soluble Photopolymer), has been developed. The WSP is composed of a mainpolymer and a photobleachable reagents. The mainpolymer is a water-soluble polymer mixed with pullulan (refined through biotechnological process) and polyvinyl-pyrolidone (PVP). The photo-bleachable reagent is of a diazonium compound gorup. The introduction of the mainpolymer and photobleach-able reagent mixture has improved filmity, gas transparency, photobleaching characteristics and solubility in alkaline which are essential to the device fabrication. Submicron photoresist patterns are successfully fabricated by a simple sequence of photolithography process. The WSP layer has been applied to the bilayer resist system--deep-UV portable conformable masking (PCM)--that is not affected by VLSI's topography, and is able to fabricate highly accurate pattern. The aqueous developable layer, PMGI, with high organic solvent resistance is used in the bottom layer. Therefore, no interfacial mixing with conventional positive resist top layer is observed. Furthermore, deep-UV exposure method has been used for the KrF excimer laser optical system in order to increase high throughput. From the experiments, it has been confirmed that good resist transfer profile can be realized by the use of WSP, and that the submicron resist patterns with high aspect-ratio can be developed on the nonplaner wafer with steps of up to 41m by the combination of the WSP with the PCM system. By this technology, has been improved the weak point: variation in the line width due to the thickness of contrast-enhanced layer when the CEL technology is applied, and dependency of both the finished resist profile and the line-width accuracy on the thickness of the top layer resist when the PCM system is adopted.
Sustainable steric stabilization of colloidal titania nanoparticles
NASA Astrophysics Data System (ADS)
Elbasuney, Sherif
2017-07-01
A route to produce a stable colloidal suspension is essential if mono-dispersed particles are to be successfully synthesized, isolated, and used in subsequent nanocomposite manufacture. Dispersing nanoparticles in fluids was found to be an important approach for avoiding poor dispersion characteristics. However, there is still a great tendency for colloidal nanoparticles to flocculate over time. Steric stabilization can prevent coagulation by introducing a thick adsorbed organic layer which constitutes a significant steric barrier that can prevent the particle surfaces from coming into direct contact. One of the main features of hydrothermal synthesis technique is that it offers novel approaches for sustainable nanoparticle surface modification. This manuscript reports on the sustainable steric stabilization of titanium dioxide nanoparticles. Nanoparticle surface modification was performed via two main approaches including post-synthesis and in situ surface modification. The tuneable hydrothermal conditions (i.e. temperature, pressure, flow rates, and surfactant addition) were optimized to enable controlled steric stabilization in a continuous fashion. Effective post synthesis surface modification with organic ligand (dodecenyl succinic anhydride (DDSA)) was achieved; the optimum surface coating temperature was reported to be 180-240 °C to ensure DDSA ring opening and binding to titania nanoparticles. Organic-modified titania demonstrated complete change in surface properties from hydrophilic to hydrophobic and exhibited phase transfer from the aqueous phase to the organic phase. Exclusive surface modification in the reactor was found to be an effective approach; it demonstrated surfactant loading level 2.2 times that of post synthesis surface modification. Titania was also stabilized in aqueous media using poly acrylic acid (PAA) as polar polymeric dispersant. PAA-titania nanoparticles demonstrated a durable amorphous polymeric layer of 2 nm thickness. This manuscript revealed the state of the art for the real development of stable colloidal mono-dispersed particles with controlled surface properties.
NASA Astrophysics Data System (ADS)
Wang, Xinjun; Chen, Yunpeng; Chen, Huaihao; Gao, Yuan; He, Yifan; Li, Menghui; Lin, Hwaider; Sun, Neville; Sun, Nian
2018-05-01
Recently, large magnetoelectric coupling of a spinel/piezoelectric heterostructure has been reported. However, the linewidth of the spinel is very large due to lattice mismatch when ferrite is directly deposited on piezoelectric substrates. This indicates a large magnetic loss, which impedes the spinel/piezoelectric heterostructure from useful device applications. Mica is a well-known 2D material, which can be split manually layer by layer without the substrate clamping effect. In this report, NiZn ferrite was deposited on a mica substrate by a spin-spray deposition technique. Spin-spray deposition is a wet chemical synthesis technique involving several chemical reactions for generating high-quality crystalline spinel ferrite films with various compositions directly from an aqueous solution. The thickness of ferrite is 2 μm, and the linewidth of the ferromagnetic resonance (FMR) is 115 Oe which is suitable for RF/microwave devices. The large FMR field tuning of 605 Oe was observed in NiZn ferrite/mica/PMN-PT heterostructures with minimal substrate clamping effect by reducing the thickness of the mica substrate. These multiferroic heterostructures exhibiting combined giant magnetoelectric coupling and narrow ferromagnetic resonance linewidth offer great opportunities for flexible RF magnetic devices.
Zhang, Na; Wang, Taisheng; Wu, Xing; Jiang, Chen; Zhang, Taiming; Jin, Bangkun; Ji, Hengxing; Bai, Wei; Bai, Ruke
2017-07-25
Recently, investigation on two-dimensional (2D) organic polymers has made great progress, and conjugated 2D polymers already play a dynamic role in both academic and practical applications. However, a convenient, noninterfacial approach to obtain single-layer 2D polymers in solution, especially in aqueous media, remains challenging. Herein, we present a facile, highly efficient, and versatile "1D to 2D" strategy for preparation of free-standing single-monomer-thick conjugated 2D polymers in water without any aid. The 2D structure was achieved by taking advantage of the side-by-side self-assembly of a rigid amphiphilic 1D polymer and following topochemical photopolymerization in water. The spontaneous formation of single-layer polymer sheets was driven by synergetic association of the hydrophobic interactions, π-π stacking interactions, and electrostatic repulsion. Both the supramolecular sheets and the covalent sheets were confirmed by spectroscopic analyses and electron microscope techniques. Moreover, in comparison of the supramolecular 2D polymer, the covalent 2D polymer sheets exhibited not only higher mechanical strength but also higher conductivity, which can be ascribed to the conjugated network within the covalent 2D polymer sheets.
Horstman, Elizabeth M; Kafle, Prapti; Zhang, Fengjiao; Zhang, Yifu; Kenis, Paul J A; Diao, Ying
2018-03-28
Nanosizing is rapidly emerging as an alternative approach to enhance solubility and thus the bioavailability of poorly aqueous soluble active pharmaceutical ingredients (APIs). Although numerous techniques have been developed to perform nanosizing of API crystals, precise control and modulation of their size in an energy and material efficient manner remains challenging. In this study, we present meniscus-guided solution coating as a new technique to produce pharmaceutical thin films of nanoscale thickness with controlled morphology. We demonstrate control of aspirin film thickness over more than 2 orders of magnitude, from 30 nm to 1.5 μm. By varying simple process parameters such as the coating speed and the solution concentration, the aspirin film morphology can also be modulated by accessing different coating regimes, namely the evaporation regime and the Landau-Levich regime. Using ellipticine-a poorly water-soluble anticancer drug-as another model compound, we discovered a new polymorph kinetically trapped during solution coating. Furthermore, the polymorphic outcome can be controlled by varying coating conditions. We further performed layer-by-layer coating of multilayer nanocomposites, with alternating thin films of ellipticine and a biocompatible polymer, which demonstrate the potential of additive manufacturing of multidrug-personalized dosage forms using this approach.
Yang, Ying; Cai, Yurong; Sun, Ning; Li, Ruijing; Li, Wenhua; Kundu, Subhas C; Kong, Xiangdong; Yao, Juming
2017-03-01
Colloidosomes are becoming popular due to their significant flexibility with respect to microcapsule functionality. This study reports a facile approach for synthesizing silica colloidosomes by using sericin microcapsule as the matrix in an environment-friendly method. The silica colloid arrangement on the sericin microcapsules are orchestrated by altering the reaction parameters. Doxorubicin (DOX), used as a hydrophilic anti-cancer drug model, is encapsulated into the colloidosomes in a mild aqueous solution and becomes stimuli-responsive to different external environments, including pH values, protease, and ionic strength are also observed. Colloidosomes with sub-monolayers, close-packed monolayers, and close-packed multi-layered SiO 2 colloid shells can be fabricated under the optimized reaction conditions. A flexible DOX release from colloidosomes can be obtained via modulating the SiO 2 colloid layer arrangement and thickness. The close-packed and multi-layered SiO 2 colloid shells can best protect the colloidosomes and delay the rapid cargo release. MG-63 cells are killed when doxorubicin is released from the microcapsules due to degradation in the microenvironment of cancer cells. The drug release period is prolonged as SiO 2 shell thickness and integrity increase. This work suggests that the hybrid colloidosomes can be effective in a bioactive molecule delivery system. Copyright © 2016 Elsevier B.V. All rights reserved.
Shang, Jing; Hong, Kunlun; Wang, Tao; ...
2016-10-02
Here, polyethylene oxide (PEO) has been widely used in biomedical fields. The antibiofouling property of the PEO-modified surface has been extensively investigated but is far from being fully understood. A series of PEOs with narrowly distributed molecular weight (M w), synthesized with the technique of high vacuum anionic polymerization, have been successfully grafted onto the surface of silicon wafers. The power-law relationship between the thickness of the monolayer versus the M w of the grafted PEO shows a scaling of 0.3, indicating compact condensing of the chains. The static contact angles show higher hydrophobicity for the layer of PEO withmore » higher M w, which can be attributed to the closely packed conformation of the chains with high density. The frequency shift of the contact resonance indicates that the Young’s modulus decreases and the loss factor increases with the increase in the M w of PEO and the thickness of the PEO layers. Dielectric spectroscopy of bare or PEO-grafted wafers in the aqueous solutions reveals an interfacial polarization, which results from compositional and structural changes in the interface layer and depends on temperatures and salt concentrations. At a given grafting density, the PEO chains are swollen in pure water, demonstrating hydrophilic behavior, whereas they collapse in salt solutions, showing hydrophobic characteristics.« less
NASA Astrophysics Data System (ADS)
Zhao, Zuomin; Moilanen, Petro; Karppinen, Pasi; Määttä, Mikko; Karppinen, Timo; Hæggström, Edward; Timonen, Jussi; Myllylä, Risto
2012-12-01
Photo-acoustic (PA) excitation was combined with skeletal quantitative ultrasound (QUS) for multi-mode ultrasonic assessment of human long bones. This approach permits tailoring of the ultrasonic excitation and detection so as to efficiently detect the fundamental flexural guided wave (FFGW) through a coating of soft tissue. FFGW is a clinically relevant indicator of cortical thickness. An OPO laser with tunable optical wavelength, was used to excite a photo-acoustic source in the shaft of a porcine femur. Ultrasonic signals were detected by a piezoelectric transducer, scanning along the long axis of the bone, 20-50 mm away from the source. Five femurs were measured without and with a soft coating. The coating was made of an aqueous gelatin-intralipid suspension that optically and acoustically mimicked real soft tissue. An even coating thickness was ensured by using a specific mold. The optical wave length of the source (1250 nm) was tuned to maximize the amplitude of FFGW excitation at 50 kHz frequency. The experimentally determined FFGW phase velocity in the uncoated samples was consistent with that of the fundamental antisymmetric Lamb mode (A0). Using appropriate signal processing, FFGW was also identified in the coated bone samples, this time with a phase velocity consistent with that theoretically predicted for the first mode of a fluid-solid bilayer waveguide (BL1). Our results suggest that photo-acoustic quantitative ultrasound enables assessment of the thickness-sensitive FFGW in bone through a layer of soft tissue. Photo-acoustic characterization of the cortical bone thickness may thus become possible.
Surface characterization of lignocellulosics for composite manufacture
NASA Astrophysics Data System (ADS)
Iyer, Ananth V.
The objectives of this research were to form moisture resistant wheat strawboards, either by altering the straw surface characteristics or by changing the chemistry of the polymeric 4, 4' diphenylmethane diisocyanate (PMDI)-based matrix and interface. Part I compared the surface characteristics of wheat, barley, oat, rice, kenaf, hemp and softwood particles. All cereal straws had two surfaces: epidermis and brittle-pith unlike one heterogeneous type observed for bast fibers and softwood particles. The epidermis of cereal straws was not wet by water or aqueous binders, whereas the pith surface allowed the penetration of water, but was not readily wetted by aqueous binders. Between the different surface treatments evaluated for wheat straw in Part II, NaOH selectively peeled-off the epidermis and pith layers. The treated straw particles were formable into strawboards using aqueous phenol-formaldehyde, urea-formaldehyde, and duroplastic acrylic acid binders with good internal bond strength (IBS) and adequate water resistance. In Part III it was shown that, decreasing straw particle sizes and bleaching worsened the mechanical properties of strawboards, but the moisture absorption properties of bleached strawboards were lower than the unbleached ones. Layering of straw particles in strawboards did not seem to affect their mechanical or moisture absorption properties. Part IV showed that the pith surface of wheat straw was fractured on curing with PMDI, providing hollow microcrevices for water accumulation. Furthermore, the cured PMDI formed a network polyurea/polyuretonimine/polycarbodiimide/polyisocyanurate polymer on straw surfaces whose properties dictated the properties of strawboards. Among the different mono-, bi-, and tri-functional alcohols, amines and carboxylic acids evaluated in Part V as H-donor substitutes to moisture for reaction with PMDI on straw surfaces, ethylene glycol, resorcinol, glycerin and citric acid provided IBS values greater than the ANSI recommended minimum (60 psi) and lower thickness swell values than the moisture-cure process. In Part VI, strawboards formed with 2% PMDI and 5% epoxy or duroplastic acrylic acid binders had high IBS values, and their thickness swell after 24 h soaking in water was restricted to 13%, which was much lower than the ˜18--20% values obtained for strawboards made with 5% PMDI.
Mechanical modeling and characteristic study for the adhesive contact of elastic layered media
NASA Astrophysics Data System (ADS)
Zhang, Yuyan; Wang, Xiaoli; Tu, Qiaoan; Sun, Jianjun; Ma, Chenbo
2017-11-01
This paper investigates the adhesive contact between a smooth rigid sphere and a smooth elastic layered medium with different layer thicknesses, layer-to-substrate elastic modulus ratios and adhesion energy ratios. A numerical model is established by combining elastic responses of the contact system and an equation of equivalent adhesive contact pressure which is derived based on the Hamaker summation method and the Lennard-Jones intermolecular potential law. Simulation results for hard layer cases demonstrate that variation trends of the pull-off force with the layer thickness and elastic modulus ratio are complex. On one hand, when the elastic modulus ratio increases, the pull-off force decreases at smaller layer thicknesses, decreases at first and then increases at middle layer thicknesses, while increases monotonously at larger layer thicknesses. On the other hand, the pull-off force decreases at first and then increases with the increase in the layer thickness. Furthermore, a critical layer thickness above which the introduction of hard layer cannot reduce adhesion and an optimum layer thickness under which the pull-off force reaches a minimum are found. Both the critical and optimum layer thicknesses become larger with an increase in the Tabor parameter, while they tend to decrease with the increase in the elastic modulus ratio. In addition, the pull-off force increases sublinearly with the adhesion energy ratio if the layer thickness and elastic modulus ratio are fixed.
NASA Astrophysics Data System (ADS)
Wei, Liang; Gao, Kewei; Li, Qian
2018-05-01
The corrosion behavior of P110 low-Cr alloy steel in supercritical CO2-saturated brine (aqueous phase) and water-saturated supercritical CO2 (SC CO2 phase) was investigated. The results show that P110 steel primarily suffered general corrosion in the aqueous phase, while severe localized corrosion occurred in the SC CO2 phase. The formation of corrosion product scale on P110 steel in the aqueous phase divided into three stages: formation of the initial corrosion layer containing amorphous Cr(OH)3, FeCO3 and a small amount of Fe3C; transformation of initial corrosion layer to mixed layer, which consisted of FeCO3 and a small amount of Cr(OH)3 and Fe3C; growth and dissolution of the mixed layer. Finally, only a single mixed layer covered on the steel in the aqueous phase. However, the scale formed in SC CO2 phase consisted of two layers: the inner mixed layer and the dense outer FeCO3 crystalline layer.
NASA Astrophysics Data System (ADS)
Swartz, Christopher H.; Blute, Nicole Keon; Badruzzman, Borhan; Ali, Ashraf; Brabander, Daniel; Jay, Jenny; Besancon, James; Islam, Shafiqul; Hemond, Harold F.; Harvey, Charles F.
2004-11-01
Aquifer geochemistry was characterized at a field site in the Munshiganj district of Bangladesh where the groundwater is severely contaminated by As. Vertical profiles of aqueous and solid phase parameters were measured in a sandy deep aquifer (depth >150 m) below a thick confining clay (119 to 150 m), a sandy upper aquifer (3.5 to 119 m) above this confining layer, and a surficial clay layer (<3.5 m). In the deep aquifer and near the top of the upper aquifer, aqueous As levels are low (<10 μg/L), but aqueous As approaches a maximum of 640 μg/L at a depth of 30 to 40 m and falls to 58 μg/L near the base (107 m) of the upper aquifer. In contrast, solid phase As concentrations are uniformly low, rarely exceeding 2 μg/g in the two sandy aquifers and never exceeding 10 μg/g in the clay layers. Solid phase As is also similarly distributed among a variety of reservoirs in the deep and upper aquifer, including adsorbed As, As coprecipitated in solids leachable by mild acids and reductants, and As incorporated in silicates and other more recalcitrant phases. One notable difference among depths is that sorbed As loads, considered with respect to solid phase Fe extractable with 1 N HCl, 0.2 M oxalic acid, and a 0.5 M Ti(III)-citrate-EDTA solution, appear to be at capacity at depths where aqueous As is highest; this suggests that sorption limitations may, in part, explain the aqueous As depth profile at this site. Competition for sorption sites by silicate, phosphate, and carbonate oxyanions appear to sustain elevated aqueous As levels in the upper aquifer. Furthermore, geochemical profiles are consistent with the hypothesis that past or ongoing reductive dissolution of Fe(III) oxyhydroxides acts synergistically with competitive sorption to maintain elevated dissolved As levels in the upper aquifer. Microprobe data indicate substantial spatial comapping between As and Fe in both the upper and deep aquifer sediments, and microscopic observations reveal ubiquitous Fe coatings on most solid phases, including quartz, feldspars, and aluminosilicates. Extraction results and XRD analysis of density/magnetic separates suggest that these coatings may comprise predominantly Fe(II) and mixed valence Fe solids, although the presence of Fe(III) oxyhydroxides can not be ruled out. These data suggest As release may continue to be linked to dissolution processes targeting Fe, or Fe-rich, phases in these aquifers.
Han, Yong; Axnanda, Stephanus; Crumlin, Ethan J.; ...
2017-08-28
Some rcent advances of ambient pressure X-ray photoelectron spectroscopy (AP-XPS) have enabled the chemical composition and the electrical potential profile at a liquid/electrode interface under electrochemical reaction conditions to be directly probed. In this work, we apply this operando technique to study the surface chemical composition evolution on a Co metal electrode in 0.1 M KOH aqueous solution under various electrical biases. It is found that an ~12.2 nm-thick layer of Co(OH) 2 forms at a potential of about -0.4 V Ag/AgCl, and upon increasing the anodic potential to about +0.4 V Ag/AgCl, this layer is partially oxidized into cobaltmore » oxyhydroxide (CoOOH). A CoOOH/Co(OH) 2 mixture layer is formed on the top of the electrode surface. Finally, the oxidized surface layer can be reduced to Co0 at a cathodic potential of -1.35 VAg/Cl. Our observations indicate that the ultrathin layer containing cobalt oxyhydroxide is the active phase for oxygen evolution reaction (OER) on a Co electrode in an alkaline electrolyte, consistent with previous studies.« less
Gyurcsányi, R E; Pergel, E; Nagy, R; Kapui, I; Lan, B T; Tóth, K; Bitter, I; Lindner, E
2001-05-01
Scanning electrochemical microscopy (SECM) supplemented with potentiometric measurements was used to follow the time-dependent buildup of a steady-state diffusion layer at the aqueous-phase boundary of lead ion-selective electrodes (ISEs). Differential pulse voltammetry is adapted to SECM for probing the local concentration profiles at the sample side of solvent polymeric membranes. Major factors affecting the membrane transport-related surface concentrations were identified from SECM data and the potentiometric transients obtained under different experimental conditions (inner filling solution composition, membrane thickness, surface pretreatment). The amperometrically determined surface concentrations correlated well with the lower detection limits of the lead ion-selective electrodes.
NASA Astrophysics Data System (ADS)
Bryan, C. R.; Wells, R. K.; Burton, P. D.; Heath, J. E.; Dewers, T. A.; Wang, Y.
2011-12-01
Carbon sequestration via underground storage in geologic formations is a proposed approach for reducing industrial CO2 emissions. However, current models for carbon injection and long-term storage of supercritical CO2 (scCO2) do not consider the development and stability of adsorbed water films at the scCO2-hydrophilic mineral interface. The thickness and properties of the water films control the surface tension and wettability of the mineral surface, and on the core scale, affect rock permeability, saturation, and capillary properties. The film thickness is strongly dependent upon the activity of water in the supercritical fluid, which will change as initially anhydrous scCO2 absorbs water from formation brine. As described in a companion paper by the coauthors, the thickness of the adsorbed water layer is controlled by the disjoining pressure; structural and van der Waals components dominate at low water activity, while electrostatic forces become more important with increasing film thickness (higher water activities). As scCO2 water activity and water layer thickness increase, concomitant changes in mineral surface properties and reservoir/caprock hydrologic properties will affect the mobility of the aqueous phase and of scCO2. Moreover, the development of a water layer may be critical to mineral dissolution reactions in scCO2. Here, we describe the use of a quartz-crystal microbalance (QCM) to monitor adsorption of water by mineral surfaces. QCMs utilize a piezoelectrically-stimulated quartz wafer to measure adsorbed or deposited mass via changes in vibrational frequency. When used to measure the mass of adsorbed liquid films, the frequency response of the crystal must be corrected for the viscoelastic, rather than elastic, response of the adsorbed layer. Results are presented for adsorption to silica in N2 and CO2 at one bar, and in scCO2. Additional data are presented for water uptake by clays deposited on a QCM wafer. In this case, water uptake occurs by the combined processes of interlayer cation hydration, surface adsorption, and capillary condensation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work is supported by the DOE Sandia LDRD Program.
Domain Growth Kinetics in Stratifying Foam Films
NASA Astrophysics Data System (ADS)
Zhang, Yiran; Sharma, Vivek
2015-03-01
Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Typical foam films consist of two surfactant-laden surfaces that are μ 5 nm - 10 micron apart. Sandwiched between these interfacial layers is a fluid that drains primarily under the influence of viscous and interfacial forces, including disjoining pressure. Interestingly, for certain low molecular weight surfactants, a layered ordering of micelles inside the foam films (thickness <100 nm) leads to a stepwise thinning phenomena called stratification. We experimentally elucidate the influence of these different driving forces, and confinement on drainage kinetics of horizontal stratifying foam films. Thinner, darker domains spontaneously grow within foam films. Quantitative characterization of domain growth visualized in a using Scheludko-type thin film cell and a theoretical model based on lubrication analysis, provide critical insights into hydrodynamics of thin foam films, and the strength and nature of surface forces, including supramolecular oscillatory structural forces.
Zirconia coated carbonyl iron particle-based magnetorheological fluid for polishing
NASA Astrophysics Data System (ADS)
Shafrir, Shai N.; Romanofsky, Henry J.; Skarlinski, Michael; Wang, Mimi; Miao, Chunlin; Salzman, Sivan; Chartier, Taylor; Mici, Joni; Lambropoulos, John C.; Shen, Rui; Yang, Hong; Jacobs, Stephen D.
2009-08-01
Aqueous magnetorheological (MR) polishing fluids used in magnetorheological finishing (MRF) have a high solids concentration consisting of magnetic carbonyl iron particles and nonmagnetic polishing abrasives. The properties of MR polishing fluids are affected over time by corrosion of CI particles. Here we report on MRF spotting experiments performed on optical glasses using a zirconia coated carbonyl iron (CI) particle-based MR fluid. The zirconia coated magnetic CI particles were prepared via sol-gel synthesis in kg quantities. The coating layer was ~50-100 nm thick, faceted in surface structure, and well adhered. Coated particles showed long term stability against aqueous corrosion. "Free" nano-crystalline zirconia polishing abrasives were co-generated in the coating process, resulting in an abrasivecharged powder for MRF. A viable MR fluid was prepared simply by adding water. Spot polishing tests were performed on a variety of optical glasses over a period of 3 weeks with no signs of MR fluid degradation or corrosion. Stable material removal rates and smooth surfaces inside spots were obtained.
Nieves-Moreno, María; Martínez-de-la-Casa, José M; Morales-Fernández, Laura; Sánchez-Jean, Rubén; Sáenz-Francés, Federico; García-Feijoó, Julián
2018-01-01
To examine differences in individual retinal layer thicknesses measured by spectral domain optical coherence tomography (SD-OCT) (Spectralis®) produced with age and according to sex. Cross-sectional, observational study. The study was conducted in 297 eyes of 297 healthy subjects aged 18 to 87 years. In one randomly selected eye of each participant the volume and mean thicknesses of the different macular layers were measured by SD-OCT using the instrument's macular segmentation software. Volume and mean thickness of macular retinal nerve fiber layer (mRNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), retinal pigmentary epithelium (RPE) and photoreceptor layer (PR). Retinal thickness was reduced by 0.24 μm for every one year of age. Age adjusted linear regression analysis revealed mean GCL, IPL, ONL and PR thickness reductions and a mean OPL thickness increase with age. Women had significantly lower mean GCL, IPL, INL, ONL and PR thicknesses and volumes and a significantly greater mRNFL volume than men. The thickness of most retinal layers varies both with age and according to sex. Longitudinal studies are needed to determine the rate of layer thinning produced with age.
Ariyasu, Aoi; Hattori, Yusuke; Otsuka, Makoto
2017-06-15
The coating layer thickness of enteric-coated tablets is a key factor that determines the drug dissolution rate from the tablet. Near-infrared spectroscopy (NIRS) enables non-destructive and quick measurement of the coating layer thickness, and thus allows the investigation of the relation between enteric coating layer thickness and drug dissolution rate. Two marketed products of aspirin enteric-coated tablets were used in this study, and the correlation between the predicted coating layer thickness and the obtained drug dissolution rate was investigated. Our results showed correlation for one product; the drug dissolution rate decreased with the increase in enteric coating layer thickness, whereas, there was no correlation for the other product. Additional examination of the distribution of coating layer thickness by X-ray computed tomography (CT) showed homogenous distribution of coating layer thickness for the former product, whereas the latter product exhibited heterogeneous distribution within the tablet, as well as inconsistent trend in the thickness distribution between the tablets. It was suggested that this heterogeneity and inconsistent trend in layer thickness distribution contributed to the absence of correlation between the layer thickness of the face and side regions of the tablets, which resulted in the loss of correlation between the coating layer thickness and drug dissolution rate. Therefore, the predictability of drug dissolution rate from enteric-coated tablets depended on the homogeneity of the coating layer thickness. In addition, the importance of micro analysis, X-ray CT in this study, was suggested even if the macro analysis, NIRS in this study, are finally applied for the measurement. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Jingbo; Kingsbury, Ryan S; Perry, Lamar A; Coronell, Orlando
2017-02-21
The partition coefficient of solutes into the polyamide active layer of reverse osmosis (RO) membranes is one of the three membrane properties (together with solute diffusion coefficient and active layer thickness) that determine solute permeation. However, no well-established method exists to measure solute partition coefficients into polyamide active layers. Further, the few studies that measured partition coefficients for inorganic salts report values significantly higher than one (∼3-8), which is contrary to expectations from Donnan theory and the observed high rejection of salts. As such, we developed a benchtop method to determine solute partition coefficients into the polyamide active layers of RO membranes. The method uses a quartz crystal microbalance (QCM) to measure the change in the mass of the active layer caused by the uptake of the partitioned solutes. The method was evaluated using several inorganic salts (alkali metal salts of chloride) and a weak acid of common concern in water desalination (boric acid). All partition coefficients were found to be lower than 1, in general agreement with expectations from Donnan theory. Results reported in this study advance the fundamental understanding of contaminant transport through RO membranes, and can be used in future studies to decouple the contributions of contaminant partitioning and diffusion to contaminant permeation.
Anisotropic Growth of Otavite on Calcite: Implications for Heteroepitaxial Growth Mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riechers, Shawn L.; Kerisit, Sebastien N.
Elucidating how cation intermixing can affect the mechanisms of heteroepitaxial growth in aqueous media has remained a challenging endeavor. Toward this goal, in situ atomic force microscopy was employed to image the heteroepitaxial growth of otavite (CdCO3) at the (10-14) surface of calcite (CaCO3) single crystals in static aqueous conditions. Heteroepitaxial growth proceeded via spreading of three-dimensional (3D) islands and two-dimensional (2D) atomic layers at low and high initial saturation levels, respectively. Experiments were carried out as a function of applied force and imaging mode thus enabling determination of growth mechanisms unaltered by imaging artifacts. This approach revealed the significantmore » anisotropic nature of heteroepitaxial growth on calcite in both growth modes and its dependence on supersaturation, intermixing, and substrate topography. The 3D islands not only grew preferentially along the [42-1] direction relative to the [010] direction, resulting in rod-like surface precipitates, but also showed clear preference for growth from the island end rich in obtuse/obtuse kink sites. Pinning to step edges was observed to often reverse this tendency. In the 2D growth mode, the relative velocities of acute and obtuse steps were observed to switch between the first and second atomic layers. This phenomenon stemmed from the significant Cd-Ca intermixing in the first layer, despite bulk thermodynamics predicting the formation of almost pure otavite. Composition effects were also responsible for the inability of 3D islands to grow on 2D layers in cases where both modes were observed to occur simultaneously. Overall, the AFM images highlighted the effects of intermixing on heteroepitaxial growth, particularly how it can induce thickness-dependent growth mechanisms at the nanoscale.« less
Aqueous synthesis of zinc oxide films for GaN optoelectronic devices
NASA Astrophysics Data System (ADS)
Reading, Arthur H.
GaN-based LEDs have generally made use of ITO transparent contacts as current-spreading layers for uniform current injection. However, the high raw material and processing costs of ITO layers have generated interest in potentially cheaper alternatives. In this work, zinc oxide transparent layers were fabricated by a low-cost, low-temperature aqueous epitaxial growth method at 90°C for use as transparent contacts to GaN LEDs on c-plane sapphire, and on semipolar bulk GaN substrates. Low-voltage operation was achieved for c-plane devices, with voltages below 3.8V for 1mm2 broad-area LEDs at a current density of 30A/cm 2. Blue-green LEDs on 202¯1¯-plane GaN also showed low voltage operation below 3.5V at 30A/cm2. Ohmic contact resistivity of 1:8 x 10-2Ocm2 was measured for films on (202¯1) p-GaN templates. Ga-doped films had electrical conductivities as high as 660S/cm after annealing at 300°C. Optical characterization revealed optical absorption coefficients in the 50--200cm -1 range for visible light, allowing thick films with sheet resistances below 10O/□ to be grown while minimizing absorption of the emitted light. Accurate and reproducible etch-free patterning of the ZnO films was achieved using templated growths with SiOx hard masks. A roughening method is described which was found to increase peak LED efficiencies by 13% on c-plane patterned sapphire (PSS) substrates. In addition, ZnO films were successfully employed as laser-cladding layers for blue (202¯1) lasers, with a threshold current density of 8.8kA/cm 2.
Sharma, N; Periasamy, C; Chaturvedi, N
2018-07-01
In this paper, we present an investigation of the impact of GaN capping layer and AlGaN layer thickness on the two-dimensional (2D)-electron mobility and the carrier concentration which was formed close to the AlGaN/GaN buffer layer for Al0.25Ga0.75N/GaN and GaN/Al0.25Ga0.75N/GaN heterostructures deposited on sapphire substrates. The results of our analysis clearly indicate that expanding the GaN capping layer thickness from 1 nm to 100 nm prompts an increment in the electron concentration at hetero interface. As consequence of which drain current was additionally increments with GaN cap layer thicknesses, and eventually saturates at approximately 1.85 A/mm for capping layer thickness greater than 40 nm. Interestingly, for the same structure, the 2D-electron mobility, decrease monotonically with GaN capping layer thickness, and saturate at approximately 830 cm2/Vs for capping layer thickness greater than 50 nm. A device with a GaN cap layer didn't exhibit gate leakage current. Furthermore, it was observed that the carrier concentration was first decrease 1.03 × 1019/cm3 to 6.65 × 1018/cm3 with AlGaN Layer thickness from 5 to 10 nm and after that it increases with the AlGaN layer thickness from 10 to 30 nm. The same trend was followed for electric field distributions. Electron mobility decreases monotonically with AlGaN layer thickness. Highest electron mobility 1354 cm2/Vs were recorded for the AlGaN layer thickness of 5 nm. Results obtained are in good agreement with published experimental data.
ZnS/Zn(O,OH)S-based buffer layer deposition for solar cells
Bhattacharya, Raghu N [Littleton, CO
2009-11-03
The invention provides CBD ZnS/Zn(O,OH)S and spray deposited ZnS/Zn(O,OH)S buffer layers prepared from a solution of zinc salt, thiourea and ammonium hydroxide dissolved in a non-aqueous/aqueous solvent mixture or in 100% non-aqueous solvent. Non-aqueous solvents useful in the invention include methanol, isopropanol and triethyl-amine. One-step deposition procedures are described for CIS, CIGS and other solar cell devices.
NASA Astrophysics Data System (ADS)
Shin, Dongkyun; Hong, Ki-Young; Park, Jongwoon
2017-12-01
Due to capillary rise, organic thin films fabricated by solution coating exhibit the concave thickness profile. It is found that the thickness and emission uniformities within pixels vary depending sensitively on the pre-drying treatment that has been done before hard bake. We investigate its effect on the film quality by varying the temperature, time, pressure, fluid flow-related solute concentration, and evaporation-related solvent. To this end, we carry out spin coatings of a non-aqueous poly(N-vinylcarbazole) (PVK) for a hole transporting blanket layer. With a low-boiling-point (BP) organic solvent, the pre-drying makes no significant impact on the thickness profiles. With a high-BP organic solvent, the PVK films pre-dried in a vacuum for a sufficient time exhibit very uniform light emission in the central region, but non-emission phenomenon near the perimeter of pixels. It is addressed that such a non-emission phenomenon can be suppressed to some extent by decreasing the vacuum pressure. However, the rapid evaporation by heat conduction during the pre-drying degrades the thickness uniformity due to a rapid microflow of solute from the edge to the center. No further enhancement in the thickness uniformity is obtained by varying the solute concentration and using a mixture of low- and high-BP solvents.
Wanek, Justin; Blair, Norman P.; Chau, Felix Y.; Lim, Jennifer I.; Leiderman, Yannek I.; Shahidi, Mahnaz
2016-01-01
Purpose This article reports a method for en face optical coherence tomography (OCT) imaging and quantitative assessment of alterations in both thickness and reflectance of individual retinal layers at different stages of diabetic retinopathy (DR). Methods High-density OCT raster volume scans were acquired in 29 diabetic subjects divided into no DR (NDR) or non-proliferative DR (NPDR) groups and 22 control subjects (CNTL). A customized image segmentation method identified eight retinal layer interfaces and generated en face thickness maps and reflectance images for nerve fiber layer (NFL), ganglion cell and inner plexiform layers (GCLIPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), photoreceptor outer segment layer (OSL), and retinal pigment epithelium (RPE). Mean thickness and intensity values were calculated in nine macular subfields for each retinal layer. Results En face thickness maps and reflectance images of retinal layers in CNTL subjects corresponded to normal retinal anatomy. Total retinal thickness correlated negatively with age in nasal subfields (R ≤−0.31; P ≤ 0.03, N = 51). In NDR subjects, NFL and OPL thickness were decreased (P = 0.05), and ONL thickness was increased (P = 0.04) compared to CNTL. In NPDR subjects, GCLIPL thickness was increased in perifoveal subfields (P < 0.05) and INL intensity was higher in all macular subfields (P = 0.04) compared to CNTL. Conclusions Depth and spatially resolved retinal thickness and reflectance measurements are potential biomarkers for assessment and monitoring of DR. PMID:27409491
Effect of layer thickness on the elution of bulk-fill composite components.
Rothmund, Lena; Reichl, Franz-Xaver; Hickel, Reinhard; Styllou, Panorea; Styllou, Marianthi; Kehe, Kai; Yang, Yang; Högg, Christof
2017-01-01
An increment layering technique in a thickness of 2mm or less has been the standard to sufficiently convert (co)monomers. Bulk fill resin composites were developed to accelerate the restoration process by enabling up to 4mm thick increments to be cured in a single step. The aim of the present study is to investigate the effect of layer thickness on the elution of components from bulk fill composites. The composites ELS Bulk fill, SDR Bulk fill and Venus Bulkfill were polymerized according to the instruction of the manufacturers. For each composite three groups with four samples each (n=4) were prepared: (1) samples with a layer thickness of 2mm; (2) samples with a layer thickness of 4mm and (3) samples with a layer thickness of 6mm. The samples were eluted in methanol and water for 24h and 7 d. The eluates were analyzed by gas chromatography/mass spectrometry (GC/MS). A total of 11 different elutable substances have been identified from the investigated composites. Following methacrylates showed an increase of elution at a higher layer thickness: TEGDMA (SDR Bulk fill, Venus Bulk fill), EGDMA (Venus Bulk fill). There was no significant difference in the elution of HEMA regarding the layer thickness. The highest concentration of TEGDMA was 146μg/mL for SDR Bulk fill at a layer thickness of 6mm after 7 d in water. The highest HEMA concentration measured at 108μg/mL was detected in the methanol eluate of Venus Bulk fill after 7 d with a layer thickness of 6mm. A layer thickness of 4mm or more can lead to an increased elution of some bulk fill components, compared to the elution at a layer thickness of 2mm. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Prospects for reducing the processing cost of lithium ion batteries
Wood III, David L.; Li, Jianlin; Daniel, Claus
2014-11-06
A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; doubling the thicknesses of the anode and cathode to raise energy density; and, reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and amore » standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).« less
Layer-by-Layer Templated Assembly of Silica at the Nanoscale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinestrosa, Juan Pablo; Sutton, Jonathan E.; Allison, David P.
2013-01-29
Bioinspired bottom-up assembly and layer-by-layer (LbL) construction of inorganic materials from lithographically defined organic templates enables the fabrication of nanostructured systems under mild temperature and pH conditions. Such processes open the door to low-impact manufacturing and facile recycling of hybrid materials for energy, biology, and information technologies. Here, templated LbL assembly of silica was achieved using a combination of electron beam lithography, chemical lift-off, and aqueous solution chemistry. Nanopatterns of lines, honeycomb-lattices, and dot arrays were defined in polymer resist using electron beam lithography. Following development, exposed areas of silicon were functionalized with a vapor deposited amine-silane monolayer. Silicic acidmore » solutions of varying pH and salt content were reacted with the patterned organic amine-functional templates. Vapor treatment and solution reaction could be repeated, allowing LbL deposition. Conditions for the silicic acid deposition had a strong effect on thickness of each layer, and the morphology of the amorphous silica formed. Defects in the arrays of silica nanostructures were minor and do not affect the overall organization of the layers. In conclusion, the bioinspired method described here facilitates the bottom-up assembly of inorganic nanostructures defined in three dimensions and provides a path, via LbL processing, for the construction of layered hybrid materials under mild conditions.« less
Hyder, Md Nasim; Lee, Seung Woo; Cebeci, Fevzi Ç; Schmidt, Daniel J; Shao-Horn, Yang; Hammond, Paula T
2011-11-22
Thin film electrodes of polyaniline (PANi) nanofibers and functionalized multiwall carbon nanotubes (MWNTs) are created by layer-by-layer (LbL) assembly for microbatteries or -electrochemical capacitors. Highly stable cationic PANi nanofibers, synthesized from the rapid aqueous phase polymerization of aniline, are assembled with carboxylic acid functionalized MWNT into LbL films. The pH-dependent surface charge of PANi nanofibers and MWNTs allows the system to behave like weak polyelectrolytes with controllable LbL film thickness and morphology by varying the number of bilayers. The LbL-PANi/MWNT films consist of a nanoscale interpenetrating network structure with well developed nanopores that yield excellent electrochemical performance for energy storage applications. These LbL-PANi/MWNT films in lithium cell can store high volumetric capacitance (~238 ± 32 F/cm(3)) and high volumetric capacity (~210 mAh/cm(3)). In addition, rate-dependent galvanostatic tests show LbL-PANi/MWNT films can deliver both high power and high energy density (~220 Wh/L(electrode) at ~100 kW/L(electrode)) and could be promising positive electrode materials for thin film microbatteries or electrochemical capacitors. © 2011 American Chemical Society
Dressick, Walter J.; Soto, Carissa M.; Fontana, Jake; Baker, Colin C.; Myers, Jason D.; Frantz, Jesse A.; Kim, Woohong
2014-01-01
We present a method of Cu(In,Ga)S2 (CIGS) thin film formation via conversion of layer-by-layer (LbL) assembled Cu-In-Ga oxide (CIGO) nanoparticles and polyelectrolytes. CIGO nanoparticles were created via a novel flame-spray pyrolysis method using metal nitrate precursors, subsequently coated with polyallylamine (PAH), and dispersed in aqueous solution. Multilayer films were assembled by alternately dipping quartz, Si, and/or Mo substrates into a solution of either polydopamine (PDA) or polystyrenesulfonate (PSS) and then in the CIGO-PAH dispersion to fabricate films as thick as 1–2 microns. PSS/CIGO-PAH films were found to be inadequate due to weak adhesion to the Si and Mo substrates, excessive particle diffusion during sulfurization, and mechanical softness ill-suited to further processing. PDA/CIGO-PAH films, in contrast, were more mechanically robust and more tolerant of high temperature processing. After LbL deposition, films were oxidized to remove polymer and sulfurized at high temperature under flowing hydrogen sulfide to convert CIGO to CIGS. Complete film conversion from the oxide to the sulfide is confirmed by X-ray diffraction characterization. PMID:24941104
Jahanshahi-Anbuhi, Sana; Henry, Aleah; Leung, Vincent; Sicard, Clémence; Pennings, Kevin; Pelton, Robert; Brennan, John D; Filipe, Carlos D M
2014-01-07
Water soluble pullulan films were formatted into paper-based microfluidic devices, serving as a controlled time shutoff valve. The utility of the valve was demonstrated by a one-step, fully automatic implementation of a complex pesticide assay requiring timed, sequential exposure of an immobilized enzyme layer to separate liquid streams. Pullulan film dissolution and the capillary wicking of aqueous solutions through the device were measured and modeled providing valve design criteria. The films dissolve mainly by surface erosion, meaning the film thickness mainly controls the shutoff time. This method can also provide time-dependent sequential release of reagents without compromising the simplicity and low cost of paper-based devices.
NASA Technical Reports Server (NTRS)
Richmond, Robert Chafee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor)
2013-01-01
A wear and/or friction reducing additive for a lubricating fluid in which the additive is a combination of a moderately hydrophilic single-phase compound and an anti-wear and/or anti-friction aqueous salt solution. The aqueous salt solution produces a coating on boundary layer surfaces. The lubricating fluid can be an emulsion-free hydrophobic oil, hydraulic fluid, antifreeze, or water. Preferably, the moderately hydrophilic single-phase compound is sulfonated castor oil and the aqueous salt solution additionally contains boric acid and zinc oxide. The emulsions produced by the aqueous salt solutions, the moderately hydrophilic single-phase compounds, or the combination thereof provide targeted boundary layer organizers that significantly enhance the anti-wear and/or anti-friction properties of the base lubricant by decreasing wear and/or friction of sliding and/or rolling surfaces at boundary layers.
NASA Technical Reports Server (NTRS)
Defalco, Francis G. (Inventor); Richmond, Robert Chaffee (Inventor); Schramm, Jr., Harry F. (Inventor)
2017-01-01
A wear and/or friction reducing additive for a lubricating fluid in which the additive is a combination of a moderately hydrophilic single-phase compound and an anti-wear and/or anti-friction aqueous salt solution. The aqueous salt solution produces a coating on boundary layer surfaces. The lubricating fluid can be an emulsion-free hydrophobic oil, hydraulic fluid, antifreeze, water, or a water-based lubricant. Preferably, the moderately hydrophilic single-phase compound is sulfonated castor oil and the aqueous salt solution additionally contains boric acid and zinc oxide. The emulsions produced by the aqueous salt solutions, the moderately hydrophilic single-phase compounds, or the combination thereof provide targeted boundary layer organizers that significantly enhance the anti-wear and/or anti-friction properties of the base lubricant by decreasing wear and/or friction of sliding and/or rolling surfaces at boundary layers.
NASA Technical Reports Server (NTRS)
Defalco, Francis G. (Inventor); Richmond, Robert Chaffee (Inventor); Schramm, Harry F., Jr. (Inventor)
2016-01-01
A wear and/or friction reducing additive for a lubricating fluid in which the additive is a combination of a moderately hydrophilic single-phase compound and an anti-wear and/or anti-friction aqueous salt solution. The aqueous salt solution produces a coating on boundary layer surfaces. The lubricating fluid can be an emulsion-free hydrophobic oil, hydraulic fluid, antifreeze, or water. Preferably, the moderately hydrophilic single-phase compound is sulfonated castor oil and the aqueous salt solution additionally contains boric acid and zinc oxide. The emulsions produced by the aqueous salt solutions, the moderately hydrophilic single-phase compounds, or the combination thereof provide targeted boundary layer organizers that significantly enhance the anti-wear and/or anti-friction properties of the base lubricant by decreasing wear and/or friction of sliding and/or rolling surfaces at boundary layers.
2016-01-01
A series of model sterically stabilized diblock copolymer nanoparticles has been designed to aid the development of analytical protocols in order to determine two key parameters: the effective particle density and the steric stabilizer layer thickness. The former parameter is essential for high resolution particle size analysis based on analytical (ultra)centrifugation techniques (e.g., disk centrifuge photosedimentometry, DCP), whereas the latter parameter is of fundamental importance in determining the effectiveness of steric stabilization as a colloid stability mechanism. The diblock copolymer nanoparticles were prepared via polymerization-induced self-assembly (PISA) using RAFT aqueous emulsion polymerization: this approach affords relatively narrow particle size distributions and enables the mean particle diameter and the stabilizer layer thickness to be adjusted independently via systematic variation of the mean degree of polymerization of the hydrophobic and hydrophilic blocks, respectively. The hydrophobic core-forming block was poly(2,2,2-trifluoroethyl methacrylate) [PTFEMA], which was selected for its relatively high density. The hydrophilic stabilizer block was poly(glycerol monomethacrylate) [PGMA], which is a well-known non-ionic polymer that remains water-soluble over a wide range of temperatures. Four series of PGMAx–PTFEMAy nanoparticles were prepared (x = 28, 43, 63, and 98, y = 100–1400) and characterized via transmission electron microscopy (TEM), dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS). It was found that the degree of polymerization of both the PGMA stabilizer and core-forming PTFEMA had a strong influence on the mean particle diameter, which ranged from 20 to 250 nm. Furthermore, SAXS was used to determine radii of gyration of 1.46 to 2.69 nm for the solvated PGMA stabilizer blocks. Thus, the mean effective density of these sterically stabilized particles was calculated and determined to lie between 1.19 g cm–3 for the smaller particles and 1.41 g cm–3 for the larger particles; these values are significantly lower than the solid-state density of PTFEMA (1.47 g cm–3). Since analytical centrifugation requires the density difference between the particles and the aqueous phase, determining the effective particle density is clearly vital for obtaining reliable particle size distributions. Furthermore, selected DCP data were recalculated by taking into account the inherent density distribution superimposed on the particle size distribution. Consequently, the true particle size distributions were found to be somewhat narrower than those calculated using an erroneous single density value, with smaller particles being particularly sensitive to this artifact. PMID:27478250
NASA Astrophysics Data System (ADS)
Shirafuji, Tatsuru; Nakamura, Yusuke; Azuma, Shiori; Sotoda, Naoya; Isshiki, Toshiyuki
2018-01-01
A wine-red free-standing thin film has been formed by irradiating dielectric barrier discharge plasma on an aqueous solution containing HAuCl4 and gelatin. The film has a fibrous structure with an inhomogeneous thickness profile and is composed of cross-linked gelatin, as confirmed by optical microscopy and infrared absorption spectroscopy. The film has embedded Au nanoparticles (GNPs), as confirmed by transmission electron microscopy. In the region with a relatively small film thickness, the number density of GNPs is relatively low, and the sizes of GNPs range from 5.3 to 34.3 nm. In the region with a relatively large film thickness, on the other hand, GNPs are highly accumulated, and the sizes of GNPs range from 10.0 to 26.7 nm. The aqueous solution remains transparent even after the film growth process, which indicates that the plasma-induced processes involving GNP formation and film growth are confined near the surface of the aqueous solution. A possible film growth mechanism is discussed on the basis of the experimental results of this study.
Enabling aqueous processing for crack-free thick electrodes
Du, Zhijia; Rollag, K. M.; Li, J.; ...
2017-04-14
Aqueous processing of thick electrodes for Li-ion cells promises to increase energy density due to increased volume fraction of active materials, and to reduce cost due to the elimination of the toxic solvents. Here in this paper this work reports the processing and characterization of aqueous processed electrodes with high areal loading and associated full pouch cell performance. Cracking of the electrode coatings becomes a critical issue for aqueous processing of the positive electrode as areal loading increases above 20–25 mg/cm 2 (~4 mAh/cm 2). Crack initiation and propagation, which was observed during drying via optical microscopy, is related tomore » the build-up of capillary pressure during the drying process. The surface tension of water was reduced by the addition of isopropyl alcohol (IPA), which led to improved wettability and decreased capillary pressure during drying. The critical thickness (areal loading) without cracking increased gradually with increasing IPA content. The electrochemical performance was evaluated in pouch cells. Electrodes processed with water/IPA (80/20 wt%) mixture exhibited good structural integrity with good rate performance and cycling performance.« less
Giancane, G; Basova, T; Hassan, A; Gümüş, G; Gürek, A G; Ahsen, V; Valli, L
2012-07-01
An octa-substituted copper phthalocyanine was dissolved in chloroform and spread on ultrapure water subphase in a Langmuir trough. The floating films were characterized at the air-water interface by the Langmuir isotherm, Brewster angle microscopy, and UV-Vis reflection spectroscopy and transferred by Langmuir-Schäfer technique on a silicon substrate, and thickness, refractive index, and extinction coefficient of the phthalocyanine derivative thin film were calculated by means of spectroscopic ellipsometry. A different number of layers were deposited using Langmuir-Schäfer method onto QCM crystals, and the active layers were tested as sensors for the detection of phenols in aqueous solution. The piezoelectric sensor response, totally reversible, is influenced by the number of transferred layers and by the nature of the substituent; on the contrary, the pK(a) value of the injected analytes slightly affects the device performances. Repeatability of the sensor responses was tested, and the frequency variation appears unchanged at least for 100 days. Copyright © 2012 Elsevier Inc. All rights reserved.
Shin, Ji Soo
2017-01-01
Purpose The aim of this study was to evaluate the changes in thickness of each macular retinal layer, the peripapillary retinal nerve fiber layer (RNFL), and central macular thickness (CMT) after 577-nm pattern scanning laser (PASCAL) photocoagulation in patients with diabetic retinopathy. Methods This retrospective study included 33 eyes with diabetic retinopathy that underwent 577-nm PASCAL photocoagulation. Each retinal layer thickness, peripapillary RNFL thickness, and CMT were measured by spectral-domain optical coherence tomography before 577-nm PASCAL photocoagulation, as well as at 1, 6, and 12 months after 577-nm PASCAL photocoagulation. Computerized intraretinal segmentation of optical coherence tomography was performed to identify the thickness of each retinal layer. Results The average thickness of the RNFL, ganglion cell layer, inner plexiform layer, inner nuclear layer, inner retinal layer, and CMT at each follow-up increased significantly from baseline (p < 0.001), whereas that of the retinal pigment epithelium at each follow-up decreased significantly from baseline (p < 0.001). The average thickness of the peripapillary RNFL increased significantly at one month (p < 0.001). This thickness subsequently recovered to 7.48 µm, and there were no significant changes at six or 12 months compared to baseline (p > 0.05). Conclusions Each macular retinal layer and CMT had a tendency to increase for one year after 577-nm PASCAL photocoagulation, whereas the average thickness of retinal pigment epithelium decreased at one-year follow-up compared to the baseline. Although an increase in peripapillary RNFL thickness was observed one month after 577-nm PASCAL photocoagulation, there were no significant changes at the one-year follow-up compared to the baseline. PMID:29022292
Shin, Ji Soo; Lee, Young Hoon
2017-12-01
The aim of this study was to evaluate the changes in thickness of each macular retinal layer, the peripapillary retinal nerve fiber layer (RNFL), and central macular thickness (CMT) after 577-nm pattern scanning laser (PASCAL) photocoagulation in patients with diabetic retinopathy. This retrospective study included 33 eyes with diabetic retinopathy that underwent 577-nm PASCAL photocoagulation. Each retinal layer thickness, peripapillary RNFL thickness, and CMT were measured by spectral-domain optical coherence tomography before 577-nm PASCAL photocoagulation, as well as at 1, 6, and 12 months after 577-nm PASCAL photocoagulation. Computerized intraretinal segmentation of optical coherence tomography was performed to identify the thickness of each retinal layer. The average thickness of the RNFL, ganglion cell layer, inner plexiform layer, inner nuclear layer, inner retinal layer, and CMT at each follow-up increased significantly from baseline (p < 0.001), whereas that of the retinal pigment epithelium at each follow-up decreased significantly from baseline (p < 0.001). The average thickness of the peripapillary RNFL increased significantly at one month (p < 0.001). This thickness subsequently recovered to 7.48 μm, and there were no significant changes at six or 12 months compared to baseline (p > 0.05). Each macular retinal layer and CMT had a tendency to increase for one year after 577-nm PASCAL photocoagulation, whereas the average thickness of retinal pigment epithelium decreased at one-year follow-up compared to the baseline. Although an increase in peripapillary RNFL thickness was observed one month after 577-nm PASCAL photocoagulation, there were no significant changes at the one-year follow-up compared to the baseline. © 2017 The Korean Ophthalmological Society
One-dimensional nanowires of pseudoboehmite (aluminum oxyhydroxide γ-AlOOH)
Iijima, Sumio; Yumura, Takashi; Liu, Zheng
2016-01-01
We report the discovery of a 1D crystalline structure of aluminum oxyhydroxide. It was found in a commercial product of fibrous pseudoboehmite (PB), γ-AlOOH, synthesized easily with low cost. The thinnest fiber found was a ribbon-like structure of only two layers of an Al–O octahedral double sheet having a submicrometer length along its c axis and 0.68-nm thickness along its b axis. This thickness is only slightly larger than half of the lattice parameter of the b-axis unit cell of the boehmite crystal (b/2 = 0.61 nm). Moreover, interlayer splittings having an average width of 1 nm inside the fibrous PB are found. These wider interlayer spaces may have intercalation of water, which is suggested by density functional theory (DFT) calculation. The fibers appear to grow as almost isolated individual filaments in aqueous Al-hydroxide sols and the growth direction of fibrous PB is always along its c axis. PMID:27708158
Tunable Gas Permeability of Polymer-Clay Nano Brick Wall Thin Film Assemblies
NASA Astrophysics Data System (ADS)
Gamboa, Daniel; Priolo, Morgan; Grunlan, Jaime
2010-03-01
Thin films of anionic natural montmorrilonite (MMT) clay and cationic polyethylenimine (PEI) have been produced by alternately dipping a plastic substrate into dilute aqueous mixtures containing each ingredient. After 40 polymer-clay layers have been deposited, the resulting transparent film exhibits an oxygen transmission rate (OTR) below 0.35 cm^3/m^2 . day when the pH of PEI solution is 10. This low permeability is due to a brick wall nanostructure comprised of completely exfoliated clay bricks in polymeric mortar. This brick wall creates an extremely tortuous path at thicknesses below 250 nm and clay concentration above 80 wt%. A 70-bilayer PEI-MMT assembly has an undetectable OTR (< 0.005 cm^3/m^2 . day), which equates to a permeability below SiOx when multiplied by its film thickness of 231 nm. With optical transparency greater than 86% and the ability to be microwaved, these thin film composites are good candidates for flexible electronics packaging and foil replacement for food.
Yang, Qiang; Cho, Kin-Sang; Chen, Huihui; Yu, Dekuang; Wang, Wan-Heng; Luo, Gang; Pang, Iok-Hou; Guo, Wenyi; Chen, Dong Feng
2012-06-20
To characterize the microbead-induced ocular hypertension (OHT) mouse model and investigate its potential use for preclinical screening and evaluation of ocular hypotensive agents, we tested the model's responses to major antiglaucoma drugs. Adult C57BL/6J mice were induced to develop OHT unilaterally by intracameral injection of microbeads. The effects of the most commonly used ocular hypotensive drugs, including timolol, brimonidine, brinzolamide, pilocarpine, and latanoprost, on IOP and glaucomatous neural damage were evaluated. Degeneration of retinal ganglion cells (RGCs) and optic nerve axons were quantitatively assessed using immunofluorescence labeling and histochemistry. Thickness of the ganglion cell complex (GCC) was also assessed with spectral-domain optical coherence tomography (SD-OCT). A microbead-induced OHT model promptly responded to drugs, such as timolol, brimonidine, and brinzolamide, that lower IOP through suppressing aqueous humor production and showed improved RGC and axon survival as compared to vehicle controls. Accordingly, SD-OCT detected significantly less reduction of GCC thickness in mice treated with all three aqueous production suppressants as compared to the vehicle contol-treated group. In contrast, drugs that increase aqueous outflow, such as pilocarpine and latanoprost, failed to decrease IOP in the microbead-induced OHT mice. Microbead-induced OHT mice carry dysfunctional aqueous outflow facility and therefore offer a unique model that allows selective screening of aqueous production suppressant antiglaucoma drugs or for studying the mechanisms regulating aqueous humor production. Our data set the stage for using GCC thickness assessed by SD-OCT as an imaging biomarker for noninvasive tracking of neuronal benefits of glaucoma therapy in this model.
Yan, Li; Zhou, Mengjiao; Zhang, Xiujuan; Huang, Longbiao; Chen, Wei; Roy, Vellaisamy A L; Zhang, Wenjun; Chen, Xianfeng
2017-10-04
Layered double hydroxide (LDH) nanoparticles have been widely used for various biomedical applications. However, because of the difficulty of surface functionalization of LDH nanoparticles, the systemic administration of these nanomaterials for in vivo therapy remains a bottleneck. In this work, we develop a novel type of aqueous dispersible two-dimensional ultrathin LDH nanosheets with a size of about 50 nm and a thickness of about 1.4 to 4 nm. We are able to covalently attach positively charged rhodamine B fluorescent molecules to the nanosheets, and the nanohybrid retains strong fluorescence in liquid and even dry powder form. Therefore, it is available for bioimaging. Beyond this, it is convenient to modify the nanosheets with neutral poly(ethylene glycol) (PEG), so the nanohybrid is suitable for drug delivery through systemic administration. Indeed, in the test of using these nanostructures for delivery of a negatively charged anticancer drug, methotrexate (MTX), in a mouse model, dramatically improved therapeutic efficacy is achieved, indicated by the effective inhibition of tumor growth. Furthermore, our systematic in vivo safety investigation including measuring body weight, determining biodistribution in major organs, hematology analysis, blood biochemical assay, and hematoxylin and eosin stain demonstrates that the new material is biocompatible. Overall, this work represents a major development in the path of modifying functional LDH nanomaterials for clinical applications.
Preparation and Characterization of WS2@SiO2 and WS2@PANI Core-Shell Nanocomposites
Sade, Hagit
2018-01-01
Two tungsten disulfide (WS2)-based core-shell nanocomposites were fabricated using readily available reagents and simple procedures. The surface was pre-treated with a surfactant couple in a layer-by-layer approach, enabling good dispersion of the WS2 nanostructures in aqueous media and providing a template for the polymerization of a silica (SiO2) shell. After a Stöber-like reaction, a conformal silica coating was achieved. Inspired by the resulting nanocomposite, a second one was prepared by reacting the surfactant-modified WS2 nanostructures with aniline and an oxidizing agent in an aqueous medium. Here too, a conformal coating of polyaniline (PANI) was obtained, giving a WS2@PANI nanocomposite. Both nanocomposites were analyzed by electron microscopy, energy dispersive X-ray spectroscopy (EDS) and FTIR, verifying the core-shell structure and the character of shells. The silica shell was amorphous and mesoporous and the surface area of the composite increases with shell thickness. Polyaniline shells slightly differ in their morphologies dependent on the acid used in the polymerization process and are amorphous like the silica shell. Electron paramagnetic resonance (EPR) spectroscopy of the WS2@PANI nanocomposite showed variation between bulk PANI and the PANI shell. These two nanocomposites have great potential to expand the use of transition metals dichalcogenides (TMDCs) for new applications in different fields. PMID:29534426
Cloud layer thicknesses from a combination of surface and upper-air observations
NASA Technical Reports Server (NTRS)
Poore, Kirk D.; Wang, Junhong; Rossow, William B.
1995-01-01
Cloud layer thicknesses are derived from base and top altitudes by combining 14 years (1975-1988) of surface and upper-air observations at 63 sites in the Northern Hemisphere. Rawinsonde observations are employed to determine the locations of cloud-layer top and base by testing for dewpoint temperature depressions below some threshold value. Surface observations serve as quality checks on the rawinsonde-determined cloud properties and provide cloud amount and cloud-type information. The dataset provides layer-cloud amount, cloud type, high, middle, or low height classes, cloud-top heights, base heights and layer thicknesses, covering a range of latitudes from 0 deg to 80 deg N. All data comes from land sites: 34 are located in continental interiors, 14 are near coasts, and 15 are on islands. The uncertainties in the derived cloud properties are discussed. For clouds classified by low-, mid-, and high-top altitudes, there are strong latitudinal and seasonal variations in the layer thickness only for high clouds. High-cloud layer thickness increases with latitude and exhibits different seasonal variations in different latitude zones: in summer, high-cloud layer thickness is a maximum in the Tropics but a minimum at high latitudes. For clouds classified into three types by base altitude or into six standard morphological types, latitudinal and seasonal variations in layer thickness are very small. The thickness of the clear surface layer decreases with latitude and reaches a summer minimum in the Tropics and summer maximum at higher latitudes over land, but does not vary much over the ocean. Tropical clouds occur in three base-altitude groups and the layer thickness of each group increases linearly with top altitude. Extratropical clouds exhibit two groups, one with layer thickness proportional to their cloud-top altitude and one with small (less than or equal to 1000 m) layer thickness independent of cloud-top altitude.
Noe Dobrea, E.Z.; Bishop, J.L.; McKeown, N.K.; Fu, R.; Rossi, C.M.; Michalski, J.R.; Heinlein, C.; Hanus, V.; Poulet, F.; Mustard, R.J.F.; Murchie, S.; McEwen, A.S.; Swayze, G.; Bibring, J.-P.; Malaret, E.; Hash, C.
2010-01-01
Analyses of MRO/CRISM images of the greater Mawrth Vallis region of Mars affirm the presence of two primary phyllosilicate assemblages throughout a region ∼1000 × 1000 km. These two units consist of an Fe/Mg-phyllosilicate assemblage overlain by an Al-phyllosilicate and hydrated silica assemblage. The lower unit contains Fe/Mg-smectites, sometimes combined with one or more of these other Fe/Mg-phyllosilicates: serpentine, chlorite, biotite, and/or vermiculite. It is more than 100 m thick and finely layered at meter scales. The upper unit includes Al-smectite, kaolin group minerals, and hydrated silica. It is tens of meters thick and finely layered as well. A common phyllosilicate stratigraphy and morphology is observed throughout the greater region wherever erosional windows are present. This suggests that the geologic processes forming these units must have occurred on at least a regional scale. Sinuous ridges (interpreted to be inverted channels) and narrow channels cut into the upper clay-bearing unit suggesting that aqueous processes were prevalent after, and possibly during, the deposition of the layered units. We propose that layered units may have been deposited at Mawrth Vallis and then subsequently altered to form the hydrated units. The Fe/Mg-phyllosilicate assemblage is consistent with hydrothermal alteration or pedogenesis of mafic to ultramafic rocks. The Al-phyllosilicate/hydrated silica unit may have formed through alteration of felsic material or via leaching of basaltic material through pedogenic alteration or a mildly acidic environment. These phyllosilicate-bearing units are overlain by a darker, relatively unaltered, and indurated material that has probably experienced a complex geological history.
Chemically modified IR-transparent fibers and their application as chemical sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kellner, R.A.
1993-12-31
With the advent of chalcogenide- (As-Se-Te), Silverhalide- (AgBrCl) and TeXAs-fibers, the optical window available for analytical chemistry was significantly extended into the MID- and FAR-IR range (2 to 20 {mu}m) recently. These fibers have been chemically modified in our laboratory at 10 cm-distances of their surfaces (A) by covering them with 10-100 {mu}m thick layers of a suitable polymer such as LDPE ({open_quotes}Thickfilm-Sensor{close_quotes}) and (B) by immobilizing specifically reacting enzyme-layers such as GOx ({open_quotes}Thinfilm-Sensor{close_quotes}). In the first case, where the penetration depth of the IR-beam is smaller than the thickness of the polymer layer, a sensor for the simultaneous inmore » situ-determination of chlorinated hydrocarbon traces in water down to 500 ppb could be developed and tested. In the second case, a system for the determination of glucose in complex aqueous solutions was developed, based on the catalytic oxidation of glucose to gluconic acid and hydrogen peroxide by the immobilized enzyme glucose oxidase (GOx) in the physiological range. The GOx-density at the fibers could be significantly enlarged by using S-Layers instead of silanes for immobilization. Secondly, a flow injection-approach was developed recently, which allowed for an even further increase of the enzyme density by separating the reaction- and detection-part of our sensor, using controlled pore glass as carrier for the GOx and tapered chalcogenide fibers for detection. With this system, which works perfectly linear in the physiological range also for urea (with urease) a practical (multi)enzyme-based IR-sensor system is presented for the first time.« less
Analyzing refractive index profiles of confined fluids by interferometry.
Kienle, Daniel F; Kuhl, Tonya L
2014-12-02
This work describes an interferometry data analysis method for determining the optical thickness of thin films or any variation in the refractive index of a fluid or film near a surface. In particular, the method described is applied to the analysis of interferometry data taken with a surface force apparatus (SFA). The technique does not require contacting or confining the fluid or film. By analyzing interferometry data taken at many intersurface separation distances out to at least 300 nm, the properties of a film can be quantitatively determined. The film can consist of material deposited on the surface, like a polymer brush, or variation in a fluid's refractive index near a surface resulting from, for example, a concentration gradient, depletion in density, or surface roughness. The method is demonstrated with aqueous polyethylenimine (PEI) adsorbed onto mica substrates, which has a large concentration and therefore refractive index gradient near the mica surface. The PEI layer thickness determined by the proposed method is consistent with the thickness measured by conventional SFA methods. Additionally, a thorough investigation of the effects of random and systematic error in SFA data analysis and modeling via simulations of interferometry is described in detail.
1990-11-16
creating an electrical double-layer whenever a bare mica surface is in contact with an aqueous solution . The mica/electrolyte double-layer...between mica in aqueous solutions containing 10-5 to I M KNO 3 (From Reference 44. Copyright 0 1985 Royal Swedish Academy. Reprinted with permission of...can be observed in aqueous KNO 3 solutions at close separations and at high ion concentrations. For example, if the force curves in Figure 8 (top) for
NASA Astrophysics Data System (ADS)
Kuru, Hilal; Kockar, Hakan; Alper, Mursel
2017-12-01
Giant magnetoresistance (GMR) behavior in electrodeposited NiFe/Cu multilayers was investigated as a function of non-magnetic (Cu) and ferromagnetic (NiFe) layer thicknesses, respectively. Prior to the GMR analysis, structural and magnetic analyses of the multilayers were also studied. The elemental analysis of the multilayers indicated that the Cu and Ni content in the multilayers increase with increasing Cu and NiFe layer thickness, respectively. The structural studies by X-ray diffraction revealed that all multilayers have face centred cubic structure with preferred (1 1 0) crystal orientation as their substrates. The magnetic properties studied with the vibrating sample magnetometer showed that the magnetizations of the samples are significantly affected by the layer thicknesses. Saturation magnetisation, Ms increases from 45 to 225 emu/cm3 with increasing NiFe layer thickness. The increase in the Ni content of the multilayers with a small Fe content causes an increase in the Ms. And, the coercivities ranging from 2 to 24 Oe are between the soft and hard magnetic properties. Also, the magnetic easy axis of the multilayers was found to be in the film plane. Magnetoresistance measurements showed that all multilayers exhibited the GMR behavior. The GMR magnitude increases with increasing Cu layer thickness and reaches its maximum value of 10% at the Cu layer thickness of 1 nm, then it decreases. And similarly, the GMR magnitude increases and reaches highest value of pure GMR (10%) for the NiFe layer thickness of 3 nm, and beyond this point GMR decreases with increasing NiFe layer thickness. Some small component of the anisotropic magnetoresistance was also observed at thin Cu and thick NiFe layer thicknesses. It is seen that the highest GMR values up to 10% were obtained in electrodeposited NiFe/Cu multilayers up to now. The structural, magnetic and magnetoresistance properties of the NiFe/Cu were reported via the variations of the thicknesses of Cu and NiFe layers with stressing the role of layer thicknesses on the high GMR behavior.
Zone compensated multilayer laue lens and apparatus and method of fabricating the same
Conley, Raymond P.; Liu, Chian Qian; Macrander, Albert T.; Yan, Hanfei; Maser, Jorg; Kang, Hyon Chol; Stephenson, Gregory Brian
2015-07-14
A multilayer Laue Lens includes a compensation layer formed in between a first multilayer section and a second multilayer section. Each of the first and second multilayer sections includes a plurality of alternating layers made of a pair of different materials. Also, the thickness of layers of the first multilayer section is monotonically increased so that a layer adjacent the substrate has a minimum thickness, and the thickness of layers of the second multilayer section is monotonically decreased so that a layer adjacent the compensation layer has a maximum thickness. In particular, the compensation layer of the multilayer Laue lens has an in-plane thickness gradient laterally offset by 90.degree. as compared to other layers in the first and second multilayer sections, thereby eliminating the strict requirement of the placement error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uribe, Fernando; Vianco, Paul Thomas; Zender, Gary L.
A study was performed that examined the microstructure and mechanical properties of 63Sn-37Pb (wt.%, Sn-Pb) solder joints made to thick film layers on low-temperature co-fired (LTCC) substrates. The thick film layers were combinations of the Dupont{trademark} 4596 (Au-Pt-Pd) conductor and Dupont{trademark} 5742 (Au) conductor, the latter having been deposited between the 4596 layer and LTCC substrate. Single (1x) and triple (3x) thicknesses of the 4596 layer were evaluated. Three footprint sizes were evaluated of the 5742 thick film. The solder joints exhibited excellent solderability of both the copper (Cu) lead and thick film surface. In all test sample configurations, themore » 5742 thick film prevented side wall cracking of the vias. The pull strengths were in the range of 3.4-4.0 lbs, which were only slightly lower than historical values for alumina (Al{sub 2}O{sub 3}) substrates. General (qualitative) observations: (a) The pull strength was maximized when the total number of thick film layers was between two and three. Fewer that two layers did not develop as strong of a bond at the thick film/LTCC interface; more than three layers and of increased footprint area, developed higher residual stresses at the thick film/LTCC interface and in the underlying LTCC material that weakened the joint. (b) Minimizing the area of the weaker 4596/LTCC interface (e.g., larger 5742 area) improved pull strength. Specific observations: (a) In the presence of vias and the need for the 3x 4596 thick film, the preferred 4596:5742 ratio was 1.0:0.5. (b) For those LTCC components that require the 3x 4596 layer, but do not have vias, it is preferred to refrain from using the 5742 layer. (c) In the absence of vias, the highest strength was realized with a 1x thick 5742 layer, a 1x thick 4596 layer, and a footprint ratio of 1.0:1.0.« less
Spectral ellipsometry as a method for characterization of nanosized films with ferromagnetic layers
NASA Astrophysics Data System (ADS)
Hashim, H.; Singkh, S. P.; Panina, L. V.; Pudonin, F. A.; Sherstnev, I. A.; Podgornaya, S. V.; Shpetnyi, I. A.; Beklemisheva, A. V.
2017-11-01
Nanosized films with ferromagnetic layers are widely used in nanoelectronics, sensor systems and telecommunications. Their properties may strongly differ from those of bulk materials that is on account of interfaces, intermediate layers and diffusion. In the present work, spectral ellipsometry and magnetooptical methods are adapted for characterization of the optical parameters and magnetization processes in two- and three-layer Cr/NiFe, Al/NiFe and Cr(Al)/Ge/NiFe films onto a sitall substrate for various thicknesses of Cr and Al layers. At a layer thickness below 20 nm, the complex refractive coefficients depend pronouncedly on the thickness. In two-layer films, remagnetization changes weakly over a thickness of the top layer, but the coercive force in three-layer films increases by more than twice upon remagnetization, while increasing the top layer thickness from 4 to 20 nm.
Ivanov, I B; Hadjiiski, A; Denkov, N D; Gurkov, T D; Kralchevsky, P A; Koyasu, S
1998-01-01
A novel method for studying the interaction of biological cells with interfaces (e.g., adsorption monolayers of antibodies) is developed. The method is called the film trapping technique because the cell is trapped within an aqueous film of equilibrium thickness smaller than the cell diameter. A liquid film of uneven thickness is formed around the trapped cell. When observed in reflected monochromatic light, this film exhibits an interference pattern of concentric bright and dark fringes. From the radii of the fringes one can restore the shape of interfaces and the cell. Furthermore, one can calculate the adhesive energy between the cell membrane and the aqueous film surface (which is covered by a layer of adsorbed proteins and/or specific ligands), as well as the disjoining pressure, representing the force of interaction per unit area of the latter film. The method is applied to two human T cell lines: Jurkat and its T cell receptor negative (TCR-) derivative. The interaction of these cells with monolayers of three different monoclonal antibodies adsorbed at a water-air interface is studied. The results show that the adhesive energy is considerable (above 0.5 mJ/m2) when the adsorption monolayer contains antibodies acting as specific ligands for the receptors expressed on the cell surface. In contrast, the adhesive energy is close to zero in the absence of such a specific ligand-receptor interaction. In principle, the method can be applied to the study of the interaction of a variety of biological cells (B cells, natural killer cells, red blood cells, etc.) with adsorption monolayers of various biologically active molecules. In particular, film trapping provides a tool for the gentle micromanipulation of cells and for monitoring of processes (say the activation of a T lymphocyte) occurring at the single-cell level. PMID:9649417
Effects of channel thickness on oxide thin film transistor with double-stacked channel layer
NASA Astrophysics Data System (ADS)
Lee, Kimoon; Kim, Yong-Hoon; Yoon, Sung-Min; Kim, Jiwan; Oh, Min Suk
2017-11-01
To improve the field effect mobility and control the threshold voltage ( V th ) of oxide thin film transistors (TFTs), we fabricated the oxide TFTs with double-stacked channel layers which consist of thick Zn-Sn-O (ZTO) and very thin In-Zn-O (IZO) layers. We investigated the effects of the thickness of thin conductive layer and the conductivity of thick layer on oxide TFTs with doublestacked channel layer. When we changed the thickness of thin conductive IZO channel layer, the resistivity values were changed. This resistivity of thin channel layer affected on the saturation field effect mobility and the off current of TFTs. In case of the thick ZTO channel layer which was deposited by sputtering in Ar: O2 = 10: 1, the device showed better performances than that which was deposited in Ar: O2 = 1: 1. Our TFTs showed high mobility ( μ FE ) of 40.7 cm2/Vs and V th of 4.3 V. We assumed that high mobility and the controlled V th were caused by thin conductive IZO layer and thick stable ZTO layer. Therefore, this double-stacked channel structure can be very promising way to improve the electrical characteristics of various oxide thin film transistors.
NASA Astrophysics Data System (ADS)
Kim, Dae-Yun; Park, Min-Ho; Park, Yong-Keun; Yu, Ji-Sung; Kim, Joo-Sung; Kim, Duck-Ho; Min, Byoung-Chul; Choe, Sug-Bong
2018-02-01
In this study, we investigate the influence of the ferromagnetic layer thickness on the magnetization process. A series of ultrathin Pt/Co/TiO2/Pt films exhibits domain-wall (DW) speed variation of over 100,000 times even under the same magnetic field, depending on the ferromagnetic layer thickness. From the creep-scaling analysis, such significant variation is found to be mainly attributable to the thickness-dependence of the creep-scaling constant in accordance with the creep-scaling theory of the linear proportionality between the creep-scaling constant and the ferromagnetic layer thickness. Therefore, a thinner film shows a faster DW speed. The DW roughness also exhibits sensitive dependence on the ferromagnetic layer thickness: a thinner film shows smoother DW. The present observation provided a guide for an optimal design rule of the ferromagnetic layer thickness for better performance of DW-based devices.
Role of Cu layer thickness on the magnetic anisotropy of pulsed electrodeposited Ni/Cu/Ni tri-layer
NASA Astrophysics Data System (ADS)
Dhanapal, K.; Prabhu, D.; Gopalan, R.; Narayanan, V.; Stephen, A.
2017-07-01
The Ni/Cu/Ni tri-layer film with different thickness of Cu layer was deposited using pulsed electrodeposition method. The XRD pattern of all the films show the formation of fcc structure of nickel and copper. This shows the orientated growth in the (2 2 0) plane of the layered films as calculated from the relative intensity ratio. The layer formation in the films were observed from cross sectional view using FE-SEM and confirms the decrease in Cu layer thickness with decreasing deposition time. The magnetic anisotropy behaviour was measured using VSM with two different orientations of layered film. This shows that increasing anisotropy energy with decreasing Cu layer thickness and a maximum of -5.13 × 104 J m-3 is observed for copper deposited for 1 min. From the K eff.t versus t plot, development of perpendicular magnetic anisotropy in the layered system is predicted below 0.38 µm copper layer thickness.
2013-08-01
Sasobit® STA 0+35 cross-section layer thicknesses as constructed............................... 36 Figure 50. Evotherm ™ center-line layer thicknesses...as constructed. ................................................ 37 Figure 51. Evotherm ™ STA 0+15 cross-section layer thicknesses as constructed...37 Figure 52. Evotherm ™ STA 0+25 cross-section layer thicknesses as constructed. .......................... 38 Figure 53
Study of interlayer coupling between FePt and FeCoB thin films through MgO spacer layer
NASA Astrophysics Data System (ADS)
Singh, Sadhana; Kumar, Dileep; Gupta, Mukul; Reddy, V. Raghvendra
2017-05-01
Interlayer exchange coupling between hard-FePt and soft-FeCoB magnetic layers has been studied with increasing thickness of insulator MgO spacer layer in FePt/MgO/FeCoB sandwiched structure. A series of the samples were prepared in identical condition using ion beam sputtering method and characterized for their magnetic and structural properties using magneto-optical Kerr effect (MOKE) and X-ray reflectivity measurements. The nature of coupling between FePt and FeCoB was found to be ferromagnetic which decreases exponentially with increasing thickness of MgO layer. At very low thickness of MgO layer, both layers were found strongly coupled thus exhibiting coherent magnetization reversal. At higher thickness, both layers were found decoupled and magnetization reversal occurred at different switching fields. Strong coupling at very low thickness is attributed to pin holes in MgO layer which lead to direct coupling whereas on increasing thickness, coupling may arise due to magneto-static interactions.
Metaporous layer to overcome the thickness constraint for broadband sound absorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jieun; Lee, Joong Seok; Kim, Yoon Young, E-mail: yykim@snu.ac.kr
The sound absorption of a porous layer is affected by its thickness, especially in a low-frequency range. If a hard-backed porous layer contains periodical arrangements of rigid partitions that are coordinated parallel and perpendicular to the direction of incoming sound waves, the lower bound of the effective sound absorption can be lowered much more and the overall absorption performance enhanced. The consequence of rigid partitioning in a porous layer is to make the first thickness resonance mode in the layer appear at much lower frequencies compared to that in the original homogeneous porous layer with the same thickness. Moreover, appropriatemore » partitioning yields multiple thickness resonances with higher absorption peaks through impedance matching. The physics of the partitioned porous layer, or the metaporous layer, is theoretically investigated in this study.« less
NASA Astrophysics Data System (ADS)
Park, Wug-Dong; Tanioka, Kenkichi
2016-07-01
Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) films have been used for highly sensitive imaging devices. To study a-Se HARP films for a solid-state image sensor, current-voltage, lag, spectral response, and light-transfer characteristics of 0.4-µm-thick a-Se HARP films are investigated. Also, to clarify a suitable Te-doped a-Se layer thickness in the a-Se photoconductor, we considered the effects of Te-doped layer thickness on the lag, spectral response, and light-transfer characteristics of 0.4-µm-thick a-Se HARP films. The threshold field, at which avalanche multiplication occurs in the a-Se HARP targets, decreases when the Te-doped layer thickness increases. The lag of 0.4-µm-thick a-Se HARP targets with Te-doped layers is higher than that of the target without Te doping. The lag of the targets with Te-doped layers is caused by the electrons trapped in the Te-doped layers within the 0.4-µm-thick a-Se HARP films. From the results of the spectral response measurement of about 15 min, the 0.4-µm-thick a-Se HARP targets with Te-doped layers of 90 and 120 nm are observed to be unstable owing to the electrons trapped in the Te-doped a-Se layer. From the light-transfer characteristics of 0.4-µm-thick a-Se HARP targets, as the slope at the operating point of signal current-voltage characteristics in the avalanche mode increases, the γ of the a-Se HARP targets decreases. Considering the effects of dark current on the lag and spectral response characteristics, a Te-doped layer of 60 nm is suitable for 0.4-µm-thick a-Se HARP films.
Mechanically activated artificial cell by using microfluidics
NASA Astrophysics Data System (ADS)
Ho, Kenneth K. Y.; Lee, Lap Man; Liu, Allen P.
2016-09-01
All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology.
Qiu, Shihui; Li, Wei; Zheng, Wenru; Zhao, Haichao; Wang, Liping
2017-10-04
Dispersion of graphene in water and its incorporation into waterborne resin have been rarely researched and hardly achieved owing to its hydrophobicity. Furthermore, it has largely been reported that graphene with impermeability contributed to the improved anticorrosion property. Here, we show that highly concentrated graphene aqueous solution up to 5 mg/mL can be obtained by synthesizing hydrophilic polypyrrole (PPy) nanocolloids as intercalators and ultrasonic vibration. On the basis of π-π interaction between PPy and graphene, stacked graphene sheets are exfoliated to the thickness of three to five layers without increasing defects. The corrosion performance of coatings without and with PPy and graphene is obtained by potential and impedance measurements, Tafel curves, and fitted pore resistance by immersing in a 3.5 wt % NaCl solution. It turns out that composite coating with 0.5 wt % graphene additive exhibits superior anticorrosive ability. The mechanism of intercalated graphene-based coating is interpreted as the synergistic protection of impermeable graphene sheets and self-healing PPy and proved by the identification of corrosion products and the scanning vibrating electrode technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Wenwen; Li, Ping; Wang, Zheming
tMgO nanosheets with thickness ranges of 3–10 molecule layers and high specific area (166.44 m2g-1)were successfully fabricated by an ultrasound-assisted exfoliation method and used as adsorbent forthe removal of both selenite (Se(IV)) and selenate (Se(VI)) from aqueous solutions. The resulting MgOnanosheets displayed high maximum adsorption capacities of 103.52 and 10.28 mg g-1for Se(IV) andSe(VI), respectively. ATR-FTIR and XPS spectroscopic results suggested that both Se(IV) and Se(VI) formedinner-sphere surface complexes on MgO nanosheets under the present experimental conditions. Fur-thermore, high adsorption capacity for Se(IV/VI) in the presence of coexistent anions (SO 4 2-, PO43-, Cl-,and F-) and efficient regeneratability of adsorbentmore » by NaOH solution were observed in the competitiveadsorption and regeneration steps. The simple one-step synthesis process of MgO nanosheets and highadsorption capacities offer a promising method for Se(IV/VI) removal in water treatment.« less
Relative Translucency of a Multilayered Ultratranslucent Zirconia Material.
Shamseddine, Loubna; Majzoub, Zeina
2017-12-01
The aim of this study was to compare the translucency parameter (TP) of ultratranslucent multilayered (UTML) zirconia according to thickness and layer level. Rectangles of UTML zirconia with four layers [dentin layer (DEL), first transitional layer (FTL), second transitional layer (STL), and enamel layer (ENL)] and four different thicknesses (0.4, 0.6, 0.8, and 1 mm) were milled from blanks. Digital images were taken in a dark studio against white and black backgrounds under simulated daylight illumination and international commission on illumination (CIE) Lab* color values recorded using Photoshop Creative Cloud software. The TP was computed and compared according to thickness and layer level using analysis of variance (ANOVA) followed by Bonferroni post hoc analysis for multiple comparisons. Significance was set at p < 0.05. In each thickness, TP values were similar between any two layers. The significant effect of thickness on the TP was observed only in the first two layers. In the DEL, translucency was significantly greater at 0.4 mm than all other thicknesses. In the FTL, differences were significant between 0.4 and 0.8 mm and between 0.4 and 1 mm. The investigated zirconia does not seem to show gradational changes in relative translucency from dentin to enamel levels regardless of the thickness used. Thickness affected the TP only in the first two layers with better translu-cency at 0.4 mm. Since relative translucency does not seem to be significantly different between layers, clinicians can modify the apicocoronal positioning of the UTML layers within the restoration according to the desired Chroma without any implications on the clinically perceived translucency. While the thickness of 0.4 mm may be suggested for anterior esthetic veneers because of its higher translucency, the other thicknesses of 0.6 to 1 mm can be used to mask colored abutments in full contour restorations.
Non-Uniform Thickness Electroactive Device
NASA Technical Reports Server (NTRS)
Su, Ji (Inventor); Harrison, Joycelyn S. (Inventor)
2006-01-01
An electroactive device comprises at least two layers of material, wherein at least one layer is an electroactive material and wherein at least one layer is of non-uniform thickness. The device can be produced in various sizes, ranging from large structural actuators to microscale or nanoscale devices. The applied voltage to the device in combination with the non-uniform thickness of at least one of the layers (electroactive and/or non-electroactive) controls the contour of the actuated device. The effective electric field is a mathematical function of the local layer thickness. Therefore, the local strain and the local bending/ torsion curvature are also a mathematical function of the local thickness. Hence the thinnest portion of the actuator offers the largest bending and/or torsion response. Tailoring of the layer thicknesses can enable complex motions to be achieved.
Xing, Cheng-Mei; Meng, Fan-Ning; Quan, Miao; Ding, Kai; Dang, Yuan; Gong, Yong-Kuan
2017-09-01
A versatile fabrication and performance optimization strategy of PEG and zwitterionic polymer coatings is developed on the sensor chip of surface plasma resonance (SPR) instrument. A random copolymer bearing phosphorylcholine zwitterion and active ester side chains (PMEN) and carboxylic PEG coatings with comparable thicknesses were deposited on SPR sensor chips via amidation coupling on the precoated polydopamine (PDA) intermediate layer. The PMEN coating showed much stronger resistance to bovine serum albumin (BSA) adsorption than PEG coating at very thin thickness (∼1nm). However, the BSA resistant efficacy of PEG coating could exceed that of PMEN due to stronger steric repelling effect when the thickness increased to 1.5∼3.3nm. Interestingly, both the PEG and PMEN thick coatings (≈3.6nm) showed ultralow fouling by BSA and bovine plasma fibrinogen (Fg). Moreover, changes in the PEG end group from -OH to -COOH, protein adsorption amount could increase by 10-fold. Importantly, the optimized PMEN and PEG-OH coatings were easily duplicated on other substrates due to universal adhesion of the PDA layer, showed excellent resistance to platelet, bacteria and proteins, and no significant difference in the antifouling performances was observed. These detailed results can explain the reported discrepancy in performances between PEG and zwitterionic polymer coatings by thickness. This facile and substrate-independent coating strategy may benefit the design and manufacture of advanced antifouling biomedical devices and long circulating nanocarriers. Prevention of biofouling is one of the biggest challenges for all biomedical applications. However, it is very difficult to fabricate a highly hydrophilic antifouling coating on inert materials or large devices. In this study, PEG and zwitterion polymers, the most widely investigated polymers with best antifouling performance, are conveniently immobilized on different kinds of substrates from their aqueous solutions by precoating a polydopamine intermediate layer as the universal adhesive and readily re-modifiable surface. Importantly, the coating fabrication and antifouling performance can be monitored and optimized quantitatively by a surface plasma resonance (SPR) system. More significantly, the SPR on-line optimized coatings were successfully duplicated off-line on other substrates, and supported by their excellent antifouling properties. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Study of ion beam sputtered Fe/Si interfaces as a function of Si layer thickness
NASA Astrophysics Data System (ADS)
Kumar, Anil; Brajpuriya, Ranjeet; Singh, Priti
2018-01-01
The exchange interaction in metal/semiconductor interfaces is far from being completely understood. Therefore, in this paper, we have investigated the nature of silicon on the Fe interface in the ion beam deposited Fe/Si/Fe trilayers keeping the thickness of the Fe layers fixed at 3 nm and varying the thickness of the silicon sandwich layer from 1.5 nm to 4 nm. Grazing incidence x-ray diffraction and atomic force microscopy techniques were used, respectively, to study the structural and morphological changes in the deposited films as a function of layer thickness. The structural studies show silicide formation at the interfaces during deposition and better crystalline structure of Fe layers at a lower spacer layer thickness. The magnetization behavior was investigated using magneto-optical Kerr effect, which clearly shows that coupling between the ferromagnetic layers is highly influenced by the semiconductor spacer layer thickness. A strong antiferromagnetic coupling was observed for a value of tSi = 2.5 nm but above this value an unexpected behavior of hysteresis loop (step like) with two coercivity values is recorded. For spacer layer thickness greater than 2.5 nm, an elemental amorphous Si layer starts to appear in the spacer layer in addition to the silicide layer at the interfaces. It is observed that in the trilayer structure, Fe layers consist of various stacks, viz., Si doped Fe layers, ferromagnetic silicide layer, and nonmagnetic silicide layer at the interfaces. The two phase hysteresis loop is explained on the basis of magnetization reversal of two ferromagnetic layers, independent of each other, with different coercivities. X-ray photo electron spectroscopy technique was also used to study interfaces characteristics as a function of tSi.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, David M.; Belev, Gueorgi; DeCrescenzo, Giovanni
2007-08-15
Blocking layers are used to reduce leakage current in amorphous selenium detectors. The effect of the thickness of the blocking layer on the presampling modulation transfer function (MTF) and on dark current was experimentally determined in prototype single-line CCD-based amorphous selenium (a-Se) x-ray detectors. The sampling pitch of the detectors evaluated was 25 {mu}m and the blocking layer thicknesses varied from 1 to 51 {mu}m. The blocking layers resided on the signal collection electrodes which, in this configuration, were used to collect electrons. The combined thickness of the blocking layer and a-Se bulk in each detector was {approx}200 {mu}m. Asmore » expected, the dark current increased monotonically as the thickness of the blocking layer was decreased. It was found that if the blocking layer thickness was small compared to the sampling pitch, it caused a negligible reduction in MTF. However, the MTF was observed to decrease dramatically at spatial frequencies near the Nyquist frequency as the blocking layer thickness approached or exceeded the electrode sampling pitch. This observed reduction in MTF is shown to be consistent with predictions of an electrostatic model wherein the image charge from the a-Se is trapped at a characteristic depth within the blocking layer, generally near the interface between the blocking layer and the a-Se bulk.« less
Preparation of stir bars for sorptive extraction using sol-gel technology.
Liu, Wenmin; Wang, Hanwen; Guan, Yafeng
2004-08-06
A sol-gel coating method for the preparation of extractive phase on bars used in sorptive microextraction is described. The extraction phase of poly(dimethylsiloxane) is partially crosslinked with the sol-gel network, and the most part is physically incorporated in the network. Three aging steps at different temperatures are applied to complete the crosslinking process. Thirty-micrometer-thick coating layer is obtained by one coating process. The improved coating shows good thermal stability up to 300 degrees C. Spiked aqueous samples containing n-alkanes, polycyclic aromatic hydrocarbons and organophosphorus pesticides were analyzed by using the sorptive bars and GC. The results demonstrate that it is suitable for both aploar and polar analytes. The detection limit for chrysene is 7.44 ng/L, 0.74 ng/L for C19 and 0.9 ng/L for phorate. The extraction equilibration can be reached in less than 15 min by supersonic extraction with the bars of 30 microm coating layer.
Arias, José L; López-Viota, Margarita; Clares, Beatriz; Ruiz, Ma Adolfina
2008-08-07
In this paper we have carried out a detailed investigation of the stability and redispersibility characteristics of fenbendazole aqueous suspensions, through a thermodynamic and electrokinetic characterization, considering the effect of both pH and ionic strength. The hydrophobic character of the drug, and the surface charge and electrical double-layer thickness play an essential role in the stability of the system, hence the need for a full characterization of fenbendazole. It was found that the drug suspensions displays "delayed" or "hindered" sedimentation, determined by their hydrophobic character and their low zeta potential (indicating a small electrokinetic charge on the particles). The electrostatic repulsion between the particles is responsible for the low sedimentation volume and poor redispersibility of the drug. However, only low concentrations of AlCl(3) induced a significant effect on both the zeta potential and stability of the drug, leading to a "free-layered" sedimentation and a very easy redispersion which could be of great interest in the design of an oral pharmaceutical dosage form for veterinary.
Influence of Clay Platelet Spacing on Oxygen Permeability of Thin Film Assemblies
NASA Astrophysics Data System (ADS)
Priolo, Morgan; Gamboa, Daniel; Grunlan, Jaime
2010-03-01
Thin films of anionic natural montmorrilonite clay and various polyelectrolytes have been produced by alternately dipping a plastic substrate into dilute aqueous mixtures containing each ingredient in an effort to show the influence of clay platelet spacing on thin film permeability. After polymer-clay layers have been sequentially deposited, the resulting transparent films exhibit a brick wall nanostructure comprised of completely exfoliated clay bricks in polymeric mortar. This brick wall forms an extremely tortuous path for a molecule to traverse, creating channels perpendicular to the concentration gradient that increase the molecule's diffusion length and delay its transmission. To a first approximation, greater clay spacing (i.e., reduced clay concentration) produces greater oxygen barrier. Oxygen transmission rates below 0.005 cm^3/m^2.day have been achieved for films with only eight clay layers (total thickness of only 200 nm). With optical transparencies greater than 86% and the ability to be microwaved, these thin film composites are good candidates for flexible electronics packaging and foil replacement for food.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snel, J.; Monclús, M. A.; Castillo-Rodríguez, M.
The mechanical properties and deformation mechanisms of Cu/Nb nanoscale metallic multilayers (NMMs) manufactured by accumulative roll bonding are studied at 25°C and 400°C. Cu/Nb NMMs with individual layer thicknesses between 7 nm and 63 nm were tested by in situ micropillar compression inside a scanning electron microscope. Yield strength, strain-rate sensitivities and activation volumes were obtained from the pillar compression tests. The deformed micropillars were examined under scanning and transmission electron microscopy in order to examine the deformation mechanisms active for different layer thicknesses and temperatures. The paper suggests that room temperature deformation was determined by dislocation glide at largermore » layer thicknesses and interface-related mechanisms at the thinner layer thicknesses. The high-temperature compression tests, in contrast, revealed superior thermo-mechanical stability and strength retention for the NMMs with larger layer thicknesses with deformation controlled by dislocation glide. A remarkable transition in deformation mechanism occurred as the layer thickness decreased, to a deformation response controlled by diffusion processes along the interfaces, which resulted in temperature-induced softening. Finally, a deformation mechanism map, in terms of layer thickness and temperature, is proposed from the results obtained in this investigation.« less
Snel, J.; Monclús, M. A.; Castillo-Rodríguez, M.; ...
2017-08-29
The mechanical properties and deformation mechanisms of Cu/Nb nanoscale metallic multilayers (NMMs) manufactured by accumulative roll bonding are studied at 25°C and 400°C. Cu/Nb NMMs with individual layer thicknesses between 7 nm and 63 nm were tested by in situ micropillar compression inside a scanning electron microscope. Yield strength, strain-rate sensitivities and activation volumes were obtained from the pillar compression tests. The deformed micropillars were examined under scanning and transmission electron microscopy in order to examine the deformation mechanisms active for different layer thicknesses and temperatures. The paper suggests that room temperature deformation was determined by dislocation glide at largermore » layer thicknesses and interface-related mechanisms at the thinner layer thicknesses. The high-temperature compression tests, in contrast, revealed superior thermo-mechanical stability and strength retention for the NMMs with larger layer thicknesses with deformation controlled by dislocation glide. A remarkable transition in deformation mechanism occurred as the layer thickness decreased, to a deformation response controlled by diffusion processes along the interfaces, which resulted in temperature-induced softening. Finally, a deformation mechanism map, in terms of layer thickness and temperature, is proposed from the results obtained in this investigation.« less
Electrophoretic deposition of bi-layered LSM/LSM-YSZ cathodes for solid oxide fuel cell
NASA Astrophysics Data System (ADS)
Itagaki, Yoshiteru; Watanabe, Shinji; Yamaji, Tsuyoshi; Asamoto, Makiko; Yahiro, Hidenori; Sadaoka, Yoshihiko
2012-09-01
Bi-layered cathodes with the LSM/LSM-YSZ structure for solid oxide fuel cells were successfully formed on the carbon-sputtered surface of a YSZ sheet by electrophoretic deposition (EPD). The thicknesses of the first layer of LSM-YSZ (LY) and the second layer of La0.8Sr0.2MnO3 (LSM) could be controlled by adjusting the deposition time in the EPD process. The cathodic properties of the bi-layered structures were superior to those of the mono-layered structures, and were dependent on the thickness of each layer. Decreasing the thickness of the first layer and increasing that of the second layer tended to reduce both polarization and ohmic resistances. The optimal thickness of the first layer at the operating temperature of 600 °C was 4 μm, suggesting that an effective three-phase boundary was extended from the interface between the electrolyte and cathode film to around 4 μm thickness.
NASA Technical Reports Server (NTRS)
Bishop, J. L.; Gross, C.; Rampe, E. B.; Wray, J. J.; Parente, M.; Horgan, B.; Loizeau, D.; Viviano-Beck, C. E.; Clark, R. N.; Seelos, F. P.;
2016-01-01
Recently developed CRISM parameters and newly available DTMs are enabling refined characterization of the mineralogy at Mawrth Vallis. A stratigraphy including 5 units is mapped using HRSC DTMs across 100s of kms and using HiRISE DTMs across 100s of meters. Transitions in mineralogic units were characterized using spectral properties and surface morphology. The observations point to an ancient wet and warm geologic record that formed the thick nontronite unit, a period of wet/dry cycling to create acid alteration, followed by leaching or pedogenesis to result in Al-phyllosilicates, and finally a drier, colder climate that left the altered ash in the form of nanophase aluminosilicates, rather than crystalline clays.
Chen, Ying; Bylaska, Eric J; Weare, John H
2017-03-31
Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite [α-Fe(OOH)]. Ab initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Several exchange correlation functionals were employed (PBE96, PBE96 + Grimme, and PBE0) in the simulations of a (3 × 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a = 30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick). The lowest energy goethite (100) surface termination model was determined to have an exposed surface Fe 3+ that was loosely capped by a water molecule and a shared hydroxide with a neighboring surface Fe 3+ . The water molecules capping surface Fe 3+ ions were found to be loosely bound at all DFT levels with and without Grimme corrections, indicative that each surface Fe 3+ was coordinated with only five neighbors. These long bonds were supported by bond valence theory calculations, which showed that the bond valence of the surface Fe 3+ was saturated and surface has a neutral charge. The polarization of the water layer adjacent to the surface was found to be small and affected only the nearest water. Analysis by density difference plots and localized Boys orbitals identified three types of water molecules: those loosely bound to the surface Fe 3+ , those hydrogen bonded to the surface hydroxyl, and bulk water with tetrahedral coordination. Boys orbital analysis showed that the spin down lone pair orbital of the weakly absorbed water interact more strongly with the spin up Fe 3+ ion. These weakly bound surface water molecules were found to rapidly exchange with the second water layer (~0.025 exchanges/ps) using a dissociative mechanism. Water molecules adjacent to the surface were found to only weakly interact with the surface and as a result were readily able to exchange with the bulk water. To account for the large surface Fe-OH 2 distances in the DFT calculations it was proposed that the surface Fe 3+ atoms, which already have their bond valence fully satisfied with only five neighbors, are under-coordinated with respect to the bulk coordination. Graphical abstract All first principle calculations, at all practically achievable levels, for the goethite 100 aqueous interface support a long bond and weak interaction between the exposed surface Fe 3+ and water molecules capping the surface. This result is supported by bond valence theory calculations and is indicative that each surface Fe 3+ is coordinated with only 5 neighbors.
Dynamics of a vertical-flow windrow vermicomposting system.
Hanc, Ales; Castkova, Tereza; Kuzel, Stanislav; Cajthaml, Tomas
2017-11-01
Large-scale vermicomposting under outdoor conditions may differ from small-scale procedures in the laboratory. The present study evaluated changes in selected properties of a large-scale vertical-flow windrow vermicomposting system with continuous feeding with household biowaste. The windrow profile was divided into five layers of differing thickness and age after more than 12 months of vermicomposting. The top layer (0-30 cm, age <3 months) was characterised by partially decomposed organic matter with a high pH value and an elevated carbon/nitrogen (C/N) ratio. The earthworm biomass was 15 g kg -1 with a population density of 125 earthworms per kilogram predominantly found in clusters. The greatest amount of fungi (3.5 µg g -1 dw) and bacteria (62 µg g -1 dw) (expressed as phospholipid fatty acid analysis) was found in this layer. Thus, the top layer could be used for an additional cycle of windrow vermicomposting and for the preparation of aqueous extracts to protect plants against diseases. The lower layers (graduated by 30 cm and by 3 months of age) were mature as reflected by the low content of ammonia nitrogen, ratio of ammonia to nitrate nitrogen and dissolved organic carbon, and high ion-exchange capacity and its ratio to carbon. These layers were characterised by elevated values for electrical conductivity, total content of nutrients, available magnesium content, and a relatively large bacterial/fungal ratio. On the basis of the observed properties, the bottom layers were predetermined as effective fertilisers.
Bhamla, M Saad; Balemans, Caroline; Fuller, Gerald G
2015-07-01
We investigate the stabilizing effect of insoluble surfactant monolayers on thin aqueous films. We first describe an experimental platform that enables the formation of aqueous films laden with dipalmitoylphosphatidylcholine (DPPC) monolayers on curved silicone hydrogel (SiHy) substrates. We show that these surfactant layers extend the lifetime of the aqueous films. The films eventually "dewet" by the nucleation and growth of dry areas and the onset of this dewetting can be controlled by the surface rheology of the DPPC layer. We thus demonstrate that increasing the interfacial rheology of the DPPC layer leads to stable films that delay dewetting. We also show that dewetting can be exploited to controllably pattern the underlying curved SiHy substrates with DPPC layers. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, R. X.; Zheng, J.; Liao, X. L.; Che, T.; Gou, Y. F.; He, D. B.; Deng, Z. G.
2014-10-01
A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.
Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition
Nakayama, Hirokazu; Hayashi, Aki
2014-01-01
The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids. PMID:25080007
Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition.
Nakayama, Hirokazu; Hayashi, Aki
2014-07-30
The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids.
Lust, Andres; Lakio, Satu; Vintsevits, Julia; Kozlova, Jekaterina; Veski, Peep; Heinämäki, Jyrki; Kogermann, Karin
2013-11-01
During aqueous drug-layer coating, drug substance(s) are exposed to water and elevated temperatures which can lead to water-mediated process induced transformations (PITs). The effects of aqueous drug-layer coating of pellets (Cellets(®)) on the anhydrous piroxicam, PRX, were investigated in the miniaturized coating equipment and with free films. Hydroxypropyl methylcellulose (HPMC) was used as a carrier coating polymer. Free films were prepared by using an in-house small-scale rotating plate system equipped with an atomization air nozzle. Raman spectroscopy, X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) were used to characterize the solid-state properties and surface morphology of the pellets and free films. The results showed that anhydrous PRX form I (AH) and monohydrate (MH) were stable during drug-layer coating, but amorphous PRX in solid dispersion (SD) crystallized as MH already after 10 min of coating. Furthermore, the increase in a dissolution rate was achieved from the drug-layer coated inert pellets compared to powder forms. In conclusion, water-mediated solid-state PITs of amorphous PRX is evident during aqueous-based drug-layer coating of pellets, and solid-state change can be verified using Raman spectroscopy. Copyright © 2013 Elsevier B.V. All rights reserved.
Effect of layer thickness on the properties of nickel thermal sprayed steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nurisna, Zuhri, E-mail: zuhri-nurisna@yahoo.co.id; Triyono,, E-mail: triyonomesin@uns.ac.id; Muhayat, Nurul, E-mail: nurulmuhayat@staff.uns.ac.id
Thermal arc spray nickel coating is widely used for decorative and functional applications, by improving corrosion resistance, wear resistance, heat resistence or by modifying other properties of the coated materials. There are several properties have been studied. Layer thickness of nickel thermal sprayed steel may be make harder the substrate surface. In this study, the effect of layer thickness of nickel thermal sprayed steel has been investigated. The rectangular substrate specimens were coated by Ni–5 wt.% Al using wire arc spray method. The thickness of coating layers were in range from 0.4 to 1.0 mm. Different thickness of coating layers weremore » conducted to investigate their effect on hardness and morphology. The coating layer was examined by using microvickers and scanning electron microscope with EDX attachment. Generally, the hardness at the interface increased with increasing thickness of coating layers for all specimens due to higher heat input during spraying process. Morphology analysis result that during spraying process aluminum would react with surrounding oxygen and form aluminum oxide at outer surface of splat. Moreover, porosity was formed in coating layers. However, presence porosity is not related to thickness of coating material. The thicker coating layer resulted highesr of hardness and bond strength.« less
Goodwin, Daniel J; Sepassi, Shadi; King, Stephen M; Holland, Simon J; Martini, Luigi G; Lawrence, M Jayne
2013-11-04
Production of polymer and/or surfactant-coated crystalline nanoparticles of water-insoluble drugs (nanosuspensions) using wet bead milling is an important formulation approach to improve the bioavailability of said compounds. Despite the fact that there are a number of nanosuspensions on the market, there is still a deficiency in the characterization of these nanoparticles where further understanding may lead to the rational selection of polymer/surfactant. To this end small-angle neutron scattering (SANS) measurements were performed on drug nanoparticles milled in the presence of a range of polymers of varying molecular weight. Isotopic substitution of the aqueous solvent to match the scattering length density of the drug nanoparticles (i.e., the technique of contrast matching) meant that neutron scattering resulted only from the adsorbed polymer layer. The layer thickness and amount of hydroxypropylcellulose adsorbed on nabumetone nanoparticles derived from fitting the SANS data to both model-independent and model dependent volume fraction profiles were insensitive to polymer molecular weight over the range Mv = 47-112 kg/mol, indicating that the adsorbed layer is relatively flat but with tails extending up to approximately 23 nm. The constancy of the absorbed amount is in agreement with the adsorption isotherm determined by measuring polymer depletion from solution in the presence of the nanoparticles. Insensitivity to polymer molecular weight was similarly determined using SANS measurements of nabumetone or halofantrine nanoparticles stabilized with hydroxypropylmethylcellulose or poly(vinylpyrrolidone). Additionally SANS studies revealed the amount adsorbed, and the thickness of the polymer layer was dependent on both the nature of the polymer and drug particle surface. The insensitivity of the adsorbed polymer layer to polymer molecular weight has important implications for the production of nanoparticles, suggesting that lower molecular weight polymers should be used when preparing nanoparticles by wet bead milling since nanoparticle formation is more rapid but with no likely consequence on the resultant physical stability of the nanoparticles.
Predoi, Mihai Valentin; Ech Cherif El Kettani, Mounsif; Leduc, Damien; Pareige, Pascal; Coné, Khadidiatou
2015-08-01
The capability of shear horizontal (SH) guided waves, to evaluate geometrical imperfections in a bonding layer, is investigated. SH waves are used in a three-layer structure in which the adhesive layer has variable thickness. It is proven that the SH waves are adapting to the local thickness of the adhesive layer (adiabatic waves). This is particularly useful in case of small thickness variations, which is of technical interest. The influence of thickness and stiffness of the adhesive layer on the wavenumbers are investigated. The selected SH2 mode is proven to be very sensitive to the adhesive layer thickness variation in the given frequency range and considerably less sensitive to the adhesive stiffness variation. This property is due to its specific displacement field and is important in practical applications, such as inspection techniques based on SH waves, in order to avoid false alarms.
NASA Astrophysics Data System (ADS)
Assis, Anu; Shahul Hameed T., A.; Predeep, P.
2017-06-01
Mobility and current handling capabilities of Organic Field Effect Transistor (OFET) are vitally important parameters in the electrical performance where the material parameters and thickness of different layers play significant role. In this paper, we report the simulation of an OFET using multi physics tool, where the active layer is pentacene and Poly Methyl Methacrylate (PMMA) forms the dielectric. Electrical characterizations of the OFET on varying the thickness of the dielectric layer from 600nm to 400nm are simulated and drain current, transconductance and mobility are analyzed. In the study it is found that even though capacitance increases with reduction in dielectric layer thickness, the transconductance effect is reflected many more times in the mobility which in turn could be attributed to the variations in transverse electric field. The layer thickness below 300nm may result in gate leakage current points to the requirement of optimizing the thickness of different layers for better performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaoyu, E-mail: xiaoyu.yang@wdc.com; Chen, Lifan; Han, Hongmei
The impact of the fluorine-based reactive ion etch (RIE) process on the structural, electrical, and magnetic properties of NiFe and CoNiFe-plated materials was investigated. Several techniques, including X-ray fluorescence, 4-point-probe, BH looper, transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS), were utilized to characterize both bulk film properties such as thickness, average composition, Rs, ρ, Bs, Ms, and surface magnetic “dead” layers' properties such as thickness and element concentration. Experimental data showed that the majority of Rs and Bs changes of these bulk films were due to thickness reduction during exposure to the RIE process. ρ and Msmore » change after taking thickness reduction into account were negligible. The composition of the bulk films, which were not sensitive to surface magnetic dead layers with nano-meter scale, showed minimum change as well. It was found by TEM and EELS analysis that although both before and after RIE there were magnetic dead layers on the top surface of these materials, the thickness and element concentration of the layers were quite different. Prior to RIE, dead layer was actually native oxidation layers (about 2 nm thick), while after RIE dead layer consisted of two sub-layers that were about 6 nm thick in total. Sub-layer on the top was native oxidation layer, while the bottom layer was RIE “damaged” layer with very high fluorine concentration. Two in-situ RIE approaches were also proposed and tested to remove such damaged sub-layers.« less
Applying a uniform layer of disinfectant by wiping.
Cooper, D W
2000-01-01
Disinfection or sterilization often requires applying a film of liquid to a surface, frequently done by using a wiper as the applicator. The wiper must not only hold a convenient amount of liquid, it must deposit it readily and uniformly. Contact time is critical to disinfection efficacy. Evaporation can limit the contact time. To lengthen the contact time, thickly applied layers are generally preferred. The thickness of such layers can be determined by using dyes or other tracers, as long as the tracers do not significantly affect the liquid's surface tension and viscosity and thus do not affect the thickness of the applied layer. Alternatively, as done here, the thickness of the layer can be inferred from the weight loss of the wiper. Results are reported of experiments on thickness of the layers applied under various conditions. Near saturation, hydrophilic polyurethane foam wipers gave layers roughly 10 microns thick, somewhat less than expected from hydrodynamic theory, but more than knitted polyester or woven cotton. Wipers with large liquid holding capacity, refilled often, should produce more nearly uniform layers. Higher pressures increase saturation in the wiper, tending to thicken the layer, but higher pressures also force liquid from the interface, tending to thin the layer, so the net result could be thicker or thinner layers, and there is likely to be an optimal pressure.
NASA Astrophysics Data System (ADS)
Kumar, Rajeev; Kushwaha, Angad S.; Srivastava, Monika; Mishra, H.; Srivastava, S. K.
2018-03-01
In the present communication, a highly sensitive surface plasmon resonance (SPR) biosensor with Kretschmann configuration having alternate layers, prism/zinc oxide/silver/gold/graphene/biomolecules (ss-DNA) is presented. The optimization of the proposed configuration has been accomplished by keeping the constant thickness of zinc oxide (32 nm), silver (32 nm), graphene (0.34 nm) layer and biomolecules (100 nm) for different values of gold layer thickness (1, 3 and 5 nm). The sensitivity of the proposed SPR biosensor has been demonstrated for a number of design parameters such as gold layer thickness, number of graphene layer, refractive index of biomolecules and the thickness of biomolecules layer. SPR biosensor with optimized geometry has greater sensitivity (66 deg/RIU) than the conventional (52 deg/RIU) as well as other graphene-based (53.2 deg/RIU) SPR biosensor. The effect of zinc oxide layer thickness on the sensitivity of SPR biosensor has also been analysed. From the analysis, it is found that the sensitivity increases significantly by increasing the thickness of zinc oxide layer. It means zinc oxide intermediate layer plays an important role to improve the sensitivity of the biosensor. The sensitivity of SPR biosensor also increases by increasing the number of graphene layer (upto nine layer).
Structural perturbations of azurin deposited on solid matrices as revealed by trp phosphorescence.
Gabellieri, E; Strambini, G B
2001-01-01
The phosphorescence emission of Cd-azurin from Pseudomonas aeruginosa was used as a probe of possible perturbations in the dynamical structure of the protein core that may be induced by protein-sorbent and protein-protein interactions occurring when the macromolecule is deposited into amorphous, thin solid films. Relative to the protein in aqueous solution, the spectrum is unrelaxed and the phosphorescence decay becomes highly heterogeneous, the average lifetime increasing sharply with film thickness and upon its dehydration. According to the lifetime parameter, adsorption of the protein to the substrate is found to produce a multiplicity of partially unfolded structures, an influence that propagates for several protein layers from the surface. Among the substrates used for film deposition, hydrophilic silica, dextran, DEAE-dextran, dextran sulfate, and hydrophobic octodecylamine, the perturbation is smallest with dextran sulfate and largest with octodecylamine. The destabilizing effect of protein-protein interactions, as monitored on 50-layer-thick films, is most evident at a relative humidity of 75%. Stabilizing agents were incorporated to attenuate the deleterious effects of protein aggregation. Among them, the most effective in preserving a more native-like structure are the disaccharides sucrose and trehalose in dry films and the polymer dextran in wet films. Interestingly, the polymer was found to achieve maximum efficacy at sensibly lower additive/protein ratios than the sugars. PMID:11325742
Photovoltaic device having light transmitting electrically conductive stacked films
Weber, Michael F.; Tran, Nang T.; Jeffrey, Frank R.; Gilbert, James R.; Aspen, Frank E.
1990-07-10
A light transmitting electrically conductive stacked film, useful as a light transmitting electrode, including a first light transmitting electrically conductive layer, having a first optical thickness, a second light transmitting layer, having a second optical thickness different from the optical thickness of the first layer, and an electrically conductive metallic layer interposed between and in initimate contact with the first and second layers.
Separated rupture and retraction of a bi-layer free film
NASA Astrophysics Data System (ADS)
Stewart, Peter; Feng, Jie; Griffiths, Ian
2017-11-01
We investigate the dynamics of a rising air bubble in an aqueous phase coated with a layer of oil. Recent experiments have shown that bubble rupture at the compound air/oil/aqueous interface can effectively disperse submicrometre oil droplets into the aqueous phase, suggesting a possible mechanism for clean-up of oil spillages on the surface of the ocean. Using a theoretical model we consider the stability of the long liquid free film formed as the bubble reaches the free surface, composed of two immiscible layers of differing viscosities, where each layer experiences a van der Waals force between its interfaces. For an excess of surfactant on one gas-liquid interface we show that the instability manifests as distinct rupture events, with the oil layer rupturing first and retracting over the in-tact water layer beneath, consistent with the experimental observations. We use our model to examine the dynamics of oil retraction, showing that it follows a power-law for short times, and examine the influence of retraction on the stability of the water layer.
Layer-by-layer-based silica encapsulation of individual yeast with thickness control.
Lee, Hojae; Hong, Daewha; Choi, Ji Yu; Kim, Ji Yup; Lee, Sang Hee; Kim, Ho Min; Yang, Sung Ho; Choi, Insung S
2015-01-01
In the area of cell-surface engineering with nanomaterials, the metabolic and functional activities of the encapsulated cells are manipulated and controlled by various parameters of the artificial shells that encase the cells, such as stiffness and elasticity, thickness, and porosity. The mechanical durability and physicochemical stability of inorganic shells prove superior to layer-by-layer-based organic shells with regard to cytoprotection, but it has been difficult to vary the parameters of inorganic shells including their thickness. In this work, we combine the layer-by-layer technique with a process of bioinspired silicification to control the thickness of the silica shells that encapsulate yeast Saccharomyces cerevisiae cells individually, and investigate the thickness-dependent microbial growth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chiral photonic crystals with an anisotropic defect layer.
Gevorgyan, A H; Harutyunyan, M Z
2007-09-01
In the present paper we consider some properties of defect modes in chiral photonic crystals with an anisotropic defect layer. We solved the problem by Ambartsumian's layer addition method. We investigated the influence of the defect layer thickness variation and its location in the chiral photonic crystal (CPC) and also its optical axes orientation, as well as of CPC thickness variation on defect mode properties. Variations of the optical thickness of the defect layer have its impact on the defect mode linewidth and the light accumulation in the defect. We obtain that CPCs lose their base property at certain defect layer thicknesses; namely, they lose their diffraction reflection dependence on light polarization. We also show that the circular polarization handedness changes from right-handed to left-handed if the defect layer location is changed, and therefore, such systems can be used to create sources of elliptically polarized light with tunable ellipticity. Some nonreciprocity properties of such systems are investigated, too. In particular, it is also shown that such a system can work as a practically ideal wide band optical diode for circularly polarized incident light provided the defect layer thickness is properly chosen, and it can work as a narrow band diode at small defect layer thicknesses.
Kee, Changwon; Cho, Changhwan
2003-06-01
The authors investigated the correlation between visual field defects detected by automated perimetry and the thickness of the retinal nerve fiber layer measured with optical coherence tomography, and examined whether there is a decrease in retinal nerve fiber layer thickness in the apparently normal hemifield of glaucomatous eyes. Forty-one patients with glaucoma and 41 normal control subjects were included in this study. Statistical correlations between the sum of the total deviation of 37 stimuli of each hemifield and the ratio of decrease in retinal nerve fiber layer thickness were evaluated. The statistical difference between the retinal nerve fiber layer thickness of the apparently normal hemifield in glaucomatous eyes and that of the corresponding hemifield in normal subjects was also evaluated. There was a statistically significant correlation in the sum of the total deviation and retinal nerve fiber layer thickness decrease ratio (superior hemifield, P = 0.001; inferior hemifield, P = 0.003). There was no significant decrease in retinal nerve fiber layer thickness in the area that corresponded to the normal visual field in the hemifield defect with respect to the horizontal meridian in glaucomatous eyes (superior side, P = 0.148; inferior side, P = 0.341). Optical coherence tomography was capable of demonstrating and measuring retinal nerve fiber layer abnormalities. No changes in the retinal nerve fiber layer thickness of the apparently normal hemifield were observed in glaucomatous eyes.
NASA Technical Reports Server (NTRS)
Lin, P.; Pratt, D. T.
1987-01-01
A hybrid method has been developed for the numerical prediction of turbulent mixing in a spatially-developing, free shear layer. Most significantly, the computation incorporates the effects of large-scale structures, Schmidt number and Reynolds number on mixing, which have been overlooked in the past. In flow field prediction, large-eddy simulation was conducted by a modified 2-D vortex method with subgrid-scale modeling. The predicted mean velocities, shear layer growth rates, Reynolds stresses, and the RMS of longitudinal velocity fluctuations were found to be in good agreement with experiments, although the lateral velocity fluctuations were overpredicted. In scalar transport, the Monte Carlo method was extended to the simulation of the time-dependent pdf transport equation. For the first time, the mixing frequency in Curl's coalescence/dispersion model was estimated by using Broadwell and Breidenthal's theory of micromixing, which involves Schmidt number, Reynolds number and the local vorticity. Numerical tests were performed for a gaseous case and an aqueous case. Evidence that pure freestream fluids are entrained into the layer by large-scale motions was found in the predicted pdf. Mean concentration profiles were found to be insensitive to Schmidt number, while the unmixedness was higher for higher Schmidt number. Applications were made to mixing layers with isothermal, fast reactions. The predicted difference in product thickness of the two cases was in reasonable quantitative agreement with experimental measurements.
Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momblona, C.; Malinkiewicz, O.; Soriano, A.
2014-08-01
Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging frommore » 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness around 300 nm. However, here we demonstrate that with a slightly oxidized electron blocking layer the fill factor for the solar cells with a perovskite layer thickness of 900 nm increases to the same values as for the devices with thin perovskite layers. As a result the power conversion efficiencies for the cells with 300 and 900 nm are very similar, 12.7% and 12%, respectively.« less
Effect of capping layer on spin-orbit torques
NASA Astrophysics Data System (ADS)
Sun, Chi; Siu, Zhuo Bin; Tan, Seng Ghee; Yang, Hyunsoo; Jalil, Mansoor B. A.
2018-04-01
In order to enhance the magnitude of spin-orbit torque (SOT), considerable experimental works have been devoted to studying the thickness dependence of the different layers in multilayers consisting of heavy metal (HM), ferromagnet (FM), and capping layers. Here, we present a theoretical model based on the spin-drift-diffusion formalism to investigate the effect of the capping layer properties such as its thickness on the SOT observed in experiments. It is found that the spin Hall-induced SOT can be significantly enhanced by incorporating a capping layer with an opposite spin Hall angle to that of the HM layer. The spin Hall torque can be maximized by tuning the capping layer thickness. However, in the absence of the spin Hall effect (SHE) in the capping layer, the torque decreases monotonically with the capping layer thickness. Conversely, the spin Hall torque is found to decrease monotonically with the FM layer thickness, irrespective of the presence or absence of the SHE in the capping layer. All these trends are in correspondence with experimental observations. Finally, our model suggests that capping layers with a long spin diffusion length and high resistivity would also enhance the spin Hall torque.
NASA Astrophysics Data System (ADS)
Yu, Hailiang; Lu, Cheng; Tieu, A. Kiet; Li, Huijun; Godbole, Ajit; Kong, Charlie
2018-06-01
The roll bonding technique is one of the most widely used methods to produce metal laminate sheets. Such sheets offer interesting research opportunities for both scientists and engineers. In this paper, we report on an experimental investigation of the 'thickness effect' during laminate rolling for the first time. Using a four-high multifunction rolling mill, Cu/Al/Cu laminate sheets were fabricated with a range of thicknesses (16, 40, 70 and 130 μm) of the Al layer. The thickness of the Cu sheets was a constant 300 μm. After rolling, TEM images show good bonding quality between the Cu and Al layers. However, there are many nanoscale pores in the Al layer. The fraction of nanoscale pores in the Al layer increases with a reduction in the Al layer thickness. The finite element method was used to simulate the Cu/Al/Cu rolling process. The simulation results reveal the effect of the Al layer thickness on the deformation characteristics of the Cu/Al/Cu laminate. Finally, we propose that the size effect of the Al layer thickness during Cu/Al/Cu laminate rolling may offer a method to fabricate 'nanoporous' Al sandwich laminate foils. Such foils can be used in electromagnetic shielding of electrical devices and noisy shielding of building.
Atomistic Molecular Dynamics Simulations of the Electrical Double
NASA Astrophysics Data System (ADS)
Li, Zifeng; Milner, Scott; Fichthorn, Kristen
2015-03-01
The electrical double layer (EDL) near the polymer/water interface plays a key role in the colloidal stability of latex paint. To elucidate the structure of the EDL at the molecular level, we conducted an all-atom molecular dynamics simulations. We studied two representative surface charge groups in latex, the ionic surfactant sodium dodecyl sulfate (SDS) and the grafted short polyelectrolyte charged by dissociated methyl methacrylic acid (MAA) monomers. Our results confirm that the Poisson-Boltzmann theory works well outside the Stern layer. Our calculated electrostatic potential at the Outer Helmholtz Plane (OHP) is close to the zeta potential measured experimentally, which suggests that the potential at the OHP is a good estimate of the zeta potential. We found that the position of the OHP for the MAA polyelectrolyte system extends much further into the aqueous phase than that in the SDS system, resulting in a Stern layer that is twice as thick. This model will allow for future investigations of the interactions of the surface with different surfactants and rheology modifiers, which may serve as a guide to tune the rheology of latex formulations. We thank Dow Chemical Company for financial support.
Light-Induced Surface Reactions at the Bismuth Vanadate/Potassium Phosphate Interface.
Favaro, Marco; Abdi, Fatwa F; Lamers, Marlene; Crumlin, Ethan J; Liu, Zhi; van de Krol, Roel; Starr, David E
2018-01-18
Bismuth vanadate has recently drawn significant research attention as a light-absorbing photoanode due to its performance for photoelectrochemical water splitting. In this study, we use in situ ambient pressure X-ray photoelectron spectroscopy with "tender" X-rays (4.0 keV) to investigate a polycrystalline bismuth vanadate (BiVO 4 ) electrode in contact with an aqueous potassium phosphate (KPi) solution at open circuit potential under both dark and light conditions. This is facilitated by the creation of a 25 to 30 nm thick electrolyte layer using the "dip-and-pull" method. We observe that under illumination bismuth phosphate forms on the BiVO 4 surface leading to an increase of the surface negative charge. The bismuth phosphate layer may act to passivate surface states observed in photoelectrochemical measurements. The repulsive interaction between the negatively charged surface under illumination and the phosphate ions in solution causes a shift in the distribution of ions in the thin aqueous electrolyte film, which is observed as an increase in their photoelectron signals. Interestingly, we find that such changes at the BiVO 4 /KPi electrolyte interface are reversible upon returning to dark conditions. By measuring the oxygen 1s photoelectron peak intensities from the phosphate ions and liquid water as a function of time under dark and light conditions, we determine the time scales for the forward and reverse reactions. Our results provide direct evidence for light-induced chemical modification of the BiVO 4 /KPi electrolyte interface.
Dimech, Gustavo Santiago; Soares, Luiz Alberto Lira; Ferreira, Magda Assunção; de Oliveira, Anne Gabrielle Vasconcelos; Carvalho, Maria da Conceição; Ximenes, Eulália Azevedo
2013-01-01
The aim of this study was to investigate the antimicrobial activity of different extracts and fractions obtained from Hymenaea stigonocarpa stem barks. The cyclohexanic, ethyl acetate, ethanol, aqueous, and hydroalcoholic extracts were obtained by maceration. The hydroalcoholic extract was partitioned, which resulted in the ethyl acetate and aqueous fractions. All extracts and fractions were subjected to phytochemical screening and evaluation of total phenol and tannin contents. An HPLC-DAD and ultrastructural alterations analysis were performed. Terpenes and coumarins were detected in the cyclohexanic extract. Flavonoids and condensed tannins were present in the other extracts and fractions. The extracts with the highest contents of tannins, ethanol (EE), hydroalcoholic (HE), and aqueous fraction (AF) showed also the highest antimicrobial activity. The MIC values ranged from 64 to 526 µg/mL. The chromatographic fingerprints suggest the presence of astilbin and other flavonoids in EE and HE. Presence of the thick cell wall, undulating outer layer, abnormal septa, and leakage of the cytoplasmic contents and absence of cell wall and cell lyses were the main alterations observed on Staphylococcus aureus ATCC 33591 after treatment with the Hymenaea stigonocarpa hydroalcoholic extract. The presence of phenolic compounds like flavonoids and tannins is possibly the reason for the antimicrobial activity. PMID:24396311
NASA Astrophysics Data System (ADS)
Chadel, Meriem; Moustafa Bouzaki, Mohammed; Chadel, Asma; Aillerie, Michel; Benyoucef, Boumediene
2017-07-01
The influence of the thickness of a Zinc Oxide (ZnO) transparent conductive oxide (TCO) layer on the performance of the CZTSSe solar cell is shown in detail. In a photovoltaic cell, the thickness of each layer largely influence the performance of the solar cell and optimization of each layer constitutes a complete work. Here, using the Solar Cell Capacitance Simulation (SCAPS) software, we present simulation results obtained in the analyze of the influence of the TCO layer thickness on the performance of a CZTSSe solar cell, starting from performance of a CZTSSe solar cell commercialized in 2014 with an initial efficiency equal to 12.6%. In simulation, the temperature was considered as a functioning parameter and the evolution of tthe performance of the cell for various thickness of the TCO layer when the external temperature changes is simulated and discussed. The best efficiency of the solar cell based in CZTSSe is obtained with a ZnO thickness equal to 50 nm and low temperature. Based on the considered marketed cell, we show a technological possible increase of the global efficiency achieving 13% by optimization of ZnO based TCO layer.
Recombination zone in white organic light emitting diodes with blue and orange emitting layers
NASA Astrophysics Data System (ADS)
Tsuboi, Taiju; Kishimoto, Tadashi; Wako, Kazuhiro; Matsuda, Kuniharu; Iguchi, Hirofumi
2012-10-01
White fluorescent OLED devices with a 10 nm thick blue-emitting layer and a 31 nm thick orange-emitting layer have been fabricated, where the blue-emitting layer is stacked on a hole transport layer. An interlayer was inserted between the two emitting layers. The thickness of the interlayer was changed among 0.3, 0.4, and 1.0 nm. White emission with CIE coordinates close to (0.33, 0.33) was observed from all the OLEDs. OLED with 0.3 nm thick interlayer gives the highest maximum luminous efficiency (11 cd/A), power efficiency (9 lm/W), and external quantum efficiency (5.02%). The external quantum efficiency becomes low with increasing the interlayer thickness from 0 nm to 1.0 nm. When the location of the blue- and orange-emitting layers is reversed, white emission was not obtained because of too weak blue emission. It is suggested that the electron-hole recombination zone decreases nearly exponentially with a distance from the hole transport layer.
Jeong, Sunho; Song, Hae Chun; Lee, Won Woo; Lee, Sun Sook; Choi, Youngmin; Son, Wonil; Kim, Eui Duk; Paik, Choon Hoon; Oh, Seok Heon; Ryu, Beyong-Hwan
2011-03-15
With the aim of inkjet printing highly conductive and well-defined Cu features on plastic substrates, aqueous based Cu ink is prepared for the first time using water-soluble Cu nanoparticles with a very thin surface oxide layer. Owing to the specific properties, high surface tension and low boiling point, of water, the aqueous based Cu ink endows a variety of advantages over conventional Cu inks based on organic solvents in printing narrow conductive patterns without irregular morphologies. It is demonstrated how the design of aqueous based ink affects the basic properties of printed conductive features such as surface morphology, microstructure, conductivity, and line width. The long-term stability of aqueous based Cu ink against oxidation is analyzed through an X-ray photoelectron spectroscopy (XPS) based investigation on the evolution of the surface oxide layer in the aqueous based ink.
Hashimoto, Yuki; Saito, Wataru; Fujiya, Akio; Yoshizawa, Chikako; Hirooka, Kiriko; Mori, Shohei; Noda, Kousuke; Ishida, Susumu
2015-01-01
Purpose To investigate sequential post-operative thickness changes in inner and outer retinal layers in eyes with an idiopathic macular hole (MH). Methods Retrospective case series. Twenty-four eyes of 23 patients who had received pars plana vitrectomy (PPV) for the closure of MH were included in the study. Spectral domain optical coherence tomography C-scan was used to automatically measure the mean thickness of the inner and outer retinal layers pre-operatively and up to 6 months following surgery. The photoreceptor outer segment (PROS) length was measured manually and was used to assess its relationship with best-corrected visual acuity (BCVA). Results Compared with the pre-operative thickness, the inner layers significantly thinned during follow-up (P = 0.02), particularly in the parafoveal (P = 0.01), but not perifoveal, area. The post-operative inner layer thinning ranged from the ganglion cell layer to the inner plexiform layer (P = 0.002), whereas the nerve fiber layer was unaltered. Outer layer thickness was significantly greater post-operatively (P = 0.002), and especially the PROS lengthened not only in the fovea but also in the parafovea (P < 0.001). Six months after surgery, BCVA was significantly correlated exclusively with the elongated foveal PROS (R = 0.42, P = 0.03), but not with any of the other thickness parameters examined. Conclusions Following PPV for MH, retinal inner layers other than the nerve fiber layer thinned, suggestive of subclinical thickening in the inner layers where no cyst was evident pre-operatively. In contrast, retinal outer layer thickness significantly increased, potentially as a result of PROS elongation linking tightly with favorable visual prognosis in MH eyes. PMID:26291526
NASA Astrophysics Data System (ADS)
Zhang, Yifu; Zheng, Jiqi; Wang, Qiushi; Hu, Tao; Tian, Fuping; Meng, Changgong
2017-03-01
Layer-by-layer V2O5 structures self-assembly by quadrate sheets like "multilayer cake" were successfully synthesized using NH4VO3 as the vanadium sources by a facile hydrothermal route and combination of the calcination. The structure and composition were characterized by field emission scanning electron microscopy, energy-dispersive X-ray spectrometer, X-ray powder diffraction, Raman and Fourier transform infrared spectroscopy. The optical properties of the as-obtained V2O5 layer-by-layer structures were investigated by the Ultraviolet-visible spectroscopy and photoluminescence spectrum. The electrochemical properties of the as-obtained V2O5 layer-by-layer structures as electrodes in supercapacitor device were measured by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) both in the aqueous and organic electrolyte. The specific capacitance is 347 F g-1 at 1 A g-1 in organic electrolyte, which is improved by 46% compared with 238 F g-1 in aqueous electrolyte. During the cycle performance, the specific capacitances of V2O5 layer-by-layer structures after 100 cycles are 30% and 82% of the initial discharge capacity in the aqueous and organic electrolyte, respectively, indicating the cycle performance is significantly improved in organic electrolyte. Our results turn out that layer-by-layer V2O5 structures are an ideal material for supercapacitor electrode in the present work.
Turan, Kadriye Erkan; Sekeroglu, Hande Taylan; Baytaroglu, Ata; Bezci, Figen; Karahan, Sevilay
2018-01-01
To (a) determine the normative values for optical coherence tomography (OCT) parameters such as central macular thickness, retinal nerve fiber layer thickness, and choroidal thickness in healthy children; (b) investigate the relationships of these parameters with axial length, central corneal thickness, refractive errors, and intraocular pressure; and (c) determine interexaminer agreement for choroidal thickness measurements. In this cross-sectional study, 120 healthy children aged 8-15 years underwent detailed ophthalmological examination and OCT measurements. Choroidal thickness was measured at three separate locations by two independent examiners. The mean global retinal nerve fiber layer thickness was 98.75 ± 9.45 μm (79.0-121.0). The mean central macular thickness was 232.29 ± 29.37 μm (190.0-376.0). The mean subfoveal choroidal thickness obtained by examiner 1 was 344.38 ± 68.83 μm and that obtained by examiner 2 was 344.04 ± 68.92 μm. Interexaminer agreement was between 99.6%-99.8% for choroidal thickness at three separate locations. Central macular thickness increased with axial length (r=0.245, p=0.007). Choroidal thickness increased with age (r=0.291, p=0.001) and decreased with axial length (r=-0.191, p=0.037). Global retinal nerve fiber layer thickness decreased with axial length (r=-0.247, p=0.007) and increased with central corneal thickness (r=0.208, p=0.022). Global retinal nerve fiber layer thickness positively correlated with choroidal thickness (r=0.354, p<0.001). Global retinal nerve fiber layer thickness (r=0.223, p=0.014) and choroidal thickness (r=0.272, p=0.003) increased with the spherical equivalent (D). Optical coherence tomography parameters showed a wide range of variability in children. Retinal nerve fiber layer thickness, central macular thickness, and choroidal thickness were found to be either inter-related or correlated with age, central corneal thickness, axial length, and refractive errors. Furthermore, manual measurements of choroidal thickness showed high interexaminer agreement. Because normative values for optical coherence tomography parameters differed in children, the measurements should be interpreted according to an age-appropriate database.
Krivosheeva, Olga; Dedinaite, Andra; Claesson, Per M
2013-10-15
Mussel adhesive proteins are of great interest in many applications due to their ability to bind strongly to many types of surfaces under water. Effective use such proteins, for instance the Mytilus edulis foot protein - Mefp-1, for surface modification requires achievement of a large adsorbed amount and formation of a layer that is resistant towards desorption under changing conditions. In this work we compare the adsorbed amount and layer properties obtained by using a sample containing small Mefp-1 aggregates with that obtained by using a non-aggregated sample. We find that the use of the sample containing small aggregates leads to higher adsorbed amount, larger layer thickness and similar water content compared to what can be achieved with a non-aggregated sample. The layer formed by the aggregated Mefp-1 was, after removal of the protein from bulk solution, exposed to aqueous solutions with high ionic strength (up to 1M NaCl) and to solutions with low pH in order to reduce the electrostatic surface affinity. It was found that the preadsorbed Mefp-1 layer under all conditions explored was significantly more resistant towards desorption than a layer built by a synthetic cationic polyelectrolyte with similar charge density. These results suggest that the non-electrostatic surface affinity for Mefp-1 is larger than for the cationic polyelectrolyte. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Choroidal Haller's and Sattler's Layers Thickness in Normal Indian Eyes.
Roy, Rupak; Saurabh, Kumar; Vyas, Chinmayi; Deshmukh, Kaustubh; Sharma, Preeti; Chandrasekharan, Dhileesh P; Bansal, Aditya
2018-01-01
This study aims to study normative choroidal thickness (CT) and Haller's and Sattler's layers thickness in normal Indian eyes. The choroidal imaging of 73 eyes of 43 healthy Indian individuals was done using enhanced depth imaging feature of spectralis optical coherence tomography. Rraster scan protocol centered at fovea was used for imaging separately by two observers. CT was defined as the length of the perpendicular line drown from the outer border of hypereflective RPE-Bruch's complex to inner margin of choroidoscleral junction. Choroidal vessel layer thickness was measured after defining a largest choroidal vessel lumen within 750 μ on either side of the subfoveal CT vector. A perpendicular line was drawn to the innermost border of this lumen, and the distance between the perpendicular line and innermost border of choroidoscleral junction gave large choroidal vessel layer thickness (LCVLT, Haller's layer). Medium choroidal vessel layer thickness (MCVLT, Sattler's layer) was measured as the distance between same perpendicular line and outer border of hypereflective RPE-Bruch's complex. The mean age of individuals was 28.23 ± 15.29 years (range 14-59 years). Overall, the mean subfoveal CT was 331.6 ± 63.9 μ. Mean LCVLT was 227.08 ± 51.24 μ and the mean MCVLT was 95.65 ± 23.62 μ. CT was maximum subfoveally with gradual reduction in the thickness as the distance from the fovea increased. This is the first study describing the choroidal sublayer thickness, i.e., Haller's and Sattler's layer thickness along with CT in healthy Indian population.
Choroidal Haller's and Sattler's Layers Thickness in Normal Indian Eyes
Roy, Rupak; Saurabh, Kumar; Vyas, Chinmayi; Deshmukh, Kaustubh; Sharma, Preeti; Chandrasekharan, Dhileesh P.; Bansal, Aditya
2018-01-01
AIM: This study aims to study normative choroidal thickness (CT) and Haller's and Sattler's layers thickness in normal Indian eyes. MATERIALS AND METHODS: The choroidal imaging of 73 eyes of 43 healthy Indian individuals was done using enhanced depth imaging feature of spectralis optical coherence tomography. Rraster scan protocol centered at fovea was used for imaging separately by two observers. CT was defined as the length of the perpendicular line drown from the outer border of hypereflective RPE-Bruch's complex to inner margin of choroidoscleral junction. Choroidal vessel layer thickness was measured after defining a largest choroidal vessel lumen within 750 μ on either side of the subfoveal CT vector. A perpendicular line was drawn to the innermost border of this lumen, and the distance between the perpendicular line and innermost border of choroidoscleral junction gave large choroidal vessel layer thickness (LCVLT, Haller's layer). Medium choroidal vessel layer thickness (MCVLT, Sattler's layer) was measured as the distance between same perpendicular line and outer border of hypereflective RPE-Bruch's complex. RESULTS: The mean age of individuals was 28.23 ± 15.29 years (range 14–59 years). Overall, the mean subfoveal CT was 331.6 ± 63.9 μ. Mean LCVLT was 227.08 ± 51.24 μ and the mean MCVLT was 95.65 ± 23.62 μ. CT was maximum subfoveally with gradual reduction in the thickness as the distance from the fovea increased. CONCLUSION: This is the first study describing the choroidal sublayer thickness, i.e., Haller's and Sattler's layer thickness along with CT in healthy Indian population. PMID:29899646
In Situ Cross-Linking of Polyvinyl Alcohol Films
NASA Technical Reports Server (NTRS)
Philipp, W. H.; Shu, L. C.; May, C. E.
1984-01-01
Films or impregnated matrices readily made from aqueous polyvinyl alcohol solution. Controlled thickness films made by casting precise quantities of aqueous polymer solution on smooth surface, allowing water to evaporate and then removing film. Composite separators formed in similar fashion by impregnating cloth matrix with polyvinyl alcohol solution and drying composite. Insoluble thin hydrophilic membranes made from aqueous systems, and use of undesirable organic solvents not required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutter, P., E-mail: psutter@bnl.gov; Sutter, E.
2014-09-01
We assess scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) for thickness measurements on few-layer hexagonal boron nitride (h-BN), the layered dielectric of choice for integration with graphene and other two-dimensional materials. Observations on h-BN islands with large, atomically flat terraces show that the secondary electron intensity in SEM reflects monolayer height changes in films up to least 10 atomic layers thickness. From a quantitative analysis of AES data, the energy-dependent electron escape depth in h-BN films is deduced. The results show that AES is suitable for absolute thickness measurements of few-layer h-BN of 1 to 6 layers.
Formation and Restacking of Disordered Smectite Osmotic Hydrates
Gilbert, Benjamin; Comolli, Luis R.; Tinnacher, Ruth M.; ...
2015-12-01
Clay swelling, an important phenomenon in natural systems, can dramatically affect the properties of soils and sediments. Something of particular interest in low-salinity, saturated systems are osmotic hydrates, forms of smectite in which the layer separation greatly exceeds the thickness of a single smectite layer due to the intercalation of water. In situ X-ray diffraction (XRD) studies have shown a strong link between ionic strength and average interlayer spacing in osmotic hydrates but also indicate the presence of structural disorder that has not been fully described. In the present study the structural state of expanded smectite in sodium chloride solutionsmore » was investigated by combining very low electron dose, high-resolution cryogenic-transmission electron microscopy observations with XRD experiments. Wyoming smectite (SWy-2) was embedded in vitreous ice to evaluate clay structure in aqua. Lattice-fringe images showed that smectite equilibrated in aqueous, low-ionic-strength solutions, exists as individual smectite layers, osmotic hydrates composed of parallel layers, as well as disordered layer conformations. There was no evidence found here for edge-to-sheet attractions, but significant variability in interlayer spacing was observed. Whether this variation could be explained by a dependence of the magnitude of long-range cohesive (van der Waals) forces on the number of layers in a smectite particle was investigated here. Calculations of the Hamaker constant for layer-layer interactions showed that van der Waals forces may span at least five layers plus the intervening water and confirmed that forces vary with layer number. The drying of the disordered osmotic hydrates induced re-aggregation of the smectite to form particles that exhibited coherent scattering domains. Clay disaggregation and restacking may be considered as an example of oriented attachment, with the unusual distinction that it may be cycled repeatedly by changing solution conditions.« less
Formation and Restacking of Disordered Smectite Osmotic Hydrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Benjamin; Comolli, Luis R.; Tinnacher, Ruth M.
Clay swelling, an important phenomenon in natural systems, can dramatically affect the properties of soils and sediments. Something of particular interest in low-salinity, saturated systems are osmotic hydrates, forms of smectite in which the layer separation greatly exceeds the thickness of a single smectite layer due to the intercalation of water. In situ X-ray diffraction (XRD) studies have shown a strong link between ionic strength and average interlayer spacing in osmotic hydrates but also indicate the presence of structural disorder that has not been fully described. In the present study the structural state of expanded smectite in sodium chloride solutionsmore » was investigated by combining very low electron dose, high-resolution cryogenic-transmission electron microscopy observations with XRD experiments. Wyoming smectite (SWy-2) was embedded in vitreous ice to evaluate clay structure in aqua. Lattice-fringe images showed that smectite equilibrated in aqueous, low-ionic-strength solutions, exists as individual smectite layers, osmotic hydrates composed of parallel layers, as well as disordered layer conformations. There was no evidence found here for edge-to-sheet attractions, but significant variability in interlayer spacing was observed. Whether this variation could be explained by a dependence of the magnitude of long-range cohesive (van der Waals) forces on the number of layers in a smectite particle was investigated here. Calculations of the Hamaker constant for layer-layer interactions showed that van der Waals forces may span at least five layers plus the intervening water and confirmed that forces vary with layer number. The drying of the disordered osmotic hydrates induced re-aggregation of the smectite to form particles that exhibited coherent scattering domains. Clay disaggregation and restacking may be considered as an example of oriented attachment, with the unusual distinction that it may be cycled repeatedly by changing solution conditions.« less
Flow characteristics and scaling past highly porous wall-mounted fences
NASA Astrophysics Data System (ADS)
Rodríguez-López, Eduardo; Bruce, Paul J. K.; Buxton, Oliver R. H.
2017-07-01
An extensive characterization of the flow past wall-mounted highly porous fences based on single- and multi-scale geometries has been performed using hot-wire anemometry in a low-speed wind tunnel. Whilst drag properties (estimated from the time-averaged momentum equation) seem to be mostly dependent on the grids' blockage ratio; wakes of different size and orientation bars seem to generate distinct behaviours regarding turbulence properties. Far from the near-grid region, the flow is dominated by the presence of two well-differentiated layers: one close to the wall dominated by the near-wall behaviour and another one corresponding to the grid's wake and shear layer, originating from between this and the freestream. It is proposed that the effective thickness of the wall layer can be inferred from the wall-normal profile of root-mean-square streamwise velocity or, alternatively, from the wall-normal profile of streamwise velocity correlation. Using these definitions of wall-layer thickness enables us to collapse different trends of the turbulence behaviour inside this layer. In particular, the root-mean-square level of the wall shear stress fluctuations, longitudinal integral length scale, and spanwise turbulent structure is shown to display a satisfactory scaling with this thickness rather than with the whole thickness of the grid's wake. Moreover, it is shown that certain grids destroy the spanwise arrangement of large turbulence structures in the logarithmic region, which are then re-formed after a particular streamwise extent. It is finally shown that for fences subject to a boundary layer of thickness comparable to their height, the effective thickness of the wall layer scales with the incoming boundary layer thickness. Analogously, it is hypothesized that the growth rate of the internal layer is also partly dependent on the incoming boundary layer thickness.
Shulman, S; Shorer, R; Wollman, J; Dotan, G; Paran, D
2017-11-01
Background Cognitive impairment is frequent in systemic lupus erythematosus. Atrophy of the corpus callosum and hippocampus have been reported in patients with systemic lupus erythematosus, and diffusion tensor imaging studies have shown impaired white matter integrity, suggesting that white matter damage in systemic lupus erythematosus may underlie the cognitive impairment as well as other neuropsychiatric systemic lupus erythematosus manifestations. Retinal nerve fiber layer thickness, as assessed by optical coherence tomography, has been suggested as a biomarker for white matter damage in neurologic disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Retinal nerve fiber layer thinning may occur early, even in patients with mild clinical symptoms. Aim The objective of this study was to assess the association of retinal nerve fiber layer thickness, as a biomarker of white matter damage in systemic lupus erythematosus patients, with neuropsychiatric systemic lupus erythematosus manifestations, including cognitive impairment. Methods Twenty-one consecutive patients with systemic lupus erythematosus underwent neuropsychological testing using a validated computerized battery of tests as well as the Rey-Auditory verbal learning test. All 21 patients, as well as 11 healthy, age matched controls, underwent optical coherence tomography testing to assess retinal nerve fiber layer thickness. Correlations between retinal nerve fiber layer thickness and results in eight cognitive domains assessed by the computerized battery of tests as well as the Rey-Auditory verbal learning test were assessed in patients with systemic lupus erythematosus, with and without neuropsychiatric systemic lupus erythematosus, and compared to retinal nerve fiber layer thickness in healthy controls. Results No statistically significant correlation was found between retinal nerve fiber layer thickness in patients with systemic lupus erythematosus as compared to healthy controls. When evaluating by subgroups, no correlation was found between patients with or without neuropsychiatric systemic lupus erythematosus or cognitive impairment and retinal nerve fiber layer thickness. Conclusion Retinal nerve fiber layer thickness of systemic lupus erythematosus patients was not found to be statistically different compared to controls. Within systemic lupus erythematosus patients there was no correlation between retinal nerve fiber layer thickness and cognitive impairment or other neuropsychiatric systemic lupus erythematosus manifestations.
Precipitation of Secondary Phases from the Dissolution of Silicate Glasses
NASA Technical Reports Server (NTRS)
Ming, Douglas W.; Golden, D. C.
2004-01-01
Basaltic and anorthositic glasses were subjected to aqueous weathering conditions in the laboratory where the variables were pH, temperature, glass composition, solution composition, and time. Leached layers formed at the surfaces of glasses followed by the precipitation of X-ray amorphous iron and titanium oxides in acidic and neutral solutions at 25 C over time. Glass under oxidative hydrothermal treatments at 150 C yielded a three-layered surface; which included an outer smectite layer, a Fe-Ti oxide layer and an innermost thin leached layer. The introduction of Mg into solutions facilitated the formation of phyllosilicates. Aqueous hydrothermal treatment of anorthositic glasses (high Ca, low Ti) at 200 C readily formed smectite, whereas, the basaltic glasses (high Ti) were more resistant to alteration and smectite was not observed. Alkaline hydrothermal treatment at 2000e produced zeolites and smectites; only smectites formed at 200 C in neutral solutions. These mineralogical changes, although observed under controlled conditions, have direct applications in interpreting planetary (e.g., meteorite parent bodies) and terrestrial aqueous alteration processes.
NASA Astrophysics Data System (ADS)
Mott, Derrick; Lee, JaeDong; Thi Bich Thuy, Nguyen; Aoki, Yoshiya; Singh, Prerna; Maenosono, Shinya
2011-06-01
This paper reports a qualitative comparison between the optical properties of a set of silver core, gold shell nanoparticles with varying composition and structure to those calculated using the Mie solution. To achieve this, silver nanoparticles were synthesized in aqueous phase from a silver hydroxide precursor with sodium acrylate as dual reducing-capping agent. The particles were then coated with a layer of gold with controllable thickness through a reduction-deposition process. The resulting nanoparticles reveal well defined optical properties that make them suitable for comparison to ideal calculated results using the Mie solution. The discussion focuses on the correlation between the synthesized core shell nanoparticles with varying Au shell thickness and the Mie solution results in terms of the optical properties. The results give insight in how to design and synthesize silver core, gold shell nanoparticles with controllable optical properties (e.g., SPR band in terms of intensity and position), and has implications in creating nanoparticle materials to be used as biological probes and sensing elements.
Mesoscale fabrication and design
NASA Astrophysics Data System (ADS)
Hayes, Gregory R.
A strong link between mechanical engineering design and materials science and engineering fabrication can facilitate an effective and adaptable prototyping process. In this dissertation, new developments in the lost mold-rapid infiltration forming (LM-RIF) process is presented which demonstrates the relationship between these two fields of engineering in the context of two device applications. Within the LM-RIF process, changes in materials processing and mechanical design are updated iteratively, often aided by statistical design of experiments (DOE). The LM-RIF process was originally developed by Antolino and Hayes et al to fabricate mesoscale components. In this dissertation the focus is on advancements in the process and underlying science. The presented advancements to the LM-RIF process include an augmented lithography procedure, the incorporation of engineered aqueous and non-aqueous colloidal suspensions, an assessment of constrained drying forces during LM-RIF processing, mechanical property evaluation, and finally prototype testing and validation. Specifically, the molding procedure within the LM-RIF process is capable of producing molds with thickness upwards of 1mm, as well as multi-layering to create three dimensional structures. Increasing the mold thickness leads to an increase in the smallest feature resolvable; however, the increase in mold thickness and three dimensional capability has expanded the mechanical design space. Tetragonally stabilized zirconia (3Y-TZP) is an ideal material for mesoscale instruments, as it is biocompatible, exhibits high strength, and is chemically stable. In this work, aqueous colloidal suspensions were formulated with two new gel-binder systems, increasing final natural orifice translumenal endoscopic surgery (NOTES) instrument yield from 0% to upwards of 40% in the best case scenario. The effects of the gel-binder system on the rheological behavior of the suspension along with the thermal characteristics of the gel-binder system were characterized. Finally, mechanical properties of ceramic specimens were obtained via 3-point bend testing. Another candidate material for NOTES devices as well as cellular contact aided compliant mechanisms (C3M) devices is 300 series stainless steel (300 series stainless steel). 300 series stainless steel is a common biocompatible material; it is used in surgical applications, exhibits a high corrosion resistance, and has high strength to failure. New, high solids loading, non-aqueous colloidal suspensions of 300 series stainless steel were formulated and incorporated into the LM-RIF process. The rheological behavior and thermal characteristics of the non-aqueous colloidal suspensions were analyzed and engineered to operate within the LM-RIF process. Final part yield with the non-aqueous colloidal suspensions was higher than that of the aqueous ceramic suspensions. Mechanical properties of 300 series stainless steel specimens were determined via 3-point bend testing. Furthermore, new composite non-aqueous colloidal suspensions of 3Y-TZP and 300 series stainless steel were formulated and incorporated into the LM-RIF process. The composite materials showed an increase in final part yield, and an increase in yield strength compared to pure 300 series stainless steel was determined by Vickers hardness testing. The successful incorporation of composite suspensions in the LM-RIF process was facilitated through an analysis of the rheological behavior as a function of solids loading and ceramic to metal ratio. Optimized designs of NOTES instruments, as well as C3M devices were manufactured using the LM-RIF process with the non-aqueous 300 series stainless steel suspension. The performance of the prototype NOTES instruments was evaluated and compared against the theoretically predicted performance results, showing good agreement. Similarly, good agreement was seen between the stress-displacement behavior of prototype C3M devices when compared to the theoretically calculated stress-displacement results. Finally, in a comparison by endoscopic surgeons at Hershey Medical Center between an existing industry standard endoscopic device and the mesoscale instrument prototypes fabricated via the LM-RIF process, the prototype design performed favorably in almost all categories. (Abstract shortened by UMI.)
Demel, Anja; Feilke, Katharina; Wolf, Martin; Poets, Christian F; Franz, Axel R
2014-01-01
Near-infrared spectroscopy (NIRS) is increasingly used in neonatal intensive care. We investigated the impact of skin, bone, and cerebrospinal fluid (CSF) layer thickness in term and preterm infants on absorption-(μa) and/or reduced scattering coefficients (μs') measured by multidistance frequency-domain (FD)-NIRS. Transcranial ultrasound was performed to measure the layer thicknesses. Correlations were only statistically significant for μa at 692 nm with bone thickness and μs' at 834 nm with skin thickness. There is no evidence that skin, bone, or CSF thickness have an important effect on μa and μs'. Layer thicknesses of skin, bone, and CSF in the range studied do not seem to affect cerebral oxygenation measurements by multidistance FD-NIRS significantly.
What is the copper thin film thickness effect on thermal properties of NiTi/Cu bi-layer?
NASA Astrophysics Data System (ADS)
Fazeli, Sara; Vahedpour, Morteza; Khatiboleslam Sadrnezhaad, Sayed
2017-02-01
Molecular dynamics (MD) simulation was used to study of thermal properties of NiTi/Cu. Embedded atom method (EAM) potentials for describing of inter-atomic interaction and Nose-Hoover thermostat and barostat are employed. The melting of the bi-layers was considered by studying the temperature dependence of the cohesive energy and mean square displacement. To highlight the differences between bi-layers with various copper layer thickness, the effect of copper film thickness on thermal properties containing the cohesive energy, melting point, isobaric heat capacity and latent heat of fusion was estimated. The results show that thermal properties of bi-layer systems are higher than that of their corresponding of pure NiTi. But, these properties of bi-layer systems approximately are independent of copper film thicknesses. The mean square displacement (MSD) results show that, the diffusion coefficients enhance upon increasing of copper film thickness in a linear performance.
NASA Astrophysics Data System (ADS)
Srinivasan, M. A.; Rao, C. Dhananjaya; Krishnaiah, M.
2016-05-01
The present study describes Mie lidar observations of the cirrus cloud passage showing transition between double thin layers into single thick and single thick layer into double thin layers of cirrus over Gadanki region. During Case1: 17 January 2007, Case4: 12 June 2007, Case5: 14 July 2007 and Case6: 24 July 2007 the transition is found to from two thin cirrus layers into single geometrically thick layer. Case2: 14 May 2007 and Case3: 15 May 2007, the transition is found to from single geometrically thick layer into two thin cirrus layers. Linear Depolarization Ratio (LDR) and Back Scatter Ration (BSR) are found to show similar variation with strong peaks during transition; both LDR and Cloud Optical Depth (COD) is found to show similar variation except during transition with strong peaks in COD which is not clearly found from LDR for the all cases. There is a significant weakening of zonal and meridional winds during Case1 which might be due to the transition from multiple to single thick cirrus indicating potential capability of thick cirrus in modulating the wind fields. There exists strong upward wind dominance contributed to significant ascent in cloud-base altitude thereby causing transition of multiple thin layers into single thick cirrus.
Control of Alq3 wetting layer thickness via substrate surface functionalization.
Tsoi, Shufen; Szeto, Bryan; Fleischauer, Michael D; Veinot, Jonathan G C; Brett, Michael J
2007-06-05
The effects of substrate surface energy and vapor deposition rate on the initial growth of porous columnar tris(8-hydroxyquinoline)aluminum (Alq3) nanostructures were investigated. Alq3 nanostructures thermally evaporated onto as-supplied Si substrates bearing an oxide were observed to form a solid wetting layer, likely caused by an interfacial energy mismatch between the substrate and Alq3. Wetting layer thickness control is important for potential optoelectronic applications. A dramatic decrease in wetting layer thickness was achieved by depositing Alq3 onto alkyltrichlorosilane-derivatized Si/oxide substrates. Similar effects were noted with increasing deposition rates. These two effects enable tailoring of the wetting layer thickness.
Molecular beam epitaxy of large-area SnSe2 with monolayer thickness fluctuation
NASA Astrophysics Data System (ADS)
Park, Young Woon; Jerng, Sahng-Kyoon; Jeon, Jae Ho; Roy, Sanjib Baran; Akbar, Kamran; Kim, Jeong; Sim, Yumin; Seong, Maeng-Je; Kim, Jung Hwa; Lee, Zonghoon; Kim, Minju; Yi, Yeonjin; Kim, Jinwoo; Noh, Do Young; Chun, Seung-Hyun
2017-03-01
The interest in layered materials is largely based on the expectation that they will be beneficial for a variety of applications, from low-power-consuming, wearable electronics to energy harvesting. However, the properties of layered materials are highly dependent on thickness, and the difficulty of controlling thickness over a large area has been a bottleneck for commercial applications. Here, we report layer-by-layer growth of SnSe2, a layered semiconducting material, via van der Waals epitaxy. The films were fabricated on insulating mica substrates with substrate temperatures in the range of 210 °C-370 °C. The surface consists of a mixture of N and (N ± 1) layers, showing that the thickness of the film can be defined with monolayer accuracy (±0.6 nm). High-resolution transmission electron microscopy reveals a polycrystalline film with a grain size of ˜100 nm and clear Moiré patterns from overlapped grains with similar thickness. We also report field effect mobility values of 3.7 cm2 V-1 s-1 and 6.7 cm2 V-1 s-1 for 11 and 22 nm thick SnSe2, respectively. SnSe2 films with customizable thickness can provide valuable platforms for industry and academic researchers to fully exploit the potential of layered materials.
Samsudin, Amir; Eames, Ian; Brocchini, Steve; Khaw, Peng Tee
2016-07-01
Intraocular pressure and aqueous humor flow direction determined by the scleral flap immediately after trabeculectomy are critical determinants of the surgical outcome. We used a large-scale model to objectively measure the influence of flap thickness and shape, and suture number and position on pressure difference across the flap and flow of fluid underneath it. The model exploits the principle of dynamic and geometric similarity, so while dimensions were up to 30× greater than actual, the flow had similar properties. Scleral flaps were represented by transparent 0.8- and 1.6-mm-thick silicone sheets on an acrylic plate. Dyed 98% glycerin, representing the aqueous humor was pumped between the sheet and plate, and the equilibrium pressure measured with a pressure transducer. Image analysis based on the principle of dye dilution was performed using MATLAB software. The pressure drop across the flap was larger with thinner flaps, due to reduced rigidity and resistance. Doubling the surface area of flaps and reducing the number of sutures from 5 to 3 or 2 also resulted in larger pressure drops. Flow direction was affected mainly by suture number and position, it was less toward the sutures and more toward the nearest free edge of the flap. Posterior flow of aqueous humor was promoted by placing sutures along the sides while leaving the posterior edge free. We demonstrate a new physical model which shows how changes in scleral flap thickness and shape, and suture number and position affect pressure and flow in a trabeculectomy.
NASA Astrophysics Data System (ADS)
Cheng, Shiwang; Carrillo, Jan-Michael Y.; Carroll, Bobby; Sumpter, Bobby G.; Sokolov, Alexei P.
There are growing experimental evidences showing the existence of an interfacial layer that has a finite thickness with slowing down dynamics in polymer nanocomposites (PNCs). Moreover, it is believed that the interfacial layer plays a significant role on various macroscopic properties of PNCs. A thicker interfacial layer is found to have more pronounced effect on the macroscopic properties such as the mechanical enhancement. However, it is not clear what molecular parameter controls the interfacial layer thickness. Inspired by our recent computer simulations that showed the chain rigidity correlated well with the interfacial layer thickness, we performed systematic experimental studies on different polymer nanocomposites by varying the chain stiffness. Combining small-angle X-ray scattering, broadband dielectric spectroscopy and temperature modulated differential scanning calorimetry, we find a good correlation between the polymer Kuhn length and the thickness of the interfacial layer, confirming the earlier computer simulations results. Our findings provide a direct guidance for the design of new PNCs with desired properties.
Assembling Bare Au Nanoparticles at Positively Charged Templates
Wang, Wenjie; Zhang, Honghu; Kuzmenko, Ivan; ...
2016-05-26
In-situ X-ray reflectivity (XRR) and grazing incidence X-ray small-angle scattering (GISAXS) reveal that unfunctionalized (bare) gold nanoparticles (AuNP) spontaneously adsorb to a cationic lipid template formed by a Langmuir monolayer of DPTAP (1,2-dihexadecanoyl-3-trimethylammonium-propane) at vapor/aqueous interfaces. Analysis of the XRR yields the electron density profile across the charged-interfaces along the surface normal showing the AuNPs assemble with vertical thickness comparable to the particle size. The GISAXS analysis indicates that the adsorbed mono-particle layer exhibits short-range in-plane correlations. By contrast, single-stranded DNA-functionalized AuNPs, while attracted to the positively charged surface (more efficiently with the addition of salt to the solution), displaymore » less in-plane regular packing compared to bare AuNPs.« less
NASA Astrophysics Data System (ADS)
Nakami, S.; Narioka, T.; Kobayashi, T.; Nagase, T.; Naito, H.
2017-11-01
The dependence of active-layer thickness on the power conversion efficiency (PCE) of inverted organic photovoltaics (OPVs) based on poly(3-hexylthiphene) and [6,6]-phenyl-C61-butyric acid methyl ester was investigated. When PCEs were measured immediately after device fabrication, the optimum thickness was ~100 nm. It was, however, found that thick OPVs exhibit higher PCEs a few months later, whereas thin OPVs simply degraded with time. Consequently, the optimum thickness changed with time. Considering this fact, we discuss the relationship between the active-layer thickness and PCE.
Domain epitaxy for thin film growth
Narayan, Jagdish
2005-10-18
A method of forming an epitaxial film on a substrate includes growing an initial layer of a film on a substrate at a temperature T.sub.growth, said initial layer having a thickness h and annealing the initial layer of the film at a temperature T.sub.anneal, thereby relaxing the initial layer, wherein said thickness h of the initial layer of the film is greater than a critical thickness h.sub.c. The method further includes growing additional layers of the epitaxial film on the initial layer subsequent to annealing. In some embodiments, the method further includes growing a layer of the film that includes at least one amorphous island.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Wug-Dong; Tanioka, Kenkichi
Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) film has been used for highly sensitive imaging devices. To improve the spectral response of a-Se HARP photoconductive film at a long wavelength, the tellurium (Te) doping effect in an 8-μm-thick a-Se HARP film was investigated. The thickness of the Te-doped a-Se layer in the 8-μm-thick a-Se HARP films was varied from 60 to 120 nm. The signal current increases significantly due to the avalanche multiplication when the target voltage is increased over the threshold voltage. In the 8-μm-thick a-Se HARP film with a Te-doped layer, the spectral response at a longmore » wavelength was improved in comparison with the a-Se HARP film without a Te-doped layer. In addition, the increase of the lag in the 8-μm-thick a-Se HARP target with a Te-doped layer of 120 nm is caused by the photoconductive lag due to the electrons trapped in the Te-doped layer. Based on the current-voltage characteristics, spectral response, and lag characteristics of the 8-μm-thick a-Se HARP targets, the Te-doped layer thickness of 90 nm is suitable for the 8-μm-thick a-Se HARP film.« less
Tellurium doping effect in avalanche-mode amorphous selenium photoconductive film
NASA Astrophysics Data System (ADS)
Park, Wug-Dong; Tanioka, Kenkichi
2014-11-01
Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) film has been used for highly sensitive imaging devices. To improve the spectral response of a-Se HARP photoconductive film at a long wavelength, the tellurium (Te) doping effect in an 8-μm-thick a-Se HARP film was investigated. The thickness of the Te-doped a-Se layer in the 8-μm-thick a-Se HARP films was varied from 60 to 120 nm. The signal current increases significantly due to the avalanche multiplication when the target voltage is increased over the threshold voltage. In the 8-μm-thick a-Se HARP film with a Te-doped layer, the spectral response at a long wavelength was improved in comparison with the a-Se HARP film without a Te-doped layer. In addition, the increase of the lag in the 8-μm-thick a-Se HARP target with a Te-doped layer of 120 nm is caused by the photoconductive lag due to the electrons trapped in the Te-doped layer. Based on the current-voltage characteristics, spectral response, and lag characteristics of the 8-μm-thick a-Se HARP targets, the Te-doped layer thickness of 90 nm is suitable for the 8-μm-thick a-Se HARP film.
Advanced Lithium Anodes for Li/Air and Li/Water Batteries
2005-10-05
µm thick protective glass- ceramic membrane . The value of Li discharged capacity in this experiment is significantly larger than the Li thickness...polarization solid-state cell used for determination of electronic current across glass- ceramic membrane Final Report Page 27 of 45 10/05/2005...Li anode/aqueous electrolyte interface without destruction of the 50 µm thick protective glass- ceramic membrane . The thickness of the Li foil used in
Iyigundogdu, Ilkin; Derle, Eda; Asena, Leyla; Kural, Feride; Kibaroglu, Seda; Ocal, Ruhsen; Akkoyun, Imren; Can, Ufuk
2018-02-01
Aim To compare the relationship between white matter hyperintensities (WMH) on brain magnetic resonance imaging and retinal nerve fiber layer (RNFL), choroid, and ganglion cell layer (GCL) thicknesses in migraine patients and healthy subjects. We also assessed the role of cerebral hypoperfusion in the formation of these WMH lesions. Methods We enrolled 35 migraine patients without WMH, 37 migraine patients with WMH, and 37 healthy control subjects examined in the Neurology outpatient clinic of our tertiary center from May to December 2015. RFNL, choroid, and GCL thicknesses were measured by optic coherence tomography. Results There were no differences in the RFNL, choroid, or GCL thicknesses between migraine patients with and without WMH ( p > 0.05). Choroid layer thicknesses were significantly lower in migraine patients compared to control subjects ( p < 0.05), while there were no differences in RFNL and GCL thicknesses ( p > 0.05). Conclusions The 'only cerebral hypoperfusion' theory was insufficient to explain the pathophysiology of WMH lesions in migraine patients. In addition, the thinning of the choroid thicknesses in migraine patients suggests a potential causative role for cerebral hypoperfusion and decreased perfusion pressure of the choroid layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard, J.T.; Burnett, J.C.
1974-12-31
Suppression of evaporation of hydrocarbon liquids and fuels by aqueous film containing a fluorocarbon surfactant has been examined as a function of film thickness, time, and hydrocarbon type. The hydrocarbon liquids included the homologous series of n-alkanes from pentane to dodecane, aromatic compounds, motor and aviation gasolines and jet fuels JP-4 and JP-5, and Navy distillate fuel. The surfactant solution used to form the films was a 6 percent solution of aqueous film forming foam (AFFF) concentrate FC-196. Films of the surfactant solution, ranging in thickness from 5 to 100 micrometers, were placed on the surface of the hydrocarbon liquidmore » to test the ability of the film to suppress evaporation over a 1-hr period. Results indicated that for the n-alkanes and the hydrocarbon fuels a certain critical thickness of surfactant solution was required for optimum vapor suppression. In comparison with the n-alkanes, it was considerably more difficult to suppress evaporation of the aromatic compounds. (GRA)« less
High efficiency organic photovoltaic cells employing hybridized mixed-planar heterojunctions
Xue, Jiangeng; Uchida, Soichi; Rand, Barry P; Forrest, Stephen
2013-11-19
A device is provided, having a first electrode, a second electrode, and a photoactive region disposed between the first electrode and the second electrode. The photoactive region includes a first organic layer comprising a mixture of an organic acceptor material and an organic donor material, wherein the first organic layer has a thickness not greater than 0.8 characteristic charge transport lengths, and a second organic layer in direct contact with the first organic layer, wherein: the second organic layer comprises an unmixed layer of the organic acceptor material or the organic donor material of the first organic layer, and the second organic layer has a thickness not less than about 0.1 optical absorption lengths. Preferably, the first organic layer has a thickness not greater than 0.3 characteristic charge transport lengths. Preferably, the second organic layer has a thickness of not less than about 0.2 optical absorption lengths. Embodiments of the invention can be capable of power efficiencies of 2% or greater, and preferably 5% or greater.
Effect of layer thickness on the thermal release from Be-D co-deposited layers
NASA Astrophysics Data System (ADS)
Baldwin, M. J.; Doerner, R. P.
2014-08-01
The results of previous work (Baldwin et al 2013 J. Nucl. Mater. 438 S967-70 and Baldwin et al 2014 Nucl. Fusion 54 073005) are extended to explore the influence of layer thickness on the thermal D2 release from co-deposited Be-(0.05)D layers produced at ˜323 K. Bake desorption of layers of thickness 0.2-0.7 µm are explored with a view to examine the influence of layer thickness on the efficacy of the proposed ITER bake procedure, to be carried out at the fixed temperatures of 513 K on the first wall and 623 K in the divertor. The results of experiment and modelling with the TMAP-7 hydrogen transport code, show that thicker Be-D co-deposited layers are relatively more difficult to desorb (time-wise) than thinner layers with the same concentrations of intrinsic traps and retained hydrogen isotope fraction.
Ellipsometric study of metal-organic chemically vapor deposited III-V semiconductor structures
NASA Technical Reports Server (NTRS)
Alterovitz, Samuel A.; Sekula-Moise, Patricia A.; Sieg, Robert M.; Drotos, Mark N.; Bogner, Nancy A.
1992-01-01
An ellipsometric study of MOCVD-grown layers of AlGaAs and InGaAs in thick films and strained layer complex structures is presented. It is concluded that the ternary composition of thick nonstrained layers can be accurately determined to within experimental errors using numerical algorithms. In the case of complex structures, thickness of all layers and the alloy composition of nonstrained layers can be determined simultaneously, provided that the correlations between parameters is no higher than 0.9.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, W. H.; He, X. T.; CAPT, Peking University, Beijing 100871
2011-02-15
In this research, competitions between Rayleigh-Taylor instability (RTI) and Kelvin-Helmholtz instability (KHI) in two-dimensional incompressible fluids within a linear growth regime are investigated analytically. Normalized linear growth rate formulas for both the RTI, suitable for arbitrary density ratio with continuous density profile, and the KHI, suitable for arbitrary density ratio with continuous density and velocity profiles, are obtained. The linear growth rates of pure RTI ({gamma}{sub RT}), pure KHI ({gamma}{sub KH}), and combined RTI and KHI ({gamma}{sub total}) are investigated, respectively. In the pure RTI, it is found that the effect of the finite thickness of the density transition layermore » (L{sub {rho}}) reduces the linear growth of the RTI (stabilizes the RTI). In the pure KHI, it is found that conversely, the effect of the finite thickness of the density transition layer increases the linear growth of the KHI (destabilizes the KHI). It is found that the effect of the finite thickness of the density transition layer decreases the ''effective'' or ''local'' Atwood number (A) for both the RTI and the KHI. However, based on the properties of {gamma}{sub RT}{proportional_to}{radical}(A) and {gamma}{sub KH}{proportional_to}{radical}(1-A{sup 2}), the effect of the finite thickness of the density transition layer therefore has a completely opposite role on the RTI and the KHI noted above. In addition, it is found that the effect of the finite thickness of the velocity shear layer (L{sub u}) stabilizes the KHI, and for the most cases, the combined effects of the finite thickness of the density transition layer and the velocity shear layer (L{sub {rho}=}L{sub u}) also stabilize the KHI. Regarding the combined RTI and KHI, it is found that there is a competition between the RTI and the KHI because of the completely opposite effect of the finite thickness of the density transition layer on these two kinds of instability. It is found that the competitions between the RTI and the KHI depend, respectively, on the Froude number, the density ratio of the light fluid to the heavy one, and the finite thicknesses of the density transition layer and the velocity shear layer. Furthermore, for the fixed Froude number, the linear growth rate ratio of the RTI to the KHI decreases with both the density ratio and the finite thickness of the density transition layer, but increases with the finite thickness of the velocity shear layer and the combined finite thicknesses of the density transition layer and the velocity shear layer (L{sub {rho}=}L{sub u}). In summary, our analytical results show that the effect of the finite thickness of the density transition layer stabilizes the RTI and the overall combined effects of the finite thickness of the density transition layer and the velocity shear layer (L{sub {rho}=}L{sub u}) also stabilize the KHI. Thus, it should be included in applications where the transition layer effect plays an important role, such as the formation of large-scale structures (jets) in high energy density physics and astrophysics and turbulent mixing.« less
Strong Effect of Azodye Layer Thickness on RM-Stabilized Photoalignment
2017-05-21
to thicker layers (~40 nm). Author Keywords photoalignment; azodye; reactive mesogen 1. Introduction Photoalignment of liquid crystals by azodye...Polymerizable azodyes[3] as well as passivation of the azodye film by spin-coating with a layer of reactive mesogen[4] are currently proposed solutions...thick alignment film rather than a ~40 nm thick alignment film ; cells with thin alignment layers are stable to exposure to polarized light for at
Design rules and reality check for carbon-based ultracapacitors
NASA Astrophysics Data System (ADS)
Eisenmann, Erhard T.
1995-04-01
Design criteria for carbon-based Ultracapacitors have been determined for specified energy and power requirements, using the geometry of the components and such material properties as density, porosity and conductivity as parameters, while also considering chemical compatibility. This analysis shows that the weights of active and inactive components of the capacitor structure must be carefully balanced for maximum energy and power density. When applied to nonaqueous electrolytes, the design rules for a 5 Wh/kg device call for porous carbon with a specific capacitance of about 30 F/cu cm. This performance is not achievable with pure, electrostatic double layer capacitance. Double layer capacitance is only 5 to 30% of that observed in aqueous electrolyte. Tests also showed that nonaqueous electrolytes have a diminished capability to access micropores in activated carbon, in one case yielding a capacitance of less than 1 F/cu cm for carbon that had 100 F/cu cm in aqueous electrolyte. With negative results on nonaqueous electrolytes dominating the present study, the obvious conclusion is to concentrate on aqueous systems. Only aqueous double layer capacitors offer adequate electrostatic charging characteristics which is the basis for high power performance. There arc many opportunities for further advancing aqueous double layer capacitors, one being the use of highly activated carbon films, as opposed to powders, fibers and foams. While the manufacture of carbon films is still costly, and while the energy and power density of the resulting devices may not meet the optimistic goals that have been proposed, this technology could produce true double layer capacitors with significantly improved performance and large commercial potential.
NASA Astrophysics Data System (ADS)
Odagawa, Hiroyuki; Terada, Koshiro; Tanaka, Yohei; Nishikawa, Hiroaki; Yanagitani, Takahiko; Cho, Yasuo
2017-10-01
A quantitative measurement method for a polarity-inverted layer in ferroelectric or piezoelectric thin film is proposed. It is performed nondestructively by scanning nonlinear dielectric microscopy (SNDM). In SNDM, linear and nonlinear dielectric constants are measured using a probe that converts the variation of capacitance related to these constants into the variation of electrical oscillation frequency. In this paper, we describe a principle for determining the layer thickness and some calculation results of the output signal, which are related to the radius of the probe tip and the thickness of the inverted layer. Moreover, we derive an equation that represents the relationship between the output signal and the oscillation frequency of the probe and explain how to determine the thickness from the measured frequency. Experimental results in Sc-doped AlN piezoelectric thin films that have a polarity-inverted layer with a thickness of 1.5 µm fabricated by radio frequency magnetron sputtering showed a fairly good value of 1.38 µm for the thickness of the polarity-inverted layer.
Work Function Variations in Twisted Graphene Layers
Robinson, Jeremy T.; Culbertson, James; Berg, Morgann; ...
2018-01-31
By combining optical imaging, Raman spectroscopy, kelvin probe force microscopy (KFPM), and photoemission electron microscopy (PEEM), we show that graphene’s layer orientation, as well as layer thickness, measurably changes the surface potential (Φ). Detailed mapping of variable-thickness, rotationally-faulted graphene films allows us to correlate Φ with specific morphological features. Using KPFM and PEEM we measure ΔΦ up to 39 mV for layers with different twist angles, while ΔΦ ranges from 36–129 mV for different layer thicknesses. The surface potential between different twist angles or layer thicknesses is measured at the KPFM instrument resolution of ≤ 200 nm. The PEEM measuredmore » work function of 4.4 eV for graphene is consistent with doping levels on the order of 10 12cm -2. Here, we find that Φ scales linearly with Raman G-peak wavenumber shift (slope = 22.2 mV/cm -1) for all layers and twist angles, which is consistent with doping-dependent changes to graphene’s Fermi energy in the ‘high’ doping limit. Our results here emphasize that layer orientation is equally important as layer thickness when designing multilayer two-dimensional systems where surface potential is considered.« less
Crystallization of silicon-germanium by aluminum-induced layer exchange
NASA Astrophysics Data System (ADS)
Isomura, Masao; Yajima, Masahiro; Nakamura, Isao
2018-02-01
We have studied the crystallization of amorphous silicon-germanium (a-SiGe) by aluminum (Al)-induced layer exchange (ALILE) with a starting structure of glass/Al/Al oxide/a-SiGe. We examined ALILE at 450 °C, which is slightly higher than the eutectic temperature of Ge and Al, in order to shorten the ALILE time. We successfully produced c-SiGe films oriented in the (111) direction for 16 h without significant alloying. The thickness of Al layers should be 2800 Å or more to complete the ALILE for the a-SiGe layers of 2000-2800 Å thickness. When the Al layer is as thick as the a-SiGe layer, almost uniform c-SiGe is formed on the glass substrate. On the other hand, the islands of c-SiGe are formed on the glass substrate when the Al layer is thicker than the a-SiGe layer. The islands become smaller with thicker Al layers because more excess Al remains between the SiGe islands. The results indicate that the configuration of c-SiGe can be altered from a uniform structure to island structures of various sizes by changing the ratio of a-SiGe thickness to Al thickness.
Work Function Variations in Twisted Graphene Layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Jeremy T.; Culbertson, James; Berg, Morgann
By combining optical imaging, Raman spectroscopy, kelvin probe force microscopy (KFPM), and photoemission electron microscopy (PEEM), we show that graphene’s layer orientation, as well as layer thickness, measurably changes the surface potential (Φ). Detailed mapping of variable-thickness, rotationally-faulted graphene films allows us to correlate Φ with specific morphological features. Using KPFM and PEEM we measure ΔΦ up to 39 mV for layers with different twist angles, while ΔΦ ranges from 36–129 mV for different layer thicknesses. The surface potential between different twist angles or layer thicknesses is measured at the KPFM instrument resolution of ≤ 200 nm. The PEEM measuredmore » work function of 4.4 eV for graphene is consistent with doping levels on the order of 10 12cm -2. Here, we find that Φ scales linearly with Raman G-peak wavenumber shift (slope = 22.2 mV/cm -1) for all layers and twist angles, which is consistent with doping-dependent changes to graphene’s Fermi energy in the ‘high’ doping limit. Our results here emphasize that layer orientation is equally important as layer thickness when designing multilayer two-dimensional systems where surface potential is considered.« less
Ackermann, Philipp; Brachert, Maike; Albrecht, Philipp; Ringelstein, Marius; Finis, David; Geerling, Gerd; Aktas, Orhan; Guthoff, Rainer
2017-07-01
A characteristic disease pattern may be reflected by retinal layer thickness changes in non-arteritic anterior ischaemic optic neuropathy measured using spectraldomain optical coherence tomography. Retinal layer segmentation is enabled by advanced software. In this study, retinal layer thicknesses in acute and chronic non-arteritic anterior ischaemic optic neuropathy were compared. A single-centre cross-sectional analysis was used. A total of 27 patients (20 age-matched healthy eyes) were included: 14 with acute (<7 days) and 13 patients with chronic non-arteritic anterior ischaemic optic neuropathy. Macular volume and 12° peripapillary ring optical coherence tomography scans were used. The peripapillary thicknesses of the following layers were determined by manual segmentation: retinal nerve fibres, ganglion cells + inner plexiform layer, inner nuclear layer + outer plexiform layer, outer nuclear layer + inner segments of the photoreceptors and outer segments of the photoreceptors to Bruch's membrane. Macular retinal layer thicknesses were automatically determined in volume cubes centred on the fovea. Peripapillary retinal swelling in acute nonarteritic anterior ischaemic optic neuropathy was attributable to retinal nerve fibre layer, ganglion cell layer/inner plexiform layer and outer nuclear layer/segments of the photoreceptors thickening. In chronic cases, peripapillary retinal nerve fibre layer, macular ganglion cell layer and inner plexiform layer thinning were observed. In acute non-arteritic anterior ischaemic optic neuropathy, the inner and outer peripapillary retinal layers are affected by thickness changes. In chronic cases, atrophy of the ganglion cells and their axons and dendrites is evident by inner retinal layer thinning. © 2017 Royal Australian and New Zealand College of Ophthalmologists.
NASA Astrophysics Data System (ADS)
Li, Yang; Barth, Mary C.; Patton, Edward G.; Steiner, Allison L.
2017-10-01
We investigate the impacts of cloud aqueous processes on the chemistry and transport of biogenic volatile organic compounds (BVOC) using the National Center for Atmospheric Research's large-eddy simulation code with an updated chemical mechanism that includes both gas- and aqueous-phase reactions. We simulate transport and chemistry for a meteorological case with a diurnal pattern of nonprecipitating cumulus clouds from the Baltimore-Washington area DISCOVER-AQ campaign. We evaluate two scenarios with and without aqueous-phase chemical reactions. In the cloud layer (2-3 km), the addition of aqueous phase reactions decreases HCHO by 18% over the domain due to its solubility and the fast depletion from aqueous reactions, resulting in a corresponding decrease in radical oxidants (e.g., 18% decrease in OH). The decrease of OH increases the mixing ratios of isoprene and methacrolein (MACR) (100% and 15%, respectively) in the cloud layer because the reaction rate is lower. Aqueous-phase reactions can modify the segregation between OH and BVOC by changing the sign of the segregation intensity, causing up to 55% reduction in the isoprene-OH reaction rate and 40% reduction for the MACR-OH reaction when clouds are present. Analysis of the isoprene-OH covariance budget shows the chemistry term is the primary driver of the strong segregation in clouds, triggered by the decrease in OH. All organic acids except acetic acid are formed only through aqueous-phase reactions. For acids formed in the aqueous phase, turbulence mixes these compounds on short time scales, with the near-surface mixing ratios of these acids reaching 20% of the mixing ratios in the cloud layer within 1 h of cloud formation.
Aqueous proton transfer across single-layer graphene
Achtyl, Jennifer L.; Unocic, Raymond R.; Xu, Lijun; ...
2015-03-17
Proton transfer across single-layer graphene proceeds with large computed energy barriers and is thought to be unfavourable at room temperature unless nanoscale holes or dopants are introduced, or a potential bias is applied. Here we subject single-layer graphene supported on fused silica to cycles of high and low pH, and show that protons transfer reversibly from the aqueous phase through the graphene to the other side where they undergo acid–base chemistry with the silica hydroxyl groups. After ruling out diffusion through macroscopic pinholes, the protons are found to transfer through rare, naturally occurring atomic defects. Computer simulations reveal low energymore » barriers of 0.61–0.75 eV for aqueous proton transfer across hydroxyl-terminated atomic defects that participate in a Grotthuss-type relay, while pyrylium-like ether terminations shut down proton exchange. In conclusion, unfavourable energy barriers to helium and hydrogen transfer indicate the process is selective for aqueous protons.« less
Abdellatif, Mona K; Fouad, Mohamed M
2018-03-01
To investigate the factors in migraine that have the highest significance on retinal and choroidal layers' thickness. Ninety patients with migraine and 40 age-matched healthy participants were enrolled in this observational, cross-sectional study. After full ophthalmological examination, spectral domain-optical coherence tomography was done for all patients measuring the thickness of ganglion cell layer and retinal nerve fiber layer. Enhanced depth imaging technique was used to measure the choroidal thickness. There was significant thinning in the superior and inferior ganglion cell layers, all retinal nerve fiber layer quadrants, and all choroidal quadrants (except for the central subfield) in migraineurs compared to controls. The duration of migraine was significantly correlated with ganglion cell layer, retinal nerve fiber layer, and all choroidal quadrants, while the severity of migraine was significantly correlated with ganglion cell layer and retinal nerve fiber layer only. Multiregression analysis showed that the duration of migraine is the most important determinant factor of the superior retinal nerve fiber layer quadrant (β = -0.375, p = 0.001) and in all the choroidal quadrants (β = -0.531, -0.692, -0.503, -0.461, -0.564, respectively, p < 0.001), while severity is the most important determinant factor of inferior, nasal, and temporal retinal nerve fiber layer quadrants (β = -0.256, -0.335, -0.308; p = 0.036, 0.005, 0.009, respectively) and the inferior ganglion cell layer hemisphere (β = -0.377 and p = 0.001). Ganglion cell layer, retinal nerve fiber layer, and choroidal thickness are significantly thinner in patients with migraine. The severity of migraine has more significant influence in the thinning of ganglion cell layer and retinal nerve fiber layer, while the duration of the disease affected the choroidal thickness more.
Aqueous Solution-Phase Selenized CuIn(S,Se)2 Thin Film Solar Cells Annealed under Inert Atmosphere.
Oh, Yunjung; Yang, Wooseok; Kim, Jimin; Woo, Kyoohee; Moon, Jooho
2015-10-14
A nonvacuum solution-based approach can potentially be used to realize low cost, roll-to-roll fabrication of chalcopyrite CuIn(S,Se)2 (CISSe) thin film solar cells. However, most solution-based fabrication methods involve highly toxic solvents and inevitably require sulfurization and/or postselenization with hazardous H2S/H2Se gases. Herein, we introduce novel aqueous-based Cu-In-S and Se inks that contain an amine additive for producing a high-quality absorber layer. CISSe films were fabricated by simple deposition of Cu-In-S ink and Se ink followed by annealing under an inert atmosphere. Compositional and phase analyses confirmed that our simple aqueous ink-based method facilitated in-site selenization of the CIS layer. In addition, we investigated the molecular structures of our aqueous inks to determine how crystalline chalcopyrite absorber layers developed without sulfurization and/or postselenization. CISSe thin film solar cells annealed at 550 °C exhibited an efficiency of 4.55% under AM 1.5 illumination. The low-cost, nonvacuum method to deposit chalcopyrite absorber layers described here allows for safe and simple processing of thin film solar cells.
Broadband operation of rolled-up hyperlenses
NASA Astrophysics Data System (ADS)
Schwaiger, Stephan; Rottler, Andreas; Bröll, Markus; Ehlermann, Jens; Stemmann, Andrea; Stickler, Daniel; Heyn, Christian; Heitmann, Detlef; Mendach, Stefan
2012-06-01
This work is related to an earlier publication [Schwaiger , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.163903 102, 163903 (2009)], where we demonstrated by means of fiber-based transmission measurements that rolled-up Ag-(In)GaAs multilayers represent three-dimensional metamaterials with a plasma edge which is tunable over the visible and near-infrared regime by changing the thickness ratio of Ag and (In)GaAs, and predicted by means of finite-difference time-domain simulations that hyperlensing occurs at this frequency-tunable plasma edge. In the present work we develop a method to measure reflection curves on these structures and find that they correspond to the same tunable plasma edge. We find that retrieving the effective parameters from transmission and reflection data fails, because our realized metamaterials exceed the single-layer thicknesses of 5nm, which we analyze to be the layer thickness limit for the applicability of effective parameter retrieval. We show that our realized structures nevertheless have the functionality of an effective metamaterial by supplying a detailed finite-difference time-domain study which compares light propagation through our realized structure (17-nm-thick Ag layers and 34-nm-thick GaAs layers) and light propagation through an idealized structure of the same total thickness but with very thin layers [2-nm-thick Ag layers and 4-nm-thick (In)GaAs layers]. In particular, our simulations predict broadband hyperlensing covering a large part of the visible spectrum for both the idealized and our realized structures.
Li, Song-Lin; Miyazaki, Hisao; Song, Haisheng; Kuramochi, Hiromi; Nakaharai, Shu; Tsukagoshi, Kazuhito
2012-08-28
We demonstrate the possibility in quantifying the Raman intensities for both specimen and substrate layers in a common stacked experimental configuration and, consequently, propose a general and rapid thickness identification technique for atomic-scale layers on dielectric substrates. Unprecedentedly wide-range Raman data for atomically flat MoS(2) flakes are collected to compare with theoretical models. We reveal that all intensity features can be accurately captured when including optical interference effect. Surprisingly, we find that even freely suspended chalcogenide few-layer flakes have a stronger Raman response than that from the bulk phase. Importantly, despite the oscillating intensity of specimen spectrum versus thickness, the substrate weighted spectral intensity becomes monotonic. Combined with its sensitivity to specimen thickness, we suggest this quantity can be used to rapidly determine the accurate thickness for atomic layers.
A continuous flow microfluidic calorimeter: 3-D numerical modeling with aqueous reactants.
Sen, Mehmet A; Kowalski, Gregory J; Fiering, Jason; Larson, Dale
2015-03-10
A computational analysis of the reacting flow field, species diffusion and heat transfer processes with thermal boundary layer effects in a microchannel reactor with a coflow configuration was performed. Two parallel adjacent streams of aqueous reactants flow along a wide, shallow, enclosed channel in contact with a substrate, which is affixed to a temperature controlled plate. The Fluent computational fluid dynamics package solved the Navier-Stokes, mass transport and energy equations. The energy model, including the enthalpy of reaction as a nonuniform heat source, was validated by calculating the energy balance at several control volumes in the microchannel. Analysis reveals that the temperature is nearly uniform across the channel thickness, in the direction normal to the substrate surface; hence, measurements made by sensors at or near the surface are representative of the average temperature. Additionally, modeling the channel with a glass substrate and a silicone cover shows that heat transfer is predominantly due to the glass substrate. Finally, using the numerical results, we suggest that a microcalorimeter could be based on this configuration, and that temperature sensors such as optical nanohole array sensors could have sufficient spatial resolution to determine enthalpy of reaction.
A continuous flow microfluidic calorimeter: 3-D numerical modeling with aqueous reactants
Sen, Mehmet A.; Kowalski, Gregory J.; Fiering, Jason; Larson, Dale
2015-01-01
A computational analysis of the reacting flow field, species diffusion and heat transfer processes with thermal boundary layer effects in a microchannel reactor with a coflow configuration was performed. Two parallel adjacent streams of aqueous reactants flow along a wide, shallow, enclosed channel in contact with a substrate, which is affixed to a temperature controlled plate. The Fluent computational fluid dynamics package solved the Navier–Stokes, mass transport and energy equations. The energy model, including the enthalpy of reaction as a nonuniform heat source, was validated by calculating the energy balance at several control volumes in the microchannel. Analysis reveals that the temperature is nearly uniform across the channel thickness, in the direction normal to the substrate surface; hence, measurements made by sensors at or near the surface are representative of the average temperature. Additionally, modeling the channel with a glass substrate and a silicone cover shows that heat transfer is predominantly due to the glass substrate. Finally, using the numerical results, we suggest that a microcalorimeter could be based on this configuration, and that temperature sensors such as optical nanohole array sensors could have sufficient spatial resolution to determine enthalpy of reaction. PMID:25937678
NASA Astrophysics Data System (ADS)
Li, Dan; Yao, Jie; Sun, Hao; Liu, Bing; van Agtmaal, Sjack; Feng, Chunhui
2018-01-01
Zeolite (ZSM-5)/polydimethylsiloxane (PDMS)/polyvinylidene fluoride (PVDF) hollow fiber composite membrane was prepared by dynamic negative pressure. The influence of ZSM-5 silanization, coating time and concentration of ZSM-5 on the resulting pervaporation (PV) performance of composite membranes was investigated. The contact angle (CA) was used to measure surface hydrophobic property and it was found that the water contact angle of the membrane was increased significantly from 99° to 132° when the concentration of ZSM-5 increased from 0% to 50%. The morphology of the membrane was characterized by scanning electron microscope (SEM) and those SEM images illustrated that the thickness of the separating layer has obvious differences at varying coating times. Furthermore, the membranes were investigated in PV process to recycle phenol from aqueous solutions as feed mixtures. The impact of phenol concentration in feed, temperature and pressure of penetration side on the PV performance of membrane was studied systematically. When the ZSM-5 concentration was 40% and the coating time was 60 min, separation factor and phenol permeability were 4.56 and 5.78 g/(m2 h), respectively. ZSM-5/PDMS/PVDF membrane significantly improved the recovery efficiency of phenols.
Wasyluk, Jaromir T; Jankowska-Lech, Irmina; Terelak-Borys, Barbara; Grabska-Liberek, Iwona
2012-03-01
We compared the parameters of retinal nerve fibre layer in patients with advanced glaucoma with the use of different OCT (Optical Coherence Tomograph) devices in relation to analogical measurements performed with GDx VCC (Nerve Fiber Analyzer with Variable Corneal Compensation) scanning laser polarimetry. Study subjects had advanced primary open-angle glaucoma, previously treated conservatively, diagnosed and confirmed by additional examinations (visual field, ophthalmoscopy of optic nerve, gonioscopy), A total of 10 patients were enrolled (9 women and 1 man), aged 18-70 years of age. Nineteen eyes with advanced glaucomatous neuropathy were examined. 1) Performing a threshold perimetry Octopus, G2 strategy and ophthalmoscopy of optic nerve to confirm the presence of advanced primary open-angle glaucoma; 2) performing a GDx VCC scanning laser polarimetry of retinal nerve fibre layer; 3) measuring the retinal nerve fibre layer thickness with 3 different optical coherence tomographs. The parameters of the retinal nerve fibre layer thickness are highly correlated between the GDx and OCT Stratus and 3D OCT-1000 devices in mean retinal nerve fibre layer thickness, retinal nerve fibre layer thickness in the upper sector, and correlation of NFI (GDx) with mean retinal nerve fibre layer thickness in OCT examinations. Absolute values of the retinal nerve fibre layer thickness (measured in µm) differ significantly between GDx and all OCT devices. Examination with OCT devices is a sensitive diagnostic method of glaucoma, with good correlation with the results of GDx scanning laser polarimetry of the patients.
NASA Astrophysics Data System (ADS)
Silvayeh, Zahra; Vallant, Rudolf; Sommitsch, Christof; Götzinger, Bruno; Karner, Werner; Hartmann, Matthias
2017-11-01
Hybrid components made of aluminum alloys and high-strength steels are typically used in automotive lightweight applications. Dissimilar joining of these materials is quite challenging; however, it is mandatory in order to produce multimaterial car body structures. Since especially welding of tailored blanks is of utmost interest, single-sided Cold Metal Transfer butt welding of thin sheets of aluminum alloy EN AW 6014 T4 and galvanized dual-phase steel HCT 450 X + ZE 75/75 was experimentally investigated in this study. The influence of different filler alloy compositions and welding process parameters on the thickness of the intermetallic layer, which forms between the weld seam and the steel sheet, was studied. The microstructures of the weld seam and of the intermetallic layer were characterized using conventional optical light microscopy and scanning electron microscopy. The results reveal that increasing the heat input and decreasing the cooling intensity tend to increase the layer thickness. The silicon content of the filler alloy has the strongest influence on the thickness of the intermetallic layer, whereas the magnesium and scandium contents of the filler alloy influence the cracking tendency. The layer thickness is not uniform and shows spatial variations along the bonding interface. The thinnest intermetallic layer (mean thickness < 4 µm) is obtained using the silicon-rich filler Al-3Si-1Mn, but the layer is more than twice as thick when different low-silicon fillers are used.
NASA Astrophysics Data System (ADS)
Goto, Takeyoshi; Kinugasa, Tomoya
2018-05-01
The first electronic transition (A˜ ← X˜) and the hydrogen bonding state of an ultra-thin water layer of nanometer thickness between two α-alumina surfaces (0.5-20 nm) were studied using far-ultraviolet (FUV) spectroscopy in the wavelength range 140-180 nm. The ultra-thin water layer of nanometer thickness was prepared by squeezing a water droplet ( 1 μL) between a highly polished α-alumina prism and an α-alumina plate using a high pressure clamp ( 4.7 MPa), and the FUV spectra of the water layer at different thicknesses were measured using the attenuated total reflection method. As the water layer became thinner, the A˜ ← X˜ bands were gradually shifted to higher or lower energy relative to that of bulk water; at thicknesses smaller than 4 nm, these shifts were substantial (0.1-0.2 eV) in either case. The FUV spectra of the water layer with thickness < 4 nm indicate the formation of structured ice-like hydrogen bond (H-bond) layers for the higher energy shifts or the formation of slightly weaker H-bond layers as compared to those in the bulk liquid state for lower energy shifts. In either case, the H-bond structure of bulk liquid water is nearly lost at thicknesses below 4 nm, because of steric hydration forces between the α-alumina surfaces.
NASA Astrophysics Data System (ADS)
Hohenberger, S.; Lazenka, V.; Temst, K.; Selle, S.; Patzig, C.; Höche, T.; Grundmann, M.; Lorenz, M.
2018-05-01
The effect of double-layer thickness and partial substitution of Bi3+ by Gd3+ is demonstrated for multiferroic BaTiO3–BiFeO3 2–2 heterostructures. Multilayers of 15 double layers of BaTiO3 and Bi0.95Gd0.05FeO3 were deposited onto (0 0 1) oriented SrTiO3 substrates by pulsed laser deposition with various double layer thicknesses. X-ray diffraction and high resolution transmission electron microscopy investigations revealed a systematic strain tuning with layer thickness via coherently strained interfaces. The multilayers show increasingly enhanced magnetoelectric coupling with reduced double layer thickness. The maximum magnetoelectric coupling coefficient was measured to be as high as 50.8 V cm‑1 Oe‑1 in 0 T DC bias magnetic field at room temperature, and 54.9 V cm‑1 Oe‑1 above 3 T for the sample with the thinnest double layer thickness of 22.5 nm. This enhancement is accompanied by progressively increasing perpendicular magnetic anisotropy and compressive out-of-plane strain. To understand the origin of the enhanced magnetoelectric coupling in such multilayers, the temperature and magnetic field dependency of is discussed. The magnetoelectric performance of the Gd3+ substituted samples is found to be slightly enhanced when compared to unsubstituted BaTiO3–BiFeO3 multilayers of comparable double-layer thickness.
Thermal release of D2 from new Be-D co-deposits on previously baked co-deposits
NASA Astrophysics Data System (ADS)
Baldwin, M. J.; Doerner, R. P.
2015-12-01
Past experiments and modeling with the TMAP code in [1, 2] indicated that Be-D co-deposited layers are less (time-wise) efficiently desorbed of retained D in a fixed low-temperature bake, as the layer grows in thickness. In ITER, beryllium rich co-deposited layers will grow in thickness over the life of the machine. Although, compared with the analyses in [1, 2], ITER presents a slightly different bake efficiency problem because of instances of prior tritium recover/control baking. More relevant to ITER, is the thermal release from a new and saturated co-deposit layer in contact with a thickness of previously-baked, less-saturated, co-deposit. Experiments that examine the desorption of saturated co-deposited over-layers in contact with previously baked under-layers are reported and comparison is made to layers of the same combined thickness. Deposition temperatures of ∼323 K and ∼373 K are explored. It is found that an instance of prior bake leads to a subtle effect on the under-layer. The effect causes the thermal desorption of the new saturated over-layer to deviate from the prediction of the validated TMAP model in [2]. Instead of the D thermal release reflecting the combined thickness and levels of D saturation in the over and under layer, experiment differs in that, i) the desorption is a fractional superposition of desorption from the saturated over-layer, with ii) that of the combined over and under -layer thickness. The result is not easily modeled by TMAP without the incorporation of a thin BeO inter-layer which is confirmed experimentally on baked Be-D co-deposits using X-ray micro-analysis.
Nuutila, Kristo; Singh, Mansher; Kruse, Carla; Eriksson, Elof
2017-08-01
Epidermal stem cells present in the skin appendages of the dermis might be crucial in wound healing. In this study, the authors located these cells in the dermis and evaluated their contribution to full-thickness wound healing in a porcine model. Four sequentially deeper 0.35-mm-thick skin grafts were harvested from the same donor site going down to 1.4 mm in depth (layers 1 through 4). The layers were minced to 0.8 × 0.8 × 0.35-mm micrografts and transplanted (1:2) onto full-thickness porcine wounds. Healing was monitored up to 28 days and biopsy specimens were collected on days 6 and 10. Multiple wound healing parameters were used to assess the quality of healing. The authors' results showed that wounds transplanted with layer 2 (0.35 to 0.7 mm) and layer 3 (0.7 to 1.05 mm) micrografts demonstrated reepithelialization rates comparable to that of split-thickness skin graft (layer 1, 0.00 to 0.35 mm; split-thickness skin graft) at day 10. At day 28, dermal micrografts (layers 2 and 3) showed quality of healing comparable to that of split-thickness skin grafts (layer 1) in terms of wound contraction and scar elevation index. The amounts of epidermal stem cells [cluster of differentiation (CD) 34] and basal keratinocytes (KRT14) at each layer were quantified by immunohistochemistry. The analysis showed that layers 2 and 3 contained the most CD34 cells and layer 1 was the richest in KRT14 cells. The immunohistochemistry also indicated that, by day 6, CD34 cells had differentiated into KRT14 cells, which migrated from the grafts and contributed to the reepithelialization of the wound.
NASA Astrophysics Data System (ADS)
Zhang, Le; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa
2013-05-01
By using current-voltage (I-V) measurements and optical modulation spectroscopy, we investigated the dependence of the carrier behaviour on the film thickness of the buried pentacene layer in C60/pentacene ambipolar double-layer organic field-effect transistors (OFETs). It was found that the buried pentacene layer not only acted as a hole transport layer, but also accounted for the properties of the C60/pentacene interface. The hole and electron behaviour exhibited different thickness dependence on the buried pentacene layer, implying the presence of the spatially separated conduction paths. It was suggested that the injected holes transported along the pentacene/gate dielectric interface, which were little affected by the buried pentacene layer thickness or the upper C60 layer; while, the injected electrons accumulated at the C60/pentacene interface, which were sensitive to the interfacial conditions or the buried pentacene layer. Furthermore, it was suggested that the enhanced surface roughness of the buried pentacene layer was responsible for the observed electron behaviour, especially when dpent>10 nm.
Ancient Aqueous Environments at Endeavour Crater, Mars
NASA Technical Reports Server (NTRS)
Arvidson, R. E.; Squyres, S. W.; Bell, J. F.; Catalano, J. G.; Clark, B. C.; Crumpler, L. S.; de Souza, P. A.; Fairen, A. G.; Farrand, W. H.; Fox, V. K.;
2014-01-01
Opportunity has investigated in detail rocks on the rim of the Noachian age Endeavour crater, where orbital spectral reflectance signatures indicate the presence of Fe(+3)-rich smectites. The signatures are associated with fine-grained, layered rocks containing spherules of diagenetic or impact origin. The layered rocks are overlain by breccias, and both units are cut by calcium sulfate veins precipitated from fluids that circulated after the Endeavour impact. Compositional data for fractures in the layered rocks suggest formation of Al-rich smectites by aqueous leaching. Evidence is thus preserved for water-rock interactions before and after the impact, with aqueous environments of slightly acidic to circum-neutral pH that would have been more favorable for prebiotic chemistry and microorganisms than those recorded by younger sulfate-rich rocks at Meridiani Planum.
Ancient aqueous environments at Endeavour crater, Mars
Arvidson, R. E.; Squyres, S. W.; Bell, J.F.; Catalano, J.G.; Clark, B. C.; Crumpler, L.S.; de Souza, P.A.; Fairén, A.G.; Farrand, W. H.; Fox, V.K.; Gellert, Ralf; Ghosh, A.; Golombeck, M.P.; Grotzinger, J.P.; Guinness, E.A.; Herkenhoff, Kenneth E.; Jolliff, B.L.; Knoll, A.H.; Li, R.; McLennan, S.M.; Ming, D. W.; Mittlefehldt, D. W.; Moore, Johnnie N.; Morris, R.V.; Murchie, S.L.; Parker, T.J.; Paulsen, G.; Rice, J.W.; Ruff, S.W.; Smith, M.D.; Wolff, M.J.
2014-01-01
Opportunity has investigated in detail rocks on the rim of the Noachian age Endeavour crater, where orbital spectral reflectance signatures indicate the presence of Fe+3-rich smectites. The signatures are associated with fine-grained, layered rocks containing spherules of diagenetic or impact origin. The layered rocks are overlain by breccias, and both units are cut by calcium sulfate veins precipitated from fluids that circulated after the Endeavour impact. Compositional data for fractures in the layered rocks suggest formation of Al-rich smectites by aqueous leaching. Evidence is thus preserved for water-rock interactions before and after the impact, with aqueous environments of slightly acidic to circum-neutral pH that would have been more favorable for prebiotic chemistry and microorganisms than those recorded by younger sulfate-rich rocks at Meridiani Planum.
Thickness-dependent electron mobility of single and few-layer MoS{sub 2} thin-film transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ji Heon; Kim, Tae Ho; Lee, Hyunjea
We investigated the dependence of electron mobility on the thickness of MoS{sub 2} nanosheets by fabricating bottom-gate single and few-layer MoS{sub 2} thin-film transistors with SiO{sub 2} gate dielectrics and Au electrodes. All the fabricated MoS{sub 2} transistors showed on/off-current ratio of ∼10{sup 7} and saturated output characteristics without high-k capping layers. As the MoS{sub 2} thickness increased from 1 to 6 layers, the field-effect mobility of the fabricated MoS{sub 2} transistors increased from ∼10 to ∼18 cm{sup 2}V{sup −1}s{sup −1}. The increased subthreshold swing of the fabricated transistors with MoS{sub 2} thickness suggests that the increase of MoS{sub 2}more » mobility with thickness may be related to the dependence of the contact resistance and the dielectric constant of MoS{sub 2} layer on its thickness.« less
NASA Astrophysics Data System (ADS)
Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb
2016-09-01
Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.
Distribution of Gd(III) ions at the graphene oxide/water interface.
Amirov, Rustem R; Shayimova, Julia; Dimiev, Ayrat M
2018-10-01
Graphene oxide (GO) have emerged recently as a novel material for sorbing metal cations from aqueous media. However, the literature data on sorption capacity differ by more than one order in magnitude, and the nature of the chemical bonding between GO and metal cations remains unclear. In this work we show that Gd 3+ ions are bound to GO by both coordinate-covalent bonding and electrostatic attraction with prevailing the former. We provide the complete account for the GO sorption toward Gd 3+ as the function of the Gd 3+ /GO ratio and pH of solution. The upper limits of the strong bonding are determined as 0.70 and 0.16 mmol(Gd 3+ )/g(GO) in the neutral and in the intrinsically acidic solutions, respectively. At large excess of Gd 3+ in the neutral solutions, the sorption capacity reaches 1.45 mmol(Gd 3+ )/g(GO). The effectiveness of water, hydrochloric acid and EDTA as desorbing eluents is compared. We experimentally demonstrate the existence of the Gd 3+ concentration gradient within the diffuse layer at the GO/water interface, and its exponential character on the distance from the GO surface. The thickness of the diffuse layer and the position of the slipping plane are estimated. Such characteristics, typical for colloid systems, show that in solutions, GO flakes form distinct phase, even though they are just one atom thick. Copyright © 2018 Elsevier Inc. All rights reserved.
Li, Zhonghui; Jones, Yolanda; Hossenlopp, Jeanne; Cernosek, Richard; Josse, Fabien
2005-07-15
Direct chemical sensing in liquid environments using polymer-guided shear horizontal surface acoustic wave sensor platforms on 36 degrees rotated Y-cut LiTaO3 is investigated. Design considerations for optimizing these devices for liquid-phase detection are systematically explored. Two different sensor geometries are experimentally and theoretically analyzed. Dual delay line devices are used with a reference line coated with poly (methyl methacrylate) (PMMA) and a sensing line coated with a chemically sensitive polymer, which acts as both a guiding layer and a sensing layer or with a PMMA waveguide and a chemically sensitive polymer. Results show the three-layer model provides higher sensitivity than the four-layer model. Contributions from mass loading and coating viscoelasticity changes to the sensor response are evaluated, taking into account the added mass, swelling, and plasticization. Chemically sensitive polymers are investigated in the detection of low concentrations (1-60 ppm) of toluene, ethylbenzene, and xylenes in water. A low-ppb level detection limit is estimated from the present experimental measurements. Sensor properties are investigated by varying the sensor geometries, coating thickness combinations, coating properties, and curing temperature for operation in liquid environments. Partition coefficients for polymer-aqueous analyte pairs are used to explain the observed trend in sensitivity for the polymers PMMA, poly(isobutylene), poly(epichlorohydrin), and poly(ethyl acrylate) used in this work.
Solid oxide fuel cell cathode with oxygen-reducing layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surdoval, Wayne A.; Berry, David A.; Shultz, Travis
The disclosure provides a SOFC comprised of an electrolyte, anode, and cathode, where the cathode comprises an MIEC and an oxygen-reducing layer. The oxygen-reducing layer is in contact with the MIEC, and the MIEC is generally between and separating the oxygen-reducing layer and the electrolyte. The oxygen-reducing layer is comprised of single element oxides, single element carbonates, or mixtures thereof, and has a thickness of less than about 30 nm. In a particular embodiment, the thickness is less than 5 nm. In another embodiment, the thickness is about 3 monolayers or less. The oxygen-reducing layer may be a continuous filmmore » or a discontinuous film with various coverage ratios. The oxygen-reducing layer at the thicknesses described may be generated on the MIEC surface using means known in the art such as, for example, ALD processes.« less
Pane, Epita S; Palamara, Joseph E A; Messer, Harold H
2015-12-01
This study aims to evaluate tensile and shear bond strengths of one epoxy (AH) and two methacrylate resin-based sealers (EZ and RS) in thin and thick layers bonded to root dentine. An alignment device was prepared for accurate positioning of 20 root dentine cylinders in a predefined gap of 0.1 or 1 mm. Sealer was placed in the interface. Bond strength tests were conducted. Mode of failures and representative surfaces were evaluated. Data were analysed using anova and post-hoc tests, with P < 0.05. The thick layer of sealer produced higher bond strength, except for the shear bond strength of EZ. Significant differences between thin and thick layers were found only in tensile bond strengths of AH and RS. Mixed type of failure was constantly found with all sealers. Bond strengths of thick layers of resin-based sealers to root dentine tended to be higher than with thin layers. © 2015 Australian Society of Endodontology.
The Effect of Valinomycin on the Electrical Properties of Solutions of Red Cell Lipids in n-Decane
Andreoli, Thomas E.; Tosteson, Daniel C.
1971-01-01
This paper reports the electrical properties of thick lipid membranes in the absence and presence of valinomycin. The thick lipid membranes were formed by placing a solution of sheep red cell lipids in decane between two cellophane partitions which formed the interfaces between the membrane and the two aqueous bathing solutions. The DC electrical resistance of these structures was found to be directly proportional to the reciprocal of the concentration of lipids in the decane (CL). The limiting resistance, as (CL -1) approached zero, was 3 x 108 ohm-cm2. Resistance was also found to be linearly related to membrane thickness. The limiting resistance at zero thickness was again 1–3 x 108 ohm-cm2. These data are interpreted to indicate that the DC resistance of thick lipid membranes comprises two surface resistances (RS) at each interface with the aqueous bathing solutions, and a bulk resistance (RB) of the lipid-decane solution, arranged in series. Measurements of the effect of variations of area on resistance were consistent with this interpretation. Valinomycin reduced RS but had no effect on RB. Under certain conditions, thick lipid membranes containing valinomycin behaved like highly selective K+ electrodes. PMID:5553100
Ji, Chen-Hao; Xue, Shuang-Mei; Xu, Zhen-Liang
2016-10-12
A novel carbohydrate chain cross-linking method of sodium alginate (SA) is proposed in which glycogen with the branched-chain structure is utilized to cross-link with SA matrix by the bridging of glutaraldehyde (GA). The active layer of SA composite ceramic membrane modified by glycogen and GA for pervaporation (PV) demonstrates great advantages. The branched structure increases the chain density of the active layer, which compresses the free volume between the carbohydrate chains of SA. Large amounts of hydroxyl groups are consumed during the reaction with GA, which reduces the hydrogen bond formation between water molecules and the polysaccharide matrix. The two factors benefit the active layer with great improvement in swelling resistance, promoting the potential of the active layer for the dehydration of an ethanol-water solution containing high water content. Meanwhile, the modified active layer is loaded on the rigid α-Al 2 O 3 ceramic membrane by dip-coating method with the enhancement of anti-deformation and controllable thickness of the active layer. Characterization techniques such as SEM, AFM, XRD, FTIR, XPS, and water contact angle are utilized to observe the composite structure and surface morphology of the composite membrane, to probe the free volume variation, and to determine the chemical composition and hydrophilicity difference of the active layer caused by the different glycogen additive amounts. The membrane containing 3% glycogen in the selective layer demonstrates the flux at 1250 g m -2 h -1 coupled with the separation factor of 187 in the 25 wt % water content feed solution at the operating temperature of 75 °C, reflecting superior pervaporation processing capacity compared with the general organic PV membranes in the same condition.
Willinger, Marc-Georg; Neri, Giovanni; Bonavita, Anna; Micali, Giuseppe; Rauwel, Erwan; Herntrich, Tobias; Pinna, Nicola
2009-05-21
A new atomic layer deposition (ALD) process was applied for the uniform coating of carbon nanotubes with a number of transition-metal oxide thin films (vanadium, titanium, and hafnium oxide). The presented approach is adapted from non-aqueous sol-gel chemistry and utilizes metal alkoxides and carboxylic acids as precursors. It allows the coating of the inner and outer surface of the tubes with a highly conformal film of controllable thickness and hence, the production of high surface area hybrid materials. The morphology and the chemical composition as well as the high purity of the films are evidenced through a combination of electron microscopic and electron-energy-loss spectrometric techniques. Furthermore, in order to highlight a possible application of the obtained hybrids, the electrical and sensing properties of resistive gas sensors based on hybrid vanadium oxide-coated carbon nanotubes (V2O4-CNTs) are reported and the effect of thermal treatment on the gas sensing properties is studied.
Synthesis of graphene oxide through different oxidation degrees for solar cells
NASA Astrophysics Data System (ADS)
Zhang, Xiaoshan; Wang, Huan; Huang, Tianjiao; Wen, Lingling; Zhou, Liya
2018-03-01
Graphene is known as an electro-chemical material and widely used in electro-chemical devices, especially in solar cell. Decreasing the thickness of the layer is a critical way to improve the electrochemical property of solar cells as far as possible. Among the various oxidation approaches, presented herein is a facile approach, which is easier, less cost and more effective, environmental benign with the greener processing and without any requirement for post purification, towards the synthesis of graphene oxide (GO) with different oxidation degrees by potassium ferrate (K2FeO4). A modified method using less amount of oxidizing agent is reported herein. It is the pretreatment of the synthesis of graphite, which maintains the thermal cycle of the system. This novel reports to compound GO with controlled oxidation degrees can not only increase the quantity of oxygen-containing functional groups on GO surface, increase space between graphene oxide layer and facilitate the dispersion of graphene in aqueous solution. Thus, the modified method shows prospect for large-scale production of graphene oxide and its novel application, in addition to its derivative and market potential for solar cells.
Corrosion Protection of Copper Using Al2O3, TiO2, ZnO, HfO2, and ZrO2 Atomic Layer Deposition.
Daubert, James S; Hill, Grant T; Gotsch, Hannah N; Gremaud, Antoine P; Ovental, Jennifer S; Williams, Philip S; Oldham, Christopher J; Parsons, Gregory N
2017-02-01
Atomic layer deposition (ALD) is a viable means to add corrosion protection to copper metal. Ultrathin films of Al 2 O 3 , TiO 2 , ZnO, HfO 2 , and ZrO 2 were deposited on copper metal using ALD, and their corrosion protection properties were measured using electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV). Analysis of ∼50 nm thick films of each metal oxide demonstrated low electrochemical porosity and provided enhanced corrosion protection from aqueous NaCl solution. The surface pretreatment and roughness was found to affect the extent of the corrosion protection. Films of Al 2 O 3 or HfO 2 provided the highest level of initial corrosion protection, but films of HfO 2 exhibited the best coating quality after extended exposure. This is the first reported instance of using ultrathin films of HfO 2 or ZrO 2 produced with ALD for corrosion protection, and both are promising materials for corrosion protection.
NASA Astrophysics Data System (ADS)
Moraila-Martínez, Carmen Lucía; Guerrero-García, Guillermo Iván; Chávez-Páez, Martín; González-Tovar, Enrique
2018-04-01
The capacitive compactness has been introduced very recently [G. I. Guerrero-García et al., Phys. Chem. Chem. Phys. 20, 262-275 (2018)] as a robust and accurate measure to quantify the thickness, or spatial extension, of the electrical double layer next to either an infinite charged electrode or a spherical macroion. We propose here an experimental/theoretical scheme to determine the capacitive compactness of a spherical electrical double layer that relies on the calculation of the electrokinetic charge and the associated mean electrostatic potential at the macroparticle's surface. This is achieved by numerically solving the non-linear Poisson-Boltzmann equation of point ions around a colloidal sphere and matching the corresponding theoretical mobility, predicted by the O'Brien and White theory [J. Chem. Soc., Faraday Trans. 2 74, 1607-1626 (1978)], with experimental measurements of the electrophoretic mobility under the same conditions. This novel method is used to calculate the capacitive compactness of NaCl and CaCl2 electrolytes surrounding a negatively charged polystyrene particle as a function of the salt concentration.
Nieves-Moreno, María; Martínez-de-la-Casa, José M; Bambo, María P; Morales-Fernández, Laura; Van Keer, Karel; Vandewalle, Evelien; Stalmans, Ingeborg; García-Feijoó, Julián
2018-02-01
This study examines the capacity to detect glaucoma of inner macular layer thickness measured by spectral-domain optical coherence tomography (SD-OCT) using a new normative database as the reference standard. Participants ( N = 148) were recruited from Leuven (Belgium) and Zaragoza (Spain): 74 patients with early/moderate glaucoma and 74 age-matched healthy controls. One eye was randomly selected for a macular scan using the Spectralis SD-OCT. The variables measured with the instrument's segmentation software were: macular nerve fiber layer (mRNFL), ganglion cell layer (GCL), and inner plexiform layer (IPL) volume and thickness along with circumpapillary RNFL thickness (cpRNFL). The new normative database of macular variables was used to define the cutoff of normality as the fifth percentile by age group. Sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) of each macular measurement and of cpRNFL were used to distinguish between patients and controls. Overall sensitivity and specificity to detect early-moderate glaucoma were 42.2% and 88.9% for mRNFL, 42.4% and 95.6% for GCL, 42.2% and 94.5% for IPL, and 53% and 94.6% for RNFL, respectively. The best macular variable to discriminate between the two groups of subjects was outer temporal GCL thickness as indicated by an AUROC of 0.903. This variable performed similarly to mean cpRNFL thickness (AUROC = 0.845; P = 0.29). Using our normative database as reference, the diagnostic power of inner macular layer thickness proved comparable to that of peripapillary RNFL thickness. Spectralis SD-OCT, cpRNFL thickness, and individual macular inner layer thicknesses show comparable diagnostic capacity for glaucoma and RNFL, GCL, and IPL thickness may be useful as an alternative diagnostic test when the measure of cpRNFL shows artifacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pathak, S.; Li, N.; Maeder, X.
We investigated the mechanical response of physical vapor deposited Cu–TiN nanolayered composites of varying layer thicknesses from 5 nm to 200 nm. Both the Cu and TiN layers were found to consist of single phase nanometer sized grains. The grain sizes in the Cu and TiN layers, measured using transmission electron microscopy and X-ray diffraction, were found to be comparable to or smaller than their respective layer thicknesses. Indentation hardness testing revealed that the hardness of such nanolayered composites exhibits a weak dependence on the layer thickness but is more correlated to their grain size.
Hao, Liang
2014-01-01
In situ reaction was activated in the powder mixture of Al/5 wt.%Fe2O3 by using selective laser melting (SLM) to directly fabricate aluminium metal matrix composite parts. The microstructural characteristics of these in situ consolidated parts through SLM were investigated under the influence of thick powder bed, 75 μm layer thickness, and 50 μm layer thickness in various laser powers and scanning speeds. It was found that the layer thickness has a strong influence on microstructural outcome, mainly attributed to its impact on oxygen content of the matrix. Various microstructural features (such as granular, coralline-like, and particulate appearance) were observed depending on the layer thickness, laser power, and scanning speed. This was associated with various material combinations such as pure Al, Al-Fe intermetallics, and Al(-Fe) oxide phases formed after in situ reaction and laser rapid solidification. Uniformly distributed very fine particles could be consolidated in net-shape Al composite parts by using lower layer thickness, higher laser power, and lower scanning speed. The findings contribute to the new development of advanced net-shape manufacture of Al composites by combining SLM and in situ reaction process. PMID:24526879
NASA Astrophysics Data System (ADS)
Chen, Qi; Huang, Shenghai; Ma, Qingkai; Lin, Huiling; Pan, Mengmeng; Liu, Xinting; Lu, Fan; Shen, Meixiao
2017-02-01
The structural characteristics of the outer retinal layers in primary open angle glaucoma (POAG) are still controversial, and these changes, along with those in the inner retinal layers, could have clinical and/or pathophysiological significance. A custom-built ultra-high resolution optical coherence tomography (UHR-OCT) combined with an automated segmentation algorithm can image and measure the eight intra-retinal layers. The purpose of this study is to determine the thickness characteristics of the macular intra-retinal layers, especially the outer layers, in POAG patients. Thirty-four POAG patients (56 eyes) and 33 normal subjects (63 eyes) were enrolled. Thickness profiles of the eight intra-retinal layers along a 6-mm length centred on the fovea at the horizontal and vertical meridians were obtained and the regional thicknesses were compared between two groups. The associations between the thicknesses of each intra-retinal layer and the macular visual field (VF) sensitivity were then analysed. POAG affected not only the inner retinal layers but also the photoreceptor layers and retinal pigment epithelium of the outer retina. However, the VF loss was correlated mainly with the damage of the inner retinal layers. UHR-OCT with automated algorithm is a useful tool in detecting microstructural changes of macula with respect to the progression of glaucoma.
Effect of spacer layer on the magnetization dynamics of permalloy/rare-earth/permalloy trilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Chen, E-mail: ronanluochen@gmail.com; Yin, Yuli; Zhang, Dong
2015-05-07
The permalloy/rare-earth/permalloy trilayers with different types (Gd and Nd) and thicknesses of spacer layer are investigated using frequency dependence of ferromagnetic resonance (FMR) measurements at room temperature, which shows different behaviors with different rare earth spacer layers. By fitting the frequency dependence of the FMR resonance field and linewidth, we find that the in-plane uniaxial anisotropy retains its value for all samples, the perpendicular anisotropy remains almost unchanged for different thickness of Gd layer but the values are tailored by different thicknesses of Nd layer. The Gilbert damping is almost unchanged with different thicknesses of Gd; however, the Gilbert dampingmore » is significantly enhanced from 8.4×10{sup −3} to 20.1×10{sup −3} with 6 nm of Nd and then flatten out when the Nd thickness rises above 6 nm.« less
NASA Technical Reports Server (NTRS)
Goecke, S. A.
1973-01-01
A 0.56-inch thick aft-facing step was located 52.1 feet from the leading edge of the left wing of an XB-70 airplane. A boundary-layer rake at a mirror location on the right wing was used to obtain local flow properties. Reynolds numbers were near 10 to the 8th power, resulting in a relatively thick boundary-layer. The momentum thickness ranged from slightly thinner to slightly thicker than the step height. Surface static pressures forward of the step were obtained for Mach numbers near 0.9, 1.5, 2.0, and 2.4. The data were compared with thin boundary-layer results from flight and wind-tunnel experiments and semiempirical relationships. Significant differences were found between the thick and the thin boundary-layer data.
Effect of layer thickness on device response of silicon heavily supersaturated with sulfur
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchinson, David; Department of Physics and Nuclear Engineering, United States Military Academy, West Point NY 10996; Mathews, Jay
2016-05-15
We report on a simple experiment in which the thickness of a hyperdoped silicon layer, supersaturated with sulfur by ion implantation followed by pulsed laser melting and rapid solidification, is systematically varied at constant average sulfur concentration, by varying the implantation energy, dose, and laser fluence. Contacts are deposited and the external quantum efficiency (EQE) is measured for visible wavelengths. We posit that the sulfur layer primarily absorbs light but contributes negligible photocurrent, and we seek to support this by analyzing the EQE data for the different layer thicknesses in two interlocking ways. In the first, we use the measuredmore » concentration depth profiles to obtain the approximate layer thicknesses, and, for each wavelength, fit the EQE vs. layer thickness curve to obtain the absorption coefficient of hyperdoped silicon for that wavelength. Comparison to literature values for the hyperdoped silicon absorption coefficients [S.H. Pan et al. Applied Physics Letters 98, 121913 (2011)] shows good agreement. Next, we essentially run this process in reverse; we fit with Beer’s law the curves of EQE vs. hyperdoped silicon absorption coefficient for those wavelengths that are primarily absorbed in the hyperdoped silicon layer, and find that the layer thicknesses obtained from the fit are in good agreement with the original values obtained from the depth profiles. We conclude that the data support our interpretation of the hyperdoped silicon layer as providing negligible photocurrent at high S concentrations. This work validates the absorption data of Pan et al. [Applied Physics Letters 98, 121913 (2011)], and is consistent with reports of short mobility-lifetime products in hyperdoped layers. It suggests that for optoelectronic devices containing hyperdoped layers, the most important contribution to the above band gap photoresponse may be due to photons absorbed below the hyperdoped layer.« less
NASA Astrophysics Data System (ADS)
Yuan, Wong Wei; Natashah Norizan, Mohd; Salwani Mohamad, Ili; Jamalullail, Nurnaeimah; Hidayah Saad, Nor
2017-11-01
Solar cell is expanding as green renewable alternative to conventional fossil fuel electricity generation, but compared to other land-used electrical generators, it is a comparative beginner. Many applications covered by solar cells starting from low power mobile devices, terrestrial, satellites and many more. To date, the highest efficiency solar cell is given by GaAs based multilayer solar cell. However, this material is very expensive in fabrication and material costs compared to silicon which is cheaper due to the abundance of supply. Thus, this research is devoted to develop multilayer solar cell by combining two different layers of P-I-N structures with silicon carbide and silicon germanium. This research focused on optimising the intrinsic layer thickness, p-doped layer thickness and concentration, n-doped layer thickness and concentration in achieving the highest efficiency. As a result, both single layer a-SiC and a-SiGe showed positive efficiency improvement with the record of 27.19% and 9.07% respectively via parametric optimization. The optimized parameters is then applied on both SiC and SiGe P-I-N layers and resulted the convincing efficiency of 33.80%.
NASA Astrophysics Data System (ADS)
Hernandez Maya, K.; Mitchell, N. C.; Huuse, M.
2017-12-01
Salt topography and thickness variations are important for testing theories of how halokinetic deformation proceeds. The ability to predict thickness variations of salt at small scale is also important for reservoir evaluations, as breach of the salt layer can lead to loss of petroleum fluids and can be difficult to evaluate from seismic reflection data. Relevant to these issues, we here report analysis of data on salt layer topography and thickness from the southern North Sea, where the salt is organized into pillows. These data were derived by the Geological Survey of the Netherlands (TNO) from industry 3D seismic reflection data combined with a dense network of well information. Highs and lows in the topography of the upper salt interface occur spaced over a variety of lengthscales. Power spectral analysis of the interface topography reveals a simple inverse power law relationship between power spectral density and spatial wave number. The relationship suggests that the interface is a self-affine fractal with a fractal dimension of 2.85. A similar analysis of the salt layer thickness also suggests a fractal-like power law. Whereas the layer thickness power law is unsurprising as the underlying basement topography dominates the thickness and it also has a fractal-like power spectrum, the salt topography is not so easily explained as not all the basement faults are overlaid by salt pillows, instead some areas of the dataset salt thinning overlies faults. We consider instead whether a spatially varied loading of the salt layer may have caused this fractal-like geometry. Varied density and thickness of overburdening layers seem unlikely causes, as thicknesses of layers and their reflectivities do not vary sympathetically with the topography of the interface. The composition of the salt layer varies with the relative proportions of halite and denser anhydrite and other minerals. Although limited in scope and representing the mobilized salt layer, the information from the well data could potentially support the loading originating initially from within the salt. Such internal loading needs to be considered in modelling salt deformation for a variety of practical and academic purposes.
NASA Astrophysics Data System (ADS)
Dushatinski, Thomas; Huff, Clay; Abdel-Fattah, Tarek M.
2016-11-01
Electrodepositions of cobalt films were achieved using an aqueous or an ethylene glycol based non-aqueous solution containing choline chloride (vitamin B4) with cobalt chloride hexahydrate precursor toward hydrogen evolution reactions from sodium borohydride (NaBH4) as solid hydrogen feedstock (SHF). The resulting cobalt films had reflectivity at 550 nm of 2.2% for aqueously deposited films (ACoF) and 1.3% for non-aqueously deposited films (NCoF). Surface morphology studied by scanning electron microscopy showed a positive correlation between particle size and thickness. The film thicknesses were tunable between >100 μm and <300 μm for each film. The roughness (Ra) value measurements by Dektak surface profiling showed that the NCoF (Ra = 165 nm) was smoother than the ACoF (Ra = 418 nm). The NCoFs and ACoFs contained only α phase (FCC) crystallites. The NCoFs were crystalline while the ACoFs were largely amorphous from X-ray diffraction analysis. The NCoF had an average Vickers hardness value of 84 MPa as compared to 176 MPa for ACoF. The aqueous precursor has a single absorption maximum at 510 nm and the non-aqueous precursor had three absorption maxima at 630, 670, and 695 nm. The hydrogen evolution reactions over a 1 cm2 catalytic surface with aqueous NaBH4 solutions generated rate constants (K) = equal to 4.9 × 10-3 min-1, 4.6 × 10-3 min-1, and 3.3 × 10-3 min-1 for ACoF, NCoF, and copper substrate respectively.
NASA Astrophysics Data System (ADS)
Guz, A. N.; Bagno, A. M.
2017-07-01
The dispersion curves are constructed and propagation of quasi-Lamb waves are studied for wide range of frequencies based on the Navier -Stokes three-dimensional linearized equations for a viscous liquid and linear equations of the classical theory of elasticity for an elastic layer. For a thick liquid layer, the effect of the viscosity of the liquid and the thickness of elastic and liquid layers on the phase velocities and attenuation coefficients of quasi-Lamb modes is analyzed. It is shown that in the case of a thick liquid layer for all modes, there are elastic layers of certain thickness with minimal effect of liquid viscosity on the phase velocities and attenuation coefficients of modes. It is also discovered that for some modes, there are both certain thicknesses and certain ranges of thickness where the effect of liquid viscosity on the phase velocities and attenuation coefficients of these modes is considerable. We ascertain that liquid viscosity promotes decrease of the penetration depth of the lowest quasi-Lamb mode into the liquid. The developed approach and the obtained results make it possible to ascertain for wave processes the limits of applicability of the model of ideal compressible fluid. Numerical results in the form of graphs are adduced and analyzed.
Monte Carlo modeling (MCML) of light propagation in skin layers for detection of fat thickness
NASA Astrophysics Data System (ADS)
Nilubol, Chonnipa; Treerattrakoon, Kiatnida; Mohammed, Waleed S.
2010-05-01
Nowadays, most activities require lesser physical actions, which could ultimately lead to accumulation of excessive body fat. The main roles of body fat are to store energy and acts as various kinds of insulators for the body. The thickness of fat layers can be measured to indicate fat-body weight ratio. Exceeding the body-mass index (BMI) could lead to many illnesses regarding obesity. Consequently, many studies have proposed various principles and techniques to measure the amount of fat within one's body. In this paper, infrared interactance in skin layers is studied for investigation of the influence of fat thickness upon photon travelling pattern in skin tissues using Monte Carlo model (MCML). Photon propagation is numerically simulated in simplified multi-layered tissues. The optical coefficients of each skin layers are accounted for different traveling paths of photons that move through random motion. The thickness of fat layer is varied, and changing in optical parameters is observed. Then the statistically obtained data are computed and analyzed for the effect of the fat layer upon reflection percentage using different wavelengths. The calculations have shown increment in the slope of change of reflection percentage versus fat thickness, when using infrared compare to visible light. This technique can be used to construct a mobile device that is capable of measuring the volume fraction of melanin and blood in the epidermis layer and dermis layer, to calculate for the necessary optical coefficients that would be necessary for measurement of fat thickness.
NASA Astrophysics Data System (ADS)
Li, Zhi-Yue; Yang, Hao-Zhi; Chen, Sheng-Chi; Lu, Ying-Bo; Xin, Yan-Qing; Yang, Tian-Lin; Sun, Hui
2018-05-01
Nitrogen-doped indium tin zinc oxide (ITZO:N) thin film transistors (TFTs) were deposited on SiO2 (200 nm)/p-Si〈1 0 0〉 substrates by RF magnetron sputtering at room temperature. The structural, chemical compositions, surface morphology, optical and electrical properties as a function of the active layer thickness were investigated. As the active layer thickness increases, Zn content decreases and In content increases gradually. Meanwhile, Sn content is almost unchanged. When the thickness of the active layer is more than 45 nm, the ITZO:N films become crystallized and present a crystal orientation along InN(0 0 2) plan. No matter what the thickness is, ITZO:N films always display a high transmittance above 80% in the visible region. Their optical band gaps fluctuate between 3.4 eV and 3.62 eV. Due to the dominance of low interface trap density and high carrier concentration, ITZO:N TFT shows enhanced electrical properties as the active layer thickness is 35 nm. Its field-effect mobility, on/off radio and sub-threshold swing are 17.53 cm2 V‑1 · s‑1, 106 and 0.36 V/dec, respectively. These results indicate that the suitable thickness of the active layer can enhance the quality of ITZO:N films and decrease the defects density of ITZO:N TFT. Thus, the properties of ITZO:N TFT can be optimized by adjusting the thickness of the active layer.
Hutsler, Jeffrey J; Lee, Dong-Geun; Porter, Kristin K
2005-08-02
The mammalian cerebral cortex is composed of individual layers characterized by the cell types they contain and their afferent and efferent connections. The current study examined the raw, and size-normalized, laminar thicknesses in three cortical regions (somatosensory, motor, and premotor) of fourteen species from three orders of mammals: primates, carnivores, and rodents. The proportional size of the pyramidal cell layers (supra- and infragranular) varied between orders but was similar within orders despite wide variance in absolute cortical thickness. Further, supragranular layer thickness was largest in primates (46 +/- 3 percent), followed by carnivores (36 +/- 3 percent), and then rodents (19 +/- 4 percent), suggesting a distinct difference in the proportion of cortex devoted to corticocortical connectivity across these orders. Although measures of supragranular layer thickness are highly correlated with measures of overall brain size, such associations are not present when independent contrasts are used to control for phylogenetic inertia. Interestingly, neurogenesis time span remains strongly associated with supragranular layer thickness despite size normalization and controlling for phylogenetic inertia. Such layering differences between orders, and similarities amongst species within an order, suggest that supragranular layer expansion may have occurred early in mammalian evolution and may be related to ontogenetic variables such as neurogenesis time span rather than measures of overall size.
Contact method to allow benign failure in ceramic capacitor having self-clearing feature
Myers, John D; Taylor, Ralph S
2012-06-26
A capacitor exhibiting a benign failure mode has a first electrode layer, a first ceramic dielectric layer deposited on a surface of the first electrode, and a second electrode layer disposed on the ceramic dielectric layer, wherein selected areas of the ceramic dielectric layer have additional dielectric material of sufficient thickness to exhibit a higher dielectric breakdown voltage than the remaining majority of the dielectric layer. The added thickness of the dielectric layer in selected areas allows lead connections to be made at the selected areas of greater dielectric thickness while substantially eliminating a risk of dielectric breakdown and failure at the lead connections, whereby the benign failure mode is preserved.
2018-01-01
Objectives To evaluate and compare light-transmittance in dental tissues and dental composite restorations using the incremental double-layer technique with varying layer thickness. Materials and Methods B1-colored natural teeth slabs were compared to dental restoration build-ups with A2D and B1E-colored nanofilled, supra-nanofilled, microfilled, and microhybrid composites. The enamel layer varied from 0.3, 0.5, or 1.2 mm thick, and the dentin layer was varied to provide a standardized 3.7 mm overall sample thickness (n = 10). All increments were light-cured to 16 J/cm2 with a multi-wave LED (Valo, Ultradent). Using a spectrophotometer, the samples were irradiated by an RGB laser beam. A voltmeter recorded the light output signal to calculate the light-transmittance through the specimens. The data were analyzed using 1-way analysis of variance followed by the post hoc Tukey's test (p = 0.05). Results Mean light-transmittance observed at thicker final layers of enamel were significantly lower than those observed at thinner final layers. Within 1.2 mm final enamel resin layer (FERL) thickness, all composites were similar to the dental tissues, with exception of the nanofilled composite. However, within 0.5 mm FERL thickness, only the supra-nanofilled composite showed no difference from the dental tissues. Within 0.3 mm FERL thickness, none of the composites were similar to the dental tissues. Conclusions The supra-nanofilled composite had the most similar light-transmittance pattern when compared to the natural teeth. However, for other composites, thicker FERL have a greater chance to match the light-transmittance of natural dental tissues. PMID:29765902
Wasyluk, Jaromir T.; Jankowska-Lech, Irmina; Terelak-Borys, Barbara; Grabska-Liberek, Iwona
2012-01-01
Summary Background We compared the parameters of retinal nerve fibre layer in patients with advanced glaucoma with the use of different OCT (Optical Coherence Tomograph) devices in relation to analogical measurements performed with GDx VCC (Nerve Fiber Analyzer with Variable Corneal Compensation) scanning laser polarimetry. Material/Methods Study subjects had advanced primary open-angle glaucoma, previously treated conservatively, diagnosed and confirmed by additional examinations (visual field, ophthalmoscopy of optic nerve, gonioscopy), A total of 10 patients were enrolled (9 women and 1 man), aged 18–70 years of age. Nineteen eyes with advanced glaucomatous neuropathy were examined. 1) Performing a threshold perimetry Octopus, G2 strategy and ophthalmoscopy of optic nerve to confirm the presence of advanced primary open-angle glaucoma; 2) performing a GDx VCC scanning laser polarimetry of retinal nerve fibre layer; 3) measuring the retinal nerve fibre layer thickness with 3 different optical coherence tomographs. Results The parameters of the retinal nerve fibre layer thickness are highly correlated between the GDx and OCT Stratus and 3D OCT-1000 devices in mean retinal nerve fibre layer thickness, retinal nerve fibre layer thickness in the upper sector, and correlation of NFI (GDx) with mean retinal nerve fibre layer thickness in OCT examinations. Absolute values of the retinal nerve fibre layer thickness (measured in μm) differ significantly between GDx and all OCT devices. Conclusions Examination with OCT devices is a sensitive diagnostic method of glaucoma, with good correlation with the results of GDx scanning laser polarimetry of the patients. PMID:22367131
P-type surface effects for thickness variation of 2um and 4um of n-type layer in GaN LED
NASA Astrophysics Data System (ADS)
Halim, N. S. A. Abdul; Wahid, M. H. A.; Hambali, N. A. M. Ahmad; Rashid, S.; Ramli, M. M.; Shahimin, M. M.
2017-09-01
The internal quantum efficiency of III-Nitrides group, GaN light-emitting diode (LED) has been considerably limited due to the insufficient hole injection and this is caused by the lack of performance p-type doping and low hole mobility. The low hole mobility makes the hole less energetic, thus reduced the performance operation of GaN LED itself. The internal quantum efficiency of GaN-based LED with surface roughness (texture) can be changed by texture size, density, and thickness of GaN film or by the combined effects of surface shape and thickness of GaN film. Besides, due to lack of p-type GaN, attempts to look forward the potential of GaN LED relied on the thickness of n-type layer and surface shape of p-type GaN layer. This work investigates the characteristics of GaN LED with undoped n-GaN layer of different thickness and the surface shape of p-type layer. The LEDs performance is significantly altered by modifying the thickness and shape. Enhancement of n-GaN layer has led to the annihilation of electrical conductivity of the chip. Different surface geometry governs the emission rate extensively. Internal quantum efficiency is also predominantly affected by the geometry of n-GaN layer which subjected to the current spreading. It is recorded that the IQE droop can be minimized by varying the thickness of the active layer without amplifying the forward voltage. Optimum forward voltage (I-V), total emission rate relationship with the injected current and internal quantum efficiency (IQE) for 2,4 µm on four different surfaces of p-type layer are also reported in this paper.
Rocha Maia, Rodrigo; Oliveira, Dayane; D'Antonio, Tracy; Qian, Fang; Skiff, Frederick
2018-05-01
To evaluate and compare light-transmittance in dental tissues and dental composite restorations using the incremental double-layer technique with varying layer thickness. B1-colored natural teeth slabs were compared to dental restoration build-ups with A2D and B1E-colored nanofilled, supra-nanofilled, microfilled, and microhybrid composites. The enamel layer varied from 0.3, 0.5, or 1.2 mm thick, and the dentin layer was varied to provide a standardized 3.7 mm overall sample thickness ( n = 10). All increments were light-cured to 16 J/cm 2 with a multi-wave LED (Valo, Ultradent). Using a spectrophotometer, the samples were irradiated by an RGB laser beam. A voltmeter recorded the light output signal to calculate the light-transmittance through the specimens. The data were analyzed using 1-way analysis of variance followed by the post hoc Tukey's test ( p = 0.05). Mean light-transmittance observed at thicker final layers of enamel were significantly lower than those observed at thinner final layers. Within 1.2 mm final enamel resin layer (FERL) thickness, all composites were similar to the dental tissues, with exception of the nanofilled composite. However, within 0.5 mm FERL thickness, only the supra-nanofilled composite showed no difference from the dental tissues. Within 0.3 mm FERL thickness, none of the composites were similar to the dental tissues. The supra-nanofilled composite had the most similar light-transmittance pattern when compared to the natural teeth. However, for other composites, thicker FERL have a greater chance to match the light-transmittance of natural dental tissues.
Correlation of CsK2Sb photocathode lifetime with antimony thickness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamun, M. A.; Hernandez-Garcia, C.; Poelker, M.
CsK2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.
Controlling the optical parameters of self-assembled silver films with wetting layers and annealing
NASA Astrophysics Data System (ADS)
Ciesielski, Arkadiusz; Skowronski, Lukasz; Trzcinski, Marek; Szoplik, Tomasz
2017-11-01
We investigated the influence of presence of Ni and Ge wetting layers as well as annealing on the permittivity of Ag films with thicknesses of 20, 35 and 65 nm. Most of the research on thin silver films deals with very small (<20 nm) or relatively large (≥50 nm) thicknesses. We studied the transition region (around 30 nm) from charge percolation pathways to fully continuous films and compared the values of optical parameters among silver layers with at least one fixed attribute (thickness, wetting and capping material, post-process annealing). Our study, based on atomic force microscopy, ellipsometric and X-ray photoelectron spectroscopy measurements, shows that utilizing a wetting layer is comparable to increasing the thickness of the silver film. Both operations decrease the roughness-to-thickness ratio, thus decreasing the scattering losses and both narrow the Lorentz-shaped interband transition peak. However, while increasing silver thickness increases absorption on the free carriers, the use of wetting layers influences the self-assembled internal structure of silver films in such a way, that the free carrier absorption decreases. Wetting layers also introduce additional contributions from effects like segregation or diffusion, which evolve in time and due to annealing.
NASA Astrophysics Data System (ADS)
Nakajima, Ryo; Azuma, Atsushi; Yoshida, Hayato; Shimizu, Tomohiro; Ito, Takeshi; Shingubara, Shoso
2018-06-01
Resistive random access memory (ReRAM) devices with a HfO2 dielectric layer have been studied extensively owing to the good reproducibility of their SET/RESET switching properties. Furthermore, it was reported that a thin Hf layer next to a HfO2 layer stabilized switching properties because of the oxygen scavenging effect. In this work, we studied the Hf thickness dependence of the resistance switching characteristics of a Ti/Hf/HfO2/Au ReRAM device. It is found that the optimum Hf thickness is approximately 10 nm to obtain good reproducibility of SET/RESET voltages with a small RESET current. However, when the Hf thickness was very small (∼2 nm), the device failed after the first RESET process owing to the very large RESET current. In the case of a very thick Hf layer (∼20 nm), RESET did not occur owing to the formation of a leaky dielectric layer. We observed the occurrence of multiple resistance states in the RESET process of the device with a Hf thickness of 10 nm by increasing the RESET voltage stepwise.
NASA Astrophysics Data System (ADS)
Jin, Biao; Nika, Chrysanthi-Elisabeth; Rolle, Massimo
2017-04-01
Back diffusion of organic contaminants is often the cause of groundwater plumes' persistence and can significantly hinder cleanup interventions [1, 2]. In this study we perform a high-resolution investigation of back diffusion in a well-controlled flow-through laboratory setup. We considered cis-dichloroethene (cis-DCE) as model contaminant and we investigated its back diffusion from an impermeable source into a permeable saturated layer, in which advection-dominated flow conditions were established. We used concentration and stable chlorine isotope measurements to investigate the plumes originated by cis-DCE back diffusion in a series of flow-through experiments, performed in porous media with different hydraulic conductivity and at different seepage velocities (i.e., 0.4, 0.8 and 1.2 m/day). A two-centimeter thick agarose gel layer was placed at the bottom of the setup to simulate the source of cis-DCE back diffusion from an impervious layer. Intensive sampling (>1000 measurements) was carried out, including the withdrawal of aqueous samples at closely spaced (1 cm) outlet ports, as well as the high-resolution sampling of the source zone (agarose gel) at the end of each experiment. The transient behavior of the plumes originated by back diffusion was investigated by sampling the outlet ports at regular intervals in the experiments, each run for a total time corresponding to 15 pore volumes. The high-resolution sampling allowed us to resolve the spatial and temporal evolution of concentration and stable isotope gradients in the flow-through setup. In particular, steep concentration and stable isotope gradients were observed at the outlet. Lateral isotope gradients corresponding to chlorine isotope fractionation up to 20‰ were induced by cis-DCE back diffusion and subsequent advection-dominated transport in all flow-through experiments. A numerical modeling approach, tracking individually all chlorine isotopologues, based on the accurate parameterization of local dispersion, as well as on the values of aqueous diffusion coefficients and diffusion-induced isotope fractionation from a previous study [3], provided a good agreement with the experimental data. References [1] Mackay, D. M.; Cherry, J. A. Groundwater contamination: Pumpand-treat remediation. Environ. Sci. Technol. 1989, 23, 630-636. [2] Parker, B. L.; Chapman, S. W.; Guilbeault, M. A. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation. J. Contam. Hydrol. 2008, 102, 19-19. [3] Jin, B., Rolle, M., Li, T., Haderlein, S.B., 2014. Diffusive fractionation of BTEX and chlorinated ethenes in aqueous solution: quantification of spatial isotope gradients. Environ. Sci. Technol. 48, 6141-6150.
Retinal nerve fiber layer changes after LASIK evaluated with optical coherence tomography.
Dementyev, Dmitriy D; Kourenkov, Vyacheslav V; Rodin, Alexander S; Fadeykina, Tatyana L; Diaz Martines, Tatyana E
2005-01-01
To determine whether the increase in intraocular pressure (IOP) during LASIK suction can induce a decrease in retinal nerve fiber layer thickness assessed by optical coherence tomography (OCT). Nineteen patients (38 eyes) were enrolled in the study. Intraocular pressure was normal at all pre- and postoperative examinations. Retinal nerve fiber layer thickness was measured using OCT-3 Stratus prior to and 1 week and 3 months after LASIK. Laser in situ keratomileusis was performed using the Bausch & Lomb Hansatome microkeratome and the NIDEK EC-5000 excimer laser. Optical coherence tomography mean retinal nerve fiber layer thickness values before and after LASIK were compared using the Student paired t test. Mean patient age was 27.8 years (range: 18 to 33 years). Mean preoperative spherical equivalent refractive error was -4.9 diopters (D) (range: -2.0 to -8.5 D). Mean time of microkeratome suction was 30 seconds (range: 20 to 50 seconds). Preoperatively, the mean retinal nerve fiber layer thickness obtained by OCT was 104.2+/-9.0 microm; at 1 week postoperatively the mean thickness was 101.9+/-6.9 microm, and 106.7+/-6.1 microm at 3 months postoperatively. Mean retinal nerve fiber layer thicknesses obtained by OCT were not significantly different between preoperative and 1 week and 3 months after LASIK (P > or = .05). Laser in situ keratomileusis performed on young myopic patients does not have a significant effect on retinal nerve fiber layer thickness determined by OCT. Further studies are required to reveal the risk of possible optic nerve or retinal nerve fiber layer damage by elevated IOP during LASIK.
NASA Astrophysics Data System (ADS)
Makino, Sho; Yamamoto, Rie; Sugimoto, Shigeyuki; Sugimoto, Wataru
2016-09-01
Water-stable multi-layered lithium-doped carbon (LixC6) negative electrode using poly(ethylene oxide) (PEO)-lithium bis(trifluoromethansulfonyl)imide (LiTFSI) polymer electrolyte containing N-methyl-N-propylpiperidinium bis(trifluoromethansulfonyl)imide (PP13TFSI) ionic liquid was developed. Electrochemical properties at 60 °C of the aqueous hybrid supercapacitor using activated carbon positive electrode and a multi-layered LixC6 negative electrode (LixC6 | PEO-LiTFSI | LTAP) without PP13TFSI exhibited performance similar to that using Li anode (Li | PEO-LiTFSI | LTAP). A drastic decrease in ESR was achieved by the addition of PP13TFSI to PEO-LiTFSI, allowing room temperature operation. The ESR of the multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI at 25 °C was 801 Ω cm2, which is 1/6 the value of the multi-layered Li negative electrode with PEO-LiTFSI (5014 Ω cm2). Charge/discharge test of the aqueous hybrid supercapacitor using multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI at 25 °C afforded specific capacity of 20.6 mAh (g-activated carbon)-1 with a working voltage of 2.7-3.7 V, and good long-term capability up to 3000 cycles. Furthermore, an aqueous hybrid supercapacitor consisting of a high capacitance RuO2 nanosheet positive electrode and multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI showed specific capacity of 196 mAh (g-RuO2)-1 and specific energy of 625 Wh (kg-RuO2)-1 in 2.0 M acetic acid-lithium acetate buffered solution at 25 °C.
Li, Hongkai; Zhao, Qian; Lu, Xinchun; Luo, Jianbin
2017-11-01
In the copper (Cu) chemical mechanical planarization (CMP) process, accurate determination of a process reaching the end point is of great importance. Based on the eddy current technology, the in situ thickness measurement of the Cu layer is feasible. Previous research studies focus on the application of the eddy current method to the metal layer thickness measurement or endpoint detection. In this paper, an in situ measurement system, which is independently developed by using the eddy current method, is applied to the actual Cu CMP process. A series of experiments are done for further analyzing the dynamic response characteristic of the output signal within different thickness variation ranges. In this study, the voltage difference of the output signal is used to represent the thickness of the Cu layer, and we can extract the voltage difference variations from the output signal fast by using the proposed data processing algorithm. The results show that the voltage difference decreases as thickness decreases in the conventional measurement range and the sensitivity increases at the same time. However, it is also found that there exists a thickness threshold, and the correlation is negative, when the thickness is more than the threshold. Furthermore, it is possible that the in situ measurement system can be used within a larger Cu layer thickness variation range by creating two calibration tables.
Tailoring Curie temperature and magnetic anisotropy in ultrathin Pt/Co/Pt films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parakkat, Vineeth Mohanan; Ganesh, K. R.; Anil Kumar, P. S., E-mail: anil@physics.iisc.ernet.in
The dependence of perpendicular magnetization and Curie temperature (T{sub c}) of Pt/Co/Pt thin films on the thicknesses of Pt seed (Pt{sub s}) and presence of Ta buffer layer has been investigated in this work. Pt and Co thicknesses were varied between 2 to 8 nm and 0.35 to 1.31 nm (across the spin reorientation transition thickness) respectively and the T{sub c} was measured using SQUID magnetometer. We have observed a systematic dependence of T{sub c} on the thickness of Pt{sub s}. For 8 nm thickness of Pt{sub s} the Co layer of 0.35 nm showed ferromagnetism with perpendicular anisotropy atmore » room temperature. As the thickness of the Pt{sub s} was decreased to 2 nm, the T{sub c} went down below 250 K. XRD data indicated polycrystalline growth of Pt{sub s} on SiO{sub 2}. On the contrary Ta buffer layer promoted the growth of Pt(111). As a consequence Ta(5 nm)/Pt(3 nm)/Co(0.35 nm)/Pt(2 nm) had much higher T{sub c} (above 300 K) with perpendicular anisotropy when compared to the same stack without the Ta layer. Thus we could tune the ferromagnetic T{sub c} and anisotropy by varying the Pt{sub s} thickness and also by introducing Ta buffer layer. We attribute these observations to the micro-structural evolution of Pt{sub s} layer which hosts the Co layer.« less
Röhe, Ilen; Hüttner, Friedrich Joseph; Plendl, Johanna; Drewes, Barbara; Zentek, Jürgen
2018-02-05
The histological characterization of the intestinal mucus layer is important for many scientific experiments investigating the interaction between intestinal microbiota, mucosal immune response and intestinal mucus production. The aim of this study was to examine and compare different fixation protocols for displaying and quantifying the intestinal mucus layer in piglets and to test which histomorphological parameters may correlate with the determined mucus layer thickness. Jejunal and colonal tissue samples of weaned piglets (n=10) were either frozen in liquid nitrogen or chemically fixed using methacarn solution. The frozen tissue samples were cryosectioned and subsequently postfixed using three different postfixatives: paraformaldehyde vapor, neutrally buffered formalin solution and ethanol solution. After dehydration, methacarn fixed tissues were embedded in paraffin wax. Both sections of cryopreserved and methacarn fixed tissue samples were stained with Alcian blue (AB)-PAS followed by the microscopically determination of the mucus layer thickness. Different pH values of the Alcian Blue staining solution and two mucus layer thickness measuring methods were compared. In addition, various histomorphological parameters of methacarn fixed tissue samples were evaluated including the number of goblet cells and the mucin staining area. Cryopreservation in combination with chemical postfixation led to mucus preservation in the colon of piglets allowing mucus thickness measurements. Mucus could be only partly preserved in cryosections of the jejunum impeding any quantitative description of the mucus layer thickness. The application of different postfixations, varying pH values of the AB solution and different mucus layer measuring methods led to comparable results regarding the mucus layer thickness. Methacarn fixation proved to be unsuitable for mucus depiction as only mucus patches were found in the jejunum or a detachment of the mucus layer from the epithelium was observed in the colon. Correlation analyses revealed that the proportion of the mucin staining area per crypt area (relative mucin staining) measured in methacarn fixed tissue samples corresponded to the colonal mucus layer thickness determined in cryopreserved tissue samples. In conclusion, the results showed that cryopreservation using liquid nitrogen followed by chemical postfixation and AB-PAS staining led to a reliable mucus preservation allowing a mucus thickness determination in the colon of pigs. Moreover, the detected relative mucin staining area may serve as a suitable histomorphological parameter for the assessment of the intestinal mucus layer thickness. The findings obtained in this study can be used for the implementation of an improved standard for the histological description of the mucus layer in the colon of pigs.
Chen, Kun-Neng; Yang, Cheng-Fu; Wu, Chia-Ching; Chen, Yu-Hsin
2017-02-24
We investigated the structural, optical, and electrical properties of amorphous IGZO/silver/amorphous IGZO (α-IGZO/Ag/α-IGZO) triple-layer structures that were deposited at room temperature on Eagle XG glass and flexible polyethylene terephthalate substrates through the sputtering method. Thin Ag layers with different thicknesses were inserted between two IGZO layers to form a triple-layer structure. Ag was used because of its lower absorption and resistivity. Field emission scanning electron microscopy measurements of the triple-layer structures revealed that the thicknesses of the Ag layers ranged from 13 to 41 nm. The thickness of the Ag layer had a large effect on the electrical and optical properties of the electrodes. The optimum thickness of the Ag metal thin film could be evaluated according to the optical transmittance, electrical conductivity, and figure of merit of the electrode. This study demonstrates that the α-IGZO/Ag/α-IGZO triple-layer transparent electrode can be fabricated with low sheet resistance (4.2 Ω/□) and high optical transmittance (88.1%) at room temperature without postannealing processing on the deposited thin films.
Bhaduri, Basanta; Shelton, Ryan L; Nolan, Ryan M; Hendren, Lucas; Almasov, Alexandra; Labriola, Leanne T; Boppart, Stephen A
2017-11-01
Influence of diabetes mellitus (DM) and diabetic retinopathy (DR) on parafoveal retinal thicknesses and their ratios was evaluated. Six retinal layer boundaries were segmented from spectral-domain optical coherence tomography images using open-source software. Five study groups: (1) healthy control (HC) subjects, and subjects with (2) controlled DM, (3) uncontrolled DM, (4) controlled DR and (5) uncontrolled DR, were identified. The one-way analyses of variance (ANOVA) between adjacent study groups (i. e. 1 with 2, 2 with 3, etc) indicated differences in retinal thicknesses and ratios. Overall retinal thickness, ganglion cell layer (GCL) thickness, inner plexiform layer (IPL) thickness, and their combination (GCL+ IPL), appeared to be significantly less in the uncontrolled DM group when compared to controlled DM and controlled DR groups. Although the combination of nerve fiber layer (NFL) and GCL, and IPL thicknesses were not different, their ratio, (NFL+GCL)/IPL, was found to be significantly higher in the controlled DM group compared to the HC group. Comparisons of the controlled DR group with the controlled DM group, and with the uncontrolled DR group, do not show any differences in the layer thicknesses, though several significant ratios were obtained. Ratiometric analysis may provide more sensitive parameters for detecting changes in DR. Picture: A representative segmented OCT image of the human retina is shown. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mechanics of graded glass composites and zinc oxide thin films grown at 90 degrees Celsius in water
NASA Astrophysics Data System (ADS)
Fillery, Scott Pierson
2007-06-01
The purpose of this research was to study the mechanical stability of two different material systems. The glass laminate system, exhibiting a threshold strength when placed under an applied load and ZnO thin films grown on GaN buffered Al2O3 substrates, exhibiting variations in film stability with changes to the Lateral Epitaxial Overgrowth architecture. The glass laminates were fabricated to contain periodic thin layers containing biaxial compressive stresses using ion exchange treatments to create residual compressive stresses at the surface of soda lime silicate glass sheets. Wafer direct bonding of the ion exchanged glass sheets resulted in the fabrication of glass laminates with thin layers of compressive stress adjacent to the glass interfaces. The threshold flexural strength of the ion exchanged glass laminates was determined to be 112 MPa after the introduction of indentation cracks with indent loads ranging from 1kg to 5kg and the laminates were found to exhibit a threshold strength, i.e., a stress below which failure will not occur. Contrary to similar ceramic laminates where cracks either propagate across the compressive layer or bifurcate within the compressive layer, the cracks in the glass laminates were deflected along the interface between the bonded sheets. ZnO films were grown on (0001) GaN buffered Al2O3 substrates by aqueous solution routes at 90°C. The films were found to buckle under compressive residual stresses at film thicknesses greater than 4mum. Lateral epitaxial overgrowth techniques using hexagonal hole arrays showed an increasing film stability with larger array spacing, resulting in film thicknesses up to 92mum. Stress determinations using Raman spectroscopy indicated that stress relaxation at the free surface during film growth played a major role in film stability. Investigations using Finite Element Analysis and Raman spectroscopy demonstrated that the strain energy within the film/substrate system decreased with increasing array spacing. ZnO films grown on III-nitride LED devices for use as transparent conducting layers showed intrinsic n-type doping, high transparency and adequate electrical contact resistance, resulting in linear light output with forward bias current and improved light extraction.
On the origins of hardness of Cu–TiN nanolayered composites
Pathak, S.; Li, N.; Maeder, X.; ...
2015-07-18
We investigated the mechanical response of physical vapor deposited Cu–TiN nanolayered composites of varying layer thicknesses from 5 nm to 200 nm. Both the Cu and TiN layers were found to consist of single phase nanometer sized grains. The grain sizes in the Cu and TiN layers, measured using transmission electron microscopy and X-ray diffraction, were found to be comparable to or smaller than their respective layer thicknesses. Indentation hardness testing revealed that the hardness of such nanolayered composites exhibits a weak dependence on the layer thickness but is more correlated to their grain size.
Method for depositing layers of high quality semiconductor material
Guha, Subhendu; Yang, Chi C.
2001-08-14
Plasma deposition of substantially amorphous semiconductor materials is carried out under a set of deposition parameters which are selected so that the process operates near the amorphous/microcrystalline threshold. This threshold varies as a function of the thickness of the depositing semiconductor layer; and, deposition parameters, such as diluent gas concentrations, must be adjusted as a function of layer thickness. Also, this threshold varies as a function of the composition of the depositing layer, and in those instances where the layer composition is profiled throughout its thickness, deposition parameters must be adjusted accordingly so as to maintain the amorphous/microcrystalline threshold.
Shafrir, Shai N; Romanofsky, Henry J; Skarlinski, Michael; Wang, Mimi; Miao, Chunlin; Salzman, Sivan; Chartier, Taylor; Mici, Joni; Lambropoulos, John C; Shen, Rui; Yang, Hong; Jacobs, Stephen D
2009-12-10
We report on magnetorheological finishing (MRF) spotting experiments performed on glasses and ceramics using a zirconia-coated carbonyl-iron (CI)-particle-based magnetorheological (MR) fluid. The zirconia-coated magnetic CI particles were prepared via sol-gel synthesis in kilogram quantities. The coating layer was approximately 50-100 nm thick, faceted in surface structure, and well adhered. Coated particles showed long-term stability against aqueous corrosion. "Free" nanocrystalline zirconia polishing abrasives were cogenerated in the coating process, resulting in an abrasive-charged powder for MRF. A viable MR fluid was prepared simply by adding water. Spot polishing tests were performed on a variety of optical glasses and ceramics over a period of nearly three weeks with no signs of MR fluid degradation or corrosion. Stable material removal rates and smooth surfaces inside spots were obtained.
NASA Astrophysics Data System (ADS)
Popov, A. P.; Priezzhev, A. V.; Myllylä, Risto
2005-11-01
The propagation of laser pulses in the 2% aqueous solution of intralipid — a suspension of lipid particles with optical properties close to those of the human skin, is numerically simulated at different glucose concentrations. The temporal profiles of 820-nm laser pulses diffusely backscattered from a flat, 2-mm thick solution layer are simulated. The laser pulse profiles are detected by fibreoptic detectors of diameter 0.3 mm with the numerical apertures 0.19, 0.29, and 0.39. It is shown that this method can be used to detect changes in the glucose level in the physiological concentration range (100-500 mg dL-1) by monitoring variations in the peak intensity and area of the laser pulse temporal profile (pulse energy).
Detection of Human Ig G Using Photoluminescent Porous Silicon Interferometer.
Cho, Bomin; Kim, Seongwoong; Woo, Hee-Gweon; Kim, Sungsoo; Sohn, Honglae
2015-02-01
Photoluminescent porous silicon (PSi) interferometers having dual optical properties, both Fabry-Pérot fringe and photolumincence (PL), have been developed and used as biosensors for detection of Human Immunoglobin G (Ig G). PSi samples were prepared by electrochemical etching of p-type silicon under white light exposure. The surface of PSi was characterized using a cold field emission scanning electron microscope. The sensor system studied consisted of a single layer of porous silicon modified with Protein A. The system was probed with various fragments of aqueous human immunoglobin G (Ig G) analyte. Both reflectivity and PL were simultaneously measured under the exposure of human Ig G. An increase of optical thickness and decrease of PL were obtained under the exposure of human Ig G. Detection limit of 500 fM was observed for the human Ig G.
The effect of the MgO buffer layer thickness on magnetic anisotropy in MgO/Fe/Cr/MgO buffer/MgO(001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozioł-Rachwał, Anna, E-mail: a.koziolrachwal@aist.go.jp; AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków; Nozaki, Takayuki
2016-08-28
The relationship between the magnetic properties and MgO buffer layer thickness d was studied in epitaxial MgO/Fe(t)/Cr/MgO(d) layers grown on MgO(001) substrate in which the Fe thickness t ranged from 0.4 nm to 1.1 nm. For 0.4 nm ≤ t ≤ 0.7 nm, a non-monotonic coercivity dependence on the MgO buffer thickness was shown by perpendicular magneto-optic Kerr effect magnetometry. For thicker Fe films, an increase in the buffer layer thickness resulted in a spin reorientation transition from perpendicular to the in-plane magnetization direction. Possible origins of these unusual behaviors were discussed in terms of the suppression of carbon contamination at the Fe surface and changes inmore » the magnetoelastic anisotropy in the system. These results illustrate a method to control magnetic anisotropy in MgO/Fe/Cr/MgO(d) via an appropriate choice of MgO buffer layer thickness d.« less
Mallik, Arun Kumar; Farrell, Gerald; Wu, Qiang; Semenova, Yuliya
2017-05-10
In this paper, we investigate both theoretically and experimentally the influence of the agarose hydrogel layer thickness on the sensitivity of a proposed relative humidity (RH) sensor based on a silica microsphere resonator coated with agarose hydrogel. The operating principle of the sensor relies on excitation of whispering gallery modes (WGMs) in the coated silica microsphere using the evanescent field of a tapered fiber. A change in the ambient relative humidity is detected by measuring the wavelength shift of the WGMs in the transmission spectrum of the tapered fiber. Using perturbation theory, we analyze the influence of the agarose coating thickness on the sensitivity of the proposed sensor and compare the results of this analysis with experimental findings for different coating layer thicknesses. We demonstrate that an increase in the coating layer thickness initially leads to an increase in the sensitivity to RH and reaches saturation at higher values of the agarose layer thickness. The results of the study are useful for the design and optimization of microsphere sensor parameters to meet a performance specification.
Li, Xin; Jordan, Matthew B; Ayari, Taha; Sundaram, Suresh; El Gmili, Youssef; Alam, Saiful; Alam, Muhbub; Patriarche, Gilles; Voss, Paul L; Paul Salvestrini, Jean; Ougazzaden, Abdallah
2017-04-11
Practical boron nitride (BN) detector applications will require uniform materials over large surface area and thick BN layers. To report important progress toward these technological requirements, 1~2.5 µm-thick BN layers were grown on 2-inch sapphire substrates by metal-organic vapor phase epitaxy (MOVPE). The structural and optical properties were carefully characterized and discussed. The thick layers exhibited strong band-edge absorption near 215 nm. A highly oriented two-dimensional h-BN structure was formed at the film/sapphire interface, which permitted an effective exfoliation of the thick BN film onto other adhesive supports. And this structure resulted in a metal-semiconductor-metal (MSM) device prototype fabricated on BN membrane delaminating from the substrate. MSM photodiode prototype showed low dark current of 2 nA under 100 V, and 100 ± 20% photoconductivity yield for deep UV light illumination. These wafer-scale MOVPE-grown thick BN layers present great potential for the development of deep UV photodetection applications, and even for flexible (opto-) electronics in the future.
NASA Astrophysics Data System (ADS)
Era, Masanao; Shironita, Yu; Soda, Koichi
2018-03-01
Using the squeezed out technique, we successfully prepared PbBr-based layered perovskite Langmuir-Blodgett (LB) films, which have π-conjugated materials as an organic layer (i.e., a phenylenevinylene oligomer, a dithienylethene derivative, and a π-conjugated polyfluorene derivative). The mixed monolayers of π-conjugated materials and octadecylammonium bromide were spread on an aqueous subphase containing saturated PbBr2. During pressing, octadecylammonium molecules were squeezed from the mixed monolayer, and the squeezed ammonium molecules formed the PbBr-based layered perovskite structure at the air-aqueous subphase interface. The monolayers with the PbBr-based layered perovskite structure could be deposited on fused quartz substrates by the LB technique. In addition to the preparation procedure, the structural and optical properties of the layered perovskite LB films and their formation mechanism are reported in this paper.
Gulmez Sevim, Duygu; Unlu, Metin; Gultekin, Murat; Karaca, Cagatay
2018-02-12
There have been ongoing clinical trials of therapeutic agents in Huntington's disease (HD) which requires development of reliable biomarkers of disease progression. There have been studies in the literature with conflicting results on the involvement of retina in HD, and up to date there is not a study evaluating the single retinal layers in HD. We aimed to evaluate the specific retinal changes in HD and their usability as potential disease progression markers. This cross-sectional study used spectral-domain optical coherence tomography with automatic segmentation to measure peripapillary retinal nerve fiber layer (pRNFL) thickness and the thickness and volume of retinal layers in foveal scans of 15 patients with HD and 15 age- and sex-matched controls. Genetic testing results, disease duration, HD disease burden scores and Unified HD Rating Scales motor scores were acquired for the patients. Temporal pRNFL, macular RNFL (mRNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer and outer plexiform layer thicknesses and IPL, retinal pigment epithelium and outer macular volume were found lower in HD compared to controls, while outer nuclear layer and outer retinal layer thickness were increased (p < 0.05). We found significant correlations between inner retinal layer thicknesses, most significantly with mRNFL and GCL and disease progression markers. The outcomes of this study points out that retinal layers, most significantly mRNFL and GCL, are strongly correlated with the disease progression in HD and could serve as useful biomarkers for disease progression.
Cloud Thickness from Offbeam Returns (THOR) Validation Campaign on NASA's P3B Over the ARM/SGP
NASA Technical Reports Server (NTRS)
Cahalan, R. F.; Kolasinski, J.; McGill, M.; Lau, William K. M. (Technical Monitor)
2002-01-01
Physical thickness of a cloud layer, sometimes multiple cloud layers, is a crucial controller of solar heating of the Earth- atmosphere system, which drives the convective processes that produce storm systems. Yet clouds of average optical thickness are opaque to conventional lidar, so their thickness is well estimated only by combining a lidar above and another below cloud, or a radar and lidar on the same side, dual facilities not widely available. Here we report initial observations of a new airborne multiple field of view lidar, capable of determining physical thickness of cloud layers from time signatures of off-beam returns from a I kHz micropulse lidar at 540 rim. For a single layer, the time delay of light returning from the outer diffuse halo of light surrounding the beam entry point, relative to the time delay at beam center, determines the cloud physical thickness. The delay combined with the pulse stretch gives the optical thickness. This halo method requires cloud optical thickness exceeding 2, and improves with cloud thickness, thus complimenting conventional lidar, which cannot penetrate thick clouds. Results are presented from March 25, 2002, when THOR flew a butterfly pattern over the ARM site at 8.3 km, above a thin ice cloud at 5 km, and a thick boundary-layer stratus deck with top at 1.3 km, as shown by THOR channel 1, and a base at about 0.3 km as shown by the ground-based MPL. Additional information is included in the original extended abstract.
Nebogatikova, N A; Antonova, I V; Prinz, V Ya; Kurkina, I I; Vdovin, V I; Aleksandrov, G N; Timofeev, V B; Smagulova, S A; Zakirov, E R; Kesler, V G
2015-05-28
In the present study, we have examined the interaction between a suspension of graphene in dimethylformamide and an aqueous solution of hydrofluoric acid, which was found to result in partial fluorination of suspension flakes. A considerable decrease in the thickness and lateral size of the graphene flakes (up to 1-5 monolayers in thickness and 100-300 nm in diameter) with increasing duration of fluorination treatment is found to be accompanied by a simultaneous transition of the flakes from the conducting to the insulating state. Smooth and uniform insulating films with a roughness of ∼2 nm and thicknesses down to 20 nm were deposited from the suspension on silicon. The electrical and structural properties of the films suggest their use as insulating elements in thin-film nano- and microelectronic device structures. In particular, it was found that the films prepared from the fluorinated suspension display rather high breakdown voltages (field strength of (1-3) × 10(6) V cm(-1)), ultralow densities of charges in the film and at the interface with the silicon substrate in metal-insulator-semiconductor structures (∼(1-5) × 10(10) cm(-2)). Such excellent characteristics of the dielectric film can be compared only to well-developed SiO2 layers. The films from the fluorinated suspension are cheap, practically feasible and easy to produce.
Aqueous, Room Temperature Deposition of Silicon, Molybdenum and Germanium onto Aluminum Substrates
NASA Astrophysics Data System (ADS)
Krishnamurthy, Aarti Krishna
Electrochemical deposition of active materials such as Si, Mo and Ge is notoriously difficult, so they are typically deposited using expensive vacuum methods such as chemical vapor deposition (CVD), plasma-enhanced chemical vapor deposition (PECVD), and magnetron sputtering. However, for most materials, electrochemical deposition has significant advantages of cost, scalability, and manufacturability. There are two main challenges in depositing these materials from aqueous electrolytes at room temperature, namely their highly cathodic standard reduction potential and the formation of native oxides. This has led researchers to use non-aqueous electrolytes such as organic solvents, room temperature ionic liquids (RTILs), and high temperature molten salts. However, these have drawbacks over aqueous electrolytes such as high cost, low conductivity, flammability, and corrosive behavior. During my PhS studies, these two challenges were overcome by using the galvanic method of deposition and by including HF in the electrolyte. Si thin films are employed in a variety of technologies, including microelectronic and photovoltaic devices, Li ion battery anodes, and corrosion-resistant coatings. A galvanic and a combined galvanic/electroless method of Si deposition were developed using aqueous electrolytes at room temperature to obtain nanoporous and compact films, respectively. These films were characterized to understand the surface morphology, thickness, crystallinity, growth rate, composition and nucleation behavior. Approximately 7-10 µm thick compact Si films were achieved with a deposition time of around 28 hours. The galvanic method of deposition was also extended to deposit compact Mo films. Mo thin films have a number of technological applications, including back contacts for CIGS/CZTS photovoltaic devices and corrosion-resistant coatings. Mo thin films were also thoroughly characterized and approximately 4.5 µm thick films were obtained after 3 hours. Similar to Si depostion, a galvanic method of deposition and the galvanic/electroless method of deposition was tested for the deposition of Ge. However no Ge deposit could be consistently obtained, probably due to oxyanion formation in aqueous hexaflurogermante solution.
NASA Astrophysics Data System (ADS)
Mase, Suguru; Hamada, Takeaki; Freedsman, Joseph J.; Egawa, Takashi
2018-06-01
We have demonstrated a vertical GaN-on-Si p-n diode with breakdown voltage (BV) as high as 839 V by using a low Si-doped strained layer superlattice (SLS). The p-n vertical diode fabricated by using the n‑-SLS layer as a part of the drift layer showed a remarkable enhancement in BV, when compared with the conventional n‑-GaN drift layer of similar thickness. The vertical GaN-on-Si p-n diodes with 2.3 μm-thick n‑-GaN drift layer and 3.0 μm-thick n‑-SLS layer exhibited a differential on-resistance of 4.0 Ω · cm2 and a BV of 839 V.
NASA Astrophysics Data System (ADS)
Bush, A. A.; Shkuratov, V. Ya.; Chernykh, I. A.; Fetisov, Y. K.
2010-03-01
Layered thick-film composites containing one lead zirconate titanate (PZT) layer, one nickel zinc ferrite (NZF) layer, two PZT-NZF layers, or three PZT-NZF-PZT layers each 40-50 μm thick are prepared. The layers are applied by screen printing on a ceramic aluminum oxide substrate with a preformed contact (conducting) layer. The dielectric properties of the composites are studied in the temperature interval 80-900 K and the frequency interval 25 Hz-1 MHz. Polarized samples exhibit piezoelectric, pyroelectric, and magnetoelectric effects. In tangentially magnetized two- and three-layer composites, the magnetoelectric conversion factor equals 57 kV/(m T) at low frequencies and reaches 2000 kV/(m T) at the mechanical resonance frequency.
Cathodic electrocatalyst layer for electrochemical generation of hydrogen peroxide
NASA Technical Reports Server (NTRS)
Tennakoon, Charles L. K. (Inventor); Singh, Waheguru Pal (Inventor); Rhodes, Christopher P. (Inventor); Anderson, Kelvin C. (Inventor)
2011-01-01
A cathodic gas diffusion electrode for the electrochemical production of aqueous hydrogen peroxide solutions. The cathodic gas diffusion electrode comprises an electrically conductive gas diffusion substrate and a cathodic electrocatalyst layer supported on the gas diffusion substrate. A novel cathodic electrocatalyst layer comprises a cathodic electrocatalyst, a substantially water-insoluble quaternary ammonium compound, a fluorocarbon polymer hydrophobic agent and binder, and a perfluoronated sulphonic acid polymer. An electrochemical cell using the novel cathodic electrocatalyst layer has been shown to produce an aqueous solution having between 8 and 14 weight percent hydrogen peroxide. Furthermore, such electrochemical cells have shown stable production of hydrogen peroxide solutions over 1000 hours of operation including numerous system shutdowns.
Conroy, David J.R.; Millner, Paul A.; Stewart, Douglas I.; Pollmann, Katrin
2010-01-01
The fabrication of novel uranyl (UO22+) binding protein based sensors is reported. The new biosensor responds to picomolar levels of aqueous uranyl ions within minutes using Lysinibacillus sphaericus JG-A12 S-layer protein tethered to gold electrodes. In comparison to traditional self assembled monolayer based biosensors the porous bioconjugated layer gave greater stability, longer electrode life span and a denser protein layer. Biosensors responded specifically to UO22+ ions and showed minor interference from Ni2+, Cs+, Cd2+ and Co2+. Chemical modification of JG-A12 protein phosphate and carboxyl groups prevented UO22+ binding, showing that both moieties are involved in the recognition to UO22+. PMID:22399904
Conversion coatings prepared or treated with calcium hydroxide solutions
NASA Technical Reports Server (NTRS)
Maxey, Jason (Inventor); Nelson, Carl (Inventor); Eylem, Cahit (Inventor); Minevski, Zoran (Inventor); Clarke, Eric (Inventor)
2002-01-01
A conversion coating process that forms a stable and corrosion-resistant oxide layer on metal or metal oxide substrates or layers. Particularly, the conversion coating process involves contacting the metal or metal oxide substrate or layer with the aqueous calcium hydroxide solutions in order to convert the surface of the substrate to a stable metal oxide layer or coating. According to the present invention, the calcium hydroxide solution is prepared by removing carbon dioxide from water or an aqueous solution before introducing the calcium hydroxide. In this manner, formation of calcium carbonate particles is avoided and the porosity of the conversion coating produced by the calcium hydroxide solution is reduced to below about 1%.
A Study of the Physical Processes of an Advection Fog BoundaryLayer
NASA Astrophysics Data System (ADS)
Liu, D.; Yan, W.; Kang, Z.; Dai, Z.; Liu, D.; Liu, M.; Cao, L.; Chen, H.
2016-12-01
Using the fog boundary layer observation collected by a moored balloon between December 1 and 2, 2009, the processes of advection fog formation and dissipation under cold and warm double-advection conditions was studied. the conclusions are as follows: 1. The advection fog process was generated by the interaction between the near-surface northeast cold advection and the upper layer's southeast warm, humid advection. The ground fog formed in an advection cooling process, and the thick fog disappeared in two hours when the wind shifted from the northeast to the northwest. The top of the fog layer remained over 600 m for most of the time. 2. This advection fog featured a double-inversion structure. The interaction between the southeast warm, humid advection of the upper layer and the descending current generated the upper inversion layer. The northeast cold advection near the ground and the warm, humid advection in the high-altitude layer formed the lower layer clouds and lower inversion layer. The upper inversion layer was composed of southeast warm, humid advection and a descending current with increasing temperature. The double inversion provided good thermal conditions for maintaining the thick fog layer. 3. The southeast wind of the upper layer not only created the upper inversion layer but also brought vapour-rich air to the fog region. The steady southeast vapour transportation by the southeast wind was the main condition that maintained the fog thickness, homogeneous density, and long duration. The low-altitude low-level jet beneath the lower inversion layer helped maintain the thickness and uniform density of the fog layer by enhancing the exchange of heat, momentum and vapour within the lower inversion layer. 4. There were three transportation mechanisms associated with this advection fog: 1) The surface layer vapour was delivered to the lower fog layer. 2) The low-altitude southeast low-level jet transported the vapour to the upper layer. 3) The vapour was exchanged between the upper and lower layers via the turbulent exchange and vertical air motion, which mixed the fog density and maintained the thickness of the fog. These mechanisms explain why the fog top was higher than the lower inversion layer and reached the upper inversion layer, as well as why this advection fog was so thick.
NASA Astrophysics Data System (ADS)
Zhang, Dongdong; Tan, Jianguo; Lv, Liang
2015-12-01
The mixing process has been an important issue for the design of supersonic combustion ramjet engine, and the mixing efficiency plays a crucial role in the improvement of the combustion efficiency. In the present study, nanoparticle-based planar laser scattering (NPLS), particle image velocimetry (PIV) and large eddy simulation (LES) are employed to investigate the flow and mixing characteristics of supersonic mixing layer under different forced vibration conditions. The indexes of fractal dimension, mixing layer thickness, momentum thickness and scalar mixing level are applied to describe the mixing process. Results show that different from the development and evolution of supersonic mixing layer without vibration, the flow under forced vibration is more likely to present the characteristics of three-dimensionality. The laminar flow region of mixing layer under forced vibration is greatly shortened and the scales of rolled up Kelvin-Helmholtz vortices become larger, which promote the mixing process remarkably. The fractal dimension distribution reveals that comparing with the flow without vibration, the turbulent fluctuation of supersonic mixing layer under forced vibration is more intense. Besides, the distribution of mixing layer thickness, momentum thickness and scalar mixing level are strongly influenced by forced vibration. Especially, when the forcing frequency is 4000 Hz, the mixing layer thickness and momentum thickness are 0.0391 m and 0.0222 m at the far field of 0.16 m, 83% and 131% higher than that without vibration at the same position, respectively.
Effect of periocular humidity on the tear film lipid layer.
Korb, D R; Greiner, J V; Glonek, T; Esbah, R; Finnemore, V M; Whalen, A C
1996-03-01
The purpose of this study was to determine the relationship between the tear film and humidity by examining whether alterations in periocular humidity influence the thickness of the tear film lipid layer. Thirteen dry eye subjects presenting with a baseline lipid layer thickness of < or = 60 nm were fitted with modified swim goggles in which the right eye (OD) was exposed to conditions of high humidity and the left eye (OS) remained exposed to ambient room conditions. The lipid layer was monitored over a 60-min time course with goggles on and for an additional 60 min following goggle removal. The OD lipid layer increased significantly in thickness within 5 min of exposure to conditions of high humidity (p < 0.0001), reaching a maximum increase of 66.4 nm after 15 min of goggle wear (p < 0.0001). This maximum increase to a lipid layer thickness of 120.5 nm was maintained at the 30- and 60-min goggle time points. No significant change was detected OS. Following goggle removal, OD values declined but remained significantly elevated over the OS lipid layer thickness throughout the 60-min postgoggle period. Moderate to total relief of dry eye symptoms was reported during goggle wear and generally persisted at a reduced level for 1-3 h following goggle removal. Increased periocular humidity results in an increase in tear film lipid layer thickness, possibly by providing an environment that is more conducive to the spreading of meibomian lipid and its incorporation into the tear film.
Drits, Victor A.; Środoń, Jan; Eberl, D.D.
1997-01-01
The standard form of the Scherrer equation, which has been used to calculate the mean thickness of the coherent scattering domain (CSD) of illite crystals from X-ray diffraction (XRD) full width data at half maximum (FWHM) intensity, employs a constant, Ksh, of 0.89. Use of this constant is unjustified, even if swelling has no effect on peak broadening, because this constant is valid only if all CSDs have a single thickness. For different thickness distributions, the Scherrer “constant” has very different values.Analysis of fundamental particle thickness data (transmission electron microscopy, TEM) for samples of authigenic illite and illite/smectite from diagenetically altered pyroclastics and filamentous illites from sandstones reveals a unique family of lognormal thickness distributions for these clays. Experimental relations between the distributions' lognormal parameters and mean thicknesses are established. These relations then are used to calculate the mean thickness of CSDs for illitic samples from XRD FWHM, or from integral XRD peak widths (integrated intensity/maximum intensity).For mixed-layer illite/smectite, the measured thickness of the CSD corresponds to the mean thickness of the mixed-layer crystal. Using this measurement, the mean thickness of the fundamental particles that compose the mixed-layer crystals can be calculated after XRD determination of percent smectitic interlayers. The effect of mixed layering (swelling) on XRD peak width for these samples is eliminated by using the 003 reflection for glycolated samples, and the 001, 002 or 003 reflection for dehydrated, K-saturated samples. If this technique is applied to the 001 reflection of air-dried samples (Kubler index measurement), mean CSD thicknesses are underestimated due to the mixed-layering effect.The technique was calibrated using NEW MOD©-simulated XRD profiles of illite, and then tested on well-characterized illite and illite/smectite samples. The XRD measurements are in good agreement with estimates of the mean thickness of fundamental particles obtained both from TEM measurements and from fixed cations content, up to a mean value of 20 layers. Correction for instrumental broadening under the conditions employed here is unnecessary for this range of thicknesses.
Kim, Eun Kyoung; Park, Hae-Young Lopilly; Park, Chan Kee
2017-01-01
To evaluate the changes of retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), and ganglion cell-inner plexiform layer (GCIPL) thicknesses and compare structure-function relationships of 4 retinal layers using spectral-domain optical coherence tomography (SD-OCT) in macular region of glaucoma patients. In cross-sectional study, a total of 85 eyes with pre-perimetric to advanced glaucoma and 26 normal controls were enrolled. The glaucomatous eyes were subdivided into three groups according to the severity of visual field defect: a preperimetric glaucoma group, an early glaucoma group, and a moderate to advanced glaucoma group. RNFL, GCL, IPL, and GCIPL thicknesses were measured at the level of the macula by the Spectralis (Heidelberg Engineering, Heidelberg, Germany) SD-OCT with automated segmentation software. For functional evaluation, corresponding mean sensitivity (MS) values were measured using 24-2 standard automated perimetry (SAP). RNFL, GCL, IPL, and GCIPL thicknesses were significantly different among 4 groups (P < .001). Macular structure losses were positively correlated with the MS values of the 24-2 SAP for RNFL, GCL, IPL, and GCIPL (R = 0.553, 0.636, 0.648 and 0.646, respectively, P < .001). In regression analysis, IPL and GCIPL thicknesses showed stronger association with the corresponding MS values of 24-2 SAP compared with RNFL and GCL thicknesses (R2 = 0.420, P < .001 for IPL; R2 = 0.417, P< .001 for GCIPL thickness). Segmented IPL thickness was significantly associated with the degree of glaucoma. Segmental analysis of the inner retinal layer including the IPL in macular region may provide valuable information for evaluating glaucoma.
NASA Technical Reports Server (NTRS)
Hirt, Stefanie M.
2015-01-01
A test was conducted in the 15 cm x 15 cm supersonic wind tunnel at NASA Glenn Research Center that focused on corner effects of an oblique shock-wave/boundary-layer interaction. In an attempt to control the interaction in the corner region, eight corner fillet configurations were tested. Three parameters were considered for the fillet configurations: the radius, the fillet length, and the taper length from the square corner to the fillet radius. Fillets effectively reduced the boundary-layer thickness in the corner; however, there was an associated penalty in the form of increased boundary-layer thickness at the tunnel centerline. Larger fillet radii caused greater reductions in boundary-layer thickness along the corner bisector. To a lesser, but measureable, extent, shorter fillet lengths resulted in thinner corner boundary layers. Overall, of the configurations tested, the largest radius resulted in the best combination of control in the corner, evidenced by a reduction in boundary-layer thickness, coupled with minimal impacts at the tunnel centerline.
Faria, Mun Y; Ferreira, Nuno P; Mano, Sofia; Cristóvao, Diana M; Sousa, David C; Monteiro-Grillo, Manuel E
2018-05-01
To provide a spectral-domain optical coherence tomography (SD-OCT)-based analysis of retinal layers thickness and nasal displacement of closed macular hole after internal limiting membrane peeling in macular hole surgery. In this nonrandomized prospective interventional study, 36 eyes of 32 patients were subjected to pars plana vitrectomy and 3.5 mm diameter internal limiting membrane (ILM) peeling for idiopathic macular hole (IMH). Nasal and temporal internal retinal layer thickness were assessed with SD-OCT. Each scan included optic disc border so that distance between optic disc border and fovea were measured. Thirty-six eyes had a successful surgery with macular hole closure. Total nasal retinal thickening (p<0.001) and total temporal retinal thinning (p<0.0001) were observed. Outer retinal layers increased thickness after surgery (nasal p<0.05 and temporal p<0.01). Middle part of inner retinal layers (mIRL) had nasal thickening (p<0.001) and temporal thinning (p<0.05). The mIRL was obtained by deducting ganglion cell layer (GCL) and retinal nerve fiber layer (RNFL) thickness from overall thickness of the inner retinal layer. Papillofoveal distance was shorter after ILM peeling in macular hole surgery (3,651 ± 323 μm preoperatively and 3,361 ± 279 μm at 6 months; p<0.0001). Internal limiting membrane peel is associated with important alteration in inner retinal layer architecture, with thickening of mIRL and shortening of papillofoveal distance. These factors may contribute to recovery of disrupted foveal photoreceptor and vision improvement after IMH closure.
Villain, Max A; Greenfield, David S
2003-01-01
To assess reproducibility of quadrantic and clock hour sectors of retinal nerve fiber layer thickness in normal eyes using optical coherence tomography. Normal eyes of healthy volunteers meeting eligibility criteria were imaged by two inexperienced operators. Six 360 degrees circular scans with a diameter of 3.4 mm centered on the optic disc were obtained during each scanning session, and a baseline image was formed using 3 high-quality images defined by the software. Images were obtained on three different days within a 4-week period. Variance and coefficient of variation (CV) were calculated for quadrantic and retinal nerve fiber layer clock hour sectors obtained from the baseline image. Five normal eyes were scanned. Intraoperator reproducibility was high. The mean (+/- SD) CV for total retinal nerve fiber layer thickness was 5.3 +/- 3.82% and 4.33 +/- 3.7% for operators 1 and 2, respectively. Interoperator reproducibility was good with statistically similar variance for all quadrantic and clock hour retinal nerve fiber layer parameters (P = .42 to .99). The nasal retinal nerve fiber layer was the most variable sector for both operators (mean CV: 10.42% and 7.83% for operators 1 and 2, respectively). Differences in mean total, nasal, temporal, and superior retinal nerve fiber layer thickness were not statistically significant between operators for all eyes; however, for inferior retinal nerve fiber layer thickness, there was a significant (P = .0007) difference between operators in one eye. Peripapillary retinal nerve fiber layer thickness assessments using optical coherence tomography have good intraoperator and interoperator reproducibility. Inexperienced operators can generate useful measurement data with acceptable levels of variance.
Correlation of CsK 2Sb photocathode lifetime with antimony thickness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamun, M. A.; Hernandez-Garcia, C.; Poelker, M.
CsK 2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for themore » alkali.« less
Correlation of CsK 2Sb photocathode lifetime with antimony thickness
Mamun, M. A.; Hernandez-Garcia, C.; Poelker, M.; ...
2015-06-10
CsK 2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for themore » alkali.« less
Correlation of CsK{sub 2}Sb photocathode lifetime with antimony thickness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamun, M. A., E-mail: mmamu001@odu.edu; Elmustafa, A. A.; The Applied Research Center, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606
CsK{sub 2}Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for themore » alkali.« less
Zamani Nejad, Mohammad; Jabbari, Mehdi; Ghannad, Mehdi
2014-01-01
Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found.
Zamani Nejad, Mohammad; Jabbari, Mehdi; Ghannad, Mehdi
2014-01-01
Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found. PMID:24719582
Impact of small-scale vegetation structure on tephra layer preservation
Cutler, Nick A.; Shears, Olivia M.; Streeter, Richard T.; Dugmore, Andrew J.
2016-01-01
The factors that influence tephra layer taphonomy are poorly understood, but vegetation cover is likely to play a role in the preservation of terrestrial tephra deposits. The impact of vegetation on tephra layer preservation is important because: 1) the morphology of tephra layers could record key characteristics of past land surfaces and 2) vegetation-driven variability in tephra thickness could affect attempts to infer eruption and dispersion parameters. We investigated small- (metre-) scale interactions between vegetation and a thin (<10 cm), recent tephra layer. We conducted surveys of vegetation structure and tephra thickness at two locations which received a similar tephra deposit, but had contrasting vegetation cover (moss vs shrub). The tephra layer was thicker and less variable under shrub cover. Vegetation structure and layer thickness were correlated on the moss site but not under shrub cover, where the canopy reduced the influence of understory vegetation on layer morphology. Our results show that vegetation structure can influence tephra layer thickness on both small and medium (site) scales. These findings suggest that some tephra layers may carry a signal of past vegetation cover. They also have implications for the sampling effort required to reliably estimate the parameters of initial deposits. PMID:27845415
Depth Measurements Using Alpha Particles and Upsettable SRAMs
NASA Technical Reports Server (NTRS)
Buehler, M. G.; Reier, M.; Soli, G. A.
1995-01-01
A custom designed SRAM was used to measure the thickness of integrated circuit over layers and the epi-layer thickness using alpha particles and a test SRAM. The over layer consists of oxide, nitride, metal, and junction regions.
Thin Thermal-Insulation Blankets for Very High Temperatures
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2003-01-01
Thermal-insulation blankets of a proposed type would be exceptionally thin and would endure temperatures up to 2,100 C. These blankets were originally intended to protect components of the NASA Solar Probe spacecraft against radiant heating at its planned closest approach to the Sun (a distance of 4 solar radii). These blankets could also be used on Earth to provide thermal protection in special applications (especially in vacuum chambers) for which conventional thermal-insulation blankets would be too thick or would not perform adequately. A blanket according to the proposal (see figure) would be made of molybdenum, titanium nitride, and carbon- carbon composite mesh, which melt at temperatures of 2,610, 2,930, and 2,130 C, respectively. The emittance of molybdenum is 0.24, while that of titanium nitride is 0.03. Carbon-carbon composite mesh is a thermal insulator. Typically, the blanket would include 0.25-mil (.0.00635-mm)-thick hot-side and cold-side cover layers of molybdenum. Titanium nitride would be vapor-deposited on both surfaces of each cover layer. Between the cover layers there would be 10 inner layers of 0.15-mil (.0.0038-mm)-thick molybdenum with vapor-deposited titanium nitride on both sides of each layer. The thickness of each titanium nitride coat would be about 1,000 A. The cover and inner layers would be interspersed with 0.25-mil (0.00635-mm)-thick layers of carbon-carbon composite mesh. The blanket would have total thickness of 4.75 mils (approximately equal to 0.121 mm) and an areal mass density of 0.7 kilograms per square meter. One could, of course, increase the thermal- insulation capability of the blanket by increasing number of inner layers (thereby unavoidably increasing the total thickness and mass density).
Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K W; Yoshimura, Nagahisa
2016-01-01
To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction.
Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K. W.; Yoshimura, Nagahisa
2016-01-01
Purpose To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. Methods The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Results Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. Conclusions The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction. PMID:26814541
Harley, O J H; Pickford, M A
2013-04-01
Mismatches in the thickness of subcutaneous fat at the level of the umbilicus and suprapubic region can result in an unsightly bulge and an unfavourable result following standard abdominoplasty. This problem can be avoided by thinning the abdominoplasty flap. This study was carried out to assess the thickness of the subcutaneous fat layer at the level of the umbilicus and the supra-pubic region. Measurements of full thickness fat and the depth of Scarpa's fascia separating superficial and sub-Scarpa fat layers were taken from the CT scans in 69 women; mean age 52 years (range 30-79). The thickness of the skin and abdominal wall fat was an average of 7 mm thicker (max 22 mm; p < 0.05). The thickness of the fat layer superficial to Scarpa's fascia was an average of 19 mm at mid abdomen and 22 mm in the lower abdomen (p < 0.05). The thickness of the fat layer deep to Scarpa's fascia was 14 mm in the mid abdomen and 5 mm in the lower abdomen (p < 0.05). In 55% of patients the difference in thickness of the mid abdominal and lower abdominal fat was greater than 5 mm, a difference that could lead to a noticeable mismatch and therefore an unfavourable outcome. Results of this study suggest that selectively thinning the fat layer deep to Scarpa's fascia would address potential mismatches and preserve the Scarpa's fascia layer in more than 50% of cases, therefore allowing wounds to be closed with an effective deep tension layer. Copyright © 2012 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Li, Shu-ting; Wang, Xiang-ning; Du, Xin-hua; Wu, Qiang
2017-01-01
Purpose To compare intra-retinal layer thickness measurements between eyes with no or mild diabetic retinopathy (DR) and age-matched controls using Spectralis spectral-domain optical coherence tomography (SD-OCT). Methods Cross-sectional observational analysis study. High-resolution macular volume scans (30° * 25°) were obtained for 133 type 2 diabetes mellitus (T2DM) patients with no DR, 42 T2DM patients with mild DR and 115 healthy controls. The mean thickness was measured in all 9 Early Treatment Diabetic Retinopathy Study (ETDRS) sectors for 8 separate layers, inner retinal layer (IRL), outer retinal layer (ORL) and total retina (TR), after automated segmentation. The ETDRS grid consisted of three concentric circles of 1-, 3-, and 6-mm diameter. The superior, inferior, temporal, and nasal sectors of the 3- and 6-mm circles were respectively designated as S3, I3, T3, and N3 and S6, I6, T6, and N6. Linear regression analyses were conducted to evaluate the associations between the intra-retinal layer thicknesses, age, diabetes duration, fasting blood glucose and HbA1c. Results The mean age and duration of T2DM were 61.1 and 13.7 years, respectively. Although no significant differences in the average TR and ORL volumes were observed among the groups, significant differences were found in the volume and sectorial thicknesses of the inner plexiform layer (IPL), outer plexiform layer (OPL) and IRL among the groups. In particular, the thicknesses of the IPL (S3, T3, S6, I6 and T6 sectors) and the IRL (S6 sector) were decreased in the no-DR group compared with the controls (P < 0.05). The thickness of the OPL (S3, N3, S6 and N6 sectors) was thinner in the no-DR group than in mild DR (P < 0.05). The average IPL thickness was significantly negatively correlated with age and the duration of diabetes. Conclusion The assessment of the intra-retinal layer thickness showed a significant decrease in the IPL and IRL thicknesses in Chinese adults with T2DM, even in the absence of visible microvascular signs of DR. PMID:28493982
Hydrated mineral stratigraphy of Ius Chasma, Valles Marineris
Roach, L.H.; Mustard, J.F.; Swayze, G.; Milliken, R.E.; Bishop, J.L.; Murchie, S.L.; Lichtenberg, K.
2010-01-01
New high-resolution spectral and morphologic imaging of deposits on walls and floor of Ius Chasma extend previous geomorphic mapping, and permit a new interpretation of aqueous processes that occurred during the development of Valles Marineris. We identify hydrated mineralogy based on visible-near infrared (VNIR) absorptions. We map the extents of these units with CRISM spectral data as well as morphologies in CTX and HiRISE imagery. Three cross-sections across Ius Chasma illustrate the interpreted mineral stratigraphy. Multiple episodes formed and transported hydrated minerals within Ius Chasma. Polyhydrated sulfate and kieserite are found within a closed basin at the lowest elevations in the chasma. They may have been precipitates in a closed basin or diagenetically altered after deposition. Fluvial or aeolian processes then deposited layered Fe/Mg smectite and hydrated silicate on the chasma floor, postdating the sulfates. The smectite apparently was weathered out of Noachian-age wallrock and transported to the depositional sites. The overlying hydrated silicate is interpreted to be an acid-leached phyllosilicate transformed from the underlying smectite unit, or a smectite/jarosite mixture. The finely layered smectite and massive hydrated silicate units have an erosional unconformity between them, that marks a change in surface water chemistry. Landslides transported large blocks of wallrock, some altered to contain Fe/Mg smectite, to the chasma floor. After the last episode of normal faulting and subsequent landslides, opal was transported short distances into the chasma from a few m-thick light-toned layer near the top of the wallrock, by sapping channels in Louros Valles. Alternatively, the material was transported into the chasma and then altered to opal. The superposition of different types of hydrated minerals and the different fluvial morphologies of the units containing them indicate sequential, distinct aqueous environments, characterized by alkaline, then circum-neutral, and finally very acidic surface or groundwater chemistry. ?? 2009 Elsevier Inc. All rights reserved.
Adsorption mechanism in RPLC. Effect of the nature of the organic modifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritti, Fabrice; Guiochon, Georges A
2005-07-01
The adsorption isotherms of phenol and caffeine were acquired by frontal analysis on two different adsorbents, Kromasil-C{sub 18} and Discovery-C{sub 18}, with two different mobile phases, aqueous solutions of methanol (MeOH/H{sub 2}O = 40/60 and 30/70, v/v) and aqueous solutions of acetonitrile (MeCN/H{sub 2}O = 30/70 and 20/80, v/v). The adsorption isotherms are always strictly convex upward in methanol/water solutions. The calculations of the adsorption energy distribution confirm that the adsorption data for phenol are best modeled with the bi-Langmuir and the tri-Langmuir isotherm models for Kromasil-C{sub 18} and Discovery-C{sub 18}, respectively. Because its molecule is larger and excluded frommore » the deepest sites buried in the bonded layer, the adsorption data of caffeine follow bi-Langmuir isotherm model behavior on both adsorbents. In contrast, with acetonitrile/water solutions, the adsorption data of both phenol and caffeine deviate far less from linear behavior. They were best modeled by the sum of a Langmuir and a BET isotherm models. The Langmuir term represents the adsorption of the analyte on the high-energy sites located within the C{sub 18} layers and the BET term its adsorption on the low-energy sites and its accumulation in an adsorbed multilayer system of acetonitrile on the bonded alkyl chains. The formation of a complex adsorbed phase containing up to four layers of acetonitrile (with a thickness of 3.4 {angstrom} each) was confirmed by the excess adsorption isotherm data measured for acetonitrile on Discovery-C{sub 18}. A simple interpretation of this change in the isotherm curvature at high concentrations when methanol is replaced with acetonitrile as the organic modifier is proposed, based on the structure of the interface between the C{sub 18} chains and the bulk mobile phase. This new model accounts for all the experimental observations.« less
Structure analysis of aqueous ferrofluids at interface with silicon: neutron reflectometry data
NASA Astrophysics Data System (ADS)
Gapon, I. V.; Petrenko, V. I.; Bulavin, L. A.; Balasoiu, M.; Kubovcikova, M.; Zavisova, V.; Koneracka, M.; Kopcansky, P.; Chiriac, H.; Avdeev, M. V.
2017-05-01
Adsorption of nanoparticles from aqueous ferrofluids (FFs) on solid surface (crystalline silicon) was studied by neutron reflectometry (NR). Two kinds of FFs were considered. First kind was heavy water-based ferrofluids with magnetite nanoparticles coated by double layer of sodium oleate. Second one FF was cobalt ferrite nanoparticles stabilized by lauric acid/sodium n-dodecylsulphate layer and dispersed in water. It was obtained only a single adsorption layer for two types of ferrofluids. The impact of the magnetic nanoparticles concentration and geometry was considered in frame of the adsorption characteristic of FFs.
NASA Astrophysics Data System (ADS)
Meyer-Plath, Asmus; Beckert, Fabian; Tölle, Folke J.; Sturm, Heinz; Mülhaupt, Rolf
2016-02-01
A process was developed for graphite particle exfoliation in water to stably dispersed multi-layer graphene. It uses electrohydraulic shockwaves and the functionalizing effect of solution plasma discharges in water. The discharges were excited by 100 ns high voltage pulsing of graphite particle chains that bridge an electrode gap. The underwater discharges allow simultaneous exfoliation and chemical functionalization of graphite particles to partially oxidized multi-layer graphene. Exfoliation is caused by shockwaves that result from rapid evaporation of carbon and water to plasma-excited gas species. Depending on discharge energy and locus of ignition, the shockwaves cause stirring, erosion, exfoliation and/or expansion of graphite flakes. The process was optimized to produce long-term stable aqueous dispersions of multi-layer graphene from graphite in a single process step without requiring addition of intercalants, surfactants, binders or special solvents. A setup was developed that allows continuous production of aqueous dispersions of flake size-selected multi-layer graphenes. Due to the well-preserved sp2-carbon structure, thin films made from the dispersed graphene exhibited high electrical conductivity. Underwater plasma discharge processing exhibits high innovation potential for morphological and chemical modifications of carbonaceous materials and surfaces, especially for the generation of stable dispersions of two-dimensional, layered materials.
Shin, Il-Hwan; Lee, Woo-Hyuk; Lee, Jong-Joo; Jo, Young-Joon; Kim, Jung-Yeul
2018-02-01
To determine the repeatability of measuring the thickness of the central macula, retinal nerve fiber layer, and ganglion cell-inner plexiform layer (GC-IPL) using spectral domain optical coherence tomography (Cirrus HD-OCT) in eyes with age-related macular degeneration. One hundred and thirty-four eyes were included. The measurement repeatability was assessed by an experienced examiner who performed two consecutive measurements using a 512 × 128 macular cube scan and a 200 × 200 optic disk cube scan. To assess changes in macular morphology in patients with age-related macular degeneration, the patients were divided into the following three groups according to the central macular thickness (CMT): A group, CMT < 200 μm; B group, 200 μm ≤ CMT < 300 μm; and C group, CMT > 300 μm. Measurement repeatability was assessed using test-retest variability, a coefficient of variation, and an intraclass correlation coefficient. The mean measurement repeatability for the central macular, retinal nerve fiber layer, and GC-IPL thickness was high in the B group. The mean measurement repeatability for both the central macula and retinal nerve fiber layer thickness was high in the A and C groups, but was lower for the GC-IPL thickness. The measurement repeatability for GC-IPL thickness was high in the B group, but low in the A group and in the C group. The automated measurement repeatability for GC-IPL thickness was significantly lower in patients with age-related macular degeneration with out of normal CMT range. The effect of changes in macular morphology should be considered when analyzing GC-IPL thicknesses in a variety of ocular diseases.
[Factors influencing the measurement of tear film lipid layer thickness with interferometry].
Finis, D; Pischel, N; Borrelli, M; Schrader, S; Geerling, G
2014-06-01
The quantitative measurement of the tear film lipid layer thickness is a relatively new and promising method. However, so far it has not been investigated whether there is a diurnal or a day to day variability and whether certain factors are confounding the measurement of the lipid layer thickness. In three different experimental settings, 10 subjects without known sicca syndrome were examined at three different time points on one day, on three different days and before and after therapeutic expression of the Meibomian glands. As a comparison, the parameters tear film break-up time, tear meniscus height, diagnostic expression of the Meibomian glands and subjective symptoms, determined using the OSDI (ocular surface disease index) questionnaire, were measured. The results of the study showed a smaller variation of the lipid layer thickness measurements during the day and from day to day compared to the tear film break-up time. The expression of the Meibomian glands significantly increased the lipid layer thickness. There was a correlation between the baseline values of tear film break-up time and the lipid layer thickness. Our data showed that the lipid layer thickness as measured with the Lipiview® interferometer appears to be a relatively constant parameter over time. In addition, the expression of the Meibomian glands could be identified as a potential confounding factor. In this study we included only healthy subjects without known sicca syndrome. For the future our findings need to be validated in dry eye patients. Georg Thieme Verlag KG Stuttgart · New York.
Ghate, Deepta A; Holley, Glenn; Dollinger, Harli; Bullock, Joseph P; Markwardt, Kerry; Edelhauser, Henry F
2008-10-01
To evaluate human corneal endothelial mucin layer thickness and ultrastructure after phacoemulsification and irrigation-aspiration with either next generation ophthalmic irrigating solution (NGOIS) or BSS PLUS. Paired human corneas were mounted in an artificial anterior chamber, exposed to 3 minutes of continuous ultrasound (US) at 80% power using the Alcon SERIES 20000 LEGACY surgical system (n = 9) or to 2 minutes of pulsed US at 50% power, 50% of the time at 20 pps using the Alcon INFINITI Vision System (n = 5), and irrigated with 250 mL of either NGOIS or BSS PLUS. A control group of paired corneas did not undergo phacoemulsification or irrigation-aspiration (n = 5). Corneas were divided and fixed for mucin staining or transmission electron microscopy. Mucin layer thickness was measured on the transmission electron microscopy prints. The mucin layer thickness in the continuous phaco group was 0.77 +/- 0.02 microm (mean +/- SE) with NGOIS and 0.51 +/- 0.01 microm with BSS PLUS (t test, P < 0.001). The mucin layer thickness in the pulsed phaco group was 0.79 +/- 0.02 microm with NGOIS and 0.54 +/- 0.01 microm with BSS PLUS (P < 0.001). The mucin layer thickness in the untreated control group was 0.72 +/- 0.02 microm. The endothelial ultrastructure was normal in all corneas. In this in vitro corneal model, NGOIS, due to its lower surface tension and higher viscosity, preserved endothelial mucin layer thickness better than BSS PLUS with both the INFINITI Vision System (pulsed US) and the LEGACY surgical system (continuous US).
New magnetic phase and magnetic coherence in Nd/Sm(001) superlattices
NASA Astrophysics Data System (ADS)
Soriano, S.; Dufour, C.; Dumesnil, K.; Stunault, A.
2006-06-01
In order to investigate magnetic phenomena in Nd and Sm layers separately, resonant x-ray magnetic scattering experiments have been performed to study Nd/Sm(001) superlattices with different relative layers thickness. The samples were grown using molecular beam epitaxy, and optimized to yield dhcp Sm growth and thus a coherent dhcp stacking across the Nd/Sm superlattices. The magnetic phases in Sm layers are very close to the ones evidenced in dhcp thick films. In contrast, the magnetism in Nd layers shows strong differences with the bulk case. In superlattices with a large Sm thickness (>8 nm), no magnetic scattering usually associated with Nd magnetic structure was detected. In superlattices with smaller Sm thickness (<4 nm), new Nd magnetic phases have been observed. A detailed analysis of the propagation of the magnetic structures in the cubic and hexagonal sublattices of both Sm and Nd is presented. Both Sm hexagonal and cubic magnetic phases propagate coherently through 3.7 nm thick Nd layers but remain confined in Sm layers when the Nd layers are 7.1 nm thick. In contrast, the critical Sm thickness allowing a coherent propagation of Nd magnetic order is different for the hexagonal and cubic sublattices above 5 K. Finally, we show that: (i) a spin-density wave and a 4f magnetic order with perpendicular polarization are exclusive on a given crystallographic site (either hexagonal or cubic); (ii) a 4f magnetic order on a crystallographic site does not perturb the establishment of a spin-density wave with a perpendicular polarization on the other site.
NASA Technical Reports Server (NTRS)
Policastro, Steven G. (Inventor); Woo, Dae-Shik (Inventor)
1983-01-01
A self-aligned method of implanting the edges of NMOS/SOS transistors is described. The method entails covering the silicon islands with a thick oxide layer, applying a protective photoresist layer over the thick oxide layer, and exposing the photoresist layer from the underside of the sapphire substrate thereby using the island as an exposure mask. Only the photoresist on the islands' edges will be exposed. The exposed photoresist is then removed and the thick oxide is removed from the islands edges which are then implanted.
Evaluation and analysis of LTPP pavement layer thickness data
DOT National Transportation Integrated Search
2002-07-30
In 2001, the Federal Highway Administration sponsored a study to review pavement layer thickness data for Long Term Pavement Performance (LTPP) sites. The main objective of the study was to assess the quality and completeness of pavement layering inf...
NASA Astrophysics Data System (ADS)
Lima, F. Anderson S.; Beliatis, Michail J.; Roth, Bérenger; Andersen, Thomas R.; Bortoti, Andressa; Reyna, Yegraf; Castro, Eryza; Vasconcelos, Igor F.; Gevorgyan, Suren A.; Krebs, Frederik C.; Lira-Cantu, Mónica
2016-02-01
Solution processable semiconductor oxides have opened a new paradigm for the enhancement of the lifetime of thin film solar cells. Their fabrication by low-cost and environmentally friendly solution-processable methods makes them ideal barrier (hole and electron) transport layers. In this work, we fabricate flexible ITO-free organic solar cells (OPV) by printing methods applying an aqueous solution-processed V2O5 as the hole transport layer (HTL) and compared them to devices applying PEDOT:PSS. The transparent conducting electrode was PET/Ag/PEDOT/ZnO, and the OPV configuration was PET/Ag/PEDOT/ZnO/P3HT:PC60BM/HTL/Ag. Outdoor stability analyses carried out for more than 900 h revealed higher stability for devices fabricated with the aqueous solution-processed V2O5.
NASA Astrophysics Data System (ADS)
Madkour, Sherif; Szymoniak, Paulina; Schick, Christoph; Schönhals, Andreas
2017-05-01
Specific heat spectroscopy (SHS) employing AC nanochip calorimetry was used to investigate the glassy dynamics of ultra-thin films (thicknesses: 10 nm-340 nm) of a polymer blend, which is miscible in the bulk. In detail, a Poly(vinyl methyl ether) (PVME)/Polystyrene (PS) blend with the composition of 25/75 wt. % was studied. The film thickness was controlled by ellipsometry while the film topography was checked by atomic force microscopy. The results are discussed in the framework of the balance between an adsorbed and a free surface layer on the glassy dynamics. By a self-assembling process, a layer with a reduced mobility is irreversibly adsorbed at the polymer/substrate interface. This layer is discussed employing two different scenarios. In the first approach, it is assumed that a PS-rich layer is adsorbed at the substrate. Whereas in the second approach, a PVME-rich layer is suggested to be formed at the SiO2 substrate. Further, due to the lower surface tension of PVME, with respect to air, a nanometer thick PVME-rich surface layer, with higher molecular mobility, is formed at the polymer/air interface. By measuring the glassy dynamics of the thin films of PVME/PS in dependence on the film thickness, it was shown that down to 30 nm thicknesses, the dynamic Tg of the whole film was strongly influenced by the adsorbed layer yielding a systematic increase in the dynamic Tg with decreasing the film thickness. However, at a thickness of ca. 30 nm, the influence of the mobile surface layer becomes more pronounced. This results in a systematic decrease in Tg with the further decrease of the film thickness, below 30 nm. These results were discussed with respect to thin films of PVME/PS blend with a composition of 50/50 wt. % as well as literature results.
Assessment of the growth/etch back technique for the production of Ge strain-relaxed buffers on Si
NASA Astrophysics Data System (ADS)
Hartmann, J. M.; Aubin, J.
2018-04-01
Thick Ge layers grown on Si(0 0 1) are handy for the production of GeOI wafers, as templates for the epitaxy of III-V and GeSn-based heterostructures and so on. Perfecting their crystalline quality would enable to fabricate suspended Ge micro-bridges with extremely high levels of tensile strain (for mid IR lasers). In this study, we have used a low temperature (400 °C)/high temperature (750 °C) approach to deposit with GeH4 various thickness Ge layers in the 0.5 μm - 5 μm range. They were submitted afterwards to short duration thermal cycling under H2 (in between 750 °C and 875-890 °C) to lower the Threading Dislocation Density (TDD). Some of the thickest layers were partly etched at 750 °C with gaseous HCl to recover wafer bows compatible with device processing later on. X-ray Diffraction (XRD) showed that the layers were slightly tensile-strained, with a 104.5-105.5% degree of strain relaxation irrespective of the thickness. The surface was cross-hatched, with a roughness slightly decreasing with the thickness, from 2.0 down to 0.8 nm. The TDD (from Omega scans in XRD) decreased from 8 × 107 cm-2 down to 107 cm-2 as the Ge layer thickness increased from 0.5 up to 5 μm. The lack of improvement when growing 5 μm thick layers then etching a fraction of them with HCl over same thickness layers grown in a single run was at variance with Thin Solid Films 520, 3216 (2012). Low temperature HCl defect decoration confirmed those findings, with (i) a TDD decreasing from slightly more 107 cm-2 down to 5 × 106 cm-2 as the Ge layer thickness increased from 1.3 up to 5 μm and (ii) no TDD hysteresis between growth and growth then HCl etch-back.
Effect of capping layer on interlayer coupling in synthetic spin valves
NASA Astrophysics Data System (ADS)
Li, Kebin; Qiu, Jinjun; Han, Guchang; Guo, Zaibing; Zheng, Yuankai; Wu, Yihong; Li, Jinshan
2005-01-01
The magnetic and transport properties of high quality synthetic spin-valves with the structure of Ta/NiFe/IrMn/CoFe/Ru/CoFe/NOL/CoFe/Cu/CoFe/CL were studied by using magnetoresistance measurements. Here Ti, Hf, and Al are used as the capping layer. It is found that both the thickness and materials properties of the capping layers can affect the interlayer coupling field. The interlayer coupling field oscillates weakly with respect to the thickness of the Ti and Hf capping layers. Extremely strong ferromagnetic coupling has been observed when the thickness of the Al capping layer is in a certain range where resonant exchange coupling takes place. The strength of the interlayer coupling is inversely proportional to the square of the thickness of the spacer. It is a typical characteristic of quantum size effect.
NASA Astrophysics Data System (ADS)
Shekhar, Himanshu; Tzabari, Lior; Solomeshch, Olga; Tessler, Nir
2016-10-01
We have investigated the influence of the active layer thickness on the balance of the internal mechanisms affecting the efficiency of copper phthalocyanine - fullerene (C60) based vacuum deposited bulk heterojunction organic photocell. We fabricated a range of devices for which we varied the thickness of the active layer from 40 to 120 nm and assessed their performance using optical and electrical characterization techniques. As reported previously for phthalocyanine:C60, the performance of the device is highly dependent on the active layer thickness and of all the thicknesses we tried, the 40 nm thin active layer device showed the best solar cell characteristic parameters. Using the transfer matrix based optical model, which includes interference effects, we calculated the optical power absorbed in the active layers for the entire absorption band, and we found that this cannot explain the trend with thickness. Measurement of the cell quantum efficiency as a function of light intensity showed that the relative weight of the device internal processes changes when going from 40 nm to 120 nm thick active layer. Electrical modeling of the device, which takes different internal processes into account, allowed to quantify the changes in the processes affecting the generation - recombination balance. Sub gap external quantum efficiency and morphological analysis of the surface of the films agree with the model's result. We found that as the thickness grows the density of charge transfer states and of dark carriers goes up and the uniformity in the vertical direction is reduced.
Huynh, Son C; Wang, Xiu Ying; Rochtchina, Elena; Mitchell, Paul
2006-09-01
To study the distribution of retinal nerve fiber layer (RNFL) thickness by ocular and demographic variables in a population-based study of young children. Population-based cross-sectional study. One thousand seven hundred sixty-five of 2238 (78.9%) eligible 6-year-old children participated in the Sydney Childhood Eye Study between 2003 and 2004. Mean age was 6.7 years (50.9% boys). Detailed examination included cycloplegic autorefraction and measurement of axial length. Retinal nerve fiber layer scans using an optical coherence tomographer were performed with a circular scan pattern of 3.4-mm diameter. Multivariate analyses were performed to examine the distribution of RNFL parameters with gender, ethnicity, axial length, and refraction. Peripapillary RNFL thickness and RNFL(estimated integral) (RNFL(EI)), which measures the total cross-sectional area of ganglion cell axons converging onto the optic nerve head. Peripapillary RNFL thickness and RNFL(EI) were normally distributed. The mean+/-standard deviation RNFL average thickness was 103.7+/-11.4 microm and RNFL(EI) was 1.05+/-0.12 mm2. Retinal nerve fiber layer thickness was least for the temporal quadrant (75.7+/-14.7 microm), followed by the nasal (81.7+/-19.6 microm), inferior (127.8+/-20.5 microm), and superior (129.5+/-20.6 microm) quadrants. Multivariate adjusted RNFL average thickness was marginally greater in boys than in girls (104.7 microm vs. 103.2 microm; P = 0.007) and in East Asian than in white children (107.7 microm vs. 102.7 microm; P<0.0001). The RNFL was thinner with greater axial length (P(trend)<0.0001) and less positive spherical equivalent refractions (P(trend) = 0.004). Retinal nerve fiber layer average thickness and RNFL(EI) followed a normal distribution. Retinal nerve fiber layer thickness varied marginally with gender, but differences were more marked between white and East Asian children. Retinal nerve fiber layer thinning was associated with increasing axial length and less positive refractions.
Effect of the Platinum Electroplated Layer Thickness on the Coatings' Microstructure
NASA Astrophysics Data System (ADS)
Zagula-Yavorska, Maryana; Gancarczyk, Kamil; Sieniawski, Jan
2017-03-01
CMSX 4 and Inconel 625 superalloys were coated by platinum layers (3 and 7 μm thick) in the electroplating process. The heat treatment of platinum layers (at 1,050 ˚C for 2 h) was performed to increase platinum adherence to the superalloys substrate. The diffusion zone obtained on CMSX 4 superalloy (3 and 7 μm platinum thick before heat treatment) consisted of two phases: γ-Ni(Al, Cr) and (Al0.25Pt0.75)Ni3. The diffusion zone obtained on Inconel 625 superalloy (3 μm platinum thick before heat treatment) consisted of the α-Pt(Ni, Cr, Al) phase. Moreover, γ-Ni(Cr, Al) phase was identified. The X-ray diffraction (XRD) results revealed the presence of platinum in the diffusion zone of the heat-treated coating (7 μm platinum thick) on Inconel 625 superalloy. The surface roughness parameter Ra of heat-treated coatings increased with the increase of platinum layers thickness. This was due to the unequal mass flow of platinum and nickel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jincheng; Shi, Chengwu, E-mail: shicw506@foxmail.com; Chen, Junjun
2016-06-15
In this paper, the ultra-thin and high-quality WO{sub 3} compact layers were successfully prepared by spin-coating-pyrolysis method using the tungsten isopropoxide solution in isopropanol. The influence of WO{sub 3} and TiO{sub 2} compact layer thickness on the photovoltaic performance of planar perovskite solar cells was systematically compared, and the interface charge transfer and recombination in planar perovskite solar cells with TiO{sub 2} compact layer was analyzed by electrochemical impedance spectroscopy. The results revealed that the optimum thickness of WO{sub 3} and TiO{sub 2} compact layer was 15 nm and 60 nm. The planar perovskite solar cell with 15 nm WO{submore » 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. - Graphical abstract: The planar perovskite solar cell with 15 nm WO{sub 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. Display Omitted - Highlights: • Preparation of ultra-thin and high-quality WO{sub 3} compact layers. • Perovskite solar cell with 15 nm-thick WO{sub 3} compact layer achieved PCE of 10.14%. • Perovskite solar cell with 60 nm-thick TiO{sub 2} compact layer achieved PCE of 12.64%.« less
Cattani-Scholz, Anna; Liao, Kung-Ching; Bora, Achyut; Pathak, Anshuma; Hundschell, Christian; Nickel, Bert; Schwartz, Jeffrey; Abstreiter, Gerhard; Tornow, Marc
2012-05-22
Self-assembled monolayers of phosphonates (SAMPs) of 11-hydroxyundecylphosphonic acid, 2,6-diphosphonoanthracene, 9,10-diphenyl-2,6-diphosphonoanthracene, and 10,10'-diphosphono-9,9'-bianthracene and a novel self-assembled organophosphonate duplex ensemble were synthesized on nanometer-thick SiO(2)-coated, highly doped silicon electrodes. The duplex ensemble was synthesized by first treating the SAMP prepared from an aromatic diphosphonic acid to form a titanium complex-terminated one; this was followed by addition of a second equivalent of the aromatic diphosphonic acid. SAMP homogeneity, roughness, and thickness were evaluated by AFM; SAMP film thickness and the structural contributions of each unit in the duplex were measured by X-ray reflection (XRR). The duplex was compared with the aliphatic and aromatic monolayer SAMPs to determine the effect of stacking on electrochemical properties; these were measured by impedance spectroscopy using aqueous electrolytes in the frequency range 20 Hz to 100 kHz, and data were analyzed using resistance-capacitance network based equivalent circuits. For the 11-hydroxyundecylphosphonate SAMP, C(SAMP) = 2.6 ± 0.2 μF/cm(2), consistent with its measured layer thickness (ca. 1.1 nm). For the anthracene-based SAMPs, C(SAMP) = 6-10 μF/cm(2), which is attributed primarily to a higher effective dielectric constant for the aromatic moieties (ε = 5-10) compared to the aliphatic one; impedance spectroscopy measured the additional capacitance of the second aromatic monolayer in the duplex (2ndSAMP) to be C(Ti/2ndSAMP) = 6.8 ± 0.7 μF/cm(2), in series with the first.
NASA Astrophysics Data System (ADS)
Tian, Wei; Kushner, Mark J.
2015-09-01
Tissue covered by a thin liquid layer treated by atmospheric pressure plasmas for biomedical applications ultimately requires a reproducible protocol for human healthcare. The outcomes of wet tissue treatment by dielectric barrier discharges (DBDs) depend on the plasma dose which determines the integral fluences of radicals and ions onto the tissue. These fluences are controlled in part by frequency and liquid thickness. In this paper, we report on results from a computational investigation of multipulse DBDs interacting with wet tissue. The DBDs were simulated for 100 stationary or random streamers at different repetition rates and liquid thicknesses followed by 10 s to 2 min of afterglow. At 100 Hz, NOaq and OHaq are mixed by randomly striking streamers, although they have different rates of solvation. NOaq is nearly completely consumed by reactions with OHaq at the liquid surface. Only H2O2aq, produced through OHaq mutual reactions, survives to reach the tissue. After 100 pulses, the liquid becomes ozone-rich, in which the nitrous ion, NO2-aq, is converted to the nitric ion, NO3-aq. Reducing the pulse frequency to 10 Hz results in significant fluence of NOaq to the tissue as NOaq can escape during the interpulse period from the liquid surface where OHaq is formed. For the same reason, NO2-aq can also reach deeper into the liquid at lower frequency. Frequency and thickness of the liquid are methods to control the plasma produced aqueous species to the underlying tissue. Work supported by DOE (DE-SC0001319) and NSF (CHE-1124724).
Wetting properties of phospholipid dispersion on tunable hydrophobic SiO2-glass plates.
Alexandrova, Lidia; Karakashev, Stoyan I; Grigorov, L; Phan, Chi M; Smoukov, Stoyan K
2015-06-01
We study the wetting properties of very small droplets of salty aqueous suspensions of unilamellar liposomes of DMPC (dimyristoylphosphatidylcholine), situated on SiO2-glass surfaces with different levels of hydrophobicity. We evaluated two different measures of hydrophobicity of solid surfaces - receding contact angles and the thickness of wetting films trapped between an air bubble and the solid surface at different levels of hydrophobicity. We established a good correlation between methods which differ significantly in measurement difficulty and experimental setup. We also reveal details of the mechanism of wetting of different surfaces by the DMPC liposome suspension. Hydrophilic surfaces with water contact angles in the range of 0° to 35° are readily hydrophobized by the liposomes and only showed corresponding contact angles in the range 27°-43°. For same range of surface hydrophobicities, there was a clear reduction of the thickness of the wetting films between the surface and a bubble, reaching a minimum in the 35°-40° range. At higher levels of hydrophobicity both pure water and the liposome suspension show similar contact angles, and the thickness of wetting films between a bubble and those surfaces increases in parallel. Our analysis showed that the only force able to stabilize the film under these experimental conditions is steric repulsion. The latter suggests that nanobubbles adsorbed on hydrophobic parts of the surface, and coated with a DMPC layer, may be the cause of the 40-70 nm thickness of wetting films we observe. Copyright © 2014 Elsevier B.V. All rights reserved.
Xu, Man; Wachters, Arthur J H; van Deelen, Joop; Mourad, Maurice C D; Buskens, Pascal J P
2014-03-10
We present a systematic study of the effect of variation of the zinc oxide (ZnO) and copper indium gallium (di)selenide (CIGS) layer thickness on the absorption characteristics of CIGS solar cells using a simulation program based on finite element method (FEM). We show that the absorption in the CIGS layer does not decrease monotonically with its layer thickness due to interference effects. Ergo, high precision is required in the CIGS production process, especially when using ultra-thin absorber layers, to accurately realize the required thickness of the ZnO, cadmium sulfide (CdS) and CIGS layer. We show that patterning the ZnO window layer can strongly suppress these interference effects allowing a higher tolerance in the production process.
NASA Astrophysics Data System (ADS)
Kim, Nam-Hui; Han, Dong-Soo; Jung, Jinyong; Park, Kwonjin; Swagten, Henk J. M.; Kim, June-Seo; You, Chun-Yeol
2017-10-01
The interfacial Dzyaloshinskii-Moriya interaction (iDMI) and the interfacial perpendicular magnetic anisotropy (iPMA) between a heavy metal and ferromagnet are investigated by employing Brillouin light scattering. With increasing thickness of the heavy-metal (Pt) layer, the iDMI and iPMA energy densities are rapidly enhanced and they saturate for a Pt thickness of 2.4 nm. Since these two individual magnetic properties show the same Pt thickness dependence, this is evidence that the iDMI and iPMA at the interface between the heavy metal and ferromagnet, the physical origin of these phenomena, are effectively enhanced upon increasing the thickness of the heavy-metal layer.
Chen, Kun-Neng; Yang, Cheng-Fu; Wu, Chia-Ching; Chen, Yu-Hsin
2017-01-01
We investigated the structural, optical, and electrical properties of amorphous IGZO/silver/amorphous IGZO (α-IGZO/Ag/α-IGZO) triple-layer structures that were deposited at room temperature on Eagle XG glass and flexible polyethylene terephthalate substrates through the sputtering method. Thin Ag layers with different thicknesses were inserted between two IGZO layers to form a triple-layer structure. Ag was used because of its lower absorption and resistivity. Field emission scanning electron microscopy measurements of the triple-layer structures revealed that the thicknesses of the Ag layers ranged from 13 to 41 nm. The thickness of the Ag layer had a large effect on the electrical and optical properties of the electrodes. The optimum thickness of the Ag metal thin film could be evaluated according to the optical transmittance, electrical conductivity, and figure of merit of the electrode. This study demonstrates that the α-IGZO/Ag/α-IGZO triple-layer transparent electrode can be fabricated with low sheet resistance (4.2 Ω/□) and high optical transmittance (88.1%) at room temperature without postannealing processing on the deposited thin films. PMID:28772586
Enface Thickness Mapping and Reflectance Imaging of Retinal Layers in Diabetic Retinopathy.
Francis, Andrew W; Wanek, Justin; Lim, Jennifer I; Shahidi, Mahnaz
2015-01-01
To present a method for image segmentation and generation of enface thickness maps and reflectance images of retinal layers in healthy and diabetic retinopathy (DR) subjects. High density spectral domain optical coherence tomography (SDOCT) images were acquired in 10 healthy and 4 DR subjects. Customized image analysis software identified 5 retinal cell layer interfaces and generated thickness maps and reflectance images of the total retina (TR), inner retina (IR), outer retina (OR), and the inner segment ellipsoid (ISe) band. Thickness maps in DR subjects were compared to those of healthy subjects by generating deviation maps which displayed retinal locations with thickness below, within, and above the normal 95% confidence interval. In healthy subjects, TR and IR thickness maps displayed the foveal depression and increased thickness in the parafoveal region. OR and ISe thickness maps showed increased thickness at the fovea, consistent with normal retinal anatomy. In DR subjects, thickening and thinning in localized regions were demonstrated on TR, IR, OR, and ISe thickness maps, corresponding to retinal edema and atrophy, respectively. TR and OR reflectance images showed reduced reflectivity in regions of increased thickness. Hard exudates appeared as hyper-reflective spots in IR reflectance images and casted shadows on the deeper OR and ISe reflectance images. The ISe reflectance image clearly showed the presence of focal laser scars. Enface thickness mapping and reflectance imaging of retinal layers is a potentially useful method for quantifying the spatial and axial extent of pathologies due to DR.
Enface Thickness Mapping and Reflectance Imaging of Retinal Layers in Diabetic Retinopathy
Francis, Andrew W.; Wanek, Justin; Lim, Jennifer I.; Shahidi, Mahnaz
2015-01-01
Purpose To present a method for image segmentation and generation of enface thickness maps and reflectance images of retinal layers in healthy and diabetic retinopathy (DR) subjects. Methods High density spectral domain optical coherence tomography (SDOCT) images were acquired in 10 healthy and 4 DR subjects. Customized image analysis software identified 5 retinal cell layer interfaces and generated thickness maps and reflectance images of the total retina (TR), inner retina (IR), outer retina (OR), and the inner segment ellipsoid (ISe) band. Thickness maps in DR subjects were compared to those of healthy subjects by generating deviation maps which displayed retinal locations with thickness below, within, and above the normal 95% confidence interval. Results In healthy subjects, TR and IR thickness maps displayed the foveal depression and increased thickness in the parafoveal region. OR and ISe thickness maps showed increased thickness at the fovea, consistent with normal retinal anatomy. In DR subjects, thickening and thinning in localized regions were demonstrated on TR, IR, OR, and ISe thickness maps, corresponding to retinal edema and atrophy, respectively. TR and OR reflectance images showed reduced reflectivity in regions of increased thickness. Hard exudates appeared as hyper-reflective spots in IR reflectance images and casted shadows on the deeper OR and ISe reflectance images. The ISe reflectance image clearly showed the presence of focal laser scars. Conclusions Enface thickness mapping and reflectance imaging of retinal layers is a potentially useful method for quantifying the spatial and axial extent of pathologies due to DR. PMID:26699878
Characteristics of blue organic light emitting diodes with different thick emitting layers
NASA Astrophysics Data System (ADS)
Li, Chong; Tsuboi, Taiju; Huang, Wei
2014-08-01
We fabricated blue organic light emitting diodes (called blue OLEDs) with emitting layer (EML) of diphenylanthracene derivative 9,10-di(2-naphthyl)anthracene (ADN) doped with blue-emitting DSA-ph (1-4-di-[4-(N,N-di-phenyl)amino]styryl-benzene) to investigate how the thickness of EML and hole injection layer (HIL) influences the electroluminescence characteristics. The driving voltage was observed to increase with increasing EML thickness from 15 nm to 70 nm. The maximum external quantum efficiency of 6.2% and the maximum current efficiency of 14 cd/A were obtained from the OLED with 35 nm thick EML and 75 nm thick HIL. High luminance of 120,000 cd/m2 was obtained at 7.5 V from OLED with 15 nm thick EML.
Casimir Pressure in Mds-Structures
NASA Astrophysics Data System (ADS)
Yurova, V. A.; Bukina, M. N.; Churkin, Yu. V.; Fedortsov, A. B.; Klimchitskaya, G. L.
2012-07-01
The Casimir pressure on the dielectric layer in metal-dielectric-semiconductor (MDS) structures is calculated in the framework of the Lifshitz theory at nonzero temperature. In this calculation the standard parameters of semiconductor devices with a thin dielectric layer are used. We consider the thickness of a layer decreasing from 40 to 1 nm. At the shortest thickness the Casimir pressure achieves 8 MPa. At small thicknesses the results are compared with the predictions of nonrelativistic theory.
Method to control residual stress in a film structure and a system thereof
Parthum, Sr., Michael J.
2008-12-30
A method for controlling residual stress in a structure in a MEMS device and a structure thereof includes selecting a total thickness and an overall equivalent stress for the structure. A thickness for each of at least one set of alternating first and second layers is determined to control an internal stress with respect to a neutral axis for each of the at least alternating first and second layers and to form the structure based on the selected total thickness and the selected overall equivalent stress. Each of the at least alternating first and second layers is deposited to the determined thickness for each of the at least alternating first and second layers to form the structure.
Prediction of Layer Thickness in Molten Borax Bath with Genetic Evolutionary Programming
NASA Astrophysics Data System (ADS)
Taylan, Fatih
2011-04-01
In this study, the vanadium carbide coating in molten borax bath process is modeled by evolutionary genetic programming (GEP) with bath composition (borax percentage, ferro vanadium (Fe-V) percentage, boric acid percentage), bath temperature, immersion time, and layer thickness data. Five inputs and one output data exist in the model. The percentage of borax, Fe-V, and boric acid, temperature, and immersion time parameters are used as input data and the layer thickness value is used as output data. For selected bath components, immersion time, and temperature variables, the layer thicknesses are derived from the mathematical expression. The results of the mathematical expressions are compared to that of experimental data; it is determined that the derived mathematical expression has an accuracy of 89%.
NASA Astrophysics Data System (ADS)
Yazdanfar, M.; Stenberg, P.; Booker, I. D.; Ivanov, I. G.; Kordina, O.; Pedersen, H.; Janzén, E.
2013-10-01
The development of a chemical vapor deposition (CVD) process for very thick silicon carbide (SiC) epitaxial layers suitable for high power devices is demonstrated by epitaxial growth of 200 μm thick, low doped 4H-SiC layers with excellent morphology at growth rates exceeding 100 μm/h. The process development was done in a hot wall CVD reactor without rotation using both SiCl4 and SiH4+HCl precursor approaches to chloride based growth chemistry. A C/Si ratio <1 and an optimized in-situ etch are shown to be the key parameters to achieve 200 μm thick, low doped epitaxial layers with excellent morphology.
Simulation and analysis of Au-MgF2 structure in plasmonic sensor in near infrared spectral region
NASA Astrophysics Data System (ADS)
Sharma, Anuj K.
2018-05-01
Plasmonic sensor based on metal-dielectric combination of gold and MgF2 layers is studied in near infrared (NIR) spectral region. An emphasis is given on the effect of variable thickness of MgF2 layer in combination with operating wavelength and gold layer thickness on the sensor's performance in NIR. It is established that the variation in MgF2 thickness in connection with plasmon penetration depth leads to significant variation in sensor's performance. The analysis leads to a conclusion that taking smaller values of MgF2 layer thickness and operating at longer NIR wavelength leads to enhanced sensing performance. Also, fluoride glass can provide better sensing performance than chalcogenide glass and silicon substrate.
Correlation between active layer thickness and ambient gas stability in IGZO thin-film transistors
NASA Astrophysics Data System (ADS)
Gao, Xu; Lin, Meng-Fang; Mao, Bao-Hua; Shimizu, Maki; Mitoma, Nobuhiko; Kizu, Takio; Ou-Yang, Wei; Nabatame, Toshihide; Liu, Zhi; Tsukagoshi, Kazuhito; Wang, Sui-Dong
2017-01-01
Decreasing the active layer thickness has been recently reported as an alternative way to achieve fully depleted oxide thin-film transistors for the realization of low-voltage operations. However, the correlation between the active layer thickness and device resistivity to environmental changes is still unclear, which is important for the optimized design of oxide thin-film transistors. In this work, the ambient gas stability of IGZO thin-film transistors is found to be strongly correlated to the IGZO thickness. The TFT with the thinnest IGZO layer shows the highest intrinsic electron mobility in a vacuum, which is greatly reduced after exposure to O2/air. The device with a thick IGZO layer shows similar electron mobility in O2/air, whereas the mobility variation measured in the vacuum is absent. The thickness dependent ambient gas stability is attributed to a high-mobility region in the IGZO surface vicinity with less sputtering-induced damage, which will become electron depleted in O2/air due to the electron transfer to adsorbed gas molecules. The O2 adsorption and deduced IGZO surface band bending is demonstrated by the ambient-pressure x-ray photoemission spectroscopy results.
Influence of water layer thickness on hard tissue ablation with pulsed CO2 laser
NASA Astrophysics Data System (ADS)
Zhang, Xianzeng; Zhan, Zhenlin; Liu, Haishan; Zhao, Haibin; Xie, Shusen; Ye, Qing
2012-03-01
The theory of hard tissue ablation reported for IR lasers is based on a process of thermomechanical interaction, which is explained by the absorption of the radiation in the water component of the tissue. The microexplosion of the water is the cause of tissue fragments being blasted from hard tissue. The aim of this study is to evaluate the influence of the interdependence of water layer thickness and incident radiant exposure on ablation performance. A total of 282 specimens of bovine shank bone were irradiated with a pulse CO2 laser. Irradiation was carried out in groups: without a water layer and with a static water layer of thickness ranging from 0.2 to 1.2 mm. Each group was subdivided into five subgroups for different radiant exposures ranging from 18 to 84 J/cm2, respectively. The incision geometry, surface morphology, and microstructure of the cut walls as well as thermal injury were examined as a function of the water layer thickness at different radiant exposures. Our results demonstrate that the additional water layer is actually a mediator of laser-tissue interaction. There exists a critical thickness of water layer for a given radiant exposure, at which the additional water layer plays multiple roles, not only acting as a cleaner to produce a clean cut but also as a coolant to prevent bone heating and reduce thermal injury, but also helping to improve the regularity of the cut shape, smooth the cut surface, and enhance ablation rate and efficiency. The results suggest that desired ablation results depend on optimal selection of both water layer thickness and radiant exposure.
Yoon, Chang Ki; Yu, Hyeong Gon
2018-03-01
To investigate how macular ganglion cell-inner plexiform layer (GCIPL) and retinal nerve fibre layer (RNFL) thicknesses within the macula change with retinitis pigmentosa (RP) severity. Spectral domain optical coherence tomography (SD-OCT) was used to examine 177 patients with RP and 177 normal controls. An optical coherence tomography (OCT) line scan was used to grade RP severity. Retinitis pigmentosa (RP) was categorized as more advanced if there was no identifiable inner segment ellipsoid (ISe) band (NISE) and as less advanced if an ISe band could be identified and peripheral loss of ISe was apparent (IISE). Ganglion cell-inner plexiform layer (GCIPL) and RNFL thicknesses were manually measured on OCT images and analysed. Pearson's correlation analyses were used to examine correlations between GCIPL thickness, RNFL thickness, visual acuity (VA) and visual field extent in patients and controls. Ganglion cell-inner plexiform layer (GCIPL) was significantly thicker in IISE than in control eyes (p < 0.001), but significantly thinner in NISE than in IISE eyes (p < 0.001) in both horizontal and vertical OCT scans. Retinal nerve fibre layer (RNFL) was significantly thicker in eyes with IISE and NISE than in control eyes in both horizontal and vertical meridians (all p < 0.001). Ganglion cell-inner plexiform layer (GCIPL) thickness showed a weak positive correlation with vision, and RNFL thickness showed a weak negative correlation with vision and visual field extent. Based on these results, the inner retina, including the GCIPL and RNFL, maintains its gross integrity longer than the photoreceptor layer in RP. Additionally, thickening of the inner retina may have some functional implications in patients with RP. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Thermally stable diamond brazing
Radtke, Robert P [Kingwood, TX
2009-02-10
A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.
NASA Astrophysics Data System (ADS)
Han, Dandan; Yan, Yancui; Wei, Jishi; Wang, Biwei; Li, Tongtao; Guo, Guannan; Yang, Dong; Xie, Songhai; Dong, Angang
2017-12-01
Because of their unique physical properties, three-dimensional (3D) graphene has attracted enormous attention over the past years. However, it is still a challenge to precisely control the layer thickness of 3D graphene. Here, we report a novel strategy to rationally adjust the wall thickness of ordered mesoporous graphene (OMG). By taking advantage of ligand exchange capability of colloidal Fe3O4 nanocrystals, we are able to fine-tune the wall thickness of OMG from 2 to 6 layers of graphene by tailoring the hydrocarbon ligands attached to the nanocrystal surface. When evaluated as electrocatalyst for oxygen reduction reaction upon S and N doping, the 4-layer OMG is found to show better catalytic performance compared with its 2- and 6-layer counterparts, which we attribute to the enhanced exposure of active sites resulting from its ultrathin wall thickness and high surface area.
High energy PIXE: A tool to characterize multi-layer thick samples
NASA Astrophysics Data System (ADS)
Subercaze, A.; Koumeir, C.; Métivier, V.; Servagent, N.; Guertin, A.; Haddad, F.
2018-02-01
High energy PIXE is a useful and non-destructive tool to characterize multi-layer thick samples such as cultural heritage objects. In a previous work, we demonstrated the possibility to perform quantitative analysis of simple multi-layer samples using high energy PIXE, without any assumption on their composition. In this work an in-depth study of the parameters involved in the method previously published is proposed. Its extension to more complex samples with a repeated layer is also presented. Experiments have been performed at the ARRONAX cyclotron using 68 MeV protons. The thicknesses and sequences of a multi-layer sample including two different layers of the same element have been determined. Performances and limits of this method are presented and discussed.
Method of Fabricating Schottky Barrier solar cell
NASA Technical Reports Server (NTRS)
Stirn, R. J.; Yeh, Y. C. M. (Inventor)
1982-01-01
On a thin substrate of low cost material with at least the top surface of the substrate being electrically conductive is deposited a thin layer of heavily doped n-type polycrystalline germanium, with crystalline sizes in the submicron range. A passivation layer may be deposited on the substrate to prevent migration of impurities into the polycrystalline germanium. The polycrystalline germanium is recrystallized to increase the crystal sizes in the germanium layer to not less than 5 micros to serve as a base layer on which a thin layer of gallium arsenide is vapor epitaxially grown to a selected thickness. A thermally-grown oxide layer of a thickness of several tens of angstroms is formed on the gallium arsenide layer. A metal layer, of not more about 100 angstroms thick, is deposited on the oxide layer, and a grid electrode is deposited to be in electrical contact with the top surface of the metal layer. An antireflection coating may be deposited on the exposed top surface of the metal layer.
First high-resolution stratigraphic column of the Martian north polar layered deposits
Fishbaugh, K.E.; Hvidberg, C.S.; Byrne, S.; Russell, P.S.; Herkenhoff, K. E.; Winstrup, M.; Kirk, R.
2010-01-01
This study achieves the first high-spatial-resolution, layer-scale, measured stratigraphic column of the Martian north polar layered deposits using a 1m-posting DEM. The marker beds found throughout the upper North Polar Layered Deposits range in thickness from 1.6 m-16.0 m +/-1.4 m, and 6 of 13 marker beds are separated by ???25-35 m. Thin-layer sets have average layer separations of 1.6 m. These layer separations may account for the spectral-power-peaks found in previous brightness-profile analyses. Marker-bed layer thicknesses show a weak trend of decreasing thickness with depth that we interpret to potentially be the result of a decreased accumulation rate in the past, for those layers. However, the stratigraphic column reveals that a simple rhythmic or bundled layer sequence is not immediately apparent throughout the column, implying that the relationship between polar layer formation and cyclic climate forcing is quite complex. Copyright ?? 2010 by the American Geophysical Union.
First high-resolution stratigraphic column of the Martian north polar layered deposits
NASA Astrophysics Data System (ADS)
Fishbaugh, Kathryn E.; Hvidberg, Christine S.; Byrne, Shane; Russell, Patrick S.; Herkenhoff, Kenneth E.; Winstrup, Mai; Kirk, Randolph
2010-04-01
This study achieves the first high-spatial-resolution, layer-scale, measured stratigraphic column of the Martian north polar layered deposits using a 1m-posting DEM. The marker beds found throughout the upper North Polar Layered Deposits range in thickness from 1.6 m-16.0 m +/- 1.4 m, and 6 of 13 marker beds are separated by ˜25-35 m. Thin-layer sets have average layer separations of 1.6 m. These layer separations may account for the spectral-power-peaks found in previous brightness-profile analyses. Marker-bed layer thicknesses show a weak trend of decreasing thickness with depth that we interpret to potentially be the result of a decreased accumulation rate in the past, for those layers. However, the stratigraphic column reveals that a simple rhythmic or bundled layer sequence is not immediately apparent throughout the column, implying that the relationship between polar layer formation and cyclic climate forcing is quite complex.
Magnetic and electrical properties of FeSi/FeSi-ZrO 2 multilayers prepared by EB-PVD
NASA Astrophysics Data System (ADS)
Bi, Xiaofang; Lan, Weihua; Ou, Shengquan; Gong, Shengkai; Xu, Huibin
2003-04-01
FeSi/FeSi-ZrO 2 and FeSi/ZrO 2 multilayer materials were prepared by electron beam physical vapor deposition with the FeSi-ZrO 2 layer thickness about 0.6 μm, and their magnetic and electrical properties were studied as a function of FeSi layer thickness. With increasing FeSi layer thickness from 0.3 to 3 μm, the coercivity decreased from 0.92 to 0.31 kA/m and the saturation magnetization changed from 164 to 186 emu/g. The effect of the layer number on the magnetic properties was discussed in terms of interfacial mixing and oxidation. It was also discovered that the magnetic properties of the multilayer materials were affected by the spacer material, exhibiting higher saturation magnetization and lower coercivity for the FeSi/FeSi-ZrO 2 than those for the FeSi/ZrO 2 with the same individual layer thicknesses. This behavior could be explained by the weaker magnetic interaction between FeSi layers separated by the non-magnetic ZrO 2 layer. Furthermore, the electrical resistivity changed from 1850 to 1250 μΩ cm for the multilayer materials for the FeSi thickness increasing from 0.30 to 3 μm.
Inhibiting surface crystallization of amorphous indomethacin by nanocoating.
Wu, Tian; Sun, Ye; Li, Ning; de Villiers, Melgardt M; Yu, Lian
2007-04-24
An amorphous solid (glass) may crystallize faster at the surface than through the bulk, making surface crystallization a mechanism of failure for amorphous pharmaceuticals and other materials. An ultrathin coating of gold or polyelectrolytes inhibited the surface crystallization of amorphous indomethacin (IMC), an anti-inflammatory drug and model organic glass. The gold coating (10 nm) was deposited by sputtering, and the polyelectrolyte coating (3-20 nm) was deposited by an electrostatic layer-by-layer assembly of cationic poly(dimethyldiallyl ammonium chloride) (PDDA) and anionic sodium poly(styrenesulfonate) (PSS) in aqueous solution. The coating also inhibited the growth of existing crystals. The inhibition was strong even with one layer of PDDA. The polyelectrolyte coating still permitted fast dissolution of amorphous IMC and improved its wetting and flow. The finding supports the view that the surface crystallization of amorphous IMC is enabled by the mobility of a thin layer of surface molecules, and this mobility can be suppressed by a coating of only a few nanometers. This technique may be used to stabilize amorphous drugs prone to surface crystallization, with the aqueous coating process especially suitable for drugs of low aqueous solubility.
Spin-valve Josephson junctions for cryogenic memory
NASA Astrophysics Data System (ADS)
Niedzielski, Bethany M.; Bertus, T. J.; Glick, Joseph A.; Loloee, R.; Pratt, W. P.; Birge, Norman O.
2018-01-01
Josephson junctions containing two ferromagnetic layers are being considered for use in cryogenic memory. Our group recently demonstrated that the ground-state phase difference across such a junction with carefully chosen layer thicknesses could be controllably toggled between zero and π by switching the relative magnetization directions of the two layers between the antiparallel and parallel configurations. However, several technological issues must be addressed before those junctions can be used in a large-scale memory. Many of these issues can be more easily studied in single junctions, rather than in the superconducting quantum interference device (SQUID) used for phase-sensitive measurements. In this work, we report a comprehensive study of spin-valve junctions containing a Ni layer with a fixed thickness of 2.0 nm and a NiFe layer of thickness varying between 1.1 and 1.8 nm in steps of 0.1 nm. We extract the field shift of the Fraunhofer patterns and the critical currents of the junctions in the parallel and antiparallel magnetic states, as well as the switching fields of both magnetic layers. We also report a partial study of similar junctions containing a slightly thinner Ni layer of 1.6 nm and the same range of NiFe thicknesses. These results represent the first step toward mapping out a "phase diagram" for phase-controllable spin-valve Josephson junctions as a function of the two magnetic layer thicknesses.
4P-NPD ultra-thin films as efficient exciton blocking layers in DBP/C70 based organic solar cells
NASA Astrophysics Data System (ADS)
Patil, Bhushan R.; Liu, Yiming; Qamar, Talha; Rubahn, Horst-Günter; Madsen, Morten
2017-09-01
Exciton blocking effects from ultra-thin layers of N,N‧-di-1-naphthalenyl-N,N‧-diphenyl [1,1‧:4‧,1″:4″,1‴-quaterphenyl]-4,4‴-diamine (4P-NPD) were investigated in small molecule-based inverted organic solar cells (OSCs) using tetraphenyldibenzoperiflanthene as the electron donor material and fullerene (C70) as the electron acceptor material. The short-circuit current density (J SC) and power conversion efficiency (PCE) of the optimized OSCs with 0.7 nm thick 4P-NPD were approximately 16% and 24% higher, respectively, compared to reference devices without exciton blocking layers (EBLs). Drift diffusion-based device modeling was conducted to model the full current density-voltage (JV) characteristics and external quantum efficiency spectrum of the OSCs, and photoluminescence measurements were conducted to investigate the exciton blocking effects with increasing thicknesses of the 4P-NPD layer. Importantly, coupled optical and electrical modeling studies of the device behaviors and exciton generation rates and densities in the active layer for different 4P-NPD layer thicknesses were conducted, in order to gain a complete understanding of the observed increase in PCE for 4P-NPD layer thicknesses up to 1 nm, and the observed decrease in PCE for layer thicknesses beyond 1 nm. This work demonstrates a route for guiding the integration of EBLs in OSC devices.
High efficiency organic photovoltaic cells employing hybridized mixed-planar heterojunctions
Xue, Jiangeng; Uchida, Soichi; Rand, Barry P.; Forrest, Stephen
2015-08-18
A device is provided, having a first electrode, a second electrode, and a photoactive region disposed between the first electrode and the second electrode. The photoactive region includes a first photoactive organic layer that is a mixture of an organic acceptor material and an organic donor material, wherein the first photoactive organic layer has a thickness not greater than 0.8 characteristic charge transport lengths; a second photoactive organic layer in direct contact with the first organic layer, wherein the second photoactive organic layer is an unmixed layer of the organic acceptor material of the first photoactive organic layer, and the second photoactive organic layer has a thickness not less than about 0.1 optical absorption lengths; and a third photoactive organic layer disposed between the first electrode and the second electrode and in direct contact with the first photoactive organic layer. The third photoactive organic layer is an unmixed layer of the organic donor layer of the first photoactive organic layer and has a thickness not less than about 0.1 optical absorption lengths.
Superconducting and Magnetic Properties of Vanadium/iron Superlattices.
NASA Astrophysics Data System (ADS)
Wong, Hong-Kuen
A novel ultrahigh vacuum evaporator was constructed for the preparation of superlattice samples. The thickness control was much better than an atomic plane. With this evaporator we prepared V/Fe superlattice samples on (0001) sapphire substrates with different thicknesses. All samples showed a good bcc(110) structure. Mossbauer experiments showed that the interface mixing extended a distance of about one atomic plane indicating an almost rectangular composition profile. Because of this we were able to prepare samples with layer thickness approaching one atomic plane. Even with ultrathin Fe layers, the samples are ferromagnetic, at least at lower temperatures. Superparamagnetism and spin glass states were not seen. In the absence of an external field, the magnetic moments lie close to the film plane. In addition to this shape anisotropy, there is some uniaxial anisotropy. No magnetic dead layers have been observed. The magnetic moments within the Fe layers vary little with the distance from the interfaces. At the interfaces the Fe moment is reduced and an antiparallel moment is induced on the vanadium atoms. It is observed that ultrathin Fe layers behave in a 2D fashion when isolated by sufficiently thick vanadium layers; however, on thinning the vanadium layers, a magnetic coupling between the Fe layers has been observed. We also studied the superconducting properties of V/Fe sandwiches and superlattices. In both cases, the Fe layer, a strong pair-breaker, suppresses the superconducting transition temperature consistent with the current knowledge of the magnetic proximity effect. For the sandwiches with thin (thick) vanadium layers, the temperature dependence of the upper critical fields is consistent with the simple theory for a 2D (3D) superconductor. For the superlattices, when the vanadium layer is on the order of the BCS coherence length and the Fe layer is only a few atomic planes thick, a 2D-3D crossover has been observed in the temperature dependence of the parallel upper critical field. This implies the coexistence of superconductivity and ferromagnetism. We observe three dimensional behavior for thinner Fe layers ((TURN)1 atomic plane) and two dimensional behavior for thicker Fe layers (greater than 10 atomic planes).
Interface structure in nanoscale multilayers near continuous-to-discontinuous regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradhan, P. C.; Majhi, A.; Nayak, M., E-mail: mnayak@rrcat.gov.in
2016-07-28
Interfacial atomic diffusion, reaction, and formation of microstructure in nanoscale level are investigated in W/B{sub 4}C multilayer (ML) system as functions of thickness in ultrathin limit. Hard x-ray reflectivity (XRR) and x-ray diffuse scattering in conjunction with x-ray absorption near edge spectroscopy (XANES) in soft x-ray and hard x-ray regimes and depth profiling x-ray photoelectron spectroscopy (XPS) have been used to precisely evaluate detailed interfacial structure by systematically varying the individual layer thickness from continuous-to-discontinuous regime. It is observed that the interfacial morphology undergoes an unexpected significant modification as the layer thickness varies from continuous-to-discontinuous regime. The interfacial atomic diffusionmore » increases, the physical density of W layer decreases and that of B{sub 4}C layer increases, and further more interestingly the in-plane correlation length decreases substantially as the layer thickness varies from continuous-to-discontinuous regime. This is corroborated using combined XRR and x-ray diffused scattering analysis. XANES and XPS results show formation of more and more tungsten compounds at the interfaces as the layer thickness decreases below the percolation threshold due to increase in the contact area between the elements. The formation of compound enhances to minimize certain degree of disorder at the interfaces in the discontinuous region that enables to maintain the periodic structure in ML. The degree of interfacial atomic diffusion, interlayer interaction, and microstructure is correlated as a function of layer thickness during early stage of film growth.« less
Dawson, Dana K.; Maceira, Alicia M.; Raj, Vimal J.; Graham, Catriona; Pennell, Dudley J.; Kilner, Philip J.
2011-01-01
Background We used cardiovascular magnetic resonance (CMR) to study normal left ventricular (LV) trabeculation as a basis for differentiation from pathological noncompaction. Methods and Results The apparent end-diastolic (ED) and end-systolic (ES) thicknesses and thickening of trabeculated and compacted myocardial layers were measured in 120 volunteers using a consistent selection of basal, mid, and apical CMR short-axis slices. All had a visible trabeculated layer in 1 or more segments. The compacted but not the trabeculated layer was thicker in men than in women (P<0.01 at ED and ES). When plotted against age, the trabeculated and compacted layer thicknesses demonstrated opposite changes: an increase of the compact layer after the fourth decade at both ED and ES (P<0.05) but a decrease of the trabeculated layer. There was age-related preservation of total wall thickness at ED but an increase at ES (P<0.05). The compacted layer thickened, whereas the trabeculated layer thinned with systole, but neither change differed between sexes. With age, the most trabeculated LV segments showed significantly greater systolic thinning of trabeculated layers and, conversely, greater thickening of the compact segments (P<0.05). Total wall thickening is neither sex nor age dependent. There were no sex differences in the trabeculated/compacted ratio at ES or ED, but the ES trabeculated/compacted ratio was smaller in older (50 to 79 years) versus younger (20 to 49 years) groups (P<0.05). Conclusions We demonstrated age- and sex-related morphometric differences in the apparent trabeculated and compacted layer thicknesses and systolic thinning of the visible trabeculated layer that contrasts with compacted myocardial wall thickening. PMID:21193690
Bamberg, Christian; Dudenhausen, Joachim W; Bujak, Verena; Rodekamp, Elke; Brauer, Martin; Hinkson, Larry; Kalache, Karim; Henrich, Wolfgang
2018-06-01
We undertook a randomized clinical trial to examine the outcome of a single vs. a double layer uterine closure using ultrasound to assess uterine scar thickness. Participating women were allocated to one of three uterotomy suture techniques: continuous single layer unlocked suturing, continuous locked single layer suturing, or double layer suturing. Transvaginal ultrasound of uterine scar thickness was performed 6 weeks and 6 - 24 months after Cesarean delivery. Sonographers were blinded to the closure technique. An "intent-to-treat" and "as treated" ANOVA analysis included 435 patients (n = 149 single layer unlocked suturing, n = 157 single layer locked suturing, and n = 129 double layer suturing). 6 weeks postpartum, the median scar thickness did not differ among the three groups: 10.0 (8.5 - 12.3 mm) single layer unlocked vs. 10.1 (8.2 - 12.7 mm) single layer locked vs. 10.8 (8.1 - 12.8 mm) double layer; (p = 0.84). At the time of the second follow-up, the uterine scar was not significantly (p = 0.06) thicker if the uterus had been closed with a double layer closure 7.3 (5.7 - 9.1 mm), compared to single layer unlocked 6.4 (5.0 - 8.8 mm) or locked suturing techniques 6.8 (5.2 - 8.7 mm). Women who underwent primary or elective Cesarean delivery showed a significantly (p = 0.03, p = 0.02, "as treated") increased median scar thickness after double layer closure vs. single layer unlocked suture. A double layer closure of the hysterotomy is associated with a thicker myometrium scar only in primary or elective Cesarean delivery patients. © Georg Thieme Verlag KG Stuttgart · New York.
Farzadi, Arghavan; Solati-Hashjin, Mehran; Asadi-Eydivand, Mitra; Abu Osman, Noor Azuan
2014-01-01
Powder-based inkjet 3D printing method is one of the most attractive solid free form techniques. It involves a sequential layering process through which 3D porous scaffolds can be directly produced from computer-generated models. 3D printed products' quality are controlled by the optimal build parameters. In this study, Calcium Sulfate based powders were used for porous scaffolds fabrication. The printed scaffolds of 0.8 mm pore size, with different layer thickness and printing orientation, were subjected to the depowdering step. The effects of four layer thicknesses and printing orientations, (parallel to X, Y and Z), on the physical and mechanical properties of printed scaffolds were investigated. It was observed that the compressive strength, toughness and Young's modulus of samples with 0.1125 and 0.125 mm layer thickness were more than others. Furthermore, the results of SEM and μCT analyses showed that samples with 0.1125 mm layer thickness printed in X direction have more dimensional accuracy and significantly close to CAD software based designs with predefined pore size, porosity and pore interconnectivity. PMID:25233468
Tunable Transport Gap in Phosphorene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Saptarshi; Zhang, Wei; Demarteau, Marcel
2014-08-11
In this paper, we experimentally demonstrate that the transport gap of phosphorene can be tuned monotonically from ~0.3 to ~1.0 eV when the flake thickness is scaled down from bulk to a single layer. As a consequence, the ON current, the OFF current, and the current ON/OFF ratios of phosphorene field effect transistors (FETs) were found to be significantly impacted by the layer thickness. The transport gap was determined from the transfer characteristics of phosphorene FETs using a robust technique that has not been reported before. The detailed mathematical model is also provided. By scaling the thickness of the gatemore » oxide, we were also able to demonstrate enhanced ambipolar conduction in monolayer and few layer phosphorene FETs. The asymmetry of the electron and the hole current was found to be dependent on the layer thickness that can be explained by dynamic changes of the metal Fermi level with the energy band of phosphorene depending on the layer number. We also extracted the Schottky barrier heights for both the electron and the hole injection as a function of the layer thickness. In conclusion, we discuss the dependence of field effect hole mobility of phosphorene on temperature and carrier concentration.« less
NASA Astrophysics Data System (ADS)
Wang, Shuping; Shibahara, Nanae; Kuramashi, Daishi; Okawa, Shinpei; Kakuta, Naoto; Okada, Eiji; Maki, Atsushi; Yamada, Yukio
2010-07-01
In order to investigate the effects of anatomical variation in human heads on the optical mapping of brain activity, we perform simulations of optical mapping by solving the photon diffusion equation for layered-models simulating human heads using the finite element method (FEM). Particularly, the effects of the spatial variations in the thicknesses of the skull and cerebrospinal fluid (CSF) layers on mapping images are investigated. Mapping images of single active regions in the gray matter layer are affected by the spatial variations in the skull and CSF layer thicknesses, although the effects are smaller than those of the positions of the active region relative to the data points. The increase in the skull thickness decreases the sensitivity of the images to active regions, while the increase in the CSF layer thickness increases the sensitivity in general. The images of multiple active regions are also influenced by their positions relative to the data points and by their depths from the skin surface.
Influence of bulk turbulence and entrance boundary layer thickness on the curved duct flow field
NASA Technical Reports Server (NTRS)
Crawford, R. A.
1988-01-01
The influence of bulk turbulence and boundary layer thickness on the secondary flow development in a square, 90 degree turning duct was investigated. A three-dimensional laser velocimetry system was utilized to measure the mean and fluctuating components of velocity at six cross-planes in the duct. The results from this investigation, with entrance boundary layer thickness of 20 percent, were compared with the thin boundary layer results documented in NASA CR-174811. The axial velocity profiles, cross-flow velocities, and turbulence intensities were compared and evaluated with regard to the influence of bulk turbulence intensity and boundary layer thickness, and the influence was significant. The results of this investigation expand the 90 degree curved duct experimental data base to higher turbulence levels and thicker entrance boundary layers. The experimental results provide a challenging benchmark data base for computational fluid dynamics code development and validation. The variation of inlet bulk turbulence intensity provides additional information to aid in turbulence model evaluation.
Boundary layer thermal stresses in angle-ply composite laminates, part 1. [graphite-epoxy composites
NASA Technical Reports Server (NTRS)
Wang, S. S.; Choi, I.
1981-01-01
Thermal boundary-layer stresses (near free edges) and displacements were determined by a an eigenfunction expansion technique and the establishment of an appropriate particular solution. Current solutions in the region away from the singular domain (free edge) are found to be excellent agreement with existing approximate numerical results. As the edge is approached, the singular term controls the near field behavior of the boundary layer. Results are presented for cases of various angle-ply graphite/epoxy laminates with (theta/-theta/theta/theta) configurations. These results show high interlaminar (through-the-thickness) stresses. Thermal boundary-layer thicknesses of different composite systems are determined by examining the strain energy density distribution in composites. It is shown that the boundary-layer thickness depends on the degree of anisotropy of each individual lamina, thermomechanical properties of each ply, and the relative thickness of adjacent layers. The interlaminar thermal stresses are compressive with increasing temperature. The corresponding residual stresses are tensile and may enhance interply delaminations.
A Thermoelectric Generator Using Porous Si Thermal Isolation
Hourdakis, Emmanouel; Nassiopoulou, Androula G.
2013-01-01
In this paper we report on a thermoelectric generator (TEG) using thermal isolation provided by a thick porous Si layer locally formed on the Si wafer and thermocouples composed of p-doped polycrystalline Si/Al. The “hot” contacts of the thermocouples lie on the porous Si layer, while the “cold” contacts lie on bulk crystalline Si. A housing was also designed and fabricated in order to transfer any external temperature change on the “hot” contacts of the thermocouples, the “cold” contacts being isolated from the “hot” contacts by a thick resist layer. The fabrication of the sensing element (Si die) is fully compatible with batch Si processing. The output power of the thermoelectric generator depends on the porous Si isolation layer thickness, porosity, structure and morphology. For a mesoporous Si layer of 60% porosity and a macroscopic temperature differential of 10 K, an output power of 0.39 μW/cm2 was measured for a 50 μm thick porous Si layer. PMID:24152923
NASA Astrophysics Data System (ADS)
Cheng, Junfeng; Chen, Zhiru; Zhou, Jiaqi; Cao, Zheng; Wu, Dun; Liu, Chunlin; Pu, Hongting
2018-05-01
The effects of layer thickness on the compatibility between polycarbonate (PC) and polystyrene (PS) and physical properties of PC/PS multilayered film via nanolayer coextrusion are studied. The morphology of multilayered structure is observed using a scanning electron microscope. This multilayered structure may have a negative impact on the transparency, but it can improve the water resistance and heat resistance of film. To characterize the compatibility between PC and PS, differential scanning calorimetry is used to measure the glass transition temperature. The compatibility is found to be improved with the decrease of layer thickness. Therefore, the viscosity of multilayered film is also reduced with the decrease of layer thickness. In addition, the multilayered structure can improve the tensile strength with the increase of layer numbers. Because of the complete and continuous layer structure of PC, the PC/PS multilayered film can retain its mechanical strength at the temperature above Tg of PS.
Doped bottom-contact organic field-effect transistors
NASA Astrophysics Data System (ADS)
Liu, Shiyi; Billig, Paul; Al-Shadeedi, Akram; Kaphle, Vikash; Lüssem, Björn
2018-07-01
The influence of doping on doped bottom-gate bottom-contact organic field-effect transistors (OFETs) is discussed. It is shown that the inclusion of a doped layer at the dielectric/organic semiconductor layer leads to a significant reduction in the contact resistances and a fine control of the threshold voltage. Through varying the thickness of the doped layer, a linear shift of threshold voltage V T from ‑3.1 to ‑0.22 V is observed for increasing thickness of doped layer. Meanwhile, the contact resistance at the source and drain electrode is reduced from 138.8 MΩ at V GS = ‑10 V for 3 nm to 0.3 MΩ for 7 nm thick doped layers. Furthermore, an increase of charge mobility is observed for increasing thickness of doped layer. Overall, it is shown that doping can minimize injection barriers in bottom-contact OFETs with channel lengths in the micro-meter regime, which has the potential to increase the performance of this technology further.
Laminate armor and related methods
Chu, Henry S; Lillo, Thomas M; Zagula, Thomas M
2013-02-26
Laminate armor and methods of manufacturing laminate armor. Specifically, laminate armor plates comprising a commercially pure titanium layer and a titanium alloy layer bonded to the commercially pure titanium outer layer are disclosed, wherein an average thickness of the titanium alloy inner layer is about four times an average thickness of the commercially pure titanium outer layer. In use, the titanium alloy layer is positioned facing an area to be protected. Additionally, roll-bonding methods for manufacturing laminate armor plates are disclosed.
An, Jae Seok; Jang, Ha Jun; Park, Cheol Young; Youn, Hongseok; Lee, Jong Ho; Heo, Gi-Seok; Choi, Bum Ho; Lee, Choong Hun
2015-10-01
Inorganic/organic hybrid thin film encapsulation layers consist of a thin Al2O3 layer together with polymer material. We have investigated optical properties of thin film encapsulation layers for top-emission flexible organic light-emitting diodes. The transmittance of hybrid thin film encapsulation layers and the electroluminescent spectrum of organic light-emitting diodes that were passivated by hybrid organic/inorganic thin film encapsulation layers were also examined as a function of the thickness of inorganic Al203 and monomer layers. The number of interference peaks, their intensity, and their positions in the visible range can be controlled by varying the thickness of inorganic Al2O3 layer. On the other hand, changing the thickness of monomer layer had a negligible effect on the optical properties. We also verified that there is a trade-off between transparency in the visible range and the permeation of water vapor in hybrid thin film encapsulation layers. As the number of dyads decreased, optical transparency improved while the water vapor permeation barrier was degraded. Our study suggests that, in top-emission organic light-emitting diodes, the thickness of each thin film encapsulation layer, in particular that of the inorganic layer, and the number of dyads should be controlled for highly efficient top-emission flexible organic light-emitting diodes.
Microstructure and thermochromic properties of VOX-WOX-VOX ceramic thin films
NASA Astrophysics Data System (ADS)
Khamseh, S.; Araghi, H.; Ghahari, M.; Faghihi Sani, M. A.
2016-03-01
W-doped VO2 films have been synthesized via oxygen annealing of V-W-V (vanadium-tungsten-vanadium) multilayered films. The effects of middle layer's thickness of V-W-V multilayered film on structure and properties of VOX-WOX-VOX ceramic thin films were investigated. The as-deposited V-W-V multilayered film showed amorphous-like structure when mixed structure of VO2 (M) and VO2 (B) was formed in VOX-WOX-VOX ceramic thin films. Tungsten content of VOX-WOX-VOX ceramic thin films increased with increasing middle layer's thickness. With increasing middle layer's thickness, room temperature square resistance ( R sq) of VOX-WOX-VOX ceramic thin films increased from 65 to 86 kΩ/sq. The VOX-WOX-VOX ceramic thin film with the thinnest middle layer showed significant SMT (semiconductor-metal transition) when SMT became negligible on increasing middle layer's thickness.
Li, Y Z; Wang, Z L; Luo, H; Wang, Y Z; Xu, W J; Ran, G Z; Qin, G G; Zhao, W Q; Liu, H
2010-07-19
A phosphorescent organic light-emitting diode (PhOLED) with a nanometer-thick (approximately 10 nm) Ni silicide/ polycrystalline p-Si composite anode is reported. The structure of the PhOLED is Al mirror/ glass substrate / Si isolation layer / Ni silicide / polycrystalline p-Si/ V(2)O(5)/ NPB/ CBP: (ppy)(2)Ir(acac)/ Bphen/ Bphen: Cs(2)CO(3)/ Sm/ Au/ BCP. In the composite anode, the Ni-induced polycrystalline p-Si layer injects holes into the V(2)O(5)/ NPB, and the Ni silicide layer reduces the sheet resistance of the composite anode and thus the series resistance of the PhOLED. By adopting various measures for specially optimizing the thickness of the Ni layer, which induces Si crystallization and forms a Ni silicide layer of appropriate thickness, the highest external quantum efficiency and power conversion efficiency have been raised to 26% and 11%, respectively.
Oxygen octahedral distortions in LaMO 3/SrTiO 3 superlattices
Sanchez-Santolino, Gabriel; Cabero, Mariona; Varela, Maria; ...
2014-04-24
Here we study the interfaces between the Mott insulator LaMnO 3 (LMO) and the band insulator SrTiO 3 (STO) in epitaxially grown superlattices with different thickness ratios and different transport and magnetic behaviors. Using atomic resolution electron energy-loss spectrum imaging, we analyze simultaneously the structural and chemical properties of these interfaces. We find changes in the oxygen octahedral tilts within the LaMnO 3 layers when the thickness ratio between the manganite and the titanate layers is varied. Superlattices with thick LMO and ultrathin STO layers present unexpected octahedral tilts in the STO, along with a small amount of oxygen vacancies.more » On the other hand, thick STO layers exhibit undistorted octahedra while the LMO layers present reduced O octahedral distortions near the interfaces. In conclusion, these findings will be discussed in view of the transport and magnetic differences found in previous studies.« less
Synthesis of superconducting Nb 3Sn coatings on Nb substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barzi, E.; Franz, S.; Reginato, F.
In the present work the electrochemical and thermal syntheses of superconductive Nb 3Sn films are investigated. The Nb 3Sn phase is obtained by electrodeposition of Sn layers and Cu intermediate layers onto Nb substrates followed by high temperature diffusion in inert atmosphere. Electrodeposition was performed from aqueous solutions at current densities in the 20 to 50 mA/cm 2 range and at temperatures between 40 and 50°C. Subsequent thermal treatments were realized to obtain the Nb 3Sn superconductive phase. Glow discharge optical emission spectrometry (GDOES) demonstrated that after thermal treatment interdiffusion of Nb and Sn occurred across a thickness of aboutmore » 13 μm. Scanning Electron Microscopy (SEM) allowed accurately measuring the thickness of the Nb 3Sn phase, whose average for the various types of film samples was between 5.7 and 8.0 μm. X-ray diffraction (XRD) patterns confirmed the presence of a cubic Nb 3Sn phase (A15 structure) having (210) preferred orientation. The maximum obtained T c was 17.68 K and the B c20 ranged between 22.5 T and 23.8 T. With the procedure described in the present paper, coating complex shapes cost-effectively becomes possible, which is typical of electrochemical techniques. Furthermore, this approach can be implemented in classical wire processes such as "Jelly Roll" or "Rod in Tube", or directly used for producing superconducting surfaces. In conclusion, the potential of this method for Superconducting Radiofrequency (SRF) structures is also outlined.« less
Synthesis of superconducting Nb 3Sn coatings on Nb substrates
Barzi, E.; Franz, S.; Reginato, F.; ...
2015-12-01
In the present work the electrochemical and thermal syntheses of superconductive Nb 3Sn films are investigated. The Nb 3Sn phase is obtained by electrodeposition of Sn layers and Cu intermediate layers onto Nb substrates followed by high temperature diffusion in inert atmosphere. Electrodeposition was performed from aqueous solutions at current densities in the 20 to 50 mA/cm 2 range and at temperatures between 40 and 50°C. Subsequent thermal treatments were realized to obtain the Nb 3Sn superconductive phase. Glow discharge optical emission spectrometry (GDOES) demonstrated that after thermal treatment interdiffusion of Nb and Sn occurred across a thickness of aboutmore » 13 μm. Scanning Electron Microscopy (SEM) allowed accurately measuring the thickness of the Nb 3Sn phase, whose average for the various types of film samples was between 5.7 and 8.0 μm. X-ray diffraction (XRD) patterns confirmed the presence of a cubic Nb 3Sn phase (A15 structure) having (210) preferred orientation. The maximum obtained T c was 17.68 K and the B c20 ranged between 22.5 T and 23.8 T. With the procedure described in the present paper, coating complex shapes cost-effectively becomes possible, which is typical of electrochemical techniques. Furthermore, this approach can be implemented in classical wire processes such as "Jelly Roll" or "Rod in Tube", or directly used for producing superconducting surfaces. In conclusion, the potential of this method for Superconducting Radiofrequency (SRF) structures is also outlined.« less
Effects of sulfate and nitrate anions on aluminum corrosion in slightly alkaline solution
NASA Astrophysics Data System (ADS)
Li, Shengyi; Church, Benjamin C.
2018-05-01
The corrosion mechanisms and kinetics of AA1085 in Li2SO4 and LiNO3 aqueous rechargeable lithium-ion battery electrolytes were investigated at pH 11 using chronoamperometry. The corrosion kinetics of AA1085 is controlled by the electrolyte concentration level and the anodic potentials. AA1085 is susceptible to crystallographic pitting corrosion in Li2SO4 electrolytes. The rates of pit nucleation and pit growth both decreased at higher Li2SO4 concentrations or at lower anodic potentials. AA1085 passivates against pitting corrosion in LiNO3 electrolytes due to the formation of a thick, uniform corrosion product layer. The growth rate of the passive film was slightly enhanced by increasing the electrolyte concentration and anodic potentials. X-ray photoelectron spectroscopy spectra showed the formation of a thin sulfate-incorporated passive film on the electrode, which comprises Al2(SO)418H2O, Al(OH)SO4 and Al(OH)3, before the occurrence of pitting growth in 2 M Li2SO4 electrolyte. The thick corrosion product layer formed in 5 M LiNO3 electrolyte was composed of Al(OH)3 and AlOOH. Raman spectroscopy on deionized water, LiOH solution, Li2SO4 and LiNO3 electrolytes depicted changes of solution structure with increasing electrolyte concentration. The influence of extrinsic and intrinsic factors on the corrosion kinetics of AA1085 in Li2SO4 and LiNO3 electrolytes at pH 11 are discussed in detail.
Antiferromagnetic exchange and magnetoresistance enhancement in Co-Re superlattices
NASA Astrophysics Data System (ADS)
Freitas, P. P.; Melo, L. V.; Trindade, I.; From, M.; Ferreira, J.; Monteiro, P.
1992-02-01
Co-Re superlattices were prepared that show either antiferromagnetic or ferromagnetic coupling between the Co layers depending on the Re spacer thickness. Enhanced saturation magnetoresistance occurs for antiferromagnetically coupled layers. The saturation magnetoresistance decays exponentially with Re thickness but does not depend critically on the Co thickness.
Methods To Determine the Silicone Oil Layer Thickness in Sprayed-On Siliconized Syringes.
Loosli, Viviane; Germershaus, Oliver; Steinberg, Henrik; Dreher, Sascha; Grauschopf, Ulla; Funke, Stefanie
2018-01-01
The silicone lubricant layer in prefilled syringes has been investigated with regards to siliconization process performance, prefilled syringe functionality, and drug product attributes, such as subvisible particle levels, in several studies in the past. However, adequate methods to characterize the silicone oil layer thickness and distribution are limited, and systematic evaluation is missing. In this study, white light interferometry was evaluated to close this gap in method understanding. White light interferometry demonstrated a good accuracy of 93-99% for MgF 2 coated, curved standards covering a thickness range of 115-473 nm. Thickness measurements for sprayed-on siliconized prefilled syringes with different representative silicone oil distribution patterns (homogeneous, pronounced siliconization at flange or needle side, respectively) showed high instrument (0.5%) and analyst precision (4.1%). Different white light interferometry instrument parameters (autofocus, protective shield, syringe barrel dimensions input, type of non-siliconized syringe used as base reference) had no significant impact on the measured average layer thickness. The obtained values from white light interferometry applying a fully developed method (12 radial lines, 50 mm measurement distance, 50 measurements points) were in agreement with orthogonal results from combined white and laser interferometry and 3D-laser scanning microscopy. The investigated syringe batches (lot A and B) exhibited comparable longitudinal silicone oil layer thicknesses ranging from 170-190 nm to 90-100 nm from flange to tip and homogeneously distributed silicone layers over the syringe barrel circumference (110- 135 nm). Empty break-loose (4-4.5 N) and gliding forces (2-2.5 N) were comparably low for both analyzed syringe lots. A silicone oil layer thickness of 100-200 nm was thus sufficient for adequate functionality in this particular study. Filling the syringe with a surrogate solution including short-term exposure and emptying did not significantly influence the silicone oil layer at the investigated silicone level. It thus appears reasonable to use this approach to characterize silicone oil layers in filled syringes over time. The developed method characterizes non-destructively the layer thickness and distribution of silicone oil in empty syringes and provides fast access to reliable results. The gained information can be further used to support optimization of siliconization processes and increase the understanding of syringe functionality. LAY ABSTRACT: Silicone oil layers as lubricant are required to ensure functionality of prefilled syringes. Methods evaluating these layers are limited, and systematic evaluation is missing. The aim of this study was to develop and assess white light interferometry as an analytical method to characterize sprayed-on silicone oil layers in 1 mL prefilled syringes. White light interferometry showed a good accuracy (93-99%) as well as instrument and analyst precision (0.5% and 4.1%, respectively). Different applied instrument parameters had no significant impact on the measured layer thickness. The obtained values from white light interferometry applying a fully developed method concurred with orthogonal results from 3D-laser scanning microscopy and combined white light and laser interferometry. The average layer thicknesses in two investigated syringe lots gradually decreased from 170-190 nm at the flange to 100-90 nm at the needle side. The silicone layers were homogeneously distributed over the syringe barrel circumference (110-135 nm) for both lots. Empty break-loose (4-4.5 N) and gliding forces (2-2.5 N) were comparably low for both analyzed syringe lots. Syringe filling with a surrogate solution, including short-term exposure and emptying, did not significantly affect the silicone oil layer. The developed, non-destructive method provided reliable results to characterize the silicone oil layer thickness and distribution in empty siliconized syringes. This information can be further used to support optimization of siliconization processes and increase understanding of syringe functionality. © PDA, Inc. 2018.
Kim, Min Su; Kim, Do Yeob; Kim, Sung-O; Leem, Jae-Young
2013-05-01
ZnO nanorods were grown on the Mg0.2Zn0.8O seed layers with different thickness by hydrothermal method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) were carried out to investigate the effects of the Mg0.2Zn0.8O seed layer thickness on the structural and the optical properties of the ZnO nanorods. The residual stress in the Mg0.2Zn0.8O seed layers was depended on the thickness while the texture coefficient of the Mg0.2Zn0.8O seed layers was not affected significantly. The smaller full width at half maximum (FWHM) of the ZnO (002) diffraction and near-band-edge emission (NBE) peak and the larger average grain size were observed from the ZnO nanorods grown on the Mg0.2Zn0.8O seed layers with 5 layers (thickness of 350 nm), which indicate the enhancement the structural and the optical properties of the ZnO nanorods.
NASA Astrophysics Data System (ADS)
Scott, Ethan A.; Gaskins, John T.; King, Sean W.; Hopkins, Patrick E.
2018-05-01
The need for increased control of layer thickness and uniformity as device dimensions shrink has spurred increased use of atomic layer deposition (ALD) for thin film growth. The ability to deposit high dielectric constant (high-k) films via ALD has allowed for their widespread use in a swath of optical, optoelectronic, and electronic devices, including integration into CMOS compatible platforms. As the thickness of these dielectric layers is reduced, the interfacial thermal resistance can dictate the overall thermal resistance of the material stack compared to the resistance due to the finite dielectric layer thickness. Time domain thermoreflectance is used to interrogate both the thermal conductivity and the thermal boundary resistance of aluminum oxide, hafnium oxide, and titanium oxide films on silicon. We calculate a representative design map of effective thermal resistances, including those of the dielectric layers and boundary resistances, as a function of dielectric layer thickness, which will be of great importance in predicting the thermal resistances of current and future devices.
NASA Technical Reports Server (NTRS)
Deshpande, Manohar D.; Dudley, Kenneth
2003-01-01
A simple method is presented to estimate the complex dielectric constants of individual layers of a multilayer composite material. Using the MatLab Optimization Tools simple MatLab scripts are written to search for electric properties of individual layers so as to match the measured and calculated S-parameters. A single layer composite material formed by using materials such as Bakelite, Nomex Felt, Fiber Glass, Woven Composite B and G, Nano Material #0, Cork, Garlock, of different thicknesses are tested using the present approach. Assuming the thicknesses of samples unknown, the present approach is shown to work well in estimating the dielectric constants and the thicknesses. A number of two layer composite materials formed by various combinations of above individual materials are tested using the present approach. However, the present approach could not provide estimate values close to their true values when the thicknesses of individual layers were assumed to be unknown. This is attributed to the difficulty in modelling the presence of airgaps between the layers while doing the measurement of S-parameters. A few examples of three layer composites are also presented.
Michalski, Joseph R; Jean-PierreBibring; Poulet, François; Loizeau, Damien; Mangold, Nicolas; Dobrea, Eldar Noe; Bishop, Janice L; Wray, James J; McKeown, Nancy K; Parente, Mario; Hauber, Ernst; Altieri, Francesca; Carrozzo, F Giacomo; Niles, Paul B
2010-09-01
The primary objective of NASA's Mars Science Laboratory (MSL) mission, which will launch in 2011, is to characterize the habitability of a site on Mars through detailed analyses of the composition and geological context of surface materials. Within the framework of established mission goals, we have evaluated the value of a possible landing site in the Mawrth Vallis region of Mars that is targeted directly on some of the most geologically and astrobiologically enticing materials in the Solar System. The area around Mawrth Vallis contains a vast (>1 × 10⁶ km²) deposit of phyllosilicate-rich, ancient, layered rocks. A thick (>150 m) stratigraphic section that exhibits spectral evidence for nontronite, montmorillonite, amorphous silica, kaolinite, saponite, other smectite clay minerals, ferrous mica, and sulfate minerals indicates a rich geological history that may have included multiple aqueous environments. Because phyllosilicates are strong indicators of ancient aqueous activity, and the preservation potential of biosignatures within sedimentary clay deposits is high, martian phyllosilicate deposits are desirable astrobiological targets. The proposed MSL landing site at Mawrth Vallis is located directly on the largest and most phyllosilicate-rich deposit on Mars and is therefore an excellent place to explore for evidence of life or habitability.
NASA Astrophysics Data System (ADS)
Jeżowski, P.; Nowicki, M.; Grzeszkowiak, M.; Czajka, R.; Béguin, F.
2015-04-01
The main purpose of the study was to increase the surface roughness of stainless steel 301 current collectors by etching, in order to improve the electrochemical performance of electrical double-layer capacitors (EDLC) in 1 mol L-1 lithium sulphate electrolyte. Etching was realized in 1:3:30 (HNO3:HCl:H2O) solution with times varying up to 10 min. For the considered 15 μm thick foil and a mass loss around 0.4 wt.%, pitting was uniform, with diameter of pits ranging from 100 to 300 nm. Atomic force microscopy (AFM) showed an increase of average surface roughness (Ra) from 5 nm for the as-received stainless steel foil to 24 nm for the pitted material. Electrochemical impedance spectroscopy realized on EDLCs with coated electrodes either on as-received or pitted foil in 1 mol L-1 Li2SO4 gave equivalent distributed resistance (EDR) of 8 Ω and 2 Ω, respectively, demonstrating a substantial improvement of collector/electrode interface after pitting. Correlatively, the EDLCs with pitted collector displayed a better charge propagation and low ohmic losses even at relatively high current of 20 A g-1. Hence, chemical pitting of stainless steel current collectors is an appropriate method for optimising the performance of EDLCs in neutral aqueous electrolyte.
Chen, Yanxin; Bellini, Marco; Bevilacqua, Manuela; Fornasiero, Paolo; Lavacchi, Alessandro; Miller, Hamish A; Wang, Lianqin; Vizza, Francesco
2015-02-01
A 2 μm thick layer of TiO2 nanotube arrays was prepared on the surface of the Ti fibers of a nonwoven web electrode. After it was doped with Pd nanoparticles (1.5 mgPd cm(-2) ), this anode was employed in a direct alcohol fuel cell. Peak power densities of 210, 170, and 160 mW cm(-2) at 80 °C were produced if the cell was fed with 10 wt % aqueous solutions of ethanol, ethylene glycol, and glycerol, respectively, in 2 M aqueous KOH. The Pd loading of the anode was increased to 6 mg cm(-2) by combining four single electrodes to produce a maximum peak power density with ethanol at 80 °C of 335 mW cm(-2) . Such high power densities result from a combination of the open 3 D structure of the anode electrode and the high electrochemically active surface area of the Pd catalyst, which promote very fast kinetics for alcohol electro-oxidation. The peak power and current densities obtained with ethanol at 80 °C approach the output of H2 -fed proton exchange membrane fuel cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Interfacial thin films rupture and self-similarity
NASA Astrophysics Data System (ADS)
Ward, Margaret H.
2011-06-01
Two superposed thin layers of fluids are prone to interfacial instabilities due to London-van der Waals forces. Evolution equations for the film thicknesses are derived using lubrication theory. Using the intrinsic scales, for a single layer, results in a system with parametric dependence of four ratios of the two layers: surface tension, Hamaker constant, viscosity, and film thickness. In contrast to the single layer case, the bilayer system has two unstable eigenmodes: squeezing and bending. For some particular parameter regimes, the system exhibits the avoided crossing behavior, where the two eigenmodes are interchanged. Based on numerical analysis, the system evolves into four different rupture states: basal layer rupture, upper layer rupture, double layer rupture, and mixed layer rupture. The ratio of Hamaker constants and the relative film thickness of the two layers control the system dynamics. Remarkably, the line of avoided crossing demarks the transition region of mode mixing and energy transfer, affecting the scaling of the dynamical regime map consequentially. Asymptotic and numerical analyses are used to examine the self-similar ruptures and to extract the power law scalings for both the basal layer rupture and the upper layer rupture. The scaling laws for the basal layer rupture are the same as those of the single layer on top of a substrate. The scaling laws for the upper layer rupture are different: the lateral length scale decreases according to (tr-t)1/3 and the film thickness decreases according to (tr-t)1/6.
Article and method for making an article
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacy, Benjamin Paul; Schick, David Edward; Kottilingam, Srikanth Chandrudu
An article and a method for making shaped cooling holes in an article are provided. The method includes the steps of providing a metal alloy powder; forming an initial layer with the metal alloy powder, the initial layer having a preselected thickness and a preselected shape, the preselected shape including at least one aperture; sequentially forming an additional layer over the initial layer with the metal alloy powder, the additional layer having a second preselected thickness and a second preselected shape, the second preselected shape including at least one aperture corresponding to the at least one aperture in the initialmore » layer; and joining the additional layer to the initial layer, forming a structure having a predetermined thickness, a predetermined shape, and at least one aperture having a predetermined profile. The structure is attached to a substrate to make the article.« less
Human Chorioretinal Layer Thicknesses Measured in Macula-wide, High-Resolution Histologic Sections
Messinger, Jeffrey D.; Sloan, Kenneth R.; Mitra, Arnab; McGwin, Gerald; Spaide, Richard F.
2011-01-01
Purpose. To provide a comprehensive description of chorioretinal layer thicknesses in the normal human macula, including two-layer pairs that can produce a combined signal in some optical coherence tomography (OCT) devices (ganglion cell [GCL] and inner plexiform [IPL] layers and outer plexiform [OPL] and outer nuclear [ONL] layers). Methods. In 0.8-μm-thick, macula-wide sections through the foveola of 18 donors (age range, 40–92 years), 21 layers were measured at 25 locations by a trained observer and validated by a second observer. Tissue volume changes were assessed by comparing total retinal thickness in ex vivo OCT and in sections. Results. Median tissue shrinkage was 14.5% overall and 29% in the fovea. Histologic laminar boundaries resembled those in SD-OCT scans, but the shapes of the foveolar OPL and ONL differed. Histologic GCL, IPL, and OPLHenle were thickest at 0.8. to 1, 1.5, and 0.4 mm eccentricity, respectively. ONL was thickest in an inward bulge at the foveal center. At 1 mm eccentricity, GCL, INL, and OPLHenle represented 17.3% to 21.1%, 18.0% to 18.5%, and 14.2% to 16.6% of total retinal thickness, respectively. In donors ≥70 years of age, the RPE and choroid were 17.1% and 29.6% thinner and OPLHenle was 20.8% thicker than in donors <70 years. Conclusions. In this study, the first graphic representation and thickness database of chorioretinal layers in normal macula were generated. Newer OCT systems can separate GCL from IPL and OPLHenle from ONL, with good agreement for the proportion of retinal thickness occupied by OPLHenle in OCT and histology. The thickening of OPLHenle in older eyes may reflect Müller cell hypertrophy associated with rod loss. PMID:21421869
Kanamori, Akiyasu; Nakamura, Makoto; Matsui, Noriko; Nagai, Azusa; Nakanishi, Yoriko; Kusuhara, Sentaro; Yamada, Yuko; Negi, Akira
2004-12-01
To analyze retinal nerve fiber layer (RNFL) thickness in eyes with band atrophy by use of optical coherence tomography (OCT) and to evaluate the ability of OCT to detect this characteristic pattern of RNFL loss. Cross-sectional, retrospective study. Thirty-four eyes of 18 patients with bitemporal hemianopia caused by optic chiasm compression by chiasmal tumors were studied. All eyes were divided into 3 groups according to visual field loss grading after Goldmann perimetry. Retinal nerve fiber layer thickness measurements with OCT. Retinal nerve fiber layer thickness around the optic disc was measured by OCT (3.4-mm diameter circle). Calculation of the changes in OCT parameters, including the horizontal (nasal + temporal quadrant RNFL thickness) and vertical values (superior + inferior quadrant RNFL thickness) was based on data from 160 normal eyes. Comparison between the 3 visual field grading groups was done with the analysis of variance test. The receiver operating characteristic (ROC) curve for the horizontal and vertical value were calculated, and the areas under the curve (AUC) were compared. Retinal nerve fiber layer thickness in eyes with band atrophy decreased in all OCT parameters. The reduction rate in average and temporal RNFL thickness and horizontal value was correlated with visual field grading. The AUC of horizontal value was 0.970+/-0.011, which was significantly different from AUC of vertical value (0.903+/-0.022). The degree of RNFL thickness reduction correlated with that of visual field defects. Optical coherence tomography was able to identify the characteristic pattern of RNFL loss in these eyes.
A Layered Solution Crystal Growth Technique and the Crystal Structure of (C 6H 5C 2H 4NH 3) 2PbCl 4
NASA Astrophysics Data System (ADS)
Mitzi, D. B.
1999-07-01
Single crystals of the organic-inorganic perovskite (C6H5C2H4NH3)2PbCl4 have been grown at room temperature using a layered solution approach. The bottom solution layer, contained within a long straight tube, consists of PbCl2 dissolved in concentrated aqueous HCl. A less dense layer of methanol is carefully placed on top of the HCl/PbCl2 solution using a syringe. Finally, a stoichiometric quantity of C6H5C2H4NH2 (relative to the PbCl2) is added to the top of the column. As the layers slowly diffuse together, well-formed crystals of (C6H5C2H4NH3)2PbCl4 appear near the interface between the HCl/PbCl2 and C6H5C2H4NH2 solutions. The thick, plate-like crystals are well suited for X-ray crystallography studies. Room temperature intensity data were refined using a triclinic (Poverline1) cell (a=11.1463(3) Å, b=11.2181(3) Å, c=17.6966(5) Å, α= 99.173(1)°, β=104.634(1)°, γ=89.999(1)°, V=2111.8(1) Å3, Z=4, Rf/Rw=0.031/0.044). The organic-inorganic layered perovskite structure features well-ordered sheets of corner-sharing distorted PbCl6 octahedra separated by bilayers of phenethylammonium cations. Tilting and rotation of the PbCl6 octahedra within the perovskite sheets, coupled with organic cation ordering, leads to the unusual in-sheet 2ap×2ap superstructure, where ap is the lattice constant for the ideal cubic perovskite.
Viscoelastic properties of cationic starch adsorbed on quartz studied by QCM-D.
Tammelin, Tekla; Merta, Juha; Johansson, Leena-Sisko; Stenius, Per
2004-12-07
The adsorption and viscoelastic properties of layers of a cationic polyelectrolyte (cationic starch, CS, with 2-hydroxy-3-trimethylammoniumchloride as the substituent) adsorbed from aqueous solutions (pH 7.5, added NaCl 0, 1, 100, and 500 mM) on silica were studied with a quartz crystal microbalance with dissipation (QCM-D). Three different starches were investigated (weight-average molecular weights M(w) approximately 8.7 x 10(5) and 4.5 x 10(5) with degree of substitution DS = 0.75 and M(w) approximately 8.8 x 10(5) with DS = 0.2). At low ionic strength, the adsorbed layers are thin and rigid and the amount adsorbed can be calculated using the Sauerbrey equation. When the ionic strength is increased, significant changes take place in the amount of adsorbed CS and the viscoelasticity of the adsorbed layer. These changes were analyzed assuming that the layer can be described as a Voigt element on a rigid surface in contact with purely viscous solvent. It was found that CS with low charge density forms a thicker and more mobile layer with higher viscosity and elasticity than CS with high charge density. The polymers adsorbed on the silica even when the ionic strength was so high that electrostatic interactions were effectively screened. At this high ionic strength, it was possible to study the effect of molecular weight and molecular weight distribution of the CS on the properties of the adsorbed film. Increasing the molecular weight of CS resulted in a larger hydrodynamic thickness. CS with a narrow molecular weight distribution formed a more compact and rigid layer than broadly distributed CS, presumably due to the better packing of the molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matvejeff, M., E-mail: mikko.matvejeff@picosun.com; Department of Chemistry, Aalto University, Kemistintie 1, 02150 Espoo; Ahvenniemi, E.
We study magnetic coupling between hole-doped manganite layers separated by either a perovskite or a rock-salt barrier of variable thickness. Both the type and the quality of the interface have a strong impact on the minimum critical barrier thickness where the manganite layers become magnetically decoupled. A rock-salt barrier layer only 1 unit cell (0.5 nm) thick remains insulating and is able to magnetically de-couple the electrode layers. The technique can therefore be used for developing high-performance planar oxide electronic devices such as magnetic tunnel junctions and quantum well structures that depend on magnetically and electronically sharp heterointerfaces.
Note: Measurement of the cathode layer thickness in glow discharges with a Langmuir probe
NASA Astrophysics Data System (ADS)
Wang, Hao; Hou, Xinyu; Zou, Xiaobing; Luo, Haiyun; Wang, Xinxin
2018-06-01
A method using a Langmuir probe to determine the thickness of the cathode layer for a glow discharge is developed. The method is based on the phenomenon that the curve of the voltage-current characteristics changes in shape as the Langmuir probe moves from the positive column into the cathode layer. The method was used to measure the thicknesses of the cathode layer in the normal glow discharges of argon and air with the cathodes made from stainless steel and aluminum. The results are in good agreement with those given in a book of gas discharge.
Drits, Victor A.; Eberl, Dennis D.; Środoń, Jan
1998-01-01
A modified version of the Bertaut-Warren-Averbach (BWA) technique (Bertaut 1949, 1950; Warren and Averbach 1950) has been developed to measure coherent scattering domain (CSD) sizes and strains in minerals by analysis of X-ray diffraction (XRD) data. This method is used to measure CSD thickness distributions for calculated and experimental XRD patterns of illites and illite-smectites (I-S). The method almost exactly recovers CSD thickness distributions for calculated illite XRD patterns. Natural I-S samples contain swelling layers that lead to nonperiodic structures in the c* direction and to XRD peaks that are broadened and made asymmetric by mixed layering. Therefore, these peaks cannot be analyzed by the BWA method. These difficulties are overcome by K-saturation and heating prior to X-ray analysis in order to form 10-Å periodic structures. BWA analysis yields the thickness distribution of mixed-layer crystals (coherently diffracting stacks of fundamental illite particles). For most I-S samples, CSD thickness distributions can be approximated by lognormal functions. Mixed-layer crystal mean thickness and expandability then can be used to calculate fundamental illite particle mean thickness. Analyses of the dehydrated, K-saturated samples indicate that basal XRD reflections are broadened by symmetrical strain that may be related to local variations in smectite interlayers caused by dehydration, and that the standard deviation of the strain increases regularly with expandability. The 001 and 002 reflections are affected only slightly by this strain and therefore are suited for CSD thickness analysis. Mean mixed-layer crystal thicknesses for dehydrated I-S measured by the BWA method are very close to those measured by an integral peak width method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsueh, Chun-Hway; Thompson, G. A.; Jadaan, Osama M.
Objectives. The purpose of this study was to analyze the stress distribution through the thickness of bilayered dental ceramics subjected to both thermal stresses and ring-on-ring tests and to systematically examine how the individual layer thickness influences this stress distribution and the failure origin. Methods. Ring-on-ring tests were performed on In-Ceram Alumina/Vitadur Alpha porcelain bilayered disks with porcelain in the tensile side, and In-Ceram Alumina to porcelain layer thickness ratios of 1:2, 1:1, and 2:1 were used to characterize the failure origins as either surface or interface. Based on the thermomechanical properties and thickness of each layer, the cooling temperaturemore » from glass transition temperature, and the ring-on-ring loading configuration, the stress distribution through the thickness of the bilayer was calculated using closed-form solutions. Finite element analyses were also performed to verify the analytical results. Results. The calculated stress distributions showed that the location of maximum tension during testing shifted from the porcelain surface to the In-Ceram Alumina/porcelain interface when the relative layer thickness ratio changed from 1:2 to 1:1 and to 2:1. This trend is in agreement with the experimental observations of the failure origins. Significance. For bilayered dental ceramics subjected to ring-on-ring tests, the location of maximum tension can shift from the surface to the interface depending upon the layer thickness ratio. The closed-form solutions for bilayers subjected to both thermal stresses and ring-on-ring tests are explicitly formulated which allow the biaxial strength of the bilayer to be evaluated.« less
NASA Astrophysics Data System (ADS)
Estep, J. D.; Reece, R.; Kardell, D. A.; Christeson, G. L.; Carlson, R. L.
2017-12-01
Seismic layer 2A, the uppermost igneous portion of oceanic crust, is commonly used to refer to the seismic velocities of upper crust that are bounded below by a steep vertical velocity gradient. Layer 2A velocities are known to increase with crustal age, from 2.5 km/s in crust <1 Ma to 4.5-5 km/s in crust >15 Ma. Thickness of layer 2A has been shown to increase by a factor of 2 within 1 Ma at fast spreading ridges and then remain relatively constant, while layer 2A maintains a fairly consistent thickness, irrespective of age, at slow-intermediate spreading ridges. Layer 2A thickness and velocity evolution studies to date have been largely focused on young oceanic crust very proximal to a spreading center with little investigation of changes (or lack thereof) that occur at crustal ages >10 Ma. We utilize a multichannel seismic dataset collected at 30° S in the western South Atlantic that continuously images 0 - 70 Ma oceanic crust along a single flowline generated at the slow-intermediate spreading Mid-Atlantic Ridge. We follow the methods of previous studies by processing the data to image the layer 2A event, which is then used for calculating thickness. 1D travel time forward modeling at regularly spaced age intervals across the transect provides for the conversion of time to depth thickness, and for determining the evolution of velocities with age. Our results show layer 2A in 20 Ma crust is roughly double the thickness of that in crust 0-5 Ma (830 vs. 440 m), but thickness does not appear to change beyond 20 Ma. The layer 2A event is readily observable in crust 0-50 Ma, is nearly completely absent in crust 50-65 Ma, and then reappears with anomalously high amplitude and lateral continuity in crust 65-70 Ma. Our results suggest that layer 2A thickens with age at the slow-intermediate spreading southern Mid-Atlantic Ridge, and that layer 2A either continues to evolve at the older crustal ages, well beyond the expected 10-15 Ma "mature age", or that external factors have altered the crust at 65-70 Ma. The proximity and thermal influence of the Rio Grande Rise might explain the anomalous appearance of the layer 2A event at the older ages of crust for the study.
Reduced Cu(InGa)Se 2 Thickness in Solar Cells Using a Superstrate Configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafarman, William N.
This project by the Institute of Energy Conversion (IEC) and the Department of Electrical and Computer Engineering at the University of Delaware sought to develop the technology and underlying science to enable reduced cost of Cu(InGa)Se 2 manufacturing by reducing the thickness of the Cu(InGa)Se 2 absorber layer by half compared to typical production. The approach to achieve this was to use the superstrate cell configuration in which light is incident on the cell through the glass. This structure facilitates optical enhancement approaches needed to achieve high efficiency with Cu(InGa)Se 2 thicknesses less than 1 µm. The primary objective wasmore » to demonstrate a Cu(InGa)Se 2 cell with absorber thickness 0.5 - 0.7 µm and 17% efficiency, along with a quantitative loss analysis to define a pathway to 20% efficiency. Additional objectives were the development of stable TCO and buffer layers or contact layers to withstand the Cu(InGa)Se 2 deposition temperature and of advanced optical enhancement methods. The underlying fundamental science needed to effectively transition these outcomes to large scale was addressed by extensive materials and device characterization and by development of comprehensive optical models. Two different superstrate configurations have been investigated. A frontwall cell is illuminated through the glass to the primary front junction of the device. This configuration has been used for previous efforts on superstrate Cu(InGa)Se 2 but performance has been limited by interdiffusion or reaction with CdS or other buffer layers. In this project, several approaches to overcome these limitations were explored using CdS, ZnO and ZnSe buffer layers. In each case, mechanisms that limit device performance were identified using detailed characterization of the materials and junctions. Due to the junction formation difficulties, efforts were concentrated on a new backwall configuration in which light is incident through the substrate into the back of the absorber layer. The primary junction is then formed after Cu(InGa)Se 2 deposition. This allows the potential benefits of superstrate cells for optical enhancement while maintaining processing advantages of the substrate configuration and avoiding the harmful effects of high temperature deposition on p-n junction formation. Backwall devices have outperformed substrate cells at absorber thicknesses of 0.1-0.5 µm through enhanced JSC due to easy incorporation of a Ag reflector and, with light incident on the absorber, the elimination of parasitic absorption in the CdS buffer. An efficiency of 9.7% has been achieved for a backwall Cu(InGa)Se 2 device with absorber thickness ~0.4 μm. A critical achievement that enabled implementation of the backwall cell was the development of a transparent back contact using MoO 3 or WO 3. Processes for controlled deposition of each material by reactive rf sputtering from metal targets were developed. These contacts have wide bandgaps making them well-suited for application as contacts for backwall devices as well as potential use in bifacial cells and as the top cell of tandem CuInSe 2-based devices. Optical enhancement will be critical for further improvements. Wet chemical texturing of ZnO films has been developed for a simple, low cost light-trapping scheme for backwall superstrate devices to enhance long wavelength quantum efficiency. An aqueous oxalic acid etch was developed and found to strongly texture sputtered ZnO with high haze ≈ 0.9 observed across the whole spectrum. And finally, advanced optical models have been developed to assist the characterization and optimization of Cu(InGa)Se 2 cells with thin absorbers« less
Wind and boundary layers in Rayleigh-Bénard convection. II. Boundary layer character and scaling.
van Reeuwijk, Maarten; Jonker, Harm J J; Hanjalić, Kemo
2008-03-01
The scaling of the kinematic boundary layer thickness lambda(u) and the friction factor C(f) at the top and bottom walls of Rayleigh-Bénard convection is studied by direct numerical simulation (DNS). By a detailed analysis of the friction factor, a new parameterisation for C(f) and lambda(u) is proposed. The simulations were made of an L/H=4 aspect-ratio domain with periodic lateral boundary conditions at Ra=(10(5), 10(6), 10(7), 10(8)) and Pr=1. The continuous spectrum, as well as significant forcing due to Reynolds stresses, clearly indicates a turbulent character of the boundary layer, while viscous effects cannot be neglected, judging from the scaling of classical integral boundary layer parameters with Reynolds number. Using a conceptual wind model, we find that the friction factor C(f) should scale proportionally to the thermal boundary layer thickness as C(f) proportional variant lambda(Theta)/H, while the kinetic boundary layer thickness lambda(u) scales inversely proportionally to the thermal boundary layer thickness and wind Reynolds number lambda(u)/H proportional variant (lambda(Theta)/H)(-1)Re(-1). The predicted trends for C(f) and lambda(u) are in agreement with DNS results.
NASA Astrophysics Data System (ADS)
Chadel, Meriem; Chadel, Asma; Moustafa Bouzaki, Mohammed; Aillerie, Michel; Benyoucef, Boumediene; Charles, Jean-Pierre
2017-11-01
Performances of ZnO/ZnS/CZTSSe polycrystalline thin film solar cells (Copper Zinc Tin Sulphur Selenium-solar cell) were simulated for different thicknesses of the absorber and ZnS buffer layers. Simulations were performed with SCAPS (Solar Cell Capacitance Simulator) software, starting with actual parameters available from industrial data for commercial cells processing. The influences of the thickness of the various layers in the structure of the solar cell and the gap profile of the CZTSSe absorber layer on the performance of the solar cell were studied in detail. Through considerations of recent works, we discuss possible routes to enhance the performance of CZTSSe solar cells towards a higher efficiency level. Thus, we found that for one specific thickness of the absorber layer, the efficiency of the CZTSSe solar cell can be increased when a ZnS layer replaces the usual CdS buffer layer. On the other hand, the efficiency of the solar cell can be also improved when the absorber layer presents a grad-gap. In this case, the maximum efficiency for the CZTSSe cell was found equal to 13.73%.
[The role of BCP in electroluminescence of multilayer organic light-emitting devices].
Deng, Zhao-Ru; Yang, Sheng-Yi; Lou, Zhi-Dong; Meng, Ling-Chuan
2009-03-01
As a hole-blocking layer, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) is usually used in blue and white light electroluminescent devices. The ability of blocking holes of BCP layer depends on its thickness, and basically holes can tunnel through thin BCP layer. In order to know the role of BCP layer in electroluminescence (EL) of multilayer organic light-emitting diodes (OLEDs), in the present paper, the authors designed a multilayer OLED ITO/NPB/BCP/Alq3 : DCJTB/Alq3/Al and investigated the influence of thickness of BCP on the EL spectra of multilayer OLEDs at different applied voltages. The experimental data show that thin BCP layer can block holes partially and tune the energy transfer between different emissive layers, and in this way, it is easy to obtain white emission, but its EL spectra will change with the applied voltages. The EL spectra of multilayer device will remain relatively stable when BCP layer is thick enough, and the holes can hardly tunnel through when the thickness of BCP layer is more than 15 nm. Furthermore, the stability of EL spectra of the multilayer OLED at different applied voltages was discussed.
Kashiwagi, Kenji; Ito, Keisuke; Haniuda, Hiroki; Ohtsubo, Shinya; Takeoka, Shinji
2013-08-19
We investigated the IOP reduction and safety of latanoprost-loaded biodegradable nanosheet (LBNS) as a new antiglaucoma drug delivery system (DDS). We fabricated a 40 nm thick multilayered biodegradable nanosheet that is composed of chitosan and sodium alginate by means of the layer-by-layer method. Latanoprost isopropyl ester was loaded on the nanosheet to prepare 25, 2.5, and 0.25 μg/cm(2) LBNSs. A nanosheet without latanoprost isopropyl ester (NS) and 0.005% latanoprost ophthalmic solution were prepared as controls. LBNSs or NS was applied to rat cornea, and IOP was monitored for 9 days. Local adverse effects and eye scratching movement also were investigated. The amount of latanoprost acid in aqueous humor and was measured in rabbits. The 0.25 μg/cm(2) LBNS and 0.005% latanoprost ophthalmic solution showed significant IOP reduction only for 1 day after application, whereas the IOP reduction rates of 2.5 μg/cm(2) LBNS at 1, 2, 4, 7, and 9 days after application were -27.0% ± 14.8%, -22.0% ± 16.7%, -25.8% ± 18.0%, -22.7% ± 20.9%, and -6.6% ± 17.0%, respectively. The 25 μg/cm(2) LBNS reduced IOP in a similar manner. The 25 μg/cm(2) LBNS induced transient hyperemia, whereas the 0.25 and 2.5 μg/cm(2) LBNSs did not exert any local adverse effects. The eye scratching movement test showed that application of 25 μg/cm(2) LBNS did not cause any irritation of the eye. Latanoprost acid was detected in aqueous humor up to 6 days after application of 2.5 μg/cm(2) LBNS. LBNS may be used as a novel antiglaucoma DDS.
On determining dead layer and detector thicknesses for a position-sensitive silicon detector
NASA Astrophysics Data System (ADS)
Manfredi, J.; Lee, Jenny; Lynch, W. G.; Niu, C. Y.; Tsang, M. B.; Anderson, C.; Barney, J.; Brown, K. W.; Chajecki, Z.; Chan, K. P.; Chen, G.; Estee, J.; Li, Z.; Pruitt, C.; Rogers, A. M.; Sanetullaev, A.; Setiawan, H.; Showalter, R.; Tsang, C. Y.; Winkelbauer, J. R.; Xiao, Z.; Xu, Z.
2018-04-01
In this work, two particular properties of the position-sensitive, thick silicon detectors (known as the "E" detectors) in the High Resolution Array (HiRA) are investigated: the thickness of the dead layer on the front of the detector, and the overall thickness of the detector itself. The dead layer thickness for each E detector in HiRA is extracted using a measurement of alpha particles emitted from a 212Pb pin source placed close to the detector surface. This procedure also allows for energy calibrations of the E detectors, which are otherwise inaccessible for alpha source calibration as each one is sandwiched between two other detectors. The E detector thickness is obtained from a combination of elastically scattered protons and an energy-loss calculation method. Results from these analyses agree with values provided by the manufacturer.
The Effect of the Thickness of the Sensitive Layer on the Performance of the Accumulating NOx Sensor
Groß, Andrea; Richter, Miriam; Kubinski, David J.; Visser, Jacobus H.; Moos, Ralf
2012-01-01
A novel and promising method to measure low levels of NOx utilizes the accumulating sensor principle. During an integration cycle, incoming NOx molecules are stored in a sensitive layer based on an automotive lean NOx trap (LNT) material that changes its electrical resistivity proportional to the amount of stored NOx, making the sensor suitable for long-term detection of low levels of NOx. In this study, the influence of the thickness of the sensitive layer, prepared by multiple screen-printing, is investigated. All samples show good accumulating sensing properties for both NO and NO2. In accordance to a simplified model, the base resistance of the sensitive layer and the sensitivity to NOx decrease with increasing thickness. Contrarily, the sensor response time increases. The linear measurement range of all samples ends at a sensor response of about 30% resulting in an increase of the linearly detectable amount with the thickness. Hence, the variation of the thickness of the sensitive layer is a powerful tool to adapt the linear measurement range (proportional to the thickness) as well as the sensitivity (proportional to the inverse thickness) to the application requirements. Calculations combining the sensor model with the measurement results indicate that for operation in the linear range, about 3% of the LNT material is converted to nitrate.
NASA Technical Reports Server (NTRS)
Lesley, Michael W.; Davis, Lawrence E.; Moulder, John F.; Carlson, Brad A.
1995-01-01
The role of surface-sensitive chemical analysis (ESCA, AES, and SIMS) in a study to select a process to replace 1, 1, 1-trichloroethane (TCA) vapor degreasing as a steel and aluminum bonding surface preparation method is described. The effort was primarily concerned with spray-in-air cleaning processes involving aqueous alkaline and semi-aqueous cleaners and a contamination sensitive epoxy-to-metal bondline. While all five cleaners tested produced bonding strength results equal to or better than those produced by vapor degreasing, the aqueous alkaline cleaners yielded results which were superior to those produced by the semi-aqueous cleaners. The main reason for the enhanced performance appears to be a silicate layer left behind by the aqueous alkaline cleaners. The silicate layer increases the polarity of the surface and enhances epoxy-to-metal bonding. On the other hand, one of the semi-aqueous cleaners left a nonpolar carbonaceous residue which appeared to have a negative effect on epoxy-to-metal bonding. Differences in cleaning efficiency between cleaners/processes were also identified. These differences in surface chemistry, which were sufficient to affect bonding, were not detected by conventional chemical analysis techniques.
Zucchiatti, Ilaria; Cicinelli, Maria V; Parodi, Maurizio Battaglia; Pierro, Luisa; Gagliardi, Marco; Accardo, Agostino; Bandello, Francesco
2017-07-01
To analyze the changes in ganglion cell complex and peripapillary retinal nerve fiber layer thickness, in central macular thickness and choroidal thickness on spectral domain optical coherence tomography in patients with neovascular age-related macular degeneration treated with intravitreal ranibizumab injections. All consecutive patients with untreated neovascular age-related macular degeneration received loading phase of three monthly intravitreal ranibizumab, followed by retreatments on a pro re nata protocol for 12 months. changes in ganglion cell complex and retinal nerve fiber layer at the end of follow-up. Secondary outcome: changes in best-corrected visual acuity, central macular thickness, and choroidal thickness at the end of follow-up. Choroidal thickness was measured at 500 μm, 1000 μm, and 1,500 μm intervals nasally, temporally, superiorly, and inferiorly to the fovea, respectively, on horizontal and vertical line scans centered on the fovea. Twenty-four eyes were included. Ganglion cell complex and peripapillary retinal nerve fiber layer thickness did not show statistically significant changes through 12 months (55.6 ± 18.5 and 81.9 ± 9.9 μm at baseline, 52.7 ± 19.3 and 84.6 ± 15.5 μm at month 12, P > 0.05). Central macular thickness showed progressive decrease from baseline to month 12, with maximum reduction at month 3 (P < 0.001). Statistically significant reduction in choroidal thickness was registered in the nasal 500, 1000, and 1,500 μm from the fovea, corresponding to the papillomacular region (from 169.6 ± 45.3 to 153.9 ± 46.9, P < 0.001). Intravitreal ranibizumab injections did not affect retinal nerve fiber layer and ganglion cell complex thickness in 1-year follow-up. Choroidal thickness in papillomacular area and central macular thickness was significantly reduced at the end of treatment. Further studies, with larger sample, longer follow-up, and greater number of injections, are warranted.
Tensile behavior and flow stress anisotropy of accumulative roll bonded Cu-Nb nanolaminates
Nizolek, Thomas; Beyerlein, Irene J.; Mara, Nathan A.; ...
2016-02-01
The flow stress, ductility, and in-plane anisotropy are evaluated for bulk accumulative roll bonded copper-niobium nanolaminates with layer thicknesses ranging from 1.8 μm to 15 nm. Uniaxial tensile tests conducted parallel to the rolling direction and transverse direction demonstrate that ductility generally decreases with decreasing layer thickness; however, at 30 nm, both high strengths (1200 MPa) and significant ductility (8%) are achieved. The yield strength increases monotonically with decreasing layer thickness, consistent with the Hall-Petch relationship, and significant in-plane flow stress anisotropy is observed. As a result, Taylor polycrystal modeling is used to demonstrate that crystallographic texture is responsible formore » the in-plane anisotropy and that the effects of texture dominate even at nanoscale layer thicknesses.« less
NASA Astrophysics Data System (ADS)
Ilahi, Bouraoui; Al-Saigh, Reem; Salem, Bassem
2017-07-01
The effects of the wetting layer thickness (t WL) on the electronic properties of direct band gap type-I strained dome shaped Ge(1-x)Sn x quantum dot (QD) embedded in Ge matrix is numerically studied. The emission wavelength and the energy difference between S and P electron levels have been evaluated as a function of t WL for different QD size and composition with constant height to diameter ratio. The emission wavelength is found to be red shifted by increasing the wetting layer thickness, with smaller size QD being more sensitive to the variation of t WL. Furthermore, the minimum Sn composition required to fit the directness criteria is found to reduce by increasing the wetting layer thickness.
Theoretical study of ZnS/CdS bi-layer for thin-film CdTe solar cell
NASA Astrophysics Data System (ADS)
Mohamed, H. A.; Mohamed, A. S.; Ali, H. M.
2018-05-01
The performance of CdTe solar cells is strongly limited by the thickness of CdS window layer. A higher short-circuit current density might be achieved by decreasing the thickness of CdS layer as a result of reducing the absorption losses that take place in this layer. However, it is difficult to obtain uniform and pin-hole free CdS layers thinner than 50 nm. This problem can be solved through increasing the band gap of the window layer by adding a wide band gap semiconductor such as ZnS. In this work, bi-layer ZnS/CdS film was studied as an improved window layer of ITO/ZnS/CdS/CdTe solar cell. The total thickness of ZnS/CdS layer was taken about 60 nm. The effect of optical losses due to reflection at different interfaces in the cell and absorption in ITO, ZnS, CdS as well as the recombination loss have been studied. Finally, the effects of the recombination losses in the space-charge region and the reflectivity from the back contact were taken into accounts. The results revealed that the optical losses of 23% were achieved at 60 nm thickness of CdS and theses losses minimized to 18% when ZnS layer of 30 nm thickness was added to CdS layer. The minimum optical and recombination losses of about 26% were obtained at 1 ns of electron life-time and ∼0.4 μm width of the space-charge region. The maximum efficiency of 18.5% was achieved for ITO/CdS/CdTe cell and the efficiency increased up to 20% for ITO/ZnS/CdS/CdTe cell.
Corrosion Behavior of Aqua-Blasted and Laser-Engraved Type 316L Stainless Steel
NASA Astrophysics Data System (ADS)
Krawczyk, B.; Cook, P.; Hobbs, J.; Engelberg, D. L.
2017-12-01
The effect of aqua blasting and laser engraving on surface microstructure development, residual stress and corrosion resistance of type 316L stainless steel has been investigated. Aqua blasting resulted in a deformed near-surface microstructure containing compressive residual stresses. Subsequent laser engraving produced a surface layer with tensile residual stresses reaching to a depth of 200 microns. Changes of surface roughness topography were accompanied by the development of a thick oxide/hydroxide film after laser engraving. The atmospheric corrosion behavior of all surfaces with MgCl2-laden droplets was compared to their electrochemical response in 1M NaCl and 0.7 M HCl aqueous solutions. The measured total volume loss after atmospheric corrosion testing was similar for all investigated surface conditions. Laser-engraved surface exhibited the smallest number of corrosion sites, but the largest mean corrosion depth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafrir, Shai N.; Romanofsky, Henry J.; Skarlinski, Michael
2009-12-10
We report on magnetorheological finishing (MRF) spotting experiments performed on glasses and ceramics using a zirconia-coated carbonyl-iron (CI)-particle-based magnetorheological (MR) fluid. The zirconia-coated magnetic CI particles were prepared via sol-gel synthesis in kilogram quantities. The coating layer was {approx}50-100 nm thick, faceted in surface structure, and well adhered. Coated particles showed long-term stability against aqueous corrosion. ''Free'' nanocrystalline zirconia polishing abrasives were cogenerated in the coating process, resulting in an abrasive-charged powder for MRF. A viable MR fluid was prepared simply by adding water. Spot polishing tests were performed on a variety of optical glasses and ceramics over a periodmore » of nearly three weeks with no signs of MR fluid degradation or corrosion. Stable material removal rates and smooth surfaces inside spots were obtained.« less
NASA Astrophysics Data System (ADS)
Gowa Oyama, Tomoko; Barba, Bin Jeremiah Duenas; Hosaka, Yuji; Taguchi, Mitsumasa
2018-05-01
We propose a single-step fabrication method for polydimethylsiloxane (PDMS) cell-adhesive microwell arrays with long-lasting (>10 months in aqueous medium) hydrophilic inner surfaces without the need for any chemical treatment such as development. Irradiation of a PDMS film with a low-energy electron beam (55 kV) in air generated a ˜40-μm-thick hydrophilic silica-like layer on the PDMS surface, which was the key to the prolonged hydrophilicity. Moreover, the concomitant compaction of the irradiated area produced dozens-of-micrometers-deep concave wells. The hydrophilic microwells generated on the hydrophobic non-irradiated PDMS surface easily trapped nano-/picoliter droplets and cells/single-cells. In addition, the surfaces of the microwells offered stable and favorable cell-adherent environments. The method presented here can realize stable and reliable lab-on-chips and cater to the expanding demand in biological and medical applications.
The correlation of blue shift of photoluminescence and morphology of silicon nanoporous
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Jumaili, Batool E. B., E-mail: batooleneaze@gmail.com; Department of Physics, Anbar University; Talib, Zainal A.
Porous silicon with diameters ranging from 6.41 to 7.12 nm were synthesized via electrochemical etching by varied anodization current density in ethanoic solutions containing aqueous hydrofluoric acid up to 65 mA/cm{sup 2}.The luminescence properties of the nanoporous at room temperature were analyzed via photoluminescence spectroscopy. Photoluminescence PL spectra exhibit a broad emission band in the range of 360-700 nm photon energy. The PL spectrum has a blue shift in varied anodization current density; the blue shift incremented as the existing of anodization although the intensity decreased. The current blue shift is owning to alteration of silicon nanocrystal structure at themore » superficies. The superficial morphology of the PS layers consists of unified and orderly distribution of nanocrystalline Si structures, have high porosity around (93.75%) and high thickness 39.52 µm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, M.L.; Carroll, H.A.
1986-07-01
The handbook describes basic types of foams that may be used to control vapor hazards from spilled volatile chemicals. It provides a table to be used by spill-response personnel to choose an appropriate foam based on the type of chemical spill. Six general types of foams, surfactant (syndet) foams, aqueous film forming foams (AFFF), alcohol type or polar solvent type foams (ATF), and special foams such as Hazmat NF no. 1 which was developed especially for alkaline spills. The handbook provides the basis for spill responders to evaluate and select a foam for vapor control by using the test methodsmore » presented or by considering manufacturers specifications for foam-expansion ratios and quarter drainage times. The responder is encouraged to maximize the effectiveness of a foam by trying different nozzles, distances of applications, and thicknesses of the foam layers.« less
Sedimentary Deposits within Ius Chasma
2015-07-15
Sedimentary deposits are common within Valles Marineris. Most larger chasmata contain kilometer-thick light-toned layered deposits composed of sulfates. However, some of the chasmata, like Ius Chasma shown in this image from NASA Mars Reconnaissance Orbiter, lack these deposits or have much thinner deposits. The light-toned deposits in Ius Chasma are observed both along the floor and inner wallrock materials. Some of the light-toned deposits appear to post-date formation of the chasma floor, whereas other deposits appear to lie beneath wallrock materials, indicating they are older. By examining the stratigraphy using digital terrain models and 3D images, it should be possible to decipher the relative ages of the different geologic units. CRISM data may also provide insight into the mineralogy, which will tell scientists about the aqueous conditions that emplaced the light-toned deposits. http://photojournal.jpl.nasa.gov/catalog/PIA19855
Soler García, A; Padilla Parrado, F; Figueroa-Ortiz, L C; González Gómez, A; García-Ben, A; García-Ben, E; García-Campos, J M
2016-01-01
Quantitative assessment of macular and nerve fibre layer thickness in multiple sclerosis patients with regard to expanded disability status scale (EDSS) and presence or absence of previous optic neuritis episodes. We recruited 62 patients with multiple sclerosis (53 relapsing-remitting and 9 secondary progressive) and 12 disease-free controls. All patients underwent an ophthalmological examination, including quantitative analysis of the nerve fibre layer and macular thickness using optical coherence tomography. Patients were classified according to EDSS as A (lower than 1.5), B (between 1.5 and 3.5), and C (above 3.5). Mean nerve fibre layer thickness in control, A, B, and C groups was 103.35±12.62, 99.04±14.35, 93.59±15.41, and 87.36±18.75μm respectively, with statistically significant differences (P<.05). In patients with no history of optic neuritis, history of episodes in the last 3 to 6 months, or history longer than 6 months, mean nerve fibre layer thickness was 99.25±13.71, 93.92±13.30 and 80.07±15.91μm respectively; differences were significant (P<.05). Mean macular thickness in control, A, B, and C groups was 220.01±12.07, 217.78±20.02, 217.68±20.77, and 219.04±24.26μm respectively. Differences were not statistically significant. The mean retinal nerve fibre layer thickness in multiple sclerosis patients is related to the EDSS level. Patients with previous optic neuritis episodes have a thinner retinal nerve fibre layer than patients with no history of these episodes. Mean macular thickness is not correlated to EDSS level. Copyright © 2014 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Strain relaxation of thick (11–22) semipolar InGaN layer for long wavelength nitride-based device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jaehwan; Min, Daehong; Jang, Jongjin
2014-10-28
In this study, the properties of thick stress-relaxed (11–22) semipolar InGaN layers were investigated. Owing to the inclination of growth orientation, misfit dislocations (MDs) occurred at the heterointerface when the strain state of the (11–22) semipolar InGaN layers reached the critical point. We found that unlike InGaN layers based on polar and nonpolar growth orientations, the surface morphologies of the stress-relaxed (11–22) semipolar InGaN layers did not differ from each other and were similar to the morphology of the underlying GaN layer. In addition, misfit strain across the whole InGaN layer was gradually relaxed by MD formation at the heterointerface.more » To minimize the effect of surface roughness and defects in GaN layers on the InGaN layer, we conducted further investigation on a thick (11–22) semipolar InGaN layer grown on an epitaxial lateral overgrown GaN template. We found that the lateral indium composition across the whole stress-relaxed InGaN layer was almost uniform. Therefore, thick stress-relaxed (11–22) semipolar InGaN layers are suitable candidates for use as underlying layers in long-wavelength devices, as they can be used to control strain accumulation in the heterostructure active region without additional influence of surface roughness.« less
Niu, Zhi-Guang; Lv, Zhi-Wei; Zhang, Ying; Cui, Zhen-Zhen
2016-02-01
In this paper, the laboratory-scale permeable pavement layers, including a surface permeable brick layer, coarse sand bedding layers (thicknesses = 2, 3.5, and 5 cm), and single-graded gravel sub-base layers (thicknesses = 15, 20, 25, and 30 cm), were built to evaluate stormwater infiltration and surface runoff pollution reduction performance. And, the infiltration rate (I) and concentrations of suspended solids (SS), total phosphorus (TP), chemical oxygen demand (COD), ammonia nitrogen, and total nitrogen (TN) were measured under the simulated rainfall intensity of 72.4 mm/h over duration of 60 min. The results indicate that the thickness factor primarily influences the infiltration rate and pollutant removal rate. The highest steady infiltration rate was for surface brick layer 51.0 mm/h, for 5-cm sand bedding layer 32.3 mm/h, and for 30-cm gravel sub-base layer 42.3 mm/h, respectively. The SS average removal rate was relative higher (79.8 ∼ 98.6 %) for all layers due to the interception and filtration. The average removal rates of TP and COD were for surface layer 71.2 and 24.1 %, for 5-cm bedding layer 54.8 and 9.0 %, and for 20-cm sub-base layer 72.2 and 26.1 %. Ammonia nitrogen and TN cannot steadily be removed by layers according to the experiment results. The optimal thickness of bedding sands was 5 cm, and that of sub-base gravels was 20 ∼ 30 cm.
Current-induced switching in CoGa/L10 MnGa/(CoGa)/Pt structure with different thicknesses
NASA Astrophysics Data System (ADS)
Ranjbar, R.; Suzuki, K. Z.; Mizukami, S.
2018-06-01
In this paper, we present the results of our study into current-induced spin-orbit torque (SOT) switching in perpendicularly magnetized CoGa/MnGa/Pt trilayers with different thicknesses of MnGa and Pt. The SOT switching was observed for all films that undergo Joule heating. We also investigate SOT switching in the bottom (CoGa)/MnGa/top(CoGa/Pt) films with different top layers. Although both the bottom and top layers contribute to the SOT, the relative magnitudes of the switching current densities JC in the top and bottom layers indicate that the SOT is dominant in the top layer. The JC as a function of thickness is discussed in terms of the magnetic properties and resistivity. Experimental data suggested that the MnGa thickness dependence of JC may originate from the perpendicular magnetic anisotropy thickness product Kueff t value. On the other hand, JC as a function of the Pt thickness shows weak dependence. This may be attributed to the slight change of spin-Hall angle θSH value with different thicknesses of Pt, when we assumed that the SOT switching is primarily due to the spin-Hall effect.
Wan, Yi; Jin, Sihua; Ma, Chendong; Wang, Zhicheng; Fang, Qi; Jiang, Runshen
2017-12-22
Eggs with a much higher proportion of thick albumen are preferred in the layer industry, as they are favoured by consumers. However, the genetic factors affecting the thick egg albumen trait have not been elucidated. Using RNA sequencing, we explored the magnum transcriptome in 9 Rhode Island white layers: four layers with phenotypes of extremely high ratios of thick to thin albumen (high thick albumen, HTA) and five with extremely low ratios (low thick albumen, LTA). A total of 220 genes were differentially expressed, among which 150 genes were up-regulated and 70 were down-regulated in the HTA group compared with the LTA group. Gene Ontology (GO) analysis revealed that the up-regulated genes in HTA were mainly involved in a wide range of regulatory functions. In addition, a large number of these genes were related to glycosphingolipid biosynthesis, focal adhesion, ECM-receptor interactions and cytokine-cytokine receptor interactions. Based on functional analysis, ST3GAL4, FUT4, ITGA2, SDC3, PRLR, CDH4 and GALNT9 were identified as promising candidate genes for thick albumen synthesis and metabolism during egg formation. These results provide new insights into the molecular mechanisms of egg albumen traits and may contribute to future breeding strategies that optimise the proportion of thick egg albumen.
Transfer Kinetics at the Aqueous/Non-Aqueous Phase Liquid Interface. A Statistical Mechanic Approach
NASA Astrophysics Data System (ADS)
Doss, S. K.; Ezzedine, S.; Ezzedine, S.; Ziagos, J. P.; Hoffman, F.; Gelinas, R. J.
2001-05-01
Many modeling efforts in the literature use a first-order, linear-driving-force model to represent the chemical dissolution process at the non-aqueous/aqueous phase liquid (NAPL/APL) interface. In other words, NAPL to APL phase flux is assumed to be equal to the difference between the solubility limit and the "bulk aqueous solution" concentrations times a mass transfer coefficient. Under such assumptions, a few questions are raised: where, in relation to a region of pure NAPL, does the "bulk aqueous solution" regime begin and how does it behave? The answers are assumed to be associated with an arbitrary, predetermined boundary layer, which separates the NAPL from the surrounding solution. The mass transfer rate is considered to be, primarily, limited by diffusion of the component through the boundary layer. In fact, compositional models of interphase mass transfer usually assume that a local equilibrium is reached between phases. Representing mass flux as a rate-limiting process is equivalent to assuming diffusion through a stationary boundary layer with an instantaneous local equilibrium and linear concentration profile. Some environmental researchers have enjoyed success explaining their data using chemical engineering-based correlations. Correlations are strongly dependent on the experimental conditions employed. A universally applicable theory for NAPL dissolution in natural systems does not exist. These correlations are usually expressed in terms of the modified Sherwood number as a function of Reynolds, Peclet, and Schmidt numbers. The Sherwood number may be interpreted as the ratio between the grain size and the thickness of the Nernst stagnant film. In the present study, we show that transfer kinetics at the NAPL/APL interface under equilibrium conditions disagree with approaches based on the Nernst stagnant film concept. It is unclear whether local equilibrium assumptions used in current models are suitable for all situations.A statistical mechanic framework has been chosen to study the transfer kinetic processes at the microscale level. The rationale for our approach is based on both the activation energy of transfer of an ion and its velocity across the NAPL/APL interface. There are four major energies controlling the interfacial NAPL dissolution kinetics: (de)solvation energy, interfacial tension energy, electrostatic energy, and thermal fluctuation energy. Transfer of an ion across the NAPL/APL interface is accelerated by the viscous forces which can be described using the averaged Langevin master equation. The resulting energies and viscous forces were combined using the Boltzmann probability distribution. Asymptotic time limits of the resulting kinetics lead to instantaneous local equilibrium conditions that contradict the Nernst equilibrium equation. The NAPL/APL interface is not an ideal one: it does not conserve energy and heat. In our case the interface is treated as a thin film or slush zone that alters the thermodynamic variables. Such added zone, between the two phases, is itself a phase, and, therefore, the equilibrium does not occur between two phases but rather three. All these findings led us to develop a new non-linearly coupled flow and transport system of equations which is able to account for specific chemical dissolution processes and precludes the need for empirical mass-transfer parameters. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
Indium oxide based fiber optic SPR sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, Sarika; Sharma, Navneet K., E-mail: navneetk.sharma@jiit.ac.in
2016-05-06
Surface plasmon resonance based fiber optic sensor using indium oxide layer is presented and theoretically studied. It has been found that with increase in thickness of indium oxide layer beyond 170 nm, the sensitivity of SPR sensor decreases. 170 nm thick indium oxide layer based SPR sensor holds maximum sensitivity.
Charge patterns as templates for the assembly of layered biomolecular structures.
Naujoks, Nicola; Stemmer, Andreas
2006-08-01
Electric fields are used to guide the assembly of biomolecules in predefined geometric patterns on solid substrates. Local surface charges serve as templates to selectively position proteins on thin-film polymeric electret layers, thereby creating a basis for site-directed layered assembly of biomolecular structures. Charge patterns are created using the lithographic capabilities of an atomic force microscope, namely by applying voltage pulses between a conductive tip and the sample. Samples consist of a poly(methyl methacrylate) layer on a p-doped silicon support. Subsequently, the sample is developed in a water-in-oil emulsion, consisting of a dispersed aqueous phase containing biotin-modified immunoglobulinG molecules, and a continuous nonpolar, insulating oil phase. The electrostatic fields cause a net force of (di)electrophoretic nature on the droplet, thereby guiding the proteins to the predefined locations. Due to the functionalization of the immunoglobulinG molecules with biotin-groups, these patterns can now be used to initiate the localized layer-by-layer assembly of biomolecules based on the avidin-biotin mechanism. By binding 40 nm sized biotin-labelled beads to the predefined locations via a streptavidin linker, we verify the functionality of the previously deposited immunoglobulinG-biotin. All assembly steps following the initial deposition of the immunoglobulinG from emulsion can conveniently be conducted in aqueous solutions. Results show that pattern definition is maintained after immersion into aqueous solution.
Controlling contamination in Mo/Si multilayer mirrors by Si surface capping modifications
NASA Astrophysics Data System (ADS)
Malinowski, Michael E.; Steinhaus, Chip; Clift, W. Miles; Klebanoff, Leonard E.; Mrowka, Stanley; Soufli, Regina
2002-07-01
The performance of Mo/Si multilayer mirrors (MLMs) used to reflect UV (EUV) radiation in an EUV + hydrocarbon (NC) vapor environment can be improved by optimizing the silicon capping layer thickness on the MLM in order to minimize the initial buildup of carbon on MLMs. Carbon buildup is undesirable since it can absorb EUV radiation and reduce MLM reflectivity. A set of Mo/Si MLMs deposited on Si wafers was fabricated such that each MLM had a different Si capping layer thickness ranging form 2 nm to 7 nm. Samples from each MLM wafer were exposed to a combination of EUV light + (HC) vapors at the Advanced Light Source (ALS) synchrotron in order to determine if the Si capping layer thickness affected the carbon buildup on the MLMs. It was found that the capping layer thickness had a major influence on this 'carbonizing' tendency, with the 3 nm layer thickness providing the best initial resistance to carbonizing and accompanying EUV reflectivity loss in the MLM. The Si capping layer thickness deposited on a typical EUV optic is 4.3 nm. Measurements of the absolute reflectivities performed on the Calibration and Standards beamline at the ALS indicated the EUV reflectivity of the 3 nm-capped MLM was actually slightly higher than that of the normal, 4 nm Si-capped sample. These results show that he use of a 3 nm capping layer represents an improvement over the 4 nm layer since the 3 nm has both a higher absolute reflectivity and better initial resistance to carbon buildup. The results also support the general concept of minimizing the electric field intensity at the MLM surface to minimize photoelectron production and, correspondingly, carbon buildup in a EUV + HC vapor environment.
Opieliński, Krzysztof J; Gudra, Tadeusz
2002-05-01
The effective ultrasonic energy radiation into the air of piezoelectric transducers requires using multilayer matching systems with accurately selected acoustic impedances and the thickness of particular layers. This problem is of particular importance in the case of ultrasonic transducers working at a frequency above 1 MHz. Because the possibilities of choosing material with required acoustic impedance are limited (the counted values cannot always be realised and applied in practice) it is necessary to correct the differences between theoretical values and the possibilities of practical application of given acoustic impedances. Such a correction can be done by manipulating other parameters of matching layers (e.g. by changing their thickness). The efficiency of the energy transmission from the piezoceramic transducer through different layers with different thickness enabling a compensation of non-ideal real values by changing their thickness was computer analysed. The result of this analysis is the conclusion that from the technological point of view a layer with defined thickness is easier and faster to produce than elaboration of a new material with required acoustic parameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahoo, S. K.; Misra, D.; Agrawal, D. C.
2011-01-01
Recently, high K materials play an important role in microelectronic devices such as capacitors, memory devices, and microwave devices. Now a days ferroelectric barium strontium titanate [Ba{sub x}Sr{sub 1-x}TiO{sub 3}, (BST)] thin film is being actively investigated for applications in dynamic random access memories (DRAM), field effect transistor (FET), and tunable devices because of its properties such as high dielectric constant, low leakage current, low dielectric loss, and high dielectric breakdown strength. Several approaches have been used to optimize the dielectric and electrical properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found thatmore » inserting a ZrO{sub 2} layer in between two BST layers results in a significant reduction in dielectric constant, loss tangent, and leakage current in the multilayer thin films. Also it is shown that the properties of multilayer structure are found to depend strongly on the sublayer thicknesses. In this work the effect of ZrO{sub 2} layer thickness on the dielectric, ferroelectric as well as electrical properties of BST/ZrO{sub 2}/BST multilayer structure is studied. The multilayer Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3}/ZrO{sub 2}/Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} film is deposited by a sol-gel process on the platinized Si substrate. The thickness of the middle ZrO{sub 2} layer is varied while keeping the top and bottom BST layer thickness as fixed. It is observed that the dielectric constant, dielectric loss tangent, and leakage current of the multilayer films reduce with the increase of ZrO{sub 2} layer thickness and hence suitable for memory device applications. The ferroelectric properties of the multilayer film also decrease with the ZrO{sub 2} layer thickness.« less
NASA Astrophysics Data System (ADS)
Kadem, Burak Yahya
Organic solar cells (OSCs) have attracted a significant attention during the last decade due to their simple processability on a flexible substrate as well as scope for large-scale production using role to role technique. Improving the performance of the organic solar cells and their lifetime stability are one of the main challenges faced by researchers in this field. In this thesis, work has been carried out using a blend of Poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-Phenyl C[61] butyric acid methyl ester (PCBM) as an active layer in the ratio of (1:1) (P3HT:PCBM). The efficiency and stability of P3HT:PCBM-based solar cells have been examined using different methods and employing novel materials such as1-[N-(2-ethoxyethyl) pent-4-ynamide] -8 (11), 15 (18), 22 (25) -tris-{2-[2-(2-ethoxyethoxy) ethoxy]-1-[2-((2- ethoxyethoxy) - ethoxy) methyl] ethyloxy} phthalocyaninato zinc (II) (ZnPc) to construct a ternary hybrid as the active layer. Controlling the morphology and crystallinity of P3HT:PCBM active layer was carried out using different solvents including chloroform (CF), chlorobenzene (CB) and dichlorobenzene (DCB) and their co-solvents in the ratio of (1:1) to dissolve the P3HT:PCBM blend. Optimum morphology and crystallinity were achieved using a co-solvent made of CB:CF with the obtained solar cell exhibiting the highest performance with PCE reaching 2.73% among other devices prepared using different solvents. Further device performance improvement was observed through optimization of active layer thickness with studied thickness falling in range 65-266 nm. Measurements of the PV characteristics of the investigated OSC devices have revealed optimum performance when active layer thickness was 95 nm with PCE=3.846%. The stability of the P3HT:PCBM-based devices on optimisation of the active layer thickness has shown a decrease in PCE of about 71% over a period of 41 days. Furthermore, P3HT has been blended with different fullerene derivatives (PC[60]BM, PC[61]BM, PC[70]BM and PC[71]BM) and the active layers were processed using the optimum solvent as well as optimum film's thickness.These PCBM derivatives have different lower unoccupied molecular level (LUMO) and different higher occupied molecular level (HOMO) positions, which subsequently influence the PV parameters of the OSCs such as the device open circuit voltage (V[oc]) and its built-in potential (V[bi]). P3HT:PC61BM-based blend has exhibited the highest device performance with PCE reaching 4.2%. Using the above mentioned optimum parameters, the P3HT:PCBM-based devices have been subjected to post-deposition annealing at different temperatures in the range 100-180°C. Efficient device performance was ascribed to P3HT:PCBM layers being subjected to post-deposition heat treatment at 140°C with PCE=5.5%. Device stability as a result of post-deposition heat treatment has also been shown to improve with PCE degrading by about 38% after 55 days.The use of interfacial layer is found to play a key part in modifying the solar cell performance; using electron transport layer (ETL) such as aluminium tris(8-hydroxyquinoline) (Alq3) as a solution processable layer has contributed in increasing PCE to 4.25%, while, using PEDOT:PSS as a hole transport layer (HTL) doped with metal salts has significantly contributed in increasing PCE to reach 6.82% in device when PEDOT:PSS was doped with LiCl aqueous solution. Stability study for the device based on HTL has shown degradation in the PCE from 6.82% to around 1% over 96 days. Using ETL and HTL simultaneously in a complete device has shown a further enhanced PCE reaching 7%. In a further study, doping the P3HT:PCBM with the novel ZnPc hybrids (SWCNTs and reduced graphene oxide (rGO) are covalently and non-covalently functionalised to ZnPc) with the weight ratio of (1:0.01) has significantly altered the solar cell device properties. The best performance is based on P3HT:PCBM blended with ZnPc-SWCNTs-co bonded as a ternary active layer demonstrating device PCE of 5.3% compared to a reference device based on bare P3HT:PCBM blend with PCE of 3.46%.
Lau, W J; Gray, Stephen; Matsuura, T; Emadzadeh, D; Chen, J Paul; Ismail, A F
2015-09-01
This review focuses on the development of polyamide (PA) thin film nanocomposite (TFN) membranes for various aqueous media-based separation processes such as nanofiltration, reverse osmosis and forward osmosis since the concept of TFN was introduced in year 2007. Although the total number of published TFN articles falls far short of the articles of the well-known thin film composite (TFC) membranes, its growth rate is significant, particularly since 2012. Generally, by incorporating an appropriate amount of nanofiller into a thin selective PA layer of a composite membrane, one could produce TFN membranes with enhanced separation characteristics as compared to the conventional TFC membrane. For certain cases, the resulting TFN membranes demonstrate not only excellent antifouling resistance and/or greater antibacterial effect, but also possibly overcome the trade-off effect between water permeability and solute selectivity. Furthermore, this review attempts to give the readers insights into the difficulties of incorporating inorganic nanomaterials into the organic PA layer whose thickness usually falls in a range of several-hundred nanometers. It is also intended to show new possible approaches to overcome these challenges in TFN membrane fabrication. Copyright © 2015 Elsevier Ltd. All rights reserved.
Thickness and Elasticity of Gram-Negative Murein Sacculi Measured by Atomic Force Microscopy
Yao, X.; Jericho, M.; Pink, D.; Beveridge, T.
1999-01-01
Atomic force microscopy was used to measure the thickness of air-dried, collapsed murein sacculi from Escherichia coli K-12 and Pseudomonas aeruginosa PAO1. Air-dried sacculi from E. coli had a thickness of 3.0 nm, whereas those from P. aeruginosa were 1.5 nm thick. When rehydrated, the sacculi of both bacteria swelled to double their anhydrous thickness. Computer simulation of a section of a model single-layer peptidoglycan network in an aqueous solution with a Debye shielding length of 0.3 nm gave a mass distribution full width at half height of 2.4 nm, in essential agreement with these results. When E. coli sacculi were suspended over a narrow groove that had been etched into a silicon surface and the tip of the atomic force microscope used to depress and stretch the peptidoglycan, an elastic modulus of 2.5 × 107 N/m2 was determined for hydrated sacculi; they were perfectly elastic, springing back to their original position when the tip was removed. Dried sacculi were more rigid with a modulus of 3 × 108 to 4 × 108 N/m2 and at times could be broken by the atomic force microscope tip. Sacculi aligned over the groove with their long axis at right angles to the channel axis were more deformable than those with their long axis parallel to the groove axis, as would be expected if the peptidoglycan strands in the sacculus were oriented at right angles to the long cell axis of this gram-negative rod. Polar caps were not found to be more rigid structures but collapsed to the same thickness as the cylindrical portions of the sacculi. The elasticity of intact E. coli sacculi is such that, if the peptidoglycan strands are aligned in unison, the interstrand spacing should increase by 12% with every 1 atm increase in (turgor) pressure. Assuming an unstressed hydrated interstrand spacing of 1.3 nm (R. E. Burge, A. G. Fowler, and D. A. Reaveley, J. Mol. Biol. 117:927–953, 1977) and an internal turgor pressure of 3 to 5 atm (or 304 to 507 kPa) (A. L. Koch, Adv. Microbial Physiol. 24:301–366, 1983), the natural interstrand spacing in cells would be 1.6 to 2.0 nm. Clearly, if large macromolecules of a diameter greater than these spacings are secreted through this layer, the local ordering of the peptidoglycan must somehow be disrupted. PMID:10559150
Long-Wavelength Instability in Marangoni Convection
NASA Technical Reports Server (NTRS)
VanHook, Stephen J.; Schatz, Michael F.; Swift, Jack B.; McCormick, W. D.; Swinney, Harry L.
1996-01-01
Our experiments in thin liquid layers (approximately 0.1 mm thick) heated from below reveal a well-defined long-wavelength instability: at a critical temperature difference across the layer, the depth of the layer in the center of the cell spontaneously decreases until the liquid-air interface ruptures and a dry spot forms. The onset of this critical instability occurs at a temperature difference across the liquid layer that is 35% smaller than that predicted in earlier theoretical studies of a single layer model. Our analysis of a two-layer model yields predictions in accord with the observations for liquid layer depths greater than or equal to 0.15 mm, but for smaller depths there is an increasing difference between our predictions and observations (the difference is 25% for a layer 0.06 mm thick). In microgravity environments the long-wavelength instability observed in our terrestrial experiments is expected to replace cellular convection as the primary instability in thick as well as thin liquid layers heated quasistatically from below.
Zhang, Xia; Ma, Jin; Wang, Yuhan; Li, Lüe; Gao, Lu; Guo, Xiaopeng; Xing, Bing; Zhong, Yong
2018-03-01
1) To compare the retinal, choroidal, Haller's layer, and Sattler's/choriocapillaris thicknesses of untreated acromegaly patients without chiasm compression or diabetes mellitus and healthy controls. 2) To evaluate the correlations of retinal and choroidal thicknesses with serum growth hormone (GH) and insulin-like growth factor 1 (IGF) burden. This prospective, case-control study included 27 untreated acromegaly patients and 27 sex-matched and age-matched controls. Subfoveal choroidal, Haller's layer and Sattler's/choriocapillaris thicknesses were determined by enhanced-depth imaging optical coherence tomography (EDI-OCT). Foveal and macular retinal thicknesses were determined with SD-OCT. GH and IGF-1 burdens were defined as the product of disease duration and treatment-naïve serum GH and IGF-1 levels. Compared with healthy controls, patients with acromegaly exhibited significantly increased foveal retinal (p = 0.003), subfoveal choroidal (p < 0.001), and Haller's layer (p < 0.001) thicknesses, with no differences in Sattler's/choriocapillaris layer thickness. Multiple point measurements in the posterior pole area showed equally increased nasal and temporal parts of the choroid. The retinal thickness maps of the two groups did not significantly differ. Correlation analysis indicated that choroidal thickness was significantly correlated with disease duration (p = 0.01), serum IGF-1 level (p = 0.03) and IGF-1 burden (p = 0.009). No significant correlations were detected between choroidal thickness and GH burden (p = 0.44). Retinal thickness was not significantly correlated with any factor. The choroidal thickness of acromegaly patients was greater than that of healthy controls and was significantly correlated with disease duration, IGF-1 level and IGF-1 burden, indicating that excessive serum IGF-1 and its exposure time have a combined effect on choroidal thickness.
An achromatic four-mirror compensator for spectral ellipsometers
NASA Astrophysics Data System (ADS)
Kovalev, V. I.; Rukovishnikov, A. I.; Kovalev, S. V.; Kovalev, V. V.; Rossukanyi, N. M.
2017-07-01
Measurement and calculation results are presented that confirm that design four-mirror compensators can be designed for the spectral range of 200-2000 nm that is widely used in modern spectral ellipsometers. Measurements and calculations according to standard ellipsometric programs have been carried out on a broadband LED spectral ellipsometer with switching of orthogonal polarization states. Mirrors with the structure of glass substrate/Al2O3 layer (20-30 nm thick)/Al layer (150 nm thick)/upper Al2O3 layer (with specified thickness d) have been prepared by vacuum-evaporation method. It is shown that the phase-shift spectra of a four-mirror compensator, two mirrors of which have a native oxide 5.5 nm thick and the two others of which have an oxide layer 36 nm thick, measured on the ellipsometer, are flattened in comparison with similar spectra of a compensator, all four mirrors of which have a native oxide, especially in the short-wavelength spectral region. The results of calculating the phase-shift spectra of the four-mirror compensator with six variable parameters (angles of incidence of radiation on the mirrors and thicknesses of oxide layers on four mirrors) are presented. High-quality achromatization in a wide spectral range can be achieved for certain sets of parameters.
Liang, Yuan-Chang; Lo, Ya-Ru; Wang, Chein-Chung; Xu, Nian-Cih
2018-01-01
ZnO-ZnS core-shell nanorods are synthesized by combining the hydrothermal method and vacuum sputtering. The core-shell nanorods with variable ZnS shell thickness (7–46 nm) are synthesized by varying ZnS sputtering duration. Structural analyses demonstrated that the as-grown ZnS shell layers are well crystallized with preferring growth direction of ZnS (002). The sputtering-assisted synthesized ZnO-ZnS core-shell nanorods are in a wurtzite structure. Moreover, photoluminance spectral analysis indicated that the introduction of a ZnS shell layer improved the photoexcited electron and hole separation efficiency of the ZnO nanorods. A strong correlation between effective charge separation and the shell thickness aids the photocatalytic behavior of the nanorods and improves their photoresponsive nature. The results of comparative degradation efficiency toward methylene blue showed that the ZnO-ZnS nanorods with the shell thickness of approximately 17 nm have the highest photocatalytic performance than the ZnO-ZnS nanorods with other shell layer thicknesses. The highly reusable catalytic efficiency and superior photocatalytic performance of the ZnO-ZnS nanorods with 17 nm-thick ZnS shell layer supports their potential for environmental applications. PMID:29316671
Multilayer Black Phosphorus Near-Infrared Photodetectors.
Hou, Chaojian; Yang, Lijun; Li, Bo; Zhang, Qihan; Li, Yuefeng; Yue, Qiuyang; Wang, Yang; Yang, Zhan; Dong, Lixin
2018-05-23
Black phosphorus (BP), owing to its distinguished properties, has become one of the most competitive candidates for photodetectors. However, there has been little attention paid on photo-response performance of multilayer BP nanoflakes with large layer thickness. In fact, multilayer BP nanoflakes with large layer thickness have greater potential from the fabrication viewpoint as well as due to the physical properties than single or few layer ones. In this report, the thickness-dependence of the intrinsic property of BP photodetectors in the dark was initially investigated. Then the photo-response performance (including responsivity, photo-gain, photo-switching time, noise equivalent power, and specific detectivity) of BP photodetectors with relative thicker thickness was explored under a near-infrared laser beam ( λ IR = 830 nm). Our experimental results reveal the impact of BP's thickness on the current intensity of the channel and show degenerated p-type BP is beneficial for larger current intensity. More importantly, the photo-response of our thicker BP photodetectors exhibited a larger responsivity up to 2.42 A/W than the few-layer ones and a fast response photo-switching speed (response time is ~2.5 ms) comparable to thinner BP nanoflakes was obtained, indicating BP nanoflakes with larger layer thickness are also promising for application for ultra-fast and ultra-high near-infrared photodetectors.
Gravitational instability of thin gas layer between two thick liquid layers
NASA Astrophysics Data System (ADS)
Pimenova, A. V.; Goldobin, D. S.
2016-12-01
We consider the problem of gravitational instability (Rayleigh-Taylor instability) of a horizontal thin gas layer between two liquid half-spaces (or thick layers), where the light liquid overlies the heavy one. This study is motivated by the phenomenon of boiling at the surface of direct contact between two immiscible liquids, where the rate of the "break-away" of the vapor layer growing at the contact interface due to development of the Rayleigh-Taylor instability on the upper liquid-gas interface is of interest. The problem is solved analytically under the assumptions of inviscid liquids and viscous weightless vapor. These assumptions correspond well to the processes in real systems, e.g., they are relevant for the case of interfacial boiling in the system water- n-heptane. In order to verify the results, the limiting cases of infinitely thin and infinitely thick gas layers were considered, for which the results can be obviously deduced from the classical problem of the Rayleigh-Taylor instability. These limiting cases are completely identical to the well-studied cases of gravity waves at the liquidliquid and liquid-gas interfaces. When the horizontal extent of the system is long enough, the wavenumber of perturbations is not limited from below, and the system is always unstable. The wavelength of the most dangerous perturbations and the rate of their exponential growth are derived as a function of the layer thickness. The dependence of the exponential growth rate on the gas layer thickness is cubic.
Comparison of reproduce signal and noise of conventional and keepered CoCrTa/Cr thin film media
NASA Astrophysics Data System (ADS)
Sin, Kyusik; Ding, Juren; Glijer, Pawel; Sivertsen, John M.; Judy, Jack H.; Zhu, Jian-Gang
1994-05-01
We studied keepered high coercivity CoCrTa/Cr thin film media with a Cr isolation layer between the CoCrTa storage and an overcoating of an isotropic NiFe soft magnetic layer. The influence of the thickness of the NiFe and Cr layers, and the effects of head bias current on the signal output and noise, were studied using a thin film head. The reproduced signal increased by 7.3 dB, but the signal-to-noise ratio decreased by 4 dB at a linear density of 2100 fr/mm (53.3 kfr/in.) with a 1000 Å thick NiFe keeper layer. The medium noise increased with increasing NiFe thickness and the signal output decreased with decreasing Cr thickness. A low output signal obtained with very thin Cr may be due to magnetic interactions between the keeper layer and magnetic media layer. It is observed that signal distortion and timing asymmetry of the output signals depend on the thickness of the keeper layer and the head bias current. The signal distortion increased and the timing asymmetry decreased as the head bias current was increased. These results may be associated with different permeability of the keeper under the poles of the thin film head due to the superposition of head bias and bit fields.
On the meaning of the diffusion layer thickness for slow electrode reactions.
Molina, A; González, J; Laborda, E; Compton, R G
2013-02-21
A key concept underpinning electrochemical science is that of the diffusion layer - the zone of depletion around an electrode accompanying electrolysis. The size of this zone can be found either from the simulated or measured concentration profiles (yielding the 'true' diffusion layer thickness) or, in the case of the Nernst ('linear') diffusion layer by extrapolating the concentration gradient at the electrode surface to the distance at which the concentration takes its bulk value. The latter concept is very well developed in the case of fast (so-called reversible) electrode processes, however the study of the linear diffusion layer has received scant attention in the case of slow charge transfer processes, despite its study being of great interest in the analysis of the influence of different experimental variables which determine the electrochemical response. Analytical explicit solutions for the concentration profiles, surface concentrations and real and linear diffusion layers corresponding to the application of a potential step to a slow charge transfer process are presented. From these expressions the dependence of the diffusion layer thickness on the potential, pulse time, heterogeneous rate constant and ratio of bulk concentrations of electroactive species and of diffusion coefficients is quantified. A profound influence of the reversibility degree of the charge transfer on the diffusion layer thickness is clear, showing that for non-reversible processes the real and linear diffusion layers reveal a minimum thickness which coincides with the equilibrium potential of the redox couple in the former case and with the reversible half-wave potential in the latter one.
NASA Astrophysics Data System (ADS)
Li, Mingtao; Li, Wenlian; Chen, Lili; Kong, Zhiguo; Chu, Bei; Li, Bin; Hu, Zhizhi; Zhang, Zhiqiang
2006-02-01
Electroluminescent colors of organic light-emitting diodes (OLEDs) can be tuned by modulating the thickness of gadolinium (Gd) complex layer sandwiched between an electron-transporting layer (ETL) and a hole-transporting layer (HTL). The emission colors, which originate from the two interfacial exciplexes simultaneously, can be tuned from green to orange by increasing the thickness of the Gd-complex layer. The atom force microscope images have proved that there are many gaps in the thinner Gd-complex layers. Therefore, besides the exciplex formation between Gd complex and HTL, the exciplex between ETL and HTL is also formed. The results demonstrate that a simple way of color tuning can be realized by inserting a thin layer of color tuning material between HTL with lower ionization potentials and ETL with higher electron affinities. Moreover, photovoltaic device and white OLED based on the two exciplexes are also discussed.
NASA Astrophysics Data System (ADS)
Sun, Mingling; Kubota, Takahide; Takahashi, Shigeki; Kawato, Yoshiaki; Sonobe, Yoshiaki; Takanashi, Koki
2018-05-01
Buffer layer dependence of tunnel magnetoresistance (TMR) effects was investigated in Co2Fe0.4Mn0.6Si (CFMS)/MgO/Co50Fe50 magnetic tunnel junctions (MTJs). Pd, Ru and Cr were selected for the buffer layer materials, and MTJs with three different CFMS thicknesses (30, 5, and 0.8 nm) were fabricated. A maximum TMR ratio of 136% was observed in the Ru buffer layer sample with a 30-nm-thick CFMS layer. TMR ratios drastically degraded for the CFMS thickness of 0.8 nm, and the values were 26% for Cr buffer layer and less than 1% for Pd and Ru buffer layers. From the annealing temperature dependence of the TMR ratios, amounts of interdiffusion and effects from the lattice mismatch were discussed.
Strain engineering in epitaxial Ge1- x Sn x : a path towards low-defect and high Sn-content layers
NASA Astrophysics Data System (ADS)
Margetis, Joe; Yu, Shui-Qing; Bhargava, Nupur; Li, Baohua; Du, Wei; Tolle, John
2017-12-01
The plastic strain relaxation of CVD-grown Ge1-x Sn x layers was investigated in x = 0.09 samples with thicknesses of 152, 180, 257, 570, and 865 nm. X-ray diffraction-reciprocal space mapping was used to determine the strain, composition, and the nature of defects in each layer. Secondary ion mass spectrometry was used to examine the evolution of the compositional profile. These results indicate that growth beyond the critical thickness results in the spontaneous formation of a relaxed and highly defective 9% Sn layer followed by a low defect 12% Sn secondary layer. We find that this growth method can be used to engineer thick, strain-relaxed, and low defect density layers. Furthermore we utilize this strain-dependent Sn incorporation behavior to achieve Sn compositions of 17.5%. Photoluminesence of these layers produces light emission at 3.1 μm.
New Martian climate constraints from radar reflectivity within the north polar layered deposits
NASA Astrophysics Data System (ADS)
Lalich, D. E.; Holt, J. W.
2017-01-01
The north polar layered deposits (NPLD) of Mars represent a global climate record reaching back millions of years, potentially recorded in visible layers and radar reflectors. However, little is known of the specific link between those layers, reflectors, and the global climate. To test the hypothesis that reflectors are caused by thick and indurated layers known as "marker beds," the reflectivity of three reflectors was measured, mapped, and compared to a reflectivity model. The measured reflectivities match the model and show a strong sensitivity to layer thickness, implying that radar reflectivity may be used as a proxy for short-term accumulation patterns and that regional climate plays a strong role in layer thickness variations. Comparisons to an orbitally forced NPLD accumulation model show a strong correlation with predicted marker bed formation, but dust content is higher than expected, implying a stronger role for dust in Mars polar climate than previously thought.
Determination of layer ordering using sliding-window Fourier transform of x-ray reflectivity data
NASA Astrophysics Data System (ADS)
Smigiel, E.; Knoll, A.; Broll, N.; Cornet, A.
1998-01-01
X-ray reflectometry allows the determination of the thickness, density and roughness of thin layers on a substrate from several Angstroms to some hundred nanometres. The thickness is determined by simulation with trial-and-error methods after extracting initial values of the layer thicknesses from the result of a classical Fast Fourier Transform (FFT) of the reflectivity data. However, the order information of the layers is lost during classical FFT. The order of the layers has then to be known a priori. In this paper, it will be shown that the order of the layers can be obtained by a sliding-window Fourier transform, the so-called Gabor representation. This joint time-frequency analysis allows the direct determination of the order of the layers and, therefore, the use of a more appropriate starting model for refining simulations. A simulated and a measured example show the interest of this method.
Advancements in quantum cascade laser-based infrared microscopy of aqueous media.
Haase, K; Kröger-Lui, N; Pucci, A; Schönhals, A; Petrich, W
2016-06-23
The large mid-infrared absorption coefficient of water frequently hampers the rapid, label-free infrared microscopy of biological objects in their natural aqueous environment. However, the high spectral power density of quantum cascade lasers is shifting this limitation such that mid-infrared absorbance images can be acquired in situ within signal-to-noise ratios of up to 100. Even at sample thicknesses well above 50 μm, signal-to-noise ratios above 10 are readily achieved. The quantum cascade laser-based microspectroscopy of aqueous media is exemplified by imaging an aqueous yeast solution and quantifying glucose consumption, ethanol generation as well as the production of carbon dioxide gas during fermentation.
Dai, Liping; Cheng, Jing; Matsadiq, Guzalnur; Liu, Lu; Li, Jun-Kai
2010-08-03
In the proposed method, an extraction solvent with a lower toxicity and density than the solvents typically used in dispersive liquid-liquid microextraction was used to extract seven polychlorinated biphenyls (PCBs) from aqueous samples. Due to the density and melting point of the extraction solvent, the extract which forms a layer on top of aqueous sample can be collected by solidifying it at low temperatures, which form a layer on top of the aqueous sample. Furthermore, the solidified phase can be easily removed from the aqueous phase. Based on preliminary studies, 1-undecanol was selected as the extraction solvent, and a series of parameters that affect the extraction efficiency were systematically investigated. Under the optimized conditions, enrichment factors for PCBs ranged between 494 and 606. Based on a signal-to-noise ratio of 3, the limit of detection for the method ranged between 3.3 and 5.4 ng L(-1). Good linearity, reproducibility and recovery were also obtained. 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Liyang; Sui, Yanwei; Qi, Jiqiu; Chang, Yuan; He, Yezeng; Meng, Qingkun; Wei, Fuxiang; Sun, Zhi; Jin, Yunxue
2017-12-01
In this paper, ultrathin reduced graphene oxide films on nickel foam were fabricated via a facile dip-coating method combined with thermal reduction. Hierarchical Ni-Co layered double hydroxide nanosheets with network structure were electrodeposited on the ultrathin reduced graphene oxide films in a simple three-electrode system. The thickness of Ni-Co layered double hydroxide nanosheets can be controlled through adjusting the deposition temperature. The as-prepared electrode exhibited excellent electrochemical performance with specific capacitance of 1454.2 F g-1 at a current density of 1 A g-1. An asymmetric supercapacitor device was designed with the as-prepared composites as positive electrode material and Nitrogen-doped reduced graphene oxide as negative electrode material. This device could be operated in a working voltage range of 0-1.8 V in 1 M KOH aqueous electrolyte, delivering a high energy density of 56.4 W h kg-1 at a power density of 882.5 W kg-1. One supercapacitor can power two LEDs with rated voltage of 1.8-2.0 V. After 10,000 consecutive charge-discharge tests at 10 A g-1, this asymmetric supercapacitor revealed an excellent cycle life with 98.3% specific capacitance retention. These excellent electrochemical performances make it become one of most promising candidates for high energy supercapacitor device.
Fabrication of monolithic microfluidic channels in diamond with ion beam lithography
NASA Astrophysics Data System (ADS)
Picollo, F.; Battiato, A.; Boarino, L.; Ditalia Tchernij, S.; Enrico, E.; Forneris, J.; Gilardino, A.; Jakšić, M.; Sardi, F.; Skukan, N.; Tengattini, A.; Olivero, P.; Re, A.; Vittone, E.
2017-08-01
In the present work, we report on the monolithic fabrication by means of ion beam lithography of hollow micro-channels within a diamond substrate, to be employed for microfluidic applications. The fabrication strategy takes advantage of ion beam induced damage to convert diamond into graphite, which is characterized by a higher reactivity to oxidative etching with respect to the chemically inert pristine structure. This phase transition occurs in sub-superficial layers thanks to the peculiar damage profile of MeV ions, which mostly damage the target material at their end of range. The structures were obtained by irradiating commercial CVD diamond samples with a micrometric collimated C+ ion beam at three different energies (4 MeV, 3.5 MeV and 3 MeV) at a total fluence of 2 × 1016 cm-2. The chosen multiple-energy implantation strategy allows to obtain a thick box-like highly damaged region ranging from 1.6 μm to 2.1 μm below the sample surface. High-temperature annealing was performed to both promote the graphitization of the ion-induced amorphous layer and to recover the pristine crystalline structure in the cap layer. Finally, the graphite was removed by ozone etching, obtaining monolithic microfluidic structures. These prototypal microfluidic devices were tested injecting aqueous solutions and the evidence of the passage of fluids through the channels was confirmed by confocal fluorescent microscopy.
Wollastonite Carbonation in Water-Bearing Supercritical CO2: Effects of Particle Size.
Min, Yujia; Li, Qingyun; Voltolini, Marco; Kneafsey, Timothy; Jun, Young-Shin
2017-11-07
The performance of geologic CO 2 sequestration (GCS) can be affected by CO 2 mineralization and changes in the permeability of geologic formations resulting from interactions between water-bearing supercritical CO 2 (scCO 2 ) and silicates in reservoir rocks. However, without an understanding of the size effects, the findings in previous studies using nanometer- or micrometer-size particles cannot be applied to the bulk rock in field sites. In this study, we report the effects of particle sizes on the carbonation of wollastonite (CaSiO 3 ) at 60 °C and 100 bar in water-bearing scCO 2 . After normalization by the surface area, the thickness of the reacted wollastonite layer on the surfaces was independent of particle sizes. After 20 h, the reaction was not controlled by the kinetics of surface reactions but by the diffusion of water-bearing scCO 2 across the product layer on wollastonite surfaces. Among the products of reaction, amorphous silica, rather than calcite, covered the wollastonite surface and acted as a diffusion barrier to water-bearing scCO 2 . The product layer was not highly porous, with a specific surface area 10 times smaller than that of the altered amorphous silica formed at the wollastonite surface in aqueous solution. These findings can help us evaluate the impacts of mineral carbonation in water-bearing scCO 2 .
Reductive precipitation of neptunium on iron surfaces under anaerobic conditions
NASA Astrophysics Data System (ADS)
Yang, H.; Cui, D.; Grolimund, D.; Rondinella, V. V.; Brütsch, R.; Amme, M.; Kutahyali, C.; Wiss, A. T.; Puranen, A.; Spahiu, K.
2017-12-01
Reductive precipitation of the radiotoxic nuclide 237Np from nuclear waste on the surface of iron canister material at simulated deep repository conditions was investigated. Pristine polished as well as pre-corroded iron specimens were interacted in a deoxygenated solution containing 10-100 μM Np(V), with 10 mM NaCl and 2 mM NaHCO3 as background electrolytes. The reactivity of each of the two different systems was investigated by analyzing the temporal evolution of the Np concentration in the reservoir. It was observed that pre-oxidized iron specimen with a 40 μm Fe3O4 corrosion layer are considerably more reactive regarding the reduction and immobilization of aqueous Np(V) as compared to pristine polished Fe(0) surfaces. 237Np immobilized by the reactive iron surfaces was characterized by scanning electron microscopy as well as synchrotron-based micro-X-ray fluorescence and X-ray absorption spectroscopy. At the end of experiments, a 5-8 μm thick Np-rich layer was observed to be formed ontop of the Fe3O4 corrosion layer on the iron specimen. The findings from this work are significant in the context of performance assessments of deep geologic repositories using iron as high level radioactive waste (HLW) canister material and are of relevance regarding removing pollutants from contaminated soil or groundwater aquifer systems.
Krishnan, K.M.
1994-12-20
A ferromagnetic [delta]-Mn[sub 1[minus]x]Ga[sub x] thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4[+-]0.05. 7 figures.
Protein deposition on field-emitter tips and its removal by UV radiation
NASA Astrophysics Data System (ADS)
Panitz, J. A.; Giaever, I.
1980-07-01
Protein deposition on field-emitter tips has been examined using Transmission Electron Microscopy to view the protein coated tip profile. A single layer of adsorbed protein is barely if at all detectable, but double and triple layers produced by the immunologic reaction can be directly observed. As a result, the thickness and morphology of antigen-antibody layers has been directly observed for the first time. Tips exposed first to Bovine Serum Albumin (BSA) and then to anti-BSA rabbit serum are covered with a reasonably uniform, double protein layer ≈130 Å thick. This layer can be built-up to a triple layer ≈275 Å thick by additional exposure to anti-rabbit IgG goat serum. Surface tension forces during the drying process which follows protein deposition appear to affect the thickness and morphology of the protein layers. The oxidation and subsequent change in the morphology of a protein layer exposed to ultraviolet radiation has also been observed using TEM. The destruction of a triple protein layer at a rate of ≈0.5 Å/s is observed for tungsten tips exposed to ≈6 W of UV radiation from a high-pressure mercury arc in laboratory ambient. These results are compared to those obtained from a simple, visual test for protein layer adsorption in which submonolayer coverages of protein can be detected with the unaided eye.