Science.gov

Sample records for aqueous nitrate plutonium

  1. Plutonium scrap waste processing based on aqueous nitrate and chloride media

    SciTech Connect

    Navratil, J D

    1985-05-13

    A brief review of plutonium scrap aqueous waste processing technology at Rocky Flats is given. Nitric acid unit operations include dissolution and leaching, anion exchange purification and precipitation. Chloride waste processing consists of cation exchange and carbonate precipitation. Ferrite and carrier precipitation waste treatment processes are also described. 3 figs.

  2. Chromium in aqueous nitrate plutonium process streams: Corrosion of 316 stainless steel and chromium speciation

    SciTech Connect

    Smith, W.H.; Purdy, G.M.

    1995-12-31

    This study was undertaken to determine if chromium(+6) could exist in plutonium process solutions under normal operating conditions. Four individual reactions were studied: the rate of dissolution of stainless steel, which is the principal source of chromium in process solutions; the rate of oxidation of chromium(+3) to chromium(+6) by nitric acid; and the reduction of chromium(+6) back to chromium(+3) by reaction with stainless steel and with oxalic acid. The stainless steel corrosion rate was found to increase with increasing nitric acid concentration, increasing hydrofluoric acid concentration, and increasing temperature. Oxidation of chromium(+3) to chromium(+6) was negligible at room temperature and only became significant in hot concentrated nitric acid. The rate of reduction of chromium(+6) back to chromium(+3) by reaction with stainless steel or oxalic acid was found to be much greater than the rate of the reverse oxidation reaction. Based on these findings and taking into account normal operating conditions, it was determined that although there would be considerable chromium in plutonium process streams it would rarely be found in the (+6) oxidation state and would not exist in the (+6) state in the final process waste solutions.

  3. NON-AQUEOUS DISSOLUTION OF MASSIVE PLUTONIUM

    DOEpatents

    Reavis, J.G.; Leary, J.A.; Walsh, K.A.

    1959-05-12

    A method is presented for obtaining non-aqueous solutions or plutonium from massive forms of the metal. In the present invention massive plutonium is added to a salt melt consisting of 10 to 40 weight per cent of sodium chloride and the balance zinc chloride. The plutonium reacts at about 800 deg C with the zinc chloride to form a salt bath of plutonium trichloride, sodium chloride, and metallic zinc. The zinc is separated from the salt melt by forcing the molten mixture through a Pyrex filter.

  4. PROCESS FOR EXTRACTING NEPTUNIUM AND PLUTONIUM FROM NITRIC ACID SOLUTIONS OF SAME CONTAINING URANYL NITRATE WITH A TERTIARY AMINE

    DOEpatents

    Sheppard, J.C.

    1962-07-31

    A process of selectively extracting plutonium nitrate and neptunium nitrate with an organic solution of a tertiary amine, away from uranyl nitrate present in an aqueous solution in a maximum concentration of 1M is described. The nitric acid concentration is adjusted to about 4M and nitrous acid is added prior to extraction. (AEC)

  5. RECOVERY OF PLUTONIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Reber, E.J.

    1959-09-01

    A process is described for recovering plutonium values from aqueous solutions by precipitation on bismuth phosphate. The plutonium is secured in its tetravalent state. bismuth salt is added to the solution, and ant excess of phosphoric acid anions is added to the solution in two approximately equal installments. The rate of addition of the first installment is about two to three times as high as the rate of addition of the second installment, whereby a precipitate of bismuth phosphate forms, the precipitate carrying the plutonium values. The precipitate is separated from the solution.

  6. ARRAYS OF BOTTLES OF PLUTONIUM NITRATE SOLUTION

    SciTech Connect

    Margaret A. Marshall

    2012-09-01

    In October and November of 1981 thirteen approaches-to-critical were performed on a remote split table machine (RSTM) in the Critical Mass Laboratory of Pacific Northwest Laboratory (PNL) in Richland, Washington using planar arrays of polyethylene bottles filled with plutonium (Pu) nitrate solution. Arrays of up to sixteen bottles were used to measure the critical number of bottles and critical array spacing with a tight fitting Plexiglas® reflector on all sides of the arrays except the top. Some experiments used Plexiglas shells fitted around each bottles to determine the effect of moderation on criticality. Each bottle contained approximately 2.4 L of Pu(NO3)4 solution with a Pu content of 105 g Pu/L and a free acid molarity H+ of 5.1. The plutonium was of low 240Pu (2.9 wt.%) content. These experiments were sponsored by Rockwell Hanford Operations because of the lack of experimental data on the criticality of arrays of bottles of Pu solution such as might be found in storage and handling at the Purex Facility at Hanford. The results of these experiments were used “to provide benchmark data to validate calculational codes used in criticality safety assessments of [the] plant configurations” (Ref. 1). Data for this evaluation were collected from the published report (Ref. 1), the approach to critical logbook, the experimenter’s logbook, and communication with the primary experimenter, B. Michael Durst. Of the 13 experiments preformed 10 were evaluated. One of the experiments was not evaluated because it had been thrown out by the experimenter, one was not evaluated because it was a repeat of another experiment and the third was not evaluated because it reported the critical number of bottles as being greater than 25. Seven of the thirteen evaluated experiments were determined to be acceptable benchmark experiments. A similar experiment using uranyl nitrate was benchmarked as U233-SOL-THERM-014.

  7. Aqueous Nitrate Recovery Line at Los Alamos National Laboratory

    SciTech Connect

    Finstad, Casey Charles

    2016-06-15

    This powerpoint is part of the ADPSM Plutonium Engineering Lecture Series, which is an opportunity for new hires at LANL to get an overview of work done at TA55. It goes into detail about the aqueous nitrate recovery line at Los Alamos National Laboratory.

  8. METHOD OF RECOVERING PLUTONIUM VALUES FROM AQUEOUS SOLUTIONS BY CARRIER PRECIPITATION

    DOEpatents

    James, R.A.; Thompson, S.G.

    1959-11-01

    A process is presented for pretreating aqueous nitric acid- plutonium solutions containing a small quantity of hydrazine that has formed as a decomposition product during the dissolution of neutron-bombarded uranium in nitric acid and that impairs the precipitation of plutonium on bismuth phosphate. The solution is digested with alkali metal dichromate or potassium permanganate at between 75 and 100 deg C; sulfuric acid at approximately 75 deg C and sodium nitrate, oxaiic acid plus manganous nitrate, or hydroxylamine are added to the solution to secure the plutonium in the tetravalent state and make it suitable for precipitation on BiPO/sub 4/.

  9. Benchmark Evaluation of Plutonium Nitrate Solution Arrays

    SciTech Connect

    M. A. Marshall; J. D. Bess

    2011-09-01

    In October and November of 1981 thirteen approach-to-critical experiments were performed on a remote split table machine (RSTM) in the Critical Mass Laboratory of Pacific Northwest Laboratory (PNL) in Richland, Washington, using planar arrays of polyethylene bottles filled with plutonium (Pu) nitrate solution. Arrays of up to sixteen bottles were used to measure the critical number of bottles and critical array spacing with a tight fitting Plexiglas{reg_sign} reflector on all sides of the arrays except the top. Some experiments used Plexiglas shells fitted around each bottles to determine the effect of moderation on criticality. Each bottle contained approximately 2.4 L of Pu(NO3)4 solution with a Pu content of 105 g Pu/L and a free acid molarity H+ of 5.1. The plutonium was of low 240Pu (2.9 wt.%) content. These experiments were performed to fill a gap in experimental data regarding criticality limits for storing and handling arrays of Pu solution in reprocessing facilities. Of the thirteen approach-to-critical experiments eleven resulted in extrapolations to critical configurations. Four of the approaches were extrapolated to the critical number of bottles; these were not evaluated further due to the large uncertainty associated with the modeling of a fraction of a bottle. The remaining seven approaches were extrapolated to critical array spacing of 3-4 and 4-4 arrays; these seven critical configurations were evaluation for inclusion as acceptable benchmark experiments in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook. Detailed and simple models of these configurations were created and the associated bias of these simplifications was determined to range from 0.00116 and 0.00162 {+-} 0.00006 ?keff. Monte Carlo analysis of all models was completed using MCNP5 with ENDF/BVII.0 neutron cross section libraries. A thorough uncertainty analysis of all critical, geometric, and material parameters was performed using parameter

  10. SEPARATION OF PLUTONIUM

    DOEpatents

    Maddock, A.G.; Smith, F.

    1959-08-25

    A method is described for separating plutonium from uranium and fission products by treating a nitrate solution of fission products, uranium, and hexavalent plutonium with a relatively water-insoluble fluoride to adsorb fission products on the fluoride, treating the residual solution with a reducing agent for plutonium to reduce its valence to four and less, treating the reduced plutonium solution with a relatively insoluble fluoride to adsorb the plutonium on the fluoride, removing the solution, and subsequently treating the fluoride with its adsorbed plutonium with a concentrated aqueous solution of at least one of a group consisting of aluminum nitrate, ferric nitrate, and manganous nitrate to remove the plutonium from the fluoride.

  11. Purification of aqueous plutonium chloride solutions via precipitation and washing.

    SciTech Connect

    Stroud, M. A.; Salazar, R. R.; Abney, Kent David; Bluhm, E. A.; Danis, J. A.

    2003-01-01

    Pyrochemical operations at Los Alamos Plutonium Facility (TA-55) use high temperature melt s of calcium chloride for the reduction of plutonium oxide to plutonium metal and hi gh temperature combined melts of sodium chloride and potassium chloride mixtures for the electrorefining purification of plutonium metal . The remaining plutonium and americium are recovered from thes e salts by dissolution in concentrated hydrochloric acid followed by either solvent extraction or io n exchange for isolation and ultimately converted to oxide after precipitation with oxalic acid . Figur e 1 illustrates the current aqueous chloride flow sheet used for plutonium processing at TA-55 .

  12. EXTRACTION OF URANYL NITRATE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Furman, N.H.; Mundy, R.J.

    1957-12-10

    An improvement in the process is described for extracting aqueous uranyl nitrate solutions with an organic solvent such as ether. It has been found that the organic phase will extract a larger quantity of uranyl nitrate if the aqueous phase contains in addition to the uranyl nitrate, a quantity of some other soluble nitrate to act as a salting out agent. Mentioned as suitable are the nitrates of lithium, calcium, zinc, bivalent copper, and trivalent iron.

  13. SEPARATION OF PLUTONIUM FROM AQUEOUS SOLUTIONS BY ION-EXCHANGE

    DOEpatents

    Schubert, J.

    1958-06-01

    A process is described for the separation of plutonium from an aqueous solution of a plutonium salt, which comprises adding to the solution an acid of the group consisting of sulfuric acid, phosphoric acid, and oxalic acid, and mixtures thereof to provide an acid concentration between 0.0001 and 1 M, contacting the resultant solution with a synthetic organic anion exchange resin, and separating the aqueous phase and the resin which contains the plutonium.

  14. METHOD OF SEPARATING PLUTONIUM

    DOEpatents

    Heal, H.G.

    1960-02-16

    BS>A method of separating plutonium from aqueous nitrate solutions of plutonium, uranium. and high beta activity fission products is given. The pH of the aqueous solution is adjusted between 3.0 to 6.0 with ammonium acetate, ferric nitrate is added, and the solution is heated to 80 to 100 deg C to selectively form a basic ferric plutonium-carrying precipitate.

  15. PLUTONIUM CLEANING PROCESS

    DOEpatents

    Kolodney, M.

    1959-12-01

    A method is described for rapidly removing iron, nickel, and zinc coatings from plutonium objects while simultaneously rendering the plutonium object passive. The method consists of immersing the coated plutonium object in an aqueous acid solution containing a substantial concentration of nitrate ions, such as fuming nitric acid.

  16. Aqueous Chloride Operations Overview: Plutonium and Americium Purification/Recovery

    SciTech Connect

    Gardner, Kyle Shelton; Kimball, David Bryan; Skidmore, Bradley Evan

    2016-09-28

    These are a set of slides intended for an information session as part of recruiting activities at Brigham Young University. It gives an overview of aqueous chloride operations, specifically on plutonium and americium purification/recovery. This presentation details the steps taken perform these processes, from plutonium size reduction, dissolution, solvent extraction, oxalate precipitation, to calcination. For americium recovery, it details the CLEAR (chloride extraction and actinide recovery) Line, oxalate precipitation and calcination.

  17. Catalyzed reduction of nitrate in aqueous solutions

    SciTech Connect

    Haas, P.A.

    1994-08-01

    Sodium nitrate and other nitrate salts in wastes is a major source of difficulty for permanent disposal. Reduction of nitrate using aluminum metal has been demonstrated, but NH{sub 3}, hydrazine, or organic compounds containing oxygen would be advantageous for reduction of nitrate in sodium nitrate solutions. Objective of this seed money study was to determine minimum conditions for reduction. Proposed procedure was batchwise heating of aqueous solutions in closed vessels with monitoring of temperatures and pressures. A simple, convenient apparatus and procedure were demonstrated for observing formation of gaseous products and collecting samples for analyses. The test conditions were 250{degree}C and 1000 psi max. Any useful reduction of sodium nitrate to sodium hydroxide as the primary product was not found. The nitrate present at pHs < 4 as HNO{sub 3} or NH{sub 4}NO{sub 3} is easily decomposed, and the effect of nitromethane at these low pHs was confirmed. When acetic acid or formic acid was added, 21 to 56% of the nitrate in sodium nitrate solutions was reduced by methanol or formaldehyde. With hydrazine and acetic acid, 73 % of the nitrate was decomposed to convert NaNO{sub 3} to sodium acetate. With hydrazine and formic acid, 36% of the nitrate was decomposed. If these products are more acceptable for final disposal than sodium nitrate, the reagents are cheap and the conversion conditions would be practical for easy use. Ammonium acetate or formate salts did not significantly reduce nitrate in sodium nitrate solutions.

  18. Exclusion of Nitrate from Frozen Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Marrocco, H. A.; Michelsen, R. R.

    2013-12-01

    Reactions occurring at the surface of ice, sea ice, and snow in Earth's cryosphere have an impact on the composition of the overlying atmosphere. In order to elucidate reaction mechanisms and model their contributions to atmospheric processes, the morphology of frozen aqueous surfaces and amounts of reactants contained therein must be determined. To this end, the exclusion of nitrate ions to the surface of frozen aqueous solutions has been studied by attenuated total reflection infrared spectroscopy (ATR-IR). In this technique the near-surface region of the frozen films are interrogated to a depth of a few hundred nanometers from the film-crystal interface. Aqueous solutions (0.001 to 0.01 M) of sodium nitrate (NaNO3), magnesium nitrate (Mg(NO3)2), and nitric acid (HNO3) were quickly frozen on the germanium ATR crystal and observed at a constant temperature of about -18°C. In addition to ice and the solutes, liquid water in varying amounts was observed in the spectra. The amount of nitrate in the surface liquid is three to four orders of magnitude higher than in the unfrozen solution. While all the nitrate salts exhibit exclusion to the unfrozen surface, the dynamics are different for different counter-ions. Results are compared to freezing point depression data and the predictions of equilibrium thermodynamics.

  19. Process for decomposing nitrates in aqueous solution

    DOEpatents

    Haas, Paul A.

    1980-01-01

    This invention is a process for decomposing ammonium nitrate and/or selected metal nitrates in an aqueous solution at an elevated temperature and pressure. Where the compound to be decomposed is a metal nitrate (e.g., a nuclear-fuel metal nitrate), a hydroxylated organic reducing agent therefor is provided in the solution. In accordance with the invention, an effective proportion of both nitromethane and nitric acid is incorporated in the solution to accelerate decomposition of the ammonium nitrate and/or selected metal nitrate. As a result, decomposition can be effected at significantly lower temperatures and pressures, permitting the use of system components composed of off-the-shelf materials, such as stainless steel, rather than more costly materials of construction. Preferably, the process is conducted on a continuous basis. Fluid can be automatically vented from the reaction zone as required to maintain the operating temperature at a moderate value--e.g., at a value in the range of from about 130.degree.-200.degree. C.

  20. Influence of Acidity on Uranyl Nitrate Association in Aqueous Solutions: A Molecular Dynamics Simulation Study

    SciTech Connect

    de Almeida, Valmor F; Cui, Shengting; Khomami, Bamin; Ye, Xianggui; Smith, Rodney Bryan

    2010-01-01

    Uranyl ion complexation with water and nitrate is a key aspect of the uranium/plutonium extraction process. We have carried out a molecular dynamics simulation study to investigate this complexation process, including the molecular composition of the various complex species, the corresponding structure, and the equilibrium distribution of the complexes. The observed structures of the complexes suggest that in aqueous solution, uranyls are generally hydrated by 5 water molecules in the equatorial plane. When associating with nitrate ions, a water molecule is replaced by a nitrate ion, preserving the five-fold coordination and planar symmetry. Analysis of the pair correlation function between uranyl and nitrate suggests that nitrates bind to uranyl in aqueous solution mainly in a monodentate mode, although a small portion of bidentates occur. Dynamic association and dissociation between uranyls and nitrates take place in aqueous solution with a substantial amount of fluctuation in the number of various uranyl nitrate species. The average number of the uranyl mononitrate complexes shows a dependence on acid concentration consistent with equilibrium-constant analysis, namely, the concentration of [UO2NO3]+ increases with nitric acid concentration.

  1. PLUTONIUM SEPARATION METHOD

    DOEpatents

    Beaufait, L.J. Jr.; Stevenson, F.R.; Rollefson, G.K.

    1958-11-18

    The recovery of plutonium ions from neutron irradiated uranium can be accomplished by bufferlng an aqueous solutlon of the irradiated materials containing tetravalent plutonium to a pH of 4 to 7, adding sufficient acetate to the solution to complex the uranyl present, adding ferric nitrate to form a colloid of ferric hydroxide, plutonlum, and associated fission products, removing and dissolving the colloid in aqueous nitric acid, oxldizlng the plutonium to the hexavalent state by adding permanganate or dichromate, treating the resultant solution with ferric nitrate to form a colloid of ferric hydroxide and associated fission products, and separating the colloid from the plutonlum left in solution.

  2. Chemical treatment of plutonium with hydrogen peroxide before nitrate anion exchange processing. [Reduction to (IV)

    SciTech Connect

    Marsh, S.F.; Gallegos, T.D.

    1987-05-01

    The major aqueous process used to recover and purify plutonium at the Los Alamos Plutonium Facility is anion exchange in nitric acid. This process is highly selective for plutonium; however, all plutonium must be as Pu(IV) to form the strongly sorbed anionic nitrato complex. The previous ''full-reduction treatment'' used at Los Alamos to obtain Pu(IV) results in a three- to fourfold increase in the feed solution volume and the introduction of kilogram quantities of extraneous salts immediately before a process whose function is to remove such impurities. That treatment has been successfully replaced by a single reagent, hydrogen peroxide, which converts all plutonium to Pu(IV), minimally increases the feed volume, and introduces no residual impurities. Safety aspects of this revised chemical treatment are addressed.

  3. Dried plutonium nitrate decontamination using HNO{sub 3} or Freon 113

    SciTech Connect

    Holcomb, H.P.

    1988-02-04

    A request was made of the Separations Technology Laboratory to perform tests to determine the relative effectiveness of Freon 113 and 18% (3.15M) nitric acid on removing dried plutonium nitrate from Hypalon{reg_sign} gloves destined for use in F B-Line. Freon 113 was very inefficient for removing dried plutonium nitrate under conditions of moderate agitation of the liquid in contact with the dried compound. Nitric acid proved to be an excellent agent for decontaminating purposes for both the gloves and for the Pyrex glass. In tests conducted on the glass or on the gloves on which dried plutonium nitrate had not been removed by Freon 113, followup with nitric acid efficiently removed the residual plutonium nitrate. Tests were also conducted to give some measure of the resistance of the Hypalon glove to continuous contact with 18% HNO{sub 3} or with Freon 113. Following two weeks` immersion, there was little physical difference noted from the starting material, except the glove piece immersed in the Freon underwent an 8% weight gain.

  4. Criticality experiments with mixed plutonium and uranium nitrate solution at a plutonium fraction of 0.4 in slab geometry

    SciTech Connect

    Pohl, B.A.; Keeton, S.C.

    1997-09-01

    R. C. Lloyd of PNL has completed and published a series of critical experiments with mixed plutonium- uranium nitrate solutions (Reference 1). This series of critical experiments was part of an extensive program jointly sponsored by the U. S. Department of Energy (DOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan and was carried out in the mid-1980`s. The experiments evaluated here (published as Report PNL-6327) were performed with mixed plutonium- uranium nitrate solution in a variable thickness slab tank with two 106.7 cm square sides and a width that could be varied from 7.6 to 22.8 cm. The objective of these experiments was to obtain experimental data to permit the validation of computer codes for criticality calculations and of cross-section data to minimize the uncertainties inherent therein, so that facility safety, efficiency, and reliability could be enhanced. The concentrations of the solution were about 105, 293, and 435 g(Pu+U)/liter with a ratio of plutonium to total heavy metal (plutonium plus uranium) of about 0. 40 for all eight experiments. Four measurements were made with a water reflector, and four with no reflector. Following the publication of the initial PNL reports, considerable effort was devoted to an extensive reevaluation of this series of experiments by a collaboration of researchers from ORNL, PNL, and PNC (Reference 2). Their work resulted in a more accurate description of the ``as built`` hardware configuration and the materials specifications. For the evaluations in this report, the data published in Reference 2 by Smolen et al. is selected to supersede the original PNL report. Eight experiments have been evaluated and seven (063, 064, 071, 072, 074, 075, and 076) provide benchmark criticality data. Experiment 073 could not achieve criticality within vessel height limitations.

  5. METHOD OF SEPARATION OF PLUTONIUM FROM CARRIER PRECIPITATES

    DOEpatents

    Dawson, I.R.

    1959-09-22

    The recovery of plutonium from fluoride carrier precipitates is described. The precipitate is dissolved in zirconyl nitrate, ferric nitrate, aluminum nitrate, or a mixture of these complexing agents, and the plutonium is then extracted from the aqueous solution formed with a water-immiscible organic solvent.

  6. Aqueous Chloride Operations Overview: Plutonium and Americium Purification/Recovery

    SciTech Connect

    Kimball, David Bryan; Skidmore, Bradley Evan

    2016-06-22

    Acqueous Chloride mission is to recover plutonium and americium from pyrochemical residues (undesirable form for utilization and storage) and generate plutonium oxide and americium oxide. Plutonium oxide is recycled into Pu metal production flowsheet. It is suitable for storage. Americium oxide is a valuable product, sold through the DOE-OS isotope sales program.

  7. SOLVENT EXTRACTION PROCESS FOR PLUTONIUM

    DOEpatents

    Seaborg, G.T.

    1959-04-14

    The separation of plutonium from aqueous inorganic acid solutions by the use of a water immiscible organic extractant liquid is described. The plutonium must be in the oxidized state, and the solvents covered by the patent include nitromethane, nitroethane, nitropropane, and nitrobenzene. The use of a salting out agents such as ammonium nitrate in the case of an aqueous nitric acid solution is advantageous. After contacting the aqueous solution with the organic extractant, the resulting extract and raffinate phases are separated. The plutonium may be recovered by any suitable method.

  8. SEPARATION OF PLUTONIUM VALUES FROM OTHER METAL VALUES IN AQUEOUS SOLUTIONS BY SELECTIVE COMPLEXING AND ADSORPTION

    DOEpatents

    Beaton, R.H.

    1960-06-28

    A process is given for separating tri- or tetravalent plutonium from fission products in an aqueous solution by complexing the fission products with oxalate, tannate, citrate, or tartrate anions at a pH value of at least 2.4 (preferably between 2.4 and 4), and contacting a cation exchange resin with the solution whereby the plutonium is adsorbed while the complexed fission products remain in solution.

  9. Nitrate Concentration near the Surface of Frozen Aqueous Solutions.

    PubMed

    Marrocco, Harley A; Michelsen, Rebecca R H

    2014-12-26

    Photolysis of nitrate plays an important role in the emission of nitrogen oxides from snow and ice, which affects the composition of the overlying atmosphere. In order to quantify these reactions, it is necessary to know how much nitrate is available for photolysis near the surfaces of snow and ice. The concentration of nitrate excluded from frozen solutions of nitric acid, sodium nitrate, and magnesium nitrate was measured with attenuated total reflection infrared spectroscopy. Liquid water and nitrate were observed at and near the bottom surface of frozen aqueous solutions during annealing from -18 to -2 °C. At -2 °C, the nitrate concentration was determined to be ∼1.0 mol/L for frozen NaNO(3) and Mg(NO(3))(2) solutions and ∼0.8 mol/L for frozen HNO(3) solutions. At lower temperatures, nitrate concentration ranged from 1.6 to 3.7 mol/L. Ideal thermodynamics overestimates nitrate concentration at colder temperatures where the brine is highly concentrated for all solutions. The nitrate concentration at ice surfaces is well described by bulk freezing point depression data close to the melting point of ice and for nitric acid at colder temperatures. Effects of temperature and counterions and implications for modeling snow chemistry are discussed.

  10. Coupled jump rotational dynamics in aqueous nitrate solutions

    NASA Astrophysics Data System (ADS)

    Banerjee, Puja; Yashonath, Subramanian; Bagchi, Biman

    2016-12-01

    A nitrate ion (NO3-) with its trigonal planar geometry and charges distributed among nitrogen and oxygen atoms can couple to the extensive hydrogen bond network of water to give rise to unique dynamical characteristics. We carry out detailed atomistic simulations and theoretical analyses to investigate these aspects and report certain interesting findings. We find that the nitrate ions in aqueous potassium nitrate solution exhibit large amplitude rotational jump motions that are coupled to the hydrogen bond rearrangement dynamics of the surrounding water molecules. The jump motion of nitrate ions bears certain similarities to the Laage-Hynes mechanism of rotational jump motions of tagged water molecules in neat liquid water. We perform a detailed atomic-level investigation of hydrogen bond rearrangement dynamics of water in aqueous KNO3 solution to unearth two distinct mechanisms of hydrogen bond exchange that are instrumental to promote these jump motions of nitrate ions. As observed in an earlier study by Xie et al., in the first mechanism, after breaking a hydrogen bond with nitrate ion, water forms a new hydrogen bond with a water molecule, whereas the second mechanism involves just a switching of hydrogen bond between the two oxygen atoms of the same nitrate ion (W. J. Xie et al., J. Chem. Phys. 143, 224504 (2015)). The magnitude as well as nature of the reorientational jump of nitrate ion for the two mechanisms is different. In the first mechanism, nitrate ion predominantly undergoes out-of-plane rotation, while in the second mechanism, in-plane reorientation of NO3- is favourable. These have been deduced by computing the torque on the nitrate ion during the hydrogen bond switching event. We have defined and computed the time correlation function for coupled reorientational jump of nitrate and water and obtained the associated relaxation time which is also different for the two mechanisms. These results provide insight into the relation between the coupled

  11. Effects of inhaled plutonium nitrate on bone and liver in dogs

    SciTech Connect

    Dagle, G.E.; Weller, R.E.; Watson, C.R.; Buschbom, R.L.

    1994-04-01

    The life-span biological effects of inhaled soluble, alpha-emitting radionuclides deposited in the skeleton and liver were studied in 5 groups of 20 beagles exposed to initial lung depositions ranging from 0.48 to 518 Bq/g of lung. Average plutonium amounts in the lungs decreased to approximately 1% of the final body deposition in dogs surviving 5 years or more; more than 90% of the final depositions accumulated in the liver and skeleton. The liver-to-skeletal ratio of deposited plutonium was 0.83. The incidence of bone tumors, primarily osteogenic sarcomas causing early mortality, at final group average skeletal depositions of 15.8, 2.1, and 0.5 Bq/g was, respectively, 85%, 50%, and 5%; there were no bone tumors in exposure groups with mean average depositions lower than 0.5 Bq/g. Elevated serum liver enzyme levels were observed in exposure groups down to 1.3 Bq/g. The incidence of liver tumors at final group average liver depositions of 6.9, 1.3, 0.2, and 0.1 Bq/g, was, respectively, 25%, 15%, 15%, and 15%; one hepatoma occurred among 40 control dogs. The risk of the liver cancer produced by inhaled plutonium nitrate was difficult to assess due to the competing risks of life shortening from lung and bone tumors.

  12. Method of separating thorium from plutonium

    DOEpatents

    Clifton, D.G.; Blum, T.W.

    A method of chemically separating plutonium from thorium is claimed. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

  13. Method of separating thorium from plutonium

    DOEpatents

    Clifton, D.G.; Blum, T.W.

    1984-07-10

    A method is described for chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

  14. Method of separating thorium from plutonium

    DOEpatents

    Clifton, David G.; Blum, Thomas W.

    1984-01-01

    A method of chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

  15. Evaluation of a new, macroporous polyvinylpyridine resin for processing plutonium using nitrate anion exchange

    SciTech Connect

    Marsh, S.F.

    1989-04-01

    Anion exchange in nitric acid is the major aqueous process used to recover and purify plutonium from impure scrap materials. Most strong-base anion exchange resins incorporate a styrene-divinylbenzene copolymer. A newly available, macroporous anion exchange resin based on a copolymer of 1-methyl-4-vinylpyridine and divinylbenzene has been evaluated. Comparative data for Pu(IV) sorption kinetics and capacity are presented for this new resin and two other commonly used anion exchange resins. The new resin offers high capacity and rapid sorption kinetics for Pu(IV) from nitric acid, as well as greatly stability to chemical and radiolytic degradation. 8 refs., 14 figs.

  16. Plutonium

    NASA Astrophysics Data System (ADS)

    Clark, David L.; Hecker, Siegfried S.; Jarvinen, Gordon D.; Neu, Mary P.

    The element plutonium occupies a unique place in the history of chemistry, physics, technology, and international relations. After the initial discovery based on submicrogram amounts, it is now generated by transmutation of uranium in nuclear reactors on a large scale, and has been separated in ton quantities in large industrial facilities. The intense interest in plutonium resulted fromthe dual-use scenario of domestic power production and nuclear weapons - drawing energy from an atomic nucleus that can produce a factor of millions in energy output relative to chemical energy sources. Indeed, within 5 years of its original synthesis, the primary use of plutonium was for the release of nuclear energy in weapons of unprecedented power, and it seemed that the new element might lead the human race to the brink of self-annihilation. Instead, it has forced the human race to govern itself without resorting to nuclear war over the past 60 years. Plutonium evokes the entire gamut of human emotions, from good to evil, from hope to despair, from the salvation of humanity to its utter destruction. There is no other element in the periodic table that has had such a profound impact on the consciousness of mankind.

  17. Criticality experiments with planar arrays of three-liter bottles containing plutonium nitrate solution

    SciTech Connect

    Durst, B.M.; Clayton, E.D.; Smith, J.H.

    1985-01-01

    The objective of these experiments was to provide benchmark data to validate calculational codes used in critically safety assessments of plant configurations. Arrays containing up to as many as sixteen three-liter bottles filled with plutonium nitrate were used in the experiments. A split-table device was used in the final assembly of the arrays. Ths planar arrays were reflected with close fitting plexiglas on each side and on the bottom but not the top surface. The experiments addressed a number of factors effecting criticality: the critical air gap between bottles in an array of fixed number of bottles, the number of bottles required for criticality if the bottles were touching, and the effect on critical array spacing and critical bottle number due to the insertion of an hydrogeneous substance into the air gap between bottles. Each bottle contained about 2.4l of Pu(NO{sub 3}){sub 4} solution at a Pu concentration of 105g Pu/l, with the {sup 240}Pu content being 2.9 wt% at a free acid molarity H{sup +} of 5.1. After the initial series of experiments were performed with bottles separated by air gaps, plexiglas shells of varying thicknesses were placed around each bottle to investigate how moderation between bottles affects both the number of bottles required for criticality and the critical spacing between each bottle. The minimum of bottles required for criticality was found to be 10.9 bottles, occurring for a square array with bottles in contact. As the bottles were spaced apart, the critical number increased. For sixteen bottles in a square array, the critical separation between surfaces in both x and y direction was 0.96 cm. The addition of plexiglas around each bottle decreased the critical bottle number, compared to those separated in air, but the critical bottle number, even with interstitial plastic in place was always greater than 10.9 bottles. The most reactive configuration was a tightly packed array of bottles with no intervening material.

  18. SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS

    DOEpatents

    Nicholls, C.M.; Wells, I.; Spence, R.

    1959-10-13

    The separation of uranium and plutonium from neutronirradiated uranium is described. The neutron-irradiated uranium is dissolved in nitric acid to provide an aqueous solution 3N in nitric acid. The fission products of the solution are extruded by treating the solution with dibutyl carbitol substantially 1.8N in nitric acid. The organic solvent phase is separated and neutralized with ammonium hydroxide and the plutonium reduced with hydroxylamine base to the trivalent state. Treatment of the mixture with saturated ammonium nitrate extracts the reduced plutonium and leaves the uranium in the organic solvent.

  19. SEPARATION OF URANIUM, PLUTONIUM, AND FISSION PRODUCTS

    DOEpatents

    Spence, R.; Lister, M.W.

    1958-12-16

    Uranium and plutonium can be separated from neutron-lrradiated uranium by a process consisting of dissolvlng the lrradiated material in nitric acid, saturating the solution with a nitrate salt such as ammonium nitrate, rendering the solution substantially neutral with a base such as ammonia, adding a reducing agent such as hydroxylamine to change plutonium to the trivalent state, treating the solution with a substantially water immiscible organic solvent such as dibutoxy diethylether to selectively extract the uranium, maklng the residual aqueous solutlon acid with nitric acid, adding an oxidizing agent such as ammonlum bromate to oxidize the plutonium to the hexavalent state, and selectlvely extracting the plutonium by means of an immlscible solvent, such as dibutoxy dlethyletber.

  20. Structure Determination of Plutonium Oxide Precipitates Formed from Aqueous Plutonium IV and V Solutions and in the Presence of Goethite

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Zavarin, M.; Zhao, P.; Begg, J.; Kersting, A. B.

    2012-12-01

    A series of aqueous Pu(IV) and Pu(V) batch sorption experiments with goethite (α-FeOOH) in a pH 8 ± 0.5 buffer solution (5mM NaCl + 0.7 mM NaHCO3) at room temperature (25 °C) were performed. Intrinsic Pu colloids were synthesized in alkaline solution (pH 8, 25 °C) and acidic solution (0.1 M HNO3, ~80 °C for 10-20 min), respectively, for comparison. Morphology, distribution and crystal structure of Pu oxide precipitates, as well as interaction between the Pu precipitates and goethite, were investigated using transmission electron microscopy (TEM). The Pu oxide precipitates formed from the sorption experiments consist of 3-5 nm primary crystalline particles (nanocrystals) irrespective of the initial form of Pu. The Pu oxide nanocrystals adopt two different crystal structures, either fcc PuO2 or bcc Pu4O7. The relative abundance of one form over the other depends on the initial form of Pu, Pu concentration, and the presence of goethite. For the high Pu concentration sorption cases (>9,000 nmol/m2 goethite), fcc PuO2 is the predominant phase occurring in both aqueous Pu(IV) and Pu(V) samples. In the Pu(IV) samples, the fcc PuO2 nanocrystals form mainly as a product of hydrolysis in solution. In the Pu(V) samples, the fcc PuO2 nanocrystals form by redox reactions dominantly occurring on goethite surface following the sorption of Pu(V). At lower Pu concentrations, the bcc Pu4O7 becomes dominant in the presence of goethite. The bcc Pu4O7 forms directly on the goethite surface as a 3-5 nm isolated nanocrystal in both Pu(IV) and Pu(V) samples and has specific crystallographic orientation relationships to goethite. Nucleation of the bcc Pu4O7 may occur by substitution of Pu(III) at the Fe(III) position on the goethite surface. In the absence of goethite, the intrinsic Pu colloids formed in alkaline solution (pH 8, 25 °C) are also comprised of 3-5 nm fcc PuO2 nanocrystals. As for the intrinsic Pu colloids precipitated from the acidic solution (0.1 M HNO3) at an elevated

  1. EXTRACTION METHOD FOR SEPARATING URANIUM, PLUTONIUM, AND FISSION PRODUCTS FROM COMPOSITIONS CONTAINING SAME

    DOEpatents

    Seaborg, G.T.

    1957-10-29

    Methods for separating plutonium from the fission products present in masses of neutron irradiated uranium are reported. The neutron irradiated uranium is first dissolved in an aqueous solution of nitric acid. The plutonium in this solution is present as plutonous nitrate. The aqueous solution is then agitated with an organic solvent, which is not miscible with water, such as diethyl ether. The ether extracts 90% of the uraryl nitrate leaving, substantially all of the plutonium in the aqueous phase. The aqueous solution of plutonous nitrate is then oxidized to the hexavalent state, and agitated with diethyl ether again. In the ether phase there is then obtained 90% of plutonium as a solution of plutonyl nitrate. The ether solution of plutonyl nitrate is then agitated with water containing a reducing agent such as sulfur dioxide, and the plutonium dissolves in the water and is reduced to the plutonous state. The uranyl nitrate remains in the ether. The plutonous nitrate in the water may be recovered by precipitation.

  2. Nitrate removal from aqueous solution by adsorption onto various materials.

    PubMed

    Oztürk, Neşe; Bektaş, T Ennil

    2004-08-09

    In this study sepiolite, sepiolite activated by HCl, slag and powdered activated carbon were used as adsorbent with a particle size was between 71 and 80 microm (200-170 mesh). NaNO3 solution (100 mg/l) was used in batch adsorption experiments for nitrate removal. First kinetic studies were carried out and it was determined that slag was not effective for nitrate removal, then contact time, pH and adsorbent dosage effects on nitrate removal by adsorption were investigated using other adsorbents except slag. The equilibrium time was found to be 30, 45, 5 min for sepiolite, powdered activated carbon and activated sepiolite, respectively. The most effective pH value for nitrate removal was 2 for powdered activated carbon. pH value did not affect nitrate removal significantly for other adsorbents. Adsorbent dosages were varied from 5 to 20 g/l solutions. An increase in adsorbent dosage increased the percent removal of nitrate. A series of isotherm studies were undertaken and the data evaluated for compliance with the Langmuir and Freundlich isotherm models. To investigate the adsorption mechanisms, three simplified kinetic models, i.e., first-, second-order and intraparticle diffusion were tested. Adsorption followed second-order rate kinetics. The correlation coefficients for second order kinetic model are greater than 0.996. Experimental data show that sepiolite activated by HCl was effective for nitrate removal.

  3. Preparation and utilization of wheat straw anionic sorbent for the removal of nitrate from aqueous solution.

    PubMed

    Wang, Yu; Gao, Bao-yu; Yue, Wen-wen; Yue, Qin-yan

    2007-01-01

    In order to reduce the impact of eutrophication caused by agricultural residues (i.e., excess nitrate) in aqueous solution, economic and effective anionic sorbents are required. In this article, we prepared anionic sorbent using wheat straw. Its structural characteristics and adsorption properties for nitrate removal from aqueous solution were investigated. The results indicate that the yield of the prepared anionic sorbent, the total exchange capacity, and the maximum adsorption capacity were 350%, 2.57 mEq/g, and 2.08 mmol/g, respectively. The Freundlich isotherm mode is more suitable than the Langmuir mode and the adsorption process accords with the first order reaction kinetic rate equation. When multiple anions (SO4(2-), H2PO4(-), NO3(-), and NO2(-)) were present, the isotherm mode of prepared anionic sorbent for nitrate was consistent with Freundlich mode; however, the capacity of nitrate adsorption was reduced by 50%. In alkaline solutions, about 90% of adsorbed nitrate ions could be desorbed from prepared anionic sorbent. The results of this study confirmed that the wheat straw anionic sorbent can be used as an excellent nitrate sorbent that removes nitrate from aqueous solutions.

  4. Criticality Experiments with Mixed Plutonium and Uranium Nitrate Solution at a Plutonium Fraction of 0.5 in Annular Cylindrical Geometry

    SciTech Connect

    Lloyd, RC

    1988-04-01

    A series of critical experiments was completed with mixed plutonium-uranium solutions having Pu/(Pu + U) ratios of approximately 0.5. These experiments were a part of the Criticality Data Development Program between the United States Department of Energy (USDOE), and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. A complete description of, and data from, the experiments are included in this report. The experiments were performed with mixed plutonium-uranium solutions in annular cylindrical geometry. The measurements were made with a water reflector. The central region included a concrete annular cylinder containing B{sub 4}C. Interior to the concrete insert was a stainless steel bottle containing plutonium-uranium solution. The concentration of the solution in the annular region was varied from 116 to 433 g (Pu + U)/liter. The ratio of plutonium to total heavy metal (plutonium plus uranium) was 52% for all experiments.

  5. Extraction of nitric acid, uranyl nitrate, and bismuth nitrate from aqueous nitric acid solutions with CMPO

    SciTech Connect

    Spencer, B.B.

    1995-08-01

    DOE sponsored development of the transuranium extraction (TRUEX) process for removing actinides from radioactive wastes. The solvent is a mixture of CMPO and TBP. Since the extraction characteristics of CMPO are not as well understood as those of TBP, the extraction of nitric acid, uranyl nitrate, and bismuth nitrate with CMPO (dissolved in n-dodecane) were studied. Results indicate that CMPO extracts nitric acid with a 1:1 stoichiometry; equilibrium constant is 2. 660{plus_minus}0.092 at 25 C, and extraction enthalpy is -5. 46{plus_minus}0.46 kcal/mol. Slope analysis indicates that uranyl nitrate extracts with a mixed equilibria of 1:1 and 2:1 stoichiometries in nearly equal proportion. Equil. constant of the 2: 1 extraction was 1.213 {times} 10{sup 6}{plus_minus}3.56 {times} 10{sup 4} at 25 C; reaction enthalpy was -9.610{plus_minus}0.594 kcal/mol. Nitration complexation constant is 8.412{plus_minus}0.579, with an enthalpy of -10.72{plus_minus}1.87 kcal/mol. Bismuth nitrate also extracts with a mixed equilibria of (perhaps) 1:1 and 2:1 stoichiometries. A 2:1 extraction equilibrium and a nitrate complexation adequately model the data. Kinetics and enthalpies were also measured.

  6. The structure of plutonium(IV) oxide as hydrolysed clusters in aqueous suspensions.

    PubMed

    Ekberg, Christian; Larsson, Kristian; Skarnemark, Gunnar; Ödegaard-Jensen, Arvid; Persson, Ingmar

    2013-02-14

    The behavior of plutonium still puzzles scientists 70 years after its discovery. There are several factors making the chemistry of plutonium interesting including its ability to keep several oxidation states. Another unique property is that the oxidation states +III, +IV, +V and +VI may exist simultaneously in solution. Another property plutonium shares with some other tetravalent metal ions is the ability to form stable polynuclear complexes or colloids. The structures of freshly prepared and five-year old plutonium(IV) colloids are compared with crystalline plutonium(IV) oxide using Pu L(3)-edge EXAFS. It was shown that as the plutonium colloids age they do in fact shrink in size, contrary to previous expectations. The aged colloidal particles are indeed very small with only 3-4 plutonium atoms, and with a structure very similar to solid plutonium(IV) oxide, but with somewhat shorter mean Pu-O bond and Pu···Pu distances indicating a partial oxidation. The very small size of the colloidal particles is further supported by the fact that they do not sediment on heavy ultra-centrifugation.

  7. Complexation and redox interactions between aqueous plutonium and manganese oxide interfaces

    SciTech Connect

    Shaughnessy, Dawn A.; Nitsche, Heino; Booth, Corwin H.; Shuh, David K.; Waychunas, Glenn A.; Wilson, Richard E.; Cantrell, Kirk J.; Serne, R. Jeffrey

    2001-11-01

    The sorption of Pu(VI) and Pu(V) onto manganite (MnOOH) and Hausmannite (Mn3O4) was studied at pH 5. Manganite sorbed 21-24% from a 1x10-4 M plutonium solution and the hausmannite removed between 43-66% of the plutonium. The increased sorption by hausmannite results from its larger surface area (about twice that of manganite) plus a larger number of active surface sites. X-ray absorption near-edge structure (XANES) spectra taken at the Pu LIII edge were compared to standard spectra of plutonium in single oxidation states. Based on these spectra, it appears that both manganite and hausmannite reduce the higher valent plutonium species to Pu(IV). Between 53-59% of the plutonium was present as Pu(IV) in the manganite samples while 55-61% of the plutonium complexed to the hausmannite had also been reduced to Pu(IV). The exact mechanism behind this redox interaction between the plutonium and the manganese needs to be identified.

  8. [Removal of nitrate from aqueous solution using cetylpyridinium chloride (CPC)-modified activated carbon as the adsorbent].

    PubMed

    Zheng, Wen-Jing; Lin, Jian-Wei; Zhan, Yan-Hui; Fang, Qiao; Yang, Meng-Juan; Wang, Hong

    2013-11-01

    Surfactant-modified activated carbon (SMAC) was prepared by loading cetylpyridinium chloride (CPC) onto activated carbon and used as adsorbents to remove nitrate from aqueous solution. The SMAC was effective for removing nitrate from aqueous solution. The SMAC exhibited much higher nitrate adsorption capacity than that of the unmodified activated carbon. The nitrate adsorption capacity for SMAC increased with increasing the CPC loading. The adsorption kinetics of nitrate on SMAC followed a pseudo-second-order kinetic model. The equilibrium adsorption data of nitrate on SMAC could be described by the Langmuir isotherm model. Based on the Langmuir isotherm model, the maximum nitrate adsorption capacity for SMAC with CPC loading amount of444 mmol per 1 kg activated carbon was determined to be 16.1 mg x g(-1). The nitrate adsorption capacity for SMAC decreased with the increasing solution pH. The presence of competing anions such as chloride, sulfate and bicarbonate reduced the nitrate adsorption capacity. The nitrate adsorption capacity for SMAC slightly decreased with the increasing reaction temperature. Almost 95% of nitrate molecules adsorbed on SMAC could be desorbed in 1 mol x L(-1) NaCl solution. The main mechanisms for the adsorption of nitrate on SMAC are anionic exchange and electrostatic attraction. The results of this work indicate that SMAC is a promising adsorbent for removing nitrate from aqueous solution.

  9. Properties of aqueous nitrate and nitrite from x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Smith, Jacob W.; Lam, Royce K.; Shih, Orion; Rizzuto, Anthony M.; Prendergast, David; Saykally, Richard J.

    2015-08-01

    Nitrate and nitrite ions are of considerable interest, both for their widespread use in commercial and research contexts and because of their central role in the global nitrogen cycle. The chemistry of atmospheric aerosols, wherein nitrate is abundant, has been found to depend on the interfacial behavior of ionic species. The interfacial behavior of ions is determined largely by their hydration properties; consequently, the study of the hydration and interfacial behavior of nitrate and nitrite comprises a significant field of study. In this work, we describe the study of aqueous solutions of sodium nitrate and nitrite via X-ray absorption spectroscopy (XAS), interpreted in light of first-principles density functional theory electronic structure calculations. Experimental and calculated spectra of the nitrogen K-edge XA spectra of bulk solutions exhibit a large 3.7 eV shift between the XA spectra of nitrate and nitrite resulting from greater stabilization of the nitrogen 1s energy level in nitrate. A similar shift is not observed in the oxygen K-edge XA spectra of NO3- and NO2-. The hydration properties of nitrate and nitrite are found to be similar, with both anions exhibiting a similar propensity towards ion pairing.

  10. Properties of aqueous nitrate and nitrite from x-ray absorption spectroscopy

    SciTech Connect

    Smith, Jacob W.; Lam, Royce K.; Saykally, Richard J.; Shih, Orion; Rizzuto, Anthony M.; Prendergast, David

    2015-08-28

    Nitrate and nitrite ions are of considerable interest, both for their widespread use in commercial and research contexts and because of their central role in the global nitrogen cycle. The chemistry of atmospheric aerosols, wherein nitrate is abundant, has been found to depend on the interfacial behavior of ionic species. The interfacial behavior of ions is determined largely by their hydration properties; consequently, the study of the hydration and interfacial behavior of nitrate and nitrite comprises a significant field of study. In this work, we describe the study of aqueous solutions of sodium nitrate and nitrite via X-ray absorption spectroscopy (XAS), interpreted in light of first-principles density functional theory electronic structure calculations. Experimental and calculated spectra of the nitrogen K-edge XA spectra of bulk solutions exhibit a large 3.7 eV shift between the XA spectra of nitrate and nitrite resulting from greater stabilization of the nitrogen 1s energy level in nitrate. A similar shift is not observed in the oxygen K-edge XA spectra of NO{sub 3}{sup −} and NO{sub 2}{sup −}. The hydration properties of nitrate and nitrite are found to be similar, with both anions exhibiting a similar propensity towards ion pairing.

  11. PROCESS FOR PURIFYING PLUTONIUM

    DOEpatents

    Mastick, D.F.; Wigner, E.P.

    1958-05-01

    A method is described of separating plutonium from small amounts of uranium and other contaminants. An acidic aqueous solution of higher valent plutonium and hexavalent uranium is treated with a soluble iodide to obtain the plutonium in the plus three oxidation state while leaving the uranium in the hexavalent state, adding a soluble oxalate such as oxalic acid, and then separating the insoluble plus the plutonium trioxalate from the solution.

  12. New spectroscopic studies of plutonium (IV) nitrate complex formation in solution

    SciTech Connect

    Berg, J.M.; Veirs, D.K.; Vaughn, R.B.

    1997-06-01

    Spectrophotometric titrations of Pu(IV) with HNO{sub 3} were conducted in a series of aqueous HClO{sub 4} solutions ranging ionic strength from 2 to 19 mol/kg on the molality scale. The Pu f-f absorption spectra in the visible and near IR range were deconvoluted into spectra of Pu{sup 4+}(aq), Pu(NO{sub 3}){sup 3+} and Pu(NO{sub 3}){sub 2}{sup 2+} complexes and their formation constants as functions of ionic strength. When corrected for the incomplete dissociation of nitric acid, these formation constants exhibit smooth increases with ionic strength from 5 to 19 mol/kg.

  13. Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse.

    PubMed

    Demiral, Hakan; Gündüzoğlu, Gül

    2010-03-01

    In this study, activated carbons were prepared from sugar beet bagasse by chemical activation and the prepared activated carbons were used to remove nitrate from aqueous solutions. In chemical activation, ZnCl(2) was used as chemical agent. The effects of impregnation ratio and activation temperature were investigated. The produced activated carbons were characterized by measuring their porosities and pore size distributions. The microstructure of the activated carbons was examined by scanning electron microscopy (SEM). The maximum specific surface area of the activated carbon was about 1826m(2)/g at 700 degrees C and at an impregnation ratio of 3:1. The resulting activated carbon was used for removal of nitrate from aqueous solution. The effects of pH, temperature and contact time were investigated. Isotherm studies were carried out and the data were analyzed by Langmuir, Freundlich and Temkin equations. Three simplified kinetic models were tested to investigate the adsorption mechanism.

  14. Chemical species of plutonium in Hanford radioactive tank waste

    SciTech Connect

    Barney, G.S.

    1997-10-22

    Large quantities of radioactive wastes have been generated at the Hanford Site over its operating life. The wastes with the highest activities are stored underground in 177 large (mostly one million gallon volume) concrete tanks with steel liners. The wastes contain processing chemicals, cladding chemicals, fission products, and actinides that were neutralized to a basic pH before addition to the tanks to prevent corrosion of the steel liners. Because the mission of the Hanford Site was to provide plutonium for defense purposes, the amount of plutonium lost to the wastes was relatively small. The best estimate of the amount of plutonium lost to all the waste tanks is about 500 kg. Given uncertainties in the measurements, some estimates are as high as 1,000 kg (Roetman et al. 1994). The wastes generally consist of (1) a sludge layer generated by precipitation of dissolved metals from aqueous wastes solutions during neutralization with sodium hydroxide, (2) a salt cake layer formed by crystallization of salts after evaporation of the supernate solution, and (3) an aqueous supernate solution that exists as a separate layer or as liquid contained in cavities between sludge or salt cake particles. The identity of chemical species of plutonium in these wastes will allow a better understanding of the behavior of the plutonium during storage in tanks, retrieval of the wastes, and processing of the wastes. Plutonium chemistry in the wastes is important to criticality and environmental concerns, and in processing the wastes for final disposal. Plutonium has been found to exist mainly in the sludge layers of the tanks along with other precipitated metal hydrous oxides. This is expected due to its low solubility in basic aqueous solutions. Tank supernate solutions do not contain high concentrations of plutonium even though some tanks contain high concentrations of complexing agents. The solutions also contain significant concentrations of hydroxide which competes with other

  15. Chemical reduction kinetics of nitrate in aqueous solution by Mg/Cu bimetallic particles.

    PubMed

    Mortazavi, S B; Ramavandi, B; Moussavi, G

    2011-01-01

    Synthesized magnesium/copper (Mg/Cu) bimetallic particles have shown good potential for use in the reduction of nitrate from aqueous solutions. This study was conducted to investigate the main factors affecting the kinetics of nitrate reduction by Mg/Cu particles (<100 microm) in uncontrolled reaction conditions. The Mg/Cu bimetallic particles removed the majority of the various nitrate concentrations tested (50, 100, 150, 200 and 300 mg L(-1)) within a short period. The time required for the removal of 90.6% of the NO3(-) from a 100 mg L(-1) solution was about 20 min using 2 gL(-1) bimetallic Mg/Cu at an initial solution pH of 6. The activation energy (Ea) for nitrate reduction by Mg/Cu over the temperature range of 5 to 60 degrees C was 14.21 kJ mol(-1). The experimental results of the kinetic analysis from batch studies indicated that a higher initial nitrate concentration yielded a greater reaction-rate constant and the denitrification rate increased with increase Mg/Cu dosage.

  16. Kinetic studies of nitrate removal from aqueous solution using granular chitosan-Fe(III) complex.

    PubMed

    Hu, Qili; Chen, Nan; Feng, Chuanping; Zhang, Jing; Hu, Weiwu; Lv, Long

    2016-01-01

    In the present study, a granular chitosan-Fe(III) complex was prepared as a feasible adsorbent for the removal of nitrate from an aqueous solution. There was no significant change in terms of nitrate removal efficiency over a wide pH range of 3-11. Nitrate adsorption on the chitosan-Fe(III) complex followed the Langmuir-Freundlich isotherm model. In order to more accurately reflect adsorption and desorption behaviors at the solid/solution interface, kinetic model I and kinetic model II were proposed to simulate the interfacial process in a batch system. Nitrate adsorption on the chitosan-Fe(III) complex followed the pseudo-first-order kinetic model and kinetic model I. The proposed half-time could provide useful information for optimizing process design. Adsorption and desorption rate constants obtained from kinetic model I and kinetic model II were beneficial to understanding the interfacial process and the extent of adsorption reaction. Kinetic model I and kinetic model II implied that nitrate uptake exponentially approaches a limiting value.

  17. Plutonium Chemistry in the UREX+ Separation Processes

    SciTech Connect

    ALena Paulenova; George F. Vandegrift, III; Kenneth R. Czerwinski

    2009-10-01

    The project "Plutonium Chemistry in the UREX+ Separation Processes” is led by Dr. Alena Paulenova of Oregon State University under collaboration with Dr. George Vandegrift of ANL and Dr. Ken Czerwinski of the University of Nevada at Las Vegas. The objective of the project is to examine the chemical speciation of plutonium in UREX+ (uranium/tributylphosphate) extraction processes for advanced fuel technology. Researchers will analyze the change in speciation using existing thermodynamics and kinetic computer codes to examine the speciation of plutonium in aqueous and organic phases. They will examine the different oxidation states of plutonium to find the relative distribution between the aqueous and organic phases under various conditions such as different concentrations of nitric acid, total nitrates, or actinide ions. They will also utilize techniques such as X-ray absorbance spectroscopy and small-angle neutron scattering for determining plutonium and uranium speciation in all separation stages. The project started in April 2005 and is scheduled for completion in March 2008.

  18. Continuous plutonium dissolution apparatus

    DOEpatents

    Meyer, F.G.; Tesitor, C.N.

    1974-02-26

    This invention is concerned with continuous dissolution of metals such as plutonium. A high normality acid mixture is fed into a boiler vessel, vaporized, and subsequently condensed as a low normality acid mixture. The mixture is then conveyed to a dissolution vessel and contacted with the plutonium metal to dissolve the plutonium in the dissolution vessel, reacting therewith forming plutonium nitrate. The reaction products are then conveyed to the mixing vessel and maintained soluble by the high normality acid, with separation and removal of the desired constituent. (Official Gazette)

  19. CONCENTRATION PROCESS FOR PLUTONIUM IONS, IN AN OXIDATION STATE NOT GREATER THAN +4, IN AQUEOUS ACID SOLUTION

    DOEpatents

    Seaborg, G.T.; Thompson, S.G.

    1960-06-14

    A process for concentrating plutonium is given in which plutonium is first precipitated with bismuth phosphate and then, after redissolution, precipitated with a different carrier such as lanthanum fluoride, uranium acetate, bismuth hydroxide, or niobic oxide.

  20. Adsorptive Removal of Nitrate from Aqueous Solution Using Nitrogen Doped Activated Carbon.

    PubMed

    Machida, Motoi; Goto, Tatsuru; Amano, Yoshimasa; Iida, Tatsuya

    2016-01-01

    Activated carbon (AC) has been widely applied for adsorptive removal of organic contaminants from aqueous phase, but not for ionic pollutants. In this study, nitrogen doped AC was prepared to increase the adsorption capacity of nitrate from water. AC was oxidized with (NH4)2S2O8 solution to maximize oxygen content for the first step, and then NH3 gas treatment was carried out at 950°C to aim at forming quaternary nitrogen (N-Q) species on AC surface (Ox-9.5AG). Influence of solution pH was examined so as to elucidate the relationship between surface charge and adsorption amounts of nitrate. The results showed that Ox-9.5AG exhibited about twice higher adsorption capacity than non-treatment AC at any initial nitrate concentration and any equilibrium solution pH (pHe) investigated. The more decrease in pHe value, the more adsorption amount of negatively charged nitrate ion, because the surface charge of AC and Ox-9.5AG could become more positive in acidic solution. The oxidation and consecutive ammonia treatments lead to increase in nitrogen content from 0.35 to 6.4% and decrease in the pH of the point of zero charge (pHpzc) from 7.1 to 4.0 implying that positively charged N-Q of a Lewis acid was created on the surface of Ox-9.5AG. Based on a Langmuir data analysis, maximum adsorption capacity attained 0.5-0.6 mmol/g of nitrate and adsorption affinity was 3.5-4.0 L/mmol at pHe 2.5 for Ox-9.5AG.

  1. Determination of hydroxyl radicals with salicylic acid in aqueous nitrate and nitrite solutions.

    PubMed

    Yang, Xi; Zhan, Man-jun; Kong, Ling-ren; Wang, Lian-sheng

    2004-01-01

    The qualitative and quantitative analyses of reactive oxygen species are essential to determine their steady-state concentration and related reaction mechanisms in environmental aquatic systems. In this study, salicylic acid was employed as an innovative molecular probe of hydroxyl radical(OH) generated in aqueous nitrate and nitrite solutions through photochemical reactions. Kinetic studies showed that the steady-state concentrations of OH in aqueous NO3- (10 mmol/L, pH = 5) and NO2- (10 mmol/L, pH = 5) solutions under ultraviolet irradiation were at a same magnitude, 10(-15) mol/L. Apparent quantum yields of OH at 313 nm were measured as 0.011 and 0.07 for NO3- and NO2- respectively, all comparable to the results of previous studies.

  2. Anisole Nitration During Gamma-Irradiation of Aqueous Nitrite and Nitrate Solutions: Free Radical Versus Ionic Mechanisms

    SciTech Connect

    Gracy Elias; Bruce J. Mincher; Leigh R. Martin; Stephen P. Mezyk; Thomas D. Cullen

    2010-04-01

    The nitration of aromatic compounds in the condensed phase is of interest to nuclear waste treatment applications. This chapter discusses our investigation of radiolytic aromatic nitration mechanisms in the condensed phase toward understanding the nitration products created during nuclear fuel reprocessing. The nitration reactions of anisole, a model aromatic compound, were studied in ?-irradiated acidic nitrate, neutral nitrate, and neutral nitrite solutions. The nitrated anisole product distributions were the same with and without radiation in acidic solution, although more products were formed with radiation. In the irradiated acidic condensed phase, radiation-enhanced nitrous acid-catalyzed nitrosonium ion electrophilic aromatic substitution followed by oxidation reactions dominated over radical addition reactions. Neutral nitrate anisole solutions were dominated by mixed nitrosonium/nitronium ion electrophilic aromatic substitution reactions, but with lower product yields. Irradiation of neutral nitrite anisole solution resulted in a statistical substitution pattern for nitroanisole products, suggesting non-electrophilic free radical reactions involving the •NO2 radical.

  3. Aqueous biphasic plutonium oxide extraction process with pH and particle control

    DOEpatents

    Chaiko, D.J.; Mensah-Biney, R.

    1997-04-29

    A method is described for simultaneously partitioning a metal oxide and silica from a material containing silica and the metal oxide, using a biphasic aqueous medium having immiscible salt and polymer phases. 2 figs.

  4. Calculated equilibria between adjacent valence states of plutonium in simple aqueous solutions

    SciTech Connect

    Sweeton, F.H.

    1981-02-01

    Equilibrium data have been taken from the literature for the oxidation of Pu/sup 3 +/ to Pu/sup 4 +/, Pu/sup 4 +/ to PuO/sub 2//sup +/ and PuO/sub 2//sup +/ to PuO/sub 2//sup 2 +/, and for the hydrolysis of these four plutonium species in dilute solutions. These data have been used to calculate the oxidation-reduction potentials (expressed as E/sub h/) at which the concentrations of the two species (including the hydrolyzed forms) in each pair are equal. These calculations cover the pH range of 0 to 13. The results indicate that there are conditions under which each species can be predominant. The solubility of PuO/sub 2/ under environmental conditions is also discussed.

  5. Aqueous nitrate waste treatment: Technology comparison, cost/benefit, and market analysis

    SciTech Connect

    Not Available

    1994-01-01

    The purpose of this analysis is to provide information necessary for the Department of Energy (DOE) to evaluate the practical utility of the Nitrate to Ammonia and Ceramic or Glass (NAC/NAG/NAX) process, which is under development in the Oak Ridge National Laboratory. The NAC/NACx/NAX process can convert aqueous radioactive nitrate-laden waste to a glass, ceramic, or grout solid waste form. The tasks include, but are not limited to, the following: Identify current commercial technologies to meet hazardous and radiological waste disposal requirements. The technologies may be thermal or non-thermal but must be all inclusive (i.e., must convert a radionuclide-containing nitrate waste with a pH around 12 to a stable form that can be disposed at permitted facilities); evaluate and compare DOE-sponsored vitrification, grouting, and minimum additive waste stabilization projects for life-cycle costs; compare the technologies above with respect to material costs, capital equipment costs, operating costs, and operating efficiencies. For the NAC/NAG/NAX process, assume aluminum reactant is government furnished and ammonia gas may be marketed; compare the identified technologies with respect to frequency of use within DOE for environmental management applications with appropriate rationale for use; Assess the potential size of the DOE market for the NAC/NAG/NAX process; assess and off-gas issues; and compare with international technologies, including life-cycle estimates.

  6. Anisole nitration during gamma-irradiation of aqueous nitrite and nitrate solutions: Free radical versus ionic mechanisms

    SciTech Connect

    Gracy Elias; Bruce J. Mincher; Leigh R. Martin; Stephen P. Mezyk; Thomas Cullen

    2010-04-01

    Radiolytic aromatic nitration mechanisms in the condensed phase are ubiquitous, and especially of interest in atmospheric aerosol chemistry, water treatment by advanced oxidation technologies, and nuclear fuel reprocessing. Here, the radiolytically-induced nitration reactions of anisole, the simplest aryl alkyl ether, were investigated in ?-irradiated acidic nitrate solution, and in neutral nitrate and nitrite solutions. The nitrated anisole product distribution was the same with and without radiation in acidic solution, although more products were formed as a result of irradiation. This suggests that the mechanism of nitration in acidic solution is nitronium ion- induced electrophilic aromatic substitution. The rate of production of nitrated products in neutral nitrate solution was much lower, although the distribution of isomers was similar to that expected for nitronium ion electrophilic nitration. In contrast, the product distribution in neutral nitrite solution approached a statistically random substitution pattern, suggesting a non-electrophilic free radical reaction involving •NO2 radical. When hydroxyl radical (•OH) was scavenged by varying the initial nitrite concentration, the concentration of nitrated products increased with increasing nitrite, indicating that the reaction was probably one of direct •NO2 radical addition. However, this latter mechanism will not be important in acidic solutions, such as those often encountered in atmospheric aerosols or ?-irradiated nuclear fuel reprocessing solutions, due to low amounts of produced •NO2 radical and the low reaction rate constants for the •NO2 radical with aromatic compounds.

  7. Carcinogenesis and Inflammatory Effects of Plutonium-Nitrate Retention in an Exposed Nuclear Worker and Beagle Dogs.

    SciTech Connect

    Nielsen, Christopher E.; Wang, Xihai; Robinson, Robert J.; Brooks, Antone L.; Lovaglio, Jamie A.; Patton, Kristin M.; McComish, Stacey; Tolmachev, Sergei Y.; Morgan, William F.

    2014-01-01

    The genetic and inflammatory response pathways elicited following plutonium exposure in archival lung tissue of an occupationally exposed human and experimentally exposed beagle dogs were investigated. These pathways include: tissue injury, apoptosis and gene expression modifications related to carcinogenesis and inflammation. In order to determine which pathways are involved, multiple lung samples from a plutonium exposed worker (Case 0269), a human control (Case 0385), and plutonium exposed beagle dogs were examined using histological staining and immunohistochemistry. Examinations were performed to identify target tissues at risk of radiation-induced fibrosis, inflammation, and carcinogenesis. Case 0269 showed interstitial fibrosis in peripheral and subpleural regions of the lung, but no pulmonary tumors. In contrast, the dogs with similar and higher doses showed pulmonary tumors primarily in brochiolo-alveolar, peripheral and subpleural alveolar regions. The TUNEL assay showed slight elevation of apoptosis in tracheal mucosa, tumor cells, and nuclear debris was present in the inflammatory regions of alveoli and lymph nodes of both the human and the dogs. The expression of apoptosis and a number of chemokine/cytokine genes was slightly but not significantly elevated in protein or gene levels compared to that of the control samples. In the beagles, mucous production was increased in the airway epithelial goblet cells and glands of trachea, and a number of chemokine/cytokine genes showed positive immunoreactivity. This analysis of archival tissue from an accidentally exposed worker and in a large animal model provides valuable information on the effects of long-term retention of plutonium in the respiratory tract and the histological evaluation study may impact mechanistic studies of radiation carcinogenesis.

  8. Coordination and hydrolysis of plutonium ions in aqueous solution using Car-Parrinello molecular dynamics free energy simulations.

    PubMed

    Odoh, Samuel O; Bylaska, Eric J; de Jong, Wibe A

    2013-11-27

    Car-Parrinello molecular dynamics (CPMD) simulations have been used to examine the hydration structures, coordination energetics, and the first hydrolysis constants of Pu(3+), Pu(4+), PuO2(+), and PuO2(2+) ions in aqueous solution at 300 K. The coordination numbers and structural properties of the first shell of these ions are in good agreement with available experimental estimates. The hexavalent PuO2(2+) species is coordinated to five aquo ligands while the pentavalent PuO2(+) complex is coordinated to four aquo ligands. The Pu(3+) and Pu(4+) ions are both coordinated to eight water molecules. The first hydrolysis constants obtained for Pu(3+) and PuO2(2+) are 6.65 and 5.70, respectively, all within 0.3 pH unit of the experimental values (6.90 and 5.50, respectively). The hydrolysis constant of Pu(4+), 0.17, disagrees with the value of -0.60 in the most recent update of the Nuclear Energy Agency Thermochemical Database (NEA-TDB) but supports recent experimental findings. The hydrolysis constant of PuO2(+), 9.51, supports the experimental results of Bennett et al. [Radiochim. Acta 1992, 56, 15]. A correlation between the pKa of the first hydrolysis reaction and the effective charge of the plutonium center was found.

  9. Coordination and Hydrolysis of Plutonium Ions in Aqueous Solution using Car-Parrinello Molecular Dynamics Free Energy Simulations

    SciTech Connect

    Odoh, Samuel O.; Bylaska, Eric J.; De Jong, Wibe A.

    2013-11-27

    Car-Parrinello molecular dynamics (CPMD) simulations have been used to examine the hydration structures, coordination energetics and the first hydrolysis constants of Pu3+, Pu4+, PuO2+ and PuO22+ ions in aqueous solution at 300 K. The coordination numbers and structural properties of the first shell of these ions are in good agreement with available experimental estimates. The hexavalent PuO22+ species is coordinated to 5 aquo ligands while the pentavalent PuO2+ complex is coordinated to 4 aquo ligands. The Pu3+ and Pu4+ ions are both coordinated to 8 water molecules. The first hydrolysis constants obtained for Pu3+ and PuO22+ are 6.65 and 5.70 respectively, all within 0.3 pH units of the experimental values (6.90 and 5.50 respectively). The hydrolysis constant of Pu4+, 0.17, disagrees with the value of -0.60 in the most recent update of the Nuclear Energy Agency Thermochemical Database (NEA-TDB) but supports recent experimental findings. The hydrolysis constant of PuO2+, 9.51, supports the experimental results of Bennett et al. (Radiochim. Act. 1992, 56, 15). A correlation between the pKa of the first hydrolysis reaction and the effective charge of the plutonium center was found.

  10. Nitrate

    Integrated Risk Information System (IRIS)

    Nitrate ; CASRN 14797 - 55 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  11. Sonochemical synthesis of silver nanorods by reduction of silver nitrate in aqueous solution.

    PubMed

    Zhu, Yu-ping; Wang, Xi-kui; Guo, Wei-lin; Wang, Jin-gang; Wang, Chen

    2010-04-01

    The sonochemical synthesis of silver nanorods has been achieved by ultrasonic irradiation of the aqueous solution of silver nitrate, methenamine (HMTA) and poly (vinyl pyrrolidone) (PVP) for 60 min. The silver nanorods obtained have lengths of 4-7 microm and mean diameters of about 100 nm. The structures of the samples were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), selected area electron diffraction (SAED) and X-ray powder diffraction (XRD), and the chemical composition of the sample was examined by energy-dispersive X-ray spectrum (EDS). The effects of the irradiation time, the concentration of PVP and the reaction temperature on the morphology of silver nanorods were discussed, and the mechanism of the silver nanorods formation was tentatively inferred.

  12. SOLVENT EXTRACTION PROCESS FOR PLUTONIUM

    DOEpatents

    Anderson, H.H.; Asprey, L.B.

    1960-02-01

    A process of separating plutonium in at least the tetravalent state from fission products contained in an aqueous acidic solution by extraction with alkyl phosphate is reported. The plutonium can then be back-extracted from the organic phase by contact with an aqueous solution of sulfuric, phosphoric, or oxalic acid as a complexing agent.

  13. METHOD OF REDUCING PLUTONIUM COMPOUNDS

    DOEpatents

    Johns, I.B.

    1958-06-01

    A method is described for reducing plutonium compounds in aqueous solution from a higher to a lower valence state. This reduction of valence is achieved by treating the aqueous solution of higher valence plutonium compounds with hydrogen in contact with an activated platinum catalyst.

  14. [Adsorption Characteristics of Nitrate and Phosphate from Aqueous Solution on Zirconium-Hexadecyltrimethylammonium Chloride Modified Activated Carbon].

    PubMed

    Zheng, Wen-jing; Lin, Jian-wei; Zhan, Yan-hui; Wang, Hong

    2015-06-01

    A novel adsorbent material, i.e., zirconium-cationic surfactant modified activated carbon (ZrSMAC) was prepared by loading zirconium hydroxide and hexadecyltrimethylammonium chloride (CTAC) on activated carbon, and was used as an adsorbent for nitrate and phosphate removal from aqueous solution. The adsorption characteristics of nitrate and phosphate on ZrSMAC from aqueous solution were investigated in batch mode. Results showed that the ZrSMAC was effective for nitrate and phosphate removal from aqueous solution. The pseudo-second-order kinetic model fitted both the nitrate and phosphate kinetic experimental data well. The equilibrium isotherm data of nitrate adsorption onto the ZrSMAC were well fitted to the Langmuir, Dubinin-Radushkevich (D-R) and Freundlich isotherm models. The equilibrium isotherm data of phosphate adsorption onto the ZrSMAC could be described by the Langmuir and,D- R isotherm models. According to the Langmuir isotherm model, the maximum nitrate and phosphate adsorption capacities for the ZrSMAC were 7.58 mg x g(-1) and 10.9 mg x g(-1), respectively. High pH value was unfavorable for nitrate and phosphate adsorption onto the ZrSMAC. The presence of Cl-, HCO3- and SO4(2-) in solution reduced the nitrate and phosphate adsorption capacities for the ZrSMAC. The nitrate adsorption capacity for the ZrSMAC was reduced by the presence of coexisting phosphate in solution, and the phosphate adsorption capacity for the ZrSMAC was also reduced by the presence of coexisting nitrate in solution. About 90% of nitrate adsorbed on the ZrSMAC could be desorbed in 1 mol x L(-1) NaCl solution, and about 78% of phosphate adsorbed on the ZrSMAC could be desorbed in 1 mol x L(-1) NaOH solution. The adsorption mechanism of nitrate on the ZrSMAC included the anion exchange interactions and electrostatic attraction, and the adsorption mechanism of phosphate on the ZrSMAC included the ligand exchange interaction, electrostatic attraction and anion exchange interaction.

  15. Efficient frequency conversion by stimulated Raman scattering in a sodium nitrate aqueous solution

    SciTech Connect

    Ganot, Yuval E-mail: ibar@bgu.ac.il; Bar, Ilana E-mail: ibar@bgu.ac.il

    2015-09-28

    Frequency conversion of laser beams, based on stimulated Raman scattering (SRS) is an appealing technique for generating radiation at new wavelengths. Here, we investigated experimentally the SRS due to a single pass of a collimated frequency-doubled Nd:YAG laser beam (532 nm) through a saturated aqueous solution of sodium nitrate (NaNO{sub 3}), filling a 50 cm long cell. These experiments resulted in simultaneous generation of 1st (564 nm) and 2nd (599 nm) Stokes beams, corresponding to the symmetric stretching mode of the nitrate ion, ν{sub 1}(NO{sub 3}{sup −}), with 40 and 12 mJ/pulse maximal converted energies, equivalent to 12% and 4% efficiencies, respectively, for a 340 mJ/pulse pump energy. The results indicate that the pump and SRS beams were thermally defocused and that four-wave mixing was responsible for the second order Stokes process onset.

  16. Adsorption of nitrate from aqueous solution by magnetic amine-crosslinked biopolymer based corn stalk and its chemical regeneration property.

    PubMed

    Song, Wen; Gao, Baoyu; Xu, Xing; Wang, Fang; Xue, Nan; Sun, Shenglei; Song, Wuchang; Jia, Ruibao

    2016-03-05

    A novel adsorbent of magnetic amine-crosslinked biopolymer based corn stalk (MAB-CS) was synthesized and used for nitrate removal from aqueous solution. The characters and adsorption mechanisms of this bio-adsorbent were determined by using VSM, TGA, XRD, SEM, TEM, FT-IR and XPS, respectively. The results revealed that the saturated magnetization of MAB-CS reached 6.25 emu/g. Meanwhile, the studies of various factors indicated that this novel magnetic bio-adsorbent performed well over a considerable wide pH range of 6.0 ∼ 9.0, and the presence of PO4(3-) and SO4(2-) would markedly decrease the nitrate removal efficiency. Furthermore, the nitrate adsorption by MAB-CS perfectly fitted the Langmuir isotherm model (R(2)=0.997-0.999) and pseudo second order kinetic model (R(2)=0.953-0.995). The calculated nitrate adsorption capacity of MAB-CS was 102.04 mg/g at 318 K by Langmuir model, and thermodynamic study showed that nitrate adsorption is an spontaneous endothermic process. The regeneration experiments indicated its merit of regeneration and stability with the recovery efficient of 118 ∼ 147%. By integrating the experimental results, it was found that the removal of nitrate was mainly via electrostatic attraction and ion exchange. And this novel bio-adsorbent prepared in this work could achieve effective removal of nitrate and rapid separation from effluents simultaneously.

  17. PREPARATION OF HALIDES OF PLUTONIUM

    DOEpatents

    Garner, C.S.; Johns, I.B.

    1958-09-01

    A dry chemical method is described for preparing plutonium halides, which consists in contacting plutonyl nitrate with dry gaseous HCl or HF at an elevated temperature. The addition to the reaction gas of a small quantity of an oxidizing gas or a reducing gas will cause formation of the tetra- or tri-halide of plutonium as desired.

  18. The influence of plutonium concentration and solution flow rate on the effective capacity of macroporous anion exchange resin. [Lewatit MP-500-FK; Pu/sup +/

    SciTech Connect

    Marsh, S.F.; Gallegos, T.D.

    1987-07-01

    The principal aqueous process used to recover and purify plutonium at the Los Alamos Plutonium Facility is anion exchange in nitric acid. Previous studies with gel-type anion exchange resin have shown an inverse relationship between plutonium concentration in the feed solution and the optimum flow rate for this process. Because gel-type resin has been replaced with macroporous resin at Los Alamos, the relationship between plutonium concentration and solution flow rate was reexamined with the selected Lewatit MP-500-FK resin using solutions of plutonium in nitric acid and in nitric acid with high levels of added nitrate salts. Our results with this resin differ significantly from previous data obtained with gel-type resin. Flow-rate variation from 10 to 80 liters per hour had essentially no effect on the measured quantities of plutonium sorbed by the macroporous resin. However, the effect of plutonium concentration in the feed solutions was pronounced, as feed solutions that contained the highest concentrations of plutonium also produced the highest resin loadings. The most notable effect of high concentrations of dissolved nitrate salts in these solutions was an increased resin capacity for plutonium at low flow rates. 16 refs., 7 figs., 2 tabs.

  19. Treatment of accidental intakes of plutonium and americium: guidance notes.

    PubMed

    Ménétrier, F; Grappin, L; Raynaud, P; Courtay, C; Wood, R; Joussineau, S; List, V; Stradling, G N; Taylor, D M; Bérard, Ph; Morcillo, M A; Rencova, J

    2005-06-01

    The scientific basis for the treatment of the contamination of the human body by plutonium, americium and other actinides is reviewed. Guidance Notes are presented for the assistance of physicians and others who may be called upon to treat workers or members of the public who may become contaminated internally with inhaled plutonium nitrate, plutonium tributyl phosphate, americium nitrate or americium oxide.

  20. CONCENTRATION AND DECONTAMINATION OF SOLUTIONS CONTAINING PLUTONIUM VALUES BY BISMUTH PHOSPHATE CARRIER PRECIPITATION METHODS

    DOEpatents

    Seaborg, G.T.; Thompson, S.G.

    1960-08-23

    A process is given for isolating plutonium present in the tetravalent state in an aqueous solution together with fission products. First, the plutonium and fission products are coprecipitated on a bismuth phosphate carrier. The precipitate obtained is dissolved, and the plutonium in the solution is oxidized to the hexavalent state (with ceric nitrate, potassium dichromate, Pb/ sub 3/O/sub 4/, sodium bismuthate and/or potassium dichromate). Thereafter a carrier for fission products is added (bismuth phosphate, lanthanum fluoride, ceric phosphate, bismuth oxalate, thorium iodate, or thorium oxalate), and the fission-product precipitation can be repeated with one other of these carriers. After removal of the fission-product-containing precipitate or precipitates. the plutonium in the supernatant is reduced to the tetravalent state (with sulfur dioxide, hydrogen peroxide. or sodium nitrate), and a carrier for tetravalent plutonium is added (lanthanum fluoride, lanthanum hydroxide, lanthanum phosphate, ceric phosphate, thorium iodate, thorium oxalate, bismuth oxalate, or niobium pentoxide). The plutonium-containing precipitate is then dissolved in a relatively small volume of liquid so as to obtain a concentrated solution. Prior to dissolution, the bismuth phosphate precipitates first formed can be metathesized with a mixture of sodium hydroxide and potassium carbonate and plutonium-containing lanthanum fluorides with alkali-metal hydroxide. In the solutions formed from a plutonium-containing lanthanum fluoride carrier the plutonium can be selectively precipitated with a peroxide after the pH was adjusted preferably to a value of between 1 and 2. Various combinations of second, third, and fourth carriers are discussed.

  1. One pot synthesis of chitosan grafted quaternized resin for the removal of nitrate and phosphate from aqueous solution.

    PubMed

    Banu, H Thagira; Meenakshi, Sankaran

    2017-03-10

    The present study deals with the synthesis of chitosan quaternized resin for efficient removal of nitrate and phosphate from aqueous solution. The resin was characterized with FTIR, SEM with EDX and XRD. Batch method was carried out to optimize various parameters such as contact time, initial concentration of nitrate and phosphate, dosage, pH, co-anions and temperature on the adsorption capacity of the adsorbent. The adsorption process illustrated that the Freundlich isotherm and the pseudo-second order are the best fitted models for the sorption of both anions. The respective negative values of ΔH° and ΔG° revealed that the adsorption of both the anions were exothermic and spontaneous. The removal efficiency of nitrate and phosphate on chitosan quaternized resin were 78% and 90% respectively with 0.1g of adsorbent and the initial concentration as 100mg/L. Nitrate and phosphate anions adsorbed effectively on chitosan quaternized resin by replacing Cl(-) ions from quaternary site through electrostatic attraction as well as ion-exchange mechanism. Hydrogen bonding also played important role in adsorption process. Even after 7th regeneration cycle the adsorbent retained its adsorption capacity as 23.7mg/g and 30.4mg/g for both nitrate and phosphate respectively.

  2. Recent plutonium science and technology at ORNL

    SciTech Connect

    Bell, J.T.

    1985-01-01

    Plutonium research and development (R and D) at ORNL has generally followed development of the nuclear fuel cycle. Basic plutonium chemistry studies have diminished since the mid-1970s; however, significant efforts have been made recently to determine fundamental characteristics of the aqueous plutonium polymer and to develop thermodynamic representations of plutonium oxides. Some studies have also been made on plutonium phosphates related to waste isolation and on definition of the oxidation states of environmental plutonium. The remaining work has been supported by the Consolidated Fuel Reprocessing Program (CFRP) and includes: (1) establishment of boundary limits for polymer formation in Purex systems; (2) preparation of mixed uranium-plutonium oxide microspheres by internal gelation sol-gel techniques; (3) direct thermal denitration of aqueous systems; and (4) plutonium/uranium extraction from spent fast reactor fuels.

  3. PLUTONIUM COMPOUNDS AND PROCESS FOR THEIR PREPARATION

    DOEpatents

    Wolter, F.J.; Diehl, H.C. Jr.

    1958-01-01

    This patent relates to certain new compounds of plutonium, and to the utilization of these compounds to effect purification or separation of the plutonium. The compounds are organic chelate compounds consisting of tetravalent plutonium together with a di(salicylal) alkylenediimine. These chelates are soluble in various organic solvents, but not in water. Use is made of this property in extracting the plutonium by contacting an aqueous solution thereof with an organic solution of the diimine. The plutonium is chelated, extracted and effectively separated from any impurities accompaying it in the aqueous phase.

  4. Solvent extraction system for plutonium colloids and other oxide nano-particles

    SciTech Connect

    Soderholm, Lynda; Wilson, Richard E; Chiarizia, Renato; Skanthakumar, Suntharalingam

    2014-06-03

    The invention provides a method for extracting plutonium from spent nuclear fuel, the method comprising supplying plutonium in a first aqueous phase; contacting the plutonium aqueous phase with a mixture of a dielectric and a moiety having a first acidity so as to allow the plutonium to substantially extract into the mixture; and contacting the extracted plutonium with second a aqueous phase, wherein the second aqueous phase has a second acidity higher than the first acidity, so as to allow the extracted plutonium to extract into the second aqueous phase. The invented method facilitates isolation of plutonium polymer without the formation of crud or unwanted emulsions.

  5. PROCESS OF SEPARATING PLUTONIUM FROM URANIUM

    DOEpatents

    Brown, H.S.; Hill, O.F.

    1958-09-01

    A process is presented for recovering plutonium values from aqueous solutions. It comprises forming a uranous hydroxide precipitate in such a plutonium bearing solution, at a pH of at least 5. The plutonium values are precipitated with and carried by the uranium hydroxide. The carrier precipitate is then redissolved in acid solution and the pH is adjusted to about 2.5, causing precipitation of the uranous hydroxide but leaving the still soluble plutonium values in solution.

  6. METHOD FOR RECOVERING PLUTONIUM VALUES FROM SOLUTION USING A BISMUTH HYDROXIDE CARRIER PRECIPITATE

    DOEpatents

    Faris, B.F.

    1961-04-25

    Carrier precipitation processes for separating plutonium values from aqueous solutions are described. In accordance with the invention a bismuth hydroxide precipitate is formed in the plutonium-containing solution, thereby carrying plutonium values from the solution.

  7. Automated determination of nitrate plus nitrite in aqueous samples with flow injection analysis using vanadium (III) chloride as reductant.

    PubMed

    Wang, Shu; Lin, Kunning; Chen, Nengwang; Yuan, Dongxing; Ma, Jian

    2016-01-01

    Determination of nitrate in aqueous samples is an important analytical objective for environmental monitoring and assessment. Here we report the first automatic flow injection analysis (FIA) of nitrate (plus nitrite) using VCl3 as reductant instead of the well-known but toxic cadmium column for reducing nitrate to nitrite. The reduced nitrate plus the nitrite originally present in the sample react with the Griess reagent (sulfanilamide and N-1-naphthylethylenediamine dihydrochloride) under acidic condition. The resulting pink azo dye can be detected at 540 nm. The Griess reagent and VCl3 are used as a single mixed reagent solution to simplify the system. The various parameters of the FIA procedure including reagent composition, temperature, volume of the injection loop, and flow rate were carefully investigated and optimized via univariate experimental design. Under the optimized conditions, the linear range and detection limit of this method are 0-100 µM (R(2)=0.9995) and 0.1 µM, respectively. The targeted analytical range can be easily extended to higher concentrations by selecting alternative detection wavelengths or increasing flow rate. The FIA system provides a sample throughput of 20 h(-1), which is much higher than that of previously reported manual methods based on the same chemistry. National reference solutions and different kinds of aqueous samples were analyzed with our method as well as the cadmium column reduction method. The results from our method agree well with both the certified value and the results from the cadmium column reduction method (no significant difference with P=0.95). The spiked recovery varies from 89% to 108% for samples with different matrices, showing insignificant matrix interference in this method.

  8. Plutonium controversy

    SciTech Connect

    Richmond, C.R.

    1980-01-01

    The toxicity of plutonium is discussed, particularly in relation to controversies surrounding the setting of radiation protection standards. The sources, amounts of, and exposure pathways of plutonium are given and the public risk estimated. (ACR)

  9. PROCESS OF SEPARATING PLUTONIUM VALUES BY ELECTRODEPOSITION

    DOEpatents

    Whal, A.C.

    1958-04-15

    A process is described of separating plutonium values from an aqueous solution by electrodeposition. The process consists of subjecting an aqueous 0.1 to 1.0 N nitric acid solution containing plutonium ions to electrolysis between inert metallic electrodes. A current density of one milliampere io one ampere per square centimeter of cathode surface and a temperature between 10 and 60 d C are maintained. Plutonium is electrodeposited on the cathode surface and recovered.

  10. Kinetic Study of Nitrate Removal from Aqueous Solutions Using Copper-Coated Iron Nanoparticles.

    PubMed

    Vilardi, Giorgio; Di Palma, Luca

    2017-03-01

    Nitrates are considered hazard compounds for human health due to their tendency to be reduced to nitrites, in particular in reducing environment. Nano zero valent iron (nZVI) represents an efficient and low-cost adsorbent/reductive agent for nitrate removal from groundwater and wastewaters and a little addition of a second metal species (Cu, Pd, Ni, Ag) has proven to increase process effectiveness, by enhancing stability and oxidation resistance of nanoparticles. In this work Cu/Fe nanoparticles were loaded in a NO3(-) solution (100 mg L(-1)) and the removal efficiency was tested by monitoring nitrate concentration at selected time intervals. Results showed that the nitrate removal process involves both reduction and adsorption processes: the removal mechanism has been investigated, and the pseudo-first-order and pseudo-second-order-adsorption kinetic models were successfully tested.

  11. Selective decomposition of aqueous nitrate into nitrogen using iron deposited bimetals.

    PubMed

    Liou, Ya Hsuan; Lin, Chin Jung; Weng, Shih Chi; Ou, Hsin Hung; Lo, Shang Lien

    2009-04-01

    In the case of the reduction of nitrate in groundwater, the problem is how to convert nitrate [N(+V)] selectively to nontoxic dinitrogen [N(O)] and not to completely reduced ammonia [N(-III)]. Unfortunately, near 100% of the total nitrogen in nitrate is reductively converted to ammonia using naked zerovalent iron (ZVI) thus far reported. In this study, deposition of noble metals (Pt, Pd, and Au) and Cu on iron surface to offer favorable pathways for nitrate reduction was fabricated using either the complete mixing orthe successive method with spontaneous redox reactions. The prepared samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy/energy disperse X-ray spectroscopy, and electrochemical analysis. The formation of N2 from the reduction of nitrate was confirmed by residual gas analyzer coupled to a high vacuum system. Based on the experimental results, the ZVI deposited Pd and Cu closely is suggested to promote the abstraction of oxygen from NOx by adsorbed atomic hydrogen on the Cu surface, and enhance N2 formation on the Pd surface. An optimum N2 selectivity of approximately 30% obtained in the alkaline solution containing nitrate using 0.3 wt.% Pd-0.5 wt% Cu/Fe is evident. For groundwater treatment, iron deposited Pd and Cu could facilitate the development of a process requiring neither a massive addition of chemicals nor complex equipment.

  12. Kinetics and corrosion products of aqueous nitrate reduction by iron powder without reaction conditions control.

    PubMed

    Fan, Xiaomeng; Guan, Xiaohong; Ma, Jun; Ai, Hengyu

    2009-01-01

    Although considerable research has been conducted on nitrate reduction by zero-valent iron powder (Fe0), these studies were mostly operated under anaerobic conditions with invariable pH that was unsuitable for practical application. Without reaction conditions (dissolved oxygen or reaction pH) control, this work aimed at subjecting the kinetics of denitrification by microscale Fe0 (160-200 mesh) to analysis the factors affecting the denitrification of nitrate and the composition of iron reductive products coating upon the iron surface. Results of the kinetics study have indicated that a higher initial concentration of nitrate would yield a greater reaction rate constant. The reduction rate of nitrate increased with increasing Fe0 dosage. The reaction can be described as a pseudo-first order reaction with respect to nitrate concentration or Fe0 dosage. Experimental results also suggested that nitrate reduction by microscale Fe0 without reaction condition control primarily was an acid-driven surface-mediated process, and the reaction order was 0.65 with respect to hydrogen ion concentration. The analyses of X-ray diffractometry and X-ray photoelectron spectroscopy indicated that a black coating, consisted of Fe2O3, Fe3O4 and FeO(OH), was formed on the surface of iron grains as an iron corrosion product when the system initial pH was lower than 5. The proportion of FeO(OH) increased as reaction time went on, whereas the proportion of Fe3O4 decreased.

  13. Nitrate adsorption from aqueous solution using granular chitosan-Fe3+ complex

    NASA Astrophysics Data System (ADS)

    Hu, Qili; Chen, Nan; Feng, Chuanping; Hu, WeiWu

    2015-08-01

    In the present study, In order to efficiently remove nitrate, granular chitosan-Fe3+ complex with high chemical stability and good environmental adaptation was synthesized through precipitation method and characterized using SEM, XRD, BET and FTIR. The nitrate adsorption performance was evaluated by batch experiments. The results indicated that granular chitosan-Fe3+ complex was an amorphous and mesoporous material. The BET specific surface area and average pore size were 8.98 m2 g-1 and 56.94 Å, respectively. The point of zero charge was obtained at pH 5. The maximum adsorption capacity reached 8.35 mg NO3--N g-1 based on Langmuir-Freundlich model. Moreover, no significant change in the nitrate removal efficiency was observed in the pH range of 3.0-10.0. The adverse influence of sulphate on nitrate removal was the most significant, followed by bicarbonate and fluoride, whereas chloride had slightly adverse effect. Adsorption process followed the pseudo-second-order kinetic model, and the experimental equilibrium data were fitted well with the Langmuir-Freundlich and D-R isotherm models. Thermodynamic parameters revealed that nitrate adsorption was a spontaneous and exothermic process. Granular chitosan-Fe3+ complex could be effectively regenerated by NaCl solution.

  14. An Electronic Tongue Designed to Detect Ammonium Nitrate in Aqueous Solutions

    PubMed Central

    Campos, Inmaculada; Pascual, Lluis; Soto, Juan; Gil-Sánchez, Luis; Martínez-Máñez, Ramón

    2013-01-01

    An electronic tongue has been developed to monitor the presence of ammonium nitrate in water. It is based on pulse voltammetry and consists of an array of eight working electrodes (Au; Pt; Rh; Ir; Cu; Co; Ag and Ni) encapsulated in a stainless steel cylinder. In a first step the electrochemical response of the different electrodes was studied in the presence of ammonium nitrate in water in order to further design the wave form used in the voltammetric tongue. The response of the electronic tongue was then tested in the presence of a set of 15 common inorganic salts; i.e.; NH4NO3; MgSO4; NH4Cl; NaCl; Na2CO3; (NH4)2SO4; MgCl2; Na3PO4; K2SO4; K2CO3; CaCl2; NaH2PO4; KCl; NaNO3; K2HPO4. A PCA plot showed a fairly good discrimination between ammonium nitrate and the remaining salts studied. In addition Fuzzy Art map analyses determined that the best classification was obtained using the Pt; Co; Cu and Ni electrodes. Moreover; PLS regression allowed the creation of a model to correlate the voltammetric response of the electrodes with concentrations of ammonium nitrate in the presence of potential interferents such as ammonium chloride and sodium nitrate. PMID:24145916

  15. 17. VIEW OF THE FIRST PLUTONIUM BUTTON PRODUCED FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW OF THE FIRST PLUTONIUM BUTTON PRODUCED FROM THE BUILDING 371 AQUEOUS RECOVERY OPERATION. (9/30/83) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  16. Laboratory-scale evaluations of alternative plutonium precipitation methods

    SciTech Connect

    Martella, L.L.; Saba, M.T.; Campbell, G.K.

    1984-02-08

    Plutonium(III), (IV), and (VI) carbonate; plutonium(III) fluoride; plutonium(III) and (IV) oxalate; and plutonium(IV) and (VI) hydroxide precipitation methods were evaluated for conversion of plutonium nitrate anion-exchange eluate to a solid, and compared with the current plutonium peroxide precipitation method used at Rocky Flats. Plutonium(III) and (IV) oxalate, plutonium(III) fluoride, and plutonium(IV) hydroxide precipitations were the most effective of the alternative conversion methods tested because of the larger particle-size formation, faster filtration rates, and the low plutonium loss to the filtrate. These were found to be as efficient as, and in some cases more efficient than, the peroxide method. 18 references, 14 figures, 3 tables.

  17. PROCESS OF ELIMINATING HYDROGEN PEROXIDE IN SOLUTIONS CONTAINING PLUTONIUM VALUES

    DOEpatents

    Barrick, J.G.; Fries, B.A.

    1960-09-27

    A procedure is given for peroxide precipitation processes for separating and recovering plutonium values contained in an aqueous solution. When plutonium peroxide is precipitated from an aqueous solution, the supernatant contains appreciable quantities of plutonium and peroxide. It is desirable to process this solution further to recover plutonium contained therein, but the presence of the peroxide introduces difficulties; residual hydrogen peroxide contained in the supernatant solution is eliminated by adding a nitrite or a sulfite to this solution.

  18. Aqueous Binary Lanthanide(III) Nitrate Ln(NO3)3 Electrolytes Revisited: Extended Pitzer and Bromley Treatments

    SciTech Connect

    Chatterjee, Sayandev; Campbell, Emily L.; Neiner, Doinita; Pence, Natasha; Robinson, Troy; Levitskaia, Tatiana G.

    2015-09-11

    To date, only limited thermodynamic models describing activity coefficients of the aqueous solutions of lanthanide ions are available. This work expands the existing experimental osmotic coefficient data obtained by classical isopiestic technique for the aqueous binary trivalent lanthanide nitrate Ln(NO3)3 solutions using a combination of water activity and vapor pressure osmometry measurements. The combined osmotic coefficient database for each aqueous lanthanide nitrate at 25°C, consisting of literature available data as well as data obtained in this work, was used to test the validity of Pitzer and Bromley thermodynamic models for the accurate prediction of mean molal activity coefficients of the Ln(NO3)3 solutions in wide concentration ranges. The new and improved Pitzer and Bromley parameters were calculated. It was established that the Ln(NO3)3 activity coefficients in the solutions with ionic strength up to 12 mol kg-1 can be estimated by both Pitzer and single-parameter Bromley models, even though the latter provides for more accurate prediction, particularly in the lower ionic strength regime (up to 6 mol kg-1). On the other hand for the concentrated solutions, the extended three-parameter Bromley model can be employed to predict the Ln(NO3)3 activity coefficients with remarkable accuracy. The accuracy of the extended Bromley model in predicting the activity coefficients was greater than ~95% and ~90% for all solutions with the ionic strength up to 12 mol kg-1 and and 20 mol kg-1, respectively. This is the first time that the activity coefficients for concentrated lanthanide solutions have been predicted with such a remarkable accuracy.

  19. PROCESS FOR SEPARATING PLUTONIUM FROM IMPURITIES

    DOEpatents

    Wahl, A.C.

    1957-11-12

    A method is described for separating plutonium from aqueous solutions containing uranium. It has been found that if the plutonium is reduced to its 3+ valence state, and the uranium present is left in its higher valence state, then the differences in solubility between certain salts (e.g., oxalates) of the trivalent plutonium and the hexavalent uranium can be used to separate the metals. This selective reduction of plutonium is accomplished by adding iodide ion to the solution, since iodide possesses an oxidation potential sufficient to reduce plutonium but not sufficient to reduce uranium.

  20. ION EXCHANGE ADSORPTION PROCESS FOR PLUTONIUM SEPARATION

    DOEpatents

    Boyd, G.E.; Russell, E.R.; Taylor, M.D.

    1961-07-11

    Ion exchange processes for the separation of plutonium from fission products are described. In accordance with these processes an aqueous solution containing plutonium and fission products is contacted with a cation exchange resin under conditions favoring adsorption of plutonium and fission products on the resin. A portion of the fission product is then eluted with a solution containing 0.05 to 1% by weight of a carboxylic acid. Plutonium is next eluted with a solution containing 2 to 8 per cent by weight of the same carboxylic acid, and the remaining fission products on the resin are eluted with an aqueous solution containing over 10 per cent by weight of sodium bisulfate.

  1. IODATE METHOD FOR PURIFYING PLUTONIUM

    DOEpatents

    Stoughton, R.W.; Duffield, R.B.

    1958-10-14

    A method is presented for removing radioactive fission products from aqueous solutions containing such fission products together with plutonium. This is accomplished by incorporating into such solutions a metal iodate precipitate to remove fission products which form insoluble iodates. Suitable metal iodates are those of thorium and cerium. The plutonium must be in the hexavalent state and the pH of the solution must be manintained at less than 2.

  2. METHOD OF PREPARING PLUTONIUM TETRAFLUORIDE

    DOEpatents

    Beede, R.L.; Hopkins, H.H. Jr.

    1959-11-17

    C rystalline plutonium tetrafluoride is precipitated from aqueous up to 1.6 N mineral acid solutions of a plutorium (IV) salt with fluosilicic acid anions, preferably at room temperature. Hydrogen fluoride naay be added after precipitation to convert any plutonium fluosilicate to the tetrafluoride and any silica to fluosilicic acid. This process results in a purer product, especially as to iron and aluminum, than does the precipitation by the addition of hydrogen fluoride.

  3. Preparation of activated carbons from Iris tectorum employing ferric nitrate as dopant for removal of tetracycline from aqueous solutions.

    PubMed

    Li, Gang; Zhang, Dongsheng; Wang, Man; Huang, Ji; Huang, Lihui

    2013-12-01

    Ferric nitrate was employed to modify activated carbon prepared from Iris tectorum during H₃PO₄ activation and ability of prepared activated carbon for removal of tetracycline (TC) was investigated. The properties of the activated carbon samples with or without ferric nitrate, ITAC-Fe and ITAC, were measured by scanning electron microscopy (SEM), N₂ adsorption/desorption isotherms, Fourier transform infrared spectroscopy (FTIR) and Boehm's titration. The results showed that mixing with iron increased the BET surface area, total pore volume and the adsorption capacity as compared to the original carbon. FTIR and Boehm's titration suggested that ITAC-Fe was characteristic of more acidic functional groups than ITAC. Adsorption of TC on both samples exhibited a strong pH-dependent behavior and adsorption capacity reduced rapidly with the increasing solution pH. The adsorption kinetics agreed well with the pseudo-second-order model and the adsorption isotherms data were well described by Langmuir model with the maximum adsorption capacity of 625.022 mg/g for ITAC and 769.231 mg/g for ITAC-Fe. The present work suggested that ITAC-Fe could be used to remove tetracycline effectively from aqueous solutions.

  4. Thermodynamics of complexation in an aqueous solution of Tb(III) nitrate at 298 K

    NASA Astrophysics Data System (ADS)

    Lobacheva, O. L.; Berlinskii, I. V.; Dzhevaga, N. V.

    2017-01-01

    The pH of the formation of hydroxo complexes and hydrates in an aqueous solution of terbium Tb(III) is determined using combined means of potentiometric and conductometric titration. The stability constants of the hydroxo complexes, the products of hydroxide solubility, and the Gibbs energy of terbium hydroxo complex formation are calculated.

  5. WET METHOD OF PREPARING PLUTONIUM TRIBROMIDE

    DOEpatents

    Davidson, N.R.; Hyde, E.K.

    1958-11-11

    S> The preparation of anhydrous plutonium tribromide from an aqueous acid solution of plutonium tetrabromide is described, consisting of adding a water-soluble volatile bromide to the tetrabromide to provide additional bromide ions sufficient to furnish an oxidation-reduction potential substantially more positive than --0.966 volt, evaporating the resultant plutonium tribromides to dryness in the presence of HBr, and dehydrating at an elevated temperature also in the presence of HBr.

  6. Synthesis of palladium nanoparticles by sonochemical reduction of palladium(II) nitrate in aqueous solution.

    PubMed

    Nemamcha, Abderrafik; Rehspringer, Jean-Luc; Khatmi, Djameledine

    2006-01-12

    The sonochemical synthesis of stable palladium nanoparticles has been achieved by ultrasonic irradiation of palladium(II) nitrate solution. The starting solutions were prepared by the addition of different concentrations of palladium(II) nitrate in ethylene glycol and poly(vinylpyrrolidone) (PVP). The resulting mixtures were irradiated with ultrasonic 50 kHz waves in a glass vessel for 180 min. The UV-visible absorption spectroscopy and pH measurements revealed that the reduction of Pd(II) to metallic Pd has been successfully achieved and that the obtained suspensions have a long shelf life. The protective effect of PVP was studied using Fourier transform infrared (FT-IR) spectroscopy. It has been found that, in the presence of ethylene glycol, the stabilization of the nanoparticles results from the adsorption of the PVP chain on the palladium particle surface via the coordination of the PVP carbonyl group to the palladium atoms. The effect of the initial Pd(II) concentration on the Pd nanoparticle morphology has been investigated by transmission electron microscopy. It has been shown that the increase of the Pd(II)/PVP molar ratio from 0.13 x 10(-3) to 0.53 x 10(-3) decreases the number of palladium nanoparticles with a slight increase in particle size. For the highest Pd(II)/PVP value, 0.53 x 10(-3), the reduction reaction leads to the unexpected smallest nanoparticles in the form of aggregates.

  7. Alloy 22 Localized Corrosion Susceptibility In Aqueous Solutions Of Chloride And Nitrate Salts Of Sodium And Potassium At 110 - 150?C

    SciTech Connect

    Felker, S; Hailey, P D; Lian, T; Staggs, K J; Gdowski, G E

    2006-01-17

    Alloy 22 (a nickel-chromium-molybdenum-tungsten alloy) is being investigated for use as the outer barrier of waste containers for a high-level nuclear waste repository in the thick unsaturated zone at Yucca Mountain, Nevada. Experiments were conducted to assess crevice corrosion of Alloy 22 in de-aerated aqueous solutions of chloride and nitrate salts of potassium and sodium in the temperature range 110-150 C (some limited testing was also conducted at 90 C). Electrochemical tests were run in neutral salt solutions without acid addition and others were run in salt solutions with an initial hydrogen ion concentration of 10{sup -4} molal. The Alloy 22 specimens were weld prism specimens and de-aeration was performed with nitrogen gas. No evidence of crevice corrosion was observed in the range 125-150 C. In the 120 to 160 C temperature range, the anionic concentration of stable aqueous solutions is dominated by nitrate relative to chloride. At nominally 120 C, the minimum nitrate to chloride ratio is about 4.5, and it increases to about 22 at nominally 155 C. The absence of localized corrosion susceptibility in these solutions is attributed to the known inhibiting effect of the nitrate anion. At 110 C, aqueous solutions can have dissolved chloride in excess of nitrate. Localized corrosion was observed at nitrate to chloride ratios up to 1.0, the highest ratio tested. The extent of localized corrosion was confined to the crevice region of the samples, and was limited for nitrate to chloride ratios greater than or equal to 0.3. Aqueous solution chemistry studies indicate that nitrate to chloride ratios of less than 0.5 are possible for temperatures up to nominally 116 C. However, the exact upper temperature limit is unknown and no electrochemical testing was done at these temperatures. Limited comparison between 8 m Cl aqueous solutions of Na + K on the one hand and Ca on the other indicated similar electrochemical E{sub crit} values and similar morphology of attack

  8. URANOUS IODATE AS A CARRIER FOR PLUTONIUM

    DOEpatents

    Miller, D.R.; Seaborg, G.T.; Thompson, S.G.

    1959-12-15

    A process is described for precipitating plutonium on a uranous iodate carrier from an aqueous acid solution conA plutonium solution more concentrated than the original solution can then be obtained by oxidizing the uranium to the hexavalent state and dissolving the precipitate, after separating the latter from the original solution, by means of warm nitric acid.

  9. RECOVERY OF PLUTONIUM BY CARRIER PRECIPITATION

    DOEpatents

    Goeckermann, R.H.

    1961-04-01

    A process is given for recovering plutonium from an aqueous nitric acid zirconium-containing solution of an acidity between 0.2 and 1 N by adding fluoride anions (1.5 to 5 mg/l) and precipitating the plutonium with an excess of hydrogen peroxide at from 53 to 65 deg C.

  10. Selective strontium removal from a sodium nitrate aqueous medium by nanofiltration-complexation

    SciTech Connect

    Gaubert, E.; Barnier, H.; Maurel, A.

    1997-01-01

    In aqueous medium, selective complexation increases the ionic separation by nanofiltration. The combination of nanofiltration and complexation can be applied to the nuclear effluents treatment. To separate radioelements from a sodium salt medium, poly(acrylic acid) is associated to the FILMTEC NF 70 membrane. Effects of transmembrane pressure, pH, ligand concentration and ionic strength on salts retention are described, and the complexation constants are estimated. Finally, to reach the objectives, a strontium two-stages concentration by nanofiltration-complexation with a control of retentate salinity is investigated in a nonactive solution case.

  11. LITERATURE REVIEW FOR OXALATE OXIDATION PROCESSES AND PLUTONIUM OXALATE SOLUBILITY

    SciTech Connect

    Nash, C.

    2012-02-03

    A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign. H Canyon plans to commence conversion of plutonium metal to low-fired plutonium oxide in 2012 for eventual use in the Mixed Oxide Fuel (MOX) Facility. The flowsheet includes sequential operations of metal dissolution, ion exchange, elution, oxalate precipitation, filtration, and calcination. All processes beyond dissolution will occur in HB-Line. The filtration step produces an aqueous filtrate that may have as much as 4 M nitric acid and 0.15 M oxalate. The oxalate needs to be removed from the stream to prevent possible downstream precipitation of residual plutonium when the solution is processed in H Canyon. In addition, sending the oxalate to the waste tank farm is undesirable. This report addresses the processing options for destroying the oxalate in existing H Canyon equipment.

  12. Plutonium worker dosimetry.

    PubMed

    Birchall, Alan; Puncher, M; Harrison, J; Riddell, A; Bailey, M R; Khokryakov, V; Romanov, S

    2010-05-01

    Epidemiological studies of the relationship between risk and internal exposure to plutonium are clearly reliant on the dose estimates used. The International Commission on Radiological Protection (ICRP) is currently reviewing the latest scientific information available on biokinetic models and dosimetry, and it is likely that a number of changes to the existing models will be recommended. The effect of certain changes, particularly to the ICRP model of the respiratory tract, has been investigated for inhaled forms of (239)Pu and uncertainties have also been assessed. Notable effects of possible changes to respiratory tract model assumptions are (1) a reduction in the absorbed dose to target cells in the airways, if changes under consideration are made to the slow clearing fraction and (2) a doubling of absorbed dose to the alveolar region for insoluble forms, if evidence of longer retention times is taken into account. An important factor influencing doses for moderately soluble forms of (239)Pu is the extent of binding of dissolved plutonium to lung tissues and assumptions regarding the extent of binding in the airways. Uncertainty analyses have been performed with prior distributions chosen for application in epidemiological studies. The resulting distributions for dose per unit intake were lognormal with geometric standard deviations of 2.3 and 2.6 for nitrates and oxides, respectively. The wide ranges were due largely to consideration of results for a range of experimental data for the solubility of different forms of nitrate and oxides. The medians of these distributions were a factor of three times higher than calculated using current default ICRP parameter values. For nitrates, this was due to the assumption of a bound fraction, and for oxides due mainly to the assumption of slower alveolar clearance. This study highlights areas where more research is needed to reduce biokinetic uncertainties, including more accurate determination of particle transport rates

  13. Subchronic inhalation of carbon tetrachloride alters the tissue retention of acutely inhaled plutonium-239 nitrate in F344 rats and syrian golden hamsters

    SciTech Connect

    Benson, J.M.; Barr, E.B.; Lundgren, D.L.

    1995-12-01

    Carbon tetrachloride (CCl{sub 4}) has been used extensively in the nuclear weapons industry, so it is likely that nuclear plant workers have been exposed to both CCl{sub 4} and plutonium compounds. Future exposures may occur during {open_quotes}cleanup{close_quotes} operations at weapons productions sites such as the Hanford, Washington, and Rocky Flats, Colorado, facilities. Inhalation of 20 and 100 ppm CCl{sub 4} by hamsters reduces uptake of {sup 239}Pu solubilized from lung, shunting the {sup 239}Pu to the skeleton.

  14. Studies on Nylon-66 membrane using aqueous solutions of potassium and lead nitrate salts as permeants

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Ram, Bali

    2015-03-01

    Measurements on hydrodynamic and electro-osmotic permeability of water and aqueous solutions of KNO3 and Pb(NO3)2 in the concentration (C) range of 10 -4 10^{-4} M to 10 -3 10^{-3} M are made across the Nylon-66 membrane. The data obtained are used to ascertain the form of transport equation using the theory of non-equilibrium thermodynamics. Conductance of membrane equilibrated with water and aqueous solutions are measured and the data are used to estimate phenomenological coefficients. These phenomenological coefficients are used to determine the average pore radius, the average number of pores and the membrane constant. Zeta potentials are evaluated using electro-osmotic permeability and membrane-permeant conductance data to understand the electrical nature of the membrane-permeant interface. It is observed that hydrodynamic permeability and electro-osmotic permeability depend linearly on the applied pressure difference and the potential difference, respectively.

  15. OXIDATIVE METHOD OF SEPARATING PLUTONIUM FROM NEPTUNIUM

    DOEpatents

    Beaufait, L.J. Jr.

    1958-06-10

    A method is described of separating neptunium from plutonium in an aqueous solution containing neptunium and plutonium in valence states not greater than +4. This may be accomplished by contacting the solution with dichromate ions, thus oxidizing the neptunium to a valence state greater than +4 without oxidizing any substantial amount of plutonium, and then forming a carrier precipitate which carries the plutonium from solution, leaving the neptunium behind. A preferred embodiment of this invention covers the use of lanthanum fluoride as the carrier precipitate.

  16. Mercury adsorption on granular activated carbon in aqueous solutions containing nitrates and chlorides.

    PubMed

    Di Natale, F; Erto, A; Lancia, A; Musmarra, D

    2011-09-15

    Adsorption is an effective process to remove mercury from polluted waters. In spite of the great number of experiments on this subject, the assessment of the optimal working conditions for industrial processes is suffering the lack of reliable models to describe the main adsorption mechanisms. This paper presents a critical analysis of mercury adsorption on an activated carbon, based on the use of chemical speciation analysis to find out correlations between mercury adsorption and concentration of dissolved species. To support this analysis, a comprehensive experimental study on mercury adsorption at different mercury concentrations, temperatures and pH was carried out in model aqueous solutions. This study pointed out that mercury capture occurs mainly through adsorption of cationic species, the adsorption of anions being significant only for basic pH. Furthermore, it was shown that HgOH(+) and Hg(2+) are captured to a higher extent than HgCl(+), but their adsorption is more sensitive to solution pH. Tests on the effect of temperature in a range from 10 to 55 °C showed a peculiar non-monotonic trend for mercury solution containing chlorides. The chemical speciation and the assumption of adsorption exothermicity allow describing this experimental finding without considering the occurrence of different adsorption mechanisms at different temperature.

  17. Effect of Sodium Sulfate, Ammonium Chloride, Ammonium Nitrate, and Salt Mixtures on Aqueous Phase Partitioning of Organic Compounds.

    PubMed

    Wang, Chen; Lei, Ying Duan; Wania, Frank

    2016-12-06

    Dissolved inorganic salts influence the partitioning of organic compounds into the aqueous phase. This influence is especially significant in atmospheric aerosol, which usually contains large amounts of ions, including sodium, ammonium, chloride, sulfate, and nitrate. However, empirical data on this salt effect are very sparse. Here, the partitioning of numerous organic compounds into solutions of Na2SO4, NH4Cl, and NH4NO3 was measured and compared with existing data for NaCl and (NH4)2SO4. Salt mixtures were also tested to establish whether the salt effect is additive. In general, the salt effect showed a decreasing trend of Na2SO4 > (NH)2SO4 > NaCl > NH4Cl > NH4NO3 for the studied organic compounds, implying the following relative strength of the salt effect of individual anions: SO4(2-) > Cl(-) > NO3(-) and of cations: Na(+) > NH4(+). The salt effect of different salts is moderately correlated. Predictive models for the salt effect were developed based on the experimental data. The experimental data indicate that the salt effect of mixtures may not be entirely additive. However, the deviation from additivity, if it exists, is small. Data of very high quality are required to establish whether the effect of constituent ions or salts is additive or not.

  18. Chitosan /Zeolite Y/Nano ZrO2 nanocomposite as an adsorbent for the removal of nitrate from the aqueous solution.

    PubMed

    Teimouri, Abbas; Nasab, Shima Ghanavati; Vahdatpoor, Niaz; Habibollahi, Saeed; Salavati, Hossein; Chermahini, Alireza Najafi

    2016-12-01

    In the present study, a series of chitosan/Zeolite Y/Nano Zirconium oxide (CTS/ZY/Nano ZrO2) nanocomposites were made by controlling the molar ratio of chitosan (CTS) to Zeolite Y/Nano Zirconium oxide in order to remove nitrate (NO3(-)) ions in the aqueous solution. The nanocomposite adsorbents were characterized by XRD, FTIR, BET, SEM and TEM. The influence of different molar ratios of CTS to ZY/Nano ZrO2, the initial pH value of the nitrate solution, contact time, temperature, the initial concentration of nitrate and adsorbent dose was studied. The adsorption isotherms and kinetics were also analyzed. It was attempted to describe the sorption processes by the Langmuir equation and the theoretical adsorption capacity (Q0) was found to be 23.58mg nitrate per g of the adsorbent. The optimal conditions for nitrate removal were found to be: molar ratio of CTS/ZY/Nano ZrO2: 5:1; pH: 3; 0.02g of adsorbent and temperature: 35°C, for 60min. The adsorption capacities of CTS, ZY, Nano ZrO2, CTS/Nano ZrO2, CTS/ZY and CTS/ZY/Nano ZrO2 nanocomposites for nitrate removal were compared, showing that the adsorption ability of CTS/ZY/Nano ZrO2 nanocomposite was higher than the average values of those of CTS (1.95mg/g for nitrate removal), ZY, Nano ZrO2, CTS/Nano ZrO2, and CTS/ZY.

  19. CONVERSION OF PLUTONIUM TRIFLUORIDE TO PLUTONIUM TETRAFLUORIDE

    DOEpatents

    Fried, S.; Davidson, N.R.

    1957-09-10

    A large proportion of the trifluoride of plutonium can be converted, in the absence of hydrogen fluoride, to the tetrafiuoride of plutonium. This is done by heating plutonium trifluoride with oxygen at temperatures between 250 and 900 deg C. The trifiuoride of plutonium reacts with oxygen to form plutonium tetrafluoride and plutonium oxide, in a ratio of about 3 to 1. In the presence of moisture, plutonium tetrafluoride tends to hydrolyze at elevated temperatures and therefore it is desirable to have the process take place under anhydrous conditions.

  20. SEPARATION OF PLUTONIUM FROM LANTHANUM BY CHELATION-EXTRACTION

    DOEpatents

    James, R.A.; Thompson, S.G.

    1958-12-01

    Plutonium can be separated from a mixture of plutonlum and lanthanum in which the lanthanum to plutonium molal ratio ls at least five by adding the ammonium salt of N-nitrosoarylhydroxylamine to an aqueous solution having a pH between about 3 and 0.2 and containing the plutonium in a valence state of at least +3, to form a plutonium chelate compound of N-nitrosoarylhydroxylamine. The plutonium chelate compound may be recovered from the solution by extracting with an immiscible organic solvent such as chloroform.

  1. Thermal Stability Studies of Candidate Decontamination Agents for Hanford’s Plutonium Finishing Plant Plutonium-Contaminated Gloveboxes

    SciTech Connect

    Scheele, Randall D.; Cooper, Thurman D.; Jones, Susan A.; Ewalt, John R.; Compton, James A.; Trent, Donald S.; Edwards, Matthew K.; Kozelisky, Anne E.; Scott, Paul A.; Minette, Michael J.

    2005-09-29

    This report provides the results of PNNL's and Fluor's studies of the thermal stabilities of potential wastes arising from decontamination of Hanford's Plutonium Finishing Plant's plutonium contaminated gloveboxes. The candidate wastes arising from the decontamination technologies ceric nitrate/nitric acid, RadPro, Glygel, and Aspigel.

  2. PROCESS OF REMOVING PLUTONIUM VALUES FROM SOLUTION WITH GROUP IVB METAL PHOSPHO-SILICATE COMPOSITIONS

    DOEpatents

    Russell, E.R.; Adamson, A.W.; Schubert, J.; Boyd, G.E.

    1957-10-29

    A process for separating plutonium values from aqueous solutions which contain the plutonium in minute concentrations is described. These values can be removed from an aqueous solution by taking an aqueous solution containing a salt of zirconium, titanium, hafnium or thorium, adding an aqueous solution of silicate and phosphoric acid anions to the metal salt solution, and separating, washing and drying the precipitate which forms when the two solutions are mixed. The aqueous plutonium containing solution is then acidified and passed over the above described precipi-tate causing the plutonium values to be adsorbed by the precipitate.

  3. Radionuclide Basics: Plutonium

    EPA Pesticide Factsheets

    Plutonium (chemical symbol Pu) is a radioactive metal. Plutonium is considered a man-made element. Plutonium-239 is used to make nuclear weapons. Pu-239 and Pu-240 are byproducts of nuclear reactor operations and nuclear bomb explosions.

  4. PROCESS FOR SEPARATING PLUTONIUM BY REPEATED PRECIPITATION WITH AMPHOTERIC HYDROXIDE CARRIERS

    DOEpatents

    Faris, B.F.

    1960-04-01

    A multiple carrier precipitation method is described for separating and recovering plutonium from an aqueous solution. The hydroxide of an amphoteric metal is precipitated in an aqueous plutonium-containing solution. This precipitate, which carries plutonium, is then separated from the supernatant liquid and dissolved in an aqueous hydroxide solution, forming a second plutonium- containing solution. lons of an amphoteric metal which forms an insoluble hydroxide under the conditions existing in this second solution are added to the second solution. The precipitate which forms and which carries plutonium is separated from the supernatant liquid. Amphoteric metals which may be employed are aluminum, bibmuth, copper, cobalt, iron, lanthanum, nickel, and zirconium.

  5. Plutonium Story

    DOE R&D Accomplishments Database

    Seaborg, G. T.

    1981-09-01

    The first nuclear synthesis and identification (i.e., the discovery) of the synthetic transuranium element plutonium (isotope /sup 238/Pu) and the demonstration of its fissionability with slow neutrons (isotope /sup 239/Pu) took place at the University of California, Berkeley, through the use of the 60-inch and 37-inch cyclotrons, in late 1940 and early 1941. This led to the development of industrial scale methods in secret work centered at the University of Chicago's Metallurgical Laboratory and the application of these methods to industrial scale production, at manufacturing plants in Tennessee and Washington, during the World War II years 1942 to 1945. The chemical properties of plutonium, needed to devise the procedures for its industrial scale production, were studied by tracer and ultramicrochemical methods during this period on an extraordinarily urgent basis. This work, and subsequent investigations on a worldwide basis, have made the properties of plutonium very well known. Its well studied electronic structure and chemical properties give it a very interesting position in the actinide series of inner transition elements.

  6. Plutonium story

    SciTech Connect

    Seaborg, G T

    1981-09-01

    The first nuclear synthesis and identification (i.e., the discovery) of the synthetic transuranium element plutonium (isotope /sup 238/Pu) and the demonstration of its fissionability with slow neutrons (isotope /sup 239/Pu) took place at the University of California, Berkeley, through the use of the 60-inch and 37-inch cyclotrons, in late 1940 and early 1941. This led to the development of industrial scale methods in secret work centered at the University of Chicago's Metallurgical Laboratory and the application of these methods to industrial scale production, at manufacturing plants in Tennessee and Washington, during the World War II years 1942 to 1945. The chemical properties of plutonium, needed to devise the procedures for its industrial scale production, were studied by tracer and ultramicrochemical methods during this period on an extraordinarily urgent basis. This work, and subsequent investigations on a worldwide basis, have made the properties of plutonium very well known. Its well studied electronic structure and chemical properties give it a very interesting position in the actinide series of inner transition elements.

  7. PLUTONIUM CARRIER METATHESIS WITH ORGANIC REAGENT

    DOEpatents

    Thompson, S.G.

    1958-07-01

    A method is described for converting a plutonium containing bismuth phosphate carrier precipitate Into a compositton more readily soluble in acid. The method consists of dissolving the bismuth phosphate precipitate in an aqueous solution of alkali metal hydroxide, and adding one of a certaia group of organic compounds, e.g., polyhydric alcohols or a-hydrorycarboxylic acids. The mixture is then heated causiing formation of a bismuth hydroxide precipitate containing plutonium which may be readily dissolved in nitric acid for further processing.

  8. PLUTONIUM ALLOYS

    DOEpatents

    Chynoweth, W.

    1959-06-16

    The preparation of low-melting-point plutonium alloys is described. In a MgO crucible Pu is placed on top of the lighter alloying metal (Fe, Co, or Ni) and the temperature raised to 1000 or 1200 deg C. Upon cooling, the alloy slug is broke out of the crucible. With 14 at. % Ni the m.p. is 465 deg C; with 9.5 at. % Fe the m.p. is 410 deg C; and with 12.0 at. % Co the m.p. is 405 deg C. (T.R.H.) l6262 l6263 ((((((((Abstract unscannable))))))))

  9. Polymerization of Pu(IV) in aqueous nitric acid solutions

    SciTech Connect

    Toth, L.M.; Friedman, H.A.; Osborne, M.M.

    1980-10-01

    The polymerization of Pu(IV) in aqueous nitric acid solutions has been studied spectrophotometrically both to establish the influence of large UO{sub 2}(NO{sub 3}){sub 2} concentrations on the polymerization rates and, more generally, to review the influence of the major parameters on the polymer reaction. Typically, experiments have been performed at 50{sup 0}C and with 0.05 M Pu in nitric acid solutions that vary in acidity from 0.07 to 0.4 M. An induction period usually precedes the polymer growth stage during which time nucleation of primary hydrolysis products occurs. Uranyl nitrate retards the polymerization reaction by approximately 35% in spite of the counteracting influence of the nitrate ions associated with this solute. The rate of polymer formation, expressed as d(percent polymer)/dt, has been shown to depend on the total plutonium concentration in reactions where the Pu(IV) concentration remained constant; and it is therefore suggested that the polymer reaction rate is not first order with respect to the concentration of plutonium as was previously thought. It has been shown further that accurate acid determinations on stock reagents are essential in order to obtain reliable polymerization experiments. Satisfactory procedures for these analyses did not exist, so appropriate modifications to the iodate precipitation methods were developed. The most ideal plutonium reagent material has been shown to be crystalline Pu(IV) nitrate because it can be added directly to acid solutions without the occurrence of unintentional hydrolysis reactions.

  10. PRODUCTION OF PLUTONIUM METAL

    DOEpatents

    Lyon, W.L.; Moore, R.H.

    1961-01-17

    A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

  11. STRIPPING PROCESS FOR PLUTONIUM

    DOEpatents

    Kolodney, M.

    1959-10-01

    A method for removing silver, nickel, cadmium, zinc, and indium coatings from plutonium objects while simultaneously rendering the plutonium object passive is described. The coated plutonium object is immersed as the anode in an electrolyte in which the plutonium is passive and the coating metal is not passive, using as a cathode a metal which does not dissolve rapidly in the electrolyte. and passing an electrical current through the electrolyte until the coating metal is removed from the plutonium body.

  12. METHOD FOR SEPARATING PLUTONIUM AND FISSION PRODUCTS EMPLOYING AN OXIDE AS A CARRIER FOR FISSION PRODUCTS

    DOEpatents

    Davies, T.H.

    1961-07-18

    Carrier precipitation processes for separating plutonium values from uranium fission products are described. Silicon dioxide or titanium dioxide in a finely divided state is added to an acidic aqueous solution containing hexavalent plutonium ions together with ions of uranium fission products. The supernatant solution containing plutonium ions is then separated from the oxide and the fission products associated therewith.

  13. PROCESS USING POTASSIUM LANTHANUM SULFATE FOR FORMING A CARRIER PRECIPITATE FOR PLUTONIUM VALUES

    DOEpatents

    Angerman, A.A.

    1958-10-21

    A process is presented for recovering plutonium values in an oxidation state not greater than +4 from fluoride-soluble fission products. The process consists of adding to an aqueous acidic solution of such plutonium values a crystalline potassium lanthanum sulfate precipitate which carries the plutonium values from the solution.

  14. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    DOEpatents

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  15. PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS

    DOEpatents

    Duffield, R.B.

    1959-02-24

    S>A method is described for separating plutonium, in a valence state of less than five, from an aqueous solution in which it is dissolved. The niethod consists in adding potassium and sulfate ions to such a solution while maintaining the solution at a pH of less than 7.1, and isolating the precipitate of potassium plutonium sulfate thus formed.

  16. METHOD OF IMPROVING THE CARRIER PRECIPITATION OF PLUTONIUM

    DOEpatents

    Kamack, H.J.; Balthis, J.H.

    1958-12-01

    Plutonium values can be recovered from acidic solutlons by adding lead nitrate, hydrogen fluoride, lantha num nitrate, and sulfurlc acid to the solution to form a carrler preclpitate. The lead sulfate formed improves the separatlon characteristics of the lanthanum fluoride carrier precipitate,

  17. IMPROVED PROCESS OF PLUTONIUM CARRIER PRECIPITATION

    DOEpatents

    Faris, B.F.

    1959-06-30

    This patent relates to an improvement in the bismuth phosphate process for separating and recovering plutonium from neutron irradiated uranium, resulting in improved decontamination even without the use of scavenging precipitates in the by-product precipitation step and subsequently more complete recovery of the plutonium in the product precipitation step. This improvement is achieved by addition of fluomolybdic acid, or a water soluble fluomolybdate, such as the ammonium, sodium, or potassium salt thereof, to the aqueous nitric acid solution containing tetravalent plutonium ions and contaminating fission products, so as to establish a fluomolybdate ion concentration of about 0.05 M. The solution is then treated to form the bismuth phosphate plutonium carrying precipitate.

  18. Processing of Non-PFP Plutonium Oxide in Hanford Plants

    SciTech Connect

    Jones, Susan A.; Delegard, Calvin H.

    2011-03-10

    Processing of non-irradiated plutonium oxide, PuO2, scrap for recovery of plutonium values occurred routinely at Hanford’s Plutonium Finishing Plant (PFP) in glovebox line operations. Plutonium oxide is difficult to dissolve, particularly if it has been high-fired; i.e., calcined to temperatures above about 400°C and much of it was. Dissolution of the PuO2 in the scrap typically was performed in PFP’s Miscellaneous Treatment line using nitric acid (HNO3) containing some source of fluoride ion, F-, such as hydrofluoric acid (HF), sodium fluoride (NaF), or calcium fluoride (CaF2). The HNO3 concentration generally was 6 M or higher whereas the fluoride concentration was ~0.5 M or lower. At higher fluoride concentrations, plutonium fluoride (PuF4) would precipitate, thus limiting the plutonium dissolution. Some plutonium-bearing scrap also contained PuF4 and thus required no added fluoride. Once the plutonium scrap was dissolved, the excess fluoride was complexed with aluminum ion, Al3+, added as aluminum nitrate, Al(NO3)3•9H2O, to limit collateral damage to the process equipment by the corrosive fluoride. Aluminum nitrate also was added in low quantities in processing PuF4.

  19. METHOD FOR DISSOLVING LANTHANUM FLUORIDE CARRIER FOR PLUTONIUM

    DOEpatents

    Koshland, D.E. Jr.; Willard, J.E.

    1961-08-01

    A method is described for dissolving lanthanum fluoride precipitates which is applicable to lanthanum fluoride carrier precipitation processes for recovery of plutonium values from aqueous solutions. The lanthanum fluoride precipitate is contacted with an aqueous acidic solution containing dissolved zirconium in the tetravalent oxidation state. The presence of the zirconium increases the lanthanum fluoride dissolved and makes any tetravalent plutonium present more readily oxidizable to the hexavalent state. (AEC)

  20. Structural characterization of zinc(II) chloride in aqueous solution and in the protic ionic liquid ethyl ammonium nitrate by x-ray absorption spectroscopy.

    PubMed

    D'Angelo, Paola; Zitolo, Andrea; Ceccacci, Francesca; Caminiti, Ruggero; Aquilanti, Giuliana

    2011-10-21

    Extended x-ray absorption fine structure (EXAFS) spectroscopy has been used to investigate the species and structures existing in a series of ZnCl(2)-H(2)O-NaCl solutions with different chloride/zinc ratios and in a solution of ZnCl(2) in the protic ionic liquid ethyl ammonium nitrate (EAN). The average coordination numbers and distances of zinc species were determined from the analysis of the EXAFS data. In aqueous solution the number of chloride ions tightly bounded to Zn(2+) is significantly related to the chloride/zinc ratio, and no inner complex formation between Zn(2+) and Cl(-) ions has been detected for low ZnCl(2) concentration (0.1 and 0.2 M). Conversely, in the same concentration range (0.13 M) the ZnCl(2) species do not dissociate in EAN and the Zn(2+) first coordination shell has two chloride ions and is completed by two oxygen atoms of the nitrate anion. The results of this investigation show that notwithstanding the existence of similar characteristics between EAN and water, the solvation properties of the two solvents are markedly different.

  1. METHOD OF SEPARATING PLUTONIUM

    DOEpatents

    Brown, H.S.; Hill, O.F.

    1958-02-01

    Plutonium hexafluoride is a satisfactory fluorinating agent and may be reacted with various materials capable of forming fluorides, such as copper, iron, zinc, etc., with consequent formation of the metal fluoride and reduction of the plutonium to the form of a lower fluoride. In accordance with the present invention, it has been found that the reactivity of plutonium hexafluoride with other fluoridizable materials is so great that the process may be used as a method of separating plutonium from mixures containing plutonium hexafluoride and other vaporized fluorides even though the plutonium is present in but minute quantities. This process may be carried out by treating a mixture of fluoride vapors comprising plutonium hexafluoride and fluoride of uranium to selectively reduce the plutonium hexafluoride and convert it to a less volatile fluoride, and then recovering said less volatile fluoride from the vapor by condensation.

  2. PREPARATION OF PLUTONIUM TRIFLUORIDE

    DOEpatents

    Burger, L.L.; Roake, W.E.

    1961-07-11

    A process of producing plutonium trifluoride by reacting dry plutonium(IV) oxalate with chlorofluorinated methane or ethane at 400 to 450 deg C and cooling the product in the absence of oxygen is described.

  3. Plutonium Training Opportunities

    SciTech Connect

    Balatsky, Galya Ivanovna; Wolkov, Benjamin

    2015-03-26

    This report was created to examine the current state of plutonium training in the United States and to discover ways in which to ensure that the next generation of plutonium workers are fully qualified.

  4. Recovery of Plutonium by Carrier Precipitation

    DOEpatents

    Goeckermann, R. H.

    1961-04-01

    The recovery of plutonium from an aqueous nitric acid Zr-containing solution of 0.2 to 1N acidity is accomplished by adding fluoride anions (1.5 to 5 mg/l), and precipitating the Pu with an excess of H/sub 2/0/sub 2/ at 53 to 65 deg C. (AEC)

  5. PLUTONIUM-THORIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.

    1959-09-15

    New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

  6. Method for dissolving delta-phase plutonium

    DOEpatents

    Karraker, David G.

    1992-01-01

    A process for dissolving plutonium, and in particular, delta-phase plutonium. The process includes heating a mixture of nitric acid, hydroxylammonium nitrate (HAN) and potassium fluoride to a temperature between 40.degree. and 70.degree. C., then immersing the metal in the mixture. Preferably, the nitric acid has a concentration of not more than 2M, the HAN approximately 0.66M, and the potassium fluoride 0.1M. Additionally, a small amount of sulfamic acid, such as 0.1M can be added to assure stability of the HAN in the presence of nitric acid. The oxide layer that forms on plutonium metal may be removed with a non-oxidizing acid as a pre-treatment step.

  7. PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS

    DOEpatents

    Sutton, J.B.

    1958-02-18

    This patent relates to an improved method for the decontamination of plutonium. The process consists broadly in an improvement in a method for recovering plutonium from radioactive uranium fission products in aqueous solutions by decontamination steps including byproduct carrier precipitation comprising the step of introducing a preformed aqueous slurry of a hydroxide of a metal of group IV B into any aqueous acidic solution which contains the plutonium in the hexavalent state, radioactive uranium fission products contaminant and a by-product carrier precipitate and separating the metal hydroxide and by-product precipitate from the solution. The process of this invention is especially useful in the separation of plutonium from radioactive zirconium and columbium fission products.

  8. Ceramification: A plutonium immobilization process

    SciTech Connect

    Rask, W.C.; Phillips, A.G.

    1996-05-01

    This paper describes a low temperature technique for stabilizing and immobilizing actinide compounds using a combination process/storage vessel of stainless steel, in which measured amounts of actinide nitrate solutions and actinide oxides (and/or residues) are systematically treated to yield a solid article. The chemical ceramic process is based on a coating technology that produces rare earth oxide coatings for defense applications involving plutonium. The final product of this application is a solid, coherent actinide oxide with process-generated encapsulation that has long-term environmental stability. Actinide compounds can be stabilized as pure materials for ease of re-use or as intimate mixtures with additives such as rare earth oxides to increase their degree of proliferation resistance. Starting materials for the process can include nitrate solutions, powders, aggregates, sludges, incinerator ashes, and others. Agents such as cerium oxide or zirconium oxide may be added as powders or precursors to enhance the properties of the resulting solid product. Additives may be included to produce a final product suitable for use in nuclear fuel pellet production. The process is simple and reduces the time and expense for stabilizing plutonium compounds. It requires a very low equipment expenditure and can be readily implemented into existing gloveboxes. The process is easily conducted with less associated risk than proposed alternative technologies.

  9. Thermochemical nitrate destruction

    DOEpatents

    Cox, John L.; Hallen, Richard T.; Lilga, Michael A.

    1992-01-01

    A method is disclosed for denitrification of nitrates and nitrates present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200.degree. C. to about 600.degree. C., and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

  10. Dehydration of plutonium or neptunium trichloride hydrate

    DOEpatents

    Foropoulos, Jr., Jerry; Avens, Larry R.; Trujillo, Eddie A.

    1992-01-01

    A process of preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride is provided.

  11. Dehydration of plutonium or neptunium trichloride hydrate

    DOEpatents

    Foropoulos, J. Jr.; Avens, L.R.; Trujillo, E.A.

    1992-03-24

    A process is described for preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride.

  12. Purge-assisted headspace solid-phase microextraction combined with gas chromatography/mass spectrometry for the determination of trace nitrated polycyclic aromatic hydrocarbons in aqueous samples.

    PubMed

    Hung, Cheng-Han; Ho, Hsin-Pin; Lin, Mei-Tzu; Chen, Chung-Yu; Shu, Youn-Yuen; Lee, Maw-Rong

    2012-11-23

    This study describes a new procedure, namely, purge-assisted headspace solid phase microextraction combined with gas chromatography/negative ion chemical ionization mass spectrometry (PA/HS-SPME-GC/NICI-MS), which is used to determine seven nitrated polycyclic aromatic hydrocarbons (NPAHs) in aqueous samples. High extraction efficiency was obtained with PA/HS-SPME with polydimethylsiloxane (PDMS) fiber coating. A programmable temperature vaporizing (PTV) inlet was used in the desorption process. Selected ion monitoring (SIM) was used for quantitative and qualitative purposes. The linear range of detection of the proposed method was 5-5000 pg/mL with coefficients of determination between 0.995 and 0.999. Limits of detection (LODs) for seven NPAHs were 0.01-0.06 pg/mL. The relative standard deviation was below 12.7% at a concentration of 50 pg/mL. Compared with headspace-solid phase microextraction (HS-SPME), the purge procedure enhanced the extraction efficiency for high boiling point analytes, such as 7-nitrobenz[a]anthracene (7-NBA) and 6-nitrochrysene (6-NC). The proposed method provides a sensitive method for NPAH analysis at the pg/mL level. The application of the proposed method for the determination of trace NPAHs in real samples was investigated by analyzing aqueous samples from rivers. The concentrations of NPAHs detected from the samples ranged from 5.2 to 7.5 pg/mL. This method was applied successfully in the analysis of trace NPAHs in river samples.

  13. Removal of americium from aqueous nitrate solutions by sorption onto PC88A-impregnated macroporous polymeric beads.

    PubMed

    Pathak, S K; Tripathi, S C; Singh, K K; Mahtele, A K; Kumar, Manmohan; Gandhi, P M

    2014-08-15

    The removal of Am (III) ions from aqueous solutions was studied by solid-liquid extraction using indigenously synthesized Extractant Impregnated Macroporous Polymeric Beads (EIMPBs). These beads were prepared by an in situ phase inversion method using polyethersulfone (PES) as base polymer and 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC88A) as an extractant. The synthesized EIMPBs were characterized by FTIR, TGA and SEM techniques. The batch equilibration study using these beads for the uptake of Am (III) was carried out as a function of parameters, like pH, equilibration time, Am (III) concentration, etc. The blank polymeric beads, without PC88A, have shown negligible sorption of Am (III) under the experimental conditions. The experimental data on the sorption behavior of Am (III) on the polymeric beads fitted well in the pseudo-second-order kinetics model. The synthesized polymeric beads exhibited very good sorption capacity for Am (III) at pH 3. The reusability of the beads was also ascertained by repetitive sorption/desorption of Am (III) up to 10 cycles of operation, without any significant change in their sorption characteristics.

  14. BASIC PEROXIDE PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINANTS

    DOEpatents

    Seaborg, G.T.; Perlman, I.

    1959-02-10

    A process is described for the separation from each other of uranyl values, tetravalent plutonium values and fission products contained in an aqueous acidic solution. First the pH of the solution is adjusted to between 2.5 and 8 and hydrogen peroxide is then added to the solution causing precipitation of uranium peroxide which carries any plutonium values present, while the fission products remain in solution. Separation of the uranium and plutonium values is then effected by dissolving the peroxide precipitate in an acidic solution and incorporating a second carrier precipitate, selective for plutonium. The plutonium values are thus carried from the solution while the uranium remains flissolved. The second carrier precipitate may be selected from among the group consisting of rare earth fluorides, and oxalates, zirconium phosphate, and bismuth lihosphate.

  15. SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Callis, C.F.; Moore, R.L.

    1959-09-01

    >The separation of ruthenium from aqueous solutions containing uranium plutonium, ruthenium, and fission products is described. The separation is accomplished by providing a nitric acid solution of plutonium, uranium, ruthenium, and fission products, oxidizing plutonium to the hexavalent state with sodium dichromate, contacting the solution with a water-immiscible organic solvent, such as hexone, to extract plutonyl, uranyl, ruthenium, and fission products, reducing with sodium ferrite the plutonyl in the solvent phase to trivalent plutonium, reextracting from the solvent phase the trivalent plutonium, ruthenium, and some fission products with an aqueous solution containing a salting out agent, introducing ozone into the aqueous acid solution to oxidize plutonium to the hexavalent state and ruthenium to ruthenium tetraoxide, and volatizing off the ruthenium tetraoxide.

  16. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  17. PREPARATION OF PLUTONIUM HALIDES

    DOEpatents

    Davidson, N.R.; Katz, J.J.

    1958-11-01

    A process ls presented for the preparation of plutonium trihalides. Plutonium oxide or a compound which may be readily converted to plutonlum oxide, for example, a plutonium hydroxide or plutonlum oxalate is contacted with a suitable halogenating agent. Speciflc agents mentioned are carbon tetrachloride, carbon tetrabromide, sulfur dioxide, and phosphorus pentachloride. The reaction is carried out under superatmospberic pressure at about 300 icient laborato C.

  18. PLUTONIUM-ZIRCONIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  19. PREPARATION OF PLUTONIUM

    DOEpatents

    Kolodney, M.

    1959-07-01

    Methods are presented for the electro-deposition of plutonium from fused mixtures of plutonium halides and halides of the alkali metals and alkaline earth metals. Th salts, preferably chlorides and with the plutonium prefer ably in the trivalent state, are placed in a refractory crucible such as tantalum or molybdenam and heated in a non-oxidizing atmosphere to 600 to 850 deg C, the higher temperatatures being used to obtain massive plutonium and the lower for the powder form. Electrodes of graphite or non reactive refractory metals are used, the crucible serving the cathode in one apparatus described in the patent.

  20. North Korean plutonium production

    SciTech Connect

    Albright, D.

    1994-12-01

    In 1992, as part of its obligations under the Nuclear Non-Proliferation Treaty, North Korea declared that it had earlier separated about 100 grams of plutonium from damaged fuel rods removed from a 25 megawatt-thermal (MW{sub t}) gas-graphite reactor at Yongbyon. The plutonium was separated at the nearby {open_quotes}Radiochemical Laboratory.{close_quotes} Separated plutonium is the raw ingredient for making nuclear weapons, but 100 grams is too little to make a crude bomb. Based on intelligence reports and IAEA inspections, North Korea may have separated enough plutonium for a nuclear weapon. Regardless of whether this is true, there is no doubt that North Korea has enough weapons-grade plutonium in spent fuel to make four or five nuclear weapons. But it cannot turn this plutonium into nuclear weapons unless it separates the plutonium from the spent fuel. Preventing the North from separating any more plutonium must remain a global priority. The IAEA must also be able to verify North Korea`s past nuclear activities and determine the amount of plutonium North Korea may have diverted in the past.

  1. Plutonium scrap processing at the Los Alamos Scientific Laboratory

    SciTech Connect

    Nixon, A.E.; McKerley, B.J.; Christensen, E.L.

    1980-01-01

    The Los Alamos Scientific Laboratory currently has the newest plutonium handling facility in the nation. Los Alamos has been active in the processing of plutonium almost since the discovery of this man-made element in 1941. One of the functions of the new facility is the processing of plutonium scrap generated at LASL and other sites. The feed for the scrap processing program is extremely varied, and a wide variety of contaminants are often encountered. Depending upon the scrap matrix and contaminants present, the majority of material receives a nitric acid/hydrofluoric acid or nitric acid/calcium fluoride leach. The plutonium nitrate solutions are then loaded onto an anion exchange column charged with DOWEX 1 x 4, 50 to 100 mesh, nitrate form resin. The column is eluted with 0.48 M hydroxyl amine nitrate. The Pu(NO/sub 3/)/sub 3/ is then precipitated as plutonium III oxalate which is calcined at 450 to 500/sup 0/C to yield a purified PuO/sub 2/ product.

  2. METHOD OF SEPARATING PLUTONIUM FROM LANTHANUM FLUORIDE CARRIER

    DOEpatents

    Watt, G.W.; Goeckermann, R.H.

    1958-06-10

    An improvement in oxidation-reduction type methods of separating plutoniunn from elements associated with it in a neutron-irradiated uranium solution is described. The method relates to the separating of plutonium from lanthanum ions in an aqueous 0.5 to 2.5 N nitric acid solution by 'treating the solution, at room temperature, with ammonium sulfite in an amount sufficient to reduce the hexavalent plutonium present to a lower valence state, and then treating the solution with H/sub 2/O/sub 2/ thereby forming a tetravalent plutonium peroxide precipitate.

  3. Theoretical study of the structural properties of plutonium(IV) and (VI) complexes.

    PubMed

    Odoh, Samuel O; Schreckenbach, Georg

    2011-12-08

    The structural properties of several plutonium(IV) and (VI) complexes have been examined in the gaseous and aqueous phases using Kohn-Sham density functional theory calculations with scalar relativistic effective core potentials and the polarizable continuum solvation model. The aquo and nitrate complexes of PuO(2)(2+) and Pu(4+) were considered in addition to the aquo-chloro complexes of PuO(2)(2+). The nitrate and chloro- complexes formed with triphenylphosphine oxide (TPPO) and tributylphosphate (TBP) respectively were also studied. The structural parameters of the plutonyl complexes were compared to their uranyl and neptunyl analogues. The bond lengths and vibrational frequencies of the plutonyl complexes can generally be computed with sufficient accuracy with the pure PBE density functional with shorter bond lengths being predicted by the B3LYP functional. The structural parameters of the [PuO(2)Cl(2)L(2)] systems formed with TPPO and TBP as well as the aqueous [PuO(2)Cl(2)(H(2)O)(3)] complex are matched to previous experimental results. Overall, the inclusion of ligands in the equatorial region results in significant changes in the stretching frequency of the plutonyl group. The structural features of the plutonyl (VI) systems are rather similar to those of their 5f(0) uranyl and 5f(1) neptunyl counterparts. For the Pu(IV) aquo and nitrate complexes, the average of the calculated Pu-OH(2) and Pu-O(nitrate) bond lengths are generally within 0.04 Å of the reported experimental values. Overall Kohn-Sham DFT can be used successfully in predicting the structures of this diverse set of Pu(VI) and Pu(IV) complexes.

  4. History and stabilization of the Plutonium Finishing Plant (PFP) complex, Hanford Site

    SciTech Connect

    Gerber, M.S., Fluor Daniel Hanford

    1997-02-18

    The 231-Z Isolation Building or Plutonium Metallurgy Building is located in the Hanford Site`s 200 West Area, approximately 300 yards north of the Plutonium Finishing Plant (PFP) (234-5 Building). When the Hanford Engineer Works (HEW) built it in 1944 to contain the final step for processing plutonium, it was called the Isolation Building. At that time, HEW used a bismuth phosphate radiochemical separations process to make `AT solution,` which was then dried and shipped to Los Alamos, New Mexico. (AT solution is a code name used during World War II for the final HEW product.) The process was carried out first in T Plant and the 224-T Bulk Reduction Building and B Plant and the 224-B Bulk Reduction Building. The 224-T and -B processes produced a concentrated plutonium nitrate stream, which then was sent in 8-gallon batches to the 231-Z Building for final purification. In the 231-Z Building, the plutonium nitrate solution underwent peroxide `strikes` (additions of hydrogen peroxide to further separate the plutonium from its carrier solutions), to form the AT solution. The AT solution was dried and shipped to the Los Alamos Site, where it was made into metallic plutonium and then into weapons hemispheres.` The 231-Z Building began `hot` operations (operations using radioactive materials) with regular runs of plutonium nitrate on January 16, 1945.

  5. Thermochemical nitrate destruction

    DOEpatents

    Cox, J.L.; Hallen, R.T.; Lilga, M.A.

    1992-06-02

    A method is disclosed for denitrification of nitrates and nitrites present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200 C to about 600 C, and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

  6. Solubility of plutonium and uranium in alkaline salt solutions

    SciTech Connect

    Hobbs, D.T.; Edwards, T.B.; Fleischman, S.D.

    1993-02-12

    The solubility of plutonium and uranium in alkaline salt solutions, which will be processed in the In-Tank Precipitation (ITP) process, was investigated to screen for significant factors and interactions among the factors comprising the salt solutions. The factors included in the study were hydroxide, nitrate, nitrite, aluminate, sulfate, carbonate, and temperature. Over the range of factor concentrations studied, the level of hydroxide in the solution is not sufficient alone to predict the resulting concentration of plutonium and uranium in the solution. Other constituents of the salt solution play an important role in determining the amount of plutonium and uranium in solution. Statistical models predicting the plutonium and uranium concentrations over the range of salt solutions investigated are provided.

  7. PLUTONIUM-CERIUM ALLOY

    DOEpatents

    Coffinberry, A.S.

    1959-01-01

    An alloy is presented for use as a reactor fuel. The binary alloy consists essentially of from about 5 to 90 atomic per cent cerium and the balance being plutonium. A complete phase diagram for the cerium--plutonium system is given.

  8. DELTA PHASE PLUTONIUM ALLOYS

    DOEpatents

    Cramer, E.M.; Ellinger, F.H.; Land. C.C.

    1960-03-22

    Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.

  9. 31. VIEW OF A WORKER HOLDING A PLUTONIUM 'BUTTON.' PLUTONIUM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF A WORKER HOLDING A PLUTONIUM 'BUTTON.' PLUTONIUM, A MAN-MADE SUBSTANCE, WAS RARE. SCRAPS RESULTING FROM PRODUCTION AND PLUTONIUM RECOVERED FROM RETIRED NUCLEAR WEAPONS WERE REPROCESSED INTO VALUABLE PURE-PLUTONIUM METAL (9/19/73). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  10. 10 CFR Appendix J to Part 110 - Illustrative List of Uranium Conversion Plant Equipment and Plutonium Conversion Plant Equipment...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... can be performed by first dissolving the ore in nitric acid and extracting purified uranyl nitrate using a solvent such as tributyl phosphate. Next, the uranyl nitrate is converted to UO3 either by... nitrate to PuO2, conversion of PuO2 to PuF4 and conversion of PuF4 to plutonium metal....

  11. Aqueous complexation of thorium(IV), uranium(IV), neptunium(IV), plutonium(III/IV), and cerium(III/IV) with DTPA.

    PubMed

    Brown, M Alex; Paulenova, Alena; Gelis, Artem V

    2012-07-16

    Aqueous complexation of Th(IV), U(IV), Np(IV), Pu(III/IV), and Ce(III/IV) with DTPA was studied by potentiometry, absorption spectrophotometry, and cyclic voltammetry at 1 M ionic strength and 25 °C. The stability constants for the 1:1 complex of each trivalent and tetravalent metal were calculated. From the potentiometric data, we report stability constant values for Ce(III)DTPA, Ce(III)HDTPA, and Th(IV)DTPA of log β(101) = 20.01 ± 0.02, log β(111) = 22.0 ± 0.2, and log β(101) = 29.6 ± 1, respectively. From the absorption spectrophotometry data, we report stability constant values for U(IV)DTPA, Np(IV)DTPA, and Pu(IV)DTPA of log β(101) = 31.8 ± 0.1, 32.3 ± 0.1, and 33.67 ± 0.02, respectively. From the cyclic voltammetry data, we report stability constant values for Ce(IV) and Pu(III) of log β(101) = 34.04 ± 0.04 and 20.58 ± 0.04, respectively. The values obtained in this work are compared and discussed with respect to the ionic radius of each cationic metal.

  12. Plutonium bioaccumulation in seabirds.

    PubMed

    Strumińska-Parulska, Dagmara I; Skwarzec, Bogdan; Fabisiak, Jacek

    2011-12-01

    The aim of the paper was plutonium (²³⁸Pu and ²³⁹⁺²⁴⁰Pu) determination in seabirds, permanently or temporarily living in northern Poland at the Baltic Sea coast. Together 11 marine birds species were examined: 3 species permanently residing in the southern Baltic, 4 species of wintering birds and 3 species of migrating birds. The obtained results indicated plutonium is non-uniformly distributed in organs and tissues of analyzed seabirds. The highest plutonium content was found in the digestion organs and feathers, the smallest in skin and muscles. The plutonium concentration was lower in analyzed species which feed on fish and much higher in herbivorous species. The main source of plutonium in analyzed marine birds was global atmospheric fallout.

  13. Plutonium storage criteria

    SciTech Connect

    Chung, D.; Ascanio, X.

    1996-05-01

    The Department of Energy has issued a technical standard for long-term (>50 years) storage and will soon issue a criteria document for interim (<20 years) storage of plutonium materials. The long-term technical standard, {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides,{close_quotes} addresses the requirements for storing metals and oxides with greater than 50 wt % plutonium. It calls for a standardized package that meets both off-site transportation requirements, as well as remote handling requirements from future storage facilities. The interim criteria document, {open_quotes}Criteria for Interim Safe Storage of Plutonium-Bearing Solid Materials{close_quotes}, addresses requirements for storing materials with less than 50 wt% plutonium. The interim criteria document assumes the materials will be stored on existing sites, and existing facilities and equipment will be used for repackaging to improve the margin of safety.

  14. PLUTONIUM-CERIUM-COBALT AND PLUTONIUM-CERIUM-NICKEL ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-08-25

    >New plutonium-base teroary alloys useful as liquid reactor fuels are described. The alloys consist of 10 to 20 atomic percent cobalt with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 88 atomic percent; or, of from 10 to 25 atomic percent nickel (or mixture of nickel and cobalt) with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 86 atomic percent. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are a lower melting point and a wide range of permissible plutonium dilution.

  15. Toxicokinetics and toxicodynamics of differently coated silver nanoparticles and silver nitrate in Enchytraeus crypticus upon aqueous exposure in an inert sand medium.

    PubMed

    Topuz, Emel; van Gestel, Cornelis A M

    2015-12-01

    The aim of the present study was to evaluate the effect of silver nanoparticles (AgNPs) on Enchytraeus crypticus, applying a combined toxicokinetics and toxicodynamics approach to understand the relationship between survival and the development of internal Ag concentrations in the animals over time. Toxicity tests were conducted in medium composed of well-defined aqueous solutions added to inert quartz sand to avoid the complexity of soil conditions. Citrate-coated AgNPs (AgNP-Cit) and polyvinylpyrrolidone-coated AgNPs (AgNP-PVP) were tested and compared with silver nitrate (AgNO3), which was used as a positive control for Ag ion effects. The median lethal concentration (LC50) values based on Ag concentrations in the solution phase of the test medium decreased over time and reached steady state after 7 d, with AgNO3 and AgNP-PVP being more toxic than AgNP-Cit. Slow dissolution may explain the low uptake kinetics and lower toxicity of AgNP-Cit compared with the other 2 Ag forms. The LC50 values based on internal Ag concentrations in the animals were almost stable over time, highlighting the importance of integrating toxicokinetics and toxicodynamics and relating survival with internal Ag concentrations. Neither survival-based elimination rates nor internal LC50s in the organisms showed any significant evidence of nano-specific effects for both AgNPs, although they suggested some uptake of particulate Ag for AgNP-Cit. The authors conclude that the toxicity of both types of AgNP probably is mainly attributable to the release of Ag ions.

  16. Use of Gadolinium as a Primary Criticality Control in Disposing Waste Containing Plutonium at SRS

    SciTech Connect

    Andrew, Vincent

    2005-01-04

    Use of gadolinium as a neutron poison has been proposed for disposing of several metric tons of excess plutonium at the Savannah River Site (SRS). The plutonium will first be dissolved in nitric acid in small batches. Gadolinium nitrate will then be added to the plutonium nitrate solution. The Gd-poisoned plutonium solution will be neutralized and transferred to large under-ground tanks. The pH of small batches of neutralized plutonium solution will be adjusted prior to addition of the glass frit for eventual production as glass logs. The use of gadolinium as the neutron poison would minimize the number of glass logs generated from this disposition. The primary criticality safety concerns regarding the disposal process are: (1) maintaining neutron moderation under all processing conditions since gadolinium has a very large absorption cross section for thermal neutrons, (2) characteristics of plutonium and gadolinium precipitation during the neutralization process, (3) mixing characteristics of the precipitate to ensure that plutonium would remain homogeneously mixed with gadolinium, and (4) potential separation of plutonium and gadolinium during nitric and formic acids addition. A number of experiments were conducted at the Savannah River National Laboratory to study the behavior of plutonium and gadolinium at various stages of the disposition process.

  17. Method for dissolving plutonium dioxide

    DOEpatents

    Tallent, Othar K.

    1978-01-01

    The fluoride-catalyzed, non-oxidative dissolution of plutonium dioxide in HNO.sub.3 is significantly enhanced in rate by oxidizing dissolved plutonium ions. It is believed that the oxidation of dissolved plutonium releases fluoride ions from a soluble plutonium-fluoride complex for further catalytic action.

  18. Evaluation of the Magnesium Hydroxide Treatment Process for Stabilizing PFP Plutonium/Nitric Acid Solutions

    SciTech Connect

    Gerber, Mark A.; Schmidt, Andrew J.; Delegard, Calvin H.; Silvers, Kurt L.; Baker, Aaron B.; Gano, Susan R.; Thornton, Brenda M.

    2000-09-28

    This document summarizes an evaluation of the magnesium hydroxide [Mg(OH)2] process to be used at the Hanford Plutonium Finishing Plant (PFP) for stabilizing plutonium/nitric acid solutions to meet the goal of stabilizing the plutonium in an oxide form suitable for storage under DOE-STD-3013-99. During the treatment process, nitric acid solutions bearing plutonium nitrate are neutralized with Mg(OH)2 in an air sparge reactor. The resulting slurry, containing plutonium hydroxide, is filtered and calcined. The process evaluation included a literature review and extensive laboratory- and bench-scale testing. The testing was conducted using cerium as a surrogate for plutonium to identify and quantify the effects of key processing variables on processing time (primarily neutralization and filtration time) and calcined product properties.

  19. Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles.

    PubMed

    Su, Yiming; Adeleye, Adeyemi S; Huang, Yuxiong; Sun, Xiaoya; Dai, Chaomeng; Zhou, Xuefei; Zhang, Yalei; Keller, Arturo A

    2014-10-15

    Nanoscale zerovalent iron (nZVI) has demonstrated high efficacy for treating nitrate or cadmium (Cd) contamination, but its efficiency for simultaneous removal of nitrate and Cd has not been investigated. This study evaluated the reactivity of nZVI to the co-contaminants and by-product formation, employed different catalysts to reduce nitrite yield from nitrate, and examined the transformation of nZVI after reaction. Nitrate reduction resulted in high solution pH, negatively charged surface of nZVI, formation of Fe3O4 (a stable transformation of nZVI), and no release of ionic iron. Increased pH and negative charge contributed to significant increase in Cd(II) removal capacity (from 40 mg/g to 188 mg/g) with nitrate present. In addition, nitrate reduction by nZVI could be catalyzed by Cd(II): while 30% of nitrate was reduced by nZVI within 2 h in the absence of Cd(II), complete nitrate reduction was observed in the presence of 40 mg-Cd/L due to the formation of Cd islands (Cd(0) and CdO) on the nZVI particles. While nitrate was reduced mostly to ammonium when Cd(II) was not present or at Cd(II) concentrations ≥ 40 mg/L, up to 20% of the initial nitrate was reduced to nitrite at Cd(II) concentrations < 40 mg/L. Among nZVI particles doped with 1 wt. % Cu, Ag, or Au, nZVI deposited with 1 wt. % Au reduced nitrite yield to less than 3% of the initial nitrate, while maintaining a high Cd(II) removal capacity.

  20. SEPARATION OF FISSION PRODUCT VALUES FROM THE HEXAVALENT PLUTONIUM BY CARRIER PRECIPITATION

    DOEpatents

    Davies, T.H.

    1959-12-15

    An improved precipitation of fission products on bismuth phosphate from an aqueous mineral acid solution also containing hexavalent plutonium by incorporating, prior to bismuth phosphate precipitation, from 0.05 to 2.5 grams/ liter of zirconium phosphate, niobium oxide. and/or lanthanum fluoride is described. The plutonium remains in solution.

  1. Plutonium Finishing Plant (PFP) Final Safety Analysis Report (FSAR) [SEC 1 THRU 11

    SciTech Connect

    ULLAH, M K

    2001-02-26

    The Plutonium Finishing Plant (PFP) is located on the US Department of Energy (DOE) Hanford Site in south central Washington State. The DOE Richland Operations (DOE-RL) Project Hanford Management Contract (PHMC) is with Fluor Hanford Inc. (FH). Westinghouse Safety Management Systems (WSMS) provides management support to the PFP facility. Since 1991, the mission of the PFP has changed from plutonium material processing to preparation for decontamination and decommissioning (D and D). The PFP is in transition between its previous mission and the proposed D and D mission. The objective of the transition is to place the facility into a stable state for long-term storage of plutonium materials before final disposition of the facility. Accordingly, this update of the Final Safety Analysis Report (FSAR) reflects the current status of the buildings, equipment, and operations during this transition. The primary product of the PFP was plutonium metal in the form of 2.2-kg, cylindrical ingots called buttoms. Plutonium nitrate was one of several chemical compounds containing plutonium that were produced as an intermediate processing product. Plutonium recovery was performed at the Plutonium Reclamation Facility (PRF) and plutonium conversion (from a nitrate form to a metal form) was performed at the Remote Mechanical C (RMC) Line as the primary processes. Plutonium oxide was also produced at the Remote Mechanical A (RMA) Line. Plutonium processed at the PFP contained both weapons-grade and fuels-grade plutonium materials. The capability existed to process both weapons-grade and fuels-grade material through the PRF and only weapons-grade material through the RMC Line although fuels-grade material was processed through the line before 1984. Amounts of these materials exist in storage throughout the facility in various residual forms left from previous years of operations.

  2. PLUTONIUM ELECTROREFINING CELLS

    DOEpatents

    Mullins, L.J. Jr.; Leary, J.A.; Bjorklund, C.W.; Maraman, W.J.

    1963-07-16

    Electrorefining cells for obtaining 99.98% plutonium are described. The cells consist of an impure liquid plutonium anode, a molten PuCl/sub 3/-- alkali or alkaline earth metal chloanode, a molten PuCl/sub 3/-alkali or alkaline earth metal chloride electrolyte, and a nonreactive cathode, all being contained in nonreactive ceramic containers which separate anode from cathode by a short distance and define a gap for the collection of the purified liquid plutonium deposited on the cathode. Important features of these cells are the addition of stirrer blades on the anode lead and a large cathode surface to insure a low current density. (AEC)

  3. Plutonium radiation surrogate

    DOEpatents

    Frank, Michael I.

    2010-02-02

    A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

  4. Plutonium Vulnerability Management Plan

    SciTech Connect

    1995-03-01

    This Plutonium Vulnerability Management Plan describes the Department of Energy`s response to the vulnerabilities identified in the Plutonium Working Group Report which are a result of the cessation of nuclear weapons production. The responses contained in this document are only part of an overall, coordinated approach designed to enable the Department to accelerate conversion of all nuclear materials, including plutonium, to forms suitable for safe, interim storage. The overall actions being taken are discussed in detail in the Department`s Implementation Plan in response to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. This is included as Attachment B.

  5. Progress on plutonium stabilization

    SciTech Connect

    Hurt, D.

    1996-05-01

    The Defense Nuclear Facilities Safety Board has safety oversight responsibility for most of the facilities where unstable forms of plutonium are being processed and packaged for interim storage. The Board has issued recommendations on plutonium stabilization and has has a considerable influence on DOE`s stabilization schedules and priorities. The Board has not made any recommendations on long-term plutonium disposition, although it may get more involved in the future if DOE develops plans to use defense nuclear facilities for disposition activities.

  6. Thermochemical nitrate reduction

    SciTech Connect

    Cox, J.L.; Lilga, M.A.; Hallen, R.T.

    1992-09-01

    A series of preliminary experiments was conducted directed at thermochemically converting nitrate to nitrogen and water. Nitrates are a major constituent of the waste stored in the underground tanks on the Hanford Site, and the characteristics and effects of nitrate compounds on stabilization techniques must be considered before permanent disposal operations begin. For the thermochemical reduction experiments, six reducing agents (ammonia, formate, urea, glucose, methane, and hydrogen) were mixed separately with {approximately}3 wt% NO{sub 3}{sup {minus}} solutions in a buffered aqueous solution at high pH (13); ammonia and formate were also mixed at low pH (4). Reactions were conducted in an aqueous solution in a batch reactor at temperatures of 200{degrees}C to 350{degrees}C and pressures of 600 to 2800 psig. Both gas and liquid samples were analyzed. The specific components analyzed were nitrate, nitrite, nitrous oxide, nitrogen, and ammonia. Results of experimental runs showed the following order of nitrate reduction of the six reducing agents in basic solution: formate > glucose > urea > hydrogen > ammonia {approx} methane. Airnmonia was more effective under acidic conditions than basic conditions. Formate was also effective under acidic conditions. A more thorough, fundamental study appears warranted to provide additional data on the mechanism of nitrate reduction. Furthermore, an expanded data base and engineering feasibility study could be used to evaluate conversion conditions for promising reducing agents in more detail and identify new reducing agents with improved performance characteristics.

  7. Plutonium dissolution process

    DOEpatents

    Vest, Michael A.; Fink, Samuel D.; Karraker, David G.; Moore, Edwin N.; Holcomb, H. Perry

    1996-01-01

    A two-step process for dissolving plutonium metal, which two steps can be carried out sequentially or simultaneously. Plutonium metal is exposed to a first mixture containing approximately 1.0M-1.67M sulfamic acid and 0.0025M-0.1M fluoride, the mixture having been heated to a temperature between 45.degree. C. and 70.degree. C. The mixture will dissolve a first portion of the plutonium metal but leave a portion of the plutonium in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alteratively, nitric acid in a concentration between approximately 0.05M and 0.067M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution process is diluted with nitrogen.

  8. Plutonium: Requiem or reprieve

    SciTech Connect

    Pillay, K.K.S.

    1996-01-01

    Many scientific discoveries have had profound effects on humanity and its future. However, the discovery of fissionable characteristics of a man-made element, plutonium, discovered in 1941 by Glenn Seaborg and associates, has probably had the greatest impact on world affairs. Although about 20 new elements have been synthesized since 1940, element 94 unarguably had the most dramatic impact when it was introduced to the world as the core of the nuclear bomb dropped on Nagasaki. Ever since, large quantities of this element have been produced, and it has had a major role in maintaining peace during the past 50 years. in addition, the rapid spread of nuclear power technology worldwide contributed to major growth in the production of plutonium as a by-product. This article discusses the following issues related to plutonium: plutonium from Nuclear Power Generation; environmental safety and health issues; health effects; safeguards issues; extended storage; disposal options.

  9. PLUTONIUM PURIFICATION PROCESS EMPLOYING THORIUM PYROPHOSPHATE CARRIER

    DOEpatents

    King, E.L.

    1959-04-28

    The separation and purification of plutonium from the radioactive elements of lower atomic weight is described. The process of this invention comprises forming a 0.5 to 2 M aqueous acidffc solution containing plutonium fons in the tetravalent state and elements with which it is normally contaminated in neutron irradiated uranium, treating the solution with a double thorium compound and a soluble pyrophosphate compound (Na/sub 4/P/sub 2/O/sub 7/) whereby a carrier precipitate of thorium A method is presented of reducing neptunium and - trite is advantageous since it destroys any hydrazine f so that they can be removed from solutions in which they are contained is described. In the carrier precipitation process for the separation of plutonium from uranium and fission products including zirconium and columbium, the precipitated blsmuth phosphate carries some zirconium, columbium, and uranium impurities. According to the invention such impurities can be complexed and removed by dissolving the contaminated carrier precipitate in 10M nitric acid, followed by addition of fluosilicic acid to about 1M, diluting the solution to about 1M in nitric acid, and then adding phosphoric acid to re-precipitate bismuth phosphate carrying plutonium.

  10. METHOD OF SEPARATING TETRAVALENT PLUTONIUM VALUES FROM CERIUM SUB-GROUP RARE EARTH VALUES

    DOEpatents

    Duffield, R.B.; Stoughton, R.W.

    1959-02-01

    A method is presented for separating plutonium from the cerium sub-group of rare earths when both are present in an aqueous solution. The method consists in adding an excess of alkali metal carbonate to the solution, which causes the formation of a soluble plutonium carbonate precipitate and at the same time forms an insoluble cerium-group rare earth carbonate. The pH value must be adjusted to bctween 5.5 and 7.5, and prior to the precipitation step the plutonium must be reduced to the tetravalent state since only tetravalent plutonium will form the soluble carbonate complex.

  11. SEPARATION OF PLUTONIUM FROM FISSION PRODUCTS BY A COLLOID REMOVAL PROCESS

    DOEpatents

    Schubert, J.

    1960-05-24

    A method is given for separating plutonium from uranium fission products. An acidic aqueous solution containing plutonium and uranium fission products is subjected to a process for separating ionic values from colloidal matter suspended therein while the pH of the solution is maintained between 0 and 4. Certain of the fission products, and in particular, zirconium, niobium, lanthanum, and barium are in a colloidal state within this pH range, while plutonium remains in an ionic form, Dialysis, ultracontrifugation, and ultrafiltration are suitable methods of separating plutonium ions from the colloids.

  12. GC-ECNICI-MS analysis of S-nitrosothiols and nitroprusside after treatment with aqueous sulphide (S(2-)) and derivatization with pentafluorobenzyl bromide: Evidence of S-transnitrosylation and formation of nitrite and nitrate.

    PubMed

    Tsikas, Dimitrios; Schmidt, Mario; Hanff, Erik; Böhmer, Anke

    2017-02-01

    A GC-MS method is reported for the quantitative analysis of S-nitrosothiols (RSNO) derived from endogenous low- and high-molecular mass thiols (RSH) including hemoglobin, cysteine, glutathione, N-acetylcysteine, and the exogenous N-acetylcysteine ethyl ester. The method is based on the conversion of RSNO to nitrite by aqueous Na2S (S(2-)). (15)N-Labelled analogs (RS(15)NO) or (15)N-labelled nitrite and nitrate were used as internal standards. The nitrite ((14)NO2(-) and (15)NO2(-)) and nitrate (O(14)NO2(-) and O(15)NO2(-) anions were derivatised by pentafluorobenzyl (PFB) bromide (PFB-Br) in aqueous acetone and their PFB derivatives were separated by gas chromatography. After electron-capture negative-ion chemical ionization, the anions were separated by mass spectrometry and detected by selected-ion monitoring of m/z 46 for (14)NO2(-), m/z 47 for (15)NO2(-), m/z 62 for O(14)NO2(-), and m/z 63 for O(15)NO2(-). The expected thionitrites ((-)S(14)NO and (-)S(15)NO) were not detected, suggesting that they are intermediates and rapidly exchange their S by O from water, presumably prior to PFB-Br derivatization. The reaction of S(2-) with RSNO and sodium nitroprusside (SNP) resulted in the formation of nitrite and nitrate as the major and minor reaction products, respectively. The novel Na2S procedure was compared with established procedures based on the use of aqueous HgCl2 or cysteine/Cu(2+) reagents to convert the S-nitroso group to nitrite. Our results provide evidence for an equilibrium S-transnitrosylation reaction between S(2-) with RSNO in buffered solutions of neutral pH. Use of Na2S in molar excess over RSNO shifts this reaction to the right, thus allowing almost complete conversion of RSNO to nitrite and nitrate. The Na2S procedure should be useful for the quantitative determination of RSNO as nitrite and nitrate after PFB-Br derivatization and GC-MS analysis. The Na2S procedure may also contribute to explore the complex reactions of S(2-) with RSNO, SNP and

  13. Method for aqueous radioactive waste treatment

    DOEpatents

    Bray, Lane A.; Burger, Leland L.

    1994-01-01

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions.

  14. Method for aqueous radioactive waste treatment

    DOEpatents

    Bray, L.A.; Burger, L.L.

    1994-03-29

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions. 3 figures.

  15. Ultra-small plutonium oxide nanocrystals: an innovative material in plutonium science.

    PubMed

    Hudry, Damien; Apostolidis, Christos; Walter, Olaf; Janssen, Arne; Manara, Dario; Griveau, Jean-Christophe; Colineau, Eric; Vitova, Tonya; Prüssmann, Tim; Wang, Di; Kübel, Christian; Meyer, Daniel

    2014-08-11

    Apart from its technological importance, plutonium (Pu) is also one of the most intriguing elements because of its non-conventional physical properties and fascinating chemistry. Those fundamental aspects are particularly interesting when dealing with the challenging study of plutonium-based nanomaterials. Here we show that ultra-small (3.2±0.9 nm) and highly crystalline plutonium oxide (PuO2 ) nanocrystals (NCs) can be synthesized by the thermal decomposition of plutonyl nitrate ([PuO2 (NO3 )2 ]⋅3 H2 O) in a highly coordinating organic medium. This is the first example reporting on the preparation of significant quantities (several tens of milligrams) of PuO2 NCs, in a controllable and reproducible manner. The structure and magnetic properties of PuO2 NCs have been characterized by a wide variety of techniques (powder X-ray diffraction (PXRD), X-ray absorption fine structure (XAFS), X-ray absorption near edge structure (XANES), TEM, IR, Raman, UV/Vis spectroscopies, and superconducting quantum interference device (SQUID) magnetometry). The current PuO2 NCs constitute an innovative material for the study of challenging problems as diverse as the transport behavior of plutonium in the environment or size and shape effects on the physics of transuranium elements.

  16. Nitrate destruction in an elutriated fluid-bed calciner

    SciTech Connect

    Cowan, R.G.; Cash, R.J.; Owen, T.J.; Shook, G.E.

    1987-09-01

    Nitrate destruction was demonstrated using an elutriated fluid-bed calciner process developed for nuclear fuel mixed-oxide conversion. Testing was directed to treatment of sodium nitrate, a major waste component at the Hanford Site. One test was also performed with copper nitrate. All tests produced low concentrations of NO/sub x/ in the offgas. The chemistry developed for uranium and plutonium nitrate appears to apply to other metal nitrates. The copper nitrate test was successful, with over 90% of the nitrate converted to elemental nitrogen and water and with recovery of a granular, free-flowing copper product. Tests with sodium nitrate were not successful due to fusion of sodium carbonate in the calciner bed and plugging of the calciner. Further development of the elutriated fluid-bed system would be required to process high sodium nitrate waste solutions.

  17. METHOD OF MAKING PLUTONIUM DIOXIDE

    DOEpatents

    Garner, C.S.

    1959-01-13

    A process is presented For converting both trivalent and tetravalent plutonium oxalate to substantially pure plutonium dioxide. The plutonium oxalate is carefully dried in the temperature range of 130 to300DEC by raising the temperature gnadually throughout this range. The temperature is then raised to 600 C in the period of about 0.3 of an hour and held at this level for about the same length of time to obtain the plutonium dioxide.

  18. METHOD OF PRODUCING PLUTONIUM TETRAFLUORIDE

    DOEpatents

    Tolley, W.B.; Smith, R.C.

    1959-12-15

    A process is presented for preparing plutonium tetrafluoride from plutonium(IV) oxalate. The oxalate is dried and decomposed at about 300 deg C to the dioxide, mixed with ammonium bifluoride, and the mixture is heated to between 50 and 150 deg C whereby ammonium plutonium fluoride is formed. The ammonium plutonium fluoride is then heated to about 300 deg C for volatilization of ammonium fluoride. Both heating steps are preferably carried out in an inert atmosphere.

  19. Low-level detection and quantification of Plutonium(III, IV, V,and VI) using a liquid core waveguide

    SciTech Connect

    Wilson, Richard E.; Hu, Yung-Jin; Nitsche, Heino

    2003-06-28

    Understanding the aqueous chemistry of plutonium, in particular in environmental conditions, is often complicated by plutonium's complex redox chemistry. Because plutonium possesses four oxidation states, all of which can coexist in solution, a reliable method for the identification of these oxidation states is needed. The identification of plutonium oxidation states at low levels in aqueous solution is often accomplished through an indirect determination using series of liquid-liquid extraction procedures using oxidation state specific reagents such as HDEHP and TTA. While these methods, coupled with radioactive counting techniques provide superior limits of detection they may influence the plutonium redox equilibrium, are time consuming, waste intensive and costly. Other analytical methods such as mass spectrometry and radioactive counting as stand alone methods provide excellent detection limits but lack the ability to discriminate between the oxidation states of the plutonium ions in solution.

  20. Nitrate reduction

    DOEpatents

    Dziewinski, Jacek J.; Marczak, Stanislaw

    2000-01-01

    Nitrates are reduced to nitrogen gas by contacting the nitrates with a metal to reduce the nitrates to nitrites which are then contacted with an amide to produce nitrogen and carbon dioxide or acid anions which can be released to the atmosphere. Minor amounts of metal catalysts can be useful in the reduction of the nitrates to nitrites. Metal salts which are formed can be treated electrochemically to recover the metals.

  1. Production of gas phase NO₂ and halogens from the photochemical oxidation of aqueous mixtures of sea salt and nitrate ions at room temperature.

    PubMed

    Richards, Nicole K; Finlayson-Pitts, Barbara J

    2012-10-02

    Nitrate and halide ions coexist in a number of environmental systems, including sea salt particles, the Arctic snowpack, and alkaline dry lakes. However, little is known about potential synergisms between halide and nitrate ions. The effect of sea salt on NO(3)(-) photochemistry at 311 nm was investigated at 298 K using thin films of deliquesced NaNO(3)-synthetic sea salt mixtures. Gas phase NO(2), NO, and halogen products were measured as a function of photolysis time using NO(y) chemiluminescence and atmospheric pressure ionization mass spectrometry (API-MS). The production of NO(2) increases with the halide-to-nitrate ratio, and is similar to that for mixtures of NaCl with NaNO(3). Gas phase halogen production also increased with the halide-to-nitrate ratio, consistent with NO(3)(-) photolysis yielding OH which oxidizes halide ions in the film. Yields of gas phase halogens and NO were strongly dependent on the acidity of the solution, while that of NO(2) was not. An additional halogen formation mechanism in the dark involving molecular HNO(3) is proposed that may be important in other systems such as reactions on surfaces. These studies show that the yield of Br(2) relative to NO(2) during photolysis of halide-nitrate mixtures could be as high as 35% under some atmospheric conditions.

  2. Imitators of plutonium and americium in a mixed uranium- plutonium nitride fuel

    NASA Astrophysics Data System (ADS)

    Nikitin, S. N.; Shornikov, D. P.; Tarasov, B. A.; Baranov, V. G.; Burlakova, M. A.

    2016-04-01

    Uranium nitride and mix uranium nitride (U-Pu)N is most popular nuclear fuel for Russian Fast Breeder Reactor. The works in hot cells associated with the radiation exposure of personnel and methodological difficulties. To know the main physical-chemical properties of uranium-plutonium nitride it necessary research to hot cells. In this paper, based on an assessment of physicochemical and thermodynamic properties of selected simulators Pu and Am. Analogues of Pu is are Ce and Y, and analogues Am - Dy. The technique of obtaining a model nitride fuel based on lanthanides nitrides and UN. Hydrogenation-dehydrogenation- nitration method of derived powders nitrides uranium, cerium, yttrium and dysprosium, held their mixing, pressing and sintering, the samples obtained model nitride fuel with plutonium and americium imitation. According to the results of structural studies have shown that all the samples are solid solution nitrides rare earth (REE) elements in UN.

  3. Uranium and plutonium in hair as an indicator of body burden in mice of different age and sex

    SciTech Connect

    Bentley, K.W.; Wyatt, J.H.; Wilson, D.J.; Dixon, R.J.

    1982-06-01

    The uptake of uranium-235 and plutonium-239 in mice of different age and sex is examined in a controlled study. The animals received a single intraperitoneal dose of either plutonium-239 nitrate or uranium-235 nitrate at amounts of 0.2 mg/kg and 1.0 mg/kg respectively. Seven days after radioisotope administration, the animals were sacrificed and the uranium or plutonium content of the hair (including skin) was measured directly by delayed neutron analysis. Results show a higher retention of both uranium and plutonium in the whole body of young animals, but for specific whole body burden there was a marked increase with age for plutonium and only a slight increase for uranium. Sex did not appear to have any significant influence on the residual whole body or hair burdens. (JMT)

  4. Nitrate and periplasmic nitrate reductases

    PubMed Central

    Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha

    2014-01-01

    The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308

  5. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOEpatents

    Coops, Melvin S.

    1992-01-01

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  6. Plutonium 239 Equivalency Calculations

    SciTech Connect

    Wen, J

    2011-05-31

    This document provides the basis for converting actual weapons grade plutonium mass to a plutonium equivalency (PuE) mass of Plutonium 239. The conversion can be accomplished by performing calculations utilizing either: (1) Isotopic conversions factors (CF{sub isotope}), or (2) 30-year-old weapons grade conversion factor (CF{sub 30 yr}) Both of these methods are provided in this document. Material mass and isotopic data are needed to calculate PuE using the isotopic conversion factors, which will provide the actual PuE value at the time of calculation. PuE is the summation of the isotopic masses times their associated isotopic conversion factors for plutonium 239. Isotopic conversion factors are calculated by a normalized equation, relative to Plutonium 239, of specific activity (SA) and cumulated dose inhalation affects based on 50-yr committed effective dose equivalent (CEDE). The isotopic conversion factors for converting weapons grade plutonium to PuE are provided in Table-1. The unit for specific activity (SA) is curies per gram (Ci/g) and the isotopic SA values come from reference [1]. The cumulated dose inhalation effect values in units of rem/Ci are based on 50-yr committed effective dose equivalent (CEDE). A person irradiated by gamma radiation outside the body will receive a dose only during the period of irradiation. However, following an intake by inhalation, some radionuclides persist in the body and irradiate the various tissues for many years. There are three groups CEDE data representing lengths of time of 0.5 (D), 50 (W) and 500 (Y) days, which are in reference [2]. The CEDE values in the (W) group demonstrates the highest dose equivalent value; therefore they are used for the calculation.

  7. Superconductivity in plutonium compounds

    NASA Astrophysics Data System (ADS)

    Sarrao, J. L.; Bauer, E. D.; Mitchell, J. N.; Tobash, P. H.; Thompson, J. D.

    2015-07-01

    Although the family of plutonium-based superconductors is relatively small, consisting of four compounds all of which crystallize in the tetragonal HoCoGa5 structure, these materials serve as an important bridge between the known Ce- and U-based heavy fermion superconductors and the high-temperature cuprate superconductors. Further, the partial localization of 5f electrons that characterizes the novel electronic properties of elemental plutonium appears to be central to the relatively high superconducting transition temperatures that are observed in PuCoGa5, PuRhGa5, PuCoIn5, and PuRhIn5.

  8. SULFIDE METHOD PLUTONIUM SEPARATION

    DOEpatents

    Duffield, R.B.

    1958-08-12

    A process is described for the recovery of plutonium from neutron irradiated uranium solutions. Such a solution is first treated with a soluble sullide, causing precipitation of the plutoniunn and uraniunn values present, along with those impurities which form insoluble sulfides. The precipitate is then treated with a solution of carbonate ions, which will dissolve the uranium and plutonium present while the fission product sulfides remain unaffected. After separation from the residue, this solution may then be treated by any of the usual methods, such as formation of a lanthanum fluoride precipitate, to effect separation of plutoniunn from uranium.

  9. Nitrate tolerance.

    PubMed

    Parker, J O

    1987-11-16

    The organic nitrates are the most widely used agents in the management of patients with angina pectoris. When initially administered by the oral route, the nitrates produce profound changes in systemic hemodynamics and significant and prolonged improvement in exercise duration. It has been shown that during short periods of regular oral nitrate administration, the hemodynamic, antiischemic and antianginal effects of the nitrates are greatly reduced. Thus, when initially administered, oral isosorbide dinitrate prolongs exercise duration for a period of several hours, but during sustained 4-times-daily therapy, exercise tolerance is improved for only 2 hours after administration. Studies with transdermal preparations of isosorbide dinitrate and nitroglycerin also show improvement during short-term administration for up to 8 hours, but after several days of once-daily therapy, the effects of these agents are similar to placebo. It is apparent that nitrate tolerance is a clinically relevant problem. Although tolerance develops rapidly during nitrate therapy, it is reversed promptly during nitrate-free periods. Oral nitrates maintain their antianginal effects when given 2 or 3 times daily with provision of a nitrate-free period. Studies are currently underway to investigate the effects of intermittent administration schedules with transdermal nitrate preparations.

  10. Atomic spectrum of plutonium

    SciTech Connect

    Blaise, J.; Fred, M.; Gutmacher, R.G.

    1984-08-01

    This report contains plutonium wavelengths, energy level classifications, and other spectroscopic data accumulated over the past twenty years at Laboratoire Aime Cotton (LAC) Argonne National Laboratory (ANL), and Lawrence Livermore National Laboratory (LLNL). The primary purpose was term analysis: deriving the energy levels in terms of quantum numbers and electron configurations, and evaluating the Slater-Condon and other parameters from the levels.

  11. Plutonium: An introduction

    SciTech Connect

    Condit, R.H.

    1993-10-01

    This report is a summary of the history and properties of plutonium. It presents information on the atoms, comparing chemical and nuclear properties. It looks at the history of the atom, including its discovery and production methods. It summarizes the metallurgy and chemistry of the element. It also describes means of detecting and measuring the presence and quantity of the element.

  12. Plutonium Disposition by Immobilization

    SciTech Connect

    Gould, T.; DiSabatino, A.; Mitchell, M.

    2000-03-07

    The ultimate goal of the Department of Energy (DOE) Immobilization Project is to develop, construct, and operate facilities that will immobilize between 17 to 50 tonnes (MT) of U.S. surplus weapons-usable plutonium materials in waste forms that meet the ''spent fuel'' standard and are acceptable for disposal in a geologic repository. Using the ceramic can-in-canister technology selected for immobilization, surplus plutonium materials will be chemically combined into ceramic forms which will be encapsulated within large canisters of high level waste (HLW) glass. Deployment of the immobilization capability should occur by 2008 and be completed within 10 years. In support of this goal, the DOE Office of Fissile Materials Disposition (MD) is conducting development and testing (D&T) activities at four DOE laboratories under the technical leadership of Lawrence Livermore National Laboratory (LLNL). The Savannah River Site has been selected as the site for the planned Plutonium Immobilization Plant (PIP). The D&T effort, now in its third year, will establish the technical bases for the design, construction, and operation of the U. S. capability to immobilize surplus plutonium in a suitable and cost-effective manner. Based on the D&T effort and on the development of a conceptual design of the PIP, automation is expected to play a key role in the design and operation of the Immobilization Plant. Automation and remote handling are needed to achieve required dose reduction and to enhance operational efficiency.

  13. Plutonium-DTPA Model Application with USTUR Case 0269.

    PubMed

    Konzen, Kevin; Brey, Richard; Miller, Scott

    2016-01-01

    A plutonium-DTPA (Pu-DTPA) biokinetic model was introduced that had originated from the study of a plutonium-contaminated wound. This work evaluated the extension of the Pu-DTPA model to United States Transuranium and Uranium Registry (USTUR) Case 0269 involving an acute inhalation of a plutonium nitrate aerosol. Chelation was administered intermittently for the first 7 mo as Ca-EDTA, mostly through intravenous injection, with Ca-DTPA treatments administered approximately 2.5 y post intake. Urine and fecal bioassays were collected following intake for several years. Tissues were collected and analyzed for plutonium content approximately 38 y post intake. This work employed the Pu-DTPA model for predicting the urine and fecal bioassay and final tissue quantity at autopsy. The Pu-DTPA model was integrated with two separate plutonium systemic models (i.e., ICRP Publication 67 and its proposed modification). This work illustrated that the Pu-DTPA model was useful for predicting urine and fecal bioassay, including final tissue quantity, 38 y post intake.

  14. Pyrochemical processing of plutonium. Technology review report

    SciTech Connect

    Coops, M.S.; Knighton, J.B.; Mullins, L.J.

    1982-09-08

    Non-aqueous processes are now in routine use for direct conversion of plutonium oxide to metal, molten salt extraction of americium, and purification of impure metals by electrorefining. These processes are carried out at elevated temperatures in either refractory metal crucibles or magnesium-oxide ceramics in batch-mode operation. Direct oxide reduction is performed in units up to 700 gram PuO/sub 2/ batch size with molten calcium metal as the reductant and calcium chloride as the reaction flux. Americium metal is removed from plutonium metal by salt extraction with molten magnesium chloride. Electrorefining is used to isolate impurities from molten plutonium by molten salt ion transport in a controlled potential oxidation-reduction cell. Such cells can purify five or more kilograms of impure metal per 5-day electrorefining cycle. The product metal obtained is typically > 99.9% pure, starting from impure feeds. Metal scrap and crucible skulls are recovered by hydriding of the metallic residues and recovered either as impure metal or oxide feeds.

  15. Preferential adsorption of 2,4-dichlorophenoxyacetate from associated binary-solute aqueous systems by Mg/Al-NO3 layered double hydroxides with different nitrate orientations.

    PubMed

    Chao, Yia-Feng; Lee, Jey-Jau; Wang, Shan-Li

    2009-06-15

    Layered double hydroxides (LDHs) are potential scavengers for anionic contaminants. To apply these materials to water treatment, it is essential to understand how the structural properties of LDHs control their preferential binding affinity toward a specific target contaminant in the presence of other anions. In this study, Mg/Al-NO(3) LDHs with different nitrate orientations were investigated for their preferential adsorption of 2,4-dichlorophenoxyacetate (2,4-D). LDH samples containing nitrate ions with parallel (LDH5) and perpendicular (LDH3) orientations exhibited different 2,4-D adsorption characteristics under competition with co-existing anions for surface binding sites. Because 2,4-D is inaccessible to the interlayer region of LDH5, the 2,4-D adsorption occurred mainly on the external surface of LDH5 and was easily subjected to negative effects from increasing concentrations of competing anions, including SO(4)(2-), HCO(3)(-), Cl(-), NO(3)(-) and Br(-). On the contrary, the interlayer nitrate in LDH3 is readily exchanged by 2,4-D. Thus, in conjunction with adsorption on the external surface, 2,4-D can also be adsorbed on the internal surface in the interlayer of LDH3. LDH3 exhibited a much higher 2,4-D adsorption capacity than LDH5, and the 2,4-D adsorption on LDH3 was less affected by the increasing concentration of competing anions. In summary, the selective removal of 2,4-D in solutions with a complex chemical composition may be maximized using Mg/Al-NO(3) LDHs containing perpendicularly oriented interlayer nitrate.

  16. Plutonium Finishing Plant. Interim plutonium stabilization engineering study

    SciTech Connect

    Sevigny, G.J.; Gallucci, R.H.; Garrett, S.M.K.; Geeting, J.G.H.; Goheen, R.S.; Molton, P.M.; Templeton, K.J.; Villegas, A.J.; Nass, R.

    1995-08-01

    This report provides the results of an engineering study that evaluated the available technologies for stabilizing the plutonium stored at the Plutonium Finishing Plant located at the hanford Site in southeastern Washington. Further processing of the plutonium may be required to prepare the plutonium for interim (<50 years) storage. Specifically this document provides the current plutonium inventory and characterization, the initial screening process, and the process descriptions and flowsheets of the technologies that passed the initial screening. The conclusions and recommendations also are provided. The information contained in this report will be used to assist in the preparation of the environmental impact statement and to help decision makers determine which is the preferred technology to process the plutonium for interim storage.

  17. 4. VIEW OF PLUTONIUM CANISTER ON CHAINVEYOR. SCRAP PLUTONIUM WAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF PLUTONIUM CANISTER ON CHAINVEYOR. SCRAP PLUTONIUM WAS COLLECTED INTO CANS AT INDIVIDUAL WORKSTATIONS. THE CANS WERE TRANSFERRED VIA THE CHAIN CONVEYOR TO A WORKSTATION IN MODULE C WHERE THE MATERIAL WAS COMPRESSED INTO BRIQUETTES FOR LATER USE. (6/20/93) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  18. EPA Method EMSL-33: Isotopic Determination of Plutonium, Uranium, and Thorium in Water, Soil, Air, and Biological Tissue

    EPA Pesticide Factsheets

    SAM lists this method to provide for the analysis of isotopic plutonium, uranium and thorium, together or individually, in drinking water, aqueous/liquid, soil/sediment, surface wipe and/or air filter samples by alpha spectrometry.

  19. Plutonium age dating reloaded

    NASA Astrophysics Data System (ADS)

    Sturm, Monika; Richter, Stephan; Aregbe, Yetunde; Wellum, Roger; Mayer, Klaus; Prohaska, Thomas

    2014-05-01

    Although the age determination of plutonium is and has been a pillar of nuclear forensic investigations for many years, additional research in the field of plutonium age dating is still needed and leads to new insights as the present work shows: Plutonium is commonly dated with the help of the 241Pu/241Am chronometer using gamma spectrometry; in fewer cases the 240Pu/236U chronometer has been used. The age dating results of the 239Pu/235U chronometer and the 238Pu/234U chronometer are scarcely applied in addition to the 240Pu/236U chronometer, although their results can be obtained simultaneously from the same mass spectrometric experiments as the age dating result of latter. The reliability of the result can be tested when the results of different chronometers are compared. The 242Pu/238U chronometer is normally not evaluated at all due to its sensitivity to contamination with natural uranium. This apparent 'weakness' that renders the age dating results of the 242Pu/238U chronometer almost useless for nuclear forensic investigations, however turns out to be an advantage looked at from another perspective: the 242Pu/238U chronometer can be utilized as an indicator for uranium contamination of plutonium samples and even help to identify the nature of this contamination. To illustrate this the age dating results of all four Pu/U clocks mentioned above are discussed for one plutonium sample (NBS 946) that shows no signs of uranium contamination and for three additional plutonium samples. In case the 242Pu/238U chronometer results in an older 'age' than the other Pu/U chronometers, contamination with either a small amount of enriched or with natural or depleted uranium is for example possible. If the age dating result of the 239Pu/235U chronometer is also influenced the nature of the contamination can be identified; enriched uranium is in this latter case a likely cause for the missmatch of the age dating results of the Pu/U chronometers.

  20. Surprising Coordination for Plutonium in the First Plutonium (III) Borate

    SciTech Connect

    Wang, Shuao; Alekseev, Evgeny V.; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.

    2011-02-22

    The first plutonium(III) borate, Pu2[B12O18(OH)4Br2(H2O)3]·0.5H2O, has been prepared by reacting plutonium(III) with molten boric acid under strictly anaerobic conditions. This compound contains a three-dimensional polyborate network with triangular holes that house the plutonium(III) sites. The plutonium sites in this compound are 9- and 10-coordinate and display atypical geometries.

  1. Extraction of Uranium, Neptunium and Plutonium from Caustic Media

    SciTech Connect

    Delmau, Laetitia H.; Bonnesen, Peter V.; Engle, Nancy L.; Raymond, Kenneth N.; Xu, Jade

    2004-03-28

    5 Fundamental research on uranium, neptunium and plutonium separation from alkaline media using solvent extraction is being conducted. Specific extractants for these actinides from alkaline media have been synthesized to investigate the feasibility of selective removal of these elements. Two families of extractants have been studied: terephthalamide and tetra(hydroxybenzyl)ethylene diamine derivatives. Fundamental studies were conducted to characterize their extraction behavior from a wide variety of aqueous conditions. The terephthalamide derivatives exhibit a significant extraction strength along with a discriminatory behavior among the actinides, plutonium being extracted the most strongly. Quantitative extraction of plutonium and moderate extraction of neptunium and uranium was achieved from a simple caustic solution. Interestingly, strontium is also quantitatively extracted by these derivatives. However, their stability to highly caustic solutions still needs to be imp roved. Tetra(hydroxybenzyl)ethylene diamine derivatives exhibit a very good stability to caustic conditions and are currently being studied.

  2. Gamma radiation characteristics of plutonium dioxide fuel

    NASA Technical Reports Server (NTRS)

    Gingo, P. J.

    1969-01-01

    Investigation of plutonium dioxide as an isotopic fuel for Radioisotope Thermoelectric Generators yielded the isotopic composition of production-grade plutonium dioxide fuel, sources of gamma radiation produced by plutonium isotopes, and the gamma flux at the surface.

  3. Development and Optimization of a Positron Annihilation Lifetime Spectrometer to Measure Nanoscale Defects in Solids and Borane Cage Molecules in Aqueous Nitrate Solutions

    DTIC Science & Technology

    2008-03-01

    DEVELOPMENT AND OPTIMIZATION OF A POSITRON ANNIHILATION LIFETIME SPECTROMETER TO MEASURE NANOSCALE DEFECTS IN SOLIDS AND BORANE CAGE MOLECULES...DEVELOPMENT AND OPTIMIZATION OF A POSITRON ANNIHILATION LIFETIME SPECTROMETER TO MEASURE NANOSCALE DEFECTS IN SOLIDS AND BORANE CAGE MOLECULES IN AQUEOUS...RELEASE; DISTRIBUTION UNLIMITED AFIT/GNE/ENP/08-M05 DEVELOPMENT AND OPTIMIZATION OF A POSITRON ANNIHILATION LIFETIME SPECTROMETER TO MEASURE NANOSCALE

  4. PROCESS OF PRODUCING SHAPED PLUTONIUM

    DOEpatents

    Anicetti, R.J.

    1959-08-11

    A process is presented for producing and casting high purity plutonium metal in one step from plutonium tetrafluoride. The process comprises heating a mixture of the plutonium tetrafluoride with calcium while the mixture is in contact with and defined as to shape by a material obtained by firing a mixture consisting of calcium oxide and from 2 to 10% by its weight of calcium fluoride at from 1260 to 1370 deg C.

  5. Plutonium recovery from organic materials

    DOEpatents

    Deaton, R.L.; Silver, G.L.

    1973-12-11

    A method is described for removing plutonium or the like from organic material wherein the organic material is leached with a solution containing a strong reducing agent such as titanium (III) (Ti/sup +3None)/, chromium (II) (Cr/ sup +2/), vanadium (II) (V/sup +2/) ions, or ferrous ethylenediaminetetraacetate (EDTA), the leaching yielding a plutonium-containing solution that is further processed to recover plutonium. The leach solution may also contain citrate or tartrate ion. (Official Gazette)

  6. Manufacturing of Plutonium Tensile Specimens

    SciTech Connect

    Knapp, Cameron M

    2012-08-01

    Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

  7. MOLDS FOR CASTING PLUTONIUM

    DOEpatents

    Anderson, J.W.; Miley, F.; Pritchard, W.C.

    1962-02-27

    A coated mold for casting plutonium comprises a mold base portion of a material which remains solid and stable at temperatures as high as the pouring temperature of the metal to be cast and having a thin coating of the order of 0.005 inch thick on the interior thereof. The coating is composed of finely divided calcium fluoride having a particle size of about 149 microns. (AEC)

  8. PLUTONIUM-URANIUM ALLOY

    DOEpatents

    Coffinberry, A.S.; Schonfeld, F.W.

    1959-09-01

    Pu-U-Fe and Pu-U-Co alloys suitable for use as fuel elements tn fast breeder reactors are described. The advantages of these alloys are ease of fabrication without microcracks, good corrosion restatance, and good resistance to radiation damage. These advantages are secured by limitation of the zeta phase of plutonium in favor of a tetragonal crystal structure of the U/sub 6/Mn type.

  9. Separation of Plutonium from Irradiated Fuels and Targets

    SciTech Connect

    Gray, Leonard W.; Holliday, Kiel S.; Murray, Alice; Thompson, Major; Thorp, Donald T.; Yarbro, Stephen; Venetz, Theodore J.

    2015-09-30

    Spent nuclear fuel from power production reactors contains moderate amounts of transuranium (TRU) actinides and fission products in addition to the still slightly enriched uranium. Originally, nuclear technology was developed to chemically separate and recover fissionable plutonium from irradiated nuclear fuel for military purposes. Military plutonium separations had essentially ceased by the mid-1990s. Reprocessing, however, can serve multiple purposes, and the relative importance has changed over time. In the 1960’s the vision of the introduction of plutonium-fueled fast-neutron breeder reactors drove the civilian separation of plutonium. More recently, reprocessing has been regarded as a means to facilitate the disposal of high-level nuclear waste, and thus requires development of radically different technical approaches. In the last decade or so, the principal reason for reprocessing has shifted to spent power reactor fuel being reprocessed (1) so that unused uranium and plutonium being recycled reduce the volume, gaining some 25% to 30% more energy from the original uranium in the process and thus contributing to energy security and (2) to reduce the volume and radioactivity of the waste by recovering all long-lived actinides and fission products followed by recycling them in fast reactors where they are transmuted to short-lived fission products; this reduces the volume to about 20%, reduces the long-term radioactivity level in the high-level waste, and complicates the possibility of the plutonium being diverted from civil use – thereby increasing the proliferation resistance of the fuel cycle. In general, reprocessing schemes can be divided into two large categories: aqueous/hydrometallurgical systems, and pyrochemical/pyrometallurgical systems. Worldwide processing schemes are dominated by the aqueous (hydrometallurgical) systems. This document provides a historical review of both categories of reprocessing.

  10. PLUTONIUM LOADING CAPACITY OF REILLEX HPQ ANION EXCHANGE COLUMN - AFS-2 PLUTONIUM FLOWSHEET FOR MOX

    SciTech Connect

    Kyser, E.; King, W.; O'Rourke, P.

    2012-07-26

    Radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the dependence of column loading performance on the feed composition in the H-Canyon dissolution process for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). These loading experiments show that a representative feed solution containing {approx}5 g Pu/L can be loaded onto Reillex{trademark} HPQ resin from solutions containing 8 M total nitrate and 0.1 M KF provided that the F is complexed with Al to an [Al]/[F] molar ratio range of 1.5-2.0. Lower concentrations of total nitrate and [Al]/[F] molar ratios may still have acceptable performance but were not tested in this study. Loading and washing Pu losses should be relatively low (<1%) for resin loading of up to 60 g Pu/L. Loading above 60 g Pu/L resin is possible, but Pu wash losses will increase such that 10-20% of the additional Pu fed may not be retained by the resin as the resin loading approaches 80 g Pu/L resin.

  11. Plutonium and Americium Alpha Radiolysis of Nitric Acid Solutions.

    PubMed

    Horne, Gregory P; Gregson, Colin R; Sims, Howard E; Orr, Robin M; Taylor, Robin J; Pimblott, Simon M

    2017-02-02

    The yield of HNO2, as a function of absorbed dose and HNO3 concentration, from the α-radiolysis of aerated HNO3 solutions containing plutonium or americium has been investigated. There are significant differences in the yields measured from solutions of the two different radionuclides. For 0.1 mol dm(-3) HNO3 solutions, the radiolytic yield of HNO2 produced by americium α-decay is below the detection limit, whereas for plutonium α-decay the yield is considerably greater than that found previously for γ-radiolysis. The differences between the solutions of the two radionuclides are a consequence of redox reactions involving plutonium and the products of aqueous HNO3 radiolysis, in particular H2O2 and HNO2 and its precursors. This radiation chemical behavior is HNO3 concentration dependent with the differences between plutonium and americium α-radiolysis decreasing with increasing HNO3 concentration. This change may be interpreted as a combination of α-radiolysis direct effects and acidity influencing the plutonium oxidation state distribution, which in turn affects the radiation chemistry of the system.

  12. Recovery of americium-241 from aged plutonium metal

    SciTech Connect

    Gray, L.W.; Burney, G.A.; Reilly, T.A.; Wilson, T.W.; McKibben, J.M.

    1980-12-01

    About 5 kg of ingrown /sup 241/Am was recovered from 850 kg of aged plutonium using a process developed specifically for Savannah River Plant application. The aged plutonium metal was first dissolved in sulfamic acid. Sodium nitrite was added to oxidize the plutonium to Pu(IV) and the residual sulfamate ion was oxidized to nitrogen gas and sulfate. The plutonium and americium were separated by one cycle of solvent extraction. The recovered products were subsequently purified by cation exchange chromatography, precipitated as oxalates, and calcined to the oxides. Plutonium processng was routine. Before cation exchange purification, the aqueous americium solution from solvent extraction was concentrated and stripped of nitric acid. More than 98% of the /sup 241/Am was then recovered from the cation exchange column where it was effectively decontaminated from all major impurities except nickel and chromium. This partially purified product solution was concentrated further by evaporation and then denitrated by reaction with formic acid. Individual batches of americium oxalate were then precipitated, filtered, washed, and calcined. About 98.5% of the americium was recovered. The final product purity averaged 98% /sup 241/AmO/sub 2/; residual impurities were primarily lead and nickel.

  13. REDUCTION OF PLUTONIUM TO Pu$sup +3$ BY SODIUM DITHIONITE IN POTASSIUM CARBONATE

    DOEpatents

    Miller, D.R.; Hoekstra, H.R.

    1958-12-16

    Plutonium values are reduced in an alkaline aqueous medlum to the trlvalent state by means of sodium dlthionite. Plutonlum values are also separated from normally assoclated contaminants by metathesizing a lanthanum fluoride carrier precipitate containing plutonium with a hydroxide solution, performing the metathesis in the presence of about 0.2 M sodium dithionite at a temperature of between 40 and 90 icient laborato C.

  14. METHOD OF MAINTAINING PLUTONIUM IN A HIGHER STATE OF OXIDATION DURING PROCESSING

    DOEpatents

    Thompson, S.G.; Miller, D.R.

    1959-06-30

    This patent deals with the oxidation of tetravalent plutonium contained in an aqueous acid solution together with fission products to the hexavalent state, prior to selective fission product precipitation, by adding to the solution bismuthate or ceric ions as the oxidant and a water-soluble dichromate as a holding oxidant. Both oxidant and holding oxidant are preferably added in greater than stoichiometric quantities with regard to the plutonium present.

  15. METHOD FOR OBTAINING PLUTONIUM METAL AND ALLOYS OF PLUTONIUM FROM PLUTONIUM TRICHLORIDE

    DOEpatents

    Reavis, J.G.; Leary, J.A.; Maraman, W.J.

    1962-11-13

    A process is given for both reducing plutonium trichloride to plutonium metal using cerium as the reductant and simultaneously alloying such plutonium metal with an excess of cerium or cerium and cobalt sufficient to yield the desired nuclear reactor fuel composition. The process is conducted at a temperature from about 550 to 775 deg C, at atmospheric pressure, without the use of booster reactants, and a substantial decontamination is effected in the product alloy of any rare earths which may be associated with the source of the plutonium. (AEC)

  16. Treatment of human contamination with plutonium and americium: would orally administered Ca- or Zn-DTPA be effective?

    PubMed

    Taylor, David M; Hodgson, Susan A; Stradling, Neil

    2007-01-01

    Accidental or deliberate dispersion of plutonium (Pu) and americium (Am) into the public environment could contaminate large numbers of people by inhalation. If measures to reduce the internal dose are considered appropriate, oral administration of either calcium (Ca) or zinc (Zn) diethylenetriaminepenta-acetic acid (DTPA) would be the simplest treatment. Published experimental data from rats on the effects of oral DTPA on the retention of inhaled Pu and Am show that: (1) orally administered Zn-DTPA is as effective as repeated intravenous injection for the decorporation of Pu and Am inhaled as nitrates, although higher dosages are required; (2) oral Zn-DTPA appears to be an effective treatment for Am dioxide but not Pu dioxide; (3) maximum decorporation of Pu, by oral or intravenous administration, requires a large molar excess of Zn-DTPA over Pu (>1 x 10(6)); (4) neither oral nor injected Zn-DTPA are likely to be effective for Pu oxides, nor when Pu and Am nitrates are mixed with other dusts. It is concluded that oral administration of a simple aqueous solution of Zn-DTPA could be an important treatment in accident or emergency scenarios after intake of pure chemical forms of Pu and Am, which are highly or moderately soluble in biological fluids. However, more research is needed on the efficacy of treatment when these forms are mixed with other materials. Importantly, studies designed to increase the efficiency of uptake of DTPA from the gastrointestinal tract could appreciably reduce the dosage.

  17. PLUTONIUM-CERIUM-COPPER ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-05-12

    A low melting point plutonium alloy useful as fuel is a homogeneous liquid metal fueled nuclear reactor is described. Vessels of tungsten or tantalum are useful to contain the alloy which consists essentially of from 10 to 30 atomic per cent copper and the balance plutonium and cerium. with the plutontum not in excess of 50 atomic per cent.

  18. Photochemical preparation of plutonium pentafluoride

    DOEpatents

    Rabideau, Sherman W.; Campbell, George M.

    1987-01-01

    The novel compound plutonium pentafluoride may be prepared by the photodissociation of gaseous plutonium hexafluoride. It is a white solid of low vapor pressure, which consists predominantly of a face-centered cubic structure with a.sub.o =4.2709.+-.0.0005 .ANG..

  19. PLUTONIUM-URANIUM-TITANIUM ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-07-28

    A plutonium-uranium alloy suitable for use as the fuel element in a fast breeder reactor is described. The alloy contains from 15 to 60 at.% titanium with the remainder uranium and plutonium in a specific ratio, thereby limiting the undesirable zeta phase and rendering the alloy relatively resistant to corrosion and giving it the essential characteristic of good mechanical workability.

  20. SEPARATION OF PLUTONIUM FROM URANIUM

    DOEpatents

    Feder, H.M.; Nuttall, R.L.

    1959-12-15

    A process is described for extracting plutonium from powdered neutron- irradiated urarium metal by contacting the latter, while maintaining it in the solid form, with molten magnesium which takes up the plutonium and separating the molten magnesium from the solid uranium.

  1. Complexation of Plutonium (IV) With Sulfate At Variable Temperatures

    SciTech Connect

    Y. Xia; J.I. Friese; D.A> Moore; P.P. Bachelor; L. Rao

    2006-10-05

    The complexation of plutonium(IV) with sulfate at variable temperatures has been investigated by solvent extraction method. A NaBrO{sub 3} solution was used as holding oxidant to maintain the plutonium(IV) oxidation state throughout the experiments. The distribution ratio of Pu(IV) between the organic and aqueous phases was found to decrease as the concentrations of sulfate were increased. Stability constants of the 1:1 and 1:2 Pu(IV)-HSO{sub 4}{sup -} complexes, dominant in the aqueous phase, were calculated from the effect of [HSO{sub 4}{sup -}] on the distribution ratio. The enthalpy and entropy of complexation were calculated from the stability constants at different temperatures using the Van't Hoff equation.

  2. Technical report for the generic site add-on facility for plutonium polishing

    SciTech Connect

    Collins, E. D.

    1998-06-01

    The purpose of this report is to provide environmental data and reference process information associated with incorporating plutonium polishing steps (dissolution, impurity removal, and conversion to oxide powder) into the genetic-site Mixed-Oxide Fuel Fabrication Facility (MOXFF). The incorporation of the plutonium polishing steps will enable the removal of undesirable impurities, such as gallium and americium, known to be associated with the plutonium. Moreover, unanticipated impurities can be removed, including those that may be contained in (1) poorly characterized feed materials, (2) corrosion products added from processing equipment, and (3) miscellaneous materials contained in scrap recycle streams. These impurities will be removed to the extent necessary to meet plutonium product purity specifications for MOX fuels. Incorporation of the plutonium polishing steps will mean that the Pit Disassembly and Conversion Facility (PDCF) will need to produce a plutonium product that can b e dissolved at the MOXFF in nitric acid at a suitable rate (sufficient to meet overall production requirements) with the minimal usage of hydrofluoric acid, and its complexing agent, aluminum nitrate. This function will require that if the PDCF product is plutonium oxide powder, that powder must be produced, stored, and shipped without exceeding a temperature of 600 C.

  3. Plutonium Multiple Recycling In PWRs

    SciTech Connect

    Nigon, Jean-Louis; Lenain, Richard; Zaetta, Alain

    2002-07-01

    Reprocessing and recycling open the road to a sustainable management of nuclear materials and an environment friendly management of nuclear waste. However, long or very long term recycling implies fast neutron reactors. High burn-ups of irradiated standard UO{sub 2} fuel as well as recycling of plutonium fuel in thermal reactors lead to a 'degradation' of plutonium that means a low fissile content, which is hardly compatible with recycling in LWRs. Thus the question of plutonium management has been raised; although there are some limitations, a truly large variety of options do exist; no one of the presently selected ways of plutonium management is a dead end road. Among these various options, some are fully compatible with the existing reactors and may be considered for the mid term future; they offer a competitive management of plutonium during the transition from thermal to fast reactors. (authors)

  4. Solubility of Plutonium (IV) Oxalate During Americium/Curium Pretreatment

    SciTech Connect

    Rudisill, T.S.

    1999-08-11

    ay of plutonium-241) in the dissolved precipitate, a value consistent with the recovery of europium, the americium surrogate.In a subsequent experiment, the plutonium solubility following an oxalate precipitation to simulate the preparation of a slurry feed for a batch melter was 21 mg/mL at 35 degrees C. The increase in solubility compared to the value measured during the pretreatment experiment was attributed to the increased nitrate concentration and ensuing increase in plutonium complexation. The solubility of the plutonium following a precipitant wash with 0.1M oxalic acid was unchanged. The recovery of plutonium from the precipitate slurry was greater than 97 percent allowing an estimation that approximately 92 percent of the plutonium in Tank 17.1 will report to the glass. The behavior of the lanthanides and soluble metal impurities was consistent with the behavior seen during the pretreatment experiment. A trace level material balance showed that 99.9 percent of the americium w as recovered from the precipitate slurry. The overall recovery of americium from the pretreatment and feed preparation processes was greater than 97 percent, which was consistent with the measured recovery of the europium surrogate.

  5. CSER 00-003 Criticality Safety Evaluation report for PFP Magnesium Hydroxide Precipitation Process for Plutonium Stabilization Glovebox 3

    SciTech Connect

    LAN, J.S.

    2000-07-13

    This Criticality Safety Evaluation Report analyzes the stabilization of plutonium/uranium solutions in Glovebox 3 using the magnesium hydroxide precipitation process at PFP. The process covered are the receipt of diluted plutonium solutions into three precipitation tanks, the precipitation of plutonium from the solution, the filtering of the plutonium precipitate from the solution, the scraping of the precipitate from the filter into boats, and the initial drying of the precipitated slurry on a hot plate. A batch (up to 2.5 kg) is brought into the glovebox as plutonium nitrate, processed, and is then removed in boats for further processing. This CSER establishes limits for the magnesium hydroxide precipitation process in Glovebox 3 to maintain criticality safety while handling fissionable material.

  6. Probing Phonons in Plutonium

    NASA Astrophysics Data System (ADS)

    Wong, Joe

    2004-03-01

    The phonon spectra of plutonium and its alloys have been sought after in the past few decades following the discovery of this actinide element in 1941, but with no success. This was due to a combination of the high neutron absorption cross section of 239Pu, the common isotope, and non-availability of large single crystals of any Pu-bearing materials. We have recent designed a high resolution inelastic x-ray scattering experiment using a bright synchrotron x-ray beam at the European Sychrotron Radiation Facility (ESRF), Grenoble and mapped the full phonon dispersion curves of an fcc delta-phase polycrystalline Pu-Ga alloy (1). Several unusual features including, a large elastic anisotropy, a small shear elastic modulus C', a Kohn-like anomaly in the T1[011] branch, and a pronounced softening of the [111] transverse modes are found. These features can be related to the phase transitions of plutonium and to strong coupling between the lattice structure and the 5f valence instabilities. Our results also provide a critical test for theoretical treatments of highly correlated 5f electron systems as exemplified by recent dynamical mean field theory (DMFT) calculations for d-plutonium.(2) This work was performed in collaboration with Dr. M. Krisch (ESRF)) and Prof. T.-C. Chiang (UIU), and under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. 1. Joe Wong et al. Science, vol.301, 1078 (2003) 2. X. Dai et al. Science, vol.300, 953 (2003)

  7. Molecular Characterization of Actinide Oxocations from Protactinium to Plutonium

    SciTech Connect

    Den Auwer, C.; Guilbaud, P.; Guillaumont, D.; Moisy, P.; Hennig, C.; Scheinost, A.; Conradson, S. D.

    2007-02-02

    This presentation addresses the structural characterization by EXAFS of actinide cations at oxidation states (V) and (VI) as one walks across the periodic table from Z = 91 (protactinium) to Z = 94 (plutonium). A structural comparison between Pa, U, Np and Pu oxocations in aqueous solution at formal oxidation states (V) and (VI) is carried out. These results are corroborated by quantum chemical and molecular dynamics calculations.

  8. FLAME DENITRATION AND REDUCTION OF URANIUM NITRATE TO URANIUM DIOXIDE

    DOEpatents

    Hedley, W.H.; Roehrs, R.J.; Henderson, C.M.

    1962-06-26

    A process is given for converting uranyl nitrate solution to uranium dioxide. The process comprises spraying fine droplets of aqueous uranyl nitrate solution into a hightemperature hydrocarbon flame, said flame being deficient in oxygen approximately 30%, retaining the feed in the flame for a sufficient length of time to reduce the nitrate to the dioxide, and recovering uranium dioxide. (AEC)

  9. Mechanistic Features of the TiO2 Heterogeneous Photocatalysis of Arsenic and Uranyl Nitrate in Aqueous Suspensions Studied by the Stopped-Flow Technique.

    PubMed

    Meichtry, Jorge M; Levy, Ivana K; Mohamed, Hanan H; Dillert, Ralf; Bahnemann, Detlef W; Litter, Marta I

    2016-03-16

    The dynamics of the transfer of electrons stored in TiO2 nanoparticles to As(III) , As(V) , and uranyl nitrate in water was investigated by using the stopped-flow technique. Suspensions of TiO2 nanoparticles with stored trapped electrons (etrap (-) ) were mixed with solutions of acceptor species to evaluate the reactivity by following the temporal evolution of etrap (-) by the decrease in the absorbance at λ=600 nm. The results indicate that As(V) and As(III) cannot be reduced by etrap (-) under the reaction conditions. In addition, it was observed that the presence of As(V) and As(III) strongly modified the reaction rate between O2 and etrap (-) : an increase in the rate was observed if As(V) was present and a decrease in the rate was observed in the presence of As(III) . In contrast with the As system, U(VI) was observed to react easily with etrap (-) and U(IV) formation was observed spectroscopically at λ=650 nm. The possible competence of U(VI) and NO3 (-) for their reduction by etrap (-) was analyzed. The inhibition of the U(VI) photocatalytic reduction by O2 could be attributed to the fast oxidation of U(V) and/or U(IV) .

  10. Literature review for oxalate oxidation processes and plutonium oxalate solubility

    SciTech Connect

    Nash, C. A.

    2015-10-01

    A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign.

  11. PLUTONIUM-HYDROGEN REACTION PRODUCT, METHOD OF PREPARING SAME AND PLUTONIUM POWDER THEREFROM

    DOEpatents

    Fried, S.; Baumbach, H.L.

    1959-12-01

    A process is described for forming plutonlum hydride powder by reacting hydrogen with massive plutonium metal at room temperature and the product obtained. The plutonium hydride powder can be converted to plutonium powder by heating to above 200 deg C.

  12. Low temperature oxidation of plutonium

    SciTech Connect

    Nelson, Art J.; Roussel, Paul

    2013-05-15

    The initial oxidation of gallium stabilized {delta}-plutonium metal at 193 K has been followed using x-ray photoelectron spectroscopy. On exposure to Langmuir quantities of oxygen, plutonium rapidly forms a trivalent oxide followed by a tetravalent plutonium oxide. The growth modes of both oxides have been determined. Warming the sample in vacuum, the tetravalent oxide reduces to the trivalent oxide. The kinetics of this reduction reaction have followed and the activation energy has been determined to be 38.8 kJ mol{sup -1}.

  13. Probing phonons in plutonium

    SciTech Connect

    Wong, Joe; Krisch, M.; Farber, D.; Occelli, F.; Schwartz, A.; Chiang, T.C.; Wall, M.; Boro, C.; Xu, Ruqing

    2010-11-16

    Plutonium (Pu) is well known to have complex and unique physico-chemical properties. Notably, the pure metal exhibits six solid-state phase transformations with large volume expansions and contractions along the way to the liquid state: {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} {yields} {delta}{prime} {yields} {var_epsilon} {yields} liquid. Unalloyed Pu melts at a relatively low temperature {approx}640 C to yield a higher density liquid than that of the solid from which it melts, (Figure 1). Detailed understanding of the properties of plutonium and plutonium-based alloys is critical for the safe handling, utilization, and long-term storage of these important, but highly toxic materials. However, both technical and and safety issues have made experimental observations extremely difficult. Phonon dispersion curves (PDCs) are key experimenta l data to the understanding of the basic properties of Pu materials such as: force constants, sound velocities, elastic constants, thermodynamics, phase stability, electron-phonon coupling, structural relaxation, etc. However, phonon dispersion curves (PDCs) in plutonium (Pu) and its alloys have defied measurement for the past few decades since the discovery of this element in 1941. This is due to a combination of the high thermal-neutron absorption cross section of plutonium and the inability to grow the large single crystals (with dimensions of a few millimeters) necessary for inelastic neutron scattering. Theoretical simulations of the Pu PDC continue to be hampered by the lack of suitable inter -atomic potentials. Thus, until recently the PDCs for Pu and its alloys have remained unknown experimentally and theoretically. The experimental limitations have recently been overcome by using a tightly focused undulator x-ray micro-beam scattered from single -grain domains in polycrystalline specimens. This experimental approach has been applied successfully to map the complete PDCs of an fcc d-Pu-Ga alloy using the

  14. PROCESS OF SEPARATING URANIUM FROM AQUEOUS SOLUTION BY SOLVENT EXTRACTION

    DOEpatents

    Warf, J.C.

    1958-08-19

    A process is described for separating uranium values from aqueous uranyl nitrate solutions. The process consists in contacting the uramium bearing solution with an organic solvent, tributyl phosphate, preferably diluted with a less viscous organic liquida whereby the uranyl nitrate is extracted into the organic solvent phase. The uranvl nitrate may be recovered from the solvent phase bv back extracting with an aqueous mediuin.

  15. From separations to reconstitution - a short history of Plutonium in the U.S. and Russia

    SciTech Connect

    Gray, L W

    1999-04-15

    During the cold war plutonium was produced in reactors in both the US and Russia. It was then separated from the residual uranium and fission products by a variety of precipitation processes, such as Bismuth Phosphate, Redox, Butex, Purex, etc. in the US and uranium acetate and Purex in Russia. After a period of time in the field, plutonium weapons were recycled and the plutonium re-purified and returned to weapons. purification was accomplished by a variety of aqueous and molten salt processes, such as nitric-hydrofluoric acid dissolution followed by anion exchange, Purex modifications, molten salt extraction, electrorefining, etc. in the US and nitric acid dissolution or sodium hydroxide fusion followed by anion exchange in Russia. At the end of the Cold War, plutonium production of weapons-grade plutonium was cut off in the US and is expected to be cut off in Russia shortly after the turn of the century. Now both countries are looking at methods to reconstitute plutonium with fission products to render it no longer useful for nuclear weapons. These methods include immobilization in a ceramic matrix and then encasement in fission product laden glass, irradiation of MOX fuel, and disposal as waste in WIPP in the US and irradiation of MOX fuel in Russia. This paper details the contrast between the treatment of plutonium during the cold war and after the cold war was over.

  16. TERNARY ALLOY-CONTAINING PLUTONIUM

    DOEpatents

    Waber, J.T.

    1960-02-23

    Ternary alloys of uranium and plutonium containing as the third element either molybdenum or zirconium are reported. Such alloys are particularly useful as reactor fuels in fast breeder reactors. The alloy contains from 2 to 25 at.% of molybdenum or zirconium, the balance being a combination of uranium and plutonium in the ratio of from 1 to 9 atoms of uranlum for each atom of plutonium. These alloys are prepared by melting the constituent elements, treating them at an elevated temperature for homogenization, and cooling them to room temperature, the rate of cooling varying with the oomposition and the desired phase structure. The preferred embodiment contains 12 to 25 at.% of molybdenum and is treated by quenching to obtain a body centered cubic crystal structure. The most important advantage of these alloys over prior binary alloys of both plutonium and uranium is the lack of cracking during casting and their ready machinability.

  17. Dissolution Behavior of Plutonium Containing Zirconia-Magnesia Ceramics

    SciTech Connect

    Kiel Holliday; Thomas Hartmann; Gary Cerefice; Ken Czerwinski

    2012-03-01

    This study explores the dissolution properties of zirconia-magnesia ceramics containing plutonium as the basis of an inert atrix nuclear fuel. The magnesium oxide phase remains pure MgO, while the zirconia incorporates a small amount of magnesium oxide along with all of the plutonium oxide and erbium oxide. The performance of the material under reactor and repository environments was examined. Reactor conditions are examined using a pressure vessel to expose the material to 300 degrees C water. To assess the performance of the material as a waste form it was submerged in 90 degrees C water for 1000 h. In both aqueous dissolution studies there was minimal release of less than 0.8 wt.% of plutonium from the material. To examine the potential for recycling, the dissolution behavior of the fuel matrix was examined in acidic solutions: pure nitric acid and a nitric acid-hydrofluoric acid-peroxide solution. Both acidic media exhibit potential for dissolving plutonium from the zirconia matrix. The experiments performed in this study are meant to lay a foundation for the chemical performance of zirconia-magnesia inert matrix fuel containing fissile material and burnable poison.

  18. Separating Metallic Beryllium from Plutonium by Selective Dissolution with Ammonium Fluoride

    SciTech Connect

    Torres, R A

    2006-11-29

    Plutonium metal is stabilized for long-term storage by calcining to produce PuO{sub 2}. However, if beryllium is present, the calcined product may have a high neutron dose rate because of the {sup 9}Be({alpha},n){sup 12}C reaction in the finely divided oxide mixture. (At LLNL, inadvertent calcining of a mixture of {approx}500 g Pu/50 g Be produced a neutron source of {approx}5 R/hr.) Therefore, for health physics reasons, we would like a convenient procedure to remove beryllium from plutonium with high selectivity. Two reagents, sodium hydroxide and ammonium fluoride, were considered for aqueous processing. Each reagent selectively dissolves beryllium, which can be separated from the insoluble plutonium by decanting/filtering operations followed by water washes to remove the excess reagent. The washed plutonium is calcined for storage; the beryllium and wash fractions are solidified for disposal.

  19. Improved recovery and purification of plutonium at Los Alamos using macroporous anion exchange resin

    SciTech Connect

    Marsh, S.F.; Mann, M.J.

    1987-05-01

    For almost 30 years, Los Alamos National Laboratory has used anion exchange in nitric acid as the major aqueous process or the recovery and purification of plutonium. One of the few disadvantages of this system is the particularly slow rate at which the anionic nitrato complex of Pu(IV) equilibrates with the resin. The Nuclear Materials Process Technology Group at Los Alamos recently completed an ion exchange development program that focused on improving the slow sorption kinetics that limits this process. A comprehensive investigation of modern anion exchange resins identified porosity and bead size as the properties that most influence plutonium sorption kinetics. Our study found that small beads of macroporous resin produced a dramatic increase in plutonium process efficiency. The Rocky Flats Plant has already adopted this improved ion exchange technology, and it currently is being evaluated for use in other DOE plutonium-processing facilities.

  20. Insensitive Ammonium Nitrate.

    DTIC Science & Technology

    is reduced by replacing the ammonium nitrate with a solid solution of potassium nitrate in form III ammonium nitrate wherein the potassium nitrate...constitutes from more than zero to less than 50 weight percent of the solid solution . (Author)

  1. Water Solubility of Plutonium and Uranium Compounds and Residues at TA-55

    SciTech Connect

    Reilly, Sean Douglas

    2016-06-13

    Understanding the water solubility of plutonium and uranium compounds and residues at TA-55 is necessary to provide a technical basis for appropriate criticality safety, safety basis and accountability controls. Individual compound solubility was determined using published solubility data and solution thermodynamic modeling. Residue solubility was estimated using a combination of published technical reports and process knowledge of constituent compounds. The scope of materials considered includes all compounds and residues at TA-55 as of March 2016 that contain Pu-239 or U-235 where any single item in the facility has more than 500 g of nuclear material. This analysis indicates that the following materials are not appreciably soluble in water: plutonium dioxide (IDC=C21), plutonium phosphate (IDC=C66), plutonium tetrafluoride (IDC=C80), plutonium filter residue (IDC=R26), plutonium hydroxide precipitate (IDC=R41), plutonium DOR salt (IDC=R42), plutonium incinerator ash (IDC=R47), uranium carbide (IDC=C13), uranium dioxide (IDC=C21), U3O8 (IDC=C88), and uranium filter residue (IDC=R26). This analysis also indicates that the following materials are soluble in water: plutonium chloride (IDC=C19) and uranium nitrate (IDC=C52). Equilibrium calculations suggest that PuOCl is water soluble under certain conditions, but some plutonium processing reports indicate that it is insoluble when present in electrorefining residues (R65). Plutonium molten salt extraction residues (IDC=R83) contain significant quantities of PuCl3, and are expected to be soluble in water. The solubility of the following plutonium residues is indeterminate due to conflicting reports, insufficient process knowledge or process-dependent composition: calcium salt (IDC=R09), electrorefining salt (IDC=R65), salt (IDC=R71), silica (IDC=R73) and sweepings/screenings (IDC=R78). Solution thermodynamic modeling also indicates that fire suppression water buffered with a

  2. Plutonium and americium separation from salts

    DOEpatents

    Hagan, Paul G.; Miner, Frend J.

    1976-01-01

    Salts or materials containing plutonium and americium are dissolved in hydrochloric acid, heated, and contacted with an alkali metal carbonate solution to precipitate plutonium and americium carbonates which are thereafter readily separable from the solution.

  3. Plutonium focus area

    SciTech Connect

    1996-08-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  4. Plutonium solution analyzer

    SciTech Connect

    Burns, D.A.

    1994-09-01

    A fully automated analyzer has been developed for plutonium solutions. It was assembled from several commercially available modules, is based upon segmented flow analysis, and exhibits precision about an order of magnitude better than commercial units (0.5%-O.05% RSD). The system was designed to accept unmeasured, untreated liquid samples in the concentration range 40-240 g/L and produce a report with sample identification, sample concentrations, and an abundance of statistics. Optional hydraulics can accommodate samples in the concentration range 0.4-4.0 g/L. Operating at a typical rate of 30 to 40 samples per hour, it consumes only 0.074 mL of each sample and standard, and generates waste at the rate of about 1.5 mL per minute. No radioactive material passes through its multichannel peristaltic pump (which remains outside the glovebox, uncontaminated) but rather is handled by a 6-port, 2-position chromatography-type loop valve. An accompanying computer is programmed in QuickBASIC 4.5 to provide both instrument control and data reduction. The program is truly user-friendly and communication between operator and instrument is via computer screen displays and keyboard. Two important issues which have been addressed are waste minimization and operator safety (the analyzer can run in the absence of an operator, once its autosampler has been loaded).

  5. Adsorption of plutonium oxide nanoparticles.

    PubMed

    Schmidt, Moritz; Wilson, Richard E; Lee, Sang Soo; Soderholm, L; Fenter, P

    2012-02-07

    Adsorption of monodisperse cubic plutonium oxide nanoparticles ("Pu-NP", [Pu(38)O(56)Cl(x)(H(2)O)(y)]((40-x)+), with a fluorite-related lattice, approximately 1 nm in edge size) to the muscovite (001) basal plane from aqueous solutions was observed in situ (in 100 mM NaCl background electrolyte at pH 2.6). Uptake capacity of the surface quantified by α-spectrometry was 0.92 μg Pu/cm(2), corresponding to 10.8 Pu per unit cell area (A(UC)). This amount is significantly larger than that of Pu(4+) needed for satisfying the negative surface charge (0.25 Pu(4+) for 1 e(-)/A(UC)). The adsorbed Pu-NPs cover 17% of the surface area, determined by X-ray reflectivity (XR). This correlates to one Pu-NP for every 14 unit cells of muscovite, suggesting that each particle compensates the charge of the unit cells onto which it adsorbs as well as those in its direct proximity. Structural investigation by resonant anomalous X-ray reflectivity distinguished two different sorption states of Pu-NPs on the surface at two different regimes of distance from the surface. A fraction of Pu is distributed within 11 Å from the surface. The distribution width matches the Pu-NP size, indicating that this species represents Pu-NPs adsorbed directly on the surface. Beyond the first layer, an additional fraction of sorbed Pu was observed to extend more broadly up to more than 100 Å from the surface. This distribution is interpreted as resulting from "stacking" or aggregation of the nanoparticles driven by sorption and accumulation of Pu-NPs at the interface although these Pu-NPs do not aggregate in the solution. These results are the first in situ observation of the interaction of nanoparticles with a charged mineral-water interface yielding information important to understanding the environmental transport of Pu and other nanophase inorganic species.

  6. METHOD FOR SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS BY SOLVENT EXTRACTION

    DOEpatents

    Seaborg, G.T.; Blaedel, W.J.; Walling, M.T. Jr.

    1960-08-23

    A process is given for separating from each other uranium, plutonium, and fission products in an aqueous nitric acid solution by the so-called Redox process. The plutonium is first oxidized to the hexavalent state, e.g., with a water-soluble dichromate or sodium bismuthate, preferably together with a holding oxidant such as potassium bromate. potassium permanganate, or an excess of the oxidizing agent. The solution is then contacted with a water-immiscible organic solvent, preferably hexone. whereby uranium and plutonium are extracted while the fission products remain in the aqueous solution. The separated organic phase is then contacted with an aqueous solution of a reducing agent, with or without a holding reductant (e.g., with a ferrous salt plus hydrazine or with ferrous sulfamate), whereby plutonium is reduced to the trivalent state and back- extracted into the aqueous solution. The uranium may finally be back-extracted from the organic solvent (e.g., with a 0.1 N nitric acid).

  7. Microdistribution and long-term retention of 239Pu (NO3)4 in the respiratory tracts of an acutely exposed plutonium worker and experimental beagle dogs.

    PubMed

    Nielsen, Christopher E; Wilson, Dulaney A; Brooks, Antone L; McCord, Stacey L; Dagle, Gerald E; James, Anthony C; Tolmachev, Sergei Y; Thrall, Brian D; Morgan, William F

    2012-11-01

    The long-term retention of inhaled soluble forms of plutonium raises concerns as to the potential health effects in persons working in nuclear energy or the nuclear weapons program. The distributions of long-term retained inhaled plutonium-nitrate [(239)Pu (NO(3))(4)] deposited in the lungs of an accidentally exposed nuclear worker (Human Case 0269) and in the lungs of experimentally exposed beagle dogs with varying initial lung depositions were determined via autoradiographs of selected histologic lung, lymph node, trachea, and nasal turbinate tissue sections. These studies showed that both the human and dogs had a nonuniform distribution of plutonium throughout the lung tissue. Fibrotic scar tissue effectively encapsulated a portion of the plutonium and prevented its clearance from the body or translocation to other tissues and diminished dose to organ parenchyma. Alpha radiation activity from deposited plutonium in Human Case 0269 was observed primarily along the subpleural regions while no alpha activity was seen in the tracheobronchial lymph nodes of this individual. However, relatively high activity levels in the tracheobronchial lymph nodes of the beagles indicated the lymphatic system was effective in clearing deposited plutonium from the lung tissues. In both the human case and beagle dogs, the appearance of retained plutonium within the respiratory tract was inconsistent with current biokinetic models of clearance for soluble forms of plutonium. Bound plutonium can have a marked effect on the dose to the lungs and subsequent radiation exposure has the potential to increase cancer risk.

  8. Microdistribution and Long-Term Retention of 239Pu (NO3)4 in the Respiratory Tracts of an Acutely Exposed Plutonium Worker and Experimental Beagle Dogs

    SciTech Connect

    Nielsen, Christopher E.; Wilson, Dulaney A.; Brooks, Antone L.; McCord, Stacey; Dagle, Gerald E.; James, Anthony C.; Tolmachev, Sergei Y.; Thrall, Brian D.; Morgan, William F.

    2012-11-01

    The long-term retention of inhaled soluble forms of plutonium raises concerns as to the potential health effects in persons working in nuclear energy or the nuclear weapons program. The distributions of long-term retained inhaled plutonium-nitrate [239Pu (NO3)4] deposited in the lungs of an accidentally exposed nuclear worker (Human Case 0269) and in the lungs of experimentally exposed beagle dogs with varying initial lung depositions were determined via autoradiographs of selected histological lung, lymph node, trachea, and nasal turbinate tissue sections. These studies showed that both the human and dogs had a non-uniform distribution of plutonium throughout the lung tissue. Fibrotic scar tissue effectively encapsulated a portion of the plutonium and prevented its clearance from the body or translocation to other tissues and diminished dose to organ parenchyma. Alpha radiation activity from deposited plutonium in Human Case 0269 was observed primarily along the sub-pleural regions while no alpha activity was seen in the tracheobronchial lymph nodes of this individual. However, relatively high activity levels in the tracheobronchial lymph nodes of the beagles indicated the lymphatic system was effective in clearing deposited plutonium from the lung tissues. In both the human case and beagle dogs, the appearance of retained plutonium within the respiratory tract was inconsistent with current biokinetic models of clearance for soluble forms of plutonium. Bound plutonium can have a marked effect on the dose to the lungs and subsequent radiation exposure has the potential increase in cancer risk.

  9. Selecting a plutonium vitrification process

    SciTech Connect

    Jouan, A.

    1996-05-01

    Vitrification of plutonium is one means of mitigating its potential danger. This option is technically feasible, even if it is not the solution advocated in France. Two situations are possible, depending on whether or not the glass matrix also contains fission products; concentrations of up to 15% should be achievable for plutonium alone, whereas the upper limit is 3% in the presence of fission products. The French continuous vitrification process appears to be particularly suitable for plutonium vitrification: its capacity is compatible with the required throughout, and the compact dimensions of the process equipment prevent a criticality hazard. Preprocessing of plutonium metal, to convert it to PuO{sub 2} or to a nitric acid solution, may prove advantageous or even necessary depending on whether a dry or wet process is adopted. The process may involve a single step (vitrification of Pu or PuO{sub 2} mixed with glass frit) or may include a prior calcination step - notably if the plutonium is to be incorporated into a fission product glass. It is important to weigh the advantages and drawbacks of all the possible options in terms of feasibility, safety and cost-effectiveness.

  10. Plutonium Proliferation: The Achilles Heel of Disarmament

    SciTech Connect

    Leventhal, Paul

    2001-02-07

    Plutonium is a byproduct of nuclear fission, and it is produced at the rate of about 70 metric tons a year in the world's nuclear power reactors. Concerns about civilian plutonium ran high in the 1970s and prompted enactment of the Nuclear Non-Proliferation Act of 1978 to give the United States a veto over separating plutonium from U.S.-supplied uranium fuel. Over the years, however, so-called reactor-grade plutonium has become the orphan issue of nuclear non-proliferation, largely as a consequence of pressures from plutonium-separating countries. The demise of the fast breeder reactor and the reluctance of utilities to introduce plutonium fuel in light-water reactors have resulted in large surpluses of civilian, weapons-usable plutonium, which now approach in size the 250 tons of military plutonium in the world. Yet reprocessing of spent fuel for recovery and use of plutonium proceeds apace outside the United States and threatens to overwhelm safeguards and security measures for keeping this material out of the hands of nations and terrorists for weapons. A number of historical and current developments are reviewed to demonstrate that plutonium commerce is undercutting efforts both to stop the spread of nuclear weapons and to work toward eliminating existing nuclear arsenals. These developments include the breakdown of U.S. anti-plutonium policy, the production of nuclear weapons by India with Atoms-for-Peace plutonium, the U.S.-Russian plan to introduce excess military plutonium as fuel in civilian power reactors, the failure to include civilian plutonium and bomb-grade uranium in the proposed Fissile Material Cutoff Treaty, and the perception of emerging proliferation threats as the rationale for development of a ballistic missile defense system. Finally, immobilization of separated plutonium in high-level waste is explored as a proliferation-resistant and disarmament-friendly solution for eliminating excess stocks of civilian and military plutonium.

  11. 49 CFR 175.704 - Plutonium shipments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Plutonium shipments. 175.704 Section 175.704... Regulations Applicable According to Classification of Material § 175.704 Plutonium shipments. Shipments of plutonium which are subject to 10 CFR 71.88(a)(4) must comply with the following: (a) Each...

  12. 49 CFR 175.704 - Plutonium shipments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Plutonium shipments. 175.704 Section 175.704... Regulations Applicable According to Classification of Material § 175.704 Plutonium shipments. Shipments of plutonium which are subject to 10 CFR 71.88(a)(4) must comply with the following: (a) Each...

  13. 49 CFR 175.704 - Plutonium shipments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Plutonium shipments. 175.704 Section 175.704... Regulations Applicable According to Classification of Material § 175.704 Plutonium shipments. Shipments of plutonium which are subject to 10 CFR 71.88(a)(4) must comply with the following: (a) Each...

  14. 49 CFR 175.704 - Plutonium shipments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Plutonium shipments. 175.704 Section 175.704... Regulations Applicable According to Classification of Material § 175.704 Plutonium shipments. Shipments of plutonium which are subject to 10 CFR 71.88(a)(4) must comply with the following: (a) Each...

  15. Rapid Radiochemical Method for Plutonium-238 and ...

    EPA Pesticide Factsheets

    Technical Fact Sheet Technique: Alpha spectrometry Method Developed for: Plutonium-238 and plutonium-239 in building materials Method Selected for: SAM lists this method for qualitative analysis of plutonium-238 and -239 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.

  16. 49 CFR 175.704 - Plutonium shipments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Plutonium shipments. 175.704 Section 175.704... Regulations Applicable According to Classification of Material § 175.704 Plutonium shipments. Shipments of plutonium which are subject to 10 CFR 71.88(a)(4) must comply with the following: (a) Each...

  17. Plutonium Oxide Process Capability Work Plan

    SciTech Connect

    Meier, David E.; Tingey, Joel M.

    2014-02-28

    Pacific Northwest National Laboratory (PNNL) has been tasked to develop a Pilot-scale Plutonium-oxide Processing Unit (P3U) providing a flexible capability to produce 200g (Pu basis) samples of plutonium oxide using different chemical processes for use in identifying and validating nuclear forensics signatures associated with plutonium production. Materials produced can also be used as exercise and reference materials.

  18. Reduced-size plutonium sample processing and packaging for the PAT-2 package

    SciTech Connect

    Kuhn, E.; Deron, S.; Aigner, H.; Andersen, J.A.

    1982-01-01

    A light-water container for the air transport of plutonium safeguards samples, the PAT-2 package, has been developed in the USA and is now licensed by the US NRC (Certificate of Compliance) and the US DOT (IAEA Certificate of Competent Authority). The very limited available space in this package for plutonium-bearing samples required the design of small-size canisters to meet the needs of international safeguards. The suitability of a new small canister and vial for powder and solution samples has been tested in an intralaboratory experiment. The results of the experiment, based on the concept of pre-weighed samples, show that the tested canister and quartz vial can be used successfully for containing small size PuO/sub 2/ powder samples of homogeneous source material, as well as for dried aliguands of plutonium nitrate solutions.

  19. DEVELOPMENT OF GLASS AND CRYSTALLINE CERAMIC FORMS FOR DISPOSITION OF EXCESS PLUTONIUM

    SciTech Connect

    Marra, James; Cozzi, A; Crawford, C.; Herman, C.; Marra, John; Peeler, D.

    2009-09-10

    In the aftermath of the Cold War, the United States Department of Energy (DOE) has identified up to 50 metric tons of excess plutonium that needs to be dispositioned. The bulk of the material is slated to be blended with uranium and fabricated into a Mixed Oxide (MOX) fuel for subsequent burning in commercial nuclear reactors. Excess plutonium-containing impurity materials making it unsuitable for fabrication into MOX fuel will need to be dispositioned via other means. Glass and crystalline ceramics have been developed and studied as candidate forms to immobilize these impure plutonium feeds. A titanate-based ceramic was identified as an excellent actinide material host. This composition was based on Synroc compositions previously developed for nuclear waste immobilization. These titanate ceramics were found to be able to accommodate extremely high quantities of fissile material and exhibit excellent aqueous durability. A lanthanide borosilicate (LaBS) glass was developed to accommodate high concentrations of plutonium and to be very tolerant of impurities yet still maintain good aqueous durability. Recent testing of alkali borosilicate compositions showed promise of using these compositions to disposition lower concentrations of plutonium using existing high level waste vitrification processes. The developed waste forms all appear to be suitable for Pu disposition. Depending on the actual types and concentrations of the Pu residue streams slated for disposition, each waste form offers unique advantages.

  20. Influence of chemical form, feeding regimen, and animal species on the gastrointestinal absorption of plutonium

    SciTech Connect

    Bhattacharyya, M.H.; Larsen, R.P.; Cohen, N.; Ralston, L.G.; Oldham, R.D.; Moretti, E.S.; Ayres, L.

    1985-01-01

    We evaluated the effect of chemical form and feeding regimen on the gastrointestinal (GI) absorption of plutonium in adult mice at plutonium concentrations relevant to the establishment of drinking water standards. Mean fractional GI absorption values in fasted adult mice were: Pu(VI) bicarbonate, 15 x 10/sup -4/; Pu(IV) bicarbonate, 20 x 10/sup -4/; Pu(IV) nitrate (pH2), 17 x 10/sup -4/; Pu(IV) citrate, 24 x 10/sup -4/; and Pu(IV) polymer, 3 x 10/sup -4/. Values in fed adult mice were: Pu(VI) bicarbonate, 1.4 x 10/sup -4/; Pu(IV) polymer, 0.3 x 10/sup -4/. Pu(VI) is the oxidation state in chlorinated drinking waters and Pu(IV) is the oxidation state in many untreated natural waters. To assess the validity of extrapolating data from mice to humans, we also determined the GI absorption of Pu(VI) bicarbonate in adult baboons with a dual-isotope method that does not require animal sacrifice. Fractional GI absorption values obtained by this method were 23 +- 10 x 10/sup -4/ for fasted baboons (n=5) and 1.4 +- 0.9 x 10/sup -4/ for fed baboons (n=3). We have so far validated this method in one baboon and are currently completing validation in two additional animals. At low plutonium concentrations, plutonium oxidation state (Pu(VI) vs Pu(IV)) and administration medium (bicarbonate vs nitrate vs citrate) had little effect on the GI absorption of plutonium in mice. Formation of Pu(IV) polymers and animal feeding decreased the GI absorption of plutonium 5- to 10-fold. The GI absorption of Pu(VI) bicarbonate in both fed and fasted adult baboons appeared to be the same as in fed and fasted adult mice, respectively. 17 refs., 2 tabs.

  1. Plutonium inventory characterization technical evaluation report

    SciTech Connect

    Wittman, G.R., Westinghouse Hanford

    1996-07-10

    This is a technical report on the data, gathered to date, under WHC- SD-CP-TP-086, Rev. 1, on the integrity of the food pack cans currently being used to store plutonium or plutonium compounds at the Plutonium Finishing Plant. Workplan PFP-96-VO-009, `Inspection of Special Nuclear Material Using X-ray`, was used to gather data on material and containment conditions using real time radiography. Some of those images are included herein. A matrix found in the `Plutonium Inventory Characterization Implementation Plan` was used to categorize different plutonium items based upon the type of material being stored and the life expectancy of the containers.

  2. Plutonium immobilization feed batching system concept report

    SciTech Connect

    Erickson, S.

    2000-07-19

    The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with high level waste glass for permanent storage. Feed batching is one of the first process steps involved with first stage plutonium immobilization. It will blend plutonium oxide powder before it is combined with other materials to make pucks. This report discusses the Plutonium Immobilization feed batching process preliminary concept, batch splitting concepts, and includes a process block diagram, concept descriptions, a preliminary equipment list, and feed batching development areas.

  3. Plutonium inventories for stabilization and stabilized materials

    SciTech Connect

    Williams, A.K.

    1996-05-01

    The objective of the breakout session was to identify characteristics of materials containing plutonium, the need to stabilize these materials for storage, and plans to accomplish the stabilization activities. All current stabilization activities are driven by the Defense Nuclear Facilities Safety Board Recommendation 94-1 (May 26, 1994) and by the recently completed Plutonium ES&H Vulnerability Assessment (DOE-EH-0415). The Implementation Plan for accomplishing stabilization of plutonium-bearing residues in response to the Recommendation and the Assessment was published by DOE on February 28, 1995. This Implementation Plan (IP) commits to stabilizing problem materials within 3 years, and stabilizing all other materials within 8 years. The IP identifies approximately 20 metric tons of plutonium requiring stabilization and/or repackaging. A further breakdown shows this material to consist of 8.5 metric tons of plutonium metal and alloys, 5.5 metric tons of plutonium as oxide, and 6 metric tons of plutonium as residues. Stabilization of the metal and oxide categories containing greater than 50 weight percent plutonium is covered by DOE Standard {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides{close_quotes} December, 1994 (DOE-STD-3013-94). This standard establishes criteria for safe storage of stabilized plutonium metals and oxides for up to 50 years. Each of the DOE sites and contractors with large plutonium inventories has either started or is preparing to start stabilization activities to meet these criteria.

  4. COGEMA Experience in Uranous Nitrate Preparation

    SciTech Connect

    Tison, E.; Bretault, Ph.

    2006-07-01

    Separation and purification of plutonium by PUREX process is based on a sequence of extraction and back extraction which requires reducing plutonium Pu IV (extractable form) into Pu III (inextractable form) Different reducers can be used to reduce Pu IV into Pu III. Early plants such as that for Magnox fuel at Sellafield used ferrous sulfamate while UP 1 at Marcoule used uranous sulfamate. These reducers are efficient and easy to prepare but generates ferric and/or sulphate ions and so complicates management of the wastes from the plutonium purification cycle. Recent plants such as UP3 and UP2 800 at La Hague, THORP at Sellafield, and RRP at Rokkasho Mura (currently under tests) use uranous nitrate (U IV) stabilized by hydrazinium nitrate (N{sub 2}H{sub 5}NO{sub 3}) and hydroxyl ammonium nitrate (HAN). In the French plants, uranous nitrate is used in U-Pu separation and alpha barrier and HAN is used in Pu purification. Compared to sulfamate, U IV does not generate extraneous chemical species and uranyl nitrate (U VI) generated by reducing Pu IV follows the main uranium stream. More over uranous nitrate is prepared from reprocessed purified uranyl nitrate taken at the outlet of the reprocessing plant. Hydrazine and HAN offer the advantage to be salt-free reagents. Uranous nitrate can be generated either by electrolysis or by catalytic hydrogenation process. Electrolytic process has been implemented in early plant UP 1 at Marcoule (when changing reducer from uranous sulfamate to uranous nitrate) and was used again in UP2 plant at La Hague. However, the electrolytic process presented several disadvantages such as a low conversion rate and problems associated with the use of mercury. Electrolysis cells with no mercury were developed for the Eurochemic plant in Belgium and then implemented in the first Japanese reprocessing plant in Tokai-Mura. But finally, in 1975, the electrolytic process was abandoned in favor of the catalytic hydrogenation process developed at La

  5. Corrosion-electrochemical properties of the anodic oxide films formed on aluminum in a chloride-nitrate melt in a 0.5 M Aqueous NaCl solution

    NASA Astrophysics Data System (ADS)

    Elshina, L. A.; Malkov, V. B.; Kudyakov, V. Ya.; Gnedenkov, S. V.; Sinebryukhov, S. L.; Egorkin, V. S.; Mashtalyar, D. V.

    2014-02-01

    The corrosion-electrochemical behavior of aluminum is studied in a chloride-nitrate melt containing 50 wt % eutectic mixture of cesium and sodium chlorides and 50 wt % sodium nitrate in the temperature range 790-900 K in an argon atmosphere.

  6. Preconceptual design for separation of plutonium and gallium by ion exchange

    SciTech Connect

    DeMuth, S.F.

    1997-09-30

    The disposition of plutonium from decommissioned nuclear weapons, by incorporation into commercial UO{sub 2}-based nuclear reactor fuel, is a viable means to reduce the potential for theft of excess plutonium. This fuel, which would be a combination of plutonium oxide and uranium oxide, is referred to as a mixed oxide (MOX). Following power generation in commercial reactors with this fuel, the remaining plutonium would become mixed with highly radioactive fission products in a spent fuel assembly. The radioactivity, complex chemical composition, and large size of this spent fuel assembly, would make theft difficult with elaborate chemical processing required for plutonium recovery. In fabricating the MOX fuel, it is important to maintain current commercial fuel purity specifications. While impurities from the weapons plutonium may or may not have a detrimental affect on the fuel fabrication or fuel/cladding performance, certifying the effect as insignificant could be more costly than purification. Two primary concerns have been raised with regard to the gallium impurity: (1) gallium vaporization during fuel sintering may adversely affect the MOX fuel fabrication process, and (2) gallium vaporization during reactor operation may adversely affect the fuel cladding performance. Consequently, processes for the separation of plutonium from gallium are currently being developed and/or designed. In particular, two separation processes are being considered: (1) a developmental, potentially lower cost and lower waste, thermal vaporization process following PuO{sub 2} powder preparation, and (2) an off-the-shelf, potentially higher cost and higher waste, aqueous-based ion exchange (IX) process. While it is planned to use the thermal vaporization process should its development prove successful, IX has been recommended as a backup process. This report presents a preconceptual design with material balances for separation of plutonium from gallium by IX.

  7. Plutonium Recycle: The Fateful Step

    ERIC Educational Resources Information Center

    Speth, J. Gustave; And Others

    1974-01-01

    Calls attention to the fact that if the Atomic Energy Commission proceeds with its plans to authorize the nuclear power industry to use plutonium as a fuel in commercial nuclear reactors around the country, this will result in a dramatic escalation in the risks posed by nuclear power. (PEB)

  8. Plutonium waste incineration using pyrohydrolysis

    SciTech Connect

    Meyer, M.L.

    1991-12-31

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800{degree}C), while plutonium oxides fired at lower decomposition temperatures (400--800{degrees}C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density.

  9. Plutonium waste incineration using pyrohydrolysis

    SciTech Connect

    Meyer, M.L.

    1991-01-01

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800{degree}C), while plutonium oxides fired at lower decomposition temperatures (400--800{degrees}C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density.

  10. The First Weighing of Plutonium

    DOE R&D Accomplishments Database

    Seaborg, Glenn T.

    1967-09-10

    Recollections and reminiscences at the 25th Anniversary of the First Weighing of Plutonium, Chicago, IL, September 10, 1967, tell an important part of the story of this fascinating new element that is destined to play an increasingly significant role in the future of man.

  11. Plutonium disposition and storage model

    SciTech Connect

    Krupa, J.F.

    2000-03-01

    An EXTEND/SDI-Industry model of DOE plutonium disposition and storage has been created which can easily accommodate changes in scenarios by changing input parameters. It matches well with hand-crafted spreadsheet analyses, and has the advantage that it shows system logic and can be documented easily.

  12. Plutonium disposition and storage model

    SciTech Connect

    Krupa, J.F.

    1999-12-06

    An EXTEND/SDI-Industry model of DOE plutonium disposition and storage has been created which can easily accommodate changes in scenarios by changing input parameters. It matches well with hand-crafted spreadsheet analyses, and has the advantage that it shows system logic and can be documented easily.

  13. RECOVERY OF TETRAVALENT CATIONS FROM AQUEOUS SOLUTIONS

    DOEpatents

    Moore, R.L.

    1958-05-01

    The recovery of plutonium, zirconium, and tetravalent cerium values from aqueous solutions is described. It consists of adding an alkyl phosphate to a nnineral acid aqueous solution containing the metal to be recovered, whereby a precipitate forms with the tetravalent values, and separating the precipitate from the solution. All alkyl phosphates, if water-soluble, are suitable for the process; however, monobutyl phosphate has been found best.

  14. Plutonium-catalyzed oxidative DNA damage in the absence of significant alpha-particle decay

    SciTech Connect

    Claycamp, H.G.; Luo, D.

    1994-01-01

    Plutonium is considered to be a carcinogen because it emits {alpha} particles that may result in the irradiation of stem cell population. In the present study we show that plutonium can also catalyze reactions that induce hydroxyl radicals in the absence of significant {alpha}-particle irradiation. Using the low specific activity isotope, {sup 242}Pu, experiments were performed under conditions in which chemical generation of hydroxyl radicals was expected to exceed the radiolytic generation by 10{sup 5}-fold. The results showed that markers of oxidative DNA base damage, thymine glycol and 8-oxoguanine could be induced from plutonium-catalyzed reactions of hydrogen peroxide and ascorbate similarly to those occurring in the presence of iron catalysts. Plutonium-242, as a neutralized nitrate in phosphate buffer, was 4.8-fold more efficient than iron at catalyzing the oxidation of ascorbate at pH 7. The results suggest that plutonium complexes could participate in reactions at pH 7 that induce oxidative stress - a significant tumor-promoting factor in generally accepted models of carcinogenesis. 16 refs., 3 figs.

  15. Evaluation of nitrate and nitrite destruction/separation technologies

    SciTech Connect

    Hobbs, D.T.

    1997-08-29

    This report describes and evaluates four types of nitrate and nitrite destruction and separation technologies that could be used to treat the aqueous, alkaline, nitrate-bearing mixed waste that is generated by the In-Tank Precipitation (ITP) process at the Savannah River Site (SRS). The technologies considered in this report include thermal, hydrothermal, chemical, and electrochemical technologies.

  16. Method for improved decomposition of metal nitrate solutions

    DOEpatents

    Haas, Paul A.; Stines, William B.

    1983-10-11

    A method for co-conversion of aqueous solutions of one or more heavy metal nitrates wherein thermal decomposition within a temperature range of about 300.degree. to 800.degree. C. is carried out in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal.

  17. Method for improved decomposition of metal nitrate solutions

    DOEpatents

    Haas, P.A.; Stines, W.B.

    1981-01-21

    A method for co-conversion of aqueous solutions of one or more heavy metal nitrates is described, wherein thermal decomposition within a temperature range of about 300 to 800/sup 0/C is carried out in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal.

  18. Extraction of Plutonium From Spiked INEEL Soil Samples Using the Ligand-Assisted Supercritical Fluid Extraction (LA-SFE) Technique

    SciTech Connect

    Fox, R.V.; Mincher, B.J.; Holmes, R.G.G.

    1999-08-01

    In order to investigate the effectiveness of ligand-assisted supercritical fluid extraction for the removal of transuranic contaminations from soils an Idaho National Engineering and Environmental Laboratory (INEEL) silty-clay soil sample was obtained from near the Radioactive Waste Management Complex area and subjected to three different chemical preparations before being spiked with plutonium. The spiked INEEL soil samples were subjected to a sequential aqueous extraction procedure to determine radionuclide portioning in each sample. Results from those extractions demonstrate that plutonium consistently partitioned into the residual fraction across all three INEEL soil preparations whereas americium partitioned 73% into the iron/manganese fraction for soil preparation A, with the balance partitioning into the residual fraction. Plutonium and americium were extracted from the INEEL soil samples using a ligand-assisted supercritical fluid extraction technique. Initial supercritical fluid extraction runs produced plutonium extraction technique. Initial supercritical fluid extraction runs produced plutonium extraction efficiencies ranging from 14% to 19%. After a second round wherein the initial extraction parameters were changed, the plutonium extraction efficiencies increased to 60% and as high as 80% with the americium level in the post-extracted soil samples dropping near to the detection limits. The third round of experiments are currently underway. These results demonstrate that the ligand-assisted supercritical fluid extraction technique can effectively extract plutonium from the spiked INEEL soil preparations.

  19. Surprising coordination for plutonium in the first plutonium(III) borate.

    PubMed

    Wang, Shuao; Alekseev, Evgeny V; Depmeier, Wulf; Albrecht-Schmitt, Thomas E

    2011-03-21

    The first plutonium(III) borate, Pu(2)[B(12)O(18)(OH)(4)Br(2)(H(2)O)(3)]·0.5H(2)O, has been prepared by reacting plutonium(III) with molten boric acid under strictly anaerobic conditions. This compound contains a three-dimensional polyborate network with triangular holes that house the plutonium(III) sites. The plutonium sites in this compound are 9- and 10-coordinate and display atypical geometries.

  20. Air transport of plutonium metal: content expansion initiative for the plutonium air transportable (PAT01) packaging

    SciTech Connect

    Caviness, Michael L; Mann, Paul T

    2010-01-01

    The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

  1. PRECIPITATION METHOD FOR THE SEPARATION OF PLUTONIUM AND RARE EARTHS

    DOEpatents

    Thompson, S.G.

    1960-04-26

    A method of purifying plutonium is given. Tetravalent plutonium is precipitated with thorium pyrophosphate, the plutonium is oxidized to the tetravalent state, and then impurities are precipitated with thorium pyrophosphate.

  2. SEPARATION OF PLUTONIUM HYDROXIDE FROM BISMUTH HYDROXIDE

    DOEpatents

    Watt, G.W.

    1958-08-19

    An tmproved method is described for separating plutonium hydroxide from bismuth hydroxide. The end product of the bismuth phosphate processes for the separation amd concentration of plutonium is a inixture of bismuth hydroxide amd plutonium hydroxide. It has been found that these compounds can be advantageously separated by treatment with a reducing agent having a potential sufficient to reduce bismuth hydroxide to metalltc bisinuth but not sufficient to reduce the plutonium present. The resulting mixture of metallic bismuth and plutonium hydroxide can then be separated by treatment with a material which will dissolve plutonium hydroxide but not metallic bismuth. Sodiunn stannite is mentioned as a preferred reducing agent, and dilute nitric acid may be used as the separatory solvent.

  3. Biokinetics of Plutonium in Nonhuman Primates.

    PubMed

    Poudel, Deepesh; Guilmette, Raymond A; Gesell, Thomas F; Harris, Jason T; Brey, Richard R

    2016-10-01

    A major source of data on metabolism, excretion and retention of plutonium comes from experimental animal studies. Although old world monkeys are one of the closest living relatives to humans, certain physiological differences do exist between these nonhuman primates and humans. The objective of this paper was to describe the metabolism of plutonium in nonhuman primates using the bioassay and retention data obtained from macaque monkeys injected with plutonium citrate. A biokinetic model for nonhuman primates was developed by adapting the basic model structure and adapting the transfer rates described for metabolism of plutonium in adult humans. Significant changes to the parameters were necessary to explain the shorter retention of plutonium in liver and skeleton of the nonhuman primates, differences in liver to bone partitioning ratio, and significantly higher excretion of plutonium in feces compared to that in humans.

  4. Complexation of Plutonium (IV) with Fluoride at Variable Temperatures

    SciTech Connect

    Xia, Yuanxian; Rao, Linfeng; Friese, Judah I.; Moore, Dean A.; Bachelor, Paula P.

    2010-02-02

    The complexation of Pu(IV) with fluoride at elevated temperatures was studied by solvent extraction technique. A solution of NaBrO3 was used as holding oxidant to maintain the oxidation state of plutonium throughout the experiments. The distribution ratio of Pu(IV) between the organic and aqueous phases was found to decrease as the concentrations of fluoride were increased. Stability constants of the 1:1 and 1:2 Pu(IV)-F- complexes, dominant in the aqueous phase under the experimental conditions, were calculated from the effect of fluoride ions on the distribution ratio. The thermodynamic parameters, including enthalpy and entropy of complexation between Pu(IV) and fluoride at 25 degrees C - 55 degrees C were calculated from the stability constants at different temperatures by using the Van’t Hoff equation.

  5. Plutonium Immobilization Project Baseline Formulation

    SciTech Connect

    Ebbinghaus, B.

    1999-02-01

    A key milestone for the Immobilization Project (AOP Milestone 3.2a) in Fiscal Year 1998 (FY98) is the definition of the baseline composition or formulation for the plutonium ceramic form. The baseline formulation for the plutonium ceramic product must be finalized before the repository- and plant-related process specifications can be determined. The baseline formulation that is currently specified is given in Table 1.1. In addition to the baseline formulation specification, this report provides specifications for two alternative formulations, related compositional specifications (e.g., precursor compositions and mixing recipes), and other preliminary form and process specifications that are linked to the baseline formulation. The preliminary specifications, when finalized, are not expected to vary tremendously from the preliminary values given.

  6. Plutonium Immobilization Can Loading Concepts

    SciTech Connect

    Kriikku, E.; Ward, C.; Stokes, M.; Randall, B.; Steed, J.; Jones, R.; Hamilton, L.; Rogers, L.; Fiscus, J.; Dyches, G.

    1998-05-01

    The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses five can loading conceptual designs and the lists the advantages and disadvantages for each concept. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas. The can loading welder and cutter are very similar to the existing Savannah River Site (SRS) FB-Line bagless transfer welder and cutter and thus they are a low priority development item.

  7. Disposition options for separated plutonium

    SciTech Connect

    Hippel, F. von; Feiveson, H. )

    1993-01-01

    Russia and the United States expect to dismantle [approximately]50,000 nuclear warheads containing [approximately]150 tonnes of plutonium as a result of the drastic reductions in tactical nuclear weapons announced by Presidents Bush and Gorbachev during the fall of 1991 and the reductions in strategic weapons agreed to in the START I and START II Treaties. In addition, if current plans for reprocessing spent light water reactor (LWR) fuel are carried out (mainly in Britain and France) [approximately]200 tonnes of civilian plutonium will be separated during the 1990s. This paper addresses the public-policy issues in the U.S. and abroad regarding disposition options as well as some technical aspects for options.

  8. PROCESS FOR THE RECOVERY OF PLUTONIUM

    DOEpatents

    Potratz, H.A.

    1958-12-16

    A process for the separation of plutonium from uranlum and other associated radioactlve fission products ls descrlbed conslstlng of contacting an acid solution containing plutonium in the tetravalent state and uranium in the hexavalent state with enough ammonium carbonate to form an alkaline solution, adding cupferron to selectlvely form plutonlum cupferrlde, then recoverlng the plutonium cupferride by extraction with a water lmmiscible organic solvent such as chloroform.

  9. PLUTONIUM METAL: OXIDATION CONSIDERATIONS AND APPROACH

    SciTech Connect

    Estochen, E.

    2013-03-20

    Plutonium is arguably the most unique of all metals when considered in the combined context of metallurgical, chemical, and nuclear behavior. Much of the research in understanding behavior and characteristics of plutonium materials has its genesis in work associated with nuclear weapons systems. However, with the advent of applications in fuel materials, the focus in plutonium science has been more towards nuclear fuel applications, as well as long term storage and disposition. The focus of discussion included herein is related to preparing plutonium materials to meet goals consistent with non-proliferation. More specifically, the emphasis is on the treatment of legacy plutonium, in primarily metallic form, and safe handling, packaging, and transport to meet non-proliferation goals of safe/secure storage. Elevated temperature oxidation of plutonium metal is the treatment of choice, due to extensive experiential data related to the method, as the oxide form of plutonium is one of only a few compounds that is relatively simple to produce, and stable over a large temperature range. Despite the simplicity of the steps required to oxidize plutonium metal, it is important to understand the behavior of plutonium to ensure that oxidation is conducted in a safe and effective manner. It is important to understand the effect of changes in environmental variables on the oxidation characteristics of plutonium. The primary purpose of this report is to present a brief summary of information related to plutonium metal attributes, behavior, methods for conversion to oxide, and the ancillary considerations related to processing and facility safety. The information provided is based on data available in the public domain and from experience in oxidation of such materials at various facilities in the United States. The report is provided as a general reference for implementation of a simple and safe plutonium metal oxidation technique.

  10. PLUTONIUM-CUPFERRON COMPLEX AND METHOD OF REMOVING PLUTONIUM FROM SOLUTION

    DOEpatents

    Potratz, H.A.

    1959-01-13

    A method is presented for separating plutonium from fission products present in solutions of neutronirradiated uranium. The process consists in treating such acidic solutions with cupferron so that the cupferron reacts with the plutonium present to form an insoluble complex. This plutonium cupferride precipitates and may then be separated from the solution.

  11. ACCURATE QUANTIFICATION OF RADIOACTIVE MATERIALS BY X-RAY FLUORESCENCE: GALLIUM IN PLUTONIUM METAL.

    SciTech Connect

    WORLEY, CHRISTOPHER GORDON

    2002-09-04

    Determining the concentration of gallium in plutonium metal is imperative in manufacturing nuclear weapons. X-ray fluorescence (XRF) is an effective method used to quantify the gallium content in plutonium; however, the sample and specimen preparation methods currently employed could be improved from a time and safety standpoint. Recently, a dried residue specimen preparation method was developed as an alternative to the established aqueous approach. The method currently certified to prepare plutonium for gallium analysis by XRF involves dissolving the sample and removing the plutonium with ion exchange chromatography. The gallium remaining in solution is then analyzed. This method has been thoroughly developed, and relative accuracy and precision values less than 1% can be achieved. However, this process is time consuming, and the specimen solution is radioactive due to the presence of residual plutonium and trace americium. Thus, an alternate process was developed to avoid these issues in which the plutonium solution is cast in {mu}L spots on Mylar XRF film, dried, and sealed inside a sample cell for analysis. This specimen preparation method is considerably faster and also safer than the solution process. Previous studies have demonstrated that a very linear calibration can be obtained from dried residue standards. In the present work, accuracy and precision results will be compared from using the aqueous and dried residue specimen preparation methods. The strengths and limitations of each method will also be discussed. In summary, this work will illustrate both the challenges faced with analyzing radioactive materials by XRF and the high accuracy and precision achievable with proper sample and specimen preparation.

  12. METHOD OF REDUCING PLUTONIUM WITH FERROUS IONS

    DOEpatents

    Dreher, J.L.; Koshland, D.E.; Thompson, S.G.; Willard, J.E.

    1959-10-01

    A process is presented for separating hexavalent plutonium from fission product values. To a nitric acid solution containing the values, ferrous ions are added and the solution is heated and held at elevated temperature to convert the plutonium to the tetravalent state via the trivalent state and the plutonium is then selectively precipitated on a BiPO/sub 4/ or LaF/sub 3/ carrier. The tetravalent plutonium formed is optionally complexed with fluoride, oxalate, or phosphate anion prior to carrier precipitation.

  13. Proceedings of the Plutonium Futures ? The Science 2006 Conference

    SciTech Connect

    Fluss, M; Hobart, D; Allan, P; Jarvinen, G

    2007-07-12

    'cradle-to-grave' accountability for various reactor types. Related work is presented on identification of the unique reaction mechanisms and identification of the intermediate products, including Pu(III), at the end of the PUREX process. In the important area of nuclear forensics, actual scenarios of nuclear materials confiscation and the successes of applying forensics protocols to determine attribution and possible intention are provided. In the area of reactor incidents, there is no other place on Earth like the Chernobyl Site Object Shelter and radioactive aerosol particle characterization studies reflect an important effort described herein. An additional report from another unique environmental site presents results on radionuclide monitoring, fate, and transport in the ecosystem of the Yenisei River in the Krasoyarsk region. In the area of nuclear waste disposal, a study of the ion irradiation damage to pyrochlore compounds with varying amounts of host elements and actinide dopants is presented. Papers on both the aqueous and nonaqueous chemistry of plutonium and other actinides are presented including anhydrous coordination chemistry and redox behavior in the presence of humic materials and the their sorption on common minerals in the environment. Also published herein are reports on the field of anhydrous coordination chemistry of the transuranic elements where there is scarce information. Solid-State and Materials Highlights--Plutonium solid-state and materials research is represented in these proceedings by a wealth of leading edge discovery class research. The breadth of this research is reflected in the topics covered: solid-state; materials science; superconductivity; phase changes, phonons, and entropy; electronic structure and physical properties; surface science and corrosion; and radiation effects, defects, impurities, and property changes. Indeed the scientific challenge and excitement of plutonium can best be highlighted by quoting the tutorial

  14. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Silver nitrate and hydrogen peroxide solution. 172... FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.167 Silver nitrate and hydrogen peroxide solution. An aqueous solution containing a mixture of silver nitrate and hydrogen peroxide may be safely...

  15. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Silver nitrate and hydrogen peroxide solution. 172... FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.167 Silver nitrate and hydrogen peroxide solution. An aqueous solution containing a mixture of silver nitrate and hydrogen peroxide may be safely...

  16. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Silver nitrate and hydrogen peroxide solution. 172... FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.167 Silver nitrate and hydrogen peroxide solution. An aqueous solution containing a mixture of silver nitrate and hydrogen peroxide may be safely...

  17. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Silver nitrate and hydrogen peroxide solution. 172... FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.167 Silver nitrate and hydrogen peroxide solution. An aqueous solution containing a mixture of silver nitrate and hydrogen peroxide may be safely...

  18. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Silver nitrate and hydrogen peroxide solution. 172... Preservatives § 172.167 Silver nitrate and hydrogen peroxide solution. An aqueous solution containing a mixture of silver nitrate and hydrogen peroxide may be safely used in accordance with the...

  19. Decorporation approach following rat lung contamination with a moderately soluble compound of plutonium using local and systemic Ca-DTPA combined chelation.

    PubMed

    Grémy, Olivier; Tsapis, Nicolas; Bruel, Sylvie; Renault, Daniel; Van der Meeren, Anne

    2012-09-01

    Decorporation efficacy of prompt pulmonary delivery of DTPA dry powder was assessed following lung contamination with plutonium nitrate and compared to an intravenous injection of DTPA solution and a combined administration of both DTPA compounds. In addition, efficacy of a delayed treatment was assessed. In case of either early or late administration, insufflated DTPA was more efficient than intravenously injected DTPA in reducing the plutonium lung burden due to its high local concentration. Prompt treatment with DTPA powder was also more effective in limiting extrapulmonary deposits by removing the early transportable fraction of plutonium from lungs prior its absorption into blood. Translocation of DTPA from lungs to blood may also contribute to the decrease in extrapulmonary retention, as shown by reduced liver deposit after delayed pulmonary administration of DTPA. Efficacy of DTPA dry powder was further increased by the combined intravenous administration of DTPA solution for reducing extrapulmonary deposits of plutonium and promoting its urinary excretion. According to our results, the most effective treatment protocol for plutonium decorporation was the early pulmonary delivery of DTPA powder supplemented by an intravenous injection of DTPA solution. Following inhalation of plutonium as nitrate chemical form, this combined chelation therapy should provide a more effective method of treatment than conventional intravenous injection alone. At later stages following lung contamination, pulmonary administration of DTPA should also be considered as the treatment of choice for decreasing the lung burden.

  20. Effects of structure of nitrator on nitration reaction

    SciTech Connect

    Shiying, Yin; Benli, Yin

    1995-12-01

    It is well-known that nitration of dinitrotoluene (DNT) proceeds quite slowly. Unsatisfactory structure of nitrator could cause an incomplete nitration in the nitrator, and nitration continues in the separator. This, in turn, increases the temperature difference between nitrator and separator. It was found that the nitration degree of DNT in nitrator could be estimated by this temperature difference. We investigated the relationship between the nitrator`s structure and the above temperature difference, and based on the research results obtained we could make nitration complete in nitrator, improve the quality of trinitrotoluene (TNT), lower the consumption of raw materials, especially sulfuric acid, and increase the safety of production.

  1. NITRATE CONVERSION OF HB-LINE REILLEXTM HPQ RESIN

    SciTech Connect

    Steimke, J.; Williams, M.; Steeper, T.; Leishear, R.

    2012-05-29

    Reillex{trademark} HPQ ion exchange resin is used by HB Line to remove plutonium from aqueous streams. Reillex{trademark} HPQ resin currently available from Vertellus Specialties LLC is a chloride ionic form, which can cause stress corrosion cracking in stainless steels. Therefore, HB Line Engineering requested that Savannah River National Laboratory (SRNL) convert resin from chloride form to nitrate form in the Engineering Development Laboratory (EDL). To perform this task, SRNL treated two batches of resin in 2012. The first batch of resin from Reilly Industries Batch 80302MA was initially treated at SRNL in 2001 to remove chloride. This batch of resin, nominally 30 liters, has been stored wet in carboys since that time until being retreated in 2012. The second batch of resin from Batch 23408 consisted of 50 kg of new resin purchased from Vertellus Specialties in 2012. Both batches were treated in a column designed to convert resin using downflow of 1.0 M sodium nitrate solution through the resin bed followed by rinsing with deionized water. Both batches were analyzed for chloride concentration, before and after treatment, using Neutron Activation Analysis (NAA). The resin specification [Werling, 2003] states the total chlorine and chloride concentration shall be less than 250 ppm. The resin condition for measuring this concentration is not specified; however, in service the resin would always be fully wet. Measurements in SRNL showed that changing from oven dry resin to fully wet resin, with liquid in the particle interstices but no supernatant, increases the total weight by a factor of at least three. Therefore, concentration of chlorine or chloride expressed as parts per million (ppm) decreases by a factor of three. Therefore, SRNL recommends measuring chlorine concentration on an oven dry basis, then dividing by three to estimate chloride concentration in the fully wet condition. Chloride concentration in the first batch (No.80302MA) was nearly the same

  2. Plutonium behavior after pulmonary administration according to solubility properties, and consequences on alveolar macrophage activation.

    PubMed

    Van der Meeren, Anne; Gremy, Olivier; Renault, Daniel; Miroux, Amandine; Bruel, Sylvie; Griffiths, Nina; Tourdes, Françoise

    2012-01-01

    The physico-chemical form in which plutonium enters the body influences the lung distribution and the transfer rate from lungs to blood. In the present study, we evaluated the early lung damage and macrophage activation after pulmonary contamination of plutonium of various preparation modes which produce different solubility and distribution patterns. Whatever the solubility properties of the contaminant, macrophages represent a major retention compartment in lungs, with 42 to 67% of the activity from broncho-alveolar lavages being associated with macrophages 14 days post-contamination. Lung changes were observed 2 and 6 weeks post-contamination, showing inflammatory lesions and accumulation of activated macrophages (CD68 positive) in plutonium-contaminated rats, although no increased proliferation of pneumocytes II (TTF-1 positive cells) was found. In addition, acid phosphatase activity in macrophages from contaminated rats was enhanced 2 weeks post-contamination as compared to sham groups, as well as inflammatory mediator levels (TNF-α, MCP-1, MIP-2 and CINC-1) in macrophage culture supernatants. Correlating with the decrease in activity remaining in macrophages after plutonium contamination, inflammatory mediator production returned to basal levels 6 weeks post-exposure. The production of chemokines by macrophages was evaluated after contamination with Pu of increasing solubility. No correlation was found between the solubility properties of Pu and the activation level of macrophages. In summary, our data indicate that, despite the higher solubility of plutonium citrate or nitrate as compared to preformed colloids or oxides, macrophages remain the main lung target after plutonium contamination and may participate in the early pulmonary damage.

  3. PREPARATION OF DIBASIC ALUMINUM NITRATE

    DOEpatents

    Gresky, A.T.; Nurmi, E.O.; Foster, D.L.; Wischow, R.P.; Savolainen, J.E.

    1960-04-01

    A method is given for the preparation and recovery of basic aluminum nltrates having an OH: Al ratio of at least two, comprising two steps. First, metallic aluminum is dissolved in aqueous Al(NO/sub 3/)/sub 3/, in the presence of a small quantity of elemental or ionic mercury, to increase its Al: NO/sub 3/ ratio into the range 1 to 1.2. The resulting aqueous solution is then added to an excess of a special organic solvent, typically a mixture of five parts methanol and six parts diethyl ether, whereupon the basic aluminum nitrate, e.g. Al/sub 6/(OH)/sub 13/-(NO/sub 3/)/sub 5/, recoverably precipitates.

  4. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOEpatents

    Mullins, L.J.; Christensen, D.C.

    1982-09-20

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium for electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  5. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOEpatents

    Mullins, Lawrence J.; Christensen, Dana C.

    1984-01-01

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium from electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  6. Nitrate removal using natural clays modified by acid thermoactivation

    NASA Astrophysics Data System (ADS)

    Mena-Duran, C. J.; Sun Kou, M. R.; Lopez, T.; Azamar-Barrios, J. A.; Aguilar, D. H.; Domínguez, M. I.; Odriozola, J. A.; Quintana, P.

    2007-04-01

    Groundwater pollution by nitrates is a widespread problem in many locations in the world. The underground aquatic mantle of the Peninsula of Yucatan is highly vulnerable due to its karstic nature. Adsorption methods are a good choice for nitrate elimination. In this work, a natural calcium bentonite was modified by acid thermoactivation with HCl and H 2SO 4, and tested as a media for nitrate removal in an aqueous solution. The nitrate concentration in the solution was measured by FT-IR, using the Lambert-Beer law. Clay characterization was carried out by X-ray diffraction and FT-IR spectroscopy; surface area was measured by the BET method.

  7. Plutonium oxalate precipitation for trace elemental determination in plutonium materials

    DOE PAGES

    Xu, Ning; Gallimore, David; Lujan, Elmer; ...

    2015-05-26

    In this study, an analytical chemistry method has been developed that removes the plutonium (Pu) matrix from the dissolved Pu metal or oxide solution prior to the determination of trace impurities that are present in the metal or oxide. In this study, a Pu oxalate approach was employed to separate Pu from trace impurities. After Pu(III) was precipitated with oxalic acid and separated by centrifugation, trace elemental constituents in the supernatant were analyzed by inductively coupled plasma-optical emission spectroscopy with minimized spectral interferences from the sample matrix.

  8. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  9. MOLTEN PLUTONIUM FUELED FAST BREEDER REACTOR

    DOEpatents

    Kiehn, R.M.; King, L.D.P.; Peterson, R.E.; Swickard, E.O. Jr.

    1962-06-26

    A description is given of a nuclear fast reactor fueled with molten plutonium containing about 20 kg of plutonium in a tantalum container, cooled by circulating liquid sodium at about 600 to 650 deg C, having a large negative temperature coefficient of reactivity, and control rods and movable reflector for criticality control. (AEC)

  10. Source Book on Plutonium and Its Decontamination

    DTIC Science & Technology

    1973-09-24

    Data Entered) UNCLASIFIED 20. ABSTRACT (Continued) |development of the coupled differential equations, based on the 1965 and the proposed 1973...61 XV Some Foreign Plutonium Decontamination Standards . . ...... 63 XVI Variability of Sol Sampling Data .... ..... .... 64 XVII Criteria for...Scheduling Feces Samples . . .......... 66 XVIII Types of Data which may be Coliected for Plutonium Inhalation Incidents . 66 XIX Percent Efficiencies for

  11. Influence of Iron Redox Transformations on Plutonium Sorption to Sediments

    SciTech Connect

    Hixon, Amy E.; Hu, Yung-Jin; Kaplan, Daniel I.; Kukkadapu, Ravi K.; Nitsche, Heino; Qafoku, Odeta; Powell, Brian A.

    2010-10-01

    Plutonium subsurface mobility is primarily controlled by its oxidation state, which in turn is loosely coupled to the oxidation state of iron in the system. Experiments were conducted to examine the effect of sediment iron mineral composition and oxidation state on plutonium sorption and oxidation state. A pH 6.3 vadose zone sediment containing iron oxides and iron-containing phyllosilicates was treated with various complexants (ammonium oxalate) and reductants (dithionite-citrate-bicarbonate) to selectively leach and/or reduce iron oxide and phyllosilicate phases. Mössbauer spectroscopy was used to identify initial iron mineral composition of the sediment and monitor dissolution and reduction of iron oxides. Sorption of Pu(V) was monitored over one week for each of six treated sediment fractions. Plutonium oxidation state speciation in the aqueous and solid phases was monitored using solvent extraction, coprecipitation, and XANES. Mössbauer spectroscopy showed that the sediment contained 25-30% hematite, 60-65% Al-goethite, and <10%Fe(III) in phyllosilicate; there was no detectable Fe(II). Upon reduction with a strong chemical reductant (dithionite-citrate buffer, DCB), much of the hematite and goethite disappeared and the Fe in the phyllosilicate reduced to Fe(II). The rate of sorption was found to correlate with the 1 fraction of Fe(II) remaining within each treated sediment phase. Pu(V) was the only oxidation state measured in the aqueous phase, irrespective of treatment, whereas Pu(IV) and much smaller amounts of Pu(V) and Pu(VI) were measured in the solid phase. Surface-mediated reduction of Pu(V) to Pu(IV) occurred in treated and untreated sediment samples; Pu(V) remained on untreated sediment surface for two days before reducing to Pu(IV). Similar to the sorption kinetics, the reduction rate was correlated with sediment Fe(II) concentration. The correlation between Fe(II) concentrations and Pu(V) reduction demonstrates the potential impact of changing

  12. PROCESS FOR THE RECOVERY OF PLUTONIUM

    DOEpatents

    Ritter, D.M.

    1959-01-13

    An improvement is presented in the process for recovery and decontamination of plutonium. The carrier precipitate containing plutonium is dissolved and treated with an oxidizing agent to place the plutonium in a hexavalent oxidation state. A lanthanum fluoride precipitate is then formed in and removed from the solution to carry undesired fission products. The fluoride ions in the reniaining solution are complexed by addition of a borate sueh as boric acid, sodium metaborate or the like. The plutonium is then reduced and carried from the solution by the formation of a bismuth phosphate precipitate. This process effects a better separation from unwanted flssion products along with conccntration of the plutonium by using a smaller amount of carrier.

  13. New Fecal Method for Plutonium and Americium

    SciTech Connect

    Maxwell, S.L. III

    2000-06-27

    A new fecal analysis method that dissolves plutonium oxide was developed at the Westinghouse Savannah River Site. Diphonix Resin (Eichrom Industries), is used to pre-concentrate the actinides from digested fecal samples. A rapid microwave digestion technique is used to remove the actinides from the Diphonix Resin, which effectively extracts plutonium and americium from acidic solutions containing hydrofluoric acid. After resin digestion, the plutonium and americium are recovered in a small volume of nitric acid that is loaded onto small extraction chromatography columns, TEVA Resin and TRU Resin (Eichrom Industries). The method enables complete dissolution of plutonium oxide and provides high recovery of plutonium and americium with good removal of thorium isotopes such as thorium-228.

  14. Nondestructive assay methods for solids containing plutonium

    SciTech Connect

    Macmurdo, K.W.; Gray, L.W.; Gibbs, A.

    1984-06-01

    Specific nondestructive assay (NDA) methods, e.g. calorimetry, coincidence neutron counting, singles neutron counting, and gamma ray spectrometry, were studied to provide the Savannah River Plant with an NDA method to measure the plutonium content of solid scrap (slag and crucible) generated in the JB-Line plutonium metal production process. Results indicate that calorimetry can be used to measure the plutonium content to within about 3% in 4 to 6 hours by using computerized equilibrium sample power predictive models. Calorimetry results confirm that a bias exists in the present indirect measurement method used to estimate the plutonium content of slag and crucible. Singles neutron counting of slag and crucible can measure plutonium to only +-30%, but coincidence neutron counting methods improve measurement precision to better than +-10% in less than ten minutes. Only four portions of a single slag and crucible sample were assayed, and further study is recommended.

  15. PLUTONIUM SOLUBILITY IN SIMULATED SAVANNAH RIVER SITE WASTE SOLUTIONS

    SciTech Connect

    Rudisill, T.; Hobbs, D.; Edwards, T.

    2010-09-27

    To address the accelerated disposition of the supernate and salt portions of Savannah River Site (SRS) high level waste (HLW), solubility experiments were performed to develop a predictive capability for plutonium (Pu) solubility. A statistically designed experiment was used to measure the solubility of Pu in simulated solutions with salt concentrations and temperatures which bounded those observed in SRS HLW solutions. Constituents of the simulated waste solutions included: hydroxide (OH{sup -}), aluminate (Al(OH){sub 4}{sup -}), sulfate (SO{sub 4}{sup 2-}), carbonate (CO{sub 3}{sup 2-}), nitrate (NO{sub 3}{sup -}), and nitrite (NO{sub 2}{sup -}) anions. Each anion was added to the waste solution in the sodium form. The solubilities were measured at 25 and 80 C. Five sets of samples were analyzed over a six month period and a partial sample set was analyzed after nominally fifteen months of equilibration. No discernable time dependence of the measured Pu concentrations was observed except for two salt solutions equilibrated at 80 C which contained OH{sup -} concentrations >5 mol/L. In these solutions, the Pu solubility increased with time. This observation was attributed to the air oxidation of a portion of the Pu from Pu(IV) to the more soluble Pu(V) or Pu(VI) valence states. A data driven approach was subsequently used to develop a modified response surface model for Pu solubility. Solubility data from this study and historical data from the literature were used to fit the model. The model predicted the Pu solubility of the solutions from this study within the 95% confidence interval for individual predictions and the analysis of variance indicated no statistically significant lack of fit. The Savannah River National Laboratory (SRNL) model was compared with predicted values from the Aqueous Electrolyte (AQ) model developed by OLI Systems, Inc. and a solubility prediction equation developed by Delegard and Gallagher for Hanford tank waste. The agreement between

  16. EXPERIENCES IN DECONTAMINATION & DEMOLITION OF A FORMER PLUTONIUM CONCENTRATION FACILITY HANFORD RESERVATION

    SciTech Connect

    BISHOP, G.E.

    2002-06-01

    The 233-S Plutonium Concentration Facility received plutonium nitrate paste from the nearby Reduction-Oxidation (REDOX) Facility and concentrated the plutonium for shipment to Hanford's Plutonium Finishing Plant. Operations ceased in 1967 and the Facility languished in a state of minimal maintenance until the mid-1990's when a decision was made to decontaminate and demolish (D&D) it. This work is being performed as a pilot project that integrates DOE nuclear safety analysis and worker safety requirements with Environmental Protection Agency (EPA) requirements under CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act, 1980). The pilot project is a CERCLA non-time critical removal action. Difficulties were encountered during D&D. These included conflict between the development of the safety basis as an EPA pilot project and DOE requirements for safety analysis reports, updating the safety analysis to keep it current with field conditions, and major difficulties with nondestructive assays (NDA) of the contaminated waste. No demonstrable benefit has been obtained by integrating the EPA and DOE safety methodologies.

  17. REMOVAL OF LEGACY PLUTONIUM MATERIALS FROM SWEDEN

    SciTech Connect

    Dunn, Kerry A.; Bellamy, J. Steve; Chandler, Greg T.; Iyer, Natraj C.; Koenig, Rich E.; Leduc, D.; Hackney, B.; Leduc, Dan R.; McClard, J. W.

    2013-08-18

    U.S. Department of Energy’s National Nuclear Security Administration (NNSA) Office of Global Threat Reduction (GTRI) recently removed legacy plutonium materials from Sweden in collaboration with AB SVAFO, Sweden. This paper details the activities undertaken through the U.S. receiving site (Savannah River Site (SRS)) to support the characterization, stabilization, packaging and removal of legacy plutonium materials from Sweden in 2012. This effort was undertaken as part of GTRI’s Gap Materials Program and culminated with the successful removal of plutonium from Sweden as announced at the 2012 Nuclear Security Summit. The removal and shipment of plutonium materials to the United States was the first of its kind under NNSA’s Global Threat Reduction Initiative. The Environmental Assessment for the U.S. receipt of gap plutonium material was approved in May 2010. Since then, the multi-year process yielded many first time accomplishments associated with plutonium packaging and transport activities including the application of the of DOE-STD-3013 stabilization requirements to treat plutonium materials outside the U.S., the development of an acceptance criteria for receipt of plutonium from a foreign country, the development and application of a versatile process flow sheet for the packaging of legacy plutonium materials, the identification of a plutonium container configuration, the first international certificate validation of the 9975 shipping package and the first intercontinental shipment using the 9975 shipping package. This paper will detail the technical considerations in developing the packaging process flow sheet, defining the key elements of the flow sheet and its implementation, determining the criteria used in the selection of the transport package, developing the technical basis for the package certificate amendment and the reviews with multiple licensing authorities and most importantly integrating the technical activities with the Swedish partners.

  18. A review of the corrosion and pyrophoricity behavior of uranium and plutonium

    SciTech Connect

    Totemeier, T.C.

    1995-06-01

    This report presents a review of the corrosion and pyrophoricity behavior of uranium and plutonium. For each element, the reactions with oxygen, water vapor, and aqueous solutions are described in terms of reaction rates, products, and mechanisms. Their pyrophoric tendencies in terms of measured ignition temperatures are discussed, and the effects of the important variables specific area, gas composition, and prior storage rare stated. The implications of the observed behavior for current storage issues are considered.

  19. PROCESS FOR SEGREGATING URANIUM FROM PLUTONIUM AND FISSION-PRODUCT CONTAMINATION

    DOEpatents

    Ellison, C.V.; Runion, T.C.

    1961-06-27

    An aqueous nitric acid solution containing uranium, plutonium, and fission product values is contacted with an organic extractant comprised of a trialkyl phosphate and an organic diluent. The relative amounts of trialkyl phosphate and uranium values are controlled to achieve a concentration of uranium values in the organic extractant of at least 0.35 moles uranium per mole of trialkyl phosphate, thereby preferentially extracting uranium values into the organic extractant.

  20. Chemical and Radiochemical Composition of Thermally Stabilized Plutonium Oxide from the Plutonium Finishing Plant Considered as Alternate Feedstock for the Mixed Oxide Fuel Fabrication Facility

    SciTech Connect

    Tingey, Joel M.; Jones, Susan A.

    2005-07-01

    Eighteen plutonium oxide samples originating from the Plutonium Finishing Plant (PFP) on the Hanford Site were analyzed to provide additional data on the suitability of PFP thermally stabilized plutonium oxides and Rocky Flats oxides as alternate feedstock to the Mixed Oxide Fuel Fabrication Facility (MFFF). Radiochemical and chemical analyses were performed on fusions, acid leaches, and water leaches of these 18 samples. The results from these destructive analyses were compared with nondestructive analyses (NDA) performed at PFP and the acceptance criteria for the alternate feedstock. The plutonium oxide materials considered as alternate feedstock at Hanford originated from several different sources including Rocky Flats oxide, scrap from the Remote Mechanical C-Line (RMC) and the Plutonium Reclamation Facility (PRF), and materials from other plutonium conversion processes at Hanford. These materials were received at PFP as metals, oxides, and solutions. All of the material considered as alternate feedstock was converted to PuO2 and thermally stabilized by heating the PuO2 powder at 950 C in an oxidizing environment. The two samples from solutions were converted to PuO2 by precipitation with Mg(OH)2. The 18 plutonium oxide samples were grouped into four categories based on their origin. The Rocky Flats oxide was divided into two categories, low- and high-chloride Rocky Flats oxides. The other two categories were PRF/RMC scrap oxides, which included scrap from both process lines and oxides produced from solutions. The two solution samples came from samples that were being tested at Pacific Northwest National Laboratory because all of the plutonium oxide from solutions at PFP had already been processed and placed in 3013 containers. These samples originated at the PFP and are from plutonium nitrate product and double-pass filtrate solutions after they had been thermally stabilized. The other 16 samples originated from thermal stabilization batches before canning at

  1. ADSORPTION-BISMUTH PHOSPHATE METHOD FOR SEPARATING PLUTONIUM

    DOEpatents

    Russell, E.R.; Adamson, A.W.; Boyd, G.E.

    1960-06-28

    A process is given for separating plutonium from uranium and fission products. Plutonium and uranium are adsorbed by a cation exchange resin, plutonium is eluted from the adsorbent, and then, after oxidation to the hexavalent state, the plutonium is contacted with a bismuth phosphate carrier precipitate.

  2. Plutonium Uptake and Distribution in Mammalian Cells: Molecular vs Polymeric Plutonium

    PubMed Central

    ARYAL, BAIKUNTHA P.; GORMAN-LEWIS, DREW; PAUNESKU, TATJANA; WILSON, RICHARD E.; LAI, BARRY; VOGT, STEFAN; WOLOSCHAK, GAYLE E.; JENSEN, MARK P.

    2013-01-01

    Purpose To study the cellular responses to molecular and polymeric forms of plutonium using PC12 cells derived from rat adrenal glands. Materials and methods Serum starved PC12 cells were exposed to polymeric and molecular forms of plutonium for three hours. Cells were washed with 10 mM EGTA, 100 mM NaCl at pH 7.4 to remove surface sorbed plutonium. Localization of plutonium in individual cell was quantitatively analyzed by synchrotron X-ray fluorescence (XRF) microscopy. Results Molecular plutonium complexes introduced to cell growth media in the form of NTA, citrate, or transferrin complexes were taken up by PC12 cells, and mostly co-localized with iron within the cells. Polymeric plutonium prepared separately was not internalized by PC12 cells but it was always found on the cell surface as big agglomerates; however polymeric plutonium formed in situ was mostly found within the cells as agglomerates. Conclusions PC12 cells can differentiate molecular and polymeric forms of plutonium. Molecular plutonium is taken up by PC12 cells and mostly co-localized with iron but aged polymeric plutonium is not internalized by the cells. PMID:21770702

  3. SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Beederman, M.; Vogler, S.; Hyman, H.H.

    1959-07-14

    The separation of rathenium from a rathenium containing aqueous solution is described. The separation is accomplished by adding sodium nitrite, silver nitrate and ozone to the ruthenium containing aqueous solution to form ruthenium tetroxide and ihen volatilizing off the ruthenium tetroxide.

  4. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued by the U.S. Department of Agriculture for use as sources...

  5. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued by the U.S. Department of Agriculture for use as sources...

  6. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrate and potassium nitrate. 181.33 Section 181.33 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions...

  7. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued by the U.S. Department of Agriculture for use as sources...

  8. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued by the U.S. Department of Agriculture for use as sources...

  9. Potentiometric determination of plutonium by sodium bismuthate oxidation.

    PubMed

    Charyulu, M M; Rao, V K; Natarajan, P R

    1984-12-01

    A potentiometric method for the determination of plutonium is described, in which the plutonium is quantitatively oxidized to plutonium(VI) with sodium bismuthate in nitric acid medium, the excess of oxidant is destroyed chemically and plutonium(VI) is reduced to plutonium(IV) with a measured excess of iron(II), the surplus of which is back-titrated with dichromate. For 3-5 mg of plutonium the error is less than 0.2%. For submilligram quantities of plutonium in presence of macro-amounts of uranium the error is below 2.0%.

  10. CESIUM RECOVERY FROM AQUEOUS SOLUTIONS

    DOEpatents

    Goodall, C.A.

    1960-09-13

    A process is given for precipitating cesium on zinc ferricyanide (at least 0.0004 M) from aqueous solutions containing mineral acid in a concentration of from 0.2 N acidity to 0.61 N acid-deficiency and advantageously, but not necessarily, also aluminum nitrate in a concentration of from l to 2.5 M.

  11. 10 CFR 140.108 - Appendix H-Form of indemnity agreement with licensees possessing plutonium for use in plutonium...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of... Appendixes to Part 140 § 140.108 Appendix H—Form of indemnity agreement with licensees possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of...

  12. 10 CFR 140.108 - Appendix H-Form of indemnity agreement with licensees possessing plutonium for use in plutonium...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of... Appendixes to Part 140 § 140.108 Appendix H—Form of indemnity agreement with licensees possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of...

  13. 10 CFR 140.108 - Appendix H-Form of indemnity agreement with licensees possessing plutonium for use in plutonium...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of... Appendixes to Part 140 § 140.108 Appendix H—Form of indemnity agreement with licensees possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of...

  14. 10 CFR 140.108 - Appendix H-Form of indemnity agreement with licensees possessing plutonium for use in plutonium...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of... Appendixes to Part 140 § 140.108 Appendix H—Form of indemnity agreement with licensees possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of...

  15. VOLATILE FLUORIDE PROCESS FOR SEPARATING PLUTONIUM FROM OTHER MATERIALS

    DOEpatents

    Spedding, F.H.; Newton, A.S.

    1959-04-14

    The separation of plutonium from uranium and/or tission products by formation of the higher fluorides of uranium and/or plutonium is discussed. Neutronirradiated uranium metal is first convcrted to the hydride. This hydrided product is then treatced with fluorine at about 315 deg C to form and volatilize UF/sup 6/ leaving plutonium behind. The plutonium may then be separated by reacting the residue with fluorine at about 500 deg C and collecting the volatile plutonium fluoride thus formed.

  16. Volatile fluoride process for separating plutonium from other materials

    DOEpatents

    Spedding, F. H.; Newton, A. S.

    1959-04-14

    The separation of plutonium from uranium and/or fission products by formation of the higher fluorides off uranium and/or plutonium is described. Neutronirradiated uranium metal is first converted to the hydride. This hydrided product is then treated with fluorine at about 315 deg C to form and volatilize UF/sub 6/ leaving plutonium behind. Thc plutonium may then be separated by reacting the residue with fluorine at about 5004DEC and collecting the volatile plutonium fluoride thus formed.

  17. How much plutonium does North Korea have?

    SciTech Connect

    Albright, D.

    1994-09-01

    U.S. intelligence discovered in the 1980s that North Korea was building a small nuclear reactor. The reactor was described as a gas-cooled, graphite-moderated model similar to those Britian and France used to produce electric power as well as plutonium for nuclear weapons. When Western nations expressed concern about the reactor Russia pressed North Korea to sign the Non-Proliferation Treaty (NPT) which it did on December 12, 1985. However, North Korea stalled on signing the required safeguards agreement that allows the International Atomic Energy Agency (IAEA) to inspect nuclear facilities until January 1992. Inspections by the IAEA revealed discrepancies with the amounts of plutonium separated as declared by the North Koreans. The IAEA also received reports that two North Korean waste sites were hidden. By February 1993 the IAEA and the North Koreans has reached an impasse: North Koreas initial declarations of plutonium inventory could not be confirmed and North Korea refused to cooperate. At the least, North Korea admits to having separated 100 grams of plutonium. At the most, worst case estimate, they could have a total of 6 - 13 kilograms of separated plutonium. A first nuclear weapon can require up to 10 kilograms of weapon-grade plutonium. Any settlement needs to include a way to insure that the IAEA can verify North Korea`s past nuclear activities and determine the amount of plutonium that may have been separated in the past. 2 refs.

  18. Development program to recycle and purify plutonium-238 oxide fuel from scrap

    NASA Astrophysics Data System (ADS)

    Schulte, Louis D.; Silver, Gary L.; Avens, Larry R.; Jarvinen, Gordon D.; Espinoza, Jacob; Foltyn, Elizabeth M.; Rinehart, Gary H.

    1997-01-01

    Nuclear Materials Technology (NMT) Division of Los Alamos National Laboratory (LANL) has initiated a development program to recover & purify plutonium-238 oxide from impure sources. A glove box line has been designed and a process flowsheet developed to perform this task on a large scale. Our initial effort has focused on purification of 238PuO2 fuel that fails to meet General Purpose Heat Source (GPHS) specifications because of impurities. The most notable non-actinide impurity was silicon, but aluminum, chromium, iron and nickel were also near or in excess of limits specified by GPHS fuel powder specifications. 234U was by far the largest actinide impurity observed in the feed material because it is the daughter product of 238Pu by alpha decay. An aqueous method based on nitric acid was selected for purification of the 238PuO2 fuel. All aqueous processing used high purity reagents, and was performed in PTFE apparatus to minimize introduction of new contaminants. Impure 238PuO2 was finely milled, then dissolved in refluxing HNO3/HF and the solution filtered. The dissolved 238Pu was adjusted to the trivalent state by an excess of reducing reagents to compensate for radiolytic effects, precipitated as plutonium(III) oxalate, and recovered by filtration. The plutonium(III) oxalate was subsequently calcined to convert the plutonium to the oxide. Decontamination factors for silicon, phosphorus and uranium were excellent. Decontamination factors for aluminum, chromium, iron and nickel were very good. The purity of the 238PuO2 recovered from this operation was significantly better than specifications. Efforts continue to develop the capability for efficient, safe, cost-effective, and environmentally acceptable methods to recover and purify 238PuO2 fuel in a glove box environment. Plutonium-238 materials targeted for recovery includes impure oxide and scrap items that are lean in 238Pu values.

  19. Evidence for a plasma-membrane-bound nitrate reductase involved in nitrate uptake of Chlorella sorokiniana

    NASA Technical Reports Server (NTRS)

    Tischner, R.; Ward, M. R.; Huffaker, R. C.

    1989-01-01

    Anti-nitrate-reductase (NR) immunoglobulin-G (IgG) fragments inhibited nitrate uptake into Chlorella cells but had no affect on nitrate uptake. Intact anti-NR serum and preimmune IgG fragments had no affect on nitrate uptake. Membrane-associated NR was detected in plasma-membrane (PM) fractions isolated by aqueous two-phase partitioning. The PM-associated NR was not removed by sonicating PM vesicles in 500 mM NaCl and 1 mM ethylenediaminetetraacetic acid and represented up to 0.8% of the total Chlorella NR activity. The PM NR was solubilized by Triton X-100 and inactivated by Chlorella NR antiserum. Plasma-membrane NR was present in ammonium-grown Chlorella cells that completely lacked soluble NR activity. The subunit sizes of the PM and soluble NRs were 60 and 95 kDa, respectively, as determined by sodium-dodecyl-sulfate electrophoresis and western blotting.

  20. Modeling of distribution and speciation of plutonium in the Urex extraction system

    SciTech Connect

    Paulenova, A.; Tkac, P.; Vandegrift, G.F.; Krebs, J.F.

    2008-07-01

    The PUREX extraction process is used worldwide to recover uranium and plutonium from dissolved spent nuclear fuel using the tributylphosphate-nitric acid extraction system. In the recent decade, significant research progress was achieved with the aim to modify this system by addition of a salt-free agent to optimize stripping of plutonium from the tributylphosphate (TBP) extraction product (UREX). Experimental results on the extraction of Pu(IV) with and without acetohydroxamic acid in the HNO{sub 3}/TBP (30 vol %) were used for the development of a thermodynamic model of distribution and speciation of Pu(IV) in this separation process. Extraction constants for several sets of nitric acid, nitrate, and acetohydroxamic acid concentrations were used to model the obtained data. The extraction model AMUSE (Argonne Model for Universal Solvent Extraction) was employed in our calculations. (authors)

  1. Hydroxylamine Nitrate Decomposition under Non-radiological Conditions

    SciTech Connect

    McFarlane, Joanna; Delmau, Laetitia Helene; DePaoli, David W.; Mattus, Catherine H.; Phelps, Clarice E.; Roach, Benjamin D.

    2015-07-01

    Hydroxylamine nitrate (HAN) is used to reduce Pu(IV) to Pu(III) in the separation of plutonium from uranium. HAN becomes unstable under certain conditions and has been known to explode, causing injury to humans including death. Hence, it is necessary to deactivate HAN once the reduction of plutonium is finished. This report reviews what is known about the chemistry of HAN and various methods to achieve a safe decomposition. However, there are areas where more information is needed to make a decision about the handling of HAN in reprocessing of nuclear fuel. Experiments have demonstrated a number of non-radiolytic ways to safely decompose HAN, including heating in HNO3, photolytic oxidation in the presence of H2O2, and the addition of a metal such as Fe(III) that will oxidize the HAN.

  2. NON-CORROSIVE PLUTONIUM FUEL SYSTEMS

    DOEpatents

    Coffinberry, A.S.; Waber, J.T.

    1962-10-23

    An improved plutonium reactor liquid fuel is described for utilization in a nuclear reactor having a tantalum fuel containment vessel. The fuel consists of plutonium and a diluent such as iron, cobalt, nickel, cerium, cerium-- iron, cerium--cobalt, cerium--nickel, and cerium--copper, and an additive of carbon and silicon. The carbon and silicon react with the tantalum container surface to form a coating that is self-healing and prevents the corrosive action of liquid plutonium on the said tantalum container. (AEC)

  3. Removal of plutonium from hepatic tissue

    DOEpatents

    Lindenbaum, Arthur; Rosenthal, Marcia W.

    1979-01-01

    A method is provided for removing plutonium from hepatic tissues by introducing into the body and blood stream a solution of the complexing agent DTPA and an adjunct thereto. The adjunct material induces aberrations in the hepatic tissue cells and removes intracellularly deposited plutonium which is normally unavailable for complexation with the DTPA. Once the intracellularly deposited plutonium has been removed from the cell by action of the adjunct material, it can be complexed with the DTPA present in the blood stream and subsequently removed from the body by normal excretory processes.

  4. Plutonium Immobilization Can Loading Conceptual Design

    SciTech Connect

    Kriikku, E.

    1999-05-13

    'The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses the Plutonium Immobilization can loading conceptual design and includes a process block diagram, process description, preliminary equipment specifications, and several can loading issues. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas.'

  5. Excess Weapons Plutonium Immobilization in Russia

    SciTech Connect

    Jardine, L.; Borisov, G.B.

    2000-04-15

    The joint goal of the Russian work is to establish a full-scale plutonium immobilization facility at a Russian industrial site by 2005. To achieve this requires that the necessary engineering and technical basis be developed in these Russian projects and the needed Russian approvals be obtained to conduct industrial-scale immobilization of plutonium-containing materials at a Russian industrial site by the 2005 date. This meeting and future work will provide the basis for joint decisions. Supporting R&D projects are being carried out at Russian Institutes that directly support the technical needs of Russian industrial sites to immobilize plutonium-containing materials. Special R&D on plutonium materials is also being carried out to support excess weapons disposition in Russia and the US, including nonproliferation studies of plutonium recovery from immobilization forms and accelerated radiation damage studies of the US-specified plutonium ceramic for immobilizing plutonium. This intriguing and extraordinary cooperation on certain aspects of the weapons plutonium problem is now progressing well and much work with plutonium has been completed in the past two years. Because much excellent and unique scientific and engineering technical work has now been completed in Russia in many aspects of plutonium immobilization, this meeting in St. Petersburg was both timely and necessary to summarize, review, and discuss these efforts among those who performed the actual work. The results of this meeting will help the US and Russia jointly define the future direction of the Russian plutonium immobilization program, and make it an even stronger and more integrated Russian program. The two objectives for the meeting were to: (1) Bring together the Russian organizations, experts, and managers performing the work into one place for four days to review and discuss their work with each other; and (2) Publish a meeting summary and a proceedings to compile reports of all the excellent

  6. Immobilization of excess weapons plutonium in Russia

    SciTech Connect

    Borisov, G B; Jardine, L J; Mansourov, O A

    1999-01-25

    In this paper, we examine the logic and framework for the development of a capability to immobilize excess Russian weapons plutonium by the year 2004. The initial activities underway in Russia, summarized here, include engineering feasibility studies of the immobilization of plutonium-containing materials at the Krasnoyarsk and Mayak industrial sites. In addition, research and development (R&D) studies are underway at Russian institutes to develop glass and ceramic forms suitable for the immobilization of plutonium-containing materials, residues, and wastes and for their geologic disposal.

  7. Weapons-grade plutonium dispositioning. Volume 4. Plutonium dispositioning in light water reactors

    SciTech Connect

    Sterbentz, J.W.; Olsen, C.S.; Sinha, U.P.

    1993-06-01

    This study is in response to a request by the Reactor Panel Subcommittee of the National Academy of Sciences (NAS) Committee on International Security and Arms Control (CISAC) to evaluate the feasibility of using plutonium fuels (without uranium) for disposal in existing conventional or advanced light water reactor (LWR) designs and in low temperature/pressure LWR designs that might be developed for plutonium disposal. Three plutonium-based fuel forms (oxides, aluminum metallics, and carbides) are evaluated for neutronic performance, fabrication technology, and material and compatibility issues. For the carbides, only the fabrication technologies are addressed. Viable plutonium oxide fuels for conventional or advanced LWRs include plutonium-zirconium-calcium oxide (PuO{sub 2}-ZrO{sub 2}-CaO) with the addition of thorium oxide (ThO{sub 2}) or a burnable poison such as erbium oxide (Er{sub 2}O{sub 3}) or europium oxide (Eu{sub 2}O{sub 3}) to achieve acceptable neutronic performance. Thorium will breed fissile uranium that may be unacceptable from a proliferation standpoint. Fabrication of uranium and mixed uranium-plutonium oxide fuels is well established; however, fabrication of plutonium-based oxide fuels will require further development. Viable aluminum-plutonium metallic fuels for a low temperature/pressure LWR include plutonium aluminide in an aluminum matrix (PuAl{sub 4}-Al) with the addition of a burnable poison such as erbium (Er) or europium (Eu). Fabrication of low-enriched plutonium in aluminum-plutonium metallic fuel rods was initially established 30 years ago and will require development to recapture and adapt the technology to meet current environmental and safety regulations. Fabrication of high-enriched uranium plate fuel by the picture-frame process is a well established process, but the use of plutonium would require the process to be upgraded in the United States to conform with current regulations and minimize the waste streams.

  8. Separation of americium, curium, and plutonium from irradiated targets

    SciTech Connect

    Felker, L.K.; Benker, D.E.; Chattin, F.R.

    1995-04-01

    The Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL) processes highly irradiated targets for the Mark 42 program to separate Am, Cm, and Pu. The target feed material for each assembly was 3.3 kg of plutonium (78% {sup 239}Pu) that was irradiated at the Savannah River Site to yield approximately 100 g each of {sup 243}Am and {sup 244}Cm, and 100-g quantities of {sup 242}Pu for special DOE projects. The REDC has plans to process ten of these target assemblies over the next few years. The first assembly has been dissolved, and approximately 1/4 of this material has been used to test the processing flowsheet. Various aqueous processes developed at the REDC over the past years were utilized to dissolve the target segments, separate the bulk of the impurities from the transuranics, separate the plutonium from the transplutonium actinides, and separate the rare earth fission products from the Am-Cm. The separation of the Am-Cm products to the desired purity levels presented new processing challenges for REDC operations. Through a combination of precipitation and cation-exchange operations, an Am product containing part-per-million levels of Cm was obtained. Standard REDC processing techniques were used to prepare the products as oxides for shipment. Future processing will focus on the reduction of waste solutions, improvement of yields, and application of new technologies for improved processing.

  9. PRODUCTION OF PLUTONIUM FLUORIDE FROM BISMUTH PHOSPHATE PRECIPITATE CONTAINING PLUTONIUM VALUES

    DOEpatents

    Brown, H.S.; Bohlmann, E.G.

    1961-05-01

    A process is given for separating plutonium from fission products present on a bismuth phosphate carrier. The dried carrier is first treated with hydrogen fluoride at between 500 and 600 deg C whereby some fission product fluorides volatilize away from plutonium tetrafluoride, and nonvolatile fission product fluorides are formed then with anhydrous fluorine at between 400 and 500 deg C. Bismuth and plutonium distill in the form of volatile fluorides away from the nonvolatile fission product fluorides. The bismuth and plutonium fluorides are condensed at below 290 deg C.

  10. Spectrophotometric determination of plutonium-239 based on the spectrum of plutonium(III) chloride

    SciTech Connect

    Temer, D.J.; Walker, L.F.

    1994-07-01

    This report describes a spectrophotometric method for determining plutonium-239 (Pu-239) based on the spectrum of Pu(III) chloride. The authors used the sealed-reflux technique for the dissolution of plutonium oxide with hydrochloric acid (HCl) and small amounts of nitric and hydrofluoric acids. To complex the fluoride, they added zirconium, and to reduce plutonium to Pu(III), they added ascorbic acid. They then adjusted the solution to a concentration of 2 M HCl and measured the absorbances at five wavelengths of the Pu(III) chloride spectrum. This spectrophotometric determination can also be applied to samples of plutonium metal dissolved in HCl.

  11. PLUTONIUM METALLOGRAPHY AT LOS ALAMOS

    SciTech Connect

    PEREYRA, RAMIRO A.; LOVATO, DARRYL

    2007-01-08

    From early days of the Manhattan program to today, scientists and engineers have continued to investigate the metallurgical properties of plutonium (Pu). Although issues like aging was not a concern to the early pioneers, today the reliability of our aging stockpile is of major focus. And as the country moves toward a new generation of weapons similar problems that the early pioneers faced such as compatibility, homogeneity and malleability have come to the forefront. And metallography will continue to be a principle tool for the resolution of old and new issues. Standard metallographic techniques are used for the preparation of plutonium samples. The samples are first cut with a slow speed idamond saw. After mounting in Epon 815 epoxy resin, the samples are ground through 600 grit silicon carbide paper. PF 5070 (a Freon substitute) is used as a coolant, lubricant, and solvent for most operations. Rough mechanical polished is done with 9-{mu} diamond using a nap less cloth, for example nylon or cotton. Final polish is done with 1-{mu} diamond on a nappy cloth such as sylvet. Ethyl alcohol is then used ultrasonically to clean the samples before electro polishing. The sample is then electro-polished and etched in an electrolyte containing 10% nitric acid, and 90% dimethyleneformalmide. Ethyl alcohol is used as a final cleaning agent. Although standard metallographic preparation techniques are used, there are several reasons why metallography of Pu is difficult and challenging. Firstly, because of the health hazards associated with its radioactive properties, sample preparation is conducted in glove boxes. Figure 1 shows the metallography line, in an R and D facility. Since they are designed to be negative in pressure to the laboratory, cross-contamination of abrasives is a major problem. In addition, because of safety concerns and waste issues, there is a limit to the amount of solvent that can be used. Secondly, Pu will readily hydride or oxidize when in contact

  12. Tests of a comparative method of dating plutonium samples

    NASA Astrophysics Data System (ADS)

    West, D.

    1987-04-01

    Tests of a comparative method of dating plutonium samples have been carried out using 241Pu in aqueous solution. The six samples were of known ages (between 0.25 and 15 yr) and with one exception the measured ages, using particular samples as standards, agreed with the stated ages. In one case the agreement was beter than 1% in age. Mixed-oxide fuel pins were also intercompared. In this case it was with some difficulty that a sample of known age was obtaine. Comparison using this sample and an older one gave the same value (within ±1%) for the separation date of the unknown sample on three occasions over a three year period.

  13. Plutonium focus area: Technology summary

    SciTech Connect

    1996-03-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this approach, EM developed a management structure and principles that led to creation of specific focus areas. These organizations were designed to focus scientific and technical talent throughout DOE and the national scientific community on major environmental restoration and waste management problems facing DOE. The focus area approach provides the framework for inter-site cooperation and leveraging of resources on common problems. After the original establishment of five major focus areas within the Office of Technology Development (EM-50), the Nuclear Materials Stabilization Task Group (NMSTG, EM-66) followed EM-50`s structure and chartered the Plutonium Focus Area (PFA). NMSTG`s charter to the PFA, described in detail later in this book, plays a major role in meeting the EM-66 commitments to the Defense Nuclear Facilities Safety Board (DNFSB). The PFA is a new program for FY96 and as such, the primary focus of revision 0 of this Technology Summary is an introduction to the Focus Area; its history, development, and management structure, including summaries of selected technologies being developed. Revision 1 to the Plutonium Focus Area Technology Summary is slated to include details on all technologies being developed, and is currently planned for release in August 1996. The following report outlines the scope and mission of the Office of Environmental Management, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  14. Leaching behavior of particulate plutonium oxide

    SciTech Connect

    Kosiewicz, S.T.; Heaton, R.C.

    1985-08-01

    Different size cuts of /sup 238/PuO/sub 2/ particles were mixed with deionized water at two temperatures in a shaker bath. The gross plutonium concentration in the water was measured, as well as that portion of the plutonium retained on a 0.1-..mu..m pore filter. The concentration of the plutonium released was primarily a function of the surface area of the particles. The release rate of plutonium into the water for the size cut with particles having diameters between 30 and 20 ..mu..m was 3 ng/m/sup 2//s; this rate is within the range observed in past experiments involving aquatic environments. The amount of material retained by the 0.1-..mu..m filters decreased with increasing time, suggesting that size reduction or removal processes occurred. 6 refs., 3 figs., 9 tabs.

  15. Plutonium finishing plant dangerous waste training plan

    SciTech Connect

    ENTROP, G.E.

    1999-05-24

    This training plan describes general requirements, worker categories, and provides course descriptions for operation of the Plutonium Finish Plant (PFP) waste generation facilities, permitted treatment, storage and disposal (TSD) units, and the 90-Day Accumulation Areas.

  16. The thermal expansion behavior of unalloyed plutonium

    SciTech Connect

    Schonfeld, F.W.; Tate, R.E.

    1996-09-01

    Information and data concerning the thermal expansion characteristics of the solid and liquid phases of unalloyed plutonium have been collected from published and unpublished sources and evaluated, and are presented to provide increased availability in compact form.

  17. A Plutonium Storage Container Pressure Measurement Technique

    SciTech Connect

    Grim, T.J.

    2002-05-10

    Plutonium oxide and metal awaiting final disposition are currently stored at the Savannah River Site in crimp sealed food pack cans. Surveillances to ensure continued safe storage of the cans include periodic lid deflection measurements using a mechanical device.

  18. Pulmonary carcinogenesis from plutonium-containing particles

    SciTech Connect

    Thomas, R.G.; Smith, D.M.; Anderson, E.C.

    1980-01-01

    Plutonium administered as an alpha radiation source to the respiratory tracts of Syrian hamsters has resulted in various incidences of neoplasia. Adenomas are the primary lung tumor observed, but adenocarcinomas are also prevalent.

  19. Actinide recovery using aqueous biphasic extraction: Initial developmental studies

    SciTech Connect

    Chaiko, D.J.; Mensah-Biney, R.; Mertz, C.J.; Rollins, A.N.

    1992-08-01

    Aqueous biphasic extraction systems are being developed to treat radioactive wastes. The separation technique involves the selective partitioning of either solutes or colloid-size particles between two scible aqueous phases. Wet grinding of plutonium residues to an average particle size of one micron will be used to liberate the plutonium from the bulk of the particle matrix. The goal is to produce a plutonium concentrate that will integrate with existing and developing chemical recovery processes. Ideally, the process would produce a nonTRU waste stream. Coupling physical beneficiation with chemical processing will result in a substantial reduction in the volume of mixed wastes generated from dissolution recovery processes. As part of this program, we will also explore applications of aqueous biphasic extraction that include the separation and recovery of dissolved species such as metal ions and water-soluble organics. The expertise and data generated in this work will form the basis for developing more cost-effective processes for handling waste streams from environmental restoration and waste management activities within the DOE community. This report summarizes the experimental results obtained during the first year of this effort. Experimental efforts were focused on elucidating the surface and solution chemistry variables which govern partitioning behavior of plutonium and silica in aqueous biphasic extraction systems. Additional efforts were directed toward the development of wet grinding methods for producing ultrafine particles with diameters of one micron or less.

  20. Plutonium: The first 50 years. United States plutonium production, acquisition, and utilization from 1944 through 1994

    SciTech Connect

    1996-02-01

    The report contains important newly declassified information regarding the US production, acquisition, and removals of plutonium. This new information, when combined with previously declassified data, has allowed the DOE to issue, for the first time, a truly comprehensive report on the total DOE plutonium inventory. At the December 7, 1993, Openness Press Conference, the DOE declassified the plutonium inventories at eight locations totaling 33.5 metric tons (MT). This report declassifies the remainder of the DOE plutonium inventory. Newly declassified in this report is the quantity of plutonium at the Pantex Site, near Amarillo, Texas, and in the US nuclear weapons stockpile of 66.1 MT, which, when added to the previously released inventory of 33.5 MT, yields a total plutonium inventory of 99.5 MT. This report will document the sources which built up the plutonium inventory as well as the transactions which have removed plutonium from that inventory. This report identifies four sources that add plutonium to the DOE/DoD inventory, and seven types of transactions which remove plutonium from the DOE/DoD inventory. This report also discusses the nuclear material control and accountability system which records all nuclear material transactions, compares records with inventory and calculates material balances, and analyzes differences to verify that nuclear materials are in quantities as reported. The DOE believes that this report will aid in discussions in plutonium storage, safety, and security with stakeholders as well as encourage other nations to declassify and release similar data. These data will also be available for formulating policies with respect to disposition of excess nuclear materials. The information in this report is based on the evaluation of available records. The information contained in this report may be updated or revised in the future should additional or more detailed data become available.

  1. A DGT technique for plutonium bioavailability measurements.

    PubMed

    Cusnir, Ruslan; Steinmann, Philipp; Bochud, François; Froidevaux, Pascal

    2014-09-16

    The toxicity of heavy metals in natural waters is strongly dependent on the local chemical environment. Assessing the bioavailability of radionuclides predicts the toxic effects to aquatic biota. The technique of diffusive gradients in thin films (DGT) is largely exploited for bioavailability measurements of trace metals in waters. However, it has not been applied for plutonium speciation measurements yet. This study investigates the use of DGT technique for plutonium bioavailability measurements in chemically different environments. We used a diffusion cell to determine the diffusion coefficients (D) of plutonium in polyacrylamide (PAM) gel and found D in the range of 2.06-2.29 × 10(-6) cm(2) s(-1). It ranged between 1.10 and 2.03 × 10(-6) cm(2) s(-1) in the presence of fulvic acid and in natural waters with low DOM. In the presence of 20 ppm of humic acid of an organic-rich soil, plutonium diffusion was hindered by a factor of 5, with a diffusion coefficient of 0.50 × 10(-6) cm(2) s(-1). We also tested commercially available DGT devices with Chelex resin for plutonium bioavailability measurements in laboratory conditions and the diffusion coefficients agreed with those from the diffusion cell experiments. These findings show that the DGT methodology can be used to investigate the bioaccumulation of the labile plutonium fraction in aquatic biota.

  2. Plutonium Finishing Plant safety evaluation report

    SciTech Connect

    Not Available

    1995-01-01

    The Plutonium Finishing Plant (PFP) previously known as the Plutonium Process and Storage Facility, or Z-Plant, was built and put into operation in 1949. Since 1949 PFP has been used for various processing missions, including plutonium purification, oxide production, metal production, parts fabrication, plutonium recovery, and the recovery of americium (Am-241). The PFP has also been used for receipt and large scale storage of plutonium scrap and product materials. The PFP Final Safety Analysis Report (FSAR) was prepared by WHC to document the hazards associated with the facility, present safety analyses of potential accident scenarios, and demonstrate the adequacy of safety class structures, systems, and components (SSCs) and operational safety requirements (OSRs) necessary to eliminate, control, or mitigate the identified hazards. Documented in this Safety Evaluation Report (SER) is DOE`s independent review and evaluation of the PFP FSAR and the basis for approval of the PFP FSAR. The evaluation is presented in a format that parallels the format of the PFP FSAR. As an aid to the reactor, a list of acronyms has been included at the beginning of this report. The DOE review concluded that the risks associated with conducting plutonium handling, processing, and storage operations within PFP facilities, as described in the PFP FSAR, are acceptable, since the accident safety analyses associated with these activities meet the WHC risk acceptance guidelines and DOE safety goals in SEN-35-91.

  3. Recovery of plutonium from nitric acid waste

    SciTech Connect

    Muscatello, A.C.; Saba, M.T.; Navratil, J.D.

    1986-12-21

    Seven candidate materials, each contained in a static-bed column, have been evaluated for removing plutonium from nitric acid waste. Three materials have insufficient capacity for plutonium: TBP (tri-n-butylphosphate) sorbed on Amberlite XAD-4 resin, O phi D(IB)CMPO (octylphenyl-N, N-diisobutylcarbamoylmethylphosphine oxide) sorbed on XAD-4, and Amberlite IRA-938 anion exchange resin. The remaining four materials reduced 10/sup -3/ g/l plutonium in 7.2M HNO/sub 3/ to low 10/sup -5/ g/l for 80 bed volumes (BV). The 10% breakthrough capacities for 3 x 10/sup -2/ g/l plutonium are: TOPO (tri-n-octylphosphine oxide) on XAD-4 - 1800 BV, DHDECMP (dihexyl-N, N-diethylcarbamoylmethylphosphonate) on XAD-4 - 960 BV, Dowex 1 x 4 - 840 BV, and DHDECMP + TBP - 640 BV. Based on these results and generally poor elution of all materials, TOPO on XAD-4 is recommended as the best candidate for recovery of plutonium followed by acid digestion or combustion of the TOPO to recover the concentrated plutonium.

  4. Cylodextrin Polymer Nitrate

    NASA Technical Reports Server (NTRS)

    Kosowski, Bernard; Ruebner, Anja; Statton, Gary; Robitelle, Danielle; Meyers, Curtis

    2000-01-01

    The development of the use of cyclodextrin nitrates as possible components of insensitive, high-energy energetics is outlined over a time period of 12 years. Four different types of cyclodextrin polymers were synthesized, nitrated, and evaluated regarding their potential use for the military and aerospace community. The synthesis of these novel cyclodextrin polymers and different nitration techniques are shown and the potential of these new materials is discussed.

  5. Sorption/Desorption Interactions of Plutonium with Montmorillonite

    NASA Astrophysics Data System (ADS)

    Begg, J.; Zavarin, M.; Zhao, P.; Kersting, A. B.

    2012-12-01

    first order process. Furthermore, a pH dependence was observed, with less desorbed at pH 4 compared to pH 8. We suggest the pH dependence is likely controlled by reoxidation of Pu(IV) to Pu(V) and aqueous speciation. We will present models used to describe desorption behavior and discuss the implications for Pu transport. References: Kersting, A.B.; Efurd, D.W.; Finnegan, D.L.; Rokop, D.J.; Smith, D.K.; Thompson J.L. (1999) Migration of plutonium in groundwater at the Nevada Test Site, Nature, 397, 56-59. Novikov A.P.; Kalmykov, S.N.; Utsunomiya, S.; Ewing, R.C.; Horreard, F.; Merkulov, A.; Clark, S.B.; Tkachev, V.V.; Myasoedov, B.F. (2006) Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia, Science, 314, 638-641. Santschi, P.H.; Roberts, K.; Guo, L. (2002) The organic nature of colloidal actinides transported in surface water environments. Environ. Sci. Technol., 36, 3711-3719. This work was funded by U. S. DOE Office of Biological & Environmental Sciences, Subsurface Biogeochemistry Research Program, and performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344. LLNL-ABS-570161

  6. Factors Controlling Redox Speciation of Plutonium and Neptunium in Extraction Separation Processes

    SciTech Connect

    Paulenova, Alena; Vandegrift, III, George F.

    2013-09-24

    The objective of the project was to examine the factors controlling redox speciation of plutonium and neptunium in UREX+ extraction in terms of redox potentials, redox mechanism, kinetics and thermodynamics. Researchers employed redox-speciation extractions schemes in parallel to the spectroscopic experiments. The resulting distribution of redox species w studied uring spectroscopic, electrochemical, and spectro-electrochemical methods. This work reulted in collection of data on redox stability and distribution of redox couples in the nitric acid/nitrate electrolyte and the development of redox buffers to stabilize the desired oxidation state of separated radionuclides. The effects of temperature and concentrations on the redox behavior of neptunium were evaluated.

  7. A Study of the Stability and Characterization Plutonium Dioxide and Chemical Characterization [of] Rocky Flats and Los Alamos Plutonium-Containing Incinerator Ash

    SciTech Connect

    Ray, A.K.; Boettger, J.C.; Behrens, Robert G.

    1999-11-29

    In the presentation ''A Study of the Stability and Characterization of Plutonium Dioxide'', the authors discuss their recent work on actinide stabilities and characterization, in particular, plutonium dioxide PuO{sub 2}. Earlier studies have indicated that PuO{sub 2} has the fluorite structure of CaF{sub 2} and typical oxide semiconductor properties. However, detailed results on the bulk electronic structure of this important actinide oxide have not been available. The authors have used all-electron, full potential linear combinations Gaussian type orbitals fitting function (LCGTO-FF) method to study PuO{sub 2}. The LCGTO-FF technique characterized by its use of three independent GTO basis sets to expand the orbitals, charge density, and exchange-correlation integral kernels. Results will be presented on zero pressure using both the Hedin-Lundquist local density approximation (LDA) model or the Perdew-Wang generalized gradient approximation (GGA) model. Possibilities of different characterizations of PuO{sub 2} will be explored. The paper ''Chemical Characterization Rocky Flats and Los Alamos Plutonium-Containing Incinerator Ash'' describes the results of a comprehensive study of the chemical characteristics of virgin, calcined and fluorinated incinerator ash produced at the Rocky Flats Plant and at the Los Alamos National Laboratory prior to 1988. The Rocky Flats and Los Alamos virgin, calcined, and fluorinated ashes were also dissolved using standard nitrate dissolution chemistry. Corresponding chemical evaluations were preformed on the resultant ash heel and the results compared with those of the virgin ash. Fluorination studies using FT spectroscopy as a diagnostic tool were also performed to evaluate the chemistry of phosphorus, sulfur, carbon, and silicon containing species in the ash. The distribution of plutonium and other chemical elements with the virgin ash, ash heel, fluorinated ash, and fluorinated ash heel particulates were studied in detail using

  8. PROCESS OF FORMING PLUOTONIUM SALTS FROM PLUTONIUM EXALATES

    DOEpatents

    Garner, C.S.

    1959-02-24

    A process is presented for converting plutonium oxalate to other plutonium compounds by a dry conversion method. According to the process, lower valence plutonium oxalate is heated in the presence of a vapor of a volatile non- oxygenated monobasic acid, such as HCl or HF. For example, in order to produce plutonium chloride, the pure plutonium oxalate is heated to about 700 deg C in a slow stream of hydrogen plus HCl. By the proper selection of an oxidizing or reducing atmosphere, the plutonium halide product can be obtained in either the plus 3 or plus 4 valence state.

  9. SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS

    DOEpatents

    Boyd, G.E.; Adamson, A.W.; Schubert, J.; Russell, E.R.

    1958-10-01

    A chromatographic adsorption process is presented for the separation of plutonium from other fission products formed by the irradiation of uranium. The plutonium and the lighter element fission products are adsorbed on a sulfonated phenol-formaldehyde resin bed from a nitric acid solution containing the dissolved uranium. Successive washes of sulfuric, phosphoric, and nitric acids remove the bulk of the fission products, then an eluate of dilute phosphoric and nitric acids removes the remaining plutonium and fission products. The plutonium is selectively removed by passing this solution through zirconium phosphate, from which the plutonium is dissolved with nitric acid. This process provides a convenient and efficient means for isolating plutonium.

  10. Observed changes in the mechanism and rates of Pu(V) reduction on hematite as a function of total plutonium concentration.

    PubMed

    Hixon, Amy E; Powell, Brian A

    2014-08-19

    Changes in aqueous- and solid-phase plutonium oxidation states were monitored as a function of time and plutonium concentration in hematite (α-Fe2O3) suspensions containing initially Pu(V). Batch kinetic experiments were conducted at plutonium concentrations between 10(-8) and 10(-6) M at pH 5 and 0.3 g/L (9.3 m(2)/L) hematite. Surface-mediated reduction of Pu(V) was observed under all conditions studied. However, differences in the reaction kinetics demonstrate that the mechanism of Pu(V) reduction changes as a function of plutonium concentration. Adsorption of Pu(V) was found to be the rate-limiting step at plutonium concentrations less than approximately 10(-7) M Pu(V). Plutonium reduction in these systems was attributed to trace amounts of Fe(II) in the hematite structure. Reduction of Pu(V) was found to be the rate-limiting step at concentrations higher than approximately 10(-6) M Pu(V) and is attributed to the formation of PuO(2+x)·nH2O nanoparticles and the Nernstian favorability of Pu(IV) surface complexes. The reaction order with respect to plutonium concentration was found to be -0.68 ± 0.09, indicating that there is a concentration dependence in these systems. This work strongly suggests that the kinetics of experiments carried out under high plutonium concentrations (i.e., >10(-7) M Pu) cannot be directly extrapolated to environmental concentrations of plutonium.

  11. Solvent extraction of uranium(VI) into toluene by dicyclohexano-18-crown-6 from mixed aqueous-organic solutions.

    PubMed

    Shukla, J P; Kumar, A; Singh, R K

    1993-08-01

    Extraction behaviour of uranium(VI) from mixed organo-aqueous solutions containing water-miscible protic aliphatic alcohols and several aprotic solvents was investigated by using dicyclohexano-18-crown-6(DC18C6) as an extractant. The organic phase was a binary solution of DC18C6 and toluene while the polar phase was a three component solution of uranyl nitrate, polar additive and aqueous nitric acid. Methanol, ethanol, isobutanol, dioxane, acetone, propylene carbonate and acetonitrile were used as the organic components of the mixed (polar) phase. Propylene carbonate, acetone, acetonitrile and dioxane increased the extractability of U(VI), whereas alcoholic additives showed only an antagonistic effect. The relative increase in extraction was found to be more at lower nitric acid concentrations. Possible reasons for such behaviour are briefly discussed. Recovery of U(VI) from loaded organic phase was easily accomplished using dilute perchloric acid and sulphuric acid. A sample method was standardized for the separation of plutonium(IV) from uranium(VI) based on its reductive stripping.

  12. Nitrate Leaching Index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Nitrate Leaching Index is a rapid assessment tool that evaluates nitrate (NO3) leaching potential based on basic soil and climate information. It is the basis for many nutrient management planning efforts, but it has considerable limitations because of : 1) an oversimplification of the processes...

  13. Crystallization of sodium nitrate from radioactive waste

    SciTech Connect

    Krapukhin, V.B.; Krasavina, E.P. Pikaev, A.K.

    1997-07-01

    From the 1940s to the 1980s, the Institute of Physical Chemistry of the Russian Academy of Sciences (IPC/RAS) conducted research and development on processes to separate acetate and nitrate salts and acetic acid from radioactive wastes by crystallization. The research objective was to decrease waste volumes and produce the separated decontaminated materials for recycle. This report presents an account of the IPC/RAS experience in this field. Details on operating conditions, waste and product compositions, decontamination factors, and process equipment are described. The research and development was generally related to the management of intermediate-level radioactive wastes. The waste solutions resulted from recovery and processing of uranium, plutonium, and other products from irradiated nuclear fuel, neutralization of nuclear process solutions after extractant recovery, regeneration of process nitric acid, equipment decontamination, and other radiochemical processes. Waste components include nitric acid, metal nitrate and acetate salts, organic impurities, and surfactants. Waste management operations generally consist of two stages: volume reduction and processing of the concentrates for storage, solidification, and disposal. Filtration, coprecipitation, coagulation, evaporation, and sorption were used to reduce waste volume. 28 figs., 40 tabs.

  14. Development of a plutonium solution-assay instrument with isotopic capability

    SciTech Connect

    Hsue, S.T.; Marks, T.

    1992-09-01

    A new generation of solution-assay instrument has been developed to satisfy all the assay requirements of an aqueous plutonium-recovery operation. The assay is based on a transmission-corrected passive assay technique. We have demonstrated that the system can cover a concentration range of 0.5--300 g/{ell} with simultaneous isotopic determination. The system can be used to assay input and eluate streams of the recovery operation. The system can be modified to measure low-concentration effluent solutions from the recovery operation covering 0.01--40 g/{ell}. The same system has also been modified to assay plutonium solutions enriched in {sup 242}Pu. 6 refs.

  15. Nonreversible immobilization of water-borne plutonium onto self-assembled adlayers of silanized humic materials.

    PubMed

    Shcherbina, Natalia S; Kalmykov, Stepan S; Karpiouk, Leonid A; Ponomarenko, Sergey A; Hatfield, Kirk; Haire, Richard; Perminova, Irina V

    2014-02-18

    The objective was to study plutonium partitioning between immobile and mobile humic materials at the water-solid interfaces. Immobilization of the humic materials on solid supports was performed in situ using self-adhesive silanized humic derivatives. The presence of the humic adlayers on solid supports was shown to significantly enhance Pu sorption and its retention under both steady state and dynamic conditions. While plutonium may exist in multiple oxidations states plus colloidal forms, the major thrust in this work was to study the behavior of most mobile--the PuO2(+) form in dilute solutions. The values of the plutonium partition coefficients (Kd) between water and humics-coated silica gels after 10 days exposure reached 1.6 × 10(4) L · kg(-1) at pH 7.5 under anaerobic conditions with a total plutonium concentration of 1.2 × 10(-8) M exceeding those for the uncoated SiO2 (6.3 × 10(2) L · kg(-1)). Column tests showed substantial sequestration of water-borne plutonium (up to 73%) on the humics-coated silica gels. Remobilization experiments conducted under batch conditions at different pH values (3.5, 4.5, 7.5) showed that no more than 3% of the sequestered Pu was remobilized from the humics-coated silica gels by treatment with dissolved humic materials at environmentally relevant pH of 7.5. Consequently, silanized humic materialas can be seen as both molecular probes and as potent candidate materials for scavenging mobile Pu from an aqueous phase.

  16. Recycle of scrap plutonium-238 oxide fuel to support future radioisotope applications

    NASA Astrophysics Data System (ADS)

    Schulte, Louis D.; Purdy, Geraldine M.; Jarvinen, Gordon D.; Ramsey, Kevin; Silver, Gary L.; Espinoza, Jacob; Rinehart, Gary H.

    1998-01-01

    The Nuclear Materials Technology (NMT) Division of Los Alamos National Laboratory has initiated a development program to recover & purify plutonium-238 oxide from impure feed sources in a glove box environment. A glove box line has been designed and a chemistry flowsheet developed to perform this recovery task at large scale. The initial demonstration effort focused on purification of 238PuO2 fuel by HNO3/HF dissolution, followed by plutonium(III) oxalate precipitation and calcination to an oxide. Decontamination factors for most impurities of concern in the fuel were very good, producing 238PuO2 fuel significantly better in purity than specified by General Purpose Heat Source (GPHS) fuel powder specifications. A sufficient quantity of purified 238PuO2 fuel was recovered from the process to allow fabrication of a GPHS unit for testing. The results are encouraging for recycle of relatively impure plutonium-238 oxide and scrap residue items into fuel for useful applications. The high specific activity of plutonium-238 magnifies the consequences and concerns of radioactive waste generation. This work places an emphasis on development of waste minimization technologies to complement the aqueous processing operation. Results from experiments on neutralized solutions of plutonium-238 resulted in decontamination to about 1 millicurie/L. Combining ultrafiltration treatment with addition of a water-soluble polymer designed to coordinate Pu, allowed solutions to be decontaminated to about 1 microcurie/L. Efforts continue to develop a capability for efficient, safe, cost-effective, and environmentally acceptable methods to recover and purify 238PuO2 fuel.

  17. 16. VIEW OF GLOVE BOX WORKSTATIONS WITHIN THE PLUTONIUM BUTTON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF GLOVE BOX WORKSTATIONS WITHIN THE PLUTONIUM BUTTON BREAKOUT ROOM. (9/82) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  18. 69. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING SOUTHWEST THROUGH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING SOUTHWEST THROUGH DOOR-WAY INTO PLUTONIUM STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  19. 71. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING NORTHEAST INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING NORTHEAST INTO PLUTONIUM STORAGE ROOM SHOWING CUBICLES FOR STORAGE. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  20. Preserving Plutonium-244 as a National Asset

    SciTech Connect

    Patton, Bradley D; Alexander, Charles W; Benker, Dennis; Collins, Emory D; Romano, Catherine E; Wham, Robert M

    2011-01-01

    Plutonium-244 (244 Pu) is an extremely rare and long-lived isotope of plutonium with a half-life of 80 million years. Measureable amounts of 244 Pu are found in neither reactor-grade nor weapons-grade plutonium. Production of this isotope requires a very high thermal flux to permit the two successive neutron captures that convert 242 Pu to 243 Pu to 244 Pu, particularly given the short (about 5 hour) half-life of 243 Pu. Such conditions simply do not exist in plutonium production processes. Therefore, 244 Pu is ideal for precise radiochemical analyses measuring plutonium material properties and isotopic concentrations in items containing plutonium. Isotope dilution mass spectrometry is about ten times more sensitive when using 244 Pu rather than 242 Pu for determining plutonium isotopic content. The isotope can also be irradiated in small quantities to produce superheavy elements. The majority of the existing global inventory of 244 Pu is contained in the outer housing of Mark-18A targets at the Savannah River Site (SRS). The total inventory is about 20 grams of 244 Pu in about 400 grams of plutonium distributed among the 65 targets. Currently, there are no specific plans to preserve these targets. Although the cost of separating and preserving this material would be considerable, it is trivial in comparison to new production costs. For all practical purposes, the material is irreplaceable, because new production would cost billions of dollars and require a series of irradiation and chemical separation cycles spanning up to 50 years. This paper will discuss a set of options for overcoming the significant challenges to preserve the 244 Pu as a National Asset: (1) the need to relocate the material from SRS in a timely manner, (2) the need to reduce the volume of material to the extent possible for storage, and (3) the need to establish an operational capability to enrich the 244 Pu in significant quantities. This paper suggests that if all the Mark-18A plutonium is

  1. Method for dissolving plutonium oxide with HI and separating plutonium

    DOEpatents

    Vondra, Benedict L.; Tallent, Othar K.; Mailen, James C.

    1979-01-01

    PuO.sub.2 -containing solids, particularly residues from incomplete HNO.sub.3 dissolution of irradiated nuclear fuels, are dissolved in aqueous HI. The resulting solution is evaporated to dryness and the solids are dissolved in HNO.sub.3 for further chemical reprocessing. Alternatively, the HI solution containing dissolved Pu values, can be contacted with a cation exchange resin causing the Pu values to load the resin. The Pu values are selectively eluted from the resin with more concentrated HI.

  2. Dispersion of plutonium from contaminated pond sediments

    USGS Publications Warehouse

    Rees, T.F.; Cleveland, J.M.; Carl, Gottschall W.

    1978-01-01

    Sediment-water distributions of plutonium as a function of pH and contact time are investigated in a holding pond at the Rocky Flats plant of the Department of Energy. Although plutonium has been shown to sorb from natural waters onto sediments, the results of this study indicate that under the proper conditions it can be redispersed at pH 9 and above. Concentrations greater than 900 pCi Pu/L result after 34 h contact at pH 11 or 12 and the distribution coefficient, defined as the ratio of concentration in the sediment to that in the liquid, decreases from 1.1 ?? 105 at pH 7 to 1.2 ?? 103 at pH 11. The plutonium is probably dispersed as discrete colloids or as hydrolytic species adsorbed onto colloidal sediment particles whose average size decreases with increasing pH above pH 9. About 5% of the total plutonium is dispersed at pH 12, and the dispersion seems to readsorb on the sediment with time. Consequently, migration of plutonium from the pond should be slow, and it would be difficult to remove this element completely from pond sediment by leaching with high pH solutions. ?? 1978 American Chemical Society.

  3. COLUMBIC OXIDE ADSORPTION PROCESS FOR SEPARATING URANIUM AND PLUTONIUM IONS

    DOEpatents

    Beaton, R.H.

    1959-07-14

    A process is described for separating plutonium ions from a solution of neutron irradiated uranium in which columbic oxide is used as an adsorbert. According to the invention the plutonium ion is selectively adsorbed by Passing a solution containing the plutonium in a valence state not higher than 4 through a porous bed or column of granules of hydrated columbic oxide. The adsorbed plutonium is then desorbed by elution with 3 N nitric acid.

  4. 15. VIEW OF THE SAFE GEOMETRY PLUTONIUM METAL STORAGE PALLETS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF THE SAFE GEOMETRY PLUTONIUM METAL STORAGE PALLETS FROM THE INSIDE OF AN INPUT-OUTPUT STATION. INDIVIDUAL CONTAINERS OF PLUTONIUM ARE STORED IN THE WATER-FILLED, DOUBLE-WALLED STAINLESS STEEL TUBES THAT ARE WELDED ONTO THE PALLETS. (12/3/88) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  5. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any... citation of 49 CFR chapter I, as may be applicable, the licensee shall assure that plutonium in any...

  6. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any... citation of 49 CFR chapter I, as may be applicable, the licensee shall assure that plutonium in any...

  7. 10 CFR 71.63 - Special requirement for plutonium shipments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Special requirement for plutonium shipments. 71.63 Section... MATERIAL Package Approval Standards § 71.63 Special requirement for plutonium shipments. Shipments containing plutonium must be made with the contents in solid form, if the contents contain greater than...

  8. VIEW OF THE INTERIOR OF THE PLUTONIUM LABORATORY IN BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE INTERIOR OF THE PLUTONIUM LABORATORY IN BUILDING 559. THE LABORATORY WAS USED TO ANALYZE THE PURITY OF PLUTONIUM. PLUTONIUM SAMPLES WERE CONTAINED WITHIN GLOVE BOXES - Rocky Flats Plant, Chemical Analytical Laboratory, North-central section of Plant, Golden, Jefferson County, CO

  9. 10 CFR 71.63 - Special requirement for plutonium shipments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Special requirement for plutonium shipments. 71.63 Section... MATERIAL Package Approval Standards § 71.63 Special requirement for plutonium shipments. Shipments containing plutonium must be made with the contents in solid form, if the contents contain greater than...

  10. 10 CFR 71.63 - Special requirement for plutonium shipments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Special requirement for plutonium shipments. 71.63 Section... MATERIAL Package Approval Standards § 71.63 Special requirement for plutonium shipments. Shipments containing plutonium must be made with the contents in solid form, if the contents contain greater than...

  11. 10 CFR 71.63 - Special requirement for plutonium shipments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Special requirement for plutonium shipments. 71.63 Section... MATERIAL Package Approval Standards § 71.63 Special requirement for plutonium shipments. Shipments containing plutonium must be made with the contents in solid form, if the contents contain greater than...

  12. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any... citation of 49 CFR chapter I, as may be applicable, the licensee shall assure that plutonium in any...

  13. 10 CFR 71.63 - Special requirement for plutonium shipments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Special requirement for plutonium shipments. 71.63 Section... MATERIAL Package Approval Standards § 71.63 Special requirement for plutonium shipments. Shipments containing plutonium must be made with the contents in solid form, if the contents contain greater than...

  14. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any... citation of 49 CFR chapter I, as may be applicable, the licensee shall assure that plutonium in any...

  15. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any... citation of 49 CFR chapter I, as may be applicable, the licensee shall assure that plutonium in any...

  16. A particulate isotopic standard of plutonium in an aluminosilicate matrix

    SciTech Connect

    Stoffels, J.J.; Cannon, W.C.; Robertson, D.M. )

    1991-01-01

    Plutonium isotopic microstandard particles have been produced for mass spectrometer calibration. The particles may also be useful as an elemental standard for calibration of electron and ion microprobe instruments. The standard consists of spherical, micrometer-size aluminosilicate particles loaded with plutonium of known isotopic distribution. The morphology, elemental composition, and plutonium isotopic composition of the particles have been characterized.

  17. Treatment of aphthous stomatitis with saturated potassium nitrate/dimethyl isosorbide.

    PubMed

    Hodosh, Milton; Hodosh, Steven H; Hodosh, Alex J

    2004-02-01

    Concentrated potassium nitrate has been used to lessen the pain caused by aphthous stomatitis. The problem with this approach is that it can have difficulty penetrating into the deeper layers of mucosae or skin, and for this reason, its beneficial affects are not routinely predictable. When dimethyl isosorbide is added to potassium nitrate in an aqueous hydroxyethyl cellulose gel, it enhances the capacity of potassium nitrate to more completely permeate these tissues and predictably promote rapid pain control and aphthae healing.

  18. Perselectivity of porous cellulose nitrate membranes in evapomeation with temperature difference

    SciTech Connect

    Uragami, T.; Komatsu, R.; Miyata, T.

    1995-12-01

    Ethanol-permselectivity from aqueous ethanol solutions through porous cellulose nitrate membranes was investigated by evaporation with temperature difference under various conditions. On the other hand, same experiments using porous cellulose acetate were carried out. From these results of porous cellulose nitrate and cellulose acetate membranes, mechanism of permeation and separation for ethanol-permselectivity through cellulose nitrate membranes is discussed from viewpoints of physical and chemical structures of porous cellulose ester membranes.

  19. The United States Plutonium Balance, 1944 - 2009

    SciTech Connect

    2012-06-01

    This report updates the report -Plutonium: The first 50 years- which was released by the U.S.Department of Energy (DOE) in 1996. The topic of both reports is plutonium, sometimes referred to as Pu-239, which is capable of sustaining a nuclear chain reaction and is used in nuclear weapons and for nuclear power production. This report updates 1994 data through 2009. The four most significant changes since 1994 include: (a) the completion of cleanup activities at the Rocky Flats Plant in 2005; (b) material consolidation and disposition activities, especially shipments from Hanford to the Savannah River Site; (c) the 2007 declaration of an additional 9.0 MT of weapons grade plutonium to be surplus to defense needs in the coming decades; and (d) the opening of the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in 1999.

  20. Interaction of divalent plutonium and curium

    SciTech Connect

    Mikheev, N.B.; Kazakevich, M.Z.; Rumer, I.A.

    1988-11-01

    It has been established that at plutonium concentrations ranging from 10/sup -5/ to 10/sup -4/ mole % the oxidation potentials of the Pu/sup 3 +//Pu/sup 2 +/ and Cm/sup 3 +//Cm/sup 2 +/ pairs increased by 0.15-0.2 V due to the dimerization of Pu/sup 2 +/ and the formation of mixed dimers of plutonium and curium. Promethium(2+) does not have a similar ability to form mixed dimers owing to the fact that Pm/sup 2 +/ does not have a free d electron. The oxidation potential of the Pm/sup 3 +//Pm/sup 2 +/ pair does not vary in the presence of massive quantities of plutonium

  1. Excess plutonium disposition using ALWR technology

    SciTech Connect

    Phillips, A.; Buckner, M.R.; Radder, J.A.; Angelos, J.G.; Inhaber, H.

    1993-02-01

    The Office of Nuclear Energy of the Department of Energy chartered the Plutonium Disposition Task Force in August 1992. The Task Force was created to assess the range of practicable means of disposition of excess weapons-grade plutonium. Within the Task Force, working groups were formed to consider: (1) storage, (2) disposal,and(3) fission options for this disposition,and a separate group to evaluate nonproliferation concerns of each of the alternatives. As a member of the Fission Working Group, the Savannah River Technology Center acted as a sponsor for light water reactor (LWR) technology. The information contained in this report details the submittal that was made to the Fission Working Group of the technical assessment of LWR technology for plutonium disposition. The following aspects were considered: (1) proliferation issues, (2) technical feasibility, (3) technical availability, (4) economics, (5) regulatory issues, and (6) political acceptance.

  2. Excess plutonium disposition: The deep borehole option

    SciTech Connect

    Ferguson, K.L.

    1994-08-09

    This report reviews the current status of technologies required for the disposition of plutonium in Very Deep Holes (VDH). It is in response to a recent National Academy of Sciences (NAS) report which addressed the management of excess weapons plutonium and recommended three approaches to the ultimate disposition of excess plutonium: (1) fabrication and use as a fuel in existing or modified reactors in a once-through cycle, (2) vitrification with high-level radioactive waste for repository disposition, (3) burial in deep boreholes. As indicated in the NAS report, substantial effort would be required to address the broad range of issues related to deep bore-hole emplacement. Subjects reviewed in this report include geology and hydrology, design and engineering, safety and licensing, policy decisions that can impact the viability of the concept, and applicable international programs. Key technical areas that would require attention should decisions be made to further develop the borehole emplacement option are identified.

  3. ESTIMATING IMPURITIES IN SURPLUS PLUTONIUM FOR DISPOSITION

    SciTech Connect

    Allender, J.; Moore, E.

    2013-07-17

    The United States holds at least 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition of the National Nuclear Security Administration and the DOE Office of Environmental Management. Many of the items that require disposition are only partially characterized, and SRNL uses a variety of techniques to predict the isotopic and chemical properties that are important for processing through the Mixed Oxide Fuel Fabrication Facility and alternative disposition paths. Recent advances in laboratory tools, including Prompt Gamma Analysis and Peroxide Fusion treatment, provide data on the existing inventories that will enable disposition without additional, costly sampling and destructive analysis.

  4. Characterization of Delta Phase Plutonium Metal

    SciTech Connect

    Rudisill, T.S.

    2000-09-21

    The FB-Line facility has developed the capability to recast plutonium metal using an M-18 reduction furnace with a new casting chamber. Plutonium metal is recast by charging a standard FB-Line magnesia crucible and placing the charge in the casting chamber. The loaded casting chamber is raised into the M-18 reduction furnace and sealed against the furnace head using a copper gasket following the same procedure used for a bomb reduction run. The interior volume of the chamber is evacuated and backfilled with argon gas. The M-18 motor-generator set is used to heat the surface of the casting chamber to nominally 750 Degrees C. Within about 2 hr, the plutonium metal reaches its melting temperature of approximately 640 Degrees C.

  5. Disposition of plutonium in deep boreholes

    SciTech Connect

    Halsey, W.G.; Jardine, L.J.; Walter, C.E.

    1995-05-01

    Substantial inventories of excess plutonium are expected to result from dismantlement of U.S. and Russian nuclear weapons. Disposition of this material should be a high priority in both countries. A variety of disposition options are under consideration. One option is to place the plutonium either directly or in an immobilized form at the bottom of a deep borehole that is then sealed. Deep-borehole disposition involves placing plutonium several kilometers deep into old, stable, rock formations that have negligible free water present. Containment assurance is based on the presence of ancient groundwater indicating lack of migration and communication with the biosphere. Recovery would be extremely difficult (costly) and impossible to accomplish clandestinely.

  6. PLUTONIUM ALLOYS CONTAINING CONTROLLED AMOUNTS OF PLUTONIUM ALLOTROPES OBTAINED BY APPLICATION OF HIGH PRESSURES

    DOEpatents

    Elliott, R.O.; Gschneidner, K.A. Jr.

    1962-07-10

    A method of making stabilized plutonium alloys which are free of voids and cracks and have a controlled amount of plutonium allotropes is described. The steps include adding at least 4.5 at.% of hafnium, indium, or erbium to the melted plutonium metal, homogenizing the resulting alloy at a temperature of 450 deg C, cooling to room temperature, and subjecting the alloy to a pressure which produces a rapid increase in density with a negligible increase in pressure. The pressure required to cause this rapid change in density or transformation ranges from about 800 to 2400 atmospheres, and is dependent on the alloying element. (AEC)

  7. Alternating layers of plutonium and lead or indium as surrogate for plutonium

    SciTech Connect

    Rudin, Sven Peter

    2009-01-01

    Elemental plutonium (Pu) assumes more crystal structures than other elements, plausibly due to bonding f electrons becoming non-bonding. Complex geometries hamper understanding of the transition in Pu, but calculations predict this transition in a system with simpler geometry: alternating layers either of plutonium and lead or of plutonium and indium. Here the transition occurs via a pairing-up of atoms within Pu layers. Calculations stepping through this pairing-up reveal valuable details of the transition, for example that the transition from bonding to non-bonding proceeds smoothly.

  8. Study of the formation, prevention, and recovery of plutonium from plutonium esters in the Purex process

    SciTech Connect

    Gray, L. W.; Burney, G. A.

    1981-01-01

    The Savannah River Plant uses the basic Purex process to separate /sup 239/Pu from /sup 238/U and fission products. Dark-brown, dense solids containing up to 30% Pu have previously occurred in rotameters in the plutonium finishing operations. The kinetics of formation of this mixture of DBP- and MBP-Pu esters suggest two methods to prevent the formation of the solids. A selective dissolution method using NaOH metathesis has been developed to separate the phosphate ester from the plutonium before dissolution of the residual plutonium hydroxide in a HNO/sub 3/-HF medium.

  9. On the existence of 'bis (L-glutamine) potassium nitrate' crystal.

    PubMed

    Srinivasan, Bikshandarkoil R; Shyama, Soorambail K; Naik, Suvidha G; Jyai, Rita N

    2015-02-05

    The slow evaporation of an aqueous solution containing L-glutamine and potassium nitrate in 2:1 mol ratio results in the fractional crystallization of L-glutamine and not the formation of a so called bis (L-glutamine) potassium nitrate as reported recently by Hanumantharao and Kalainathan (2012).

  10. The Chilean nitrate deposits.

    USGS Publications Warehouse

    Ericksen, G.E.

    1983-01-01

    The nitrate deposits in the arid Atacama desert of northern Chile consist of saline-cemented surficial material, apparently formed in and near a playa lake that formerly covered the area. Many features of their distribution and chemical composition are unique. The author believes the principal sources of the saline constituents were the volcanic rocks of late Tertiary and Quaternary age in the Andes and that the nitrate is of organic origin. Possible sources of the nitrate, iodate, perchlorate and chromate are discussed. -J.J.Robertson

  11. CHARACTERIZATION OF SURPLUS PLUTONIUM FOR DISPOSITION OPTIONS

    SciTech Connect

    Allender, J; Edwin Moore, E; Scott Davies, S

    2008-07-15

    The United States (U.S.) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Except for materials that remain in use for programs outside of national defense, including programs for nuclear-energy development, the surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. Some items will be disposed as transuranic waste, low-level waste, or spent fuel. The remaining surplus plutonium will be managed through: (1) the Mixed Oxide (MOX) Fuel Fabrication Facility (FFF), to be constructed at the Savannah River Site (SRS), where the plutonium will be converted to fuel that will be irradiated in civilian power reactors and later disposed to a high-level waste (HLW) repository as spent fuel; (2) the SRS H-Area facilities, by dissolving and transfer to HLW systems, also for disposal to the repository; or (3) alternative immobilization techniques that would provide durable and secure disposal. From the beginning of the U.S. program for surplus plutonium disposition, DOE has sponsored research to characterize the surplus materials and to judge their suitability for planned disposition options. Because many of the items are stored without extensive analyses of their current chemical content, the characterization involves three interacting components: laboratory sample analysis, if available; non-destructive assay data; and rigorous evaluation of records for the processing history for items and inventory groups. This information is collected from subject-matter experts at inventory sites and from materials stabilization and surveillance programs, in cooperation with the design agencies for the disposition facilities. This report describes the operation and status of the characterization program.

  12. In vitro dissolution study of plutonium in aerosol particles from the Mayak PA: a tool for individualised dose estimates.

    PubMed

    Aladova, E E; Romanov, S A; Guilmette, R A; Khokhryakov, V F; Suslova, K G

    2007-01-01

    Chronic inhalation of Pu particles during Mayak processing is a potential concern for workers. Of the many particle properties that affect individualised dose estimates, particle solubility in lung fluids can be most important. This study compares in vitro dissolution rates of several plutonium industrial compounds present at different stages of the Mayak processing cycle using three different solvents. The results are then used to develop values of absorption parameters for individual dose assessments. In this study, the dissolution rates of nitrate, oxide and mixed plutonium aerosols were determined using a serum ultrafiltrate stimulant (SUF), phagolysosomal simulant fluid and Ringer's solution, all using a static system. According to the results obtained with SUF, Pu nitrate is absorbed into the blood to a larger extent than predicted using model parameters currently applied for Mayak workers. Absorption into the blood of 21.5 vs. 3% of deposited nuclide as current model predicts results in underestimation of systemic burden and overestimation of the lung dose. These data are being used to provide improved retrospective dose assessments for inhaled plutonium aerosols.

  13. REVIEW OF PLUTONIUM OXIDATION LITERATURE

    SciTech Connect

    Korinko, P.

    2009-11-12

    A brief review of plutonium oxidation literature was conducted. The purpose of the review was to ascertain the effect of oxidation conditions on oxide morphology to support the design and operation of the PDCF direct metal oxidation (DMO) furnace. The interest in the review was due to a new furnace design that resulted in oxide characteristics that are different than those of the original furnace. Very little of the published literature is directly relevant to the DMO furnace operation, which makes assimilation of the literature data with operating conditions and data a convoluted task. The oxidation behavior can be distilled into three regimes, a low temperature regime (RT to 350 C) with a relatively slow oxidation rate that is influenced by moisture, a moderate temperature regime (350-450 C) that is temperature dependent and relies on more or less conventional oxidation growth of a partially protective oxide scale, and high temperature oxidation (> 500 C) where the metal autocatalytically combusts and oxidizes. The particle sizes obtained from these three regimes vary with the finest being from the lowest temperature. It is surmised that the slow growth rate permits significant stress levels to be achieved that help break up the oxides. The intermediate temperatures result in a fairly compact scale that is partially protective and that grows to critical thickness prior to fracturing. The growth rate in this regime may be parabolic or paralinear, depending on the oxidation time and consequently the oxide thickness. The high temperature oxidation is invariant in quiescent or nearly quiescent conditions due to gas blanketing while it accelerates with temperature under flowing conditions. The oxide morphology will generally consist of fine particles (<15 {micro}m), moderately sized particles (15 < x < 250 {micro}m) and large particles (> 250 {micro}m). The particle size ratio is expected to be < 5%, 25%, and 70% for fine, medium and large particles, respectively, for

  14. Adaptation of the ICRP publication 66 respiratory tract model to data on plutonium biokinetics for Mayak workers.

    PubMed

    Khokhryakov, V F; Suslova, K G; Vostrotin, V V; Romanov, S A; Eckerman, K F; Krahenbuhl, M P; Miller, S C

    2005-02-01

    The biokinetics of inhaled plutonium were analyzed using compartment models representing their behavior within the respiratory tract, the gastrointestinal tract, and in systemic tissues. The processes of aerosol deposition, particle transport, absorption, and formation of a fixed deposit in the respiratory tract were formulated in the framework of the Human Respiratory Tract Model described in ICRP Publication 66. The values of parameters governing absorption and formation of the fixed deposit were established by fitting the model to the observations in 530 autopsy cases. The influence of smoking on mechanical clearance of deposited plutonium activity was considered. The dependence of absorption on the aerosol transportability, as estimated by in vitro methods (dialysis), was demonstrated. The results of this study were compared to those obtained from an earlier model of plutonium behavior in the respiratory tract, which was based on the same set of autopsy data. That model did not address the early phases of respiratory clearance and hence underestimated the committed lung dose by about 25% for plutonium oxides. Little difference in lung dose was found for nitrate forms.

  15. Modeling of Diffusion of Plutonium in Other Metals and of Gaseous Species in Plutonium-Based Systems

    SciTech Connect

    Bernard R. Cooper; Gayanath W. Fernando; S. Beiden; A. Setty; E.H. Sevilla

    2004-07-02

    Establish standards for temperature conditions under which plutonium, uranium, or neptunium from nuclear wastes permeates steel, with which it is in contact, by diffusion processes. The primary focus is on plutonium because of the greater difficulties created by the peculiarities of face-centered-cubic-stabilized (delta) plutonium (the form used in the technology generating the waste).

  16. Electrolytic removal of nitrate from crop residues.

    PubMed

    Colon, G; Sager, J C

    2001-01-01

    The Controlled Ecological Life Support System (CELSS) resource recovery system, which is a waste-processing system,uses aerobic and anaerobic bioreactors to recover plants nutrients and secondary foods from the inedible biomass. Crop residues contain a significant amount of nitrate. There are actually two major problems concerning nitrate: 1) both CELSS biomass production and resource recovery consume large quantities of nitric acid, and 2) nitrate causes a variety of problems in both aerobic and anaerobic bioreactors. The nitrate anion causes several problems in the resource recovery system in such a way that removal prior to the process is highly desirable. The technique proposed to remove nitrate from potato inedible biomass leachate and to satisfy the nitric acid demand was a four-compartment electrolytic cell. In order to establish the electrolytic cell performance variables, experiments were carried out using potato crop residue aqueous leachate as the diluate solution. The variables studied were the potato biomass leachate composition and electrical properties, preparation of compartment solutions to be compatible with the electrolytic system, limiting current density, nutrients removal rates as a function of current density, fluid hydrodynamic conditions, applied voltage, and process operating time during batch recirculation operation. Results indicated that the limiting current density (maximum operating current density) was directly proportional to the solution electrical conductivity an a power function of the linear fluid velocity in the range between 0.083 and 0.403 m/s. During the electrolytic cell once-through operation, the nitrate, potassium, and other nutrient removal rates were proportional to the current density and were inversely proportional to fluid velocity. The removal of monovalent ions was found to be higher than divalent ones. Under batch recirculation operation at constant applied voltage of 4.5 and 8.5 V, it was found that the nutrient

  17. Measurement of Plutonium Isotopic Composition - MGA

    SciTech Connect

    Vo, Duc Ta

    2015-08-21

    In this module, we will use the Canberra InSpector-2000 Multichannel Analyzer with a high-purity germanium detector (HPGe) and the MGA isotopic anlysis software to assay a variety of plutonium samples. The module provides an understanding of the MGA method, its attributes and limitations. You will assess the system performance by measuring a range of materials similar to those you may assay in your work. During the final verification exercise, the results from MGA will be combined with the 240Pueff results from neutron coincidence or multiplicity counters so that measurements of the plutonium mass can be compared with the operator-declared (certified) values.

  18. Bioactivation of organic nitrates and the mechanism of nitrate tolerance.

    PubMed

    Klemenska, Emila; Beresewicz, Andrzej

    2009-01-01

    Organic nitrates, such as nitroglycerin, are commonly used in the therapy of cardiovascular disease. Long-term therapy with these drugs, however, results in the rapid development of nitrate tolerance, limiting their hemodynamic and anti-ischemic efficacy. In addition, nitrate tolerance is associated with the expression of potentially deleterious modifications such as increased oxidative stress, endothelial dysfunction, and sympathetic activation. In this review we discuss current concepts regarding the mechanisms of organic nitrate bioactivation, nitrate tolerance, and nitrate-mediated oxidative stress and endothelial dysfunction. We also examine how hydralazine may prevent nitrate tolerance and related endothelial dysfunction.

  19. Cesium recovery from aqueous solutions

    DOEpatents

    Goodhall, C. A.

    1960-09-13

    A process for recovering cesium from aqueous solutions is given in which precipitation on zinc ferricyanide is used. The precipitation is preferably carried out in solutions containing at least 0.0004M zinc ferricyanide, an acidity ranging from 0.2N mineral acid to 0.61N acid deficiency, and 1 to 2.5M aluminum nitrate. (D.L.C.)

  20. Lung, liver and bone cancer mortality after plutonium exposure in beagle dogs and nuclear workers.

    PubMed

    Wilson, Dulaney A; Mohr, Lawrence C; Frey, G Donald; Lackland, Daniel; Hoel, David G

    2010-01-01

    The Mayak Production Association (MPA) worker registry has shown evidence of plutonium-induced health effects. Workers were potentially exposed to plutonium nitrate [(239)Pu(NO(3))(4)] and plutonium dioxide ((239)PuO(2)). Studies of plutonium-induced health effects in animal models can complement human studies by providing more specific data than is possible in human observational studies. Lung, liver, and bone cancer mortality rate ratios in the MPA worker cohort were compared to those seen in beagle dogs, and models of the excess relative risk of lung, liver, and bone cancer mortality from the MPA worker cohort were applied to data from life-span studies of beagle dogs. The lung cancer mortality rate ratios in beagle dogs are similar to those seen in the MPA worker cohort. At cumulative doses less than 3 Gy, the liver cancer mortality rate ratios in the MPA worker cohort are statistically similar to those in beagle dogs. Bone cancer mortality only occurred in MPA workers with doses over 10 Gy. In dogs given (239)Pu, the adjusted excess relative risk of lung cancer mortality per Gy was 1.32 (95% CI 0.56-3.22). The liver cancer mortality adjusted excess relative risk per Gy was 55.3 (95% CI 23.0-133.1). The adjusted excess relative risk of bone cancer mortality per Gy(2) was 1,482 (95% CI 566.0-5686). Models of lung cancer mortality based on MPA worker data with additional covariates adequately described the beagle dog data, while the liver and bone cancer models were less successful.

  1. Plutonium dispersal in fires: Summary of what is known

    SciTech Connect

    Condit, R.H.

    1993-07-01

    In view of the great public apprehension about plutonium and nuclear weapons we should explore ways to prevent, limit, or mitigate possible plutonium dispersals. This review is primarily a tutorial on what is known about plutonium dispersal in fires. It concludes that in most types of fires involving plutonium the amount released will not be an immediate danger to life. Indeed, in many cases very few personnel will receive more than the lung burden allowed by current regulations for plutonium workers. However, the dangers may be significant in special situations, unusual terrains, certain meteorological conditions, and very high burn temperatures.

  2. Reactivity of Metal Nitrates.

    DTIC Science & Technology

    1982-07-20

    amines, where nitration would not be a competing process. Acetanilide . Despite the complexity encountered with aniline, the corresponding amide... acetanilide , though having an N-hydrogen atom, was nitrated without tar formation, although this was not accomplished efficiently. After reaction for 24 h... acetanilide , in the absence of a N-hydrogen atom. However, the reverse proved to be the case, for after one day at room temperature nearly 60% of starting

  3. Using magnetization measurements to detect small amounts of plutonium hydride formation in plutonium metal

    SciTech Connect

    Kim, Jae Wook; Mielke, Charles H.; Zapf, Vivien; Baiardo, Joseph P.; Mitchell, Jeremy N.; Richmond, Scott; Schwartz, Daniel S.; Mun, Eun D.; Smith, Alice Iulia

    2014-10-20

    We report the formation of plutonium hydride in 2 at % Ga-stabilized δ-Pu, with 1 atomic % H charging. We show that magnetization measurements are a sensitive, quantitative measure of ferromagnetic plutonium hydride against the nonmagnetic background of plutonium. It was previously shown that at low hydrogen concentrations, hydrogen forms super-abundant vacancy complexes with plutonium, resulting in a bulk lattice contraction. Here we use magnetization, X-ray and neutron diffraction measurements to show that in addition to forming vacancy complexes, at least 30% of the H atoms bond with Pu to precipitate PuHx, largely on the surface of the sample with x ~ 1.9. We observe magnetic hysteresis loops below 40 K with magnetic remanence, consistent with precipitates of ferromagnetic PuH1.9.

  4. Excess Weapons Plutonium Disposition: Plutonium Packaging, Storage and Transportation and Waste Treatment, Storage and Disposal Activities

    SciTech Connect

    Jardine, L J; Borisov, G B

    2004-07-21

    A fifth annual Excess Weapons Plutonium Disposition meeting organized by Lawrence Livermore National Laboratory (LLNL) was held February 16-18, 2004, at the State Education Center (SEC), 4 Aerodromnya Drive, St. Petersburg, Russia. The meeting discussed Excess Weapons Plutonium Disposition topics for which LLNL has the US Technical Lead Organization responsibilities. The technical areas discussed included Radioactive Waste Treatment, Storage, and Disposal, Plutonium Oxide and Plutonium Metal Packaging, Storage and Transportation and Spent Fuel Packaging, Storage and Transportation. The meeting was conducted with a conference format using technical presentations of papers with simultaneous translation into English and Russian. There were 46 Russian attendees from 14 different Russian organizations and six non-Russian attendees, four from the US and two from France. Forty technical presentations were made. The meeting agenda is given in Appendix B and the attendance list is in Appendix C.

  5. Quantitative ion-exchange separation of plutonium from impurities

    SciTech Connect

    Pietri, C.E.; Freeman, B.P.; Weiss, J.R.

    1981-09-01

    The methods used at the New Brunswick Laboratory for the quantitative ion exchange separation of plutonium from impurities prior to plutonium assay are described. Other ion exchange separation procedures for impurity determination and for isotopic abundance measurements are given. The primary technique used consists of sorption of plutonium(IV) in 8N HNO/sub 3/ on Dowex-1 anion exchange resin and elution of the purified plutonium with 0.3N HCl-0.01N HF. Other methods consist of the anion exchange separation of plutonium(IV) in 12N HCl and the cation exchange separation of plutonium(III) in 0.2 N HNO/sub 3/. The application of these procedures to the subsequent assay of plutonium, isotopic analysis, and impurity determination is described.

  6. Weapons-grade plutonium dispositioning. Volume 2: Comparison of plutonium disposition options

    SciTech Connect

    Brownson, D.A.; Hanson, D.J.; Blackman, H.S.

    1993-06-01

    The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate disposition options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) offered to assist the NAS in this evaluation by investigating the technical aspects of the disposition options and their capability for achieving plutonium annihilation levels greater than 90%. This report was prepared for the NAS to document the gathered information and results from the requested option evaluations. Evaluations were performed for 12 plutonium disposition options involving five reactor and one accelerator-based systems. Each option was evaluated in four technical areas: (1) fuel status, (2) reactor or accelerator-based system status, (3) waste-processing status, and (4) waste disposal status. Based on these evaluations, each concept was rated on its operational capability and time to deployment. A third rating category of option costs could not be performed because of the unavailability of adequate information from the concept sponsors. The four options achieving the highest rating, in alphabetical order, are the Advanced Light Water Reactor with plutonium-based ternary fuel, the Advanced Liquid Metal Reactor with plutonium-based fuel, the Advanced Liquid Metal Reactor with uranium-plutonium-based fuel, and the Modular High Temperature Gas-Cooled Reactor with plutonium-based fuel. Of these four options, the Advanced Light Water Reactor and the Modular High Temperature Gas-Cooled Reactor do not propose reprocessing of their irradiated fuel. Time constraints and lack of detailed information did not allow for any further ratings among these four options. The INEL recommends these four options be investigated further to determine the optimum reactor design for plutonium disposition.

  7. Thermodynamic Studies on Silver and Thallium Nitrate

    NASA Astrophysics Data System (ADS)

    Tsierkezos, Nikos G.; Ritter, Uwe

    2011-07-01

    The molar conductivities (Λ) of aqueous solutions of silver nitrate and thallium nitrate were measured in the temperature range from 291.15 K to 314.15 K. The Λ values were analyzed using the Lee-Wheaton model, and the limiting molar conductivities (Λ o) as well as the association equilibrium constants (K A) were derived. The center-to-center distances (α) of the formed ion pairs were considered to be equal to the Bjerrum's distance. The limiting ion conductivities (λ±) were determined. The thermodynamic functions, Gibbs energy (ΔG A), enthalpy (ΔH A), and entropy (ΔS A) for the ion-pair formation process were determined as well. The results are discussed in terms of ion-ion and ion-solvent interactions.

  8. Design-Only Conceptual Design Report: Plutonium Immobilization Plant

    SciTech Connect

    DiSabatino, A.; Loftus, D.

    1999-01-01

    This design-only conceptual design report was prepared to support a funding request by the Department of Energy Office of Fissile Materials Disposition for engineering and design of the Plutonium Immobilization Plant, which will be used to immobilize up to 50 tonnes of surplus plutonium. The siting for the Plutonium Immobilization Plant will be determined pursuant to the site-specific Surplus Plutonium Disposition Environmental Impact Statement in a Plutonium Deposition Record of Decision in early 1999. This document reflects a new facility using the preferred technology (ceramic immobilization using the can-in-canister approach) and the preferred site (at Savannah River). The Plutonium Immobilization Plant accepts plutonium from pit conversion and from non-pit sources and, through a ceramic immobilization process, converts the plutonium into mineral-like forms that are subsequently encapsulated within a large canister of high-level waste glass. The final immobilized product must make the plutonium as inherently unattractive and inaccessible for use in nuclear weapons as the plutonium in spent fuel from commercial reactors and must be suitable for geologic disposal. Plutonium immobilization at the Savannah River Site uses: (1) A new building, the Plutonium Immobilization Plant, which will convert non-pit surplus plutonium to an oxide form suitable for the immobilization process, immobilize plutonium in a titanate-based ceramic form, place cans of the plutonium-ceramic forms into magazines, and load the magazines into a canister; (2) The existing Defense Waste Processing Facility for the pouring of high-level waste glass into the canisters; and (3) The Actinide Packaging and Storage Facility to receive and store feed materials. The Plutonium Immobilization Plant uses existing Savannah River Site infra-structure for analytical laboratory services, waste handling, fire protection, training, and other support utilities and services. The Plutonium Immobilization Plant

  9. Regulatory issues for deep borehole plutonium disposition

    SciTech Connect

    Halsey, W.G.

    1995-03-01

    As a result of recent changes throughout the world, a substantial inventory of excess separated plutonium is expected to result from dismantlement of US nuclear weapons. The safe and secure management and eventual disposition of this plutonium, and of a similar inventory in Russia, is a high priority. A variety of options (both interim and permanent) are under consideration to manage this material. The permanent solutions can be categorized into two broad groups: direct disposal and utilization. The deep borehole disposition concept involves placing excess plutonium deep into old stable rock formations with little free water present. Issues of concern include the regulatory, statutory and policy status of such a facility, the availability of sites with desirable characteristics and the technologies required for drilling deep holes, characterizing them, emplacing excess plutonium and sealing the holes. This white paper discusses the regulatory issues. Regulatory issues concerning construction, operation and decommissioning of the surface facility do not appear to be controversial, with existing regulations providing adequate coverage. It is in the areas of siting, licensing and long term environmental protection that current regulations may be inappropriate. This is because many current regulations are by intent or by default specific to waste forms, facilities or missions significantly different from deep borehole disposition of excess weapons usable fissile material. It is expected that custom regulations can be evolved in the context of this mission.

  10. Plutonium Immobilization Can Loading Equipment Review

    SciTech Connect

    Kriikku, E.; Ward, C.; Stokes, M.; Randall, B.; Steed, J.; Jones, R.; Hamilton, L.

    1998-05-01

    This report lists the operations required to complete the Can Loading steps on the Pu Immobilization Plant Flow Sheets and evaluates the equipment options to complete each operation. This report recommends the most appropriate equipment to support Plutonium Immobilization Can Loading operations.

  11. 233-S plutonium concentration facility hazards assessment

    SciTech Connect

    Broz, R.E.

    1994-12-19

    This document establishes the technical basis in support of Emergency Planning activities for the 233-S Plutonium Concentration Facility on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated.

  12. Method for calibration of plutonium NDA

    SciTech Connect

    Lemming, J.F.; Campbell, A.R.; Rodenburg, W.W.

    1980-01-01

    Calibration materials characterized by calorimetric assay can be a practical alternative to synthetic standards for the calibration of plutonium nondestructive assay. Calorimetric assay is an effective measurement system for the characterization because: it can give an absolute assay from first principles when the isotopic composition is known, it is insensitive to most matrix effects, and its traceability to international measurement systems has been demonstrated.

  13. NNSS Soils Monitoring: Plutonium Valley (CAU366)

    SciTech Connect

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George; Campbell, Scott

    2012-02-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

  14. Plutonium isotope ratio variations in North America

    SciTech Connect

    Steiner, Robert E; La Mont, Stephen P; Eisele, William F; Fresquez, Philip R; Mc Naughton, Michael; Whicker, Jeffrey J

    2010-12-14

    Historically, approximately 12,000 TBq of plutonium was distributed throughout the global biosphere by thermo nuclear weapons testing. The resultant global plutonium fallout is a complex mixture whose {sup 240}Pu/{sup 239}Pu atom ratio is a function of the design and yield of the devices tested. The average {sup 240}Pu/{sup 239}Pu atom ratio in global fallout is 0.176 + 014. However, the {sup 240}Pu/{sup 239}Pu atom ratio at any location may differ significantly from 0.176. Plutonium has also been released by discharges and accidents associated with the commercial and weapons related nuclear industries. At many locations contributions from this plutonium significantly alters the {sup 240}Pu/{sup 239}Pu atom ratios from those observed in global fallout. We have measured the {sup 240}Pu/{sup 239}Pu atom ratios in environmental samples collected from many locations in North America. This presentation will summarize the analytical results from these measurements. Special emphasis will be placed on interpretation of the significance of the {sup 240}Pu/{sup 239}Pu atom ratios measured in environmental samples collected in the Arctic and in the western portions of the United States.

  15. Overview of surplus weapons plutonium disposition

    SciTech Connect

    Rudy, G.

    1996-05-01

    The safe disposition of surplus weapons useable plutonium is a very important and urgent task. While the functions of long term storage and disposition directly relate to the Department`s weapons program and the environmental management program, the focus of this effort is particularly national security and nonproliferation.

  16. Plutonium Immobilization Can Loading Preliminary Specifications

    SciTech Connect

    Kriikku, E.

    1998-11-25

    This report discusses the Plutonium Immobilization can loading preliminary equipment specifications and includes a process block diagram, process description, equipment list, preliminary equipment specifications, plan and elevation sketches, and some commercial catalogs. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas.

  17. Electrochemically Modulated Separation for Plutonium Safeguards

    SciTech Connect

    Pratt, Sandra H.; Breshears, Andrew T.; Arrigo, Leah M.; Schwantes, Jon M.; Duckworth, Douglas C.

    2013-12-31

    Accurate and timely analysis of plutonium in spent nuclear fuel is critical in nuclear safeguards for detection of both protracted and rapid plutonium diversions. Gamma spectroscopy is a viable method for accurate and timely measurements of plutonium provided that the plutonium is well separated from the interfering fission and activation products present in spent nuclear fuel. Electrochemically modulated separation (EMS) is a method that has been used successfully to isolate picogram amounts of Pu from nitric acid matrices. With EMS, Pu adsorption may be turned "on" and "off" depending on the applied voltage, allowing for collection and stripping of Pu without the addition of chemical reagents. In this work, we have scaled up the EMS process to isolate microgram quantities of Pu from matrices encountered in spent nuclear fuel during reprocessing. Several challenges have been addressed including surface area limitations, radiolysis effects, electrochemical cell performance stability, and chemical interferences. After these challenges were resolved, 6 µg Pu was deposited in the electrochemical cell with approximately an 800-fold reduction of fission and activation product levels from a spent nuclear fuel sample. Modeling showed that these levels of Pu collection and interference reduction may not be sufficient for Pu detection by gamma spectroscopy. The main remaining challenges are to achieve a more complete Pu isolation and to deposit larger quantities of Pu for successful gamma analysis of Pu. If gamma analyses of Pu are successful, EMS will allow for accurate and timely on-site analysis for enhanced Pu safeguards.

  18. Increase of the transdermal penetration of testosterone by miconazole nitrate.

    PubMed

    Baert, Bram; Roche, Nathalie; Burvenich, Christian; De Spiegeleer, Bart

    2012-12-01

    Miconazole nitrate is an imidazole derivative used to treat skin disorders caused by fungi. The aim of this study was to investigate in a systematic way whether miconazole nitrate can have skin penetration enhancing properties. Using Franz diffusion cells, three representative model compounds (caffeine, testosterone and ibuprofen) were applied to human skin as 10 mM aqueous-ethanolic solutions with or without 1 mM of miconazole nitrate. The apparent permeability coefficient K(p) for each of the model compounds was determined with and without miconazole nitrate. While a statistically significant penetration enhancement effect of 33% was found for testosterone, no overall statistically significant effect could be demonstrated for caffeine and ibuprofen. The increase in skin permeability of testosterone is mainly due to an improved partitioning from the dose solution into the skin, thereby resulting in a higher delivery through the human skin. Our results indicate that miconazole can act as a penetration enhancer.

  19. In search of plutonium: A nonproliferation journey

    NASA Astrophysics Data System (ADS)

    Hecker, Siegfried

    2010-02-01

    In February 1992, I landed in the formerly secret city of Sarov, the Russian Los Alamos, followed a few days later by a visit to Snezhinsk, their Livermore. The briefings we received of the Russian nuclear weapons program and tours of their plutonium, reactor, explosives, and laser facilities were mind boggling considering the Soviet Union was dissolved only two months earlier. This visit began a 17-year, 41 journey relationship with the Russian nuclear complex dedicated to working with them in partnership to protect and safeguard their weapons and fissile materials, while addressing the plight of their scientists and engineers. In the process, we solved a forty-year disagreement about the plutonium-gallium phase diagram and began a series of fundamental plutonium science workshops that are now in their tenth year. At the Yonbyon reprocessing facility in January 2004, my North Korean hosts had hoped to convince me that they have a nuclear deterrent. When I expressed skepticism, they asked if I wanted to see their ``product.'' I asked if they meant the plutonium; they replied, ``Well, yes.'' Thus, I wound up holding 200 grams of North Korean plutonium (in a sealed glass jar) to make sure it was heavy and warm. So began the first of my six journeys to North Korea to provide technical input to the continuing North Korean nuclear puzzle. In Trombay and Kalpakkam a few years later I visited the Indian nuclear research centers to try to understand how India's ambitious plans for nuclear power expansion can be accomplished safely and securely. I will describe these and other attempts to deal with the nonproliferation legacy of the cold war and the new challenges ahead. )

  20. Plutonium scrap recovery at Savannah River: Past, present, and vision of the future

    SciTech Connect

    Gray, L.W.; Gray, J.H.; Blancett, A.L.; Lower, M.W.; Rudisill, T.S.

    1988-01-01

    As a result of the changing requirement, plus environmental and regulatory commitments, SRP now has essentially completed its paradigm shift. SRP has been transformed from primarily a reprocessor of irradiated uranium targets to primarily a reprocessor of non-specification plutonium. This is the mission which will carry SRP into the 21st Century. Accomplishment of the defined goals for the three-pronged RandD program will achieve several objectives: exploit new processes for recovering low-grade scraps; enhance SRP's position to incorporate pyrochemical processes where they are attractive or beneficial to plant scrap recovery; provide SRL/SRP with a capability to develop compatible aqueous pyrochemical processes; identify material compatibility requirements for the incorporation of pyrochemical processes at SRP; promote development and demonstration of improved NDA instrumentation to accurately measure plutonium holdups in solid residues; identify and implement the technology required for reagent preparation and atmospheric quality control; provide a means to compare economic options for emerging new processes; and as a result, identify process steps which will also put SRP in a position to readily adapt to changing plutonium missions.

  1. Disposition of Mixed Waste Organics at the Los Alamos Plutonium Facility

    SciTech Connect

    Ortiz, E.M.; Coriz, F.; Schreiber, S.B.; Balkey, S.; Yarbro, S.L.

    1999-02-01

    Twenty-six organic solution items totaling 37 L had been stored in the Plutonium Facility vault at the Los Alamos National Laboratory, some for up to 18 years. They were residues from analytical analyses of radioactive solutions. All items had a Resource Conservation and Recovery Act (RCRA) defined hazardous waste combined with special nuclear materials (SNM) and were stored as a mixed waste in a vault room pending disposition. Seventeen items had plutonium concentrations above established discard limits for organics. Due to their age, the containers were not suitable for long-term storage because a container failure would contaminate the vault area and personnel. Therefore, an aqueous-based flowsheet was developed to remove the plutonium so that the items could be discarded. The procedure was a wash with either sodium fluoride and/or potassium hydroxide solution followed by absorbing the discardable organic residues on vermiculite. When this approach did not work permission was obtained to discard the items as a transuranic (TRU) mixed waste without further treatment. The remaining nine solution items were consolidated into two items, repackaged, and stored for future disposition. The overall effort required approximately four months to disposition all the items. This report details the administrative and regulatory requirements that had to be addressed, the results of processing, and the current status of the items.

  2. PLUTONIUM CONTAMINATION VALENCE STATE DETERMINATION USING X-RAY ABSORPTION FINE STRUCTURE PERMITS CONCRETE RECYCLE

    SciTech Connect

    Ervin, P. F.; Conradson, S. D.

    2002-02-25

    This paper describes the determination of the speciation of plutonium contamination present on concrete surfaces at the Rocky Flats Environmental Technology Site (RFETS). At RFETS, the plutonium processing facilities have been contaminated during multiple events over their 50 year operating history. Contamination has resulted from plutonium fire smoke, plutonium fire fighting water, milling and lathe operation aerosols, furnace operations vapors and plutonium ''dust'' diffusion.

  3. A Note on the Reaction of Hydrogen and Plutonium

    SciTech Connect

    Noone, Bailey C

    2012-08-15

    Plutonium hydride has many practical and experimental purposes. The reaction of plutonium and hydrogen has interesting characteristics, which will be explored in the following analysis. Plutonium is a radioactive actinide metal that emits alpha particles. When plutonium metal is exposed to air, the plutonium oxides and hydrides, and the volume increases. PuH{sub 2} and Pu{sub 2}O{sub 3} are the products. Hydrogen is a catalyst for plutonium's corrosion in air. The reaction can take place at room temperature because it is fairly insensitive to temperature. Plutonium hydride, or PuH{sub 2}, is black and metallic. After PuH{sub 2} is formed, it quickly flakes off and burns. The reaction of hydrogen and plutonium is described as pyrophoric because the product will spontaneously ignite when oxygen is present. This tendency must be considered in the storage of metal plutonium. The reaction is characterized as reversible and nonstoichiometric. The reaction goes as such: Pu + H{sub 2} {yields} PuH{sub 2}. When PuH{sub 2} is formed, the hydrogen/plutonium ratio is between 2 and 2.75 (approximately). As more hydrogen is added to the system, the ratio increases. When the ratio exceeds 2.75, PuH{sub 3} begins to form along with PuH{sub 2}. Once the ratio surpasses 2.9, only PuH{sub 3} remains. The volume of the plutonium sample increases because of the added hydrogen and the change in crystal structure which the sample undergoes. As more hydrogen is added to a system of metal plutonium, the crystal structure evolves. Plutonium has a crystal structure classified as monoclinic. A monoclinic crystal structure appears to be a rectangular prism. When plutonium reacts with hydrogen, the product PuH{sub 2}, becomes a fluorite structure. It can also be described as a face centered cubic structure. PuH{sub 3} forms a hexagonal crystal structure. As plutonium evolves from metal plutonium to plutonium hydride to plutonium trihydride, the crystal structure evolves from monoclinic to

  4. Bioremediation of nitrated organics

    SciTech Connect

    Stafford, D.A.; Lappin-Scott, H.; Jass, J.

    1994-12-31

    In the manufacture of nitrated aromatic and heterocyclic compounds intermediates are produced as well as the final products, e.g. TNT (trinitrotoluene), and RDX (cyclotri-methylene trinitramine). The red water produced is a dilute effluent containing TNT and other nitrated intermediates. Many of the intermediates are also to be found in contaminated land areas as well as the primary manufacturing products as contaminants in ground adjacent to production and storage areas. Two intermediates included as by-products are p-nitrophenol and resorcinol; both are hydroxylated aromatics and one (the former) is also nitrated. If these rings can be hydroxylated and oxidized by pure or mixed microbial cultures then the notion of using microbes for the detoxification of a wide range of nitrated aromatics and heterocyclics is possible. It is proposed in the study to accelerate this degradative process in the first instance for p-nitrophenol and resorcinol, and secondly for TNT and RDX. The use of microbes to degrade nitroaromatic compounds such as nitrobenzenes, and mono-nitro phenols, have been described. In order to determine how aromatic degrading bacteria can also degrade substituted and nitrated aromatics several pure and mixed cultures have been utilized to demonstrate enzyme adaptation.

  5. Dissolution of Plutonium Metal Using a HAN Process

    SciTech Connect

    CROWDER, MARKL.

    2004-06-30

    Thermal stability tests were conducted with a nitric acid (HNO3)/hydroxylammonium nitrate (HAN)/potassium fluoride (KF) solution. The solution has great potential for use in plutonium dissolution because of the small quantity of hydrogen and other offgases produced. Tests were carried out in a Reactive Systems Screening Tool (RSST). The RSST is a calorimeter equipped with temperature and pressure probes as well as a heater that can heat a liquid sample at a programmed rate. In most cases, the calorimeter was pressurized with nitrogen to reduce evaporation of the liquid sample during heating. For the proposed solution, an autocatalytic reaction occurred between 113 and 131 degrees Celsius with 300 psig or 50 psig nitrogen inside the RSST vapor space. At ambient pressure, the solution boiled at about 110 degrees Celsius. After extensive boiling, the concentrations of HNO3 and HAN increased and the autocatalytic reaction occurred. Tests were also conducted with 1000 ppm Fe present in the solution. The range of the autocatalytic reaction initiation temperature was reduced to 105-120.5 degrees Celsius. With iron at ambient pressure, boiling still occurred above 100 degrees Celsius prior to the autocatalytic reaction, which occurred at 108-109 degrees Celsius. These results demonstrated the stability of the proposed HAN flowsheet, for which the planned dissolving temperature is 50-60 degrees Celsius. Additional tests were carried out with more concentrated solutions to further characterize the autocatalytic reaction initiation temperature. Increasing the nitric acid concentration to 3M decreased the reaction initiation temperature to 102-103 degrees Celsius. Increasing the HAN concentration increased the temperature rise of the reaction from 10-30 degrees Celsius to greater than 40 degrees Celsius. Increasing both reactants-to 3M nitric acid and 0.9M HAN-yielded a reaction initiation temperature of 91 degrees Celsius (with or without iron), the lowest observed in this

  6. Anthropogenic plutonium-244 in the environment: Insights into plutonium's longest-lived isotope.

    PubMed

    Armstrong, Christopher R; Brant, Heather A; Nuessle, Patterson R; Hall, Gregory; Cadieux, James R

    2016-02-22

    Owing to the rich history of heavy element production in the unique high flux reactors that operated at the Savannah River Site, USA (SRS) decades ago, trace quantities of plutonium with highly unique isotopic characteristics still persist today in the SRS terrestrial environment. Development of an effective sampling, processing, and analysis strategy enables detailed monitoring of the SRS environment, revealing plutonium isotopic compositions, e.g., (244)Pu, that reflect the unique legacy of plutonium production at SRS. This work describes the first long-term investigation of anthropogenic (244)Pu occurrence in the environment. Environmental samples, consisting of collected foot borne debris, were taken at SRS over an eleven year period, from 2003 to 2014. Separation and purification of trace plutonium was carried out followed by three stage thermal ionization mass spectrometry (3STIMS) measurements for plutonium isotopic content and isotopic ratios. Significant (244)Pu was measured in all of the years sampled with the highest amount observed in 2003. The (244)Pu content, in femtograms (fg = 10(-15) g) per gram, ranged from 0.31 fg/g to 44 fg/g in years 2006 and 2003 respectively. In all years, the (244)Pu/(239)Pu atom ratios were significantly higher than global fallout, ranging from 0.003 to 0.698 in years 2014 and 2003 respectively.

  7. Process modeling of plutonium conversion and MOX fabrication for plutonium disposition

    SciTech Connect

    Schwartz, K. L.

    1998-10-01

    Two processes are currently under consideration for the disposition of 35 MT of surplus plutonium through its conversion into fuel for power production. These processes are the ARIES process, by which plutonium metal is converted into a powdered oxide form, and MOX fuel fabrication, where the oxide powder is combined with uranium oxide powder to form ceramic fuel. This study was undertaken to determine the optimal size for both facilities, whereby the 35 MT of plutonium metal will be converted into fuel and burned for power. The bounding conditions used were a plutonium concentration of 3-7%, a burnup of 20,000-40,000 MWd/MTHM, a core fraction of 0.1 to 0.4, and the number of reactors ranging from 2-6. Using these boundary conditions, the optimal cost was found with a plutonium concentration of 7%. This resulted in an optimal throughput ranging from 2,000 to 5,000 kg Pu/year. The data showed minimal costs, resulting from throughputs in this range, at 3,840, 2,779, and 3,497 kg Pu/year, which results in a facility lifetime of 9.1, 12.6, and 10.0 years, respectively.

  8. Plutonium disposition via immobilization in ceramic or glass

    SciTech Connect

    Gray, L.W.; Kan, T.; Shaw, H.F.; Armantrout, A.

    1997-03-05

    The management of surplus weapons plutonium is an important and urgent task with profound environmental, national, and international security implications. In the aftermath of the Cold War, Presidential Policy Directive 13, and various analyses by renown scientific, technical, and international policy organizations have brought about a focused effort within the Department of Energy to identify and implement paths for the long term disposition of surplus weapons- usable plutonium. The central goal of this effort is to render surplus weapons plutonium as inaccessible and unattractive for reuse in nuclear weapons as the much larger and growing stock of plutonium contained in spent fuel from civilian reactors. One disposition option being considered for surplus plutonium is immobilization, in which the plutonium would be incorporated into a glass or ceramic material that would ultimately be entombed permanently in a geologic repository for high-level waste.

  9. CRITICALITY CURVES FOR PLUTONIUM HYDRAULIC FLUID MIXTURES

    SciTech Connect

    WITTEKIND WD

    2007-10-03

    This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% {sup 239}Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: {sm_bullet}bare, {sm_bullet}1 inch of hydraulic fluid, or {sm_bullet}12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection.

  10. Concentration and purification of plutonium or thorium

    DOEpatents

    Hayden, John A.; Plock, Carl E.

    1976-01-01

    In this invention a first solution obtained from such as a plutonium/thorium purification process or the like, containing plutonium (Pu) and/or thorium (Th) in such as a low nitric acid (HNO.sub.3) concentration may have the Pu and/or Th separated and concentrated by passing an electrical current from a first solution having disposed therein an anode to a second solution having disposed therein a cathode and separated from the first solution by a cation permeable membrane, the Pu or Th cation permeating the cation membrane and forming an anionic complex within the second solution, and electrical current passage affecting the complex formed to permeate an anion membrane separating the second solution from an adjoining third solution containing disposed therein an anode, thereby effecting separation and concentration of the Pu and/or Th in the third solution.

  11. Nitrate Leaching Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate (NO3) leaching is a significant nitrogen (N) loss process for agriculture that must be managed to minimize NO3 enrichment of groundwater and surface waters. Managing NO3 leaching should involve the application of basic principles of understanding the site’s hydrologic cycle, avoiding excess ...

  12. Plutonium speciation in water from Mono Lake, California

    USGS Publications Warehouse

    Cleveland, J.M.; Rees, T.F.; Nash, K.L.

    1983-01-01

    The solubility of plutonium in Mono Lake water is enhanced by the presence of large concentrations of indigenous carbonate ions and moderate concentrations of fluoride ions. In spite of the complex chemical composition of this water, only a few ions govern the behavior of plutonium, as demonstrated by the fact that it was possible to duplicate plutonium speciation in a synthetic water containing only the principal components of Mono Lake water.

  13. 14. END VIEW OF THE PLUTONIUM STORAGE VAULT FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. END VIEW OF THE PLUTONIUM STORAGE VAULT FROM THE REMOTE CONTROL STATION. THE STACKER-RETRIEVER, A REMOTELY-OPERATED, MECHANIZED TRANSPORT SYSTEM, RETRIEVES CONTAINERS OF PLUTONIUM FROM SAFE GEOMETRY PALLETS STORED ALONG THE LENGTH OF THE VAULT. THE STACKER-RETRIEVER RUNS ALONG THE AISLE BETWEEN THE PALLETS OF THE STORAGE CHAMBER. (3/2/86) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  14. Spectrophotometers for plutonium monitoring in HB-line

    SciTech Connect

    Lascola, R. J.; O'Rourke, P. E.; Kyser, E. A.; Immel, D. M.; Plummer, J. R.; Evans, E. V.

    2016-02-12

    This report describes the equipment, control software, calibrations for total plutonium and plutonium oxidation state, and qualification studies for the instrument. It also provides a detailed description of the uncertainty analysis, which includes source terms associated with plutonium calibration standards, instrument drift, and inter-instrument variability. Also included are work instructions for instrument, flow cell, and optical fiber setup, work instructions for routine maintenance, and drawings and schematic diagrams.

  15. Plutonium speciation in water from Mono Lake, California

    SciTech Connect

    Cleveland, J.M.; Rees, T.F.; Nash, K.L.

    1983-12-23

    The solubility of plutonium in Mono Lake water is enhanced by the presence of large concentrations of indigenous carbonate ions and moderate concentrations of fluoride ions. In spite of the complex chemical composition of this water, only a few ions govern the behavior of plutonium, as demonstrated by the fact that it was possible to duplicate plutonium speciation in a synthetic water containing only the principal components of Mono Lake water.

  16. Investigations of plutonium immobilization into the vitreous compositions

    SciTech Connect

    Matyunin, Y.I.,

    1998-04-15

    Development and characterizations of phosphate and borosilicate glasses for vitrifying high level waste (HLW) solutions in Russia has been extensive. The technical data generated were for low concentrations (less than 0.05% Pu) of plutonium. Limited studies have been performed with plutonium concentrations one to two orders of magnitude larger. The results of these studies are being used to plan and implement an expanded experimental program to establish the limitations and characteristics of plutonium in similar glass compositions.

  17. Nitrates and Nitrites TNC Presentation

    EPA Pesticide Factsheets

    The Nitrates and Nitrites Presentation gives an overview of nitrates and nitrites in drinking water, why it is important to monitor them and what to do in cases where the results exceed the maximum contaminant level (MCL).

  18. Dose estimates of alternative plutonium pyrochemical processes.

    SciTech Connect

    Kornreich, D. E.; Jackson, J. W.; Boerigter, S. T.; Averill, W. A.; Fasel, J. H.

    2002-01-01

    We have coupled our dose calculation tool Pandemonium with a discrete-event, object-oriented, process-modeling system ProMosO to analyze a set of alternatives for plutonium purification operations. The results follow expected trends and indicate, from a dose perspective, that an experimental flowsheet may warrant further research to see if it can be scaled to industrial levels. Flowsheets that include fluoride processes resulted in the largest doses.

  19. MEANS FOR PRODUCING PLUTONIUM CHAIN REACTIONS

    DOEpatents

    Wigner, E.P.; Weinberg, A.M.

    1961-01-24

    A neutronic reactor is described with an active portion capable of operating at an energy level of 0.5 to 1000 ev comprising discrete bodies of Pu/ sup 239/ disposed in a body of water which contains not more than 5 molecules of water to one atom of plutonium, the total amount of Pu/sup 239/ being sufficient to sustain a chain reaction. (auth)

  20. A strategy for weapons-grade plutonium disposition

    SciTech Connect

    Sylvester, K.W.B.

    1994-09-01

    A political as well as technical analysis was performed to determine the feasibility of glassification (vitrification) for weapons grade plutonium (WGPu) disposition. The political analysis provided the criteria necessary to compare alternative storage forms. The technical areas of weapon useability and environmental safety were then computationally and experimentally explored and a vitrification implementation strategy postulated. The Monte Carlo Neutron Photon (MCNP) computer code was used to model the effect of blending WGPu with reactor grade Pu (RGPu). A mixture of 30% RGPu and 70% WGPu more than doubled the surface flux from a bare sphere of the mixture which assumedly correlates to a significantly increased predetonation probability. Rare earth diluents were also examined (using MCNP) for their ability to increase the compressed critical mass of the WGPu mixture. The rare earths (notably Eu) were effective in this regard. As Pu-239 has a 24,100 year half life, reactivity control in the long term is an environmental safety issue. Rare earths were investigated as criticality controllers due to their neutron absorption capabilities and insolubility in aqueous environments. Thorium (a Pu surrogate) and the rare earths Eu, Gd, and Sm were added to two standard frits (ARM-1 and SRL-165) and formed into glass. Aqueous leach tests were performed (using MCC-1P guidelines) to measure rare earth leaching and determine the added elements` effects on glass durability. Europium was much more leach resistant than boron in the glasses tested. The elements had no negative effect on the environmental durability of the glasses tested at 90 C and minimal effect at room temperature. No fission product releases were detected in the ARM-1 compositions (which contained numerous simulated fission products).

  1. PLUTONIUM RECOVERY FROM NEUTRON-BOMBARDED URANIUM FUEL

    DOEpatents

    Moore, R.H.

    1962-04-10

    A process of recovering plutonium from neutronbombarded uranium fuel by dissolving the fuel in equimolar aluminum chloride-potassium chloride; heating the mass to above 700 deg C for decomposition of plutonium tetrachloride to the trichloride; extracting the plutonium trichloride into a molten salt containing from 40 to 60 mole % of lithium chloride, from 15 to 40 mole % of sodium chloride, and from 0 to 40 mole % of potassium chloride or calcium chloride; and separating the layer of equimolar chlorides containing the uranium from the layer formed of the plutonium-containing salt is described. (AEC)

  2. 30. VIEW OF A GLOVEBOX LINE USED IN PLUTONIUM OPERATIONS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. VIEW OF A GLOVEBOX LINE USED IN PLUTONIUM OPERATIONS. SAFETY AND HEALTH CONCERNS WERE OF MAJOR IMPORTANCE AT THE PLANT, BECAUSE OF THE RADIOACTIVE NATURE OF THE MATERIALS USED. PLUTONIUM GIVES OFF ALPHA AND BETA PARTICLES, GAMMA PROTONS, NEUTRONS, AND IS ALSO PYROPHORIC. AS A RESULT, PLUTONIUM OPERATIONS ARE PERFORMED UNDER CONTROLLED CONDITIONS THAT INCLUDE CONTAINMENT, FILTERING, SHIELDING, AND CREATING AN INERT ATMOSPHERE. PLUTONIUM WAS HANDLED WITHIN GLOVEBOXES THAT WERE INTERCONNECTED AND RAN SEVERAL HUNDRED FEET IN LENGTH (5/5/70). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  3. Geomorphology of plutonium in the Northern Rio Grande

    SciTech Connect

    Graf, W.L.

    1993-03-01

    Nearly all of the plutonium in the natural environment of the Northern Rio Grande is associated with soils and sediment, and river processes account for most of the mobility of these materials. A composite regional budget for plutonium based on multi-decadal averages for sediment and plutonium movement shows that 90 percent of the plutonium moving into the system is from atmospheric fallout. The remaining 10 percent is from releases at Los Alamos. Annual variation in plutonium flux and storage exceeds 100 percent. The contribution to the plutonium budget from Los Alamos is associated with relatively coarse sediment which often behaves as bedload in the Rio Grande. Infusion of these materials into the main stream were largest in 1951, 1952, 1957, and 1968. Because of the schedule of delivery of plutonium to Los Alamos for experimentation and weapons manufacturing, the latter two years are probably the most important. Although the Los Alamos contribution to the entire plutonium budget was relatively small, in these four critical years it constituted 71--86 percent of the plutonium in bedload immediately downstream from Otowi.

  4. Magnetic separation as a plutonium residue enrichment process

    SciTech Connect

    Avens, L.R.; McFarlan, J.T.; Gallegos, U.F.

    1989-01-01

    We have subjected several plutonium contaminated residues to Open Gradient Magnetic Separation (OGMS) on an experimental scale. Separation of graphite, bomb reduction sand, and bomb reduction sand, and bomb reduction sand, slag, and crucible, resulted in a plutonium rich fraction and a plutonium lean fraction. The lean fraction varied between about 20% to 85% of the feed bulk. The plutonium content of the lean fraction can be reduced from about 2% in the feed to the 0.1% to 0.5% range dependent on the portion of the feed rejected to this lean fraction. These values are low enough in plutonium to meet economic discard limits and be considered for direct discard. Magnetic separation of direct oxide reduction and electrorefining pyrochemical salts gave less favorable results. While a fraction very rich in plutonium could be obtained, the plutonium content of the lean fraction was to high for direct discard. This may still have chemical processing applications. OGMS experiments at low magnetic field strength on incinerator ash did give two fractions but the plutonium content of each fraction was essentially identical. Thus, no chemical processing advantage was identified for magnetic separation of this residue. The detailed results of these experiments and the implications for OGMS use in recycle plutonium processing are discussed. 4 refs., 3 figs., 9 tabs.

  5. Technical considerations and policy requirements for plutonium management

    SciTech Connect

    Christensen, D.C.; Dinehart, S.M.; Yarbro, S.L.

    1995-12-31

    The goals for plutonium management have changed dramatically over the past few years. Today, the challenge is focused on isolating plutonium from the environment and preparing it for permanent disposition. In parallel, the requirements for managing plutonium are rapidly changing. For example, there is a significant increase in public awareness on how facilities operate, increased attention to environmental safety and health (ES and H) concerns, greater interest in minimizing waste, more emphasis on protecting material from theft, providing materials for international inspection, and a resurgence of interest in using plutonium as an energy source. Of highest concern, in the immediate future, is protecting plutonium from theft or diversion, while the national policy on disposition is debated. These expanded requirements are causing a broadening of responsibilities within the Department of Energy (DOE) to include at least seven organizations. An unavoidable consequence is the divergence in approach and short-term goals for managing similar materials within each organization. The technology base does exist, properly, safely, and cost effectively to extract plutonium from excess weapons, residues, waste, and contaminated equipment and facilities, and to properly stabilize it. Extracting the plutonium enables it to be easily inventoried, packaged, and managed to minimize the risk of theft and diversion. Discarding excess plutonium does not sufficiently reduce the risk of diversion, and as a result, long-term containment of plutonium from the environment may not be able to be proven to the satisfaction of the public.

  6. Design of the improved plutonium canister assay system (IPCAS)

    SciTech Connect

    Abhold, M. E.; Baker, M. C.; Bourret, S. C.; Polk, P. J.; Vo, Duc T.

    2001-01-01

    The improved Plutonium Canister Assay System (iPCAS) is designed to detect gross and partial defects in the declared plutonium content of plutonium and MOX storage canisters during transfer to storage and process areas of the MOX fuel fabrication facility in Kokkasho, Japan. In addition, an associated Gamma Isotopics System (GIS) will be used to confirm facility-declared plutonium isotopics with accuracy sufficient to reduce the amount of destructive isotopic analysis needed. The design of the iPCAS instrument and its associated GIS is described and the expected performance of the instrument is discussed.

  7. Sonochemical Synthesis of Layered Copper Hydroxy Nitrate Nanosheets.

    PubMed

    Anandan, Sambandam; Wu, Jerry J; Ashokkumar, Muthupandian

    2015-11-16

    Sonochemical reduction of copper nitrate, using 20 kHz ultrasound in aqueous solutions in the presence of urea, led to the formation of layered copper hydroxy nitrate nanosheets, as evidenced by scanning and transmission electron microscopy images. Fourier-transform infrared, X-ray diffraction, and X-ray photoelectron spectroscopy analyses were used to characterize layered Cu2(OH)3NO3 nanosheets. The ultrasound-assisted progressive hydrolysis of urea and in situ formation of Cu(0) through the sonochemical reduction process induced homogeneous nucleation and crystallization of layered Cu2(OH)3NO3 nanosheets.

  8. Electrochemical reduction of nitrate in the presence of an amide

    DOEpatents

    Dziewinski, Jacek J.; Marczak, Stanislaw

    2002-01-01

    The electrochemical reduction of nitrates in aqueous solutions thereof in the presence of amides to gaseous nitrogen (N.sub.2) is described. Generally, electrochemical reduction of NO.sub.3 proceeds stepwise, from NO.sub.3 to N.sub.2, and subsequently in several consecutive steps to ammonia (NH.sub.3) as a final product. Addition of at least one amide to the solution being electrolyzed suppresses ammonia generation, since suitable amides react with NO.sub.2 to generate N.sub.2. This permits nitrate reduction to gaseous nitrogen to proceed by electrolysis. Suitable amides include urea, sulfamic acid, formamide, and acetamide.

  9. Proposed Modification to the Plutonium Systemic Model.

    PubMed

    Konzen, Kevin; Miller, Scott; Brey, Richard

    2015-10-01

    The currently accepted biokinetic model for plutonium distribution within the human body was recommended by the International Commission on Radiological Protection in publication 67. This model was developed from human and animal studies and behavioral knowledge acquired from other known bone-seeking radionuclides. The biokinetic model provides a mathematical means of predicting the distribution, retention, and clearance of plutonium within the human body that may be used in deriving organ, tissue, and whole body dose. This work proposed a modification to the ICRP 67 systemic model for plutonium that incorporated the latest knowledge acquired from recent human injection studies with physiologically based improvements. In summary, the changes included a separation of the liver compartments, removed the intermediate soft tissue-to-bladder pathway, and added pathways from the blood compartment to both the cortical and trabecular bone volumes. The proposed model provided improved predictions for several bioassay indicators compared to the ICRP 67 model while also maintaining its basic structure. Additionally, the proposed model incorporated physiologically based improvements for the liver and skeleton and continued to ensure efficient coupling with intake biokinetic models.

  10. Atomistic modeling of thermodynamic equilibrium of plutonium

    NASA Astrophysics Data System (ADS)

    Lee, Tongsik; Valone, Steve; Baskes, Mike; Chen, Shao-Ping; Lawson, Andrew

    2012-02-01

    Plutonium metal has complex thermodynamic properties. Among its six allotropes at ambient pressure, the fcc delta-phase exhibits a wide range of anomalous behavior: extraordinarily high elastic anisotropy, largest atomic volume despite the close-packed structure, negative thermal expansion, strong elastic softening at elevated temperature, and extreme sensitivity to dilute alloying. An accurate description of these thermodynamic properties goes far beyond the current capability of first-principle calculations. An elaborate modeling strategy at the atomic level is hence an urgent need. We propose a novel atomistic scheme to model elemental plutonium, in particular, to reproduce the anomalous characteristics of the delta-phase. A modified embedded atom method potential is fitted to two energy-volume curves that represent the distinct electronic states of plutonium in order to embody the mechanism of the two-state model of Weiss, in line with the insight originally proposed by Lawson et al. [Philos. Mag. 86, 2713 (2006)]. By the use of various techniques in Monte Carlo simulations, we are able to provide a unified perspective of diverse phenomenological aspects among thermal expansion, elasticity, and phase stability.

  11. Characterizing Surplus US Plutonium for Disposition - 13199

    SciTech Connect

    Allender, Jeffrey S.; Moore, Edwin N.

    2013-07-01

    The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems. (authors)

  12. Characterizing surplus US plutonium for disposition

    SciTech Connect

    Allender, Jeffrey S.; Moore, Edwin N.

    2013-02-26

    The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems.

  13. Plutonium Immobilization Project -- Robotic canister loading

    SciTech Connect

    Hamilton, R.L.

    2000-01-04

    The Plutonium Immobilization Program (PIP) is a joint venture between the Savannah River Site (SRS), Lawrence Livermore National Laboratory (LLNL), Argonne National Laboratory (ANL), and Pacific Northwest National Laboratory (PNNL). When operational in 2008, the PIP will fulfill the nation's nonproliferation commitment by placing surplus weapons-grade plutonium in a permanently stable ceramic form and making it unattractive for reuse. Since there are significant radiation and security concerns, the program team is developing novel and unique technology to remotely perform plutonium immobilization tasks. The remote task covered in this paper employs a jointed arm robot to load seven 3.5 inch diameter, 135-pound cylinders (magazines) through the 4 inch diameter neck of a stainless steel canister. Working through the narrow canister neck, the robot secures the magazines into a specially designed rack pre-installed in the canister. To provide the deterrent effect, the canisters are filled with a mixture of high-level waste and glass at the Defense Waste Processing Facility (DWPF).

  14. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    SciTech Connect

    STAN, MARIUS; HECKER, SIEGFRIED S.

    2007-02-07

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  15. A Plutonium-Contaminated Wound, 1985, USA

    SciTech Connect

    Doran M. Christensen, DO, REAC /TS Associate Director and Staff Physician Eugene H. Carbaugh, CHP, Staff Scientist, Internal Dosimetry Manager, Pacific Northwest National Laboratory, Richland, Washington

    2012-02-02

    A hand injury occurred at a U.S. facility in 1985 involving a pointed shaft (similar to a meat thermometer) that a worker was using to remove scrap solid plutonium from a plastic bottle. The worker punctured his right index finger on the palm side at the metacarpal-phalangeal joint. The wound was not through-and- through, although it was deep. The puncture wound resulted in deposition of ~48 kBq of alpha activity from the weapons-grade plutonium mixture with a nominal 12 to 1 Pu-alpha to {sup 241}Am-alpha ratio. This case clearly showed that DTPA was very effective for decorporation of plutonium and americium. The case is a model for management of wounds contaminated with transuranics: (1) a team approach for dealing with all of the issues surrounding the incident, including the psychological, (2) early surgical intervention for foreign-body removal, (3) wound irrigation with DTPA solution, and (4) early and prolonged DTPA administration based upon bioassay and in vivo dosimetry.

  16. Plutonium immobilization in glass and ceramics

    SciTech Connect

    Knecht, D.A.; Murphy, W.M.

    1996-05-01

    The Materials Research Society Nineteenth Annual Symposium on the Scientific Basis for Nuclear Waste Management was held in Boston on November 27 to December 1, 1995. Over 150 papers were presented at the Symposium dealing with all aspects of nuclear waste management and disposal. Fourteen oral sessions and on poster session included a Plenary session on surplus plutonium dispositioning and waste forms. The proceedings, to be published in April, 1996, will provide a highly respected, referred compilation of the state of scientific development in the field of nuclear waste management. This paper provides a brief overview of the selected Symposium papers that are applicable to plutonium immobilization and plutonium waste form performance. Waste forms that were described at the Symposium cover most of the candidate Pu immobilization options under consideration, including borosilicate glass with a melting temperature of 1150 {degrees}C, a higher temperature (1450 {degrees}C) lanthanide glass, single phase ceramics, multi-phase ceramics, and multi-phase crystal-glass composites (glass-ceramics or slags). These Symposium papers selected for this overview provide the current status of the technology in these areas and give references to the relevant literature.

  17. TRACKING SURPLUS PLUTONIUM FROM WEAPONS TO DISPOSITION

    SciTech Connect

    Allender, J.; Beams, J.; Sanders, K.; Myers, L.

    2013-07-16

    Supporting nuclear nonproliferation and global security principles, beginning in 1994 the United States has withdrawn more than 50 metric tons (MT) of government-controlled plutonium from potential use in nuclear weapons. The Department of Energy (DOE), including the National Nuclear Security Administration, established protocols for the tracking of this "excess" and "surplus" plutonium, and for reconciling the current storage and utilization of the plutonium to show that its management is consistent with the withdrawal policies. Programs are underway to ensure the safe and secure disposition of the materials that formed a major part of the weapons stockpile during the Cold War, and growing quantities have been disposed as waste, after which they are not included in traditional nuclear material control and accountability (NMC&A) data systems. A combination of resources is used to perform the reconciliations that form the basis for annual reporting to DOE, to U.S. Department of State, and to international partners including the International Atomic Energy Agency.

  18. The carbonate complexation of plutonium(IV)

    SciTech Connect

    Hobart, D E; Palmer, P D; Newton, T W

    1985-01-01

    Plutonium(IV) carbonate complexes are expected to be of particular importance in typical groundwaters at the Yucca Mountain site of the candidate nuclear waste repository being studied by the Nevada Nuclear Waste Storage Investigations Project. The chemistry of these complexes is also important in the areas of nuclear fuel reprocessing and purification, actinide separations, and environmental studies. This report describes initial experiments performed to determine the identity and equilibrium quotients of plutonium(IV) carbonate complexes. These experiments were performed at pH values between 7.2 and 9.6 using a spectrophotometric method. In addition, a brief review of the published literature on Pu(IV) carbonate complexes is presented. Since Pu(IV) exhibits low solubility in the near-neutral pH range, a complex-competition reaction where citrate ligands compete with carbonate ions for the plutonium will be employed. This will permit us to study the pure carbonate system; study the mixed carbonate/citrate system, and confirm and extend the literature work on the pure citrate system. The current experiments have demonstrated the existence of at least three distinct species in the pH region studied. This work will continue in the extended study of the pure citrate system, followed by the investigation of the citrate/carbonate complex/competition reaction. 9 refs., 4 figs., 2 tabs.

  19. Microdosimetry of plutonium in beagle dog lung

    SciTech Connect

    Fisher, D.R.; Roesch, W.C.

    1980-08-01

    A better understanding of the microdosimetry of internally-deposited radionuclides should provide new clues to the complex relationships between organ dose distribution and early or late biological effects. Our current interest is the microdosimetry of plutonium and other alpha emitters in the lung. Since the lung is an inhomogeneous tissue, it was necessary to characterize the microscopic distributions of alveolar tissue, air space, and epithelial cell nuclei to define source-target parameters. A statistical representation of the microstructure of beagle dog lung was developed from automated image analysis of specimens from three healthy adult male dogs. The statistical distributions obtained constituted a data base from which it was possible to calculate both the energy dissipation of an alpha particle as it traversed a straight line path through pulmonary tissue, and the probability of intersecting a potentially sensitive biological site in the cell. Computer methods were modified to accomodate tissues with air space regions such as one finds in lung tissue. With the lung model description, these methods were used to determine probability density curves in specific energy for inhaled plutonium aerosols. It was assumed that the activity was randomly distributed on alveolar walls. Calculated examples are given for various activities of inhaled plutonium point sources deposited in lung tissue.

  20. Real-time monitoring of plutonium content in uranium-plutonium alloys

    DOEpatents

    Li, Shelly Xiaowei; Westphal, Brian Robert; Herrmann, Steven Douglas

    2015-09-01

    A method and device for the real-time, in-situ monitoring of Plutonium content in U--Pu Alloys comprising providing a crucible. The crucible has an interior non-reactive to a metallic U--Pu alloy within said interior of said crucible. The U--Pu alloy comprises metallic uranium and plutonium. The U--Pu alloy is heated to a liquid in an inert or reducing atmosphere. The heated U--Pu alloy is then cooled to a solid in an inert or reducing atmosphere. As the U--Pu alloy is cooled, the temperature of the U--Pu alloy is monitored. A solidification temperature signature is determined from the monitored temperature of the U--Pu alloy during the step of cooling. The amount of Uranium and the amount of Plutonium in the U--Pu alloy is then determined from the determined solidification temperature signature.