Science.gov

Sample records for aqueous nitric acid

  1. Speciation in aqueous solutions of nitric acid.

    PubMed

    Hlushak, S; Simonin, J P; De Sio, S; Bernard, O; Ruas, A; Pochon, P; Jan, S; Moisy, P

    2013-02-28

    In this study, speciation in aqueous solutions of nitric acid at 25 °C was assessed in two independent ways. First, Raman experiments were carried out and interpreted in terms of free nitrate ions, ion pairs and neutral HNO(3) molecules. In parallel, a model was developed to account for the formation of these two kinds of pairs. It was based on an extension of the binding mean spherical approximation (BiMSA), or associative MSA (AMSA), in which the size and the charge of the ions in the chemical pair may differ from those of the free ions. A simultaneous fit of the osmotic coefficient and of the proportion of free ions (obtained from Raman spectroscopy experiments) led to an estimation of the speciation in nitric acid solutions. The result obtained using this procedure was compared with the estimation obtained from the Raman experiments.

  2. Polymerization of Pu(IV) in aqueous nitric acid solutions

    SciTech Connect

    Toth, L.M.; Friedman, H.A.; Osborne, M.M.

    1980-10-01

    The polymerization of Pu(IV) in aqueous nitric acid solutions has been studied spectrophotometrically both to establish the influence of large UO{sub 2}(NO{sub 3}){sub 2} concentrations on the polymerization rates and, more generally, to review the influence of the major parameters on the polymer reaction. Typically, experiments have been performed at 50{sup 0}C and with 0.05 M Pu in nitric acid solutions that vary in acidity from 0.07 to 0.4 M. An induction period usually precedes the polymer growth stage during which time nucleation of primary hydrolysis products occurs. Uranyl nitrate retards the polymerization reaction by approximately 35% in spite of the counteracting influence of the nitrate ions associated with this solute. The rate of polymer formation, expressed as d(percent polymer)/dt, has been shown to depend on the total plutonium concentration in reactions where the Pu(IV) concentration remained constant; and it is therefore suggested that the polymer reaction rate is not first order with respect to the concentration of plutonium as was previously thought. It has been shown further that accurate acid determinations on stock reagents are essential in order to obtain reliable polymerization experiments. Satisfactory procedures for these analyses did not exist, so appropriate modifications to the iodate precipitation methods were developed. The most ideal plutonium reagent material has been shown to be crystalline Pu(IV) nitrate because it can be added directly to acid solutions without the occurrence of unintentional hydrolysis reactions.

  3. Extraction of nitric acid, uranyl nitrate, and bismuth nitrate from aqueous nitric acid solutions with CMPO

    SciTech Connect

    Spencer, B.B.

    1995-08-01

    DOE sponsored development of the transuranium extraction (TRUEX) process for removing actinides from radioactive wastes. The solvent is a mixture of CMPO and TBP. Since the extraction characteristics of CMPO are not as well understood as those of TBP, the extraction of nitric acid, uranyl nitrate, and bismuth nitrate with CMPO (dissolved in n-dodecane) were studied. Results indicate that CMPO extracts nitric acid with a 1:1 stoichiometry; equilibrium constant is 2. 660{plus_minus}0.092 at 25 C, and extraction enthalpy is -5. 46{plus_minus}0.46 kcal/mol. Slope analysis indicates that uranyl nitrate extracts with a mixed equilibria of 1:1 and 2:1 stoichiometries in nearly equal proportion. Equil. constant of the 2: 1 extraction was 1.213 {times} 10{sup 6}{plus_minus}3.56 {times} 10{sup 4} at 25 C; reaction enthalpy was -9.610{plus_minus}0.594 kcal/mol. Nitration complexation constant is 8.412{plus_minus}0.579, with an enthalpy of -10.72{plus_minus}1.87 kcal/mol. Bismuth nitrate also extracts with a mixed equilibria of (perhaps) 1:1 and 2:1 stoichiometries. A 2:1 extraction equilibrium and a nitrate complexation adequately model the data. Kinetics and enthalpies were also measured.

  4. Ab initio aqueous thermochemistry: application to the oxidation of hydroxylamine in nitric acid solution.

    PubMed

    Ashcraft, Robert W; Raman, Sumathy; Green, William H

    2007-10-18

    Ab initio molecular orbital calculations were performed and thermochemical parameters estimated for 46 species involved in the oxidation of hydroxylamine in aqueous nitric acid solution. Solution-phase properties were estimated using the several levels of theory in Gaussian03 and using COSMOtherm. The use of computational chemistry calculations for the estimation of physical properties and constants in solution is addressed. The connection between the pseudochemical potential of Ben-Naim and the traditional standard state-based thermochemistry is shown, and the connection of these ideas to computational chemistry results is established. This theoretical framework provides a basis for the practical use of the solution-phase computational chemistry estimates for real systems, without the implicit assumptions that often hide the nuances of solution-phase thermochemistry. The effect of nonidealities and a method to account for them is also discussed. A method is presented for estimating the solvation enthalpy and entropy for dilute aqueous solutions based on the solvation free energy from the ab initio calculations. The accuracy of the estimated thermochemical parameters was determined through comparison with (i) enthalpies of formation in the gas phase and in solution, (ii) Henry's law data for aqueous solutions, and (iii) various reaction equilibria in aqueous solution. Typical mean absolute deviations (MAD) for the solvation free energy in room-temperature water appear to be ~1.5 kcal/mol for most methods investigated. The MAD for computed enthalpies of formation in solution was 1.5-3 kcal/mol, depending on the methodology employed and the type of species (ion, radical, closed-shell) being computed. This work provides a relatively simple and unambiguous approach that can be used to estimate the thermochemical parameters needed to build detailed ab initio kinetic models of systems in aqueous solution. Technical challenges that limit the accuracy of the estimates are

  5. Simultaneous determination of nitric acid and uranium concentrations in aqueous solution from measurements of electrical conductivity, density, and temperature

    SciTech Connect

    Spencer, B.B.

    1991-01-01

    Nuclear fuel reprocessing plants handle aqueous solutions of nitric acid and uranium in large quantities. Automatic control of process operations requires reliable measurements of these solutes concentration, but this is difficult to directly measure. Physical properties such as solution density and electrical conductivity vary with solute concentration and temperature. Conductivity, density and temperature can be measured accurately with relatively simple and inexpensive devices. These properties can be used to determine solute concentrations will good correlations. This paper provides the appropriate correlations for solutions containing 2 to 6 Molar (M) nitric acid and 0 to 300 g/L uranium metal at temperatures from 25--90{degrees}C. The equations are most accurate below 5 M nitric acid, due to a broad maximum in the conductivity curve at 6 M. 12 refs., 9 figs., 6 tabs.

  6. NITRIC ACID RECPVERY FROM WASTE COLUTIONS

    DOEpatents

    Wilson, A.S.

    1959-04-14

    The recovery of nitric acid from aqueous nitrate solutions containing fission products as impurities is described. It is desirable to subject such solutions to concentration by evaporation since nitric acid is regenerated thereby. A difficulty, however, is that the highly radioactive fission product ruthenium is volatilized together with the nitric acid. It has been found that by adding nitrous acids ruthenium volatilization is suppressed and reduced to a negligible degree so that the distillate obtained is practically free of rutheniuim.

  7. Nitric acid recovery from waste solutions

    DOEpatents

    Wilson, A. S.

    1959-04-14

    The recovery of nitric acid from aqueous nitrate solutions containing fission products as impurities is described. It is desirable to subject such solutions to concentration by evaporation since nitric acid is regenerated thereby. A difficulty, however, is that the highly radioactive fission product ruthenium is volatilized together with the nitric acid. It has been found that by adding nitrous acid, ruthenium volatilization is suppressed and reduced to a negligible degree so that the distillate obtained is practically free of ruthenium.

  8. Salt Effect Model for Aqueous Solubility of TBP in a 5 to 100% TBP/n-Dodecane-Nitric Acid-Water Biphasic System at 298.2 K

    SciTech Connect

    Kumar, Shekhar; Koganti, Sudhir Babu

    2000-02-15

    The solubilities of nonelectrolytes in aqueous electrolyte solutions have traditionally been modeled by using the Setschenow equation for salt effect. The aqueous solubility of tri-n-butyl phosphate (TBP) during operating conditions of the Purex process is an important parameter for safety considerations. Use of the Setschenow equation for aqueous solubility of TBP under limited conditions has been reported in the literature. However, there is no general model available to account for the presence of the diluent and for the case of multicomponent electrolyte solutions in which only some electrolytes are solvated and extracted by TBP. An extended salt effect model is proposed for predicting the aqueous solubility of TBP in a 5 to 100% TBP/n-dodecane-nitric acid-water biphasic system at 298.2 K. The literature data on TBP solubility were correlated to aqueous acid concentration, diluent concentration in the solvents, and an interaction parameter for electrolytic solutes (extracted or not extracted by TBP)

  9. Kinetics and mechanism of adsorption of methylene blue from aqueous solution by nitric-acid treated water-hyacinth.

    PubMed

    El-Khaiary, Mohammad I

    2007-08-17

    Kinetics adsorption experiments were conducted to evaluate the adsorption characteristics of a cationic dye (methylene blue, MB) onto nitric-acid treated water-hyacinth (N-WH). Results showed that N-WH can remove MB effectively from aqueous solution. The loading of MB onto N-WH was found to increase significantly with increasing the initial MB concentration, but the residual concentration of MB in solution also increased. A complete removal of MB from solution was only achieved at the lower range of initial MB concentration (less than 286 mg/L). Temperature had a slight effect on the amount adsorbed at equilibrium. The adsorption rate was fast and more than half of the adsorbed-MB was removed in the first 15 min at room temperature, which makes the process practical for industrial application. The adsorption kinetics at room temperature could be expressed by the pseudo second order model, while at higher temperatures (45-80 degrees C) and low MB concentration (97 mg/L) both Lagergren's model and the pseudo second order model can be used to predict the kinetics of adsorption. The overall rate of dye uptake was found to be controlled by external mass transfer at the beginning of adsorption, then gradually changed to intraparticle diffusion control at a later stage. The initial period where external mass transfer is the rate controlling step was found to increase with increasing initial MB concentration and decrease with increasing temperature. The increase in temperature was also found to increase the rate of adsorption and reduce the time required to reach equilibrium. The initial rate of adsorption, h(o), was calculated, it was found to increase with increasing temperature, while the increase in MB concentration decreased h(o) at the lower concentration range then increased h(o) again at high concentration. The value of the activation coefficient, E, was found to be 8.207 kJ/mol, which indicates a diffusion controlled process.

  10. Improvement of oxygen-containing functional groups on olive stones activated carbon by ozone and nitric acid for heavy metals removal from aqueous phase.

    PubMed

    Bohli, Thouraya; Ouederni, Abdelmottaleb

    2016-08-01

    Recently, modification of surface structure of activated carbons in order to improve their adsorption performance toward especial pollutants has gained great interest. Oxygen-containing functional groups have been devoted as the main responsible for heavy metal binding on the activated carbon surface; their introduction or enhancement needs specific modification and impregnation methods. In the present work, olive stones activated carbon (COSAC) undergoes surface modifications in gaseous phase using ozone (O3) and in liquid phase using nitric acid (HNO3). The activated carbon samples were characterized using N2 adsorption-desorption isotherm, SEM, pHpzc, FTIR, and Boehm titration. The activated carbon parent (COSAC) has a high surface area of 1194 m(2)/g and shows a predominantly microporous structure. Oxidation treatments with nitric acid and ozone show a decrease in both specific surface area and micropore volumes, whereas these acidic treatments have led to a fixation of high amount of surface oxygen functional groups, thus making the carbon surface more hydrophilic. Activated carbon samples were used as an adsorbent matrix for the removal of Co(II), Ni(II), and Cu(II) heavy metal ions from aqueous solutions. Adsorption isotherms were obtained at 30 °C, and the data are well fitted to the Redlich-Peterson and Langmuir equation. Results show that oxidized COSACs, especially COSAC(HNO3), are capable to remove more Co(II), Cu(II), and Ni(II) from aqueous solution. Nitric acid-oxidized olive stones activated carbon was tested in its ability to remove metal ions from binary systems and results show an important maximum adsorbed amount as compared to single systems.

  11. 49 CFR 173.158 - Nitric acid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Nitric acid. 173.158 Section 173.158... Nitric acid. (a) Nitric acid exceeding 40 percent concentration may not be packaged with any other material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid...

  12. 49 CFR 173.158 - Nitric acid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Nitric acid. 173.158 Section 173.158... Nitric acid. (a) Nitric acid exceeding 40 percent concentration may not be packaged with any other material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid...

  13. 49 CFR 173.158 - Nitric acid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Nitric acid. 173.158 Section 173.158... Nitric acid. (a) Nitric acid exceeding 40 percent concentration may not be packaged with any other material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid...

  14. 49 CFR 173.158 - Nitric acid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Nitric acid. 173.158 Section 173.158... Nitric acid. (a) Nitric acid exceeding 40 percent concentration may not be packaged with any other material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid...

  15. 49 CFR 173.158 - Nitric acid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Nitric acid. 173.158 Section 173.158... Nitric acid. (a) Nitric acid exceeding 40 percent concentration may not be packaged with any other material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid...

  16. REDUCTION OF ACIDITY OF NITRIC ACID SOLUTIONS BY USE OF FORMALDEHYDE

    DOEpatents

    Healy, T.V.

    1958-05-20

    A continuous method is described of concentrating by evaporation and reducing the nitrate ion content of an aqueous solution of metallic salts containing nitric acid not in excess of 8N. It consists of heating the solution and then passing formaldehyde into the heated solution to bring about decomposition of the nitric acid. The evolved gases containing NO are contacted countercurrently with an aqueous metal salt solution containing nitric acid in excess of 8N so as to bring about decomposition of the nitric acid and lower the normality to at least 8N, whereupon it is passed into the body of heated solution.

  17. Cation-exchange behavior of berkelium in aqueous-organic solutions of nitric acid, containing trioctylphosphine oxide

    SciTech Connect

    Guseva, L.I.; Tikhomirova, G.S.; Korovaikov, P.A.

    1995-07-01

    Behavior of transplutonium elements (TPEs), Eu, and Zr on Dowex-50 cation-exchange resin in aqueous-organic solutions of HNO{sub 3} containing trioctylphosphine oxide (TOPO) has been studied as influenced by the nature of the solvent (H{sub 2}O, CH{sub 3}OH, C{sub 2}H{sub 5}OH, CH{sub 3}COOH, CH{sub 3}CN), the composition and concentration of various components of the solution, and the presence of an oxidant (PbO{sub 2}) in the resin phase. The authors found that the factors of Bk distribution between the PbO{sub 2}-containing resin and CH{sub 3}CN-HNO{sub 3}-TOPO solutions are considerably lower than the distribution factors of other TPEs, which is due to oxidation of Bk(III) into Bk(IV). This fact can be used for separation of Bk(IV) from other TPEs with a cation-exchange column containing an oxidant. The optimal conditions of separation (elution with solutions containing 1.0-2.5 M HNO{sub 3}, 0.1 M TOPO, and 80-90% CH{sub 3}CN) have been determined. A mechanism is proposed for TPE sorption on the cation-exchange resin from aqueous-organic solutions of HNO{sub 3} containing TOPO. The analogy between behavior of TPEs in ion-exchange and extraction processes in these systems is discussed.

  18. Alternative to Nitric Acid Passivation

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2016-01-01

    Corrosion is an extensive problem that affects the National Aeronautics and Space Administration (NASA) and European Space Agency (ESA). The deleterious effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel. It is vital to reduce corrosion costs and risks in a sustainable manner. The primary objective of this effort is to qualify citric acid as an environmentally-preferable alternative to nitric acid for passivation of stainless steel alloys.

  19. Corrosion studies in fuel element reprocessing environments containing nitric acid

    SciTech Connect

    Beavers, J A; White, R R; Berry, W E; Griess, J C

    1982-04-01

    Nitric acid is universally used in aqueous fuel element reprocessing plants; however, in the processing scheme being developed by the Consolidated Fuel Reprocessing Program, some of the equipment will be exposed to nitric acid under conditions not previously encountered in fuel element reprocessing plants. A previous report presented corrosion data obtained in hyperazeotropic nitric acid and in concentrated magnesium nitrate solutions used in its preparation. The results presented in this report are concerned with the following: (1) corrosion of titanium in nitric acid; (2) corrosion of nickel-base alloys in a nitric acid-hydrofluoric acid solution; (3) the formation of Cr(VI), which enhances corrosion, in nitric acid solutions; and (4) corrosion of mechanical pipe connectors in nitric acid. The results show that the corrosion rate of titanium increased with the refreshment rate of boiling nitric acid, but the effect diminished rapidly as the temperature decreased. The addition of iodic acid inhibited attack. Also, up to 200 ppM of fluoride in 70% HNO/sub 3/ had no major effect on the corrosion of either titanium or tantalum. In boiling 8 M HNO/sub 3/-0.05 M HF, Inconel 671 was more resistant than Inconel 690, but both alloys experienced end-grain attack. In the case of Inconel 671, heat treatment was very important; annealed and quenched material was much more resistant than furnace-cooled material.The rate of oxidation of Cr(III) to Cr(VI) increased significantly as the nitric acid concentration increased, and certain forms of ruthenium in the solution seemed to accelerate the rate of formation. Mechanical connectors of T-304L stainless steel experienced end-grain attack on the exposed pipe ends, and seal rings of both stainless steel and a titanium alloy (6% Al-4% V) underwent heavy attack in boiling 8 M HNO/sub 3/.

  20. The Oxidation of Hydrazine by Nitric Acid

    SciTech Connect

    Karraker, D.G.

    2001-07-02

    Hydrazine nitrate-nitric acid solutions are used in the ion exchange process for separating Pu-238 and Np-237 and have been found to dissolve plutonium metal in a manner advantageous to SRP metal recovery operations. Laboratory tests on the stability of hydrazine in nitric acid solutions were performed to obtain accurate data, and the results of these tests are reported here. These tests provide sufficient information to specify temperature control for hydrazine-nitric acid solutions in plant processes.

  1. Hexanitrostilbene Recrystallized from Nitric Acid

    DTIC Science & Technology

    1979-09-19

    process. The author wishes to acknowledge Mr. Daniel Polansky for the X-Ray/N-Ray, Ms. Eleonore Kayser for the chemical analyses and nitric acid...recrystallized HNS-II using a pH meter and a solvent mixture consisting of 90% H2 0 and 10% DMSO by volume. The method was developed by Eleonore Kayser...65-142, 26 Aug 1965. 4. Syrop, Leroy J., "Process for Recrystallizing Hexanitrostilbene," U. S. Patent 3,699,176, 17 Oct 1972. 5. Kayser, Eleonore G

  2. Fatty acid transduction of nitric oxide signaling. Nitrolinoleic acid is a hydrophobically stabilized nitric oxide donor.

    PubMed

    Schopfer, Francisco J; Baker, Paul R S; Giles, Gregory; Chumley, Phil; Batthyany, Carlos; Crawford, Jack; Patel, Rakesh P; Hogg, Neil; Branchaud, Bruce P; Lancaster, Jack R; Freeman, Bruce A

    2005-05-13

    The aqueous decay and concomitant release of nitric oxide (*NO) by nitrolinoleic acid (10-nitro-9,12-octadecadienoic acid and 12-nitro-9,12-octadecadienoic acid; LNO2) are reported. Mass spectrometric analysis of reaction products supports a modified Nef reaction as the mechanism accounting for the generation of *NO by the aqueous reactions of fatty acid nitroalkene derivatives. Nitrolinoleic acid is stabilized by an aprotic milieu, with LNO2 decay and *NO release strongly inhibited by phosphatidylcholine/cholesterol liposome membranes and detergents when present at levels above their critical micellar concentrations. The release of *NO from LNO2 was induced by UV photolysis and triiodide-based ozone chemiluminescence reactions currently used to quantify putative protein nitrosothiol and N-nitrosamine derivatives. This reactivity of LNO2 complicates the qualitative and quantitative analysis of biological oxides of nitrogen when applying UV photolysis and triiodide-based analytical systems to biological preparations typically abundant in nitrated fatty acids. The results reveal that nitroalkene derivatives of linoleic acid are pluripotent signaling mediators that act not only via receptor-dependent mechanisms, but also by transducing the signaling actions of *NO via pathways subject to regulation by the relative distribution of LNO2 to hydrophobic versus aqueous microenvironments.

  3. Alternative to Nitric Acid Passivation

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2015-01-01

    The Ground Systems Development and Operations (GSDO) Program at NASA John F. Kennedy Space Center (KSC), Florida, has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of NASA and the GSDO Program, the objective of this project is to qualify citric acid as an environmentally-preferable alternative to nitric acid for passivation of stainless steel alloys. This project is a direct follow-on to United Space Alliance (USA) work at KSC to optimize the parameters for the use of citric acid and verify effectiveness. This project will build off of the USA study to further evaluate citric acids effectiveness and suitability for corrosion protection of a number of stainless steels alloys used by NASA, the Department of Defense (DoD), and the European Space Agency (ESA).

  4. Large-scale production of anhydrous nitric acid and nitric acid solutions of dinitrogen pentoxide

    DOEpatents

    Harrar, Jackson E.; Quong, Roland; Rigdon, Lester P.; McGuire, Raymond R.

    2001-01-01

    A method and apparatus are disclosed for a large scale, electrochemical production of anhydrous nitric acid and N.sub.2 O.sub.5. The method includes oxidizing a solution of N.sub.2 O.sub.4 /aqueous-HNO.sub.3 at the anode, while reducing aqueous HNO.sub.3 at the cathode, in a flow electrolyzer constructed of special materials. N.sub.2 O.sub.4 is produced at the cathode and may be separated and recycled as a feedstock for use in the anolyte. The process is controlled by regulating the electrolysis current until the desired products are obtained. The chemical compositions of the anolyte and catholyte are monitored by measurement of the solution density and the concentrations of N.sub.2 O.sub.4.

  5. Citric Acid Alternative to Nitric Acid Passivation

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L. (Compiler)

    2013-01-01

    The Ground Systems Development and Operations GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the purpose of this project is to demonstratevalidate citric acid as a passivation agent for stainless steel. Successful completion of this project will result in citric acid being qualified for use as an environmentally preferable alternative to nitric acid for passivation of stainless steel alloys in NASA and DoD applications.

  6. Revised reference model for nitric acid

    NASA Technical Reports Server (NTRS)

    Gille, J. C.; Bailey, P. L.; Craig, C. A.

    1989-01-01

    A nearly global set of data on the nitric acid distribution was obtained for seven months by the Limb Infrared Monitor of the Stratosphere (LIMS) experiment on the Nimbus 7 spacecraft. The evaluation of the accuracy, precision, and resolution of these data is described, and a description of the major features of the nitric acid distributions is presented. The zonal mean for nitric acid is distributed in a stratospheric layer that peaks near 30 mb, with the largest mixing ratios occurring in polar regions, especially in winter.

  7. Proposed reference model for nitric acid

    NASA Astrophysics Data System (ADS)

    Gille, John C.; Bailey, Paul L.; Craig, Cheril A.

    A nearly global set of data on the nitric acid distribution was obtained for seven months by the Limb Infrared Monitor of the Stratosphere (LIMS) experiment on the Nimbus 7 spacecraft. The evaluation of the accuracy, precision and resolution of these data is described, and a description of the major features of the nitric acid distributions is presented. The zonal mean for nitric acid is distributed in a stratospheric layer that peaks near 30 mb, with the largest mixing ratios occurring in polar regions, especially in winter.

  8. Revised reference model for nitric acid

    NASA Astrophysics Data System (ADS)

    Gille, J. C.; Bailey, P. L.; Craig, C. A.

    A nearly global set of data on the nitric acid distribution was obtained for seven months by the Limb Infrared Monitor of the Stratosphere (LIMS) experiment on the Nimbus 7 spacecraft. The evaluation of the accuracy, precision and resolution of these data is described, and a description of the major features of the nitric acid distributions is presented. The zonal mean for nitric acid is distributed in a stratospheric layer that peaks near 30 mb, with the largest mixing ratios occurring in polar regions, especially in winter.

  9. Revised reference model for nitric acid

    NASA Astrophysics Data System (ADS)

    Gille, J. C.; Bailey, P. L.; Craig, C. A.

    1993-01-01

    A nearly global set of data on the nitric acid distribution was obtained for seven months by the Limb Infrared Monitor of the Stratosphere (LIMS) experiment on the Nimbus 7 spacecraft. The evaluation of the accuracy, precision, and resolution of these data is described, and a description of the major features of the nitric acid distributions is presented. The zonal mean for nitric acid is distributed in a stratospheric layer that peaks near 30 mb, with the largest mixing ratios occurring in polar regions, especially in winter.

  10. ELECTROLYTIC REDUCTION OF NITRIC ACID SOLUTIONS

    DOEpatents

    Alter, H.W.; Barney, D.L.

    1958-09-30

    A process is presented for the treatment of radioactivc waste nitric acid solutions. The nitric acid solution is neutralized with an alkali metal hydroxide in an amount sufficient to precipitate insoluble hydroxides, and after separation of the precipitate the solution is electrolyzed to convert the alkali nitrate formed, to alkali hydroxide, gaseous ammonla and oxygen. The solution is then reusable after reducing the volume by evaporating the water and dissolved ammonia.

  11. Chemical of the Month: Nitric Acid.

    ERIC Educational Resources Information Center

    Pannu, Sardul S.

    1984-01-01

    Presents background information on nitric acid including old names, history, occurrence, methods of preparation, uses, production, and price. Includes such chemical properties as decomposition; acidity, oxidation of metals and nonmetals; reactions with organic and inorganic compounds; gaseous fluorine; and nitrating properties. Also discusses bond…

  12. Morphine-Stimulated Nitric Oxide Release in Rabbit Aqueous Humor

    PubMed Central

    Dortch-Carnes, Juanita; Russell, Karen

    2007-01-01

    Recent studies in our laboratory have demonstrated a role of nitric oxide (NO) in morphine-induced reduction of intraocular pressure (IOP) and pupil diameter (PD) in the New Zealand white (NZW) rabbit. The present study was designed to determine the effect of morphine on NO release in the aqueous humor of NZW rabbits, as this effect could be associated with morphine-mediated changes in aqueous humor dynamics and iris function. Dark adapted NZW rabbits were treated as follows: 1) treatment with morphine (10, 33 or 100 μg, 5 min); 2) treatment with morphine or endomorphin-1 for 5, 15 or 30 min; 3) pretreatment with naloxone (100 μg), L-NAME (125 μg) or reduced glutathione (GSH, 100 μg) for 30 minutes, followed by treatment with morphine (100 μg, 5 min). After the various treatment regimens, aqueous humor samples were obtained by paracenthesis and immediately assayed for nitrates and nitrites (an index of NO production), using a microplate assay kit. Morphine caused a dose-dependent increase in the levels of NO in aqueous humor after 5 min of treatment with each dose. Rabbits treated with endomorphin-1 (100 μg) had no significant change in NO levels in aqueous at any point in the time course. Aqueous samples from rabbits treated with morphine (100 μg) for 5 minutes increased from 29.84 ± 2.39 μM (control) to 183.94 ± 23.48 μM (treated). The increase in NO levels by morphine (100 μg, 5 min) was completely inhibited in the presence of naloxone (100 μg), L-NAME (125 μg) or GSH (100 μg). These results indicate that morphine-induced increase in NO production in aqueous humor is a transient response that is linked to activation of mu opioid receptors. Data obtained suggest that morphine-stimulated changes in ocular hydrodynamics and iris function are due, in part, to increased release of NO in aqueous humor. In addition, the sensitivity of the response to L-NAME and GSH suggests that morphine-induced release of nitric oxide into aqueous humor is mediated by

  13. Nitric acid: modeling osmotic coefficients and acid-base dissociation using the BIMSA theory.

    PubMed

    Ruas, Alexandre; Pochon, Patrick; Simonin, Jean-Pierre; Moisy, Philippe

    2010-11-14

    This work is aimed at a description of the thermodynamic properties of highly concentrated aqueous solutions of nitric acid salts at 25 °C within the binding mean spherical approximation (BIMSA) theory. The predictive capability of this model was examined. First, Raman spectroscopy was used to study the proportion of associated nitric acid as a function of concentration. The corresponding apparent association constant values were compared with literature values. Besides, the BIMSA model, taking into account complex formation, was used to represent literature experimental osmotic coefficient variation with concentration. This theoretical description led to an assessment of the degree of association. The so calculated amount of associated nitric acid coincides accurately with our Raman experimental results up to a high concentration of acid.

  14. Influence of nitric acid treatment in different media on X-ray structural parameters of coal

    SciTech Connect

    Sudip Maity; Ashim Choudhury

    2008-11-15

    The treatment of coal with nitric acid in aqueous and non-aqueous media introduces changes in the chemical and spatial structure of the organic mass. Four coals of different rank have been treated with nitric acid in aqueous and glacial acetic acid media for assessing the changes in the structural parameters by the X-ray diffraction (XRD) technique. Slow-scan XRD has been performed for the raw and treated coals, and X-ray structural parameters (d002, Lc, and Nc) and aromaticity (fa) have been determined by profile-fitting software. Considerable variation of the structural parameters has been observed with respect to the raw coals. The d002 values have decreased in aqueous medium but increased in acetic acid medium; however, Lc, Nc, and fa values have increased in aqueous medium but decreased in acetic acid medium. It is also observed that considerable oxidation takes place during nitric acid treatment in aqueous medium, but nitration is the predominant phenomenon in acetic acid medium. Disordering of the coal structure increases in acetic acid medium, but a reverse trend is observed in the aqueous medium. As a result, structurally modified coals (SMCs) are derived as new coal-derived substances. 15 refs., 6 figs., 3 tabs.

  15. Alternative to Nitric Acid Passivation Project Overview

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L.

    2013-01-01

    The standard practice for protection of stainless steel is a process called passivation. This procedure results in the formation of a metal oxide layer to prevent corrosion. Typical passivation procedures call for the use of nitric acid which exhibits excellent corrosion performance; however, there are a number of environmental, worker safety, and operational issues associated with its use. The longtime military specification for the passivation of stainless steel was cancelled in favor of newer specifications which allow for the use of citric acid in place of nitric acid. Citric acid offers a variety of benefits that include increased safety for personnel, reduced environmental impact, and reduced operational costs. There have been few studies, however, to determine whether citric acid is an acceptable alternative for NASA and DoD. This paper details activities to date including development of the joint test plan, on-going and planned testing, and preliminary results.

  16. Nitric acid in polar stratospheric clouds - Similar temperature of nitric acid condensation and cloud formation

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F.; Snetsinger, Kenneth G.; Hamill, Patrick; Goodman, Jindra K.; Mccormick, M. Patrick

    1990-01-01

    As shown independently by two different techniques, nitric acid aerosols and polar stratospheric clouds (PSCs) both form below similar threshold temperatures. This supports the idea that the PSC particles involved in chlorine activation and ozone depletion in the winter polar stratosphere are composed of nitric acid. One technique used to show this is the inertial impaction of nitric acid aerosols using an Er-2 aircraft; the other method is remote sensing of PSCs by the Stratospheric Aerosol Measurement (SAM II) satellite borne optical sensor. Both procedures were in operation during the Arctic Airborne Stratospheric Expedition in 1989, and the Airborne Antarctic Ozone Experiment in 1987. Analysis of Arctic particles gathered in situ indicates the presence of nitric acid below a 'first appearance' temperature Tfa = 202 K. This is the same highest temperature at which PSCs are seen by the SAM II satellite. In comparison, a 'first appearance' temperature Tfa = 198 K as found for the Antarctic samples.

  17. Infrared optical constants of H2O ice, amorphous nitric acid solutions, and nitric acid hydrates

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Koehler, Birgit G.; Middlebrook, Ann M.; Tolbert, Margaret A.; Jordon, Joseph

    1994-01-01

    We determined the infrared optical constants of nitric acid trihydrate, nitric acid dihydrate, nitric acid monohydrate, and solid amorphous nitric acid solutions which crystallize to form these hydrates. We have also found the infrared optical constants of H2O ice. We measured the transmission of infrared light throught thin films of varying thickness over the frequency range from about 7000 to 500/cm at temperatures below 200 K. We developed a theory for the transmission of light through a substrate that has thin films on both sides. We used an iterative Kramers-Kronig technique to determine the optical constants which gave the best match between measured transmission spectra and those calculated for a variety of films of different thickness. These optical constants should be useful for calculations of the infrared spectrum of polar stratospheric clouds.

  18. Extraction equilibrium of indium(III) from nitric acid solutions by di(2-ethylhexyl)phosphoric acid dissolved in kerosene.

    PubMed

    Tsai, Hung-Sheng; Tsai, Teh-Hua

    2012-01-04

    The extraction equilibrium of indium(III) from a nitric acid solution using di(2-ethylhexyl) phosphoric acid (D2EHPA) as an acidic extractant of organophosphorus compounds dissolved in kerosene was studied. By graphical and numerical analysis, the compositions of indium-D2EHPA complexes in organic phase and stoichiometry of the extraction reaction were examined. Nitric acid solutions with various indium concentrations at 25 °C were used to obtain the equilibrium constant of InR₃ in the organic phase. The experimental results showed that the extraction distribution ratios of indium(III) between the organic phase and the aqueous solution increased when either the pH value of the aqueous solution and/or the concentration of the organic phase extractant increased. Finally, the recovery efficiency of indium(III) in nitric acid was measured.

  19. Metastable Nitric Acid Trihydrate in Ice Clouds.

    PubMed

    Weiss, Fabian; Kubel, Frank; Gálvez, Óscar; Hoelzel, Markus; Parker, Stewart F; Baloh, Philipp; Iannarelli, Riccardo; Rossi, Michel J; Grothe, Hinrich

    2016-03-01

    The composition of high-altitude ice clouds is still a matter of intense discussion. The constituents in question are ice and nitric acid hydrates, but the exact phase composition of clouds and its formation mechanisms are still unknown. In this work, conclusive evidence for a long-predicted phase, alpha-nitric acid trihydrate (alpha-NAT), is presented. This phase was characterized by a combination of X-ray and neutron diffraction experiments, allowing a convincing structure solution. Furthermore, vibrational spectra (infrared and inelastic neutron scattering) were recorded and compared with theoretical calculations. A strong interaction between water ice and alpha-NAT was found, which explains the experimental spectra and the phase-transition kinetics. On the basis of these results, we propose a new three-step mechanism for NAT formation in high-altitude ice clouds.

  20. Metastable Nitric Acid Trihydrate in Ice Clouds

    PubMed Central

    Weiss, Fabian; Kubel, Frank; Gálvez, Óscar; Hoelzel, Markus; Parker, Stewart F.; Baloh, Philipp; Iannarelli, Riccardo; Rossi, Michel J.

    2016-01-01

    Abstract The composition of high‐altitude ice clouds is still a matter of intense discussion. The constituents in question are ice and nitric acid hydrates, but the exact phase composition of clouds and its formation mechanisms are still unknown. In this work, conclusive evidence for a long‐predicted phase, alpha‐nitric acid trihydrate (alpha‐NAT), is presented. This phase was characterized by a combination of X‐ray and neutron diffraction experiments, allowing a convincing structure solution. Furthermore, vibrational spectra (infrared and inelastic neutron scattering) were recorded and compared with theoretical calculations. A strong interaction between water ice and alpha‐NAT was found, which explains the experimental spectra and the phase‐transition kinetics. On the basis of these results, we propose a new three‐step mechanism for NAT formation in high‐altitude ice clouds. PMID:26879259

  1. Photochemistry of aqueous pyruvic acid.

    PubMed

    Griffith, Elizabeth C; Carpenter, Barry K; Shoemaker, Richard K; Vaida, Veronica

    2013-07-16

    The study of organic chemistry in atmospheric aerosols and cloud formation is of interest in predictions of air quality and climate change. It is now known that aqueous phase chemistry is important in the formation of secondary organic aerosols. Here, the photoreactivity of pyruvic acid (PA; CH3COCOOH) is investigated in aqueous environments characteristic of atmospheric aerosols. PA is currently used as a proxy for α-dicarbonyls in atmospheric models and is abundant in both the gas phase and the aqueous phase (atmospheric aerosols, fog, and clouds) in the atmosphere. The photoreactivity of PA in these phases, however, is very different, thus prompting the need for a mechanistic understanding of its reactivity in different environments. Although the decarboxylation of aqueous phase PA through UV excitation has been studied for many years, its mechanism and products remain controversial. In this work, photolysis of aqueous PA is shown to produce acetoin (CH3CHOHCOCH3), lactic acid (CH3CHOHCOOH), acetic acid (CH3COOH), and oligomers, illustrating the progression from a three-carbon molecule to four-carbon and even six-carbon molecules through direct photolysis. These products are detected using vibrational and electronic spectroscopy, NMR, and MS, and a reaction mechanism is presented accounting for all products detected. The relevance of sunlight-initiated PA chemistry in aqueous environments is then discussed in the context of processes occurring on atmospheric aerosols.

  2. Inelastic Neutron Scattering of Nitric Acid Hydrates

    NASA Astrophysics Data System (ADS)

    Baloh, P.; Grothe, H.; Martín-Llorente, B.; Parker, S.

    2009-04-01

    The IPCC report 2007 underlines the particular importance of aerosol particles for the water cycle and the radiation balance, and thus for the global climate.[1] The contribution of aerosols and clouds to radiative forcing might be comparable to the most important greenhouse gases like CO2 but is comparatively less understood. Nitric acid hydrates are important constituents of solid cloud particles in the lower polar Stratosphere (Polar Stratospheric Clouds) and the upper Troposphere (Cirrus clouds). The exact phase composition of these particles is still a matter of controversial discussion.[2] Especially, metastable modifications have, as recent measurements show, a particular relevance for the atmosphere, which has been ignored up to now.[3] Spectroscopic data for their detection are urgently needed and can be gathered with laboratory models. Only recently we have recorded the FTIR and Raman spectra of all nitric acid hydrates, stable and metastable.[4,5] These data have been corroborated by X-ray diffraction measurements.[6] However, when interpreting the spectroscopic data it became evident that not all bands could be explained reasonably. Here, DFT calculations were extremely helpful,[7] but still the translational and librational bands were not fully understood. Hence, inelastic neutron scattering was employed in order to investigate this region. The INS measurements were carried out with the instrument TOSCA at the ISIS of the Rutherford Appleton Laboratory, UK. The samples were prepared ex-situ in an amorphous state and were transferred into a helium-bath-cryostat, where the sample has been annealed between 20 K and 220 K. Characteristic changes of translational and librational modes have been observed and have been correlated with phase transitions. [1] Intergovernmental Panel on Climate Change, 4th Assessment Report "Climate Change 2007: The Physical Science Basis, Summary for Policymakers", Geneva, 2007; www.ipcc.ch [2] H. Grothe, H. Tizek and I. K

  3. Growth of nitric acid hydrates on thin sulfuric acid films

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Middlebrook, Ann M.; Wilson, Margaret A.; Tolbert, Margaret A.

    1994-01-01

    Type I polar stratospheric clouds (PSCs) are thought to nucleate and grow on stratospheric sulfate aerosols (SSAs). To model this system, thin sulfuric acid films were exposed to water and nitric acid vapors (1-3 x 10(exp -4) Torr H2O and 1-2.5 x 10(exp -6) Torr HNO3) and subjected to cooling and heating cycles. Fourier Transform Infrared (FTIR) spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films that condensed. Nitric acid trihydrate (NAT) was observed to grow on crystalline sulfuric acid tetrahydrate (SAT) films. NAT also condensed in/on supercooled H2SO4 films without causing crystallization of the sulfuric acid. This growth is consistent with NAT nucleation from ternary solutions as the first step in PSC formation.

  4. Actinide removal from nitric acid waste streams

    SciTech Connect

    Muscatello, A.C.; Navratil, J.D.

    1986-01-01

    Actinide separations research at the Rocky Flats Plant (RFP) has found ways to significantly improve plutonium secondary recovery and americium removal from nitric acid waste streams generated by plutonium purification operations. Capacity and breakthrough studies show anion exchange with Dowex 1x4 (50 to 100 mesh) to be superior for secondary recovery of plutonium. Extraction chromatography with TOPO(tri-n-octyl-phosphine oxide) on XAD-4 removes the final traces of plutonium, including hydrolytic polymer. Partial neutralization and solid supported liquid membrane transfer removes americium for sorption on discardable inorganic ion exchangers, potentially allowing for non-TRU waste disposal.

  5. Calorimetry Studies of Ammonia, Nitric Acid, and Ammonium Nitrate

    DTIC Science & Technology

    1979-10-01

    block nmmber) Calorimetry Heat of reaction Ammonium nitrate Heat capacity Nitric acid Heat of solution • Amonia 20. ABSTRACT r(Cmrtfe m,.re a N "no•a.•r sd...identical to the literature spectrum of W NO3. Anhydrous nitric acid was prepared by distillation of 90% HNO 3 from fuming sulfuric acid (oxides of nitrogen

  6. Direct chemiluminescence detection of nitric oxide in aqueous solutions using the natural nitric oxide target soluble guanylyl cyclase.

    PubMed

    Woldman, Yakov Y; Sun, Jian; Zweier, Jay L; Khramtsov, Valery V

    2009-11-15

    Nitric oxide (NO) is a free radical involved in many physiological processes including regulation of blood pressure, immune response, and neurotransmission. However, the measurement of extremely low, in some cases subnanomolar, physiological concentrations of nitric oxide presents an analytical challenge. The purpose of this methods article is to introduce a new highly sensitive chemiluminescence approach to direct NO detection in aqueous solutions using a natural nitric oxide target, soluble guanylyl cyclase (sGC), which catalyzes the conversion of guanosine triphosphate to guanosine 3',5'-cyclic monophosphate and inorganic pyrophosphate. The suggested enzymatic assay uses the fact that the rate of the reaction increases by about 200 times when NO binds with sGC and, in so doing, provides a sensor for nitric oxide. Luminescence detection of the above reaction is accomplished by converting inorganic pyrophosphate into ATP with the help of ATP sulfurylase followed by light emission from the ATP-dependent luciferin-luciferase reaction. Detailed protocols for NO quantification in aqueous samples are provided. The examples of applications include measurement of NO generated by a nitric oxide donor (PAPA-NONOate), nitric oxide synthase, and NO gas dissolved in buffer. The method allows for the measurement of NO concentrations in the nanomolar range and NO generation rates as low as 100 pM/min.

  7. 77 FR 48433 - New Source Performance Standards Review for Nitric Acid Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... AGENCY 40 CFR Part 60 RIN 2060-AQ10 New Source Performance Standards Review for Nitric Acid Plants AGENCY... performance standards (NSPS) for nitric acid plants. Nitric acid plants include one or more nitric acid... standards for nitric acid plants, contact Mr. Nathan Topham, Sector Policies and Program Division, Office...

  8. Metastable Nitric Acid Trihydrate in Ice Clouds

    NASA Astrophysics Data System (ADS)

    Weiss, Fabian; Kubel, Frank; Gálvez, Oscar; Hölzel, Markus; Parker, Stewart F.; Baloh, Philipp; Iannarelli, Riccardo; Rossi, Michel J.; Grothe, Hinrich

    2016-04-01

    The composition of high altitude ice clouds is still a matter of intense discussion. The constituents in question are ice and nitric acid hydrates. The identification and formation mechanisms, however, are still unknown but are essential to understand atmospheric processing such as the seasonal ozone depletion in the lower polar stratosphere or the radiation balance of planet Earth. We found conclusive evidence for a long-predicted phase, which has been named alpha nitric acid trihydrate (alpha-NAT). This phase has been proven by combination of X-ray and neutron diffraction experiments allowing a convincing structure solution. Additionally, vibrational spectra (infrared and inelastic neutron scattering) were recorded and compared with theoretical calculations. A strong affinity between water ice and alpha-NAT has been found, which explains the experimental spectra and the phase transition kinetics essential for identification in the atmosphere. On the basis of our results, we propose a new three-step mechanism for NAT-formation in high altitude ice clouds. F. Weiss et al. Angew. Chem. Int. Ed. 2016, accepted, DOI:10.1002/anie.201510841

  9. EFFECTS OF NITRIC ACID ON CRITICALITY SAFETY ANALYSIS

    SciTech Connect

    Williamson, B.

    2011-08-18

    As nitric acid molarity is increased, there are two competing phenomena affecting the reactivity of the system. First, there is interaction between each of the 10 wells in the basket-like insert. As the molarity of the nitric acid solution is increased (it moves from 100% water to 100% HNO{sub 3}), the hydrogen atom density decreases by about 80%. However, it remains a relatively efficient moderator. The moderating ratio of nitric acid is about 90% that of water. As the media between the wells is changed from 100% water to 100% nitric acid, the density of the media increases by 50%. A higher density typically leads to a better reflector. However, when the macroscopic scattering cross sections are considered, nitric acid is a much worse reflector than water. The effectiveness of nitric acid as a reflector is about 40% that of water. Since the media between the wells become a worse reflector and still remains an effective moderator, interaction between the wells increases. This phenomenon will cause reactivity to increase as nitric acid molarity increases. The seond phenomenon is due to the moderating ratio changing in the high concentration fissile-nitric acid solution in the 10 wells. Since the wells contain relatively small volumes of high concentration solutions, a small decrease in moderating power has a large effect on reactivity. This is due to the fact that neutrons are more likely to escape the high concentration fissile solution before causing another fission event. The result of this phenomenon is that as nitric acid molarity increases, reactivity decreases. Recent studies have shown that the second phenomenon is indeed the dominating force in determining reactivity changes in relation to nitric acid molarity changes. When considering the system as a whole, as nitric acid molarity increases, reactivity decreases.

  10. Adverse experiences with nitric acid at the Savannah River Site

    SciTech Connect

    Durant, W.S.; Craig, D.K.; Vitacco, M.J.; McCormick, J.A.

    1991-06-01

    Nitric acid is used routinely at the Savannah River Site (SRS) in many processes. However, the site has experienced a number of adverse situations in handling nitric acid. These have ranged from minor injuries to personnel to significant explosions. This document compiles many of these events and includes discussions of process upsets, fires, injuries, and toxic effects of nitric acid and its decomposition products. The purpose of the publication is to apprise those using the acid that it is a potentially dangerous material and can react in many ways as demonstrated by SRS experience. 10 refs.

  11. Alternative control techniques document: Nitric and adipic acid manufacturing plants

    SciTech Connect

    Lazzo, D.W.

    1991-12-01

    The Alternative Control Techniques document describes available control techniques for reducing NOx emission levels from nitric and adipic acid manufacturing plants. The document contains information on the formation of NOx and uncontrolled NOx emissions from nitric and adipic acid plants. The following NOx control techniques for nitric acid plants are discussed: extended absorption, nonselective catalytic reduction (NSCR), and selective catalytic reduction (SCR). The following NOx control techniques for adipic acid plants are discussed: extended absorption and thermal reduction. For each control technique, achievable controlled NOx emission levels, capital and annual costs, cost effectiveness, and environmental and energy impacts are presented.

  12. Recovery of plutonium from nitric acid waste

    SciTech Connect

    Muscatello, A.C.; Saba, M.T.; Navratil, J.D.

    1986-12-21

    Seven candidate materials, each contained in a static-bed column, have been evaluated for removing plutonium from nitric acid waste. Three materials have insufficient capacity for plutonium: TBP (tri-n-butylphosphate) sorbed on Amberlite XAD-4 resin, O phi D(IB)CMPO (octylphenyl-N, N-diisobutylcarbamoylmethylphosphine oxide) sorbed on XAD-4, and Amberlite IRA-938 anion exchange resin. The remaining four materials reduced 10/sup -3/ g/l plutonium in 7.2M HNO/sub 3/ to low 10/sup -5/ g/l for 80 bed volumes (BV). The 10% breakthrough capacities for 3 x 10/sup -2/ g/l plutonium are: TOPO (tri-n-octylphosphine oxide) on XAD-4 - 1800 BV, DHDECMP (dihexyl-N, N-diethylcarbamoylmethylphosphonate) on XAD-4 - 960 BV, Dowex 1 x 4 - 840 BV, and DHDECMP + TBP - 640 BV. Based on these results and generally poor elution of all materials, TOPO on XAD-4 is recommended as the best candidate for recovery of plutonium followed by acid digestion or combustion of the TOPO to recover the concentrated plutonium.

  13. PROCESS FOR EXTRACTING NEPTUNIUM AND PLUTONIUM FROM NITRIC ACID SOLUTIONS OF SAME CONTAINING URANYL NITRATE WITH A TERTIARY AMINE

    DOEpatents

    Sheppard, J.C.

    1962-07-31

    A process of selectively extracting plutonium nitrate and neptunium nitrate with an organic solution of a tertiary amine, away from uranyl nitrate present in an aqueous solution in a maximum concentration of 1M is described. The nitric acid concentration is adjusted to about 4M and nitrous acid is added prior to extraction. (AEC)

  14. Nitric acid uptake by sulfuric acid solutions under stratospheric conditions - Determination of Henry's Law solubility

    NASA Technical Reports Server (NTRS)

    Reihs, Christa M.; Golden, David M.; Tolbert, Margaret A.

    1990-01-01

    The uptake of nitric acid by sulfuric acid solutions representative of stratospheric particulate at low temperatures was measured to determine the solubility of nitric acid in sulfuric acid solutions as a function of H2SO4 concentration and solution temperature. Solubilities are reported for sulfuric acid solutions ranging from 58 to 87 wt pct H2SO4 over a temperature range from 188 to 240 K, showing that, in general, the solubility of nitric acid increases with decreasing sulfuric acid concentration and with decreasing temperature. The measured solubilities indicate that nitric acid in the global stratosphere will be found predominantly in the gas phase.

  15. Nitric acid recycling and copper nitrate recovery from effluent.

    PubMed

    Jô, L F; Marcus, R; Marcelin, O

    2014-01-01

    The recycling of nitric acid and copper nitrate contained in an industrial effluent was studied. The experiments conducted on such a medium showed that the presence of copper nitrate significantly improves nitric acid-water separation during distillation in an azeotropic medium. At the temperature of the azeotrope, however, this metal salt starts to precipitate, making the medium pasty, thus inhibiting the nitric acid extraction process. The optimisation of parameters such as column efficiency and adding water to the boiler at the azeotrope temperature are recommended in this protocol in order to collect the various components while avoiding the formation of by-products: NOx compounds. Thus, the absence of column, along with the addition of a small volume of water at a temperature of 118 °C, significantly increases the yield, allowing 94 % nitric acid to be recovered at the end of the process, along with the residual copper nitrate. The resulting distillate, however, is sufficiently dilute to not be used as is. Rectification is required to obtain concentrated nitric acid at 15 mol·l(-1), along with a weakly acidic distillate from the distillation front. This latter is quenched using potassium hydroxide and is used as a fertiliser solution for horticulture or sheltered market gardening. This process thus allows complete recycling of all the medium's components, including that of the distillate resulting from the nitric acid rectification operation.

  16. Volatilization of iodine from nitric acid using peroxide

    DOEpatents

    Cathers, G.I.; Shipman, C.J.

    1975-10-21

    A method for removing radioactive iodine from nitric acid solution by adding hydrogen peroxide to the solution while concurrently holding the solution at the boiling point and distilling hydrogen iodide from the solution is reported.

  17. The Iron-Catalyzed Oxidation of Hydrazine by Nitric Acid

    SciTech Connect

    Karraker, D.G.

    2001-07-17

    To assess the importance of iron to hydrazine stability, the study of hydrazine oxidation by nitric acid has been extended to investigate the iron-catalyzed oxidation. This report describes those results.

  18. 76 FR 63878 - New Source Performance Standards Review for Nitric Acid Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ... AGENCY 40 CFR Part 60 RIN 2060-AQ10 New Source Performance Standards Review for Nitric Acid Plants AGENCY... source performance standards (NSPS) for nitric acid plants. Nitric acid plants include one or more nitric acid production units. These proposed revisions include a change to the nitrogen oxides (NO...

  19. Formation of nitric acid hydrates - A chemical equilibrium approach

    NASA Technical Reports Server (NTRS)

    Smith, Roland H.

    1990-01-01

    Published data are used to calculate equilibrium constants for reactions of the formation of nitric acid hydrates over the temperature range 190 to 205 K. Standard enthalpies of formation and standard entropies are calculated for the tri- and mono-hydrates. These are shown to be in reasonable agreement with earlier calorimetric measurements. The formation of nitric acid trihydrate in the polar stratosphere is discussed in terms of these equilibrium constants.

  20. Polarographic detection of nitric oxide released from cardiovascular compounds in aqueous solutions.

    PubMed

    Pataricza, J; Penke, B; Balogh, G E; Papp, J G

    1998-03-01

    In order to detect the concentration of nitric oxide, known to be one of the biologically active principles of certain cardiovascular compounds, a highly selective polarographic/amperometric device was used. The nitric oxide-releasing properties of sodium nitroprusside, nitroglycerine, nicorandil, and the molsidomine metabolite, 3-morpholinosydnonimine, were compared in the following cell-free experimental solutions in vitro: in Krebs-Henseleit solution with and without a sulfhydryl donor, L-cysteine, in an acidic, reducing medium, and in Krebs-Henseleit solution with superoxide dismutase enzyme. Sodium nitroprusside released similar concentrations of nitric oxide in Krebs-Henseleit solution and in the acidic, reducing medium. L-Cysteine inhibited the release of nitric oxide at physiological pH. In the presence of nitroglycerine, nitric oxide signals were detected in the acidic, reducing environment and in L-cysteine-rich Krebs-Henseleit solution but not in the absence of the sulfhydryl donor. Amperometric signals could not be detected after adding nicorandil in all the experimental conditions used. 3-Morpholinosydnonimine released nitric oxide only in the presence of the superoxide dismutase enzyme. Our results suggest that the polarographic electrode is able to detect the release of nitric oxide from sodium nitroprusside, nitroglycerine, and 3-morpholinosydnonimine in the absence of biological material. The present observations support the importance of the chemical environment during the detection of nitric oxide from donor compounds in the common in vitro bathing systems.

  1. Phosphoric acid, nitric acid, and hydrogen peroxide digestion of soil and plant materials for selenium determination

    SciTech Connect

    Dong, A.; Rendig, V.V.; Burau, R.G.; Besga, G.S.

    1987-11-15

    A mixture of phosphoric acid, nitric acid, and hydrogen peroxide has been proposed as an alternative to the use of the nitric/perchloric acid mixture to digest biological fluids to determine their selenium (Se) content. The purpose of the studies reported here was to test the applicability of this digestion method for the determination of Se in soil and plant materials.

  2. White Paper on Potential Hazards Associated with Contaminated Cheesecloth Exposed to Nitric Acid Solutions

    SciTech Connect

    Hypes, Philip A.

    2016-09-20

    This white paper addresses the potential hazards associated with waste cheesecloth that has been exposed to nitric acid solutions. This issue was highlighted by the cleanup of a 100 ml leak of aqueous nitric acid solution containing Heat Source (HS) plutonium on 21 June 2016. Nitration of cellulosic material is a well-understood process due to industrial/military applications of the resulting material. Within the Department of Energy complex, nitric acids have been used extensively, as have cellulosic wipes. If cellulosic materials are nitrated, the cellulosic material can become ignitable and in extreme cases, reactive. We have chemistry knowledge and operating experience to support the conclusion that all current wastes are safe and compliant. There are technical questions worthy of further experimental evaluation. An extent of condition evaluation has been conducted back to 2004. During this time period there have been interruptions in the authorization to use cellulosic wipes in PF-4. Limited use has been authorized since 2007 (for purposes other than spill cleanup), so our extent of condition includes the entire current span of use. Our evaluation shows that there is no indication that process spills involving high molarity nitric acid were cleaned up with cheesecloth since 2007. The materials generated in the 21 June leak will be managed in a safe manner compliant with all applicable requirements.

  3. Tested Demonstrations: Color Oscillations in the Formic Acid-Nitric Acid-Sulfuric Acid System.

    ERIC Educational Resources Information Center

    Raw, C. J. G.; And Others

    1983-01-01

    Presented are procedures for demonstrating the production of color oscillations when nitric acid is added to a formic acid/concentrated sulfuric acid mixture. Because of safety considerations, "Super-8" home movie of the color changes was found to be satisfactory for demonstration purposes. (JN)

  4. Energetic particle-induced enhancements of stratospheric nitric acid

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1994-01-01

    Inclusion of complete ion chemistry in the calculation of minor species production during energetic particle deposition events leads to significant enhancement in the calculated nitric acid concentration during precipitation. An ionization rate of 1.2 x 10(exp 3)/cu cm/s imposed for 1 day increases HNO3 from 3 x 10(exp 5) to 6 x 10(exp 7)/cu cm at 50 km. With an ionization rate of 600 cu cm/s, the maximum HNO3 is 3 x 10(exp 7)/cu cm. Calculations which neglect negative ions predict the nitric acid will fall during precipitation events. The decay time for converting HNO3 into odd nitrogen and hydrogen is more than 1 day for equinoctial periods at 70 deg latitude. Examination of nitric acid data should yield important information on the magnitude and frequency of charged particle events.

  5. Aqueous nitrite ion determination by selective reduction and gas phase nitric oxide chemiluminescence

    NASA Technical Reports Server (NTRS)

    Dunham, A. J.; Barkley, R. M.; Sievers, R. E.; Clarkson, T. W. (Principal Investigator)

    1995-01-01

    An improved method of flow injection analysis for aqueous nitrite ion exploits the sensitivity and selectivity of the nitric oxide (NO) chemilluminescence detector. Trace analysis of nitrite ion in a small sample (5-160 microL) is accomplished by conversion of nitrite ion to NO by aqueous iodide in acid. The resulting NO is transported to the gas phase through a semipermeable membrane and subsequently detected by monitoring the photoemission of the reaction between NO and ozone (O3). Chemiluminescence detection is selective for measurement of NO, and, since the detection occurs in the gas-phase, neither sample coloration nor turbidity interfere. The detection limit for a 100-microL sample is 0.04 ppb of nitrite ion. The precision at the 10 ppb level is 2% relative standard deviation, and 60-180 samples can be analyzed per hour. Samples of human saliva and food extracts were analyzed; the results from a standard colorimetric measurement are compared with those from the new chemiluminescence method in order to further validate the latter method. A high degree of selectivity is obtained due to the three discriminating steps in the process: (1) the nitrite ion to NO conversion conditions are virtually specific for nitrite ion, (2) only volatile products of the conversion will be swept to the gas phase (avoiding turbidity or color in spectrophotometric methods), and (3) the NO chemiluminescence detector selectively detects the emission from the NO + O3 reaction. The method is free of interferences, offers detection limits of low parts per billion of nitrite ion, and allows the analysis of up to 180 microL-sized samples per hour, with little sample preparation and no chromatographic separation. Much smaller samples can be analyzed by this method than in previously reported batch analysis methods, which typically require 5 mL or more of sample and often need chromatographic separations as well.

  6. Distribution of zirconium in petroleum sulfoxides during extraction and sorption from nitric and hydrochloric acid solutions

    SciTech Connect

    Turanov, A.N.

    1988-11-20

    Petroleum sulfoxides (PSO) are effective extractants for several metals. We discussed the distribution of petroleum sulfoxides and zirconium between aqueous solutions of hydrochloric and nitric acid and organic solvents, and also the macroporous sorbent impregnated with PSO. For the investigation we used a macroposous copolymer of styrene with divinylbenzene. Our investigation showed a noticeable decrease in the contamination of the raffinates by petroleum sulfoxides and their more complete utilization as extractant of metals from solutions of acids when PSO is deposited on a macroporous copolymer of styrene with divinylbenzene.

  7. Refractory Oxide Coatings on Titanium for Nitric Acid Applications

    NASA Astrophysics Data System (ADS)

    Ravi Shankar, A.; Kamachi Mudali, U.

    2014-07-01

    Tantalum and Niobium have good corrosion resistance in nitric acid as well as in molten chloride salt medium encountered in spent fuel nuclear reprocessing plants. Commercially, pure Ti (Cp-Ti) exhibits good corrosion resistance in nitric acid medium; however, in vapor condensates of nitric acid, significant corrosion was observed. In the present study, a thermochemical diffusion method was pursued to coat Ta2O5, Nb2O5, and Ta2O5 + Nb2O5 on Ti to improve the corrosion resistance and enhance the life of critical components in reprocessing plants. The coated samples were characterized by XRD, SEM, EDX, profilometry, micro-scratch test, and ASTM A262 Practice-C test in 65 pct boiling nitric acid. The SEM micrograph of the coated samples showed that uniform dense coating containing Ta2O5 and/or Nb2O5 was formed. XRD patterns indicated the formation of TiO2, Ta2O5/Nb2O5, and mixed oxide/solid solution phase on coated Ti samples. ASTM A262 Practice-C test revealed reproducible outstanding corrosion resistance of Ta2O5-coated sample in comparison to Nb2O5- and Ta2O5 + Nb2O5-coated sample. The hardness of the Ta2O5-coated Cp-Ti sample was found to be twice that of uncoated Cp-Ti. The SEM and XRD results confirmed the presence of protective oxide layer (Ta2O5, rutile TiO2, and mixed phase) on coated sample which improved the corrosion resistance remarkably in boiling liquid phase of nitric acid compared to uncoated Cp-Ti and Ti-5Ta-1.8Nb alloy. Three phase corrosion test conducted on Ta2O5-coated samples in boiling 11.5 M nitric acid showed poor corrosion resistance in vapor and condensate phases of nitric acid due to poor adhesion of the coating. The adhesive strength of the coated samples needs to be optimized in order to improve the corrosion resistance in vapor and condensate phases of nitric acid.

  8. The nitric acid burn trauma of the skin.

    PubMed

    Kolios, L; Striepling, E; Kolios, G; Rudolf, K-D; Dresing, K; Dörges, J; Stürmer, K M; Stürmer, E K

    2010-04-01

    Nitric acid burn traumata often occur in the chemical industry. A few publications addressing this topic can be found in the medical database, and there are no reports about these traumata in children. A total of 24 patients, average 16.6 years of age, suffering from nitric acid traumata were treated. Wound with I degrees burns received open therapy with panthenol-containing creams. Wound of II degrees and higher were initially treated by irrigation with sterile isotonic saline solution and then by covering with silver-sulphadiazine dressing. Treatment was changed on the second day to fluid-absorbent foam bandages for superficial wounds (up to IIa degrees depth) and occlusive, antiseptic moist bandages in combination with enzymatic substances for IIb degrees -III degrees burns. After the delayed demarcation, necrectomy and mesh-graft transplantation were performed. All wounds healed adequately. Chemical burn traumata with nitric acid lead to specific yellow- to brown-stained wounds with slower accumulation of eschar and slower demarcation compared with thermal burns. Remaining wound eschar induced no systemic inflammation reaction. After demarcation, skin transplantation can be performed on the wounds, as is commonly done. The distinguishing feature of nitric-acid-induced chemical burns is the difficulty in differentiation and classification of burn depth. An immediate lavage should be followed by silver sulphadiazine treatment. Thereafter, fluid-absorbent foam bandages or occlusive, antiseptic moist bandages should be used according to the burn depth. Slow demarcation caused a delay in performing surgical treatments.

  9. Isothermal heat measurements of TBP-nitric acid solutions

    SciTech Connect

    Smith, J.R.; Cavin, W.S.

    1994-12-16

    Net heats of reaction were measured in an isothermal calorimeter for both single phase (organic) and two phase (organic and aqueous) TBP/HNO{sub 3} reacting solutions at temperatures above 100 C. The oxidation rate constant was determined to be 5.4E-4 min{sup {minus}1} at 110 C for an open ``vented`` system as compared to 1.33 E-3 min{sup {minus}1} in the closed system. The heat released per unit material oxidized was also reduced. The oxidation in both phases was found to be first order in nitric acid and pseudo-zero order in butylnitrate and water. The hydrolysis (esterification) rate constant determined by Nichols` (1.33E-3 min{sup {minus}1}) fit the experimental data from this work well. Forced evaporation of the volatile components by the product gases from oxidation resulted in a cooling mechanism which more than balanced the heat from the oxidation reaction in the two-phased systems. Rate expressions were derived and rate constants determined for both the single and two phase systems. An approximating mathematical model was developed to fit the experimental data and to extrapolate beyond the experimental conditions. This model shows that one foot of ``reacting`` 14.3M HNO{sub 3} aqueous phase solution at 121 C will transport sufficient water to the organic phase to replace evaporative losses, maintaining endothermicity, for organic layers up to 12.2 + 6.0 feet deep. If the pressure in a reacting system is allowed to increase due to insufficient venting the temperature of the organic phase would increase in temperature to reach a new equilibrium. The rate of oxidation would increase not only due to the increase in temperature but also from the increased concentration of dissolved HNO{sub 3} reduction products. Another important factor is that the cooling system described in this work becomes less effective as the total pressure increases. These factors probably contributed to the explosion at Tomsk.

  10. Laboratory studies on the retention of nitric acid, hydrochloric acid and ammonia on aerosol filters

    NASA Astrophysics Data System (ADS)

    Keck, Lothar; Wittmaack, Klaus

    Retention efficiencies of nitric acid, hydrochloric acid and ammonia were measured for different filters, with particular emphasis on cellulose (CE) and cellulose acetate-nitrate (CA) materials. Gases were produced either by nebulising aqueous solutions or by a novel technique based on the desorption from ammonium salts deposited on quartz fibre (QF) filters. Efficiencies for pure acidic gases and ammonia on CE and CA ranged from very low (⩽3.6%) to low (˜10% for HNO 3 on CE). In contrast, if acidic gases and ammonia were supplied in equimolar concentrations, they were retained (almost) completely on CE, with high efficiency on CA (60-80% for NH 3+HNO 3; 20-45% for NH 3+HCl), also with high efficiency on glass fibre filter, but with very low efficiency on QF and Teflon (Tf) filters (<1%). For CA, retention efficiencies were found to increase with increasing relative humidity and to decrease with decreasing mean pressure at which the filters were exposed to the gases. Once retained on CA filters, the retained gases may be lost again during subsequent exposure to clean air.

  11. 46 CFR 153.559 - Special requirements for nitric acid (less than 70 percent).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Special requirements for nitric acid (less than 70... MATERIALS Design and Equipment Special Requirements § 153.559 Special requirements for nitric acid (less than 70 percent). A containment system that carries nitric acid (less than 70 percent) must be...

  12. AMERICIUM SEPARATIONS FROM NITRIC ACID PROCESS EFFLUENT STREAMS

    SciTech Connect

    M. BARR; G. JARVINEN; ET AL

    2000-08-01

    The aging of the US nuclear stockpile presents a number of challenges, including the ever-increasing radioactivity of plutonium residues from {sup 241}Am. Minimization of this weak gamma-emitter in process and waste solutions is desirable to reduce both worker exposure and the effects of radiolysis on the final waste product. Removal of americium from plutonium nitric acid processing effluents, however, is complicated by the presence of large.quantities of competing metals, particularly Fe and Al, and-strongly oxidizing acidic solutions. The reprocessing operation offers several points at which americium removal maybe attempted, and we are evaluating two classes of materials targeted at different steps in the process. Extraction chromatography resin materials loaded with three different alkylcarbamoyl phosphinates and phosphine oxides were accessed for Am removal efficiency and Am/Fe selectivity from 1-7 molar nitric acid solutions. Commercial and experimental mono- and bifunctional anion-exchange resins were evaluated for total alpha-activity removal from post-evaporator solutions whose composition, relative to the original nitric acid effluent, is reduced in acid and greatly increased in total salt content. With both classes of materials, americium/total alpha emission removal is sufficient to meet regulatory requirements even under sub-optimal conditions. Batch distribution coefficients, column performance data, and the effects of Fe-masking agents will be presented.

  13. GADOLINIUM OXALATE SOLUBILITY MEASUREMENTS IN NITRIC ACID SOLUTIONS

    SciTech Connect

    Pierce, R.

    2012-02-22

    HB-Line will begin processing Pu solutions during FY2012 that will involve the recovery of Pu using oxalate precipitation and filtration. After the precipitation and filtration processes, the filtrate solution will be transferred from HB-Line to H-Canyon. The presence of excess oxalate and unfiltered Pu oxalate solids in these solutions create a criticality safety issue if they are sent to H-Canyon without controls in H-Canyon. One approach involves H-Canyon receiving the filtrate solution into a tank that is poisoned with soluble gadolinium (Gd). Decomposition of the oxalate will occur within a subsequent H-Canyon vessel. The receipt of excess oxalate into the H-Canyon receipt tanks has the potential to precipitate a portion of the Gd poison in the receipt tanks. Because the amount of Gd in solution determines the maximum amount of Pu solids that H-Canyon can receive, H-Canyon Engineering requested that SRNL determine the solubility of Gd in aqueous solutions of 4-10 M nitric acid (HNO{sub 3}), 4-12 g/L Gd, and 0.15-0.25 M oxalic acid (H{sub 2}C{sub 2}O{sub 4}) at 25 C. The target soluble Gd concentration is 6 g/L. The data indicate that the target can be achieved above 6 M HNO{sub 3} and below 0.25 M H{sub 2}C{sub 2}O{sub 4}. For 6 M HNO{sub 3}, 10.5 g/L and 7 g/L Gd are soluble in 0.15 M and 0.25 M H{sub 2}C{sub 2}O{sub 4}, respectively. In 4 M HNO{sub 3}, the Gd solubility drops significantly to 2 g/L and 0.25 g/L in 0.15 M and 0.25 M H{sub 2}C{sub 2}O{sub 4}, respectively. The solubility of Gd at 8-10 M HNO{sub 3} exceeds the solubility at 6 M HNO{sub 3}. The data for 4 M HNO{sub 3} showed good agreement with data in the literature. To achieve a target of 6 g/L soluble Gd in solution in the presence of 0.15-0.25 M oxalate, the HNO{sub 3} concentration must be maintained at or above 6 M HNO{sub 3}.

  14. REACTIVITY OF RESORCINOL FORMALDEHYDE RESIN WITH NITRIC ACID

    SciTech Connect

    King, W; Fernando Fondeur, F; Bill Wilmarth, B; Myra Pettis, M; Shirley Mccollum, S

    2006-06-14

    Solid-state infrared spectroscopy, differential scanning calorimetry, and elemental analysis have been used to evaluate the reactivity of resorcinol formaldehyde resin with nitric acid and characterize the solid product. Two distinct reactions were identified within the temperature range 25-55 C. The first reaction is primarily associated with resin nitration, while the second involves bulk oxidation and degradation of the polymer network leading to dissolution and off-gassing. Reaction was confirmed with nitric acid concentrations as low as 3 M at 25 C applied temperature and 0.625 M at 66 C. Although a nitrated resin product can be isolated under appropriate experimental conditions, calorimetry testing indicates no significant hazard associated with handling the dry material.

  15. Reactivity of Resorcinol Formaldehyde Resin with Nitric Acid

    SciTech Connect

    King, William D.; Fondeur, Fernando F.; Wilmarth, William R.; Pettis, Myra E.

    2005-10-25

    Solid-state infrared spectroscopy, differential scanning calorimetry, and elemental analysis have been used to evaluate the reactivity of resorcinol formaldehyde resin with nitric acid and characterize the solid product. Two distinct reactions were identified within the temperature range 25-55 C. The first reaction is primarily associated with resin nitration, while the second involves bulk oxidation and degradation of the polymer network leading to dissolution and off-gassing. The threshold conditions promoting reaction have been identified. Reaction was confirmed with nitric acid concentrations as low as 3 M at 25 C applied temperature and 0.625 M at 66 C. Although a nitrated resin product can be isolated under appropriate experimental conditions, calorimetry testing indicates no significant hazard associated with handling the dry material.

  16. Hydrolytic Unzipping of Boron Nitride Nanotubes in Nitric Acid

    NASA Astrophysics Data System (ADS)

    Kim, Dukeun; Muramatsu, Hiroyuki; Kim, Yoong Ahm

    2017-02-01

    Boron nitride nanoribbons (BNNRs) have very attractive electrical and optical properties due to their unique edge states and width-related properties. Herein, for the first time, BNNRs were produced by a simple reflux of boron nitride nanotubes (BNNTs) in nitric acid containing water, which had led to unzipped sidewalls through hydrolysis. Their high reactivity that originated from edges was verified via a strong interaction with methylene blue.

  17. Hydrolytic Unzipping of Boron Nitride Nanotubes in Nitric Acid.

    PubMed

    Kim, Dukeun; Muramatsu, Hiroyuki; Kim, Yoong Ahm

    2017-12-01

    Boron nitride nanoribbons (BNNRs) have very attractive electrical and optical properties due to their unique edge states and width-related properties. Herein, for the first time, BNNRs were produced by a simple reflux of boron nitride nanotubes (BNNTs) in nitric acid containing water, which had led to unzipped sidewalls through hydrolysis. Their high reactivity that originated from edges was verified via a strong interaction with methylene blue.

  18. Mercury-free dissolution of aluminum-clad fuel in nitric acid

    DOEpatents

    Christian, Jerry D.; Anderson, Philip A.

    1994-01-01

    A mercury-free dissolution process for aluminum involves placing the aluminum in a dissolver vessel in contact with nitric acid-fluoboric acid mixture at an elevated temperature. By maintaining a continuous flow of the acid mixture through the dissolver vessel, an effluent containing aluminum nitrate, nitric acid, fluoboric acid and other dissolved components are removed.

  19. Mercury-free dissolution of aluminum-clad fuel in nitric acid

    DOEpatents

    Christian, J.D.; Anderson, P.A.

    1994-11-15

    A mercury-free dissolution process for aluminum involves placing the aluminum in a dissolver vessel in contact with nitric acid-fluoboric acid mixture at an elevated temperature. By maintaining a continuous flow of the acid mixture through the dissolver vessel, an effluent containing aluminum nitrate, nitric acid, fluoboric acid and other dissolved components are removed. 5 figs.

  20. Aqueous thermal degradation of gallic acid

    SciTech Connect

    Boles, J.S.; Crerar, D.A.; Grissom, G.; Key, T.C.

    1988-02-01

    Aqueous thermal degradation experiments show gallic acid, a naturally occurring aromatic carboxylic compound, decomposes rapidly at temperatures between 105/sup 0/ and 150/sup 0/C, with an activation energy of 22.9 or 27.8 kcal/mole, depending on pH of the starting solution. Pyrogallol is the primary product identified, indicating degradation via decarboxylation and a carbanion transition state. Relatively rapid degradation of vanillic, phthalic, ellagic and tannic acids has also been observed,suggesting that these and perhaps other aromatic acids could be short-lived in deep formation waters.

  1. Aqueous thermal degradation of gallic acid

    NASA Astrophysics Data System (ADS)

    Snow Boles, Jennifer; Crerar, David A.; Grissom, Grady; Key, Tonalee C.

    1988-02-01

    Aqueous thermal degradation experiments show gallic acid, a naturally occurring aromatic carboxylic compound, decomposes rapidly at temperatures between 105° and 150°C, with an activation energy of 22.9 or 27.8 kcal/ mole, depending on pH of the starting solution. Pyrogallol is the primary product identified, indicating degradation via decarboxylation and a carbanion transition state. Relatively rapid degradation of vanillic, phthalic, ellagic and tannic acids has also been observed, suggesting that these and perhaps other aromatic acids could be short-lived in deep formation waters.

  2. Alternative to Nitric Acid for Passivation of Stainless Steel Alloys

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L.; Kolody, Mark; Curran, Jerry

    2013-01-01

    Corrosion is an extensive problem that affects the Department of Defense (DoD) and National Aeronautics and Space Administration (NASA). The deleterious effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel. Consequently, it is vital to reduce corrosion costs and risks in a sustainable manner. The DoD and NASA have numerous structures and equipment that are fabricated from stainless steel. The standard practice for protection of stainless steel is a process called passivation. Typical passivation procedures call for the use of nitric acid; however, there are a number of environmental, worker safety, and operational issues associated with its use. Citric acid offers a variety of benefits including increased safety for personnel, reduced environmental impact, and reduced operational cost. DoD and NASA agreed to collaborate to validate citric acid as an acceptable passivating agent for stainless steel. This paper details our investigation of prior work developing the citric acid passivation process, development of the test plan, optimization of the process for specific stainless steel alloys, ongoing and planned testing to elucidate the process' resistance to corrosion in comparison to nitric acid, and preliminary results.

  3. Coulometric determination of berkelium in sulfuric acid and nitric acid solutions

    SciTech Connect

    Timofeev, G.A.; Chistyakov, V.M.; Erin, E.A.

    1987-03-01

    Results are reported on the study and quantitative determination of berkelium by the coulometric method in 1 M sulfuric acid, in solutions of nitric acid, and in mixtures of these acids. The best results in the determination of berkelium were obtained in solutions of a mixture of nitric and sulfuric acids. In 1 M HNO/sub 3/ + 0.1 M H/sub 2/SO/sub 4/ solutions, berkelium can be determined with an accuracy within approx. +/- 2%, when its content is 10 ..mu..g/ml.

  4. Involvement of nitric oxide in the gastroprotective effects of an aqueous extract of Pfaffia glomerata (Spreng) Pedersen, Amaranthaceae, in rats.

    PubMed

    Freitas, Cristina Setim; Baggio, Cristiane Hatsuko; Da Silva-Santos, José Eduardo; Rieck, Lia; de Moraes Santos, Cid Aimbiré; Júnior, Cirino Corrêa; Ming, Lin Chau; Garcia Cortez, Diógenes Aparício; Marques, Maria Consuelo Andrade

    2004-01-16

    The plants belonging to Pfaffia genus are used in folk medicine to treat gastric disturbances. This study examined the effects of an aqueous extract of Pfaffia glomerata (Spreng) Pedersen (AEP) on the gastrointestinal tract. Wistar rats were pretreated orally (p.o.) with the AEP (125, 250, 500 and 1000 mg.kg(-1)) before induction of ulcers by hypothermic restraint stress (HRS, 3 h restraint stress at 4 degrees C), ethanol (ET, 70%; 0.5 ml/animal; p.o.) or indomethacin (IND, 20 mg.kg(-1); s.c.). Control animals received water (C) or ranitidine (60 mg.kg(-1)) p.o. The AEP protected rats against HRS and ET-induced ulcers, but was not able to protect the gastric mucosa against IND-induced ulcers. When injected into the duodenal lumen, the AEP reduced total acidity and both basal and histamine-stimulated acid secretion in pylorus-ligated rats. In addition, gastric secretion from AEP-treated animals exhibited increased concentrations of nitrite and nitrate. Treatment of animals with L-NAME (120 mg.kg(-1), p.o.) prevented both the reduction of total acidity and the increase in NOx levels promoted by AEP treatment. In conclusion, AEP effectively protected the gastric mucosa and inhibited gastric acid secretion in rats, probably by involving the histaminergic pathway and an enhanced production of nitric oxide in the stomach.

  5. NIR spectroscopic properties of aqueous acids solutions.

    PubMed

    Omar, Ahmad Fairuz; Atan, Hanafi; Matjafri, Mohd Zubir

    2012-06-15

    Acid content is one of the important quality attributes in determining the maturity index of agricultural product, particularly fruits. Despite the fact that much research on the measurement of acidity in fruits through non-destructive spectroscopy analysis at NIR wavelengths between 700 to 1,000 nm has been conducted, the same response towards individual acids is not well known. This paper presents NIR spectroscopy analysis on aqueous citric, tartaric, malic and oxalic solutions through quantitative analysis by selecting a set of wavelengths that can best be used to measure the pH of the solutions. The aquaphotomics study of the acid solutions has generated R² above 0.9 for the measurement of all acids. The most important wavelengths for pH are located at 918-925 nm and 990-996 nm, while at 975 nm for water.

  6. Dilute nitric or nitrous acid solution containing halide ions as effective media for pure gold dissolution.

    PubMed

    Hojo, Masashi; Yamamoto, Masahiko; Okamura, Kei

    2015-08-14

    The greatly enhanced oxidation ability of dilute aqueous nitric acid (0.10-2.0 mol L(-1)) containing bromide and iodide salts as well as chloride salts has been examined based on the dissolution kinetics of pure gold at 30-60 °C. It has been found that bromide salts are more effective than chloride salts in gaining the ability of dissolving gold in dilute aqueous nitric acid solution. At 60 °C, a piece of gold-wire (ca. 20 mg) is dissolved in 20 mL of as low as 0.10 mol L(-1) HNO3 solution containing 1.0-5.0 mol L(-1) NaBr and the dissolution rate constant, log(k/s(-1)), increases linearly (from -5.78 to -4.52) with the increasing NaBr concentration. The addition of organic solvents, such as acetonitrile and acetic acid, causes acceleration of gold dissolution in LiBr and NaBr solutions. With increasing MeCN contents, for instance, the log(k/s(-1)) value of 0.10 mol L(-1) HNO3 solution containing 2.0 mol L(-1) NaBr increases linearly from -5.30 to -4.61 at 30% (v/v) MeCN. The bromide salts affect the gold dissolution rate constant in the order of KBr < NaBr < LiBr < CaBr2. With increasing NaI concentration (0.20-3.0 mol L(-1)), some acceleration in log(k/s(-1)) of 0.50 or 1.0 mol L(-1) HNO3 solution has been observed; however, the slope of acceleration as the function of NaI concentration is much smaller than that of NaCl or NaBr. The gold dissolution ability has been examined also for nitrous acid containing chloride and bromide ions at 35 °C. The NaNO2 solution containing twice or more amounts of HX (X = Cl, Br) gives the maximum efficiency for gold dissolution, according to the log(k/s(-1)) values of the mixed solutions of NaNO2 (0.10-2.0 mol L(-1)) and HX of various concentrations. The influence of oxidation by dilute nitric and nitrous acids on the gold dissolution is discussed from the standpoint of the redox potentials in "modified" aqueous solutions and not of the changes in the activity coefficients of ions.

  7. Reduction Rates for Higher Americium Oxidation States in Nitric Acid

    SciTech Connect

    Grimes, Travis Shane; Mincher, Bruce Jay; Schmitt, Nicholas C

    2015-09-30

    The stability of hexavalent americium was measured using multiple americium concentrations and nitric acid concentrations after contact with the strong oxidant sodium bismuthate. Contrary to our hypotheses Am(VI) was not reduced faster at higher americium concentrations, and the reduction was only zero-order at short time scales. Attempts to model the reduction kinetics using zero order kinetic models showed Am(VI) reduction in nitric acid is more complex than the autoreduction processes reported by others in perchloric acid. The classical zero-order reduction of Am(VI) was found here only for short times on the order of a few hours. We did show that the rate of Am(V) production was less than the rate of Am(VI) reduction, indicating that some Am(VI) undergoes two electron-reduction to Am(IV). We also monitored the Am(VI) reduction in contact with the organic diluent dodecane. A direct comparison of these results with those in the absence of the organic diluent showed the reduction rates for Am(VI) were not statistically different for both systems. Additional americium oxidations conducted in the presence of Ce(IV)/Ce(III) ions showed that Am(VI) is reduced without the typical growth of Am(V) observed in the systems sans Ce ion. This was an interesting result which suggests a potential new reduction/oxidation pathway for Am in the presence of Ce; however, these results were very preliminary, and will require additional experiments to understand the mechanism by which this occurs. Overall, these studies have shown that hexavalent americium is fundamentally stable enough in nitric acid to run a separations process. However, the complicated nature of the reduction pathways based on the system components is far from being rigorously understood.

  8. Reevaluation of Neptunium-Nitric Acid Radiation Chemistry by Multiscale Modeling.

    PubMed

    Horne, G P; Grimes, T S; Mincher, B J; Mezyk, S P

    2016-12-15

    Multiscale modeling has been used to quantitatively reevaluate the radiation chemistry of neptunium in a range of aerated nitric acid solutions (0.1-6.0 mol dm(-3)). Exact calculation of initial radiolytic yields accounting for changes in radiation track chemistry was found to be crucial for reproducing experimental data. The γ irradiation induces changes in the Np(VI)/Np(V) oxidation-state distribution, predominantly driven by reactions involving HNO2, H2O2, NO2(•), and NO3(•) from the radiolysis of aqueous nitric acid. Oxidation of Np(V) by NO3(•) (k = 8.1 × 10(8) dm(3) mol(-1) s(-1)) provides the initial increase in Np(VI) concentration, while also delaying net reduction of Np(VI) by consuming HNO2. Reduction of Np(VI) is dominated by thermal reactions with HNO2 (k = 0.7-73 dm(3) mol(-1) s(-1)) and H2O2 (k = 1.9 dm(3) mol(-1) s(-1)). A steady state is eventually established once the concentration of Np(V) is sufficiently high to be oxidized by NO2(•) (k = 2.4 × 10(2)-3.1 × 10(4) dm(3) mol(-1) s(-1)). An additional thermal oxidation reaction between Np(V) and HNO3 (k = 2.0 × 10(3) dm(3) mol(-1) s(-1)) is required for nitric acid concentrations >4.0 mol dm(-3). For 0.1 mol dm(-3) HNO3, the rate of Np(VI) reduction is in excess of that which can be accounted for by radiolytic product mass balance, suggesting the existence of a catalytic-acid-dependent reduction process.

  9. GADOLINIUM OXALATE SOLUBILITY MEASUREMENTS IN NITRIC ACID SOLUTIONS

    SciTech Connect

    Pierce, R. A.

    2012-03-12

    HB-Line will begin processing Pu solutions during FY2012 that will involve the recovery of Pu using oxalate precipitation and filtration. After the precipitation and filtration processes, the filtrate solution will be transferred from HB-Line to H-Canyon. The presence of excess oxalate and unfiltered Pu oxalate solids in these solutions create a criticality safety issue if they are sent to H-Canyon without controls in H-Canyon. One approach involves H-Canyon receiving the filtrate solution into a tank that is poisoned with soluble gadolinium (Gd). Decomposition of the oxalate will occur within a subsequent H-Canyon vessel. The receipt of excess oxalate into the H-Canyon receipt tanks has the potential to precipitate a portion of the Gd poison in the receipt tanks. Because the amount of Gd in solution determines the maximum amount of Pu solids that H-Canyon can receive, H-Canyon Engineering requested that SRNL determine the solubility of Gd in aqueous solutions of 4-10 M nitric acid (HNO{sub 3}), 4-12 g/L Gd, and 0.15-0.25 M oxalic acid (H{sub 2}C{sub 2}O{sub 4}) at 25 °C. The target soluble Gd concentration is 6 g/L. The data indicate that the target can be achieved above 6 M HNO{sub 3} and below 0.25 M H{sub 2}C{sub 2}O{sub 4}. At 25 °C, for 6 M HNO{sub 3}, 11 g/L and 7 g/L Gd are soluble in 0.15 M and 0.25 M H{sub 2}C{sub 2}O{sub 4}, respectively. In 4 M HNO{sub 3}, the Gd solubility drops significantly to 2.5 g/L and 0.8 g/L in 0.15 M and 0.25 M H{sub 2}C{sub 2}O{sub 4}, respectively. The solubility of Gd at 8-10 M HNO{sub 3} exceeds the solubility at 6 M HNO{sub 3}. The data for 4 M HNO{sub 3} showed good agreement with data in the literature. To achieve a target of 6 g/L soluble Gd in solution in the presence of 0.15-0.25 M oxalate, the HNO{sub 3} concentration must be maintained at or above 6 M HNO{sub 3}. The solubility of Gd in 4 M HNO{sub 3} with 0.15 M oxalate at 10 °C is about 1.5 g/L. For 6 M HNO{sub 3} with 0.15 M oxalate, the solubility of Gd at 10

  10. Nitric Acid Dehydration Using Perfluoro Carboxylate and Mixed Sulfonate/Carboxylate Membranes

    SciTech Connect

    Ames, Richard L.

    2004-09-01

    Perfluoro ionomer membranes are tetrafluoro ethylene-based materials with microheterogeneous structures consisting of a hydrophobic polymer backbone and a hydrophilic side-chain cluster region. Due to the ionomer cluster morphology, these films exhibit unique transport properties. Recent investigations with perfluoro sulfonate and perfluoro sulfonate/carboxylate composite polymers have demonstrated their value in the dehydration of nitric acid and they show potential as an alternative to conventional, energy intensive unit operations in the concentration of acid feeds. As a result, investigations were conducted to determine the feasibility of using pure perfluoro carboxylate and mixed perfluoro sulfonate/carboxylate films for the dehydration of nitric acid because of the speculation of improved water selectivity of the carboxylate pendant chain. During the first phase of these investigations the effort was focused on generating a thin, solution cast perfluoro carboxylate ionomer film, to evaluate the general, chemical and physical characteristics of the polymer, and to assess the material's aqueous transport performance (flux and nitrate separation efficiencies) in pervaporation and high-pressure environments. Results demonstrated that generating robust solution-cast films was difficult yet a number of membranes survived high trans-membrane pressures up to 700 psig. General characterization of the solution cast product showed reduced ion exchange capacities when compared with thicker, ''as received'' perfluoro carboxylate and similar sulfonate films. Small angle x-ray scattering analysis results suggested that the solution cast carboxylate films contained a small fraction of sulfonate terminated side-chains. Aqueous transport experimentation showed that permeate fluxes for both pure water and nitric acid were approximately two orders of magnitude smaller for the carboxylate solution cast membranes when compared to their sulfonate counterparts of similar thickness

  11. Safety in the Chemical Laboratory: Nitric Acid, Nitrates, and Nitro Compounds.

    ERIC Educational Resources Information Center

    Bretherick, Leslie

    1989-01-01

    Discussed are the potential hazards associated with nitric acid, inorganic and organic nitrate salts, alkyl nitrates, acyl nitrates, aliphatic nitro compounds, aromatic nitro compounds, and nitration reactions. (CW)

  12. Separation of thorium and uranium in nitric acid solution using silica based anion exchange resin.

    PubMed

    Chen, Yanliang; Wei, Yuezhou; He, Linfeng; Tang, Fangdong

    2016-09-30

    To separate thorium and uranium in nitric acid solution using anion exchange process, a strong base silica-based anion exchange resin (SiPyR-N4) was synthesized. Batch experiments were conducted and the separation factor of thorium and uranium in 9M nitric acid was about 10. Ion exchange chromatography was applied to separate thorium and uranium in different ratios. Uranium could be eluted by 9M nitric acid and thorium was eluted by 0.1M nitric acid. It was proved that thorium and uranium can be separated and recovered successfully by this method.

  13. Nitrosation and Nitration of Fulvic Acid, Peat and Coal with Nitric Acid

    PubMed Central

    Thorn, Kevin A.; Cox, Larry G.

    2016-01-01

    Nitrohumic acids, produced from base extraction of coals and peats oxidized with nitric acid, have received considerable attention as soil ammendments in agriculture. The nitration chemistry however is incompletely understood. Moreover, there is a need to understand the reaction of nitric acid with natural organic matter (NOM) in general, in the context of a variety of environmental and biogeochemical processes. Suwannee River NOM, Suwannee River fulvic acid, and Pahokee Peat fulvic acid were treated with 15N-labeled nitric acid at concentrations ranging from 15% to 22% and analyzed by liquid and solid state 15N NMR spectroscopy. Bulk Pahokee peat and Illinois #6 coal were also treated with nitric acid, at 29% and 40% respectively, and analyzed by solid state 15N NMR spectroscopy. In addition to nitro groups from nitration of aromatic carbon, the 15N NMR spectra of all five samples exhibited peaks attributable to nitrosation reactions. These include nitrosophenol peaks in the peat fulvic acid and Suwannee River samples, from nitrosation of phenolic rings, and N-nitroso groups in the peat samples, from nitrosation of secondary amides or amines, the latter consistent with the peat samples having the highest naturally abundant nitrogen contents. Peaks attributable to Beckmann and secondary reactions of the initially formed oximes were present in all spectra, including primary amide, secondary amide, lactam, and nitrile nitrogens. The degree of secondary reaction product formation resulting from nitrosation reactions appeared to correlate inversely with the 13C aromaticities of the samples. The nitrosation reactions are most plausibly effected by nitrous acid formed from the reduction of nitric acid by oxidizable substrates in the NOM and coal samples. PMID:27175784

  14. Nitrosation and nitration of fulvic acid, peat and coal with nitric acid

    USGS Publications Warehouse

    Thorn, Kevin A.; Cox, Larry G.

    2016-01-01

    Nitrohumic acids, produced from base extraction of coals and peats oxidized with nitric acid, have received considerable attention as soil ammendments in agriculture. The nitration chemistry however is incompletely understood. Moreover, there is a need to understand the reaction of nitric acid with natural organic matter (NOM) in general, in the context of a variety of environmental and biogeochemical processes. Suwannee River NOM, Suwannee River fulvic acid, and Pahokee Peat fulvic acid were treated with 15N-labeled nitric acid at concentrations ranging from 15% to 22% and analyzed by liquid and solid state 15N NMR spectroscopy. Bulk Pahokee peat and Illinois #6 coal were also treated with nitric acid, at 29% and 40% respectively, and analyzed by solid state 15N NMR spectroscopy. In addition to nitro groups from nitration of aromatic carbon, the 15N NMR spectra of all five samples exhibited peaks attributable to nitrosation reactions. These include nitrosophenol peaks in the peat fulvic acid and Suwannee River samples, from nitrosation of phenolic rings, and N-nitroso groups in the peat samples, from nitrosation of secondary amides or amines, the latter consistent with the peat samples having the highest naturally abundant nitrogen contents. Peaks attributable to Beckmann and secondary reactions of the initially formed oximes were present in all spectra, including primary amide, secondary amide, lactam, and nitrile nitrogens. The degree of secondary reaction product formation resulting from nitrosation reactions appeared to correlate inversely with the 13C aromaticities of the samples. The nitrosation reactions are most plausibly effected by nitrous acid formed from the reduction of nitric acid by oxidizable substrates in the NOM and coal samples.

  15. Liquid-Phase Heat-Release Rates of the Systems Hydrazine-Nitric Acid and Unsymmetrical Dimethylhydrazine-Nitric Acid

    NASA Technical Reports Server (NTRS)

    Somogyi, Dezso; Feiler, Charles E.

    1960-01-01

    The initial rates of heat release produced by the reactions of hydrazine and unsymmetrical dimethylhydrazine with nitric acid were determined in a bomb calorimeter under conditions of forced mixing. Fuel-oxidant weight ratio and injection velocity were varied. The rate of heat release apparently depended on the interfacial area between the propellants. Above a narrow range of injection velocities representing a critical amount of interfacial area, the rates reached a maximum and were almost constant with injection velocity. The maximum rate for hydrazine was about 70 percent greater than that for unsymmetrical dimethylhydrazine. The total heat released did not vary with mixture ratio over the range studied.

  16. Spectroscopic Evidence Against Nitric Acid Trihydrate in Polar Stratospheric Clouds

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Tolbert, Margaret A.

    1995-01-01

    Heterogeneous reactions on polar stratospheric clouds (PSC's) play a key role in the photochemical mechanism thought to be responsible for ozone depletion in the Antarctic and Arctic. Reactions of PSC particles activate chlorine to forms that are capable of photochemical ozone destruction, and sequester nitrogen oxides (NOx) that would otherwise deactivate the chlorine. Although the heterogeneous chemistry is now well established, the composition of the clouds themselves is uncertain. It is commonly thought that they are composed of nitric acid trihydrate, although observations have left this question unresolved. Here we reanalyse infrared spectra of type 1 PSCs obtained in Antarctica in September 1987, using recently measured optical constants of the various compounds that might be present in PSCs. We find these PSCs were not composed of nitric acid trihydrate but instead had a more complex compositon, perhaps that of a ternary solution. Because cloud formation is sensitive to their composition, this finding will alter our understanding of the locations and conditions in which PSCs form. In addition, the extent of ozone loss depends on the ability of the PSCs to remove NOx permanently through sedimentation, The sedimentation rates depend on PSC particle size which in turn is controlled by the composition and formation mechanism.

  17. Spectroscopic Evidence Against Nitric Acid Trihydrate in Polar Stratospheric Clouds

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Tolbert, Margaret A.

    1995-01-01

    Heterogeneous reactions on polar stratospheric clouds (PSC's) play a key role in the photochemical mechanisms thought to be responsible for ozone depletion in the Antarctic and the Arctic. Reactions on PSC particles activate chlorine to forms that are capable of photochemical ozone destruction, and sequester nitrogen oxides (NOx) that would otherwise deactivate the chlorine. Although the heterogeneous chemistry is now well established, the composition of the clouds themselves is uncertain. It is commonly thought that they are composed of nitric acid trihydrate, although observations have left this question unresolved. Here we reanalyse infrared spectra of type I PCS's obtained in Antarctica in September 1987, using recently measured optical constraints of the various compounds that might be present in PSC's. We find that these PSC's were not composed of nitric acid trihydrate but instead had a more complex composition perhaps that of a ternary solution. Because cloud formation is sensitive to their composition, this finding will alter our understanding of the locations and conditions in which PSCs form. In addition, the extent of ozone loss depends on the ability of the PSC's to remove NOx permanently through sedimentation. The sedimentation rates depend on PSC particle size which in turn is controlled by the composition and formation mechanism.

  18. Impact of scaling on the nitric-glycolic acid flowsheet

    SciTech Connect

    Lambert, D.

    2016-02-01

    Savannah River Remediation (SRR) is considering using glycolic acid as a replacement for formic acid in Sludge Receipt and Adjustment Tank (SRAT) processing in the Defense Waste Processing Facility (DWPF). Catalytic decomposition of formic acid is responsible for the generation of hydrogen, a potentially flammable gas, during processing. To prevent the formation of a flammable mixture in the offgas, an air purge is used to dilute the hydrogen concentration below the 60% of the Composite Lower Flammability Limit (CLFL). The offgas is continuously monitored for hydrogen using Gas Chromatographs (GCs). Since formic acid is much more volatile and toxic than glycolic acid, a formic acid spill would lead to the release of much larger quantities to the environment. Switching from formic acid to glycolic acid is expected to eliminate the hydrogen flammability hazard leading to lower air purges, thus downgrading of Safety Significant GCs to Process Support GCs, and minimizing the consequence of a glycolic acid tank leak in DWPF. Overall this leads to a reduction in process operation costs and an increase in safety margin. Experiments were completed at three different scales to demonstrate that the nitric-glycolic acid flowsheet scales from the 4-L lab scale to the 22-L bench scale and 220-L engineering scale. Ten process demonstrations of the sludge-only flowsheet for SRAT and Slurry Mix Evaporator (SME) cycles were performed using Sludge Batch 8 (SB8)-Tank 40 simulant. No Actinide Removal Process (ARP) product or strip effluent was added during the runs. Six experiments were completed at the 4-L scale, two experiments were completed at the 22-L scale, and two experiments were completed at the 220-L scale. Experiments completed at the 4-L scale (100 and 110% acid stoichiometry) were repeated at the 22-L and 220-L scale for scale comparisons.

  19. Effect of temperature on the extraction of uranium(VI) from nitric acid by tri-n-amyl phosphate

    SciTech Connect

    Srinivasan, T.G.; Rao, P.R.V.; Sood, D.D. |

    1997-01-01

    Studies have been carried out on the effect of temperature on the extraction of U(VI) from nitric acid medium by tri-n-amyl phosphate/n-dodecane, measured as a function of the extractant concentration and aqueous phase acidity. The results indicate that the extraction is exothermic as in the case of tri-n-butyl phosphate. From the data available an effort has been made to calculate the equilibrium constant, the Gibbs energy change and the entropy changes of the extraction reaction. 21 refs., 3 figs., 4 tabs.

  20. A method for concentrating organic dyes: colorimetric measurements of nitric oxides and sialic acids.

    PubMed

    Lalezari, Parviz; Lekhraj, Rukmani; Casper, Diana

    2011-09-01

    A new method for extraction and concentration of organic dyes that uses a reagent composed of a nonionic detergent mixed with an alcohol is described. We have observed that water-soluble organic dyes are also soluble in nonionic detergents and can be extracted by adding salt, which separates the dye-detergent component from the aqueous phase. We have also found that mixing nonionic detergents with alcohols markedly reduces their viscosity and produces stable, free-flowing, and effective reagents for color extraction. On the basis of these observations, we used a mixture of Triton X-100 and 1-butanol and observed that water-soluble natural and synthetic chromophores, as well as dyes generated in biochemical reactions, can be extracted, concentrated, and analyzed spectrophotometrically. Trypan blue and phenol red are used as examples of synthetic dyes, and red wine is used as an example of phenolic plant pigments. Applications for quantification of nitric oxides and sialic acids are described in more detail and show that as little as 0.15 nmol of nitric oxide and 0.20 nmol of sialic acid can be detected. A major advantage of this method is its ability to concentrate chromophores from dye-containing solutions that otherwise cannot be measured because of their low concentrations.

  1. Uptake of Nitric Acid, Dinitrogen Pentoxide, Ozone and The Nitrate Radical On A Single Liquid Drop

    NASA Astrophysics Data System (ADS)

    Schütze, M.; Herrmann, H.

    A novel technique for the investigation of uptake processes on gas-liquid interfaces will be presented. It allows the generation and analysis of single liquid drops inside a flow tube reactor. The in situ analysis of the drop is performed by broad band UV-VIS absorption spectroscopy. Using this set-up the uptake of nitric acid and dinitrogen pentoxide on pure water was measured by monitoring the occurrence of the nitrate band centered at a wavelength of 300 nm. The uptake of ozone on NaI solutions of various concentrations was followed by the formation of the triiodide ion which is a product of the oxidation of iodide by ozone. Using aqueous solutions of the dye Alizarin Red S, the uptake of the nitrate radical could be quantified. In order to extract information on fundamental parameters, e.g. the mass accommo- dation coefficients (= a) of the species, a computer model is applied. It solves the diffusion equation for the transport of gas phase species to the interface numerically. The result is a separation of the influence of this process on the rate of the overall uptake process. The mass accommodation coefficients a > 0.03, a = 0.011 and a > 0.02 were obtained for nitric acid, dinitrogen pentoxide and ozone, respectively.

  2. Degradation of CYANEX 301 in Contact with Nitric Acid Media

    SciTech Connect

    Philippe Marc; Radu Custelcean; Gary S. Groenewold; John R. Klaehn; Dean R. Peterman; Laetitia H. Delmau

    2012-10-01

    The nature of the degradation product obtained upon contacting CYANEX 301 (bis(2,4,4-trimethylpentyl)dithiophosphinic acid) with nitric acid has been elucidated and found to be a disulfide derivative. The first step to the degradation of CYANEX 301 in toluene has been studied using 31P{1H} NMR after being contacted with nitric acid media. The spectrum of the degradation product exhibits a complex multiplet around dP = 80 ppm. A succession of purifications of CYANEX 301 has resulted in single crystals of the acidic form and the corresponding ammonium salt. Unlike the original CYANEX 301, which consists of a complex diastereomeric mixture displaying all possible combinations of chiral orientations at the 2-methyl positions, the purified crystals were shown by single-crystal X-ray diffraction to be racemates, containing 50:50 mixtures of the [R;R] and [S;S] diastereomers. The comparison between the 31P {1H} NMR spectra of the degradation products resulting from the diastereomerically pure CYANEX 301 and the original diastereomeric mixture has elucidated the influence of the isomeric composition on the multiplicity of the 31P {1H} NMR peak. These NMR data indicate the initial degradation leads to a disulfide-bridged condensation product displaying multiple resonances due to phosphorus–phosphorus coupling, which is caused by the inequivalence of the two P atoms as a result of their different chirality. A total of nine different NMR resonances, six of which display phosphorus–phosphorus coupling, could be assigned, and the identity of the peaks corresponding to phosphorus atoms coupled to each other was confirmed by 31P {1H} homodecoupled NMR analysis.

  3. The effect of nitric acid (HNO3) on growth, spectral, thermal and dielectric properties of triglycine sulphate (TGS) crystal.

    PubMed

    Parimaladevi, R; Sekar, C; Krishnakumar, V

    2010-02-01

    The effect of nitric acid (HNO(3)) addition on the growth of triglycine sulphate (TGS) crystal has been studied from the aqueous solution for various concentrations of nitric acid. Significant changes in the crystal size and morphology have been observed in all the grown samples. Single crystal and powder X-ray diffraction analyses confirm the structure and cell parameter values of pure and HNO(3) doped TGS crystals. FT-Raman and FTIR spectra confirm the characteristics absorption bands of pure and HNO(3) doped TGS crystals. The composition of TGS crystals have been confirmed by CHNS analysis. Physical properties such as thermal, dielectric and mechanical studies have been performed for the pure and HNO(3) doped TGS crystals. The dielectric constants of the crystals have been studied as a function of frequency. The results suggest that the HNO(3) is doped into TGS crystal and that the doping increases its dielectric constant.

  4. Analysis of Steam Heating of a Two-Layer TBP/N-Paraffin/Nitric Acid Mixtures

    SciTech Connect

    Laurinat, J.E.; Hassan, N.M.; Rudisill, T.S.; Askew, N.M.

    1998-07-22

    This report presents an analysis of steam heating of a two-layer tri-n-butyl phosphate (TBP)/n-paraffin-nitric acid mixture.The purpose of this study is to determine if the degree of mixing provided by the steam jet or by bubbles generated by the TBP/nitric acid reaction is sufficient to prevent a runaway reaction.

  5. 46 CFR 151.50-80 - Nitric acid (70% or less).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Nitric acid (70% or less). 151.50-80 Section 151.50-80 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-80 Nitric acid (70% or...

  6. Transportation impact analysis for the shipment of low specific activity nitric acid. Revisison 1

    SciTech Connect

    Green, J.R.

    1995-05-16

    This is in support of the Plutonium-Uranium Extraction (PUREX) Facility Low Specific Activity (LSA) Nitric Acid Shipment Environmental Assessment. It analyzes potential toxicological and radiological risks associated with transportation of PUREX Facility LSA Nitric Acid from the Hanford Site to Portsmouth VA, Baltimore MD, and Port Elizabeth NJ.

  7. Evaluation of the Reactivity of Reillex HPQ in 64 Percent Nitric Acid

    SciTech Connect

    Crooks, W.J. III

    2001-02-20

    The purpose of this work was to evaluate the reactivity of Reillex HPQ in 64 percent nitric acid and to address an accident scenario in which 64 percent nitric acid solution is inadvertently added to an HB-Line ion exchange column containing Reillex HPQ anion exchange resin.

  8. 46 CFR 151.50-80 - Nitric acid (70% or less).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...). (a) Tanks, cargo piping, valves, fittings, and flanges (where exposed to the acid) must be lined with... facilities provided from shore. (c) Nitric acid contaminated by other chemicals, oils, solvents, etc. may...

  9. Uranyl fluoride luminescence in acidic aqueous solutions

    SciTech Connect

    Beitz, J.V.; Williams, C.W.

    1996-08-01

    Luminescence emission spectra and decay rates are reported for uranyl species in acidic aqueous solutions containing HF or added NaF. The longest luminescence lifetime, 0.269 {+-} 0.006 ms, was observed from uranyl in 1 M HF + 1 M HClO{sub 4} at 296 K and decreased with increasing temperature. Based on a luminescence dynamics model that assumes equilibrium among electronically excited uranyl fluoride species and free fluoride ion, this long lived uranyl luminescence in aqueous solution is attributed primarily to UO{sub 2}F{sub 2}. Studies on the effect of added LiNO{sub 3} or Na{sub 2}WO{sub 4}{center_dot}2H{sub 2}O showed relatively weak quenching of uranyl fluoride luminescence which suggests that high sensitivity determination of the UF{sub 6} content of WF{sub 6} gas should be feasible via uranyl luminescence analysis of hydrolyzed gas samples of impure WF{sub 6}.

  10. Toluene nitration in irradiated nitric acid and nitrite solution

    SciTech Connect

    Gracy Elias; Bruce J. Mincher; Stephen P. Mezyk; Jim Muller; Leigh R. Martin

    2011-04-01

    The kinetics, mechanisms, and stable products produced for the aryl alkyl mild ortho-para director - toluene, in irradiated nitric acid and neutral nitrite solutions were investigated using ?, and pulse radiolysis. Electron pulse radiolysis was used to determine the bimolecular rate constants for the reaction of toluene with different transient species produced by irradiation. HPLC with UV detection was primarily used to assess the stable reaction products. GC-MS and LC-MS were used to confirm the results from HPLC. Free-radical nitration reaction products were found in irradiated acidic and neutral media. In acidic medium, the ring substitution and side chain substitution and oxidation produced different nitro products. In ring substitution, nitrogen oxide radicals were added mainly to hydroxyl radical-produced cyclohexadienyl radical, and in side chain substitution they were added to the carbon-centered benzyl radical produced by H-atom abstraction. In neutral nitrite toluene solution, radiolytic ring nitration products approached a statistically random distribution, suggesting a free-radical reaction involving addition of the •NO2 radical.

  11. An attempt to theoretically predict third-phase formation in the dimethyldibutyltetradecylmalonamide (DMDBTDMA)/dodecane/water/nitric acid extraction system

    SciTech Connect

    LeFrancois, L.; Tondre, C.; Belnet, F.; Noel, D.

    1999-03-01

    The formation of a third phase in solvent extraction (due to splitting of the organic phase into two layers) often occurs when the aqueous phase is highly concentrated in acids. This has been reported with the extraction system dimethyldibutyltetradecylmalonamide (DMDBTDMA)/n-dodecane/water/nitric acid, both in the presence and absence of metal ions. Whereas many experimental efforts have been made to investigate the effects of different parameters on third-phase formation, very few attempts have been made to predict this phenomenon on theoretical grounds. Because the part played by aggregation of the extractant molecules is recognized, the authors propose a new predictive approach based on the use of the Flory-Huggins theory of polymer solutions, which had been successfully applied for the prediction of phase separation phenomena in nonionic surfactant solutions. The authors show that this model can provide an excellent prediction of the demixing curve (in the absence of metal ions) when establishing the relation between the interaction parameter {chi}{sub 12} calculated from this theory and the nitric acid content of the aqueous phase. Apparent values of the solubility parameter {delta}{sub 2} of the diamide extractant at different acid loadings have been calculated, from which the effect of the nature of the diluent can also be very nicely predicted.

  12. Nitric-phosphoric acid treatment of TRU wastes

    SciTech Connect

    Smith, J.R.; Pierce, R.A.; Sturcken, E.F.

    1993-09-30

    A general process is being developed for the treatment of solid TRU and hazardous organic waste. Experimental data indicates that 100 lb/hr of aliphatic organic (plastics) and 1,000 lb/hr of non-aliphatic organic compounds can be quantitatively oxidized in a 1,000 gallon reaction vessel. The process uses dilute nitric acid in a concentrated phosphoric acid media as the main oxidant for the organic compounds. Phosphoric acid allows oxidation at temperatures up to 200{degrees}C and is relatively non-corrosive on 304-L stainless steel, especially at room temperature. Many organic materials have been completely oxidized to CO{sub 2}, CO, and inorganic acids in a 0.1M HNO{sub 3}/14.8M H{sub 3}PO{sub 4} solution. Addition of 0.001M Pd{sup 2+} reduces the CO to near 1% of the released carbon gases. To accomplish complete oxidation the solution temperature must be maintained above 130--150{degrees}C. Organic materials quantitatively destroyed include neoprene, cellulose, EDTA, TBP, tartaric acid, and nitromethane. The oxidation is usually complete in a few hours for soluble organic materials. The oxidation rate for non-aliphatic organic solids is moderately fast and surface area dependent. Polyethylene is quantitatively oxidized in 1.0M HNO{sub 3}/13.8M H{sub 3}PO{sub 4} solution while contained in pressure vessels heated with microwave energy. This is probably due to the high concentrations of NO{sub 2}{center_dot} obtained in the reaction environment.

  13. Quantum mechanical study of atmospheric nitrogen oxides and nitric acid: Implications on acid rain

    SciTech Connect

    Richardson, M.D.; Davey, C.A.; Evanseck, J.D.

    1996-12-31

    The energetics of the nonhydrated and monohydrated reaction NO2 + OH {r_arrow} HNO3 were studied using computational methods. Energetic and structural data were obtained using high level ab initio calculations (up to MP4 for energetics). The activation energy was calculated to be around 8 kcal/mol for the nonhydrated system, but the presence of a single water molecule completely eliminated the barrier to nitric acid formation. The hydration of this atmospheric reaction significantly stabilizes the transition structure, leading to an activation energy of about -1 kcal/mol for the reaction. This suggests that enthalpically the reactants may spontaneously form nitric acid in the lower atmosphere where water is available for catalysis, resulting in further production of acid rain.

  14. Acidities of Water and Methanol in Aqueous Solution and DMSO

    ERIC Educational Resources Information Center

    Gao, Daqing

    2009-01-01

    The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…

  15. Proton defect solvation and dynamics in aqueous acid and base.

    PubMed

    Kale, Seyit; Herzfeld, Judith

    2012-10-29

    Easy come, easy go: LEWIS, a new model of reactive and polarizable water that enables the simulation of a statistically reliable number of proton hopping events in aqueous acid and base at concentrations of practical interest, is used to evaluate proton transfer intermediates in aqueous acid and base (picture, left and right, respectively).

  16. Interactions of nitric oxide with copper(II) dithiocarbamates in aqueous solution.

    PubMed

    Díaz, Alicia; Ortiz, Mayreli; Sánchez, Ileana; Cao, Roberto; Mederos, Alfredo; Sanchiz, Joaquin; Brito, Felipe

    2003-07-01

    This is the first report on the formation of air-stable copper nitrosyl complexes. The interaction of nitric oxide, NO, with Cu(DTC)(2).3H(2)O (DTC: dithiocarbamate) and was studied in aqueous solution at pH 7.4 and 293 K. The stability constants were determined from UV-Vis data, using LETAGROP program. The high values obtained, log beta(1)=9.743(5) and log beta(2)=15.44(2) for Cu(ProDTC)(2)-NO, (ProDTC=L-prolinedithiocarbamate) and log beta(1)=8.723(5) and log beta(2)=11.45(2) for Cu(MorDTC)(2)-NO system, (MorDTC=morpholyldithiocarbamate), indicate the formation of two stable nitrosyl complexes, Cu(DTC)(2)NO and Cu(DTC)(2)(NO)(2). Coordinated NO is neither affected by the presence of air nor when the solution is purged with Ar. Cu(MorDTC)(2)NO.3H(2)O was isolated in the solid state and its nuNO (IR) band at 1682 cm(-1), but affected by temperature variations over 333 K.

  17. Effect of nitric acid concentrations on synthesis and stability of maghemite nanoparticles suspension.

    PubMed

    Nurdin, Irwan; Johan, Mohd Rafie; Yaacob, Iskandar Idris; Ang, Bee Chin

    2014-01-01

    Maghemite (γ-Fe2O3) nanoparticles have been synthesized using a chemical coprecipitation method at different nitric acid concentrations as an oxidizing agent. Characterization of all samples performed by several techniques including X-ray diffraction (XRD), transmission electron microscopy (TEM), alternating gradient magnetometry (AGM), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and zeta potential. The XRD patterns confirmed that the particles were maghemite. The crystallite size of all samples decreases with the increasing concentration of nitric acid. TEM observation showed that the particles have spherical morphology with narrow particle size distribution. The particles showed superparamagnetic behavior with decreased magnetization values at the increasing concentration of nitric acid. TGA measurement showed that the stability temperature decreases with the increasing concentration of nitric acid. DLS measurement showed that the hydrodynamic particle sizes decrease with the increasing concentration of nitric acid. Zeta potential values show a decrease with the increasing concentration of nitric acid. The increasing concentration of nitric acid in synthesis of maghemite nanoparticles produced smaller size particles, lower magnetization, better thermal stability, and more stable maghemite nanoparticles suspension.

  18. Uptake of nitric acid by sub-micron-sized ice particles

    NASA Astrophysics Data System (ADS)

    Arora, O. P.; Cziczo, D. J.; Morgan, A. M.; Abbatt, J. P. D.; Niedziela, R. F.

    The uptake of gas phase nitric acid by half-micron-diameter ice crystals has been studied at 230 K by measuring the nitrate content of ice particles which have been exposed to 5 × 10-6 torr of nitric acid in a low temperature flow tube. A cold NaOH-coated denuder is used to distinguish gas-phase nitric acid from adsorbed nitric acid. Ice particle diameters were determined by fitting measured aerosol infrared extinction spectra to spectra calculated via Mie theory, and their number density is measured directly with a CN counter. Under conditions in which the surface is saturated and not all the gas-phase nitric acid adsorbs, the measured uptakes are 1.2 × 1014 molecules/cm² where the surface area is the geometric area of the particles. Within experimental uncertainties, this surface coverage is the same as that measured on thin films of ice formed by freezing liquid water. These results are the first quantitative study of the nitric acid uptake capacity of ice particles, and they provide additional support to the suggestion that ice and snow provide a route for the efficient scavenging of nitric acid from the atmosphere.

  19. Thermal hazard evaluation of lauroyl peroxide mixed with nitric acid.

    PubMed

    Tsai, Lung-Chang; You, Mei-Li; Ding, Mei-Fang; Shu, Chi-Min

    2012-07-04

    Many thermal runaway incidents have been caused by organic peroxides due to the peroxy group, -O-O-, which is essentially unstable and active. Lauroyl peroxide (LPO) is also sensitive to thermal sources and is incompatible with many materials, such as acids, bases, metals, and ions. From the thermal decomposition reaction of various concentrations of nitric acid (HNO3) (from lower to higher concentrations) with LPO, experimental data were obtained as to its exothermic onset temperature (T0), heat of decomposition (ΔHd), isothermal time to maximum rate (TMRiso), and other safety parameters exclusively for loss prevention of runaway reactions and thermal explosions. As a novel finding, LPO mixed with HNO3 can produce the detonation product of 1-nitrododecane. We used differential scanning calorimetry (DSC), thermal activity monitor III (TAM III), and gas chromatography/mass spectrometer (GC/MS) analyses of the reactivity for LPO and itself mixed with HNO3 to corroborate the decomposition reactions and reaction mechanisms in these investigations.

  20. 40 CFR 418.50 - Applicability; description of the nitric acid subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the nitric acid subcategory. 418.50 Section 418.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Nitric...

  1. 40 CFR 418.50 - Applicability; description of the nitric acid subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability; description of the nitric acid subcategory. 418.50 Section 418.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Nitric...

  2. 40 CFR 418.50 - Applicability; description of the nitric acid subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the nitric acid subcategory. 418.50 Section 418.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Nitric...

  3. 40 CFR 418.50 - Applicability; description of the nitric acid subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the nitric acid subcategory. 418.50 Section 418.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Nitric...

  4. 40 CFR 418.50 - Applicability; description of the nitric acid subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the nitric acid subcategory. 418.50 Section 418.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Nitric...

  5. Thermophysical Properties of Energetic Ionic Liquids/Nitric Acid Mixtures: Insights from Molecular Dynamics Simulations

    DTIC Science & Technology

    2013-01-01

    W L. Physical properties of concentrated nitric acid . UNT Digital Library. http://digital.library.unt.edu/ark:/67531/metadc56640/.) 23 M. Engelmann... Nitric Acid Mixtures: Insights from Molecular Dynamics Simulations 5a. CONTRACT NUMBER FA9300-11-C-3012 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Rev. 8-98) Prescribed by ANSI Std. 239.18 1     Thermophysical  Properties  of  Energetic  Ionic  Liquids/ Nitric   Acid

  6. Heterogeneous conversion of calcite aerosol by nitric acid.

    PubMed

    Preszler Prince, A; Grassian, V H; Kleiber, P; Young, M A

    2007-02-07

    The reaction of nitric acid with calcite aerosol at varying relative humidities has been studied under suspended particle conditions in an atmospheric reaction chamber using infrared absorption spectroscopy. The reactant concentration in the chamber, as well as the appearance of gas phase products and surface adsorbed species, was spectroscopically monitored before and after mixing with CaCO(3) (calcite) particles. The interaction with HNO(3) was found to lead to gas phase CO(2) evolution and increased water uptake due to heterogeneous conversion of the carbonate to particulate nitrate. The reaction was enhanced as the relative humidity of the system was increased, especially at relative humidities above the reported deliquescence point of particulate Ca(NO(3))(2). The measured reaction extent demonstrates that the total calcite particulate mass is available for reaction with HNO(3) and the conversion process is not limited to the particle surface. The spectroscopy of the surface formed nitrate suggests a highly concentrated solution environment with a significant degree of ion pairing. The implications of the HNO(3) loss and the formation of the particulate nitrate product for atmospheric chemistry are discussed.

  7. Analysis of seasonal variation of stratospheric nitric acid

    NASA Astrophysics Data System (ADS)

    Gruzdev, A. N.

    1998-11-01

    Data from the draft COSPAR reference model for stratospheric nitric acid (HNO3) are analysed. Eight months of LIMS HNO3 measurements allow the analysis of dynamics of regimes associated with the annual HNO3 maximum followed by the HNO3 decrease in the Northern Hemisphere and the annual HNO3 minimum followed by the HNO3 increase in the Southern Hemisphere. The HNO3 minimum is noted earlier (in November) in the Southern Hemisphere subtropical upper stratosphere, from where the regime of minimum HNO3 values propagates to the southern high-latitude middle stratosphere, and then (in Austral summer) the equatorward propagation of the regime is observed, with a persistent downward component. The regime of the HNO3 annual maximum in the Northern Hemisphere propagates from the Arctic lower stratosphere (in autumn) and from the tropical middle stratosphere (in late summer), so that in the mid-latitude middle stratosphere the downward propagation of the regime is observed. Evolution of areas with HNO3 increase and decrease by 1 ppbv against the January HNO3 distribution quantifies intensity of the HNO3 decrease in winter-spring in the Northern Hemisphere and the HNO3 increase in Austral summer-autumn in the Southern Hemisphere.

  8. Fact Sheet: Revisions to New Source Performance Standards (NSPS) for Nitric Acid Plants

    EPA Pesticide Factsheets

    This page contains a May 2012 fact sheet with information regarding the New Source Performance Standards (NSPS) for Nitric Acid Plants. This document provides a summary of the information for this NSPS.

  9. The extraction of actinides from nitric acid solutions with diamides of dipicolinic acid

    NASA Astrophysics Data System (ADS)

    Lapka, Joseph L.; Paulenova, Alena; Alyapyshev, Mikhail Yu; Babain, Vasiliy A.; Law, Jack D.; Herbst, R. Scott

    2010-03-01

    Diamides of dipicolinic acid (N,N'-diethyl-N,N'-ditolyl-dipicolinamide, EtTDPA) were synthesized and evaluated for their extraction capability for actinides. In this work the extractions of neptunium(V), protactinium(V), and thorium(IV) with EtTDPA in a polar fluorinated diluent from nitric acid were investigated. EtTDPA shows a high affinity for Th(IV) even at millimolar concentrations. Np(V) and Pa(V) are both reasonably extractable with EtTDPA; however, near saturated solutions are required to achieve appreciable distribution ratios. A comparison with previously published actinide extraction data is given.

  10. Concentration of Nitric Acid Strongly Influences Chemical Composition of Graphite Oxide.

    PubMed

    Jankovsky, Ondrej; Novacek, Michal; Luxa, Jan; Sedmidubsky, David; Bohacova, Marie; Pumera, Martin; Sofer, Zdenek

    2017-02-28

    Graphite oxide is the most widely used precursor for the synthesis of graphene by top-down methods. We demonstrate a significant influence of nitric acid concentration on the structure and composition of the graphite oxide prepared by graphite oxidation. In general, two main chlorate based oxidation methods are currently used for graphite oxide synthesis, Staudenmaier method dealing with 98 wt.% nitric acid and Hofmann method dealing with 68 wt.% nitric acid. However a gradual change of nitric acid concentration allowed for the continuous change of the graphite oxide composition. The prepared samples were thoroughly characterized by microscopic techniques as well as various spectroscopic and analytical methods. Lowering of nitric acid concentration led to an increase of oxidation degree and in particular to a concentration of epoxy and hydroxyl groups. This knowledge is not only useful for the large scale synthesis of graphite oxide with tunable size and chemical composition, but the use of nitric acid in lower concentration can also significantly reduce the overall cost of the synthesis.

  11. Integrated semiconductor optoelectronic devices for real-time and indicator-free detection of aqueous nitric oxide

    NASA Astrophysics Data System (ADS)

    Wang, Shin-Ping; Cheng, Yi-Kai; Chao, Yu-Chiang; Zan, Hsiao-Wen; Chang, Gao-Fong; Meng, Hsin-Fei; Hung, Chen-Hsiung; Chen, Wen-Chang

    2011-10-01

    Sensing films specific to nitric oxide and zinc were fabricated by embedding respectively indicator 1,2-diaminoanthraquinone (DAQ) and 11,16-Bis(phenyl)-6,6,21,21-tetramethyl-m-benzi-6,21-porphodimethene (BPDM-H) in hydrogel host poly(2-hydroxyethyl methacrylate). The sensing film contains DAQ, which responses to nitric oxide, shows stability in acid environment. The sensing film contains BPDM-H responses to zinc. The electrospinning technique was also utilized to fabricate the fibrous film.

  12. Nitrones are able to release nitric oxide in aqueous environment under hydroxyl free radical attack.

    PubMed

    Croitoru, Mircea Dumitru; Ibolya, Fülöp; Pop, Maria Cristiana; Dergez, Timea; Mitroi, Brânduşa; Dogaru, Maria Titica; Tokés, Béla

    2011-10-30

    Importance of a nitric oxide donor that can act as a spin trap might bring some new therapeutic possibilities regarding the treatment of ischemic diseases by reducing the intensity of free radical produced reperfusion lesions. These substances might be also used as a new type of photo protectors since they can absorb UV radiation, capture free radicals formed by interaction of UV radiation with tissue constituents, and tanning of the skin will be permitted due to nitric oxide release. The purpose of this work was to measure the ability of nitrones to release nitric oxide and how different factors (temperature, nitrone concentration, and free radicals) influence the releasing ability. Mostly, indirect determination of nitric oxide was carried out, by measuring nitrite and nitrate amounts (as decomposition products of nitric oxide), all nitrones proved to release significant amounts of nitric oxide. Nitrite measurements were made based on an HPLC-VIS method that uses pre-column derivatization of nitrite by forming an azo dye (limit of quantification: 5ng/ml). No good correlation was found between the amount of nitric oxide and temperature for most studied nitrones but between the formation of nitric oxide and nitrone concentration an asymptotic correlation was found. Fenton reagent also yielded formation of nitric oxide from nitrones and formed amounts were not different from those recorded for UV irradiation. Most of the nitrones effectively released about 0.5% of the maximum amount of nitric oxide that is chemically possible and estimated concentrations of 0.1μM were present in the solutions during decomposition.

  13. Aqueous-phase source of formic acid in clouds

    NASA Technical Reports Server (NTRS)

    Chameides, W. L.; Davis, D. D.

    1983-01-01

    The coupled gas- and aqueous-phase cloud chemistry of HCOOH were examined for controlling factors in the acidity of cloud and rainwater. Attention was given to the aqueous OH/HO2 system that yields an OH species that is highly reactive with other species, notably SO2 and the formaldehyde/formic acid complex. A numerical model was developed to simulate the cloud chemistry in the remote troposphere, with considerations given to CH4-CO-NO(x)-O3-H(x)O(y) system. It was determined that aqueous phase OH radicals can produce and destroy formic acid droplets in daylight conditions, as well as control formic acid levels in rainwater. It is sugested that the same types of reactions may be involved in the control of acetic acid and other organic acids.

  14. Evaporation and NARS Nitric Acid Mass Balance Summary: 2000--2005

    SciTech Connect

    B.D. Kreutzberg; R.L. Ames; K.M. Hansel

    2005-11-01

    A compilation of the historical nitric acid processing data for the evaporation and nitric acid recycle system (NARS) in TA-55 has provided general acid mass balance trends, as well as the location of missing information in both the evaporation system and NARS data logs. The data were accumulated during the calendar years 2000 to 2005. After making a number of processing assumptions, the empirical system information was used to create an interactive spreadsheet that predicts, with moderate accuracy, some of the various stream variables for the combined evaporation and acid recycle processes. Empirical data and interactive calculations were compared to an Aspen Plus{trademark} simulation of the process.

  15. Freezing of sulfuric and nitric acid solutions: Implications for polar stratospheric cloud formation

    NASA Astrophysics Data System (ADS)

    Salcedo Gonzalez, Dara

    2000-12-01

    Polar Stratospheric Clouds (PSCs) play an important role in ozone chemistry during the polar winter. The magnitude of their effect depends on their phase, composition and formation mechanism, which are not fully understood yet. In order to understand how liquid PSCs freeze, two apparatus were designed to study the freezing behavior of small drops using a Fourier transform infrared (FTIR) spectrometer and an optical microscope. Sulfuric acid aqueous drops with composition of 10 to 50 wt % were studied with the FTIR apparatus. The surface on which the drops stand caused heterogeneous nucleation of ice, but not of the sulfuric acid hydrates. The more concentrated solutions (>40 wt %) supercooled to 130 K without freezing. Below 150 K these solutions formed an amorphous solid, which liquefied upon warming. Drops with composition of 40 to 64 wt % HNO3 were prepared and their phase transitions were detected with the optical microscope apparatus. Freezing temperatures of the drops were determined and homogeneous nucleation rates of nitric acid dihydrate (JNAD) and nitric acid trihydrate (JNAT) between 170 and 190 K were calculated. JNAT and JNAD depend predominantly on the saturation of the solid in the liquid solution: higher saturation ratios correspond to higher nucleation rates. Classical nucleation theory was used to parameterize this relation. Since the saturation ratios of NAD and NAT vary with temperature and composition in different ways, NAT or NAD can form preferentially under different conditions. Evidence was found that NAD catalyzes the nucleation of NAT below ~183 K. Mullite, cristobalite and alumina were tested as possible heterogeneous nuclei of volcanic origin for PSCs. They catalyze freezing of NAD and NAT at temperatures below 179 K, which are too low to be stratospherically important. The results suggest that the largest drops in a PSC will freeze homogeneously if the stratospheric temperature remains below the NAT condensation temperature for more

  16. Studies on the oxidation of hexamethylbenzene 1: Oxidation of hexamethylbenzene with nitric acid

    NASA Technical Reports Server (NTRS)

    Chiba, K.; Tomura, S.; Mizuno, T.

    1986-01-01

    The oxidative reaction of hexamethylbenzene (HMB) with nitric acid was studied, and the hitherto unknown polymethylbenzenepolycarboxylic acids were isolated: tetramethylphthalic anhydride, tetramethylisophthalic acid, 1,3,5-, 1,2,4- and 1,2,3-trimethylbenzenetricarboxylic acids. When HMB was warmed with 50% nitric acid at about 80 C, tetramethylphthalic anhydride and tetramethylisophthalic acid were initially produced. The continued reaction led to the production of trimethylbenzenetricarboxylic acids, but only slight amounts of dimethylbenzenetetracarboxylic acids were detected in the reaction mixture. Whereas tetramethylphthalic anydride and tetramethylisophthalic acid were obtained, pentamethylbenzoic acid, a possible precursor of them, was scarcely produced. On the other hand, a yellow material extracted with ether from the initial reaction mixture contained bis-(nitromethyl)prehnitene (CH3)4C6(CH2NO2)2, which was easily converted into the phthalic anhydride.

  17. Proton transfer reactions between nitric acid and acetone, hydroxyacetone, acetaldehyde and benzaldehyde in the solid phase.

    PubMed

    Lasne, Jérôme; Laffon, Carine; Parent, Philippe

    2012-12-05

    The heterogeneous and homogeneous reactions of acetone, hydroxyacetone, acetaldehyde and benzaldehyde with solid nitric acid (HNO(3)) films have been studied with Reflection-Absorption Infrared Spectroscopy (RAIRS) under Ultra-High Vacuum (UHV) conditions in the 90-170 K temperature range. In the bulk or at the surface of the films, nitric acid transfers its proton to the carbonyl function of the organic molecules, producing protonated acetone-H(+), hydroxyacetone-H(+), acetaldehyde-H(+) and benzaldehyde-H(+), and nitrate anions NO(3)(-), a reaction not observed when nitric acid is previously hydrated [J. Lasne, C. Laffon and Ph. Parent, Phys. Chem. Chem. Phys., 2012, 14, 697]. This provides a molecular-scale description of the carbonyl protonation reaction in an acid medium, the first step of the acid-catalyzed condensation of carbonyl compounds, fuelling the growth of secondary organic aerosols (SOA) in the atmosphere.

  18. Disposition and transportation of surplus radioactive low specific activity nitric acid. Volume 1, Environmental Assessment

    SciTech Connect

    1995-05-01

    DOE is deactivating the PUREX plant at Hanford; this will involve the disposition of about 692,000 liters (183,000 gallons) of surplus nitric acid contaminated with low levels of U and other radionuclides. The nitric acid, designated as low specific activity, is stored in 4 storage tanks at PUREX. Five principal alternatives were evaluated: transfer for reuse (sale to BNF plc), no action, continued storage in Hanford upgraded or new facility, consolidation of DOE surplus acid, and processing the LSA nitric acid as waste. The transfer to BNF plc is the preferred alternative. From the analysis, it is concluded that the proposed disposition and transportation of the acid does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

  19. Plutonium and Americium Alpha Radiolysis of Nitric Acid Solutions.

    PubMed

    Horne, Gregory P; Gregson, Colin R; Sims, Howard E; Orr, Robin M; Taylor, Robin J; Pimblott, Simon M

    2017-02-02

    The yield of HNO2, as a function of absorbed dose and HNO3 concentration, from the α-radiolysis of aerated HNO3 solutions containing plutonium or americium has been investigated. There are significant differences in the yields measured from solutions of the two different radionuclides. For 0.1 mol dm(-3) HNO3 solutions, the radiolytic yield of HNO2 produced by americium α-decay is below the detection limit, whereas for plutonium α-decay the yield is considerably greater than that found previously for γ-radiolysis. The differences between the solutions of the two radionuclides are a consequence of redox reactions involving plutonium and the products of aqueous HNO3 radiolysis, in particular H2O2 and HNO2 and its precursors. This radiation chemical behavior is HNO3 concentration dependent with the differences between plutonium and americium α-radiolysis decreasing with increasing HNO3 concentration. This change may be interpreted as a combination of α-radiolysis direct effects and acidity influencing the plutonium oxidation state distribution, which in turn affects the radiation chemistry of the system.

  20. Laboratory studies of 2H evaporator scale dissolution in dilute nitric acid

    SciTech Connect

    Oji, L.

    2014-09-23

    The rate of 2H evaporator scale solids dissolution in dilute nitric acid has been experimentally evaluated under laboratory conditions in the SRNL shielded cells. The 2H scale sample used for the dissolution study came from the bottom of the evaporator cone section and the wall section of the evaporator cone. The accumulation rate of aluminum and silicon, assumed to be the two principal elemental constituents of the 2H evaporator scale aluminosilicate mineral, were monitored in solution. Aluminum and silicon concentration changes, with heating time at a constant oven temperature of 90 deg C, were used to ascertain the extent of dissolution of the 2H evaporator scale mineral. The 2H evaporator scale solids, assumed to be composed of mostly aluminosilicate mineral, readily dissolves in 1.5 and 1.25 M dilute nitric acid solutions yielding principal elemental components of aluminum and silicon in solution. The 2H scale dissolution rate constant, based on aluminum accumulation in 1.5 and 1.25 M dilute nitric acid solution are, respectively, 9.21E-04 ± 6.39E-04 min{sup -1} and 1.07E-03 ± 7.51E-05 min{sup -1}. Silicon accumulation rate in solution does track the aluminum accumulation profile during the first few minutes of scale dissolution. It however diverges towards the end of the scale dissolution. This divergence therefore means the aluminum-to-silicon ratio in the first phase of the scale dissolution (non-steady state conditions) is different from the ratio towards the end of the scale dissolution. Possible causes of this change in silicon accumulation in solution as the scale dissolution progresses may include silicon precipitation from solution or the 2H evaporator scale is a heterogeneous mixture of aluminosilicate minerals with several impurities. The average half-life for the decomposition of the 2H evaporator scale mineral in 1.5 M nitric acid is 12.5 hours, while the half-life for the decomposition of the 2H evaporator scale in 1.25 M nitric acid is 10

  1. Vapor-deposited water and nitric acid ices

    NASA Astrophysics Data System (ADS)

    Leu, Ming-Taun; Keyser, Leon F.

    Ices formed by vapor deposition have been the subject of numerous laboratory investigations in connection with snow and glaciers on the ground, ice clouds in the terrestrial atmosphere, surfaces of other planets and their satellites, and the interstellar medium. In this review we will focus on these specific subjects: (1) heterogeneous chemistry on the surfaces of polar stratospheric clouds (PSCs) and (2) surfaces of satellites of the outer planets in our solar system. Stratospheric ozone provides a protective shield for mankind and the global biosphere from harmful ultraviolet solar radiation. In past decades, theoretical atmospheric models for the calculation of ozone balance frequently used only homogeneous gas-phase reactions in their studies. Since the discovery of the Antarctic ozone hole in 1985, however, it has been demonstrated that knowledge of heterogeneous reactions on the surface of PSCs is definitely needed to understand this significant natural event due to the anthropogenic emission of chlorofluorocarbons (CFCs). We will briefly discuss the experimental techniques for the investigation of heterogeneous chemistry on ice surfaces carried out in our laboratories. The experimental apparatus used include: several flow-tube reactors, an electron-impact ionization mass spectrometer, a Fourier transform infrared spectrometer, a BET adsorption apparatus, and a scanning environmental electron microscope. The adsorption experiments and electron microscopic work have demonstrated that the vapor-deposited ices are highly porous. Therefore, it is necessary to develop theoretical models for the elucidation of the uptake and reactivity of trace gases in porous ice substrates. Several measurements of uptake and reaction probabilities of these trace gases on water ices and nitric acid ices have been performed under ambient conditions in the upper troposphere and lower stratosphere, mainly in the temperature range 180-220 K. The trace gases of atmospheric importance

  2. PROCESS OF SECURING PLUTONIUM IN NITRIC ACID SOLUTIONS IN ITS TRIVALENT OXIDATION STATE

    DOEpatents

    Thomas, J.R.

    1958-08-26

    >Various processes for the recovery of plutonium require that the plutonium be obtalned and maintained in the reduced or trivalent state in solution. Ferrous ions are commonly used as the reducing agent for this purpose, but it is difficult to maintain the plutonium in a reduced state in nitric acid solutions due to the oxidizing effects of the acid. It has been found that the addition of a stabilizing or holding reductant to such solution prevents reoxidation of the plutonium. Sulfamate ions have been found to be ideally suitable as such a stabilizer even in the presence of nitric acid.

  3. Elemental composition of dog foods using nitric acid and simulated gastric digestions.

    PubMed

    Kelly, David G; White, Steven D; Weir, Ron D

    2013-05-01

    Eighteen dry dog foods obtained commercially in the United States were digested using microwave assisted nitric acid digestion and a simulated gastric digestion. Digests were analysed for 23 elements using inductively coupled plasma-mass spectrometry. Data, expressed as dry matter concentrations, were compared to published nitric acid digestion results. Nitric acid data obtained in the present study were not statistically different from published data, with the exception of Mo, Sn, Sb, Tl and Th. However, significant differences in individual intra-sample results were observed between published studies and the present work. Simulated gastric digestions demonstrated lower extraction efficiencies (<50% nitric acid digestions) that were statistically significant. Much lower bioavailability was observed for Al, Ba and Pb. In general, elemental concentrations were determined to be lower than the appropriate Mineral Tolerance Limit or consistent with background concentrations in foodstuffs. Evaluation against Reference Doses (RfDs) showed concentrations for many elements obtained by nitric acid digestion to be above RfD levels. However, the respective simulated gastric digestion data were below or only moderately elevated above RfDs. Only arsenic displayed median and maximum concentrations at factors of five and ten above the relevant RfD.

  4. Effects of nitric acid on carbachol reactivity of the airways in normal and allergic sheep

    SciTech Connect

    Abraham, W.M.; Kim, C.S.; King, M.M.; Oliver, W. Jr.; Yerger, L.

    1982-01-01

    The airway effects of a 4-hr exposure (via a Plexiglas hood) to 1.6 ppm nitric acid vapor were evaluated in seven normal and seven allergic sheep, i.e., animals that have a history of reacting with bronchospasm to inhalation challenge with Ascaris suum antigen. The nitric acid vapor was generated by ultrasonic nebulization of a 2% nitric acid solution. Airway effects were assessed by measuring the change in specific pulmonary flow resistance before and after a standard inhalation challenge with 2.5% carbachol aerosol. Nitric acid exposure did not produce bronchoconstriction in either group. Pre-exposure increases in specific pulmonary flow resistance after carbachol inhalation were 68% (SD+/- 13%) and 82% (SD+/- 35%) for the normal and allergic sheep, respectively. Within 24 hr, the largest post-exposure increases in specific pulmonary flow resistance for the normal and allergic sheep were 108% (SD+/- 51%(P<.06)) and 175% (SD+/- 87% (p<.02)), respectively. We conclude that a short-term exposure to nitric acid vapor at levels below the industrial threshold limit (2 ppm), produces airway hyperreactivity to aerosolized carbachol in allergic sheep.

  5. Aqueous infrared carboxylate absorbances: Aliphatic di-acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Leenheer, J.A.; McVey, I.F.

    1998-01-01

    Aqueous attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of 18 aliphatic di-carboxylic acids are reported as a function of pH. The spectra show isosbestic points and intensity changes which indicate that Beer's law is obeyed, and peak frequencies lie within previously reported ranges for aqueous carboxylates and pure carboxylic acids. Intensity sharing from the symmetric carboxylate stretch is evident in many cases, so that bands which are nominally due to alkyl groups show increased intensity at higher pH. The asymmetric stretch of the HA- species is linearly related to the microscopic acidity constant of the H2A species, with ??pK 2 intervening atoms). The results suggest that aqueous ATR-FTIR may be able to estimate 'intrinsic' pKa values of carboxylic acids, in addition to providing quantitative estimates of ionization. ?? 1998 Elsevier Science B.V. All rights reserved.

  6. N-N bond formation in Ugi processes: from nitric acid to libraries of nitramines.

    PubMed

    Mercalli, Valentina; Nyadanu, Aude; Cordier, Marie; Tron, Gian Cesare; Grimaud, Laurence; El Kaim, Laurent

    2017-02-09

    The Ugi reaction has drawn considerable attention over the years leading to numerous libraries of heterocycles and various extensions changing the nature of the components of the coupling. We report here the use of nitric acid as carboxylic acids surrogates, displaying the first aminative Ugi-type reaction leading to nitramines.

  7. Batch salicylic acid nitration by nitric acid/acetic acid mixture under isothermal, isoperibolic and adiabatic conditions.

    PubMed

    Andreozzi, R; Canterino, M; Caprio, V; Di Somma, I; Sanchirico, R

    2006-12-01

    Runaway phenomena and thermal explosions can originate during the nitration of salicylic acid by means of a nitric acid/acetic acid mixture when the thermal control is lost, mainly as a result of the formation and thermal decomposition of picric acid. The prediction of the behaviour of this system is thus of great importance in view of possible industrial applications and the need to avoid the occurrence of unwanted dangerous events. During a previous investigation a model was developed to simulate its behaviour when the starting concentration of the substrate is too low, thus, preventing the precipitation of poor soluble intermediates. In this work this model is extended to deal with more concentrated systems even in case of a solid phase separating during the process. To this purpose the previously assessed dependence of the solubility of 3-nitro and 5-nitrosalicylic acids upon temperature and nitric acid concentration is included in the model. It is assumed that when 3-nitro and 5-nitrosalicylic acids are partially suspended in the reacting medium a kinetic regime of "dissolution with reaction" is established; that is, the redissolution of these species is a fast process compared to the successive nitration to give dinitroderivatives. Good results are obtained in the comparison of the experimental data with those calculated both in isoperibolic and adiabatic conditions when the revised model is used.

  8. TESTING OF 304L STAINLESS STEEL IN NITRIC ACID ENVIRONMENTS WITH FLUORIDES AND CHLORIDES

    SciTech Connect

    Mickalonis, J.

    2010-10-04

    Impure radioactive material processed in nitric acid solutions resulted in the presence of chlorides in a dissolver fabricated from 304L stainless steel. An experimental program was conducted to study the effects of chloride in nitric acid/fluoride solutions on the corrosion of 304L stainless steel. The test variables included temperature (80, 95, and 110 C) and the concentrations of nitric acid (6, 12, and 14 M), fluoride (0.01, 0.1, and 0.2 M) and chloride (100, 350, 1000, and 2000 ppm). The impact of welding was also investigated. Results showed that the chloride concentration alone was not a dominant variable affecting the corrosion, but rather the interaction of chloride with fluoride significantly affected corrosion.

  9. Effect of nitric acid treatment on activated carbon derived from oil palm shell

    NASA Astrophysics Data System (ADS)

    Allwar, Allwar; Hartati, Retno; Fatimah, Is

    2017-03-01

    The primary object of this work is to study the effect of nitric acid on the porous and morphology structure of activated carbon. Production of activated carbon from oil palm shell was prepared with pyrolysis process at temperature 900°C and by introduction of 10 M nitric acid. Determination of surface area, pore volume and pore size distribution of activated carbon was conducted by the N2 adsorption-desorption isotherm at 77 K. Morphology structure and elemental micro-analysis of activated carbon were estimated by Scanning Electron Microscopy (SEM) and energy dispersive X-ray (EDX), respectively. The result shows that activated carbon after treating with nitric acid proved an increasing porous characteristics involving surface area, pore volume and pore size distribution. It also could remove the contaminants including metals and exhibit an increasing of pores and crevices all over the surface.

  10. Proton affinity of methyl nitrate - Less than proton affinity of nitric acid

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Rice, Julia E.

    1992-01-01

    Several state-of-the-art ab initio quantum mechanical methods were used to investigate the equilibrium structure, dipole moments, harmonic vibrational frequencies, and IR intensities of methyl nitrate, methanol, and several structures of protonated methyl nitrate, using the same theoretical methods as in an earlier study (Lee and Rice, 1992) of nitric acid. The ab initio results for methyl nitrate and methanol were found to be in good agreement with available experimental data. The proton affinity (PA) of methyl nitrate was calculated to be 176.9 +/-5 kcal/mol, in excellent agreement with the experimental value 176 kcal/mol obtained by Attina et al. (1987) and less than the PA value of nitric acid. An explanation of the discrepancy of the present results with those of an earlier study on protonated nitric acid is proposed.

  11. Decomposition Studies of Triphenylboron, Diphenylborinic Acid and Phenylboric Acid in Aqueous Alkaline Solutions Containing Copper

    SciTech Connect

    Crawford, C.L.; Peterson, R. A.

    1997-02-11

    This report documents the copper-catalyzed chemical kinetics of triphenylboron, diphenylborinic acid and phenylboric acid (3PB, 2PB and PBA) in aqueous alkaline solution contained in carbon-steel vessels between 40 and 70 degrees C.

  12. Influence of Acidity on Uranyl Nitrate Association in Aqueous Solutions: A Molecular Dynamics Simulation Study

    SciTech Connect

    de Almeida, Valmor F; Cui, Shengting; Khomami, Bamin; Ye, Xianggui; Smith, Rodney Bryan

    2010-01-01

    Uranyl ion complexation with water and nitrate is a key aspect of the uranium/plutonium extraction process. We have carried out a molecular dynamics simulation study to investigate this complexation process, including the molecular composition of the various complex species, the corresponding structure, and the equilibrium distribution of the complexes. The observed structures of the complexes suggest that in aqueous solution, uranyls are generally hydrated by 5 water molecules in the equatorial plane. When associating with nitrate ions, a water molecule is replaced by a nitrate ion, preserving the five-fold coordination and planar symmetry. Analysis of the pair correlation function between uranyl and nitrate suggests that nitrates bind to uranyl in aqueous solution mainly in a monodentate mode, although a small portion of bidentates occur. Dynamic association and dissociation between uranyls and nitrates take place in aqueous solution with a substantial amount of fluctuation in the number of various uranyl nitrate species. The average number of the uranyl mononitrate complexes shows a dependence on acid concentration consistent with equilibrium-constant analysis, namely, the concentration of [UO2NO3]+ increases with nitric acid concentration.

  13. Studies on reaction runaways for Urex/Purex solvent-nitric acid and red-oil synthesis

    SciTech Connect

    Kumar, Shekhar; Kumar, Rajnish; Koganti, S.B.

    2008-07-01

    In PUREX/UREX processes for recycling of spent nuclear fuels, 30% TBP solvent is used, This solvent has a small solubility in the aqueous phase. During concentration of the process solutions by an evaporation route, a runaway reaction between TBP and nitric acid is initiated at above 130 deg. C, leading to rapid pressurization and finally containment failure if proper venting is not provided. Red oil was synthesized for the first time in India, and its physical properties as well as thermodynamic parameters for the reaction were determined. It was experimentally established that the presence of metallic nitrates was not essential for red-oil formation as thought earlier. Various experiments have been completed for single-phase as well as two-phase runs. The most important finding of this work was lowering of the limiting acid concentration from the conventional values. In fact, in these experiments, red oil could be formed even at 2 N aqueous acidity. Thus, safety guidelines based on the classical literature are obsolete. New guidelines for the red-oil-safety are required. (authors)

  14. Qualification Data for the Corrosion Behavior of Inconel and Steel Alloys in Nitric Acid

    SciTech Connect

    Mickalonis, J.I.

    2001-04-17

    During filling operations in the Defense Waste Processing Facility (DWPF), melter inserts made of Inconel 690 (I690) have fallen into the canisters which are made of 304L stainless steel (304L). The consequences of possible galvanic corrosion between these materials were evaluated using two electrochemical techniques. Materials for other items which might fall into the canisters were also evaluated including Inconel MA758 (MA758) and A537 carbon steel (A537). The test solutions were concentrated nitric acid, used for validating literature data, and a 10 M nitric acid solution for simulating a possible environment, which may develop due to radiolysis inside the sealed canister.

  15. Qualification Data for the Corrosion Behavior of Inconel and Steel Alloys in Nitric Acid

    SciTech Connect

    Mickalonis, J.I.

    2001-05-02

    During filling operations in the Defense Waste Processing Facility (DWPF), melter inserts made of Inconel 690 (I690) have fallen into the canisters which are made of 304L stainless steel (304L). The consequences of possible galvanic corrosion between these materials were evaluated using two electrochemical techniques. Materials for other items which might fall into the canisters were also evaluated including Inconel MA758 (MA758) and A537 carbon steel (A537). The test solutions were concentrated nitric acid, used for validating literature data, and a 10 M nitric acid solution for simulating a possible environment, which may develop due to radiolysis inside the sealed canister.

  16. Stabilization and Solidification of Nitric Acid Effluent Waste at Y-12

    SciTech Connect

    Singh, Dileep; Lorenzo-Martin, Cinta

    2016-12-16

    Consolidated Nuclear Security, LLC (CNS) at the Y-12 plant is investigating approaches for the treatment (stabilization and solidification) of a nitric acid waste effluent that contains uranium. Because the pH of the waste stream is 1-2, it is a difficult waste stream to treat and stabilize by a standard cement-based process. Alternative waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the nitric acid effluent wastes.

  17. Ab Initio Calculations of Singlet and Triplet Excited States of Chlorine Nitrate and Nitric Acid

    NASA Technical Reports Server (NTRS)

    Grana, Ana M.; Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    Ab initio calculations of vertical excitations to singlet and triplet excited states of chlorine nitrate and nitric acid are reported. The nature of the electronic transitions are examined by decomposing the difference density into the sum of detachment and attachment densities. Counterparts for the three lowest singlet excited states of nitric acid survive relatively unperturbed in chlorine nitrate, while other low-lying singlet states of chlorine nitrate appear to be directly dissociative in the ClO chromophore. These results suggest an assignment of the two main peaks in the experimental chlorine nitrate absorption spectrum. In addition, triplet vertical excitations and the lowest optimized triplet geometries of both molecules are studied.

  18. Oxidation of hydroxylamine by nitrous and nitric acids. Model development from first principle SCRF calculations.

    PubMed

    Raman, Sumathy; Ashcraft, Robert W; Vial, Marc; Klasky, Marc L

    2005-09-29

    Ab initio molecular orbital calculations have been performed to develop an elementary reaction mechanism for the autocatalytic and scavenging reactions of hydroxylamine in an aqueous nitric acid medium. An improved understanding of the titled reactions is needed to determine the "stability boundary of hydroxylamine" for safe operations of the plutonium-uranium reduction extraction (PUREX) process. Under the operating conditions of the PUREX process, namely, 6 M nitric acid, the reactive forms of hydroxylamine are NH2OH, NH3OH+, and the complex NH3OH.NO3, and those of nitrous acid are NO+, H2ONO+, N2O4, N2O3, NO2, and NO. High-level CBSQB3/IEFPCM and CBSQB3/COSMO calculations were performed using GAUSSIAN03 to investigate the energy landscape and to explore a large number of possible ion-ion, ion-radical, ion-molecule, radical-radical, radical-molecule, and molecule-molecule pathways available to the reactive forms of the reactants in solution. It was found that in solution the autocatalytic generation of nitrous acid proceeds through free radical pathways at low-hydroxylamine concentrations from unprotonated NH2OH via hydrogen abstraction. At high [NH3OH+], we suggest a possible involvement of the NH3ONO+ intermediate via the reaction NH2ONO + NO2 --> HNO + HONO + NO. The NH3ONO+ intermediate, in turn, is formed favorably via the ion-ion reactions of NH3OH+ with NO+ and/or the reaction between NO+ and hydroxylammonium nitrate (HAN). The intermediates involved in the scavenging reaction of nitrous acid by hydroxylamine are NH3ONO+, NH2ONO, NH2(NO)O, NH(NO)OH, and HONNOH and the rate-determining step is the 1,2-NO migration in NH2ONO leading to NH2(NO)O. Reactions NH2ONO --> NH2(NO)O and NH2(NO)O --> NH(NO)OH were studied with two explicit water molecules and the results are discussed in the context of the importance of the explicit treatment of solvent in the determination of the energetics and mechanism of these processes. The rate constants for the reactions were

  19. Polymerization of beta-amino acids in aqueous solution

    NASA Technical Reports Server (NTRS)

    Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    We have compared carbonyl diimidazole (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as activating agents for the oligomerization of negatively-charged alpha- and beta-amino acids in homogeneous aqueous solution. alpha-Amino acids can be oligomerized efficiently using CDI, but not by EDAC. beta-Amino acids can be oligomerized efficiently using EDAC, but not by CDI. Aspartic acid, an alpha- and beta-dicarboxylic acid is oligomerized efficiently by both reagents. These results are explained in terms of the mechanisms of the reactions, and their relevance to prebiotic chemistry is discussed.

  20. Material compatibility evaluation for DWPF nitric-glycolic acid-literature review

    SciTech Connect

    Mickalonis, J.; Skidmore, E.

    2013-06-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid.

  1. Persistent ion pairing in aqueous hydrochloric acid.

    PubMed

    Baer, Marcel D; Fulton, John L; Balasubramanian, Mahalingam; Schenter, Gregory K; Mundy, Christopher J

    2014-07-03

    For strong acids, like hydrochloric acid, the complete dissociation into an excess proton and conjugated base as well as the formation of independent solvated charged fragments is assumed. The existence of chloride-hydronium (Cl(-)···H3O(+)) contact ion pairs even in moderate concentration hydrochloric acid (2.5 m) demonstrates that the counterions do not behave merely as spectators. Through comparison of recent extended X-ray absorption fine structure (EXAFS) measurements to state-of-the-art density functional theory (DFT) simulations, we are able to obtain a unique view into the molecular structure of medium-to-high concentrated electrolytes. Here we report that the Cl(-)···H3O(+) contact ion pair structure persists throughout the entire concentration range studied and that these structures differ significantly from moieties studied in microsolvated hydrochloric acid gas phase clusters. Characterizing distinct populations of these ion pairs gives rise to a novel molecular level description of how to view the reaction network for acid dissociation and how it relates to our picture of acid-base equilibria.

  2. Modelling of the nitric acid reduction process: Application to materials behavior in reprocessing plants

    SciTech Connect

    Sicsic, D.; Balbaud-Celerier, F.; Tribollet, B.

    2012-07-01

    In France, the recycling process of nuclear waste fuels involves the use of hot concentrated nitric acid. The understanding and the prediction of the structural materials (mainly austenitic stainless steels) behaviour requires the determination of the nitric acid reduction process. Nitric acid is indirectly reduced by an autocatalytic mechanism depending on the cathodic overpotential and the acid concentration. This mechanism has been widely studied. All the authors agree on its autocatalytic nature, characterized by the predominant role of the reduction products. It is also generally admitted that nitric acid or the nitrate ion are not the electro-active species. However, uncertainties remain concerning the nature of the electro-active species, the place where the catalytic species regenerates and the thermodynamic and kinetic behaviour of the reaction intermediates. The aim of this study is to clarify some of these uncertainties by performing an electrochemical investigation of the 4 mol.L -1 nitric acid reduction process at 40 deg. C occurring on an inert electrode (platinum or gold). An inert electrode was chosen as a working electrode in a first step in order to avoid its oxidation and focus the research on the reduction mechanism. This experimental work enabled to suggest a coherent sequence of electrochemical and chemical reactions. Then, a kinetic modelling of this sequence was carried out for a gold rotating disk system. In this objective, a thermodynamic study at 25 deg. C led to the evaluation of the composition of liquid and gaseous phases for nitric acid solutions from 0.5 to 22 mol.L -1. The kinetics of the reduction process of nitric acid 4 mol.L -1 was investigated by cyclic voltammetry and chrono-amperometry on an inert electrode at 40 deg. C. A coupling of chrono-amperometry and FTIR in gaseous phase led to the identification of the gaseous reduction products as a function of the cathodic overpotential. These different results showed that for

  3. CHARACTERIZATION OF H CANYON CONDUCTIVITY METER INDICATIONS WITH ELEVATED URANIUM IN NITRIC ACID

    SciTech Connect

    Nash, C

    2007-10-31

    Solution conductivity data from the 1CU conductivity meter in H-Canyon shows that uranium concentration in the 0 to 30 gram per liter (g/L) range has no statistically significant effect on the calibration of free nitric acid measurement. Based on these results, no additional actions are needed on the 1CU Conductivity Meter prior to or during the processing of uranium solutions in the 0 to 30 g/L range. A model based only on free nitric acid concentration is shown to be appropriate for explaining the data. Data uncertainties for the free acid measurement of uranium-bearing solutions are 8.5% or less at 95% confidence. The analytical uncertainty for calibrating solutions is an order of magnitude smaller only when uranium is not present, allowing use of a more accurate analytical procedure. Literature work shows that at a free nitric acid level of 0.33 M, uranium concentration of 30 g/L and 25 C, solution conductivity is 96.4% of that of a uranium-free solution. The level of uncertainties in the literature data and its fitting equation do not justify calibration changes based on this small depression in solution conductivity. This work supports preparation of H-Canyon processing of Super Kukla fuel; however, the results will be applicable to the processing of any similar concentration uranium and nitric acid solution. Super Kukla fuel processing will increase the uranium concentration above the nominal zero to 10 g/L level, though not above 30 g/L. This work examined free nitric acid levels ranging from 0.18 to 0.52 molar. Temperature ranged from 27.9 to 28.3 C during conductivity testing. The data indicates that sequential order of measurement is not a significant factor. The conductivity meter was thus flushed effectively between measurements as desired.

  4. Microstructure and Corrosion Behavior of Laser Melted 304L SS Weldment in Nitric Acid Medium

    NASA Astrophysics Data System (ADS)

    Suresh, Girija; Kishor, P. S. V. R. A.; Dasgupta, Arup; Upadhyay, B. N.; Mallika, C.; Kamachi Mudali, U.

    2017-02-01

    The manuscript presents the effect of laser surface melting on the corrosion property of 304L SS weldment in nitric acid medium. 304L SS weldment was prepared by gas tungsten arc welding process and subsequently laser surface melted using Nd:YAG laser. The microstructure and corrosion resistance of laser surface melted 304L SS weldment was evaluated and compared with that of 304L SS as-weldment and 304L SS base. Microstructural evaluation was carried out using optical and scanning electron microscopes attached with energy-dispersive x-ray spectroscopy. Corrosion investigations were carried out in 4 and 8 M nitric acid by potentiodynamic polarization technique. From the results, it was found that laser surface melting of the weldment led to chemical and microstructural homogeneities, accompanied by a substantial decrease in delta ferrite content, that enhanced the corrosion resistance of the weldment in 4 and 8 M nitric acid. However, the enhancement in the corrosion resistance was not substantial. The presence of small amount of delta ferrite (2-4 wt.%) in the laser surface melted specimens was found to be detrimental in nitric acid. X-ray photoelectron spectroscopy studies were carried out to investigate the composition of the passive film.

  5. The FB-Line and F-Canyon HAN/Nitric Acid Decomposition Study

    SciTech Connect

    Hang, T.

    1998-08-19

    Separations requested SRTC study the autocatalytic decomposition of the hydroxylamine nitrate which may occur in the presence of concentrated nitric acid with respect to making-up cold feed solutions. The data obtained from this study will provide Separations an envelope within which safe operations can be conducted.

  6. Dissolution of sludges containing uranium dioxide and metallic uranium in nitric acid

    SciTech Connect

    Flament, T.A.

    1998-08-25

    The dissolution in nitric acid of sludges containing uranium oxide and uranium has been modeled. That study has shown that it was necessary to continuously feed the dissolver to have an appropriate control of the reaction. If a unique procedure is deemed preferable, NH03 6M has been used.

  7. Nitric acid-organic mixtures surveyed for use in separation by anion exchange methods

    NASA Technical Reports Server (NTRS)

    Bloomquist, C. A. A.; Faris, J. P.; Stewart, D. C.

    1968-01-01

    Column elution-spectrographic analysis technique compares certain solvents directly to the methanol system, using inert rare earths instead of actinides. Distribution ratios for americium between 90 percent solvent, 10 percent 5 M nitric acid and Dowex 1 nitrate form resin for a large group of organics miscible in water was determined.

  8. TWOPOT: a computer model of the two-pot extractive distillation concept for nitric acid

    SciTech Connect

    Jubin, R.T.; Holland, W.D.; Counce, R.M.; Beckwith, D.R.

    1985-05-01

    A mathematical model, TWOPOT, of the ''two-pot'' extractive distillation concept for nitric acid concentration has been developed. Prediction from a computer simulation using this model shows excellent agreement with the experimental data. This model is recommended for use in the design of large-scale, similar-purpose equipment. 9 refs., 15 figs., 2 tabs.

  9. K Basin Sludge Conditioning Testing: Nitric Acid Dissolution Testing of K East Canister Sludge

    SciTech Connect

    Carlson, C.D.; Delegard, C.H.; Burgeson, I.E.: Schmidt, A.J.; Bredt, P.R.; Silvers, K.L.

    1999-04-01

    This report describes tests performed by Pacific Northwest National Laboratory (PNNL) for Numatec Hanford Corporation (NHC) as part of the overall activities for the development of the K Basin Sludge Treatment System. These tests were conducted to examine the dissolution behavior of a K East Basin canister sludge composite in nitric acid at the following concentrations: 2 M, 4 M, 6 M, 7.8 M and 10 M and temperatures of 25 C and boiling. Assuming that the sludge was 100% uranium metal, a 4X stoichiometric excess of nitric acid was used for all testing, except that conducted at 4 M. In the 4 M nitric acid dissolution test, 50% excess nitric acid was used resulting in a dissolver solution with a significantly higher solids loading. The boiling tests were conducted for 11 hr, the 25 C dissolution tests were conducted from 24 hr to 2 weeks. For the 25 C dissolution testing, the weight percent residual solids was determined, however, chemical and radiochemical analyses were not performed.

  10. Microstructure and Corrosion Behavior of Laser Melted 304L SS Weldment in Nitric Acid Medium

    NASA Astrophysics Data System (ADS)

    Suresh, Girija; Kishor, P. S. V. R. A.; Dasgupta, Arup; Upadhyay, B. N.; Mallika, C.; Kamachi Mudali, U.

    2016-12-01

    The manuscript presents the effect of laser surface melting on the corrosion property of 304L SS weldment in nitric acid medium. 304L SS weldment was prepared by gas tungsten arc welding process and subsequently laser surface melted using Nd:YAG laser. The microstructure and corrosion resistance of laser surface melted 304L SS weldment was evaluated and compared with that of 304L SS as-weldment and 304L SS base. Microstructural evaluation was carried out using optical and scanning electron microscopes attached with energy-dispersive x-ray spectroscopy. Corrosion investigations were carried out in 4 and 8 M nitric acid by potentiodynamic polarization technique. From the results, it was found that laser surface melting of the weldment led to chemical and microstructural homogeneities, accompanied by a substantial decrease in delta ferrite content, that enhanced the corrosion resistance of the weldment in 4 and 8 M nitric acid. However, the enhancement in the corrosion resistance was not substantial. The presence of small amount of delta ferrite (2-4 wt.%) in the laser surface melted specimens was found to be detrimental in nitric acid. X-ray photoelectron spectroscopy studies were carried out to investigate the composition of the passive film.

  11. Aqueous Trifluoromethane Sulfonic Acid Fuel Cells.

    DTIC Science & Technology

    1981-02-01

    Development of Low Tempera- ture Acid Electrolytes," National Fuel Cell Seminar, Bethesda, MD, June 1979. 8 George, M. and Januszkiewicz , S., "New Materials...Department 2- K US Department of Energy (1) LaVerne, CA 91750 ATTN: Mr. Gary Voelker 20 Massachusetts Avenue, NW Union Carbide Corporation (1) Washington, DC

  12. Persistent Ion Pairing in Aqueous Hydrochloric Acid

    SciTech Connect

    Baer, Marcel D.; Fulton, John L.; Balasubramanian, Mahalingam; Schenter, Gregory K.; Mundy, Christopher J.

    2014-07-03

    For strong acids, like hydrochloric acid, the complete dissociation into an excess proton and conjugated base as well as the formation of independent solvated charged fragments is assumed. The existence of a chloride-Hyronium (Cl-H3O+) contact ion pairs even in moderate concentration hydrochloric acid (2.5 m) demonstrates that the counter ions do not behave merely as spectators. Through the use of modern extended X-ray absorption fine structure (EXAFS) measurements in conjunction with state-of-the-art density functional theory (DFT) simulations, we are able to obtain an unprecedented view into the molecular structure of medium to high concentrated electrolytes. Here we report that the Cl-H3O+ contact ion pair structure persists throughout the entire concentration range studied and that these structures differ significantly from moieties studied in micro-solvated hydrochloric acid clusters. Characterizing distinct populations of these ion pairs gives rise to a novel molecular level description of how to think about the activity of the proton that impacts our picture of the pH scale. Funding for CJM, GKS, and JLF was provided by DOE Office of Science, Office of Basic Energy Science, Division of Chemical Sciences, Geosciences, and Biosciences. Funding for MDB was provided throught the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory. MB was funded through Argonne National Laboratory.

  13. Photosynthetic and growth responses of Schima superba seedlings to sulfuric and nitric acid depositions.

    PubMed

    Yao, Fang-Fang; Ding, Hui-Ming; Feng, Li-Li; Chen, Jing-Jing; Yang, Song-Yu; Wang, Xi-Hua

    2016-05-01

    A continuing rise in acid deposition can cause forest degradation. In China, acid deposition has converted gradually from sulfuric acid deposition (SAD) to nitric acid deposition (NAD). However, the differing responses of photosynthesis and growth to depositions of sulfuric vs. nitric acid have not been well studied. In this study, 1-year-old seedlings of Schima superba, a dominant species in subtropical forests, were treated with two types of acid deposition SO4 (2-)/NO3 (-) ratios (8:1 and 0.7:1) with two applications (foliar spraying and soil drenching) at two pH levels (pH 3.5 and pH 2.5) over a period of 18 months. The results showed that the intensity, acid deposition type, and spraying method had significant effects on the physiological characteristics and growth performance of seedlings. Acid deposition at pH 2.5 via foliar application reduced photosynthesis and growth of S. superba, especially in the first year. Unlike SAD, NAD with high acidity potentially alleviated the negative effects of acidity on physiological properties and growth, probably due to a fertilization effect that improved foliar nitrogen and chlorophyll contents. Our results suggest that trees were damaged mainly by direct acid stress in the short term, whereas in the long term, soil acidification was also likely to be a major risk to forest ecosystems. Our data suggest that the shift in acid deposition type may complicate the ongoing challenge of anthropogenic acid deposition to ecosystem stability.

  14. The Consistency of Isotopologues of Ambient Atmospheric Nitric Acid in Passively Collected Samples

    NASA Astrophysics Data System (ADS)

    Bell, M. D.; Sickman, J. O.; Bytnerowicz, A.; Padgett, P.; Allen, E. B.

    2012-12-01

    Anthropogenic sources of nitrogen oxides have previously been shown to have distinctive isotopic signatures of oxygen and nitrogen. Nylon filters are currently used in passive sampling arrays to measure ambient atmospheric nitric acid concentrations and estimate deposition rates. This experiment measured the ability of nylon filters to consistently collect isotopologues of atmospheric nitric acid in the same ratios as they are present in the atmosphere. Samplers were deployed in continuous stirred tank reactors (CSTR) and at field sites across a nitrogen deposition gradient in Southern California. Filters were exposed over a four week period with individual filters being subjected to 1-4 week exposure times. Extracted nitric acid were measured for δ18O and δ15N ratios and compared for consistency based on length of exposure and amount of HNO3 collected. Filters within the CSTRs collected HNO3 at a consistent rate in both high and low concentration chambers. After two weeks of exposure, the mean δ18O values were within 0.5‰ of the δ18O of the source HNO3 solution. The mean of all weekly exposures were within 0.5‰ of the δ15N of the source solution, but after three weeks, the mean δ15N of adsorbed HNO3 was within 0.2‰. As the length of the exposure increased, the variability of measured delta values decreased for both elements. The field samplers collected HNO3 consistent with previously measured values along a deposition gradient. The mean δ18O at high deposition sites was 52.2‰ compared to 35.7‰ at the low deposition sites. Mean δ15N values were similar at all sites across the deposition gradient. Due to precipitation events occurring during the exposure period, the δ15N and δ18O of nitric acid were highly variable at all field sites. At single sites, changes in δ15N and δ18O were negatively correlated, consistent with two-sourcing mixing dynamics, but the slope of the regressions differed between high and low deposition sites. Anthropogenic

  15. Nitric acid treated multi-walled carbon nanotubes optimized by Taguchi method

    NASA Astrophysics Data System (ADS)

    Shamsuddin, Shahidah Arina; Derman, Mohd Nazree; Hashim, Uda; Kashif, Muhammad; Adam, Tijjani; Halim, Nur Hamidah Abdul; Tahir, Muhammad Faheem Mohd

    2016-07-01

    Electron transfer rate (ETR) of CNTs can be enhanced by increasing the amounts of COOH groups to their wall and opened tips. With the aim to achieve the highest production amount of COOH, Taguchi robust design has been used for the first time to optimize the surface modification of MWCNTs by nitric acid oxidation. Three main oxidation parameters which are concentration of acid, treatment temperature and treatment time have been selected as the control factors that will be optimized. The amounts of COOH produced are measured by using FTIR spectroscopy through the absorbance intensity. From the analysis, we found that acid concentration and treatment time had the most important influence on the production of COOH. Meanwhile, the treatment temperature will only give intermediate effect. The optimum amount of COOH can be achieved with the treatment by 8.0 M concentration of nitric acid at 120 °C for 2 hour.

  16. Extraction of Palladium from Nitric Acid by Diamides of Di-picolinic Acid

    SciTech Connect

    Alyapyshev, M.Yu.; Babain, V.A.; Pokhitonov, Yu.A.; Esimantovskiy, V.M.

    2007-07-01

    The most complicated and urgent problem of atomic industry consists in the safe isolation and storage of radioactive wastes. The long-lived radionuclides presented in high-level liquid wastes (HLLW) pose a potential threat to environment for hundreds and thousands of years. One of the possible ways to reduce the danger of HLLW storages is concerned with treatment of HLLW intended to recovery of long-lived radionuclides and their partitioning into separate fractions. The separation of the most hazardous radionuclides (like transplutonium elements (TPE)) to the individual fraction of low volume leads to decrease of the total volume of HLLW and therefore to decrease of solidified waste storage costs. It should be noted that only in the case of reprocessing it can be possible to recover individual radionuclides (or their fractions) into separate flows with further special approach to each of them. Partitioning of different HLLW is under investigation in many countries now. Numerous processes for recovery of Cs, Sr, TPE and REE have been already developed and tested. At the same time partitioning is only the first step on the road to the following synthesis of materials providing the safe storage of long-lived radionuclides over many thousands of years. The metallic palladium contained in HLLW seems to be a promising material for producing of matrices for incorporation of radioactive wastes. Different methods for palladium recovery have been investigated: reductive precipitation, electrochemical precipitation, sorption and extraction. Of prime importance are extraction methods. Phosphine oxides, carbamoyl-phosphine oxides, crown-ethers, oximes, sulfides and some other compounds were proposed as extractants towards palladium from nitric acid media. It is reasonable to recover palladium into individual fraction during waste partitioning. Diamides of malonic, di-glycolic and pyridine-dicarboxylic (di-picolinic) acids are intensively investigated as extractants for HLLW

  17. On the growth of nitric and sulfuric acid aerosol particles under stratospheric conditions

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Turco, R. P.; Toon, O. B.

    1988-01-01

    A theory for the formation of frozen aerosol particles in the Antarctic stratosphere was developed and applied to the formation of polar stratospheric clouds. The theory suggests that the condensed ice particles are composed primarily of nitric acid and water, with small admixtures of sulfuric and hydrochloric acids in solid solution. The proposed particle formation mechanism is in agreement with the magnitude and seasonal behavior of the optical extinction observed in the winter polar stratosphere.

  18. Amino-acid contamination of aqueous hydrochloric acid.

    NASA Technical Reports Server (NTRS)

    Wolman, Y.; Miller, S. L.

    1971-01-01

    Considerable amino-acid contamination in commercially available analytical grade hydrochloric acid (37% HCl) was found. One bottle contained 8,300 nmol of amino-acids per liter. A bottle from another supplier contained 6,700 nmol per liter. The contaminants were mostly protein amino-acids and several unknowns. Data on the volatility of the amino-acids during HCl distillation were also obtained.

  19. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways.

    PubMed

    Mur, Luis A J; Prats, Elena; Pierre, Sandra; Hall, Michael A; Hebelstrup, Kim H

    2013-01-01

    Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used.

  20. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways

    PubMed Central

    Mur, Luis A. J.; Prats, Elena; Pierre, Sandra; Hall, Michael A.; Hebelstrup, Kim H.

    2013-01-01

    Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used. PMID:23818890

  1. γ-Irradiation of malic acid in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Negron-Mendoza, Alicia; Graff, Rebecca L.; Ponnamperuma, Cyril

    1980-12-01

    The γ-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the non-volatile products. Thin layer chromotography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the γ-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  2. Process for the extraction of strontium from acidic solutions

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1993-01-01

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid.

  3. Process for the extraction of strontium from acidic solutions

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1994-09-06

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid. 4 figs.

  4. Process for the extraction of strontium from acidic solutions

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1994-01-01

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid.

  5. Improvement in electrochemical capacitance of activated carbon from scrap tires by nitric acid treatment

    NASA Astrophysics Data System (ADS)

    Han, Yan; Zhao, Ping-Ping; Dong, Xiao-Ting; Zhang, Cui; Liu, Shuang-Xi

    2014-12-01

    Activated carbon (AC) obtained from the industrial pyrolytic tire char is treated by concentrated nitric acid (AC-HNO3) and then used as the electrode material for supercapacitors. Surface properties and electrochemical capacitances of AC and ACHNO3 are studied. It is found that the morphology and the porous texture for AC and AC-HNO3 have little difference, while the oxygen content increases and functional groups change after the acid treatment. Electrochemical results demonstrate that the AC-HNO3 electrode displays higher specific capacitance, better stability and cycling performance, and lower equivalent series resistance, indicating that AC obtained from the industrial pyrolytic tire char treated by concentrated nitric acid is applicable for supercapacitors.

  6. An aqueous extract of Ilex paraguariensis reduces carrageenan-induced edema and inhibits the expression of cyclooxygenase-2 and inducible nitric oxide synthase in animal models of inflammation.

    PubMed

    Schinella, Guillermo; Neyret, Elisa; Cónsole, Gloria; Tournier, Horacio; Prieto, José M; Ríos, José-Luis; Giner, Rosa María

    2014-08-01

    Mate (Ilex paraguariensis) is a highly popular herbal beverage in South America due to its high content of caffeine. Its hypolipidemic and antioxidant properties are of increasing interest in the treatment of cardiovascular disorders and for weight control. In the present study, we show for the first time both the local and systemic anti-inflammatory effects of an aqueous extract of mate in three classic in vivo models, namely acute and chronic 12-O-tetradecanoylphorbol 13-acetate-induced mouse ear edema and acute carrageenan-induced mouse paw edema. Caffeine, rutin, chlorogenic acid, 3,5-dicafeoyl quinic acid, and 4,5-dicafeoyl quinic acid, accompanied by a complex mixture of other simple phenolic acids, were identified in the extract by HPLC-UV analyses. In the acute edema model, mate extract applied topically (1 mg/ear) halved the 12-O-tetradecanoylphorbol 13-acetate-induced acute edema (50 %) and almost suppressed neutrophil infiltration (93 %), while in the 12-O-tetradecanoylphorbol 13-acetate-induced subchronic inflammation, the edema was significantly reduced by 62 % (1 mg/ear/day × seven doses). The oral administration of the mate extract (250 mg/kg) significantly reduced the carrageenan-induced edema at all time points, an effect which was accompanied by a 43 % and 53 % reduction of the expression of cyclooxygenase-2 and inducible nitric oxide synthase, respectively. Histological analyses confirmed a reduction of epithelium thickness, dermis with mild inflammation, hair follicles with some secretory cells of sebaceous glands, and hypodermic adipocytes. In conclusion, mate is endowed with in vivo preventative or therapeutic anti-inflammatory effects in both local and systemic inflammatory processes.

  7. Real refractive indices of infrared-characterized nitric-acid/ice films: Implications for optical measurements of polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Middlebrook, Ann M.; Berland, Brian S.; George, Steven M.; Tolbert, Margaret A.; Toon, Owen B.

    1994-01-01

    The infrared spectra of nitric-acid/ice films representative of polar stratospheric clouds (PSCs) were collected with simultaneous optical interference measurements to determine the real refractive indices at lambda = 632 nm. Ice and amphorous nitric-acid/ice films were prepared by condensation of water and nitric acid vapors onto a wedged Al2O3 substrate. The real refractive indices of these films were determined from the optical interference of a reflected helium-neon laser during film growth. The indices of the amphorous films varied smoothly from n = 1.30 for ice to n = 1.49 for nitric acid, similar to observations in previous work. We were unable to obtain the refractive index of crystlline films during adsorption because of optical scattering caused by surface roughness. Therefore crystlline nitric acid hydrate films were prepared by annealing amphorous nitric-acid/ice films. Further heating caused desorption of the crystalline hydrate films. During desorption, the refractive indices for ice, NAM (nitric acid monohydrate), alpha- and beta-NAT (nitric acid trihydrate) films were measured using the optical interference technique. In agreement with earlier data, the real refractive indices for ice and NAM determined in desorption were n = 1.30 +/- 0.01 and n = 1.53 +/- 0.03, respectively. The real refractive indices for alpha- and beta-NAT were found to be n = 1.51 +/- 0.01 and n greater than or equal to 1.46, respectively. Our measurements also suggest that the shape of crystalline nitric acid particles may depend on whether they nucleate from the liquid or by vapor deposition. If confirmed by future studies, this observation may provide a means of distinguishing the nucleation mechanism of crystalline PSCs.

  8. Investigation of acyl migration in mono- and dicaffeoylquinic acids under aqueous basic, aqueous acidic, and dry roasting conditions.

    PubMed

    Deshpande, Sagar; Jaiswal, Rakesh; Matei, Marius Febi; Kuhnert, Nikolai

    2014-09-17

    Acyl migration in chlorogenic acids describes the process of migration of cinnamoyl moieties from one quinic acid alcohol group to another, thus interconverting chlorogenic acid regioisomers. It therefore constitutes a special case of transesterification reaction. Acyl migration constitutes an important reaction pathway in both coffee roasting and brewing, altering the structure of chlorogenic acid initially present in the green coffee bean. In this contribution we describe detailed and comprehensive mechanistic studies comparing inter- and intramolecular acyl migration involving the seven most common chlorogenic acids in coffee. We employe aqueous acidic and basic conditions mimicking the brewing of coffee along with dry roasting conditions. We show that under aqueous basic conditions intramolecular acyl migration is fully reversible with basic hydrolysis competing with acyl migration. 3-Caffeoylquinic acid was shown to be most labile to basic hydrolysis. We additionally show that the acyl migration process is strongly pH dependent with increased transesterification taking place at basic pH. Under dry roasting conditions acyl migration competes with dehydration to form lactones. We argue that acyl migration precedes lactonization, with 3-caffeoylquinic acid lactone being the predominant product.

  9. Mediated electrochemical oxidation of organic wastes using a Co (III) mediator in a nitric acid based system

    DOEpatents

    Balazs, G.B.; Chiba, Z.; Lewis, P.R.; Nelson, N.; Steward, G.A.

    1999-06-15

    An electrochemical cell with a Co(III) mediator and nitric acid electrolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the mediator oxidizes the organics and insoluble transuranic compounds and is regenerated at the anode until the organics are converted to CO[sub 2]. The nitric acid is an excellent oxidant that facilitates the destruction of the organic components. The anode is not readily attacked by the nitric acid solution, thus the cell can be used for extended continual operation without electrode replacement. 2 figs.

  10. Mediated electrochemical oxidation of organic wastes using a Co (III) mediator in a nitric acid based system

    DOEpatents

    Balazs, G. Bryan; Chiba, Zoher; Lewis, Patricia R.; Nelson, Norvell; Steward, G. Anthony

    1999-01-01

    An electrochemical cell with a Co(III) mediator and nitric acid electrolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the mediator oxidizes the organics and insoluble transuranic compounds and is regenerated at the anode until the organics are converted to CO.sub.2. The nitric acid is an excellent oxidant that facilitates the destruction of the organic components. The anode is not readily attacked by the nitric acid solution, thus the cell can be used for extended continual operation without electrode replacement.

  11. LIMS Instrument Package (LIP) balloon experiment: Nimbus 7 satellite correlative temperature, ozone, water vapor, and nitric acid measurements

    NASA Technical Reports Server (NTRS)

    Lee, R. B., III; Gandrud, B. W.; Robbins, D. E.; Rossi, L. C.; Swann, N. R. W.

    1982-01-01

    The Limb Infrared Monitor of the Stratosphere (LIMS) LIP balloon experiment was used to obtain correlative temperature, ozone, water vapor, and nitric acid data at altitudes between 10 and 36 kilometers. The performance of the LIMS sensor flown on the Nimbus 7 Satellite was assessed. The LIP consists of the modified electrochemical concentration cell ozonesonde, the ultraviolet absorption photometric of ozone, the water vapor infrared radiometer sonde, the chemical absorption filter instrument for nitric acid vapor, and the infrared radiometer for nitric acid vapor. The limb instrument package (LIP), its correlative sensors, and the resulting data obtained from an engineering and four correlative flights are described.

  12. Near infrared photochemistry of pyruvic acid in aqueous solution.

    PubMed

    Larsen, Molly C; Vaida, Veronica

    2012-06-21

    Recent experimental and theoretical results have suggested that organic acids such as pyruvic acid, can be photolyzed in the ground electronic state by the excitation of the OH stretch vibrational overtone. These overtones absorb in the near-infrared and visible regions of the spectrum where the solar photons are plentiful and could provide a reaction pathway for the organic acids and alcohols that are abundant in the earth's atmosphere. In this paper the overtone initiated photochemistry of aqueous pyruvic acid is investigated by monitoring the evolution of carbon dioxide. In these experiments CO(2) is being produced by excitation in the near-infrared, between 850 nm and ∼1150 nm (11,765-8696 cm(-1)), where the second OH vibrational overtone (Δν = 3) of pyruvic acid is expected to absorb. These findings show not only that the overtone initiated photochemical decarboxylation reaction occurs but also that in the aqueous phase it occurs at a lower energy than was predicted for the overtone initiated reaction of pyruvic acid in the gas phase (13,380 cm(-1)). A quantum yield of (3.5 ± 1.0) × 10(-4) is estimated, suggesting that although this process does occur, it does so with a very low efficiency.

  13. A critique of homogeneous freezing measurements of aqueous sulfuric acid

    NASA Astrophysics Data System (ADS)

    Alofs, Darryl J.; Vandike, John L.

    2000-08-01

    Two laboratory measurements of homogeneous freezing of aqueous sulfuric acid particles are critiqued: The first by Bertram et al., 1996, J. Phys. Chem., vol. 100, pp. 2376-2383: the second by Koop et al., 1998, J. Phys. Chem. A, vol. 102, pp. 8924-8931. Calculations for a proposed experimental artifact are inconclusive for Bertram et al. A proposed artifact for Koop et al. is shown to be insignificant.

  14. A laboratory study of the nucleation kinetics of nitric acid hydrates under stratospheric conditions

    NASA Astrophysics Data System (ADS)

    James, Alexander D.; Murray, Benjamin J.; Plane, John M. C.

    2016-04-01

    Measurements of the kinetics of crystallisation of ternary H2O-H2SO4-HNO3 mixtures to produce nitric acid hydrate phases, as occurs in the lower stratosphere, have been a long-standing challenge for investigators in the laboratory. Understanding polar stratospheric chlorine chemistry and thereby ozone depletion is increasingly limited by descriptions of nucleation processes. Meteoric smoke particles have been considered in the past as heterogeneous nuclei, however recent studies suggest that these particles will largely dissolve, leaving mainly silica and alumina as solid inclusions. In this study the nucleation kinetics of nitric acid hydrate phases have been measured in microliter droplets at polar stratospheric cloud (PSC) temperatures, using a droplet freezing assay. A clear heterogeneous effect was observed when silica particles were added. A parameterisation based on the number of droplets activated per nuclei surface area (ns) has been developed and compared to global model data. Nucleation experiments on identical droplets have been performed in an X-Ray Diffractometer (XRD) to determine the nature of the phase which formed. β-Nitric Acid Trihydrate (NAT) was observed alongside a mixture of Nitric Acid Dihydrate (NAD) phases. It is not possible to determine whether NAT nucleates directly or is formed by a phase transition from NAD (likely requiring the presence of a mediating liquid phase). Regardless, these results demonstrate the possibility of forming NAT on laboratory timescales. In the polar stratosphere, sulfuric acid (present at several weight percent of the liquid under equilibrium conditions) could provide such a liquid phase. This study therefor provides insight into previous discrepancies between phases formed in the laboratory and those observed in the atmosphere. It also provides a basis for future studies into atmospheric nucleation of solid PSCs.

  15. Oleic acid-dependent modulation of Nitric oxide associated 1 protein levels regulates nitric oxide-mediated defense signaling in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The conserved cellular metabolites nitric oxide (NO) and oleic acid (18:1) are well-known regulators of disease physiologies in diverse organism. We show that NO production in plants is regulated via 18:1. Reduction in 18:1 levels, via a genetic mutation in the 18:1-synthesizing gene SUPPRESSOR OF S...

  16. Evaluation of the Magnesium Hydroxide Treatment Process for Stabilizing PFP Plutonium/Nitric Acid Solutions

    SciTech Connect

    Gerber, Mark A.; Schmidt, Andrew J.; Delegard, Calvin H.; Silvers, Kurt L.; Baker, Aaron B.; Gano, Susan R.; Thornton, Brenda M.

    2000-09-28

    This document summarizes an evaluation of the magnesium hydroxide [Mg(OH)2] process to be used at the Hanford Plutonium Finishing Plant (PFP) for stabilizing plutonium/nitric acid solutions to meet the goal of stabilizing the plutonium in an oxide form suitable for storage under DOE-STD-3013-99. During the treatment process, nitric acid solutions bearing plutonium nitrate are neutralized with Mg(OH)2 in an air sparge reactor. The resulting slurry, containing plutonium hydroxide, is filtered and calcined. The process evaluation included a literature review and extensive laboratory- and bench-scale testing. The testing was conducted using cerium as a surrogate for plutonium to identify and quantify the effects of key processing variables on processing time (primarily neutralization and filtration time) and calcined product properties.

  17. Comparison of parameterized nitric acid rainout rates using a coupled stochastic-photochemical tropospheric model

    NASA Technical Reports Server (NTRS)

    Stewart, Richard W.; Thompson, Anne M.; Owens, Melody A.; Herwehe, Jerold A.

    1989-01-01

    A major tropospheric loss of soluble species such as nitric acid results from scavenging by water droplets. Several theoretical formulations have been advanced which relate an effective time-independent loss rate for soluble species to statistical properties of precipitation such as the wet fraction and length of a precipitation cycle. In this paper, various 'effective' loss rates that have been proposed are compared with the results of detailed time-dependent model calculations carried out over a seasonal time scale. The model is a stochastic precipitation model coupled to a tropospheric photochemical model. The results of numerous time-dependent seasonal model runs are used to derive numerical values for the nitric acid residence time for several assumed sets of preciptation statistics. These values are then compared with the results obtained by utilizing theoretical 'effective' loss rates in time-independent models.

  18. Nitric acid and ammonia emissions from a mid-latitude prescribed wetlands fire

    NASA Astrophysics Data System (ADS)

    LeBel, P. J.; Cofer, W. R., III; Levine, J. S.; Vay, S. A.; Roberts, P. D.

    1988-08-01

    We have obtained the first simultaneous measurements of gaseous nitric acid (HNO3) and ammonia (NH3) in the smoke plume of a wetlands biomass burn. These measurements were made using tungsten oxide-coated diffusion denuder tubes from a helicopter during a prescribed burn at the Merritt Island National Wildlife Refuge, located at the NASA John F. Kennedy Space Center, Florida, on November 9, 1987. The mean NH3 and HNO3 mixing ratios measured in the smoke plume were 19 ppbv and 14 ppbv, respectively, both significantly higher than background mixing ratios. Nitric acid correlated well with carbon dioxide (CO2) produced by the combustion. The mean CO2-normalized emission ratio for HNO3 was found to be 1.2 × 10-4. Ammonia, however, did not correlate well with CO2 suggesting a more complex relationship between combustion and production/release of NH3.

  19. Passive sampler for measurements of atmospheric nitric acid vapor (HNO3) concentrations.

    PubMed

    Bytnerowicz, A; Padgett, P E; Arbaugh, M J; Parker, D R; Jones, D P

    2001-12-05

    Nitric acid (HNO3) vapor is an important nitrogenous air pollutant responsible for increasing saturation of forests with nitrogen and direct injury to plants. The USDA Forest Service and University of California researchers have developed a simple and inexpensive passive sampler for monitoring air concentrations of HNO3. Nitric acid is selectively absorbed on 47-mm Nylasorb nylon filters with no interference from particulate NO3-. Concentrations determined with the passive samplers closely corresponded with those measured with the co-located honeycomb annular denuder systems. The PVC protective caps of standardized dimensions protect nylon filters from rain and wind and allow for reliable measurements of ambient HNO3 concentrations. The described samplers have been successfully used in Sequoia National Park, the San Bernardino Mountains, and on Mammoth Mountain in California.

  20. Investigation on surface structure of potassium permanganate/nitric acid treated poly(tetrafluoroethylene)

    NASA Astrophysics Data System (ADS)

    Fu, Congli; Liu, Shuling; Gong, Tianlong; Gu, Aiqun; Yu, Zili

    2014-10-01

    In the previous articles concerning the treatment of poly(tetrafluoroethylene) (PTFE) with potassium permanganate/nitric acid mixture, the conversion of a hydrophobic to a hydrophilic surface was partially assigned to the defluorination of PTFE and then the introduction of carbonyl and hydroxyl groups into the defluorinated sites. In the present work, PTFE sheets were treated with potassium permanganate/nitric acid, and the surfaces before and after treatment were comparatively characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The surface sediments of the treated PTFE were also determined by atomic absorption spectroscopy (AAS). The results indicate that the conversion of the hydrophobicity to the hydrophilicity on the modified PTFE surface is mainly due to the deposition of hydrophilic manganese oxides which covered the fluorocarbon surface, and no detectable chemical reactions of PTFE occur in the treating process.

  1. Effect of Different Electrode Materials on the Electropolymerization Process of Aniline in Nitric Acid Media

    NASA Astrophysics Data System (ADS)

    Li, Yaozong; Yi, Yun; Yang, Weifang; Liu, Xiaoqing; Li, Yuanyuan; Wang, Wei

    2017-02-01

    The electropolymerization process of aniline on different electrode surfaces such as Pt, Au, RuTi and polyaniline film in nitric acid solution containing 1 M aniline was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Proposed electrical equivalent circuits were used to give a further analysis. Results show that the electrode materials accelerate the aniline electropolymerization remarkably as a catalyst, especially the electrochemical oxidation process of monomer aniline to its cation radical, which is the key step to incur the electropolymerization reaction of aniline on the electrode surface. The polymerization of aniline on RuTi electrode has the lowest reaction resistance for its adsorption sites, and the catalytic effects of these different electrodes decrease in the order: RuTi > polyaniline film > Pt > Au. The results also show that several states of polyaniline films are formed during the potential linear scan process in nitric acid solution and the corresponding oxidation and reduction reaction are reversible.

  2. Nitric acid and ammonia emissions from a mid-latitude prescribed wetlands fire

    NASA Technical Reports Server (NTRS)

    Lebel, P. J.; Cofer, W. R., III; Levine, J. S.; Vay, S. A.; Roberts, P. D.

    1988-01-01

    The first simultaneous measurements of gaseous nitric acid and ammonia in the smoke plume of a wetlands biomass burn were obtained. The measurements were made using tungsten oxide-coated diffusion denuder tubes from a helicopter during a prescribed burn on November 9, 1987, at the Merritt Island National Wildlife Refuge, located at the NASA John F. Kennedy Space Center, Florida. The mean NH3 and HNO3 mixing ratios measured in the smoke plume were 19 ppbv and 14 ppbv, respectively, both significantly higher than background mixing ratios. Nitric acid correlated well with carbon dioxide produced by the combustion. The mean CO2-normalized emission ratio for HNO3 was found to be 0.00012. Ammonia, however, dit not correlate well with CO2, suggesting a more complex relationship between combustion and production/release of NH3.

  3. The variation of nitric acid vapor and nitrate aerosol concentrations near the island of Hawaii

    SciTech Connect

    Lee, G.

    1992-01-01

    Anthropogenic emissions of nitrogen oxides (NO + NO[sub 2]) are estimated to be half of the global emissions to the atmosphere. To understand the effect of increasing anthropogenic reactive nitrogen inputs to the global atmosphere, one needs to monitor their long-term variations. This dissertation examines the variations of total nitrate (nitric acid vapor and nitrate aerosol) at the Mauna Loa Observatory (MLO), Hawaii. During the Mauna Loa Observatory Photochemistry Experiment (MLOPEX) in May, 1988, six different air types were identified at MLO with statistical analysis. They were: (1) volcano influenced air, (2) stratosphere-like air, (3) boundary-layer air with recent anthropogenic influence, (4) photochemical haze, (5) marine boundary-layer air, (6) well-aged and modified marine air. Samples that might be influenced by marine air or human activity from local islands were eliminated with three meterological criteria (wind direction, condensation nuclei, and dew point). To examine the negative sampling artifacts of nitric acid vapor due to ground loss, mixing ratio gradients with height were measured during August of 1991. The observed gradients of nitric acid vapor indicated that the long-term samplers at 8 m at MLO may underestimate the free tropospheric nitric acid vapor mixing ratio by about 20%. The three year mean and median of free tropospheric total nitrate during long-term measurements were 113 pptv and 93 pptv, respectively. Each year, the total nitrate mixing ratios at MLO during the spring and summer were increased by more than a factor of two higher than fall and winter. NO[sub y] from remote continents (Asia and North America) are likely sources of these increased total nitrate at MLO during these seasons. However, other processes govern the total nitrate mixing ratios, e.g., degree of mixing between free tropospheric air and boundary air at source regions, stratospheric injection, and wet removal of total nitrate.

  4. The temperature dependence of the rate constant for the reaction of hydroxyl radicals with nitric acid

    NASA Technical Reports Server (NTRS)

    Kurylo, M. J.; Cornett, K. D.; Murphy, J. L.

    1982-01-01

    The rate constant for the reaction of hydroxyl radicals with nitric acid in the 225-443 K temperature range has been measured by means of the flash photolysis resonance fluorescence technique. Above 300 K, the rate constant levels off in a way that can only be explained by the occurrence of two reaction channels, of which one, operative at low temperatures, proceeds through the formation of an adduct intermediate. The implications of these rate constant values for stratospheric reaction constants is discussed.

  5. Search for an in-line nitric acid analyzer

    SciTech Connect

    Gallagher, K. Y.; Johnson, C. M.

    1980-10-01

    A literature search was conducted to identify possible techniques for measuring mineral acid normality in the presence of heavy metal salts, undissolved solids, and high radiation fields. Of the techniques noted, eight were identified that could be applicable to the objective. The possibilities were reduced to two methods, which warrant further investigation. These two are refractometry and a modified coulometric-polarographic method. All methods are discussed in detail followed by rationale for including or rejecting each for further investigation.

  6. VOLTAGE CLAMP BEHAVIOR OF IRON-NITRIC ACID SYSTEM AS COMPARED WITH THAT OF NERVE MEMBRANE

    PubMed Central

    Tasaki, I.; Bak, A. F.

    1959-01-01

    The current-voltage relation for the surface layer of an iron wire immersed in nitric acid was investigated by the voltage clamp technique. Comparing the phase of nitric acid to the axoplasm and the metallic phase to the external fluid medium for the nerve fiber, a striking analogy was found between the voltage clamp behavior of the iron-nitric acid system and that of the nerve membrane. The current voltage curve was found to consist of three parts: (a) a straight line representing the behavior of the resting (passive) membrane, (b) a straight line representing the fully excited (active) state, and (c) an intermediate zone connecting (a) and (b). It was shown that in the intermediate zone, the surface of iron consisted of a fully active patch (or patches) surrounded by a remaining resting area. The phenomenon corresponding to "repetitive firing of responses under voltage clamp" in the nerve membrane was demonstrated in the intermediate zone. The behavior of the cobalt electrode system was also investigated by the same technique. An attempt was made to interpret the phenomenon of initiation and abolition of an active potential on the basis of the thermodynamics of irreversible processes. PMID:13654740

  7. Initiation Temperature for Runaway Tri-n-Butyl Phosphate/Nitric Acid Reaction

    SciTech Connect

    Rudisill, T.S.

    2000-11-28

    During a review of the H-Canyon authorization basis, Defense Nuclear Facility Safety Board (DNFSB) staff members questioned the margin of safety associated with a postulated tri-n-butyl phosphate (TBP)/nitric acid runaway reaction due to the inadvertent heating of a canyon tank containing greater than 3000 lbs (1362 kg) of TBP. The margin of safety was partially based on experiments and calculations performed by the Actinide Technology Section (ATS) to support deletion of indication of tank agitation as a Safety Class System. In the technical basis for deletion of this system, ATS personnel conservatively calculated the equilibrium temperature distribution of a canyon tank containing TBP and nitric acid layers which were inadvertently heated by a steam jet left on following a transfer. The maximum calculated temperature (128 degrees C) was compared to the minimum initiation temperature for a runaway reaction (greater than 130 degrees C) documented by experimental work in the mid 195 0s. In this work, the initiation temperature as a function of nitric acid concentration was measured for 0 and 20 wt percent dissolved solids. The DNFSB staff members were concerned that data for 0 wt percent dissolved solids were not conservative given the facts that data for 20 wt percent dissolved solids show initiation temperatures at or below 130 degrees C and H-Canyon solutions normally contained a small amount of dissolved solids.

  8. Measurements of tropospheric nitric acid over the Western United States and Northeastern Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Lebel, P. J.; Huebert, B. J.; Schiff, H. I.; Vay, S. A.; Vanbramer, S. E.; Hastie, D. R.

    1990-01-01

    Over 240 measurements of nitric acid (HNO3) were made in the free troposphere as well as in the boundary layer. Marine HNO3 measurement results were strikingly similar to results from GAMETAG and other past atmospheric field experiments. The marine boundary layer HNO3 average, 62 parts-per-trillion by volume (pptv), was 1/3 lower than the marine free tropospheric average, 108 pptv, suggesting that the boundary layer is a sink for tropospheric nitric acid, probably by dry deposition. Nitric acid measurements on a nighttime continental flight gave a free tropospheric average of 218 pptv, substantially greater than the daytime continental free tropospheric 5-flight average of 61 pptv. However, the nighttime results may be influenced by highly convective conditions that existed from thunderstorms in the vicinity during that night flight. The continental boundary layer HNO3 average of 767 pptv is an order of magnitude greater than the free tropospheric average, indicating that the boundary layer is a source of free tropospheric HNO3. The distribution of continental boundary layer HNO3 data, from averages of 123 over rural Nevada and Utah to 1057 pptv in the polluted San Joaquin Valley of California suggest a close tie between boundary layer HNO3 and anthropogenic activity.

  9. Ignition Delays of Alkyl Thiophosphites with White and Red Fuming Nitric Acids Within Temperature Range 80 to -105 F

    NASA Technical Reports Server (NTRS)

    Miller, Riley O; Ladanyi, Dezso J

    1953-01-01

    Ignition delays of alkyl thiophosphites were obtained in a modified open-cup apparatus and a small-scale rocket engine apparatus. At -40 F, mixed alkyl thiophosphites gave short delays with white fuming nitric acid containing 2 percent water and red fuming nitric acids of widely varying compositions. At -40 F and higher, triethyl trithiophosphite blended with as much as 40 percent n-heptane gave satisfactory self-igniting properties at temperatures as low as -76 F.

  10. Methanol Uptake By Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    To evaluate the role of upper tropospheric and lower stratospheric aerosols in the global budget of methanol, the solubility and reactivity of CH3OH in aqueous sulfuric acid solutions are under investigation. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H(*), for methanol dissolution into 45 to 70 percent by weight H2SO4. We find that methanol solubility ranges from 10(exp 5) to 10(exp 8) M/atm and increases with decreasing temperature and with increasing sulfuric acid content. These solubility measurements include uptake due to physical solvation and all rapid equilibria which are established in solution. Our data indicate that simple uptake by aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These results differ from those recently reported in the literature, and an explanation of this disparity will be presented. In addition to solvation, reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H may proceed in the atmosphere but is not significant under our experimental conditions. Results obtained using a complementary equilibrium measurement technique confirm this directly. In addition, the extent of methanol sequestration via formation of mono- and dimethylsulfate will be evaluated under several atmospheric conditions.

  11. Methanol Uptake by Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Essin, A. M.; Golden, D. M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The global methanol budget is currently unbalanced, with source terms significantly larger than the sinks terms. To evaluate possible losses of gaseous methanol to sulfate aerosols, the solubility and reactivity of methanol in aqueous sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosols is under investigation. Methanol will partition into sulfate aerosols according to its Henry's law solubility. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H*, for cold (196 - 220 K) solutions ranging between 45 and 70 wt % H2SO4. We have found that methanol solubility ranges from approx. 10(exp 5) - 10(exp 7) M/atm for UT/LS conditions. Solubility increases with decreasing temperature and with increasing sulfuric acid content. Although methanol is slightly more soluble than are acetone and formaldehyde, current data indicate that uptake by clean aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These solubility measurements include uptake due to physical solvation and any rapid equilibria which are established in solution. Reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H is not significant over our experimental time scale for solutions below 80 wt % H2SO4. To confirm this directly, results obtained using a complementary equilibrium measurement technique will also be presented.

  12. Evaluation of oxygen pressurized microwave-assisted digestion of botanical materials using diluted nitric acid.

    PubMed

    Bizzi, Cezar Augusto; Barin, Juliano Smanioto; Müller, Edson Irineu; Schmidt, Lucas; Nóbrega, Joaquim A; Flores, Erico Marlon Moraes

    2011-02-15

    The feasibility of diluted nitric acid solutions for microwave-assisted decomposition of botanical samples in closed vessels was evaluated. Oxygen pressurized atmosphere was used to improve the digestion efficiency and Al, Ca, K, Fe, Mg and Na were determined in digests by inductively coupled plasma optical emission spectrometry (ICP OES). Efficiency of digestion was evaluated taking into account the residual carbon content (RCC) and residual acidity in digests. Samples were digested using nitric acid solutions (2, 3, 7, and 14 mol L(-1) HNO(3)) and the effect of gas phase composition inside the reaction vessels by purging the vessel with Ar (inert atmosphere, 1 bar), air (20% of oxygen, 1 bar) and pure O(2) (100% of oxygen, 1 bar) was evaluated. The influence of oxygen pressure was studied using pressures of 5, 10, 15 and 20 bar. It was demonstrated that a diluted nitric acid solution as low as 3 mol L(-1) was suitable for an efficient digestion of sample masses up to 500 mg of botanical samples using 5 bar of oxygen pressure. The residual acidities in final digests were lower than 45% in relation to the initial amount of acid used for digestion (equivalent to 1.3 mol L(-1) HNO(3)). The accuracy of the proposed procedure was evaluated using certified reference materials of olive leaves, apple leaves, peach leaves and pine needles. Using the optimized conditions for sample digestion, the results obtained were in agreement with certified values. The limit of quantification was improved up to a factor of 14.5 times for the analytes evaluated. In addition, the proposed procedure was in agreement with the recommendations of the green chemistry once it was possible to obtain relatively high digestion efficiency (RCC<5%) using only diluted HNO(3), which is important to minimize the generation of laboratory residues.

  13. Uptake of nitric acid, ammonia, and organics in orographic clouds: mass spectrometric analyses of droplet residual and interstitial aerosol particles

    NASA Astrophysics Data System (ADS)

    Schneider, Johannes; Mertes, Stephan; van Pinxteren, Dominik; Herrmann, Hartmut; Borrmann, Stephan

    2017-01-01

    Concurrent in situ analyses of interstitial aerosol and cloud droplet residues have been conducted at the Schmücke mountain site during the Hill Cap Cloud Thuringia campaign in central Germany in September and October 2010. Cloud droplets were sampled from warm clouds (temperatures between -3 and +16 °C) by a counterflow virtual impactor and the submicron-sized residues were analyzed by a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS), while the interstitial aerosol composition was measured by an high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). During cloud-free periods, the submicron out-of-cloud aerosol was analyzed using both instruments, allowing for intercomparison between the two instruments. Further instrumentation included black carbon measurements and optical particle counters for the aerosol particles as well as optical sizing instrumentation for the cloud droplets. The results show that, under cloud conditions, on average 85 % of the submicron aerosol mass partitioned into the cloud liquid phase. Scavenging efficiencies of nitrate, ammonium, sulfate, and organics ranged between 60 and 100 %, with nitrate having, in general, the highest values. For black carbon, the scavenging efficiency was markedly lower (about 24 %). The nitrate and ammonium mass fractions were found to be markedly enhanced in cloud residues, indicating uptake of gaseous nitric acid and ammonia into the aqueous phase. This effect was found to be temperature dependent: at lower temperatures, the nitrate and ammonium mass fractions in the residues were higher. Also, the oxidation state of the organic matter in cloud residues was found to be temperature dependent: the O : C ratio was lower at higher temperatures. A possible explanation for this observation is a more effective uptake and/or higher concentrations of low-oxidized water-soluble volatile organic compounds, possibly of biogenic origin, at higher temperatures. Organic nitrates were observed

  14. Radiolysis gases from nitric acid solutions containing HSA and HAN

    SciTech Connect

    Smith, J.R.

    1994-10-28

    The concentration of hydrogen (H{sub 2}) in the radiolytically produced off-gas from 2.76-4.25M HNO{sub 3}/PU solutions has been found to be greatly reduced in the presence of sulfamic acid (HSA) and hydroxylamine nitrate (HAN). The H{sub 2} concentration ([H{sub 2}]) is reduced from 35 percent to about 4 percent by dilution caused from an increase in the production rates of nitrogen (N{sub 2}), nitrous oxide (N{sub 2}O), and oxygen (O{sub 2}) gases. The generation rate of H{sub 2} was not affected by HSA or HAN giving a measured radiolytic yield, G(H{sub 2}), value of 0.201 molecules/100 eV for 2.765M NO{sub 3}{sup -} solution (a value of 0.213 is predicted from previous data). The G(H{sub 2}) values are dependent on the solution nitrate concentration ([NO{sub 3}{sup -}]). The generation rates of N{sub 2}, N{sub 2}O, and O{sub 2} are not dependent on the [NO{sub 3}{sup -}] in this narrow range, but are dependent on the presence of HSA and the concentration of HAN. The percentage [H{sub 2}] for the 2.5 to 3.0M NO{sub 3}{sup -} range expected in the off- from the FB-Line Pu{sup +3} Hold Tanks is conservatively estimated to be about 3.5 to 4.5 % for Pu + 3 solutions initially containing 0.023M HAN/0.165M HSA. The upper limit [H{sub 2}] may actually be about 4.1 % (4.3 % at 90 % confidence limits) but more {open_quotes}initial{close_quotes} off-gas rate data is needed at about 2.9M [NO{sub 3}{sup -}] in Pu{sup +3} solution for verification. Addition of ascorbic acid had no effect on the off-gas rate of Pu{sup +3} solutions containing HSA and NO{sub 3}{sup -} concentrations higher than those expected in the hold tanks. The maximum {open_quotes}hold time{close_quotes} for 50 grams/liter Pu{sup +3}/0.165M HSA/0.023M HAN/2.5-3.0M HNO{sub 3} solution is 20.3{+-}2.1 days. After this time the HSA initially present will become exhausted and the [H{sub 2}] will increase to 35 %. This hold time may be longer in [NO{sub 3}{sup -}] < 3.0M, but again more study is needed.

  15. Dephosphorization of Steelmaking Slag by Leaching with Acidic Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Qiao, Yong; Diao, Jiang; Liu, Xuan; Li, Xiaosa; Zhang, Tao; Xie, Bing

    2016-09-01

    In the present paper, dephosphorization of steelmaking slag by leaching with acidic aqueous solution composed of citric acid, sodium hydroxide, hydrochloric acid and ion-exchanged water was investigated. The buffer solution of C6H8O7-NaOH-HCl system prevented changes in the pH values. Kinetic parameters including leaching temperature, slag particle size and pH values of the solution were optimized. The results showed that temperature has no obvious effect on the dissolution ratio of phosphorus. However, it has a significant effect on the dissolution ratio of iron. The dephosphorization rate increases with the decrease of slag particle size and the pH value of the solution. Over 90% of the phosphorus can be dissolved in the solution while the corresponding leaching ratio of iron was only 30% below the optimal condition. Leaching kinetics of dephosphorization follow the unreacted shrinking core model with a rate controlled step by the solid diffusion layer, the corresponding apparent activation energy being 1.233 kJ mol-1. A semiempirical kinetic equation was established. After leaching, most of the nC2S-C3P solid solution in the steelmaking slag was selectively dissolved in the aqueous solution and the iron content in the solid residue was correspondingly enriched.

  16. Protonation Dynamics and Hydrogen Bonding in Aqueous Sulfuric Acid.

    PubMed

    Niskanen, Johannes; Sahle, Christoph J; Juurinen, Iina; Koskelo, Jaakko; Lehtola, Susi; Verbeni, Roberto; Müller, Harald; Hakala, Mikko; Huotari, Simo

    2015-09-03

    Hydration of sulfuric acid plays a key role in new-particle formation in the atmosphere. It has been recently proposed that proton dynamics is crucial in the stabilization of these clusters. One key question is how water molecules mediate proton transfer from sulfuric acid, and hence how the deprotonation state of the acid molecule behaves as a function concentration. We address the proton transfer in aqueous sulfuric acid with O K edge and S L edge core-excitation spectra recorded using inelastic X-ray scattering and with ab initio molecular dynamics simulations in the concentration range of 0-18.0 M. Throughout this range, we quantify the acid-water interaction with atomic resolution. Our simulations show that the number of donated hydrogen bonds per Owater increases from 1.9 to 2.5 when concentration increases from 0 to 18.0 M, in agreement with a rapid disappearance of the pre-edge feature in the O K edge spectrum. The simulations also suggest that for 1.5 M sulfuric acid SO4(2-) is most abundant and that its concentration falls monotonously with increasing concentration. Moreover, the fraction of HSO4(-) peaks at ∼12 M.

  17. Fermentation of aqueous plant seed extracts by lactic acid bacteria

    SciTech Connect

    Schafner, D.W.; Beuchat, R.L.

    1986-05-01

    The effects of lactic acid bacterial fermentation on chemical and physical changes in aqueous extracts of cowpea (Vigna unguiculata), peanut (Arachis hypogea), soybean (Glycine max), and sorghum (Sorghum vulgare) were studied. The bacteria investigated were Lactobacillus helveticus, L. delbrueckii, L. casei, L. bulgaricus, L. acidophilus, and Streptococcus thermophilus. Organisms were inoculated individually into all of the seed extracts; L. bulgaricus and S. thermophilus were also evaluated together as inocula for fermenting the legume extracts. During fermentation, bacterial population and changes in titratable acidity, pH, viscosity, and color were measured over a 72 h period at 37 degrees C. Maximum bacterial populations, titratable acidity, pH, and viscosity varied depending upon the type of extract and bacterial strain. The maximum population of each organism was influenced by fermentable carbohydrates, which, in turn, influenced acid production and change in pH. Change in viscosity was correlated with the amount of protein and titratable acidity of products. Color was affected by pasteurization treatment and fermentation as well as the source of extract. In the extracts inoculated simultaneously with L. bulgaricus and S. thermophilus, a synergistic effect resulted in increased bacterial populations, titratable acidity, and viscosity, and decreased pH in all the legume extracts when compared to the extracts fermented with either of these organisms individually. Fermented extracts offer potential as substitutes for cultured dairy products. 24 references.

  18. Investigations of the pore formation in the lead selenide films using glacial acetic acid- and nitric acid-based electrolyte

    PubMed Central

    2012-01-01

    We report a novel synthesis of porous PbSe layers on Si substrates by anodic electrochemical treatment of PbSe/CaF2/Si(111) epitaxial structures in an electrolyte solution based on glacial acetic acid and nitric acid. Electron microscopy, X-ray diffractometry, and local chemical microanalysis investigation results for the porous layers are presented. Average size of the synthesized mesopores with approximately 1010 cm−2 surface density was determined to be 22 nm. The observed phenomenon of the active selenium redeposition on the mesopore walls during anodic treatment is discussed. PMID:22726822

  19. Investigations of the pore formation in the lead selenide films using glacial acetic acid- and nitric acid-based electrolyte.

    PubMed

    Zimin, Sergey P; Gorlachev, Egor S; Naumov, Viktor V; Skok, Fedor O

    2012-01-01

    We report a novel synthesis of porous PbSe layers on Si substrates using anodic electrochemical treatment of PbSe/CaF2/Si(111) epitaxial structures in an electrolyte solution based on glacial acetic acid and nitric acid. Electron microscopy, x-ray diffractometry, and local chemical microanalysis investigations results for the porous layers are presented. Average size of the synthesized mesopores with ~1010 cm-2 surface density was determined to be 22 nm. The observed phenomenon of the active selenium redeposition on the mesopore walls during anodic treatment is discussed.

  20. Nitric oxide donors preferentially inhibit neuronally mediated rat gastric acid secretion.

    PubMed

    Barrachina, D; Calatayud, S; Esplugues, J; Whittle, B J; Moncada, S; Esplugues, J V

    1994-09-01

    Continuous i.v. infusion of the nitric oxide (NO) donors, S-nitroso-glutathione (10-50 micrograms kg-1 min-1) and S-nitroso-N-acetyl-penicillamine (10 micrograms kg-1 min-1) inhibited neuronally mediated gastric acid secretion, as induced by gastric distension (20 cm water) or i.v. bolus administration of 2-deoxy-D-glucose (150 mg kg-1) in the anaesthetized rat. By contrast, gastric acid responses to i.v. infusion of submaximal doses of pentagastrin (8 micrograms kg-1 h-1) or histamine (1 mg kg-1 h-1) were not influenced by these NO donors. These findings suggest that NO does not directly influence acid secretion in vivo but could play an inhibitory modulator role in neuronally mediated acid responses.

  1. Bile acid induced colonic irritation stimulates intracolonic nitric oxide release in humans.

    PubMed Central

    Casellas, F; Mourelle, M; Papo, M; Guarner, F; Antolin, M; Armengol, J R; Malagelada, J R

    1996-01-01

    AIM--To measure the intracolonic release of nitric oxide end products (nitrates plus nitrites) and eicosanoids in response to intraluminal irritation with deoxycholic acid (DCA). PATIENTS--Seven patients with irritable bowel syndrome. METHODS--The left colon was perfused with a solution with or without 3 mM deoxycholic acid. Aspirates were assayed for eicosanoids by specific radioimmuno-assay, and for nitrates plus nitrites by the Griess reaction. To confirm that stimulated colonic mucosa can produce nitric oxide (NO), ancillary studies were performed in vitro using samples of normal mucosa obtained from five surgically resected colons. Samples were incubated for 30 minutes in Kreb's solution, 3 mM DCA or DCA with 1 mM L-nitro-arginine-methyl-ester (L-NAME) to inhibit the NO synthase. Finally, NO synthase activity was measured in five samples of human colonic mucosa. RESULTS--Intracolonic release of nitrates plus nitrites was basally undetectable in six of seven patients. Bile acid considerably increased the release of prostaglandin E2 and nitrates plus nitrites (p < 0.01). By contrast, no increase in thromboxane and leukotriene was seen. In vitro mucosal incubation with DCA increased the production of NO synthase products, which was blocked by L-NAME. Activity of Ca+2 independent NO synthase was detectable in four of five samples of human colonic mucosa. CONCLUSION--The human colonic mucosa responds to bile acid induced irritation by a surge in NO generation via NO synthase. PMID:8707118

  2. Wet Chemical Oxidation of Organic Waste Using Nitric-Phosphoric Acid Technology

    SciTech Connect

    Pierce, R.A.

    1998-10-06

    Experimental progress has been made in a wide range of areas which support the continued development of the nitric-phosphoric acid oxidation process for combustible, solid organic wastes. An improved understanding of the overall process operation has been obtained, acid recovery and recycle systems have been studied, safety issues have been addressed, two potential final waste forms have been tested, preliminary mass flow diagrams have been prepared, and process flowsheets have been developed. The flowsheet developed is essentially a closed-loop system which addresses all of the internally generated waste streams. The combined activities aim to provide the basis for building and testing a 250-400 liter pilot-scale unit. Variations of the process now must be evaluated in order to address the needs of the primary customer, SRS Solid Waste Management. The customer is interested in treating job control waste contaminated with Pu-238 for shipment to WIPP. As a result, variations for feed preparation, acid recycle, and final form manufacturing must be considered to provide for simpler processing to accommodate operations in high radiation and contamination environments. The purpose of this program is to demonstrate a nitric-phosphoric acid destruction technology which can treat a heterogeneous waste by oxidizing the solid and liquid organic compounds while decontaminating noncombustible items.

  3. Sludge batch 9 simulant runs using the nitric-glycolic acid flowsheet

    SciTech Connect

    Lambert, D. P.; Williams, M. S.; Brandenburg, C. H.; Luther, M. C.; Newell, J. D.; Woodham, W. H.

    2016-11-01

    Testing was completed to develop a Sludge Batch 9 (SB9) nitric-glycolic acid chemical process flowsheet for the Defense Waste Processing Facility’s (DWPF) Chemical Process Cell (CPC). CPC simulations were completed using SB9 sludge simulant, Strip Effluent Feed Tank (SEFT) simulant and Precipitate Reactor Feed Tank (PRFT) simulant. Ten sludge-only Sludge Receipt and Adjustment Tank (SRAT) cycles and four SRAT/Slurry Mix Evaporator (SME) cycles, and one actual SB9 sludge (SRAT/SME cycle) were completed. As has been demonstrated in over 100 simulations, the replacement of formic acid with glycolic acid virtually eliminates the CPC’s largest flammability hazards, hydrogen and ammonia. Recommended processing conditions are summarized in section 3.5.1. Testing demonstrated that the interim chemistry and Reduction/Oxidation (REDOX) equations are sufficient to predict the composition of DWPF SRAT product and SME product. Additional reports will finalize the chemistry and REDOX equations. Additional testing developed an antifoam strategy to minimize the hexamethyldisiloxane (HMDSO) peak at boiling, while controlling foam based on testing with simulant and actual waste. Implementation of the nitric-glycolic acid flowsheet in DWPF is recommended. This flowsheet not only eliminates the hydrogen and ammonia hazards but will lead to shorter processing times, higher elemental mercury recovery, and more concentrated SRAT and SME products. The steady pH profile is expected to provide flexibility in processing the high volume of strip effluent expected once the Salt Waste Processing Facility starts up.

  4. FY13 GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATIONS OF THE DWPF CHEMICAL PROCESS CELL WITH SIMULANTS

    SciTech Connect

    Lambert, D.; Zamecnik, J.; Best, D.

    2014-03-13

    Savannah River Remediation is evaluating changes to its current Defense Waste Processing Facility flowsheet to replace formic acid with glycolic acid in order to improve processing cycle times and decrease by approximately 100x the production of hydrogen, a potentially flammable gas. Higher throughput is needed in the Chemical Processing Cell since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the safety significant gas chromatographs and the potential for production of flammable quantities of hydrogen, eliminating the use of formic acid is highly desirable. Previous testing at the Savannah River National Laboratory has shown that replacing formic acid with glycolic acid allows the reduction and removal of mercury without significant catalytic hydrogen generation. Five back-to-back Sludge Receipt and Adjustment Tank (SRAT) cycles and four back-to-back Slurry Mix Evaporator (SME) cycles were successful in demonstrating the viability of the nitric/glycolic acid flowsheet. The testing was completed in FY13 to determine the impact of process heels (approximately 25% of the material is left behind after transfers). In addition, back-to-back experiments might identify longer-term processing problems. The testing was designed to be prototypic by including sludge simulant, Actinide Removal Product simulant, nitric acid, glycolic acid, and Strip Effluent simulant containing Next Generation Solvent in the SRAT processing and SRAT product simulant, decontamination frit slurry, and process frit slurry in the SME processing. A heel was produced in the first cycle and each subsequent cycle utilized the remaining heel from the previous cycle. Lower SRAT purges were utilized due to the low hydrogen generation. Design basis addition rates and boilup rates were used so the processing time was shorter than current processing rates.

  5. Simultaneous airborne nitric acid and formic acid measurements using a chemical ionization mass spectrometer around the UK: Analysis of primary and secondary production pathways

    NASA Astrophysics Data System (ADS)

    Le Breton, Michael; Bacak, Asan; Muller, Jennifer B. A.; Xiao, Ping; Shallcross, Beth M. A.; Batt, Rory; Cooke, Michael C.; Shallcross, Dudley E.; Bauguitte, S. J.-B.; Percival, Carl J.

    2014-02-01

    The first simultaneous measurements of formic and nitric acid mixing ratios around the United Kingdom were measured on the FAAM BAe-146 research aircraft with a chemical ionization mass spectrometer using I- reagent ions at 0.8 Hz. Analysis of the whole dataset shows that formic acid and nitric acid are positively correlated as illustrated by other studies (e.g. Veres et al., 2011). However, initial evidence indicates a prominent direct source of formic acid and also a significant source when O3 levels are high, suggesting the importance of the ozonolysis of 1-alkenes. A trajectory model was able to reproduce the formic acid concentrations by both the inclusion of a primary vehicle source and production via ozonolysis of propene equivalent 1-alkene levels. Inspection of data archives implies these levels of 1-alkene are possible after 11 am, but formic acid and nitric acid plumes early in the flight are too high for the model to replicate. These data show the relationship between nitric acid and formic acid cannot solely be attributed to related photochemical production. The simultaneous measurement of HCOOH and HNO3 has been implemented to estimate OH levels along the flight track assuming a relationship between formic and nitric acid in photochemical plumes and a constant source of 1-alkene.

  6. Measurements of ozone, nitrogen dioxide, nitrous and nitric acids, and sulphur dioxide in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Vecera, V.; Mikuska, M.; Smolik, S.; Eleftheriadis, E.; Bryant, B.; Colbeck, C.; Lazaridis, L.

    2003-04-01

    Measurements of reactive nitrogen gases (NO_2, HONO, HNO_3), as well as ozone and sulfur dioxide were made over the Aegean Sea (the R/V Agaeon) within an air mass later reaching the Finokalia (Crete) sampling site. These measurements were carried out with unique gas trace instrumentation (wet effluent and "dry" diffusion denuder techniques, a chemiluminescent detection and chemiluminescent analyzers) during special conditions. There are significant differences in pollutant concentrations between results from Finokalia and from the R/V Agaeon. While at Finokalia concentrations of nitrogen dioxide, ozone and nitric and nitrous acids changed relatively slowly, the boat data showed a number of episodes with rapid changes in reactive nitrogen compounds and ozone concentrations. These episodes were correlated with the presence of boats up wind a short distance from the R/V Agaeon. Ozone concentrations at Finokalia and on the boat typically ranged between 40--80 ppb (v/v). Ozone concentrations reached up to 88 ppb (v/v) in the open sea. Nitrogen dioxide concentrations at Finokalia were in the range 0.5--3 ppb (v/v). Typical NO_2 concentrations observed aboard the boat were 4--6 ppb (v/v) with maxima of 20--30 ppb (v/v). During "spiked" episodes, up to 200 ppb (v/v) of nitrogen dioxide was observed while ozone concurrently was dramatically depleted down to 20 ppb (v/v). Concentrations of HONO and HNO_3 at Finokalia, in general, were low, typically in the order of 0.1--0.2 ppb (v/v) for HONO and 0.05--0.1 ppb (v/v) for HNO_3. On average, concentrations of both nitric and nitrous acids in the ambient air of the Aegean Sea were typically small, below 0.05 ppt (v/v). Within the "spiked" episodes up to 33 ppb (v/v) nitric acid and up to 2.5 ppb (v/v) nitrous acid were formed. The nitric acid "dry" denuder data were on average higher than the measurements by the wet efluent diffusion denuder. The concentration of SO_2 reached up to 9.2 ppb (v/v). The work was conducted within

  7. Role of folic acid in nitric oxide bioavailability and vascular endothelial function.

    PubMed

    Stanhewicz, Anna E; Kenney, W Larry

    2017-01-01

    Folic acid is a member of the B-vitamin family and is essential for amino acid metabolism. Adequate intake of folic acid is vital for metabolism, cellular homeostasis, and DNA synthesis. Since the initial discovery of folic acid in the 1940s, folate deficiency has been implicated in numerous disease states, primarily those associated with neural tube defects in utero and neurological degeneration later in life. However, in the past decade, epidemiological studies have identified an inverse relation between both folic acid intake and blood folate concentration and cardiovascular health. This association inspired a number of clinical studies that suggested that folic acid supplementation could reverse endothelial dysfunction in patients with cardiovascular disease (CVD). Recently, in vitro and in vivo studies have begun to elucidate the mechanism(s) through which folic acid improves vascular endothelial function. These studies, which are the focus of this review, suggest that folic acid and its active metabolite 5-methyl tetrahydrofolate improve nitric oxide (NO) bioavailability by increasing endothelial NO synthase coupling and NO production as well as by directly scavenging superoxide radicals. By improving NO bioavailability, folic acid may protect or improve endothelial function, thereby preventing or reversing the progression of CVD in those with overt disease or elevated CVD risk.

  8. Corrosion investigations on zircaloy-4 and titanium dissolver materials for MOX fuel dissolution in concentrated nitric acid containing fluoride ions

    NASA Astrophysics Data System (ADS)

    Jayaraj, J.; Krishnaveni, P.; Krishna, D. Nanda Gopala; Mallika, C.; Mudali, U. Kamachi

    2016-05-01

    Aqueous reprocessing of plutonium-rich mixed oxide fuels require fluoride as a dissolution catalyst in boiling nitric acid for an effective dissolution of the spent fuel. High corrosion rates were obtained for the candidate dissolver materials zircaloy-4 (Zr-4) and commercial pure titanium (CP-Ti grade 2) in boiling 11.5 M HNO3 + 0.05 M NaF. Complexing the fluoride ions either with Al(NO3)3 or ZrO(NO3)2 aided in decreasing the corrosion rates of Zr-4 and CP-Ti. From the obtained corrosion rates it is concluded that CP-Ti is a better dissolver material than Zr-4 for extended service life in boiling 11.5 M HNO3 + 0.05 M NaF, when complexed with 0.15 M ZrO(NO3)2. XPS analysis confirmed the presence of TiO2 and absence of fluoride on the surface of CP-Ti samples, indicating that effective complexation had occurred in solution leading to passivation of the metal and imparting high corrosion resistance.

  9. Trans Fatty Acids Induce Vascular Inflammation and Reduce Vascular Nitric Oxide Production in Endothelial Cells

    PubMed Central

    Iwata, Naomi G.; Pham, Matilda; Rizzo, Norma O.; Cheng, Andrew M.; Maloney, Ezekiel; Kim, Francis

    2011-01-01

    Intake of trans fatty acids (TFA), which are consumed by eating foods made from partially hydrogenated vegetable oils, is associated with a higher risk of cardiovascular disease. This relation can be explained by many factors including TFA's negative effect on endothelial function and reduced nitric oxide (NO) bioavailability. In this study we investigated the effects of three different TFA (2 common isomers of C18 found in partially hydrogenated vegetable oil and a C18 isomer found from ruminant-derived—dairy products and meat) on endothelial NF-κB activation and nitric oxide (NO) production. Human endothelial cells were treated with increasing concentrations of Elaidic (trans-C18:1 (9 trans)), Linoelaidic (trans-C18:2 (9 trans, 12 trans)), and Transvaccenic (trans-C18:1 (11 trans)) for 3 h. Both Elaidic and Linoelaidic acids were associated with increasing NF-κB activation as measured by IL-6 levels and phosphorylation of IκBα, and impairment of endothelial insulin signaling and NO production, whereas Transvaccenic acid was not associated with these responses. We also measured superoxide production, which has been hypothesized to be necessary in fatty acid-dependent activation of NF-κB. Both Elaidic acid and Linoelaidic acid are associated with increased superoxide production, whereas Transvaccenic acid (which did not induce inflammatory responses) did not increase superoxide production. We observed differential activation of endothelial superoxide production, NF-κB activation, and reduction in NO production by different C18 isomers suggesting that the location and number of trans double bonds effect endothelial NF-κB activation. PMID:22216328

  10. Fourier Transform Infrared Spectroscopy and Multivariate Analysis for Online Monitoring of Dibutyl Phosphate Degradation Product in Tributyl Phosphate /n-Dodecane/Nitric Acid Solvent

    SciTech Connect

    Levitskaia, Tatiana G.; Peterson, James M.; Campbell, Emily L.; Casella, Amanda J.; Peterman, Dean; Bryan, Samuel A.

    2013-11-05

    In liquid-liquid extraction separation processes, accumulation of organic solvent degradation products is detrimental to the process robustness and frequent solvent analysis is warranted. Our research explores feasibility of online monitoring of the organic solvents relevant to used nuclear fuel reprocessing. This paper describes the first phase of developing a system for monitoring the tributyl phosphate (TBP)/n-dodecane solvent commonly used to separate used nuclear fuel. In this investigation, the effect of extraction of nitric acid from aqueous solutions of variable concentrations on the quantification of TBP and its major degradation product dibutyl phosphoric acid (HDBP) was assessed. Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy was used to discriminate between HDBP and TBP in the nitric acid-containing TBP/n-dodecane solvent. Multivariate analysis of the spectral data facilitated the development of regression models for HDBP and TBP quantification in real time, enabling online implementation of the monitoring system. The predictive regression models were validated using TBP/n-dodecane solvent samples subjected to the high dose external gamma irradiation. The predictive models were translated to flow conditions using a hollow fiber FTIR probe installed in a centrifugal contactor extraction apparatus demonstrating the applicability of the FTIR technique coupled with multivariate analysis for the online monitoring of the organic solvent degradation products.

  11. Fourier Transform Infrared Spectroscopy and Multivariate Analysis for Online Monitoring of Dibutyl Phosphate Degradation Product in Tributyl Phosphate/n-Dodecane/Nitric Acid Solvent

    SciTech Connect

    Tatiana G. Levitskaia; James M. Peterson; Emily L. Campbell; Amanda J. Casella; Dean R. Peterman; Samuel A. Bryan

    2013-12-01

    In liquid–liquid extraction separation processes, accumulation of organic solvent degradation products is detrimental to the process robustness, and frequent solvent analysis is warranted. Our research explores the feasibility of online monitoring of the organic solvents relevant to used nuclear fuel reprocessing. This paper describes the first phase of developing a system for monitoring the tributyl phosphate (TBP)/n-dodecane solvent commonly used to separate used nuclear fuel. In this investigation, the effect of extraction of nitric acid from aqueous solutions of variable concentrations on the quantification of TBP and its major degradation product dibutylphosphoric acid (HDBP) was assessed. Fourier transform infrared (FTIR) spectroscopy was used to discriminate between HDBP and TBP in the nitric acid-containing TBP/n-dodecane solvent. Multivariate analysis of the spectral data facilitated the development of regression models for HDBP and TBP quantification in real time, enabling online implementation of the monitoring system. The predictive regression models were validated using TBP/n-dodecane solvent samples subjected to high-dose external ?-irradiation. The predictive models were translated to flow conditions using a hollow fiber FTIR probe installed in a centrifugal contactor extraction apparatus, demonstrating the applicability of the FTIR technique coupled with multivariate analysis for the online monitoring of the organic solvent degradation products.

  12. Artifacts resembling budding bacteria produced in placer-gold amalgams by nitric acid leaching

    USGS Publications Warehouse

    Watterson, J.R.

    1994-01-01

    Microscopic filiform morphologies in gold which are indistinguishable from forms originally interpreted as bacterial in origin were produced in the laboratory by treating amalgams made from natural and artificial gold with hot nitric acid. Textures ranging from cobblestone to deeply crenulated to nodular filiform were produced in the laboratory from all tested natural and artificial gold amalgams; analogous textures widespread in Alaskan placer gold may have a similar inorganic origin. These results indicate that morphology alone cannot be considered adequate evidence of microbial involvement in gold formation. -Author

  13. Artifacts resembling budding bacteria produced in placer-gold amalgams by nitric acid leaching

    USGS Publications Warehouse

    Watterson, J.R.

    1994-01-01

    Microscopic filiform morphologies in gold which are indistinguishable from forms originally interpreted as bacterial in origin were produced in the laboratory by treating amalgams made from natural and artificial gold with hot nitric acid. Textures ranging from cobblestone to deeply crenulated to nodular filiform were produced in the laboratory from all tested natural and artificial gold amalgams; analogous textures widespread in Alaskan placer gold may have a similar inorganic origin. These results indicate that morphology alone cannot be considered adequate evidence of microbial involvement in gold formation.

  14. Formation of substrate-based gold nanocage chains through dealloying with nitric acid

    PubMed Central

    Yan, Ziren; Wu, Ying

    2015-01-01

    Summary Metal nanocages have raised great interest because of their new properties and wide applications. Here, we report on the use of galvanic replacement reactions to synthesize substrate-supported Ag–Au nanocages from silver templates electrodeposited on transparent indium tin oxide (ITO) film coated glass. The residual Ag in the composition was dealloyed with 10% nitric acid. It was found that chains of Au nanocages were formed on the substrate surface during dealloying. When the concentration of HNO3 increased to 20%, the structures of nanocages were damaged and formed crescent or semi-circular shapes. The transfer process on the substrate surface was discussed. PMID:26199839

  15. USAF Propellant Handbooks. Nitric Acid/Nitrogen Tetroxide Oxidizers. Volume II.

    DTIC Science & Technology

    1977-02-01

    furfuryl alcohol . Mixed oxides of Diameter Tests Cnitrogen are less hypergolic with increasing concen. TrauzI Energy released by detonation. tratlons...aniline or furfuryl alcohol ) it will react materials (e.g. H2 ) and when spontaneous ignition violently. Nitric acid will form explosive mixtures is...of a few of the noble CuW + 4 H+(aq) metals. Many unreactive metals, such as silver and + 2 NO3 (aq)--N- Cu+ + (Wq) copper , that do not neact to yield

  16. Nitric acid dihydrate at ambient and high pressure: An experimental and computational study

    SciTech Connect

    Walker, Martin; Pulham, Colin R.; Morrison, Carole A.; Allan, David R.; Marshall, William G.

    2006-06-01

    The high pressure structural behavior of nitric acid dihydrate ([H{sub 3}O]{sup +}{center_dot}[NO{sub 3}]{sup -}{center_dot}H{sub 2}O) has been investigated up to 3.8 GPa using single crystal x-ray diffraction and neutron powder diffraction techniques. A new structural phase has been identified above 1.33 GPa and this has been further studied by ab initio quantum mechanical calculations. These have guided the refinement by neutron powder diffraction.

  17. Insights into the mechanism of extraction of uranium (VI) from nitric acid solution into an ionic liquid by using tri-n-butyl phosphate.

    PubMed

    Gaillard, Dr Clotilde; Boltoeva, Maria; Billard, Isabelle; Georg, Sylvia; Mazan, Valérie; Ouadi, Ali; Ternova, Dariia; Hennig, Christoph

    2015-08-24

    We present new results on the liquid-liquid extraction of uranium (VI) from a nitric acid aqueous phase into a tri-n-butyl phosphate/1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (TBP/[C4 mim][Tf2 N]) phase. The individual solubilities of the ionic-liquid ions in the upper part of the biphasic system are measured over the whole acidic range and as a function of the TBP concentration. New insights into the extraction mechanism are obtained through the in situ characterization of the extracted uranyl complexes by coupling UV/Vis and extended X-ray absorption fine structure (EXAFS) spectroscopy. We propose a chemical model to explain uranium (VI) extraction that describes the data through a fit of the uranyl distribution ratio DU . In this model, at low acid concentrations uranium (VI) is extracted as the cationic complex [UO2 (TBP)2 ](2+) , by an exchange with one proton and one C4 mim(+) . At high acid concentrations, the extraction proceeds through a cationic exchange between [UO2 (NO3 )(HNO3 )(TBP)2 ](+) and one C4 mim(+) . As a consequence of this mechanism, the variation of DU as a function of TBP concentration depends on the C4 mim(+) concentration in the aqueous phase. This explains why noninteger values are often derived by analysis of DU versus [TBP] plots to determine the number of TBP molecules involved in the extraction of uranyl in an ionic-liquid phase.

  18. Integrated Computational and Experimental Protocol for Understanding Rh(III) Speciation in Hydrochloric and Nitric Acid Solutions

    SciTech Connect

    Samuels, Alex C.; Boele, Cherilynn A.; Bennett, Kevin T.; Clark, Sue B.; Wall, Nathalie; Clark, Aurora E.

    2014-12-01

    A combined experimental and theoretical approach has investigated the complex speciation of Rh(III) in hydrochloric and nitric acid media, as a function of acid concentration. This has relevance to the separation and isolation of Rh(III) from dissolved spent nuclear fuel, which is an emergent and attractive alternative source of platinum group metals, relative to traditional mining efforts.

  19. Perfluoroalkyl acids in aqueous samples from Germany and Kenya.

    PubMed

    Shafique, Umer; Schulze, Stefanie; Slawik, Christian; Böhme, Alexander; Paschke, Albrecht; Schüürmann, Gerrit

    2016-06-22

    Continuous monitoring of chemicals in the environment is important to control their fate and to protect human health, flora, and fauna. Perfluoroalkyl acids (PFAAs) have been detected frequently in different environmental compartments during the last 15 years and have drawn much attention because of their environmental persistence, omnipresence, and bioaccumulation potential. Water is an important source of their transport. In the present study, distributions of PFAAs in river water, wastewater treatment plant (WWTP) effluent, and tap water from eastern part of Germany and western part of Kenya were investigated. Eleven perfluorocarboxylic acids (PFCAs) and five perfluorosulfonic acids (PFSAs) were analyzed using liquid chromatography/tandem mass spectrometry. Sum of mean concentrations of eight PFAAs detected in drinking tap water from Leipzig was 11.5 ng L(-1), dominated by perfluorooctanoic acid (PFOA, 6.2 ng L(-1)). Sums of mean riverine concentrations of PFAAs detected in Pleiße/White Elster, Saale, and Elbe (Germany) were 24.8, 54.3, and 26.8 ng L(-1), respectively. Annual flux of PFAAs from River Saale was estimated to be 164 ± 23 kg a(-1). The effluent of WWTP in Halle was found to contain four times higher levels of PFAAs than river water and was dominated by perfluorobutane sulfonate (PFBS) with 32 times higher concentration than the riverine level. It advocates that WWTPs are the point source of contaminating water bodies with PFAAs, and short-chain PFAAs are substituting long-chain homologues. Sums of mean riverine concentrations of PFAAs in Sosiani (Kenya) in samples from sparsely populated and densely populated areas were 58.8 and 109.4 ng L(-1), respectively, indicating that population directly affected the emissions of PFAAs to surface waters. The discussion includes thorough review and comparison of recently published literature reporting occurrence of PFAAs in aqueous matrices. Graphical abstract Perfluoroalkyl acids in aqueous

  20. Conformation of poly(γ-glutamic acid) in aqueous solution.

    PubMed

    Muroga, Yoshio; Nakaya, Asami; Inoue, Atsuki; Itoh, Daiki; Abiru, Masaya; Wada, Kaori; Takada, Masako; Ikake, Hiroki; Shimizu, Shigeru

    2016-04-01

    Local conformation and overall conformation of poly(γ-DL-glutamic acid) (PγDLGA) and poly(γ-L-glutamic acid) (PγLGA) in aqueous solution was studied as a function of degree of ionization ε by (1) H-NMR, circular dichroism, and potentiometric titration. It was clarified that their local conformation is represented by random coil over an entire ε range and their overall conformation is represented by expanded random-coil in a range of ε > ε(*) , where ε(*) is about 0.3, 0.35, 0.45, and 0.5 for added-salt concentration of 0.02M, 0.05M, 0.1M, and 0.2M, respectively. In a range of ε < ε(*) , however, ε dependence of their overall conformation is significantly differentiated from each other. PγDLGA tends to aggregate intramolecularly and/or intermolecularly with decreasing ε, but PγLGA still behaves as expanded random-coil. It is speculated that spatial arrangement of adjacent carboxyl groups along the backbone chain essentially affects the overall conformation of PγGA in acidic media.

  1. Separation of Technetium in Nitric Acid Solution With an Extractant Impregnated Resin

    SciTech Connect

    Jei Kwon Moon; Eil Hee Lee; Chong-Hun Jung; Byung Chul Lee

    2006-07-01

    An extractant impregnated resin (EIR) was prepared by impregnation of Aliquat 336 into Amberlite XAD-4 for separation of technetium from rhodium in nitric acid solution. The prepared EIR showed high preference for rhenium (chemical analogue of technetium) over rhodium. The adsorption isotherms for rhenium were described well by Langmuir equation in both the single and multi-component systems. Maximum adsorption capacities obtained by modelling the isotherms of rhenium were 2.01 meq g{sup -1} and 1.97 meq g{sup -1} for the single and the multi-component systems, respectively. Column tests were also performed to confirm the separation efficiency of rhenium using a jacketed glass column (diam. 11 x L 150). The EIR column showed successful separation of rhenium with the breakthrough volume of about 122 BV for the breakthrough concentration of 0.08. Also the breakthrough data were modelled successfully by assuming a homogeneous diffusion model in the particle phase. The diffusivities obtained from the modelling were in the order of 10{sup -7} cm{sup 2} min{sup -1} for a rhenium. The rhenium adsorbed on the bed could be eluted with a high purity by using a nitric acid solution. (authors)

  2. Decontamination of uranium-contaminated waste oil using supercritical fluid and nitric acid.

    PubMed

    Sung, Jinhyun; Kim, Jungsoo; Lee, Youngbae; Seol, Jeunggun; Ryu, Jaebong; Park, Kwangheon

    2011-07-01

    The waste oil used in nuclear fuel processing is contaminated with uranium because of its contact with materials or environments containing uranium. Under current law, waste oil that has been contaminated with uranium is very difficult to dispose of at a radioactive waste disposal site. To dispose of the uranium-contaminated waste oil, the uranium was separated from the contaminated waste oil. Supercritical R-22 is an excellent solvent for extracting clean oil from uranium-contaminated waste oil. The critical temperature of R-22 is 96.15 °C and the critical pressure is 49.9 bar. In this study, a process to remove uranium from the uranium-contaminated waste oil using supercritical R-22 was developed. The waste oil has a small amount of additives containing N, S or P, such as amines, dithiocarbamates and dialkyldithiophosphates. It seems that these organic additives form uranium-combined compounds. For this reason, dissolution of uranium from the uranium-combined compounds using nitric acid was needed. The efficiency of the removal of uranium from the uranium-contaminated waste oil using supercritical R-22 extraction and nitric acid treatment was determined.

  3. Condensed-Phase Nitric Acid in a Tropical Subvisible Cirrus Cloud

    NASA Technical Reports Server (NTRS)

    Popp, P. J.; Marcy, T. P.; Watts, O. A.; Gao, R. S.; Fahey, D. W.; Weinstock, E. M.; Smith, J. B.; Herman, R. L.; Tropy, R. F.; Webster, C. r.; Christensen, L. E.; Baumgardner, D. G.; Voigt, C.; Kaercher, B.; Wilson, J. C.; Mahoney, M. J.; Jensen, E. J.; Bui, T. P.

    2007-01-01

    In situ observations in a tropical subvisible cirrus cloud during the Costa Rica Aura Validation Experiment on 2 February 2006 show the presence of condensed-phase nitric acid. The cloud was observed near the tropopause at altitudes of 16.3-17.7 km in an extremely cold (183-191 K) and dry 5 ppm H2O) air mass. Relative humidities with respect to ice ranged from 150-250% throughout most of the cloud. Optical particle measurements indicate the presence of ice crystals as large as 90 microns in diameter. Condensed RN031H20 molar ratios observed in the cloud particles were 1-2 orders of magnitude greater than ratios observed previously in cirrus clouds at similar RN03 partial pressures. Nitric acid trihydrate saturation ratios were 10 or greater during much of the cloud encounter, indicating that RN03 may be present in the cloud particles as a stable condensate and not simply physically adsorbed on or trapped in the particles.

  4. Aircraft measurements of ammonia and nitric acid in the lower troposphere

    NASA Astrophysics Data System (ADS)

    Lebel, P. J.; Hoell, J. M.; Levine, J. S.; Vay, S. A.

    1985-06-01

    The first simultaneous measurements of ammonia and nitric acid in the troposphere have been made from an aircraft using a tungsten oxide denuder system. Vertical profiles of NH3 and HNO3 taken over coastal Virginia and Maryland in March and September, 1983, at altitudes from 150 m to 3000 m, show mixing ratios that decrease with altitude. Ammonia profiles show substantial seasonal variation, while nitric acid profiles do not. Using the measured profiles and a one-dimensional photochemical model, lifetimes due to heterogeneous loss of one day for HNO3 and ten days for NH3 are calculated. In contrast, NH3 profiles up to 5300 m over the North Atlantic Ocean during August 1982 show mixing ratios that increase slightly with altitude. These data represent the first ammonia profiles measured over the ocean. It is suggested that the increase in NH3 with altitude is a result of an ammonia-rich continental air mass advected over the ocean, followed by the dissolution of NH3 in the marine boundary layer on water-covered sea salt particles.

  5. An investigation into the surface heterogeneity of nitric acid oxidized carbon fiber

    NASA Astrophysics Data System (ADS)

    Woodhead, Andrea L.; de Souza, Mandy L.; Church, Jeffrey S.

    2017-04-01

    The carbon fiber surface plays a critical role in the performance of carbon fiber composite materials and, thus it is important to have a thorough understanding of the fiber surface. A series of nitric acid treated intermediate modulus carbon fibers with increasing treatment level was prepared and characterized using a range of surface sensitive techniques including Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS) and Raman spectroscopy. The results, which were found to be consistent with increasing treatment levels, were compared to the literature. Raman spectral mapping has been used to investigate the heterogeneity of the carbon fiber surface after nitric acid oxidation. The mapping enabled the effects of surface treatment on carbon fiber to be investigated at a spatial resolution unattainable by XPS and provided chemical structure information not provided by SEM or AFM. The highest level of treatment resulted in the most heterogeneous surface. Raman mapping, while time consuming, can provide valuable information which can lead to an enhanced understanding of the heterogeneity of the carbon fiber surface.

  6. Wintertime nitric acid chemistry - Implications from three-dimensional model calculations

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Kaye, Jack A.; Douglass, Anne R.; Allen, Dale J.; Steenford, Stephen

    1990-01-01

    A three-dimensional simulation of the evolution of HNO3 has been run for the winter of 1979. Winds and temperatures are taken from a stratospheric data assimilation analysis, and the chemistry is based on Limb Infrared Monitor of the Stratosphere (LIMS) observations. The model is compared to LIMS observations to investigate the problem of 'missing' nitric acid chemistry in the winter hemisphere. Both the model and observations support the contention that a nitric acid source is needed outside of the polar vortex and north of the subtropics. Observations suggest that HNO3 is not dynamically controlled in middle latitudes. The model shows that given the time scales of conventional chemistry, dynamical control is expected. Therefore, an error exists in the conventional chemistry or additional processes are needed to bring the model and data into agreement. Since the polar vortex is dynamically isolated from the middle latitudes, and since the highest HNO3 values are observed in October and November, a source associated solely with polar stratospheric clouds cannot explain the deficiencies in the chemistry. The role of heterogeneous processes on background aerosols is reviewed in light of these results.

  7. Surface oxide growth on platinum electrode in aqueous trifluoromethanesulfonic acid

    NASA Astrophysics Data System (ADS)

    Furuya, Yoshihisa; Mashio, Tetsuya; Ohma, Atsushi; Dale, Nilesh; Oshihara, Kenzo; Jerkiewicz, Gregory

    2014-10-01

    Platinum in the form of nanoparticles is the key and most expensive component of polymer electrolyte membrane fuel cells, while trifluoromethanesulfonic acid (CF3SO3H) is the smallest fluorinated sulfonic acid. Nafion, which acts as both electrolyte and separator in fuel cells, contains -CF2SO3H groups. Consequently, research on the electrochemical behaviour of Pt in aqueous CF3SO3H solutions creates important background knowledge that can benefit fuel cell development. In this contribution, Pt electro-oxidation is studied in 0.1 M aqueous CF3SO3H as a function of the polarization potential (Ep, 1.10 ≤ Ep ≤ 1.50 V), polarization time (tp, 100 ≤ tp ≤ 104 s), and temperature (T, 278 ≤ T ≤ 333 K). The critical thicknesses (X1), which determines the applicability of oxide growth theories, is determined and related to the oxide thickness (dox). Because X1 > dox for the entire range of Ep, tp, and T values, the formation of Pt surface oxide follows the interfacial place-exchange or the metal cation escape mechanism. The mechanism of Pt electro-oxidation is revised and expanded by taking into account possible interactions of cations, anions, and water molecules with Pt. A modified kinetic equation for the interfacial place exchange is proposed. The application of the interfacial place-exchange and metal cation escape mechanisms leads to an estimation of the Ptδ+-Oδ- surface dipole (μPtO), and the potential drop (Vox) and electric field (Eox) within the oxide. The Pt-anion interactions affect the oxidation kinetics by indirectly influencing the electric field within the double layer and the surface oxide.

  8. Determination of aqueous acid-dissociation constants of aspartic acid using PCM/DFT method

    NASA Astrophysics Data System (ADS)

    Sang-Aroon, Wichien; Ruangpornvisuti, Vithaya

    Determination of acid-dissociation constants, pKa, of aspartic acid in aqueous solution, using density functional theory calculations combined with the conductor-like polarizable continuum model (CPCM) and with integral-equation-formalism polarizable continuum model (IEFPCM) based on the UAKS and UAHF radii, was carried out. The computed pKa values derived from the CPCM and IEFPCM with UAKS cavity model of bare structures of the B3LYP/6-31+G(d,p)-optimized tetrahydrated structures of aspartic acid species are mostly close to the experimental pKa values.0

  9. Electrochemical oxidation of 243Am(III) in nitric acid by a terpyridyl-derivatized electrode

    SciTech Connect

    Dares, C. J.; Lapides, A. M.; Mincher, B. J.; Meyer, T. J.

    2015-11-05

    A high surface area, tin-doped indium oxide electrode surface-derivatized with a terpyridine ligand has been applied to the oxidation of trivalent americium to Am(V) and Am(VI) in nitric acid. Potentials as low as 1.8 V vs. the saturated calomel electrode are used, 0.7 V lower than the 2.6 V potential for one-electron oxidation of Am(III) to Am(IV) in 1 M acid. This simple electrochemical procedure provides, for the first time, a method for accessing the higher oxidation states of Am in non-complexing media for developing the coordination chemistries of Am(V) and Am(VI) and, more importantly, for separation of americium from nuclear waste streams.

  10. Water, sulfur dioxide and nitric acid adsorption on calcium carbonate: a transmission and ATR-FTIR study.

    PubMed

    Al-Hosney, H A; Grassian, V H

    2005-03-21

    Calcium carbonate (CaCO3) is a reactive component of mineral dust aerosol as well as buildings, statues and monuments. In this study, attenuated total reflection (ATR) and transmission Fourier transform infrared spectroscopy (FTIR) have been used to study the uptake of water, sulfur dioxide and nitric acid on CaCO3 particles at 296 K. Under atmospheric conditions, CaCO3 particles are terminated by a Ca(OH)(CO3H) surface layer. In the presence of water vapor between 5 and 95% relative humidity (RH), water molecularly adsorbs on the Ca(OH)(CO3H) surface resulting in the formation of an adsorbed thin water film. The adsorbed water film assists in the enhanced uptake of sulfur dioxide and nitric acid on CaCO3 in several ways. Under dry conditions (near 0% RH), sulfur dioxide and nitric acid react with the Ca(OH)(CO3H) surface to form adsorbed carbonic acid (H2CO3) along with sulfite and nitrate, respectively. Adsorbed carbonic acid is stable on the surface under vacuum conditions. Once the surface saturates with a carbonic acid capping layer, there is no additional uptake of gas-phase sulfur dioxide and nitric acid. However, upon adsorption of water, carbonic acid dissociates to form gaseous carbon dioxide and there is further uptake of sulfur dioxide and nitric acid. In addition, adsorbed water increases the mobility of the ions at the surface and enhances uptake of SO2 and HNO3. In the presence of adsorbed water, CaSO3 forms islands of a crystalline hydrate whereas Ca(NO3)2 forms a deliquescent layer or micropuddles. Thus adsorbed water plays an important and multi-faceted role in the uptake of pollutant gases on CaCO3.

  11. THERMAL AND SPECTROSCOPIC ANALYSES OF CAUSTIC LIDE SOLVENT EXTRACTION SOLVENT CONTACTED WITH 16 MOLAR AND 8 MOLAR NITRIC ACID

    SciTech Connect

    Fondeur, F; David Hobbs, D; Samuel Fink, S

    2007-07-12

    Thermal and spectroscopic analyses were performed on multiple layers formed from contacting Caustic Side Solvent Extraction (CSSX) solvent with 1 M or 3 M nitric acid. A slow chemical reaction occurs (i.e., over several weeks) between the solvent and 1 M or 3 M nitric acid as evidenced by color changes and the detection of nitro groups in the infrared spectrum of the aged samples. Thermal analysis revealed that decomposition of the resulting mixture does not meet the definition of explosive or deflagrating material.

  12. THERMAL AND SPECTROSCOPIC ANALYSES OF CAUSTIC SIDE SOLVENT EXTRACTION SOLVENT CONTACTED WITH 1 MOLARAND 3 MOLAR NITRIC ACID

    SciTech Connect

    Fondeur, F; David Hobbs, D; Samuel Fink, S

    2007-07-23

    Thermal and spectroscopic analyses were performed on multiple layers formed from contacting Caustic Side Solvent Extraction (CSSX) solvent with 1 M or 3 M nitric acid. A slow chemical reaction occurs (i.e., over several weeks) between the solvent and 1 M or 3 M nitric acid as evidenced by color changes and the detection of nitro groups in the infrared spectrum of the aged samples. Thermal analysis revealed that decomposition of the resulting mixture does not meet the definition of explosive or deflagrating material.

  13. Lead exposure changes gastric acid secretion in rat: role of nitric oxide (NO).

    PubMed

    Vahedian, Zakieh; Nabavizadeh, Fatemeh; Keshavarz, Mansoor; Vahedian, Jalal; Mirershadi, Fatemeh

    2011-01-01

    Sub chronic exposure to lead in rats slows gastric emptying, but little is known about the effects of lead on gastric secretion. This study was designed to investigate the effects of lead on gastric acid secretion and its possible mechanisms in rats. Lead acetate was dissolved in drinking water in a concentration of 1%. Sodium acetate-containing water with a molar concentration similar to lead was also prepared. We had nine groups of animals (n=8); four of them were exposed to lead for 1, 2, 3, and 4 weeks (Pb1, Pb2, Pb3 and Pb4 groups, respectively). Sodium acetate solution was given to another four groups for 1, 2, 3, and 4 weeks (Na1, Na2, Na3 and Na4 groups, respectively). Gastric secretion was collected by washout technique and its acid output was measured in the basal (Basal Acid Output, BAO), vogotomy (Vagotomized Acid Output, VAO), and vagally stimulated (Vagally Stimulated Acid Output, VSAO) states using titrator instrument. Nitric oxide (NO) metabolite of gastric tissue was determined by Griess micro assay method to evaluate the possible mechanism of lead effect on gastric secretion. VSAO was significantly less in Pb1 and Pb2 groups than Na1 and Na2 ones respectively (1.75 ± 0.17, 2.10 ± 0.30 vs. 5.79 ± 0.20, 6.18 ± 0.27 µmol/15min) (P=0.001, P=0.001). BAO was significantly more in Pb3 and Pb4 groups than Na3 and Na4 ones respectively (2.77 ± 0.37, 2.80 ± 0.31 vs. 1.73 ± 0.16, 1.79 ± 0.34 µmol/15min) (P=0.01, P=0.02), but it was the same after vagotomy. VSAO was more in Pb3 and Pb4 groups than their Na counterparts (P=0.001, P=0.0001). NO metabolite of gastric tissue was more in all Pb groups in comparison to their Na counterparts (P=0.0001). In this study, it seems that lead exposure, via NO mechanism, has different effects on acid secretion. Nitric oxide in small and large amounts decrease and increase gastric acid secretion, respectively.

  14. Partitioning of Nitric Acid to Nitrate by NaCl and CaCO3 and Its Effect on Nitrogen Deposition

    NASA Astrophysics Data System (ADS)

    Evans, M. C.; Campbell, S. W.; Poor, N. D.

    2003-12-01

    Nitrogen oxides produced by combustion in automobile engines, power plant boilers, and industrial processes are transformed to nitric acid in the atmosphere. This nitric acid then deposits to land or water and may be a significant nitrogen input to sensitive coastal estuaries. The sodium chloride from sea salt spray and calcium carbonate from mineral dust react in the atmosphere with nitric acid to form sodium nitrate or calcium nitrate, respectively. The nitrate particle deposition velocity can be substantially lower than that of nitric acid, which may lower the atmospheric nitrogen deposition rate near the urban sources of nitrogen oxides but raise the deposition rate over the open water. The relative effects of different ambient air concentrations of sodium chloride and calcium carbonate on nitrogen atmospheric deposition rates were examined by using the EQUISOLVII model to estimate the partitioning of nitric acid to nitrate combined with the NOAA buoy model and Williams model to calculate the gas and aerosol deposition velocities.

  15. The effect of fatty acid surfactants on the uptake of nitric acid to deliquesced NaCl aerosol

    NASA Astrophysics Data System (ADS)

    Stemmler, K.; Vlasenko, A.; Guimbaud, C.; Ammann, M.

    2008-01-01

    Surface active organic compounds have been observed in marine boundary layer aerosol. Here, we investigate the effect such surfactants have on the uptake of nitric acid (HNO3), an important removal reaction of nitrogen oxides in the marine boundary layer. The uptake of gaseous HNO3 on deliquesced NaCl aerosol was measured in a flow reactor using HNO3 labelled with the short-lived radioactive isotope 13N. The uptake coefficient γ on pure deliquesced NaCl aerosol was γ=0.5±0.2 at 60% relative humidity and 30 ppb HNO3(g). The uptake coefficient was reduced by a factor of 5-50 when the aerosol was coated with saturated linear fatty acids with carbon chain lengths of 18 and 15 atoms in monolayer quantities. In contrast, neither shorter saturated linear fatty acids with 12 and 9 carbon atoms, nor coatings with the unsaturated oleic acid (C18, cis-double bond) had a detectable effect on the rate of HNO3 uptake. It is concluded that it is the structure of the monolayers formed, which determines their resistance towards HNO3 uptake. Fatty acids (C18 and C15), which form a highly ordered film in the so-called liquid condensed state, represent a significant barrier towards HNO3 uptake, while monolayers of shorter-chain fatty acids (C9, C12) and of the unsaturated oleic acid form a less ordered film in the liquid expanded state and do not hinder the uptake. Similarly, high contents of humic acids in the aerosol, a structurally inhomogeneous, quite water soluble mixture of oxidised high molecular weight organic compounds did not affect HNO3 uptake. As surfactant films on naturally occurring aerosol are expected to be less structured due to their chemical inhomogeneity, it is likely that their inhibitory effect on HNO3 uptake is smaller than that observed here for the C15 and C18 fatty acid monolayers.

  16. The effect of fatty acid surfactants on the uptake of nitric acid to deliquesced NaCl aerosol

    NASA Astrophysics Data System (ADS)

    Stemmler, K.; Vlasenko, A.; Guimbaud, C.; Ammann, M.

    2008-09-01

    Surface active organic compounds have been observed in marine boundary layer aerosol. Here, we investigate the effect such surfactants have on the uptake of nitric acid (HNO3), an important removal reaction of nitrogen oxides in the marine boundary layer. The uptake of gaseous HNO3 on deliquesced NaCl aerosol was measured in a flow reactor using HNO3 labelled with the short-lived radioactive isotope 13N. The uptake coefficient γ on pure deliquesced NaCl aerosol was γ=0.5±0.2 at 60% relative humidity and 30 ppb HNO3(g). The uptake coefficient was reduced by a factor of 5 50 when the aerosol was coated with saturated linear fatty acids with carbon chain lengths of 18 and 15 atoms in monolayer quantities. In contrast, neither shorter saturated linear fatty acids with 12 and 9 carbon atoms, nor coatings with the unsaturated oleic acid (C18, cis-double bond) had a detectable effect on the rate of HNO3 uptake. It is concluded that it is the structure of the monolayers formed, which determines their resistance towards HNO3 uptake. Fatty acids (C18 and C15), which form a highly ordered film in the so-called liquid condensed state, represent a significant barrier towards HNO3 uptake, while monolayers of shorter-chain fatty acids (C9, C12) and of the unsaturated oleic acid form a less ordered film in the liquid expanded state and do not hinder the uptake. Similarly, high contents of humic acids in the aerosol, a structurally inhomogeneous, quite water soluble mixture of oxidised high molecular weight organic compounds did not affect HNO3 uptake. As surfactant films on naturally occurring aerosol are expected to be less structured due to their chemical inhomogeneity, it is likely that their inhibitory effect on HNO3 uptake is smaller than that observed here for the C15 and C18 fatty acid monolayers.

  17. Fatty acid profiles in Leishmania spp. isolates with natural resistance to nitric oxide and trivalent antimony.

    PubMed

    de Azevedo, Alana Freire; Dutra, Jorge Luís de Lisboa; Santos, Micheli Luize Barbosa; Santos, Darlisson de Alexandria; Alves, Péricles Barreto; de Moura, Tatiana Rodrigues; de Almeida, Roque Pacheco; Fernandes, Marcelo Ferreira; Scher, Ricardo; Fernandes, Roberta Pereira Miranda

    2014-01-01

    Fatty acids, especially those from phospholipids (PLFA), are essential membrane components that are present in relatively constant proportions in biological membranes under natural conditions. However, under harmful growth conditions, such as diseases, environmental changes, and chemical exposure, the fatty acid proportions might vary. If such changes could be identified and revealed to be specific for adverse situations, they could be used as biomarkers. Such biomarkers could facilitate the identification of virulence and resistance mechanisms to particular chemotherapeutic agents. Therefore, specific biomarkers could lead to better therapeutic decisions that would, in turn, enhance treatment effectiveness. The objective of this study was to compare the fatty acid profiles of trivalent antimony and nitric oxide (NO)-resistant and -sensitive Leishmania chagasi and Leishmania amazonensis isolates. Fatty acid methyl esters (FAMEs) were obtained from total lipids (MIDI), ester-linked lipids (ELFA), and ester-linked phospholipids (PLFA). FAMEs were analyzed by chromatography and mass spectrometry. Species- or resistance-associated differences in FAME profiles were assessed by nonmetric multidimensional scaling, multiresponse permutation procedures, and indicator species analyses. The isolate groups had different MIDI-FAME profiles. However, neither the ELFA nor PLFA profiles differed between the sensitive and resistant isolates. Levels of the fatty acid 18:1 Δ9c were increased in sensitive isolates (p < 0,001), whereas the fatty acid 20:4 Δ5,8,11,14 showed the opposite trend (p < 0.01). We conclude that these two fatty acids are potential biomarkers for NO and antimony resistance in L. chagasi and L. amazonensis and that they could be helpful in therapeutic diagnoses.

  18. Dose rate dependence of the speciation of neptunium in irradiated solutions of nitric acid

    SciTech Connect

    Precek, M.; Paulenova, A.; Mincher, B.J.; Mezyk, S.P.

    2013-07-01

    The effects of radiation on the redox speciation of neptunium are of interest due to their impact on the performance of separation of neptunium from highly radioactive solutions of dissolved used nuclear fuel. In this study, the influence of dose rate change from 0.4 kGy/h to 6 kGy/h was examined during irradiation of solutions of initially hexavalent 2.0-2.5 mM neptunium in nitric acid of two different concentrations (0.5 and 1 M). Results indicate that the immediate radiolytic steady-state concentration of neptunium(V) were depressed and its initial radiolytic yield was up to 2-times lower (in 1 M HNO{sub 3} solutions)during irradiations with the higher dose rate. The finding is explained on the basis of the enhancement of the role of oxidizing radicals during the radiolytic process. (authors)

  19. Reduction of nitric acid on Ag in ultrahigh vacuum: A Raman spectroscopic investigation

    NASA Astrophysics Data System (ADS)

    Zangmeister, Christopher D.; Davis, Robert J.; Mrozek, Pawel; Pemberton, Jeanne E.

    2008-07-01

    The reduction of HNO 3 on Ag as a function of temperature in ultrahigh vacuum (UHV) is studied using Raman spectroscopy and thermal desorption-mass spectrometry (TDMS). Thin layers of molecular HNO 3 are stable on the surface below 150 K, but are spontaneously reduced above 150 K with concomitant time-dependent partial desorption of products. The asymmetric nitric oxide dimer, NONO, is observed as the sole reduction product that remains on the surface based on its distinctive Raman spectral signature. The mechanism of NONO formation from HNO 3 is proposed to occur through a multistep reduction of HNO 3 on the Ag surface starting from NO3- and proceeding stepwise through NO 2 and NO2- to NO, followed by combination to form NONO in a process catalyzed by a Lewis acid, oxidized Ag species. Desorption of the majority of surface species is largely complete by 210 K.

  20. Initiation Temperature for Runaway Tri-n-Butyl Phosphate/Nitric Acid Reaction

    SciTech Connect

    Rudisill, T.S.

    2001-09-14

    In a review of the safety basis for solvent extraction processes at the Department of Energy's Savannah River Site, a question was raised concerning the safety margin associated with a postulated accident involving a runaway tri-n-butyl phosphate (TBP)/nitric acid reaction due to the inadvertent heating of a tank. The safety margin was based on studies which showed the maximum temperature would not exceed 128 degrees Celsius compared to 130 degrees Celsius, the minimum initiation temperature for runaway reaction established in the 1950's following damaging incidents at the Savannah River and Hanford Sites. The reviewers were concerned the minimum temperature was not conservative since data for solutions containing 20 wt percent dissolved solids showed initiation temperatures at or below 130 degrees Celsius and process solutions normally contain some dissolved solids.

  1. Gas-Phase Formation Rates of Nitric Acid and Its Isomers Under Urban Conditions

    NASA Technical Reports Server (NTRS)

    Okumura, M.; Mollner, A. K.; Fry, J. L.; Feng, L.

    2005-01-01

    Ozone formation in urban smog is controlled by a complex set of reactions which includes radical production from photochemical processes, catalytic cycles which convert NO to NO2, and termination steps that tie up reactive intermediates in long-lived reservoirs. The reaction OH + NO2 + M -4 HONO2 + M (la) is a key termination step because it transforms two short-lived reactive intermediates, OH and NO2, into relatively long-lived nitric acid. Under certain conditions (low VOC/NOx), ozone production in polluted urban airsheds can be highly sensitive to this reaction, but the rate parameters are not well constrained. This report summarizes the results of new laboratory studies of the OH + NO2 + M reaction including direct determination of the overall rate constant and branching ratio for the two reaction channels under atmospherically relevant conditions.

  2. Evidence that nitric acid increases relative humidity in low-temperature cirrus clouds.

    PubMed

    Gao, R S; Popp, P J; Fahey, D W; Marcy, T P; Herman, R L; Weinstock, E M; Baumgardner, D G; Garrett, T J; Rosenlof, K H; Thompson, T L; Bui, P T; Ridley, B A; Wofsy, S C; Toon, O B; Tolbert, M A; Kärcher, B; Peter, Th; Hudson, P K; Weinheimer, A J; Heymsfield, A J

    2004-01-23

    In situ measurements of the relative humidity with respect to ice (RHi) and of nitric acid (HNO3) were made in both natural and contrail cirrus clouds in the upper troposphere. At temperatures lower than 202 kelvin, RHi values show a sharp increase to average values of over 130% in both cloud types. These enhanced RHi values are attributed to the presence of a new class of HNO3-containing ice particles (Delta-ice). We propose that surface HNO3 molecules prevent the ice/vapor system from reaching equilibrium by a mechanism similar to that of freezing point depression by antifreeze proteins. Delta-ice represents a new link between global climate and natural and anthropogenic nitrogen oxide emissions. Including Delta-ice in climate models will alter simulated cirrus properties and the distribution of upper tropospheric water vapor.

  3. Evidence That Nitric Acid Increases Relative Humidity in Low-Temperature Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Gao, R. S.; Popp, P. J.; Fahey, D. W.; Marcy, T. P.; Herman, R. L.; Weinstock, E. M.; Baumgardner, D. G.; Garrett, T. J.; Rosenlof, K. H.; Thompson, T. L.

    2004-01-01

    In situ measurements of the relative humidity with respect to ice (RH(sub(i)) and of nitric acid (HNO3) were made in both natural and contrail cirrus clouds in the upper troposphere. At temperatures lower than 202 kelvin, RH(sub i) values show a sharp increase to average values of over 130% in both cloud types. These enhanced RH(sub i) values are attributed to the presence of a new class of NHO3- containing ice particles (Delta-ice). We propose that surface HNO3 molecules prevent the ice/vapor system from reaching equilibrium by a mechanism similar to that of freezing point depression by antifreeze proteins. Delta-ice represents a new link between global climate and natural and anthropogenic nitrogen oxide emissions. Including Delta-ice in climate models will alter simulated cirrus properties and the distribution of upper tropospheric water vapor.

  4. Catalyst for NO x removal in nitric-acid plant gaseous effluents

    NASA Astrophysics Data System (ADS)

    Avila, P.; Barthelemy, C.; Bahamonde, A.; Blanco, J.

    The behaviour of a V 2O 5WO 3TiO 2 phosphorated catalyst, in the Selective Catalytic Reduction (SCR) of equimolar NO + NO 2 mixtures, is studied in order to analyse the possibility of its industrial utilization for the treatment of nitric-acid plant stack gases. With this new catalyst, an NO x conversion higher than 90% molar can be achieved, the ammonia concentration at the exit gas being lower than that required to form ammonium salts, throughout the temperature range of commercial interest: 250-450°C, at a relatively high space velocity (GHSV ⩽ 40000 h -1 NC). The effect of several operating variables such as oxygen concentration and NO 2/NO molar ratio in the feed is also discussed.

  5. Vapor pressures of solid hydrates of nitric acid - Implications for polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Worsnop, Douglas R.; Fox, Lewis E.; Zahniser, Mark S.; Wofsy, Steven C.

    1993-01-01

    Thermodynamic data are presented for hydrates of nitric acid: HNO3.H2O, HNO3.2H2O, HNO3.3H2O, and a higher hydrate. Laboratory data indicate that nucleation and persistence of metastable HNO3.2H2O may be favored in polar stratospheric clouds over the slightly more stable HNO3.3H2O. Atmospheric observations indicate that some polar stratospheric clouds may be composed of HNO3.2H2O and HNO3.3H2O. Vapor transfer from HNO3.2H2O to HNO3.3H2O could be a key step in the sedimentation of HNO3, which plays an important role in the depletion of polar ozone.

  6. A model for heterogeneous chemical processes on the surfaces of ice and nitric acid trihydrate particles

    NASA Technical Reports Server (NTRS)

    Tabazadeh, Azadeh; Turco, Richard P.

    1993-01-01

    The study presents a model that incorporates the physics and physical chemistry of ice surfaces relevant to polar stratospheric clouds. Surface concentrations of H2O, HCl, HOCl, ClONO2, and N2O5 on ice and nitric acid trihydrate (NAT) crystals are computed, and surface reaction rates and reaction probabilities (sticking coefficients) are determined. For gas pressures of about 10 exp -7 torr and temperatures in the range of 180-200 K, HCl completely coats ice and water-rich NAT surfaces, while HOCl, ClOHO2, and N2O5 may cover 0.01-1 percent of these surfaces. The energy parameters are used to calculate surface temperatures such as adsorption and desorption constants, surface coverages, reaction rate coefficients, surface diffusion coefficients, and reaction probabilities for various species and chemical interactions on ice and NAT surfaces. Implications for chemical processing on polar stratospheric clouds are discussed.

  7. Potentiality of uranium biosorption from nitric acid solutions using shrimp shells.

    PubMed

    Ahmed, S H; El Sheikh, E M; Morsy, A M A

    2014-08-01

    Biosorption has gained important credibility during recent years because of its good performance and low cost. This work is concerned with studying the potentiality of the chitin component of the shrimp shells for uranium biosorption from nitric acid liquid solutions. The structural characteristics of the working chitin have been determined via Fourier Transform Infrared Spectroscopy (FTIR). The surface morphology was examined using Scanning Electron Microscopy (SEM). The adsorption capacity of biomass was investigated experimentally. The influence of contact time, pH, metal ion concentration, solution volume to mass ratio and temperature were evaluated and the results were fitted using adsorption isotherm models. The kinetic of uranium biosorption was also investigated as well as biosorption thermodynamic.

  8. A model for heterogeneous chemical processes on the surfaces of ice and nitric acid trihydrate particles

    NASA Astrophysics Data System (ADS)

    Tabazadeh, Azadeh; Turco, Richard P.

    1993-07-01

    The study presents a model that incorporates the physics and physical chemistry of ice surfaces relevant to polar stratospheric clouds. Surface concentrations of H2O, HCl, HOCl, ClONO2, and N2O5 on ice and nitric acid trihydrate (NAT) crystals are computed, and surface reaction rates and reaction probabilities (sticking coefficients) are determined. For gas pressures of about 10 exp -7 torr and temperatures in the range of 180-200 K, HCl completely coats ice and water-rich NAT surfaces, while HOCl, ClOHO2, and N2O5 may cover 0.01-1 percent of these surfaces. The energy parameters are used to calculate surface temperatures such as adsorption and desorption constants, surface coverages, reaction rate coefficients, surface diffusion coefficients, and reaction probabilities for various species and chemical interactions on ice and NAT surfaces. Implications for chemical processing on polar stratospheric clouds are discussed.

  9. Corrosion property of 9Cr-ODS steel in nitric acid solution for spent nuclear fuel reprocessing

    SciTech Connect

    Takeuchi, M.; Koizumi, T.; Inoue, M.; Koyama, S.I.

    2013-07-01

    Corrosion tests of oxide dispersion strengthened with 9% Cr (9Cr-ODS) steel, which is one of the desirable materials for cladding tube of sodium-cooled fast reactors, in pure nitric acid solution, spent FBR fuel solution, and its simulated solution were performed to understand the corrosion behavior in a spent nuclear fuel reprocessing. In this study, the 9Cr-ODS steel with lower effective chromium content was evaluated to understand the corrosion behavior conservatively. As results, the tube-type specimens of the 9Cr-ODS steels suffered severe weight loss owing to active dissolution at the beginning of the immersion test in pure nitric acid solution in the range from 1 to 3.5 M. In contrast, the weight loss was decreased and they showed a stable corrosion in the higher nitric acid concentration, the dissolved FBR fuel solution, and its simulated solution by passivation. The corrosion rates of the 9Cr-ODS steel in the dissolved FBR fuel solution and its simulated solution were 1-2 mm/y and showed good agreement with each other. The passivation was caused by the shift of corrosion potential to noble side owing to increase in nitric acid concentration or oxidative ions in the dissolved FBR fuel solution and the simulated spent fuel solution. (authors)

  10. Use of nitric acid in sample pretreatment for determination of trace elements in various biological samples by ETAAS.

    PubMed

    Scancar, J; Milacic, R; Falnoga, I; Cemazar, M; Bukovec, P

    2000-07-01

    Trace elements in liquid biological samples may be determined by direct electrothermal atomic absorption spectrometry (ETAAS). In our previous work it was found that samples containing proteins or DNA may leak out of the graphite tube before the drying step, despite the addition of various modifiers. In order to keep the sample to the graphite tube, samples were diluted before analysis 1 + 1 with 32% v/v nitric acid, or 5 microl of 32% v/v nitric acid was added to the graphite tube before ETAAS determination. Applying the proposed procedure, the concentrations of lead in eluted fractions after gel chromatographic separation of human cerebellar nucleus dentatus supernatant and platinum in isolated DNA samples were determined. The use of nitric acid in sample pretreatment prevent sample leakage out of the graphite tube, provided for even drying and considerably reduced nonspecific absorption in lead determination. The repeatability of measurements was better than + 6%. The accuracy of the procedure was checked by spiking samples. The recoveries for both elements lay between 93--104%. Nitric acid was found to be a better modifier than TRITON X-100.

  11. Scale-up studies of the electrosynthesis of dinitrogen pentoxide in nitric acid

    SciTech Connect

    Harrar, J.E.; Quong, R.; Rigdon, L.P.; McGuire, R.R.

    1997-06-01

    The method for the electrosynthesis of N{sub 2}O{sub 5} in nitric acid by anodic oxidation of N{sub 2}O{sub 4} has been scaled up to produce quantities of 15 to 50 kg of solution containing 20 to 30 weight percent. A two- or three-cell, divided, plate-and-frame electrolyzer operated in the bipolar mode was employed to test various combinations of candidate electrode coatings and separators, and to study the electrochemical characteristics of the process. Two sizes of electrolyzers were used, each having single-electrode areas of 0.096 and 0.25 m{sup 2}. The best performing anode/substrate materials were either Pt-Ir on niobium, or IrO{sub 2} on aluminum; the best cathode materials were Pt or Pt-Ir on niobium. The preferred cell separator is a hydrophilic, porous polytetrafluorene-ethylene diaphragm, but an FEP-polymer anion-exchange membrane is also satisfactory. Production of N{sub 2}O{sub 5} was achieved with chemical yields of 80 to 90% and current efficiencies of 50 to 70%. Maximum current densities were in the range of 0.1 to 0.2 A/cm{sup 2}. Cell voltages were 3 to 5 V and specific energies were 1.6 to 1.8 kWh/kg. In the electrolyzer catholyte, N{sub 2}O{sub 4} is generated at nearly theoretical yield, and could be recovered and recycled as an anolyte feedstock. The E{sup o{prime}} of the N{sub 2}O{sub 5}/N{sub 2}O{sub 4} couple in anhydrous nitric acid was estimated to be +1.66 {+-} 0.02 V vs. SHE.

  12. Ammonium nitrate evaporation and nitric acid condensation in DMT CCN counters

    NASA Astrophysics Data System (ADS)

    Romakkaniemi, S.; Jaatinen, A.; Laaksonen, A.; Nenes, A.; Raatikainen, T.

    2014-05-01

    The effect of inorganic semivolatile aerosol compounds on the cloud condensation nucleus (CCN) activity of aerosol particles was studied by using a computational model for a DMT-CCN counter, a cloud parcel model for condensation kinetics and experiments to quantify the modelled results. Concentrations of water vapour and semivolatiles as well as aerosol trajectories in the CCN column were calculated by a computational fluid dynamics model. These trajectories and vapour concentrations were then used as an input for the cloud parcel model to simulate mass transfer kinetics of water and semivolatiles between aerosol particles and the gas phase. Two different questions were studied: (1) how big a fraction of semivolatiles is evaporated from particles after entering but before particle activation in the DMT-CCN counter? (2) How much can the CCN activity be increased due to condensation of semivolatiles prior to the maximum water supersaturation in the case of high semivolatile concentration in the gas phase? Both experimental and modelling results show that the evaporation of ammonia and nitric acid from ammonium nitrate particles causes a 10 to 15 nm decrease to the critical particle size in supersaturations between 0.1% and 0.7%. On the other hand, the modelling results also show that condensation of nitric acid or similar vapour can increase the CCN activity of nonvolatile aerosol particles, but a very high gas phase concentration (as compared to typical ambient conditions) would be needed. Overall, it is more likely that the CCN activity of semivolatile aerosol is underestimated than overestimated in the measurements conducted in ambient conditions.

  13. Nitric acid dry deposition to conifer forests: Niwot Ridge spruce-fir-pine study

    USGS Publications Warehouse

    Sievering, H.; Kelly, T.; McConville, G.; Seibold, C.; Turnipseed, A.

    2001-01-01

    The dry deposition velocity of nitric acid, Vd(HNO3), over a 12-m (mean height) spruce-fir forest at Niwot Ridge, Colorado was estimated during 13 daytime periods using the flux-gradient approach. Turbulence intensity at this site is high (mean u* of 0.65ms-1 with u of 2.9ms-1) and contributed to the large observed Vd(HNO3). The overriding contributor is identified to be the small aerodynamic needle width of the conifer trees. Two cases had inflated Vd(HNO3) due to height-differentiated nitric acid loss to soil-derived particle surfaces. Not considering these cases, the mean Vd(HNO3) was 7.6cms-1. The mean laminar boundary layer resistance (Rb) was found to be 7.8sm-1 (of similar magnitude to that of the aerodynamic resistance, 8.5sm-1). The data-determined Rb is bracketed by two theoretical estimates of the mean Rb, 5.9 and 8.6sm-1, that include consideration of the small canopy length scale (aerodynamic needle width), 1mm or less, at this conifer forest. However, the poor correlation of data-determined Rb values with both sets of theoretical estimates indicates that measurement error needs to be reduced and/or improved formulations of theoretical Rb values are in order. The large observed Vd(HNO3) at this conifer forest site is attributed to high turbulence intensity, and, especially, to small aerodynamic needle width. Copyright ?? 2001 Elsevier Science Ltd.

  14. Nitric acid partitioning in cirrus clouds: a synopsis based on field, laboratory and model studies

    NASA Astrophysics Data System (ADS)

    Krämer, M.; Beuermann, J.; Schiller, C.; Grimm, F.; Arnold, F.; Peter, Th.; Meilinger, S.; Meier, A.; Hendricks, J.; Petzold, A.; Schlager, H.

    2003-02-01

    From a synopsis of field, laboratory and model studies at T>205 K as well as from the field experiments POLSTAR at T<205 K we derive a general picture of the partitioning of nitric acid (HNO3) in cirrus clouds and a new hypothesis on the uptake of HNO3 on ice particles: A substantial part of nitric acid remains in the gas phase under cirrus cloud conditions. The HNO3 removed from the gas phase is distributed between interstitial aerosol and ice particles in dependence on the temperature and ice surface, respectively. In cold cirrus clouds with small ice surface areas (T <205 K) the partitioning is strongly in favour of interstitial ternary solution particles while in warmer cirrus clouds with large ice surface areas the uptake on ice dominates. Consequently, denitrification via sedimenting ice particles may occur only in the -more frequently occurring- warm cirrus clouds The HNO3 coverage on ice is found to be different for ice particles and ice films. On ice films the coverage can increase with decreasing temperature from about 0.1 to 0.8 monolayer, while that on ice particles is found to decrease with temperature and PHNO3 from 0.1 to 0.001 monolayer. An HNO3 uptake behaviour following dissociative Langmuir isotherms where the coverage decreases for descending temperatures may explain the observations for ice particles From a comparison of the HNO3 measurements with model calculations it is found that (i) the global model of Lawrence and Crutzen (1998) overestimates the HNO3 partitioning in favour of the ice particles (ii) the Langmuir surface chemistry model of Tabazadeh et al. (1999) overestimates HNO3 coverages for temperatures ≤210 K More appropriate coverages are calculated when implementing in that model a temperature dependent function for the adsorption free energy (ΔGads (T)), which is empirically derived from the coverage measurements.

  15. Timescale for hygroscopic conversion of calcite mineral particles through heterogeneous reaction with nitric acid.

    PubMed

    Sullivan, Ryan C; Moore, Meagan J K; Petters, Markus D; Kreidenweis, Sonia M; Roberts, Greg C; Prather, Kimberly A

    2009-09-28

    Atmospheric heterogeneous reactions can potentially change the hygroscopicity of atmospheric aerosols as they undergo chemical aging processes in the atmosphere. A particle's hygroscopicity influences its cloud condensation nuclei (CCN) properties with potential impacts on cloud formation and climate. In this study, size-selected calcite mineral particles were reacted with controlled amounts of nitric acid vapour over a wide range of relative humidities in an aerosol flow tube to study the conversion of insoluble and thus apparently non-hygroscopic calcium carbonate into soluble and hygroscopic calcium nitrate. The rate of hygroscopic change particles undergo during a heterogeneous reaction is derived from experimental measurements for the first time. The chemistry of the reacted particles was determined using an ultrafine aerosol time-of-flight mass spectrometer (UF-ATOFMS) while the particles' hygroscopicity was determined through measuring CCN activation curves fit to a single parameter of hygroscopicity, kappa. The reaction is rapid, corresponding to atmospheric timescales of hours. At low to moderate HNO3 exposures, the increase in the hygroscopicity of the particles is a linear function of the HNO3(g) exposure. The experimentally observed conversion rate was used to constrain a simple but accurate kinetic model. This model predicts that calcite particles will be rapidly converted into hygroscopic particles (kappa>0.1) within 4 h for low HNO3 mixing ratios (10 pptv) and in less than 3 min for 1000 pptv HNO3. This suggests that the hygroscopic conversion of the calcite component of atmospheric mineral dust aerosol will be controlled by the availability of nitric acid and similar reactants, and not by the atmospheric residence time.

  16. Lysophosphatidic acid induces vasodilation mediated by LPA1 receptors, phospholipase C, and endothelial nitric oxide synthase

    PubMed Central

    Ruisanchez, Éva; Dancs, Péter; Kerék, Margit; Németh, Tamás; Faragó, Bernadett; Balogh, Andrea; Patil, Renukadevi; Jennings, Brett L.; Liliom, Károly; Malik, Kafait U.; Smrcka, Alan V.; Tigyi, Gabor; Benyó, Zoltán

    2014-01-01

    Lysophosphatidic acid (LPA) has been implicated as a mediator of several cardiovascular functions, but its potential involvement in the control of vascular tone is obscure. Here, we show that both LPA (18:1) and VPC31143 (a synthetic agonist of LPA1–3 receptors) relax intact mouse thoracic aorta with similar Emax values (53.9 and 51.9% of phenylephrine-induced precontraction), although the EC50 of LPA- and VPC31143-induced vasorelaxations were different (400 vs. 15 nM, respectively). Mechanical removal of the endothelium or genetic deletion of endothelial nitric oxide synthase (eNOS) not only diminished vasorelaxation by LPA or VPC31143 but converted it to vasoconstriction. Freshly isolated mouse aortic endothelial cells expressed LPA1, LPA2, LPA4 and LPA5 transcripts. The LPA1,3 antagonist Ki16425, the LPA1 antagonist AM095, and the genetic deletion of LPA1, but not that of LPA2, abolished LPA-induced vasorelaxation. Inhibition of the phosphoinositide 3 kinase–protein kinase B/Akt pathway by wortmannin or MK-2206 failed to influence the effect of LPA. However, pharmacological inhibition of phospholipase C (PLC) by U73122 or edelfosine, but not genetic deletion of PLCε, abolished LPA-induced vasorelaxation and indicated that a PLC enzyme, other than PLCε, mediates the response. In summary, the present study identifies LPA as an endothelium-dependent vasodilator substance acting via LPA1, PLC, and eNOS.—Ruisanchez, É., Dancs, P., Kerék, M., Németh, T., Faragó, B., Balogh, A., Patil, R., Jennings, B. L., Liliom, K., Malik, K. U., Smrcka, A. V., Tigyi, G., Benyó, Z. Lysophosphatidic acid induces vasodilation mediated by LPA1 receptors, phospholipase C, and endothelial nitric oxide synthase. PMID:24249637

  17. Reactions Between Water Soluble Organic Acids and Nitrates in Atmospheric Aerosols: Recycling of Nitric Acid and Formation of Organic Salts

    SciTech Connect

    Wang, Bingbing; Laskin, Alexander

    2014-03-25

    Atmospheric particles often include a complex mixture of nitrate and secondary organic materials accumulated within the same individual particles. Nitrate as an important inorganic component can be chemically formed in the atmosphere. For instance, formation of sodium nitrate (NaNO3) and calcium nitrate Ca(NO3)2 when nitrogen oxide and nitric acid (HNO3) species react with sea salt and calcite, respectively. Organic acids contribute a significant fraction of photochemically formed secondary organics that can condense on the preexisting nitrate-containing particles. Here, we present a systematic microanalysis study on chemical composition of laboratory generated particles composed of water soluble organic acids and nitrates (i.e. NaNO3 and Ca(NO3)2) investigated using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and Fourier transform infrared micro-spectroscopy (micro-FTIR). The results show that water-soluble organic acids can react with nitrates releasing gaseous HNO3 during dehydration process. These reactions are attributed to acid displacement of nitrate with weak organic acids driven by the evaporation of HNO3 into gas phase due to its relatively high volatility. The reactions result in significant nitrate depletion and formation of organic salts in mixed organic acids/nitrate particles that in turn may affect their physical and chemical properties relevant to atmospheric environment and climate. Airborne nitrate concentrations are estimated by thermodynamic calculations corresponding to various nitrate depletions in selected organic acids of atmospheric relevance. The results indicate a potential mechanism of HNO3 recycling, which may further affect concentrations of gas- and aerosol-phase species in the atmosphere and the heterogeneous reaction chemistry between them.

  18. Characteristics of wintertime and autumn nitric acid chemistry as defined by Limb Infrared Monitor of the Stratosphere (LIMS) data

    NASA Astrophysics Data System (ADS)

    Rood, Richard B.; Douglass, Anne R.; Kaye, Jack A.; Considine, David B.

    1993-10-01

    Earlier two-dimensional (2-D) and three-dimensional (3-D) model experiments have shown that the Limb Infrared Monitor of the Stratosphere (LIMS) nitric acid data do not behave as expected from conventional gas phase chemical reactions. As contrasted to two-dimensional (2-D) model results, the 3-D model suggests that the discrepancies are at middle latitudes outside of the polar vortex, rather than at polar latitudes. Using only the data record, the characteristics of the nitric acid behavior arc further examined. The data inside the Aleutian anticyclone are examined during the January wave 1 warming. The anticyclone provides a large isolated region of air that moves from about 40°N to 60°N during the warming. Ozone remains approximately constant during this transit, while nitric acid increases more than 1 parts per billion by volume (ppbv). Both ozone and water vapor fields develop a wave 1 structure during the warming, as expected. Nitric acid, which is also expected to develop a wave 1 signal, develops a prominent wave 2 structure. This structure is observed between 50 and 5 mbar. A prominent feature of the nitric acid field is the persistent "bending" of contours due to strong meridional flow. Since these contours persist, instead of aligning with the flow, there must be chemical processes maintaining the nitric acid with timescales shorter than the advective timescale. The time constant for this chemical process ranges from approximately 1 day at 70°N to about 4 days at 30°N. When the time constant is used in the 3-D model, all of the basic characteristics of the observations are simulated. It is not clear what chemical mechanisms are responsible for this behavior. There is a strong relationship between the insolation and the shortcomings of the nitric acid simulations. Heterogeneous reactions on background aerosols are considered, but their spatial, temporal, and chemical characteristics are not clearly consistent with the needed changes in the chemistry

  19. Optical properties of chitosan in aqueous solution of L- and D-ascorbic acids

    NASA Astrophysics Data System (ADS)

    Malinkina, Olga N.; Shipovskaya, Anna B.; Kazmicheva, Olga F.

    2016-04-01

    The optical properties of aqueous chitosan solutions in L- and D-ascorbic acids were studied by optical rotatory dispersion and spectrophotometry. The specific optical rotation [α] of all chitosan solutions tested was positive, in contrast to aqueous solutions of the ascorbic acid enantiomers, which exhibit an inverse relationship of [α] values. Significant differences in the absolute values of [α] of the chitosan solutions at polymer-acid ratios exceeding the equimolar one were found.

  20. Nitric oxide production occurs after cytosolic alkalinization during stomatal closure induced by abscisic acid.

    PubMed

    Gonugunta, Vijay K; Srivastava, Nupur; Puli, Mallikarjuna R; Raghavendra, Agepati S

    2008-11-01

    Abscisic acid (ABA) raised the cytosolic pH and nitric oxide (NO) levels in guard cells while inducing stomatal closure in epidermis of Pisum sativum. Butyrate (a weak acid) reduced the cytosolic pH/NO production and prevented stomatal closure by ABA. Methylamine (a weak base) enhanced the cytosolic alkalinization and aggravated stomatal closure by ABA. The rise in guard cell pH because of ABA became noticeable after 6 min and peaked at 12 min, while NO production started at 9 min and peaked at 18 min. These results suggested that NO production was downstream of the rise in cytosolic pH. The ABA-induced increase in NO of guard cells and stomatal closure was prevented by 2-phenyl-4,4,5,5-tetramethyl imidazoline-1-oxyl 3-oxide (cPTIO, a NO scavenger) and partially by N-nitro-L-Arg-methyl ester (L-NAME, an inhibitor of NO synthase). In contrast, cPTIO or L-NAME had only a marginal effect on the pH rise induced by ABA. Ethylene glycol tetraacetic acid (EGTA, a calcium chelator) prevented ABA-induced stomatal closure while restricting cytosolic pH rise and NO production. We suggest that during ABA-induced stomatal closure, a rise in cytosolic pH is necessary for NO production. Calcium may act upstream of cytosolic alkalinization and NO production, besides its known function as a downstream component.

  1. Synergistic hypergolic ignition of blends of dienes and dienophiles with red fuming nitric acid as oxidizer

    SciTech Connect

    Panda, S.P.; Kulkarni, S.G.; Prabhakaran, C.

    1989-04-01

    Synergistic hypergolic ignition of several fuel blends and mixtures with red fuming nitric acid (RFNA) as oxidizer has been reported previously. The liquid fuels consisted of blends of 3-carene, cyclopentadiene, or norbornadiene with cardanol in the weight ratio 70:30 for the first two and 85:15 for norbornadiene. In all these cases, synergism in ignition was believed to be due to the fast and exothermic oligomerization of 3-carene, cyclopentadiene, and norbornadiene in the presence of acid. The exothermicity of the systems was enhanced by the addition of cardanol to the unsaturation of oligomers, leading to the formation of highly oxidizable phenolic ethers. Two more important reactions at the preignition stage were nitration and oxidation of the ethers leading to the production of gaseous combustibles and heat. In this case, an attempt has been made to extend the range of possible preignition reactions by introducing diene-dienophile Diels-Alder cycloaddition with low activation energy by replacing cardanol with furfuryl alcohol or furfurylideneacetone having a furan ring to behave as acid polymerizable dienes in the above systems.

  2. Uptake of formic acid on thin ice films and on ice doped with nitric acid between 195 and 211 K.

    PubMed

    Romanias, Manolis N; Zogka, Antonia G; Stefanopoulos, Vassileios G; Papadimitriou, Vassileios C; Papagiannakopoulos, Panos

    2010-12-17

    The adsorption of formic acid on thin ice films and on ice doped with nitric acid (1.96, 7.69 and 53.8 wt%) is studied as a function of temperature T=195-211 K and gas concentration (0.33-10.6)×10(11) molecule cm(-3). Experiments are performed in a Knudsen flow reactor coupled with a quadrupole mass spectrometer. The initial uptake coefficients γ are strongly and inversely dependent on the ice temperature. Initial uptake is determined at low surface coverages and ranges from (0.65-3.78)×10(-3). The adsorption uptake of formic acid on pure ice films and on ice lightly doped with HNO(3) is a reversible process, and the adsorption isotherms exhibit Langmuir behaviour. N(max)(1) is (2.94±0.67)×10(14) molecule cm(-2), in good agreement with previous measurements. The temperature dependence of K(Lin) is very well represented by the expression: K(Lin)(1)=(1.43±0.32)×10(-8) exp[(4720±520)/T] cm(3) molecule(-1); the quoted uncertainty is at the 95% level of confidence and includes systematic uncertainties. Formic acid uptakes on ice films highly doped with HNO(3) (53.8 wt%) are two orders of magnitude higher than those measured on pure ice films and irreversible, thus indicating the formation of a supercooled liquid layer on the ice films upon which dissolution of formic acid occurs. Finally, the atmospheric lifetime of formic acid due to heterogeneous loss on cirrus cloud ice particles and the removal of formic acid by adsorption are estimated under conditions related to the upper troposphere.

  3. Validation Testing of the Nitric Acid Dissolution Step Within the K Basin Sludge Pretreatment Process

    SciTech Connect

    AJ Schmidt; CH Delegard; KL Silvers; PR Bredt; CD Carlson; EW Hoppe; JC Hayes; DE Rinehart; SR Gano; BM Thornton

    1999-03-24

    The work described in this report involved comprehensive bench-scale testing of nitric acid (HNO{sub 3}) dissolution of actual sludge materials from the Hanford K East (KE) Basin to confirm the baseline chemical pretreatment process. In addition, process monitoring and material balance information was collected to support the development and refinement of process flow diagrams. The testing was performed by Pacific Northwest National Laboratory (PNNL)for the US Department of Energy's Office of Spent Fuel Stabilization (EM-67) and Numatec Hanford Corporation (NHC) to assist in the development of the K Basin Sludge Pretreatment Process. The baseline chemical pretreatment process for K Basin sludge is nitric acid dissolution of all particulate material passing a 1/4-in. screen. The acid-insoluble fraction (residual solids) will be stabilized (possibly by chemical leaching/rinsing and grouting), packaged, and transferred to the Hanford Environmental Restoration Disposal Facility (ERDF). The liquid fraction is to be diluted with depleted uranium for uranium criticality safety and iron nitrate for plutonium criticality safety, and neutralized with sodium hydroxide. The liquid fraction and associated precipitates are to be stored in the Hanford Tank Waste Remediation Systems (TWRS) pending vitrification. It is expected that most of the polychlorinated biphenyls (PCBs), associated with some K Basin sludges, will remain with the residual solids for ultimate disposal to ERDF. Filtration and precipitation during the neutralization step will further remove trace quantities of PCBs within the liquid fraction. The purpose of the work discussed in this report was to examine the dissolution behavior of actual KE Basin sludge materials at baseline flowsheet conditions and validate the.dissolution process step through bench-scale testing. The progress of the dissolution was evaluated by measuring the solution electrical conductivity and concentrations of key species in the dissolver

  4. Multiple glass transitions and freezing events of aqueous citric acid.

    PubMed

    Bogdan, Anatoli; Molina, Mario J; Tenhu, Heikki; Loerting, Thomas

    2015-05-14

    Calorimetric and optical cryo-microscope measurements of 10-64 wt % citric acid (CA) solutions subjected to moderate (3 K/min) and slow (0.5 and 0.1 K/min) cooling/warming rates and also to quenching/moderate warming between 320 and 133 K are presented. Depending on solution concentration and cooling rate, the obtained thermograms show one freezing event and from one to three liquid-glass transitions upon cooling and from one to six liquid-glass and reverse glass-liquid transitions, one or two freezing events, and one melting event upon warming of frozen/glassy CA/H2O. The multiple freezing events and glass transitions pertain to the mother CA/H2O solution itself and two freeze-concentrated solution regions, FCS1 and FCS2, of different concentrations. The FCS1 and FCS2 (or FCS22) are formed during the freezing of CA/H2O upon cooling and/or during the freezing upon warming of partly glassy or entirely glassy mother CA/H2O. The formation of two FCS1 and FCS22 regions during the freezing upon warming to our best knowledge has never been reported before. Using an optical cryo-microscope, we are able to observe the formation of a continuous ice framework (IF) and its morphology and reciprocal distribution of IF/(FCS1 + FCS2). Our results provide a new look at the freezing and glass transition behavior of aqueous solutions and can be used for the optimization of lyophilization and freezing of foods and biopharmaceutical formulations, among many other applications where freezing plays a crucial role.

  5. Water-soluble nitric-oxide-releasing acetylsalicylic acid (ASA) prodrugs.

    PubMed

    Rolando, Barbara; Lazzarato, Loretta; Donnola, Monica; Marini, Elisabetta; Joseph, Sony; Morini, Giuseppina; Pozzoli, Cristina; Fruttero, Roberta; Gasco, Alberto

    2013-07-01

    A series of water-soluble (benzoyloxy)methyl esters of acetylsalicylic acid (ASA), commonly known as aspirin, are described. The new derivatives each have alkyl chains containing a nitric oxide (NO)-releasing nitrooxy group and a solubilizing moiety bonded to the benzoyl ring. The compounds were synthesized and evaluated as ASA prodrugs. After conversion to the appropriate salt, most of the derivatives are solid at room temperature and all possess good water solubility. They are quite stable in acid solution (pH 1) and less stable at physiological pH. In human serum, these compounds are immediately metabolized by esterases, producing a mixture of ASA, salicylic acid (SA), and of the related NO-donor benzoic acids, along with other minor products. Due to ASA release, the prodrugs are capable of inhibiting collagen-induced platelet aggregation of human platelet-rich plasma. Simple NO-donor benzoic acids 3-hydroxy-4-(3-nitrooxypropoxy)benzoic acid (28) and 3-(morpholin-4-ylmethyl)-4-[3-(nitrooxy)propoxy]benzoic acid (48) were also studied as representative models of the whole class of benzoic acids formed following metabolism of the prodrugs in serum. These simplified derivatives did not trigger antiaggregatory activity when tested at 300 μM. Only 28 displays quite potent NO-dependent vasodilatatory action. Further in vivo evaluation of two selected prodrugs, {[2-(acetyloxy)benzoyl]oxy}methyl-3-[(3-[aminopropanoyl)oxy]-4-[3-(nitrooxy)propoxy]benzoate⋅HCl (38) and {[2-(acetyloxy)benzoyl]oxy}methyl 3-(morpholin-4-ylmethyl)-4-[3-(nitrooxy)propoxy]benzoate oxalate (49), revealed that their anti-inflammatory activities are similar to that of ASA when tested in the carrageenan-induced paw edema assay in rats. The gastrotoxicity of the two prodrugs was also determined to be lower than that of ASA in a lesion model in rats. Taken together, these results indicated that these NO-donor ASA prodrugs warrant further investigation for clinical application.

  6. REMOVAL OF CHLORIDE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Hyman, M.L.; Savolainen, J.E.

    1960-01-01

    A method is given for dissolving reactor fuel elements in which the uranium is associated with a relatively inert chromium-containing alloy such as stainless steel. An aqueous mixture of acids comprising 2 to 2.5 molar hydrochloric acid and 4 to 8 molar nitric acid is employed in dissolving the fuel element. In order io reduce corrosion in subsequent processing of the resulting solution, chloride values are removed from the solution by contacting it with concentrated nitric acid at an elevated temperature.

  7. Nitric oxide releases Cl− from acidic organelles in retinal amacrine cells

    PubMed Central

    Krishnan, Vijai; Gleason, Evanna

    2015-01-01

    Determining the factors regulating cytosolic Cl− in neurons is fundamental to our understanding of the function of GABA- and glycinergic synapses. This is because the Cl− distribution across the postsynaptic plasma membrane determines the sign and strength of postsynaptic voltage responses. We have previously demonstrated that nitric oxide (NO) releases Cl− into the cytosol from an internal compartment in both retinal amacrine cells and hippocampal neurons. Furthermore, we have shown that the increase in cytosolic Cl− is dependent upon a decrease in cytosolic pH. Here, our goals were to confirm the compartmental nature of the internal Cl− store and to test the hypothesis that Cl− is being released from acidic organelles (AO) such as the Golgi, endosomes or lysosomes. To achieve this, we made whole cell voltage clamp recordings from cultured chick retinal amacrine cells and used GABA-gated currents to track changes in cytosolic Cl−. Our results demonstrate that intact internal proton gradients are required for the NO-dependent release of internal Cl−. Furthermore, we demonstrate that increasing the pH of AO leads to release of Cl− into the cytosol. Intriguingly, the elevation of organellar pH results in a reversal in the effects of NO. These results demonstrate that cytosolic Cl− is closely linked to the regulation and maintenance of organellar pH and provide evidence that acidic compartments are the target of NO. PMID:26106295

  8. Thermodynamics of the complexation of arabinogalactan with salicylic and p-aminobenzoic acids in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Mudarisova, R. Kh.; Badykova, L. A.

    2016-03-01

    The thermodynamics of complexation of arabinogalactan with salicylic and p-aminobenzoic acids in aqueous solutions is studied by means spectroscopy. The standard thermodynamic characteristics (Δ H°; Δ G°; Δ S°) of complexation are calculated.

  9. Flow reactor and triple quadrupole mass spectrometer investigations of negative ion reactions involving nitric acid - Implications for atmospheric HNO3 detection by chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Moehler, O.; Arnold, F.

    1991-07-01

    The ion-molecule reactions on which Active Chemical Ionization Mass Spectrometry (ACIMS) measurements of atmospheric nitric acid are based are presently subjected to product-ion distribution and rate coefficient measurements. The results obtained indicate that while previous stratospheric nitric acid measurements were not impared by collisional dissociation processes, these processes may have played a major role during previous tropospheric measurements: leading to an undereestimation of nitric acid concentrations. A novel ACIMS ion source has been developed in order to avoid these problems.

  10. The solvent effect on the acidities of haloacetic acids in aqueous solution. A RISM-SCF study

    NASA Astrophysics Data System (ADS)

    Kawata, Masaaki; Ten-no, Seiichiro; Kato, Shigeki; Hirata, Fumio

    1995-06-01

    The acidities of acetic, fluoracetic and chloroacetic acids in aqueous solution are calculated by means of the ab initio method combined with the reference interaction site method in the statistical mechanics of molecular liquids (the RISM-SCF method). The inversion in the order of acidities experimentally observed when a series of haloacetic acids is immersed into aqueous solution is reproduced. It is shown that the inversion is caused by competition between substitution and solvation effects. The solvation effect is discussed in molecular detail in terms of the charge distribution of the solute and the solute-solvent radial distribution functions.

  11. Model nitride irradiated nuclear fuel: production, reaction with water and dilution in nitric acid

    SciTech Connect

    Dvoeglazov, K.; Glushenkov, A.; Sharin, A.; Arseenkov, L.; Lobachev, E.; Davydov, A.; Chebotarev, A.

    2013-07-01

    Samples of the model nuclear fuel (MNF) were made from separately synthesized nitride powders uranium-plutonium, zirconium, lanthanum and metal additives of simulators (Mo, Pd, Rh, Ag) fission products. Synthesis of initial nitride components was carried out from individual oxides, using a carbo-thermal restoration method. From MNF samples baked at a temperature of 1750 C. degrees, were made ceramographic specimens which were investigated by a scanning electron microscope. The analysis showed that distribution of the MNF components and structure of the samples corresponds to distribution of these components in the irradiated nitride fuel. The samples of MNF of nitride fuel were used for carrying out researches on dissolution in water and nitric acid. Experiments on studying the interaction of MNF with water have been made at 20, 50 and 80 C. degrees. The speed of leaching has been determined by a way of measuring the activity of water (Bq/l) in time. It is shown that an increase of temperature leads to an increase of the speed of leaching of plutonium. The formation of a precipitation, allegedly polymeric forms of plutonium, has been observed. The estimated speed of leaching of plutonium from MNF in water at 80 C. degrees is -0,0064 μgPu/(mm{sup 2}*h). From elements of FP simulators, molybdenum appears to be the most significantly leached. The dissolution of MNF in nitric acid (7,8 and 9,4 mol/l) has been carried out at boiling temperature (106-109 C. degrees). During the process of dissolution, gases were emitted. The assessment of composition of the emitted gases has been carried out. During the filtering of the solutions a precipitate whose weight makes about 2% from the weight of initial fuel has been found. Precipitate represents small powder of metal with gray color. Precipitate was investigated by a scanning electron microscope. The analysis of ranges of absorption of solution showed that the Pu(VI) share to the general content of plutonium in solution can

  12. Evaluation of nitric and acetic acid resistance of cement mortars containing high-volume black rice husk ash.

    PubMed

    Chatveera, B; Lertwattanaruk, P

    2014-01-15

    This paper presents the performance of cement mortar containing black rice husk ash (BRHA) under nitric and acetic acid attacks. The BRHA, collected from an electrical generating power plant that uses rice husk as fuel, was ground using a grinding machine. The compressive strength loss, weight loss, and expansion of mortars under nitric and acetic acid attack were investigated. The test results of BRHA properties in accordance with the ASTM C 618 standard found that the optimal grinding time was 4 h as this achieved a Blaine fineness of 5370 cm(2)/g. For parametric study, BRHA were used as a Portland cement Type 1 replacement at the levels of 0%, 10%, 20%, 30%, 40%, and 50% by weight of binder. The water-to-binder ratios were 0.55, 0.60, and 0.65. From test results, when the percentage replacements of BRHA in cement increased, it was observed that the strength loss and weight loss of mortars containing BRHA under acetic acid attack were higher than those of the mortars against nitric acid attack. It was found that, of the various BHRA mortars, the strength loss and weight loss due to nitric and acetic acid attacks were the lowest in the mortar with 10% BRHA replacement. For 10%, 20% and 30% BRHA replacements, the rate of expansion of the BRHA mortar decreased when compared with the control mortar. For the mortars with other percentage replacements of BRHA, the rate of expansion increased. Furthermore, the effective water-to-binder ratios of control and BRHA mortars were the primary factor for determining the durability of mortar mixed with BRHA.

  13. Process for the recovery of strontium from acid solutions

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1992-01-01

    The invention is a process for selectively extracting strontium and technetium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant is a macrocyclic polyether in a diluent which is insoluble in water, but which will itself dissolve a small amount of water. The process will extract strontium and technetium values from nitric acid solutions which are up to 6 molar in nitric acid.

  14. Process for the recovery of strontium from acid solutions

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1992-03-31

    The invention is a process for selectively extracting strontium and technetium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant is a macrocyclic polyether in a diluent which is insoluble in water, but which will itself dissolve a small amount of water. The process will extract strontium and technetium values from nitric acid solutions which are up to 6 molar in nitric acid. 5 figs.

  15. Uptake of Hypobromous Acid (HOBr) by Aqueous Sulfuric Acid Solutions: Low-Temperature Solubility and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Michelsen, Rebecca R.; Ashbourn, Samatha F. M.; Rammer, Thomas A.; Golden, David M.

    2005-01-01

    Hypobromous acid (HOBr) is a key species linking inorganic bromine to the chlorine and odd hydrogen chemical families. We have measured the solubility of HOBr in 45 - 70 wt% sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosol composition. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, with an effective Henry's law coefficient, H* = 10(exp 4) - 10(exp 7) mol/L/atm. H* is inversely dependent on temperature, with Delta H = -46.2 kJ/mol and Delta S = -106.2 J/mol/K for 55 - 70 wt% H2SO4 solutions. Our study includes temperatures which overlap both previous measurements of HOBr solubility. For uptake into aqueous 45 wt% H2SO4, the solubility can be described by log H* = 3665/T - 10.63. For 55 - 70 wt% H2SO4, log H* = 2412/T - 5.55. At temperatures colder than approx. 213 K, the solubility of HOBr in 45 wt% H2SO4 is noticeably larger than in 70 wt% H2SO4. The solubility of HOBr is comparable to that of HBr, indicating that upper tropospheric and lower stratospheric aerosols should contain equilibrium concentrations of HOBr which equal or exceed those of HBr. Our measurements indicate chemical reaction of HOBr upon uptake into aqueous sulfuric acid in the presence of other brominated gases followed by evolution of gaseous products including Br2O and Br2, particularly at 70 wt% H2SO4.

  16. Behaviors of acrylamide/itaconic acid hydrogels in uptake of uranyl ions from aqueous solutions

    SciTech Connect

    Karadag, E.; Saraydin, D.; Gueven, O.

    1995-12-01

    In this study, adsorptions of uranyl ions from two different aqueous uranyl solutions by acrylamide-itaconic acid hydrogels were investigated by a spectroscopic method. The hydrogels were prepared by irradiating with {gamma}-radiation. In the experiment of uranyl ions adsorption, Type II adsorption was found. One gram of acrylamide-itaconic acid hydrogels sorbed 178-219 mg uranyl ions from the solutions of uranyl acetate, 42-76 mg uranyl ions from the aqueous solutions of uranyl nitrate, while acrylamide hydrogel did not sorb any uranyl ion. For the hydrogel containing 40 mg of itaconic acid and irradiated to 3.73 kGy, swelling of the hydrogels was observed in water (1660%), in the aqueous solution of uranyl acetate (730%), and in the aqueous solution of uranyl nitrate (580%). Diffusions of water onto hydrogels were a non-Fickian type of diffusion, whereas diffusions of uranyl ions were a Fickian type of diffusion.

  17. Fourier transform infrared studies of model polar stratospheric cloud surfaces - Growth and evaporation of ice and nitric acid/ice

    NASA Technical Reports Server (NTRS)

    Tolbert, Margaret A.; Middlebrook, Ann M.

    1990-01-01

    Fourier-transform infrared surface studies are used to probe the microphysical properties of nitric acid trihydrate (NAT) and ice films representative of type I and II polar stratospheric clouds (PSC). Experiments indicate that, on initial exposure to 1.8 microtorr of HNO3, a layer of ice is quantitatively converted to NAT. However, conversion of ice to NAT does not proceed indefinitely, but rather the system reaches saturation. For longer exposures or higher HNO3 pressures, NAM becomes the dominant nitric acid containing species on the surface. Evaporation studies were performed to test the feasibility of a recent denitrification mechanism. The results indicate that ice coated with 0.20 micron of NAT evaporates at a temperature of about 4 C higher than uncoated ice.

  18. Effects of composite restorations on nitric oxide and uric acid levels in saliva

    PubMed Central

    Akgul, Nilgun; Gul, Pinar; Alp, Hamit Hakan; Kiziltunc, Ahmet

    2015-01-01

    Background and Aims: Dental materials that are used in dentistry should be harmless to oral tissues, and should, therefore, not contain any leachable toxic and diffusible substances capable of causing side effects. This study was intended to investigate the effects on salivary nitric oxide (NO) and uric acid (UA) levels after application of dental composite filling materials to healthy volunteers. Materials and Methods: A total of 52 individuals (32 female and 20 male) participated in the study. Filtek Z250 composite filling material (3M ESPE, St Paul, MN, USA) was applied to healthy volunteers. Saliva samples were collected before restoration (baseline) and 1 h, 1-day, 7 days, and 30 days after restoration. NO concentrations were measured using the Griess reaction method, and UA was measured using an enzymatic method. Data were analyzed using repeated measures ANOVA and the Bonferroni post-hoc test (α =5%). Results: NO values increased statistically significant after 7 days (P < 0.05). In addition, lower UA levels were determined compared to the baseline levels, but the difference was not statistically significant (P > 0.05). There was no correlation between NO and UA levels in saliva (P > 0.05). Conclusion: Composite resins activated the antioxidant system in saliva. However, further studies are now needed to confirm our findings and to permit a definitive conclusion. PMID:26321839

  19. Description of data on the Nimbus 7 LIMS map archive tape: ozone and nitric acid

    SciTech Connect

    Remsberg, E.E.; Kurzeja, R.J.; Haggard, K.V.; Russell, J.M. III; Gordley, L.L.

    1986-12-01

    The Nimbus 7 Limb infrared monitor of the stratosphere (LIMS) data set has been processed into a Fourier coefficient representation with a Kalman filter algorithm applied to profile data at individual latitudes and pressure levels. The algorithm produces synoptic data at noon Greenwich Mean Time (GMT) from the asynoptic orbital profiles. This form of the data set is easy to use and is appropriate for time series analysis and further data manipulation and display. Ozone and nitric acid results are grouped together in this report because the LIMS vertical field of views (FOV's) and analysis characteristics for these species are similar. A comparison of the orbital input data with mixing ratios derived from Kalman filter coefficients indicates errors in mixing ratio of generally less than 5 percent, with 15 percent being a maximum error. The high quality of the mapped data was indicated by coherence of both the phases and the amplitudes of waves with latitude and pressure. Examples of the mapped fields are presented, and details are given concerning the importance of diurnal variations, the removal of polar stratospheric cloud signatures, and the interpretation of bias effects in the data near the tops of profiles.

  20. Description of data on the Nimbus 7 LIMS map archive tape: Ozone and nitric acid

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.; Kurzeja, R. J.; Haggard, K. V.; Russell, J. M., III; Gordley, L. L.

    1986-01-01

    The Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) data set has been processed into a Fourier coefficient representation with a Kalman filter algorithm applied to profile data at individual latitudes and pressure levels. The algorithm produces synoptic data at noon Greenwich Mean Time (GMT) from the asynoptic orbital profiles. This form of the data set is easy to use and is appropriate for time series analysis and further data manipulation and display. Ozone and nitric acid results are grouped together in this report because the LIMS vertical field of views (FOV's) and analysis characteristics for these species are similar. A comparison of the orbital input data with mixing ratios derived from Kalman filter coefficients indicates errors in mixing ratio of generally less than 5 percent, with 15 percent being a maximum error. The high quality of the mapped data was indicated by coherence of both the phases and the amplitudes of waves with latitude and pressure. Examples of the mapped fields are presented, and details are given concerning the importance of diurnal variations, the removal of polar stratospheric cloud signatures, and the interpretation of bias effects in the data near the tops of profiles.

  1. Process for preparing a chemical compound enriched in isotope content. [nitrogen 15-enriched nitric acid

    DOEpatents

    Michaels, E.D.

    1981-02-25

    A process to prepare a chemical enriched in isotope content includes: a chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products. A particular embodiment of the process in the production of nitrogen-15-enriched nitric acid.

  2. Sphere of influence of indole acetic acid and nitric oxide in bacteria.

    PubMed

    Koul, Vatsala; Adholeya, Alok; Kochar, Mandira

    2015-05-01

    Bacterial biosynthesis of the phytohormone, indole-3-acetic acid (IAA) is well established and along with the diffusible gaseous molecule, nitric oxide (NO) is known to positively regulate the developmental processes of plant roots. IAA and NO act as signaling molecules in plant-microbe interactions as they modulate the gene expression in both, plants and microorganisms. Although IAA and NO may not be required for essential bacterial physiological processes, numerous studies point towards a crosstalk between IAA and NO in the rhizosphere. In this review, we describe various IAA and NO-responsive or sensing genes/proteins/regulators. There is also growing evidence for the interaction of IAA and NO with other plant growth regulators and the involvement of NO with the quorum sensing system in biofilm formation and virulence. This interactive network can greatly impact the host plant-microbe interactions in the soil. Coupled with this, the specialized σ(54) -dependent transcription observed in some of the IAA and NO-influenced genes can confer inducibility to these traits in bacteria and may allow the expression of IAA and NO-influenced microbial genes in nutrient limiting or changing environmental conditions for the benefit of plants.

  3. Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress.

    PubMed

    León, José; Castillo, Mari Cruz; Coego, Alberto; Lozano-Juste, Jorge; Mir, Ricardo

    2014-03-01

    The extensive support for abscisic acid (ABA) involvement in the complex regulatory networks controlling stress responses and development in plants contrasts with the relatively recent role assigned to nitric oxide (NO). Because treatment with exogenous ABA leads to enhanced production of NO, it has been widely considered that NO participates downstream of ABA in controlling processes such as stomata movement, seed dormancy, and germination. However, data on leaf senescence and responses to stress suggest that the functional interaction between ABA and NO is more complex than previously thought, including not only cooperation but also antagonism. The functional relationship is probably determined by several factors including the time- and place-dependent pattern of accumulation of both molecules, the threshold levels, and the regulatory factors important for perception. These factors will determine the actions exerted by each regulator. Here, several examples of well-documented functional interactions between NO and ABA are analysed in light of the most recent reported data on seed dormancy and germination, stomata movements, leaf senescence, and responses to abiotic and biotic stresses.

  4. Retinoic acid inhibits inducible nitric oxide synthase expression in 3T3-L1 adipocytes.

    PubMed

    Yang, Jeong-Yeh; Koo, Bon-Sun; Kang, Mi-Kyung; Rho, Hye-Won; Sohn, Hee-Sook; Jhee, Eun-Chung; Park, Jin-Woo

    2002-11-30

    The present study was undertaken to explore whether retinoids, which are known to have immunomodulatory actions, could attenuate tumor necrosis factor-alpha (TNF)-stimulated inducible nitric oxide synthase (iNOS) expression in 3T3-L1 adipocytes. Adipocytes incubated with TNF induced dose- and time-dependent accumulation of nitrite in the culture medium through the iNOS induction as confirmed by Western blotting. Treatment of cells with TNF in the presence of all-trans-retinoic acid (RA) significantly decreased their ability to produce nitrite and iNOS induction. Both 13-cis- and all- trans-RA-induced suppression was dose-dependent, and all-trans-RA was somewhat potent than 13-cis-RA. The inhibitory effect of RA on TNF-induced iNOS induction was reversible, completely recovered after 2 days, and was exerted through the inhibition of NF-kappaB activation. TNF also suppressed the lipoprotein lipase (LPL) activity of 3T3-L1 adipocytes. RA could not reverse the TNF- induced LPL suppression at RA levels causing near complete inhibition of the TNF-induced NO production. These results indicate that RAs attenuate iNOS expression reversibly in TNF-stimulated 3T3-L1 adipocytes, and that the TNF-induced LPL suppression is not the result of NO overproduction.

  5. Heterogeneous formation of polar stratospheric clouds - Part 1: Nucleation of nitric acid trihydrate (NAT)

    NASA Astrophysics Data System (ADS)

    Hoyle, C. R.; Engel, I.; Luo, B. P.; Pitts, M. C.; Poole, L. R.; Grooß, J.-U.; Peter, T.

    2013-03-01

    Satellite based observations during the Arctic winter of 2009/2010 provide firm evidence that, in contrast to the current understanding, the nucleation of nitric acid trihydrate (NAT) in the polar stratosphere does not only occur on preexisting ice particles. In order to explain the NAT clouds observed over the Arctic in mid December 2009, a heterogeneous nucleation mechanism is required, occurring via immersion freezing on the surface of solid particles, likely of meteoritic origin. For the first time, a detailed microphysical modelling of this NAT formation pathway has been carried out. Heterogeneous NAT formation was calculated along more than sixty thousand trajectories, ending at Cloud Aerosol Lidar with Orthogonal Polarisation (CALIOP) observation points. Comparing the optical properties of the modelled NAT with these observations enabled the thorough validation of a newly developed NAT nucleation parameterisation, which has been built into the Zurich Optical and Microphysical box Model (ZOMM). The parameterisation is based on active site theory, is simple to implement in models and provides substantial advantages over previous approaches which involved a constant rate of NAT nucleation in a given volume of air. It is shown that the new method is capable of reproducing observed PSCs very well, despite the varied conditions experienced by air parcels travelling along the different trajectories. In a companion paper, ZOMM is applied to a later period of the winter, when ice PSCs are also present, and it is shown that the observed PSCs are also represented extremely well under these conditions.

  6. Heterogeneous formation of polar stratospheric clouds - Part 1: Nucleation of nitric acid trihydrate (NAT)

    NASA Astrophysics Data System (ADS)

    Hoyle, C. R.; Engel, I.; Luo, B. P.; Pitts, M. C.; Poole, L. R.; Grooß, J.-U.; Peter, T.

    2013-09-01

    Satellite-based observations during the Arctic winter of 2009/2010 provide firm evidence that, in contrast to the current understanding, the nucleation of nitric acid trihydrate (NAT) in the polar stratosphere does not only occur on preexisting ice particles. In order to explain the NAT clouds observed over the Arctic in mid-December 2009, a heterogeneous nucleation mechanism is required, occurring via immersion freezing on the surface of solid particles, likely of meteoritic origin. For the first time, a detailed microphysical modelling of this NAT formation pathway has been carried out. Heterogeneous NAT formation was calculated along more than sixty thousand trajectories, ending at Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) observation points. Comparing the optical properties of the modelled NAT with these observations enabled a thorough validation of a newly developed NAT nucleation parameterisation, which has been built into the Zurich Optical and Microphysical box Model (ZOMM). The parameterisation is based on active site theory, is simple to implement in models and provides substantial advantages over previous approaches which involved a constant rate of NAT nucleation in a given volume of air. It is shown that the new method is capable of reproducing observed polar stratospheric clouds (PSCs) very well, despite the varied conditions experienced by air parcels travelling along the different trajectories. In a companion paper, ZOMM is applied to a later period of the winter, when ice PSCs are also present, and it is shown that the observed PSCs are also represented extremely well under these conditions.

  7. Redistribution of nitric acid in the Arctic lower stratosphere during the winter of 1996-1997

    NASA Astrophysics Data System (ADS)

    Irie, H.; Koike, M.; Kondo, Y.; Bodeker, G. E.; Danilin, M. Y.; Sasano, Y.

    2001-10-01

    Vertical profiles of HNO3, N2O, O3, and the aerosol extinction coefficient at 780 nm were observed by the Improved Limb Atmospheric Spectrometer (ILAS) on board the Advanced Earth Observing Satellite (ADEOS) during the Arctic winter of 1996-1997. Irreversible redistribution of HNO3 is evaluated using HNO3-N2O and HNO3-O3 correlations. Denitrification and nitrification started to be observed just after the Arctic vortex cooled to below the ice frost point (TICE) on February 10. Trajectory analyses show that denitrification occurred only in air masses, which were once cooled to near TICE and were kept at temperatures below the nitric acid trihydrate saturation threshold continuously for more than 4 days. Such a temperature history provides the necessary conditions for nucleation and growth of particles causing denitrification. The average extent of denitrification at 19 km reached 43% at the center of the vortex, suggesting that stratospheric ozone could be affected by denitrification deep inside the vortex. Denitrification (>2 ppbv) and nitrification (>1 ppbv) covered 40±10% and 35±10% of the vortex area, respectively. Redistributed numbers of HNO3 molecules at each altitude were calculated by integrating the area-weighted changes in the HNO3 concentration. The decreases in total HNO3 concentration at 17-21 km in late February and early March agreed with the increases at 12-15 km to within 25%, confirming conservation of HNO3 during sedimentation and evaporation of HNO3-containing polar stratospheric cloud particles.

  8. Preliminary Appraisal of Ferrocene as an Igniting Agent for JP-4 Fuel and Fuming Nitric Acid

    NASA Technical Reports Server (NTRS)

    Miller, RIley O.

    1953-01-01

    A preliminary experimental study was made of the properties of ferrocene as a solute and as a suspension in JP-4 fuel, and of the ignition delays of ferrocene - JP-4 mixture with A.F. specification 14104 white fuming nitric acid (WFNA). The investigation covered concentrations of 4 to 10 percent by weight ferrocene, and a temperature range of -40 to 80 F. The solubility of ferrocene in JP-4 is about 5 percent at room temperature and about 1 percent (extrapolated) at -80 F. The solubility is increased somewhat by increased aromatics content. Undissolved ferrocene particles of 100 mesh and smaller settle rapidly in JP-4. Clear solutions of 4 and 5 percent ferrocene in JP-4 fuels containing 10 and 25 percent by volume aromatics, respectively, do not ignite with WFNA at room temperature. Mixtures containing 10 percent ferrocene (100- mesh and smaller undissolved particles in suspension) ignited with vigorous persistent flames at room temperature, but did not ignite at -38 F. The ignition delays at room temperature, however, were widely varied; the range from 85 milliseconds to over 1 second perhaps reflected differences in degree of sedimentation.

  9. Calibration and evaluation of nitric acid and ammonia permeation tubes by UV optical absorption.

    PubMed

    Neuman, J Andrew; Ryerson, Thomas B; Huey, L Gregory; Jakoubek, Roger; Nowak, John B; Simons, Craig; Fehsenfeld, Frederick C

    2003-07-01

    An ultraviolet (UV) optical absorption system has been developed for absolute calibrations of nitric acid (HNO3) and ammonia (NH3) permeation tube emission rates. Using this technique, dilute mixtures containing NH3 or HNO3, both of which interact strongly with many surfaces, are accurately measured at levels below a part per million by volume. This compact and portable instrument operates continuously and autonomously to rapidly (<1 h) quantify the emission of trace gases from permeation devices that are commonly used to calibrate air-monitoring instruments. The output from several HNO3 and NH3 permeation tubes, with emission rates that ranged between 13 and 150 ng/min, was examined as a function of temperature, pressure, and carrier gas flow. Absorptions of 0.015% can be detected which allows a precision (3sigma) of +/-1 ng/min for the HNO3 and NH3 permeation tubes studied here. The accuracy of the measurements, which relies on published UV absorption cross sections, is estimated to be +/-10%. Measurements of permeation tube emission rates using ion chromatography analysis are made to further assess measurement accuracy. The output from the HNO3 and NH3 permeation tubes examined here was stable over the study period, which ranged between 3 months and 1 year for each permeation tube.

  10. Heterogeneous Formation of Polar Stratospheric Clouds- Part 1: Nucleation of Nitric Acid Trihydrate (NAT)

    NASA Technical Reports Server (NTRS)

    Hoyle, C. R.; Engel, I.; Luo, B. P.; Pitts, M. C.; Poole, L. R.; Grooss, J.-U.; Peter, T.

    2013-01-01

    Satellite-based observations during the Arctic winter of 2009/2010 provide firm evidence that, in contrast to the current understanding, the nucleation of nitric acid trihydrate (NAT) in the polar stratosphere does not only occur on preexisting ice particles. In order to explain the NAT clouds observed over the Arctic in mid-December 2009, a heterogeneous nucleation mechanism is required, occurring via immersion freezing on the surface of solid particles, likely of meteoritic origin. For the first time, a detailed microphysical modelling of this NAT formation pathway has been carried out. Heterogeneous NAT formation was calculated along more than sixty thousand trajectories, ending at Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) observation points. Comparing the optical properties of the modelled NAT with these observations enabled a thorough validation of a newly developed NAT nucleation parameterisation, which has been built into the Zurich Optical and Microphysical box Model (ZOMM). The parameterisation is based on active site theory, is simple to implement in models and provides substantial advantages over previous approaches which involved a constant rate of NAT nucleation in a given volume of air. It is shown that the new method is capable of reproducing observed polar stratospheric clouds (PSCs) very well, despite the varied conditions experienced by air parcels travelling along the different trajectories. In a companion paper, ZOMM is applied to a later period of the winter, when ice PSCs are also present, and it is shown that the observed PSCs are also represented extremely well under these conditions.

  11. Mechanisms of xylanase-induced nitric oxide and phosphatidic acid production in tomato cells.

    PubMed

    Lanteri, M Luciana; Lamattina, Lorenzo; Laxalt, Ana M

    2011-10-01

    The second messenger nitric oxide (NO), phosphatidic acid (PA) and reactive oxygen species (ROS) are involved in the plant defense response during plant-pathogen interactions. NO has been shown to participate in PA production in response to the pathogen-associated molecular pattern xylanase in tomato cell suspensions. Defense responses downstream of PA include ROS production. The goal of this work was to study the signaling mechanisms involved in PA production during the defense responses triggered by xylanase and mediated by NO in the suspension-cultured tomato cells. We analyzed the participation of protein kinases, guanylate cyclase and the NO-mediated posttranslational modification S-nitrosylation, by means of pharmacology and biochemistry. We showed that NO, PA and ROS levels are significantly diminished by treatment with the general protein kinase inhibitor staurosporine. This indicates that xylanase-induced protein phosphorylation events might be the important components leading to NO formation, and hence for the downstream regulation of PA and ROS levels. When assayed, a guanylate cyclase inhibitor or a cGMP analog did not alter the PA accumulation. These results suggest that a cGMP-mediated pathway is not involved in xylanase-induced PA formation. Finally, the inhibition of protein S-nitrosylation did not affect NO formation but compromised PA and ROS production. Data collectively indicate that upon xylanase perception, cells activate a protein kinase pathway required for NO formation and that, S-nitrosylation-dependent mechanisms are involved in downstream signaling leading to PA and ROS.

  12. Stability and disperse composition of water-in-oil microemulsions in a tributyl phosphate-nitric acid system

    SciTech Connect

    Vinogradov, I.V.; Zakharkin, V.S.; Shepel'kov, S.V.

    1988-05-01

    An investigation has been made of the influence of the concentrations of tributyl phosphate (TBP) and nitric acid on the surface and bulk distribution, the stability, and the disperse composition of water-in-oil microemulsions. A correlation has been established between the interphase tension and the time for complete stratification of the microemulsions. The process of forming stable microemulsions is interpreted on the basis of views on the surfactant properties of TBP hydratosolvates.

  13. The IUPAC aqueous and non-aqueous experimental pKa data repositories of organic acids and bases

    NASA Astrophysics Data System (ADS)

    Slater, Anthony Michael

    2014-10-01

    Accurate and well-curated experimental pKa data of organic acids and bases in both aqueous and non-aqueous media are invaluable in many areas of chemical research, including pharmaceutical, agrochemical, specialty chemical and property prediction research. In pharmaceutical research, pKa data are relevant in ligand design, protein binding, absorption, distribution, metabolism, elimination as well as solubility and dissolution rate. The pKa data compilations of the International Union of Pure and Applied Chemistry, originally in book form, have been carefully converted into computer-readable form, with value being added in the process, in the form of ionisation assignments and tautomer enumeration. These compilations offer a broad range of chemistry in both aqueous and non-aqueous media and the experimental conditions and original reference for all pKa determinations are supplied. The statistics for these compilations are presented and the utility of the computer-readable form of these compilations is examined in comparison to other pKa compilations. Finally, information is provided about how to access these databases.

  14. The IUPAC aqueous and non-aqueous experimental pKa data repositories of organic acids and bases.

    PubMed

    Slater, Anthony Michael

    2014-10-01

    Accurate and well-curated experimental pKa data of organic acids and bases in both aqueous and non-aqueous media are invaluable in many areas of chemical research, including pharmaceutical, agrochemical, specialty chemical and property prediction research. In pharmaceutical research, pKa data are relevant in ligand design, protein binding, absorption, distribution, metabolism, elimination as well as solubility and dissolution rate. The pKa data compilations of the International Union of Pure and Applied Chemistry, originally in book form, have been carefully converted into computer-readable form, with value being added in the process, in the form of ionisation assignments and tautomer enumeration. These compilations offer a broad range of chemistry in both aqueous and non-aqueous media and the experimental conditions and original reference for all pKa determinations are supplied. The statistics for these compilations are presented and the utility of the computer-readable form of these compilations is examined in comparison to other pKa compilations. Finally, information is provided about how to access these databases.

  15. Thermal And Spectroscopic Analyses Of Next Generation Caustic Side Solvent Extraction Solvent Contacted With 3, 8, And 16 Molar Nitric Acid

    SciTech Connect

    Fondeur, F. F.; Fink, S. D.

    2011-12-07

    A new solvent system referred to as Next Generation Solvent or NGS, has been developed at Oak Ridge National Laboratory for the removal of cesium from alkaline solutions in the Caustic Side Solvent Extraction process. The NGS is proposed for deployment at MCU{sup a} and at the Salt Waste Processing Facility. This work investigated the chemical compatibility between NGS and 16 M, 8 M, and 3 M nitric acid from contact that may occur in handling of analytical samples from MCU or, for 3 M acid, which may occur during contactor cleaning operations at MCU. This work shows that reactions occurred between NGS components and the high molarity nitric acid. Reaction rates are much faster in 8 M and 16 M nitric acid than in 3 M nitric acid. In the case of 16 M and 8 M nitric acid, the nitric acid reacts with the extractant to produce initially organo-nitrate species. The reaction also releases soluble fluorinated alcohols such as tetrafluoropropanol. With longer contact time, the modifier reacts to produce a tarry substance with evolved gases (NO{sub x} and possibly CO). Calorimetric analysis of the reaction product mixtures revealed that the organo-nitrates reaction products are not explosive and will not deflagrate.

  16. THERMAL AND SPECTROSCOPIC ANALYSES OF NEXT GENERATION CAUSTIC SIDE SOLVENT EXTRACTION SOLVENT CONTACTED WITH 3, 8, AND 16 MOLAR NITRIC ACID

    SciTech Connect

    Fondeur, F.; Fink, S.

    2011-09-30

    A new solvent system referred to as Next Generation Solvent or NGS, has been developed at Oak Ridge National Laboratory for the removal of cesium from alkaline solutions in the Caustic Side Solvent Extraction process. NGS is proposed for deployment at MCU and at the Salt Waste Processing Facility. This work investigated the chemical compatibility between NGS and 16 M, 8 M, and 3 M nitric acid from contact that may occur in handling of analytical samples from MCU or, for 3 M acid, which may occur during contactor cleaning operations at MCU. This work shows that reactions occurred between NGS components and the high molarity nitric acid. In the case of 16 M and 8 M nitric acid, initially organo-nitrate groups are generated and attach to the modifier and that with time oxidation reactions convert the modifier into a tarry substance with gases (NO{sub x} and possibly CO) evolving. Calorimetric analysis of the organonitrate revealed the reaction products are not explosive nor will they deflagrate. NGS exposure to 3 M nitric acid resulted in much slower reaction kinetics and that the generated products were not energetic. We recommended conducting Accelerated Rate calorimetry on the materials generated in the 16 M and 8 M nitric acid test. Also, we recommend continue monitoring of the samples contacting NGS with 3 M nitric acid.

  17. Heterogeneous Chemistry of Individual Mineral Dust Particles with Nitric Acid. A Combined CCSEM/EDX, ESEM AND ICP-MS Study

    SciTech Connect

    Laskin, Alexander; Wietsma, Thomas W.; Krueger, Brenda J.; Grassian, Vicki H.

    2005-05-26

    The heterogeneous chemistry of individual dust particles from four authentic dust samples with gas-phase nitric acid was investigated in this study. Morphology and compositional changes of individual particles as they react with nitric acid were observed using conventional scanning electron microscopy with energy dispersive analysis of X-rays (SEM/EDX) and computer controlled SEM/EDX. Environmental Scanning Electron Microscopy (ESEM) was utilized to investigate the hygroscopic behavior of mineral dust particles reacted with nitric acid. Differences in the reactivity of mineral dust particles from these four different dust source regions with nitric acid were observed. Mineral dust from source regions containing high levels of calcium, namely China loess dust and Saudi coastal dust, were found to react to the greatest extent.

  18. Dissolution of plutonium oxide in nitric acid at high hydrofluoric acid concentrations

    SciTech Connect

    Kazanjian, A.R.; Stevens, J.R.

    1984-06-15

    The dissolution of plutonium dioxide in nitirc acid (HNO/sub 3/) at high hydrofluoric acid (HF) concentrations has been investigated. Dissolution rate curves were obtained using 12M HNO/sub 3/ and HF at concentrations varying from 0.05 to 1.0 molar. The dissolution rate increased with HF concentration up to 0.2M and then decreased at higher concentrations. There was very little plutonium dissolved at 0.7 and 1.0M HF because of the formation of insoluble PuF/sub 4/. Various oxidizing agents were added to 12M HNO/sub 3/-1M HF dissolvent to oxidize Pu(IV) to Pu(VI) and prevent the formation of PuF/sub 4/. Ceric (Ce(IV)) and silver (Ag(II)) ions were the most effective in dissolving PuO/sub 2/. Although these two oxidants greatly increased the dissolution rate, the rates were not as rapid as those obtained with 12M HNO/sub 3/-0.2M HF.

  19. Remedial investigation report on the abandoned nitric acid pipeline at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1993-12-01

    Upper East Fork Poplar Creek OU-2 consists of the Abandoned Nitric Acid Pipeline. This pipeline was installed in 1951 to transport liquid wastes {approximately} 4,800 ft from Buildings 9212, 9215, and 9206 to the S-3 Ponds. Materials known to have been discharged through the pipeline include nitric acid, depleted and enriched uranium, various metal nitrates, salts, and lead skimmings. A total of nineteen locations were chosen to be investigated along the pipeline for the first phase of this Remedial Investigation. Sampling consisted of drilling down to obtain a soil sample at a depth immediately below the pipeline. Additional samples were obtained deeper in the subsurface depending upon the depth of the pipeline, the depth of the water table, and the point of auger refusal. The nineteen samples collected below the pipeline were analyzed by the Y-12 Plant laboratory for metals, nitrate/nitrite, and isotopic uranium. Samples collected from three boreholes were also analyzed for volatile organic compounds because these samples produced a response with organic vapor monitoring equipment. The results of the baseline human health risk assessment for the Abandoned Nitric Acid Pipeline contaminants of potential concern show no unacceptable risks to human health via incidental ingestion of soil, inhalation of dust, dermal contact with the soil, or external exposure to radionuclides in the ANAP soils, under the construction worker and/or the residential land-use scenarios.

  20. ADSORPTION OF CERIUM VALUES FROM AQUEOUS SOLUTIONS

    DOEpatents

    Roberts, F.P.

    1963-08-13

    Cerium can be removed from aqueous nitric acid (2 to 13 M) solutions by passing the latter over a PbO/sub 2/-containing anion exchange resin. The cerium is taken up by the resin, while any lanthanides, yttrium, and strontium present remain in the solution. (AEC)

  1. Surface Engineering of PAMAM-SDB Chelating Resin with Diglycolamic Acid (DGA) Functional Group for Efficient Sorption of U(VI) and Th(IV) from Aqueous Medium.

    PubMed

    Ilaiyaraja, P; Deb, A K Singha; Ponraju, D; Ali, Sk Musharaf; Venkatraman, B

    2017-04-15

    A novel chelating resin obtained via growth of PAMAM dendron on surface of styrene divinyl benzene resin beads, followed by diglycolamic acid functionalization of the dendrimer terminal. Batch experiments were conducted to study the effects of pH, nitric acid concentration, amount of adsorbent, shaking time, initial metal ion concentration and temperature on U(VI) and Th(IV) adsorption efficiency. Diglycolamic acid terminated PAMAM dendrimer functionalized styrene divinylbenzene chelating resin (DGA-PAMAM-SDB) is found to be an efficient candidate for the removal of U(VI) and Th(IV) ions from aqueous (pH >4) and nitric acid media (>3M). The sorption equilibrium could be reached within 60min, and the experimental data fits with pseudo-second-order model. Langmuir sorption isotherm model correlates well with sorption equilibrium data. The maximum U(VI) and Th(IV) sorption capacity onto DGA-PAMAMG5-SDB was estimated to be about 682 and 544.2mgg(-1) respectively at 25°C. The interaction of actinides and chelating resin is reversible and hence, the resin can be regenerated and reused. DFT calculation on the interaction of U(VI) and Th(IV) ions with chelating resin validates the experimental findings.

  2. Development of a Quantum Cascade Laser-Based Detector for Ammonia and Nitric Acid

    SciTech Connect

    Zahniser, Mark S.; Nelson, David D.; McManus, J. Barry; Shorter, Joanne H.; Herndon, Scott C.; Jimenez, Rodrigo

    2005-12-31

    We have developed a compact, robust, atmospheric trace gas detector based on mid-infrared absorption spectroscopy using pulsed quantum cascade (QC) lasers. The spectrometer is suitable for airborne measurements of ammonia, nitric acid, formaldehyde, formic acid, methane, nitrous oxide, carbon monoxide, nitrogen dioxide and other gases that have line-resolved absorption spectra in the mid-infrared spectral region. The QC laser light source operates near room temperature with thermal electric cooling instead of liquid nitrogen which has been previously required for semiconductor lasers in the mid-infrared spectral region. The QC lasers have sufficient output power so that thermal electric cooled detectors may be used in many applications with lower precision requirements. The instrument developed in this program has been used in several field campaigns from both the Aerodyne Mobile Laboratory and from the NOAA WP3 aircraft. The Phase II program has resulted in more than 10 archival publications describing the technology and its applications. Over 12 instruments based on this design have been sold to research groups in Europe and the United States making the program both a commercial as well as a technological success. Anticipated Benefits The development of a sensitive, cryogen-free, mid-infrared absorption method for atmospheric trace gas detection will have wide benefits for atmospheric and environmental research and broader potential commercial applications in areas such as medical diagnostic and industrial process monitoring of gaseous compounds. Examples include air pollution monitoring, breath analysis, combustion exhaust diagnostics, and plasma diagnostics for semi-conductor fabrication. The substitution of near-room temperature QC lasers for cryogenic lead salt TDLs and the resulting simplifications in instrument design and operation will greatly expand the range of applications.

  3. Sinapic Acid Prevents Hypertension and Cardiovascular Remodeling in Pharmacological Model of Nitric Oxide Inhibited Rats

    PubMed Central

    Silambarasan, Thangarasu; Manivannan, Jeganathan; Krishna Priya, Mani; Suganya, Natarajan; Chatterjee, Suvro; Raja, Boobalan

    2014-01-01

    Objectives Hypertensive heart disease is a constellation of abnormalities that includes cardiac fibrosis in response to elevated blood pressure, systolic and diastolic dysfunction. The present study was undertaken to examine the effect of sinapic acid on high blood pressure and cardiovascular remodeling. Methods An experimental hypertensive animal model was induced by L-NAME intake on rats. Sinapic acid (SA) was orally administered at a dose of 10, 20 and 40 mg/kg body weight (b.w.). Blood pressure was measured by tail cuff plethysmography system. Cardiac and vascular function was evaluated by Langendorff isolated heart system and organ bath studies, respectively. Fibrotic remodeling of heart and aorta was assessed by histopathologic analyses. Oxidative stress was measured by biochemical assays. mRNA and protein expressions were assessed by RT-qPCR and western blot, respectively. In order to confirm the protective role of SA on endothelial cells through its antioxidant property, we have utilized the in vitro model of H2O2-induced oxidative stress in EA.hy926 endothelial cells. Results Rats with hypertension showed elevated blood pressure, declined myocardial performance associated with myocardial hypertrophy and fibrosis, diminished vascular response, nitric oxide (NO) metabolites level, elevated markers of oxidative stress (TBARS, LOOH), ACE activity, depleted antioxidant system (SOD, CAT, GPx, reduced GSH), aberrant expression of TGF-β, β-MHC, eNOS mRNAs and eNOS protein. Remarkably, SA attenuated high blood pressure, myocardial, vascular dysfunction, cardiac fibrosis, oxidative stress and ACE activity. Level of NO metabolites, antioxidant system, and altered gene expression were also repaired by SA treatment. Results of in vitro study showed that, SA protects endothelial cells from oxidative stress and enhance the production of NO in a concentration dependent manner. Conclusions Taken together, these results suggest that SA may have beneficial role in the

  4. Ice formation on nitric acid coated dust particles: Laboratory and modeling studies

    SciTech Connect

    Kulkarni, Gourihar R.; Zhang, Kai; Zhao, Chun; Nandasiri, Manjula I.; Shutthanandan, V.; Liu, Xiaohong; Fast, Jerome D.; Berg, Larry K.

    2015-08-16

    Changes in the ice nucleation characteristics of atmospherically relevant mineral dust particles due to nitric acid coating are not well understood. Further, the atmospheric implications of dust coating on ice-cloud properties under different assumptions of primary ice nucleation mechanisms are unknown. We investigated ice nucleation ability of Arizona test dust, illite, K-feldspar and quartz as a function of temperature (-25 to -30°C) and relative humidity with respect to water (75 to 110%). Particles were size selected at 250 nm and transported (bare or coated) to the ice nucleation chamber to determine the fraction of particles nucleating ice at various temperature and water saturation conditions. All dust nucleated ice at water-subsaturated conditions, but the coated particles showed a reduction in their ice nucleation ability compared to bare particles. However, at water-supersaturated conditions, we observed that bare and coated particles had nearly similar ice nucleation characteristics. X-ray diffraction patterns indicated that structural properties of bare dust particles modified after acid treatment. We found that lattice parameters were slightly different, but crystallite sizes of the coated particles were reduced compared to bare particles. Next, single-column model results show that simulated ice crystal number concentrations mostly depends upon fraction of particles that are coated, primary ice nucleation mechanisms, and the competition between ice nucleation mechanisms to nucleate ice. In general, we observed that coating modify the ice-cloud properties and the picture of ice and mixed-phase cloud evolution is complex when different primary ice nucleation mechanisms are competing for fixed water vapor mass.

  5. Biosorption of acidic textile dyestuffs from aqueous solution by Paecilomyces sp. isolated from acidic mine drainage.

    PubMed

    Çabuk, Ahmet; Aytar, Pınar; Gedikli, Serap; Özel, Yasemin Kevser; Kocabıyık, Erçin

    2013-07-01

    Removal of textile dyestuffs from aqueous solution by biosorption onto a dead fungal biomass isolated from acidic mine drainage in the Çanakkale Region of Turkey was investigated. The fungus was found to be a promising biosorbent and identified as Paecilomyces sp. The optimal conditions for bioremediation were as follows: pH, 2.0; initial dyestuff concentration, 50 mg l(-1) for Reactive Yellow 85 and Reactive Orange 12, and 75 mg l(-1) for Reactive Black 8; biomass dosage, 2 g l(-1) for Reactive Yellow 85, 3 g l(-1) for Reactive Orange 12, 4 g l(-1) for Reactive Black 8; temperature, 25 °C; and agitation rate, 100 rpm. Zeta potential measurements indicated an electrostatic interaction between the binding sites and dye anions. Fourier transform infrared spectroscopy showed that amine, hydroxyl, carbonyl, and amide bonds were involved in the dyestuff biosorption. A toxicity investigation was also carried out before and after the biosorption process. These results showed that the toxicities for the reactive dyestuffs in aqueous solutions after biosorption studies decreased. The Freundlich and Langmuir adsorption models were used for the mathematical description of the biosorption equilibrium, and isotherm constants were evaluated for each dyestuff. Equilibrium data of biosorption of RY85 and RO12 dyestuffs fitted well to both models at the studied concentration and temperature.

  6. Rosmarinic acid content in antidiabetic aqueous extract of Ocimum canum Sims grown in Ghana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rosmarinic acid (RA) is an important polyphenol that is found in a variety of herbs including Ocimum canum sims (locally called eme or akokobesa in Ghana). Aqueous extracts from the leaves of O.canum are used as an antidiabetic herbal medicine in Ghana. Interestingly, rosmarinic acid content and p...

  7. Raman spectroscopic study of the aging and nitration of actinide processing anion-exchange resins in concentrated nitric acid

    SciTech Connect

    Buscher, C. T.; Donohoe, R. J.; Mecklenburg, S. L.; Berg, J. M.; Tait, C. D.; Morris, D. E. [Chemical Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

    1999-08-01

    Degradation of two types of anion exchange resins, Dowex 11 and Reillex HPQ, from the action of concentrated nitric acid (4 to 12 M) and radiolysis [from depleted uranium as UO{sub 2}{sup 2+} nitrate species and {sup 239}Pu as Pu(IV) nitrate species] was followed as a function of time with Raman vibrational spectroscopy. Elevated temperatures ({approx}50 degree sign C) were used in the absence of actinide metal loading to simulate longer exposures of the resin to a HNO{sub 3} process stream and waste storage conditions. In the absence of actinide loading, only minor changes in the Dowex resin at acid concentrations {<=}10 M were observed, while at 12 M acid concentration, the emergence of a Raman peak at 1345 cm-1 indicates the addition of nitro functional groups to the resin. Similar studies with the Reillex resin show it to be more resistant to nitric acid attack at all acid concentrations. Incorporation of weakly radioactive depleted uranium as the UO{sub 2}{sup 2+} nitrate species to the ion-exchange sites of Dowex 11 under differing nitric acid concentrations (6 to 12 M) at room temperature showed no Raman evidence of resin degradation or nitration, even after several hundred days of contact. In contrast, Raman spectra for Dowex 11 in the presence of {sup 239}Pu as Pu(IV) nitrate species reveal numerous changes indicating resin alterations, including a new mode at 1345 cm-1 consistent with a Pu(IV)-nitrate catalyzed addition of nitro groups to the resin backbone. (c) 2000 Society for Applied Spectroscopy.

  8. Experimental and theoretical studies of the interaction of gas phase nitric acid and water with a self-assembled monolayer.

    PubMed

    Moussa, S G; Stern, A C; Raff, J D; Dilbeck, C W; Tobias, D J; Finlayson-Pitts, B J

    2013-01-14

    Nitric acid in air is formed by atmospheric reactions of oxides of nitrogen and is removed primarily through deposition to surfaces, either as the gas or after conversion to particulate nitrate. Many of the surfaces and particles have organic coatings, but relatively little is known about the interaction of nitric acid with organic films. We report here studies of the interaction of gaseous HNO(3) with a self-assembled monolayer (SAM) formed by reacting 7-octenyltrichlorosilane [H(2)C=CH(CH(2))(6)SiCl(3)] with the surface of a germanium infrared-transmitting attenuated total reflectance (ATR) crystal that was coated with a thin layer of silicon oxide (SiO(x)). The SAM was exposed at 298 ± 2 K to dry HNO(3) in a flow of N(2), followed by HNO(3) in humid N(2) at a controlled relative humidity (RH) between 20-90%. For comparison, similar studies were carried out using a similar crystal without the SAM coating. Changes in the surface were followed using Fourier transform infared spectroscopy (FTIR). In the case of the SAM-coated crystal, molecular HNO(3) and smaller amounts of NO(3)(-) ions were observed on the surface upon exposure to dry HNO(3). Addition of water vapor led to less molecular HNO(3) and more H(3)O(+) and NO(3)(-) complexed to water, but surprisingly, molecular HNO(3) was still evident in the spectra up to 70% RH. This suggests that part of the HNO(3) observed was initially trapped in pockets within the SAM and shielded from water vapor. After increasing the RH to 90% and then exposing the film to a flow of dry N(2), molecular nitric acid was regenerated, as expected from recombination of protons and nitrate ions as water evaporated. The nitric acid ultimately evaporated from the film. On the other hand, exposure of the SAM to HNO(3) and H(2)O simultaneously gave only hydronium and nitrate ions. Molecular dynamics simulations of defective SAMs in the presence of HNO(3) and water predict that nitric acid intercalates in defects as a complex with a

  9. A comparison of copper and acid site zeolites for the production of nitric oxide for biomedical applications.

    PubMed

    Russell, Samantha E; González Carballo, Juan María; Orellana-Tavra, Claudia; Fairen-Jimenez, David; Morris, Russell E

    2017-03-21

    Copper-exchanged and acidic zeolites are shown to produce nitric oxide (NO) from a nitrite source in biologically active (nanomolar) concentrations. Four zeolites were studied; mordenite, ferrierite, ZSM-5 and SSZ-13, which had varying pore size, channel systems and Si/Al ratios. ZSM-5 and SSZ-13 produced the highest amounts of NO in both the copper and acid form. The high activity and regeneration of the copper active sites makes them good candidates for long-term NO production. Initial cytotoxicity tests have shown at least one of the copper zeolites (Cu-SSZ-13) to be biocompatible, highlighting the potential usage within biomedical applications.

  10. Alternatives to Nitric Acid Stripping in the Caustic-Side Solvent Extraction (CSSX) Process for Cesium Removal from Alkaline High-Level Waste

    SciTech Connect

    Delmau, Laetitia Helene; Haverlock, Tamara; Bazelaire, Eve; Bonnesen, Peter V; Ditto, Mary E; Moyer, Bruce A

    2009-01-01

    Effective alternatives to nitric acid stripping in the Caustic-Side Solvent Extraction (CSSX) solvent have been demonstrated in this work. The CSSX solvent employs calix[4]arene-bis(tert-octylbenzo-18-crown-6) (BOBCalixC6) as the cesium extractant in a modified alkane diluent for decontamination of alkaline high-level wastes. Results reported in this paper support the idea that replacement of the nitrate anion by a much more hydrophilic anion like borate can substantially lower cesium distribution ratios on stripping. Without any other change in the CSSX flowsheet, however, the use of a boric acid stripping solution in place of the 1 mM nitric acid solution used in the CSSX process marginally, though perhaps still usefully, improves stripping. The less-than-expected improvement was explained by the carryover of nitrate from scrubbing into stripping. Accordingly, more effective stripping is obtained after a scrub of the solvent with 0.1 M sodium hydroxide. Functional alternatives to boric acid include sodium bicarbonate or cesium hydroxide as strip solutions. Profound stripping improvement is achieved when trioctylamine, one of the components of the CSSX solvent, is replaced with a commercial guanidine reagent (LIX 79). The more basic guanidine affords greater latitude in selection of aqueous conditions in that it protonates even at mildly alkaline pH values. Under process-relevant conditions, cesium distributions on stripping are decreased on the order of 100-fold compared with current CSSX performance. The extraction properties of the solvent were preserved unchanged over three successive extract-scrub-strip cycles. From the point of view of compatibility with downstream processing, boric acid represents an attractive stripping agent, as it is also a potentially ideal feed for borosilicate vitrification of the separated 137Cs product stream. Possibilities for use of these results toward a dramatically better next-generation CSSX process, possibly one employing the

  11. Summary Report on Gamma Radiolysis of TBP/n-dodecane in the Presence of Nitric Acid Using the Radiolysis/Hydrolysis Test Loop

    SciTech Connect

    Dean R. Peterman; Bruce J. Mincher; Catherine L. Riddle; Richard D. Tillotson

    2010-08-01

    Design and installation has been completed for a state-of-the-art radiolysis/hydrolysis test loop system. The system is used to evaluate the effects of gamma radiolysis and acid hydrolysis on the stability and performance of solvent extraction process solvents. The test loop is comprised of two main sections; the solvent irradiation and hydrolysis loop and the solvent reconditioning loop. In the solvent irradiation and hydrolysis loop, aqueous and organic phases are mixed and circulated through a gamma irradiator until the desired absorbed dose is achieved. Irradiation of the mixed phases is more representative of actual conditions in a solvent extraction process. Additionally, the contact of the organic phase with the aqueous phase will subject the solvent components to hydrolysis. This hydrolysis can be accelerated by controlling the system at an elevated temperature. At defined intervals, the organic from the irradiation/hydrolysis loop will be transferred to the solvent reconditioning loop where the solvent is contacted with scrub, strip, and solvent wash solutions which simulate process flowsheet conditions. These two processes are repeated until the total desired dose is achieved. Since all viable solvent extraction components in an advanced fuel cycle must exhibit high radiolytic and hydrolytic stability, this test loop is not limited to any one solvent system but is applicable to all systems of interest. Also, the test loop is not limited to testing of process flowsheets. It is also a valuable tool in support of fundamental research on newly identified extractants/modifiers and the impact of gamma radiation on their stability in a dynamic environment. The investigation of the radiolysis of a TBP/n-dodecane process solvent in contact with aqueous nitric acid has been performed. These studies were intended to confirm/optimize the operability of the test loop system. Additionally, these data are directly applicable to numerous other solvent extraction

  12. DISSOLUTION OF PLUTONIUM METAL USING NITRIC ACID SOLUTIONS CONTAINING POTASSIUM FLUORIDE

    SciTech Connect

    Rudisill, T.; Crowder, M.; Bronikowski, M.

    2007-10-15

    The deinventory and deactivation of the Savannah River Site's (SRS's) FB-Line facility required the disposition of approximately 2000 items from the facility's vaults. Plutonium (Pu) scraps and residues which do not meet criteria for conversion to a mixed oxide fuel will be dissolved and the solution stored for subsequent disposition. Some of the items scheduled for dissolution are composite materials containing Pu and tantalum (Ta) metals. The preferred approach for handling this material is to dissolve the Pu metal, rinse the Ta metal with water to remove residual acid, and burn the Ta metal. The use of a 4 M nitric acid (HNO{sub 3}) solution containing 0.2 M potassium fluoride (KF) was initially recommended for the dissolution of approximately 500 g of Pu metal. However, prior to the use of the flowsheet in the SRS facility, a new processing plan was proposed in which the feed to the dissolver could contain up to 1250 g of Pu metal. To evaluate the use of a larger batch size and subsequent issues associated with the precipitation of plutonium-containing solids from the dissolving solution, scaled experiments were performed using Pu metal and samples of the composite material. In the initial experiment, incomplete dissolution of a Pu metal sample demonstrated that a 1250 g batch size was not feasible in the HB-Line dissolver. Approximately 45% of the Pu was solubilized in 4 h. The remaining Pu metal was converted to plutonium oxide (PuO{sub 2}). Based on this work, the dissolution of 500 g of Pu metal using a 4-6 h cycle time was recommended for the HB-Line facility. Three dissolution experiments were subsequently performed using samples of the Pu/Ta composite material to demonstrate conditions which reduced the risk of precipitating a double fluoride salt containing Pu and K from the dissolving solution. In these experiments, the KF concentration was reduced from 0.2 M to either 0.15 or 0.175 M. With the use of 4 M HNO{sub 3} and a reduction in the KF

  13. Treatment of infectious skin defects or ulcers with electrolyzed strong acid aqueous solution.

    PubMed

    Sekiya, S; Ohmori, K; Harii, K

    1997-01-01

    A chronic ulcer with an infection such as methicillin-resistant Staphylococcus aureus is hard to heal. Plastic and reconstructive surgeons often encounter such chronic ulcers that are resistant to surgical or various conservative treatments. We applied conservative treatment using an electrolyzed strong acid aqueous solution and obtained satisfactory results. The lesion was washed with the solution or soaked in a bowl of the solution for approximately 20 min twice a day. Fresh electrolyzed strong acid aqueous solution is unstable and should be stored in a cool, dark site in a sealed bottle. It should be used within a week after it has been produced. Here we report on 15 cases of infectious ulcers that were treated by electrolyzed strong acid aqueous solution. Of these cases, 7 patients were healed, 3 were granulated, and in 5, infection subsided. In most cases the lesion became less reddish and less edematous. Discharge or foul odor from the lesion was decreased. Electrolyzed strong acid aqueous solution was especially effective for treating a chronic refractory ulcer combined with diabetes melitus or peripheral circulatory insufficiency. This clinically applied therapy of electrolyzed strong acid aqueous solution was found to be effective so that this new therapeutic technique for ulcer treatment can now be conveniently utilized.

  14. Influence of Fe loadings on desulfurization performance of activated carbon treated by nitric acid.

    PubMed

    Guo, Jia-Xiu; Shu, Song; Liu, Xiao-Li; Wang, Xue-Jiao; Yin, Hua-Qiang; Chu, Ying-Hao

    2017-02-01

    A series of Fe supported on activated carbon treated by nitric acid are prepared by incipient wetness impregnation with ultrasonic assistance and characterized by N2 adsorption-desorption, X-ray diffraction, Fourier transform infrared spectrum and X-ray photoelectron spectroscopy. It has shown that Fe loadings significantly influence the desulfurization activity. Fe/NAC5 exhibits an excellent removal ability of SO2, corresponding to breakthrough sulfur capacity of 323 mg/g. With the increasing Fe loadings, the generated Fe3O4 and Fe2SiO4 increase, but Fe2(SO4)3 is observed after desulfurization. Fe/NAC1 has a Brunauer-Emmett-Teller (BET) surface area of 925 m(2)/g with micropore surface area of 843 m(2)/g and total pore volume of 0.562 cm(3)/g including a micropore volume of 0.300 cm(3)/g. With the increasing Fe loadings, BET surface area and micropore volume decrease, and those of Fe/NAC10 decrease to 706 m(2)/g and 0.249 cm(3)/g. The Fe loadings influence the pore-size distribution, and SO2 adsorption mainly reacts in micropores at about 0.70 nm. C=O and C-O are observed for all samples before SO2 removal. After desulfurization, the C-O stretching is still detected, but the C=O stretching vibration of carbonyl groups disappears. The stretching of S-O or S=O in sulfate is observed at 592 cm(-1) for the used sample, proving that the existence of [Formula: see text].

  15. WACCM-D—Improved modeling of nitric acid and active chlorine during energetic particle precipitation

    NASA Astrophysics Data System (ADS)

    Andersson, M. E.; Verronen, P. T.; Marsh, D. R.; Päivärinta, S.-M.; Plane, J. M. C.

    2016-09-01

    Observations have shown that a number of neutral minor species are affected by energetic particle precipitation (EPP) and ion chemistry (IC) in the polar regions. However, to date the complexity of the ion chemistry below the mesopause (i.e., in the D region ionosphere) has restricted global models to simplified EEP/IC parameterizations which are unable to reproduce some important effects, e.g., the increase of mesospheric nitric acid (HNO3). Here we use WACCM-D, a variant of the Whole Atmosphere Community Climate Model which includes a selected set of D region ion chemistry designed to produce the observed effects of EPP/IC. We evaluate the performance of EPP/IC modeling by comparing WACCM-D results for the January 2005 solar proton event (SPE) to those from the standard WACCM and Aura/Microwave Limb Sounder (MLS) and SCISAT/Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS) observations. The results indicate that WACCM-D improves the modeling of HNO3, HCl, ClO, OH, and NOx during the SPE. Northern Hemispheric HNO3 from WACCM-D shows an increase by 2 orders of magnitude at 40-70 km compared to WACCM, reaching 2.6 ppbv, in agreement with the observations. For HCl and ClO, the improvement is most pronounced in the Southern Hemisphere at 40-50 km where WACCM-D predicts a decrease of HCl and increase of ClO by 1.6% and 10%, respectively, similar to MLS data. Compared to WACCM, WACCM-D produces 25-50% less OH and 30-130% more NOx at 70-85 km which leads to better agreement with the observations. Although not addressed here, longer-term NOx impact of ion chemistry could be important for polar stratospheric ozone and middle atmospheric dynamics.

  16. Convergence of Nitric Oxide and Lipid Signaling: Anti-Inflammatory Nitro-Fatty Acids

    PubMed Central

    Baker, Paul R.S.; Schopfer, Francisco J.; O’Donnell, Valerie B.; Freeman, Bruce A.

    2009-01-01

    The signaling mediators nitric oxide (·NO) and oxidized lipids, once viewed to transduce metabolic and inflammatory information via discrete and independent pathways, are now appreciated as interdependent regulators of immune response and metabolic homeostasis. The interactions between these two classes of mediators result in reciprocal control of mediator sythesis that is strongly influenced by the local chemical environment. The relationship between the two pathways extends beyond co-regulation of ·NO and eicosanoid formation to converge via the nitration of unsaturated fatty acids to yield nitro derivatives (NO2-FA). These pluripotent signaling molecules are generated in vivo as an adaptive response to oxidative inflammatory conditions and manifest predominantly anti-inflammatory signaling reactions. These actions of NO2-FA are diverse, with these species serving as a potential chemical reserve of ·NO, reacting with cellular nucleophiles to post-translationally modify protein structure, function and localization. In this regard these species act as potent endogenous ligands for peroxisome proliferator activated receptor γ. Functional consequences of these signaling mechanisms have been shown in multiple model systems, including the inhibition of platelet and neutrophil functions, induction of heme oxygenase-1, inhibition of LPS-induced cytokine release in monocytes, increased insulin sensitivity and glucose uptake in adipocytes and relaxation of pre-constricted rat aortic segments. These observations have propelled further in vitro and in vivo studies of mechanisms of NO2-FA signaling and metabolism, highlighting the therapeutic potential of this class of molecules as anti-inflammatory drug candidates. PMID:19200454

  17. Infrared overtone spectroscopy and vibrational analysis of a Fermi resonance in nitric acid: Experiment and theory.

    PubMed

    Konen, Ian M; Li, Eunice X J; Lester, Marsha I; Vázquez, Juana; Stanton, John F

    2006-08-21

    High resolution infrared spectra of nitric acid have been recorded in the first OH overtone region under jet-cooled conditions using a sequential IR-UV excitation method. Vibrational bands observed at 6933.39(3), 6938.75(4), and 6951.985(3) cm(-1) (origins) with relative intensities of 0.42(1), 0.38(1), and 0.20(1) are attributed to strongly mixed states involved in a Fermi resonance. A vibrational deperturbation analysis suggests that the optically bright OH overtone stretch (2nu1) at 6939.2(1) cm(-1) is coupled directly to the nu1 + 2nu2 state at 6946.4(1) cm(-1) and indirectly to the 3nu2 + nu3 + nu7 state at 6938.5(1) cm(-1). Both the identity of the zero-order states and the indirect coupling scheme are deduced from complementary CCSD(T) calculations in conjunction with second-order vibrational perturbation theory. The deperturbation analysis also yields the experimental coupling between 2nu1 and nu1 + 2nu2 of -6.9(1) cm(-1), and that between the two dark states of +5.0(1) cm(-1). The calculated vibrational energies and couplings are in near quantitative agreement with experimentally derived values except for a predicted twofold stronger coupling of 2nu1 to nu1 + 2nu2. Weaker coupling of the strongly mixed states to a dense background of vibrational states via intramolecular vibrational energy redistribution is evident from the experimental linewidths of 0.08 and 0.25 cm(-1) for the higher energy and two overlapping lower energy bands, respectively. A comprehensive rotational analysis of the higher energy band yields spectroscopic parameters and the direction of the OH overtone transition dipole moment.

  18. Dissociation of equimolar mixtures of aqueous carboxylic acids in ionic liquids: role of specific interactions.

    PubMed

    Shukla, Shashi Kant; Kumar, Anil

    2015-04-30

    Hammett acidity function observes the effect of protonation/deprotonation on the optical density/absorbance of spectrophotometric indicator. In this work, the Hammett acidity, H0, of equimolar mixtures of aqueous HCOOH, CH3COOH, and CH3CH2COOH was measured in 1-methylimidazolium-, 1-methylpyrrolidinium-, and 1-methylpiperidinium-based protic ionic liquids (PILs) and 1-butyl-3-methylimidazolium-based aprotic ionic liquid (AIL) with formate (HCOO(-)) anion. Higher H0 values were observed for the equimolar mixtures of aqueous carboxylic acids in protic ionic liquids compared with those of the aprotic ionic liquid because of the involvement of the stronger specific interactions between the conjugate acid of ionic liquid and conjugate base of carboxylic acids as suggested by the hard-soft acid base (HSAB) theory. The different H0 values for the equimolar mixtures of aqueous carboxylic acids in protic and aprotic ionic liquids were noted to depend on the activation energy of proton transfer (Ea,H(+)). The higher activation energy of proton transfer was obtained in AIL, indicating lower ability to form specific interactions with solute than that of PILs. Thermodynamic parameters determined by the "indicator overlapping method" further confirmed the involvement of the secondary interactions in the dissociation of carboxylic acids. On the basis of the thermodynamic parameter values, the potential of different ionic liquids in the dissociation of carboxylic acids was observed to depend on the hydrogen bond donor acidity (α) and hydrogen bond acceptor basicity (β), characteristics of specific interactions.

  19. Nitric oxide pathway-mediated relaxant effect of aqueous sesame leaves extract (Sesamum radiatum Schum. & Thonn.) in the guinea-pig isolated aorta smooth muscle

    PubMed Central

    Konan, André B; Datté, Jacques Y; Yapo, Paul A

    2008-01-01

    Background Sesamum radiatum Schum. & Thonn. (Pedaliaceae) is an annual herbaceous plant, which belongs to the family Pedaliaceae and genus Sesamum. Sesame is used in traditional medicine in Africa and Asia for many diseases treatment. Sesame plant especially the leaves, seed and oil are consumed locally as a staple food by subsistence farmers. The study analyses the relaxation induced by the aqueous extract of leaves from sesame (ESera), compared with those of acetylcholine (ACh) in the guinea-pig aortic preparations (GPAPs), in order to confirm the use in traditional medicine for cardiovascular diseases. Methods The longitudinal strips of aorta of animals were rapidly removed from animals. The aorta was immediately placed in a Mac Ewen solution. Experiments were performed in preparations with intact endothelium as well as in aortae where the endothelium had been removed. The preparations were suspended between two L-shaped stainless steel hooks in a 10 ml organ bath with Mac Ewen solution. The isometric contractile force of the aorta strips of guinea-pig were recorded by using a strain gauge. All both drugs caused concentration-dependent relaxations responses. Results The aqueous extract of leaves from sesame ESera (1 × 10-7 – 0.1 μg/ml) caused a graded relaxation in GPAPs with intact endothelium, with a EC50-value of 1 × 10-4 μg/ml. The same effect was observed with ACh (7 × 10-2 nM – 7 × 10-1 μM), which caused relaxation in a concentration-dependent manner. The relaxation in response to ESera and, like that to ACh in GPAPs without endothelium, was fully abolished. Destruction of the endothelium or incubation with the nitric oxyde synthase inhibitor (L-NNA) significantly enhanced the inhibition of the relaxation response to ESera. Moreover, all concentrations induced vasoconstrictions. However, L-NNA produced a significant displacement to the right (about 65-fold) of the relaxation response to ESera. Similar results were obtained with ACh. Both

  20. A theoretical study on the pH dependence of X-ray emission spectra for aqueous acetic acid

    NASA Astrophysics Data System (ADS)

    Nishida, Naohiro; Tokushima, Takashi; Takahashi, Osamu

    2016-04-01

    We performed theoretical calculations to reproduce the site-selective XES spectra for aqueous acetic acid at the oxygen K-edge. The shape of the experimental XES spectra obtained from aqueous acetic acid drastically changed when the pH value was high. Structure sampling of an aqueous acetic acid cluster model was performed by the ab initio molecular dynamics trajectory. Relative XES peak intensities for the core⿿hole excited state dynamics simulations were calculated using density functional theory. We found that the theoretical XES spectra reproduced well the experimental spectra and that these calculations gave us electronic and molecular structure information about aqueous acetic acid.

  1. Nitric oxide donors prevent while the nitric oxide synthase inhibitor L-NAME increases arachidonic acid plus CYP2E1-dependent toxicity

    SciTech Connect

    Wu Defeng; Cederbaum, Arthur . E-mail: arthur.cederbaum@mssm.edu

    2006-10-15

    Polyunsaturated fatty acids such as arachidonic acid (AA) play an important role in alcohol-induced liver injury. AA promotes toxicity in rat hepatocytes with high levels of cytochrome P4502E1 and in HepG2 E47 cells which express CYP2E1. Nitric oxide (NO) participates in the regulation of various cell activities as well as in cytotoxic events. NO may act as a protectant against cytotoxic stress or may enhance cytotoxicity when produced at elevated concentrations. The goal of the current study was to evaluate the effect of endogenously or exogenously produced NO on AA toxicity in liver cells with high expression of CYP2E1 and assess possible mechanisms for its actions. Pyrazole-induced rat hepatocytes or HepG2 cells expressing CYP2E1 were treated with AA in the presence or absence of an inhibitor of nitric oxide synthase L-N {sup G}-Nitroarginine Methylester (L-NAME) or the NO donors S-nitroso-N-acetylpenicillamine (SNAP), and (Z)-1-[-(2-aminoethyl)-N-(2-aminoethyl)]diazen-1-ium-1,2-diolate (DETA-NONO). AA decreased cell viability from 100% to 48 {+-} 6% after treatment for 48 h. In the presence of L-NAME, viability was further lowered to 23 {+-} 5%, while, SNAP or DETA-NONO increased viability to 66 {+-} 8 or 71 {+-} 6%. The L-NAME potentiated toxicity was primarily necrotic in nature. L-NAME did not affect CYP2E1 activity or CYP2E1 content. SNAP significantly lowered CYP2E1 activity but not protein. AA treatment increased lipid peroxidation and lowered GSH levels. L-NAME potentiated while SNAP prevented these changes. Thus, L-NAME increased, while NO donors decreased AA-induced oxidative stress. Antioxidants prevented the L-NAME potentiation of AA toxicity. Damage to mitochondria by AA was shown by a decline in the mitochondrial membrane potential (MMP). L-NAME potentiated this decline in MMP in association with its increase in AA-induced oxidative stress and toxicity. NO donors decreased this decline in MMP in association with their decrease in AA

  2. Phosphorylation of glyceric acid in aqueous solution using trimetaphosphate

    NASA Astrophysics Data System (ADS)

    Kolb, Vera; Orgel, Leslie E.

    1996-02-01

    The phosphorylation of glyceric acid is an interesting prebiotic reaction because it converts a simple, potentially prebiotic organic molecule into phosphate derivatives that are central to carbohydrate metabolism. We find that 0.05 M glyceric acid in the presence of 0.5 M trimetaphosphate in alkaline solution gives a mixture of 2- and 3-phosphoglyceric acids in combined yields of up to 40%.

  3. Phosphorylation of Glyceric Acid in Aqueous Solution Using Trimetaphosphate

    NASA Technical Reports Server (NTRS)

    Kolb, Vera; Orgel, Leslie E.

    1996-01-01

    The phosphorylation of glyceric acid is an interesting prebiotic reaction because it converts a simple, potentially prebiotic organic molecule into phosphate derivatives that are central to carbohydrate metabolism. We find that 0.05 M glyceric acid in the presence of 0.5 M trimetaphosphate in alkaline solution gives a mixture of 2- and 3-phosphoglyceric acids in combined yields of up to 40%.

  4. Adsorption of organic acids from dilute aqueous solution onto activated carbon

    SciTech Connect

    Wang, S.W.

    1980-06-01

    The radioisotope technique was used to study the removal of organic acid contaminants from dilute aqueous solutions onto activated carbon. Acetic acid, propionic acid, n-butyric acid, n-hexanoic acid and n-heptanoic acid were studied at 278, 298, and 313/sup 0/K. Three bi-solute acid mixtures (acetic and propionic acids, acetic and butanoic acids, and propionic and butanoic acids) were studied at 278 and 298/sup 0/K. Isotherms of the single-solute systems were obtained at three different temperatures in the very dilute concentration region (less than 1% by weight). These data are very important in the prediction of bi-solute equilibrium data. A Polanyi-based competitive adsorption potential theory was used to predict the bi-solute equilibrium uptakes. Average errors between calculated and experimental data ranges from 4% to 14%. It was found that the competitive adsorption potential theory gives slightly better results than the ideal adsorbed solution theory.

  5. Effect of nitric oxide synthase inhibition on the exchange of glucose and fatty acids in human skeletal muscle

    PubMed Central

    2013-01-01

    Background The role of nitric oxide in controlling substrate metabolism in humans is incompletely understood. Methods The present study examined the effect of nitric oxide blockade on glucose uptake, and free fatty acid and lactate exchange in skeletal muscle of eight healthy young males. Exchange was determined by measurements of muscle perfusion by positron emission tomography and analysis of arterial and femoral venous plasma concentrations of glucose, fatty acids and lactate. The measurements were performed at rest and during exercise without (control) and with blockade of nitric oxide synthase (NOS) with NG-monomethyl-l-arginine (L-NMMA). Results Glucose uptake at rest was 0.40 ± 0.21 μmol/100 g/min and increased to 3.71 ± 2.53 μmol/100 g/min by acute one leg low intensity exercise (p < 0.01). Prior inhibition of NOS by L-NMMA did not affect glucose uptake, at rest or during exercise (0.40 ± 0.26 and 4.74 ± 2.69 μmol/100 g/min, respectively). In the control trial, there was a small release of free fatty acids from the limb at rest (−0.05 ± 0.09 μmol/100 g/min), whereas during inhibition of NOS, there was a small uptake of fatty acids (0.04 ± 0.05 μmol/100 g/min, p < 0.05). During exercise fatty acid uptake was increased to (0.89 ± 1.07 μmol/100 g/min), and there was a non-significant trend (p = 0.10) for an increased FFA uptake with NOS inhibition 1.23 ± 1.48 μmol/100 g/min) compared to the control condition. Arterial concentrations of all substrates and exchange of lactate over the limb at rest and during exercise remained unaltered during the two conditions. Conclusion In conclusion, inhibition of nitric oxide synthesis does not alter muscle glucose uptake during low intensity exercise, but affects free fatty acid exchange especially at rest, and may thus be involved in the modulation of energy metabolism in the human skeletal muscle. PMID:23773265

  6. Phosphatidic acid formation is required for extracellular ATP-mediated nitric oxide production in suspension-cultured tomato cells.

    PubMed

    Sueldo, Daniela J; Foresi, Noelia P; Casalongué, Claudia A; Lamattina, Lorenzo; Laxalt, Ana M

    2010-03-01

    *In animals and plants, extracellular ATP exerts its effects by regulating the second messengers Ca(2+), nitric oxide (NO) and reactive oxygen species (ROS). In animals, phospholipid-derived molecules, such as diacylglycerol, phosphatidic acid (PA) and inositol phosphates, have been associated with the extracellular ATP signaling pathway. The involvement of phospholipids in extracellular ATP signaling in plants, as it is established in animals, is unknown. *In vivo phospholipid signaling upon extracellular ATP treatment was studied in (32)P(i)-labeled suspension-cultured tomato (Solanum lycopersicum) cells. *Here, we report that, in suspension-cultured tomato cells, extracellular ATP induces the formation of the signaling lipid phosphatidic acid. Exogenous ATP at doses of 0.1 and 1 mM induce the formation of phosphatidic acid within minutes. Studies on the enzymatic sources of phosphatidic acid revealed the participation of both phospholipase D and C in concerted action with diacylglycerol kinase. *Our results suggest that extracellular ATP-mediated nitric oxide production is downstream of phospholipase C/diacylglycerol kinase activation.

  7. Photocatalytic Oxidation of Sulfurous Acid in an Aqueous Medium

    ERIC Educational Resources Information Center

    Romero, Alicia; Hernandez, Willie; Suarez, Marco F.

    2005-01-01

    The effect of some parameters on sulfurous acid and sulfur oxidation kinetics such as initial concentration of sulfurous acid, oxygen, TiO[2] crystalline concentration, the power of black light, and quantity of TiO[2] is investigated. The experiments can be performed in an undergraduate physical chemistry laboratory with an inexpensive…

  8. Effects of nitric oxide availability on responses of spinal wide dynamic range neurons to excitatory amino acids.

    PubMed

    Budai, D; Wilcox, G L; Larson, A A

    1995-05-04

    The role of nitric oxide (NO) in responses of spinal dorsal horn neurons to excitatory amino acids and to cutaneous mechanical stimuli was examined. Extracellular recordings were made from wide dynamic range neurons excited with iontophoretically applied excitatory amino acid agonists, N-methyl-D-aspartate (NMDA) and (R,S)-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) or kainic acid. Nitric oxide availability was decreased by iontrophoretic application of NO synthase inhibitors, N omega-nitro-L-arginine methyl ester (L-NAME) or L-N5-(1-iminoethyl)ornithine (L-NIO), or elevated by the NO donating compound, S-nitroso-N-penicillamine (SNAP). When cells were excited with successive application of NMDA and non-NMDA excitatory amino acid receptor agonists, application of NO synthase inhibitors led to a decrease in responses to NMDA in 60% of neurons. In more than a third of the cells tested, inhibition of NO synthase caused reciprocal changes in responses to glutamate receptor agonists: NMDA-evoked responses were significantly decreased whereas responses to the non-NMDA receptor agonists (AMPA or kainic acid) were increased. Application of the NO donating compound, S-nitroso-N-penicillamine, revealed an opposite tendency, increasing responses to NMDA in more than half of the neurons tested. In approximately 40% of the cells, reciprocal changes in responses to excitatory amino acid receptor agonists of NMDA versus non-NMDA types were observed after application of S-nitroso-N-penicillamine, such that the increase in NMDA responses was accompanied by decreases in the responses to kainic acid.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Multi-walled carbon nanotubes in aqueous phytic acid for enhancing biosensor

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyu; Miao, Yun; Ye, Pingping; Wen, Ying; Yang, Haifeng

    2014-04-01

    The poor dispersion of carbon based nanomaterials without strong acid pretreatment in aqueous solution is a fundamental problem, limiting its applications in biology-related fields. A good dispersion of multi-walled carbon nanotubes (MWCNTs) in water was realized by 50 wt.% phytic acid (PA) solution. As an application case, the PA-MWCNTs dispersion in aqueous solution was used for the immobilization of horseradish peroxidase (HRP) and its direct electrochemistry was realized. The constructed biosensor has a sound limit of detection, wide linear range, and high affinity for hydrogen peroxide (H2O2) as well as being free from interference of co-existing electro-active species.

  10. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOEpatents

    Dietz, Mark L.; Horwitz, E. Philip; Bartsch, Richard A.; Barrans, Jr., Richard E.; Rausch, David

    1999-01-01

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution.

  11. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOEpatents

    Dietz, M.L.; Horwitz, E.P.; Bartsch, R.A.; Barrans, R.E. Jr.; Rausch, D.

    1999-03-30

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution. 4 figs.

  12. Upregulation of N-acetylaspartic acid resulting nitric oxide toxicity induces aspartoacylase mutations and protein interaction to cause pathophysiology seen in Canavan disease.

    PubMed

    Surendran, Sankar

    2010-12-01

    Aspartoacylase (ASPA) converts N-acetylaspartic acid into aspartate and acetate. In Canavan disease (CD), N-acetylaspartic acid (NAA) is found to be increased and over 65 mutations including IVS4+1 G → T, deletion of introns and exons have been reported in the ASPA gene. These changes lead to severe form or mild form of CD. The present study was aimed to understand mechanism in the cause of mutations in ASPA and pathophysiology seen in patients with CD. We have reported that elevated levels of NAA induce inducible nitric oxide (iNOS) to produce nitric oxide toxicity in CD. Nitric oxide toxicity has been shown to induce several mutations including base change G → T and deletion and enhances protein interaction in several genes. Therefore we hypothesize that upregulation of NAA stimulates NOS and the resulting nitric oxide toxicity induces ASPA mutations and protein interaction to result pathophysiological abnormalities seen in patients with CD.

  13. Atmospheric Implications of Aqueous Solvation on the Photochemistry of Pyruvic Acid

    NASA Astrophysics Data System (ADS)

    Reed Harris, A. E.; Ervens, B.; Shoemaker, R.; Kroll, J. A.; Rapf, R.; Griffith, E. C.; Monod, A.; Vaida, V.

    2014-12-01

    Formation of aerosol from organic compounds is under investigation in order to better predict the overall radiative forcing from atmospheric aerosols and their influence on global climate. One possible formation pathway for secondary organic aerosol (SOA), which is now becoming more widely accepted, is from bulk aqueous photoreactions in atmospheric particles that create low volatility compounds. These products may remain particulate upon droplet evaporation, increasing SOA mass in the atmosphere. SOA formed in this manner may account for some of the discrepancy between measured and predicted amounts of SOA. This presentation will describe the photochemistry of pyruvic acid, an α-keto acid found in the atmosphere, in aqueous solutions representative of solutes in fogs, clouds, and wet aerosols. Solvation of pyruvic acid in water changes the photodissociation mechanism and products from that of the gas phase. The photoproducts from the aqueous phase are higher in molecular weight and therefore possible SOA precursors. Further, these polymers partition to the surface of water and are expected to modify the the surface properties of atmospheric aerosols that determine the kinetics of water uptake. The reaction mechanism of pyruvic acid as a function of its environment and concentration will be presented along with the kinetics obtained for the photochemistry in aqueous solution. These results are used as input in an atmospheric model to evaluate the atmospheric consequences of solvation of pyruvic acid on its atmospheric reactivity and its role as a global sink.

  14. Histological effects of aqueous acids and gaseous hydrogen chloride on bean leaves

    SciTech Connect

    Swiecki, T.J.; Endress, A.G.; Taylor, O.C.

    1982-01-01

    Primary leaves of Phaseoulus vulgaris L. (pinto bean), 9 or 12 days from sowing, were exposed to aqueous acids, chloride salts, or hydrogen chloride gas. Leaves were examined for the presence and severity of resultant visible injury and samples for light and scanning electron microscopy. Exposure to 0.06 N HCl, HNO/sub 3/, H/sub 2/SO/sub 4/ or 14.5-19.0 mg m/sup -3/ gaseous HCl for 20 min evoked similar foliar injury including glazing and necrosis of the laminas. This injury appeared to result initially from plasmolysis and collapse of the epidermis and subsequently of the underlying mesophyll. Cellular injury was accompanied by various cytoplasmic alterations. Microscopic symptoms observed in leaves exposed to gaseous HCl or aqueous acids included vesicles and particulates within the larger vacuoles. Similar symptoms were present in leaves exposed to polyethylene glycol 6000. Differential effects included formation of necrotic pits and preferential injury to paravascular tissues in leaves treated with aqueous acids and crystalline chloroplast inclusions in gaseous HCl-treated and water-stressed leaves. The visible and microscopic appearances of leaves exposed to aqueous acids or gaseous HCl were compared and related to injury stemming from acid precipitation and a possible mechanism of action for gaseous HCl phytotoxicity.

  15. Acid gas treating by aqueous alkanolamines. Annual report, January-December 1994

    SciTech Connect

    Sandall, O.C.; Rinker, E.B.; Ashour, S.

    1994-12-01

    The objective of this work is to investigate the simulateneous absorption or desorption of CO2 and H2S into and from a mixed aqueous amine solvent consisting of methyldiethanolamine (MDEA) and diethanolamine (DEA). In work completed this year the authors have measured the density, viscosity and surface tension of pure MDEA and DEA over a range in temperatures. The diffusivity of N2O was measured in aqueous blends of MDEA and DEA at 50 wt% total amine for various ratios of DEA to MDEA over the temperature range 20 to 80 deg. C. A theoretically-based model has been developed for the correlation of the physical solubility of N2O in aqueous amine solutions. A penetration theory type model which was developed to describe acid gas absorption in aqueous amine solutions was used to carry out a sensitivity analysis for the various parameters affecting the rate of absorption of CO2 in MDEA solutions.

  16. [Sorption of amino acids from aqueous solutions on activated charcoal].

    PubMed

    Nekliudov, A D; Tsibanov, V V

    1985-03-01

    Various methods for quantitative description of amino acid sorption from solutions for parenteral nutrition on activated charcoal were studied under dynamic and static conditions. With the use of the well-known Freindlich and Langmuir absorption isotherms it was shown to be possible to describe in a simplified way the complex multicomponent process of sorption of the amino acids and to estimate their loss at the filtration stage.

  17. Acid gas absorption in aqueous solutions of mixed amines

    SciTech Connect

    Rinker, E.B.; Ashour, S.S.; Sandall, O.C.

    1996-12-31

    A mass transfer model has been developed to describe the rate of absorption (or desorption) of H{sub 2}S and CO{sub 2} in aqueous blends of a tertiary and a secondary or a primary amine. The model is based on penetration theory, and all significant chemical reactions are incorporated in the model. The reactions are taken to be reversible, with reactions involving only a proton transfer considered to be at equilibrium. The particular amines studied in this research were methyldiethanolamine (MDEA), a tertiary amine, and diethanolamine (DEA), a secondary amine. Key physicochemical data needed in the model, such as diffusion coefficients, kinetic rate constants, and gas solubilities, were measured. Experimental absorption rates of CO{sub 2} and H{sub 2}S were measured in a model gas-liquid contacting device and were compared with model predictions. Experiments were carried out for single amine solutions (both MDEA and DEA) and for amine blends.

  18. Effect of Heat Input on Microstructural Changes and Corrosion Behavior of Commercially Pure Titanium Welds in Nitric Acid Medium

    NASA Astrophysics Data System (ADS)

    Ravi Shankar, A.; Gopalakrishnan, G.; Balusamy, V.; Kamachi Mudali, U.

    2009-11-01

    Commercially pure titanium (Ti) has been selected for the fabrication of dissolver for the proposed fast reactor fuel reprocessing plant at Kalpakkam, India. In the present investigation, microstructural changes and corrosion behavior of tungsten inert gas (TIG) welds of Ti grade-1 and grade-2 with different heat inputs were carried out. A wider heat affected zone was observed with higher heat inputs and coarse grains were observed from base metal toward the weld zone with increasing heat input. Fine and more equiaxed prior β grains were observed at lower heat input and the grain size increased toward fusion zone. The results indicated that Ti grade-1 and grade-2 with different heat inputs and different microstructures were insensitive to corrosion in liquid, vapor, and condensate phases of 11.5 M nitric acid tested up to 240 h. The corrosion rate in boiling liquid phase (0.60-0.76 mm/year) was higher than that in vapor (0.012-0.039 mm/year) and condensate phases (0.04-0.12 mm/year) of nitric acid for Ti grade-1 and grade-2, as well as for base metal for all heat inputs. Potentiodynamic polarization experiment carried out at room temperature indicated higher current densities and better passivation in 11.5 M nitric acid. SEM examination of Ti grade-1 welds for all heat inputs exposed to liquid phase after 240 h showed corrosion attack on the surface, exposing Widmanstatten microstructure containing acicular alpha. The continuous dissolution of the liquid-exposed samples was attributed to the heterogeneous microstructure and non-protective passive film formation.

  19. Persistent Water-Nitric Acid Condensate with Saturation Water Vapor Pressure Greater than That of Hexagonal Ice.

    PubMed

    Gao, Ru-Shan; Gierczak, Tomasz; Thornberry, Troy D; Rollins, Andrew W; Burkholder, James B; Telg, Hagen; Voigt, Christiane; Peter, Thomas; Fahey, David W

    2016-03-10

    A laboratory chilled mirror hygrometer (CMH), exposed to an airstream containing water vapor (H2O) and nitric acid (HNO3), has been used to demonstrate the existence of a persistent water-nitric acid condensate that has a saturation H2O vapor pressure greater than that of hexagonal ice (Ih). The condensate was routinely formed on the mirror by removing HNO3 from the airstream following the formation of an initial condensate on the mirror that resembled nitric acid trihydrate (NAT). Typical conditions for the formation of the persistent condensate were a H2O mixing ratio greater than 18 ppm, pressure of 128 hPa, and mirror temperature between 202 and 216 K. In steady-state operation, a CMH maintains a condensate of constant optical diffusivity on a mirror through control of only the mirror temperature. Maintaining the persistent condensate on the mirror required that the mirror temperature be below the H2O saturation temperature with respect to Ih by as much as 3 K, corresponding to up to 63% H2O supersaturation with respect to Ih. The condensate was observed to persist in steady state for up to 16 h. Compositional analysis of the condensate confirmed the co-condensation of H2O and HNO3 and thereby strongly supports the conclusion that the Ih supersaturation is due to residual HNO3 in the condensate. Although the exact structure or stoichiometry of the condensate could not be determined, other known stable phases of HNO3 and H2O are excluded as possible condensates. This persistent condensate, if it also forms in the upper tropical troposphere, might explain some of the high Ih supersaturations in cirrus and contrails that have been reported in the tropical tropopause region.

  20. Field test of four methods for gas-phase ambient nitric acid

    NASA Astrophysics Data System (ADS)

    Arnold, J. R.; Hartsell, Benjamin E.; Luke, Winston T.; Rahmat Ullah, S. M.; Dasgupta, Purnendu K.; Greg Huey, L.; Tate, Paul

    Three semi-continuous methods for detecting nitric acid (HNO 3) were tested against the annular denuder + filter pack (ADS) integrated collection technique at the Tampa Bay Regional Atmospheric Chemistry Experiment (BRACE) Sydney research station ˜20km downwind of the Tampa, Florida, urban core. The semi-continuous instruments included: two slightly differing implementations of the NOY-NO (total oxides of nitrogen minus that total denuded of HNO 3) denuder difference technique, one from the NOAA Air Resources Lab (ARL), and one from Atmospheric Research and Analysis, Inc. (ARA); the parallel plate wet diffusion scrubber + online ion chromatography technique from Texas Tech University (TTU); and the chemical ionization mass spectrometer from the Georgia Institute of Technology (GIT). Twelve hour ADS samples were collected by the University of South Florida (USF). Results for 10 min samples computed from the various higher sampling frequencies of each semi-continuous instrument showed good agreement (R2>0.7) for afternoon periods of the highest production and accumulation of HNO 3. Further, agreement was within ±30% for these instruments even at HNO 3 concentrations <0.30ppb. The USF ADS results were biased low, however, by 44%, on average, compared to the corporate 12 h aggregated means from the semi-continuous methods, and by >60% for the nighttime samples; ADS results were below the corporate mean maximum HNO 3 concentration by >30% as well. The four instruments using semi-continuous methods, by contrast, were all within 10% of each other's 12 h mean mixing ratios. While only ARA employed a formal minimum detection limit at 0.050 ppb, error analysis with the other techniques established that at the same level of precision, TTU's effective limit was approximately the same as ARA's and that ARL's limit was 0.030 ppb; analysis for GIT showed no apparent effective limit at the levels of HNO 3 encountered in this field study. The importance of sample inlet height for

  1. A laboratory study of the heterogeneous reaction of nitric acid on calcium carbonate particles

    NASA Astrophysics Data System (ADS)

    Goodman, A. L.; Underwood, G. M.; Grassian, V. H.

    2000-12-01

    It has been postulated that the reaction of nitric acid with calcium carbonate, namely, CaCO3(s) + 2HNO3(g) → Ca(NO3)2(s) + CO2(g) + H2O(g), plays an important role in the atmosphere. In this study, transmission FTIR spectroscopy, diffuse reflectance UV-visible spectroscopy, transmission electron microscopy and a Knudsen cell reactor coupled to a quadrupole mass spectrometer have been used to investigate the heterogeneous reactivity of HNO3 on CaCO3 at 295 K as a function of relative humidity. Transmission FTIR spectroscopy was used to probe both gas-phase and adsorbed products and showed that the reaction of HNO3 and CaCO3 is limited to the surface of the CaCO3 particle in the absence of adsorbed water. However, in the presence of water vapor, the reaction is greatly enhanced and is not limited to the surface of the particle producing both solid calcium nitrate and gaseous carbon dioxide. The enhanced reactivity of the particles is attributed to the presence of a layer of adsorbed water on the particle surface. The amount of adsorbed water on the particle surface is strongly dependent on the extent of the reaction. This can be understood in terms of the increased hydrophilicity of calcium nitrate as compared to calcium carbonate. Data from experiments using a mass-calibrated Knudsen cell reactor showed the stoichiometry for the reaction determined from gas-phase species deviated from that expected from the balanced equation. Water adsorption on the particle surface and gases dissolved into the water layer appear to be the cause of this discrepancy. The measured uptake coefficient accounting for the BET area of the sample is determined to be 2.5±0.1×10-4 for HNO3 on CaCO3 under dry conditions and is found to increase in the presence of water vapor. Atmospheric implications of the results presented here are discussed.

  2. Variational Calculations of IR Ro-Vibrational Spectra for Nitric Acid

    NASA Astrophysics Data System (ADS)

    Pavlyuchko, A. I.; Yurchenko, S. N.; Tennyson, J.

    2013-09-01

    To model the atmospheric composition of the potentially habitable planets, it is essential to have comprehensive data on the spectroscopic properties of the main molecular absorbers. This is especially true in the infrared region which is dominated by transitions of polyatomic molecules [1]. Nitric acid (HNO3) is an important constituent of the Earth atmosphere where it is a prominent bio-signature. Here we present simulations of the absorption spectra for HNO3. We have developed a variational method to solve the ro-vibrational Schrödinger equation for a general polyatomic molecule. The ro-vibrational Hamiltonian is given by [2] where the internal curvilinear vibrational coordinates qi are used to represent the displacements of the bond lengths and bond angles, ?ij(q) are elements of the matrix of the kinematic coefficients, t is the determinant of this matrix, 'a are the Euler angles, and μab(q) is the inverse matrix of the tensor of inertia. The potential energy function, V (q), is given by a fourthorder polynomial expansion in terms of Morse variables xi = 1 - e-iqi for the stretching coordinates and xi = qi for the bending coordinates. The dipole moment of the molecule is presented in the form of a Taylor series of the 2nd order in terms of qi. The parameters of the potential energy and the dipole moment functions of HNO3 were calculated by the quantum chemical method at the CCSD(T)/aug-cc-pVQZ level of theory. With this potential energy function, agreement between the calculated and experimental fundamental frequencies of vibrations is within 5 cm -1. The harmonic part of the potential function was then optimized by fitting to the experimental fundamental frequencies and used to simulate the IR spectra of HNO3. The results are in good agreement with the experimental data. The figure shows an example of the simulated spectra of HNO3 in the area of the strong Fermi resonance between the -5 and 2-9 bands along with an experimental counterpart. The resulting

  3. Follicular characteristics and intrafollicular concentrations of nitric oxide and ascorbic acid during ovarian acyclicity in water buffalo (Bubalus bubalis).

    PubMed

    Khan, Firdous Ahmad; Das, Goutam Kumar

    2012-01-01

    The objective of this study was to examine the follicular characteristics and intrafollicular concentrations of nitric oxide and ascorbic acid during ovarian acyclicity in buffaloes. Ovaries were collected from 56 acyclic and 95 cyclic buffaloes at slaughter, surface follicle number was counted and follicles were classified into small (5.0-6.9 mm), medium (7.0-9.9 mm), and large (≥ 10.0 mm) size categories based on their diameter. Follicular fluid was aspirated and assayed for nitric oxide, ascorbic acid, estradiol, and progesterone. Acyclic buffaloes had a higher (P<0.05) number of medium-sized follicles and a lower (P<0.001) number of large follicles than the cyclic ones. In acyclic animals, the number of large follicles was lower (P<0.01) than in medium size category which in turn was lower (P<0.001) than the number of small follicles. In contrast, the number of medium and large follicles was not different (P>0.05) in the cyclic control. However, the number of small-sized follicles was higher (P<0.001) compared to the other two categories. The incidence of large-sized follicles was lower (P<0.05) in acyclic buffalo population compared to the cyclic control. Evaluation of estrogenic status demonstrated that all the follicles of acyclic buffaloes are estrogen-inactive (E (2)/P (4) ratio<1). Small- and medium-sized follicles of acyclic buffaloes had higher concentrations of nitric oxide (P<0.05 and P<0.001, respectively) and lower concentrations of ascorbic acid (P<0.05 and P<0.01, respectively) than the corresponding size estrogen-active follicles of their cyclic counterparts. In conclusion, this study indicates that follicular development continues during acyclicity in buffaloes. Although follicles in some acyclic buffaloes attain a size corresponding to morphological dominance, they are unable to achieve functional dominance, perhaps due to an altered balance of intrafollicular nitric oxide and ascorbic acid and, as a result, these follicles instead of

  4. STABILITY OF MFI ZEOLITE-FILLED PDMS MEMBRANES DURING PERVAPORATIVE ETHANOL RECOVERY FROM AQUEOUS MIXTURES CONTAINING ACETIC ACID

    EPA Science Inventory

    Pervaporation is a potential process for recovering bioethanol produced from biomass fermentation. Fermentation broths contain ethanol, water, and a variety of other compounds, often including carboxylic acids. The effects of acetic acid on long-term pervaporation of aqueous et...

  5. Boron removal from aqueous solutions by activated carbon impregnated with salicylic acid.

    PubMed

    Celik, Z Ceylan; Can, B Z; Kocakerim, M Muhtar

    2008-03-21

    In this study, the removal of boric acid from aqueous solution by activated carbon impregnated with salicylic acid was studied in batch system. pH, adsorbent amount, initial boron concentration, temperature, shaking rate and salicylic acid film thickness were chosen as parameters. Boron removal efficiencies increased with increasing adsorbent amount, temperature and pH, decreasing initial boron concentration. As thickness of salicylic acid film on activated carbon becomes thin up to 0.088nm, the efficiency increased, and then, the efficiency decreased with becoming thinner than 0.088nm of salicylic acid film. Shaking rate was no effect on removal efficiency. In result, it was determined that the use of salicylic acid as an impregnant for activated carbon led to the increase of the amount of boron adsorbed. A lactone ring, being the most appropriate conformation, forms between boric acid and -COOH and -OH groups of salicylic acid.

  6. Role of calcium signaling in the activation of mitochondrial nitric oxide synthase and citric acid cycle.

    PubMed

    Traaseth, Nathaniel; Elfering, Sarah; Solien, Joseph; Haynes, Virginia; Giulivi, Cecilia

    2004-07-23

    An apparent discrepancy arises about the role of calcium on the rates of oxygen consumption by mitochondria: mitochondrial calcium increases the rate of oxygen consumption because of the activation of calcium-activated dehydrogenases, and by activating mitochondrial nitric oxide synthase (mtNOS), decreases the rates of oxygen consumption because nitric oxide is a competitive inhibitor of cytochrome oxidase. To this end, the rates of oxygen consumption and nitric oxide production were followed in isolated rat liver mitochondria in the presence of either L-Arg (to sustain a mtNOS activity) or N(G)-monomethyl-L-Arg (NMMA, a competitive inhibitor of mtNOS) under State 3 conditions. In the presence of NMMA, the rates of State 3 oxygen consumption exhibited a K(0.5) of 0.16 microM intramitochondrial free calcium, agreeing with those required for the activation of the Krebs cycle. By plotting the difference between the rates of oxygen consumption in State 3 with L-Arg and with NMMA at various calcium concentrations, a K(0.5) of 1.2 microM intramitochondrial free calcium was obtained, similar to the K(0.5) (0.9 microM) of the dependence of the rate of nitric oxide production on calcium concentrations. The activation of dehydrogenases, followed by the activation of mtNOS, would lead to the modulation of the Krebs cycle activity by the modulation of nitric oxide on the respiratory rates. This would ensue in changes in the NADH/NAD and ATP/ADP ratios, which would influence the rate of the cycle and the oxygen diffusion.

  7. Experimental determination of equilibrium constant for the complexing reaction of nitric oxide with hexamminecobalt(II) in aqueous solution.

    PubMed

    Mao, Yan-Peng; Chen, Hua; Long, Xiang-Li; Xiao, Wen-de; Li, Wei; Yuan, Wei-Kang

    2009-02-15

    Ammonia solution can be used to scrub NO from the flue gases by adding soluble cobalt(II) salts into the aqueous ammonia solutions. The hexamminecobalt(II), Co(NH3)6(2+), formed by ammonia binding with Co2+ is the active constituent of eliminating NO from the flue gas streams. The hexamminecobalt(II) can combine with NO to form a complex. For the development of this process, the data of the equilibrium constants for the coordination between NO and Co(NH3)6(2+)over a range of temperature is very important. Therefore, a series of experiments were performed in a bubble column to investigate the chemical equilibrium. The equilibrium constant was determined in the temperature range of 30.0-80.0 degrees C under atmospheric pressure at pH 9.14. All experimental data fit the following equation well: [see text] where the enthalpy and entropy are DeltaH degrees = - (44.559 +/- 2.329)kJ mol(-1) and DeltaS degrees = - (109.50 +/- 7.126) J K(-1)mol(-1), respectively.

  8. [Effects of exogenous nitric oxide on physiological characteristics of longan (Dimocarpus longana) seedlings under acid rain stress].

    PubMed

    Liu, Jian-fu; Wang, Ming-yuan; Yang, Chen; Zhu, Ai-jun

    2013-08-01

    This paper studied the effects of exogenous nitric oxide donor sodium nitroprusside (SNP) on the chlorophyll content, antioxidant enzyme activities, and osmotic regulation substances of longan (Dimocarpus longana 'Fuyan') seedlings under acid rain (pH 3.0) stress. Under the acid rain stress, the seedling leaf superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities and chlorophyll, soluble protein and soluble sugar contents decreased obviously, while the leaf malondialdedyde content had a remarkable increase, suggesting the toxic effect of the acid rain on the seedlings. Exogenous nitric oxide had dual nature on the physiological characteristics of longan seedlings under acid rain stress. Applying 0.1-0.5 mmol x L(-1) of SNP improved the SOD, POD and CAT activities and the chlorophyll, soluble protein and soluble sugar contents significantly, and decreased the malondialdedyde content. Low concentrations SNP reduced the oxidative damage caused by the acid rain stress, and 0.5 mmol x L(-1) of SNP had the best effect. Under the application of 0.5 mmol x L(-1) of SNP, the total chlorophyll, soluble protein, and soluble sugar contents and the SOD, POD and CAT activities increased by 76.0%, 107.0%, 216.1%, 150. 0%, 350.9% and 97.1%, respectively, and the malondialdedyde content decreased by 46.4%. It was suggested that low concentration (0.1-0.5 mmol x L(-1)) SNP could alleviate the toxic effect of acid rain stress on longan seedlings via activating the leaf antioxidant enzyme activities and reducing oxidative stress, while high concentration SNP (1.0 mmol x L(-1)) lowered the mitigation effect.

  9. Comparison of XAD macroporous resins for the concentration of fulvic acid from aqueous solution

    USGS Publications Warehouse

    Aiken, G.R.

    1979-01-01

    Five macroreticular, nonlonlc AmberlHe XAD resins were evaluated for concentration and Isolation of fulvlc acid from aqueous solution. The capacity of each resin for fulvlc acid was measured by both batch and column techniques. Elution efficiencies were determined by desorptlon with 0.1 N NaOH. Highest recoveries were obtained with the acrylic ester resins which proved to be most efficient for both adsorption and elution of fulvlc acid. Compared to the acrylic ester resins, usefulness of the styrene dvlnybenzene resins to remove fulvlc acid is limited because of slow diffusion-controlled adsorption and formation of charge-transfer complexes, which hinders elution. ?? 1979 American Chemical Society.

  10. Mechanism of carboxylic acid photooxidation in atmospheric aqueous phase: Formation, fate and reactivity

    NASA Astrophysics Data System (ADS)

    Charbouillot, Tiffany; Gorini, Sophie; Voyard, Guillaume; Parazols, Marius; Brigante, Marcello; Deguillaume, Laurent; Delort, Anne-Marie; Mailhot, Gilles

    2012-09-01

    In the first part of the work, we investigated the reactivity toward photogenerated hydroxyl radicals (rad OH) of seven monocarboxylic acids and six dicarboxylic acids found in natural cloud water. This leads to the proposition of a schematic degradation pathway linking glutaric acid (C5) to complete mineralization into CO2. We report a detailed mechanism on the succinic acid reactivity toward rad OH leading to the formation of malonic, glyoxylic and consequently oxalic acids and a comparison with reported pathways proposed by the CAPRAM (Chemical Aqueous Phase RAdical Mechanism) is discussed. We also investigated the photooxidation of formic acid under atmospherically relevant conditions leading to the possible formation of oxalic acid via radical mediated recombination. The second part focuses on the polychromatic irradiation (closed to solar irradiation) of a collected cloud aqueous phase showing that irradiation of cloud water leads to the formation of both formic and acetic acids. Carboxylic acid formation increases in the presence of photogenerated hydroxyl radicals from hydrogen peroxide, showing that photooxidation could play a key role in the formation of carboxylic acids under atmospherically relevant conditions.

  11. Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids.

    PubMed

    Dinda, Srikanta; Patwardhan, Anand V; Goud, Vaibhav V; Pradhan, Narayan C

    2008-06-01

    The kinetics of epoxidation of cottonseed oil by peroxyacetic acid generated in situ from hydrogen peroxide and glacial acetic acid in the presence of liquid inorganic acid catalysts were studied. It was possible to obtain up to 78% relative conversion to oxirane with very less oxirane cleavage by in situ technique. The rate constants for sulphuric acid catalysed epoxidation of cottonseed oil were in the range 0.39-5.4 x 10(-6)L mol(-1)s(-1) and the activation energy was found to be 11.7 kcal mol(-1). Some thermodynamic parameters such as enthalpy, entropy, and free energy of activation were determined to be of 11.0 kcal mol(-1), -51.4 cal mol(-1)K(-1) and 28.1 kcal mol(-1), respectively. The order of effectiveness of catalysts was found to be sulphuric acid>phosphoric acid>nitric acid>hydrochloric acid. Acetic acid was found to be superior to formic acid for the in situ cottonseed oil epoxidation.

  12. Synthesis of S-linked glycosyl amino acids in aqueous solution with unprotected carbohydrates.

    PubMed

    Cohen, S B; Halcomb, R L

    2001-02-08

    [figure: see text] The cyclic sulfamidate 5 was synthesized in 60% overall yield from L-serine benzyl ester. Compound 5 reacted cleanly with the sodium thiolate salt of a variety of unprotected 1-thio sugars in aqueous buffer to afford the corresponding S-linked amino acid glycoconjugates in good yields after hydrolysis of the N-sulfates.

  13. POLYSTYRENE SULFONIC ACID CATALYZED GREENER SYNTHESIS OF HYDRAZONES IN AQUEOUS MEDIUM USING MICROWAVES

    EPA Science Inventory

    An environmentally benign aqueous protocol for the synthesis of cyclic, bi-cyclic, and heterocyclic hydrazones using polystyrene sulfonic acid (PSSA) as a catalyst has been developed; the simple reaction proceeds efficiently in water in the absence of any organic solvent under mi...

  14. Aqueous-phase hydrogenation of acetic acid over transition metal catalysts

    SciTech Connect

    Olcay, Hakan; Xu, Lijun; Xu, Ye; Huber, George

    2010-01-01

    Catalytic hydrogenation of acetic acid to ethanol has been carried out in aqueous phase on several metals, with ruthenium being the most active and selective. DFT calculations suggest that the initial CO bond scission yielding acetyl is the key step and that the intrinsic reactivity of the metals accounts for the observed activity.

  15. Rosmarinic acid content in antidiabetic aqueous extract from ocimum canum sims in Ghana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rosmarinic acid (RA) is an important polyphenol that is found in a variety of herbs including Ocimum canum sims (locally called eme or akokobesa in Ghana). Aqueous extracts from the leaves of O. canum are used as an antidiabetic herbal medicine in Ghana. Analytical TLC was used to examine the compos...

  16. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed...

  17. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed...

  18. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed...

  19. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed...

  20. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed...

  1. THE ROLE OF SELECTED CATIONS IN THE FORMATION OF PSEUDOMICELLES IN AQUEOUS HUMIC ACID (R822832)

    EPA Science Inventory

    The fluorescence intensity enhancement of a pyrene probe in aqueous humic acid solutions was assessed in terms of added lanthanide and thorium cations. Among the trivalent ions it was found that size played a role, with the small Lu3+ ion producing the greatest increase in pyrene...

  2. The standard enthalpies of formation of crystalline N-(carboxymethyl)aspartic acid and its aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lytkin, A. I.; Chernyavskaya, N. V.; Volkov, A. V.; Nikol'Skii, V. M.

    2007-07-01

    The energy of combustion of N-(carboxymethyl)aspartic acid (CMAA) was determined by bomb calorimetry in oxygen. The standard enthalpies of combustion and formation of crystalline N-(carboxymethyl)aspartic acid were calculated. The heat effects of solution of crystalline CMAA in water and a solution of sodium hydroxide were measured at 298.15 K by direct calorimetry. The standard enthalpies of formation of CMAA and its dissociation products in aqueous solution were determined.

  3. DISSOLUTION OF PLUTONIUM METAL IN 8-10 M NITRIC ACID

    SciTech Connect

    Rudisill, T.; Pierce, R.

    2012-02-21

    The H-Canyon facility will be used to dissolve Pu metal for subsequent purification and conversion to plutonium dioxide (PuO{sub 2}) using Phase II of HB-Line. To support the new mission, the development of a Pu metal dissolution flowsheet which utilizes concentrated (8-10 M) nitric acid (HNO{sub 3}) solutions containing potassium fluoride (KF) is required. Dissolution of Pu metal in concentrated HNO{sub 3} is desired to eliminate the need to adjust the solution acidity prior to purification by anion exchange. The preferred flowsheet would use 8-10 M HNO{sub 3}, 0.015-0.07 M KF, and 0.5-1.0 g/L Gd to dissolve the Pu up to 6.75 g/L. An alternate flowsheet would use 8-10 M HNO{sub 3}, 0.1-0.2 M KF, and 1-2 g/L B to dissolve the Pu. The targeted average Pu metal dissolution rate is 20 mg/min-cm{sup 2}, which is sufficient to dissolve a 'standard' 2250-g Pu metal button in 24 h. Plutonium metal dissolution rate measurements showed that if Gd is used as the nuclear poison, the optimum dissolution conditions occur in 10 M HNO{sub 3}, 0.04-0.05 M KF, and 0.5-1.0 g/L Gd at 112 to 116 C (boiling). These conditions will result in an estimated Pu metal dissolution rate of {approx}11-15 mg/min-cm{sup 2} and will result in dissolution times of 36-48 h for standard buttons. The recommended minimum and maximum KF concentrations are 0.03 M and 0.07 M, respectively. The maximum KF concentration is dictated by a potential room-temperature Pu-Gd-F precipitation issue at low Pu concentrations. The purpose of the experimental work described in this report was two-fold. Initially a series of screening experiments was performed to measure the dissolution rate of Pu metal as functions of the HNO{sub 3}, KF, and Gd or B concentrations. The objective of the screening tests was to propose optimized conditions for subsequent flowsheet demonstration tests. Based on the rate measurements, this study found that optimal dissolution conditions in solutions containing 0.5-1.0 g/L Gd occurred in 8

  4. Interaction between oxalic acid and titania in aqueous ethanol dispersions.

    PubMed

    Dahlsten, Per; Rosenholm, Jarl B

    2013-02-15

    The charging effects resulting from adsorption of oxalic acid and oxalate anions on titania (anatase) surfaces in anhydrous or mixed water-ethanol suspensions is summarized. The suddenly enhanced electrical conductance with respect to titania free solutions has previously been explained in terms of surface-induced electrolytic dissociation (SIED) of weak acids. A recently published model has previously been found to successfully characterize the complex SIED effect. The model is evaluated experimentally by recording the conductance and pH of the dispersion and the zeta potential of the particles. The experimental results can be condensed to master curves, which reveal the major properties of the systems and facilitate further modeling of extensive experimental results. The equilibrium and transport properties of solutions and particles were related, but different mechanisms was found to be active in each case. The results suggest that at least three adsorption equilibria should be considered in order to improve the model.

  5. Removal of Pb(II) from water by the activated carbon modified by nitric acid under microwave heating.

    PubMed

    Yao, Shuheng; Zhang, Jiajun; Shen, Dekui; Xiao, Rui; Gu, Sai; Zhao, Ming; Liang, Junyu

    2016-02-01

    The rice husk based activated carbon (RH-AC) was treated by nitric acid under microwave heating, in order to improve its capability for the removal of heavy metal ions from water. The optimal conditions for the modification of RH-AC (M-RH-AC) were determined by means of orthogonal array experimental design, giving those as the concentration of nitric acid of 8mol/L, modification time of 15min, modification temperature of 130°C and microwave power of 800W. The characteristics of the M-RH-AC and RH-AC were examined by BET, XRD, Raman spectrum, pH titration, zeta potential, Boehm titration and FTIR analysis. The M-RH-AC has lower pore surface area, smaller crystallite, lower pHIEP and more oxygen-containing functional groups than the RH-AC. Removal capacity of Pb(II) ions by the M-RH-AC and RH-AC from water solution was estimated concerning the influence of contact time, pH value, and initial concentration. The equilibrium time of Pb(II) removal was found to be around 90min after modification process. Two kinetic models are adopted to describe the possible Pb(II) adsorption mechanism, finding that the adsorption rate of Pb(II) ions by the M-RH-AC is larger than that of RH-AC.

  6. TPD of nitric acid from BaNa-Y: evidence that a nanoscale environment can alter a reaction mechanism.

    PubMed

    Savara, Aditya; Danon, Alon; Sachtler, Wolfgang M H; Weitz, Eric

    2009-02-28

    The mechanism of temperature-programmed desorption (TPD) of nitric acid chemisorbed on BaNa-Y was studied over the temperature range from 200 to 400 degrees C, in the presence and absence of CO. Nitric acid dissociates to form H(+) and NO(3)(-) when chemisorbed on BaNa-Y. The results of these experiments are consistent with H(+) and NO(3)(-) either reacting directly to produce OH and NO(2) or recombining to produce HNO(3), which is desorbed and rapidly decomposes within the zeolite pores to OH and NO(2). The kinetics and stoichiometry suggest that the hydroxyl radicals produced react with CO and NO(2) to form CO(2) + H and NO + HO(2), respectively. The H atoms thus formed react with OH in preference to NO(2), a change in mechanism consistent with literature rate constants and the expectation that the zeolite pore walls act as a third body for the reaction of H with OH. Finally, OH may react with NO(2) to form HO(2), which can undergo further reactions to form O(2), H(2)O, and/or H(2). No reaction between CO and NO(3) or CO and surface-bound NO(3)(-) was observed.

  7. Dialkylmethyl-2-(N,N-diisobutyl)acetamidoammonium iodide as a ruthenium selective ligand from nitric acid medium.

    PubMed

    Sharma, Shikha; Ghosh, Sunil K; Sharma, Joti N

    2015-09-15

    A new class of quaternary ammonium iodide based ligands with 2-(N,N-diisobutyl)acetamide as an alkyl appendage have been designed, synthesized and tested for their ability to extract ruthenium selectively from nitric acid medium. The 2-(N,N-diisobutyl)acetamido ammonium iodide with two propyl and a methyl substituents showed best results for the recovery of ruthenium. The optimized concentration of the solvent was found to be 0.2M in 30% isodecyl alcohol/n-dodecane. The stoichiometry of the complex was ascertained by slope analysis method and was found to be 1:1 with respect to ligand L(+)I(-) and Ru(NO)(NO3)3. Ruthenium formed an adduct of structure LRu(NO)(NO3)3 I in the extraction medium. Iodide ion played an important role in the formation of the stable and extractable complex of ruthenium. No extraction was observed when iodide was replaced by nitrate anion in the ligand. The ligand also showed good selectivity for ruthenium in the presence of other metal ions commonly found in nitric acid solutions of nuclear waste.

  8. ACTIVATION OF VASCULAR ENDOTHELIAL NITRIC OXIDE SYNTHASE AND HEME OXYGENASE-1 EXPRESSION BY ELECTROPHILIC NITRO-FATTY ACIDS

    PubMed Central

    Khoo, Nicholas K.H.; Rudolph, Volker; Cole, Marsha P.; Golin-Bisello, Franca; Schopfer, Francisco J.; Woodcock, Steven R.; Batthyany, Carlos; Freeman, Bruce A.

    2010-01-01

    Reactive oxygen species mediate a decrease in nitric oxide (NO) bioavailability and endothelial dysfunction, with secondary oxidized and nitrated byproducts of these reactions contributing to the pathogenesis of numerous vascular diseases. While oxidized lipids and lipoproteins exacerbate inflammatory reactions in the vasculature, in stark contrast the nitration of polyunsaturated fatty acids and complex lipids yield electrophilic products that exhibit pluripotent anti-inflammatory signaling capabilities acting via both cGMP-dependent and -independent mechanisms. Herein we report that nitro-oleic acid (OA-NO2) treatment increases expression of endothelial nitric oxide synthase (eNOS) and heme oxygenase 1 (HO-1) in the vasculature, thus transducing vascular protective effects associated with enhanced NO production. Administration of OA-NO2 via osmotic pump results in a significant increase in eNOS and HO-1 mRNA in mouse aortas. Moreover, HPLC-MS/MS analysis showed that NO2-FAs are rapidly metabolized in cultured endothelial cells (ECs) and treatment with NO2-FAs stimulated the phosphorylation of eNOS at Ser1179. These post-translational modifications of eNOS, in concert with elevated eNOS gene expression, contributed to an increase in endothelial NO production. In aggregate, OA-NO2-induced eNOS and HO-1 expression by vascular cells can induce beneficial effects on endothelial function and provide a new strategy for treating various vascular inflammatory and hypertensive disorders. PMID:19857569

  9. Synergistic selective extraction of actinides(III) over lanthanides from nitric acid using new aromatic diorganyldithiophosphinic acids and neutral organophosphorus compounds

    SciTech Connect

    Modolo, G.; Odoj, R.

    1999-01-01

    New aromatic dithiophosphinic acids (R{sub 2}PSSH) with R = C{sub 6}H{sub 5{sup {minus}}}, ClC{sub 6}H{sub 4{sup {minus}}}, FC{sub 6}H{sub 4{sup {minus}}} and CH{sub 3}C{sub 6}H{sub 4{sup {minus}}} were synthesized, characterized and tested as potential separating agents for trivalent actinides over lanthanides. The extraction of Am(III), Eu(III) and other lanthanides was carried out from nitric acid medium with mixtures of R{sub 2}PSSHs and neutral organophosphorus compounds. There was no detectable extraction when R{sub 2}PSSHs were used alone as extractants for either Am(III) or Eu(III) (D{sub Am,Eu} < 10{sup {minus}3}) under the experimental conditions used in this study. High separation factors (D{sub Am}/D{sub Eu} > 20) with D{sub Am} > 1 were achieved in the nitric acid range 0.1--1 mol/L by means of a synergistic mixture of bis(chlorophenyl)dithiophosphinic acid + tributylphosphate (TBP), trioctylphosphine oxide (TOPO) or tributylphosphine oxide (TBPO). The high radiation resistance (up to 10{sup 6} Gy absorbed {gamma}-doses) of the extractants was also demonstrated.

  10. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.

    2012-01-01

    Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM-10 mM) was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  11. Regeneration of an aqueous solution from an acid gas absorption process by matrix stripping

    DOEpatents

    Rochelle, Gary T.; Oyenekan, Babatunde A.

    2011-03-08

    Carbon dioxide and other acid gases are removed from gaseous streams using aqueous absorption and stripping processes. By replacing the conventional stripper used to regenerate the aqueous solvent and capture the acid gas with a matrix stripping configuration, less energy is consumed. The matrix stripping configuration uses two or more reboiled strippers at different pressures. The rich feed from the absorption equipment is split among the strippers, and partially regenerated solvent from the highest pressure stripper flows to the middle of sequentially lower pressure strippers in a "matrix" pattern. By selecting certain parameters of the matrix stripping configuration such that the total energy required by the strippers to achieve a desired percentage of acid gas removal from the gaseous stream is minimized, further energy savings can be realized.

  12. K Basin Sludge Conditioning Process Testing Fate of PCBs During K Basin Sludge Dissolution in Nitric Acid and with Hydrogen Peroxide Addition

    SciTech Connect

    GM Mong; AJ Schmidt; EW Hoppe; KH Pool; KL Silvers; BM Thornton

    1999-01-04

    The work described in this report is part of the studies being performed to address the fate of polychlorinated biphenyls (PCBs) in K Basin sludge before the sludge can be transferred to the Tank Waste Remediation System (TWRS) double shell tanks. One set of tests examined the effect of hydrogen peroxide on the disposition of PCBs in a simulated K Basin dissolver solution containing 0.5 M nitric acid/1 M Fe(NO{sub 3}){sub 3}. A second series of tests examined the disposition of PCBs in a much stronger ({approx}10 M) nitric acid solution, similar to that likely to be encountered in the dissolution of the sludge.

  13. Ruthenium-catalyzed oxidation of alkenes, alkynes, and alcohols to organic acids with aqueous hydrogen peroxide.

    PubMed

    Che, Chi-Ming; Yip, Wing-Ping; Yu, Wing-Yiu

    2006-09-18

    A protocol that adopts aqueous hydrogen peroxide as a terminal oxidant and [(Me3tacn)(CF3CO2)2Ru(III)(OH2)]CF3CO2 (1; Me3tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane) as a catalyst for oxidation of alkenes, alkynes, and alcohols to organic acids in over 80% yield is presented. For the oxidation of cyclohexene to adipic acid, the loading of 1 can be lowered to 0.1 mol %. On the one-mole scale, the oxidation of cyclohexene, cyclooctene, and 1-octanol with 1 mol % of 1 produced adipic acid (124 g, 85% yield), suberic acid (158 g, 91% yield), and 1-octanoic acid (129 g, 90% yield), respectively. The oxidative C=C bond-cleavage reaction proceeded through the formation of cis- and trans-diol intermediates, which were further oxidized to carboxylic acids via C-C bond cleavage.

  14. Gamma-irradiation of malic acid in aqueous solutions. [prebiotic significance

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Graff, R. L.; Ponnamperuma, C.

    1980-01-01

    The gamma-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the nonvolatile products. Thin layer chromatography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the gamma-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  15. Role of nitric oxide in the central interferon-alpha-induced inhibition of gastric acid secretion in rats.

    PubMed

    Czimmer, Jozsef; Király, Ágnes; Szabó, Imre Laszlo; Mózsik, Gyula; Sütő, Gabor

    2013-01-01

    Cytokines are known to play a key role in regulation of gastric functions. Interferon-alpha (IFN-α) has been published to impair gastric motility. Aims of this study were to clarify effect of IFN-α on gastric acid secretion (GAS) and determine role of nitric oxide (NO) in the process. Both subcutaneous (1000, 10000, 100 000 IU, s.c.) and intracisternal (10, 100, 1000 IU, i.c.) injections of IFN-α dose-dependently inhibited GAS induced by pylorus ligation in male SD rats in 2 hrs (370±40, 233±39, 208±50 micromol vs control 415±59 micromol and 481±50, 249±75, 141±25 micromol vs control 485±65 micromol, respectively). Central doses inducing same level inhibition were 100 times lower. NOS inhibitor L-NAME (3 mg/kg, i.v.) blocked the inhibitory effect of i.c. ED(50) dose 100 IU IFN-α (507±75 micromol/2 hrs), while L-arginine, the substrate of nitric oxide synthase (NOS) prevented L-NAME action (266±82 micromol/2 hrs). D-arginine failed to prevent L-NAME action on IFN-α-induced inhibition of GAS. Aminoguanidine, a selective inhibitor of inducible NOS (iNOS) failed to block IFN-α induced inhibition of GAS. Results suggest that IFN-α inhibits GAS centrally through nitric oxide pathways probably mediated by continuous isoform of NOS that can be important in regulation of GAS in healthy or pathological conditions.

  16. GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESS CELL WITH SLUDGE AND SUPERNATE SIMULANTS

    SciTech Connect

    Lambert, D.; Stone, M.; Newell, J.; Best, D.; Zamecnik, J.

    2012-08-28

    Savannah River Remediation (SRR) is evaluating changes to its current Defense Waste Processing Facility (DWPF) flowsheet to improve processing cycle times. This will enable the facility to support higher canister production while maximizing waste loading. Higher throughput is needed in the Chemical Process Cell (CPC) since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the DWPF gas chromatographs (GC) and the potential for production of flammable quantities of hydrogen, reducing or eliminating the amount of formic acid used in the CPC is being developed. Earlier work at Savannah River National Laboratory has shown that replacing formic acid with an 80:20 molar blend of glycolic and formic acids has the potential to remove mercury in the SRAT without any significant catalytic hydrogen generation. This report summarizes the research completed to determine the feasibility of processing without formic acid. In earlier development of the glycolic-formic acid flowsheet, one run (GF8) was completed without formic acid. It is of particular interest that mercury was successfully removed in GF8, no formic acid at 125% stoichiometry. Glycolic acid did not show the ability to reduce mercury to elemental mercury in initial screening studies, which is why previous testing focused on using the formic/glycolic blend. The objective of the testing detailed in this document is to determine the viability of the nitric-glycolic acid flowsheet in processing sludge over a wide compositional range as requested by DWPF. This work was performed under the guidance of Task Technical and Quality Assurance Plan (TT&QAP). The details regarding the simulant preparation and analysis have been documented previously.

  17. GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESSING CELL WITH MATRIX SIMULANTS AND SUPERNATE

    SciTech Connect

    Lambert, D.; Stone, M.; Newell, J.; Best, D.

    2012-05-07

    Savannah River Remediation (SRR) is evaluating changes to its current DWPF flowsheet to improve processing cycle times. This will enable the facility to support higher canister production while maximizing waste loading. Higher throughput is needed in the CPC since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the DWPF gas chromatographs (GC) and the potential for production of flammable quantities of hydrogen, reducing or eliminating the amount of formic acid used in the CPC is being developed. Earlier work at Savannah River National Laboratory has shown that replacing formic acid with an 80:20 molar blend of glycolic and formic acids has the potential to remove mercury in the SRAT without any significant catalytic hydrogen generation. This report summarizes the research completed to determine the feasibility of processing without formic acid. In earlier development of the glycolic-formic acid flowsheet, one run (GF8) was completed without formic acid. It is of particular interest that mercury was successfully removed in GF8, no formic acid at 125% stoichiometry. Glycolic acid did not show the ability to reduce mercury to elemental mercury in initial screening studies, which is why previous testing focused on using the formic/glycolic blend. The objective of the testing detailed in this document is to determine the viability of the nitric-glycolic acid flowsheet in processing sludge over a wide compositional range as requested by DWPF. This work was performed under the guidance of Task Technical and Quality Assurance Plan (TT and QAP). The details regarding the simulant preparation and analysis have been documented previously.

  18. Conversion of Aqueous Ammonia-Treated Corn Stover to Lactic Acid by Simultaneous Saccharification and Cofermentation

    NASA Astrophysics Data System (ADS)

    Zhu, Yongming; Lee, Y. Y.; Elander, Richard T.

    Treatment of corn stover with aqueous ammonia removes most of the structural lignin, whereas retaining the majority of the carbohydrates in the solids. After treatment, both the cellulose and hemicellulose in corn stover become highly susceptible to enzymatic digestion. In this study, corn stover treated by aqueous ammonia was investigated as the substrate for lactic acid production by simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Spezyme-CP) and Lactobacillus pentosus American Type Culture Collection (ATCC) 8041 (Spanish Type Culture Collection [CECT]-4023) were used for hydrolysis and fermentation, respectively. In batch SSCF operation, the carbohydrates in the treated corn stover were converted to lactic acid with high yields, the maximum lactic acid yield reaching 92% of the stoichiometric maximum based on total fermentable carbohydrates (glucose, xylose, and arabinose). A small amount of acetic acid was also produced from pentoses through the phosphoketolase pathway. Among the major process variables for batch SSCF, enzyme loading and the amount of yeast extract were found to be the key factors affecting lactic acid production. Further tests on nutrients indicated that corn steep liquor could be substituted for yeast extract as a nitrogen source to achieve the same lactic acid yield. Fed-batch operation of the SSCF was beneficial in raising the concentration of lactic acid to a maximum value of 75.0 g/L.

  19. [Catalytic ozonation by ceramic honeycomb for the degradation of oxalic acid in aqueous solution].

    PubMed

    Zhao, Lei; Sun, Zhi-Zhong; Ma, Jun

    2007-11-01

    Comparative experiments for the degradation of oxalic acid in aqueous solution were carried out in the three processes of ozonation alone, ceramic honeycomb-catalyzed ozonation and ceramic honeycomb adsorption. The results show that the degradation rates of oxalic acid in the ceramic honeycomb-catalyzed ozonation, ozonation alone and ceramic honeycomb adsorption systems are 37.6%, 2.2% and 0.4%, and the presence of ceramic honeycomb catalyst significantly improves the degradation rate of oxalic acid compared to the results from non-catalytic ozonation and adsorption. With the addition of tert-butanol, the degradation rates of oxalic acid in catalytic ozonation system decrease by 24.1%, 29.0% and 30.1%, respectively, at the concentration of 5, 10 and 15 mg x L(-1). This phenomenon indicates that ceramic honeycomb-catalyzed ozonation for the degradation of oxalic acid in aqueous solution follows the mechanism of *OH oxidation, namely the heterogeneous surface of catalyst enhances the initiation of *OH. The results of TOC analysis demonstrate that the process of ceramic honeycomb-catalyzed ozonation can achieve the complete mineralization level without the formation of intermediary degradation products. The experimental results suggest that the reaction temperature has positive relationship with the degradation rate of oxalic acid. The degradation rates of oxalic acid in the ceramic honeycomb-catalyzed ozonation system are 16.4%, 37.6%, 61.3% and 68.2%, at the respective reaction temperature of 10, 20, 30 and 40 degrees C.

  20. Thermochemical study of the reactions of acid-base interaction in an aqueous solution of α-aminobutyric acid

    NASA Astrophysics Data System (ADS)

    Lytkin, A. I.; Chernikov, V. V.; Krutova, O. N.; Skvortsov, I. A.; Korchagina, A. S.

    2017-01-01

    The heat effects of the interaction between a solution of α-aminobutyric acid and solutions of HNO3 and KOH are measured by means of calorimetry in different ranges of pH at 298.15 K and values of ionic strength of 0.25, 0.5, and 0.75 (KNO3). The heat effects of the stepwise dissociation of the amino acid are determined. Standard thermodynamic characteristics (Δr H 0, Δr G 0, and Δr S 0) of the reactions of acid-base interaction in aqueous solutions of α-aminobutyric acid are calculated. The connection between the thermodynamic characteristics of the dissociation of the amino acid and the structure of this compound is considered.

  1. Investigation of effect of fluoride on corrosion of 2S-0 aluminum and 347 stainless steel in fuming nitric acid at 170 F

    NASA Technical Reports Server (NTRS)

    Feiler, Charles E; Morrell, Gerald

    1954-01-01

    The effect of small additions of fluoride on the corrosion of 2S-0 aluminum and 347 stainless steel by fuming nitric acid at 170 degrees F has been evaluated quantitatively by the determination of the weight loss of metal specimens immersed in the acid. The ratio of metal surface area to volume of acid was approximately 7.5 inch (superscript)-1 in all cases. It was found that for acids containing no fluorides the weight loss of aluminum was approximately 1/5 that of stainless steel. Addition of 1 percent fluoride ion to the acid reduced the weight loss of both metals to practically zero even after 26 days of exposure to the acid at 170 degrees F. The minimum quantity of fluoride ion required to inhibit corrosion was found to be approximately 0.25 and 0.5 percent for aluminum and stainless steel, respectively, in white fuming nitric acid and 0.5 and 1 percent in red fuming nitric acid (18 percent nitrogen dioxide). These fluoride percentages were based on the total weight of acid. Provided the concentration of fluoride ion was sufficient to inhibit corrosion, the source of these ions was immaterial. Additional information concerning the effect of fluorides on corrosion was obtained by measuring the electrode potentials of the metals against a platinum reference electrode.

  2. A protective role for nitric oxide and salicylic acid for arsenite phytotoxicity in rice (Oryza sativa L.).

    PubMed

    Singh, Amit Pal; Dixit, Garima; Kumar, Amit; Mishra, Seema; Kumar, Navin; Dixit, Sameer; Singh, Pradyumna Kumar; Dwivedi, Sanjay; Trivedi, Prabodh Kumar; Pandey, Vivek; Dhankher, Om Prakash; Norton, Gareth J; Chakrabarty, Debasis; Tripathi, Rudra Deo

    2017-02-24

    Nitric oxide (NO) and salicylic acid (SA) are important signaling molecules in plant system. In the present study both NO and SA showed a protective role against arsenite (As(III)) stress in rice plants when supplied exogenously. The application of NO and SA alleviated the negative impact of As(III) on plant growth. Nitric oxide supplementation to As(III) treated plants greatly decreased arsenic (As) accumulation in the roots as well as shoots/roots translocation factor. Arsenite exposure in plants decreased the endogenous levels of NO and SA. Exogenous supplementation of SA not only enhanced endogenous level of SA but also the level of NO through enhanced nitrate reductase (NR) activity, whether As(III) was present or not. Exogenously supplied NO decreased the NR activity and level of endogenous NO. Arsenic accumulation was positively correlated with the expression level of OsLsi1, a transporter responsible for As(III) uptake. The endogenous level of NO and SA were positively correlated to each other either when As(III) was present or not. This close relationship indicates that NO and SA work in harmony to modulate the signaling response in As(III) stressed plants.

  3. Ignition Delay Experiments with Small-scale Rocket Engine at Simulated Altitude Conditions Using Various Fuels with Nitric Acid Oxidants / Dezso J. Ladanyi

    NASA Technical Reports Server (NTRS)

    Ladanyi, Dezso J

    1952-01-01

    Ignition delay determinations of several fuels with nitric oxidants were made at simulated altitude conditions utilizing a small-scale rocket engine of approximately 50 pounds thrust. Included in the fuels were aniline, hydrazine hydrate, furfuryl alcohol, furfuryl mercaptan, turpentine, and mixtures of triethylamine with mixed xylidines and diallyaniline. Red fuming, white fuming, and anhydrous nitric acids were used with and without additives. A diallylaniline - triethylamine mixture and a red fuming nitric acid analyzing 3.5 percent water and 16 percent NO2 by weight was found to have a wide temperature-pressure ignition range, yielding average delays from 13 milliseconds at 110 degrees F to 55 milliseconds at -95 degrees F regardless of the initial ambient pressure that ranged from sea-level pressure altitude of 94,000 feet.

  4. Evaluation of the Capability of Ionic Liquid-Amino Acid Aqueous Systems for the Formation of Aqueous Biphasic Systems and Their Applications in Extraction.

    PubMed

    Noshadi, Sajjad; Sadeghi, Rahmat

    2017-03-03

    In order to obtain further experimental evidence for better understanding of the molecular mechanisms responsible for the soluting-out effect phenomena in the ternary systems composed of ionic liquid (IL), amino acid and water, systematic studies on the vapor-liquid, liquid-liquid and solid-liquid equilibrium behavior of aqueous solutions of several ILs were carried out in the presence of a range of amino acids. Water activities for binary and ternary aqueous solutions containing 1-butyl-3-methylimidazolium chloride, [C4mim]Cl, 1-hexyl-3-methylimidazolium chloride, [C6mim]Cl, 1-butyl-3-methyl-imidazolium trifluoromethanesulfonate, [C4mim][CF3SO3], l-serine, glycine, alanine, and l-proline were measured using both vapor pressure osmometry and isopiestic methods. All the ternary IL + amino acid + water systems show the negative deviations from the semi-ideal behavior and therefore the soluting-out effects have been seen in these systems. In the case of [C4mim][CF3SO3] + amino acids aqueous systems, the IL is soluted-out by the amino acids and the soluting-out effect appears by aqueous biphasic systems formation. For these systems, the phase diagram and partition coefficient of caffeine were measured at 298.15 K. However, for the [C4mim]Cl and [C6mim]Cl containing systems, the amino acids are soluted-out by the ILs and the soluting-out effect appears by precipitation of the amino acids from the solution and solubilities of the amino acids in aqueous solutions decrease in the presence of [C4mim]Cl and [C6mim]Cl.

  5. Adipic and malonic acid aqueous solutions: surface tensions and saturation vapor pressures.

    PubMed

    Riipinen, Ilona; Koponen, Ismo K; Frank, Göran P; Hyvärinen, Antti-Pekka; Vanhanen, Joonas; Lihavainen, Heikki; Lehtinen, Kari E J; Bilde, Merete; Kulmala, Markku

    2007-12-20

    The surface tension of adipic aqueous solutions was measured as a function of temperature (T=278-313 K) and adipic acid mole fraction (X=0.000-0.003) using the Wilhelmy plate method. A parametrization fitted to these data is presented. The evaporation rates of binary water-malonic and water-adipic acid droplets were measured with a TDMA technique at different temperatures (T=293-300 K) and relative humidities (58-80%), and the saturation vapor pressures of subcooled liquid malonic and adipic acids were derived from the data using a binary evaporation model. The temperature dependence of the vapor pressures was obtained as least-squares fits to the derived vapor pressures: ln(Psat,l) (Pa)=220.2389-22634.96/T (K)-26.66767 ln T (K) for malonic acid and ln(Psat,l) (Pa)=140.6704-18230.97/T (K)-15.48011 ln T (K) for adipic acid.

  6. Enhanced removal of Hg(II) from acidic aqueous solution using thiol-functionalized biomass.

    PubMed

    Chai, Liyuan; Wang, Qingwei; Li, Qingzhu; Yang, Zhihui; Wang, Yunyan

    2010-01-01

    Spent grain, the low-cost and abundant biomass produced in the brewing industry, was functionalized with thiol groups to be used as an adsorbent for Hg(II) removal from acidic aqueous solution. The adsorbents were characterized by the energy-dispersive X-ray analysis (EDAX) and Fourier transform infrared (FTIR) spectroscopy. Optimum pH for Hg(II) adsorption onto the thiol-functionalized spent grain (TFSG) was 2.0. The equilibrium and kinetics of the adsorption of Hg(II) onto TFSG from acidic aqueous solution were investigated. From the Langmuir isotherm model the maximum adsorption capacity of TFSG for Hg(II) was found to be 221.73 mg g(-1), which was higher than that of most various adsorbents reported in literature. Moreover, the adsorption of Hg(II) onto TFSG followed pseudo-second-order kinetic model.

  7. Mechanistic study of fulvic acid assisted propranolol photodegradation in aqueous solution.

    PubMed

    Makunina, Maria P; Pozdnyakov, Ivan P; Chen, Yong; Grivin, Vyacheslav P; Bazhin, Nikolay M; Plyusnin, Victor F

    2015-01-01

    Laser flash (355 nm) and stationary (365 nm) photolysis were used to study the mechanisms of propranolol photolysis in the presence of fulvic acid in aqueous solutions. The FA-assisted photodegradation of propranolol was observed using UV-A irradiation (where propranolol is stable). Direct evidence indicated that the photodegradation resulted from the static quenching of the FA triplet state by propranolol via the electron transfer mechanism. The triplet state yield (ϕT≈0.6%) and the T-T absorption coefficient (ɛT(620 nm)≈5×10(4) M(-1) cm(-1)) were estimated for the first time by modeling the yields of the FA triplet state in the presence of propranolol. Thus, fulvic acid is a promising agent for accelerating propranolol photodegradation in aqueous solutions under UV-A light irradiation.

  8. DISSOLUTION OF PLUTONIUM METAL IN 8-10 M NITRIC ACID

    SciTech Connect

    Rudisill, T. S.; Pierce, R. A.

    2012-07-02

    The H-Canyon facility will be used to dissolve Pu metal for subsequent purification and conversion to plutonium dioxide (PuO{sub 2}) using Phase II of HB-Line. To support the new mission, the development of a Pu metal dissolution flowsheet which utilizes concentrated (8-10 M) nitric acid (HNO{sub 3}) solutions containing potassium fluoride (KF) is required. Dissolution of Pu metal in concentrated HNO{sub 3} is desired to eliminate the need to adjust the solution acidity prior to purification by anion exchange. The preferred flowsheet would use 8-10 M HNO{sub 3}, 0.015-0.07 M KF, and 0.5-1.0 g/L Gd to dissolve the Pu up to 6.75 g/L. An alternate flowsheet would use 8-10 M HNO{sub 3}, 0.05-0.2 M KF, and 1-2 g/L B to dissolve the Pu. The targeted average Pu metal dissolution rate is 20 mg/min-cm{sup 2}, which is sufficient to dissolve a “standard” 2250-g Pu metal button in 24 h. Plutonium metal dissolution rate measurements showed that if Gd is used as the nuclear poison, the optimum dissolution conditions occur in 10 M HNO{sub 3}, 0.04-0.05 M KF, and 0.5-1.0 g/L Gd at 112 to 116 °C (boiling). These conditions will result in an estimated Pu metal dissolution rate of ~11-15 mg/min-cm{sup 2} and will result in dissolution times of 36-48 h for standard buttons. The recommended minimum and maximum KF concentrations are 0.03 M and 0.07 M, respectively. The data also indicate that lower KF concentrations would yield dissolution rates for B comparable to those observed with Gd at the same HNO{sub 3} concentration and dissolution temperature. To confirm that the optimal conditions identified by the dissolution rate measurements can be used to dissolve Pu metal up to 6.75 g/L in the presence of representative concentrations of Fe and Gd or B, a series of experiments was performed to demonstrate the flowsheets. In three of the five experiments, the offgas generation rate during the dissolution was measured and samples were analyzed for hydrogen gas (H{sub 2}). The use of

  9. Nitric acid oxide mixing ratio measurements using a rocket launched chemiluminescent instrument

    NASA Technical Reports Server (NTRS)

    Horvath, Jack J.

    1989-01-01

    A total of 18 rocket launched parachute borne nitric oxide instruments were launched from 1977 to 1985. A very precise instrument for the measurement of the nitric oxide mixing ratio was fabricated. No changes were made in the main body of the instruments, i.e., things associated with the reaction volume. Except for the last 4 launches, however, it did not yield the required absolute values that was hoped for. Two major problems were encountered. First, the wrong choice of the background calibration gas, nitrogen, caused the first 10 data sets to be too low in the absolute mixing ratio by nearly the order of 2 to 5 ppbv. The error was realized, and air was substituted for the bias gas measurement. Second, in the desire to extend the measurement to higher altitudes, the problem of contaminating the inlet flow tube with ozone from the reagent gas was encountered. The ozone valve was opened too early in the flight and this caused the pressure in the reaction volume to exceed the pressure at the flow tube entrance, permitting the ozone to migrate backwards. This problem was restricted to an altitude above 45 km.

  10. Effective Removal of Tetracycline from Aqueous Solution by Organic Acid-Coated Magnetic Nanoparticles.

    PubMed

    Guo, Liang; Liang, Yuyan; Chen, Xuelan; Xu, Wei; Wu, Kesheng; Wei, Hua; Xiong, Yonghua

    2016-03-01

    Self-assembled iron oxide nanocomposites are good magnetic nano-adsorbents that can be prepared using simple methods. Four types of organic acid-functionalised (oleic acid, undecenoic acid, caprylic acid or hexanoic acid) magnetic nanoparticles (MNPs) were synthesised through a one-pot chemisorption method for the removal of tetracycline (TC) from aqueous solution. The undecenoic acid-coated MNPs (UA-MNPs) exhibited the highest adsorption efficiency and can be easily retrieved with a low-gradient magnetic separator (0.4 Tesla) at pH 5.0 aqueous solution. The TC adsorption process on the UA-MNPs followed the Langmuir isotherm and the maximum adsorption capacities increased from 86.96 mg g(-1) to 222.2 mg g(-1) with the increase in temperature from 288 K to 318 K. The kinetics of adsorption fits pseudo-second-order model perfectly with a rate constant, 5.946 g mg(-1) min(-1) at 298 K. The positive values of the enthalpy (AH) and the negative value of the free energy (AG) indicated an endothermic and spontaneous adsorption process of TC on the UA-MNPs. Moreover, the UA-MNPs possessed excellent ability to adsorb the other three major types of TC antibiotics, including chlortetracycline, oxytetracycline and doxycycline.

  11. Influence of humic acid on the uptake of aqueous metals by the killifish Fundulus heteroclitus.

    PubMed

    Dutton, Jessica; Fisher, Nicholas S

    2012-10-01

    The role of humic acids, over a concentration range of 0 to 20 mg L(-1) , was investigated in the uptake of three metals (Cd, Cr, and Hg-as both inorganic Hg [Hg(II)] and methylmercury [MeHg]) and a metalloid (As) from the aqueous phase by the killifish (Fundulus heteroclitus). Cadmium uptake showed no relationship with humic acid concentration, whereas Cr, Hg(II), and MeHg uptake showed an inverse relationship, and As uptake increased with increasing humic acid concentration. Concentration factors were >1 for Cd, Hg(II), and MeHg at all humic acid concentrations, indicating killifish were more enriched in the metal than the experimental media, whereas As and Cr generally had concentration factors <1 at the end of a 72-h exposure. The uptake of As and Cr reached steady state within the 72-h exposure, whereas uptake of Cd, Hg(II), and MeHg did not. Uptake rate constants (k(u) s; ml g(-1)  d(-1) ) were highest for MeHg (91-3,936), followed by Hg(II), Cd, and Cr, and lowest for As (0.17-0.29). Dissection data revealed that the gills generally had the highest concentration of all metals under all humic acid treatments. The present study concludes that changes in humic acid concentration can influence the accumulation of aqueous metals in killifish and should be considered when modeling metal bioaccumulation.

  12. Volatility of organic aerosol: evaporation of ammonium sulfate/succinic acid aqueous solution droplets.

    PubMed

    Yli-Juuti, Taina; Zardini, Alessandro A; Eriksson, Axel C; Hansen, Anne Maria K; Pagels, Joakim H; Swietlicki, Erik; Svenningsson, Birgitta; Glasius, Marianne; Worsnop, Douglas R; Riipinen, Ilona; Bilde, Merete

    2013-01-01

    Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol.

  13. Removal of transition metals from dilute aqueous solution by carboxylic acid group containing absorbent polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new carboxylic acid group containing resin with cation exchange capacity, 12.67 meq/g has been used to remove Cu2+, Co2+ and Ni2+ ions from dilute aqueous solution. The resin has Cu2+, Co2+ and Ni2+ removal capacity, 216 mg/g, 154 mg/g and 180 mg/g, respectively. The selectivity of the resin to ...

  14. The Meteorology and Chemistry of High Nitric-Acid Episodes at the South Pole

    NASA Astrophysics Data System (ADS)

    Neff, William; Davis, Douglas

    2016-04-01

    Between 1998 and 2007, a series of field experiments carried out at the South Pole and with aircraft over a wider area revealed a very chemically active boundary layer overlying the east Antarctic ice sheet during the Austral summer. An early discovery was unexpectedly high concentrations of nitric acid (NO) at the South Pole. These were argued to be a result of the UV pholoysis of reactive nitrogen in surface and/or near-surface snow followed by subsequent confinement and non-linear HOx/NOx chemistry within a thin stable atmospheric boundary layer. The concentrations of NO also demonstrated daily, intraseasonal, as well as interannual variability as seen in the four field programs. This paper seeks to elucidate the interplay of large-to-small scale meteorology and chemistry at the South Pole that leads to highly variable NO concentrations and to examine boundary layer depth effects on NO in years when no direct measurements were available, in particular during the latest field program in 2006-2007. The importance of the South Pole is that it, unlike other high-latitude sites, has no diurnal cycle to disturb the evolution of the mostly stable boundary layer and its physics and chemistry. In the spring, as the solar elevation angle increases, nitrate photolysis rates increase. At the same time, the stratospheric vortex warms and with its breakup, the total column ozone increases leading to decreased photolysis rates. In addition, following the formation of the thermal tropopause in early spring, the tropospheric circulation over Antarctica changes dramatically, affecting the transport and dominant source regions for warm air and clouds arriving at the South Pole. The timing of the final warming ranged from early-November to mid-December for the four field experiment years. During the 30 days prior to the final increase in column ozone, as the thermal tropopause forms (~100 hPa), the winds at 300 hPa become bimodal, either along the eastern side of the Weddell Sea

  15. SOLVENT EXTRACTION OF THORIUM VALUES FROM AQUEOUS SOLUTIONS

    DOEpatents

    Warf, J.C.

    1959-04-21

    The separation of thorium values from rare earth metals contained ln aqueous solutions by means of extraction with a water immiscible alkyl phosphate diluted with a hydrocarbon such as hexane is described. While the extraction according to this invention may be carried out from any aqueous salt solution, it is preferred to use solutions containing free mineral acid. Hydrochloric acid and in particular nitric acid are sultable in a concentration ranging from 0.1 to 7 normal. The higher acid concentration results in higher extraction values.

  16. Insights Into the Aqueous History of Mars from Acid-Sulfate Weathered Phyllosilicates

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Ming, D. W.; Rampe, E. B.; Morris, R. V.

    2016-01-01

    Phyllosilicates on Mars are thought to have formed during Mars' earliest Noachian geologic era (approx. 4.1-3.7 Ga). Sulfate formation, on the other hand, requires more acidic conditions which are thought to have occurred later during Mars' Hesperian era (approx. 3.7-3.0 Ga). Therefore, regions on Mars where phyllosilicates and sulfates are found in close proximity to each other provide evidence for the aqueous conditions during this global transition. Both phyllosilicates and sulfates form in the presence of water and thus give clues to the aqueous history of Mars and its potential for habitability. Phyllosilicates that formed during the Noachian era would have been weathered by the prevailing acidic conditions that define the Hesperian. Therefore, the purpose of this study is to characterize the alteration products of acid-sulfate weathered phyllosilicates in laboratory experiments, focusing on the Fe/Mg-smectites commonly identified on Mars. We also compare our results to observations of phyllosilicates and sulfates on Mars in regions such as Endeavour Crater and Mawrth Vallis to understand the formation process of sulfates and constrain the aqueous history of these regions.

  17. Sulfate Mineral Formation from Acid-Weathered Phyllosilicates: Implications for the Aqueous History of Mars

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Ming, D. W.; Rampe, E. B.; Morris, R. V.

    2015-01-01

    Phyllosilicates on Mars are thought to have formed under neutral to alkaline conditions during Mars' earliest Noachian geologic era (approx. 4.1-3.7 Gya). Sulfate formation, on the other hand, requires more acidic conditions which are thought to have occurred later during Mars' Hesperian era (approx. 3.7-3.0 Gya). Therefore, regions on Mars where phyllosilicates and sulfates are found in close proximity to each other provide evidence for the geologic and aqueous conditions during this global transition. Both phyllosilicates and sulfates form in the presence of water and thus give clues to the aqueous history of Mars and its potential for habitability. Phyllosilicates that formed during the Noachian era may have been weathered by the prevailing acidic conditions that characterize the Hesperian. Therefore, the purpose of this study is to characterize the alteration products resulting from acid-sulfate weathered phyllosilicates in laboratory experiments. This study focuses on two phyllosilicates commonly identified with sulfates on Mars: nontronite and saponite. We also compare our results to observations of phyllosilicates and sulfates on Mars to better understand the formation process of sulfates in close proximity to phyllosilicates on Mars and constrain the aqueous conditions of these regions on Mars.

  18. Recent Advances in Detection of Ammonia and Nitric Acid on Short Timescales Suitable for Eddy Covariance Flux Measurements

    NASA Astrophysics Data System (ADS)

    Roscioli, Joseph; Herndon, Scott; Zahniser, Mark; Nelson, David; McManus, Barry

    2015-04-01

    Ammonia and nitric acid play important roles in aerosol, cloud, and NOx chemistry. Accurately measuring these species' concentrations on a fast timescale has historically been complicated due to their tendency to slowly and irreversibly interact with instrument surfaces. Here we present recent efforts aimed at mitigating these effects using new inlet technologies. First, an inlet that combines an inertial impactor with a pressure drop across a critical orifice provides particle removal without a traditional filter. This approach is used to reduce instrumental time responses for NH3 and HNO3 to 3-15 seconds. Second, a further reduction in time response is achieved by entraining functionalized perfluoroalkane vapor into the inlet sampling stream. This "active passivation" method is used to achieve time responses of ~0.5 seconds for both NH3 and HNO3, and is found to be applicable to a variety of inlet designs. These technologies enable fast time response sampling suitable for eddy covariance flux measurements.

  19. Combustion of 1,5-dinitrobiuret (DNB) in the presence of nitric acid using ReaxFF molecular dynamics simulations.

    PubMed

    Russo, Michael F; Bedrov, Dmitry; Singhai, Shashank; van Duin, Adri C T

    2013-09-26

    In this study we have examined the combustion dynamics of 1,5-dinitrobiuret (DNB) and nitric acid using reactive molecular dynamics simulations. Simulations were performed using the ReaxFF force field with parameters that were fitted against quantum mechanical calculations on model compounds/clusters relevant for this particular chemical system. Several different compositions were investigated, at densities of 0.5 and 1.0 g/mL, to examine the reaction kinetics in a dense vapor and liquid phase of these mixtures. Our simulations show that at certain compositions of the mixture reaction kinetics result in a very sharp release of thermal energy, which we associate with spontaneous ignition or hypergolicity. Analysis of key reaction mechanisms responsible for this process is discussed.

  20. Microwave-assisted digestion using nitric acid for heavy metals and sulfated ash testing in active pharmaceutical ingredients.

    PubMed

    Pluhácek, T; Hanzal, J; Hendrych, J; Milde, D

    2016-04-01

    The monitoring of inorganic impurities in active pharmaceutical ingredients plays a crucial role in the quality control of the pharmaceutical production. The heavy metals and residue on ignition/sulfated ash methods employing microwave-assisted digestion with concentrated nitric acid have been demonstrated as alternatives to inappropriate compendial methods recommended in United States Pharmacopoeia (USP) and European Pharmacopoeia (Ph. Eur.). The recoveries using the heavy metals method ranged between 89% and 122% for nearly all USP and Ph. Eur. restricted elements as well as the recoveries of sodium sulfate spikes were around 100% in all tested matrices. The proposed microwave-assisted digestion method allowed simultaneous decomposition of 15 different active pharmaceutical ingredients with sample weigh up to 1 g. The heavy metals and sulfated ash procedures were successfully applied to the determination of heavy metals and residue on ignition/sulfated ash content in mycophenolate mofetil, nicergoline and silymarin.

  1. Microstructure and Corrosion Behavior of Hf-40 Wt Pct Ti Alloy in Nitric Acid Medium for Reprocessing Applications

    NASA Astrophysics Data System (ADS)

    Jayaraj, J.; Ravi, K. R.; Mallika, C.; Kamachi Mudali, U.

    2016-09-01

    The Hf-40 wt pct Ti (Hf-Ti) alloy was developed for neutron poison application in the spent nuclear fuel reprocessing plant. The furnace-cooled Hf-Ti sample exhibited the microstructure comprising equiaxed-α, lamellar-α, and feathery-α. The water-quenched Hf-Ti sample confirmed the presence of lath and internally twinned martensite. In comparison to the furnace-cooled sample, low corrosion current density and passivation current density values obtained for the water-quenched Hf-Ti in 6 M HNO3 at 298 K (25 °C) indicated better passivation ability. The martensitic structure exhibited high hardness (660 HV) and negligible corrosion rate in 6 M nitric acid at 298 K (25 °C). X-ray photoelectron spectroscopic (XPS) analysis confirmed that passivation behavior of this alloy was due to the protective passive film composed of TiO2 and HfO2.

  2. Soft cutting of single-wall carbon nanotubes by low temperature ultrasonication in a mixture of sulfuric and nitric acids

    NASA Astrophysics Data System (ADS)

    Shuba, M. V.; Paddubskaya, A. G.; Kuzhir, P. P.; Maksimenko, S. A.; Ksenevich, V. K.; Niaura, G.; Seliuta, D.; Kasalynas, I.; Valusis, G.

    2012-12-01

    To decrease single-wall carbon nanotube (SWCNT) lengths to a value of 100-200 nm, aggressive cutting methods, accompanied by a high loss of starting material, are frequently used. We propose a cutting approach based on low temperature intensive ultrasonication in a mixture of sulfuric and nitric acids. The method is nondestructive with a yield close to 100%. It was applied to cut nanotubes produced in three different ways: gas-phase catalysis, chemical vapor deposition, and electric-arc-discharge methods. Raman and Fourier transform infrared spectroscopy were used to demonstrate that the cut carbon nanotubes have a low extent of sidewall degradation and their electronic properties are close to those of the untreated tubes. It was proposed to use the spectral position of the far-infrared absorption peak as a simple criterion for the estimation of SWCNT length distribution in the samples.

  3. Soft cutting of single-wall carbon nanotubes by low temperature ultrasonication in a mixture of sulfuric and nitric acids.

    PubMed

    Shuba, M V; Paddubskaya, A G; Kuzhir, P P; Maksimenko, S A; Ksenevich, V K; Niaura, G; Seliuta, D; Kasalynas, I; Valusis, G

    2012-12-14

    To decrease single-wall carbon nanotube (SWCNT) lengths to a value of 100-200 nm, aggressive cutting methods, accompanied by a high loss of starting material, are frequently used. We propose a cutting approach based on low temperature intensive ultrasonication in a mixture of sulfuric and nitric acids. The method is nondestructive with a yield close to 100%. It was applied to cut nanotubes produced in three different ways: gas-phase catalysis, chemical vapor deposition, and electric-arc-discharge methods. Raman and Fourier transform infrared spectroscopy were used to demonstrate that the cut carbon nanotubes have a low extent of sidewall degradation and their electronic properties are close to those of the untreated tubes. It was proposed to use the spectral position of the far-infrared absorption peak as a simple criterion for the estimation of SWCNT length distribution in the samples.

  4. Ab initio study of the molecular structure and vibrational spectrum of nitric acid and its protonated forms

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Rice, Julia E.

    1992-01-01

    The equilibrium structures, harmonic vibrational frequencies, IR intensities, and relative energetics of HNO3 and its protonated form H2NO3+ were investigated using double-zeta plus polarization and triple-zeta plus polarization basis sets in conjunction with high-level ab initio methods. The latter include second-order Moller-Plesset perturbation theory, the single and double excitation coupled cluster (CCSD) methods, a perturbational estimate of the effects of connected triple excitations (CCSD(T)), and the self-consistent field. To determine accurate energy differences CCSD(T) energies were computed using large atomic natural orbital basis sets. Four different isomers of H2NO3+ were considered. The lowest energy form of protonated nitric acid was found to correspond to a complex between H2O and NO2+, which is consistent with earlier theoretical and experimental studies.

  5. Aerosol silica as a possible candidate for the heterogeneous formation of nitric acid hydrates in the stratosphere

    NASA Astrophysics Data System (ADS)

    Bogdan, A.; Kulmala, M.

    The liquid-solid phase transitions in nanometersize HNO3/H2O solution droplets obtained on fumed silica (a counterpart of aerosol silica) have been studied with differential scanning calorimetry (DSC). “Soft” transitions, reduction in the freezing and melting temperatures, Tf and Tm, and enthalpies, ΔHf and ΔHm, are interpreted to be caused by very small size of droplets. The observed difference between ΔHf and ΔHm can serve as an evidence of temperature dependence of the enthalpy of fusion for hydrates. Freezing of droplets with stoichiometry close to nitric acid trihydrate (NAT) at temperature 4 K warmer than the ice frost point indicates that, in the stratosphere, silica particles can serve as nuclei for heterogeneous freezing of NAT.

  6. Hydrofluoric-nitric-sulphuric-acid surface treatment of tungsten for carbon fibre-reinforced composite hybrids in space applications

    NASA Astrophysics Data System (ADS)

    Kanerva, M.; Johansson, L.-S.; Campbell, J. M.; Revitzer, H.; Sarlin, E.; Brander, T.; Saarela, O.

    2015-02-01

    Hybrid material systems, such as combinations of tungsten foils and carbon fibre-reinforced plastic (CFRP), are replacing metal alloy concepts in spacecraft enclosures. However, a good adhesion between the tungsten oxide scale and the epoxy resin used is required. Here, the effects of a hydrofluoric-nitric-sulphuric-acid (HFNS) treatment on tungsten oxides and subsequent adhesion to CFRP are analysed using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and fracture testing. The work shows that HFNS treatment results in decreased oxygen content, over 50% thinner tungsten trioxide (WO3) layer and increased nano-roughness on thin tungsten foils. Fracture testing established a 39% increase in the average critical strain for tungsten-CFRP specimens after HFNS treatment was carried out on tungsten. The effect of the oxide scale modification regarding the critical strain energy release rate was ΔGc≈ 8.4 J/m2.

  7. Studies on Pre-Ignition Reactions of Hydrocarbon-Based Rocket Fuels Hypergolic with Red Fuming Nitric Acid as Oxidizer

    NASA Astrophysics Data System (ADS)

    Kulkarni, Suresh G.; Bagalkote, Vrushali S.

    2010-06-01

    Carene, norbornadiene, ethylidene norbornene, and furfuryl alcohol exhibit hypergolic ignition with red fuming nitric acid as oxidizer. Carene, when blended with norbornadiene, ethylidene norbornene, and furfuryl alcohol in appropriate proportions, exhibits synergistic hypergolic ignition with further decrease in ignition delay. In order to understand the probable mechanism of hypergolic ignition and synergy in ignition, various pre-ignition reactions have been studied by quenching the reactions and analyzing the intermediate products by Fourier transform infrared (FTIR) and gas chromatography-mass spectrometry (GC-MS) techniques. Based on the product analysis, the probable schemes of reactions have been proposed. Oxidation, nitration, and cationic polymerization appear to be the important pre-ignition reactions taking place simultaneously that are responsible for hypergolic ignition.

  8. [Measurement of lead in high-salt food with sulfuric-nitric acid to treat food ash].

    PubMed

    Shi, Y; Zhang, Y; Wang, Y

    2001-03-01

    Lead in high-salt food was measured by treating the ash with sulfuric-nitric acid, and diluting lead standard with sodium sulfate to eliminate the disturbance of chloride in detecting lead with atomic absorption spectrophotometry. The minimum detection limit was 0.10 mg/kg. The relative standard deviation is 1.72%, 5.00% and 7.14% while the amount of lead was 8.70, 2.40 and 1.40 micrograms respectively. The recovery varied between 90.0%-109.0%. There was no significant difference (P > 0.05) of the lead content between the mentioned method and extraction flame photometry. The amount of lead is higher obviously than that of other two methods by eliminating the disturbance of chloride. The method was simple, precise and accurate, and suitable for hygienic examination.

  9. Laboratory Investigation of the Growth and Crystal Structure of Nitric Acid Hydrates by Transmission Electron Microscopy (TEM)

    NASA Technical Reports Server (NTRS)

    Blake, David F.; Chang, Sherwood (Technical Monitor)

    1994-01-01

    A great deal of recent laboratory work has focussed on the characterization of the nitric acid hydrates, thought to be present in type I Polar Stratospheric Clouds (PSCs). Phase relationships and vapor pressure measurements (1-3) and infrared characterizations (4-5) have been made. However, the observed properties of crystalline solids (composition, melting point, vapor pressure, surface reactivity, thermodynamic stability, extent of solid solution with other components, etc.) are controlled by their crystal structure. The only means of unequivocal structural identification for crystalline solids is diffraction (using electrons, X-rays, neutrons, etc.). Other observed properties of crystalline solids, such as their infrared spectra, their vapor pressure as a function of temperature, etc. yield only indirect information about what phases are present, their relative proportions, or whether they are crystalline or amorphous.

  10. Human skin permeability enhancement by lauric acid under equilibrium aqueous conditions.

    PubMed

    Smith, S W; Anderson, B D

    1995-05-01

    An in vitro method was developed to investigate the enhancement of hydrocortisone transport across human stratum corneum (SC) by a model enhancer, lauric acid, in aqueous solutions under equilibrium conditions with respect to the enhancer. In contrast to classical (i.e., nonequilibrium) loading techniques, in which the enhancer is applied only to the donor side of SC either in pure form or in an organic solvent while enhancer-free aqueous buffers are placed in the receptor phase, this method allowed the investigation of pH effects, concentration effects, and reversibility of both enhancer uptake and enhancement of drug transport under thermodynamically well-defined conditions. The SC-buffer partition coefficients for lauric acid were linear with concentration and sigmoidal with pH, suggesting that both the neutral species and laurate anion partition into SC. Comparisons of partition coefficients in delipidized and untreated SC as a function of pH indicated that the uptake of lauric acid in neutral form is governed primarily by the lipid domain, whereas the protein domain accounts for anion uptake. The effects of lauric acid on skin permeability were > 80% reversible upon extraction of the enhancer from the membrane. However, the degree of enhancement of hydrocortisone permeability was nonlinearly dependent on the equilibrium concentration of lauric acid in either the aqueous buffer or the membrane, exhibiting thresholds in the appearance of enhancement with concentration. The enhancer concentration necessary to achieve isoenhancement of about 6-fold varied from approximately 1 x 10(-5) M at pH < pKa to approximately 1 x 10(-2) M at high pH (pH > 8) demonstrating the higher influence of the free acid species.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Uptake of isoprene, methacrylic acid and methyl methacrylate into aqueous solutions of sulfuric acid and hydrogen peroxide.

    PubMed

    Liu, Ze; Ge, Maofa; Wang, Weigang

    2012-01-01

    Multiphase acid-catalyzed oxidation by hydrogen peroxide has been suggested to be a potential route to secondary organic aerosol formation from isoprene and its gas-phase oxidation products, but the lack of kinetics data significantly limited the evaluation of this process in the atmosphere. Here we report the first measurement of the uptake of isoprene, methacrylic acid and methyl methacrylate into aqueous solutions of sulfuric acid and hydrogen peroxide. Isoprene cannot readily partition into the solution because of its high volatility and low solubility, which hinders its further liquid-phase oxidation. Both methacrylic acid and methyl methacrylate can enter the solutions and be oxidized by hydrogen peroxide, and steady-state uptake was observed with the acidity of solution above 30 wt.% and 70 wt.%, respectively. The steady-state uptake coefficient of methacrylic acid is much larger than that of methyl methacrylate for a solution with same acidity. These observations can be explained by the different reactivity of these two compounds caused by the different electron-withdrawing conjugation between carboxyl and ester groups. The atmospheric lifetimes were estimated based on the calculated steady-state uptake coefficients. These results demonstrate that the multiphase acid-catalyzed oxidation of methacrylic acid plays a role in secondary organic aerosol formation, but for isoprene and methyl methacrylate, this process is not important in the troposphere.

  12. Adsorption of acid dyes from aqueous solution on activated bleaching earth.

    PubMed

    Tsai, W T; Chang, C Y; Ing, C H; Chang, C F

    2004-07-01

    In the present study, activated bleaching earth was used as clay adsorbent for an investigation of the adsorbability and adsorption kinetics of acid dyes (i.e., acid orange 51, acid blue 9, and acid orange 10) with three different molecular sizes from aqueous solution at 25 degrees C in a batch adsorber. The rate of adsorption has been investigated under the most important process parameters (i.e., initial dye concentration). A simple pseudo-second-order model has been tested to predict the adsorption rate constant, equilibrium adsorbate concentration, and equilibrium adsorption capacity by the fittings of the experimental data. The results showed that the adsorbability of the acid acids by activated bleaching earth follows the order: acid orange 51 > acid blue 9 > acid orange 10, parallel to the molecular weights and molecular sizes of the acid dyes. The adsorption removals (below 3%) of acid blue 9 and acid orange 10 onto the clay adsorbent are far lower than that (approximately 24%) of acid orange 51. Further, the adsorption kinetic of acid orange 51 can be well described by the pseudo-second-order reaction model. Based on the isotherm data obtained from the fittings of the adsorption kinetics, the Langmuir model appears to fit the adsorption better than the Freundlich model. The external coefficients of mass transfer of the acid orange 51 molecule across the boundary layer of adsorbent particle have also been estimated at the order of 10(-4)-10(-5) cm s(-1) based on the film-pore model and pseudo-second-order reaction model.

  13. Response of marine and freshwater algae to nitric acid and elevated carbon dioxide levels simulating environmental effects of bolide impact

    NASA Technical Reports Server (NTRS)

    Boston, P. J.

    1988-01-01

    One of the intriguing facets of the Cretaceous-Tertiary extinction is the apparently selective pattern of mortality amongst taxa. Some groups of organisms were severely affected and some remained relatively unscathed as they went through the K/T boundary. While there is argument concerning the exact interpretation of the fossil record, one of the best documented extinctions at the Cretaceous-Tertiary boundary is that of the calcareous nannoplankton. These organisms include coccolithic algae and foraminiferans. Attempts to explain their decline at the K/T boundary center around chemistry which could affect their calcium carbonate shells while leaving their silica-shelled cousins less affected or unaffected. Two environmental consequences of an extraterrestrial body impact which were suggested are the production of large quantities of nitrogen oxides generated by the shock heating of the atmosphere and the possible rise in CO2 from the dissolution of CaCO3 shells. Both of these phenomena would acidify the upper layers of the oceans and bodies of freshwater not otherwise buffered. The effects of nitric acid, carbon dioxide, or both factors on the growth and reproduction of calcareous marine coccoliths and non-calcareous marine and freshwater species of algae were considered. These experiments demonstrate that nitric acid and carbon dioxide have significant effects on important aspects of the physiology and reproduction of modern algae representative of extinct taxa thought to have suffered significant declines at the Cretaceous-Tertiary boundary. Furthermore, calcareous species showed more marked effects than siliceous species and marine species tested were more sensitive than freshwater species.

  14. Superhydrophobic copper surfaces fabricated by fatty acid soaps in aqueous solution for excellent corrosion resistance

    NASA Astrophysics Data System (ADS)

    Xu, Wenlong; Hu, Yuanyuan; Bao, Wenda; Xie, Xiaoyu; Liu, Yiran; Song, Aixin; Hao, Jingcheng

    2017-03-01

    A simple and safe one-step immersion method was developed to obtain the stable superhydrophobic copper surfaces with excellent corrosion resistance ability using fatty acids in water-medium instead of ethanol. An organic alkali, N,N-dimethylcyclohexylamine (DMCHA), was chosen to solve the poor solubility of fatty acids in water and the high Krafft point of carboxylate salts with inorganic counterions. The superhydrophobic property can be realized in a much quicker process (7.5 min) in aqueous solution than in ethanol (more than 2 d), which is universally feasible for the fabrication of superhydrophobic metal surfaces in industry scale, thereby greatly increasing the safety in industrial manufacture.

  15. Radical-driven carbonyl-to-acid conversion and acid degradation in tropospheric aqueous systems studied by CAPRAM

    NASA Astrophysics Data System (ADS)

    Tilgner, A.; Herrmann, H.

    2010-12-01

    Model studies on the aqueous phase radical-driven processing of carbonyl compounds and acids in clouds and deliquescent particles were performed. The model exposed that aqueous radical conversions of carbonyl compounds and its oxidation products can contribute potentially to the formation of functionalised organic acids. The main identified C 2-C 4 organic gas phase precursors are ethylene glycol, glycolaldehyde, glyoxal, methylglyoxal and 1,4-butenedial. The aqueous phase is shown to contribute significantly with about 93%/63%, 47%/8%, 31%/4%, 7%/4%, 36%/8% to the multiphase oxidative fate of these compounds under remote/urban conditions. Interestingly, the studies revealed that aqueous chemical processing is not only limited to in-cloud conditions but also proceeds in deliquescent particle phase with significant fluxes. Oxalic acid is shown to be formed preferably in deliquescent particles subsequent to the in-cloud oxidations. Mean aqueous phase oxalate formation fluxes of about 12, 42 and 0.4 ng m -3 h -1 in the remote, urban and maritime scenario, respectively. Additionally, the turnovers of the oxidation of organics such as methylglyoxal by NO 3 radical reactions are identified to be competitive to their OH pendants. At the current state of CAPRAM, mean C 2-C 4 in-cloud oxidation fluxes of about 0.12 and 0.5 μg m -3 h -1 are modelled under the idealised remote and urban cloud conditions. Finally, turnovers from radical oxidations were compared with those of thermal reactions. It is demonstrated that, based on the sparse kinetic data available organic accretion reaction might be of interest in just a few cases for cloud droplets and aqueous particles but generally do not reach the oxidative conversion rates of the main radical oxidants OH and NO 3. Interestingly, oxidation reactions of H 2O 2 are shown to be competitive to the OH radical conversions in cases when H 2O 2 is not readily used up by the S(IV) oxidation.

  16. The dissolution of quartz in dilute aqueous solutions of organic acids at 25°C

    USGS Publications Warehouse

    Bennett, P.C.; Melcer, M.E.; Siegel, D.I.; Hassett, J.P.

    1988-01-01

    The dissolution of quartz in dilute aqueous solutions of organic acids at 25° and standard pressure was investigated by the batch dissolution method. The bulk dissolution rate of quartz in 20 mmole/Kg citrate solutions at pH 7 was 8 to 10 times faster than that in pure water. After 1750 hours the concentration of dissolved silica in the citrate solution was 167 μmole/Kg compared to 50 μmole/Kg in water and a 20 mmole/Kg solution of acetate at pH 7. Solutions of salicylic, oxalic, and humic acids also accelerated the dissolution of quartz in aqueous solution at pH 7. The rate of dissolution in organic acids decreased sharply with decreasing pH.The possibility of a silica-organic acid complex was investigated using UV-difference spectroscopy. Results suggest that dissolved silica is complexed by citrate, oxalate and pyruvate at pH 7 by an electron-donor acceptor complex, whereas no complexation occurs between silica and acetate, lactate, malonate, or succinate. Three models are proposed for the solution and surface complexation of silica by organic acid anions which result in the accelerated dissolution and increased solubility of quartz in organic rich water.

  17. The dissolution of quartz in dilute aqueous solutions of organic acids at 25 degree C

    SciTech Connect

    Bennett, P.C.; Melcer, M.E.; Siegel, D.I.; Hassett, J.P. )

    1988-06-01

    The dissolution of quartz in dilute aqueous solutions of organic acids at 25{degree}C and standard pressure was investigated by the batch dissolution method. The bulk dissolution rate of quartz in 20 mmole/Kg citrate solutions at pH 7 was 8 to 10 times faster than that in pure water. After 1750 hours the concentration of dissolved silica in the citrate solution was 167 {mu}mole/Kg compared to 50 {mu}mole/Kg in water and a 20 mmole/Kg solution of acetate at pH 7. Solutions of salicylic, oxalic, and humic acids also accelerated the dissolution of quartz in aqueous solution at pH 7. The rate of dissolution in organic acids decreased sharply with decreasing pH. The possibility of a silica-organic acid complex was investigated using UV-difference spectroscopy. Results suggest that dissolved silica is complexed by citrate, oxalate and pyruvate at pH 7 by an electron-donor acceptor complex, whereas no complexation occurs between silica and acetate, lactate, malonate, or succinate. Three models are proposed for the solution and surface complexation of silica by organic acid which result in the accelerated dissolution and increased solubility of quartz in organic rich water.

  18. Regeneration of basic sorbents used in the recovery of acetic acid from dilute aqueous solution

    SciTech Connect

    Ng, M.; King, C.J.

    1988-10-01

    The regeneration of basic sorbents used in the recovery of dilute aqueous acetic acid was explored. The regeneration methods studied were solvent leaching and vaporization. The resins used were weak base anion exchange resins, Dow Chemical Company's Dowex MWA-1 (tertiary amine resin) and Celanese Corporation's Aurorez (polybenzimidazole resin). The equilibrium between the aqueous acetic acid solution and the resins was measured in batch experiments. The composite isotherms calculated from these data wee comparable to those of other researchers. Methanol was used as the solvent to leach acetic acid from the resin. The equilibrium data from the batch experiments were used in the local-equilibrium theory of fixed-bed devices to model the desorption behavior of acetic acid in methanol. Both sorption and desorption equilibrium data were used in chemical complexation models to obtain sorption affinities and capacities of the resin for acetic acid. However, the amount of methanol needed to achieve a high degree of regeneration was too large to be economical. 15 refs., 25 figs., 3 tabs.

  19. Chemical weathering and the role of sulfuric and nitric acids in carbonate weathering: Isotopes (13C, 15N, 34S, and 18O) and chemical constraints

    NASA Astrophysics Data System (ADS)

    Li, Cai; Ji, Hongbing

    2016-05-01

    Multiple isotopes (13C-DIC, 34S and 18O-SO42-, 15N and 18O-NO3-) and water chemistry were used to evaluate weathering rates and associated CO2 consumption by carbonic acid and strong acids (H2SO4 and HNO3) in a typical karst watershed (Wujiang River, Southwest China). The dual sulfate isotopes indicate that sulfate is mainly derived from sulfide oxidation in coal stratum and sulfide-containing minerals, and dual nitrate isotopes indicate that nitrate is mainly derived from soil N and nitrification. The correlation between isotopic compositions and water chemistry suggests that sulfuric and nitric acids, in addition to carbonic acid, are involved in carbonate weathering. The silicate and carbonate weathering rates are 7.2 t km-2 yr-1 and 76 t km-2 yr-1, respectively. In comparison with carbonate weathering rates (43 t km-2 yr-1) by carbonic acid alone, the subsequent increase in rates indicates significant enhancement of weathering when combined with sulfuric and nitric acids. Therefore, the role of sulfuric and nitric acids in the rock weathering should be considered in the global carbon cycle.

  20. Associations of uric acid with polymorphisms in the delta-aminolevulinic acid dehydratase, vitamin D receptor, and nitric oxide synthase genes in Korean lead workers.

    PubMed

    Weaver, Virginia M; Schwartz, Brian S; Jaar, Bernard G; Ahn, Kyu-Dong; Todd, Andrew C; Lee, Sung-Soo; Kelsey, Karl T; Silbergeld, Ellen K; Lustberg, Mark E; Parsons, Patrick J; Wen, Jiayu; Lee, Byung-Kook

    2005-11-01

    Recent research suggests that uric acid may be nephrotoxic at lower levels than previously recognized and that it may be one mechanism for lead-related nephrotoxicity. Therefore, in understanding mechanisms for lead-related nephrotoxicity, it would be of value to determine whether genetic polymorphisms that are associated with renal outcomes in lead workers and/or modify associations between lead dose and renal function are also associated with uric acid and/or modify associations between lead dose and uric acid. We analyzed data on three such genetic polymorphisms: delta-aminolevulinic acid dehydratase (ALAD), endothelial nitric oxide synthase (eNOS), and the vitamin D receptor (VDR). Mean (+/- SD) tibia, blood, and dimercaptosuccinic acid-chelatable lead levels were 37.2 +/- 40.4 microg/g bone mineral, 32.0+/- 15.0 g/dL, and 0.77+/- 0.86 microg/mg creatinine, respectively, in 798 current and former lead workers. Participants with the eNOSAsp allele had lower mean serum uric acid compared with those with the Glu/Glu genotype. Among older workers (age > or = median of 40.6 years), ALAD genotype modified associations between lead dose and uric acid levels. Higher lead dose was significantly associated with higher uric acid in workers with the ALAD1-1 genotype; associations were in the opposite direction in participants with the variant ALAD1-2 genotype. In contrast, higher tibia lead was associated with higher uric acid in those with the variant VDRB allele; however, modification was dependent on participants with the bb genotype and high tibia lead levels. We conclude that genetic polymorphisms may modify uric acid mediation of lead-related adverse renal effects.

  1. Aqueous Phase Photo-Oxidation of Succinic Acid: Changes in Hygroscopic Properties and Reaction Products

    NASA Astrophysics Data System (ADS)

    Hudson, P. K.; Ninokawa, A.; Hofstra, J.; de Lijser, P.

    2013-12-01

    Atmospheric aerosol particles have been identified as important factors in understanding climate change. The extent to which aerosols affect climate is determined, in part, by hygroscopic properties which can change as a result of atmospheric processing. Dicarboxylic acids, components of atmospheric aerosol, have a wide range of hygroscopic properties and can undergo oxidation and photolysis reactions in the atmosphere. In this study, the hygroscopic properties of succinic acid aerosol, a non-hygroscopic four carbon dicarboxylic acid, were measured with a humidified tandem differential mobility analyzer (HTDMA) and compared to reaction products resulting from the aqueous phase photo-oxidation reaction of hydrogen peroxide and succinic acid. Reaction products were determined and quantified using gas chromatography-flame ionization detection (GC-FID) and GC-mass spectrometry (GC-MS) as a function of hydrogen peroxide:succinic acid concentration ratio and photolysis time. Although reaction products include larger non-hygroscopic dicarboxylic acids (e.g. adipic acid) and smaller hygroscopic dicarboxylic acids (e.g. malonic and oxalic acids), comparison of hygroscopic growth curves to Zdanovskii-Stokes-Robinson (ZSR) predictions suggests that the hygroscopic properties of many of the product mixtures are largely independent of the hygroscopicity of the individual components. This study provides a framework for future investigations to fully understand and predict the role of chemical reactions in altering atmospheric conditions that affect climate.

  2. Radiolysis of aqueous solutions of acetic acid in the presence of Na-montmorillonite

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalez, R.; Negron-Mendoza, A.; Ramos, S.; Ponnamperuma, C.

    1990-01-01

    The gamma-irradiation of 0.8 mol dm-3 aqueous, oxygen-free acetic acid solutions was investigated in the presence or absence of Na-montmorillonite. H2, CH4, CO, CO2, and several polycarboxylic acids were formed in all systems. The primary characteristics observed in the latter system were: (1) Higher yield of the decomposition of acetic acid; (2) Lower yield of the formation of polycarboxylic acids; (3) No effect on the formation of methane; (4) Higher yield of the formation of carbon dioxide; and (5) The reduction of Fe3+ in the octahedral sites of Na-montmorillonite. A possible reaction scheme was proposed to account for the observed changes. The results are important in understanding heterogeneous processes in radiation catalysis and might be significant to prebiotic chemistry.

  3. A Lagrangian method to study stratospheric nitric acid variations in the polar regions as measured by the Improved Limb Atmospheric Spectrometer

    NASA Astrophysics Data System (ADS)

    RivièRe, Emmanuel D.; Terao, Yukio; Nakajima, Hideaki

    2003-12-01

    Denitrification is well known to affect the severity of springtime ozone depletion in Polar Regions. In winter 1996/1997 in the Northern Hemisphere and winter 1997 in the Southern Hemisphere, the Improved Limb Atmospheric Spectrometer (ILAS) on board the Advanced Earth Observing Satellite (ADEOS) detected denitrification in both hemispheres. Here the Match technique and a Lagrangian model are used to analyze the nitric acid variation between a pair of measurements belonging to the same air parcel. Eleven cases are studied in Antarctica and seventeen in the Arctic, permitting testing of the laboratory-measured homogeneous freezing rate of liquid ternary aerosol into nitric acid hydrates, thought to be the determining step of the denitrification process. Over the Antarctica, eight cases out of eleven lead to results in agreement with the measurements, taking into account uncertainties of the measurement and possible acceptable bias in the temperature field used for the modeling study. Over the Arctic, more cases remain unexplained even after taking into account the possible scavenging of nitric acid by large nitric acid trihydrate (NAT) particles falling from the layers above. These disagreements are mainly due to relatively high temperatures along the trajectories that do not lead to significant NAT or nitric acid dihydrate (NAD) freezing. Thus it appears that some additional mechanisms are required to explain the denitrification in the Arctic winter. Moreover, the occurrence of denitrification due to the few NAT particles with very large radius (few μm), the so-called "NAT rocks," over the Antarctic winter in 1997 is suggested.

  4. [Studies on carbonization of saccharides by using aqueous solution of various acids].

    PubMed

    Zhang, Xin; He, An-Qi; Kang, Ting-Guo; Xia, Jin-Ming; Weng, Shi-Fu; Xu, Yi-Zhuang; Wu, Jin-Guang

    2014-09-01

    The authors tried to establish an approach to use acids to convert biomass into a fuel with higher carbon content and lower oxygen content in a zero-energy-consumption fashion. Considering that biomass is composed of monosaccharide, we used aqueous solutions of variation acids including hydrochloric acid, sulfuric acid and perchloric acid to treat 2-deoxy-ribose and fructose at ambient temperature and pressure. Black substances were produced after a period of time when 2-deoxy-ribose and fructose were mixed with aqueous solutions containing 8 mol · L(-1) acids. The black substance was collected and characterized by using elemental analysis, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Elemental analysis results indicate that the contents of carbon increases significantly in the black substances in comparison with 2-deoxy-ribose and fructose. Moreover, XPS results indicate that the content of oxygen in the black substance undergoes a significant decrease compared with pure 2-deoxy-ribose and fructose. In the XPS spectra, the is peaks of 2-deoxy-ribose, strong sub peak at 286. 05 eV, which is assigned to carbon linked to oxygen directly, dominate in the C is peak envelop. After treatment by HClO4, the peak decreased dramatically. This result also supports the conclusion that the content of oxygen in mono-saccharide is significantly reduced after treatment by acids. In the FTIR spectra of the black substances, strong peaks can be observed around 1 600 cm(-1), indicating that C==C bond is formed in the product. The above results suggest that treatments with acids may be developed as a new zero-energy-consumption approach to convert biomass in a new fuel with improved energy output efficiency.

  5. Ignition-delay Characteristics in Modified Open-cup Apparatus of Several Fuels with Nitric Acid Oxidants Within Temperature Range 70 to 105 Degrees F

    NASA Technical Reports Server (NTRS)

    Miller, Riley O

    1951-01-01

    Fluid properties and low-temperature ignition delays were obtained for approximately 90 fuel-oxidant combinations. A red fuming nitric acid containing approximately 3 percent water and 19 percent nitrogen tetroxide froze at approximately -87 degrees F and ignited several low-viscosity fuel blends of aromatic amines in triethylamine at -76 degrees F and lower. With this acid, the following average ignition delays were obtained with a blend of 30 percent o-toluidine in triethylamine: ...

  6. Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation

    NASA Astrophysics Data System (ADS)

    Jia, Wenbao; He, Yanquan; Ling, Yongsheng; Hei, Daqian; Shan, Qing; Zhang, Yan; Li, Jiatong

    2015-04-01

    The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L-1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the •OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while •H and eaq- played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation.

  7. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution.

    PubMed

    Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya

    2016-01-01

    Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma.

  8. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution

    PubMed Central

    Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya

    2016-01-01

    Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma. PMID:27183129

  9. Hydrolysis of ionized deoxycholic acid in the aqueous phase and rate analysis for transfer of neutralized deoxycholic acid into the benzene phase across the benzene/water interface.

    PubMed

    Ohno, Ryo; Nakamura, Shohei; Moroi, Yoshikiyo; Isoda-Yamashita, Teruyo

    2008-11-13

    Sodium deoxycholate in water dissociates into sodium cation and deoxycholate anion in the aqueous phase, and then, the latter anions partially hydrolyze to form deionized deoxycholic acids. The acids move into the benzene phase, when liquid benzene is placed upon the aqueous phase, and finally the partition equilibrium is reached. The above processes were traced by pH change in the aqueous phase by a pH meter or the change in [OH-] with time, from which the rate for transfer of neutralized acid to the organic phase was analyzed. From the trace, the rate constants for hydrolysis of acid anion ( kf), neutralization of acid ( kb), transfer of neutralized acid from the aqueous phase to the organic phase ( kin*), and its back-transfer from the organic phase to the aqueous phase ( kut*) were evaluated; kf = 2.18 x 10 (-4) mol (-1) dm (3) min (-1), kb = 1.24 x 10 (5) mol (-1) dm (3) min (-1), kin* = 4.06 x 10 (-1) min (-1) cm (-2), and kout*) = 8.00 x 10 (-2) min (-1) cm (-2). The above values are supported by the partition constant of deoxycholic acid between the benzene phase and the aqueous phase.

  10. The infrared optical constants of sulfuric acid at 250 K. [spectral reflectance measurement of aqueous solutions

    NASA Technical Reports Server (NTRS)

    Pinkley, L. W.; Williams, D.

    1976-01-01

    Results are presented for measurements of the IR spectral reflectance at near-normal incidence of aqueous solutions of sulfuric acid with acid concentrations of 75% and 95.6% by weight. Kramers-Kronig analyses of the reflectance data are employed to obtain values of the optical constants n(nu) and k(nu) in the spectral range from 400 to 6000 cm to the -1 power. The optical constants of these solutions at 250 K and 300 K are compared. It is found that in spectral regions remote from strong absorption bands, the values of the n(nu) indices obtained at 250 K agree with the values given by Lorentz-Lorenz correction of the same indices at 300 K. All absorption bands observed at 300 K are found to be present at 250 K with slight shifts in frequency and with significant differences in the k(nu) indices at the band maxima. Based on these results, it is concluded that the clouds of Venus probably consist of droplets of aqueous solutions of sulfuric acid with acid concentrations of about 75% by weight.

  11. Determination of hydroxyl radicals with salicylic acid in aqueous nitrate and nitrite solutions.

    PubMed

    Yang, Xi; Zhan, Man-jun; Kong, Ling-ren; Wang, Lian-sheng

    2004-01-01

    The qualitative and quantitative analyses of reactive oxygen species are essential to determine their steady-state concentration and related reaction mechanisms in environmental aquatic systems. In this study, salicylic acid was employed as an innovative molecular probe of hydroxyl radical(OH) generated in aqueous nitrate and nitrite solutions through photochemical reactions. Kinetic studies showed that the steady-state concentrations of OH in aqueous NO3- (10 mmol/L, pH = 5) and NO2- (10 mmol/L, pH = 5) solutions under ultraviolet irradiation were at a same magnitude, 10(-15) mol/L. Apparent quantum yields of OH at 313 nm were measured as 0.011 and 0.07 for NO3- and NO2- respectively, all comparable to the results of previous studies.

  12. Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production.

    PubMed

    Lian, Jieni; Garcia-Perez, Manuel; Coates, Ralph; Wu, Hongwei; Chen, Shulin

    2012-08-01

    The presence of very reactive C1-C4 molecules adversely affects the quality bio-oils produced from the pyrolysis of lignocellulosic materials. In this paper a scheme to produce lipids with Cryptococcus curvatus from the carboxylic acids in the pyrolytic aqueous phase collected in fractional condensers is proposed. The capacities of three oleaginous yeasts C. curvatus, Rhodotorula glutinis, Lipomyces starkeyi to ferment acetate, formate, hydroxylacat-aldehyde, phenol and acetol were investigated. While acetate could be a good carbon source for lipid production, formate provides additional energy and contributes to yeast growth and lipid production as auxiliary energy resource. Acetol could slightly support yeast growth, but it inhibits lipid accumulation. Hydroxyacetaldehyde and phenols showed high yeast growth and lipid accumulation inhibition. A pyrolytic aqueous phase with 20 g/L acetate was fermented with C. curvatus, after neutralization and detoxification to produce 6.9 g/L dry biomass and 2.2 g/L lipid.

  13. Self-assembling of poly(aspartic acid) with bovine serum albumin in aqueous solutions.

    PubMed

    Nita, L E; Chiriac, A P; Bercea, M; Asandulesa, M; Wolf, Bernhard A

    2017-02-01

    Macromolecular co-assemblies built up in aqueous solutions, by using a linear polypeptide, poly(aspartic acid) (PAS), and a globular protein, bovine serum albumin (BSA), have been studied. The main interest was to identify the optimum conditions for an interpenetrated complex formation in order to design materials suitable for biomedical applications, such as drug delivery systems. BSA surface possesses several amino- and carboxylic groups available for covalent modification, and/or bioactive substances attachment. In the present study, mixtures between PAS and BSA were investigated at 37°C in dilute aqueous solution by viscometry, dynamic light scattering and zeta potential determination, as well as in solid state by AFM microscopy and dielectric spectroscopy. The experimental data have shown that the interpolymer complex formation occurs for a PAS/BSA molar ratio around 0.541.

  14. Ascorbic acid improves brachial artery vasodilation during progressive handgrip exercise in the elderly through a nitric oxide-mediated mechanism.

    PubMed

    Trinity, Joel D; Wray, D Walter; Witman, Melissa A H; Layec, Gwenael; Barrett-O'Keefe, Zachary; Ives, Stephen J; Conklin, Jamie D; Reese, Van; Zhao, Jia; Richardson, Russell S

    2016-03-15

    The proposed mechanistic link between the age-related attenuation in vascular function and free radicals is an attractive hypothesis; however, direct evidence of free radical attenuation and a concomitant improvement in vascular function in the elderly is lacking. Therefore, this study sought to test the hypothesis that ascorbic acid (AA), administered intra-arterially during progressive handgrip exercise, improves brachial artery (BA) vasodilation in a nitric oxide (NO)-dependent manner, by mitigating free radical production. BA vasodilation (Doppler ultrasound) and free radical outflow [electron paramagnetic resonance (EPR) spectroscopy] were measured in seven healthy older adults (69 ± 2 yr) during handgrip exercise at 3, 6, 9, and 12 kg (∼13-52% of maximal voluntary contraction) during the control condition and nitric oxide synthase (NOS) inhibition via N(G)-monomethyl-L-arginine (L-NMMA), AA, and coinfusion of l-NMMA + AA. Baseline BA diameter was not altered by any of the treatments, while L-NMMA and L-NMMA + AA diminished baseline BA blood flow and shear rate. AA improved BA dilation compared with control at 9 kg (control: 6.5 ± 2.2%, AA: 10.9 ± 2.5%, P = 0.01) and 12 kg (control: 9.5 ± 2.7%, AA: 15.9 ± 3.7%, P < 0.01). NOS inhibition blunted BA vasodilation compared with control and when combined with AA eliminated the AA-induced improvement in BA vasodilation. Free radical outflow increased with exercise intensity but, interestingly, was not attenuated by AA. Collectively, these results indicate that AA improves BA vasodilation in the elderly during handgrip exercise through an NO-dependent mechanism; however, this improvement appears not to be the direct consequence of attenuated free radical outflow from the forearm.

  15. Ascorbic acid improves brachial artery vasodilation during progressive handgrip exercise in the elderly through a nitric oxide-mediated mechanism

    PubMed Central

    Wray, D. Walter; Witman, Melissa A. H.; Layec, Gwenael; Barrett-O'Keefe, Zachary; Ives, Stephen J.; Conklin, Jamie D.; Reese, Van; Zhao, Jia; Richardson, Russell S.

    2016-01-01

    The proposed mechanistic link between the age-related attenuation in vascular function and free radicals is an attractive hypothesis; however, direct evidence of free radical attenuation and a concomitant improvement in vascular function in the elderly is lacking. Therefore, this study sought to test the hypothesis that ascorbic acid (AA), administered intra-arterially during progressive handgrip exercise, improves brachial artery (BA) vasodilation in a nitric oxide (NO)-dependent manner, by mitigating free radical production. BA vasodilation (Doppler ultrasound) and free radical outflow [electron paramagnetic resonance (EPR) spectroscopy] were measured in seven healthy older adults (69 ± 2 yr) during handgrip exercise at 3, 6, 9, and 12 kg (∼13–52% of maximal voluntary contraction) during the control condition and nitric oxide synthase (NOS) inhibition via NG-monomethyl-l-arginine (l-NMMA), AA, and coinfusion of l-NMMA + AA. Baseline BA diameter was not altered by any of the treatments, while l-NMMA and l-NMMA + AA diminished baseline BA blood flow and shear rate. AA improved BA dilation compared with control at 9 kg (control: 6.5 ± 2.2%, AA: 10.9 ± 2.5%, P = 0.01) and 12 kg (control: 9.5 ± 2.7%, AA: 15.9 ± 3.7%, P < 0.01). NOS inhibition blunted BA vasodilation compared with control and when combined with AA eliminated the AA-induced improvement in BA vasodilation. Free radical outflow increased with exercise intensity but, interestingly, was not attenuated by AA. Collectively, these results indicate that AA improves BA vasodilation in the elderly during handgrip exercise through an NO-dependent mechanism; however, this improvement appears not to be the direct consequence of attenuated free radical outflow from the forearm. PMID:26801312

  16. Cross-talk between calcium-calmodulin and nitric oxide in abscisic acid signaling in leaves of maize plants.

    PubMed

    Sang, Jianrong; Zhang, Aying; Lin, Fan; Tan, Mingpu; Jiang, Mingyi

    2008-05-01

    Using pharmacological and biochemical approaches, the signaling pathways between hydrogen peroxide (H(2)O(2)), calcium (Ca(2+))-calmodulin (CaM), and nitric oxide (NO) in abscisic acid (ABA)-induced antioxidant defense were investigated in leaves of maize (Zea mays L.) plants. Treatments with ABA, H(2)O(2), and CaCl(2) induced increases in the generation of NO in maize mesophyll cells and the activity of nitric oxide synthase (NOS) in the cytosolic and microsomal fractions of maize leaves. However, such increases were blocked by the pretreatments with Ca(2+) inhibitors and CaM antagonists. Meanwhile, pretreatments with two NOS inhibitors also suppressed the Ca(2+)-induced increase in the production of NO. On the other hand, treatments with ABA and the NO donor sodium nitroprusside (SNP) also led to increases in the concentration of cytosolic Ca(2+) in protoplasts of mesophyll cells and in the expression of calmodulin 1 (CaM1) gene and the contents of CaM in leaves of maize plants, and the increases induced by ABA were reduced by the pretreatments with a NO scavenger and a NOS inhibitor. Moreover, SNP-induced increases in the expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes were arrested by the pretreatments with Ca(2+) inhibitors and CaM antagonists. Our results suggest that Ca(2+)-CaM functions both upstream and downstream of NO production, which is mainly from NOS, in ABA- and H(2)O(2)-induced antioxidant defense in leaves of maize plants.

  17. Nitric Oxide Mediates 5-Aminolevulinic Acid-Induced Antioxidant Defense in Leaves of Elymus nutans Griseb. Exposed to Chilling Stress.

    PubMed

    Fu, Juanjuan; Chu, Xitong; Sun, Yongfang; Miao, Yanjun; Xu, Yuefei; Hu, Tianming

    2015-01-01

    Nitric oxide (NO) and 5-aminolevulinic acid (ALA) are both extremely important signalling molecules employed by plants to control many aspects of physiology. In the present study, the role of NO in ALA-induced antioxidant defense in leaves of two sources of Elymus nutans Griseb. (Damxung, DX and Zhengdao, ZD) was investigated. Chilling stress enhanced electrolyte leakage, accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide radical in two E. nutans, which were substantially alleviated by exogenous ALA and NO application. Pretreatment with NO scavenger PTIO or NOS inhibitor L-NNA alone and in combination with ALA induced enhancements in electrolyte leakage and the accumulation of MDA, H2O2 and superoxide radical in leaves of DX and ZD exposed to chilling stress, indicating that the inhibition of NO biosynthesis reduced the chilling resistance of E. nutans and the ALA-enhanced chilling resistance. Further analyses showed that ALA and NO enhanced antioxidant defense and activated plasma membrane (PM) H+-ATPase and decreased the accumulation of ROS induced by chilling stress. A pronounced increase in nitric oxide synthase (NOS) activity and NO release by exogenous ALA treatment was found in chilling-resistant DX plants exposed to chilling stress, while only a little increase was observed in chilling-sensitive ZD. Furthermore, inhibition of NO accumulation by PTIO or L-NNA blocked the protective effect of exogenous ALA, while both exogenous NO treatment and inhibition of endogenous NO accumulation did not induce ALA production. These results suggested that NO might be a downstream signal mediating ALA-induced chilling resistance in E. nutans.

  18. Folic Acid Promotes Recycling of Tetrahydrobiopterin and Protects Against Hypoxia-Induced Pulmonary Hypertension by Recoupling Endothelial Nitric Oxide Synthase

    PubMed Central

    Chalupsky, Karel; Kračun, Damir; Kanchev, Ivan; Bertram, Katharina

    2015-01-01

    Abstract Aims: Nitric oxide (NO) derived from endothelial NO synthase (eNOS) has been implicated in the adaptive response to hypoxia. An imbalance between 5,6,7,8-tetrahydrobiopterin (BH4) and 7,8-dihydrobiopterin (BH2) can result in eNOS uncoupling and the generation of superoxide instead of NO. Dihydrofolate reductase (DHFR) can recycle BH2 to BH4, leading to eNOS recoupling. However, the role of DHFR and eNOS recoupling in the response to hypoxia is not well understood. We hypothesized that increasing the capacity to recycle BH4 from BH2 would improve NO bioavailability as well as pulmonary vascular remodeling (PVR) and right ventricular hypertrophy (RVH) as indicators of pulmonary hypertension (PH) under hypoxic conditions. Results: In human pulmonary artery endothelial cells and murine pulmonary arteries exposed to hypoxia, eNOS was uncoupled as indicated by reduced superoxide production in the presence of the nitric oxide synthase inhibitor, L-(G)-nitro-L-arginine methyl ester (L-NAME). Concomitantly, NO levels, BH4 availability, and expression of DHFR were diminished under hypoxia. Application of folic acid (FA) restored DHFR levels, NO bioavailability, and BH4 levels under hypoxia. Importantly, FA prevented the development of hypoxia-induced PVR, right ventricular pressure increase, and RVH. Innovation: FA-induced upregulation of DHFR recouples eNOS under hypoxia by improving BH4 recycling, thus preventing hypoxia-induced PH. Conclusion: FA might serve as a novel therapeutic option combating PH. Antioxid. Redox Signal. 23, 1076–1091. PMID:26414244

  19. New Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Inhibitors, Nalidixic Acid Linked to Isatin Schiff Bases via Certain l-Amino Acid Bridges.

    PubMed

    Naglah, Ahmed M; Ahmed, Atallah F; Wen, Zhi-Hong; Al-Omar, Mohamed A; Amr, Abd El-Galil E; Kalmouch, Atef

    2016-04-15

    A series of new Schiff bases were synthesized by condensation of isatins with the nalidixic acid-l-amino acid hydrazides. Prior to hydrazide formation, a peptide linkage has been prepared via coupling of nalidixic acid with appropriate l-amino acid methyl esters to yield 3a-c. The chemical structures of the new Schiff bases (5b and 5d-h) were confirmed by means of IR, NMR, mass spectroscopic, and elemental analyses. The anti-inflammatory activity of these Schiff bases was evaluated via measurement of the expressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells model. The Schiff bases exhibited significant dual inhibitory effect against the induction of the pro-inflammatory iNOS and COX-2 proteins with variable potencies. However, they strongly down-regulated the iNOS expression to the level of 16.5% ± 7.4%-42.2% ± 19.6% compared to the effect on COX-2 expression (<56.4% ± 3.1% inhibition) at the same concentration (10 μM). The higher iNOS inhibition activity of the tested Schiff bases, relative to that of COX-2, seems to be a reflection of the combined suppressive effects exerted by their nalidixic acid, isatins (4a-c), and l-amino acid moieties against iNOS expression. These synthesized nalidixic acid-l-amino acid-isatin conjugates can be regarded as a novel class of anti-inflammatory antibacterial agents.

  20. ''Pulling'' Nanoparticles into Water: Phase Transfer of Oleic Acid Stabilized Monodisperse Nanoparticles into Aqueous Solutions of alpha-Cyclodextrin

    SciTech Connect

    Wang, Y.; Wong, J.F.; Teng, X.; Lin, X.Z.; Yang, H.

    2003-10-18

    (B204)This paper describes a general method to drastically improve the disparity of oleic acid stabilized nanoparticles in aqueous solutions. We use oleic acid stabilized monodisperse nanoparticles of iron oxides and silver as model systems, and have modified the surface properties of these nanoparticles through the formation of an inclusion complex between surface-bound surfactant molecules and alpha-cyclodextrin (alpha-CD). After the modification, the nanoparticles of both iron oxide and Ag can transfer from hydrophobic solvents, such as hexane, to alpha-CD aqueous phase. The efficiency of the phase transfer to the aqueous solutions depend son the initial alpha-CD concentration. The alpha-CD/oleic acid complex stabilized nanoparticles can be stable for long periods of time in aqueous phase under ambient atmospheric conditions. Transmission electron microscopy (TME), ultraviolet-visible (UV-vis) spectroscopy, Fourier transform-infrared (FT-IR) spectroscopy, and colorimetric methods have been used in the characterization of these nanoparticles.

  1. Vine-shoot waste aqueous extract applied as foliar fertilizer to grapevines: Effect on amino acids and fermentative volatile content.

    PubMed

    Sánchez-Gómez, R; Garde-Cerdán, T; Zalacain, A; Garcia, R; Cabrita, M J; Salinas, M R

    2016-04-15

    The aim of this work was to study the influence of foliar applications of different wood aqueous extracts on the amino acid content of musts and wines from Airén variety; and to study their relationship with the volatile compounds formed during alcoholic fermentation. For this purpose, the foliar treatments proposed were a vine-shoot aqueous extract applied in one and two times, and an oak extract which was only applied once. Results obtained show the potential of Airén vine-shoot waste aqueous extracts to be used as foliar fertilizer, enhancing the wine amino acid content especially when they were applied once. Similar results were observed with the aqueous oak extract. Regarding wine fermentative volatile compounds, there is a close relationship between musts and their wines amino acid content allowing us to discuss about the role of proline during the alcoholic fermentation and the generation of certain volatiles.

  2. [Adsorption of acid orange II from aqueous solution onto modified peat-resin particles].

    PubMed

    Sun, Qing-Ye; Yang, Lin-Zhang

    2007-06-01

    The adsorption of acid orange II onto modified peat-resin particles was examined in aqueous solution in a batch system. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. The pseudo-first-order, pseudo-second-order kinetic and the intraparticle diffusion models were used to describe the kinetic data. The results showed that both Langmuir and Freundlich adsorption models could be used to describe the adsorption of acid orange II onto modified peat-resin particles. The maximum adsorption capacity was 71.43 mg x g(-1). The data analysis indicated that the intraparticle diffusion model could fit the results of kinetic experiment well. The adsorption rate of acid orange II onto modified peat-resin particles is affected by the initial dye concentrations, sizes and doses of modified peat-resin particles and agitation rates. The surface of modified peat-resin particle is the major adsorption area.

  3. The γ-irradiation of aqueous acetic acid-clay suspensions

    NASA Astrophysics Data System (ADS)

    Negrón-Mendoza, Alicia; Navarro-González, Rafael

    1990-09-01

    γ-radiolysis of 0.8 mol dm-3 aqueous, oxygen-free acetic acid solutions was investigated in the presence or absence of Na-montmorillonite (1 3 g per 10 cm-3). The systems were irradiated at their natural pH (3.5), and 25 °C in a dose range from 0.01 to 500 kGy. H2, CH4, CO, CO2, and a variety of polycarboxylic acids were formed in all systems. The major features of the radiolysis in the presence of clays were: (1) More solute molecules were decomposed; (2) Carbon dioxide was produced in higher yield; (3) The yield of methane was unaffected; and (4) 44% less polycarboxylic acids were formed. Three possible mechanisms that could account for the observed changes are suggested. The results are important in understanding heterogeneous processes in radiation catalysis and might be significant to prebiotic chemistry.

  4. Solubility of methanol in low-temperature aqueous sulfuric acid and implications for atmospheric particle composition

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Using traditional Knudsen cell techniques, we find well-behaved Henry's law uptake of methanol in aqueous 45 - 70 wt% H2SO4 solutions at temperatures between 197 and 231 K. Solubility of methanol increases with decreasing temperature and increasing acidity, with an effective Henry's law coefficient ranging from 10(exp 5) - 10(exp 8) M/atm. Equilibrium uptake of methanol into sulfuric acid aerosol particles in the upper troposphere and lower stratosphere will not appreciably alter gas-phase concentrations of methanol. The observed room temperature reaction between methanol and sulfuric acid is too slow to provide a sink for gaseous methanol at the temperatures of the upper troposphere and lower stratosphere. It is also too slow to produce sufficient quantities of soluble reaction products to explain the large amount of unidentified organic material seen in particles of the upper troposphere.

  5. Thermosensitivity of bile acid-based oligo(ethylene glycol) stars in aqueous solutions.

    PubMed

    Strandman, Satu; Le Dévédec, Frantz; Zhu, X X

    2011-08-03

    Amphiphilic star-shaped oligo(ethylene glycol)s with a hydrophobic bile acid core and varying number of hydrophilic arms have been made. Their thermal behavior in aqueous solutions depends on the number rather than the length of the arms. The two-armed lithocholate derivative showed the strongest tendency for association and exhibited the lowest cloud point (79 °C) of the oligomers made, as well as another phase separation at a lower temperature (31 °C). The "double thermosensitivity" arising both from the salt-dependent LCST of the oligo(ethylene glycol) segments and the temperature-responsive self-assembly of amphiphilic bile acid derivative provides an interesting path in the design of bile acid-based smart materials.

  6. Toxicity of aqueous C70-gallic acid suspension in Daphnia magna.

    PubMed

    Seda, Brandon C; Ke, Pu-Chun; Mount, Andrew S; Klaine, Stephen J

    2012-01-01

    The present study assessed the toxic effects of stable aqueous colloidal suspensions of gallic-acid-stabilized C(70) fullerene on Daphnia magna. The suspensions were stabilized through noncovalent surface modification with gallic acid. In addition to whole-organism responses, changes in antioxidative processes in D. magna were quantified. Acute toxicity was observed with 96LC50 for C(70) -gallic acid of 0.4 ± 0.1 mg/L C(70) . Daphnia magna fecundity was significantly reduced in 21-d bioassays at C(70) -gallic aqcid concentrations below quantifiable limits. Antioxidant enzyme activities of glutathione peroxidase and superoxide dismutase as well as lipid peroxidation suggested that exposed organisms experienced oxidative stress. Microscopic techniques used to determine cellular toxicity via apoptosis proved unsuccessful.

  7. Isolation and separation of transplutonium elements from other actinides on ion exchange resins from aqueous and aqueous ethanol solutions of sulfuric acid

    SciTech Connect

    Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.

    1987-11-01

    The behavior of Am, Cm, Bk, Cf, Es, and other actinides, as well as Zr, on an anion exchange resin and a cation exchange resin in aqueous and aqueous alcohol solutions of sulfuric acid was investigated as a function of the concentration of various components of the solution. It was found that the presence of alcohol in sulfuric acid solutions leads to an increase in the distribution coefficients both on cation exchange resins and on anion exchange resins. The possibility of using ion exchange resins for the concentration and separation of transplutonium elements from U, Np, Pu, Zr, and other elements that form strong complexes with sulfate ions in a wide range of sulfuric acid concentrations was demonstrated.

  8. Evaluation of the Single Dilute (0.43 M) Nitric Acid Extraction to Determine Geochemically Reactive Elements in Soil

    PubMed Central

    2017-01-01

    Recently a dilute nitric acid extraction (0.43 M) was adopted by ISO (ISO-17586:2016) as standard for extraction of geochemically reactive elements in soil and soil like materials. Here we evaluate the performance of this extraction for a wide range of elements by mechanistic geochemical modeling. Model predictions indicate that the extraction recovers the reactive concentration quantitatively (>90%). However, at low ratios of element to reactive surfaces the extraction underestimates reactive Cu, Cr, As, and Mo, that is, elements with a particularly high affinity for organic matter or oxides. The 0.43 M HNO3 together with more dilute and concentrated acid extractions were evaluated by comparing model-predicted and measured dissolved concentrations in CaCl2 soil extracts, using the different extractions as alternative model-input. Mean errors of the predictions based on 0.43 M HNO3 are generally within a factor three, while Mo is underestimated and Co, Ni and Zn in soils with pH > 6 are overestimated, for which possible causes are discussed. Model predictions using 0.43 M HNO3 are superior to those using 0.1 M HNO3 or Aqua Regia that under- and overestimate the reactive element contents, respectively. Low concentrations of oxyanions in our data set and structural underestimation of their reactive concentrations warrant further investigation. PMID:28164700

  9. Oleic acid increases mitochondrial reactive oxygen species production and decreases endothelial nitric oxide synthase activity in cultured endothelial cells.

    PubMed

    Gremmels, Hendrik; Bevers, Lonneke M; Fledderus, Joost O; Braam, Branko; van Zonneveld, Anton Jan; Verhaar, Marianne C; Joles, Jaap A

    2015-03-15

    Elevated plasma levels of free fatty acids (FFA) are associated with increased cardiovascular risk. This may be related to FFA-induced elevation of oxidative stress in endothelial cells. We hypothesized that, in addition to mitochondrial production of reactive oxygen species, endothelial nitric oxide synthase (eNOS)-mediated reactive oxygen species production contributes to oleic acid (OA)-induced oxidative stress in endothelial cells, due to eNOS uncoupling. We measured reactive oxygen species production and eNOS activity in cultured endothelial cells (bEnd.3) in the presence of OA bound to bovine serum albumin, using the CM-H2DCFDA assay and the L-arginine/citrulline conversion assay, respectively. OA induced a concentration-dependent increase in reactive oxygen species production, which was inhibited by the mitochondrial complex II inhibitor thenoyltrifluoroacetone (TTFA). OA had little effect on eNOS activity when stimulated by a calcium-ionophore, but decreased both basal and insulin-induced eNOS activity, which was restored by TTFA. Pretreatment of bEnd.3 cells with tetrahydrobiopterin (BH4) prevented OA-induced reactive oxygen species production and restored inhibition of eNOS activity by OA. Elevation of OA levels leads to both impairment in receptor-mediated stimulation of eNOS and to production of mitochondrial-derived reactive oxygen species and hence endothelial dysfunction.

  10. Large-Scale Distributions of Tropospheric Nitric, Formic, and Acetic acids Over the Westerm Pacific Basin During Wintertime

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Dibb, J. E.; Lefer, B. L.; Scheuer, E. M.; Bradshaw, J. D.; Sandholm, S. T.; Smyth, S.; Blake, D. R.; Blake, N. J.; Sachse, G. W.; Collins, J. E.; Gregory, G. L.

    1997-01-01

    We report here measurements of the acidic gases nitric (HNO3), formic (HCOOH), and acetic (CH3COOH) over the western Pacific basin during the February-March 1994 Pacific Exploratory Mission-West (PEM-West B). These data were obtained aboard the NASA DC-8 research aircraft as it flew missions in the altitude range of 0.3 - 12.5 km over equatorial regions near Guam and then further westward encompassing the entire Pacific Rim arc. Aged marine air over the equatorial Pacific generally exhibited mixing ratios of acidic gases less than 100 parts per trillion by volume (pptv). Near the Asian continent, discrete plumes encountered below 6 km altitude contained up to 8 parts per billion by volume (ppbv) HNO3 and 10 ppbv HCOOH and CH3COOH. Overall there was a general correlation between mixing ratios of acidic gases with those of CO, C2H2, and C2Cl4, indicative of emissions from combustion and industrial sources. The latitudinal distributions of HNO3 and CO showed that the largest mixing ratios were centered around 15 deg N, while HCOOH, CH3COOH, and C2Cl4 peaked at 25 deg N. The mixing ratios of HCOOH and CH3COOH were highly correlated (r(sup 2) = 0.87) below 6 km altitude, with a slope (0.89) characteristic of the nongrowing season at midlatitudes in the northern hemisphere. Above 6 km altitude, HCOOH and CH3COOH were marginally correlated (r(sup 2) = 0.50), and plumes well defined by CO, C2H2, and C2Cl4 were depleted in acidic gases, most likely due to scavenging during vertical transport of air masses through convective cloud systems over the Asian continent. In stratospheric air masses, HNO, mixing ratios were several parts per billion by volume (ppbv), yielding relationships with 03 and N2O consistent with those previously reported for NO(y).

  11. ESTIMATION OF HYDROLYSIS RATE CONSTANTS OF CARBOXYLIC ACID ESTER AND PHOSPHATE ESTER COMPOUNDS IN AQUEOUS SYSTEMS FROM MOLECULAR STRUCTURE BY SPARC

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy diffe...

  12. Aqueous extracts of Mozambican plants as alternative and environmentally safe acid-base indicators.

    PubMed

    Macuvele, Domingos Lusitaneo Pier; Sithole, Gerre Zebedias Samo; Cesca, Karina; Macuvele, Suzana Lília Pinare; Matsinhe, Jonas Valente

    2016-06-01

    Indicators are substances that change color as the pH of the medium. Many of these substances are dyes of synthetic origin. The mulala plant (Euclea natalensis), which roots are commonly used by rural communities for their oral hygiene, and roseira (Hibiscus rosa-sinensis), an ornamental plant, are abundant in Mozambique. Currently, synthetic acid-base indicators are most commonly used but have environmental implications and, on the other hand, are expensive products, so the demand for natural indicators started. This study investigated the applicability of aqueous extracts of H. rosa-sinensis and E. natalensis as acid-base indicators. Ground on this work, the extracts can be used as acid-base indicators. On the basis of the absorption spectroscopy in both the UV-Vis region and previous studies, it was possible to preliminarily pinpoint anthocyanins and naphthoquinones as responsible for the shifting of colors depending on the pH range of aqueous extracts of H. rosa-sinensis and E. natalensis. These natural indicators are easily accessible, inexpensive, easy to extract, environmentally safe, and locally available.

  13. Oxidative degradation of bis (2,4,4-trimethylpentyl) dithiophosphinic acid in nitric acid studied by electrospray ionization mass spectrometry

    SciTech Connect

    G. S. Groenewold; D. R. Peterman

    2012-10-01

    Samples of bis(2,4,4-trimethylpentyl)dithiophosphinic acid (Cyanex-301) were analyzed using direct infusion electrospray ionization mass spectrometry. Positive ion spectra of standard and stereo-pure acids displayed ions typical of the unmodified compound, cationized monomeric and dimeric cluster ion species. In addition, a significant ions 2 u less than the dimeric clusters were seen, that correspond to an oxidatively coupled species designated Cyx2 that is observed as H- or Na-cationized species in the electrospray analyses. Based on uncorrected ion intensities, Cyx2 is estimated to account for about 20% of the total in the standard materials. When samples that were contacted with 3 M HNO3 were analyzed, the positive ion spectrum consisted nearly entirely of ions derived from the oxidatively coupled product, indicating that the acid promotes coupling. The negative ion spectra of the standard acids consisted nearly entirely of the conjugate base that is formed by deprotonation of the acids, and cluster ions containing multiple acid molecules. The negative spectra of the HNO3-contacted samples also contained the conjugate base of the unmodified acid, but also two other species that correspond to the dioxo- and perthio- derivatives. It is concluded that HNO3 contact causes significant oxidation, forming at least three major products, Cyx2, the perthio-acid, and the dioxo-acid.

  14. Sulfate Mineral Formation from Acid-weathered Phyllosilicates: Implications for the Aqueous History of Mars

    NASA Astrophysics Data System (ADS)

    Craig, Patricia; Ming, Douglas; Rampe, Elizabeth

    2014-11-01

    Phyllosilicates on Mars are common in Noachian terrains whereas sulfates are found in the younger Hesperian terrains and suggest alteration under more acidic conditions. Phyllosilicates that formed during the Noachian era would have been exposed to the prevailing acidic conditions during the Hesperian. The purpose of this project is to characterize the effects of acid-weathering on phyllosilicates to better understand the aqueous history of Mars. Nontronite, montmorillonite, and saponite were exposed to H2SO4 solutions at water-rock (WR) ratios of 50 and 25.X-ray diffraction (XRD) patterns of all three acid-treated minerals showed progressive collapse of the phyllosilicate basal spacing with increasing acid concentration. Bassanite formed as an intermediate phase in weathered nontronite and montmorillonite from extracted interlayer Ca. The octahedral cation determined which sulfate formed at high acid concentration: rhomboclase from nontronite, alunogen from montmorillonite, hexahydrite and kieserite from saponite. Gypsum and anhydrite also formed as intermediate phases in nontronite treated at WR=25, showing a change in sulfate hydration state with changing acid concentration (i.e. water activity). Scanning electron microscopy analyses detected phases not identified by XRD. Al-sulfate was found in nontronite weathered at WR=25 and Ca-sulfate in weathered saponite. Near-infrared reflectance spectra of the weathered samples showed decreasing intensity of the hydration/hydroxylation bands and a change or disappearance of metal-OH bands indicating dehydration and dissociation of the interlayers and octahedral layers, respectively, with increased acid weathering.Sulfate mineral formation from acid-weathered phyllosilicates may explain the presence of phyllosilicates and sulfates in close proximity to each other on Mars, such as in Gale Crater. The CheMin XRD instrument on Curiosity may find evidence for acid-weathered phyllosilicates in Mt. Sharp by comparing the 001

  15. Reactivity of aminophosphonic acids. Oxidative dephosphonylation of 1-aminoalkylphosphonic acids by aqueous halogens.

    PubMed

    Drabowicz, Józef; Jordan, Frank; Kudzin, Marcin H; Kudzin, Zbigniew H; Stevens, Christian V; Urbaniak, Paweł

    2016-02-07

    The reactions of 1-aminoalkylphosphonic acids with bromine-water, chlorine-water and iodine-water were investigated. The formation of phosphoric(v) acid, as a result of a halogen-promoted cleavage of the Cα-P bond, accompanied by nitrogen release, was observed. The dephosphonylation of 1-aminoalkylphosphonic acids was found to occur quantitatively. In the reactions of 1-aminoalkylphosphonic acids with other halogen-water reagents investigated by (31)P NMR, scission of the Cα-P bond was also observed, the reaction rates being comparable for bromine and chlorine, but much slower for iodine.

  16. Uptake of methacrolein into aqueous solutions of sulfuric acid and hydrogen peroxide.

    PubMed

    Liu, Ze; Wu, Ling-Yan; Wang, Tian-He; Ge, Mao-Fa; Wang, Wei-Gang

    2012-01-12

    Multiphase acid-catalyzed oxidation by hydrogen peroxide has been suggested to be a potential route to secondary organic aerosol (SOA) formation from isoprene and its gas-phase oxidation products, but the kinetics and chemical mechanism remain largely uncertain. Here we report the first measurement of uptake of methacrolein into aqueous solutions of sulfuric acid and hydrogen peroxide in the temperature range of 253-293 K. The steady-state uptake coefficients were acquired and increased quickly with increasing sulfuric acid concentration and decreasing temperature. Propyne, acetone, and 2,3-dihydroxymethacrylic acid were suggested as the products. The chemical mechanism is proposed to be the oxidation of carbonyl group and C═C double bonds by peroxide hydrogen in acidic environment, which could explain the large content of polyhydroxyl compounds in atmospheric fine particles. These results indicate that multiphase acid-catalyzed oxidation of methacrolein by hydrogen peroxide can contribute to SOA mass in the atmosphere, especially in the upper troposphere.

  17. Interannual variations of early winter Antarctic polar stratospheric cloud formation and nitric acid observed by CALIOP and MLS

    NASA Astrophysics Data System (ADS)

    Lambert, Alyn; Santee, Michelle L.; Livesey, Nathaniel J.

    2016-12-01

    We use satellite-borne measurements collected over the last decade (2006-2015) from the Aura Microwave Limb Sounder (MLS) and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) to investigate the nitric acid distribution and the properties of polar stratospheric clouds (PSCs) in the early winter Antarctic vortex. Frequently, at the very start of the winter, we find that synoptic-scale depletion of HNO3 can be detected in the inner vortex before the first lidar detection of geophysically associated PSCs. The generation of "sub-visible" PSCs can be explained as arising from the development of a solid particle population with low number densities and large particle sizes. Assumed to be composed of nitric acid trihydrate (NAT), the sub-visible PSCs form at ambient temperatures well above the ice frost point, but also above the temperature at which supercooled ternary solution (STS) grows out of the background supercooled binary solution (SBS) distribution. The temperature regime of their formation, inferred from the simultaneous uptake of ambient HNO3 into NAT and their Lagrangian temperature histories, is at a depression of a few kelvin with respect to the NAT existence threshold, TNAT. Therefore, their nucleation requires a considerable supersaturation of HNO3 over NAT, and is consistent with a recently described heterogeneous nucleation process on solid foreign nuclei immersed in liquid aerosol. We make a detailed investigation of the comparative limits of detection of PSCs and the resulting sequestration of HNO3 imposed by lidar, mid-infrared, and microwave techniques. We find that the temperature history of air parcels, in addition to the local ambient temperature, is an important factor in the relative frequency of formation of liquid/solid PSCs. We conclude that the initiation of NAT nucleation and the subsequent development of large NAT particles capable of sedimentation and denitrification in the early winter do not emanate from an ice

  18. Leaching of lead from zinc leach residue in acidic calcium chloride aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Le; Mu, Wen-ning; Shen, Hong-tao; Liu, Shao-ming; Zhai, Yu-chun

    2015-05-01

    A process with potentially reduced environmental impacts and occupational hazards of lead-bearing zinc plant residue was studied to achieve a higher recovery of lead via a cost-effective and environmentally friendly process. This paper describes an optimization study on the leaching of lead from zinc leach residue using acidic calcium chloride aqueous solution. Six main process conditions, i.e., the solution pH value, stirring rate, concentration of CaCl2 aqueous solution, liquid-to-solid (L/S) ratio, leaching temperature, and leaching time, were investigated. The microstructure and components of the residue and tailing were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). On the basis of experimental results, the optimum reaction conditions were determined to be a solution pH value of 1, a stirring rate of 500 r·min-1, a CaCl2 aqueous solution concentration of 400 g·L-1, a liquid-to-solid mass ratio of 7:1, a leaching temperature of 80°C, and a leaching time of 45 min. The leaching rate of lead under these conditions reached 93.79%, with an iron dissolution rate of 19.28%. Silica did not take part in the chemical reaction during the leaching process and was accumulated in the residue.

  19. Preparation of monodisperse aqueous microspheres containing high concentration of l-ascorbic acid by microchannel emulsification.

    PubMed

    Khalid, Nauman; Kobayashi, Isao; Neves, Marcos A; Uemura, Kunihiko; Nakajima, Mitsutoshi; Nabetani, Hiroshi

    2015-01-01

    Monodisperse aqueous microspheres containing high concentrations of l-ascorbic acid with different concentrations of sodium alginate (Na-ALG) and magnesium sulfate (MgSO4) were prepared by using microchannel emulsification (MCE). The continuous phase was water-saturated decane containing a 5% (w/w) hydrophobic emulsifier. The flow rate of the continuous phase was maintained at 10 mL h(-1), whereas the pressure applied to the disperse phase was varied between 3 and 25 kPa. The disperse phase optimized for successfully generating aqueous microspheres included 2% (w/w) Na-ALG and 1% (w/w) MgSO4. At a higher MgSO4 concentration, the generated microspheres resulted in coalescence and subsequent bursting. At a lower MgSO4 concentration, unstable and polydisperse microspheres were obtained. The aqueous microspheres generated from the MCs under optimized conditions had a mean particle diameter (dav) of 14-16 µm and a coefficient of variation (CV) of less than 8% at the disperse phase pressures of 5-15 kPa.

  20. [Efficient killing of anthrax spores using aqueous and alcoholic peracetic acid solutions].

    PubMed

    Nattermann, H; Becker, S; Jacob, D; Klee, S R; Schwebke, I; Appel, B

    2005-08-01

    We analysed the sporicidal effect of different concentrations of aqueous and alcoholic peracetic acid (PAA) solutions on anthrax spores in suspension and germ carrier tests. In activation of anthrax spores in suspension assays was achieved in less than 2 min using 1% PAA solution and in less than 3 min using 0.5% PAA solution, respectively. In contrast, in germ carrier as says, a test under practical conditions, spores on 38% of the germ carriers survived treatment with 1% PAA solution for 15 min. The use of PAA in 80% ethyl alcohol outclassed the sporicidal effect of aqueous PAA solutions in both suspension and germ carrier assays. Anthrax spores on 14% of germ carriers tested survived 30 min of treatment with a 1% aqueous PAA solution. In contrast anthrax spores were reliably inactivated under the same test procedure using a 1% alcoholic PAA solution for 30 min. The proven enhancement of the sporicidal effect of alcoholic PAA solutions should be kept in mind when using disinfectants in practice. In further surveys we will optimise the test conditions.

  1. METHOD OF RECOVERING PLUTONIUM VALUES FROM AQUEOUS SOLUTIONS BY CARRIER PRECIPITATION

    DOEpatents

    James, R.A.; Thompson, S.G.

    1959-11-01

    A process is presented for pretreating aqueous nitric acid- plutonium solutions containing a small quantity of hydrazine that has formed as a decomposition product during the dissolution of neutron-bombarded uranium in nitric acid and that impairs the precipitation of plutonium on bismuth phosphate. The solution is digested with alkali metal dichromate or potassium permanganate at between 75 and 100 deg C; sulfuric acid at approximately 75 deg C and sodium nitrate, oxaiic acid plus manganous nitrate, or hydroxylamine are added to the solution to secure the plutonium in the tetravalent state and make it suitable for precipitation on BiPO/sub 4/.

  2. K Basin Sludge Conditioning Testing Nitric Acid Dissolution Testing of K East Area Sludge Composite, Small- and Large-Scale Testing

    SciTech Connect

    Carlson, C.D.; Delegard, C.H.; Burgeson, I.E.; Schmidt, A.J.; Silvers, K.L.

    1999-04-02

    This report describes work performed by Pacific Northwest National Laboratory (PNNL) for Numatec Hanford Corporation (NHC) to support the development of the K Basin Sludge Treatment System. For this work, testing was performed to examine the dissolution behavior of a K East Basin floor and Weasel Pit sludge composite, referred to as K East area sludge composite, in nitric acid at the following concentrations: 2 M, 4 M, 6 M and 7.8 M. With the exception of one high solids loading test the nitric acid was added at 4X the stoichiometric requirement (assuming 100% of the sludge was uranium metal). The dissolution tests were conducted at boiling temperatures for 24 hours. Most of the tests were conducted with {approximately}2.5 g of sludge (dry basis). The high solids loading test was conducted with {approximately}7 g of sludge. A large-scale dissolution test was conducted with 26.5 g of sludge and 620 mL of 6 M nitric acid. The objectives of this test were to (1) generate a sufficient quantity of acid-insoluble residual solids for use in leaching studies, and (2) examine the dissolution behavior of the sludge composite at a larger scale.

  3. Extraction of p-coumaric acid and ferulic acid using surfactant-based aqueous two-phase system.

    PubMed

    Dhamole, Pradip B; Demanna, Dhanashree; Desai, S A

    2014-09-01

    Ferulic acid (FA) and p-coumaric acid (pCA) are high-value products that can be obtained by alkaline hydrolysis of lignocellulose. Present work explores the potential of surfactant-based cloud-point extraction (CPE) for FA and pCA extraction from corn cob hydrolysate. More than 90 % (w/w) extraction of both FA and pCA was achieved from model system with L92. The partition coefficient of FA and pCA in L92 aqueous phase system was 35 and 55, respectively. A significant enrichment (8-10-fold) of both FA and pCA was achieved in surfactant-rich phase. Furthermore, the downstream process volume was reduced by 10 to 13 times. Optimized conditions (5 % v/v L92 and pH 3.0) resulted into 85 and 89 % extraction of FA and p-CA, respectively, from alkaline corn cob hydrolysate. Biocompatibility tests were carried out for L92 for ethanol fermentation and found to be biocompatible. Thus, the new surfactant-based CPE system not only concentrated FA and pCA but also reduced the process volume significantly. Further, aqueous phase containing sugars can be used for ethanol fermentation.

  4. Interactions of Gas-Phase Nitric/Nitrous Acids and Primary Organic Aerosol in the Atmosphere of Houston, TX

    NASA Astrophysics Data System (ADS)

    Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Whitlow, S. I.; Lefer, B. L.; Flynn, J.; Rappenglück, B.

    2007-12-01

    Concentrations of aerosol and gas-phase pollutants were measured on the roof of an 18-story building during the Texas Air Quality Study II Radical and Aerosol Measurement Project (TRAMP) from August 15 through September 28, 2006. Aerosol measurements included size-resolved, non-refractory mass concentrations of ammonium, nitrate, sulfate, chloride, and organic aerosol in submicron particles using an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS). Particulate water-soluble organic carbon (PWSOC) was quantified using a mist chamber/total organic carbon analysis system. Concentration data for gas-phase pollutants included those for nitric acid (HNO3), nitrous acid (HONO), and hydrochloric acid (HCl) collected using a mist chamber/ion chromatographic technique, oxides of nitrogen (NOx) collected using a chemiluminescent method, and carbon monoxide (CO) collected using an infrared gas correlation wheel instrument. Coincident increases in nitrate and organic aerosol mass concentrations were observed on many occasions throughout the measurement campaign, most frequently during the morning rush hour. Based on the lack of organic aerosol processing (defined by the ratio of m/z = 44/57 in the Q-AMS spectra), strong correlation with NOx and CO, and a lack of significant increase in PWSOC concentration, the spikes in organic aerosol were likely associated with primary organic aerosol (POA). During these events, gas-phase HNO3 concentration decreases were observed simultaneously with increases in gas-phase HONO concentrations. These data likely indicate uptake of HNO3 and subsequent heterogeneous conversion to HONO involving POA. Preliminary calculations show that HNO3 partitioning could account for the majority of the observed HONO and aerosol nitrate concentrations during these events. Q-AMS chloride and HCl data also indicate uptake of chloride by particles during these events. This phenomenon was also observed during the night, but these nocturnal events were less

  5. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-01-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic aerosols (BA), for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2) and malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment, except for ω-oxooctanoic acid (ωC8) that showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids dominates their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  6. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-07-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic (BA) aerosols, for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2), malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols, whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment except for ω-oxooctanoic acid (ωC8), which showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids controls their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  7. Electrochemical and FTIR studies of the mutual influence of lead(II) or iron(III) and phenol on their adsorption from aqueous acid solution by modified activated carbons.

    PubMed

    Pakuła, M; Walczyk, M; Biniak, S; Swiatkowski, A

    2007-09-01

    Cyclic voltammetry and spectral FTIR studies of the influence of activated carbon surface modification on the co-adsorption of metal cation (lead or iron) and phenol from aqueous acidic solution were carried out. The diversity in surface chemical structure was achieved by applying different procedures of inorganic matter removal and by modifying the carbon samples in various ways: heating under vacuum, aminoxidation in an ammonia-oxygen atmosphere, oxidation with concentrated nitric acid. The quantities of adsorbed metal ions (Pb(2+) or Fe(3+)) and phenol from solutions containing cation or phenol separately or in a mixture were determined. The adsorption capacity from acidic aqueous acidic solution depends on the chemical properties of the activated carbon surface (e.g., decrease in phenol adsorption with relative lower basicity of the adsorbent). The electrochemical parameters of electrodes made from the carbon samples were estimated, and some possible electrochemical reactions were determined from voltammograms recorded in acid electrolyte solution containing adsorbed species (separately or as a mixture). Relationships were found between metal ion adsorption and electrochemical behavior of Pb(2+)/Pb(4+) and Fe(3+)/Fe(2+) couples on the one hand, and the presence of phenol in the solutions tested and the influence of surface chemistry of the carbon electrodes on electrochemical processes on the other. The changes in adsorption capacity with respect to the adsorbates used and the changes in FTIR spectra of the carbons as a result of adsorption and/or coupling phenol molecules are discussed.

  8. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part I. Regeneration of Amine-Carboxylic Acid Extracts

    SciTech Connect

    Poole, L.J.; King, C.J.

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO{sub 2} and H{sub 2}S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, succinic acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The concentration

  9. Studies on equilibrium of anthranilic acid in aqueous solutions and in two-phase systems: aromatic solvent-water.

    PubMed

    Zapała, Lidia; Kalembkiewicz, Jan; Sitarz-Palczak, Elzbieta

    2009-03-01

    The acid-base equilibria of anthranilic acid have been characterized in terms of macro- and microdissociation constants (dissociation constants K(a1), K(a2) and tautomeric constant K(z)). On the basis of spectrophotometric investigations the values of the distribution ratio D of anthranilic acid in the two-phase systems: aromatic solvent (benzene, ethylbenzene, toluene, chlorobenzene, bromobenzene)-aqueous solution were obtained. Employing the results of potentiometric titration in the two-phase systems: aromatic solvent-aqueous solution the distribution constant K(D) and dimerization constant K(dim) values were calculated. The influence of organic solvent polarity and pH of the aqueous phase on the contents of the particular forms of the acid in the two-phase systems were analyzed.

  10. IMPROVEMENT UPON THE CARRIER PRECIPITATION OF PLUTONIUM IONS FROM NITRIC ACID SOLUTIONS

    DOEpatents

    James, R.A.; Thompson, S.G.

    1958-12-23

    A process is reported for improving the removal of plutonlum by carrier precipitation by the addition of nitrite ions to a nitrlc acid solutlon of neutronirradiated unanium so as to destroy any hydrazine that may be present in the solution since the hydrazine tends to complex the tetravalent plutonium and prevents removal by the carrier precipltate, such as bismuth phospbate.

  11. Competitive adsorption of boric acid and chromate onto alumina in aqueous solutions.

    PubMed

    Demetriou, A; Pashalidis, I

    2014-01-01

    The competitive adsorption of boric acid and chromate from aqueous solutions by alumina has been investigated by spectrophotometry at pH 8, ionic strength = 0.0, 0.1 and 1.0 M NaClO4, T = 22 ± 3 °C and under normal atmospheric conditions. The experimental data show that addition of excess boric acid in the system leads to the increase of Cr(VI) concentration in solution, indicating the replacement of adsorbed chromate by boron on the alumina surface. Data evaluation results in the determination of the competition reaction constant and the formation constant of the Cr(VI) surface complexes, which are logKCr(VI)-B(III) = -3.5 ± 0.2 and logβ*Cr = 7.6 ± 0.3, respectively.

  12. Sulphur Kβ emission spectra reveal protonation states of aqueous sulfuric acid

    PubMed Central

    Niskanen, Johannes; Sahle, Christoph J.; Ruotsalainen, Kari O.; Müller, Harald; Kavčič, Matjaž; Žitnik, Matjaž; Bučar, Klemen; Petric, Marko; Hakala, Mikko; Huotari, Simo

    2016-01-01

    In this paper we report an X-ray emission study of bulk aqueous sulfuric acid. Throughout the range of molarities from 1 M to 18 M the sulfur Kβ emission spectra from H2SO4 (aq) depend on the molar fractions and related deprotonation of H2SO4. We compare the experimental results with results from emission spectrum calculations based on atomic structures of single molecules and structures from ab initio molecular dynamics simulations. We show that the S Kβ emission spectrum is a sensitive probe of the protonation state of the acid molecules. Using non-negative matrix factorization we are able to extract the fractions of different protonation states in the spectra, and the results are in good agreement with the simulation for the higher part of the concentration range. PMID:26888159

  13. Separation of glycols from dilute aqueous solutions via complexation with boronic acids

    SciTech Connect

    Randel, L.A.; King, C.J.

    1991-07-01

    This work examines methods of separating low molecular weight glycols from dilute aqueous solution. Extraction into conventional solvents is generally not economical, since, in the literature reviewed, distribution ratios for the two- to four-carbon glycols are all less than one. Distribution ratios can be increased, however, by incorporating into the organic phase an extracting agent that will complex with the solute of interest. The extracting agent investigated in this work is 3-nitrophenylboronic acid (NPBA). NPBA, a boric acid derivative, reversibly complexes with many glycols. The literature on complexation of borate and related compounds with glycols, including mechanistic data, measurement techniques, and applications to separation processes, provides information valuable for designing experiments with NPBA and is reviewed herein. 88 refs., 15 figs., 24 tabs.

  14. [Determination of nine hazardous elements in textiles by inductively coupled plasma optical emission spectrometer after microwave-assisted dilute nitric acid extraction].

    PubMed

    Chen, Fei; Xu, Dian-dou; Tang, Xiao-ping; Cao, Jing; Liu, Ya-ting; Deng, Jian

    2012-01-01

    Textiles are easily contaminated by heavy metals in the course of processing. In order to monitor the quality of textiles, a new method was developed for simultaneous determination of arsenic, antimony, lead, cadmium, chromium, cobalt, copper, nickel and mercury in textiles by inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave-assisted dilute nitric acid extraction. After optimizing extraction conditions, we ultimately selected 5% nitric acid as extractant and 5 min as extraction time with the extraction temperature of 120 degrees C and instrument power of 400W in the microwave-assisted extraction procedure. Nine hazardous elements were detected sequentially by ICP-OES. The results showed that the detection limits were 0.3-15 microg x L(-1) and the recoveries 73.6%-105% with the RSDs (n = 3) of 0.1%-3%. The proposed method was successfully used to determine nine elements in cotton, wool, terylene and acrylic.

  15. Extraction and isolation of TPE from other elements on ion exchangers in aqueous and aqueous-organic solutions of phosphoric acid

    SciTech Connect

    Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.

    1988-07-01

    The behavior of Am-Es and other actinides on anion and cation exchange resins in aqueous and aqueous-organic solutions of phosphoric acid has been studied in a wide range of concentration of various components of the solution. The sorptivity of transplutonium elements (TPE) on anion exchangers from dilute H/sub 3/PO/sub 4/ with a concentration less than or equal to 1 M in presence of organic solvents (alcohols, ketones, etc.) and on cation exchangers from concentrated H/sub 3/PO/sub 4/ has been found to be significant. The possibility of use of phosphoric acid solutions for isolation of TPE from Th, Pa, U, Np, Pu, and Zr and separation of TPE in different oxidation states in presence of a high-purity oxidant has been shown.

  16. Sunlight-initiated Chemistry of Aqueous Pyruvic Acid: Building Complexity in the Origin of Life

    NASA Astrophysics Data System (ADS)

    Griffith, Elizabeth C.; Shoemaker, Richard K.; Vaida, Veronica

    2013-10-01

    Coupling chemical reactions to an energy source is a necessary step in the origin of life. Here, we utilize UV photons provided by a simulated sun to activate aqueous pyruvic acid and subsequently prompt chemical reactions mimicking some of the functions of modern metabolism. Pyruvic acid is interesting in a prebiotic context due to its prevalence in modern metabolism and its abiotic availability on early Earth. Here, pyruvic acid (CH3COCOOH, a C3 molecule) photochemically reacts to produce more complex molecules containing four or more carbon atoms. Acetoin (CH3CHOHCOCH3), a C4 molecule and a modern bacterial metabolite, is produced in this chemistry as well as lactic acid (CH3CHOHCOOH), a molecule which, when coupled with other abiotic chemical reaction pathways, can provide a regeneration pathway for pyruvic acid. This chemistry is discussed in the context of plausible environments on early Earth such as near the ocean surface and atmospheric aerosol particles. These environments allow for combination and exchange of reactants and products of other reaction environments (such as shallow hydrothermal vents). The result could be a contribution to the steady increase in chemical complexity requisite in the origin of life.

  17. Adsorption equilibrium, kinetics and thermodynamics of dichloroacetic acid from aqueous solution using mesoporous carbon.

    PubMed

    Ding, Ying; Zhu, Jianzhong; Cao, Yang; Chen, Shenglu

    2014-08-01

    The presence of disinfection by-products, such as trihalomethanes and haloacetic acids in water, is believed to be harmful to human health. In this work, mesoporous carbon was synthesized with the evaporation-induced self-assembly method and employed to evaluate the effects of initial concentration, contact time, pH and temperature on the removal of dichloroacetic acid in batch experiments. Adsorption equilibrium was established in 480 min and the maximum adsorption (350mg/g) of dichloroacetic acid on the mesoporous carbon was observed to occur at 308 K and pH 3.0. Freundlich and Langmuir isotherms were used to analyse the equilibrium data at different temperatures; kinetic data were fitted to the pseudo-first-order and pseudo-second-order models and found that the adsorption capacity, mass transfer coefficient and diffusivity of dichloroacetic acid were directly affected by the physical and chemical parameters. In addition, the various thermodynamic parameters, such as Gibbs free energy (Delta G), enthalpy (Delta H = 54.35 kJmol-1) and entropy (Delta S = 258.36 Jmol-1 K-1) were calculated to analyse the adsorption process. The experimental results indicated that the mesoporous carbon was an excellent adsorbent for dichloroacetic acid removal from aqueous solutions.

  18. UV irradiation and humic acid mediate aggregation of aqueous fullerene (nC₆₀) nanoparticles.

    PubMed

    Qu, Xiaolei; Hwang, Yu Sik; Alvarez, Pedro J J; Bouchard, Dermont; Li, Qilin

    2010-10-15

    The transport and fate of engineered nanomaterials is affected by multiple environmental factors, including sunlight and natural organic matter. In this study, the initial aggregation kinetics of aqueous fullerene (nC(60)) nanoparticles before and after UVA irradiation was investigated in solutions varying in ionic strength, ionic composition, and humic acid concentration. In NaCl solutions, surface oxidation induced by UV irradiation remarkably increased nC(60) stability due to the increased negative surface charge and reduced particle hydrophobicity; although humic acid greatly enhanced the stability of pristine nC(60) via the steric hindrance effect, it had little influence on the stability of UV-irradiated nC(60) in NaCl due to reduced adsorption on oxidized nC(60) surface. In contrast, UV irradiation reduced nC(60) stability in CaCl(2) due to specific interactions of Ca(2+) with the negatively charged functional groups on UV-irradiated nC(60) surface and the consequent charge neutralization. By neutralizing surface charges of both UV-irradiated nC(60) and humic acid as well as forming intermolecular bridges, Ca(2+) facilitated humic acid adsorption on UV-irradiated nC(60), resulting in enhanced stability in the presence of humic acid. These results demonstrate the critical role of nC(60) surface chemistry in its environmental transport and fate.

  19. Sulfate Formation From Acid-Weathered Phylosilicates: Implications for the Aqueous History of Mars

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Ming, D. W.; Rampe, E. B.

    2014-01-01

    Most phyllosilicates on Mars are thought to have formed during the planet's earliest Noachian era, then Mars underwent a global change making the planet's surface more acidic [e.g. 1]. Prevailing acidic conditions may have affected the already existing phyllosilicates, resulting in the formation of sulfates. Both sulfates and phyllosilicates have been identified on Mars in a variety of geologic settings [2] but only in a handful of sites are these minerals found in close spatial proximity to each other, including Mawrth Vallis [3,4] and Gale Crater [5]. While sulfate formation from the acidic weathering of basalts is well documented in the literature [6,7], few experimental studies investigate sulfate formation from acid-weathered phyllosilicates [8-10]. The purpose of this study is to characterize the al-teration products of acid-weathered phyllosilicates in laboratory experiments. We focus on three commonly identified phyllosilicates on Mars: nontronite (Fe-smectite), saponite (Mg-smectite), and montmorillonite (Al-smectite) [1, and references therein]. This information will help constrain the formation processes of sulfates observed in close association with phyllosilicates on Mars and provide a better understanding of the aqueous history of such regions as well as the planet as a whole.

  20. Removal of lead from aqueous solutions by a poly(acrylic acid)/bentonite nanocomposite

    NASA Astrophysics Data System (ADS)

    Rafiei, H. R.; Shirvani, M.; Ogunseitan, O. A.

    2016-11-01

    We synthesized a novel poly acrylic acid-organobentonite (PAA-Bent) nanocomposite by successive intercalation of cetyltrimethylammonium (CTA) surfactant and polyacrylic acid (PAA) into the bentonite (Bent) interlayer spaces. The surfactant-modified clay (CTA-Bent) and PAA-Bent nanocomposite were characterized by XRD and FT-IR techniques and used for removal of Pb(II) from aqueous solution. The XRD results confirmed the intercalation of CTA and PAA into the interlayer spaces of the bentonite increasing the d 001 spacing of the clay from 12.2 up to 38.9 Å. FT-IR analysis of the modified clay samples revealed the functional groups of CTA and PAA constituents alighted on the bentonite surfaces. Maximum Pb sorption capacity of the Bent and PAA-Bent predicted by Langmuir model were 52.3 and 93.0 mg g-1, respectively, showing that the synthesized nanocomposite superiorly adsorbed Pb from the solution as compared to the Bent. The maximum Pb removal efficiency of 99.6 % was achieved by the nanocomposite at 25 °C with <30 min contact time for a 7.5 g L-1 solid-to-liquid ratio and an initial metal concentration of 400 mg L-1. The results indicated that PAA-Bent nanocomposite can be efficiently used as a superadsorbent for the removal of Pb(II) from aqueous solution.