Sample records for aqueous phase volume

  1. Synthesis and Characterization of Functional Mesostructures Using Colloidal Crystal Templating

    DTIC Science & Technology

    2004-01-01

    fluorescent probes in aqueous polymer solutions . Khoury and co-workers measured the diffusion coefficient of several fluorescein-labeled proteins in...diffraction naq refractive index of the aqueous solution phase xvii ni refractive index of component i ngel refractive index of the hydrogel...phase Tg glass transition temperature α angle of diffraction φaq volume fraction of the aqueous solution phase φi volume fraction of

  2. Methods to control phase inversions and enhance mass transfer in liquid-liquid dispersions

    DOEpatents

    Tsouris, Constantinos; Dong, Junhang

    2002-01-01

    The present invention is directed to the effects of applied electric fields on liquid-liquid dispersions. In general, the present invention is directed to the control of phase inversions in liquid-liquid dispersions. Because of polarization and deformation effects, coalescence of aqueous drops is facilitated by the application of electric fields. As a result, with an increase in the applied voltage, the ambivalence region is narrowed and shifted toward higher volume fractions of the dispersed phase. This permits the invention to be used to ensure that the aqueous phase remains continuous, even at a high volume fraction of the organic phase. Additionally, the volume fraction of the organic phase may be increased without causing phase inversion, and may be used to correct a phase inversion which has already occurred. Finally, the invention may be used to enhance mass transfer rates from one phase to another through the use of phase inversions.

  3. Reversible, on-demand generation of aqueous two-phase microdroplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collier, Charles Patrick; Retterer, Scott Thomas; Boreyko, Jonathan Barton

    The present invention provides methods of on-demand, reversible generation of aqueous two-phase microdroplets core-shell microbeads, microparticle preparations comprising the core-shell microbeads, and drug delivery formulation comprising the microparticle preparations. Because these aqueous microdroplets have volumes comparable to those of cells, they provide an approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Hence, the present methods generate femtoliter aqueous two-phase droplets within a microfluidic oil channel using gated pressure pulses to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phasemore » transitions between single-phase, two-phase, and core-shell microbead states are obtained via evaporation-induced dehydration and water rehydration.« less

  4. Cell separations and the demixing of aqueous two phase polymer solutions in microgravity

    NASA Technical Reports Server (NTRS)

    Brooks, Donald E.; Bamberger, Stephan; Harris, J. M.; Van Alstine, James M.

    1991-01-01

    Partition in phase separated aqueous polymer solutions is a cell separation procedure thought to be adversely influenced by gravity. In preparation for performing cell partitioning experiments in space, and to provide general information concerning the demixing of immiscible liquids in low gravity, a series of phase separated aqueous polymer solutions have been flown on two shuttle flights. Fluorocarbon oil and water emulsions were also flown on the second flight. The aqueous polymer emulsions, which in one g demix largely by sedimentation and convection due to the density differences between the phases, demixed more slowly than on the ground and the final disposition of the phases was determined by the wetting of the container wall by the phases. The demixing behavior and kinetics were influenced by the phase volume ratio, physical properties of the systems and chamber wall interaction. The average domain size increased linearly with time as the systems demixed.

  5. Separation of four flavonol glycosides from Solanum rostratum Dunal using aqueous two-phase flotation followed by preparative high-performance liquid chromatography.

    PubMed

    Chang, Lin; Shao, Qian; Xi, Xingjun; Chu, Qiao; Wei, Yun

    2017-02-01

    Aqueous two-phase flotation followed by preparative high-performance liquid chromatography was used to separate four flavonol glycosides from Solanum rostratum Dunal. In the aqueous two-phase flotation section, the effects of sublation solvent, solution pH, (NH 4 ) 2 SO 4 concentration in aqueous solution, cosolvent, N 2 flow rate, flotation time, and volumes of the polyethylene glycol phase on the recovery were investigated in detail, and the optimal conditions were selected: 50 wt% polyethylene glycol 1000 ethanol solvent as the flotation solvent, pH 4, 350 g/L of (NH 4 ) 2 SO 4 concentration in aqueous phase, 40 mL/min of N 2 flow rate, 30 min of flotation time, 10.0 mL of flotation solvent volume, and two times. After aqueous two-phase flotation concentration, the flotation products were purified by preparative high-performance liquid chromatography. The purities of the final products A and B were 98.1 and 99.0%. Product B was the mixture of three compounds based on the analysis of high-performance liquid chromatography at the temperature of 10°C, while product A was hyperoside after the identification by nuclear magnetic resonance. Astragalin, 3'-O-methylquercetin 3-O-β-d-galactopyranoside, and 3'-O-methylquercetin 3-O-β-d-glucopyranoside were obtained with the purity of 93.8, 97.1, and 99.2%, respectively, after the further separation of product B using preparative high-performance liquid chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Thermodynamic Models for Aqueous Alteration Coupled with Volume and Pressure Changes in Asteroids

    NASA Technical Reports Server (NTRS)

    Mironenko, M. V.; Zolotov, M. Y.

    2005-01-01

    All major classes of chondrites show signs of alteration on their parent bodies (asteroids). The prevalence of oxidation and hydration in alteration pathways implies that water was the major reactant. Sublimation and melting of water ice, generation of gases, formation of aqueous solutions, alteration of primary minerals and glasses and formation of secondary solids in interior parts of asteroids was likely to be driven by heat from the radioactive decay of short-lived radionuclides. Progress of alteration reactions should have affected masses and volumes of solids, and aqueous and gas phases. In turn, pressure evolution should have been controlled by changes in volumes and temperatures, escape processes, and production/ consumption of gases.

  7. Anthracene and pyrene photolysis kinetics in aqueous, organic, and mixed aqueous-organic phases

    NASA Astrophysics Data System (ADS)

    Grossman, Jarod N.; Stern, Adam P.; Kirich, Makena L.; Kahan, Tara F.

    2016-03-01

    Condensed phases in the atmosphere, such as cloud droplets and aerosols, often contain both water and organic matter (OM). Reactivity can differ significantly between aqueous and organic phases. We have measured photolysis kinetics of the polycyclic aromatic hydrocarbons (PAHs) anthracene and pyrene in several organic solvents and in water, as well as in miscible and phase-separated aqueous-organic mixtures at atmospherically-relevant wavelengths. Photolysis rate constants generally increased with increasing solvent polarity; photolysis of both PAHs was more than ten times faster in water than in octanol. Local polarity had a much greater effect on PAH photolysis kinetics than changes in PAH absorptivity or singlet oxygen concentrations. Photolysis kinetics in homogeneous aqueous-organic mixtures varied monotonically with2 OM volume fraction. Kinetics in immiscible (phase-separated) solutions were more complex, with different dependences on OM content observed in stagnant and turbulent solutions. Our results suggest that OM could greatly affect the photochemical lifetimes of PAHs in atmospheric condensed phases such as aerosols, even if the OM does not itself absorb photons.

  8. Continuous-flow ultrasound assisted oxidative desulfurization (UAOD) process: An efficient diesel treatment by injection of the aqueous phase.

    PubMed

    Rahimi, Masoud; Shahhosseini, Shahrokh; Movahedirad, Salman

    2017-11-01

    A new continuous-flow ultrasound assisted oxidative desulfurization (UAOD) process was developed in order to decrease energy and aqueous phase consumption. In this process the aqueous phase is injected below the horn tip leading to enhanced mixing of the phases. Diesel fuel as the oil phase with sulfur content of 1550ppmw and an appropriate mixture of hydrogen peroxide and formic acid as the aqueous phase were used. At the first step, the optimized condition for the sulfur removal has been obtained in the batch mode operation. Hence, the effect of more important oxidation parameters; oxidant-to-sulfur molar ratio, acid-to-sulfur molar ratio and sonication time were investigated. Then the optimized conditions were obtained using Response Surface Methodology (RSM) technique. Afterwards, some experiments corresponding to the best batch condition and also with objective of minimizing the residence time and aqueous phase to fuel volume ratio have been conducted in a newly designed double-compartment reactor with injection of the aqueous phase to evaluate the process in a continuous flow operation. In addition, the effect of nozzle diameter has been examined. Significant improvement on the sulfur removal was observed specially in lower sonication time in the case of dispersion method in comparison with the conventional contact between two phases. Ultimately, the flow pattern induced by ultrasonic device, and also injection of the aqueous phase were analyzed quantitatively and qualitatively by capturing the sequential images. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Molecular dynamics simulations of aqueous solutions of ethanolamines.

    PubMed

    López-Rendón, Roberto; Mora, Marco A; Alejandre, José; Tuckerman, Mark E

    2006-08-03

    We report on molecular dynamics simulations performed at constant temperature and pressure to study ethanolamines as pure components and in aqueous solutions. A new geometric integration algorithm that preserves the correct phase space volume is employed to study molecules having up to three ethanol chains. The most stable geometry, rotational barriers, and atomic charges were obtained by ab initio calculations in the gas phase. The calculated dipole moments agree well with available experimental data. The most stable conformation, due to intramolecular hydrogen bonding interactions, has a ringlike structure in one of the ethanol chains, leading to high molecular stability. All molecular dynamics simulations were performed in the liquid phase. The interaction parameters are the same for the atoms in the ethanol chains, reducing the number of variables in the potential model. Intermolecular hydrogen bonding is also analyzed, and it is shown that water associates at low water mole fractions. The force field reproduced (within 1%) the experimental liquid densities at different temperatures of pure components and aqueous solutions at 313 K. The excess and partial molar volumes are analyzed as a function of ethanolamine concentration.

  10. Synthetic Biology in Aqueous Compartments at the Micro- and Nanoscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boreyko, Jonathan; Caveney, Patrick M.; Norred, Sarah L.

    ABSTRACT Aqueous two-phase systems and related emulsion-based structures defined within micro- and nanoscale environments enable a bottom-up synthetic biological approach to mimicking the dynamic compartmentation of biomaterial that naturally occurs within cells. Model systems we have developed to aid in understanding these phenomena include on-demand generation and triggering of reversible phase transitions in ATPS confined in microscale droplets, morpho-logical changes in networks of femtoliter-volume aqueous droplet interface bilayers (DIBs) formulated in microfluidic channels, and temperature-driven phase transitions in interfacial lipid bilayer systems supported on micro and nanostructured substrates. For each of these cases, the dynamics were intimately linked to changesmore » in the chemical potential of water, which becomes increasingly susceptible to confinement and crowding. At these length scales, where interfacial and surface areas predominate over compartment volumes, both evaporation and osmotic forces become enhanced relative to ideal dilute solutions. Finally, consequences of confinement and crowding in cell-sized microcompartments for increasingly complex scenarios will be discussed, from single-molecule mobility measurements with fluorescence correlation spectroscopy to spatio-temporal modulation of resource sharing in cell-free gene expression bursting.« less

  11. Synthetic Biology in Aqueous Compartments at the Micro- and Nanoscale

    DOE PAGES

    Boreyko, Jonathan; Caveney, Patrick M.; Norred, Sarah L.; ...

    2017-07-10

    ABSTRACT Aqueous two-phase systems and related emulsion-based structures defined within micro- and nanoscale environments enable a bottom-up synthetic biological approach to mimicking the dynamic compartmentation of biomaterial that naturally occurs within cells. Model systems we have developed to aid in understanding these phenomena include on-demand generation and triggering of reversible phase transitions in ATPS confined in microscale droplets, morpho-logical changes in networks of femtoliter-volume aqueous droplet interface bilayers (DIBs) formulated in microfluidic channels, and temperature-driven phase transitions in interfacial lipid bilayer systems supported on micro and nanostructured substrates. For each of these cases, the dynamics were intimately linked to changesmore » in the chemical potential of water, which becomes increasingly susceptible to confinement and crowding. At these length scales, where interfacial and surface areas predominate over compartment volumes, both evaporation and osmotic forces become enhanced relative to ideal dilute solutions. Finally, consequences of confinement and crowding in cell-sized microcompartments for increasingly complex scenarios will be discussed, from single-molecule mobility measurements with fluorescence correlation spectroscopy to spatio-temporal modulation of resource sharing in cell-free gene expression bursting.« less

  12. Ionic liquid-anionic surfactant based aqueous two-phase extraction for determination of antibiotics in honey by high-performance liquid chromatography.

    PubMed

    Yang, Xiao; Zhang, Shaohua; Yu, Wei; Liu, Zhongling; Lei, Lei; Li, Na; Zhang, Hanqi; Yu, Yong

    2014-06-01

    An ionic liquid-anionic surfactant based aqueous two-phase extraction was developed and applied for the extraction of tetracycline, oxytetracycline and chloramphenicol in honey. The honey sample was mixed with Na2EDTA aqueous solution. The sodium dodecyl sulfate, ionic liquid 1-octyl-3-methylimidazolium bromide and sodium chloride were added in the mixture. After the resulting mixture was ultrasonically shaken and centrifuged, the aqueous two phase system was formed and analytes were extracted into the upper phase. The parameters affecting the extraction efficiency, such as the volume of ionic liquid, the category and amount of salts, sample pH value, extraction time and temperature were investigated. The limits of detection of tetracycline, oxytetracycline and chloramphenicol were 5.8, 8.2 and 4.2 μg kg(-1), respectively. When the present method was applied to the analysis of real honey samples, the recoveries of analytes ranged from 85.5 to 110.9% and relative standard deviations were lower than 6.9%. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Retention of ionisable compounds on high-performance liquid chromatography XVII. Estimation of the pH variation of aqueous buffers with the change of the methanol fraction of the mobile phase.

    PubMed

    Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí

    2007-01-05

    The use of methanol-aqueous buffer mobile phases in HPLC is a common election when performing chromatographic separations of ionisable analytes. The addition of methanol to the aqueous buffer to prepare such a mobile phase changes the buffer capacity and the pH of the solution. In the present work, the variation of these buffer properties is studied for acetic acid-acetate, phosphoric acid-dihydrogenphosphate-hydrogenphosphate, citric acid-dihydrogencitrate-hydrogencitrate-citrate, and ammonium-ammonia buffers. It is well established that the pH change of the buffers depends on the initial concentration and aqueous pH of the buffer, on the percentage of methanol added, and on the particular buffer used. The proposed equations allow the pH estimation of methanol-water buffered mobile phases up to 80% in volume of organic modifier from initial aqueous buffer pH and buffer concentration (before adding methanol) between 0.001 and 0.01 mol L(-1). From both the estimated pH values of the mobile phase and the estimated pKa of the ionisable analytes, it is possible to predict the degree of ionisation of the analytes and therefore, the interpretation of acid-base analytes behaviour in a particular methanol-water buffered mobile phase.

  14. Organic aerogel microspheres

    DOEpatents

    Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

    1999-06-01

    Organic aerogel microspheres are disclosed which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonstick gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  15. Organic aerogel microspheres

    DOEpatents

    Mayer, Steven T.; Kong, Fung-Ming; Pekala, Richard W.; Kaschmitter, James L.

    1999-01-01

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  16. Organic aerogel microspheres and fabrication method therefor

    DOEpatents

    Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

    1996-04-16

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  17. Organic aerogel microspheres and fabrication method therefor

    DOEpatents

    Mayer, Steven T.; Kong, Fung-Ming; Pekala, Richard W.; Kaschmitter, James L.

    1996-01-01

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  18. Mass Transfer from Entrapped DNAPL Sources Undergoing Remediation: Characterization Methods and Prediction Tools

    DTIC Science & Technology

    2006-08-31

    volumetric depletion efficiency ( VDE ) considers how much DNAPL is depleted from the system, relative to the total volume of solution flushed through the...aqueous phase contaminant. VDE is important to consider, as conditions that result in the fastest mass transfer, highest enhancement, or best MTE, may...volumes of flushing fluid, maximizing DNAPL depletion while minimizing flushing volume requirements may be desirable from a remediation standpoint. VDE

  19. Downstream processing of antibodies: single-stage versus multi-stage aqueous two-phase extraction.

    PubMed

    Rosa, P A J; Azevedo, A M; Ferreira, I F; Sommerfeld, S; Bäcker, W; Aires-Barros, M R

    2009-12-11

    Single-stage and multi-stage strategies have been evaluated and compared for the purification of human antibodies using liquid-liquid extraction in aqueous two-phase systems (ATPSs) composed of polyethylene glycol 3350 (PEG 3350), dextran, and triethylene glycol diglutaric acid (TEG-COOH). The performance of single-stage extraction systems was firstly investigated by studying the effect of pH, TEG-COOH concentration and volume ratio on the partitioning of the different components of a Chinese hamster ovary (CHO) cells supernatant. It was observed that lower pH values and high TEG-COOH concentrations favoured the selective extraction of human immunoglobulin G (IgG) to the PEG-rich phase. Higher recovery yields, purities and percentage of contaminants removal were always achieved in the presence of the ligand, TEG-COOH. The extraction of IgG could be enhanced using higher volume ratios, however with a significant decrease in both purity and percentage of contaminants removal. The best single-stage extraction conditions were achieved for an ATPS containing 1.3% (w/w) TEG-COOH with a volume ratio of 2.2, which allowed the recovery of 96% of IgG in the PEG-rich phase with a final IgG concentration of 0.21mg/mL, a protein purity of 87% and a total purity of 43%. In order to enhance simultaneously both recovery yield and purity, a four stage cross-current operation was simulated and the corresponding liquid-liquid equilibrium (LLE) data determined. A predicted optimised scheme of a counter-current multi-stage aqueous two-phase extraction was hence described. IgG can be purified in the PEG-rich top phase with a final recovery yield of 95%, a final concentration of 1.04mg/mL and a protein purity of 93%, if a PEG/dextran ATPS containing 1.3% (w/w) TEG-COOH, 5 stages and volume ratio of 0.4 are used. Moreover, according to the LLE data of all CHO cells supernatant components, it was possible to observe that most of the cells supernatant contaminants can be removed during this extraction step leading to a final total purity of about 85%.

  20. Partition in aqueous two-phase system: its application in downstream processing of tannase from Aspergillus niger.

    PubMed

    Rodríguez-Durán, Luis V; Spelzini, Darío; Boeris, Valeria; Aguilar, Cristóbal N; Picó, Guillermo A

    2013-01-01

    Tannase from Aspergillus niger was partitioned in aqueous two-phase systems composed by polyethyleneglycol of molar mass 400, 600 and 1000 and potassium phosphate. Tannase was found to be partitioned toward the salt-rich phase in all systems, with partition coefficients lower than 0.5. Partition coefficients values and low entropic and enthalpic changes associated with tannase partition suggest that the entropic effect may be the driving force of the concentration of the enzyme in the bottom phase due to the high molar mass of the enzyme. The process was significantly influenced by the top phase/bottom phase volume ratio. When the fungal culture broth was partitioned in these systems, a good performance was found, since the enzyme recovery in the bottom phase of the system composed by polyethyleneglycol 1000 was around 96% with a 7.0-fold increase in purity. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Synthesis of 1,3-Dimethylimidazolium Chloride and Volumetric Property Investigations of Its Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Dong, L.; Zheng, D. X.; Wei, Z.; Wu, X. H.

    2009-10-01

    By investigating the vapor pressure of the solvent and the affinity between ionic liquids (ILs) and the solvent, it is proposed that 1,3-dimethylimidazolium chloride ([Mmim]Cl) has the potential to be used as a novel absorbent species with the absorption cycle working fluid. Adopting a high-pressure reaction kettle, the method of gas-liquid phase reaction was used to synthesize [Mmim]Cl under the conditions of 348.15 K and 0.7 MPa. The densities of [Mmim]Cl aqueous solutions were measured for mass fractions in the range from 20% to 90% at 293.15 K, 298.15 K, 303.15 K, 308.15 K, 313.15 K, and 318.15 K with a digital vibrating-tube densimeter. The excess volume, the apparent molar volume, the partial molar volume, and the apparent molar expansibility of this system were investigated, and the influences of variations of the cation and anion on the density of several IL aqueous solutions are discussed.

  2. Using design of experiments to optimize derivatization with methyl chloroformate for quantitative analysis of the aqueous phase from hydrothermal liquefaction of biomass.

    PubMed

    Madsen, René Bjerregaard; Jensen, Mads Mørk; Mørup, Anders Juul; Houlberg, Kasper; Christensen, Per Sigaard; Klemmer, Maika; Becker, Jacob; Iversen, Bo Brummerstedt; Glasius, Marianne

    2016-03-01

    Hydrothermal liquefaction is a promising technique for the production of bio-oil. The process produces an oil phase, a gas phase, a solid residue, and an aqueous phase. Gas chromatography coupled with mass spectrometry is used to analyze the complex aqueous phase. Especially small organic acids and nitrogen-containing compounds are of interest. The efficient derivatization reagent methyl chloroformate was used to make analysis of the complex aqueous phase from hydrothermal liquefaction of dried distillers grains with solubles possible. A circumscribed central composite design was used to optimize the responses of both derivatized and nonderivatized analytes, which included small organic acids, pyrazines, phenol, and cyclic ketones. Response surface methodology was used to visualize significant factors and identify optimized derivatization conditions (volumes of methyl chloroformate, NaOH solution, methanol, and pyridine). Twenty-nine analytes of small organic acids, pyrazines, phenol, and cyclic ketones were quantified. An additional three analytes were pseudoquantified with use of standards with similar mass spectra. Calibration curves with high correlation coefficients were obtained, in most cases R (2)  > 0.991. Method validation was evaluated with repeatability, and spike recoveries of all 29 analytes were obtained. The 32 analytes were quantified in samples from the commissioning of a continuous flow reactor and in samples from recirculation experiments involving the aqueous phase. The results indicated when the steady-state condition of the flow reactor was obtained and the effects of recirculation. The validated method will be especially useful for investigations of the effect of small organic acids on the hydrothermal liquefaction process.

  3. Unique Structural Modifications Are Present in the Lipopolysaccharide from Colistin-Resistant Strains of Acinetobacter baumannii

    DTIC Science & Technology

    2013-10-01

    13). Freeze-dried bacteria were resuspended in endotoxin -free water at a concentration of 10 mg/ml. A 12.5-ml volume of 90% phenol was added, and the...temperature for 30 min. The aqueous phase was collected, and an equal volume of endotoxin -free water was added to the organic phase. The sample was...The resultant pel- let was resuspended at a concentration of 10 mg/ml in endotoxin -free water, treated with DNase (Sigma, St. Louis, MO) at 100 g/ml

  4. [Phase transfer catalyzed bioconversion of penicillin G to 6-APA by immobilized penicillin acylase in recyclable aqueous two-phase systems with light/pH sensitive copolymers].

    PubMed

    Jin, Ke-ming; Cao, Xue-jun; Su, Jin; Ma, Li; Zhuang, Ying-ping; Chu, Ju; Zhang, Si-liang

    2008-03-01

    Immobilized penicillin acylase was used for bioconversion of penicillin PG into 6-APA in aqueous two-phase systems consisting of a light-sensitive polymer PNBC and a pH-sensitive polymer PADB. Partition coefficients of 6-APA was found to be about 5.78 in the presence of 1% NaCl. Enzyme kinetics showed that the reaction reached equilibrium at roughly 7 h. The 6-APA mole yields were 85.3% (pH 7.8, 20 degrees C), with about 20% increment as compared with the reaction of single aqueous phase buffer. The partition coefficient of PG (Na) varied scarcely, while that of the product, 6-APA and phenylacetic acid (PA) significantly varied due to Donnan effect of the phase systems and hydrophobicity of the products. The variation of the partition coefficients of the products also affected the bioconversion yield of the products. In the aqueous two-phase systems, the substrate, PG, the products of 6-APA and PA were biased in the top phase, while immobilized penicillin acylase at completely partitioned at the bottom. The substrate and PG entered the bottom phase, where it was catalyzed into 6-APA and PA and entered the top phase. Inhibition of the substrate and products was removed to result in improvement of the product yield, and the immobilized enzyme showed higher efficiency than the immobilized cells and occupied smaller volume. Compared with the free enzyme, immobilized enzyme had greater stability, longer life-time, and was completely partitioned in the bottom phase and recycle. Bioconversion in two-phase systems using immobilized penicillin acylase showed outstanding advantage. The light-sensitive copolymer forming aqueous two-phase systems could be recovered by laser radiation at 488 nm or filtered 450 nm light, while pH-sensitive polymer PADB could be recovered at the isoelectric point (pH 4.1). The recovery of the two copolymers was between 95% and 99%.

  5. Control and measurement of the phase behavior of aqueous solutions using microfluidics

    PubMed Central

    Shim, Jung-uk; Cristobal, Galder; Link, Darren R.; Thorsen, Todd; Jia, Yanwei; Piattelli, Katie; Fraden, Seth

    2008-01-01

    A microfluidic device denoted the Phase Chip has been designed to measure and manipulate the phase diagram of multi-component fluid mixtures. The Phase Chip exploits the permeation of water through poly(dimethylsiloxane) (PDMS) in order to controllably vary the concentration of solutes in aqueous nanoliter volume microdrops stored in wells. The permeation of water in the Phase Chip is modeled using the diffusion equation and good agreement between experiment and theory is obtained. The Phase Chip operates by first creating drops of the water/solute mixture whose composition varies sequentially. Next, drops are transported down channels and guided into storage wells using surface tension forces. Finally, the solute concentration of each stored drop is simultaneously varied and measured. Two applications of the Phase Chip are presented. First, the phase diagram of a polymer/salt mixture is measured on-chip and validated off-chip and second, protein crystallization rates are enhanced through the manipulation of the kinetics of nucleation and growth. PMID:17580868

  6. A Classroom Demonstration of Water-Induced Phase Separation of Alcohol-Gasoline Biofuel Blends

    ERIC Educational Resources Information Center

    Mueller, Sherry A.; Anderson, James E.; Wallington, Timothy J.

    2009-01-01

    A significant issue associated with ethanol-gasoline blends is the phase separation that occurs with the addition of small volumes of water, producing an ethanol-deficient gasoline layer and an ethanol-rich aqueous layer. The gasoline layer may have a lower-than-desired octane rating due to the decrease in ethanol content, resulting in engine…

  7. Releasing intracellular product to prepare whole cell biocatalyst for biosynthesis of Monascus pigments in water-edible oil two-phase system.

    PubMed

    Hu, Minglue; Zhang, Xuehong; Wang, Zhilong

    2016-11-01

    Selective releasing intracellular product in Triton X-100 micelle aqueous solution to prepare whole cell biocatalyst is a novel strategy for biosynthesis of Monascus pigments, in which cell suspension culture exhibits some advantages comparing with the corresponding growing cell submerged culture. In the present work, the nonionic surfactant Triton X-100 was successfully replaced by edible plant oils for releasing intracellular Monascus pigments. High concentration of Monascus pigments (with absorbance nearly 710 AU at 470 nm in the oil phase, normalized to the aqueous phase volume approximately 142 AU) was achieved by cell suspension culture in peanut oil-water two-phase system. Furthermore, the utilization of edible oil as extractant also fulfills the demand for application of Monascus pigments as natural food colorant.

  8. Parameterizing the equilibrium distribution of chemicals between the dissolved, solid particulate matter, and colloidal matter compartments in aqueous systems

    USGS Publications Warehouse

    Pankow, J.F.; McKenzie, S.W.

    1991-01-01

    The manner in which a chemical material partitions among the dissolved (D), participate (P), and colloidal (C) phases affects both its chemical and physical behavior in the aquatic environment. The fractions of the chemical that are present in each of these three phases will be determined by the values of two simple parameters, KpSp/??w and KcSc/??w. The variables Kp and Kc are the particle/water and colloid/water partition constants (mL/g), respectively, Sp and Sc are the volume concentrations of particulate and colloidal material (mg/L), respectively, and ??w is the fractional volume of the system that is aqueous. This parameterization allows a rapid overview of how partitioning (1) changes as a function of chemical partitioning properties and water type, (2) affects apparent partition constants (i.e., Kpapp values) computed between the particulate phase and the remainder of the system, and (3) causes Kpapp values to become independent of chemical properties at high values of KcSc/??w. ?? 1991 American Chemical Society.

  9. Aqueous photooxidation of ambient Po Valley Italy air samples: Insights into secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Kirkland, J. R.; Lim, Y. B.; Sullivan, A. P.; Decesari, S.; Facchini, C.; Collett, J. L.; Keutsch, F. N.; Turpin, B. J.

    2012-12-01

    In this work, we conducted aqueous photooxidation experiments with ambient samples in order to develop insights concerning the formation of secondary organic aerosol through gas followed by aqueous chemistry (SOAaq). Water-soluble organics (e.g., glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone) are formed through gas phase oxidation of alkene and aromatic emissions of anthropogenic and biogenic origin. Their further oxidation in clouds, fogs and wet aerosols can form lower volatility products (e.g., oligomers, organic acids) that remain in the particle phase after water evaporation, thus producing SOA. The aqueous OH radical oxidation of several individual potentially important precursors has been studied in the laboratory. In this work, we used a mist-chamber apparatus to collect atmospheric mixtures of water-soluble gases from the ambient air at San Pietro Capofiume, Italy during the PEGASOS field campaign. We measured the concentration dynamics after addition of OH radicals, in order to develop new insights regarding formation of SOA through aqueous chemistry. Specifically, batch aqueous reactions were conducted with 33 ml mist-chamber samples (TOC ~ 50-100μM) and OH radicals (~10-12M) in a new low-volume aqueous reaction vessel. OH radicals were formed in-situ, continuously by H2O2 photolysis. Products were analyzed by ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS +/-), and ESI-MS with IC pre-separation (IC/ESI-MS-). Reproducible formation of pyruvate and oxalate were observed both by IC and ESI-MS. These compounds are known to form from aldehyde oxidation in the aqueous phase. New insights regarding the aqueous chemistry of these "more atmospherically-realistic" experiments will be discussed.

  10. n-Alcohol/Water Partition Coefficients for Decachlorobiphenyl (PCB 209)

    EPA Science Inventory

    Measurements of n-octanol/water partition coefficients (Kow) for highly hydrophobic chemicals are extremely difficult and are rarely made, in part due to the large volumes of water typically needed to quantify these compounds in the aqueous phase. An extrapolation approach using ...

  11. Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides. Polypeptide vesicles by conformation-specific assembly. Ordered chiral macroporous hybrid silica-polypeptide composites

    NASA Astrophysics Data System (ADS)

    Bellomo, Enrico Giuseppe

    2005-07-01

    Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides . The aqueous, lyotropic liquid-crystalline phase behavior of an alpha helical polypeptide, has been studied using optical microscopy and X-ray scattering. Solutions of optically pure polypeptide were found to form cholesteric liquid crystals at volume fractions that decreased with increasing average chain length. At very high volume fractions, the formation of a hexagonal mesophase was observed. The pitch of the cholesteric phase could be varied by a mixture of enantiomeric samples, where the pitch increased as the mixture approached equimolar. The cholesteric phases could be untwisted, using either magnetic field or shear flow, into nematic phases, which relaxed into cholesterics upon removal of field or shear. We have found that the phase diagram of this polypeptide in aqueous solution parallels that of poly(gamma-benzyl glutamate) in organic solvents, thus providing a useful system for liquid-crystal applications requiring water as solvent. Polypeptide vesicles by conformation-specific assembly. We have found that block copolymers composed of polypeptide segments provide significant advantages in controlling both the function and supramolecular structure of bioinspired self-assemblies. Incorporation of the stable chain conformations found in proteins into block copolymers was found to provide an additional element of control, beyond amphiphilicity and composition that defines self-assembled architecture. The abundance of functionality present in amino acids, and the ease by which they can be incorporated into these materials, also provides a powerful mechanism to impart block copolypeptides with function. This combination of structure and function work synergistically to enable significant advantages in the preparation of therapeutic agents as well as provide insight into design of self-assemblies beginning to approach the complexity of natural structures such as virus capsids. Ordered chiral macroporous hybrid silica-polypeptide composites. The mineralization of organic templates has been investigated as an effective way to control the size and structure of inorganic frameworks. Hybrid structures incorporating polypeptide with silica have been prepared and characterized using X-ray scattering, TGA, SEM and TEM. The results support the interaction between silica and polymer to form ordered chiral macroporous structures that can be easily controlled by polymer molecular weight and volume fraction.

  12. Development of continuous dispersive liquid-liquid microextraction performed in home-made device for extraction and preconcentration of aryloxyphenoxy-propionate herbicides from aqueous samples followed by gas chromatography-flame ionization detection.

    PubMed

    Farajzadeh, Mir Ali; Mohebbi, Ali; Feriduni, Behruz

    2016-05-12

    In this study, a rapid, simple, and efficient sample preparation method based on continuous dispersive liquid-liquid microextraction has been developed for the extraction and preconcentration of aryloxyphenoxy-propionate herbicides from aqueous samples prior to their analysis by gas chromatography-flame ionization detection. In this method, two parallel glass tubes with different diameters are connected with a teflon stopcock and used as an extraction device. A mixture of disperser and extraction solvents is transferred into one side (narrow tube) of the extraction device and an aqueous phase containing the analytes is filled into the other side (wide tube). Then the stopcock is opened and the mixture of disperser and extraction solvents mixes with the aqueous phase. By this action, the extraction solvent is dispersed continuously as fine droplets into the aqueous sample and the target analytes are extracted into the fine droplets of the extraction solvent. The fine droplets move up through the aqueous phase due to its low density compared to aqueous phase and collect on the surface of the aqueous phase as an organic layer. Finally an aliquot of the organic phase is removed and injected into the separation system for analysis. Several parameters that can affect extraction efficiency including type and volume of extraction and disperser solvents, sample pH, and ionic strength were investigated and optimized. Under the optimum extraction conditions, the extraction recoveries and enrichment factors ranged from 49 to 74% and 1633 to 2466, respectively. Relative standard deviations were in the ranges of 3-6% (n = 6, C = 30 μg L(-1)) for intra-day and 4-7% (n = 4, C = 30 μg L(-1)) for inter-day precisions. The limits of detection were in the range of 0.20-0.86 μg L(-1). Finally the proposed method was successfully applied to determine the target herbicides in fruit juice and vegetable samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Efflorescence of ammonium sulfate and coated ammonium sulfate particles: evidence for surface nucleation.

    PubMed

    Ciobanu, V Gabriela; Marcolli, Claudia; Krieger, Ulrich K; Zuend, Andreas; Peter, Thomas

    2010-09-09

    Using optical microscopy, we investigated the efflorescence of ammonium sulfate (AS) in aqueous AS and in aqueous 1:1 and 8:1 (by dry weight) poly(ethylene glycol)-400 (PEG-400)/AS particles deposited on a hydrophobically coated slide. Aqueous PEG-400/AS particles exposed to decreasing relative humidity (RH) exhibit a liquid-liquid phase separation below approximately 90% RH with the PEG-400-rich phase surrounding the aqueous AS inner phase. Pure aqueous AS particles effloresced in the RH range from 36.3% to 43.7%, in agreement with literature data (31-48% RH). In contrast, aqueous 1:1 (by dry weight) PEG-400/AS particles with diameters of the AS phase from 7.2 to 19.2 mum effloresced between 26.8% and 33.9% RH and aqueous 8:1 (by dry weight) PEG-400/AS particles with diameters of the AS phase from 1.8 to 7.3 mum between 24.3% and 29.3% RH. Such low efflorescence relative humidity (ERH) values have never been reached before for AS particles of this size range. We show that these unprecedented low ERHs of AS in PEG-400/AS particles could not possibly be explained by the presence of low amounts of PEG-400 in the aqueous AS phase, by a potential inhibition of water evaporation via anomalously slow diffusion through the PEG coating, or by different time scales between various experimental techniques. High-speed photography of the efflorescence process allowed the development of the AS crystallization fronts within the particles to be monitored with millisecond time resolution. The nucleation sites were inferred from the initial crystal growth sites. Analysis of the probability distribution of initial sites of 31 and 19 efflorescence events for pure AS and 1:1 (by dry weight) PEG-400/AS particles, respectively, showed that the particle volume can be excluded as the preferred nucleation site in the case of pure AS particles. For aqueous 1:1 (by dry weight) PEG-400/AS particles preferential AS nucleation in the PEG phase and at the PEG/AS/substrate contact line can be excluded. On the basis of this probability analysis of efflorescence events together with the AS ERH values of pure aqueous AS and aqueous PEG-400/AS particles aforementioned, we suggest that in pure aqueous AS particles nucleation starts at the surface of the particles and attribute the lower ERH values observed for aqueous PEG-400/AS particles to the suppression of the surface-induced nucleation process. Our results suggest that surface-induced nucleation is likely to also occur during the efflorescence of atmospheric AS aerosol particles, possibly constituting the dominating nucleation pathway.

  14. AUTOMATED ANALYSIS OF AQUEOUS SAMPLES CONTAINING PESTICIDES, ACIDIC/BASIC/NEUTRAL SEMIVOLATILES AND VOLATILE ORGANIC COMPOUNDS BY SOLID PHASE EXTRACTION COUPLED IN-LINE TO LARGE VOLUME INJECTION GC/MS

    EPA Science Inventory

    Data is presented on the development of a new automated system combining solid phase extraction (SPE) with GC/MS spectrometry for the single-run analysis of water samples containing a broad range of organic compounds. The system uses commercially available automated in-line 10-m...

  15. Radiotracer investigation in gold leaching tanks.

    PubMed

    Dagadu, C P K; Akaho, E H K; Danso, K A; Stegowski, Z; Furman, L

    2012-01-01

    Measurement and analysis of residence time distribution (RTD) is a classical method to investigate performance of chemical reactors. In the present investigation, the radioactive tracer technique was used to measure the RTD of aqueous phase in a series of gold leaching tanks at the Damang gold processing plant in Ghana. The objective of the investigation was to measure the effective volume of each tank and validate the design data after recent process intensification or revamping of the plant. I-131 was used as a radioactive tracer and was instantaneously injected into the feed stream of the first tank and monitored at the outlet of different tanks. Both sampling and online measurement methods were used to monitor the tracer concentration. The results of measurements indicated that both the methods provided identical RTD curves. The mean residence time (MRT) and effective volume of each tank was estimated. The tanks-in-series model with exchange between active and stagnant volume was used and found suitable to describe the flow structure of aqueous phase in the tanks. The estimated effective volume of the tanks and high degree of mixing in tanks could validate the design data and confirmed the expectation of the plant engineer after intensification of the process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Ionic liquid-based dispersive liquid-liquid microextraction with back-extraction coupled with capillary electrophoresis to determine phenolic compounds.

    PubMed

    Zhou, Caihong; Tong, Shanshan; Chang, Yunxia; Jia, Qiong; Zhou, Weihong

    2012-04-01

    Ionic liquid (IL) based dispersive liquid-liquid microextraction (DLLME) with back-extraction coupled with capillary electrophoresis ultraviolet detection was developed to determine four phenolic compounds (bisphenol-A, β-naphthol, α-naphthol, 2, 4-dichlorophenol) in aqueous cosmetics. The developed method was used to preconcentrate and clean up the four phenolic compounds including two steps. The analytes were transferred into room temperature ionic liquid (1-octyl-3-methylimidazolium hexafluorophosphate, [C(8) MIM][PF(6) ]) rich-phase in the first step. In the second step, the analytes were back-extracted into the alkaline aqueous phase. The effects of extraction parameters, such as type and volume of extraction solvent, type and volume of disperser, extraction and centrifugal time, sample pH, salt addition, and concentration and volume of NaOH in back-extraction were investigated. Under the optimal experimental conditions, the preconcentration factors were 60.1 for bisphenol-A, 52.7 for β-naphthol, 49.2 for α-naphthol, and 18.0 for 2, 4-dichlorophenol. The limits of detection for bisphenol-A, β-naphthol, α-naphthol and 2, 4-dichlorophenol were 5, 5, 8, and 100 ng mL(-1), respectively. Four kinds of aqueous cosmetics including toner, soften lotion, make-up remover, and perfume were analyzed and yielded recoveries ranging from 81.6% to 119.4%. The main advantages of the proposed method are quick, easy, cheap, and effective. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ionic liquid and aqueous two-phase extraction based on salting-out coupled with high-performance liquid chromatography for the determination of seven rare ginsenosides in Xue-Sai-Tong injection.

    PubMed

    Li, Lan-Jie; Jin, Yong-Ri; Wang, Xiao-Zhong; Liu, Ying; Wu, Qian; Shi, Xiao-Lei; Li, Xu-Wen

    2015-09-01

    A method of ionic liquid salt aqueous two-phase extraction coupled with high-performance liquid chromatography has been developed for the analysis of seven rare ginsenosides including Rg6 , F4 , 20(S)-Rg3 , 20(R)-Rg3 , Rk3 , Rk1 , and Rg5 in Xue-Sai-Tong injection. The injection was mixed with ionic liquid 1-butyl-3-methylimidazolium bromide aqueous solution, and a mixture was obtained. With the addition of sodium dodecyl sulfate and dipotassium phosphate into the mixture, the aqueous two-phase mixture was formed after ultrasonic treatment and centrifuged. Rare ginsenosides were extracted into the upper phase. To obtain a high extraction factors, various influences were considered systematically, such as the volume of ionic liquid, the category and amount of salts, the amount of sodium dodecyl sulfate, the pH value of system, and the time of ultrasonic treatment. Under the optimal condition, rare ginsenosides in Xue-Sai-Tong injection were enriched and detected, the recoveries of seven rare ginsenosides ranged from 90.05 to 112.55%, while relative standard deviations were lower than 2.50%. The developed method was reliable, rapid and sensitive for the determination of seven rare ginsenosides in the injections. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. In situ stabilization of NAPL contaminant source-zones as a remediation technique to reduce mass discharge and flux to groundwater.

    PubMed

    Mateas, Douglas J; Tick, Geoffrey R; Carroll, Kenneth C

    2017-09-01

    Widely used flushing and in-situ destruction based remediation techniques (i.e. pump-and treat, enhanced-solubilization, and chemical oxidation/reduction) for sites contaminated by nonaqueous phase liquid (NAPL) contaminant sources have been shown to be ineffective at complete mass removal and reducing aqueous-phase contaminant of concern (COC) concentrations to levels suitable for site closure. A remediation method was developed to reduce the aqueous solubility and mass-flux of COCs within NAPL through the in-situ creation of a NAPL mixture source-zone. In contrast to remediation techniques that rely on the rapid removal of contaminant mass, this technique relies on the stabilization of difficult-to-access NAPL sources to reduce COC mass flux to groundwater. A specific amount (volume) of relatively insoluble n-hexadecane (HEXDEC) or vegetable oil (VO) was injected into a trichloroethene (TCE) contaminant source-zone through a bench-scale flow cell port (i.e. well) to form a NAPL mixture of targeted mole fraction (TCE:HEXDEC or TCE:VO). NAPL-aqueous phase batch tests were conducted prior to the flow-cell experiments to evaluate the effects of various NAPL mixture ratios on equilibrium aqueous-phase concentrations of TCE to design optimal NAPL (HEXDEC or VO) injection volumes for the flow-cell experiments. The NAPL-stabilization flow-cell experiments initiated and sustained significant reductions in COC concentration and mass flux due to a combination of both reduced relative permeability (increased NAPL-saturation) and via modification of NAPL composition (decreased TCE mole fraction). Variations in remediation performance (i.e. impacts on TCE concentration and mass flux reduction) between the different HEXDEC injection volumes were relatively minor, and therefore inconsistent with Raoult's Law predictions. This phenomenon likely resulted from non-uniform mixing of the injected HEXDEC with TCE in the source-zone. VO injection caused TCE concentrations and mass-flux to decrease more rapidly than with HEXDEC injections. This phenomenon occurred because the injected VO was observed to mix more uniformly with TCE in the source-zone due to a lower mobilization potential. The relative lower density differences (buoyancy effects) between VO and the flushing solution (water) was the primary factor contributing to the lower mobilization potential for VO. Overall, this study indicated that the delivery of HEXDEC or VO into the toxic TCE source-zone was effective in significantly reducing contaminant aqueous-phase concentration and mass-flux. However, the effectiveness of this in-situ NAPL stabilization technique depends on source delivery, uniform mixing of amendment, and that the amendment remains immobilized within and around the NAPL contaminant source. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Preconcentration of aqueous dyes through phase-transfer liquid-phase microextraction with a room-temperature ionic liquid.

    PubMed

    Chen, Hsiu-Liang; Chang, Shuo-Kai; Lee, Chia-Ying; Chuang, Li-Lin; Wei, Guor-Tzo

    2012-09-12

    In this study, we employed the room-temperature ionic liquid [bmim][PF(6)] as both ion-pair agent and an extractant in the phase-transfer liquid-phase microextraction (PTLPME) of aqueous dyes. In the PTLPME method, a dye solution was added to the extraction solution, comprising a small amount of [bmim][PF(6)] in a relatively large amount of CH(2)Cl(2), which serves as the disperser solvent to an extraction solution. Following extraction, CH(2)Cl(2) was evaporated from the extractant, resulting in the extracted dyes being concentrated in a small volume of the ionic liquid phase to increase the enrichment factor. The enrichment factors of for the dye Methylene Blue, Neutral Red, and Methyl Red were approximately 500, 550 and 400, respectively; their detection limits were 0.014, 0.43, and 0.02 μg L(-1), respectively, with relative standard deviations of 4.72%, 4.20%, and 6.10%, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. User`s guide for UTCHEM implicit (1.0) a three dimensional chemical flood simulator. Final report, September 30, 1992--December 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    UTCHEM IMPLICIT is a three-dimensional chemical flooding simulator. The solution scheme is fully implicit. The pressure equation and the mass conservation equations are solved simultaneously for the aqueous phase pressure and the total concentrations of each component. A third-order-in-space, second-order-in-time finite-difference method and a new total-variation-diminishing (TVD) third-order flux limiter are used to reduce numerical dispersion effects. Saturations and phase concentrations are solved in a flash routine. The major physical phenomena modeled in the simulator are: dispersion, adsorption, aqueous-oleic-microemulsion phase behavior, interfacial tension, relative permeability, capillary trapping, compositional phase viscosity, capillary pressure, phase density, polymer properties: shear thinning viscosity, inaccessiblemore » pore volume, permeability reduction, and adsorption. The following options are available in the simulator: constant or variable time-step sizes, uniform or nonuniform grid, pressure or rate constrained wells, horizontal and vertical wells.« less

  1. Analysis of iodinated haloacetic acids in drinking water by reversed-phase liquid chromatography/electrospray ionization/tandem mass spectrometry with large volume direct aqueous injection.

    PubMed

    Li, Yongtao; Whitaker, Joshua S; McCarty, Christina L

    2012-07-06

    A large volume direct aqueous injection method was developed for the analysis of iodinated haloacetic acids in drinking water by using reversed-phase liquid chromatography/electrospray ionization/tandem mass spectrometry in the negative ion mode. Both the external and internal standard calibration methods were studied for the analysis of monoiodoacetic acid, chloroiodoacetic acid, bromoiodoacetic acid, and diiodoacetic acid in drinking water. The use of a divert valve technique for the mobile phase solvent delay, along with isotopically labeled analogs used as internal standards, effectively reduced and compensated for the ionization suppression typically caused by coexisting common inorganic anions. Under the optimized method conditions, the mean absolute and relative recoveries resulting from the replicate fortified deionized water and chlorinated drinking water analyses were 83-107% with a relative standard deviation of 0.7-11.7% and 84-111% with a relative standard deviation of 0.8-12.1%, respectively. The method detection limits resulting from the external and internal standard calibrations, based on seven fortified deionized water replicates, were 0.7-2.3 ng/L and 0.5-1.9 ng/L, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Microbubble Fabrication of Concave-porosity PDMS Beads

    PubMed Central

    Bertram, John R.; Nee, Matthew J.

    2015-01-01

    Microbubble fabrication (by use of a fine emulsion) provides a means of increasing the surface-area-to-volume (SAV) ratio of polymer materials, which is particularly useful for separations applications. Porous polydimethylsiloxane (PDMS) beads can be produced by heat-curing such an emulsion, allowing the interface between the aqueous and aliphatic phases to mold the morphology of the polymer. In the procedures described here, both polymer and crosslinker (triethoxysilane) are sonicated together in a cold-bath sonicator. Following a period of cross-linking, emulsions are added dropwise to a hot surfactant solution, allowing the aqueous phase of the emulsion to separate, and forming porous polymer beads. We demonstrate that this method can be tuned, and the SAV ratio optimized, by adjusting the electrolyte content of the aqueous phase in the emulsion. Beads produced in this way are imaged with scanning electron microscopy, and representative SAV ratios are determined using Brunauer–Emmett–Teller (BET) analysis. Considerable variability with the electrolyte identity is observed, but the general trend is consistent: there is a maximum in SAV obtained at a specific concentration, after which porosity decreases markedly. PMID:26709997

  3. Thermodynamic properties of selected uranium compounds and aqueous species at 298.15 K and 1 bar and at higher temperatures; preliminary models for the origin of coffinite deposits

    USGS Publications Warehouse

    Hemingway, B.S.

    1982-01-01

    Thermodynamic values for 110 uranium-bearing phases and 28 aqueous uranium solution species (298.15 K and l bar) are tabulated based upon evaluated experimental data (largely from calorimetric experiments) and estimated values. Molar volume data are given for most of the solid phases. Thermodynamic values for 16 uranium-bearing phases are presented for higher temperatures in the form of and as a supplement to U.S. Geological Survey Bulletin 1452 (Robie et al., 1979). The internal consistency of the thermodynamic values reported herein is dependent upon the reliability of the experimental results for several uranium phases that have been used as secondary calorimetric reference phases. The data for the reference phases and for those phases evaluated with respect to the secondary reference phases are discussed. A preliminary model for coffinite formation has been proposed together with an estimate of the free energy of formation of coffinite. Free energy values are estimated for several other uranium-bearing silicate phases that have been reported as secondary uranium phases associated with uranium ore deposits and that could be expected to develop wherever uranium is leached by groundwaters.

  4. Effects of large volume injection of aliphatic alcohols as sample diluents on the retention of low hydrophobic solutes in reversed-phase liquid chromatography.

    PubMed

    David, Victor; Galaon, Toma; Aboul-Enein, Hassan Y

    2014-01-03

    Recent studies showed that injection of large volume of hydrophobic solvents used as sample diluents could be applied in reversed-phase liquid chromatography (RP-LC). This study reports a systematic research focused on the influence of a series of aliphatic alcohols (from methanol to 1-octanol) on the retention process in RP-LC, when large volumes of sample are injected on the column. Several model analytes with low hydrophobic character were studied by RP-LC process, for mobile phases containing methanol or acetonitrile as organic modifiers in different proportions with aqueous component. It was found that starting with 1-butanol, the aliphatic alcohols can be used as sample solvents and they can be injected in high volumes, but they may influence the retention factor and peak shape of the dissolved solutes. The dependence of the retention factor of the studied analytes on the injection volume of these alcohols is linear, with a decrease of its value as the sample volume is increased. The retention process in case of injecting up to 200μL of upper alcohols is dependent also on the content of the organic modifier (methanol or acetonitrile) in mobile phase. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Surface-bubble-modulated liquid chromatography: a new approach for manipulation of chromatographic retention and investigation of solute distribution at water/hydrophobic interfaces.

    PubMed

    Nakamura, Keisuke; Nakamura, Hiroki; Saito, Shingo; Shibukawa, Masami

    2015-01-20

    In this paper, we present a new chromatographic method termed surface-bubble-modulated liquid chromatography (SBMLC), that has a hybrid separation medium incorporated with surface nanobubbles. Nanobubbles or nanoscale gas phases can be fixed at the interface between water and a hydrophobic material by delivering water into a dry column packed with a nanoporous material. The incorporation of a gas phase at the hydrophobic surface leads to the formation of the hybrid separation system consisting of the gas phase, hydrophobic moieties, and the water/hydrophobic interface or the interfacial water. One can change the volume of the gas phase by pressure applied to the column, which in turn alters the area of water/hydrophobic interface or the volume of the interfacial water, while the amount of the hydrophobic moiety remains constant. Therefore, this strategy provides a novel technique not only for manipulating the separation selectivity by pressure but also for elucidating the mechanism of accumulation or retention of solute compounds in aqueous solutions by a hydrophobic material. We evaluate the contributions of the interfacial water at the surface of an octadecyl bonded silica and the bonded layer itself to the retention of various solute compounds in aqueous solutions on the column packed with the material by SBMLC. The results show that the interfacial water formed at the hydrophobic surface has a key role in retention even though its volume is rather small. The manipulation of the separation selectivity of SBMLC for some organic compounds by pressure is demonstrated.

  6. A hybrid approach to device integration on a genetic analysis platform

    NASA Astrophysics Data System (ADS)

    Brennan, Des; Jary, Dorothee; Kurg, Ants; Berik, Evgeny; Justice, John; Aherne, Margaret; Macek, Milan; Galvin, Paul

    2012-10-01

    Point-of-care (POC) systems require significant component integration to implement biochemical protocols associated with molecular diagnostic assays. Hybrid platforms where discrete components are combined in a single platform are a suitable approach to integration, where combining multiple device fabrication steps on a single substrate is not possible due to incompatible or costly fabrication steps. We integrate three devices each with a specific system functionality: (i) a silicon electro-wetting-on-dielectric (EWOD) device to move and mix sample and reagent droplets in an oil phase, (ii) a polymer microfluidic chip containing channels and reservoirs and (iii) an aqueous phase glass microarray for fluorescence microarray hybridization detection. The EWOD device offers the possibility of fully integrating on-chip sample preparation using nanolitre sample and reagent volumes. A key challenge is sample transfer from the oil phase EWOD device to the aqueous phase microarray for hybridization detection. The EWOD device, waveguide performance and functionality are maintained during the integration process. An on-chip biochemical protocol for arrayed primer extension (APEX) was implemented for single nucleotide polymorphism (SNiP) analysis. The prepared sample is aspirated from the EWOD oil phase to the aqueous phase microarray for hybridization. A bench-top instrumentation system was also developed around the integrated platform to drive the EWOD electrodes, implement APEX sample heating and image the microarray after hybridization.

  7. Ionic liquid ultrasound-assisted dispersive liquid-liquid microextraction based on solidification of the aqueous phase for preconcentration of heavy metals ions prior to determination by LC-UV.

    PubMed

    Werner, Justyna

    2018-05-15

    Ionic liquid ultrasound-assisted dispersive liquid-liquid microextraction based on solidification of the aqueous phase was used for preconcentration of Ni 2+ , Co 2+ , Cd 2+ , Cu 2+ , Pb 2+ in natural water samples prior to liquid chromatography with UV detection. In the proposed method, the ammonium pyrrolidinedithiocarbamate was used as a complexing agent and the phosphonium ionic liquid trihexyl(tetradecyl)phosphonium bis[(2,4,4-trimethyl)pentyl]phosphinate (Cyphos IL 104) was used as an extractant. Ultrasound energy was used to disperse the extractant in the aqueous phase. After microextraction, the ionic liquid and aqueous phases were separated by centrifugation. Then the aqueous phase was frozen and the lighter than water ionic liquid phase containing metal ions complexes with pyrrolidinedithiocarbamate was separated and dissolved in a small volume of methanol prior to injection into the liquid chromatograph. Several parameters including the volume of extractant, the pH of the sample, the concentration of complexing agent, the time of ultrasound energy treatment, the time and speed of centrifugation and the effect of ionic strength were optimized. Under the optimized conditions (10 µL of Cyphos IL 104, pH = 5, 0.3% w/v ammonium pyrrolidinedithiocarbamate, 60 s of ultrasound use, 5 min/5000 rpm (2516×g) of centrifugation, 2.0 mg of NaCl), preconcentration factors were 211, 210, 209, 207 and 211 for Ni 2+ , Co 2+ , Cd 2+ , Cu 2+ and Pb 2+ respectively. Linearity was observed in the ranges 0.2-75.0 µg L -1 for Pb 2+ , Cd 2+ , Co 2+ and 0.5-100.0 µg L -1 for Cu 2+ , Ni 2+ . The limits of detection were 0.03 µg L -1 for Ni 2+ , 0.03 µg L -1 for Co 2+ , 0.03 µg L -1 for Cd 2+ , 0.02 µg L -1 for Cu 2+ , 0.02 µg L -1 for Pb 2+ , respectively. The accuracy of this method was evaluated by preconcentration and determination of Ni 2+ , Co 2+ , Cd 2+ , Cu 2+ , Pb 2+ in certified reference materials (TMRAIN-04 and NIST 1643e) with the recovery values in the range of 97-102%. The presented method has been successfully applied for the determination of analytes in natural water samples (river and lake waters). Copyright © 2018 Elsevier B.V. All rights reserved.

  8. A Water Recovery System Evolved for Exploration

    NASA Technical Reports Server (NTRS)

    ORourke, Mary Jane E.; Perry, Jay L.; Carter, Donald L.

    2006-01-01

    A new water recovery system designed towards fulfillment of NASA's Vision for Space Exploration is presented. This water recovery system is an evolution of the current state-of-the-art system. Through novel integration of proven technologies for air and water purification, this system promises to elevate existing technology to higher levels of optimization. The novel aspect of the system is twofold: Volatile organic contaminants will be removed from the cabin air via catalytic oxidation in the vapor phase, prior to their absorption into the aqueous phase, and vapor compression distillation technology will be used to process the condensate and hygiene waste streams in addition to the urine waste stream. Oxidation kinetics dictate that removal of volatile organic contaminants from the vapor phase is more efficient. Treatment of the various waste streams by VCD will reduce the load on the expendable ion exchange and adsorption media which follow, and on the aqueous-phase volatile removal assembly further downstream. Incorporating these advantages will reduce the weight, volume, and power requirements of the system, as well as resupply.

  9. Electroosmotic mixing in microchannels.

    PubMed

    Glasgow, Ian; Batton, John; Aubry, Nadine

    2004-12-01

    Mixing is an essential, yet challenging, process step for many Lab on a Chip (LOC) applications. This paper presents a method of mixing for microfluidic devices that relies upon electroosmotic flow. In physical tests and in computer simulations, we periodically vary the electric field with time to mix two aqueous solutions. Good mixing is shown to occur when the electroosmotic flow at the two inlets pulse out of phase, the Strouhal number is on the order of 1, and the pulse volumes are on the order of the intersection volume.

  10. Three-Phase Coexistence in Colloidal Rod-Plate Mixtures.

    PubMed

    Woolston, Phillip; van Duijneveldt, Jeroen S

    2015-09-01

    Aqueous suspensions of clay particles, such as montmorillonite (MMT) platelets and sepiolite (Sep) rods, tend to form gels at concentrations around 1 vol %. For Sep rods, adsorbing sodium polyacrylate to the surface allows for an isotropic-nematic phase separation to be seen instead. Here, MMT is added to such Sep suspensions, resulting in a complex phase behavior. Across a range of clay concentrations, separation into three phases is observed: a lower, nematic phase dominated by Sep rods, a MMT-rich middle layer, which is weakly birefringent and probably a gel, and a dilute top phase. Analysis of phase volumes suggests that the middle layer may contain as much as 6 vol % MMT.

  11. Effect of emulsifier type and concentration, aqueous phase volume and wax ratio on physical, material and mechanical properties of water in oil lipsticks.

    PubMed

    Beri, A; Norton, J E; Norton, I T

    2013-12-01

    Water-in-oil emulsions in lipsticks could have the potential to improve moisturizing properties and deliver hydrophilic molecules to the lips. The aims of this work were (i) to investigate the effect of emulsifier type (polymer vs. monomer, and saturated vs. unsaturated chain) and concentration on droplet size and (ii) to investigate the effect of wax ratio (carnauba wax, microcrystalline wax, paraffin wax and performalene) and aqueous phase volume on material properties (Young's modulus, point of fracture, elastic modulus and viscous modulus). Emulsion formation was achieved using a high shear mixer. Results showed that the saturated nature of the emulsifier had very little effect on droplet size, neither did the use of an emulsifier with a larger head group (droplet size ~18-25 μm). Polyglycerol polyricinoleate (PGPR) resulted in emulsions with the smallest droplets (~3-5 μm), as expected from previous studies that show that it produces a thick elastic interface. The results also showed that both Young's modulus and point of fracture increase with increasing percentage of carnauba wax (following a power law dependency of 3), but decrease with increasing percentage of microcrystalline wax, suggesting that the carnauba wax is included in the overall wax network formed by the saturated components, whereas the microcrystalline wax forms irregular crystals that disrupt the overall wax crystal network. Young's modulus, elastic modulus and viscous modulus all decrease with increasing aqueous phase volume in the emulsions, although the slope of the decrease in elastic and viscous moduli is dependent on the addition of solid wax, as a result of strengthening the network. This work suggests the potential use for emulsions in lipstick applications, particularly when PGPR is used as an emulsifier, and with the addition of solid wax, as it increases network strength. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  12. Extraction of cesium, strontium and the platinium group metals from acidic high activity nuclear waste using a Purex process compatible organic extractant. Final report, December 15, 1980-August 15, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, M.W. Jr.; Van Brunt, V.

    1984-09-14

    Purex process compatible organic systems which selectively and reversibly extract cesium, strontium, and palladium from synthetic mixed fission product solutions containing 3M HNO/sub 3/ have been developed. This advance makes the development of continuous solvent extraction processes for their recovery more likely. The most favorable cesium and strontium complexing solutions have been tested for radiation stability to 10/sup 7/ rad using a 0.4 x 10/sup 7/ rad/h /sup 60/Co source. The distribution coefficients dropped somewhat but remained above unity. For cesium the complexing organic solution is 5 vol % (0.1M) NNS, 27 vol % TBP and 68 vol % kerosenemore » containing 0.05m Bis 4,4',(5')(1-hydroxy 2-ethylhexyl)-benzo 18-crown-6 (Crown XVII). The NNS is a sulfonic acid cation exchanger. With an aqueous phase containing 0.006M Cs/sup +1/ in contact with an equal volume of extractant the D org/aq = 1.6 at a temperature of 25 to 35/sup 0/C. For strontium the complexing organic solution is 5 vol % (0.1M) NNS, 27 vol % TBP and 68 vol % Kerosene containing 0.02M Bis 4,4'(5') (1-hydroxyheptyl)cyclohexo 18-crown-6 (Crown XVI). With an aqueous phase containing 0.003M Sr/sup +2/ in contact with an equal volume of extractant the D org/aq = 1.98 at a temperature of 25 to 35/sup 0/C. For palladium the complexing organic solution consisted of a ratio of TBP/kerosene of 0.667 containing 0.3M Alamine 336 which is a tertiary amine anion exchanger. With an aqueous phase containing 0.0045M Pd/sup +/ in contact with an equal volume of extractant the D org/aq = 1.95 at a temperature of 25 to 35/sup 0/C.« less

  13. Molecularly imprinted polymer/cryogel composites for solid-phase extraction of bisphenol A from river water and wine.

    PubMed

    Baggiani, Claudio; Baravalle, Patrizia; Giovannoli, Cristina; Anfossi, Laura; Giraudi, Gianfranco

    2010-05-01

    Superporous monolithic hydrogels (cryogel monoliths) are elastic, sponge-like materials that can be prepared in an aqueous medium through a cryotropic gelation technique. These monoliths show interesting properties for the development of high-throughput solid-phase extraction supports to treat large volumes of aqueous samples. In this work, a cryogel-supported molecularly imprinted solid-phase extraction approach for the endocrine disruptor bisphenol A (BPA) from river water and wine samples is presented. An imprinted polymer with molecular recognition properties for BPA was prepared in acetonitrile by thermal polymerization of a mixture of 4,4'-dihydroxy-2,2-diphenyl-1,1,1,3,3,3-trifluoropropane as a mimic template of BPA, 4-vinylpyridine and trimethylolpropane trimethacrylate in a molar ratio of 1 + 6 + 6. Fine imprinted particles (<10 microm) were embedded in a poly-acrylamide-co-N,N'-methylenbisacrylamide cryogel obtained by ammonium persulfate-induced cryopolymerization at -18 degrees C. The resulting monolithic gel was evaluated for its use as a sorbent support in an off-line solid-phase extraction approach to recover BPA from dilute aqueous samples with minimum pre-loading work-up. The optimized extraction protocol resulted in a reliable MISPE method suitable to selectively extract and preconcentrate BPA from river water and red wine samples, demonstrating the practical feasibility of cryogel-trapped imprinted polymers as solid-phase extraction materials.

  14. A dispersive liquid--liquid microextraction methodology for copper (II) in environmental samples prior to determination using microsample injection flame atomic absorption spectrometry.

    PubMed

    Alothman, Zeid A; Habila, Mohamed; Yilmaz, Erkan; Soylak, Mustafa

    2013-01-01

    A simple, environmentally friendly, and efficient dispersive liquid-liquid microextraction method combined with microsample injection flame atomic absorption spectrometry was developed for the separation and preconcentration of Cu(II). 2-(5-Bromo-2-pyridylazo)-5-(diethylamino)phenol (5-Br-PADAP) was used to form a hydrophobic complex of Cu(II) ions in the aqueous phase before extraction. To extract the Cu(II)-5-Br-PADAP complex from the aqueous phase to the organic phase, 2.0 mL of acetone as a disperser solvent and 200 microL of chloroform as an extraction solvent were used. The influences of important analytical parameters, such as the pH, types and volumes of the extraction and disperser solvents, amount of chelating agent, sample volume, and matrix effects, on the microextraction procedure were evaluated and optimized. Using the optimal conditions, the LOD, LOQ, preconcentration factor, and RSD were determined to be 1.4 microg/L, 4.7 microg/L, 120, and 6.5%, respectively. The accuracy of the proposed method was investigated using standard addition/recovery tests. The analysis of certified reference materials produced satisfactory analytical results. The developed method was applied for the determination of Cu in real samples.

  15. Separation of chlorogenic acid and concentration of trace caffeic acid from natural products by pH-zone-refining countercurrent chromatography.

    PubMed

    Lu, Yuanyuan; Dong, Genlai; Gu, Yanxiang; Ito, Yoichiro; Wei, Yun

    2013-07-01

    Chlorogenic acid and caffeic acid were selected as test samples for separation by the pH-zone-refining countercurrent chromatography (CCC). The separation of these test samples was performed with a two-phase solvent system composed of methyl-tert-butyl-ether/acetonitrile/water at a volume ratio of 4:1:5 v/v/v where trifluoroacetic acid (TFA; 8 mM) was added to the organic stationary phase as a retainer and NH4 OH (10 mM) to the aqueous mobile phase as an eluter. Chlorogenic acid was successfully separated from Flaveria bidentis (L.) Kuntze (F. bidentis) and Lonicerae Flos by pH-zone-refining CCC, a slightly polar two-phase solvent system composed of methyl-tert-butyl-ether/acetonitrile/n-butanol/water at a volume ratio of 4:1:1:5 v/v/v/v was selected where TFA (3 mM) was added to the organic stationary phase as a retainer and NH4 OH (3 mM) to the aqueous mobile phase as an eluter. A 16.2 mg amount of chlorogenic acid with the purity of 92% from 1.4 g of F. bidentis, and 134 mg of chlorogenic acid at the purity of 99% from 1.3 g of crude extract of Lonicerae Flos have been obtained. These results suggest that pH-zone-refining CCC is suitable for the isolation of the chlorogenic acid from the crude extracts of F. bidentis and Lonicerae Flos. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Rotavirus-like particles primary recovery from insect cells in aqueous two-phase systems.

    PubMed

    Benavides, Jorge; Mena, Jimmy A; Cisneros-Ruiz, Mayra; Ramírez, Octavio T; Palomares, Laura A; Rito-Palomares, Marco

    2006-09-14

    Virus-like particles have a wide range of applications, including vaccination, gene therapy, and even as nanomaterials. Their successful utilization depends on the availability of selective and scalable methods of product recovery and purification that integrate effectively with upstream operations. In this work, a strategy based on aqueous two phase system (ATPS) was developed for the recovery of double-layered rotavirus-like particles (dlRLP) produced by the insect cell-baculovirus expression system. Polyethylene glycol (PEG) molecular mass, PEG and salt concentrations, and volume ratio (Vr, volume of top phase/volume of bottom phase) were evaluated in order to determine the conditions where dlRLP and contaminants concentrated to opposite phases. Two-stage ATPS consisting of PEG 400-phosphate with a Vr of 13.0 and a tie-line length (TLL) of 35% (w/w) at pH 7.0 provided the best conditions for processing highly concentrated crude extract from disrupted cells (dlRLP concentration of 5 microg/mL). In such conditions intracellular dlRLP accumulated in the top phase (recovery of 90%), whereas cell debris remained in the interface. Furthermore, dlRLP from culture supernatants accumulated preferentially in the interface (recovery of 82%) using ATPS with a Vr of 1.0, pH of 7.0, PEG 3350 (10.1%, w/w) and phosphate (10.9%, w/w). The purity of dlRLP from culture supernatant increased up to 55 times after ATPS. The use of ATPS resulted in a recovery process that produced dlRLP with a purity between 6 and 11% and an overall product yield of 85% (w/w), considering purification from intracellular and extracellular dlRLP. Overall, the strategy proposed in this study is simpler than traditional methods for recovering dlRLP, and represents a scalable and economically viable alternative for production processes of vaccines against rotavirus infection with significant scope for generic commercial application.

  17. Study of the Solvent Extraction of V(V) from Nitrate Medium by Tri- n-Octylamine Dissolved in Kerosene

    NASA Astrophysics Data System (ADS)

    Biswas, Ranjit Kumar; Karmakar, Aneek Krishna; Mottakin, Mohammad

    2017-10-01

    The liquid-liquid extraction of V(V) from a nitrate medium by tri- n-Octylamine [( n-C8H17)3N; abbreviated as TOA] dissolved in distilled colorless kerosene has been investigated as a function of various experimental parameters. The equilibration time is less than 10 min. It is observed that the extraction ratio increases with increasing [V(V)] in the aqueous phase, which is possibly a result of the formation of V10O26(OH) 2 4- (via reaction: 10 VO2 + + 8 H2O → V10O26(OH) 2 4- + 14 H+) with increasing concentration in the aqueous phase. The nature of the species extracted into the organic phase depends on the existing aqueous species prevailing at a certain pH. At lower pH values, the extraction of VO2 + occurs via cation (H+) exchange of (C8H17)3NHNO3. On the other hand, at higher pH values, anionic V(V) species such as V10O26(OH) 2 4- , V10O27(OH)5-, V10O28 6- etc. are extracted by solvated ion-pair formation mechanism. The TOA concentration dependence varies from 2 at a lower pH region ( 2.3) to 1 at a higher pH region ( 5.7). The extraction is also found to be favored by a rise of nitrate concentration in the aqueous phase. Temperature has a pronounced effect with Δ H < -58 kJ/mol. Kerosene is demonstrated as the best diluent for this system. Increased organic to aqueous phase volume ratio (O/A) enhances extraction ratio. The extracted species can be stripped by 0.75 mol/L NH4OH solution to the extent of 72% in a single stage. But stage-wise stripping is not so effective. It is observed a very high loading, of the order of 2.3 mol V(V) per mol TOA.

  18. Extraction of dye from aqueous solution in rotating packed bed.

    PubMed

    Modak, Jayant B; Bhowal, Avijit; Datta, Siddhartha

    2016-03-05

    The influence of centrifugal acceleration on mass transfer rates in liquid-liquid extraction was investigated experimentally in rotating packed bed (RPB) contactor. The extraction of methyl red using xylene was studied in the equipment. The effect of rotational speed (300-900rpm), flow rate of the aqueous (4.17-20.8×10(-6)m(3)/s), and organic phase (0.83-2.5×10(-6)m(3)/s) on the mass transfer performance was examined. The maximum stage efficiency attained was ∼0.98 at aqueous to organic flow rate ratio of 10. The results suggest that contactor volume required to carry out a given separation can be reduced by an order of magnitude with RPB in comparison to conventional extractors. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Removal of hexavalent chromium by biosorption process in rotating packed bed.

    PubMed

    Panda, M; Bhowal, A; Datta, S

    2011-10-01

    Removal of hexavalent chromium ions from an aqueous solution by crude tamarind (Tamarindus indica) fruit shell was examined in a rotating packed bed contactor by continuously recirculating a given volume of solution through the bed. Reduction of Cr(VI) to Cr(III) within the biosorbent appeared to be the removal mechanism. Depletion rate of Cr(VI) from, and release of reduced Cr(III) ions into the aqueous phase, was influenced by mass transfer resistance besides pH and packing depth. A mathematical model considering the reduction reaction to be irreversible and incorporating intraparticle and external phase mass transfer resistances represented the experimental data adequately. The study indicated that the limitations of fixed bed contactor operating under terrestrial gravity in intensifying mass transfer rates for this system can be overcome with rotating packed bed due to liquid flow under centrifugal acceleration.

  20. In Situ NAPL Modification for Contaminant Source-Zone Passivation, Mass Flux Reduction, and Remediation

    NASA Astrophysics Data System (ADS)

    Mateas, D. J.; Tick, G.; Carroll, K. C.

    2016-12-01

    A remediation method was developed to reduce the aqueous solubility and mass-flux of target NAPL contaminants through the in-situ creation of a NAPL mixture source-zone. This method was tested in the laboratory using equilibrium batch tests and two-dimensional flow-cell experiments. The creation of two different NAPL mixture source zones were tested in which 1) volumes of relatively insoluble n-hexadecane (HEX) or vegetable oil (VO) were injected into a trichloroethene (TCE) contaminant source-zone; and 2) pre-determined HEX-TCE and VO-TCE mixture ratio source zones were emplaced into the flow cell prior to water flushing. NAPL-aqueous phase batch tests were conducted prior to the flow-cell experiments to evaluate the effects of various NAPL mixture ratios on equilibrium aqueous-phase concentrations of TCE and toluene (TOL) and to design optimal NAPL (HEX or VO) injection volumes for the flow-cell experiments. Uniform NAPL mixture source-zones were able to quickly decrease contaminant mass-flux, as demonstrated by the emplaced source-zone experiments. The success of the HEX and VO injections to also decrease mass flux was dependent on the ability of these injectants to homogeneously mix with TCE source-zone. Upon injection, both HEX and VO migrated away from the source-zone, to some extent. However, the lack of a steady-state dissolution phase and the inefficient mass-flux-reduction/mass-removal behavior produced after VO injection suggest that VO was more effective than HEX for mixing and partitioning within the source-zone region to form a more homogeneous NAPL mixture with TCE. VO appears to be a promising source-zone injectant-NAPL due to its negligible long-term toxicity and lower mobilization potential.

  1. The preparation and characterization of monomethoxypoly(ethylene glycol)-b-poly-DL-lactide microcapsules containing bovine hemoglobin.

    PubMed

    Meng, Fan-Tao; Zhang, Wan-Zhong; Ma, Guang-Hui; Su, Zhi-Guo

    2003-08-01

    Methoxypoly(ethylene glycol)-b-poly-DL-lactide (PELA) microcapsules containing bovine hemoglobin (bHb) were prepared by a W/O/W double emulsion-solvent diffusion process. bHb solution was used as the internal aqueous phase, PELA/organic solvent as the oil phase, and polyvinyl alcohol (PVA) solution as the external aqueous phase. This W/O/W double emulsion was added into a large volume of water (solidification solution) to allow organic solvent to diffuse into water. The optimum preparative condition for PELA microcapsules loaded with bovine hemoglobin was investigated. It was found that homogenization rate, type of organic solvent, and volume of the solidification solution influenced the activity of bovine hemoglobin encapsulated. When the homogenization rate was lower than 9000 rpm and ethyl acetate was used as the organic solvent, there was no significant influence on the activity of hemoglobin. High homogenization rate as 12 000 rpm decreased the P50 and Hill coefficient. Increasing the volume of solidification solution had an effect of improving the activity of microencapsulated hemoglobin. The composition of the PELA had the most important influence on the success of encapsulation. Microcapsules fabricated by PELA with MPEG2k block (molecular weight of MPEG block: 2000) achieved a high entrapment efficiency of 90%, better than PL A homopolymer and PELA with MPEG5k blocks. Hemoglobin microcapsules with native loading oxygen activity (P50 = 26.0 mmHg, Hill coefficient = 2.4), mean size of about 10 microm, and high entrapment efficiency (ca. 93%) were obtained at the optimum condition.

  2. ORGANIC-HIGH IONIC STRENGTH AQUEOUS SOLVENT SYSTEMS FOR SPIRAL COUNTER-CURRENT CHROMATOGRAPHY: GRAPHIC OPTIMIZATION OF PARTITION COEFFICIENT

    PubMed Central

    Zeng, Yun; Liu, Gang; Ma, Ying; Chen, Xiaoyuan; Ito, Yoichiro

    2012-01-01

    A new series of organic-high ionic strength aqueous two-phase solvents systems was designed for separation of highly polar compounds by spiral high-speed counter-current chromatography. A total of 21 solvent systems composed of 1-butanol-ethanol-saturated ammonium sulfate-water at various volume ratios are arranged according to an increasing order of polarity. Selection of the two-phase solvent system for a single compound or a multiple sample mixture can be achieved by two steps of partition coefficient measurements using a graphic method. The capability of the method is demonstrated by optimization of partition coefficient for seven highly polar samples including tartrazine (K=0.77), tryptophan (K=1.00), methyl green (K= 0.93), tyrosine (0.81), metanephrine (K=0.89), tyramine (K=0.98), and normetanephrine (K=0.96). Three sulfonic acid components in D&C Green No. 8 were successfully separated by HSCCC using the graphic selection of the two-phase solvent system. PMID:23467197

  3. Removal of actinide elements from liquid scintillation cocktail wastes using liquid-liquid extraction and demulsification techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, K.; Landsberger, S.; Srinivasan, B.

    1994-12-31

    For many years liquid scintillation cocktail (LSC) wastes have been generated and stored at Argonne National Laboratory (ANL). These wastes are stored in thousands of 10--20 m scintillation vials, many of which contain elements with Z > 88. Because storage space is limited, disposal of this waste is pressing. These wastes could be commercially incinerated if the radionuclides with Z>88 are reduced to sufficiently low levels. However, there is currently no deminimus level for these radionuclides, and separation techniques are still being tested. The University of Illinois is conducting experiments to separate radionuclides with Z > 88 from simulated LSCmore » wastes by using liquid-liquid extraction (LLX) and demulsification techniques. The actinide elements are removed from the LSC by extraction into an aqueous phase after the cocktail has been demulsified. The aqueous and organic phases are separated and the organic phase, now free from radionuclides with Z > 88, can be sent to a commercial incineration facility. The aqueous phase may be treated and disposed of using existing techniques. The LLX separation techniques used solutions of sodium oxalate, aluminum nitrate, and tetrasodium EDTA at varying concentrations. These extractants were mixed with the simulated waste in a 1:1 volume ratio. Using 1.0M Na{sub 4} EDTA salt solutions, decontamination ratios as high as 230 were achieved.« less

  4. Capillary liquid chromatography combined with pressurized liquid extraction and dispersive liquid-liquid microextraction for the determination of vitamin E in cosmetic products.

    PubMed

    Viñas, Pilar; Pastor-Belda, Marta; Campillo, Natalia; Bravo-Bravo, María; Hernández-Córdoba, Manuel

    2014-06-01

    Capillary liquid chromatography (LC) is used for the determination of tocopherols and tocotrienols in cosmetic products. Dispersive liquid-liquid microextraction (DLLME) allows the analytes to be preconcentrated into a very small volume of organic solvent which is then injected into the chromatograph running at a very low flow rate. Pressurized liquid extraction (PLE) at a high temperature and pressure was used to isolate vitamin E forms from cosmetics. The Taguchi experimental method was used to optimize the factors affecting DLLME. The parameters selected were 2mL of acetonitrile (disperser solvent), 100μL carbon tetrachloride (extraction solvent) and 10mL aqueous solution. A volume of 5μL of the organic phase was injected into the reversed-phase capillary LC system equipped with a diode array detector and using an isocratic mobile phase composed of an 95:5 (v/v) methanol:water mixture at a flow-rate of 20μLmin(-1). Quantification was carried out using aqueous standards and detection limits were in the range 0.1-0.5ngmL(-1), corresponding to 3-15ngg(-1) in the cosmetic sample. The recoveries were in the 87-105% range, with RSDs lower than 7.8%. The method was validated according to international guidelines and using a certified reference material. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Zone fluidics for measurement of octanol-water partition coefficient of drugs.

    PubMed

    Wattanasin, Panwadee; Saetear, Phoonthawee; Wilairat, Prapin; Nacapricha, Duangjai; Teerasong, Saowapak

    2015-02-20

    A novel zone fluidics (ZF) system for the determination of the octanol-water partition coefficient (Pow) of drugs was developed. The ZF system consisted of a syringe pump with a selection valve, a holding column, a silica capillary flow-cell and an in-line spectrophotometer. Exact microliter volumes of solvents (octanol and phosphate buffer saline) and a solution of the drug, sandwiched between air segments, were sequentially loaded into the vertically aligned holding column. Distribution of the drug between the aqueous and octanol phases occurred by the oscillation movement of the syringe pump piston. Phase separation occurred due to the difference in densities. The liquid zones were then pushed into the detection flow cell. In this method, absorbance measurements in only one of the phase (octanol or aqueous) were employed, which together with the volumes of the solvents and pure drug sample, allowed the calculation of the Pow. The developed system was applied to the determination of the Pow of some common drugs. The log (Pow) values agreed well with a batch method (R(2)=0.999) and literature (R(2)=0.997). Standard deviations for intra- and inter-day analyses were both less than 0.1log unit. This ZF system provides a robust and automated method for screening of Pow values in the drug discovery process. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. CARBON DIOXIDE SEPARATION BY PHASE ENHANCED GAS-LIQUID ABSORPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Hu

    A new process called phase enhanced gas-liquid absorption has been developed in its early stage. It was found that adding another phase into the absorption system of gas/aqueous phase could enhance the absorption rate. A system with three phases was studied. In the system, gas phase was carbon dioxide. Two liquid phases were used. One was organic phase. Another was aqueous phase. By addition of organic phase into the absorption system of CO{sub 2}-aqueous phase, the absorption rate of CO{sub 2} was increased significantly. CO{sub 2} finally accumulated into aqueous phase. The experimental results proved that (1) Absorption rate ofmore » carbon dioxide was enhanced by adding organic phase into gas aqueous phase system; (2) Organic phase played the role of transportation of gas solute (CO{sub 2}). Carbon dioxide finally accumulated into aqueous phase.« less

  7. Partition behavior of surfactants, butanol, and salt during application of density-modified displacement of dense non-aqueous phase liquids.

    PubMed

    Damrongsiri, S; Tongcumpou, C; Sabatini, D A

    2013-03-15

    Density-modified displacement (DMD) is a recent approach for removal of trapped dense NAPL (DNAPL). In this study, butanol and surfactant are contacted with the DNAPL to both reduce the density as well as release the trapped DNAPL (perchloroethylene: PCE). The objective of the study was to determine the distribution of each component (e.g., butanol, surfactant, water, PCE) between the original aqueous and PCE phases during the application of DMD. The results indicated that the presence of the surfactant increased the amount of n-butanol required to make the NAPL phase reach its desired density. In addition, water and anionic surfactant were found to partition along with the BuOH into the PCE phase. The water also found partitioned to reverse micelles in the modified phase. Addition of salt was seen to increase partitioning of surfactant to BuOH containing PCE phase. Subsequently, a large amount of water was solubilized into reverse micelles which lead to significantly increase in volume of the PCE phase. This work thus demonstrates the role of each component and the implications for the operation design of an aquifer treatment using the DMD technique. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Microfluidic Droplet Dehydration for Concentrating Processes in Biomolecules

    NASA Astrophysics Data System (ADS)

    Anna, Shelley

    2014-03-01

    Droplets in microfluidic devices have proven useful as picoliter reactors for biochemical processing operations such as polymerase chain reaction, protein crystallization, and the study of enzyme kinetics. Although droplets are typically considered to be self-contained, constant volume reactors, there can be significant transport between the dispersed and continuous phases depending on solubility and other factors. In the present talk, we show that water droplets trapped within a microfluidic device for tens of hours slowly dehydrate, concentrating the contents encapsulated within. We use this slow dehydration along with control of the initial droplet composition to influence gellation, crystallization, and phase separation processes. By examining these concentrating processes in many trapped drops at once we gain insight into the stochastic nature of the events. In one example, we show that dehydration rate impacts the probability of forming a specific crystal habit in a crystallizing amino acid. In another example, we phase separate a common aqueous two-phase system within droplets and use the ensuing two phases to separate DNA from an initial mixture. We further influence wetting conditions between the two aqueous polymer phases and the continuous oil, promoting complete de-wetting and physical separation of the polymer phases. Thus, controlled dehydration of droplets allows for concentration, separation, and purification of important biomolecules on a chip.

  9. Effect of polyethylene glycol on the liquid–liquid phase transition in aqueous protein solutions

    PubMed Central

    Annunziata, Onofrio; Asherie, Neer; Lomakin, Aleksey; Pande, Jayanti; Ogun, Olutayo; Benedek, George B.

    2002-01-01

    We have studied the effect of polyethylene glycol (PEG) on the liquid–liquid phase separation (LLPS) of aqueous solutions of bovine γD-crystallin (γD), a protein in the eye lens. We observe that the phase separation temperature increases with both PEG concentration and PEG molecular weight. PEG partitioning, which is the difference between the PEG concentration in the two coexisting phases, has been measured experimentally and observed to increase with PEG molecular weight. The measurements of both LLPS temperature and PEG partitioning in the ternary γD-PEG-water systems are used to successfully predict the location of the liquid–liquid phase boundary of the binary γD-water system. We show that our LLPS measurements can be also used to estimate the protein solubility as a function of the concentration of crystallizing agents. Moreover, the slope of the tie-lines and the dependence of LLPS temperature on polymer concentration provide a powerful and sensitive check of the validity of excluded volume models. Finally, we show that the increase of the LLPS temperature with PEG concentration is due to attractive protein–protein interactions. PMID:12391331

  10. The size-reduced Eudragit® RS microparticles prepared by solvent evaporation method - monitoring the effect of selected variables on tested parameters.

    PubMed

    Vasileiou, Kalliopi; Vysloužil, Jakub; Pavelková, Miroslava; Vysloužil, Jan; Kubová, Kateřina

    2018-01-01

    Size-reduced microparticles were successfully obtained by solvent evaporation method. Different parameters were applied in each sample and their influence on microparticles was evaluated. As a model drug the insoluble ibuprofen was selected for the encapsulation process with Eudragit® RS. The obtained microparticles were inspected by optical microscopy and scanning electron microscopy. The effect of aqueous phase volume (600, 400, 200 ml) and the concentration of polyvinyl alcohol (PVA; 1.0% and 0.1%) were studied. It was evaluated how those variations and also size can affect microparticle characteristics such as encapsulation efficiency, drug loading, burst effect and microparticle morphology. It was observed that the sample prepared with 600 ml aqueous phase and 1% concentration of polyvinyl alcohol gave the most favorable results.Key words: microparticles solvent evaporation sustained drug release Eudragit RS®.

  11. [Intersection point rule for the retention value with mobile phase composition and boiling point of the homologues and chlorobenzenes in soil leaching column chromatography].

    PubMed

    Xu, F; Liang, X; Lin, B; Su, F

    1999-03-01

    Based on the linear retention equation of the logarithm of the capacity factor (logk') vs. the methanol volume fraction (psi) of aqueous binary mobile phase in soil leaching column chromatography, the intersection point rule for the logk' of homologues and weak polar chlorobenzenes, with psi, as well as with boiling point, has been derived due to existence of the similar interactions among solutes of the same series, stationary phase (soil) and eluent (methanol-water). These rules were testified by experimental data of homologues (n-alkylbenzenes, methylbenzenes) and weak polar chlorobenzenes.

  12. Lattice model for water-solute mixtures.

    PubMed

    Furlan, A P; Almarza, N G; Barbosa, M C

    2016-10-14

    A lattice model for the study of mixtures of associating liquids is proposed. Solvent and solute are modeled by adapting the associating lattice gas (ALG) model. The nature of interaction of solute/solvent is controlled by tuning the energy interactions between the patches of ALG model. We have studied three set of parameters, resulting in, hydrophilic, inert, and hydrophobic interactions. Extensive Monte Carlo simulations were carried out, and the behavior of pure components and the excess properties of the mixtures have been studied. The pure components, water (solvent) and solute, have quite similar phase diagrams, presenting gas, low density liquid, and high density liquid phases. In the case of solute, the regions of coexistence are substantially reduced when compared with both the water and the standard ALG models. A numerical procedure has been developed in order to attain series of results at constant pressure from simulations of the lattice gas model in the grand canonical ensemble. The excess properties of the mixtures, volume and enthalpy as the function of the solute fraction, have been studied for different interaction parameters of the model. Our model is able to reproduce qualitatively well the excess volume and enthalpy for different aqueous solutions. For the hydrophilic case, we show that the model is able to reproduce the excess volume and enthalpy of mixtures of small alcohols and amines. The inert case reproduces the behavior of large alcohols such as propanol, butanol, and pentanol. For the last case (hydrophobic), the excess properties reproduce the behavior of ionic liquids in aqueous solution.

  13. Tear dynamics in healthy and dry eyes.

    PubMed

    Cerretani, Colin F; Radke, C J

    2014-06-01

    Dry-eye disease, an increasingly prevalent ocular-surface disorder, significantly alters tear physiology. Understanding the basic physics of tear dynamics in healthy and dry eyes benefits both diagnosis and treatment of dry eye. We present a physiological-based model to describe tear dynamics during blinking. Tears are compartmentalized over the ocular surface; the blink cycle is divided into three repeating phases. Conservation laws quantify the tear volume and tear osmolarity of each compartment during each blink phase. Lacrimal-supply and tear-evaporation rates are varied to reveal the dependence of tear dynamics on dry-eye conditions, specifically tear osmolarity, tear volume, tear-turnover rate (TTR), and osmotic water flow. Predicted periodic-steady tear-meniscus osmolarity is 309 and 321 mOsM in normal and dry eyes, respectively. Tear osmolarity, volume, and TTR all match available clinical measurements. Osmotic water flow through the cornea and conjunctiva contribute 10 and 50% to the total tear supply in healthy and dry-eye conditions, respectively. TTR in aqueous-deficient dry eye (ADDE) is only half that in evaporative dry eye (EDE). The compartmental periodic-steady tear-dynamics model accurately predicts tear behavior in normal and dry eyes. Inclusion of osmotic water flow is crucial to match measured tear osmolarity. Tear-dynamics predictions corroborate the use of TTR as a clinical discriminator between ADDE and EDE. The proposed model is readily extended to predict the dynamics of aqueous solutes such as drugs or fluorescent tags.

  14. SOLVENT EXTRACTION PROCESS

    DOEpatents

    Jonke, A.A.

    1957-10-01

    In improved solvent extraction process is described for the extraction of metal values from highly dilute aqueous solutions. The process comprises contacting an aqueous solution with an organic substantially water-immiscible solvent, whereby metal values are taken up by a solvent extract phase; scrubbing the solvent extract phase with an aqueous scrubbing solution; separating an aqueous solution from the scrubbed solvent extract phase; and contacting the scrubbed solvent phase with an aqueous medium whereby the extracted metal values are removed from the solvent phase and taken up by said medium to form a strip solution containing said metal values, the aqueous scrubbing solution being a mixture of strip solution and an aqueous solution which contains mineral acids anions and is free of the metal values. The process is particularly effective for purifying uranium, where one starts with impure aqueous uranyl nitrate, extracts with tributyl phosphate dissolved in carbon tetrachloride, scrubs with aqueous nitric acid and employs water to strip the uranium from the scrubbed organic phase.

  15. Quantitative analysis of phosphoric acid esters in aqueous samples by isotope dilution stir-bar sorptive extraction combined with direct analysis in real time (DART)-Orbitrap mass spectrometry.

    PubMed

    Bridoux, Maxime C; Malandain, Hélène; Leprince, Françoise; Progent, Frédéric; Machuron-Mandard, Xavier

    2015-04-15

    A novel hyphenated technique, namely the combination of stir bar sorptive extraction (SBSE) with isotope dilution direct analysis in real time (DART) Orbitrap™ mass spectrometry (OT-MS) is presented for the extraction of phosphoric acid alkyl esters (tri- (TnBP), di- (HDBP), and mono-butyl phosphate (H2MBP)) from aqueous samples. First, SBSE of phosphate esters was performed using a Twister™ coated with 24 μL of polydimethylsiloxane (PDMS) as the extracting phase. SBSE was optimized for extraction pH, phase ratio (PDMS volume/aqueous phase volume), stirring speed, extraction time and temperature. Then, coupling of SBSE to DART/Orbitrap-MS was achieved by placing the Twister™ in the middle of an open-ended glass tube between the DART and the Orbitrap™. The DART mass spectrometric response of phosphate esters was probed using commercially available and synthesized alkyl phosphate ester standards. The positive ion full scan spectra of alkyl phosphate triesters (TnBP) was characterized by the product of self-protonation [M+H](+) and, during collision-induced dissociation (CID), the major fragmentation ions corresponded to consecutive loss of alkyl chains. Negative ionization gave abundant [M-H](-) ions for both HDnBP and H2MnBP. Twisters™ coated with PDMS successfully extracted phosphate acid esters (tri-, di- and mono-esters) granted that the analytes are present in the aqueous solution in the neutral form. SBSE/DART/Orbitrap-MS results show a good linearity between the concentrations and relative peak areas for the analytes in the concentration range studied (0.1-750 ng mL(-1)). Reproducibility of this SBSE/DART/Orbitrap-MS method was evaluated in terms of %RSD by extracting a sample of water fortified with the analytes. The %RSDs for TnBP, HDnBP and H2MnBP were 4, 3 and 3% (n=5) using the respective perdeuterated internal standards. Matrix effects were investigated by matrix matched calibration standards using underground water samples (UWS) and river water samples (RWS). Matrix effects were effectively compensated by the addition of the perdeuterated internal standards. The application of this new SBSE/DART/Orbitrap-MS method should be very valuable for on-site sampling/monitoring, limiting the transport of large volumes of water samples from the sampling site to the laboratory. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Optimizing separate phase light hydrocarbon recovery from contaminated unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Cooper, Grant S.; Peralta, Richard C.; Kaluarachchi, Jagath J.

    A modeling approach is presented that optimizes separate phase recovery of light non-aqueous phase liquids (LNAPL) for a single dual-extraction well in a homogeneous, isotropic unconfined aquifer. A simulation/regression/optimization (S/R/O) model is developed to predict, analyze, and optimize the oil recovery process. The approach combines detailed simulation, nonlinear regression, and optimization. The S/R/O model utilizes nonlinear regression equations describing system response to time-varying water pumping and oil skimming. Regression equations are developed for residual oil volume and free oil volume. The S/R/O model determines optimized time-varying (stepwise) pumping rates which minimize residual oil volume and maximize free oil recovery while causing free oil volume to decrease a specified amount. This S/R/O modeling approach implicitly immobilizes the free product plume by reversing the water table gradient while achieving containment. Application to a simple representative problem illustrates the S/R/O model utility for problem analysis and remediation design. When compared with the best steady pumping strategies, the optimal stepwise pumping strategy improves free oil recovery by 11.5% and reduces the amount of residual oil left in the system due to pumping by 15%. The S/R/O model approach offers promise for enhancing the design of free phase LNAPL recovery systems and to help in making cost-effective operation and management decisions for hydrogeologists, engineers, and regulators.

  17. Development of cost-effective surfactant flooding technology. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, G.A.; Sepehrnoori, K.

    1996-11-01

    Task 1 of this research was the development of a high-resolution, fully implicit, finite-difference, multiphase, multicomponent, compositional simulator for chemical flooding. The major physical phenomena modeled in this simulator are dispersion, heterogeneous permeability and porosity, adsorption, interfacial tension, relative permeability and capillary desaturation, compositional phase viscosity, compositional phase density and gravity effects, capillary pressure, and aqueous-oleic-microemulsion phase behavior. Polymer and its non-Newtonian rheology properties include shear-thinning viscosity, permeability reduction, inaccessible pore volume, and adsorption. Options of constant or variable space grids and time steps, constant-pressure or constant-rate well conditions, horizontal and vertical wells, and multiple slug injections are also availablemore » in the simulator. The solution scheme used in this simulator is fully implicit. The pressure equation and the mass-conservation equations are solved simultaneously for the aqueous-phase pressure and the total concentrations of each component. A third-order-in-space, second-order-in-time finite-difference method and a new total-variation-diminishing (TVD) third-order flux limiter are used that greatly reduce numerical dispersion effects. Task 2 was the optimization of surfactant flooding. The code UTCHEM was used to simulate surfactant polymer flooding.« less

  18. IUPAC-NIST Solubility Data Series. 100. Rare Earth Metal Fluorides in Water and Aqueous Systems. Part 2. Light Lanthanides (Ce-Eu)

    NASA Astrophysics Data System (ADS)

    Mioduski, Tomasz; Gumiński, Cezary; Zeng, Dewen

    2015-03-01

    This is the second part of the volume devoted to the evaluation of experimental solubility data for rare earth metal (REM) fluorides in water as well as in aqueous ternary and multicomponent systems. Fluorides of Ce, Pr, Nd, Pm, Sm, and Eu (so-called light lanthanides), as the main solutes, are covered in the present part, which has thorough coverage of the experimental literature through the end of 2012. The experimentally unknown solubility value for PmF3 in water was predicted by an interpolation of the solubility values for NdF3 and SmF3 at 298 K. General features of the systems, such as the nature of the equilibrium solid phases, solubility as a function of temperature, influence of ionic strength, pH, mixed solvent medium on the solubility, quality of the solubility results, and solubility as a function of REM atomic number, have already been presented in Part 1 of the volume.

  19. Experiment and Optimization for Simultaneous Carbonation of Ca2+ and Mg2+ in A Two-phase System of Insoluble Diisobutylamine and Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Wang, Wenlong; Wang, Man; Liu, Xin; Wang, Peng; Xi, Zhenqian

    2015-06-01

    An optimized approach of CO2 fixation in Ca2+/Mg2+-rich aqueous solutions using insoluble amine as an enhancing medium was reported. Apparent basicity was verified to be an effective indicator for the selection and optimization of organic amine systems and finally the diisobutylamine + n-octanol system was selected to enhance the carbonation reactions of CO2 in an artificial Ca2+/Mg2+-rich solution. In our experiments, when the volume ratio of insoluble organic phase to aqueous one was 2:1 and the reaction temperature was 28 °C, 92% of Ca2+ and 80% of Mg2+ could be converted to calcium and magnesium carbonate precipitates within 5 min of reaction with the bubbling-in of CO2. The organic amine system could be regenerated by using carbide slag as the regeneration agent and could still show attractive enhancement performances after 7 rounds of carbonation-regeneration experiments. In this way, the CO2 capture and sequestration was realized within one single process, with value-added Ca/Mg carbonates being the byproducts. In view of the vast availability of Ca2+/Mg2+-rich aqueous solutions and the feasible technical coordination with desalination industry, this novel process may have a good application potential in the future.

  20. Nondisruptive Dissolution of Hyperpolarized 129 Xe into Viscous Aqueous and Organic Liquid Crystalline Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truxal, Ashley E.; Slack, Clancy C.; Gomes, Muller D.

    2016-03-08

    Studies of hyperpolarized xenon-129 in media such as liquid crystals and cell suspensions are in demand for applications ranging from biomedical imaging to materials engineering but have been hindered by the inability to bubble Xe through the desired media as a result of viscosity or perturbations caused by bubbles. This research reports on a device that can be reliably used to dissolve hp- 129 Xe into viscous aqueous and organic samples without bubbling. This method is robust, requires small sample volumes ( < 60 μL), is compatible with existing NMR hardware, and is made from readily available materials. Experiments showmore » that Xe can be introduced into viscous and aligned media without disrupting molecular order. We detected dissolved xenon in an aqueous liquid crystal that is disrupted by the shear forces of bubbling, and we observed liquid-crystal phase transitions in (MBBA). This tool allows an entirely new class of samples to be investigated by hyperpolarized-gas NMR spectroscopy. Blending into the crowd: A new device that facilitates the direct dissolution of hyperpolarized 129 Xe into viscous liquid-crystalline media is presented. 129 Xe and 2 H NMR spectra show the nondisruptive dissolution of xenon, the presence of ordered phases, and, in the case of the thermotropic liquid crystal N-(4-methoxybenzylidene)-4-butylaniline, a nematic-isotropic phase transition.« less

  1. Extraction of anionic dye from aqueous solutions by emulsion liquid membrane.

    PubMed

    Dâas, Attef; Hamdaoui, Oualid

    2010-06-15

    In this work, the extraction of Congo red (CR), an anionic disazo direct dye, from aqueous solutions by emulsion liquid membrane (ELM) was investigated. The important operational parameters governing emulsion stability and extraction behavior of dye were studied. The extraction of CR was influenced by a number of variables such as surfactant concentration, stirring speed, acid concentration in the feed solution and volume ratios of internal phase to organic phase and of emulsion to feed solution. Under most favorable conditions, practically all the CR molecules present in the feed phase were extracted even in the presence of salt (NaCl). At the optimum experimental conditions, total removal of antharaquinonic dye Acid Blue 25 was attained after only 10 min. Influence of sodium carbonate concentration as internal receiving phase on the stripping efficiency of CR was examined. The best sodium carbonate concentration in the internal phase that conducted to excellent stripping efficiency (>99%) and emulsion stability was 0.1N. The membrane recovery was total and the permeation of CR was not decreased up to seven runs. ELM process is a promising alternative to conventional methods and should increase awareness of the potential for recovery of anionic dyes. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Simultaneous Separation of Manganese, Cobalt, and Nickel by the Organic-Aqueous-Aqueous Three-Phase Solvent Extraction

    NASA Astrophysics Data System (ADS)

    Shirayama, Sakae; Uda, Tetsuya

    2016-04-01

    This research outlines an organic-aqueous-aqueous three-phase solvent extraction method and proposes its use in a new metal separation process for the recycling of manganese (Mn), cobalt (Co), and nickel (Ni) from used lithium ion batteries (LIBs). The three-phase system was formed by mixing xylene organic solution, 50 pct polyethylene glycol (PEG) aqueous solution, and 1 mol L-1 sodium sulfate (Na2SO4) aqueous solution. The xylene organic solution contained 2-ethylhexylphosphonic acid (D2EHPA) as an extractant for Mn ion, and the Na2SO4 aqueous solution contained 1 mol L-1 potassium thiocyanate (KSCN) as an extractant for Co ion. Concentrations of the metal ions were varied by dissolving metal sulfates in the Na2SO4 aqueous solution. As a result of the experiments, Mn, Co, and Ni ions were distributed in the xylene organic phase, PEG-rich aqueous phase, and Na2SO4-rich aqueous phase, respectively. The separation was effective when the pH value was around 4. Numerical simulation was also conducted in order to predict the distribution of metal ions after the multi-stage counter-current extractions.

  3. Phase-separation induced extraordinary toughening of magnetic hydrogels

    NASA Astrophysics Data System (ADS)

    Tang, Jingda; Li, Chenghai; Li, Haomin; Lv, Zengyao; Sheng, Hao; Lu, Tongqing; Wang, T. J.

    2018-05-01

    Phase separation markedly influences the physical properties of hydrogels. Here, we find that poly (N, N-dimethylacrylamide) (PDMA) hydrogels suffer from phase separation in aqueous sodium hydroxide solutions when the concentration is higher than 2 M. The polymer volume fraction and mechanical properties show an abrupt change around the transition point. We utilize this phase separation mechanism to synthesize tough magnetic PDMA hydrogels with the in-situ precipitation method. For comparison, we also prepared magnetic poly (2-acrylamido-2-methyl-propane sulfonic acid sodium) (PNaAMPS) magnetic hydrogels, where no phase separation occurs. The phase-separated magnetic PDMA hydrogels exhibit an extraordinarily high toughness of ˜1000 J m-2; while non-phase-separated magnetic PNaAMPS hydrogels only show a toughness of ˜1 J m-2, three orders of magnitude lower than that of PDMA hydrogels. This phase separation mechanism may become a new approach to prepare tough magnetic hydrogels and inspire more applications.

  4. Mixed aqueous solutions as dilution media in the determination of residual solvents by static headspace gas chromatography.

    PubMed

    D'Autry, Ward; Zheng, Chao; Wolfs, Kris; Yarramraju, Sitaramaraju; Hoogmartens, Jos; Van Schepdael, Ann; Adams, Erwin

    2011-06-01

    Static headspace (HS) sampling has been commonly used to test for volatile organic chemicals, usually referred to as residual solvents (RS) in pharmaceuticals. If the sample is not soluble in water, organic solvents are used. However, these seriously reduce the sensitivity in the determination of some RS. Here, mixed aqueous dilution media (a mixture of water and an organic solvent like dimethyl formamide, dimethyl sulfoxide or dimethyl acetamide) were studied as alternative media for static HS-gas chromatographic analysis. Although it has been known that mixed aqueous dilution media can often improve sensitivity for many RS, this study used a systematic approach to investigate phase volumes and the organic content in the HS sampling media. Reference solutions using 18 different class 1, 2 and 3 RS were evaluated. The effect of salt addition was also studied in this work. A significant increase in the peak area was observed for all RS using mixed aqueous dilution media, when compared with organic solvents alone. Matrix effects related to the mixed aqueous dilution media were also investigated and reported. Repeatability and linearity obtained with mixed aqueous dilution media were found to be similar to those observed with pure organic solvents. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effect of solute nature on the polyamorphic transition in glassy polyol aqueous solutions.

    PubMed

    Suzuki, Yoshiharu

    2017-08-14

    I examined the polyamorphic behavior of glassy dilute aqueous solutions of polyols (ethylene glycol, glycerol, meso-erythritol, xylitol, and D-sorbitol) under pressure at low temperatures. Although the volume change of the glassy aqueous solution varied continuously against pressure, the rate of the volume change appeared to vary discontinuously at the onset pressure of the gradual polyamorphic transition. It is thought that low-density liquid-like solvent water and high-density liquid-like solvent water coexist during the transition. Moreover, the existence of a solute induces the shift of polyamorphic transition to the lower-pressure side. The effect of a solute on the polyamorphic transition becomes larger in the order ethylene glycol, glycerol, meso-erythritol, xylitol, and D-sorbitol. Therefore, the solute can become a variable controlling the polyamorphic state of liquid water. This experimental result suggests that the metastable-equilibrium phase boundary between the low-density and the high-density amorphs for pure water is likely to be located at 0.22-0.23 GPa at about 150 K, which is slightly larger than the previously estimated pressure. Moreover, the solute-nature dependence on the polyamorphic transition seems to connect to that on the homogeneous nucleation temperature of polyol aqueous solution at ambient pressure. The region in which a low-density liquid appears coincides with the region in which the nucleus of ice Ih appears, suggesting that the formation of a low-density liquid is a precursory phenomenon of the nucleation of ice Ih.

  6. Effect of solute nature on the polyamorphic transition in glassy polyol aqueous solutions

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshiharu

    2017-08-01

    I examined the polyamorphic behavior of glassy dilute aqueous solutions of polyols (ethylene glycol, glycerol, meso-erythritol, xylitol, and D-sorbitol) under pressure at low temperatures. Although the volume change of the glassy aqueous solution varied continuously against pressure, the rate of the volume change appeared to vary discontinuously at the onset pressure of the gradual polyamorphic transition. It is thought that low-density liquid-like solvent water and high-density liquid-like solvent water coexist during the transition. Moreover, the existence of a solute induces the shift of polyamorphic transition to the lower-pressure side. The effect of a solute on the polyamorphic transition becomes larger in the order ethylene glycol, glycerol, meso-erythritol, xylitol, and D-sorbitol. Therefore, the solute can become a variable controlling the polyamorphic state of liquid water. This experimental result suggests that the metastable-equilibrium phase boundary between the low-density and the high-density amorphs for pure water is likely to be located at 0.22-0.23 GPa at about 150 K, which is slightly larger than the previously estimated pressure. Moreover, the solute-nature dependence on the polyamorphic transition seems to connect to that on the homogeneous nucleation temperature of polyol aqueous solution at ambient pressure. The region in which a low-density liquid appears coincides with the region in which the nucleus of ice Ih appears, suggesting that the formation of a low-density liquid is a precursory phenomenon of the nucleation of ice Ih.

  7. On the pH of Aqueous Attoliter-Volume Droplets

    NASA Astrophysics Data System (ADS)

    Ramos, Kieran P.; Velpula, Samson S.; Demille, Trevor B.; Pajela, Ryan; Goldner, Lori S.

    Droplets of water dispersed in perfluorinated liquids have widespread use including microfluidics, drug delivery and single-molecule measurements. Perfluorinated liquids are distinctly biocompatible due to their stability, low surface tension, lipophobicity, and hydrophobicity. For this reason, the effect of the perfluorinated surface on droplet contents is usually ignored. However, as the droplet diameter is reduced, we expect that any effect of the water/oil interface on droplet contents will become more obvious. We studied the pH of attoliter-volume aqueous droplets in perfluorinated liquids using pH-sensing fluorescent dyes. Droplets were prepared either by sonication or extrusion from buffer and perfluorinated liquids (FC40 or FC77). A non-ionic surfactant was used to stabilize the droplets. Buffer strength, ionic strength, and pH of the aqueous phase were varied and resulting droplet pH compared to the pH of the buffer from which they were formed. Preliminary data are consistent with a pH in droplets that depends on the concentration of non-ionic surfactant. At low surfactant concentrations, the pH in droplets is distinctly lower than the stock buffer. However, as the concentration of non-ionic surfactant is increased the change in pH decreases. This work was funded by NSF/DBI-1152386.

  8. Development of a syringe pump assisted dynamic headspace sampling technique for needle trap device.

    PubMed

    Eom, In-Yong; Niri, Vadoud H; Pawliszyn, Janusz

    2008-07-04

    This paper describes a new approach that combines needle trap devices (NTDs) with a dynamic headspace sampling technique (purge and trap) using a bidirectional syringe pump. The needle trap device is a 22-G stainless steel needle 3.5-in. long packed with divinylbenzene sorbent particles. The same sized needle, without packing, was used for purging purposes. We chose an aqueous mixture of benzene, toluene, ethylbenzene, and p-xylene (BTEX) and developed a sequential purge and trap (SPNT) method, in which sampling (trapping) and purging cycles were performed sequentially by the use of syringe pump with different distribution channels. In this technique, a certain volume (1 mL) of headspace was sequentially sampled using the needle trap; afterwards, the same volume of air was purged into the solution at a high flow rate. The proposed technique showed an effective extraction compared to the continuous purge and trap technique, with a minimal dilution effect. Method evaluation was also performed by obtaining the calibration graphs for aqueous BTEX solutions in the concentration range of 1-250 ng/mL. The developed technique was compared to the headspace solid-phase microextraction method for the analysis of aqueous BTEX samples. Detection limits as low as 1 ng/mL were obtained for BTEX by NTD-SPNT.

  9. Using the liquid nature of the stationary phase in countercurrent chromatography. IV. The cocurrent CCC method.

    PubMed

    Berthod, Alain; Hassoun, Mahmoud

    2006-05-26

    The retention volumes of solutes in countercurrent chromatography (CCC) are directly proportional to their distribution coefficients, K(D) in the biphasic liquid system used as mobile and stationary phase in the CCC column. The cocurrent CCC method consists in putting the liquid "stationary" phase in slow motion in the same direction as the mobile phase. A mixture of five steroid compounds of widely differing polarities was used as a test mixture to evaluate the capabilities of the method with the biphasic liquid system made of water/methanol/ethyl acetate/heptane 6/5/6/5 (v/v) and a 53 mL CCC column of the coil planet centrifuge type. It is shown that the chromatographic resolution obtained in cocurrent CCC is very good because the solute band broadening is minimized as long as the solute is located inside the "stationary" phase. Pushing the method at its limits, it is demonstrated that the five steroids can still be (partly) separated when the flow rate of the two liquid phases is the same (2 mL/min). This is due to the higher volume of upper phase (72% of the column volume) contained inside the CCC column producing a lower linear speed compared to the aqueous lower phase linear speed. The capabilities of the cocurrent CCC method compare well with those of the gradient elution method in HPLC. Continuous detection is a problem due to the fact that two immiscible liquid phases elute from the column. It was partly solved using an evaporative light scattering detector.

  10. Metastable superheated ice in liquid-water inclusions under high negative pressure

    USGS Publications Warehouse

    Roedder, E.

    1967-01-01

    In some microscopic inclusions (consisting of aqueous liquid and vapor) in minerals, freezing eliminates the vapor phase because of greater volume occupied by the resulting ice. When vapor fails to nucleate again on partial melting, the resulting negative pressure (hydrostatic tension) inside the inclusions permits the existence of ice I crystals under reversible, metastable equilibrium, at temperatures as high as +6.5??C and negative pressures possibly exceeding 1000 bars.

  11. Comparison of two thin-film microextractions for the analysis of estrogens in aqueous tea extract and environmental water samples by high performance liquid chromatography-ultraviolet detection.

    PubMed

    Cai, Pei-Shan; Li, Dan; Chen, Jing; Xiong, Chao-Mei; Ruan, Jin-Lan

    2015-04-15

    Two thin-film microextractions (TFME), octadecylsilane (ODS)-polyacrylonitrile (PAN)-TFME and polar enhanced phase (PEP)-PAN-TFME have been proposed for the analysis of bisphenol-A, diethylstilbestrol and 17β-estradiol in aqueous tea extract and environmental water samples followed by high performance liquid chromatography-ultraviolet detection. Both thin-films were prepared by spraying. The influencing factors including pH, extraction time, desorption solvent, desorption volume, desorption time, ion strength and reusability were investigated. Under the optimal conditions, the two TFME methods are similar in terms of the analytical performance evaluated by standard addition method. The limits of detection for three estrogens in environmental water and aqueous tea extract matrix ranged from 1.3 to 1.6 and 2.8 to 7.1 ng mL(-1) by the two TFME methods, respectively. Both approaches were applied for the analysis of analytes in real aqueous tea extract and environmental water samples, presenting satisfactory recoveries ranged from 87.3% to 109.4% for the spiked samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Three phases hollow fiber LPME combined with HPLC-UV for extraction, preconcentration and determination of valerenic acid in Valeriana officinalis.

    PubMed

    Mirzaei, Mohamad; Dinpanah, Hossein

    2011-07-01

    In the present work, the applicability of hollow fiber-based liquid phase microextraction (HF-LPME) was evaluated for the extraction and preconcentration of valerenic acid prior to its determination by reversed-phase HPLC/UV. The target drug was extracted from 5.0 mL of aqueous solution with pH 3.5 into an organic extracting solvent (dihexyl ether) impregnated in the pores of a hollow fiber and finally back extracted into 10 μ L of aqueous solution with pH 9.5 located inside the lumen of the hollow fiber. In order to obtain high extraction efficiency, the parameters affecting the HF-LPME, including pH of the donor and acceptor phases, type of organic phase, ionic strength, the volume ratio of donor to acceptor phase, stirring rate and extraction time were studied and optimized. Under the optimized conditions, enrichment factor up to 446 was achieved and the relative standard deviation (RSD) of the method was 4.36% (n = 9). The linear range was 7.5-850 μg L⁻¹ with correlation coefficient (r²=0.999), detection limits was 2.5 μg L⁻¹ and the LOQ was 7.5 μg L⁻¹. The proposed method was evaluated by extraction and determination of valerenic acid in some Iranian wild species of Valerianaceae. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Effect of hydrothermal liquefaction aqueous phase recycling on bio-crude yields and composition.

    PubMed

    Biller, Patrick; Madsen, René B; Klemmer, Maika; Becker, Jacob; Iversen, Bo B; Glasius, Marianne

    2016-11-01

    Hydrothermal liquefaction (HTL) is a promising thermo-chemical processing technology for the production of biofuels but produces large amounts of process water. Therefore recirculation of process water from HTL of dried distillers grains with solubles (DDGS) is investigated. Two sets of recirculation on a continuous reactor system using K2CO3 as catalyst were carried out. Following this, the process water was recirculated in batch experiments for a total of 10 rounds. To assess the effect of alkali catalyst, non-catalytic HTL process water recycling was performed with 9 recycle rounds. Both sets of experiments showed a large increase in bio-crude yields from approximately 35 to 55wt%. The water phase and bio-crude samples from all experiments were analysed via quantitative gas chromatography-mass spectrometry (GC-MS) to investigate their composition and build-up of organic compounds. Overall the results show an increase in HTL conversion efficiency and a lower volume, more concentrated aqueous by-product following recycling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. [Influences of ion-suppressors on retention behaviors of nine food additives in reversed-phase high performance liquid chromatographic separation].

    PubMed

    Zhao, Yonggang; Chen, Xiaohong; Li, Xiaoping; Yao, Shanshan; Jin, Micong

    2011-10-01

    The influences of ion-suppressors on retention behaviors of nine food additives, i.e., acesulfame, saccharin, caffeine, aspartame, benzoic acid, sorbic acid, stevioside, dehydroacetic acid and neotame in reversed-phase high performance liquid chromatographic (RP-HPLC) separation were investigated. The organic modification effects of acids, i. e. , trifluoroacetic acid (TFA) and buffer salts, i. e. , TFA-ammonium acetate (AmAc) were studied emphatically. The relationships between retention factors of solutes and volume percentages of ion-suppressors in the mobile phase systems of acetonitrile-TFA aqueous solution and acetonitrile-TFA-AmAc aqueous solution were quantitatively established, separately. The separation of nine food additives was completed by a gradient elution with acetonitrile-TFA (0.01%, v/v)-AmAc (2. 5 mmol/L) aqueous solution as the mobile phases. An RP-HPLC method was established for the simultaneous determination of nine food additives in red wine. In the range of 10. 0 - 100. 0 mg/L, nine food additives showed good linearity with the correlation coefficients ( r2 ) larger than 0. 999 1. The limits of detection (LODs) were in the range of 0. 33 - 2. 36 mg/L and the limits of quantification (LOQs) were in the range of 1. 11 - 7. 80 mg/L. The spiked recoveries were between 87. 61% and 108. 4% with the relative standard deviations (RSDs) of 2. 2% -9. 4%. These results are of referential significance for the rapid establishment and accu- rate optimization of RP-HPLC separation for the simultaneous determination of food additives in other foods.

  15. Analysis of nine food additives in red wine by ion-suppression reversed-phase high-performance liquid chromatography using trifluoroacetic acid and ammonium acetate as ion-suppressors.

    PubMed

    Zhao, Yong-Gang; Chen, Xiao-Hong; Yao, Shan-Shan; Pan, Sheng-Dong; Li, Xiao-Ping; Jin, Mi-Cong

    2012-01-01

    A reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed for the simultaneous determination of nine food additives, i.e., acesulfame, saccharin, caffeine, aspartame, benzoic acid, sorbic acid, stevioside, dehydroacetic acid and neotame in red wine. The effects of ion-suppressors, i.e., trifluoroacetic acid (TFA) and ammonium acetate (AmAc) on retention behavior of nine food additives in RP-HPLC separation were discussed in detail. The relationships between retention factors of solutes and volume percent of ion-suppressors in the mobile-phase systems of acetonitrile-TFA aqueous solution and acetonitrile-TFA-AmAc aqueous solution were quantitatively established, respectively. The results showed that the ion suppressors had not only an ion suppression effect, but also an organic modification effect on the acidic analytes. The baseline separation of nine food additives was completed by a gradient elution with acetonitrile-TFA(0.01%, v/v)-AmAc(2.5 mmol L(-1)) aqueous solution as the mobile phase. The recoveries were between 80.2 - 99.5% for all analytes with RSDs in the range of 1.5 - 8.9%. The linearities were in the range of 0.2 - 100.0 mg L(-1) with determination coefficients (r(2)) higher than 0.9991 for all analytes. The limits of quantification (LOQs) were between 0.53 - 0.99 mg L(-1). The applicability of the proposed method to detect and quantify food additives has been demonstrated in the analysis of 30 real samples.

  16. Suitable conditions for liquid-phase microextraction using solidification of a floating drop for extraction of fat-soluble vitamins established using an orthogonal array experimental design.

    PubMed

    Sobhi, Hamid Reza; Yamini, Yadollah; Esrafili, Ali; Abadi, Reza Haji Hosseini Baghdad

    2008-07-04

    A simple, rapid and efficient microextraction method for the extraction and determination of some fat-soluble vitamins (A, D2, D3) in aqueous samples was developed. For the first time orthogonal array designs (OADs) were employed to screen the liquid-phase microextraction (LPME) method in which few microliters of 1-undecanol were delivered to the surface of the aqueous sample and it was agitated for a selected time. Then sample vial was cooled by inserting it into an ice bath for 5 min. The solidified solvent was transferred into a suitable vial and immediately melted. Then, the extract was directly injected into a high-performance liquid chromatography (HPLC) for analysis. Several factors affecting the microextraction efficiency such as sample solution temperature, stirring speed, volume of the organic solvent, ionic strength and extraction time were investigated and screened using an OA16 (4(5)) matrix. Under the best conditions (temperature, 55 degrees C; stirring speed, 1000 rpm; the volume of extracting solvent, 15.0 microL; no salt addition and extraction time, 60 min), detection limits of the method were in the range of 1.0-3.5 microgL(-1). The relative standard deviations (RSDs) to determine the vitamins at microg L(-1) levels by applying the proposed method varied in the range of 5.1-10.7%. Dynamic linear ranges of 5-500 mugL(-1) with good correlation coefficients (0.9984

  17. In situ iron activated persulfate oxidative fluid sparging treatment of TCE contamination--a proof of concept study.

    PubMed

    Liang, Chenju; Lee, I-Ling

    2008-09-10

    In situ chemical oxidation (ISCO) is considered a reliable technology to treat groundwater contaminated with high concentrations of organic contaminants. An ISCO oxidant, persulfate anion (S(2)O(8)(2-)) can be activated by ferrous ion (Fe(2+)) to generate sulfate radicals (E(o)=2.6 V), which are capable of destroying trichloroethylene (TCE). The property of polarity inhibits S(2)O(8)(2-) or sulfate radical (SO(4)(-)) from effectively oxidizing separate phase TCE, a dense non-aqueous phase liquid (DNAPL). Thus the oxidation primarily takes place in the aqueous phase where TCE is dissolved. A bench column study was conducted to demonstrate a conceptual remediation method by flushing either S(2)O(8)(2-) or Fe(2+) through a soil column, where the TCE DNAPL was present, and passing the dissolved mixture through either a Fe(2+) or S(2)O(8)(2-) fluid sparging curtain. Also, the effect of a solubility enhancing chemical, hydroxypropyl-beta-cyclodextrin (HPCD), was tested to evaluate its ability to increase the aqueous TCE concentration. Both flushing arrangements may result in similar TCE degradation efficiencies of 35% to 42% estimated by the ratio of TCE degraded/(TCE degraded+TCE remained in effluent) and degradation byproduct chloride generation rates of 4.9 to 7.6 mg Cl(-) per soil column pore volume. The addition of HPCD did greatly increase the aqueous TCE concentration. However, the TCE degradation efficiency decreased because the TCE degradation was a lower percentage of the relatively greater amount of dissolved TCE by HPCD. This conceptual treatment may serve as a reference for potential on-site application.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bass, Jay D.

    This project is aimed at experimental characterization of the sound velocities, equations of state (EOS), and derived physical and chemical properties of aqueous solutions and carbon dioxide at extreme pressure and temperature conditions relevant to processes occurring in the interior of the Earth. Chemical transport, phase changes (including melting), fluid-solid reactions, and formation of magmatic liquids at convergent plat boundaries are a key motivation for this project. Research in this area has long been limited by the extreme experimental challenges and lack of data under the appropriate pressure-temperature (P-T) conditions. The vast majority of studies of aqueous geochemistry relevant tomore » terrestrial problems of fluid-rock interactions have been conducted at 0.3 GPa or less, and the widely used Helgeson-Kirkham-Flowers equation of state for aqueous species is applicable only at ~ < 0.5 GPa. These limits are unfortunate because fluid flow and reactions plays a central role in many deeper environments. Recent efforts including our own, have resulted in new experimental techniques that now make it possible to investigate properties of homogeneous and heterogeneous equilibria involving aqueous species and minerals over a much broader range of pressure and temperature appropriate for deep crustal and upper mantle processes involving water-rich fluids. We carried out 1) Brillouin scattering measurements of the equations of state and molar volume of water and carbon dioxide to over 10 GPa and 870K using precise resistance heating of samples under pressure in the diamond anvil cell, and 2) the phase diagrams of the water and CO2, and 3) Exploring new experimental approaches, including CO2 laser heating of samples in a diamond cell, to measurements of sound velocities, EOS, and phase relations by Brillouin scattering to far greater pressures and temperatures.« less

  19. Quantification of colloidal and aqueous element transfer in soils: The dual-phase mass balance model

    USGS Publications Warehouse

    Bern, Carleton R.; Thompson, Aaron; Chadwick, Oliver A.

    2015-01-01

    Mass balance models have become standard tools for characterizing element gains and losses and volumetric change during weathering and soil development. However, they rely on the assumption of complete immobility for an index element such as Ti or Zr. Here we describe a dual-phase mass balance model that eliminates the need for an assumption of immobility and in the process quantifies the contribution of aqueous versus colloidal element transfer. In the model, the high field strength elements Ti and Zr are assumed to be mobile only as suspended solids (colloids) and can therefore be used to distinguish elemental redistribution via colloids from redistribution via dissolved aqueous solutes. Calculations are based upon element concentrations in soil, parent material, and colloids dispersed from soil in the laboratory. We illustrate the utility of this model using a catena in South Africa. Traditional mass balance models systematically distort elemental gains and losses and changes in soil volume in this catena due to significant redistribution of Zr-bearing colloids. Applying the dual-phase model accounts for this colloidal redistribution and we find that the process accounts for a substantial portion of the major element (e.g., Al, Fe and Si) loss from eluvial soil. In addition, we find that in illuvial soils along this catena, gains of colloidal material significantly offset aqueous elemental loss. In other settings, processes such as accumulation of exogenous dust can mimic the geochemical effects of colloid redistribution and we suggest strategies for distinguishing between the two. The movement of clays and colloidal material is a major process in weathering and pedogenesis; the mass balance model presented here is a tool for quantifying effects of that process over time scales of soil development.

  20. Solvent extraction system for plutonium colloids and other oxide nano-particles

    DOEpatents

    Soderholm, Lynda; Wilson, Richard E; Chiarizia, Renato; Skanthakumar, Suntharalingam

    2014-06-03

    The invention provides a method for extracting plutonium from spent nuclear fuel, the method comprising supplying plutonium in a first aqueous phase; contacting the plutonium aqueous phase with a mixture of a dielectric and a moiety having a first acidity so as to allow the plutonium to substantially extract into the mixture; and contacting the extracted plutonium with second a aqueous phase, wherein the second aqueous phase has a second acidity higher than the first acidity, so as to allow the extracted plutonium to extract into the second aqueous phase. The invented method facilitates isolation of plutonium polymer without the formation of crud or unwanted emulsions.

  1. Different Diversity and Distribution of Archaeal Community in the Aqueous and Oil Phases of Production Fluid From High-Temperature Petroleum Reservoirs.

    PubMed

    Liang, Bo; Zhang, Kai; Wang, Li-Ying; Liu, Jin-Feng; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2018-01-01

    To get a better knowledge on how archaeal communities differ between the oil and aqueous phases and whether environmental factors promote substantial differences on microbial distributions among production wells, we analyzed archaeal communities in oil and aqueous phases from four high-temperature petroleum reservoirs (55-65°C) by using 16S rRNA gene based 454 pyrosequencing. Obvious dissimilarity of the archaeal composition between aqueous and oil phases in each independent production wells was observed, especially in production wells with higher water cut, and diversity in the oil phase was much higher than that in the corresponding aqueous phase. Statistical analysis further showed that archaeal communities in oil phases from different petroleum reservoirs tended to be more similar, but those in aqueous phases were the opposite. In the high-temperature ecosystems, temperature as an environmental factor could have significantly affected archaeal distribution, and archaeal diversity raised with the increase of temperature ( p < 0.05). Our results suggest that to get a comprehensive understanding of petroleum reservoirs microbial information both in aqueous and oil phases should be taken into consideration. The microscopic habitats of oil phase, technically the dispersed minuscule water droplets in the oil could be a better habitat that containing the indigenous microorganisms.

  2. A new high-speed hollow fiber based liquid phase microextraction method using volatile organic solvent for determination of aromatic amines in environmental water samples prior to high-performance liquid chromatography.

    PubMed

    Sarafraz-Yazdi, A; Mofazzeli, F; Es'haghi, Z

    2009-07-15

    A new and fast hollow fiber based liquid phase microextraction (HF-LPME) method using volatile organic solvents coupled with high-performance liquid chromatography (HPLC) was developed for determination of aromatic amines in the environmental water samples. Analytes including 3-nitroaniline, 3-chloroaniline and 4-bromoaniline were extracted from 6 mL basic aqueous sample solution (donor phase, NaOH 1 mol L(-1)) into the thin film of organic solvent that surrounded and impregnated the pores of the polypropylene hollow fiber wall (toluene, 20 microL), then back-extracted into the 6 mL acidified aqueous solution (acceptor phase, HCl 0.5 mol L(-1)) in the lumen of the two-end sealed hollow fiber. After the extraction, 5 microL of the acceptor phase was withdrawn into the syringe and injected directly into the HPLC system for the analysis. The parameters influencing the extraction efficiency including the kind of organic solvent and its volume, composition of donor and acceptor phases and the volume ratio between them, extraction time, stirring rate, salt addition and the effect of the analyte complexation with 18-crown-6 ether were investigated and optimized. Under the optimal conditions (donor phase: 6 mL of 1 mol L(-1) NaOH with 10% NaCl; organic phase: 20 microL of toluene; acceptor phase: 6 microL of 0.5 mol L(-1) HCl and 600 mmol L(-1) 18-crown-6 ether; pre-extraction and back-extraction times: 75 s and 10 min, respectively; stirring rate: 800 rpm), the obtained EFs were between 259 and 674, dynamic linear ranges were 0.1-1000 microg L(-1) (R>0.9991), and also the limits of detection were in the range of 0.01-0.1 micro gL(-1). The proposed procedure worked very well for real environmental water samples with microgram per liter level of the analytes, and good relative recoveries (91-102%) were obtained for the spiked sample solutions.

  3. Method and apparatus for measuring volatile compounds in an aqueous solution

    DOEpatents

    Gilmore, Tyler J [Pasco, WA; Cantrell, Kirk J [West Richland, WA

    2002-07-16

    The present invention is an improvement to the method and apparatus for measuring volatile compounds in an aqueous solution. The apparatus is a chamber with sides and two ends, where the first end is closed. The chamber contains a solution volume of the aqueous solution and a gas that is trapped within the first end of the chamber above the solution volume. The gas defines a head space within the chamber above the solution volume. The chamber may also be a cup with the second end. open and facing down and submerged in the aqueous solution so that the gas defines the head space within the cup above the solution volume. The cup can also be entirely submerged in the aqueous solution. The second end of the. chamber may be closed such that the chamber can be used while resting on a flat surface such as a bench. The improvement is a sparger for mixing the gas with the solution volume. The sparger can be a rotating element such as a propeller on a shaft or a cavitating impeller. The sparger can also be a pump and nozzle where the pump is a liquid pump and the nozzle is a liquid spray nozzle open, to the head space for spraying the solution volume into the head space of gas. The pump could also be a gas pump and the nozzle a gas nozzle submerged in the solution volume for spraying the head space gas into the solution volume.

  4. Mesodomain and Protein-Associated Solvent Phases with Temperature-Tunable (200-265 K) Dynamics Surround Ethanolamine Ammonia-Lyase in Globally Polycrystalline Aqueous Solution Containing Dimethyl Sulfoxide.

    PubMed

    Nforneh, Benjamen; Warncke, Kurt

    2017-12-14

    Electron paramagnetic resonance spectroscopy of the spin probe, TEMPOL, is used to resolve solvent phases that surround the ethanolamine ammonia-lyase (EAL) protein from Salmonella typhimurium at low temperature (T) in frozen, globally polycrystalline aqueous solution and to report on the T dependence of their detectably rigid and fluid states. EAL plays a role in human gut microbiome-based disease conditions, and physicochemical studies provide insight into protein structure and mechanism, toward potential therapeutics. Temperature dependences of the rotational correlation times (τ c ; detection range, 10 -11 ≤ τ c ≤ 10 -7 s) and the corresponding weights of TEMPOL tumbling components from 200 to 265 K in the presence of EAL are measured in two frozen systems: (1) water-only and (2) 1% v/v dimethyl sulfoxide (DMSO). In the water-only condition, a protein-vicinal solvent component detectably fluidizes at 230 K and melts the surrounding ice-crystalline region with increasing T, creating a bounded, relatively high-viscosity aqueous solvent domain, up to 265 K. In the EAL, 1% v/v DMSO condition, two distinct concentric solvent phases are resolved around EAL: protein-associated domain (PAD) and mesodomain. The DMSO aqueous mesodomain fluidizes at 200 K, followed by PAD fluidization at 210 K. The interphase dynamical coupling is consistent with the spatial arrangement and significant contact areas of the phases, indicated by the experimentally determined mean volume ratio, V(mesodomain)/V(PAD)/V(protein) = 0.5:0.3:1.0. The results provide a rationale for native chemical reactions of EAL at T < 250 K and an advance toward precise control of solvent dynamics as a tunable parameter for quantifying the coupling between solvent and protein fluctuations and chemical reaction steps in EAL and other enzymes.

  5. Development of a new microextraction method based on elevated temperature dispersive liquid-liquid microextraction for determination of triazole pesticides residues in honey by gas chromatography-nitrogen phosphorus detection.

    PubMed

    Farajzadeh, Mir Ali; Mogaddam, Mohammad Reza Afshar; Ghorbanpour, Houshang

    2014-06-20

    In the present study, a rapid, highly efficient, and reliable sample preparation method named "elevated temperature dispersive liquid-liquid microextraction" followed by gas chromatography-nitrogen-phosphorus detection was developed for the extraction, preconcentration, and determination of five triazole pesticides (penconazole, hexaconazole, diniconazole, tebuconazole, and difenoconazole) in honey samples. In this method the temperature of high-volume aqueous phase was adjusted at an elevated temperature and then a disperser solvent containing an extraction solvent was rapidly injected into the aqueous phase. After cooling to room temperature, the phase separation was accelerated by centrifugation. Various parameters affecting the extraction efficiency such as type and volume of the extraction and disperser solvents, temperature, salt addition, and pH were evaluated. Under the optimum extraction conditions, the method resulted in low limits of detection and quantification within the range 0.05-0.21ngg(-1) in honey (15-70ngL(-1) in solution) and 0.15-1.1ngg(-1) in honey (45-210ngL(-1) in solution), respectively. Enrichment factors and extraction recoveries were in the ranges of 1943-1994 and 97-100%, respectively. The method precision was evaluated at 1.5ngg(-1) of each analyte, and the relative standard deviations were found to be less than 4% for intra-day (n=6) and less than 6% for inter-days. The method was successfully applied to the analysis of honey samples and difenoconazole was determined at ngg(-1) levels. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Comparison of different mesoporous silicas for off-line solid phase extraction of 17β-estradiol from waters and its determination by HPLC-DAD.

    PubMed

    Gañán, Judith; Pérez-Quintanilla, Damián; Morante-Zarcero, Sonia; Sierra, Isabel

    2013-09-15

    Functionalized (SBA-C₁₈ and SM-C₁₈) and non-functionalized (SBA-15 and SM) mesoporous silicas were then examined as sorbents for solid-phase extraction of 17β-estradiol in aqueous media. Experiments were run in order to test critical factors affecting the procedure extraction efficiency, including the type of sorbent, the analyte concentration, the solvent and volume used for elution and the sample volume. Among the prepared materials, SBA-C₁₈ had the highest adsorption affinity towards 17β-estradiol and under optimized conditions (200mg of sorbent, 150 mL of water sample, elution with 3 × 2 mL of methanol) this sorbent proved good extraction capacity and elution efficiency for this hormone from aqueous media (recovery near 100%). To evaluate the analytical applicability of the proposed method, it was applied to the determination of 17β-estradiol in drinking water by high performance liquid chromatography with a photodiode array detector. Calibration curves were shown to be linear between 1.25 and 100 mg L(-1)with correlation coefficients ≥0.999 (n=5) for 17β-estradiol. The instrumental detection and quantitation limits calculated were 0.38 and 1.25 mg L(-1), respectively. The relative standard deviation obtained values were ≤3% and the mean recoveries obtained were of 82%. The results suggest that SBA-C18 is a promising material for the off-line solid phase extraction of 17β-estradiol from waters. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Quantitative determination of environmental levels of uranium, thorium and plutonium in bone by solvent extraction and alpha spectrometry

    NASA Astrophysics Data System (ADS)

    Singh, Narayani P.; Zimmerman, Carol J.; Lewis, Laura L.; Wrenn, McDonald E.

    1984-06-01

    Solvent extraction and alpha-spectrometry have been emplyed in the quantitative simultaneous determination of uranium. thorium and plutonium. The bone specimens, spiked with 232U, 229Th and 242Pu tracers, are wet ashed with HNO 3 followed by alternate additions of a new drops of HNO 3 and H 2O 2. Uranium is reduced to the tetravalent state with 200 mg SnCl 2 and 25 ml HI. Uranium, thorium and plutonium are then coprecipitated with calcium as oxalate, heated to 550°C, dissolved in 50 ml HCl, and the acidity adjusted to 10 M. Uranium and plutonium are extracted into a 20% tri-lauryl amine (TLA) solution in xylene, leaving thorium in the aqueous phase. Plutonium is first back-extracted from the TLA phase by shaking with a 1:1.5 volume of 0.05 M NH 4I in 8 M HCl, which reduces Pu(IV) to Pu(III). Uranium is then back-extracted with an equal volume of 0.1 M HCl. Thorium, which was left in the aqueous phase, is evaporated to dryness, dissolved in 4 M HNO 3, and the acidity adjusted to 4 M. Thorium is then extracted into 20% TLA solution in xylene pre-equilibrated with 4 M HNO 3, and back-extracted with 10 M HCl. Uranium, thorium, and plutonium are then electrodeposited separately onto platinum discs and counted by an alpha-spectrometer with a multi-channel analyzer and surface barrier silicon diodes. The mean recoveries of uranium, thorium, and plutonium in bovine, dog, and human bones were over 70%.

  8. A Designer Fluid For Aluminum Phase Change Devices: Aluminum Inorganic Aqueous Solutions (IAS) Chemistry and Experiments. Volume 2

    DTIC Science & Technology

    2016-11-17

    magnitude larger than necessary. Adding more permanganate into the solution can produce a thicker coating . Manganese oxide has a thermal conductivity ...void before sealing both ends. For terrestrial heat pipes, copper is the most commonly used casing material due to its high thermal conductivity ... thermal conductivity ; however, these were early results and the tubes that were obtained from the Chinese manufacturer appeared to be of inconsistent

  9. Anomalous behavior of poly(ethylene glycol) p-tert-octylphenyl ether (Triton X-100) in the water-cyclohexane system

    NASA Astrophysics Data System (ADS)

    Chernysheva, M. G.; Tyasto, Z. A.; Badun, G. A.

    2009-02-01

    The distribution of Triton X-100 nonionic surfactant in the water-cyclohexane system was investigated by the scintillating phase method. It was shown that an increase in the distribution coefficient as the volume ratio between the aqueous and organic phases grew was explained by the presence in Triton X-100 of homologues with different numbers of ethoxyethyl groups and with the distribution coefficients between the phases different by many times. For the real composition of Triton X-100, distribution coefficients of components of the surfactant were estimated, and the behavior of the surfactant in the system under consideration was simulated; the results were in close agreement with the experimental data.

  10. Application of a surfactant-assisted dispersive liquid-liquid microextraction method along with central composite design for micro-volume based spectrophotometric determination of low level of Cr(VI) ions in aquatic samples.

    PubMed

    Sobhi, Hamid Reza; Azadikhah, Efat; Behbahani, Mohammad; Esrafili, Ali; Ghambarian, Mahnaz

    2018-05-09

    A fast, simple, low cost surfactant-assisted dispersive liquid-liquid microextraction method along with central composite design for the determination of low level of Cr(VI) ions in several aquatic samples has been developed. Initially, Cr(VI) ions present in the aqueous sample were readily reacted with 1,5‑diphenylcarbazide (DPC) in acidic medium through complexation. Sodium dodecyl sulfate (SDS), as an anionic surfactant, was then employed as an ion-pair agent to convert the cationic complex into the neutral one. Following on, the whole aqueous phase underwent a dispersive liquid-liquid microextraction (DLLME) leading to the transfer of the neutral complex into the fine droplet of organic extraction phase. A micro-volume spectrophotometer was used to determine Cr(VI) concentrations. Under the optimized conditions predicted by the statistical design, the limit of quantification (LOQ) obtained was reported to be 5.0 μg/L, and the calibration curve was linear over the concentration range of 5-100 μg/L. Finally, the method was successfully implemented for the determination of low levels of Cr(VI) ions in various real aquatic samples and the accuracies fell within the range of 83-102%, while the precision varied in the span of 1.7-5.2%. Copyright © 2018. Published by Elsevier B.V.

  11. Gel-like double-emulsion droplets

    NASA Astrophysics Data System (ADS)

    Guzowski, Jan; Korczyk, Piotr; Garstecki, Piotr; Stone, Howard

    2015-11-01

    We experimentally study the problem of packing of micro-droplets inside a droplet of another immiscible liquid phase. We use microfluidics to encapsulate multiple monodisperse aqueous segments inside a drop of oil. For small numbers N (N<10) of the aqueous droplets and at their volume fraction in oil exceeding the close-packing threshold we observe multiple metastable structures with well-defined point-group symmetries. We attribute the observed metastability to the deformability of the droplets which leads to effective many-body interactions and energy barriers for rearrangement. By changing the composition of the oil phase we find that when the surface tensions of the droplets and of the encapsulating phase are comparable, the energy barriers are high enough to trap elongated structures or even linear chains, independently of N. However, when the surface tension of the encapsulating phase is much larger than that of the droplets, non-spherical morphologies are stable only at sufficiently high N. In such a case multiple internal interfaces can hold stresses and prevent relaxation of the global deformations which leads to a plastic, gel-like behavior. Our findings can serve as guidelines for synthesis of functional particles as well as for designing biomimetic materials, e.g. for tissue engineering. J.G. acknowledges financial support from Polish Ministry of Science provided within the framework Mobility Plus.

  12. High Throughput, Polymeric Aqueous Two-Phase Printing of Tumor Spheroids

    PubMed Central

    Atefi, Ehsan; Lemmo, Stephanie; Fyffe, Darcy; Luker, Gary D.; Tavana, Hossein

    2014-01-01

    This paper presents a new 3D culture microtechnology for high throughput production of tumor spheroids and validates its utility for screening anti-cancer drugs. We use two immiscible polymeric aqueous solutions and microprint a submicroliter drop of the “patterning” phase containing cells into a bath of the “immersion” phase. Selecting proper formulations of biphasic systems using a panel of biocompatible polymers results in the formation of a round drop that confines cells to facilitate spontaneous formation of a spheroid without any external stimuli. Adapting this approach to robotic tools enables straightforward generation and maintenance of spheroids of well-defined size in standard microwell plates and biochemical analysis of spheroids in situ, which is not possible with existing techniques for spheroid culture. To enable high throughput screening, we establish a phase diagram to identify minimum cell densities within specific volumes of the patterning drop to result in a single spheroid. Spheroids show normal growth over long-term incubation and dose-dependent decrease in cellular viability when treated with drug compounds, but present significant resistance compared to monolayer cultures. The unprecedented ease of implementing this microtechnology and its robust performance will benefit high throughput studies of drug screening against cancer cells with physiologically-relevant 3D tumor models. PMID:25411577

  13. Microfluidic control of droplet formation from stable emulsions formed by aqueous two-phase systems

    NASA Astrophysics Data System (ADS)

    Teixeira, Alyne G.; Tsai, Meng-Chiao; Frampton, John P.

    2018-02-01

    Aqueous two-phase systems (ATPSs) form from the thermodynamic separation of two dissolved incompatible solutes, such as two polymers, a polymer and a salt, and a polymer and a surfactant. At most supercritical concentrations, ATPS emulsions can be formed by vigorous mixing. These emulsions typically settle into distinct layers in minutes to hours. However, it is also possible to choose ATPS compositions with extremely long settling times that resemble stable emulsions. Here, we generated stable emulsions from a polyethylene glycol (PEG)-dextran ATPS by selecting ATPS compositions at the extreme ends of the tie lines connecting the binodal curve delineating phase-separating compositions. Droplets of PEG in a continuous dextran phase did not coalesce appreciably over the course of several days when stored in a conical tube or syringe. However, upon exposure to laminar flow conditions in a microfluidic channel, droplets were observed to coalesce. Through microscopic characterization of droplet volume, an increase in droplet size and decrease in overall droplet number was observed as a function of channel distance, suggesting a progressive droplet merging phenomenon. This novel approach to control droplet size by encouraging coalescence of stable emulsions under laminar flow in a microfluidic channel enables the production of droplets ranging from fL to several pL, which may enable various future biotechnology applications.

  14. Aerosolized Antimicrobial Agents Based on Degradable Dextran Nanoparticles Loaded with Silver Carbene Complexes

    PubMed Central

    Ornelas-Megiatto, Cátia; Shah, Parth N.; Wich, Peter R.; Cohen, Jessica L.; Tagaev, Jasur A.; Smolen, Justin A.; Wright, Brian D.; Panzner, Matthew J.; Youngs, Wiley J.; Fréchet, Jean M. J.; Cannon, Carolyn L.

    2012-01-01

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH2Cl2 (organic): PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery. PMID:23025592

  15. Aerosolized antimicrobial agents based on degradable dextran nanoparticles loaded with silver carbene complexes.

    PubMed

    Ornelas-Megiatto, Cátia; Shah, Parth N; Wich, Peter R; Cohen, Jessica L; Tagaev, Jasur A; Smolen, Justin A; Wright, Brian D; Panzner, Matthew J; Youngs, Wiley J; Fréchet, Jean M J; Cannon, Carolyn L

    2012-11-05

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH(2)Cl(2) (organic):PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery.

  16. Quantitative analysis of aqueous phase composition of model dentin adhesives experiencing phase separation

    PubMed Central

    Ye, Qiang; Park, Jonggu; Parthasarathy, Ranganathan; Pamatmat, Francis; Misra, Anil; Laurence, Jennifer S.; Marangos, Orestes; Spencer, Paulette

    2013-01-01

    There have been reports of the sensitivity of our current dentin adhesives to excess moisture, for example, water-blisters in adhesives placed on over-wet surfaces, and phase separation with concomitant limited infiltration of the critical dimethacrylate component into the demineralized dentin matrix. To determine quantitatively the hydrophobic/hydrophilic components in the aqueous phase when exposed to over-wet environments, model adhesives were mixed with 16, 33, and 50 wt % water to yield well-separated phases. Based upon high-performance liquid chromatography coupled with photodiode array detection, it was found that the amounts of hydrophobic BisGMA and hydrophobic initiators are less than 0.1 wt % in the aqueous phase. The amount of these compounds decreased with an increase in the initial water content. The major components of the aqueous phase were hydroxyethyl methacrylate (HEMA) and water, and the HEMA content ranged from 18.3 to 14.7 wt %. Different BisGMA homologues and the relative content of these homologues in the aqueous phase have been identified; however, the amount of crosslinkable BisGMA was minimal and, thus, could not help in the formation of a crosslinked polymer network in the aqueous phase. Without the protection afforded by a strong crosslinked network, the poorly photoreactive compounds of this aqueous phase could be leached easily. These results suggest that adhesive formulations should be designed to include hydrophilic multimethacrylate monomers and water compatible initiators. PMID:22331596

  17. POLONIUM SEPARATION PROCESS

    DOEpatents

    Karraker, D.G.

    1959-07-14

    A liquid-liquid extraction process is presented for the recovery of polonium from lead and bismuth. According to the invention an acidic aqueous chloride phase containing the polonium, lead, and bismuth values is contacted with a tributyl phosphate ether phase. The polonium preferentially enters the organic phase which is then separated and washed with an aqueous hydrochloric solution to remove any lead or bismuth which may also have been extracted. The now highly purified polonium in the organic phase may be transferred to an aqueous solution by extraction with aqueous nitric acid.

  18. Structural transformations, composition anomalies and a dramatic collapse of linear polymer chains in dilute ethanol-water mixtures.

    PubMed

    Banerjee, Saikat; Ghosh, Rikhia; Bagchi, Biman

    2012-03-29

    Water-ethanol mixtures exhibit many interesting anomalies, such as negative excess partial molar volume of ethanol, excess sound absorption coefficient at low concentrations, and positive deviation from Raoult's law for vapor pressure, to mention a few. These anomalies have been attributed to different, often contradictory origins, but a quantitative understanding is still lacking. We show by computer simulation and theoretical analyses that these anomalies arise from the sudden emergence of a bicontinuous phase that occurs at a relatively low ethanol concentration of x(eth) ≈ 0.06-0.10 (that amounts to a volume fraction of 0.17-0.26, which is a significant range!). The bicontinuous phase is formed by aggregation of ethanol molecules, resulting in a weak phase transition whose nature is elucidated. We find that the microheterogeneous structure of the mixture gives rise to a pronounced nonmonotonic composition dependence of local compressibility and nonmonotonic dependence in the peak value of the radial distribution function of ethyl groups. A multidimensional free energy surface of pair association is shown to provide a molecular explanation of the known negative excess partial volume of ethanol in terms of parallel orientation and hence better packing of the ethyl groups in the mixture due to hydrophobic interactions. The energy distribution of the ethanol molecules indicates additional energy decay channels that explain the excess sound attenuation coefficient in aqueous alcohol mixtures. We studied the dependence of the solvation of a linear polymer chain on the composition of the water-ethanol solvent. We find that there is a sudden collapse of the polymer at x(eth) ≈ 0.05-a phenomenon which we attribute to the formation of the microheterogeneous structures in the binary mixture at low ethanol concentrations. Together with recent single molecule pulling experiments, these results provide new insight into the behavior of polymer chain and foreign solutes, such as enzymes, in aqueous binary mixtures.

  19. IUPAC-NIST Solubility Data Series. 100. Rare Earth Metal Fluorides in Water and Aqueous Systems. Part 2. Light Lanthanides (Ce–Eu)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mioduski, Tomasz; Gumiński, Cezary, E-mail: cegie@chem.uw.edu.pl; Zeng, Dewen, E-mail: dewen-zeng@hotmail.com

    This is the second part of the volume devoted to the evaluation of experimental solubility data for rare earth metal (REM) fluorides in water as well as in aqueous ternary and multicomponent systems. Fluorides of Ce, Pr, Nd, Pm, Sm, and Eu (so-called light lanthanides), as the main solutes, are covered in the present part, which has thorough coverage of the experimental literature through the end of 2012. The experimentally unknown solubility value for PmF{sub 3} in water was predicted by an interpolation of the solubility values for NdF{sub 3} and SmF{sub 3} at 298 K. General features of themore » systems, such as the nature of the equilibrium solid phases, solubility as a function of temperature, influence of ionic strength, pH, mixed solvent medium on the solubility, quality of the solubility results, and solubility as a function of REM atomic number, have already been presented in Part 1 of the volume.« less

  20. CLEPS 1.0: A new protocol for cloud aqueous phase oxidation of VOC mechanisms

    NASA Astrophysics Data System (ADS)

    Mouchel-Vallon, Camille; Deguillaume, Laurent; Monod, Anne; Perroux, Hélène; Rose, Clémence; Ghigo, Giovanni; Long, Yoann; Leriche, Maud; Aumont, Bernard; Patryl, Luc; Armand, Patrick; Chaumerliac, Nadine

    2017-03-01

    A new detailed aqueous phase mechanism named the Cloud Explicit Physico-chemical Scheme (CLEPS 1.0) is proposed to describe the oxidation of water soluble organic compounds resulting from isoprene oxidation. It is based on structure activity relationships (SARs) which provide global rate constants together with branching ratios for HOṡ abstraction and addition on atmospheric organic compounds. The GROMHE SAR allows the evaluation of Henry's law constants for undocumented organic compounds. This new aqueous phase mechanism is coupled with the MCM v3.3.1 gas phase mechanism through a mass transfer scheme between gas phase and aqueous phase. The resulting multiphase mechanism has then been implemented in a model based on the Dynamically Simple Model for Atmospheric Chemical Complexity (DSMACC) using the Kinetic PreProcessor (KPP) that can serve to analyze data from cloud chamber experiments and field campaigns. The simulation of permanent cloud under low-NOx conditions describes the formation of oxidized monoacids and diacids in the aqueous phase as well as a significant influence on the gas phase chemistry and composition and shows that the aqueous phase reactivity leads to an efficient fragmentation and functionalization of organic compounds.

  1. Final Report: Molecular Mechanisms of Interfacial Reactivity in Near Surface and Extreme Geochemical Environments (DE-SC0009362)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, David A

    2016-03-27

    The prediction of the long-term stability and safety of geologic sequestration of greenhouse gases requires a detailed understanding of subsurface transport and chemical interactions between the disposed greenhouse gases and the geologic media. In this regard, mineral-fluid interactions are of prime importance since reactions that occur on or near the interface can assist in the long term sequestration of CO2 by trapping in mineral phases such as carbonates, as well as influencing the subsurface migration of the disposed fluids via creation or plugging of pores or fractures in the host rock strata. Previous research on mineral-fluid interaction for subsurface CO2more » storage has focused almost entirely on the aqueous phase, i.e., reactivity with aqueous solutions or brines containing dissolved CO2. However, interactions with neat to water-saturated non-aqueous fluids are of equal if not greater importance since supercritical CO2 (scCO2) is less dense than the aqueous phase or oil which will create a buoyant scCO2 plume that ultimately will dominate the pore volume within the caprock, and the injected scCO2 will contain water soon after injection and this water can be highly reactive. Collectively, therefore, mineral interactions with water-saturated scCO2-dominated fluids are pivotal and could result in the stable sequestration of CO2 by trapping in mineral phases such as metal carbonates within otherwise permeable zones in the caprock. The primary objective is to unravel the molecular mechanisms governing the reactivity of mineral phases important in the geologic sequestration of CO2 with variably wet supercritical carbon dioxide as a function of T, P, and mineral structure using computational chemistry. This work is in close collaboration with the PNNL Geosciences effort. The focus of the work at The University of Alabama is computational studies of the formation of magnesium and calcium carbonates and oxides and their reactivity and providing computational support of the experimental efforts at PNNL, especially for energetics, structural properties, and interpretation of spectra.« less

  2. Treatment of aqueous phase of bio-oil by granular activated carbon and evaluation of biogas production.

    PubMed

    Shanmugam, Saravanan R; Adhikari, Sushil; Wang, Zhouhang; Shakya, Rajdeep

    2017-01-01

    Hydrothermal liquefaction of wet biomass such as algae is a promising thermochemical process for the production of bio-oil. Bio-oil aqueous phase generated during liquefaction process is rich in complex organics and can be utilized for biogas production following its pre-treatment with granular activated carbon. In our study, use of 30% activated carbon resulted in higher chemical oxygen demand (COD) reduction (53±0.3%) from aqueous phase. Higher CH 4 production (84±12mL/gCOD) was also observed in 30% carbon-treated aqueous phase fed cultures, whereas only 32±6mLCH 4 /gCOD was observed in control (non-carbon treated) cultures. The results from this study indicate that almost 67±0.3% initial COD of aqueous phase can be reduced using a combination of both carbon treatment and biogas production. This study shows that aqueous phase can be utilized for CH 4 production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Modeling Degradation Product Partitioning in Chlorinated-DNAPL Source Zones

    NASA Astrophysics Data System (ADS)

    Boroumand, A.; Ramsburg, A.; Christ, J.; Abriola, L.

    2009-12-01

    Metabolic reductive dechlorination degrades aqueous phase contaminant concentrations, increasing the driving force for DNAPL dissolution. Results from laboratory and field investigations suggest that accumulation of cis-dichloroethene (cis-DCE) and vinyl chloride (VC) may occur within DNAPL source zones. The lack of (or slow) degradation of cis-DCE and VC within bioactive DNAPL source zones may result in these dechlorination products becoming distributed among the solid, aqueous, and organic phases. Partitioning of cis-DCE and VC into the organic phase may reduce aqueous phase concentrations of these contaminants and result in the enrichment of these dechlorination products within the non-aqueous phase. Enrichment of degradation products within DNAPL may reduce some of the advantages associated with the application of bioremediation in DNAPL source zones. Thus, it is important to quantify how partitioning (between the aqueous and organic phases) influences the transport of cis-DCE and VC within bioactive DNAPL source zones. In this work, abiotic two-phase (PCE-water) one-dimensional column experiments are modeled using analytical and numerical methods to examine the rate of partitioning and the capacity of PCE-DNAPL to reversibly sequester cis-DCE. These models consider aqueous-phase, nonaqueous phase, and aqueous plus nonaqueous phase mass transfer resistance using linear driving force and spherical diffusion expressions. Model parameters are examined and compared for different experimental conditions to evaluate the mechanisms controlling partitioning. Biot number, a dimensionless number which is an index of the ratio of the aqueous phase mass transfer rate in boundary layer to the mass transfer rate within the NAPL, is used to characterize conditions in which either or both processes are controlling. Results show that application of a single aqueous resistance is capable to capture breakthrough curves when DNAPL is distributed in porous media as low-saturation ganglia, while diffusion within the DNAPL should be considered for larger NAPL pools. These results offer important insights to the monitoring and interpretation of bioremediation strategies employed within DNAPL source zones.

  4. Dispersive liquid-liquid microextraction for the determination of vitamins D and K in foods by liquid chromatography with diode-array and atmospheric pressure chemical ionization-mass spectrometry detection.

    PubMed

    Viñas, Pilar; Bravo-Bravo, María; López-García, Ignacio; Hernández-Córdoba, Manuel

    2013-10-15

    A simple and rapid method was developed using reversed-phase liquid chromatography (LC) with both diode array (DAD) and atmospheric pressure chemical ionization mass spectrometric (APCI-MS) detection, for the simultaneous analysis of the vitamins ergocalciferol (D2), cholecalciferol (D3), phylloquinone (K1), menaquinone-4 (K2) and a synthetic form of vitamin K, menadione (K3). The Taguchi experimental method, an orthogonal array design (OAD), was used to optimize an efficient and clean preconcentration step based on dispersive liquid-liquid microextraction (DLLME). A factorial design was applied with six factors and three levels for each factor, namely, carbon tetrachloride volume, methanol volume, aqueous sample volume, pH of sample, sodium chloride concentration and time of the centrifugation step. The DLLME optimized procedure consisted of rapidly injecting 3 mL of acetonitrile (disperser solvent) containing 150 µL carbon tetrachloride (extraction solvent) into the aqueous sample, thereby forming a cloudy solution. Phase separation was performed by centrifugation, and the sedimented phase was evaporated with nitrogen, reconstituted with 50 µL of acetonitrile, and injected. The LC analyses were carried out using a mobile phase composed of acetonitrile, 2-propanol and water, under gradient elution. Quantification was carried out by the standard additions method. The APCI-MS spectra, in combination with UV spectra, permitted the correct identification of compounds in the food samples. The method was validated according to international guidelines and using a certified reference material. The validated method was applied for the analysis of vitamins D and K in infant foods and several green vegetables. There was little variability in the forms of vitamin K present in vegetables, with the most abundant vitamer in all the samples being phylloquinone, while menadione could not be detected. Conversely, cholecalciferol, which is present in food of animal origin, was the main form in infant foods, while ergocalciferol was not detected. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. IUPAC-NIST Solubility Data Series. 100. Rare Earth Metal Fluorides in Water and Aqueous Systems. Part 3. Heavy Lanthanides (Gd–Lu)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mioduski, Tomasz; Gumiński, Cezary, E-mail: cegie@chem.uw.edu.pl; Zeng, Dewen, E-mail: dewen-zeng@hotmail.com

    This is the third part of the volume devoted to solubility data for the rare earth metal (REM) fluorides in water and in aqueous ternary and multicomponent systems. It covers experimental results of trivalent fluorides of Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu (so-called heavy lanthanides), since no quantitative data on solubilities of TbF{sub 4} and YbF{sub 2} (the most stable compounds at these valencies) are available. The related literature has been covered through the end of 2014. Compilations of all available papers with the solubility data are introduced for each REM fluoride with a corresponding critical evaluation.more » Every such assessment contains a collection of all solubility results in aqueous solution, a selection of suggested solubility data, a solubility equation, and a brief discussion of the multicomponent systems. Only simple fluorides (no complexes or double salts) are treated as the input substances in this report. General features of the systems, such as nature of the equilibrium solid phases, solubility as a function of temperature, influence of ionic strength, solution pH, mixed solvent medium on the solubility, quality of the solubility results, and the solubility as a function of REM atomic number, have already been presented in Part 1 of the volume.« less

  6. Comparison of twin-cell centrifugal partition chromatographic columns with different cell volume.

    PubMed

    Goll, Johannes; Audo, Gregoire; Minceva, Mirjana

    2015-08-07

    Two twin-cell centrifugal partition chromatographic columns (SCPC 250 and SCPE-250-BIO, Armen Instrument, France) with the same column volume but different cell size and number were compared in terms of stationary phase retention and column efficiency. The columns were tested with two types of solvent systems: a commonly used organic solvent based biphasic system from the ARIZONA solvent system family and a polymer/salt based aqueous two phase system (ATPS). The efficiency of the columns was evaluated by pulse injection experiments of two benzenediols (pyrocatechol and hydroquinone) in the case of the ARIZONA system and a protein mixture (myoglobin and lysozyme) in the case of the ATPS. As result of high stationary phase retention, the column with the lower number of larger twin-cells (SCPE-250-BIO) is suitable for protein separations using ATPS. On the other hand, due to higher column efficiency, the column with the greater number of smaller cells (SCPC 250) is superior for batch elution separations performed with standard liquid-liquid chromatography organic solvent based biphasic systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Evaluation of trichloroethene recovery processes in heterogeneous aquifer cells flushed with biodegradable surfactants

    NASA Astrophysics Data System (ADS)

    Suchomel, Eric J.; Ramsburg, C. Andrew; Pennell, Kurt D.

    2007-12-01

    The ability of two biodegradable surfactants, polyoxyethylene (20) sorbitan monooleate (Tween® 80) and sodium dihexyl sulfosuccinate (Aerosol® MA), to recover a representative dense non-aqueous-phase liquid (DNAPL), trichloroethene (TCE), from heterogeneous porous media was evaluated through a combination of batch and aquifer cell experiments. An aqueous solution containing 3.3% Aerosol MA, 8% 2-propanol and 6 g/l CaCl 2 yielded a weight solubilization ratio (WSR) of 1.21 g TCE/g surfactant, with a corresponding liquid-liquid interfacial tension (IFT) of 0.19 dyn/cm. Flushing of aquifer cells containing a TCE-DNAPL source zone with approximately two pore volumes of the AMA formulation resulted in substantial (> 30%) mobilization of TCE-DNAPL. However, a TCE mass recovery of 81% was achieved when the aqueous-phase flow rate was sufficient to displace the mobile TCE-DNAPL toward the effluent well. Aqueous solutions of Tween 80 exhibited a greater capacity to solubilize TCE (WSR = 1.74 g TCE/g surfactant) and exerted markedly less reduction in IFT (10.4 dyn/cm). These data contradict an accepted empirical correlation used to estimate IFT values from solubilization capacity, and indicate a unique capacity of T80 to form concentrated TCE emulsions. Flushing of aquifer cells with less than 2.5 pore volumes of a 4% T80 solution achieved TCE mass recoveries ranging from 66 to 85%, with only slight TCE-DNAPL mobilization (< 5%) occurring when the total trapping number exceeded 2 × 10 - 5 . These findings demonstrate the ability of Tween 80 and Aerosol MA solutions to efficiently recover TCE from a heterogeneous DNAPL source zone, and the utility of the total trapping number as a design parameter for a priori prediction of DNAPL mobilization and bank angle formation when flushing with low-IFT solutions. Given their potential to stimulate microbial reductive dechlorination at low concentrations, these surfactants are well-suited for remedial action plans that couple aggressive mass removal followed by enhanced bioremediation to treat chlorinated solvent source zones.

  8. Process for separating dissolved solids from a liquid using an anti-solvent and multiple effect evaporators

    DOEpatents

    Daniels, Edward J.; Jody, Bassam J.; Bonsignore, Patrick V.

    1994-01-01

    A process and system for treating aluminum salt cake containing water soluble halide salts by contacting the salt cake with water to dissolve water soluble halide salts forming a saturated brine solution. Transporting a portion of about 25% of the saturated brine solution to a reactor and introducing into the saturated brine solution at least an equal volume of a water-miscible low-boiling organic material such as acetone to precipitate a portion of the dissolved halide salts forming a three-phase mixture of an aqueous-organic-salt solution phase and a precipitated salt phase and an organic rich phase. The precipitated salt phase is separated from the other phases and the organic rich phase is recycled to the reactor. The remainder of the saturated brine solution is sent to a multiple effect evaporator having a plurality of stages with the last stage thereof producing low grade steam which is used to boil off the organic portion of the solution which is recycled.

  9. Process for separating dissolved solids from a liquid using an anti-solvent and multiple effect evaporators

    DOEpatents

    Daniels, E.J.; Jody, B.J.; Bonsignore, P.V.

    1994-07-19

    A process and system are disclosed for treating aluminum salt cake containing water soluble halide salts by contacting the salt cake with water to dissolve water soluble halide salts forming a saturated brine solution. Transporting a portion of about 25% of the saturated brine solution to a reactor and introducing into the saturated brine solution at least an equal volume of a water-miscible low-boiling organic material such as acetone to precipitate a portion of the dissolved halide salts forming a three-phase mixture of an aqueous-organic-salt solution phase and a precipitated salt phase and an organic rich phase. The precipitated salt phase is separated from the other phases and the organic rich phase is recycled to the reactor. The remainder of the saturated brine solution is sent to a multiple effect evaporator having a plurality of stages with the last stage thereof producing low grade steam which is used to boil off the organic portion of the solution which is recycled. 3 figs.

  10. Biphasic catalysis in water/carbon dioxide micellar systems

    DOEpatents

    Jacobson, Gunilla B.; Tumas, William; Johnston, Keith P.

    2002-01-01

    A process is provided for catalyzing an organic reaction to form a reaction product by placing reactants and a catalyst for the organic reaction, the catalyst of a metal complex and at least one ligand soluble within one of the phases of said aqueous biphasic system, within an aqueous biphasic system including a water phase, a dense phase fluid, and a surfactant adapted for forming an emulsion or microemulsion within the aqueous biphasic system, the reactants soluble within one of the phases of the aqueous biphasic system and convertible in the presence of the catalyst to a product having low solubility in the phase in which the catalyst is soluble; and, maintaining the aqueous biphasic system under pressures, at temperatures, and for a period of time sufficient for the organic reaction to occur and form the reaction product and to maintain sufficient density on the dense phase fluid, the reaction product characterized as having low solubility in the phase in which the catalyst is soluble.

  11. Effect of Coriolis force on counter-current chromatographic separation by centrifugal partition chromatography.

    PubMed

    Ikehata, Jun-Ichi; Shinomiya, Kazufusa; Kobayashi, Koji; Ohshima, Hisashi; Kitanaka, Susumu; Ito, Yoichiro

    2004-02-06

    The effect of Coriolis force on the counter-current chromatographic separation was studied using centrifugal partition chromatography (CPC) with four different two-phase solvent systems including n-hexane-acetonitrile (ACN); tert-butyl methyl ether (MtBE)-aqueous 0.1% trifluoroacetic acid (TFA) (1:1); MtBE-ACN-aqueous 0.1% TFA (2:2:3); and 12.5% (w/w) polyethylene glycol (PEG) 1000-12.5% (w/w) dibasic potassium phosphate. Each separation was performed by eluting either the upper phase in the ascending mode or the lower phase in the descending mode, each in clockwise (CW) and counterclockwise column rotation. Better partition efficiencies were attained by the CW rotation in both mobile phases in all the two-phase solvent systems examined. The mathematical analysis also revealed the Coriolis force works favorably under the CW column rotation for both mobile phases. The overall results demonstrated that the Coriolis force produces substantial effects on CPC separation in both organic-aqueous and aqueous-aqueous two-phase systems.

  12. Electrospun composite matrices of poly(ε-caprolactone)-montmorillonite made using tenside free Pickering emulsions.

    PubMed

    Samanta, Archana; Takkar, Sonam; Kulshreshtha, Ritu; Nandan, Bhanu; Srivastava, Rajiv K

    2016-12-01

    The production of composite electrospun matrices of poly(ε-caprolactone) (PCL) using an emulsifier-free emulsion, made with minimal organic solvent, as precursor is reported. Pickering emulsions of PCL were prepared using modified montmorillonite (MMT) clay as the stabilizer. Hydrophobic tallow group of the modified MMT clay resulted in analogous interaction of clay with oil and aqueous phase and its adsorption at the interface to provide stability to the resultant emulsion. Composite fibrous matrices of PCL and MMT were produced using electrospinning under controlled conditions. The fiber fineness was found to alter with PCL concentration and volume fraction of the aqueous and oil phases. A higher tensile strength and modulus was obtained with inclusion of MMT in PCL electrospun matrix in comparison to a matrix made using neat PCL. The presence of clay in the fibrous matrix did not change the cell proliferation efficiency in comparison to neat PCL matrix. Composite fibrous matrices of PCL/MMT bearing enhanced tensile properties may find applications in areas other than tissue engineering for example food packaging and filtration. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Assessment of strobilurin fungicides' content in soya-based drinks by liquid micro-extraction and liquid chromatography with tandem mass spectrometry.

    PubMed

    Campillo, Natalia; Iniesta, María Jesús; Viñas, Pilar; Hernández-Córdoba, Manuel

    2015-01-01

    Seven strobilurin fungicides were pre-concentrated from soya-based drinks using dispersive liquid-liquid micro-extraction (DLLME) with a prior protein precipitation step in acid medium. The enriched phase was analysed by liquid chromatography (LC) with dual detection, using diode array detection (DAD) and electrospray-ion trap tandem mass spectrometry (ESI-IT-MS/MS). After selecting 1-undecanol and methanol as the extractant and disperser solvents, respectively, for DLLME, the Taguchi experimental method, an orthogonal array design, was applied to select the optimal solvent volumes and salt concentration in the aqueous phase. The matrix effect was evaluated and quantification was carried out using external aqueous calibration for DAD and matrix-matched calibration method for MS/MS. Detection limits in the 4-130 and 0.8-4.5 ng g(-1) ranges were obtained for DAD and MS/MS, respectively. The DLLME-LC-DAD-MS method was applied to the analysis of 10 different samples, none of which was found to contain residues of the studied fungicides.

  14. Investigation of chromatography and polymer/salt aqueous two-phase processes for downstream processing development of recombinant phenylalanine dehydrogenase.

    PubMed

    Omidinia, Eskandar; Shahbaz Mohamadi, Hamid; Dinarvand, Rassoul; Taherkhani, Heshmat-Allah

    2010-03-01

    This work presents a comprehensive study between the polymer/salt aqueous two-phase systems (ATPS) and chromatography process for downstream processing of recombinant Bacillus badius phenylalanine dehydrogenase (PheDH). First, the partitioning behavior of recombinant PheDH in polyethylene glycol (PEG)/K2HPO4 ATPS was examined. For comparative purpose, a classical chromatographic protocol was performed as well. Investigation of chromatography and ATPS procedures revealed that the ATPS comprising of 9% (w/w) PEG-6000, 16% (w/w) K2HPO4 and 16% (w/w) KCl with pH of 8.0, volume ratio (V ( R )) of 0.25, temperature of 25 degrees C and 40% (w/w) cell lysate ensured the most favorable approach for PheDH downstream process. A specific activity of 4,231.4 U/mg, a yield of 96.7% and a recovery of 162.0% were obtained. Furthermore, the shorter process time (4 vs. 48 h) and the lower total cost (4 vs. 20 euro) were additionally features that confirmed the suitability of proposed technique.

  15. Single and two-phase flows of shear-thinning media in safety valves.

    PubMed

    Moncalvo, D; Friedel, L

    2009-09-15

    This study is the first one in the scientific literature to investigate the liquid and two-phase flows of shear-thinning media, here aqueous solutions of polyvinylpyrrolidone, in a fully opened safety valve. In liquid flows the volume flux at the valve seat does not show any appreciable reduction when increasing the percental weight of polymer in the solution. This result may suggest that the viscous losses in the valve do not increase sensibly from the most aqueous to the most viscous solution. The authors explain it considering that in the region between the seat and the disk, where large pressure and velocity gradients occur, large shear rates are expected. On behalf of the rheological measurements, which show that both the pseudoplasticity and the zero-shear viscosity of the solutions increase with the polymer weight, the difference between the viscosities of the most viscous and those of the most aqueous solution is between the seat and the disk far less than that existing at zero-shear condition. Therefore, the effective viscous pressure drop of the safety valve, which occurs mostly in that region, must increase only modestly with the polymer percental weight in the solution. In two-phase flows the total mass flow rate at constant quality and constant relieving pressure increases remarkably with the polymer weight. The analogy with similar results in cocurrent pipe flows suggests that air entrainment causes large velocity gradients in the liquids and strains them to very large shear rates. It suggests also that a redistribution of the gas agglomerates within the liquid must be expected when increasing the polymer weight in the solutions. In fact, the gas agglomerates react to the larger viscous drag of the liquid by compressing their volume in order to exert a higher internal pressure. The reduction of the void fraction of the mixture at constant quality and constant relieving pressure imposes an increment in the total mass flow rate, since otherwise it would lead to a reduction in the momentum of the mixture and therefore to a drop in the relieving pressure.

  16. Formulation Optimization of Human Insulin Loaded Microspheres for Controlled Oral Delivery Using Response Surface Methodology.

    PubMed

    Agrawal, Gauravkuma; Wakte, Pravin; Shelke, Santosh

    2017-01-01

    The objectives of the present investigation were to prepare recombinant human insulin entrapped Eudragit-S100 microspheres containing protease inhibitors and to precisely analyze the outcome of different formulation variables on the microspheres properties using a response surface methodology to develop an optimized formulation with desirable features. A central composite design was employed to produce microspheres of therapeutic protein by w/o/w multiple emulsion solvent evaporation technique using Eudragit S-100 as coating material and polyvinyl alcohol as a stabilizer. The effect of formulation variables (independent variables) that is levels of Eudragit S-100 (X1), therapeutic protein (X2), volumes of inner aqueous phase (X3) and external aqueous phase (X4) on dependant variables, that are encapsulation efficiency (Y1), drug release at pH 1.2 after 2 h (Y2) and drug release at pH 7.4 after of 2 h (Y3) were evaluated. The significant terms in the mathematical models were generated for each response parameter using multiple linear regression analysis and analysis of variance. All the formulation variables except the volume of external aqueous phase (X4) exerted a significant effect (P <0.05) on drug encapsulation efficiency (Y1) whereas first two variables, namely the levels of Eudragit S-100 (X1) and therapeutic protein (X2) materialized as the determining factors which significantly influenced drug release at pH 1.2 after 2 h (Y2) and drug release at pH 7.4 after of 2 h (Y3). The formulation was numerically optimized by framing the constraints on the dependent and independent variables using the desirability approach. The experimental values for Y1 and Y2 of optimized formulation were found to be 77.65% and 3.64%, respectively which were quite closer to results suggested by software. The results recorded indicate that the recombinant human insulin loaded Eudragit S-100 microspheres containing aprotinin have the benefits of higher loading efficiency, pH responsive and prolonged release characteristics, which may help to carry insulin to the optimum site of absorption. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. The sensitivity of tropospheric chemistry to cloud interactions

    NASA Technical Reports Server (NTRS)

    Jonson, Jan E.; Isaksen, Ivar S. A.

    1994-01-01

    Clouds, although only occupying a relatively small fraction of the troposphere volume, can have a substantial impact on the chemistry of the troposphere. In newly formed clouds, or in clouds with air rapidly flowing through, the chemistry is expected to be far more active than in aged clouds with stagnant air. Thus, frequent cycling of air through shortlived clouds, i.e. cumulus clouds, is likely to be a much more efficient media for altering the composition of the atmosphere than an extensive cloud cover i.e. frontal cloud systems. The impact of clouds is tested out in a 2-D channel model encircling the globe in a latitudinal belt from 30 to 60 deg N. The model contains a detailed gas phase chemistry. In addition physiochemical interactions between the gas and aqueous phases are included. For species as H2O2, CH2O, O3, and SO2, Henry's law equilibria are assumed, whereas HNO3 and H2SO4 are regarded as completed dissolved in the aqueous phase. Absorption of HO2 and OH is assumed to be mass-transport limited. The chemistry of the aqueous phase is characterized by rapid cycling of odd hydrogen, (H2O2, HO2, and OH). O2(-) (produced through dissociation of HO2) reacting with dissolved O3 is a major source of OH in the aqueous phase. This reaction can be a significant sink for O3 in the troposphere. In the interstitial cloud air, odd hydrogen is depleted, whereas NO(x) remains in the gas phase, thus reducing ozone production due to the reaction between NO and HO2. Our calculations give markedly lower ozone levels when cloud interactions are included. This may in part explain the overpredictions of ozone levels often experienced in models neglecting cloud chemical interactions. In the present study, the existence of clouds, cloud types, and their lifetimes are modeled as pseudo random variables. Such pseudo random sequences are in reality deterministic and may, given the same starting values, be reproduced. The effects of cloud interactions on the overall chemistry of the troposphere are discussed. In particular, tests are performed to determine the sensitivity of cloud frequencies and cloud types.

  18. Aqueous-Phase Mechanism for Secondary Organic Aerosol Formation from Isoprene: Application to the Southeast United States and Co-Benefit of SO2 Emission Controls

    NASA Technical Reports Server (NTRS)

    Marais, E. A.; Jacob, D. J.; Jimenez, J. L.; Campuzano-Jost, P.; Day, D. A.; Hu, W.; Krechmer, J.; Zhu, L.; Kim, P. S.; Miller, C. C.; hide

    2016-01-01

    Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for isoprene SOA formation coupled to a detailed gas-phase isoprene oxidation scheme. The mechanism is based on aerosol reactive uptake coefficients (gamma) for water-soluble isoprene oxidation products, including sensitivity to aerosol acidity and nucleophile concentrations. We apply this mechanism to simulation of aircraft (SEAC4RS) and ground-based (SOAS) observations over the Southeast US in summer 2013 using the GEOS-Chem chemical transport model. Emissions of nitrogen oxides (NOx = NO + NO2) over the Southeast US are such that the peroxy radicals produced from isoprene oxidation (ISOPO2) react significantly with both NO (high-NOx pathway) and HO2 (low-NOx pathway), leading to different suites of isoprene SOA precursors. We find a mean SOA mass yield of 3.3 % from isoprene oxidation, consistent with the observed relationship of total fine organic aerosol (OA) and formaldehyde (a product of isoprene oxidation). Isoprene SOA production is mainly contributed by two immediate gas-phase precursors, isoprene epoxydiols (IEPOX, 58% of isoprene SOA) from the low-NOx pathway and glyoxal (28%) from both low- and high-NOx pathways. This speciation is consistent with observations of IEPOX SOA from SOAS and SEAC4RS. Observations show a strong relationship between IEPOX SOA and sulfate aerosol that we explain as due to the effect of sulfate on aerosol acidity and volume. Isoprene SOA concentrations increase as NOx emissions decrease (favoring the low-NOx pathway for isoprene oxidation), but decrease more strongly as SO2 emissions decrease (due to the effect of sulfate 42 on aerosol acidity and volume). The US EPA projects 2013-2025 decreases in anthropogenic emissions of 34% for NOx (leading to 7% increase in isoprene SOA) and 48% for SO2 (35% decrease in isoprene SOA). Reducing SO2 emissions decreases sulfate and isoprene SOA by a similar magnitude, representing a factor of 2 co-benefit for PM2.5 from SO2 emission controls.

  19. Characterizing Fullerene Nanoparticles in Aqueous Suspensions

    EPA Science Inventory

    Studies have indicated that fullerenes can form stable colloidal suspensions in water when introduced to the aqueous phase through solvent exchange, sonication, or extended mixing. The colloidal suspensions created using these techniques have effective aqueous phase concentratio...

  20. Determination of nitrogen-15 isotope fractionation in tropine: evaluation of extraction protocols for isotope ratio measurement by isotope ratio mass spectrometry.

    PubMed

    Molinié, Roland; Kwiecień, Renata A; Silvestre, Virginie; Robins, Richard J

    2009-12-01

    N-Demethylation of tropine is an important step in the degradation of this compound and related metabolites. With the purpose of understanding the reaction mechanism(s) involved, it is desirable to measure the 15N kinetic isotope effects (KIEs), which can be accessed through the 15N isotope shift (Deltadelta15N) during the reaction. To measure the isotope fractionation in 15N during tropine degradation necessitates the extraction of the residual substrate from dilute aqueous solution without introducing artefactual isotope fractionation. Three protocols have been compared for the extraction and measurement of the 15N/14N ratio of tropine from aqueous medium, involving liquid-liquid phase partitioning or silica-C18 solid-phase extraction. Quantification was by gas chromatography (GC) on the recovered organic phase and delta15N values were obtained by isotope ratio measurement mass spectrometry (irm-MS). Although all the protocols used can provide satisfactory data and both irm-EA-MS and irm-GC-MS can be used to obtain the delta15N values, the most convenient method is liquid-liquid extraction from a reduced aqueous volume combined with irm-GC-MS. The protocols are applied to the measurement of 15N isotope shifts during growth of a Pseudomonas strain that uses tropane alkaloids as sole source of carbon and nitrogen. The accuracy of the determination of the 15N/14N ratio is sufficient to be used for the determination of 15N-KIEs. Copyright 2009 John Wiley & Sons, Ltd.

  1. Measurement of Biologically Available Naphthalene in Gas and Aqueous Phases by Use of a Pseudomonas putida Biosensor

    PubMed Central

    Werlen, Christoph; Jaspers, Marco C. M.; van der Meer, Jan Roelof

    2004-01-01

    Genetically constructed microbial biosensors for measuring organic pollutants are mostly applied in aqueous samples. Unfortunately, the detection limit of most biosensors is insufficient to detect pollutants at low but environmentally relevant concentrations. However, organic pollutants with low levels of water solubility often have significant gas-water partitioning coefficients, which in principle makes it possible to measure such compounds in the gas rather than the aqueous phase. Here we describe the first use of a microbial biosensor for measuring organic pollutants directly in the gas phase. For this purpose, we reconstructed a bioluminescent Pseudomonas putida naphthalene biosensor strain to carry the NAH7 plasmid and a chromosomally inserted gene fusion between the sal promoter and the luxAB genes. Specific calibration studies were performed with suspended and filter-immobilized biosensor cells, in aqueous solution and in the gas phase. Gas phase measurements with filter-immobilized biosensor cells in closed flasks, with a naphthalene-contaminated aqueous phase, showed that the biosensor cells can measure naphthalene effectively. The biosensor cells on the filter responded with increasing light output proportional to the naphthalene concentration added to the water phase, even though only a small proportion of the naphthalene was present in the gas phase. In fact, the biosensor cells could concentrate a larger proportion of naphthalene through the gas phase than in the aqueous suspension, probably due to faster transport of naphthalene to the cells in the gas phase. This led to a 10-fold lower detectable aqueous naphthalene concentration (50 nM instead of 0.5 μM). Thus, the use of bacterial biosensors for measuring organic pollutants in the gas phase is a valid method for increasing the sensitivity of these valuable biological devices. PMID:14711624

  2. Determination of tramadol by dispersive liquid-liquid microextraction combined with GC-MS.

    PubMed

    Habibollahi, Saeed; Tavakkoli, Nahid; Nasirian, Vahid; Khani, Hossein

    2015-01-01

    Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) has been developed for preconcentration and determination of tramadol, ((±)-cis-2-[(dimethylamino)methyl]-1-(3-methoxyphenyl)cyclohexanol-HCl), in aqueous and biological samples (urine, blood). DLLME is a simple, rapid and efficient method for determination of drugs in aqueous samples. Efficient factors on the DLLME process has defined and optimized for extraction of tramadol including type of extraction and disperser solvents and their volumes, pH of donor phase, time of extraction and ionic strength of donor phase. Based on the results of this study, under optimal conditions and by using 2-nitro phenol as internal standard, tramadol was determined by GC-MS, and the figures of merit of this work were evaluated. The enrichment factor, relative recovery and limit of detection were obtained 420, 99.2% and 0.08 µg L(-1), respectively. The linear range was between 0.26 and 220.00 µg L(-1) (R(2) = 0.9970). The relative standard deviation for 50.00 µg L(-1) of tramadol in aqueous samples by using 2-nitro phenol as IS was 3.6% (n = 7). Finally, the performance of DLLME was evaluated for analysis of tramadol in urine and blood. Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  3. Using solid phase micro extraction to determine salting-out (Setschenow) constants for hydrophobic organic chemicals.

    PubMed

    Jonker, Michiel T O; Muijs, Barry

    2010-06-01

    With increasing ionic strength, the aqueous solubility and activity of organic chemicals are altered. This so-called salting-out effect causes the hydrophobicity of the chemicals to be increased and sorption in the marine environment to be more pronounced than in freshwater systems. The process can be described with empirical salting-out or Setschenow constants, which traditionally are determined by comparing aqueous solubilities in freshwater and saline water. Aqueous solubilities of hydrophobic organic chemicals (HOCs) however are difficult to determine, which might partly explain the limited size of the existing data base on Setschenow constants for these chemicals. In this paper, we propose an alternative approach for determining the constants, which is based on the use of solid phase micro extraction (SPME) fibers. Partitioning of polycyclic aromatic hydrocarbons (PAHs) to SPME fibers increased about 1.7 times when going from de-ionized water to seawater. From the log-linear relationship between SPME fiber-water partition coefficients and ionic strength, Setschenow constants were derived, which measured on average 0.35 L mol(-1). These values agreed with literature values existing for some of the investigated PAHs and were independent of solute hydrophobicity or molar volume. Based on the present data, SPME seems to be a convenient and suitable alternative technique to determine Setschenow constants for HOCs. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  4. Uptake of PAHs into polyoxymethylene and application to oil-soot (lampblack)-impacted soil samples.

    PubMed

    Hong, Lei; Luthy, Richard G

    2008-05-01

    Polyoxymethylene (POM) is a polymeric material used increasingly in passive sampling of hydrophobic organic contaminants such as PAHs and PCBs in soils and sediments. In this study, we examined the sorption behavior of 12 PAH compounds to POM and observed linear isotherms spanning two orders of magnitude of aqueous concentrations. Uptake kinetic studies performed in batch systems for up to 54 d with two different volume ratios of POM-to-aqueous phase were evaluated with coupled diffusion and mass transfer models to simulate the movement of PAHs during the uptake process and to assess the physicochemical properties and experimental conditions that control uptake rates. Diffusion coefficients of PAHs in POM were estimated to be well correlated with diffusants' molecular weights as D(POM) proportional, variant(MW)(-3), descending from 2.3 x 10(-10) cm(2) s(-1) for naphthalene to 7.0 x 10(-11) cm(2) s(-1) for pyrene. The uptake rates for PAHs with log K(ow)<5.8 were controlled by the POM phase and the hydrophobicity of PAH compounds. For more hydrophobic PAH compounds, the aqueous boundary layer played an increasingly important role in determining the overall mass transfer rate. The POM partitioning technique was demonstrated to agree well with two other procedures for measuring PAH soil-water distribution coefficients in oil-soot (lampblack) containing soil samples.

  5. Simultaneous extraction and HPLC determination of 3-indole butyric acid and 3-indole acetic acid in pea plant by using ionic liquid-modified silica as sorbent.

    PubMed

    Sheikhian, Leila; Bina, Sedigheh

    2016-01-15

    In this study, ionic liquid-modified silica was used as sorbent for simultaneous extraction and preconcentration of 3-indole butyric acid and 3-indole acetic acid in pea plants. The effect of some parameters such as pH and ionic strength of sample solution, amount of sorbent, flow rate of aqueous sample solution and eluent solution, concentration of eluent solution, and temperature were studied for each hormone solution. Percent extraction of 3-indole butyric acid and 3-indole acetic acid was strongly affected by pH of aqueous sample solution. Ionic strength of aqueous phase and temperature showed no serious effects on extraction efficiency of studied plant hormones. Obtained breakthrough volume was 200mL for each of studied hormones. Preconcentration factor for spectroscopic and chromatographic determination of studied hormones was 100 and 4.0×10(3) respectively. Each solid sorbent phase was reusable for almost 10 times of extraction/stripping procedure. Relative standard deviations of extraction/stripping processes of 3-indole butyric acid and 3-indole acetic acid were 2.79% and 3.66% respectively. The calculated limit of detections for IBA and IAA were 9.1×10(-2)mgL(-1) and 1.6×10(-1)mgL(-1) respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Determination of atranol and chloroatranol in perfumes using simultaneous derivatization and dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry.

    PubMed

    López-Nogueroles, Marina; Chisvert, Alberto; Salvador, Amparo

    2014-05-15

    A new analytical method based on simultaneous derivatization and dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography-mass spectrometry (GC-MS), for the determination of the allergenic compounds atranol and chloroatranol in perfumes, is presented. Derivatization of the target analytes by means of acetylation with anhydride acetic in carbonate buffer was carried out. Thereby volatility and detectability were increased for improved GC-MS sensitivity. In addition, extractability by DLLME was also enhanced due to a less polar character of the solutes. A liquid-liquid extraction was performed before DLLME to clean up the sample and to obtain an aqueous sample solution, free of the low polar matrix from the essential oils, as donor phase. Different parameters, such as the nature and volume of both the extraction and disperser solvents, the ionic strength of the aqueous donor phase or the effect of the derivatization reagent volume, were optimized. Under the selected conditions (injection of a mixture of 750μL of acetone as disperser solvent, 100μL of chloroform as extraction solvent and 100μL of anhydride acetic as derivatization reagent) the figures of merit of the proposed method were evaluated. Limits of detection in the low ngmL(-1) range were obtained. Matrix effect was observed in real perfume samples and thus, standard addition calibration is recommended. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Laboratory studies of aqueous-phase oxidation of polyols in submicron particles

    NASA Astrophysics Data System (ADS)

    Daumit, K. E.; Carrasquillo, A. J.; Hunter, J. F.; Kroll, J. H.

    2013-12-01

    Aqueous-phase oxidation has received recent attention as a potential pathway for the formation of highly oxidized organic aerosol. However most aqueous oxidation studies are performed in bulk solutions rather than aqueous droplets. Here we describe experiments in which aqueous oxidation is carried out within submicron particles, allowing for gas-particle partitioning of reactants, intermediates, and products. Using Fenton chemistry as a source of hydroxyl radicals, and a high-resolution aerosol mass spectrometer (AMS) for online characterization of particle composition, we find that aqueous oxidation can be quite rapid. The formation of high concentrations of oxalic acid is observed in the particle phase with some loss of carbon to the gas phase, indicating the formation of volatile products. We see a rapid degradation of condensed-phase oxidation products upon exposure to ultraviolet lights (centered at 350 nm) suggesting that these products may exist as iron(III)-oxalate complexes. Similar results are also seen when oxidation is carried out in bulk solution (with AMS analysis of the atomized solution); however in some cases the mass loss is less than is observed for submicron particles, likely due to differences in partitioning of early-generation products. Such products can partition out of the aqueous phase at the low liquid water contents in the chamber but remain in solution for further aqueous processing in bulk oxidation experiments. This work suggests that the product distributions from oxidation in aqueous aerosol may be substantially different than those in bulk oxidation, pointing to the need to carry out aqueous oxidation studies under atmospherically relevant partitioning conditions (with liquid water contents mimicking those of cloud droplets or wet aerosol).

  8. Aqueous oxidation of green leaf volatiles by hydroxyl radical as a source of SOA: Kinetics and SOA yields

    NASA Astrophysics Data System (ADS)

    Richards-Henderson, Nicole K.; Hansel, Amie K.; Valsaraj, Kalliat T.; Anastasio, Cort

    2014-10-01

    Green leaf volatiles (GLVs) are a class of oxygenated hydrocarbons released from vegetation, especially during mechanical stress or damage. The potential for GLVs to form secondary organic aerosol (SOA) via aqueous-phase reactions is not known. Fog events over vegetation will lead to the uptake of GLVs into water droplets, followed by aqueous-phase reactions with photooxidants such as the hydroxyl radical (OH). In order to determine if the aqueous oxidation of GLVs by OH can be a significant source of secondary organic aerosol, we studied the partitioning and reaction of five GLVs: cis-3-hexen-1-ol, cis-3-hexenyl acetate, methyl salicylate, methyl jasmonate, and 2-methyl-3-butene-2-ol. For each GLV we measured the kinetics of aqueous oxidation by OH, and the corresponding SOA mass yield. The second-order rate constants for GLVs with OH were all near diffusion controlled, (5.4-8.6) × 109 M-1 s-1 at 298 K, and showed a small temperature dependence, with an average activation energy of 9.3 kJ mol-1 Aqueous-phase SOA mass yields ranged from 10 to 88%, although some of the smaller values were not statistically different from zero. Methyl jasmonate was the most effective aqueous-phase SOA precursor due to its larger Henry's law constant and high SOA mass yield (68 ± 8%). While we calculate that the aqueous-phase SOA formation from the five GLVs is a minor source of aqueous-phase SOA, the availability of other GLVs, other oxidants, and interfacial reactions suggest that GLVs overall might be a significant source of SOA via aqueous reactions.

  9. Mixing in three-phase systems: Implications for enhanced oil recovery and unconventional gas extraction

    NASA Astrophysics Data System (ADS)

    Jimenez-Martinez, J.; Porter, M. L.; Hyman, J.; Carey, J. W.; Viswanathan, H. S.

    2015-12-01

    Although the mixing of fluids within a porous media is a common process in natural and industrial systems, how the degree of mixing depends on the miscibility of multiple phases is poorly characterized. Often, the direct consequence of miscible mixing is the modification of the resident fluid (brine and hydrocarbons) rheological properties. We investigate supercritical (sc)CO2 displacement and mixing processes in a three-phase system (scCO2, oil, and H2O) using a microfluidics experimental system that accommodates the high pressures and temperatures encountered in fossil fuel extraction operations. The miscibility of scCO2 with the resident fluids, low with aqueous solutions and high with hydrocarbons, impacts the mixing processes that control sweep efficiency in enhanced oil recovery (EOR) and the unlocking of the system in unconventional oil and gas extraction. Using standard volume-averaging techniques we upscale the aqueous phase saturation to the field-scale (i.e., Darcy scale) and interpret the results as a simpler two-phase system. This process allows us to perform a statistical analysis to quantify i) the degree of heterogeneity in the system resulting from the immiscible H2O and ii) how that heterogeneity impacts mixing between scCO2 and oil and their displacement. Our results show that when scCO2 is used for miscible displacement, the presence of an aqueous solution, which is common in secondary and tertiary EOR and unconventional oil and gas extraction, strongly impacts the mixing of scCO2 with the hydrocarbons due to low scCO2-H2O miscibility. H2O, which must be displaced advectively by the injected scCO2, introduces spatio-temporal variability into the system that acts as a barrier between the two miscibile fluids. This coupled with the effect of viscosity contrast, i.e., viscous fingering, has an impact on the mixing of the more miscible pair.

  10. Process for radioisotope recovery and system for implementing same

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Tranter, Troy J [Idaho Falls, ID; Horwitz, E Philip [Naperville, IL

    2009-10-06

    A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.

  11. Process for radioisotope recovery and system for implementing same

    DOEpatents

    Meikrantz, David H.; Todd, Terry A.; Tranter, Troy J.; Horwitz, E. Philip

    2007-01-02

    A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.

  12. Synthesis and characterization of new ion-imprinted polymer for separation and preconcentration of uranyl (UO2(2+)) ions.

    PubMed

    Ahmadi, Seyed Javad; Noori-Kalkhoran, Omid; Shirvani-Arani, Simindokht

    2010-03-15

    UO(2)(2+) ion-imprinted polymer materials used for solid-phase extraction were prepared by copolymerization of a ternary complex of uranyl ions with styrene and divinyl benzene in the presence of 2,2'-azobisisobutyronitrile. The imprinted particles were leached by HCl 6M. Various parameters in polymerization steps such as DVB/STY ratio, time of polymerization and temperature of polymerization were varied to achieve the most efficient uranyl-imprinted polymer. X-ray diffraction (XRD), infra-red spectroscopy (IR), thermo gravimetric analysis (TGA), UV-vis and nitrogen sorption were used to characterize the polymer particles. The XRD results showed that uranyl ions were completely removed from the polymer after leaching process. IR Analysis indicated that the N,N'-ethylenebis(pyridoxylideneiminato) remained intact in the polymer even after leaching. Some parameters such as pH, weight of the polymer, elution time, eluent volume and aqueous phase volume which affects the efficiency of the polymer were studied. (c) 2009 Elsevier B.V. All rights reserved.

  13. Method and apparatus for the removal of bioconversion of constituents of organic liquids

    DOEpatents

    Scott, Timothy; Scott, Charles D.

    1994-01-01

    A method and apparatus for the removal or conversion of constituents from bulk organic liquids. A countercurrent biphasic bioreactor system is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the constituent. Two transient, high-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the constituent to produce a product which is then removed from the bioreactor in the aqueous phase or retained in the organic phase. The organic liquid, now free of the original constituents, is ready for immediate use or further processing.

  14. Method for separating water soluble organics from a process stream by aqueous biphasic extraction

    DOEpatents

    Chaiko, David J.; Mego, William A.

    1999-01-01

    A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.

  15. On-line separation and preconcentration of lead(II) by solid-phase extraction using activated carbon loaded with xylenol orange and its determination by flame atomic absorption spectrometry.

    PubMed

    Ensafi, Ali A; Shiraz, A Zendegi

    2008-02-11

    Activated carbon loaded with xylenol orange in a mini-column was used for the highly selective separation and preconcentration of Pb(II) ions. An on-line system for enrichment and the determination of Pb(II) was carried out on flame atomic absorption spectrometry. The conditions of preconcentration and quantitative recovery of Pb(II) from diluted solution, such as pH of aqueous phase, amount of the sorbent, volume of the solutions and flow variables were studied as well as effect of potential interfering ions. Under the optimum conditions, Pb(II) in an aqueous sample was concentrated about 200-fold and the detection limit was 0.4 ng mL(-1) Pb(II). The adsorption capacity of the solid phase was 0.20mg of lead per one gram of the modified activated carbon. The modified activated carbon is stable for several treatments of sample solutions without the need for using any chemical reagent. The recovery of lead(II) from river water, waste water, tap water, and in the following reference materials: SRM 2711 Montana soil and GBW-07605 tea were obtained in the range of 97-104% by the proposed method.

  16. Recovery of laccase from processed Hericium erinaceus (Bull.:Fr) Pers. fruiting bodies in aqueous two-phase system.

    PubMed

    Rajagopalu, Devamalini; Show, Pau Loke; Tan, Yee Shin; Muniandy, Sekaran; Sabaratnam, Vikineswary; Ling, Tau Chuan

    2016-09-01

    The feasible use of aqueous two-phase systems (ATPSs) to establish a viable protocol for the recovery of laccase from processed Hericium erinaceus (Bull.:Fr.) Pers. fruiting bodies was evaluated. Cold-stored (4.00±1.00°C) H. erinaceus recorded the highest laccase activities of 2.02±0.04 U/mL among all the processed techniques. The evaluation was carried out in twenty-five ATPSs, which composed of polyethylene glycol (PEG) with various molecular weights and potassium phosphate salt solution to purify the protein from H. erinaceus. Optimum recovery condition was observed in the ATPS which contained 17% (w/w) PEG with a molecular weight of 8000 and 12.2% (w/w) potassium phosphate solution, at a volume ratio (VR) of 1.0. The use of ATPS resulted in one-single primary recovery stage process that produced an overall yield of 99% with a purification factor of 8.03±0.46. The molecular mass of laccases purified from the bottom phase was in the range of 55-66 kDa. The purity of the partitioned laccase was confirmed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Fabrication of Janus particles composed of poly (lactic-co-glycolic) acid and hard fat using a solvent evaporation method.

    PubMed

    Matsumoto, Akihiro; Murao, Satoshi; Matsumoto, Michiko; Watanabe, Chie; Murakami, Masahiro

    The feasibility of fabricating Janus particles based on phase separation between a hard fat and a biocompatible polymer was investigated. The solvent evaporation method used involved preparing an oil-in-water (o/w) emulsion with a mixture of poly (lactic-co-glycolic) acid (PLGA), hard fat, and an organic solvent as the oil phase and a polyvinyl alcohol aqueous solution as the water phase. The Janus particles were formed when the solvent was evaporated to obtain certain concentrations of PLGA and hard fat in the oil phase, at which phase separation was estimated to occur based on the phase diagram analysis. The hard fat hemisphere was proven to be the oil phase using a lipophilic dye Oil Red O. When the solvent evaporation process was performed maintaining a specific volume during the emulsification process; Janus particles were formed within 1.5 h. However, the formed Janus particles were destroyed by stirring for over 6 h. In contrast, a few Janus particles were formed when enough water to dissolve the oil phase solvent was added to the emulsion immediately after the emulsification process. The optimized volume of the solvent evaporation medium dominantly formed Janus particles and maintained the conformation for over 6 h with stirring. These results indicate that the formation and stability of Janus particles depend on the rate of solvent evaporation. Therefore, optimization of the solvent evaporation rate is critical to obtaining stable PLGA and hard fat Janus particles.

  18. Development of tropine-salt aqueous two-phase systems and removal of hydrophilic ionic liquids from aqueous solution.

    PubMed

    Wu, Haoran; Yao, Shun; Qian, Guofei; Song, Hang

    2016-08-26

    A novel aqueous two-phase systems (ATPS) composed of a small molecule organic compound tropine and an organic or inorganic salt aqueous solution has been developed for the first time. The phase behavior of tropine-salt ATPS was systemically investigated and the phase equilibrium data were measured in different temperatures and concentrations and correlated by the Merchuk equation with satisfactory results. The detection of the conductivity and particle size proved the formation of micelle in the process of forming tropine-salt ATPS. The separation application of the ATPS was assessed with the removal of hydrophilic benzothiazolium-based ionic liquids (ILs) from aqueous solution. The result showed that ILs were effectively extracted into the top tropine-rich phase. Finally, ILs in the top tropine-rich phase were further separated by the means of adsorption-desorption with DM301 macroporous resin and ethanol. The method of novel tropine-salt ATPS combined with adsorption-desorption is demonstrated a promising alternative thought and approach for the removal or recovery of hydrophilic compounds from aqueous media and also could provide a potential application for bio-separation. Copyright © 2016. Published by Elsevier B.V.

  19. Tube Radial Distribution Flow Separation in a Microchannel Using an Ionic Liquid Aqueous Two-Phase System Based on Phase Separation Multi-Phase Flow.

    PubMed

    Nagatani, Kosuke; Shihata, Yoshinori; Matsushita, Takahiro; Tsukagoshi, Kazuhiko

    2016-01-01

    Ionic liquid aqueous two-phase systems were delivered into a capillary tube to achieve tube radial distribution flow (TRDF) or annular flow in a microspace. The phase diagram, viscosity of the phases, and TRDF image of the 1-butyl-3-methylimidazolium chloride and NaOH system were examined. The TRDF was formed with inner ionic liquid-rich and outer ionic liquid-poor phases in the capillary tube. The phase configuration was explained using the viscous dissipation principle. We also examined the distribution of rhodamine B in a three-branched microchannel on a microchip with ionic liquid aqueous two-phase systems for the first time.

  20. Biochemical characterization of sap (latex) of a few Indian mango varieties.

    PubMed

    John, K Saby; Bhat, S G; Prasada Rao, U J S

    2003-01-01

    Mango sap (latex) from four Indian varieties was studied for its composition. Sap was separated into non-aqueous and aqueous phases. Earlier, we reported that the non-aqueous phase contained mainly mono-terpenes having raw mango aroma (Phytochemistry 52 (1999) 891). In the present study biochemical composition of the aqueous phase was studied. Aqueous phase contained little amount of protein (2.0-3.5 mg/ml) but showed high polyphenol oxidase (147-214 U/mg protein) and peroxidase (401-561 U/mg protein) activities. It contained low amounts of polyphenols and protease activities. On native PAGE, all the major protein bands exhibited both polyphenol oxidase and peroxidase activities. Both polyphenol oxidase and peroxidase activities were found to be stable in the aqueous phase of sap at 4 degrees C. Sap contained large amount of non-dialyzable and non-starchy carbohydrate (260-343 mg/ml sap) which may be responsible for maintaining a considerable pressure of fluid in the ducts. Thus, the mango sap could be a valuable by-product in the mango industry as it contains some of the valuable enzymes and aroma components.

  1. Synthesis and application of ion-imprinted polymer nanoparticles for the extraction and preconcentration of zinc ions.

    PubMed

    Roushani, Mahmoud; Abbasi, Shahryar; Khani, Hossein; Sahraei, Reza

    2015-04-15

    A new Zinc (II) ion-imprinted polymer (IIPs) nanoparticles was synthesised for the separation and recovery of trace Zn (II) ion from food and water sample. Zn (II) IIP was prepared by copolymerisation of methyl methacrylate (monomer) and ethylene glycol dimethacrylate (cross-linker) in the presence of Zn (II)-N,N'-o-phenylene bis (salicylideneimine) ternary complex wherein Zn (II) ion is the imprint ion and is used to form the imprinted polymer. Moreover, control polymer (NIP) particles were similarly prepared without the zinc (II) ions. The unleached and leached IIP particles were characterised by X-ray diffraction, Fourier transform infra-red spectroscopy and scanning electron microscopy. The preconcentration of Zn(2+) from aqueous solution was studied during rebinding with the leached IIP particles as a function of pH, the weight of the polymer material, the uptake and desorption times, the aqueous phase and the desorption volumes. Flame atomic absorption spectrometry was employed for determination of zinc in aqueous solution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Electrical conductivity of the plagioclase-NaCl-water system and its implication for the high conductivity anomalies in the mid-lower crust of Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Li, Ping; Guo, Xinzhuan; Chen, Sibo; Wang, Chao; Yang, Junlong; Zhou, Xingfan

    2018-02-01

    In order to investigate the origin of the high conductivity anomalies geophysically observed in the mid-lower crust of Tibet Plateau, the electrical conductivity of plagioclase-NaCl-water system was measured at 1.2 GPa and 400-900 K. The relationship between electrical conductivity and temperature follows the Arrhenius law. The bulk conductivity increases with the fluid fraction and salinity, but is almost independent of temperature (activation enthalpy less than 0.1 eV). The conductivity of plagioclase-NaCl-water system is much lower than that of albite-NaCl-water system with similar fluid fraction and salinity, indicating a strong effect of the major mineral phase on the bulk conductivity of the brine-bearing system. The high conductivity anomalies of 10-1 and 100 S/m observed in the mid-lower crust of Tibet Plateau can be explained by the aqueous fluid with a volume fraction of 1 and 9%, respectively, if the fluid salinity is 25%. The anomaly value of 10-1 S/m can be explained by the aqueous fluid with a volume fraction of 6% if the salinity is 10%. In case of Southern Tibet where the heat flow is high, the model of a thin layer of brine-bearing aqueous fluid with a high salinity overlying a thick layer of partial melt is most likely to prevail.

  3. Mixed-phase aerosol particles

    NASA Astrophysics Data System (ADS)

    Corti, T.; Krieger, U. K.; Koop, T.; Peter, T.

    2003-04-01

    Within a liquid aerosol particle a solid phase may coexist with the liquid over a wide range of ambient conditions. The optical properties of such particles are of interest for a number of reasons. They will affect the scattering albedo of atmospheric aerosols, may cause depolarisation in lidar measurements, and potentially open a window for studying the internal morphology and physical properties (e.g. wetting properties, diffusion constants) of composite particles in laboratory experiments. In this contribution, we will present results of experimental and theoretical work on mixed-phase aerosol particles. The optical properties of mixed-phase particles depend on the location of the inclusion in the liquid phase, which is determined by the surface tensions of the involved interfaces. In the case of complete wetting, the energetically favoured position of the inclusion is in the volume of the liquid phase. For partial wetting, a position at the surface of the liquid phase is favoured, with the contact angle between the solid, liquid and air being described by Young's equation. For systems with small contact angles, the difference in energy between an inclusion situated at the droplets surface and in its volume may be so small that the thermal energy kT is sufficient to displace the inclusion from the droplet surface into its volume. The critical contact angle depends on the size of the inclusion and the droplet and ranges from 0.1 to 10 degrees. Examples of mixed-phase aerosol particles are aged soot particles and sea salt particles at low relative humidity. For aged soot, contact angles on sulphuric acid clearly above 10 degrees have been reported, so that soot inclusions are expected to be located at the surface of aerosol particles. For mixed-phase sea salt particles, consisting of a solid NaCl inclusion and an aqueous solution of mainly NaCl and MgCl2, our measurements on macroscopic NaCl crystals show a contact angle clearly below 10 degrees and possibly as low as 0.1 degrees. An experimental method - based on measuring photon count statistics - is developed to distinguish in single levitated aerosol particle whether a solid inclusion is located in the volume of the particle or at its surface.

  4. URANIUM DECONTAMINATION WITH RESPECT TO ZIRCONIUM

    DOEpatents

    Vogler, S.; Beederman, M.

    1961-05-01

    A process is given for separating uranium values from a nitric acid aqueous solution containing uranyl values, zirconium values and tetravalent plutonium values. The process comprises contacting said solution with a substantially water-immiscible liquid organic solvent containing alkyl phosphate, separating an organic extract phase containing the uranium, zirconium, and tetravalent plutonium values from an aqueous raffinate, contacting said organic extract phase with an aqueous solution 2M to 7M in nitric acid and also containing an oxalate ion-containing substance, and separating a uranium- containing organic raffinate from aqueous zirconium- and plutonium-containing extract phase.

  5. Method and apparatus for the removal or bioconversion of constituents of organic liquids

    DOEpatents

    Scott, T.; Scott, C.D.

    1994-10-25

    A method and apparatus are disclosed for the removal or conversion of constituents from bulk organic liquids. A countercurrent biphasic bioreactor system is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the constituent. Two transient, high-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the constituent to produce a product which is then removed from the bioreactor in the aqueous phase or retained in the organic phase. The organic liquid, now free of the original constituents, is ready for immediate use or further processing. 1 fig.

  6. Trace determination of zinc by substoichiometric isotope dilution analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhya, D.; Priya, S.; Subramanian, M.O.S.

    1996-09-01

    A radiometric method based on substoichiometric isotope dilution analysis using 1,10-phenanthroline and a substoichiometric amount of eosin was developed for determining trace amounts of zinc. Evaluation of various metal ion interferences shows that as little as 0.2 {mu}g Zn could be determined in an aqueous-phase volume of 60 mL. The method has been successfully applied to the determination of Zn in city waste incineration ash, cadmium metal, Fourts-B tablets, Boro-plus ointment, and magnesium alloy samples. 12 refs., 3 figs., 3 tabs.

  7. Impact of In-Cloud Aqueous Processes on the Chemistry and Transport of Biogenic Volatile Organic Compounds

    NASA Astrophysics Data System (ADS)

    Li, Yang; Barth, Mary C.; Patton, Edward G.; Steiner, Allison L.

    2017-10-01

    We investigate the impacts of cloud aqueous processes on the chemistry and transport of biogenic volatile organic compounds (BVOC) using the National Center for Atmospheric Research's large-eddy simulation code with an updated chemical mechanism that includes both gas- and aqueous-phase reactions. We simulate transport and chemistry for a meteorological case with a diurnal pattern of nonprecipitating cumulus clouds from the Baltimore-Washington area DISCOVER-AQ campaign. We evaluate two scenarios with and without aqueous-phase chemical reactions. In the cloud layer (2-3 km), the addition of aqueous phase reactions decreases HCHO by 18% over the domain due to its solubility and the fast depletion from aqueous reactions, resulting in a corresponding decrease in radical oxidants (e.g., 18% decrease in OH). The decrease of OH increases the mixing ratios of isoprene and methacrolein (MACR) (100% and 15%, respectively) in the cloud layer because the reaction rate is lower. Aqueous-phase reactions can modify the segregation between OH and BVOC by changing the sign of the segregation intensity, causing up to 55% reduction in the isoprene-OH reaction rate and 40% reduction for the MACR-OH reaction when clouds are present. Analysis of the isoprene-OH covariance budget shows the chemistry term is the primary driver of the strong segregation in clouds, triggered by the decrease in OH. All organic acids except acetic acid are formed only through aqueous-phase reactions. For acids formed in the aqueous phase, turbulence mixes these compounds on short time scales, with the near-surface mixing ratios of these acids reaching 20% of the mixing ratios in the cloud layer within 1 h of cloud formation.

  8. Optimal experimental designs for estimating Henry's law constants via the method of phase ratio variation.

    PubMed

    Kapelner, Adam; Krieger, Abba; Blanford, William J

    2016-10-14

    When measuring Henry's law constants (k H ) using the phase ratio variation (PRV) method via headspace gas chromatography (G C ), the value of k H of the compound under investigation is calculated from the ratio of the slope to the intercept of a linear regression of the inverse G C response versus the ratio of gas to liquid volumes of a series of vials drawn from the same parent solution. Thus, an experimenter collects measurements consisting of the independent variable (the gas/liquid volume ratio) and dependent variable (the G C -1 peak area). A review of the literature found that the common design is a simple uniform spacing of liquid volumes. We present an optimal experimental design which estimates k H with minimum error and provides multiple means for building confidence intervals for such estimates. We illustrate performance improvements of our design with an example measuring the k H for Naphthalene in aqueous solution as well as simulations on previous studies. Our designs are most applicable after a trial run defines the linear G C response and the linear phase ratio to the G C -1 region (where the PRV method is suitable) after which a practitioner can collect measurements in bulk. The designs can be easily computed using our open source software optDesignSlopeInt, an R package on CRAN. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Scalable synthesis of hierarchical macropore-rich activated carbon microspheres assembled by carbon nanoparticles for high rate performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Dongdong; Zhao, Jianghong; Feng, Chong; Zhao, Rijie; Sun, Yahui; Guan, Taotao; Han, Baixin; Tang, Nan; Wang, Jianlong; Li, Kaixi; Qiao, Jinli; Zhang, Jiujun

    2017-02-01

    A scalable inverse-microemulsion-polymerization-phase-separation coupling method is applied to successfully prepare hierarchical macropore-rich activated carbon microspheres (ACS) using a phenolic resin (PR) precursor followed by carbonization and KOH activation for the first time. The formed ACS materials are assembled by carbon nanoparticles (CNPs). The macropores interspersed among the component CNPs are formed after removing the non-reactive solvent phase in the course of the polymerization of the reactive PR phase, which occupies ∼64% of the total pore volume (∼2.779 cm3 g-1) of the optimized ACS. In combination with mesopores (∼18% of the total pore volume), the ACS possesses meso/macropores approaching 82% of the total pore volume. Micropores are created in the component CNPs via KOH activation, showing shortened ion transport distances in the nanoscale dimension. Both the hierarchical micro/meso/macroporous structure and the inner nanoparticle morphology (short ion diffusion pathways) can significantly contribute to the rapid transport of electrolyte ions throughout the carbonaceous matrix, resulting in superior rate performance of ACS-based supercapacitors. More importantly, the energy densities of the ACS supercapacitors operating in both aqueous and organic electrolyte retain steady over a wide range of power densities varying dramatically from 0.25 to 14.5 kW kg-1 and to 7.0 kW kg-1, respectively.

  10. Ca(2+) -complex stability of GAPAGPLIVPY peptide in gas and aqueous phase, investigated by affinity capillary electrophoresis and molecular dynamics simulations and compared to mass spectrometric results.

    PubMed

    Nachbar, Markus; El Deeb, Sami; Mozafari, Mona; Alhazmi, Hassan A; Preu, Lutz; Redweik, Sabine; Lehmann, Wolf Dieter; Wätzig, Hermann

    2016-03-01

    Strong, sequence-specific gas-phase bindings between proline-rich peptides and alkaline earth metal ions in nanoESI-MS experiments were reported by Lehmann et al. (Rapid Commun. Mass Spectrom. 2006, 20, 2404-2410), however its relevance for physiological-like aqueous phase is uncertain. Therefore, the complexes should also be studied in aqueous solution and the relevance of the MS method for binding studies be evaluated. A mobility shift ACE method was used for determining the binding between the small peptide GAPAGPLIVPY and various metal ions in aqueous solution. The findings were compared to the MS results and further explained using computational methods. While the MS data showed a strong alkaline earth ion binding, the ACE results showed nonsignificant binding. The proposed vacuum state complex also decomposed during a molecular dynamic simulation in aqueous solution. This study shows that the formed stable peptide-metal ion adducts in the gas phase by ESI-MS does not imply the existence of analogous adducts in the aqueous phase. Comparing peptide-metal ion interaction under the gaseous MS and aqueous ACE conditions showed huge difference in binding behavior. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Phase Transition of Poly(acrylic acid-co-N-isopropylacrylamide) Core-shell Nanogels

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-bing; Zhou, Jian-feng; Ye, Xiao-dong

    2012-08-01

    A series of poly(acrylic acid) macromolecular chain transfer agents with different molecular weights were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and characterized by 1H NMR and gel permeation chromatography. Multiresponsive core-shell nanogels were prepared by dispersion polymerization of N-isopropylacrylamide in water using these poly(potassium acrylate) macro-RAFT agents as the electrosteric stabilizer. The size of the nanogels decreases with the amount of the macro-RAFT agent, indicating that the surface area occupied by per polyelectrolyte group is a critical parameter for stabilizing the nanogels. The volume phase transition and the zeta potentials of the nanogels in aqueous solutions were studied by dynamic light scattering and zetasizer analyzer, respectively.

  12. Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks.

    PubMed

    Posmanik, Roy; Labatut, Rodrigo A; Kim, Andrew H; Usack, Joseph G; Tester, Jefferson W; Angenent, Largus T

    2017-06-01

    Hydrothermal liquefaction converts food waste into oil and a carbon-rich hydrothermal aqueous phase. The hydrothermal aqueous phase may be converted to biomethane via anaerobic digestion. Here, the feasibility of coupling hydrothermal liquefaction and anaerobic digestion for the conversion of food waste into energy products was examined. A mixture of polysaccharides, proteins, and lipids, representing food waste, underwent hydrothermal processing at temperatures ranging from 200 to 350°C. The anaerobic biodegradability of the hydrothermal aqueous phase was examined through conducting biochemical methane potential assays. The results demonstrate that the anaerobic biodegradability of the hydrothermal aqueous phase was lower when the temperature of hydrothermal processing increased. The chemical composition of the hydrothermal aqueous phase affected the anaerobic biodegradability. However, no inhibition of biodegradation was observed for most samples. Combining hydrothermal and anaerobic digestion may, therefore, yield a higher energetic return by converting the feedstock into oil and biomethane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Highly efficient and ultra-small volume separation by pressure-driven liquid chromatography in extended nanochannels.

    PubMed

    Ishibashi, Ryo; Mawatari, Kazuma; Kitamori, Takehiko

    2012-04-23

    The rapidly developing interest in nanofluidic analysis, which is used to examine liquids ranging in amounts from the attoliter to the femtoliter scale, correlates with the recent interest in decreased sample amounts, such as in the field of single-cell analysis. For general nanofluidic analysis, the fact that a pressure-driven flow does not limit the choice of solvents (aqueous or organic) is important. This study shows the first pressure-driven liquid chromatography technique that enables separation of atto- to femtoliter sample volumes, with a high separation efficiency within a few seconds. The apparent diffusion coefficient measurement of the unretentive sample suggests that there is no increase in the viscosity of toluene in the extended nanospace, unlike in aqueous solvents. Evaluation of the normal phase separation, therefore, should involve only the examination of the effect of the small size of the extended nanospace. Compared to a conventionally packed high-performance liquid chromatography column, the separation here results in a faster separation (4 s) by 2 orders of magnitude, a smaller injection volume (10(0) fL) by 9 orders, and a higher separation efficiency (440,000 plates/m) by 1 order. Moreover, the separation behavior agrees with the theory showing that this high efficiency was due to the small and controlled size of the separation channel, where the diffusion through the channel depth direction is fast enough to be neglected. Our chip-based platform should allow direct and real-time analysis or screening of ultralow volume of sample. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hydrogels with a Memory: Dual-Responsive, Organometallic Poly(ionic liquid)s with Hysteretic Volume-Phase Transition

    PubMed Central

    2017-01-01

    We report on the synthesis and structure–property relations of a novel, dual-responsive organometallic poly(ionic liquid) (PIL), consisting of a poly(ferrocenylsilane) backbone of alternating redox-active, silane-bridged ferrocene units and tetraalkylphosphonium sulfonate moieties in the side groups. This PIL is redox responsive due to the presence of ferrocene in the backbone and also exhibits a lower critical solution temperature (LCST)-type thermal responsive behavior. The LCST phase transition originates from the interaction between water molecules and the ionic substituents and shows a concentration-dependent, tunable transition temperature in aqueous solution. The PIL’s LCST-type transition temperature can also be influenced by varying the redox state of ferrocene in the polymer main chain. As the polymer can be readily cross-linked and is easily converted into hydrogels, it represents a new dual-responsive materials platform. Interestingly, the as-formed hydrogels display an unusual, strongly hysteretic volume-phase transition indicating useful thermal memory properties. By employing the dispersing abilities of this cationic PIL, CNT-hydrogel composites were successfully prepared. These hybrid conductive composite hydrogels showed bi-stable states and tunable resistance in heating–cooling cycles. PMID:28654756

  15. Insights into Aqueous-phase processing through Comparison of the Organic Chemical Composition of Atmospheric Particles and Cloud Water in the Southeast United States

    NASA Astrophysics Data System (ADS)

    Boone, E.; Laskin, J.; Laskin, A.; Wirth, C.; Shepson, P. B.; Stirm, B. H.; Pratt, K.

    2014-12-01

    Organic compounds comprise a significant mass fraction of submicron atmospheric particles with considerable contribution from secondary organic aerosol (SOA), a large fraction of which is formed from the oxidation of biogenic volatile organic compounds. Aqueous-phase reactions in particles and cloud droplets are suggested to increase SOA mass and change the chemical composition the particles following cloud evaporation. Aqueous-phase processing may also explain discrepancies between measurements and models. To gain a better understanding of these processes, cloud water and below-cloud atmospheric particles were collected onboard a research aircraft during the Southeast Oxidants and Aerosol Study (SOAS) over Alabama in June 2013. Nanospray desorption electrospray ionization (nano-DESI) and direct electrospray ionization (ESI) coupled with high resolution mass spectrometry were utilized to compare the organic molecular composition of the particle and cloud water samples, respectively. Several hundred unique compounds have been identified in the particle and cloud water samples, allowing possible aqueous-phase reactions to be examined. Hydrolysis of organosulfate compounds, aqueous-phase formation of nitrogen-containing compounds, and possible fragmentation of oligomeric compounds will be discussed, with comparisons to previous laboratory studies. This study provides insights into aqueous-phase reactions in ambient cloud droplets.

  16. Microengineered embryonic stem cells niche to induce neural differentiation.

    PubMed

    Joshi, Ramila; Tavana, Hossein

    2015-08-01

    A major challenge in therapeutic use of embryonic stem cells (ESCs) for treating neurodegenerative diseases is creating a niche in vitro for controlled neural-specific differentiation of ESCs. We employ a niche microengineering approach to derive neural cells from ESCs by mimicking embryonic development in terms of direct intercellular interactions. Using a polymeric aqueous two-phase system (ATPS) microprinting technology, murine ESCs (mESCs) are precisely localized over a monolayer of supporting stromal cells to allow formation of individual mESC colonies. Polyethylene glycol (PEG) and dextran (DEX) are dissolved in culture media to form two immiscible aqueous solutions. A robotic liquid handler is used to print a nanoliter-volume drop of the denser DEX phase solution containing mESCs onto a confluent layer of supporting PA6 stromal cells submerged in the aqueous PEG phase. mESCs proliferate into isolated colonies of uniform size. For the first time, a comprehensive protein expression analysis of individual mESC colonies is performed over a two-week culture period to track temporal progression of cells from a pluripotent stage to specific neural cells. Starting from day 4, the expression of nestin, neural cell adhesion molecule (NCAM), and beta-III tubulin shows a significant increase but then levels off after the first week of culture. The expression of specific neural cell markers glial fibrillary acidic protein (GFAP), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase), and tyrosine hydroxylase (TH) is elevated during the second week of culture. This microengineering approach to control ESCs differentiation niche combined with the time-course protein expression analysis of individual differentiating colonies facilitates understanding of evolution of specific neural cells from ESCs and identifying underlying molecular markers.

  17. Cloud-point extraction of green-polymers from Cupriavidus necator lysate using thermoseparating-based aqueous two-phase extraction.

    PubMed

    Leong, Yoong Kit; Lan, John Chi-Wei; Loh, Hwei-San; Ling, Tau Chuan; Ooi, Chien Wei; Show, Pau Loke

    2017-03-01

    Polyhydroxyalkanoates (PHAs), a class of renewable and biodegradable green polymers, have gained attraction as a potential substitute for the conventional plastics due to the increasing concern towards environmental pollution as well as the rapidly depleting petroleum reserve. Nevertheless, the high cost of downstream processing of PHA has been a bottleneck for the wide adoption of PHAs. Among the options of PHAs recovery techniques, aqueous two-phase extraction (ATPE) outshines the others by having the advantages of providing a mild environment for bioseparation, being green and non-toxic, the capability to handle a large operating volume and easily scaled-up. Utilizing unique properties of thermo-responsive polymer which has decreasing solubility in its aqueous solution as the temperature rises, cloud point extraction (CPE) is an ATPE technique that allows its phase-forming component to be recycled and reused. A thorough literature review has shown that this is the first time isolation and recovery of PHAs from Cupriavidus necator H16 via CPE was reported. The optimum condition for PHAs extraction (recovery yield of 94.8% and purification factor of 1.42 fold) was achieved under the conditions of 20 wt/wt % ethylene oxide-propylene oxide (EOPO) with molecular weight of 3900 g/mol and 10 mM of sodium chloride addition at thermoseparating temperature of 60°C with crude feedstock limit of 37.5 wt/wt %. Recycling and reutilization of EOPO 3900 can be done at least twice with satisfying yield and PF. CPE has been demonstrated as an effective technique for the extraction of PHAs from microbial crude culture. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Occurrence of select perfluoroalkyl substances at U.S. Air Force aqueous film-forming foam release sites other than fire-training areas: Field-validation of critical fate and transport properties.

    PubMed

    Anderson, R Hunter; Long, G Cornell; Porter, Ronald C; Anderson, Janet K

    2016-05-01

    The use of aqueous film-forming foam (AFFF) to extinguish hydrocarbon-based fires is recognized as a significant source of environmental poly- and perfluoroalkyl substances (PFASs). Although the occurrence of select PFASs in soil and groundwater at former fire-training areas (FTAs) at military installations operable since 1970 has been consistently confirmed, studies reporting the occurrence of PFASs at other AFFF-impacted sites (e.g. emergency response locations, AFFF lagoons, hangar-related AFFF storage tanks and pipelines, and fire station testing and maintenance areas) are largely missing from the literature. Further, studies have mostly focused on a single site (i.e., FTAs at military installations) and, thus, lack a comparison of sites with diverse AFFF release history. Therefore, the purpose of this investigation was to evaluate select PFAS occurrence at non-FTA sites on active U.S. Air Force installations with historic AFFF use of varying magnitude. Concentrations of fifteen perfluoroalkyl acids (PFAAs) and perfluorooctane sulfonamide (PFOSA), an important PFOS precursor, were measured from several hundred samples among multiple media (i.e., surface soil, subsurface soil, sediment, surface water, and groundwater) collected from forty AFFF-impacted sites across ten installations between March and September 2014, representing one of the most comprehensive datasets on environmental PFAS occurrence to date. Differences in detection frequencies and observed concentrations due to AFFF release volume are presented along with rigorous data analyses that quantitatively demonstrate phase-dependent (i.e., solid-phase vs aqueous-phase) differences in the chemical signature as a function of carbon chain-length and in situ PFOS (and to a slightly lesser extent PFHxS) formation, presumably due to precursor biotransformation. Published by Elsevier Ltd.

  19. Improvement of oxygen-containing functional groups on olive stones activated carbon by ozone and nitric acid for heavy metals removal from aqueous phase.

    PubMed

    Bohli, Thouraya; Ouederni, Abdelmottaleb

    2016-08-01

    Recently, modification of surface structure of activated carbons in order to improve their adsorption performance toward especial pollutants has gained great interest. Oxygen-containing functional groups have been devoted as the main responsible for heavy metal binding on the activated carbon surface; their introduction or enhancement needs specific modification and impregnation methods. In the present work, olive stones activated carbon (COSAC) undergoes surface modifications in gaseous phase using ozone (O3) and in liquid phase using nitric acid (HNO3). The activated carbon samples were characterized using N2 adsorption-desorption isotherm, SEM, pHpzc, FTIR, and Boehm titration. The activated carbon parent (COSAC) has a high surface area of 1194 m(2)/g and shows a predominantly microporous structure. Oxidation treatments with nitric acid and ozone show a decrease in both specific surface area and micropore volumes, whereas these acidic treatments have led to a fixation of high amount of surface oxygen functional groups, thus making the carbon surface more hydrophilic. Activated carbon samples were used as an adsorbent matrix for the removal of Co(II), Ni(II), and Cu(II) heavy metal ions from aqueous solutions. Adsorption isotherms were obtained at 30 °C, and the data are well fitted to the Redlich-Peterson and Langmuir equation. Results show that oxidized COSACs, especially COSAC(HNO3), are capable to remove more Co(II), Cu(II), and Ni(II) from aqueous solution. Nitric acid-oxidized olive stones activated carbon was tested in its ability to remove metal ions from binary systems and results show an important maximum adsorbed amount as compared to single systems.

  20. Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products.

    PubMed

    Aljawhary, Dana; Zhao, Ran; Lee, Alex K Y; Wang, Chen; Abbatt, Jonathan P D

    2016-03-10

    Formation of secondary organic aerosol (SOA) involves atmospheric oxidation of volatile organic compounds (VOCs), the majority of which are emitted from biogenic sources. Oxidation can occur not only in the gas-phase but also in atmospheric aqueous phases such as cloudwater and aerosol liquid water. This study explores for the first time the aqueous-phase OH oxidation chemistry of oxidation products of α-pinene, a major biogenic VOC species emitted to the atmosphere. The kinetics, reaction mechanisms, and formation of SOA compounds in the aqueous phase of two model compounds, cis-pinonic acid (PIN) and tricarballylic acid (TCA), were investigated in the laboratory; TCA was used as a surrogate for 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a known α-pinene oxidation product. Aerosol time-of-flight chemical ionization mass spectrometry (Aerosol-ToF-CIMS) was used to follow the kinetics and reaction mechanisms at the molecular level. Room-temperature second-order rate constants of PIN and TCA were determined to be 3.3 (± 0.5) × 10(9) and 3.1 (± 0.2) × 10(8) M(-1) s(-1), respectively, from which were estimated their condensed-phase atmospheric lifetimes. Aerosol-ToF-CIMS detected a large number of products leading to detailed reaction mechanisms for PIN and MBTCA. By monitoring the particle size distribution after drying, the amount of SOA material remaining in the particle phase was determined. An aqueous SOA yield of 40 to 60% was determined for PIN OH oxidation. Although recent laboratory studies have focused primarily on aqueous-phase processing of isoprene-related compounds, we demonstrate that aqueous formation of SOA materials also occurs from monoterpene oxidation products, thus representing an additional source of biogenically driven aerosol formation.

  1. Aqueous-Phase Acetic Acid Ketonization over Monoclinic Zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Qiuxia; Lopez-Ruiz, Juan A.; Cooper, Alan R.

    The effect of aqueous phase on the acetic acid ketonization over monoclinic zirconia has been investigated using first-principles based density functional theory (DFT) calculations. To capture the aqueous phase chemistry over the solid zirconia catalyst surface, the aqueous phase is represented by 111 explicit water molecules with a liquid water density of 0.93 g/cm3 and the monoclinic zirconia is modeled by the most stable surface structure . The dynamic nature of aqueous phase/ interface was studied using ab initio molecular dynamics simulation, indicating that nearly half of the surface Zr sites are occupied by either adsorbed water molecules or hydroxylmore » groups at 550 K. DFT calculations show that the adsorption process of acetic acid from the liquid water phase to the surface is nearly thermodynamically neutral with a Gibbs free energy of -2.3 kJ/mol although the adsorption strength of acetic acid on the surface in aqueous phase is much stronger than in vapor phase. Therefore it is expected that the adsorption of acetic acid will dramatically affects aqueous phase ketonization reactivity over the monoclinic zirconia catalyst. Using the same ketonization mechanism via the β-keto acid intermediate, we have compared acetic acid ketonization to acetone in both vapor and aqueous phases. Our DFT calculation results show although the rate-determining step of the β-keto acid formation via the C-C coupling is not pronouncedly affected, the presence of liquid water molecules will dramatically affect dehydrogenation and hydrogenation steps via proton transfer mechanism. This work was financially supported by the United States Department of Energy (DOE)’s Bioenergy Technologies Office (BETO) and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle Memorial Institute. Computing time and advanced catalyst characterization use was granted by a user proposal at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research and located at PNNL.« less

  2. REMOVAL OF CHLORIDE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Schulz, W.W.

    1959-08-01

    The removal of chlorides from aqueons solutions is described. The process involves contacting the aqueous chloride containing solution with a benzene solution about 0.005 M in phenyl mercuric acetate whereby the chloride anions are taken up by the organic phase and separating the organic phase from the aqueous solutions.

  3. The effect of undissolved air on isochoric freezing.

    PubMed

    Perez, Pedro A; Preciado, Jessica; Carlson, Gary; DeLonzor, Russ; Rubinsky, Boris

    2016-06-01

    This study evaluates the effect of undissolved air on isochoric freezing of aqueous solutions. Isochoric freezing is concerned with freezing in a constant volume thermodynamic system. A possible advantage of the process is that it substantially reduces the percentage of ice in the system at every subzero temperature, relative to atmospheric freezing. At the pressures generated by isochoric freezing, or high pressure isobaric freezing, air cannot be considered an incompressible substance and the presence of undissolved air substantially increases the amount of ice that forms at any subfreezing temperature. This effect is measurable at air volumes as low as 1%. Therefore eliminating the undissolved air, or any separate gaseous phase, from the system is essential for retaining the properties of isochoric freezing. Copyright © 2016. Published by Elsevier Inc.

  4. Arsenic interactions with a fullerene-like BN cage in the vacuum and aqueous phase.

    PubMed

    Beheshtian, Javad; Peyghan, Ali Ahmadi; Bagheri, Zargham

    2013-02-01

    Adsorption of arsenic ions, As (III and V), on the surface of fullerene-like B(12)N(12) cage has been explored in vacuum and aqueous phase using density functional theory in terms of Gibbs free energies, enthalpies, geometry, and density of state analysis. It was found that these ions can be strongly chemisorbed on the surface of the cluster in both vacuum and aqueous phase, resulting in significant changes in its electronic properties so that the cluster transforms from a semi-insulator to a semiconductor. The solvent significantly affects the geometry parameters and electronic properties of the As/B(12)N(12) complexes and the interaction between components is considerably weaker in the aqueous phase than that in the vacuum.

  5. Focused microwave-assisted solvent extraction and HPLC determination of effective constituents in Eucommia ulmodies Oliv. (E. ulmodies).

    PubMed

    Li, Hui; Chen, Bo; Zhang, Zhaohui; Yao, Shouzhuo

    2004-06-17

    A new focused microwave-assisted solvent extraction method using water as solvent has been developed for leaching geniposidic and chlorogenic acids from Eucommia ulmodies Oliv. The extraction procedures were optimized using a two indexes orthogonal experimental design and graphical analysis, by varying irradiation time, solvent volume, solvent composition and microwave power. The optimum extraction conditions were obtained: for geniposidic acid, 50% micorwave power, 40s irradiation, and 80% (v/v) aqueous methanol as extraction solvent (20mlg(-1) sample); and for chlorogenic acid, 50% micorwave power, 30s irradiation, and 20% aqueous methanol (20mlg(-1) sample). The composition of the extraction solvent was optimized and can be directly used as the mobile phase in the HPLC separation. Quantification of organic acids was done by HPLC at room temperature using Spherigel C(18) chromatographic column (250 mm x4.6 mm , i.d. 5mum), the methanol:water:acetic acid (20:80:1.0, v/v) mobile phase and UV detection at 240nm. The R.S.D. of the extraction process for geniposidic and chlorogenic acid were 3.8 and 4.1%, respectively.

  6. Development of a novel ultrasound-assisted headspace liquid-phase microextraction and its application to the analysis of chlorophenols in real aqueous samples.

    PubMed

    Xu, Hui; Liao, Ying; Yao, Jinrong

    2007-10-05

    A new sample pretreatment technique, ultrasound-assisted headspace liquid-phase microextraction was developed as mentioned in this paper. In the technique, the volatile analytes were headspace extracted into a small drop of solvent, which suspended on the bottom of a cone-shaped PCR tube instead of the needle tip of a microsyringe. More solvent could be suspended in the PCR tube than microsyringe due to the larger interfacial tension, thus the analysis sensitivity was significantly improved with the increase of the extractant volume. Moreover, ultrasound-assisted extraction and independent controlling temperature of the extractant and the sample were performed to enhance the extraction efficiency. Following the extraction, the solvent-loaded sample was analyzed by high-performance liquid chromatography. Chlorophenols (2-chlorophenol, 2,4-dichlorophenol and 2,6-dichlorophenol) were chosen as model analytes to investigate the feasibility of the method. The experimental conditions related to the extraction efficiency were systematically studied. Under the optimum experimental conditions, the detection limit (S/N=3), intra- and inter-day RSD were 6 ng mL(-1), 4.6%, 3.9% for 2-chlorophenol, 12 ng mL(-1), 2.4%, 8.8% for 2,4-dichlorophenol and 23 ng mL(-1), 3.3%, 5.3% for 2,6-dichlorophenol, respectively. The proposed method was successfully applied to determine chlorophenols in real aqueous samples. Good recoveries ranging from 84.6% to 100.7% were obtained. In addition, the extraction efficiency of our method and the conventional headspace liquid-phase microextraction were compared; the extraction efficiency of the former was about 21 times higher than that of the latter. The results demonstrated that the proposed method is a promising sample pretreatment approach, its advantages over the conventional headspace liquid-phase microextraction include simple setup, ease of operation, rapidness, sensitivity, precision and no cross-contamination. The method is very suitable for the analysis of trace volatile and semivolatile pollutants in real aqueous sample.

  7. Photochemistry of aqueous pyruvic acid

    PubMed Central

    Griffith, Elizabeth C.; Carpenter, Barry K.; Shoemaker, Richard K.; Vaida, Veronica

    2013-01-01

    The study of organic chemistry in atmospheric aerosols and cloud formation is of interest in predictions of air quality and climate change. It is now known that aqueous phase chemistry is important in the formation of secondary organic aerosols. Here, the photoreactivity of pyruvic acid (PA; CH3COCOOH) is investigated in aqueous environments characteristic of atmospheric aerosols. PA is currently used as a proxy for α-dicarbonyls in atmospheric models and is abundant in both the gas phase and the aqueous phase (atmospheric aerosols, fog, and clouds) in the atmosphere. The photoreactivity of PA in these phases, however, is very different, thus prompting the need for a mechanistic understanding of its reactivity in different environments. Although the decarboxylation of aqueous phase PA through UV excitation has been studied for many years, its mechanism and products remain controversial. In this work, photolysis of aqueous PA is shown to produce acetoin (CH3CHOHCOCH3), lactic acid (CH3CHOHCOOH), acetic acid (CH3COOH), and oligomers, illustrating the progression from a three-carbon molecule to four-carbon and even six-carbon molecules through direct photolysis. These products are detected using vibrational and electronic spectroscopy, NMR, and MS, and a reaction mechanism is presented accounting for all products detected. The relevance of sunlight-initiated PA chemistry in aqueous environments is then discussed in the context of processes occurring on atmospheric aerosols. PMID:23821751

  8. Phase Equilibrium Investigation on 2-Phenylethanol in Binary and Ternary Systems: Influence of High Pressure on Density and Solid-Liquid Phase Equilibrium.

    PubMed

    Domańska, Urszula; Królikowski, Marek; Wlazło, Michał; Więckowski, Mikołaj

    2018-05-30

    Ionic liquids (ILs) are important new solvents proposed for applications in different separation processes. Herein, an idea of possible use of high pressure in a general strategy of production of 2-phenylethanol (PEA) is discussed. In this work, we present the influence of pressure on the density in binary systems of {1-hexyl-1-methylpyrrolidynium bis{(trifluoromethyl)sulfonyl}imide, [HMPYR][NTf 2 ], or 1-dodecyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide, [DoMIM][NTf 2 ] + PEA} in a wide range of temperatures (298.15-348.15 K) and pressures (0.1-40 MPa). The densities at ambient and high pressures are measured to present the physicochemical properties of the ILs used in the process of separation of PEA from aqueous phase. The Tait equation was used for the correlation of density of one-component and two-component systems as a function of mole fraction, temperature, and pressure. The influence of pressure is not significant. These systems exhibit mainly negative molar excess volumes, V E . The solid-liquid phase equilibrium (SLE) of [DoMIM][NTf 2 ] in PEA at atmospheric pressure was measured and compared to the SLE high-pressure results. Additionally, the ternary liquid-liquid phase equilibrium (LLE) at ambient pressure in the {[DoMIM][NTf 2 ] (1) + PEA (2) + water (3)} at temperature T = 308.15 K was investigated. The solubility of water in the [DoMIM][NTf 2 ] is quite high in comparison with that measured by us earlier for ILs ( x 3 = 0.403) at T = 308.15 K, which results in not very successful average selectivity of extraction of PEA from the aqueous phase. The [DoMIM][NTf 2 ] has shown strong interaction with PEA without the immiscibility region. The ternary system revealed Treybal's type phase equilibrium in which two partially miscible binaries ([DoMIM][NTf 2 ] + water) and (PEA + water) exist. From the results of LLE in the ternary system, the selectivity and the solute distribution ratio of separation of water/PEA were calculated and compared to the results obtained for the ILs measured earlier by us. The popular NRTL model was used to correlate the experimental tie-lines in ternary LLE. These results may help in a new technological project of "in situ" extraction of PEA from aqueous phase during the biosynthesis.

  9. Direct NMR Monitoring of Phase Separation Behavior of Highly Supersaturated Nifedipine Solution Stabilized with Hypromellose Derivatives.

    PubMed

    Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu

    2017-07-03

    We investigated the phase separation behavior and maintenance mechanism of the supersaturated state of poorly water-soluble nifedipine (NIF) in hypromellose (HPMC) derivative solutions. Highly supersaturated NIF formed NIF-rich nanodroplets through phase separation from aqueous solution containing HPMC derivative. Dissolvable NIF concentration in the bulk water phase was limited by the phase separation of NIF from the aqueous solution. HPMC derivatives stabilized the NIF-rich nanodroplets and maintained the NIF supersaturation with phase-separated NIF for several hours. The size of the NIF-rich phase was different depending on the HPMC derivatives dissolved in aqueous solution, although the droplet size had no correlation with the time for which NIF supersaturation was maintained without NIF crystallization. HPMC acetate and HPMC acetate succinate (HPMC-AS) effectively maintained the NIF supersaturation containing phase-separated NIF compared with HPMC. Furthermore, HPMC-AS stabilized NIF supersaturation more effectively in acidic conditions. Solution 1 H NMR measurements of NIF-supersaturated solution revealed that HPMC derivatives distributed into the NIF-rich phase during the phase separation of NIF from the aqueous solution. The hydrophobicity of HPMC derivative strongly affected its distribution into the NIF-rich phase. Moreover, the distribution of HPMC-AS into the NIF-rich phase was promoted at lower pH due to the lower aqueous solubility of HPMC-AS. The distribution of a large amount of HPMC derivatives into NIF-rich phase induced the strong inhibition of NIF crystallization from the NIF-rich phase. Polymer distribution into the drug-rich phase directly monitored by solution NMR technique can be a useful index for the stabilization efficiency of drug-supersaturated solution containing a drug-rich phase.

  10. Simple hollow fiber renewal liquid membrane extraction method for pre-concentration of Cd(II) in environmental samples and detection by flame atomic absorption spectrometry.

    PubMed

    Carletto, Jeferson Schneider; Luciano, Raquel Medeiros; Bedendo, Gizelle Cristina; Carasek, Eduardo

    2009-04-06

    A hollow fiber renewal liquid membrane (HFRLM) extraction method to determine cadmium (II) in water samples using Flame Atomic Absorption Spectrometry (FAAS) was developed. Ammonium O,O-diethyl dithiophosphate (DDTP) was used to complex cadmium (II) in an acid medium to obtain a neutral hydrophobic complex (ML(2)). The organic solvent introduced to the sample extracts this complex from the aqueous solution and carries it over the poly(dimethylsiloxane) (PDMS) membrane, that had their walls previously filled with the same organic solvent. The organic solvent is solubilized inside the PDMS membrane, leading to a homogeneous phase. The complex strips the lumen of the membrane where, at higher pH, the complex Cd-DDTP is broken down and cadmium (II) is released into the stripping phase. EDTA was used to complex the cadmium (II), helping to trap the analyte in the stripping phase. A multivariate procedure was used to optimize the studied variables. The optimized variables were: sample (donor phase) pH 3.25, DDTP concentration 0.05% (m/v), stripping (acceptor phase) pH 8.75, EDTA concentration 1.5x10(-2) mol L(-1), extraction temperature 40 degrees C, extraction time 40 min, a solvent mixture N-butyl acetate and hexane (60/40%, v/v) with a volume of 100 microL, and addition of ammonium sulfate to saturate the sample. The sample volume used was 20 mL and the stripping volume was 165 microL. The analyte enrichment factor was 120, limit of detection (LOD) 1.3 microg L(-1), relative standard deviation (RSD) 5.5% and the working linear range 2-30 microg L(-1).

  11. URANIUM SEPARATION PROCESS

    DOEpatents

    McVey, W.H.; Reas, W.H.

    1959-03-10

    The separation of uranium from an aqueous solution containing a water soluble uranyl salt is described. The process involves adding an alkali thiocyanate to the aqueous solution, contacting the resulting solution with methyl isobutyl ketons and separating the resulting aqueous and organic phase. The uranium is extracted in the organic phase as UO/sub 2/(SCN)/sub/.

  12. Solution-phase electronegativity scale: insight into the chemical behaviors of metal ions in solution.

    PubMed

    Li, Keyan; Li, Min; Xue, Dongfeng

    2012-04-26

    By incorporating the solvent effect into the Born effective radius, we have proposed an electronegativity scale of metal ions in aqueous solution with the most common oxidation states and hydration coordination numbers in terms of the effective ionic electrostatic potential. It is found that the metal ions in aqueous solution are poorer electron acceptors compared to those in the gas phase. This solution-phase electronegativity scale shows its efficiency in predicting some important properties of metal ions in aqueous solution such as the aqueous acidities of the metal ions, the stability constants of metal complexes, and the solubility product constants of the metal hydroxides. We have elaborated that the standard reduction potential and the solution-phase electronegativity are two different quantities for describing the processes of metal ions in aqueous solution to soak up electrons with different final states. This work provides a new insight into the chemical behaviors of the metal ions in aqueous solution, indicating a potential application of this electronegativity scale to the design of solution reactions.

  13. Removal and recovery of mercury(II) from hazardous wastes using 1-(2-thiazolylazo)-2-naphthol functionalized activated carbon as solid phase extractant.

    PubMed

    Starvin, A M; Rao, T Prasada

    2004-09-10

    As a part of removal of toxic heavy metals from hazardous wastes, solid phase extraction (SPE) of mercury(II) at trace and ultra trace levels was studied using 1-(2-thiazolylazo)-2-naphthol (TAN) functionalized activated carbon (AC). The SPE material removes traces of mercury(II) quantitatively in the pH range 6.0 +/- 0.2. Other parameters that influence quantitative recovery of mercury(II), viz. percent concentration of TAN in AC, amount of TAN-AC, preconcentration time and volume of aqueous phase were varied and optimized. The possible means of removal of Hg(II) from other metal ions that are likely to be present in the wastes of the chloroalkali industry is discussed. The potential of TAN-functionalized AC SPE material for decontaminating mercury from the brine sludge and cell house effluent of a chloralkali plant has been evaluated.

  14. "Reagentless" flow injection determination of ammonia and urea using membrane separation and solid phase basification

    NASA Technical Reports Server (NTRS)

    Akse, J. R.; Thompson, J. O.; Sauer, R. L.; Atwater, J. E.

    1998-01-01

    Flow injection analysis instrumentation and methodology for the determination of ammonia and ammonium ions in an aqueous solution are described. Using in-line solid phase basification beds containing crystalline media. the speciation of ammoniacal nitrogen is shifted toward the un-ionized form. which diffuses in the gas phase across a hydrophobic microporous hollow fiber membrane into a pure-water-containing analytical stream. The two streams flow in a countercurrent configuration on opposite sides of the membrane. The neutral pH of the analytical stream promotes the formation of ammonium cations, which are detected using specific conductance. The methodology provides a lower limit of detection of 10 microgram/L and a dynamic concentration range spanning three orders of magnitude using a 315-microliters sample injection volume. Using immobilized urease to enzymatically promote the hydrolysis of urea to produce ammonia and carbon dioxide, the technique has been extended to the determination of urea.

  15. The Exploration Water Recovery System

    NASA Technical Reports Server (NTRS)

    ORourke, Mary Jane E.; Carter, Layne; Holder, Donald W.; Tomes, Kristin M.

    2006-01-01

    The Exploration Water Recovery System is designed towards fulfillment of NASA s Vision for Space Exploration, which will require elevation of existing technologies to higher levels of optimization. This new system, designed for application to the Exploration infrastructure, presents a novel combination of proven air and water purification technologies. The integration of unit operations is modified from that of the current state-of-the-art water recovery system so as to optimize treatment of the various waste water streams, contaminant loads, and flow rates. Optimization is achieved primarily through the removal of volatile organic contaminants from the vapor phase prior to their absorption into the liquid phase. In the current state-of-the-art system, the water vapor in the cabin atmosphere is condensed, and the volatile organic contaminants present in that atmosphere are absorbed into the aqueous phase. Removal of contaminants the5 occurs via catalytic oxidation in the liquid phase. Oxidation kinetics, however, dictate that removal of volatile organic contaminants from the vapor phase can inherently be more efficient than their removal from the aqueous phase. Taking advantage of this efficiency reduces the complexity of the water recovery system. This reduction in system complexity is accompanied by reductions in the weight, volume, power, and resupply requirements of the system. Vapor compression distillation technology is used to treat the urine, condensate, and hygiene waste streams. This contributes to the reduction in resupply, as incorporation of vapor compression distillation technology at this point in the process reduces reliance on the expendable ion exchange and adsorption media used in the current state-of-the-art water recovery system. Other proven technologies that are incorporated into the Exploration Water Recovery System include the Trace Contaminant Control System and the Volatile Removal Assembly.

  16. Retention prediction of highly polar ionizable solutes under gradient conditions on a mixed-mode reversed-phase and weak anion-exchange stationary phase.

    PubMed

    Balkatzopoulou, P; Fasoula, S; Gika, H; Nikitas, P; Pappa-Louisi, A

    2015-05-29

    In the present work the retention of three highly polar and ionizable solutes - uric acid, nicotinic acid and ascorbic acid - was investigated on a mixed-mode reversed-phase and weak anion-exchange (RP/WAX) stationary phase in buffered aqueous acetonitrile (ACN) mobile phases. A U-shaped retention behavior was observed for all solutes with respect to the eluent organic modifier content studied in a range of 5-95% (v/v). This retention behavior clearly demonstrates the presence of a HILIC-type retention mechanism at ACN-rich hydro-organic eluents and an RP-like retention at aqueous-rich hydro-organic eluents. Hence, this column should be promising for application under both RP and HILIC gradient elution modes. For this reason, a series of programmed elution runs were carried out with increasing (RP) and decreasing (HILIC) organic solvent concentration in the mobile phase. This dual gradient process was successfully modeled by two retention models exhibiting a quadratic or a cubic dependence of the logarithm of the solute retention factor (lnk) upon the organic modifier volume fraction (φ). It was found that both models produced by gradient retention data allow the prediction of solute retention times for both types of programmed elution on the mixed-mode column. Four, in the case of the quadratic model, or five, in the case of the cubic model, initial HILIC- and RP-type gradient runs gave satisfactory retention predictions of any similar kind elution program, even with different flow rate, with an overall error of only 2.5 or 1.7%, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Effect of lipophilization on the distribution and reactivity of ingredients in emulsions.

    PubMed

    Leong, Wai Fun; Berton-Carabin, Claire C; Elias, Ryan J; Lecomte, Jérôme; Villeneuve, Pierre; Zhao, Yu; Coupland, John N

    2015-12-01

    The reactivity of small molecules in emulsions is believed to depend on their partitioning between phases, yet this is hard to verify experimentally in situ. In the present work, we use electron paramagnetic resonance (EPR) spectroscopy to simultaneously measure the distribution and reactivity of a homologous series of lipophilized spin probes in an emulsion. 4-Hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL) was derivatized with saturated fatty acids to create a series of spin probes with increasing lipophilicity (C4-, C8-, C12-, and C16-TEMPO). The probes were added to a 10 wt.% tetradecane-in water emulsions (d32∼190 nm) stabilized with sodium caseinate (1 wt.% in the aqueous phase, pH 7). The distribution of the probes between phases was measured by electron paramagnetic resonance (EPR) spectroscopy. TEMPOL partitioned into the aqueous phase, C4-TEMPO distributed between the lipid and aqueous phases (69% and 31% respectively) while the more lipophilic probes dissolved exclusively within the lipid droplets. Interestingly, the more lipophilic probes initially precipitated upon their addition to the emulsion, and only slowly redistributed to the droplets over hours or days, the rate of which was dependent on their carbon chain length. The reactivity of the probes with aqueous an aqueous phase reductant (ascorbate) generally depended on the proportion in the aqueous phase (i.e., TEMPOL>C4-TEMPO>C8-TEMPO∼C12-TEMPO∼C16-TEMPO). Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Summary report for the FY-2015 SACSESS Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterman, Dean Richard; Mincher, Bruce Jay

    2015-09-01

    During FY-2015, a collaborative research program was established by the Department of Energy-Nuclear Energy (DOE-NE) Material Recovery and Waste Form Development program and the European Union (EU) Safety of Actinide Separation Processes (SACSESS) program. One component of this collaboration was the evaluation of the radiolytic stability of a Selective ActiNide Extraction (SANEX) separation which utilized a TODGA-based organic solvent and an aqueous phase containing the hydrophilic complexing reagent, SO3-Ph-BTP. To best simulate process conditions, this experiment was irradiated in the radiolysis/hydrolysis test loop located at the Idaho National Laboratory. The effect of irradiation on a SACSESS program iSANEX formulation containingmore » a TODGA-based organic phase and a BTP-based aqueous phase was investigated using irradiations at INL in static and test loop modes. When irradiated in contact with only the acidic aqueous phase, the TODGA organic solution maintained excellent extraction performance of americium, cerium and europium to a maximum absorbed dose of nearly 0.9 MGy. When the aqueous phase was changed to that containing the aqueous soluble BTP, the irradiated aqueous phase showed a dramatic color change, but this does not appear to have adverse effects on solvent extraction performance. Only minor increases in distribution ratios for both the lanthanides and actinide were measured, and the separation factors were essentially unchanged to a maximum absorbed dose of 174 kGy. The determination of the americium, cerium, and europium distribution ratios for the remaining SACSESS test loop samples will be completed in the near future. The analysis of stable metals concentration in the the irradiated aqueous and organic phases will be completed shortly.« less

  19. Determination of Three Organochlorine Pesticides in Aqueous Samples by Solid-Phase Extraction Based on Natural Nano Diatomite in Packed Syringe Coupled to Gas Chromatography-Mass Spectrometry.

    PubMed

    Taghani, Abdollah; Goudarzi, Nasser; Bagherian, Ghadamali; Chamjangali, Mansour Arab

    2017-01-01

    A rapid, simple, and sensitive technique is proposed based on a miniaturized solid-phase extraction method named mictroextraction in a packed syringe coupled with gas chromatography-mass spectrometry for the preconcentration and determination of three organochlorine pesticides. These include hexachlorobenzene, heptachlor and aldrine in aqueous samples. For the first time, the natural nano diatomite is used a sorbent. Based on this technique, 6.0 mg of the nano sorbent is inserted in a syringe between two polypropylene frits. The analytes would be adsorbed on the solid phase, and would subsequently be eluted using organic solvents. The influence of some important parameters, such as the solution pH, type and volume of the organic desorption solvent, and amount of sorbent on the extraction efficiency of the selected pesticides, is investigated. The proposed method shows good linearity in the range of 0.1 - 40.0 μg L -1 , and at low limits of detection in the range of 0.02 - 0.13 μg L -1 using the selected ion-monitoring mode. The reproducibility of this method was found to be in the range of 3.5 - 11.1% for the understudied pesticides. In order to evaluate the matrix effect, the developed method is also applied to the preconcentration and determination of the selected pesticides in different water samples.

  20. The unfolding effects on the protein hydration shell and partial molar volume: a computational study.

    PubMed

    Del Galdo, Sara; Amadei, Andrea

    2016-10-12

    In this paper we apply the computational analysis recently proposed by our group to characterize the solvation properties of a native protein in aqueous solution, and to four model aqueous solutions of globular proteins in their unfolded states thus characterizing the protein unfolded state hydration shell and quantitatively evaluating the protein unfolded state partial molar volumes. Moreover, by using both the native and unfolded protein partial molar volumes, we obtain the corresponding variations (unfolding partial molar volumes) to be compared with the available experimental estimates. We also reconstruct the temperature and pressure dependence of the unfolding partial molar volume of Myoglobin dissecting the structural and hydration effects involved in the process.

  1. Glass Transition Temperature of Saccharide Aqueous Solutions Estimated with the Free Volume/Percolation Model.

    PubMed

    Constantin, Julian Gelman; Schneider, Matthias; Corti, Horacio R

    2016-06-09

    The glass transition temperature of trehalose, sucrose, glucose, and fructose aqueous solutions has been predicted as a function of the water content by using the free volume/percolation model (FVPM). This model only requires the molar volume of water in the liquid and supercooled regimes, the molar volumes of the hypothetical pure liquid sugars at temperatures below their pure glass transition temperatures, and the molar volumes of the mixtures at the glass transition temperature. The model is simplified by assuming that the excess thermal expansion coefficient is negligible for saccharide-water mixtures, and this ideal FVPM becomes identical to the Gordon-Taylor model. It was found that the behavior of the water molar volume in trehalose-water mixtures at low temperatures can be obtained by assuming that the FVPM holds for this mixture. The temperature dependence of the water molar volume in the supercooled region of interest seems to be compatible with the recent hypothesis on the existence of two structure of liquid water, being the high density liquid water the state of water in the sugar solutions. The idealized FVPM describes the measured glass transition temperature of sucrose, glucose, and fructose aqueous solutions, with much better accuracy than both the Gordon-Taylor model based on an empirical kGT constant dependent on the saccharide glass transition temperature and the Couchman-Karasz model using experimental heat capacity changes of the components at the glass transition temperature. Thus, FVPM seems to be an excellent tool to predict the glass transition temperature of other aqueous saccharides and polyols solutions by resorting to volumetric information easily available.

  2. Phase-separable aqueous amide solutions as a thermal history indicator.

    PubMed

    Kitsunai, Makoto; Miyajima, Kentaro; Mikami, Yuzuru; Kim, Shokaku; Hirasawa, Akira; Chiba, Kazuhiro

    2008-12-01

    Aqueous solutions of several new amide compounds for use as simple thermal history indicators in the low-temperature transport of food and other products were synthesized. The phase transition temperatures of the aqueous solutions can be freely adjusted by changing the amide-water ratio in solution, the sodium chloride concentration of the water, and the type of amide compound. It is expected that these aqueous solutions can be applied as new thermal history indicators.

  3. Key Role of Nitrate in Phase Transitions of Urban Particles: Implications of Important Reactive Surfaces for Secondary Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Sun, Jiaxing; Liu, Lei; Xu, Liang; Wang, Yuanyuan; Wu, Zhijun; Hu, Min; Shi, Zongbo; Li, Yongjie; Zhang, Xiaoye; Chen, Jianmin; Li, Weijun

    2018-01-01

    Ammonium sulfate (AS) and ammonium nitrate (AN) are key components of urban fine particles. Both field and model studies showed that heterogeneous reactions of SO2, NO2, and NH3 on wet aerosols accelerated the haze formation in northern China. However, little is known on phase transitions of AS-AN containing haze particles. Here hygroscopic properties of laboratory-generated AS-AN particles and individual particles collected during haze events in an urban site were investigated using an individual particle hygroscopicity system. AS-AN particles showed a two-stage deliquescence at mutual deliquescence relative humidity (MDRH) and full deliquescence relative humidity (DRH) and three physical states: solid before MDRH, solid-aqueous between MDRH and DRH, and aqueous after DRH. During hydration, urban haze particles displayed a solid core and aqueous shell at RH = 60-80% and aqueous phase at RH > 80%. Most particles were in aqueous phase at RH > 50% during dehydration. Our results show that AS content in individual particles determines their DRH and AN content determines their MDRH. AN content increase can reduce MDRH, which indicates occurrence of aqueous shell at lower RH. The humidity-dependent phase transitions of nitrate-abundant urban particles are important to provide reactive surfaces of secondary aerosol formation in the polluted air.

  4. The free radical chemistry of cloud droplets and its impact upon the composition of rain

    NASA Technical Reports Server (NTRS)

    Chameides, W. L.; Davis, D. D.

    1982-01-01

    Calculations are presented that simulate the free radical chemistries of the gas phase and aqueous phase within a warm cloud during midday. It is demonstrated that in the presence of midday solar fluxes, the heterogeneous scavenging of OH and HO2 from the gas phase by cloud droplets can represent a major source of free radicals to cloud water, provided the accommodation or sticking coefficient for these species impinging upon water droplets is not less than 0.0001. The aqueous-phase of HO2 radicals are found to be converted to H2O2 by aqueous-phase chemical reactions at a rate that suggests that this mechanism could produce a significant fraction of the H2O2 found in cloud droplets. The rapid oxidation of sulfur species dissolved in cloudwater by this free-radical-produced H2O2 as well as by aqueous-phase OH radicals could conceivably have a significant impact upon the chemical composition of rain.

  5. Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls

    EPA Science Inventory

    Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for...

  6. Methods for removing contaminants from algal oil

    DOEpatents

    Lupton, Francis Stephen

    2016-09-27

    Methods for removing contaminants from algal oil are provided. In an embodiment, a method comprises the steps of combining a sulfuric acid-aqueous solution that has a pH of about 1 or less with a contaminant-containing algal oil at treatment conditions effective to form an effluent. The effluent comprises a treated algal oil phase and contaminants in an acidic aqueous phase. The contaminants comprise metals, phosphorus, or combinations thereof. The acidic aqueous phase is removed from the effluent to form a contaminant-depleted algal oil.

  7. Starbursts and Wispy Drops : Surfactants Spreading on Gel Substrates

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Shomeek; Daniels, Karen; Behringer, Robert

    2005-11-01

    We report a phase diagram for a novel instability seen in drops of nonionic surfactant solution (Triton X-305) spreading on viscoelastic agar gel substrate . This system allows us to examine the effect of varying the effective fluidity/stiffness of aqueous substrates. The morphology is strongly affected by the substrate fluidity, ranging from spreading starbursts of arms on weak gels, to wispy drops on intermediate strength gels, to circular drops on stiff gels. We analyze the dynamics of spreading in the starburst phase, where the arm length grows as t ^3/4 at early times, independent of the gel strength and surfactant concentration. The number of arms is proportional to the surfactant concentration and inversely proportional to the gel strength. Ongoing work is exploring the effects of changing the drop volume.

  8. SEPARATION OF HAFNIUM FROM ZIRCONIUM

    DOEpatents

    Overholser, L.B.; Barton, C.J. Sr.; Ramsey, J.W.

    1960-05-31

    The separation of hafnium impurities from zirconium can be accomplished by means of organic solvent extraction. The hafnium-containing zirconium feed material is dissolved in an aqueous chloride solution and the resulting solution is contacted with an organic hexone phase, with at least one of the phases containing thiocyanate. The hafnium is extracted into the organic phase while zirconium remains in the aqueous phase. Further recovery of zirconium is effected by stripping the onganic phase with a hydrochloric acid solution and commingling the resulting strip solution with the aqueous feed solution. Hexone is recovered and recycled by means of scrubbing the onganic phase with a sulfuric acid solution to remove the hafnium, and thiocyanate is recovered and recycled by means of neutralizing the effluent streams to obtain ammonium thiocyanate.

  9. Gadolinium-enhanced 7.0 T magnetic resonance imaging assessment of the aqueous inflow in rat eyes in vivo.

    PubMed

    Li, Lu; Yuan, Yuxiang; Chen, Liwen; Li, Mu; Ji, Pingting; Gong, Jieling; Zhao, Yin; Zhang, Hong

    2017-09-01

    The goal of this study was to calculate the anterior chamber volume and assess aqueous inflow in rat eyes in vivo, under anesthetic condition. Gadolinium-contrast agent (Gd-DTPA, 234.5 mg/ml) was administered to Sprague-Dawley rat eyes via anterior chamber injection or instillation of 234.5 or 117.25 mg/ml Gd-DTPA in 0.2% azone as eye drops, and changes of Gd signal visualized by 7.0 T magnetic resonance imaging (MRI). The safety of local application of Gd-DTPA and azone were performed after MRI scanning. The anterior chamber injection of Gd-DTPA (234.5 mg/ml) group was used for anterior chamber volume and aqueous inflow calculating. Serial changes in Gd-DTPA relative concentration in the anterior chamber was determined based on the initial Gd signal gray values and the initial relative concentration of Gd-DTPA after anterior chamber Gd-DTPA injection. The mean aqueous inflow in rat eyes in vivo was assessed based on changes in Gd-DTPA relative concentration and the anterior chamber volume. Eye drops of Gd-DTPA (234.5 mg/ml) in 0.2% azone readily allowed safe assessment of the aqueous inflow by 7.0 T MRI. Under anesthetic condition in vivo, the mean anterior chamber volume (ACV) in rats was 8493.6 ± 657.4 μm 3 , no differences were observed in the aqueous inflow measured by topical instillation of 234.5 mg/ml Gd-DTPA in 0.2% azone (0.182 ± 0.011 μl/min) between that measured by anterior chamber injection (0.165 ± 0.041 μl/min, P > 0.05), Timolol reduced aqueous inflow to 0.124 ± 0.020 μl/min (P < 0.05). Our results indicated that Gd-enhanced 7.0 T MRI allows evaluation of the Gd signal variation and anterior chamber volume in rats in vivo. The aqueous inflow calculation via non-invasive local application of 234.5 mg/ml Gd-DTPA can be assessed by the variability of relative concentration of Gd-DTPA in anterior chamber and ACV in vivo, under anesthetic condition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Preparative crystallization of a single chain antibody using an aqueous two-phase system.

    PubMed

    Huettmann, Hauke; Berkemeyer, Matthias; Buchinger, Wolfgang; Jungbauer, Alois

    2014-11-01

    A simultaneous crystallization and aqueous two-phase extraction of a single chain antibody was developed, demonstrating process integration. The process conditions were designed to form an aqueous two-phase system, and to favor crystallization, using sodium sulfate and PEG-2000. At sufficiently high concentrations of PEG, a second phase was generated in which the protein crystallization occurred simultaneously. The single chain antibody crystals were partitioned to the top, polyethylene glycol-rich phase. The crystal nucleation took place in the sodium sulfate-rich phase and at the phase boundary, whereas crystal growth was progressing mainly in the polyethylene glycol-rich phase. The crystals in the polyethylene glycol-rich phase grew to a size of >50 µm. Additionally, polyethylene glycol acted as an anti-solvent, thus, it influenced the crystallization yield. A phase diagram with an undersaturation zone, crystallization area, and amorphous precipitation zone was established. Only small differences in polyethylene glycol concentration caused significant shifts of the crystallization yield. An increase of the polyethylene glycol content from 2% (w/v) to 4% (w/v) increased the yield from approximately 63-87%, respectively. Our results show that crystallization in aqueous two-phase systems is an opportunity to foster process integration. © 2014 Wiley Periodicals, Inc.

  11. Corrosion of low alloy steel containing 0.5% chromium in supercritical CO2-saturated brine and water-saturated supercritical CO2 environments

    NASA Astrophysics Data System (ADS)

    Wei, Liang; Gao, Kewei; Li, Qian

    2018-05-01

    The corrosion behavior of P110 low-Cr alloy steel in supercritical CO2-saturated brine (aqueous phase) and water-saturated supercritical CO2 (SC CO2 phase) was investigated. The results show that P110 steel primarily suffered general corrosion in the aqueous phase, while severe localized corrosion occurred in the SC CO2 phase. The formation of corrosion product scale on P110 steel in the aqueous phase divided into three stages: formation of the initial corrosion layer containing amorphous Cr(OH)3, FeCO3 and a small amount of Fe3C; transformation of initial corrosion layer to mixed layer, which consisted of FeCO3 and a small amount of Cr(OH)3 and Fe3C; growth and dissolution of the mixed layer. Finally, only a single mixed layer covered on the steel in the aqueous phase. However, the scale formed in SC CO2 phase consisted of two layers: the inner mixed layer and the dense outer FeCO3 crystalline layer.

  12. Comparative evaluation of aqueous humor viscosity.

    PubMed

    Davis, Kyshia; Carter, Renee; Tully, Thomas; Negulescu, Ioan; Storey, Eric

    2015-01-01

    To evaluate aqueous humor viscosity in the raptor, dog, cat, and horse, with a primary focus on the barred owl (Strix varia). Twenty-six raptors, ten dogs, three cats, and one horse. Animals were euthanized for reasons unrelated to this study. Immediately, after horizontal and vertical corneal dimensions were measured, and anterior chamber paracentesis was performed to quantify anterior chamber volume and obtain aqueous humor samples for viscosity analysis. Dynamic aqueous humor viscosity was measured using a dynamic shear rheometer (AR 1000 TA Instruments, New Castle, DE, USA) at 20 °C. Statistical analysis included descriptive statistics, unpaired t-tests, and Tukey's test to evaluate the mean ± standard deviation for corneal diameter, anterior chamber volume, and aqueous humor viscosity amongst groups and calculation of Spearman's coefficient for correlation analyses. The mean aqueous humor viscosity in the barred owl was 14.1 centipoise (cP) ± 9, cat 4.4 cP ± 0.2, and dog 2.9 cP ± 1.3. The aqueous humor viscosity for the horse was 1 cP. Of the animals evaluated in this study, the raptor aqueous humor was the most viscous. The aqueous humor of the barred owl is significantly more viscous than the dog (P < 0.0001). The aqueous humor viscosity of the raptor, dog, cat, and horse can be successfully determined using a dynamic shear rheometer. © 2014 American College of Veterinary Ophthalmologists.

  13. Numerical Simulation of nZVI at the Field Scale

    NASA Astrophysics Data System (ADS)

    Chowdhury, A. I.; Krol, M.; Sleep, B. E.; O'Carroll, D. M.

    2014-12-01

    Nano-scale zero valent iron (nZVI) has been used at a number of contaminated sites over the last decade. At most of these sites, significant decreases in contaminant concentrations have resulted from the application of nZVI. However, limited work has been completed investigating nZVI mobility at the field-scale. In this study a three dimensional, three phase, finite difference numerical simulator (CompSim) was used to simulate nZVI and polymer transport in a variably saturated site. The model was able to accurately predict the field observed head data without parameter fitting. In addition, the numerical simulator estimated the amount of nZVI delivered to the saturated and unsaturated zones as well as the phase of nZVI (i.e., attached or aqueous phase). The simulation results showed that the injected slurry migrated radially outward from the injection well, and therefore nZVI transport was governed by injection velocity as well as viscosity of the injected solution. A suite of sensitivity analyses was performed to investigate the impact of different injection scenarios (e.g. different volume and injection rate) on nZVI migration. Simulation results showed that injection of a higher volume of nZVI delivered more iron particles at a given distance; however, not necessarily to a greater distance proportionate to the increase in volume. This study suggests that on-site synthesized nZVI particles are mobile in the subsurface and the numerical simulator can be a valuable tool for optimum design of nZVI applications.

  14. Theoretical Investigation of the Structural Stabilities of Ceria Surfaces and Supported Metal Nanocluster in Vapor and Aqueous Phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Zhibo; Liu, Ning; Chen, Biaohua

    Understanding the structural stability and dynamics at the interface between the solid metal oxide and aqueous phase is significant in a variety of industrial applications including heterogeneous catalysis and environmental remediation. In the present work, the stabilities of three low-index ceria (CeO2) surfaces, i.e., (111), (110) and (100) in vapor and aqueous phases were studied using ab initio molecular dynamics simulations and density functional theory (DFT) calculations. Gibbs surface free energies as a function of temperature, water partial pressure, and water coverages were calculated using DFT based atomistic thermodynamic approach. On the basis of surface free energies, the morphology andmore » exposed surface structures of the CeO2 nanoparticle were predicted using Wulff construction principle. It is found that the partially hydroxylated (111) and (100) are two major surface structures of CeO2 nanoparticles in vapor phase at ambient temperature (300 K). As the temperature increases, the fully dehydrated (111) surface gradually becomes the most dominant surface structure. While in aqueous phase, the exposed surface of the CeO2 nanoparticle is dominated by the hydroxylated (110) structure at 393 K. Finally, the morphology and stability of a cuboctahedron Pt13 nanocluster supported on CeO2 surfaces in both gas and aqueous phases were investigated. In gas phase, the supported Pt13 nanocluster has the tendency to wetting the CeO2 surface due to the strong metal-support interaction. The calculated interaction energies suggest the CeO2(110) surface provides the best stability for the Pt13 nanocluster. The CeO2 supported Pt13 nanoclusters are oxidized. Compared to the gas phase, the morphology of the CeO2 supported Pt13 nanocluster is less distorted due to the solvation effect provided by surrounding water molecules in aqueous phase. More electrons are transferred from the Pt13 nanocluster to the CeO2 support, implying the supported Pt13 nanocluster is further oxidized in aqueous phase.« less

  15. Vibrational Studies of Saccharide-Induced Lipid Film Reorganization at Aqueous/Air Interfaces

    DOE PAGES

    Link, Katie A.; Hsieh, Chia -Yun; Tuladhar, Aashish; ...

    2018-02-09

    Vibrational sum frequency generation (VSFG) and surface tension experiments were used to examine the effects of aqueous phase soluble saccharides on the structure and organization of insoluble lipid monolayers adsorbed to aqueous-air interfaces. Changes in dipalmitoylphosphocholine (DPPC) chain structure as a function of aqueous phase saccharide concentration and pH are reported. Complementary differential scanning calorimetry (DSC) measurements performed on solutions containing soluble saccharides and DPPC vesicles measured the effects of the saccharides on the lipid membrane phase behavior. Here, data show that the saccharides glucosamine and glucuronic acid induce a higher degree of organization in compressed DPPC monolayers regardless ofmore » the saccharide’s charge.« less

  16. Vibrational Studies of Saccharide-Induced Lipid Film Reorganization at Aqueous/Air Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, Katie A.; Hsieh, Chia -Yun; Tuladhar, Aashish

    Vibrational sum frequency generation (VSFG) and surface tension experiments were used to examine the effects of aqueous phase soluble saccharides on the structure and organization of insoluble lipid monolayers adsorbed to aqueous-air interfaces. Changes in dipalmitoylphosphocholine (DPPC) chain structure as a function of aqueous phase saccharide concentration and pH are reported. Complementary differential scanning calorimetry (DSC) measurements performed on solutions containing soluble saccharides and DPPC vesicles measured the effects of the saccharides on the lipid membrane phase behavior. Here, data show that the saccharides glucosamine and glucuronic acid induce a higher degree of organization in compressed DPPC monolayers regardless ofmore » the saccharide’s charge.« less

  17. Characterization of organic residues of size-resolved fog droplets and their atmospheric implications

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Ervens, Barbara; Gupta, Tarun; Tripathi, Sachchida N.

    2016-04-01

    Size-resolved fog water samples were collected in two consecutive winters at Kanpur, a heavily polluted urban area of India. Samples were analyzed by an aerosol mass spectrometer after drying and directly in other instruments. Residues of fine fog droplets (diameter: 4-16 µm) are found to be more enriched with oxidized (oxygen to carbon ratio, O/C = 0.88) and low volatility organics than residues of coarse (diameter > 22 µm) and medium size (diameter: 16-22 µm) droplets with O/C of 0.68 and 0.74, respectively. These O/C ratios are much higher than those observed for background ambient organic aerosols, indicating efficient oxidation in fog water. Accompanying box model simulations reveal that longer residence times, together with high aqueous OH concentrations in fine droplets, can explain these trends. High aqueous OH concentrations in smaller droplets are caused by their highest surface-volume ratio and high Fe and Cu concentrations, allowing more uptake of gas phase OH and enhanced Fenton reaction rates, respectively. Although some volatile organic species may have escaped during droplet evaporation, these findings indicate that aqueous processing of dissolved organics varies with droplet size. Therefore, large (regional, global)-scale models need to consider the variable reaction rates, together with metal-catalyzed radical formation throughout droplet populations for accurately predicting aqueous secondary organic aerosol formation.

  18. Pore Structure and Fluoride Ion Adsorption Characteristics of Zr (IV) Surface-Immobilized Resin Prepared Using Polystyrene as a Porogen

    NASA Astrophysics Data System (ADS)

    Mizuki, Hidenobu; Ito, Yudai; Harada, Hisashi; Uezu, Kazuya

    Zr(IV) surface-immobilized resins for removal of fluoride ion were prepared by surface template polymerization using polystyrene as a porogen. At polymerization, polystyrene was added in order to increase mesopores (2-50 nm) and macropore (>50 nm) with large macropores (around 300 nm) formed with internal aqueous phase of W⁄O emulsion. The pore structure of Zr(IV) surface-immobilized resins was evaluated by measuring specific surface area, pore volume, and pore size distribution with volumetric adsorption measurement instrument and mercury porosimeter. The adsorption isotherms were well fitted by Langmuir equation. The removal of fluoride was also carried out with column method. Zr(IV) surface-immobilized resins, using 10 g⁄L polystyrene in toluene at polymerization, possessed higher volume of not only mesopores and macropores but also large macropores. Furethermore, by adding the polystyrene with smaller molecular size, the pore volume of mesopores, macropores and large macropores was significantly increased, and the fluoride ion adsorption capacity and the column utilization also increased.

  19. Anthropogenic and Biogenic Emissions, and their Contributions to Summertime Haze in the Southeast U.S.: Results from the NOAA SENEX Study in 2013

    NASA Astrophysics Data System (ADS)

    De Gouw, J. A.

    2015-12-01

    The NOAA Southeast Nexus of Air Quality and Climate Change (SENEX) study was focused on biogenic and anthropogenic emissions in the Southeast United States, their interactions to form oxidants and aerosol, and the implications of these processes for air quality and climate. For SENEX, the NOAA WP-3D research aircraft was deployed out of a regional airport in Smyrna, Tennessee during June and July of 2013. The aircraft carried an extensive suite of instruments to characterize the gas- and aerosol-phase composition of the atmosphere, as well as the climate-relevant properties of the aerosol. The SENEX study was performed in close collaboration with several other studies in the framework of the Southeast Atmosphere Study. Some highlights of the measurements will be presented with a particular focus on the processes by which anthropogenic and biogenic emissions interact to form secondary species including aerosol. The FLEXPART Lagrangian transport model was found to be a useful tool to quantify the relative contribution from anthropogenic and biogenic emissions to different trace species in the sampled air masses. Observations in power plant plumes provided constraints on the dependence of hydroxyl radical concentrations on nitrogen oxides (NOx). Oxidation rates were higher at enhanced concentrations of NOx, leading to faster production of products from biogenic volatile organic compounds (VOCs) in polluted conditions. Organic aerosol was formed from isoprene downwind from one power plant that had relatively high sulfur emissions. Nighttime flights were conducted to constrain organic aerosol formation from the reaction between biogenic VOCs and nitrate radicals. The volume of aerosol water depends on aerosol composition (e.g. sulfate versus organics), which has been proposed as a link between anthropogenic emissions and products of aqueous-phase chemistry. Vertical profiles of aerosol volume and composition provided evidence for aqueous-phase formation of sulfate aerosol, but formation of organic aerosol was not significant within the uncertainties of the analysis.

  20. Interactions of silicate glasses with aqueous environments under conditions of prolonged contact and flow

    NASA Technical Reports Server (NTRS)

    Barkatt, Aaron; Saad, E. E.; Adiga, R. B.; Sousanpour, W.; Barkatt, AL.; Feng, X.; O'Keefe, J. A.; Alterescu, S.

    1988-01-01

    This paper discusses mechanisms involving saturation and reactions that lead to the formation of altered phases in silicate glasses considered for use in geologic repositories for nuclear waste. It is shown that the rate of dissolution of silicate glasses exposed to a broad range of contact times, leachant compositions, and surface-to-volume ratios is strongly affected by the presence of reactive species such as Al, Mg, and Fe. The reactive materials may originate in the leachant or, under conditions of high surface-to-volume ratio, in the glass itself. The effects of glass composition on the course of the corrosion process can be viewed in terms of the formation of a surface layer on the leached glass; the type, composition, and structure of this layer control the dissolution behavior of the glass.

  1. Influence of propylene glycol on aqueous silica dispersions and particle-stabilized emulsions.

    PubMed

    Binks, Bernard P; Fletcher, Paul D I; Thompson, Michael A; Elliott, Russell P

    2013-05-14

    We have studied the influence of adding propylene glycol to both aqueous dispersions of fumed silica nanoparticles and emulsions of paraffin liquid and water stabilized by the same particles. In the absence of oil, aerating mixtures of aqueous propylene glycol and particles yields either stable dispersions, aqueous foams, climbing particle films, or liquid marbles depending on the glycol content and particle hydrophobicity. The presence of glycol in water promotes particles to behave as if they are more hydrophilic. Calculations of their contact angle at the air-aqueous propylene glycol surface are in agreement with these findings. In the presence of oil, particle-stabilized emulsions invert from water-in-oil to oil-in-water upon increasing either the inherent hydrophilicity of the particles or the glycol content in the aqueous phase. Stable multiple emulsions occur around phase inversion in systems of low glycol content, and completely stable, waterless oil-in-propylene glycol emulsions can also be prepared. Accounting for the surface energies at the respective interfaces allows estimation of the contact angle at the oil-polar phase interface; reasonable agreement between measured and calculated phase inversion conditions is found assuming no glycol adsorption on particle surfaces.

  2. Cloud Point and Liquid-Liquid Equilibrium Behavior of Thermosensitive Polymer L61 and Salt Aqueous Two-Phase System.

    PubMed

    Rao, Wenwei; Wang, Yun; Han, Juan; Wang, Lei; Chen, Tong; Liu, Yan; Ni, Liang

    2015-06-25

    The cloud point of thermosensitive triblock polymer L61, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO), was determined in the presence of various electrolytes (K2HPO4, (NH4)3C6H5O7, and K3C6H5O7). The cloud point of L61 was lowered by the addition of electrolytes, and the cloud point of L61 decreased linearly with increasing electrolyte concentration. The efficacy of electrolytes on reducing cloud point followed the order: K3C6H5O7 > (NH4)3C6H5O7 > K2HPO4. With the increase in salt concentration, aqueous two-phase systems exhibited a phase inversion. In addition, increasing the temperature reduced the concentration of salt needed that could promote phase inversion. The phase diagrams and liquid-liquid equilibrium data of the L61-K2HPO4/(NH4)3C6H5O7/K3C6H5O7 aqueous two-phase systems (before the phase inversion but also after phase inversion) were determined at T = (25, 30, and 35) °C. Phase diagrams of aqueous two-phase systems were fitted to a four-parameter empirical nonlinear expression. Moreover, the slopes of the tie-lines and the area of two-phase region in the diagram have a tendency to rise with increasing temperature. The capacity of different salts to induce aqueous two-phase system formation was the same order as the ability of salts to reduce the cloud point.

  3. Studies of Partial Molar Volumes of Some Narcotic-Analgesic Drugs in Aqueous-Alcoholic Mixtures at 25°C

    NASA Astrophysics Data System (ADS)

    Sharma, Poonam; Chauhan, S.; Syal, V. K.; Chauhan, M. S.

    2008-04-01

    Partial molar volumes of the drugs Parvon Spas, Parvon Forte, Tramacip, and Parvodex in aqueous mixtures of methanol (MeOH), ethanol (EtOH), and propan-1-ol (1-PrOH) have been determined. The data have been evaluated using the Masson equation. The parameters, apparent molar volumes {(φ_v)}, partial molar volumes {(φ_v0)}, and S v values (experimental slopes) have been interpreted in terms of solute solvent interactions. In addition, these studies have also been extended to determine the effect of these drugs on the solvation behavior of an electrolyte (sodium chloride), a surfactant (sodium dodecyl sulfate), and a non-electrolyte (sucrose). It can be inferred from these studies that all drug cations can be regarded as structure makers/promoters due to hydrophobic hydration. Furthermore, the results are correlated to understand the solution behavior of drugs in aqueous-alcoholic systems, as a function of the nature of the alcohol and solutes.

  4. Effects of initial saturation on properties modification and displacement of tetrachloroethene with aqueous isobutanol.

    PubMed

    Boyd, Glen R; Ocampo-Gómez, Ana M; Li, Minghua; Husserl, Johana

    2006-11-20

    Packed column experiments were conducted to study effects of initial saturation of tetrachloroethene (PCE) in the range of 1.0-14% pore volume (PV) on mobilization and downward migration of the non-aqueous phase liquid (NAPL) product upon contact with aqueous isobutanol ( approximately 10 vol.%). This study focused on the consequences of swelling beyond residual saturation. Columns were packed with mixtures of neat PCE, water and glass beads and waterflooded to establish a desired homogeneous residual saturation, and then flooded with aqueous isobutanol under controlled hydraulic conditions. Results showed a critical saturation of approximately 8% PV for these packed column experimental conditions. At low initial PCE saturations (<8% PV), experimental results showed reduced risk of NAPL-product migration upon contact with aqueous isobutanol. At higher initial PCE saturations (>8% PV), results showed NAPL-product mobilization and downward migration which was attributed to interfacial tension (IFT) reduction, swelling of the NAPL-product, and reduced density modification. Packed column results were compared with good agreement to theoretical predictions of NAPL-product mobilization using the total trapping number, N(T). In addition to the packed column study, preliminary batch experiments were conducted to study the effects of PCE volumetric fraction in the range of 0.5-20% on density, viscosity, and IFT modification as a function of time following contact with aqueous isobutanol ( approximately 10 vol.%). Modified NAPL-product fluid properties approached equilibrium within approximately 2 h of contact for density and viscosity. IFT reduction occurred immediately as expected. Measured fluid properties were compared with good agreement to theoretical equilibrium predictions based on UNIQUAC. Overall, this study demonstrates the importance of initial DNAPL saturation, and the associated risk of downward NAPL-product migration, in applying alcohol flooding for remediation of DNAPL contaminated ground water sites.

  5. Aqueous two-phase partition applied to the isolation of plasma membranes and Golgi apparatus from cultured mammalian cells.

    PubMed

    Morré, D M; Morre, D J

    2000-06-23

    Partitioning in dextran-poly(ethylene)glycol (PEG) aqueous-aqueous phase systems represents a mature technology with many applications to separations of cells and to the preparation of membranes from mammalian cells. Most applications to membrane isolation and purification have focused on plasma membranes, plasma membrane domains and separation of right side-out and inside-out plasma membrane vesicles. The method exploits a combination of membrane properties, including charge and hydrophobicity. Purification is based upon differential distributions of the constituents in a sample between the two principal compartments of the two phases (upper and lower) and at the interface. The order of affinity of animal cell membranes for the upper phase is: endoplasmic reticulum

  6. Aqueous two-phase partition applied to the isolation of plasma membranes and Golgi apparatus from cultured mammalian cells

    NASA Technical Reports Server (NTRS)

    Morre, D. M.; Morre, D. J.

    2000-01-01

    Partitioning in dextran-poly(ethylene)glycol (PEG) aqueous-aqueous phase systems represents a mature technology with many applications to separations of cells and to the preparation of membranes from mammalian cells. Most applications to membrane isolation and purification have focused on plasma membranes, plasma membrane domains and separation of right side-out and inside-out plasma membrane vesicles. The method exploits a combination of membrane properties, including charge and hydrophobicity. Purification is based upon differential distributions of the constituents in a sample between the two principal compartments of the two phases (upper and lower) and at the interface. The order of affinity of animal cell membranes for the upper phase is: endoplasmic reticulum

  7. Fast Cooling and Vitrification of Aqueous Solutions for Cryopreservation

    NASA Astrophysics Data System (ADS)

    Warkentin, Matt; Husseini, Naji; Berejnov, Viatcheslav; Thorne, Robert

    2006-03-01

    In many applications, a small volume of aqueous solution must be cooled at a rate sufficient to produce amorphous solid water. Two prominent examples include flash-freezing of protein crystals for X-ray data collection and freezing of cells (i.e. spermatozoa) for cryopreservation. The cooling rate required to vitrify pure water (˜10^6 K/s) is unattainable for volumes that might contain cells or protein crystals, but the required rate can be reduced by adding cryoprotectants. We report the first measurements of the critical concentration required to produce a vitrified sample as a function of the sample's volume, the cryogen into which the sample is plunged, and the temperature of the cryogen, for a wide range of cryoprotectants. These experiments have broad practical consequences for cryopreservation, and provide insight into the physics of glass formation in aqueous systems.

  8. Partial molar volumes of proteins: amino acid side-chain contributions derived from the partial molar volumes of some tripeptides over the temperature range 10-90 degrees C.

    PubMed

    Häckel, M; Hinz, H J; Hedwig, G R

    1999-11-15

    The partial molar volumes of tripeptides of sequence glycyl-X-glycine, where X is one of the amino acids alanine, leucine, threonine, glutamine, phenylalanine, histidine, cysteine, proline, glutamic acid, and arginine, have been determined in aqueous solution over the temperature range 10-90 degrees C using differential scanning densitometry . These data, together with those reported previously, have been used to derive the partial molar volumes of the side-chains of all 20 amino acids. The side-chain volumes are critically compared with literature values derived using partial molar volumes for alternative model compounds. The new amino acid side-chain volumes, along with that for the backbone glycyl group, were used to calculate the partial specific volumes of several proteins in aqueous solution. The results obtained are compared with those observed experimentally. The new side-chain volumes have also been used to re-determine residue volume changes upon protein folding.

  9. Identifying precursors and aqueous organic aerosol formation pathways during the SOAS campaign

    NASA Astrophysics Data System (ADS)

    Sareen, Neha; Carlton, Annmarie G.; Surratt, Jason D.; Gold, Avram; Lee, Ben; Lopez-Hilfiker, Felipe D.; Mohr, Claudia; Thornton, Joel A.; Zhang, Zhenfa; Lim, Yong B.; Turpin, Barbara J.

    2016-11-01

    Aqueous multiphase chemistry in the atmosphere can lead to rapid transformation of organic compounds, forming highly oxidized, low-volatility organic aerosol and, in some cases, light-absorbing (brown) carbon. Because liquid water is globally abundant, this chemistry could substantially impact climate, air quality, and health. Gas-phase precursors released from biogenic and anthropogenic sources are oxidized and fragmented, forming water-soluble gases that can undergo reactions in the aqueous phase (in clouds, fogs, and wet aerosols), leading to the formation of secondary organic aerosol (SOAAQ). Recent studies have highlighted the role of certain precursors like glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone, and epoxides in the formation of SOAAQ. The goal of this work is to identify additional precursors and products that may be atmospherically important. In this study, ambient mixtures of water-soluble gases were scrubbed from the atmosphere into water at Brent, Alabama, during the 2013 Southern Oxidant and Aerosol Study (SOAS). Hydroxyl (OH⚫) radical oxidation experiments were conducted with the aqueous mixtures collected from SOAS to better understand the formation of SOA through gas-phase followed by aqueous-phase chemistry. Total aqueous-phase organic carbon concentrations for these mixtures ranged from 92 to 179 µM-C, relevant for cloud and fog waters. Aqueous OH-reactive compounds were primarily observed as odd ions in the positive ion mode by electrospray ionization mass spectrometry (ESI-MS). Ultra high-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) spectra and tandem MS (MS-MS) fragmentation of these ions were consistent with the presence of carbonyls and tetrols. Products were observed in the negative ion mode and included pyruvate and oxalate, which were confirmed by ion chromatography. Pyruvate and oxalate have been found in the particle phase in many locations (as salts and complexes). Thus, formation of pyruvate/oxalate suggests the potential for aqueous processing of these ambient mixtures to form SOAAQ.

  10. Aqueous two-phase assisted by ultrasound for the extraction of anthocyanins from Lycium ruthenicum Murr.

    PubMed

    Qin, Benlin; Liu, Xuecong; Cui, Haiming; Ma, Yue; Wang, Zimin; Han, Jing

    2017-10-21

    In this study, an efficient ultrasound-assisted aqueous two-phase extraction method was used for the extraction of anthocyanins from Lycium ruthenicum Murr. An ethanol/ammonium sulfate system was chosen for the aqueous two-phase system due to its fine partitioning and recycling behaviors. Single-factor experiments were conducted to determine the optimized composition of the system, and the response surface methodology was used for the further optimization of the ultrasound-assisted aqueous two-phase extraction. The optimal conditions were as follows: a salt concentration of 20%, an ethanol concentration of 25%, an extraction time of 33.7 min, an extraction temperature of 25°C, a liquid/solid ratio of 50:1 w/w, pH value of 3.98, and an ultrasound power of 600 W. Under the above conditions, the yields of anthocyanins reached 4.71 mg/g dry sample. For the further purification, D-101 resin was used, and the purity of anthocyanins reached 25.3%. In conclusion, ultrasound-assisted aqueous two-phase extraction was an efficient, ecofriendly, and economical method, and it may be a promising technique for extracting bioactive components from plants.

  11. Ion-exchange controls the kinetics of deswelling of polyelectrolyte microgels in solutions of oppositely charged surfactant.

    PubMed

    Nilsson, Peter; Hansson, Per

    2005-12-22

    The kinetics of deswelling of sodium polyacrylate microgels (radius 30-140 microm) in aqueous solutions of dodecyltrimethylammonium bromide is investigated by means of micropipet-assisted light microscopy. The purpose of the study is to test a recent model (J. Phys. Chem. B 2003, 107, 9203) proposing that the rate of the volume change is controlled by the transport of surfactant from the solution to the gel core (ion exchange) via the surfactant-rich surface phase appearing in the gel during the volume transition. Equilibrium swelling characteristics of the gel network in surfactant-free solutions and with various amounts of surfactant present are presented and discussed with reference to related systems. A relationship between gel volume and degree of surfactant binding is determined and used in theoretical predictions of the deswelling kinetics. Experimental data for single gel beads observed during deswelling under conditions of forced convection are presented and compared with model calculations. It is demonstrated that the dependences of the kinetics on initial gel size, the surfactant concentration in the solution, and the liquid flow rate are well accounted for by the model. It is concluded that the deswelling rates of the studied gels are strongly influenced by the mass transport of surfactant between gel and solution (stagnant layer diffusion), but only to a minor extent by the transport through the surface phase. The results indicate that, during the volume transition, swelling equilibrium (network relaxation/transport of water) is established on a relatively short time scale and, therefore, can be treated as independent of the ion-exchange kinetics. Theoretical aspects of the kinetics and mechanisms of surfactant transport through the surface phase are discussed.

  12. A novel TFC forward osmosis (FO) membrane supported by polyimide (PI) microporous nanofiber membrane

    NASA Astrophysics Data System (ADS)

    Chi, Xiang-Yu; Zhang, Ping-Yun; Guo, Xue-Jiao; Xu, Zhen-Liang

    2018-01-01

    A novel interfacial polymerization (IP) procedure on polyimide (PI) microporous nanofiber membrane support with mean pore size 1.27 μm was reported. Using m-phenylenediamine (MPD) as aqueous phase monomer, trimesoyl chloride (TMC) as organic phase monomer, ethanol as aqueous phase co-solvent, thin-film composite (TFC) forward osmosis (FO) membrane was fabricated by two IP procedures. The first IP procedure with the unconventional order (ie, the membrane was immersed in the TMC organic phase first, then in the co-solvent ethanol-water MPD aqueous phase) was used to diminish the pore size of PI microporous nanofiber membrane support for the formation of the polyamide layer. The secondary IP procedure was employed to form the relatively dense polyamide layer with conventional order (ie, the membrane was immersed in the co-solvent ethanol-water MPD aqueous phase first, then in the TMC organic phase). The experimental results showed that higher ethanol concentration led to the relatively higher pure water permeability in RO process and osmotic water flux in FO process, whereas NaCl rejection in RO process decreased and reverse salt flux increased. The specific salt flux (Js/Jv) of TFC FO PI nanofiber membrane (PIN-2-4) could be as low as 0.095 g/L in FO mode. These results could be attributed to influence of the addition of ethanol into aqueous phase on the surface morphology, hydrophilicity and polyamide layer structure.

  13. European Scientific Notes. Volume 37, Number 2,

    DTIC Science & Technology

    1983-02-28

    potassium persulfate the initiator. ethylene. The method is to immerse the Particle nucleation, flocculation, and films in an aqueous solution of acrylic... polyacrylic acid in the aqueous solu- causing flocculation and coalescence. tion, water soluble inhibitors were The process of aggregation of ...AD-A127 548 EUROPEAN SCIENTIFIC 140TES VOLUME 37 NUMBER 2(U) OFFICE / OF NAVAL RESEARCH LONDON (ERGLAND) V TSTANNET ET AL 28 FER 83 ESN-37-2 UNCLAAS

  14. Hemoglobin consumption by P. falciparum in individual erythrocytes imaged via quantitative phase spectroscopy

    NASA Astrophysics Data System (ADS)

    Rinehart, Matthew T.; Park, Han Sang; Walzer, Katelyn A.; Chi, Jen-Tsan Ashley; Wax, Adam

    2016-04-01

    Plasmodium falciparum infection causes structural and biochemical changes in red blood cells (RBCs). To quantify these changes, we apply a novel optical technique, quantitative phase spectroscopy (QPS) to characterize individual red blood cells (RBCs) during the intraerythrocytic life cycle of P. falciparum. QPS captures hyperspectral holograms of individual RBCs to measure spectroscopic changes across the visible wavelength range (475-700 nm), providing complex information, i.e. amplitude and phase, about the light field which has interacted with the cell. The complex field provides complimentary information on hemoglobin content and cell mass, which are both found to dramatically change upon infection by P. falciparum. Hb content progressively decreases with parasite life cycle, with an average 72.2% reduction observed for RBCs infected by schizont-stage P. falciparum compared to uninfected cells. Infection also resulted in a 33.1% reduction in RBC’s optical volume, a measure of the cells’ non-aqueous components. Notably, optical volume is only partially correlated with hemoglobin content, suggesting that changes in other dry mass components such as parasite mass may also be assessed using this technique. The unique ability of QPS to discriminate individual healthy and infected cells using spectroscopic changes indicates that the approach can be used to detect disease.

  15. Application of carbon nanotubes modified with a Keggin polyoxometalate as a new sorbent for the hollow-fiber micro-solid-phase extraction of trace naproxen in hair samples with fluorescence spectrophotometry using factorial experimental design.

    PubMed

    Naddaf, Ezzat; Ebrahimi, Mahmoud; Es'haghi, Zarrin; Bamoharram, Fatemeh Farrash

    2015-07-01

    A sensitive technique to determinate naproxen in hair samples was developed using hollow-fiber micro-solid-phase combined with fluorescence spectrophotometry. The incorporation of multi-walled carbon nanotubes modified with a Keggin polyoxometalate into a silica matrix prepared by the sol-gel method was reported. In this research, the Keggin carbon nanotubes /silica composite was used in the pores and lumen of a hollow fiber as the hollow-fiber micro-solid-phase extraction device. The device was used for the microextraction of the analyte from hair and water samples under the optimized conditions. An orthogonal array experimental design with an OA24 (4(6) ) matrix was employed to optimize the conditions. The effect of six factors influencing the extraction efficiency was investigated: pH, salt, volume of donor and desorption phase, extraction and desorption time. The effect of each factor was estimated using individual contributions as response functions in the screening process. Analysis of variance was employed for estimating the main significant factors and their contributions in the extraction. Calibration curve plot displayed linearity over a range of 0.2-10 ng/mL with detection limits of 0.072 and 0.08 ng/mL for hair and aqueous samples, respectively. The relative recoveries in the hair and aqueous matrices ranged from 103-95%. The relative standard deviation for fiber-to-fiber repeatability was 3.9%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Development, optimisation and application of polyurethane foams as new polymeric phases for stir bar sorptive extraction.

    PubMed

    Neng, N R; Pinto, M L; Pires, J; Marcos, P M; Nogueira, J M F

    2007-11-09

    In this contribution, polyurethane foams are proposed as new polymeric phases for stir bar sorptive extraction (SBSE). Assays performed for polyurethane synthesis demonstrated that four series of formulations (P(1), P(2), P(3) and P(4)) present remarkable stability and excellent mechanical resistance to organic solvents. For polymer clean-up treatment, acetonitrile proved to be the best solvent under sonification, ensuring the reduction of the contamination and interferences. SBSE assays performed on these polyurethane polymers followed by liquid desorption and high-performance liquid chromatography-diode array detection (LD-HPLC-DAD) or large volume injection-capillary gas chromatography-mass spectrometry (LD-LVI-GC-MS), showed that P(2) presents the best recovery yields for atrazine, 2,3,4,5-tetrachlorophenol and fluorene, used as model compounds in water samples at a trace level. SBSE(P(2)) assays performed on this polymer mixed up with several adsorbent materials, i.e. activated carbon, a mesoporous material and a calixarene, did not bring any advantages in relation with the polymeric matrix alone. The comparison between assays performed by SBSE(P(2)) and by the conventional SBSE(PDMS) showed much better performance for the former phase on aqueous samples spiked with atrazine, 2,3,4,5-tetrachlorophenol and fluorene, in which the foremost two analytes present recovery values 3- and 10-fold higher, respectively. The polyurethanes proposed as new polymeric phases for SBSE provided powerful capabilities for the enrichment of organic compounds from aqueous matrices, showing to be indicated mainly in the case of the more polar analytes.

  17. A rapid and sensitive assay of perfluorocarboxylic acids in aqueous matrices by headspace solid phase microextraction-gas chromatography-triple quadrupole mass spectrometry.

    PubMed

    Monteleone, Marcello; Naccarato, Attilio; Sindona, Giovanni; Tagarelli, Antonio

    2012-08-17

    The work aims at developing a rapid and sensitive method for the quantification of perfluorocarboxylic acids in aqueous matrices. The proposed analytical approach is based on the use of solid phase microextraction in headspace mode after a fast derivatization of the carboxylate function by propylchloroformate/propanol mixture. Several fibers were evaluated and the optimization of the parameters affecting the SPME process was carried out using a central composite design. The optimum working conditions in terms of response values were achieved by performing analysis with CAR/PDMS fiber at room temperature, without addition of NaCl, with a sample volume of 6 ml and an extraction time of 10 min. Assay of PFCAs was performed by using a gas chromatography-triple quadrupole mass spectrometry (GC-QqQ MS) system in negative chemical ionization mode with ammonia as reagent gas. An overall evaluation of all analytical parameters shows that the proposed method provides satisfactory results. In particular, the observed accuracies, ranging from 84.4% to 116.8%, and the RSD values in the range 0.4% and 14.5% confirm the effectiveness of the developed protocol in the assay of PFCAs content in aqueous matrices. Moreover, LOD and LOQ values ranging from 0.08 to 6.6 ng l(-1) and from 0.17 to 14.3 ng l(-1), respectively, can be considered very satisfactory. None of the compounds were detected in six samples of river collected in Calabria. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. PROCESS OF SEPARATING URANIUM FROM AQUEOUS SOLUTION BY SOLVENT EXTRACTION

    DOEpatents

    Warf, J.C.

    1958-08-19

    A process is described for separating uranium values from aqueous uranyl nitrate solutions. The process consists in contacting the uramium bearing solution with an organic solvent, tributyl phosphate, preferably diluted with a less viscous organic liquida whereby the uranyl nitrate is extracted into the organic solvent phase. The uranvl nitrate may be recovered from the solvent phase bv back extracting with an aqueous mediuin.

  19. PCE DNAPL degradation using ferrous iron solid mixture (ISM).

    PubMed

    Lee, Hong-Kyun; Do, Si-Hyun; Batchelor, Bill; Jo, Young-Hoon; Kong, Sung-Ho

    2009-08-01

    Ferrous iron solid mixture (ISM) containing Fe(II), Fe(III), and Cl was synthesized for degradation of tetrachloroethene (PCE) as a dense non-aqueous phase liquid (DNAPL), and an extraction procedure was developed to measure concentrations of PCE in both the aqueous and non-aqueous phases. This procedure included adding methanol along with hexane in order to achieve the high extraction efficiency, particularly when solids were present. When PCE was present as DNAPL, dechlorination of PCE was observed to decrease linearly with respect to the total PCE concentration (aqueous and non-aqueous phases) and the concentration of PCE in the aqueous phase was observed to be approximately constant. In the absence of DNAPL, the rate of PCE degradation was observed to be the first-order with respect to the concentration in the aqueous phase. A kinetic model was developed to describe these observations and it was able to fit experimental data well. Increasing the concentration of Fe(II) in ISM increased the values of rate constants, while increasing the concentration of PCE DNAPL did not affect the value of the rate constant. The reactivity of ISM for PCE dechlorination might be close to that of Friedel's salt, and the accumulation of trichloroethylene (TCE) might imply the lower reactivity of ISM for degradation of TCE or the necessity of large amount of Fe(II) in ISM. TCE (the major chlorinated intermediate), ethene (the major non-chlorinated compound), acetylene and ethane were detected, which implied that both hydrogenolysis and beta-elimination were pathways of PCE DNAPL degradation on ISM.

  20. Triton X-114 based cloud point extraction: a thermoreversible approach for separation/concentration and dispersion of nanomaterials in the aqueous phase.

    PubMed

    Liu, Jing-fu; Liu, Rui; Yin, Yong-guang; Jiang, Gui-bin

    2009-03-28

    Capable of preserving the sizes and shapes of nanomaterials during the phase transferring, Triton X-114 based cloud point extraction provides a general, simple, and cost-effective route for reversible concentration/separation or dispersion of various nanomaterials in the aqueous phase.

  1. Anomalistic Self-Assembled Phase Behavior of Block Copolymer Blended with Organic Derivative Depending on Temperature

    DOE PAGES

    Kim, Tae-Hwan; Kim, Eunhye; Do, Changwoo; ...

    2016-08-16

    Amphiphilic Pluronic block copolymers have attracted great attention in a broad spectrum of potential applications due to the excellent phase behaviors in an aqueous solution, and many efforts have been made to investigate their phase behaviors under various external conditions. With a variety of external conditions, however, the closed looplike phase behaviors of a Pluronic block copolymer in an aqueous solution have not been reported yet. Herein, we report the closed looplike (CLL) phase behavior of a Pluronic P65 triblock copolymer blended with an organic derivative, 5-methylsalicylic acid (5mS), in aqueous solution, which is very unique for block copolymers. Asmore » the 5mS concentration increases, the isotropic to ordered phase or back to isotropic phase transition temperature is decreased while the number of closed loops is increased to two. To the best of our knowledge, this is the first demonstration of a CLL phase transition of a Pluronic block copolymer in an aqueous solution, which is readily applicable to optical devices such as optical sensors or optoelectronics, and nanotemplates for a highly ordered superlattice. Additionally, this provides new insight into the understanding on the phase behavior of a Pluronic block copolymer blended with additives.« less

  2. Anomalistic Self-Assembled Phase Behavior of Block Copolymer Blended with Organic Derivative Depending on Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Tae-Hwan; Kim, Eunhye; Do, Changwoo

    Amphiphilic Pluronic block copolymers have attracted great attention in a broad spectrum of potential applications due to the excellent phase behaviors in an aqueous solution, and many efforts have been made to investigate their phase behaviors under various external conditions. With a variety of external conditions, however, the closed looplike phase behaviors of a Pluronic block copolymer in an aqueous solution have not been reported yet. Herein, we report the closed looplike (CLL) phase behavior of a Pluronic P65 triblock copolymer blended with an organic derivative, 5-methylsalicylic acid (5mS), in aqueous solution, which is very unique for block copolymers. Asmore » the 5mS concentration increases, the isotropic to ordered phase or back to isotropic phase transition temperature is decreased while the number of closed loops is increased to two. To the best of our knowledge, this is the first demonstration of a CLL phase transition of a Pluronic block copolymer in an aqueous solution, which is readily applicable to optical devices such as optical sensors or optoelectronics, and nanotemplates for a highly ordered superlattice. Additionally, this provides new insight into the understanding on the phase behavior of a Pluronic block copolymer blended with additives.« less

  3. SEPARATION OF POLONIUM, PROTACTINIUM OR MIXTURES THEREOF IN AQUEOUS SOLUTION FROM BISMUTH, LEAD, ZIRCONIUM AND/OR COLUMBIUM VALUES

    DOEpatents

    Van Winkle, Q.; Kraus, K.A.

    1959-10-27

    A process is presented for separating polonium, protactinium, or mixtures thereof in aqueous solution from bismuth, zirconium, lead, and niobium values contained in the solution. The method comprises providing hydrochloric acid in the solution in a concentration of at least 5N. contacting the aqueous solution with a substantially waterimmiscible organic solvent such as diisopropyl ketone, and separating the aqueous phase containing the bismuth, zirconium, lead, and niobium from the organic extract phase containing the polonium, protactinium, or mixture thereof.

  4. Process for recovering chaotropic anions from an aqueous solution also containing other ions

    DOEpatents

    Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.

    1999-01-01

    A solid/liquid process for the separation and recovery of chaotropic anions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the chaotropic anions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt (lyotrope). A solid/liquid phase admixture of separation particles containing bound chaotropic anions in such an aqueous solution is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture.

  5. Process for recovering chaotropic anions from an aqueous solution also containing other ions

    DOEpatents

    Rogers, R.; Horwitz, E.P.; Bond, A.H.

    1999-03-30

    A solid/liquid process for the separation and recovery of chaotropic anions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the chaotropic anions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt (lyotrope). A solid/liquid phase admixture of separation particles containing bound chaotropic anions in such an aqueous solution is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture. 19 figs.

  6. Adsorptive removal of phthalate ester (Di-ethyl phthalate) from aqueous phase by activated carbon: a kinetic study.

    PubMed

    Venkata Mohan, S; Shailaja, S; Rama Krishna, M; Sarma, P N

    2007-07-19

    Adsorptive studies were carried out on Di-ethyl phthalate (DEP) removal from aqueous phase onto activated carbon. Batch sorption studies were performed and the results revealed that activated carbon demonstrated ability to adsorb DEP. Influence of varying experimental conditions such as DEP concentration, pH of aqueous solution, and dosage of adsorbent were investigated on the adsorption process. Sorption interaction of DEP onto activated carbon obeyed the pseudo second order rate equation. Experimental data showed good fit with both the Langmuir and Freundlich adsorption isotherm models. DEP sorption was found to be dependent on the aqueous phase pH and the uptake was observed to be greater at acidic pH.

  7. SE-72/AS-72 generator system based on Se extraction/ As reextraction

    DOEpatents

    Fassbender, Michael Ernst; Ballard, Beau D

    2013-09-10

    The preparation of a .sup.72Se/.sup.72As radioisotope generator involves forming an acidic aqueous solution of an irradiated alkali bromide target such as a NaBr target, oxidizing soluble bromide in the solution to elemental bromine, removing the elemental bromine, evaporating the resulting solution to a residue, removing hydrogen chloride from the residue, forming an acidic aqueous solution of the residue, adding a chelator that selectively forms a chelation complex with selenium, and extracting the chelation complex from the acidic aqueous solution into an organic phase. As the .sup.72Se generates .sup.72As in the organic phase, the .sup.72As may be extracted repeatedly from the organic phase with an aqueous acid solution.

  8. Development of Recombinant Human Growth Hormone (rhGH) sustained-release microspheres by a low temperature aqueous phase/aqueous phase emulsion method.

    PubMed

    Kang, Jian; Wu, Fei; Cai, Yunpeng; Xu, Mingxin; He, Mu; Yuan, Weien

    2014-10-01

    A novel method has been developed to protect Recombinant Human Growth Hormone (rhGH) in poly (lactic-co-glycolic acid) (PLGA) microspheres using an aqueous phase/aqueous phase emulsion and S/O/W multi-emulsion method. This method develops a novel rhGH sustained-release system, which is based on the combination of rhGH-loaded dextran microparticles and PLGA microspheres. The process to fabricate rhGH-loaded dextran microparticles involves an aqueous phase/aqueous phase emulsion system formed at the reduced temperature. RhGH was first dissolved in water together with dextran and polyethylene glycol, followed by stirring at the speed of 2000 rpm for 20-30s at 0°C, and then a freezing process could enable the dextran phase to separate from the continuous PEG phase and rhGH could preferentially be loaded with dextran. The sample after freezing and phase separation was then lyophilized to powder and washed with dichloromethane to remove the PEG. Once loaded in the dextran microparticles (1-4 μm in diameter), rhGH gained resistance to interface tensions and was encapsulated into PLGA microspheres without aggregation thereafter. RhGH released from PLGA microspheres was in a sustained manner with minimal burst and maximally reduced incomplete release in vitro. Single subcutaneous injection of rhGH-loaded PLGA microspheres to rats resulted in a stable plasma concentration for 30 days avoiding the drug concentration fluctuations after multiple injections of protein solutions. In a hypophysectomized rat model, the IGF-1 and bodyweight results showed that there were higher than the levels obtained for the sustained release formulation by W/O/W for 40 days. These results suggest that the microsphere delivery system had the potential to be an injectable depot for sustained-release of the biocompatible protein of rhGH. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Universal patterns of equilibrium cluster growth in aqueous sugars observed by dynamic light scattering.

    PubMed

    Sidebottom, D L; Tran, Tri D

    2010-11-01

    Dynamic light scattering performed on aqueous solutions of three sugars (glucose, maltose and sucrose) reveal a common pattern of sugar cluster formation with a narrow cluster size distribution. In each case, equilibrium clusters form whose size increases with increasing sugar content in an identical power law manner in advance of a common, critical-like, percolation threshold near 83 wt % sugar. The critical exponent of the power law divergence of the cluster size varies with temperature, increasing with decreasing temperature, due to changes in the strength of the intermolecular hydrogen bond and appears to vanish for temperatures in excess of 90 °C. Detailed analysis of the cluster growth process suggests a two-stage process: an initial cluster phase formed at low volume fractions, ϕ, consisting of noninteracting, monodisperse sugar clusters whose size increases ϕ(1/3) followed by an aggregation stage, active at concentrations above about ϕ=40%, where cluster-cluster contact first occurs.

  10. Selective recovery of vanadium and scandium by ion exchange with D201 and solvent extraction using P507 from hydrochloric acid leaching solution of red mud.

    PubMed

    Zhu, Xiaobo; Li, Wang; Tang, Sen; Zeng, Majian; Bai, Pengyuan; Chen, Lunjian

    2017-05-01

    D201 resin and P507 extractant diluted with sulfonated kerosene were used to respectively separate vanadium and scandium, and impurity ions from hydrochloric acid leaching solution of red mud. More than 99% of vanadium was selectively adsorbed from the hydrochloric acid leaching solution under the conditions of pH value of 1.8, volume ratio of leaching solution to resin of 10, and flow rate of 3.33 mL/min. Maximum extraction and separation of scandium was observed from the acid leaching solution at an aqueous pH value of 0.2. More than 99% of scandium can be selectively extracted using 15% P507, 5% TBP at the aqueous solution/organic phase (A/O) ratio of 10:1 for 6 min. The loaded organic phase was washed with 0.3 mol/L sulfuric acid, wherein most impurities were removed. After the process of desorption or stripping, precipitation, and roasting, high-purity V 2 O 5 and Sc 2 O 3 were obtained. Finally, a conceptual flow sheet was established to separate and recover vanadium and scandium from red mud hydrochloric acid leaching solution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Trace quantification of selected sulfonamides in aqueous media by implementation of a new dispersive solid-phase extraction method using a nanomagnetic titanium dioxide graphene-based sorbent and HPLC-UV.

    PubMed

    Izanloo, Maryam; Esrafili, Ali; Behbahani, Mohammad; Ghambarian, Mahnaz; Reza Sobhi, Hamid

    2018-02-01

    Herein, a new dispersive solid-phase extraction method using a nano magnetic titanium dioxide graphene-based sorbent in conjunction with high-performance liquid chromatography and ultraviolet detection was successfully developed. The method was proved to be simple, sensitive, and highly efficient for the trace quantification of sulfacetamide, sulfathiazole, sulfamethoxazole, and sulfadiazine in relatively large volume of aqueous media. Initially, the nano magnetic titanium dioxide graphene-based sorbent was successfully synthesized and subsequently characterized by scanning electron microscopy and X-ray diffraction. Then, the sorbent was used for the sorption and extraction of the selected sulfonamides mainly through π-π stacking hydrophobic interactions. Under the established conditions, the calibration curves were linear over the concentration range of 1-200 μg/L. The limit of quantification (precision of 20%, and accuracy of 80-120%) for the detection of each sulfonamide by the proposed method was 1.0 μg/L. To test the extraction efficiency, the method was applied to various fortified real water samples. The average relative recoveries obtained from the fortified samples varied between 90 and 108% with the relative standard deviations of 5.3-10.7%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effect of oil concentration and residence time on the biodegradation of α-pinene vapours in two-liquid phase suspended-growth bioreactors.

    PubMed

    Montes, María; Veiga, María C; Kennes, Christian

    2012-02-20

    Recently, research on the use of binary aqueous-organic liquid phase systems for the treatment of polluted air has significantly increased. This paper reports the removal of α-pinene from a waste air stream in a continuous stirred tank bioreactor (CSTB), using either a single-liquid aqueous phase or a mixed aqueous-organic liquid phase. The influence of gas flow rate, load and pollutant concentration was evaluated as well as the effect of the organic to aqueous phase ratio. Continuous experiments were carried out at different inlet α-pinene concentrations, ranging between 0.03 and 25.1 g m⁻³ and at four different flow rates, corresponding to residence times (RTs) of 120 s, 60 s, 36 s and 26 s. The maximum elimination capacities (ECs) reached in the CSTB were 382 g m⁻³ h⁻¹ (without silicone oil) and 608 g m⁻³ h⁻¹ (with 5%v/v silicone oil), corresponding to a 1.6-fold improvement using an aqueous-organic liquid phase. During shock-loads experiments, the performance and stability of the CSTB were enhanced with 5% silicone oil, quickly recovering almost 100% removal efficiency (RE), when pre-shock conditions were restored. The addition of silicone oil acted as a buffer for high α-pinene loads, showing a more stable behaviour in the case of two-liquid-phase systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Formation of uniform carrot-like Cu31S16-CuInS2 heteronanostructures assisted by citric acid at the oil/aqueous interface.

    PubMed

    Li, Yongjie; Tang, Aiwei; Liu, Zhenyang; Peng, Lan; Yuan, Yi; Shi, Xifeng; Yang, Chunhe; Teng, Feng

    2018-01-07

    A simple two-phase strategy was developed to prepare Cu 31 S 16 -CuInS 2 heterostructures (HNS) at the oil/aqueous interface, in which the In(OH) 3 phase was often obtained in the products due to the reaction between indium ions and hydroxyl ions in the aqueous phase. To prevent the formation of the In(OH) 3 phase, citric acid was incorporated into the aqueous phase to assist in the synthesis of uniform carrot-like Cu 31 S 16 -CuInS 2 semiconductor HNS at the oil/aqueous interface for the first time. By manipulating the dosage of citric acid and Cu/In precursor ratios, the morphology of the Cu 31 S 16 -CuInS 2 HNS could be tailored from mushroom to carrot-like, and the presence of citric acid played a critical role in the synthesis of high-quality Cu 31 S 16 -CuInS 2 HNS, which inhibited the formation of the In(OH) 3 phase due to the formation of the indium(iii)-citric acid complex. The formation mechanism was studied by monitoring the morphology and phase evolution of the Cu 31 S 16 -CuInS 2 HNS with reaction time, which revealed that the Cu 31 S 16 seeds were first formed and then the cation-exchange reaction directed the subsequent anisotropic growth of the Cu 31 S 16 -CuInS 2 HNS.

  14. Separation of switchgrass bio-oil by water/organic solvent addition and pH adjustment

    DOE PAGES

    Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira; ...

    2016-01-29

    Applications of bio-oil are limited by its challenging properties including high moisture content, low pH, high viscosity, high oxygen content, and low heating value. Separation of switchgrass bio-oil components by adding water, organic solvents (hexadecane and octane), and sodium hydroxide may help to overcome these issues. Acetic acid and phenolic compounds were extracted in aqueous and organic phases, respectively. Polar chemicals, such as acetic acid, did not partition in the organic solvent phase. Acetic acid in the aqueous phase after extraction is beneficial for a microbial-electrolysis-cell application to produce hydrogen as an energy source for further hydrodeoxygenation of bio-oil. Organicmore » solvents extracted more chemicals from bio-oil in combined than in sequential extraction; however, organic solvents partitioned into the aqueous phase in combined extraction. When sodium hydroxide was added to adjust the pH of aqueous bio-oil, organic-phase precipitation occurred. As the pH was increased, a biphasic aqueous/organic dispersion was formed, and phase separation was optimized at approximately pH 6. The neutralized organic bio-oil had approximately 37% less oxygen and 100% increased heating value than the initial centrifuged bio-oil. In conclusion, the less oxygen content and increased heating value indicated a significant improvement of the bio-oil quality through neutralization.« less

  15. Separation of switchgrass bio-oil by water/organic solvent addition and pH adjustment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira

    Applications of bio-oil are limited by its challenging properties including high moisture content, low pH, high viscosity, high oxygen content, and low heating value. Separation of switchgrass bio-oil components by adding water, organic solvents (hexadecane and octane), and sodium hydroxide may help to overcome these issues. Acetic acid and phenolic compounds were extracted in aqueous and organic phases, respectively. Polar chemicals, such as acetic acid, did not partition in the organic solvent phase. Acetic acid in the aqueous phase after extraction is beneficial for a microbial-electrolysis-cell application to produce hydrogen as an energy source for further hydrodeoxygenation of bio-oil. Organicmore » solvents extracted more chemicals from bio-oil in combined than in sequential extraction; however, organic solvents partitioned into the aqueous phase in combined extraction. When sodium hydroxide was added to adjust the pH of aqueous bio-oil, organic-phase precipitation occurred. As the pH was increased, a biphasic aqueous/organic dispersion was formed, and phase separation was optimized at approximately pH 6. The neutralized organic bio-oil had approximately 37% less oxygen and 100% increased heating value than the initial centrifuged bio-oil. In conclusion, the less oxygen content and increased heating value indicated a significant improvement of the bio-oil quality through neutralization.« less

  16. Micro-Raman Technology to Interrogate Two-Phase Extraction on a Microfluidic Device.

    PubMed

    Nelson, Gilbert L; Asmussen, Susan E; Lines, Amanda M; Casella, Amanda J; Bottenus, Danny R; Clark, Sue B; Bryan, Samuel A

    2018-05-21

    Microfluidic devices provide ideal environments to study solvent extraction. When droplets form and generate plug flow down the microfluidic channel, the device acts as a microreactor in which the kinetics of chemical reactions and interfacial transfer can be examined. Here, we present a methodology that combines chemometric analysis with online micro-Raman spectroscopy to monitor biphasic extractions within a microfluidic device. Among the many benefits of microreactors is the ability to maintain small sample volumes, which is especially important when studying solvent extraction in harsh environments, such as in separations related to the nuclear fuel cycle. In solvent extraction, the efficiency of the process depends on complex formation and rates of transfer in biphasic systems. Thus, it is important to understand the kinetic parameters in an extraction system to maintain a high efficiency and effectivity of the process. This monitoring provided concentration measurements in both organic and aqueous plugs as they were pumped through the microfluidic channel. The biphasic system studied was comprised of HNO 3 as the aqueous phase and 30% (v/v) tributyl phosphate in n-dodecane comprised the organic phase, which simulated the plutonium uranium reduction extraction (PUREX) process. Using pre-equilibrated solutions (post extraction), the validity of the technique and methodology is illustrated. Following this validation, solutions that were not equilibrated were examined and the kinetics of interfacial mass transfer within the biphasic system were established. Kinetic results of extraction were compared to kinetics already determined on a macro scale to prove the efficacy of the technique.

  17. A resolution approach of racemic phenylalanine with aqueous two-phase systems of chiral tropine ionic liquids.

    PubMed

    Wu, Haoran; Yao, Shun; Qian, Guofei; Yao, Tian; Song, Hang

    2015-10-30

    Aqueous two-phase systems (ATPS) based on tropine type chiral ionic liquids and inorganic salt solution were designed and prepared for the enantiomeric separation of racemic phenylalanine. The phase behavior of IL-based ATPS was comprehensive investigated, and phase equilibrium data were correlated by Merchuk equation. Various factors were also systematically investigated for their influence on separation efficiency. Under the appropriate conditions (0.13g/g [C8Tropine]pro, 35mg/g Cu(Ac)2, 20mg/g d,l-phenylalanine, 0.51g/g H2O and 0.30g/g K2HPO4), the enantiomeric excess value of phenylalanine in solid phase (mainly containing l-enantiomer) was 65%. Finally, the interaction mechanism was studied via 1D and 2D NMR. The results indicate that d-enantiomer of phenylalanine interacts more strongly with chiral ILs and Cu(2+) based on the chiral ion-pairs space coordination mechanism, which makes it tend to remain in the top IL-rich phase. By contrast, l-enantiomer is transferred into the solid phase. Above chiral ionic liquids aqueous two-phase systems have demonstrated obvious resolution to racemic phenylalanine and could be promising alterative resolution approach for racemic amino acids in aqueous circumstance. Copyright © 2015. Published by Elsevier B.V.

  18. Non-aqueous phase cold vapor generation and determination of trace cadmium by atomic fluorescence spectrometry.

    PubMed

    Lei, Zirong; Chen, Luqiong; Hu, Kan; Yang, Shengchun; Wen, Xiaodong

    2018-06-05

    Cold vapor generation (CVG) of cadmium was firstly accomplished in non-aqueous media by using solid reductant of potassium borohydride (KBH 4 ) as a derivation reagent. The mixture of surfactant Triton X-114 micelle and octanol was innovatively used as the non-aqueous media for the CVG and atomic fluorescence spectrometry (AFS) was used for the elemental determination. The analyte ions were firstly extracted into the non-aqueous media from the bulk aqueous phase of analyte/sample solution via a novelly established ultrasound-assisted rapidly synergistic cloud point extraction (UARS-CPE) process and then directly mixed with the solid redcutant KBH 4 to generate volatile elemental state cadmium in a specially designed reactor, which was then rapidly transported to a commercial atomic fluorescence spectrometer for detection. Under the optimal conditions, the limit of detection (LOD) for cadmium was 0.004 μg L -1 . Compared to conventional hydride generation (HG)-AFS, the efficiency of non-aqueous phase CVG and the analytical performance of the developed system was considerably improved. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Simulation of semi-explicit mechanisms of SOA formation from glyoxal in a 3-D model

    NASA Astrophysics Data System (ADS)

    Knote, C.; Hodzic, A.; Jimenez, J. L.; Volkamer, R.; Orlando, J. J.; Baidar, S.; Brioude, J.; Fast, J.; Gentner, D. R.; Goldstein, A. H.; Hayes, P. L.; Knighton, W. B.; Oetjen, H.; Setyan, A.; Stark, H.; Thalman, R.; Tyndall, G.; Washenfelder, R.; Waxman, E.; Zhang, Q.

    2013-10-01

    New pathways to form secondary organic aerosols (SOA) have been postulated recently. Glyoxal, the smallest dicarbonyl, is one of the proposed precursors. It has both anthropogenic and biogenic sources, and readily partitions into the aqueous-phase of cloud droplets and deliquesced aerosols where it undergoes both reversible and irreversible chemistry. In this work we extend the regional scale chemistry transport model WRF-Chem to include a detailed gas-phase chemistry of glyoxal formation as well as a state-of-the-science module describing its partitioning and reactions in the aqueous-phase of aerosols. A comparison of several proposed mechanisms is performed to quantify the relative importance of different formation pathways and their regional variability. The CARES/CalNex campaigns over California in summer 2010 are used as case studies to evaluate the model against observations. In all simulations the LA basin was found to be the hotspot for SOA formation from glyoxal, which contributes between 1% and 15% of the model SOA depending on the mechanism used. Our results indicate that a mechanism based only on a simple uptake coefficient, as frequently employed in global modeling studies, leads to higher SOA contributions from glyoxal compared to a more detailed description that considers aerosol phase state and chemical composition. In the more detailed simulations, surface uptake is found to be the main contributor to SOA mass compared to a volume process and reversible formation. We find that contribution of the latter is limited by the availability of glyoxal in aerosol water, which is in turn controlled by an increase in the Henry's law constant depending on salt concentrations ("salting-in"). A kinetic limitation in this increase prevents substantial partitioning of glyoxal into aerosol water at high salt concentrations. If this limitation is removed, volume pathways contribute >20% of glyoxal SOA mass, and the total mass formed (5.8% of total SOA in the LA basin) is about a third of the simple uptake coefficient formulation without consideration of aerosol phase state and composition. All these model formulations are based on very limited and recent field or laboratory data and we conclude that the current uncertainty on glyoxal SOA formation spans a factor of 10 in this domain and time period.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, John D.; Todd, Terry A.; Gray, Kimberly D.

    The U.S. Department of Energy, Office of Nuclear Energy has chartered an effort to develop technologies to enable safe and cost effective recycle of commercial used nuclear fuel (UNF) in the U.S. Part of this effort includes the evaluation of exiting waste management technologies for effective treatment of wastes in the context of current U.S. regulations and development of waste forms and processes with significant cost and/or performance benefits over those existing. This study summarizes the results of these ongoing efforts with a focus on the highly radioactive primary waste streams. The primary streams considered and the recommended waste formsmore » include: •Tritium separated from either a low volume gas stream or a high volume water stream. The recommended waste form is low-water cement in high integrity containers. •Iodine-129 separated from off-gas streams in aqueous processing. There are a range of potentially suitable waste forms. As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form with encapsulated nano-sized AgI crystals. •Carbon-14 separated from LWR fuel treatment off-gases and immobilized as a CaCO3 in a cement waste form. •Krypton-85 separated from LWR and SFR fuel treatment off-gases and stored as a compressed gas. •An aqueous reprocessing high-level waste (HLW) raffinate waste which is immobilized by the vitrification process in one of three forms: a single phase borosilicate glass, a borosilicate based glass ceramic, or a multi-phased titanate ceramic [e.g., synthetic rock (Synroc)]. •An undissolved solids (UDS) fraction from aqueous reprocessing of LWR fuel that is either included in the borosilicate HLW glass or is immobilized in the form of a metal alloy in the case of glass ceramics or titanate ceramics. •Zirconium-based LWR fuel cladding hulls and stainless steel (SS) fuel assembly hardware that are washed and super-compacted for disposal or as an alternative Zr purification and reuse (or disposal as low-level waste, LLW) by reactive gas separations. •Electrochemical process salt HLW which is immobilized in a glass bonded Sodalite waste form known as the ceramic waste form (CWF). •Electrochemical process UDS and SS cladding hulls which are melted into an iron based alloy waste form. Mass and volume estimates for each of the recommended waste forms based on the source terms from a representative flowsheet are reported.« less

  1. Apparatus and method for the desulfurization of petroleum by bacteria

    DOEpatents

    Lizama, H.M.; Scott, T.C.; Scott, C.D.

    1995-10-17

    A method is described for treating petroleum with anaerobic microorganisms acting as biocatalysts that can remove sulfur atoms from hydrocarbon molecules, under anaerobic conditions, and then convert the sulfur atoms to hydrogen sulfide. The microorganisms utilized are from the family known as the ``Sulfate Reducing Bacteria``. These bacteria generate metabolic energy from the oxidation of organic compounds, but use oxidized forms of sulfur as an electron acceptor. Because the biocatalyst is present in the form of bacteria in an aqueous suspension, whereas the reacting substrate consists of hydrocarbon molecules in an organic phase, the actual desulfurization reaction takes place at the aqueous-organic interphase. To ensure adequate interfacial contacting and mass transfer, a biphasic electrostatic bioreactor system is utilized. The bioreactor is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the sulfur. High-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the sulfur to produce hydrogen sulfide which is then removed from the bioreactor. The organic liquid, now free of the sulfur, is ready for immediate use or further processing. 5 figs.

  2. Apparatus and method for the desulfurization of petroleum by bacteria

    DOEpatents

    Lizama, Hector M.; Scott, Timothy C.; Scott, Charles D.

    1995-01-01

    A method for treating petroleum with anaerobic microorganisms acting as biocatalysts that can remove sulfur atoms from hydrocarbon molecules, under anaerobic conditions, and then convert the sulfur atoms to hydrogen sulfide. The microorganisms utilized are from the family known as the "Sulfate Reducing Bacteria." These bacteria generate metabolic energy from the oxidation of organic compounds, but use oxidized forms of sulfur as an electron acceptor. Because the biocatalyst is present in the form of bacteria in an aqueous suspension, whereas the reacting substrate consists of hydrocarbon molecules in an organic phase, the actual desulfurization reaction takes place at the aqueous-organic interphase. To ensure adequate interfacial contacting and mass transfer, a biphasic electrostatic bioreactor system is utilized. The bioreactor is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the sulfur. High-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the sulfur to produce hydrogen sulfide which is then removed from the bioreactor. The organic liquid, now free of the sulfur, is ready for immediate use or further processing.

  3. Selective determination of arsenic(III) and arsenic(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone by means of flameless atomic-absorption spectrophotometry with a carbon-tube atomizer.

    PubMed

    Kamada, T

    The extraction behaviour of arsenic(III) and arsenic(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone in organic solvents has been investigated by means of nameless atomic-absorption spectrophotometry with a carbon-tube atomizer. The selective extraction of arsenic(III) and differential determination of arsenic(III) and arsenic(V) have been developed. With ammonium pyrrolidinedithiocarbamate and methyl isobutyl ketone or nitrobenzene, when the aqueous phase/solvent volume ratio is 5 and the injection volume in the carbon tube is 20 mul, the sensitivities for 1% absorption are 0.4 and 0.5 part per milliard of arsenic, respectively. The relative standard deviations are ca. 3%. Interference by many metal ions can be prevented by masking with EDTA. The proposed methods are applied satisfactorily for determination of As(III) and As(V) in various types of water.

  4. Aqueous-phase source of formic acid in clouds

    NASA Technical Reports Server (NTRS)

    Chameides, W. L.; Davis, D. D.

    1983-01-01

    The coupled gas- and aqueous-phase cloud chemistry of HCOOH were examined for controlling factors in the acidity of cloud and rainwater. Attention was given to the aqueous OH/HO2 system that yields an OH species that is highly reactive with other species, notably SO2 and the formaldehyde/formic acid complex. A numerical model was developed to simulate the cloud chemistry in the remote troposphere, with considerations given to CH4-CO-NO(x)-O3-H(x)O(y) system. It was determined that aqueous phase OH radicals can produce and destroy formic acid droplets in daylight conditions, as well as control formic acid levels in rainwater. It is sugested that the same types of reactions may be involved in the control of acetic acid and other organic acids.

  5. Biogenic, urban, and wildfire influences on the molecular composition of dissolved organic compounds in cloud water

    NASA Astrophysics Data System (ADS)

    Cook, Ryan D.; Lin, Ying-Hsuan; Peng, Zhuoyu; Boone, Eric; Chu, Rosalie K.; Dukett, James E.; Gunsch, Matthew J.; Zhang, Wuliang; Tolic, Nikola; Laskin, Alexander; Pratt, Kerri A.

    2017-12-01

    Organic aerosol formation and transformation occurs within aqueous aerosol and cloud droplets, yet little is known about the composition of high molecular weight organic compounds in cloud water. Cloud water samples collected at Whiteface Mountain, New York, during August-September 2014 were analyzed by ultra-high-resolution mass spectrometry to investigate the molecular composition of dissolved organic carbon, with a focus on sulfur- and nitrogen-containing compounds. Organic molecular composition was evaluated in the context of cloud water inorganic ion concentrations, pH, and total organic carbon concentrations to gain insights into the sources and aqueous-phase processes of the observed high molecular weight organic compounds. Cloud water acidity was positively correlated with the average oxygen : carbon ratio of the organic constituents, suggesting the possibility for aqueous acid-catalyzed (prior to cloud droplet activation or during/after cloud droplet evaporation) and/or radical (within cloud droplets) oxidation processes. Many tracer compounds recently identified in laboratory studies of bulk aqueous-phase reactions were identified in the cloud water. Organosulfate compounds, with both biogenic and anthropogenic volatile organic compound precursors, were detected for cloud water samples influenced by air masses that had traveled over forested and populated areas. Oxidation products of long-chain (C10-12) alkane precursors were detected during urban influence. Influence of Canadian wildfires resulted in increased numbers of identified sulfur-containing compounds and oligomeric species, including those formed through aqueous-phase reactions involving methylglyoxal. Light-absorbing aqueous-phase products of syringol and guaiacol oxidation were observed in the wildfire-influenced samples, and dinitroaromatic compounds were observed in all cloud water samples (wildfire, biogenic, and urban-influenced). Overall, the cloud water molecular composition depended on air mass source influence and reflected aqueous-phase reactions involving biogenic, urban, and biomass burning precursors.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Ryan D.; Lin, Ying-Hsuan; Peng, Zhuoyu

    Organic aerosol formation and transformation occurs within aqueous aerosol and cloud droplets, yet little is known about the composition of high molecular weight organic compounds in cloud water. Cloud water samples collected at Whiteface Mountain, New York, during August-September 2014 were analyzed by ultra-high-resolution mass spectrometry to investigate the molecular composition of dissolved organic carbon, with a focus on sulfur- and nitrogen-containing compounds. Organic molecular composition was evaluated in the context of cloud water inorganic ion concentrations, pH, and total organic carbon concentrations to gain insights into the sources and aqueous-phase processes of the observed high molecular weight organic compounds.more » Cloud water acidity was positively correlated with the average oxygen : carbon ratio of the organic constituents, suggesting the possibility for aqueous acid-catalyzed (prior to cloud droplet activation or during/after cloud droplet evaporation) and/or radical (within cloud droplets) oxidation processes. Many tracer compounds recently identified in laboratory studies of bulk aqueous-phase reactions were identified in the cloud water. Organosulfate compounds, with both biogenic and anthropogenic volatile organic compound precursors, were detected for cloud water samples influenced by air masses that had traveled over forested and populated areas. Oxidation products of long-chain (C 10-12) alkane precursors were detected during urban influence. Influence of Canadian wildfires resulted in increased numbers of identified sulfur-containing compounds and oligomeric species, including those formed through aqueous-phase reactions involving methylglyoxal. Light-absorbing aqueous-phase products of syringol and guaiacol oxidation were observed in the wildfire-influenced samples, and dinitroaromatic compounds were observed in all cloud water samples (wildfire, biogenic, and urban-influenced). Overall, the cloud water molecular composition depended on air mass source influence and reflected aqueous-phase reactions involving biogenic, urban, and biomass burning precursors.« less

  7. Trivalent Lanthanide/Actinide Separation Using Aqueous-Modified TALSPEAK Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travis S. Grimes; Richard D. Tillotson; Leigh R. Martin

    TALSPEAK is a liquid/liquid extraction process designed to separate trivalent lanthanides (Ln3+) from minor actinides (MAs) Am3+ and Cm3+. Traditional TALSPEAK organic phase is comprised of a monoacidic dialkyl bis(2-ethylhexyl)phosphoric acid extractant (HDEHP) in diisopropyl benzene (DIPB). The aqueous phase contains a soluble aminopolycarboxylate diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid (DTPA) in a concentrated (1.0-2.0 M) lactic acid (HL) buffer with the aqueous acidity typically adjusted to pH 3.0. TALSPEAK balances the selective complexation of the actinides by DTPA against the electrostatic attraction of the lanthanides by the HDEHP extractant to achieve the desired trivalent lanthanide/actinide group separation. Although TALSPEAK is considered a successfulmore » separations scheme, recent fundamental studies have highlighted complex chemical interactions occurring in the aqueous and organic phases during the extraction process. Previous attempts to model the system have shown thermodynamic models do not accurately predict the observed extraction trends in the p[H+] range 2.5-4.8. In this study, the aqueous phase is modified by replacing the lactic acid buffer with a variety of simple and longer-chain amino acid buffers. The results show successful trivalent lanthanide/actinide group separation with the aqueous-modified TALSPEAK process at pH 2. The amino acid buffer concentrations were reduced to 0.5 M (at pH 2) and separations were performed without any effect on phase transfer kinetics. Successful modeling of the aqueous-modified TALSPEAK process (p[H+] 1.6-3.1) using a simplified thermodynamic model and an internally consistent set of thermodynamic data is presented.« less

  8. SOLVENT EXTRACTION PROCESS FOR SEPARATING ACTINIDE AND LANTHANIDE METAL VALUES

    DOEpatents

    Hildebrandt, R.A.; Hyman, H.H.; Vogler, S.

    1962-08-14

    A process of countercurrently extracting an aqueous mineral acid feed solution for the separation of actinides from lanthanides dissolved therern is described. The feed solution is made acid-defrcient with alkali metal hydroxide prior to.contact with acid extractant; during extraction, however, acid is transferred from organic to aqueous solution and the aqueous solution gradually becomes acid. The acid-deficient phase ' of the process promotes the extraction of the actinides, while the latter acid phase'' of the process improves retention of the lanthanides in the aqueous solution. This provides for an improved separation. (AEC)

  9. Aerosol Fragmentation Driven by Coupling of Acid-Base and Free-Radical Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH Radicals.

    PubMed

    Liu, Matthew J; Wiegel, Aaron A; Wilson, Kevin R; Houle, Frances A

    2017-08-10

    A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps with physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular weight gas-phase reaction products and decreasing particle size.

  10. Aerosol Fragmentation Driven by Coupling of Acid–Base and Free-Radical Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH Radicals

    DOE PAGES

    Liu, Matthew J.; Wiegel, Aaron A.; Wilson, Kevin R.; ...

    2017-07-14

    A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps withmore » physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular weight gas-phase reaction products and decreasing particle size.« less

  11. Aerosol Fragmentation Driven by Coupling of Acid–Base and Free-Radical Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH Radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Matthew J.; Wiegel, Aaron A.; Wilson, Kevin R.

    A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps withmore » physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular weight gas-phase reaction products and decreasing particle size.« less

  12. Odd-even effect on the formation of aqueous biphasic systems formed by 1-alkyl-3-methylimidazolium chloride ionic liquids and salts

    NASA Astrophysics Data System (ADS)

    Belchior, Diana C. V.; Sintra, Tânia E.; Carvalho, Pedro J.; Soromenho, Mário R. C.; Esperança, José M. S. S.; Ventura, Sónia P. M.; Rogers, Robin D.; Coutinho, João A. P.; Freire, Mara G.

    2018-05-01

    This work provides a comprehensive evaluation of the effect of the cation alkyl side chain length of the 1-alkyl-3-methylimidazolium chloride series ([CnC1im]Cl, n = 2-14) of ionic liquids (ILs) on their capability to form aqueous biphasic systems (ABSs) with salts and self-aggregation derived properties. The liquid-liquid phase behavior of ternary systems composed of [CnC1im]Cl, water, and K3PO4 or K2CO3 and the respective Setschenow salting-out coefficients (ks), a quantitative measure of the two-phase formation ability, were determined. An odd-even effect in the ks values along the number of methylene groups of the longest IL cation alkyl side chain was identified for the ABS formed by K2CO3, a weaker salting-out agent where the phenomenon is clearly identified. In general, cations with even alkyl side chains, being likely to display higher molar volumes, are more easily salted-out and thus more prone to undergo phase separation. The odd-even effect in the ks values is, however, more significant in ILs up to n = 6, where the nanostructuration/nanosegregation of ILs plays a less relevant role. Still, with the [CnC1im]Cl (n = 7-14) series of ILs, an odd-even effect was also identified in the ILs' ionization degree, molar conductivity, and conductivity at infinite dilution. In summary, it is shown here that the ILs' odd-even effect occurs in IL aqueous solutions and not just in neat ILs, an already well-established phenomenon occurring in a series of ILs' properties described as a result of the orientation of the terminal methyl groups to the imidazolium ring cation and consequent effect in the ILs' cohesive energy.

  13. Separation of uranium from technetium in recovery of spent nuclear fuel

    DOEpatents

    Pruett, D.J.; McTaggart, D.R.

    1983-08-31

    Uranium and technetium in the product stream of the Purex process for recovery of uranium in spent nuclear fuel are separated by (1) contacting the aqueous Purex product stream with hydrazine to reduce Tc/sup +7/ therein to a reduced species, and (2) contacting said aqueous stream with an organic phase containing tributyl phosphate and an organic diluent to extract uranium from said aqueous stream into said organic phase.

  14. Separation of uranium from technetium in recovery of spent nuclear fuel

    DOEpatents

    Pruett, David J.; McTaggart, Donald R.

    1984-01-01

    Uranium and technetium in the product stream of the Purex process for recovery of uranium in spent nuclear fuel are separated by (1) contacting the aqueous Purex product stream with hydrazine to reduce Tc.sup.+7 therein to a reduced species, and (2) contacting said aqueous stream with an organic phase containing tributyl phosphate and an organic diluent to extract uranium from said aqueous stream into said organic phase.

  15. EXTRACTION OF URANYL NITRATE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Furman, N.H.; Mundy, R.J.

    1957-12-10

    An improvement in the process is described for extracting aqueous uranyl nitrate solutions with an organic solvent such as ether. It has been found that the organic phase will extract a larger quantity of uranyl nitrate if the aqueous phase contains in addition to the uranyl nitrate, a quantity of some other soluble nitrate to act as a salting out agent. Mentioned as suitable are the nitrates of lithium, calcium, zinc, bivalent copper, and trivalent iron.

  16. Partial molar volumes and viscosities of aqueous hippuric acid solutions containing LiCl and MnCl2 · 4H2O at 303.15 K

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Tawde, P. D.; Zinjade, A. B.; Shaikh, A. I.

    2015-09-01

    Density (ρ) and viscosity (η) of aqueous hippuric acid (HA) solutions containing LiCl and MnCl2 · 4H2O have been studied at 303.15 K in order to understand volumetric and viscometric behavior of these systems. Apparent molar volume (φv) of salts were calculated from density data and fitted to Massons relation and partial molar volumes (φ{v/0}) at infinite dilution were determined. Relative viscosity data has been used to determine viscosity A and B coefficients using Jones-Dole relation. Partial molar volume and viscosity coefficients have been discussed in terms of ion-solvent interactions and overall structural fittings in solution.

  17. Aqueous solubility of a diatomic molecule as a function of its size & electronegativity difference.

    PubMed

    Al-Malah, Kamal I

    2011-02-01

    The aqueous solubility of a diatomic molecule as a function of its size & electronegativity difference is investigated. The electronegativity of a diatomic molecule will be calculated using five different electronegativity scales, namely, Pauling [1], Allred-Rochow [2], Mulliken [3, 4], Parr-Yang [5], and Sanderson [6, 7]. It is hypothesized here that at a given pH, temperature, and pressure, the solubility of a diatomic molecule in water will be a function of its polar character; in particular, electronegativity difference and of its molecular size. Different forms of the solubility function were tested; it was found that the solubility model, given by Eq. 3, which is based on different electronegativity scales and the molecular volume, adequately describes the aqueous solubility of alkali halides. The aqueous solubility of alkali halides exhibits maximum at the condition of high electronegativity difference and large molecular volume. On the other hand, the minimum solubility region is observed at very low molecular volume and medium to slightly high values of electronegativity difference. The minimum solubility is also observed at low value of electronegativity difference and high molecular volume. Finally, the general trend of solubility of alkali halides, based on the proposed model (Eq. 3) could be explained in terms of the trade-off between electrostatic interactions (solid lattice side) and the entropic effects (water side).

  18. Development of ultrasound-assisted emulsification microextraction based on solidification of a floating organic droplet for determination of organochlorine pesticides in water samples.

    PubMed

    Shu, Bin; Yang, Zhaoguang; Lee, Hsiaowan; Qiu, Bo; Li, Haipu

    2016-02-01

    An ultrasound-assisted emulsification microextraction based on the solidification of a floating organic droplet followed by gas chromatography with electron capture detection was developed for the simultaneous determination of 13 organochlorine pesticides in water samples. In the proposed method, ultrasound was applied to achieve the emulsification without addition of any dispersive solvent. In consequence, the volume of extraction phase remained unaffected by the ion strength of aqueous phase and high extraction recoveries were obtained. It was also found that dilution of the floating phase with acetone was necessary for preventing peak splitting in chromatogram. Under optimal conditions, the proposed method provided good sensitivity (the detection limits of organochlorine pesticides ranged from 1.3 to 3.9 ng/L) and good repeatability of extraction (below 6.5%, n = 5). The recoveries in reservoir and river water samples were between 75.8% and 96.9%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. An approach for upgrading biomass and pyrolysis product quality using a combination of aqueous phase bio-oil washing and torrefaction pretreatment.

    PubMed

    Chen, Dengyu; Cen, Kehui; Jing, Xichun; Gao, Jinghui; Li, Chen; Ma, Zhongqing

    2017-06-01

    Bio-oil undergoes phase separation because of poor stability. Practical application of aqueous phase bio-oil is challenging. In this study, a novel approach that combines aqueous phase bio-oil washing and torrefaction pretreatment was used to upgrade the biomass and pyrolysis product quality. The effects of individual and combined pretreatments on cotton stalk pyrolysis were studied using TG-FTIR and a fixed bed reactor. The results showed that the aqueous phase bio-oil washing pretreatment removed metals and resolved the two pyrolysis peaks in the DTG curve. Importantly, it increased the bio-oil yield and improved the pyrolysis product quality. For example, the water and acid content of bio-oil decreased significantly along with an increase in phenol formation, and the heating value of non-condensable gases improved, and these were more pronounced when combined with torrefaction pretreatment. Therefore, the combined pretreatment is a promising method, which would contribute to the development of polygeneration pyrolysis technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Management of the diffusion of 4-methylumbelliferone across phases in microdroplet-based systems for in vitro protein evolution.

    PubMed

    Wu, Nan; Courtois, Fabienne; Zhu, Yonggang; Oakeshott, John; Easton, Chris; Abell, Chris

    2010-09-01

    Fluorongenic reagents based on 4-methylumbelliferone (4-MU) have been widely used for the detection of phosphatase, sulfatase, esterase, lipase and glycosidase activities in conventionally formatted enzyme assay systems. However, the sensitivity of assays based on these substrates is also potentially very useful in the microdroplet formats now being developed for high throughput in vitro evolution experiments. In this article, we report the investigation of diffusion of 4-MU as a model dye from water-in-oil droplets and the internal aqueous phase of water-in-oil-in-water droplets in microfluidics. The effect of BSA in the aqueous phase on the diffusion of 4-MU is also discussed. Based on these results, we provided here proof-of-concept of the reaction of the enzyme OpdA with the substrate coumaphos in water-in-oil-in-water droplets. In this double-emulsion system, the reaction of OpdA and coumaphos was achieved by allowing coumaphos to diffuse from the continuous aqueous phase across the oil phase into the internal aqueous droplets.

  1. Recovery of Picloram and 2,4-Dichlorophenoxyacetic Acid from Aqueous Samples by Reversed-Phase Solid-Phase Extraction

    Treesearch

    Martha J.M. Wells; Jerry L. Michael

    1987-01-01

    Extensive preparation of samples before chromatographic analysis is usually the most time-consuming process in the determination of many organic compounds in environmental matrices. In the past, removal of some organic from aqueous solution was commonly done by liquid/liquid extraction. However, the introduction of stable, covalently bonded reversed-phase sorbents now...

  2. Process for separating and recovering an anionic dye from an aqueous solution

    DOEpatents

    Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.

    1998-01-01

    A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution.

  3. Diffusion-based process for carbon dioxide uptake and isoprene emission in gaseous/aqueous two-phase photobioreactors by photosynthetic microorganisms.

    PubMed

    Bentley, Fiona K; Melis, Anastasios

    2012-01-01

    Photosynthesis for the generation of fuels and chemicals from cyanobacteria and microalgae offers the promise of a single host organism acting both as photocatalyst and processor, performing sunlight absorption and utilization, as well as CO(2) assimilation and conversion into product. However, there is a need to develop methods for generating, sequestering, and trapping such bio-products in an efficient and cost-effective manner that is suitable for industrial scale-up and exploitation. A sealed gaseous/aqueous two-phase photobioreactor was designed and applied for the photosynthetic generation of volatile isoprene (C(5)H(8)) hydrocarbons, which operates on the principle of spontaneous diffusion of CO(2) from the gaseous headspace into the microalgal or cyanobacterial-containing aqueous phase, followed by photosynthetic CO(2) assimilation and isoprene production by the transgenic microorganisms. Volatile isoprene hydrocarbons were emitted from the aqueous phase and were sequestered into the gaseous headspace. Periodic replacement (flushing) of the isoprene (C(5)H(8)) and oxygen (O(2)) content of the gaseous headspace with CO(2) allowed for the simultaneous harvesting of the photoproducts and replenishment of the CO(2) supply in the gaseous headspace. Reduction in practice of the gaseous/aqueous two-phase photobioreactor is offered in this work with a fed-batch and a semi-continuous culturing system using Synechocystis sp. PCC 6803 heterologously expressing the Pueraria montana (kudzu) isoprene synthase (IspS) gene. Constitutive isoprene production was observed over 192 h of experimentation, coupled with cyanobacterial biomass accumulation. The diffusion-based process in gaseous/aqueous two-phase photobioreactors has the potential to be applied to other high-value photosynthetically derived volatile molecules, emanating from a variety of photosynthetic microorganisms. Copyright © 2011 Wiley Periodicals, Inc.

  4. Sherwood correlation for dissolution of pooled NAPL in porous media

    NASA Astrophysics Data System (ADS)

    Aydin Sarikurt, Derya; Gokdemir, Cagri; Copty, Nadim K.

    2017-11-01

    The rate of interphase mass transfer from non-aqueous phase liquids (NAPLs) entrapped in the subsurface into the surrounding mobile aqueous phase is commonly expressed in terms of Sherwood (Sh) correlations that are expressed as a function of flow and porous media properties. Because of the lack of precise methods for the estimation of the interfacial area separating the NAPL and aqueous phases, most studies have opted to use modified Sherwood expressions that lump the interfacial area into the interphase mass transfer coefficient. To date, there are only two studies in the literature that have developed non-lumped Sherwood correlations; however, these correlations have undergone limited validation. In this paper controlled dissolution experiments from pooled NAPL were conducted. The immobile NAPL mass is placed at the bottom of a flow cell filled with porous media with water flowing horizontally on top. Effluent aqueous phase concentrations were measured for a wide range of aqueous phase velocities and for two different porous media. To interpret the experimental results, a two-dimensional pore network model of the NAPL dissolution kinetics and aqueous phase transport was developed. The observed effluent concentrations were then used to compute best-fit mass transfer coefficients. Comparison of the effluent concentrations computed with the two-dimensional pore network model to those estimated with one-dimensional analytical solutions indicates that the analytical model which ignores the transport in the lateral direction can lead to under-estimation of the mass transfer coefficient. Based on system parameters and the estimated mass transfer coefficients, non-lumped Sherwood correlations were developed and compared to previously published data. The developed correlations, which are a significant improvement over currently available correlations that are associated with large uncertainties, can be incorporated into future modeling studies requiring non-lumped Sh expressions.

  5. Oxidation of Organic Compoundsin the Atmospheric Aqueous Phase: Development of a New Explicit Oxidation Mechanism

    NASA Astrophysics Data System (ADS)

    Mouchel-Vallon, C.; Bregonzio-Rozier, L.; Monod, A.; Leriche, M.; Doussin, J. F.; Chaumerliac, N. M.; Deguillaume, L.

    2014-12-01

    Current 3D models tend to underestimate the production of secondary organic aerosol (SOA) in the atmosphere (Volkamer et al., 2006). Recent studies argue that aqueous chemistry in clouds could be responsible for a significant production of SOA (Ervens et al., 2011; Carlton and Turpin, 2013) through oxidative and non-oxidative processes. Aqueous phase reactivity of organic compounds needs to be thoroughly described in models to identify organic molecules available to contribute to SOA mass. Recently, new empirical methods have been developed to allow the estimate of HO·reaction rates in the aqueous phase (Doussin and Monod, 2013, Minakata et al., 2009). These methods provide global rate constants together with branching ratios for HO·abstraction and addition on organic compounds of atmospheric interests. Current cloud chemistry mechanisms do not take the different possible pathways into account. Based on these structure-activity relationships, a new detailed aqueous phase mechanism describing the oxidation of hydrosoluble organic compounds resulting from isoprene oxidation is proposed. This new aqueous phase mechanism is coupled with the detailed gas phase mechanism MCM v3.2 (Jenkin et al., 1997; Saunders et al., 2003) through a kinetic of mass transfer parameterization for the exchange between gas phase and aqueous phase. The GROMHE SAR (Raventos-Duran et al., 2010) allows the evaluation of Henry's law constants for organic compounds. Variable photolysis in both phases using the TUV 4.5 radiative transfer model (Madronich and Flocke, 1997) is also calculated. The resulting multiphase mechanism has been implemented in a cloud chemistry model. Focusing on oxygenated compounds produced from the isoprene oxidation, sensitivity tests and comparisons with multiphase experiments performed in the framework of the CUMULUS project in the CESAM atmospheric simulation chamber (Wang et al., 2011) will be presented. Volkamer et al., GRL, 33, L17811, 2006. Carlton and Turpin, ACP, 13, 10203-10214, 2013. Ervens et al., ACP, 11069-11102, 2011. Doussin and Monod, ACP, 13, 11625-11641, 2013. Minakata et al., EST, 45, 3479-3486, 2009. Jenkin et al., AE, 31, 81, 1997. Saunders et al., ACP, 3, 161, 2003. Raventos-Duran et al., ACP, 10, 7643-7654, 2010. Madronich and Flocke, 1997. Wang et al., AMT, 4, 2465-2494,2011.

  6. Excluded volume and ion-ion correlation effects on the ionic atmosphere around B-DNA: Theory, simulations, and experiments

    PubMed Central

    Ovanesyan, Zaven; Fenley, Marcia O.; Guerrero-García, Guillermo Iván; Olvera de la Cruz, Mónica

    2014-01-01

    The ionic atmosphere around a nucleic acid regulates its stability in aqueous salt solutions. One major source of complexity in biological activities involving nucleic acids arises from the strong influence of the surrounding ions and water molecules on their structural and thermodynamic properties. Here, we implement a classical density functional theory for cylindrical polyelectrolytes embedded in aqueous electrolytes containing explicit (neutral hard sphere) water molecules at experimental solvent concentrations. Our approach allows us to include ion correlations as well as solvent and ion excluded volume effects for studying the structural and thermodynamic properties of highly charged cylindrical polyelectrolytes. Several models of size and charge asymmetric mixtures of aqueous electrolytes at physiological concentrations are studied. Our results are in good agreement with Monte Carlo simulations. Our numerical calculations display significant differences in the ion density profiles for the different aqueous electrolyte models studied. However, similar results regarding the excess number of ions adsorbed to the B-DNA molecule are predicted by our theoretical approach for different aqueous electrolyte models. These findings suggest that ion counting experimental data should not be used alone to validate the performance of aqueous DNA-electrolyte models. PMID:25494770

  7. Secondary Organic Aerosol Produced from Aqueous Reactions of Phenols in Fog Drops and Deliquesced Particles

    NASA Astrophysics Data System (ADS)

    Smith, J.; Anastasio, C.

    2014-12-01

    The formation and evolution of secondary organic aerosol (SOA) in atmospheric condensed phases (i.e., aqueous SOA) can proceed rapidly, but relatively little is known of the important aqueous SOA precursors or their reaction pathways. In our work we are studying the aqueous SOA formed from reactions of phenols (phenol, guaiacol, and syringol), benzene-diols (catechol, resorcinol, and hydroquinone), and phenolic carbonyls (e.g., vanillin and syringaldehyde). These species are potentially important aqueous SOA precursors because they are released in large quantities from biomass burning, have high Henry's Law constants (KH = 103 -109 M-1 atm-1) and are rapidly oxidized. To evaluate the importance of aqueous reactions of phenols as a source of SOA, we first quantified the kinetics and SOA mass yields for 11 phenols reacting via direct photodegradation, hydroxyl radical (•OH), and with an excited organic triplet state (3C*). In the second step, which is the focus of this work, we use these laboratory results in a simple model of fog chemistry using conditions during a previously reported heavy biomass burning event in Bakersfield, CA. Our calculations indicate that under aqueous aerosol conditions (i.e., a liquid water content of 100 μg m-3) the rate of aqueous SOA production (RSOA(aq)) from phenols is similar to the rate in the gas phase. In contrast, under fog/cloud conditions the aqueous RSOA from phenols is 10 times higher than the rate in the gas phase. In both of these cases aqueous RSOA is dominated by the oxidation of phenols by 3C*, followed by direct photodegradation of phenolic carbonyls, and then •OH oxidation. Our results suggest that aqueous oxidation of phenols is a significant source of SOA during fog events and also during times when deliquesced aerosols are present.

  8. Exploring Solute-Solvent Interactions of -Amino Acids in Aqueous [] Arrangements by Volumetric, Viscometric, Refractometric, and Acoustic Approach

    NASA Astrophysics Data System (ADS)

    Roy, Mahendra Nath; Roy, Milan Chandra; Basak, Saptarshi

    2014-05-01

    Qualitative and quantitative analysis of molecular interaction prevailing in glycine, l-alanine, l-valine, and aqueous solution of ionic liquid (IL) [1-ethylpyridinium tetrafluoroborate (] have been investigated by thermophysical properties. The apparent molar volume (), viscosity -coefficient, molal refraction (), and adiabatic compressibility ( of glycine, l-alanine, and l-valine have been studied in 0.001 mol , 0.003 mol , and 0.005 mol aqueous 1-ethylpyridinium tetrafluoroborate [] solutions at 298.15 K from the values of densities , viscosities (), refractive index (, and speed of sound , respectively. The extent of interaction, i.e., the solute-solvent interaction is expressed in terms of the limiting apparent molar volume (, viscosity -coefficient, and limiting apparent molar adiabatic compressibility (. The limiting apparent molar volumes (, experimental slopes ( derived from the Masson equation, and viscosity - and -coefficients using the Jones-Dole equation have been interpreted in terms of ion-ion and ion-solvent interactions, respectively. Molal refractions ( have been calculated with the help of the Lorentz-Lorenz equation. The role of the solvent (aqueous IL solution) and the contribution of solute-solute and solute-solvent interactions to the solution complexes have also been analyzed through the derived properties.

  9. Design of Phosphonium-Type Zwitterion as an Additive to Improve Saturated Water Content of Phase-Separated Ionic Liquid from Aqueous Phase toward Reversible Extraction of Proteins

    PubMed Central

    Ito, Yoritsugu; Kohno, Yuki; Nakamura, Nobuhumi; Ohno, Hiroyuki

    2013-01-01

    We designed phosphonium-type zwitterion (ZI) to control the saturated water content of separated ionic liquid (IL) phase in the hydrophobic IL/water biphasic systems. The saturated water content of separated IL phase, 1-butyl-3-methyimidazolium bis(trifluoromethanesulfonyl)imide, was considerably improved from 0.4 wt% to 62.8 wt% by adding N,N,N-tripentyl-4-sulfonyl-1-butanephosphonium-type ZI (P555C4S). In addition, the maximum water content decreased from 62.8 wt% to 34.1 wt% by increasing KH2PO4/K2HPO4 salt content in upper aqueous phosphate buffer phase. Horse heart cytochrome c (cyt.c) was dissolved selectively in IL phase by improving the water content of IL phase, and spectroscopic analysis revealed that the dissolved cyt.c retained its higher ordered structure. Furthermore, cyt. c dissolved in IL phase was re-extracted again from IL phase to aqueous phase by increasing the concentration of inorganic salts of the buffer solution. PMID:24013379

  10. OPTIMIZING MODEL PERFORMANCE: VARIABLE SIZE RESOLUTION IN CLOUD CHEMISTRY MODELING. (R826371C005)

    EPA Science Inventory

    Under many conditions size-resolved aqueous-phase chemistry models predict higher sulfate production rates than comparable bulk aqueous-phase models. However, there are special circumstances under which bulk and size-resolved models offer similar predictions. These special con...

  11. Jacob Kruger | NREL

    Science.gov Websites

    Jacob.Kruger@nrel.gov | 303-275-4081 Research Interests Algal growth systems targeting high-efficiency Hydrotalcite Catalysts," ACS Catalysis (2016) "Aqueous-Phase Fructose Dehydration Using Brønsted ) "Elucidating the Roles of Zeolite H-BEA in Aqueous-Phase Fructose Dehydration and HMF Rehydration

  12. EVALUATION OF TECHNOLOGIES FOR IN SITU CLEANUP OF DNAPL CONTAMINATED SITES

    EPA Science Inventory

    Ground water contamination by non-aqueous phase liquids poses one of the greatest remedial challenges in the field of environmental engineering. Denser-than-water non-aqueous phase liquids (DNAPLs) are especially problematic due to their low water solubility, high density, an...

  13. A Novel Aqueous Two Phase System Composed of Surfactant and Xylitol for the Purification of Lipase from Pumpkin (Cucurbita moschata) Seeds and Recycling of Phase Components.

    PubMed

    Amid, Mehrnoush; Manap, Mohd Yazid; Hussin, Muhaini; Mustafa, Shuhaimi

    2015-06-17

    Lipase is one of the more important enzymes used in various industries such as the food, detergent, pharmaceutical, textile, and pulp and paper sectors. A novel aqueous two-phase system composed of surfactant and xylitol was employed for the first time to purify lipase from Cucurbita moschata. The influence of different parameters such as type and concentration of surfactants, and the composition of the surfactant/xylitol mixtures on the partitioning behavior and recovery of lipase was investigated. Moreover, the effect of system pH and crude load on the degree of purification and yield of the purified lipase were studied. The results indicated that the lipase was partitioned into the top surfactant rich phase while the impurities partitioned into the bottom xylitol-rich phase using an aqueous two phase system composed of 24% (w/w) Triton X-100 and 20% (w/w) xylitol, at 56.2% of tie line length (TLL), (TTL is one of the important parameters in this study and it is determined from a bimodal curve in which the tie-line connects two nodes on the bimodal, that represent concentration of phase components in the top and bottom phases) and a crude load of 25% (w/w) at pH 8.0. Recovery and recycling of components was also measured in each successive step process. The enzyme was successfully recovered by the proposed method with a high purification factor of 16.4 and yield of 97.4% while over 97% of the phase components were also recovered and recycled. This study demonstrated that the proposed novel aqueous two phase system method is more efficient and economical than the traditional aqueous two phase system method for the purification and recovery of the valuable enzyme lipase.

  14. Separation by solvent extraction

    DOEpatents

    Holt, Jr., Charles H.

    1976-04-06

    17. A process for separating fission product values from uranium and plutonium values contained in an aqueous solution, comprising adding an oxidizing agent to said solution to secure uranium and plutonium in their hexavalent state; contacting said aqueous solution with a substantially water-immiscible organic solvent while agitating and maintaining the temperature at from -1.degree. to -2.degree. C. until the major part of the water present is frozen; continuously separating a solid ice phase as it is formed; separating a remaining aqueous liquid phase containing fission product values and a solvent phase containing plutonium and uranium values from each other; melting at least the last obtained part of said ice phase and adding it to said separated liquid phase; and treating the resulting liquid with a new supply of solvent whereby it is practically depleted of uranium and plutonium.

  15. Partitioning phase preference for secondary organic aerosol in an urban atmosphere

    NASA Astrophysics Data System (ADS)

    Chang, Wayne Li-Wen

    Secondary organic aerosol (SOA) comprises a significant portion of atmospheric particular matter (PM). The impact of PM on both human health and global climate has long been recognized. Despite its importance, there are still many unanswered questions regarding the formation and evolution of SOA in the atmosphere. This study uses a modeling approach to understand the preferred partitioning behavior of SOA species into aqueous or organic condensed phases. More specifically, this work uses statistical analyses of approximately 24,000 data values for each variable from a state-of-the-art 3-D airshed model. Spatial and temporal distributions of fractions of SOA residing in the aqueous phase (fAQ) in the South Coast Air Basin of California are presented. Typical values of fAQ within the basin near the surface range from 5 to 80%. Results show that the distribution of fAQ values is inversely proportional to the total SOA loading. Further analysis accounting for various meteorological parameters indicates that large fAQ values are the results of aqueous-phase SOA insensitivity to the ambient conditions; while organic-phase SOA concentrations are dramatically reduced under unfavorable SOA formation conditions, aqueous-phase SOA level remains relatively unchanged, thus increasing fAQ at low SOA loading. Diurnal variations of fAQ near the surface are also observed: it tends to be larger during daytime hours than nighttime hours. When examining the vertical gradient of fAQ, largest values are found at heights above the surface layer. In summary, one must consider SOA in both organic and aqueous phases for proper regional and global SOA budget estimation.

  16. SALICYLATE PROCESS FOR THORIUM SEPARATION FROM RARE EARTHS

    DOEpatents

    Cowan, G.A.

    1959-08-25

    The separation of thorium from rare earths is accomplished by forming an aqueous solution of salts of thorium and rare earths and sufficient acetate buffer to provide a pH of between 2 and 5, adding an ammonium salicylate to the aqueous buffered solution, contacting the resultant solution with a substantially water-immiscible organic solvent mixture of an ether and an ester, and separating the solvent extract phase containing thorium salicylate from the aqueous phase containing the rare earths.

  17. Pore-scale interfacial dynamics during gas-supersaturated water injection in porous media - on nucleation, growth and advection of disconnected fluid phases (Invited)

    NASA Astrophysics Data System (ADS)

    Or, D.; Ioannidis, M.

    2010-12-01

    Degassing and in situ development of a mobile gas bubbles occur when injecting supersaturated aqueous phase into water-saturated porous media. Supersaturated water injection (SWI) has potentially significant applications in remediation of soils contaminated by non-aqueous phase liquids and in enhanced oil recovery. Pore network simulations indicate the formation of a region near the injection boundary where gas phase nuclei are activated and grow by mass transfer from the flowing supersaturated aqueous phase. Ramified clusters of gas-filled pores develop which, owing to the low prevailing Bond number, grow laterally to a significant extent prior to the onset of mobilization, and are thus likely to coalesce. Gas cluster mobilization invariably results in fragmentation and stranding, such that a macroscopic region containing few tenuously connected large gas clusters is established. Beyond this region, gas phase nucleation and mass transfer from the aqueous phase are limited by diminishing supply of dissolved gas. New insights into SWI dynamics are obtained using rapid micro-visualization in transparent glass micromodels. Using high-speed imaging, we observe the nucleation, initial growth and subsequent fate (mobilization, fragmentation, collision, coalescence and stranding) of CO2 bubbles and clusters of gas-filled pores and analyze cluster population statistics. We find significant support for the development of invasion-percolation-like patterns, but also report on hitherto unaccounted for gas bubble behavior. Additionally, we report for the first time on the acoustic emission signature of SWI in porous media and relate it to the dynamics of bubble nucleation and growth. Finally, we identify the pore-scale mechanisms associated with the mobilization and subsequent recovery of a residual non-aqueous phase liquid due to gas bubble dynamics during SWI.

  18. Experimental measurements of U60 nanocluster stability in aqueous solution

    NASA Astrophysics Data System (ADS)

    Flynn, Shannon L.; Szymanowski, Jennifer E. S.; Gao, Yunyi; Liu, Tianbo; Burns, Peter C.; Fein, Jeremy B.

    2015-05-01

    In this study, the aqueous behavior of isolated U60 nanoclusters (K16Li25[UO2(O2)OH]60)-19 was studied under several pH conditions and nanocluster concentrations to determine if the nanoclusters exhibit solid phase buffering behavior or if they exhibit behavior more like aqueous complexes. U60 is a cage cluster consisting of 60 (UO2)(O2)2(OH)2 uranyl polyhedral which share OH and O2 groups with their neighboring uranyl polyhedral, resulting in negatively charged cage clusters whose charge is at least partially offset by K+ and Li+ in the aqueous phase. Batch experiments to monitor nanocluster stability were conducted for 16 days at pH 7.5, 8.0 and 8.5 at nanocluster suspension concentrations of 1.4, 2.8 and 6.0 g/L. The aqueous concentrations of U, Li, and K, determined after 10 kDa molecular weight filtration, achieved steady-state with the nanoclusters within 24 h. The steady-state aqueous U, Li, and K concentrations were independent of solution pH, however they increased with increasing nanocluster concentration, indicating that the nanoclusters do not buffer the aqueous activities as a bulk solid phase would, but exhibit behavior that is more characteristic of dissolved aqueous complexes. The ion activity product (I.A.P.) value was calculated using two approaches: (1) treating the nanoclusters as a solid phase with an activity of one, and (2) treating the nanoclusters as aqueous complexes with a non-unit activity equal to their concentration in solution. The I.A.P. values that were calculated with non-unit activity for the nanoclusters exhibited significantly less variation as a function of nanocluster concentration compared to the I.A.P. values calculated with a nanocluster activity of one. The results yield a calculated log dissociation constant for the U60 nanoclusters of 9.2 + 0.2/-0.3 (1σ). Our findings provide a better understanding of the thermodynamic stability and behavior of U60 nanoclusters in aqueous systems, and can be used to estimate the dissociation behavior of nanoclusters under a range of aqueous conditions.

  19. PRETREATING THORIUM FOR ELECTROPLATING

    DOEpatents

    Beach, J.G.; Schaer, G.R.

    1959-07-28

    A method is presented for pretreating a thorium surface prior to electroplating the surface. The pretreatment steps of the invention comprise cleaning by vapor blasting the surface, anodically pickling in a 5 to 15% by volume aqueous hydrochloric acid bath with a current of 125 to 250 amp/sq ft for 3 to 5 min at room temperature, chemically pickling the surface in a 5 to 15% by volume of aqueous sulfuric acid for 3 to 5 min at room temperature, and rinsing the surface with water.

  20. Modeling the partitioning of organic chemical species in cloud phases with CLEPS (1.1)

    NASA Astrophysics Data System (ADS)

    Rose, Clémence; Chaumerliac, Nadine; Deguillaume, Laurent; Perroux, Hélène; Mouchel-Vallon, Camille; Leriche, Maud; Patryl, Luc; Armand, Patrick

    2018-02-01

    The new detailed aqueous-phase mechanism Cloud Explicit Physico-chemical Scheme (CLEPS 1.0), which describes the oxidation of isoprene-derived water-soluble organic compounds, is coupled with a warm microphysical module simulating the activation of aerosol particles into cloud droplets. CLEPS 1.0 was then extended to CLEPS 1.1 to include the chemistry of the newly added dicarboxylic acids dissolved from the particulate phase. The resulting coupled model allows the prediction of the aqueous-phase concentrations of chemical compounds originating from particle scavenging, mass transfer from the gas-phase and in-cloud aqueous chemical reactivity. The aim of the present study was more particularly to investigate the effect of particle scavenging on cloud chemistry. Several simulations were performed to assess the influence of various parameters on model predictions and to interpret long-term measurements conducted at the top of Puy de Dôme (PUY, France) in marine air masses. Specific attention was paid to carboxylic acids, whose predicted concentrations are on average in the lower range of the observations, with the exception of formic acid, which is rather overestimated in the model. The different sensitivity runs highlight the fact that formic and acetic acids mainly originate from the gas phase and have highly variable aqueous-phase reactivity depending on the cloud acidity, whereas C3-C4 carboxylic acids mainly originate from the particulate phase and are supersaturated in the cloud.

  1. Refolding of laccase from Trametes versicolor using aqueous two phase systems: Effect of different additives.

    PubMed

    Sánchez-Trasviña, Calef; Mayolo-Deloisa, Karla; González-Valdez, José; Rito-Palomares, Marco

    2017-07-21

    Protein refolding is a strategy used to obtain active forms of proteins from inclusion bodies. On its part, laccase is an enzyme with potential for different biotechnological applications but there are few reports regarding its refolding which in many cases is considered inefficient due to the poor obtained refolding yields. Aqueous Two-Phase Systems (ATPS) have been used for the refolding of proteins getting acceptable recovery percentages since PEG presents capacity to avoid protein aggregation. In this work, 48 PEG-phosphate ATPS were analyzed to study the impact of different parameters (i.e. tie line length (TLL), volume ratio (V R ) and PEG molecular weight) upon the recovery and refolding of laccase. Additionally, since laccase is a metalloprotein, the use of additives (individually and in mixture) was studied with the aim of favoring refolding. Results showed that laccase presents a high affinity for the PEG-rich phase obtaining recovery values of up to 90%. Such affinity increases with increasing TLL and decreases when PEG molecular weight and V R increase. In denatured state, this PEG-rich phase affinity decreases drastically. However, the use of additives such as l-cysteine, glutathione oxidized, cysteamine and Cu +2 was critical in improving refolding yield values up to 100%. The best conditions for the refolding of laccase were obtained using the PEG 400gmol -1 , TLL 45% w/w, V R 3 ATPS and a mixture of 2.5mM cysteamine with 1mM Cu +2 . To our knowledge, this is the first time that the use of additives and the behavior of the mixture of such additives to enhance refolding performance in ATPS is reported. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Bacterial RNA isolation.

    PubMed

    Ares, Manuel

    2012-09-01

    In this bacterial RNA isolation protocol, an "RNA-protective" treatment is followed by lysozyme digestion of the peptidoglycan component of the cell wall. EDTA promotes the loss of the outer membrane of Gram-negative bacteria and allows the lysozyme better access to the peptidoglycan. Cells begin to lyse during digestion in hypotonic lysozyme buffer and lysis is completed by sodium dodecyl sulfate (SDS) and hot phenol:chloroform:isoamyl alcohol (PCA) extraction. SDS and hot phenol disrupt membranes, denature protein (including RNase), and strip proteins from RNA. The separation of the organic phase from the aqueous phase is achieved using Phase Lock Gel, an inert material with a density intermediate between the organic and aqueous samples. The sample is split into three phases: from bottom to top, these are phenol and chloroform (organic phase), the inert gel with the interface material, and the aqueous phase with the RNA. The gel acts as a physical barrier between the sample and the organic phase plus interface. Following organic extraction, the RNA is concentrated by ethanol precipitation.

  3. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C. Judson; Poole, Loree J.

    1995-01-01

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine.

  4. “Towards building better linkages between aqueous phase chemistry and microphysics in CMAQ”

    EPA Science Inventory

    Currently, CMAQ’s aqueous phase chemistry routine (AQCHEM-base) assumes Henry’s Law equilibrium and employs a forward Euler method to solve a small set of oxidation equations, considering the additional processes of aitken scavenging and wet deposition in series and e...

  5. User's guide to PHREEQC (Version 2) : a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations

    USGS Publications Warehouse

    Parkhurst, David L.; Appelo, C.A.J.

    1999-01-01

    PHREEQC version 2 is a computer program written in the C programming language that is designed to perform a wide variety of low-temperature aqueous geochemical calculations. PHREEQC is based on an ion-association aqueous model and has capabilities for (1) speciation and saturation-index calculations; (2) batch-reaction and one-dimensional (1D) transport calculations involving reversible reactions, which include aqueous, mineral, gas, solid-solution, surface-complexation, and ion-exchange equilibria, and irreversible reactions, which include specified mole transfers of reactants, kinetically controlled reactions, mixing of solutions, and temperature changes; and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for differences in composition between waters, within specified compositional uncertainty limits.New features in PHREEQC version 2 relative to version 1 include capabilities to simulate dispersion (or diffusion) and stagnant zones in 1D-transport calculations, to model kinetic reactions with user-defined rate expressions, to model the formation or dissolution of ideal, multicomponent or nonideal, binary solid solutions, to model fixed-volume gas phases in addition to fixed-pressure gas phases, to allow the number of surface or exchange sites to vary with the dissolution or precipitation of minerals or kinetic reactants, to include isotope mole balances in inverse modeling calculations, to automatically use multiple sets of convergence parameters, to print user-defined quantities to the primary output file and (or) to a file suitable for importation into a spreadsheet, and to define solution compositions in a format more compatible with spreadsheet programs. This report presents the equations that are the basis for chemical equilibrium, kinetic, transport, and inverse-modeling calculations in PHREEQC; describes the input for the program; and presents examples that demonstrate most of the program's capabilities.

  6. Salting-out effect in aqueous NaCl solutions: trends with size and polarity of solute molecules.

    PubMed

    Endo, Satoshi; Pfennigsdorff, Andrea; Goss, Kai-Uwe

    2012-02-07

    Salting-out in aqueous NaCl solutions is relevant for the environmental behavior of organic contaminants. In this study, Setschenow (or salting-out) coefficients (K(s) [M(-1)]) for 43 diverse neutral compounds in NaCl solutions were measured using a shared headspace passive dosing method and a negligible depletion solid phase microextraction technique. The results were used to calibrate and evaluate estimation models for K(s). The molar volume of the solute correlated only moderately with K(s) (R(2) = 0.49, SD = 0.052). The polyparameter linear free energy relationship (pp-LFER) model that uses five compound descriptors resulted in a more accurate fit to our data (R(2) = 0.83, SD = 0.031). The pp-LFER analysis revealed that Na(+) and Cl(-) in aqueous solutions increase the cavity formation energy cost and the polar interaction energies toward neutral organic solutes. Accordingly, the salting-out effect increases with the size and decreases with the polarity of the solute molecule. COSMO-RS, a quantum mechanics-based fully predictive model, generally overpredicted the experimental K(s), but the predicted values were moderately correlated with the experimental values (R(2) = 0.66, SD = 0.042). Literature data (n = 93) were predicted by the calibrated pp-LFER and COSMO-RS models with root mean squared errors of 0.047 and 0.050, respectively. This study offers prediction models to estimate K(s), allowing implementation of the salting-out effect in contaminant fate models, linkage of various partition coefficients (such as air-water, sediment-water, and extraction phase-water partition coefficients) measured for fresh water and seawater, and estimation of enhancement of extraction efficiency in analytical procedures.

  7. Transport and distribution of trace elements and other selected inorganic constituents by suspended particulates in the Salton Sea Basin, California, 2001

    USGS Publications Warehouse

    LeBlanc, L.A.; Schroeder, R.A.

    2008-01-01

    In order to examine the transport of contaminants associated with river-derived suspended particles in the Salton Sea, California, large volume water samples were collected in transects established along the three major rivers emptying into the Salton Sea in fall 2001. Rivers in this area carry significant aqueous and particulate contaminant loads derived from irrigation water associated with the extensive agricultural activity, as well as wastewater from small and large municipalities. A variety of inorganic constituents, including trace metals, nutrients, and organic carbon were analyzed on suspended material isolated from water samples collected at upriver, near-shore, and off-shore sites established on the Alamo, New, and Whitewater rivers. Concentration patterns showed expected trends, with river-borne metals becoming diluted by organic-rich algal particles of lacustrine origin in off-shore stations. More soluble metals, such as cadmium, copper, and zinc showed a more even distribution between sites in the rivers and off-shore in the lake basin. General distributional trends of trace elements between particulate and aqueous forms were discerned by combining metal concentration data for particulates from this study with historical aqueous metals data. Highly insoluble trace metals, such as iron and aluminum, occurred almost entirely in the particulate phase, while major cations and approximately 95% of selenium were transported in the soluble phase. Evidence for greater reducing conditions in the New compared to the Alamo River was provided by the greater proportion of reduced (soluble) manganese in the New River. Evidence of bioconcentration of selenium and arsenic within the lake by algae was provided by calculating "enrichment" concentration ratios from metal concentrations on the algal-derived particulate samples and the off-shore sites. ?? 2008 Springer Science+Business Media B.V.

  8. Ultra-preconcentration and determination of selected pharmaceutical and personal care products in different water matrices by solid-phase extraction combined with dispersive liquid-liquid microextraction prior to ultra high pressure liquid chromatography tandem mass spectrometry analysis.

    PubMed

    Celano, Rita; Piccinelli, Anna Lisa; Campone, Luca; Rastrelli, Luca

    2014-08-15

    Pharmaceutical and personal care products (PPCPs) are one of the most important classes of emerging contaminants. The potential of ecological and environmental impacts associated with PPCPs are of particular concern because they continually penetrate the aquatic environment. This work describes a novel ultra-preconcentration technique for the rapid and highly sensitive analysis of selected PPCPs in environmental water matrices at ppt levels. Selected PPCPs were rapidly extracted and concentrated from large volumes of aqueous solutions (500 and 250mL) by solid-phase extraction combined with dispersive liquid-liquid microextraction (SPE-DLLME) and then analyzed using UHPLC-MS/MS. Experimental parameters were carefully investigated and optimized to achieve the best SPE-DLLME efficiency and higher enrichment factors. The best results were obtained using the ternary mixture acetonitrile/methanol/dichloromethane 3:3:4, v/v/v, both as SPE eluent and DLLME extractant/dispersive mixture. DLLME aqueous solution (5% NaCl, 10mgL(-1) TBAB) was also modified to improve the extraction efficiency of more hydrophilic PPCPs. Under the optimal conditions, an exhaustive extraction for most of the investigated analytes (recoveries >70%), with a precision (RSD <10%) and very high enrichment factors were attained for different aqueous matrices (drinking, sea, river and wastewater). Method detection and quantification limits were at very low ppt levels and below 1 and 3ngL(-1), respectively, for 15 of selected PPCPs. The proposed analytical procedure offers numerous advantages such as the simplicity of operation, rapidity, a high enrichment factor and sensitivity. So it is suitable for monitoring and studies of occurrence of PPCPs in different environmental compartments. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Development of linear free energy relationships for aqueous phase radical-involved chemical reactions.

    PubMed

    Minakata, Daisuke; Mezyk, Stephen P; Jones, Jace W; Daws, Brittany R; Crittenden, John C

    2014-12-02

    Aqueous phase advanced oxidation processes (AOPs) produce hydroxyl radicals (HO•) which can completely oxidize electron rich organic compounds. The proper design and operation of AOPs require that we predict the formation and fate of the byproducts and their associated toxicity. Accordingly, there is a need to develop a first-principles kinetic model that can predict the dominant reaction pathways that potentially produce toxic byproducts. We have published some of our efforts on predicting the elementary reaction pathways and the HO• rate constants. Here we develop linear free energy relationships (LFERs) that predict the rate constants for aqueous phase radical reactions. The LFERs relate experimentally obtained kinetic rate constants to quantum mechanically calculated aqueous phase free energies of activation. The LFERs have been applied to 101 reactions, including (1) HO• addition to 15 aromatic compounds; (2) addition of molecular oxygen to 65 carbon-centered aliphatic and cyclohexadienyl radicals; (3) disproportionation of 10 peroxyl radicals, and (4) unimolecular decay of nine peroxyl radicals. The LFERs correlations predict the rate constants within a factor of 2 from the experimental values for HO• reactions and molecular oxygen addition, and a factor of 5 for peroxyl radical reactions. The LFERs and the elementary reaction pathways will enable us to predict the formation and initial fate of the byproducts in AOPs. Furthermore, our methodology can be applied to other environmental processes in which aqueous phase radical-involved reactions occur.

  10. Hydrogen donor solvent coal liquefaction process

    DOEpatents

    Plumlee, Karl W.

    1978-01-01

    An indigenous hydrocarbon product stream boiling within a range of from about C.sub.1 -700.degree. F., preferably C.sub.1 -400.degree. F., is treated to produce an upgraded hydrocarbon fuel component and a component which can be recycled, with a suitable donor solvent, to a coal liquefaction zone to catalyze the reaction. In accordance therewith, a liquid hydrocarbon fraction with a high end boiling point range up to about 700.degree. F., preferably up to about 400.degree. F., is separated from a coal liquefaction zone effluent, the separated fraction is contacted with an alkaline medium to provide a hydrocarbon phase and an aqueous extract phase, the aqueous phase is neutralized, and contacted with a peroxygen compound to convert indigenous components of the aqueous phase of said hydrocarbon fraction into catalytic components, such that the aqueous stream is suitable for recycle to the coal liquefaction zone. Naturally occurring phenols and alkyl substituted phenols, found in the aqueous phase, are converted, by the addition of hydroxyl constituents to phenols, to dihydroxy benzenes which, as disclosed in copending Application Ser. Nos. 686,813 now U.S. Pat. No. 4,049,536; 686,814 now U.S. Pat. No. 4,049,537; 686,827 now U.S. Pat. No. 4,051,012 and 686,828, K. W. Plumlee et al, filed May 17, 1976, are suitable hydrogen transfer catalysts.

  11. Regional Air Quality Model Application of the Aqueous-Phase ...

    EPA Pesticide Factsheets

    In most ecosystems, atmospheric deposition is the primary input of mercury. The total wet deposition of mercury in atmospheric chemistry models is sensitive to parameterization of the aqueous-phase reduction of divalent oxidized mercury (Hg2+). However, most atmospheric chemistry models use a parameterization of the aqueous-phase reduction of Hg2+ that has been shown to be unlikely under normal ambient conditions or use a non mechanistic value derived to optimize wet deposition results. Recent laboratory experiments have shown that Hg2+ can be photochemically reduced to elemental mercury (Hg) in the aqueous-phase by dissolved organic matter and a mechanism and the rate for Hg2+ photochemical reduction by dicarboxylic acids (DCA) has been proposed. For the first time in a regional scale model, the DCA mechanism has been applied. The HO2-Hg2+ reduction mechanism, the proposed DCA reduction mechanism, and no aqueous-phase reduction (NAR) of Hg2+ are evaluated against weekly wet deposition totals, concentrations and precipitation observations from the Mercury Deposition Network (MDN) using the Community Multiscale Air Quality (CMAQ) model version 4.7.1. Regional scale simulations of mercury wet deposition using a DCA reduction mechanism evaluated well against observations, and reduced the bias in model evaluation by at least 13% over the other schemes evaluated, although summertime deposition estimates were still biased by −31.4% against observations. The use of t

  12. Separation of chemical groups from bio-oil aqueous phase via sequential organic solvent extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Shoujie; Ye, Philip; Borole, Abhijeet P

    Bio-oil aqueous phase contains a considerable amount of furans, alcohols, ketones, aldehydes and phenolics besides the major components of organic acids and anhydrosugars. The complexity of bio-oil aqueous phase limits its efficient utilization. To improve the efficiency of bio-oil biorefinery, this study focused on the separation of chemical groups from bio-oil aqueous phase via sequential organic solvent extractions. Due to their high recoverability and low solubility in water, four solvents (hexane, petroleum ether, chloroform, and ethyl acetate) with different polarities were evaluated, and the optimum process conditions for chemical extraction were determined. Chloroform had high extraction efficiency for furans, phenolics,more » and ketones. In addition to these chemical groups, ethyl acetate had high extraction efficiency for organic acids. The sequential extraction by using chloroform followed by ethyl acetate rendered that 62.2 wt.% of original furans, ketones, alcohols, and phenolics were extracted to chloroform, over 62 wt.% acetic acid was extracted to ethyl acetate, resulting in a high concentration of levoglucosan (~53.0 wt.%) in the final aqueous phase. Chemicals separated via the sequential extraction could be used as feedstocks in biorefinery using processes such as catalytic upgrading of furans and phenolics to hydrocarbons, fermentation of levoglucosan to produce alcohols and diols, and hydrogen production from organic acids via microbial electrolysis.« less

  13. Separation of chemical groups from bio-oil aqueous phase via sequential organic solvent extraction

    DOE PAGES

    Ren, Shoujie; Ye, Philip; Borole, Abhijeet P

    2017-01-05

    Bio-oil aqueous phase contains a considerable amount of furans, alcohols, ketones, aldehydes and phenolics besides the major components of organic acids and anhydrosugars. The complexity of bio-oil aqueous phase limits its efficient utilization. To improve the efficiency of bio-oil biorefinery, this study focused on the separation of chemical groups from bio-oil aqueous phase via sequential organic solvent extractions. Due to their high recoverability and low solubility in water, four solvents (hexane, petroleum ether, chloroform, and ethyl acetate) with different polarities were evaluated, and the optimum process conditions for chemical extraction were determined. Chloroform had high extraction efficiency for furans, phenolics,more » and ketones. In addition to these chemical groups, ethyl acetate had high extraction efficiency for organic acids. The sequential extraction by using chloroform followed by ethyl acetate rendered that 62.2 wt.% of original furans, ketones, alcohols, and phenolics were extracted to chloroform, over 62 wt.% acetic acid was extracted to ethyl acetate, resulting in a high concentration of levoglucosan (~53.0 wt.%) in the final aqueous phase. Chemicals separated via the sequential extraction could be used as feedstocks in biorefinery using processes such as catalytic upgrading of furans and phenolics to hydrocarbons, fermentation of levoglucosan to produce alcohols and diols, and hydrogen production from organic acids via microbial electrolysis.« less

  14. Process for separating and recovering an anionic dye from an aqueous solution

    DOEpatents

    Rogers, R.; Horwitz, E.P.; Bond, A.H.

    1998-01-13

    A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution. 7 figs.

  15. Atom exchange between aqueous Fe(II) and structural Fe in clay minerals.

    PubMed

    Neumann, Anke; Wu, Lingling; Li, Weiqiang; Beard, Brian L; Johnson, Clark M; Rosso, Kevin M; Frierdich, Andrew J; Scherer, Michelle M

    2015-03-03

    Due to their stability toward reductive dissolution, Fe-bearing clay minerals are viewed as a renewable source of Fe redox activity in diverse environments. Recent findings of interfacial electron transfer between aqueous Fe(II) and structural Fe in clay minerals and electron conduction in octahedral sheets of nontronite, however, raise the question whether Fe interaction with clay minerals is more dynamic than previously thought. Here, we use an enriched isotope tracer approach to simultaneously trace Fe atom movement from the aqueous phase to the solid ((57)Fe) and from the solid into the aqueous phase ((56)Fe). Over 6 months, we observed a significant decrease in aqueous (57)Fe isotope fraction, with a fast initial decrease which slowed after 3 days and stabilized after about 50 days. For the aqueous (56)Fe isotope fraction, we observed a similar but opposite trend, indicating that Fe atom movement had occurred in both directions: from the aqueous phase into the solid and from the solid into aqueous phase. We calculated that 5-20% of structural Fe in clay minerals NAu-1, NAu-2, and SWa-1 exchanged with aqueous Fe(II), which significantly exceeds the Fe atom layer exposed directly to solution. Calculations based on electron-hopping rates in nontronite suggest that the bulk conduction mechanism previously demonstrated for hematite1 and suggested as an explanation for the significant Fe atom exchange observed in goethite2 may be a plausible mechanism for Fe atom exchange in Fe-bearing clay minerals. Our finding of 5-20% Fe atom exchange in clay minerals indicates that we need to rethink how Fe mobility affects the macroscopic properties of Fe-bearing phyllosilicates and its role in Fe biogeochemical cycling, as well as its use in a variety of engineered applications, such as landfill liners and nuclear repositories.

  16. Speciation of selenium in environmental samples by solid-phase spectrophotometry using 2,3-dichloro-6-(2,7-dihydroxy-naphthylazo)quinoxaline.

    PubMed

    Amin, Alaa S

    2014-01-01

    Solid-phase spectrophotometry was applied to determination of trace amounts of selenium (Se) in water, soil, plant materials, human hair, and a cosmetic preparation (lipstick). Se(IV) was sorbed in a dextran type lipophilic gel as a complex with 2,3-dichloro-6-(2,7-dihydroxy-naphthylazo)quinoxaline (DCDHNAQ), whereas Se(VI) was determined after boiling in HCI for 10 min to convert Se(VI) to Se(IV). Resin phase absorbances at 588 and 800 nm were measured directly, which allowed the determination of Se in the range of 0.2-3.3 microg/L with an RSD of 1.22%. The influences of analytical parameters including pH of the aqueous solution, amounts of DCDHNAQ, and sample volume were investigated. The molar absorptivities were found to be 1.09 x 10(6), 4.60 x 10(6), and 1.23 x 10(7) L/mol cm for 100, 500, and 1000 mL, respectively. The LOD and LOQ of the 500 mL sample method were 110 and 360 ng/L, respectively, when using 50 mg dextran type lipophilic gel. For a 1000 mL sample, the LOD and LOQ were 60 and 200 ng/L, respectively, using 50 mg of the exchanger. Increasing the sample volume enhanced the sensitivity. No considerable interferences were observed from other investigated anions and cations on the Se determination.

  17. Recovery of uranium values

    DOEpatents

    Brown, K. B.; Crouse, Jr., D. J.; Moore, J. G.

    1959-03-10

    A liquid-liquid extraction method is presented for recovering uranium values from an aqueous acidic solution by means of certain high molecular weight amine fn the amine classes of primary, secondary, heterocyclic secondary, tertiary, or heterocyclic tertiary. The uranium bearing aqueous acidic solution is contacted with the selected anine dissolved in a nonpolar waterimmiscible organfc solvent such as kerosene. The uranium which is substantially completely extracted by the organic phase may be stripped therefrom by water, and recovered from the aqueous phase by treatment into ammonia to precipitate ammonium diuranate.

  18. RECOVERY OF URANIUM VALUES

    DOEpatents

    Brown, K.B.; Crouse, D.J. Jr.; Moore, J.G.

    1959-03-10

    A liquid-liquid extraction method is presented for recovering uranium values from an aqueous acidic solution by means of certain high molecular weight amine in the amine classes of primary, secondary, heterocyclic secondary, tertiary, or heterocyclic tertiary. The uranium bearing aqueous acidic solution is contacted with the selected amine dissolved in a nonpolar water-immiscible organic solvent such as kerosene. The uranium which is substantially completely exiracted by the organic phase may be stripped therefrom by waters and recovered from the aqueous phase by treatment into ammonia to precipitate ammonium diuranate.

  19. Screening of formulation variables for the preparation of poly(epsilon-caprolactone) nanocapsules containing the local anesthetic benzocaine.

    PubMed

    Moraes, Carolina Morales; de Matos, Angélica Prado; Grillo, Renato; de Melo, Nathalie F S; de Paula, Eneida; Dias Filho, Newton Luiz; Rosa, André Henrique; Fraceto, Leonardo Fernandes

    2011-03-01

    In this work we describe the screening of four parameters in the preparation, by nanoprecipitation, of poly(epsilon-caprolactone) nanocapsules, used as a drug carrier system for the local anesthetic, benzocaine. A 2(4-1) factorial experimental design was used to study the influence of four different independent variables (polymer, oily phase, Span 60 and Tween 80) on nanocapsule characteristics (size, polydispersion index, zeta potential) and drug loading capability. Best results were obtained using an aqueous formulation comprising 100 mg of polymer, 200 mg of oily phase, 40 mg of Span 60 and 60 mg of Tween 80 in a final volume of 10 mL which produced a colloidal system with particle size of 188 nm, zeta potential -32 mV, polydispersion index 0.07, and benzocaine association efficiency > 87%. These findings open the way for future clinical studies using such formulations.

  20. Translational Diffusion Coefficient and Partition Coefficient of a Spin-Labeled Solute in Lecithin Bilayer Membranes

    PubMed Central

    Dix, James A.; Diamond, Jared M.; Kivelson, Daniel

    1974-01-01

    The translational diffusion coefficient and the partition coefficient of a spin-labeled solute, di-t-butyl nitroxide, in an aqueous suspension of dipalmitoyl lecithin vesicles have been studied by electron spin resonance spectroscopy. When the lecithin is cooled through its phase transition temperature near 41°C, some solute is “frozen out” of the bilayer, and the standard partial molar enthalpy and entropy of partition go more positive by a factor of 8 and 6, respectively. However, the apparent diffusion constant in the lecithin phase is only slightly smaller than that in water, both above and below the transition temperature. The fraction of bilayer volume within which solute is distributed may increase with temperature, contributing to the positive enthalpy of partition. Comparison of time constants suggests that there is a permeability barrier to this solute in the periphery of the bilayer. PMID:4360944

  1. Regional Air Quality Model Application of the Aqueous-Phase Photo Reduction of Atmospheric Oxidized Mercury by Dicarboxylic Acids

    EPA Science Inventory

    In most ecosystems, atmospheric deposition is the primary input of mercury. The total wet deposition of mercury in atmospheric chemistry models is sensitive to parameterization of the aqueous-phase reduction of divalent oxidized mercury (Hg2+). However, most atmospheric chemistry...

  2. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C.J.; Poole, L.J.

    1995-05-02

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine. 10 figs.

  3. Application of edible paraffin oil for cationic dye removal from water using emulsion liquid membrane.

    PubMed

    Zereshki, Sina; Daraei, Parisa; Shokri, Amin

    2018-05-18

    Using an emulsion liquid membrane based on edible oils is investigated for removing cationic dyes from aqueous solutions. There is a great potential for using edible oils in food industry extraction processes. The parameters affecting the stability of the emulsion and the extraction rate were studied. These parameters were the emulsification time, the stirring speed, the surfactant concentration, the internal phase concentration, the feed phase concentration, the volume ratio of internal phase to organic phase and the treat ratio. In order to stabilize the emulsion without using a carrier, edible paraffin oil and heptane are used at an 80:20 ratio. The optimum conditions for the extraction of methylene blue (MB), crystal violet and methyl violet (CV and MV) cationic dyes using edible paraffin oil as an environment friendly solvent are represented. A removal percentage of 95% was achieved for a mixture of dyes. The optimum concentration of sodium hydroxide in the internal phase, which results a stabile emulsion with a high stripping efficiency of 96%, was 0.04 M. An excellent membrane recovery was observed and the extraction of dyes did not decrease up to seven run cycles. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. A flow-through aqueous standard generation system for thin film microextraction investigations of UV filters and biocides partitioning to different environmental compartments.

    PubMed

    Ahmadi, Fardin; Sparham, Chris; Pawliszyn, Janusz

    2017-11-01

    In this paper problems associated with preparation of aqueous standard of highly hydrophobic compounds such as partial precipitation, being lost on the surfaces, low solubility in water and limited sample volume for accurate determination of their distribution coefficients are addressed. The following work presents two approaches that utilize blade thin film microextraction (TFME) to investigate partitioning of UV filters and biocides to humic acid (dissolved organic carbon) and sediment. A steady-state concentration of target analytes in water was generated using a flow-through aqueous standard generation (ASG) system. Dialysis membranes, a polytetrafluoroethylene permeation tube, and a frit porous (0.5 μm) coated by epoxy glue were basic elements used for preparation of the ASG system. In the currently presented study, negligible depletion TFME using hydrophilic-lipophilic balance (HLB) and octadecyl silica-based (C18) sorbents was employed towards the attainment of free concentration values of target analytes in the studied matrices. Thin film geometry provided a large volume of extraction phase, which improved the sensitivity of the method towards highly matrix-bound analytes. Extractions were performed in the equilibrium regime so as to prevent matrix effects and with aims to reach maximum method sensitivity for all analytes under study. Partitioning of analytes on dissolved organic carbon (DOC) was investigated in ASG to facilitate large sample volume conditions. Binding percentages and DOC distribution coefficients (Log K DOC ) ranged from 20 to 98% and 3.71-6.72, respectively. Furthermore, sediment-water partition coefficients (K d ), organic-carbon normalized partition coefficients (Log K OC ), and DOC distribution coefficients (Log K DOC ) were investigated in slurry sediment, and ranged from 33 to 2860, 3.31-5.24 and 4.52-5.75 Lkg -1 , respectively. The obtained results demonstrated that investigations utilizing ASG and TFME can yield reliable binding information for compounds with high log K OW values. This information is useful for study of fate, transport, and ecotoxicological effects of UV filters and biocides in aquatic environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. 40 CFR Appendix 7 to Subpart A of... - Determination of the Amount of Non-Aqueous Drilling Fluid (NAF) Base Fluid From Drill Cuttings by...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... multiplying the density of the small volume NAF-cuttings discharges (ρsvd) times the volume of the small...-cuttings discharges (kg) ρsvd = density of the small volume NAF-cuttings discharges (kg/bbl) VSVD = volume of the small volume NAF-cuttings discharges (bbl) The density of the small volume NAF-cuttings...

  6. 40 CFR Appendix 7 to Subpart A of... - Determination of the Amount of Non-Aqueous Drilling Fluid (NAF) Base Fluid From Drill Cuttings by...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... multiplying the density of the small volume NAF-cuttings discharges (ρsvd) times the volume of the small...-cuttings discharges (kg) ρsvd = density of the small volume NAF-cuttings discharges (kg/bbl) VSVD = volume of the small volume NAF-cuttings discharges (bbl) The density of the small volume NAF-cuttings...

  7. 40 CFR Appendix 7 to Subpart A of... - Determination of the Amount of Non-Aqueous Drilling Fluid (NAF) Base Fluid From Drill Cuttings by...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... multiplying the density of the small volume NAF-cuttings discharges (ρsvd) times the volume of the small...-cuttings discharges (kg) ρsvd = density of the small volume NAF-cuttings discharges (kg/bbl) VSVD = volume of the small volume NAF-cuttings discharges (bbl) The density of the small volume NAF-cuttings...

  8. Dependence on sphere size of the phase behavior of mixtures of rods and spheres

    NASA Astrophysics Data System (ADS)

    Urakami, Naohito; Imai, Masayuki

    2003-07-01

    By the addition of chondroitin sulfate (Chs) to the aqueous suspension of tobacco mosaic virus (TMV), the aggregation of TMV occurs at very dilute TMV concentration compared with the addition of polyethylene oxide (PEO). The difference of physical behavior between Chs and PEO is the chain conformation in solution. The Chs chain has a semirigid nature, whereas the PEO chain has a flexible nature. In this study, the Chs and PEO chains are simplified to spherical particles having different size, and we use the spherocylinder model for TMV particle. The effect of the sphere size on the phase behaviors in the mixtures of rods and spheres is investigated by Monte Carlo simulations. By the addition of small spheres, the system transforms from the miscible isotropic phase to the miscible nematic phase. On the other hand, by the addition of large spheres, the system changes from the miscible isotropic phase to the immiscible nematic phase through the immiscible isotropic phase. The different phase behaviors between the small and the large spheres originate from the difference of overlapping volume of the depletion zone. In addition, we perform the Monte Carlo simulations in the case that semirigid chains are used as the Chs chain models. The same phase behaviors are observed as the mixtures of rods and large spheres. Thus the sphere model captures the phase behaviors of rod and polymer mixture systems.

  9. Improved Separations of Proteins and Sugar Derivatives Using the Small-Scale Cross-Axis Coil Planet Centrifuge with Locular Multilayer Coiled Columns.

    PubMed

    Shinomiya, Kazufusa; Umezawa, Motoki; Seki, Manami; Nitta, Jun; Zaima, Kazumasa; Harikai, Naoki; Ito, Yoichiro

    2016-12-01

    Countercurrent chromatography (CCC) is liquid-liquid partition chromatography without using a solid support matrix. This technique requires further improvement of partition efficiency and shortening theseparation time. The locular multilayer coils modified with and without mixer glass beads were developed for the separation of proteins and 4-methylumbelliferyl (MU) sugar derivatives using the small-scale cross-axis coil planet centrifuge. Proteins were well separated from each other and the separation was improved at a low flow rate of the mobile phase. On the other hand, 4-MU sugar derivatives were sufficiently resolved with short separation time at a highflow rate of the mobile phase under satisfactory stationary phase retention. Effective separations were achieved using the locular multilayer coil for proteins with aqueous-aqueous polymer phase systems and for 4-MU sugar derivatives with organic-aqueous two-phase solvent systems by inserting a glass bead into each locule.

  10. A Chain of Modeling Tools For Gas and Aqueous Phase Chemstry

    NASA Astrophysics Data System (ADS)

    Audiffren, N.; Djouad, R.; Sportisse, B.

    Atmospheric chemistry is characterized by the use of large set of chemical species and reactions. Handling with the set of data required for the definition of the model is a quite difficult task. We prsent in this short article a preprocessor for diphasic models (gas phase and aqueous phase in cloud droplets) named SPACK. The main interest of SPACK is the automatic generation of lumped species related to fast equilibria. We also developped a linear tangent model using the automatic differentiation tool named ODYSSEE in order to perform a sensitivity analysis of an atmospheric multi- phase mechanism based on RADM2 kinetic scheme.Local sensitivity coefficients are computed for two different scenarii. We focus in this study on the sensitivity of the ozone,NOx,HOx, system with respect to some aqueous phase reactions and we inves- tigate the influence of the reduction in the photolysis rates in the area below the cloud region.

  11. Aqueous Electrochemical Mechanisms in Actinide Residue Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, David E.; Burns, Carol J.; Smith, Wayne H.

    2000-12-31

    Plutonium and uranium residues (e.g., incinerator ash, combustibles, and sand/slag/crucibles) resulting from the purification and processing of nuclear materials constitute an enormous volume of ''lean'' processing waste and represent a significant fraction of the U. S. Department of Energy's (DOE) legacy waste from fifty years of nuclear weapons production activities. Much of this material is presently in storage at sites throughout the DOE weapons production complex (most notably Rocky Flats, Savannah River and Hanford) awaiting further processing and/or final disposition. The chemical and physical stability of much of this material has been called into question recently by the Defense Nuclearmore » Facility Safety Board (DNFSB) and resulted in the issuance of a mandate by the DNFSB to undertake a program to stabilize these materials [1]. The ultimate disposition for much of these materials is anticipated to be geologic repositories such as the proposed Waste Isolation Pilot Plant in New Mexico. However, in light of the mandate to stabilize existing residues and the probable concomitant increase in the volume of material to be disposed as a result of stabilization (e.g., from repackaging at lower residue densities), the projected storage volume for these wastes within anticipated geologic repositories will likely be exceeded simply to handle existing wastes. Additional processing of some of these residue waste streams to reduce radionuclide activity levels, matrix volume, or both is a potentially important strategy to achieve both stabilization and volume reduction so that the anticipated geologic repositories will provide adequate storage volume. In general, the plutonium and uranium that remains in solid residue materials exists in a very stable chemical form (e.g., as binary oxides), and the options available to remove the actinides are limited. However, there have been some demonstrated successes in this vain using aqueous phase electrochemical methods such as the Catalyzed Electrochemical Plutonium Oxide Dissolution (CEPOD) process pioneered by workers at Pacific Northwest National Laboratory in the mid-1970s [2]. The basis for most of these mediated electrochemical oxidation/reduction (MEO/R) processes is the generation of a dissolved electrochemical catalyst, such as Ag2+, which is capable of oxidizing or reducing solid-phase actinide species or actinide sorbates via 7 heterogeneous electron transfer to oxidation states that have significantly greater solubilities (e.g., PuO2(s) to PuO2 2+ (dissolved)). The solubilized actinide can then be recovered by ion exchange or other mechanisms. These aqueous electrochemical methods for residue treatment have been considered in many of the ''trade studies'' to evaluate options for stabilization of the various categories of residue materials. While some concerns generally arise (e.g., large secondary waste volumes could results since the process stream normally goes th rough anion exchange or precipitation steps to remove the actinide), the real utility and versatility of these methods should not be overlooked. They are low temperature, ambient pressure processes that operate in a non-corrosive environment. In principle, they can be designed to be highly selective for the actinides (i.e., no substrate degradation occurs), they can be utilized for many categories of residue materials with little or no modification in hardware or operating conditions, and they can conceivably be engineered to minimize secondary waste stream volume. However, some fundamental questions remain concerning the mechanisms through which these processes act, and how the processes might be optimized to maximize efficiency while minimizing secondary waste. In addition, given the success achieved to date on the limited set of residues, further research is merited to extend the range of applicability of these electrochemical methods to other residue and waste streams. The principal goal of the work described here is to develop a fundamental understanding of the heterogeneous electron transfer thermodynamics and kinetics that lie at the heart of the MEO/R processes for actinide solids and actinide species entrained in or surface-bound to residue substrates. This has been accomplished as described in detail below through spectroscopic characterization of actinide-bearing substrates and electrochemical investigations of electron transfer reactions between uranium- and plutonium- (or surrogates) bearing solids (dispersed actinide solid phases and actinides sorbed to inorganic and organic colloids) and polarizable electrode materials. In general, the actinide solids or substrate-supported species were chosen to represent relevant residue materials (e.g., incinerator ash, sand/slag/crucible, and combustibles).« less

  12. Monodisperse hydrogel microspheres by forced droplet formation in aqueous two-phase systems.

    PubMed

    Ziemecka, Iwona; van Steijn, Volkert; Koper, Ger J M; Rosso, Michel; Brizard, Aurelie M; van Esch, Jan H; Kreutzer, Michiel T

    2011-02-21

    This paper presents a method to form micron-sized droplets in an aqueous two-phase system (ATPS) and to subsequently polymerize the droplets to produce hydrogel beads. Owing to the low interfacial tension in ATPS, droplets do not easily form spontaneously. We enforce the formation of drops by perturbing an otherwise stable jet that forms at the junction where the two aqueous streams meet. This is done by actuating a piezo-electric bending disc integrated in our device. The influence of forcing amplitude and frequency on jet breakup is described and related to the size of monodisperse droplets with a diameter in the range between 30 and 60 μm. Rapid on-chip polymerization of derivatized dextran inside the droplets created monodisperse hydrogel particles. This work shows how droplet-based microfluidics can be used in all-aqueous, surfactant-free, organic-solvent-free biocompatible two-phase environment.

  13. Friction and Wear Modifiers Using Solvent Partitioning of Hydrophilic Surface-interactive Chemicals Contained in Boundary Layer-targeted Emulsions

    NASA Technical Reports Server (NTRS)

    Richmond, Robert Chafee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor)

    2013-01-01

    A wear and/or friction reducing additive for a lubricating fluid in which the additive is a combination of a moderately hydrophilic single-phase compound and an anti-wear and/or anti-friction aqueous salt solution. The aqueous salt solution produces a coating on boundary layer surfaces. The lubricating fluid can be an emulsion-free hydrophobic oil, hydraulic fluid, antifreeze, or water. Preferably, the moderately hydrophilic single-phase compound is sulfonated castor oil and the aqueous salt solution additionally contains boric acid and zinc oxide. The emulsions produced by the aqueous salt solutions, the moderately hydrophilic single-phase compounds, or the combination thereof provide targeted boundary layer organizers that significantly enhance the anti-wear and/or anti-friction properties of the base lubricant by decreasing wear and/or friction of sliding and/or rolling surfaces at boundary layers.

  14. Use of a parallel artificial membrane system to evaluate passive absorption and elimination in small fish.

    PubMed

    Kwon, Jung-Hwan; Katz, Lynn E; Liljestrand, Howard M

    2006-12-01

    A parallel artificial lipid membrane system was developed to mimic passive mass transfer of hydrophobic organic chemicals in fish. In this physical model system, a membrane filter-supported lipid bilayer separates two aqueous phases that represent the external and internal aqueous environments of fish. To predict bioconcentration kinetics in small fish with this system, literature absorption and elimination rates were analyzed with an allometric diffusion model to quantify the mass transfer resistances in the aqueous and lipid phases of fish. The effect of the aqueous phase mass transfer resistance was controlled by adjusting stirring intensity to mimic bioconcentration rates in small fish. Twenty-three simple aromatic hydrocarbons were chosen as model compounds for purposes of evaluation. For most of the selected chemicals, literature absorption/elimination rates fall into the range predicted from measured membrane permeabilities and elimination rates of the selected chemicals determined by the diffusion model system.

  15. Friction and Wear Modifiers Using Solvent Partitioning of Hydrophilic Surface-Interactive Chemicals Contained in Boundary Layer-Targeted Emulsions

    NASA Technical Reports Server (NTRS)

    Defalco, Francis G. (Inventor); Richmond, Robert Chaffee (Inventor); Schramm, Jr., Harry F. (Inventor)

    2017-01-01

    A wear and/or friction reducing additive for a lubricating fluid in which the additive is a combination of a moderately hydrophilic single-phase compound and an anti-wear and/or anti-friction aqueous salt solution. The aqueous salt solution produces a coating on boundary layer surfaces. The lubricating fluid can be an emulsion-free hydrophobic oil, hydraulic fluid, antifreeze, water, or a water-based lubricant. Preferably, the moderately hydrophilic single-phase compound is sulfonated castor oil and the aqueous salt solution additionally contains boric acid and zinc oxide. The emulsions produced by the aqueous salt solutions, the moderately hydrophilic single-phase compounds, or the combination thereof provide targeted boundary layer organizers that significantly enhance the anti-wear and/or anti-friction properties of the base lubricant by decreasing wear and/or friction of sliding and/or rolling surfaces at boundary layers.

  16. Friction and Wear Modifiers Using Solvent Partitioning of Hydrophilic Surface-Interactive Chemicals Contained in Boundary Layer-Targeted Emulsions

    NASA Technical Reports Server (NTRS)

    Defalco, Francis G. (Inventor); Richmond, Robert Chaffee (Inventor); Schramm, Harry F., Jr. (Inventor)

    2016-01-01

    A wear and/or friction reducing additive for a lubricating fluid in which the additive is a combination of a moderately hydrophilic single-phase compound and an anti-wear and/or anti-friction aqueous salt solution. The aqueous salt solution produces a coating on boundary layer surfaces. The lubricating fluid can be an emulsion-free hydrophobic oil, hydraulic fluid, antifreeze, or water. Preferably, the moderately hydrophilic single-phase compound is sulfonated castor oil and the aqueous salt solution additionally contains boric acid and zinc oxide. The emulsions produced by the aqueous salt solutions, the moderately hydrophilic single-phase compounds, or the combination thereof provide targeted boundary layer organizers that significantly enhance the anti-wear and/or anti-friction properties of the base lubricant by decreasing wear and/or friction of sliding and/or rolling surfaces at boundary layers.

  17. The effects of biomacromolecules on the physical stability of W/O/W emulsions.

    PubMed

    Li, Jinlong; Zhu, Yunping; Teng, Chao; Xiong, Ke; Yang, Ran; Li, Xiuting

    2017-02-01

    The effect of bovine serum albumin (BSA), whey protein isolate (WPI), whey protein hydrolysate (WPH), sodium caseinate (SC), carboxymethylcellulose sodium (CMC), fish gelatin (FG), high methoxyl apple pectin (HMAP), low methoxyl apple pectin (LMAP), gum Arabic (GA), ι-carrageenan (CGN), and hydroxypropyl chitosan (HPCTS) on physical stability of internal or external aqueous phase of water-in-oil-in-water (W/O/W) emulsions was evaluated. WPI and CGN in the internal aqueous phase, and GA, HPCTS, and CMC in the external phase reduced the size of emulsion droplets. BSA, WPI, SC, FG, CGN, and HPCTS improved the dilution stability of W/O/W emulsions, but HMAP had a negative effect. BSA, WPI, SC, FG, LMAP, GA, CGN, HPCTS, or CMC significantly improved the thermal stability of W/O/W emulsions. Results also indicated that the addition of CGN (1.0%), HMAP (1.0%), WPH (1.0%), or HPCTS (1.0%) in internal aqueous phase significantly increased the viscosity of emulsions, however, addition to the external aqueous phase had insignificant effects. A protein-knockout experiment confirmed that proteins as biomacromolecules, were the key factor in improving physical stability of emulsions.

  18. Solvation behaviour of L-leucine in aqueous ionic liquid at different temperatures: Volumetric approach

    NASA Astrophysics Data System (ADS)

    Sharma, Samriti; Sandarve, Sharma, Amit K.; Sharma, Meena

    2018-05-01

    For the investigation of interactions of L-leucine in aqueous solutions of an ionic liquid (1-butyl-3-methylimidazolium tetra fluoroborate [Bmim][BF4]) at atmospheric pressure over a temperature range of (293.15K to 313.16K), we use the volumetric approach. By using the density data we have calculated the apparent molar volume, VΦ, limiting apparent molar volume, V0Φ, the slope, Sv, partial molar volume of transfer, V0Φ,tr. The values of these acoustical parameters have been used for the interpretation of different interactions like hydrophilic-hydrophilic, hydrophilic-hydrophobic, ion hydrophilic, solute-solvent and solute-solute interactions in the amino acid and ionic liquid solutions.

  19. pH recycling aqueous two-phase systems applied in extraction of Maitake β-Glucan and mechanism analysis using low-field nuclear magnetic resonance.

    PubMed

    Hou, Huiyun; Cao, Xuejun

    2015-07-31

    In this paper, a recycling aqueous two-phase systems (ATPS) based on two pH-response copolymers PADB and PMDM were used in purification of β-Glucan from Grifola frondosa. The main parameters, such as polymer concentration, type and concentration of salt, extraction temperature and pH, were investigated to optimize partition conditions. The results demonstrated that β-Glucan was extracted into PADB-rich phase, while impurities were extracted into PMDM-rich phase. In this 2.5% PADB/2.5% PMDM ATPS, 7.489 partition coefficient and 96.92% extraction recovery for β-Glucan were obtained in the presence of 30mmol/L KBr, at pH 8.20, 30°C. The phase-forming copolymers could be recycled by adjusting pH, with recoveries of over 96.0%. Furthermore, the partition mechanism of Maitake β-Glucan in PADB/PMDM aqueous two-phase systems was studied. Fourier transform infrared spectra, ForteBio Octet system and low-field nuclear magnetic resonance (LF-NMR) were introduced for elucidating the partition mechanism of β-Glucan. Especially, LF-NMR was firstly used in the mechanism analysis in partition of aqueous two-phase systems. The change of transverse relaxation time (T2) in ATPS could reflect the interaction between polymers and β-Glucan. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Multi-level Quantum Mechanics and Molecular Mechanics Study of Ring Opening Process of Guanine Damage by Hydroxyl Radical in Aqueous Solution.

    PubMed

    Liu, Peng; Wang, Qiong; Niu, Meixing; Wang, Dunyou

    2017-08-10

    Combining multi-level quantum mechanics theories and molecular mechanics with an explicit water model, we investigated the ring opening process of guanine damage by hydroxyl radical in aqueous solution. The detailed, atomic-level ring-opening mechanism along the reaction pathway was revealed in aqueous solution at the CCSD(T)/MM levels of theory. The potentials of mean force in aqueous solution were calculated at both the DFT/MM and CCSD(T)/MM levels of the theory. Our study found that the aqueous solution has a significant effect on this reaction in solution. In particular, by comparing the geometries of the stationary points between in gas phase and in aqueous solution, we found that the aqueous solution has a tremendous impact on the torsion angles much more than on the bond lengths and bending angles. Our calculated free-energy barrier height 31.6 kcal/mol at the CCSD(T)/MM level of theory agrees well with the one obtained based on gas-phase reaction profile and free energies of solvation. In addition, the reaction path in gas phase was also mapped using multi-level quantum mechanics theories, which shows a reaction barrier at 19.2 kcal/mol at the CCSD(T) level of theory, agreeing very well with a recent ab initio calculation result at 20.8 kcal/mol.

  1. Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems.

    PubMed

    An, Jiwoo; Trujillo-Rodríguez, María J; Pino, Verónica; Anderson, Jared L

    2017-06-02

    The development of rapid, convenient, and high throughput sample preparation approaches such as liquid phase microextraction techniques have been continuously developed over the last decade. More recently, significant attention has been given to the replacement of conventional organic solvents used in liquid phase microextraction techniques in order to reduce toxic waste and to improve selectivity and/or extraction efficiency. With these objectives, non-conventional solvents have been explored in liquid phase microextraction and aqueous biphasic systems. The utilized non-conventional solvents include ionic liquids, magnetic ionic liquids, and deep eutectic solvents. They have been widely used as extraction solvents or additives in various liquid phase microextraction modes including dispersive liquid-liquid microextraction, single-drop microextraction, hollow fiber-liquid phase microextraction, as well as in aqueous biphasic systems. This review provides an overview into the use of non-conventional solvents in these microextraction techniques in the past 5 years (2012-2016). Analytical applications of the techniques are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Extraction of Biomolecules Using Phosphonium-Based Ionic Liquids + K3PO4 Aqueous Biphasic Systems

    PubMed Central

    Louros, Cláudia L. S.; Cláudio, Ana Filipa M.; Neves, Catarina M. S. S.; Freire, Mara G.; Marrucho, Isabel M.; Pauly, Jérôme; Coutinho, João A. P.

    2010-01-01

    Aqueous biphasic systems (ABS) provide an alternative and efficient approach for the extraction, recovery and purification of biomolecules through their partitioning between two liquid aqueous phases. In this work, the ability of hydrophilic phosphonium-based ionic liquids (ILs) to form ABS with aqueous K3PO4 solutions was evaluated for the first time. Ternary phase diagrams, and respective tie-lines and tie-lines length, formed by distinct phosphonium-based ILs, water, and K3PO4 at 298 K, were measured and are reported. The studied phosphonium-based ILs have shown to be more effective in promoting ABS compared to the imidazolium-based counterparts with similar anions. Moreover, the extractive capability of such systems was assessed for distinct biomolecules (including amino acids, food colourants and alkaloids). Densities and viscosities of both aqueous phases, at the mass fraction compositions used for the biomolecules extraction, were also determined. The evaluated IL-based ABS have been shown to be prospective extraction media, particularly for hydrophobic biomolecules, with several advantages over conventional polymer-inorganic salt ABS. PMID:20480041

  3. Double-disk solid-phase extraction--Simultaneous cleanup and trace enrichment of herbicides and metabolites from environmental samples

    USGS Publications Warehouse

    Ferrar, Imma; Barceló, Damià; Thurman, E.M.

    1999-01-01

    Phenylurea and triazine herbicides, including some metabolites, were isolated from water and soil extracts by solid-phase extraction using a layered system of two extraction disks, a method called double-disk solid-phase extraction. The first disk consisted of strong anion exchange (SAX) of 10-μm styrene divinylbenzene (SDB) particles embedded in Teflon, and the second disk was a C18 disk of 10-μm particles also embedded in Teflon. A volume of 500 mL of water or aqueous soil extract is passed through the layered system with the SAX disk first. The purpose of the SAX disk is to remove the humic and fulvic acids from the water or aqueous soil extract by ion exchange through their carboxyl groups. Even during methanol elution of herbicides, the humic substances remain bound to the SAX disk with >85% retention. Elution with methanol results in more than 90% recovery of the herbicides from the layered extraction disks. Removal of the humic and fulvic acids results in greater sensitivity for diode array detection quantitation (0.05 μg/L for herbicides) by substantially reducing the absorbance of the humic peak on the LC chromatogram. The herbicides adsorb to the SAX disk either through hydrogen bonding to the anion-exchange sites or by hydrophobic interaction with the SDB surface of the anion-exchange disk. The method was tested for the analysis of natural water samples from the Mississippi Embayment, a cotton-growing area of the southeastern United States.

  4. The effect of dissolution of volcanic glass on the water chemistry in a tuffaceous aquifer, Rainier Mesa, Nevada

    USGS Publications Warehouse

    White, Art F.; Claassen, H.C.; Benson, Larry V.

    1980-01-01

    Geochemistry of ground water associated with the Tertiary tuffs within Rainier Mesa, southern Nevada, was investigated to determine the relative importance of glass dissolution in controlling water chemistry. Water samples were obtained both from interstitial pores in core sections and from free-flowing fractures. Cation com- positions showed that calcium and magnesium decreased as a function of depth in the mesa, as sodium increased. The maximum effect occurs within alteration zones containing clinoptilolite and montmorillonite, suggesting these minerals effectively remove bivalent cations from the system. Comparisons are made between compositions of ground waters found within Rainier Mesa that apparently have not reacted with secondary minerals and compositions of waters produced by experimental dissolution of vitric and crystalline tufts which comprise the principal aquifers in the area. The two tuff phases have the same bulk chemistry but produce aqueous solutions of different chemistry. Rapid parabolic dissolution of sodium and silica from, and the retention of, potassium within the vitric phase verify previous predictions concerning water compositions associated with vitric volcanic rocks. Parabolic dissolution of the crystalline phase results in solutions high in calcium and magnesium and low in silica. Extrapolation of the parabolic dissolution mechanism for the vitric tuff to long times successfully reproduces, at com- parable pH, cation ratios existing in Rainier Mesa ground water. Comparison of mass- transfer rates of the vitric and crystalline tuffs indicates that the apparent higher glass-surface to aqueous-volume ratio associated with the vitric rocks may account for dominance of the glass reaction.

  5. An advanced modeling study on the impacts and atmospheric implications of multiphase dimethyl sulfide chemistry

    PubMed Central

    Hoffmann, Erik Hans; Tilgner, Andreas; Schrödner, Roland; Bräuer, Peter; Wolke, Ralf; Herrmann, Hartmut

    2016-01-01

    Oceans dominate emissions of dimethyl sulfide (DMS), the major natural sulfur source. DMS is important for the formation of non-sea salt sulfate (nss-SO42−) aerosols and secondary particulate matter over oceans and thus, significantly influence global climate. The mechanism of DMS oxidation has accordingly been investigated in several different model studies in the past. However, these studies had restricted oxidation mechanisms that mostly underrepresented important aqueous-phase chemical processes. These neglected but highly effective processes strongly impact direct product yields of DMS oxidation, thereby affecting the climatic influence of aerosols. To address these shortfalls, an extensive multiphase DMS chemistry mechanism, the Chemical Aqueous Phase Radical Mechanism DMS Module 1.0, was developed and used in detailed model investigations of multiphase DMS chemistry in the marine boundary layer. The performed model studies confirmed the importance of aqueous-phase chemistry for the fate of DMS and its oxidation products. Aqueous-phase processes significantly reduce the yield of sulfur dioxide and increase that of methyl sulfonic acid (MSA), which is needed to close the gap between modeled and measured MSA concentrations. Finally, the simulations imply that multiphase DMS oxidation produces equal amounts of MSA and sulfate, a result that has significant implications for nss-SO42− aerosol formation, cloud condensation nuclei concentration, and cloud albedo over oceans. Our findings show the deficiencies of parameterizations currently used in higher-scale models, which only treat gas-phase chemistry. Overall, this study shows that treatment of DMS chemistry in both gas and aqueous phases is essential to improve the accuracy of model predictions. PMID:27688763

  6. Solubility of HOBr in Acidic Solution and Implications for Liberation of Halogens Via Aerosol Processing

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Michelsen, R. R.; Rammer, T. A.; Ashbourn, S. F. M.

    2004-01-01

    Halogen species are known to catalytically destroy ozone in several regions of the atmosphere. In addition to direct catalytic losses, bromine compounds can indirectly enhance ozone loss through coupling to other radical families. Hypobromous acid (HOBr) is a key species in the linkage of BrOx to ClOx and HOx. The aqueous- phase coupling reaction HOBr + HCI (right arrow) BrCl + H2O may provide a pathway for chlorine activation on sulfate aerosols at temperatures warmer than those required for polar stratospheric cloud formation. We have measured t h e solubility of HOBr in 45 - 70 wt% sulfuric acid solutions. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, H* = 10(exp 4) - 10(exp 7) mol dm(exp -3) atm(exp -1). The expected inverse dependence of H* on temperature was observed, but only a weak dependence on acidity was found. The solubility of HOBr is comparable to that of HBr, indicating that equilibrium concentrations of HOBr could equal or exceed those of HBr in upper tropospheric and lower stratospheric aerosols. Despite the high solubility of HOBr, aerosol volumes are not large enough to sequester a significant fraction of inorganic bromine from the gas phase. Our measurements of HOBr uptake in aqueous sulfuric acid in the presence of other brominated gases show the evolution of gaseous products including Br2O and Br2.

  7. Biogenic, urban, and wildfire influences on the molecular composition of dissolved organic compounds in cloud water

    DOE PAGES

    Cook, Ryan D.; Lin, Ying-Hsuan; Peng, Zhuoyu; ...

    2017-12-21

    Organic aerosol formation and transformation occurs within aqueous aerosol and cloud droplets, yet little is known about the composition of high molecular weight organic compounds in cloud water. Cloud water samples collected at Whiteface Mountain, New York, during August-September 2014 were analyzed by ultra-high-resolution mass spectrometry to investigate the molecular composition of dissolved organic carbon, with a focus on sulfur- and nitrogen-containing compounds. Organic molecular composition was evaluated in the context of cloud water inorganic ion concentrations, pH, and total organic carbon concentrations to gain insights into the sources and aqueous-phase processes of the observed high molecular weight organic compounds.more » Cloud water acidity was positively correlated with the average oxygen : carbon ratio of the organic constituents, suggesting the possibility for aqueous acid-catalyzed (prior to cloud droplet activation or during/after cloud droplet evaporation) and/or radical (within cloud droplets) oxidation processes. Many tracer compounds recently identified in laboratory studies of bulk aqueous-phase reactions were identified in the cloud water. Organosulfate compounds, with both biogenic and anthropogenic volatile organic compound precursors, were detected for cloud water samples influenced by air masses that had traveled over forested and populated areas. Oxidation products of long-chain (C 10-12) alkane precursors were detected during urban influence. Influence of Canadian wildfires resulted in increased numbers of identified sulfur-containing compounds and oligomeric species, including those formed through aqueous-phase reactions involving methylglyoxal. Light-absorbing aqueous-phase products of syringol and guaiacol oxidation were observed in the wildfire-influenced samples, and dinitroaromatic compounds were observed in all cloud water samples (wildfire, biogenic, and urban-influenced). Overall, the cloud water molecular composition depended on air mass source influence and reflected aqueous-phase reactions involving biogenic, urban, and biomass burning precursors.« less

  8. Radical-driven carbonyl-to-acid conversion and acid degradation in tropospheric aqueous systems studied by CAPRAM

    NASA Astrophysics Data System (ADS)

    Tilgner, A.; Herrmann, H.

    2010-12-01

    Model studies on the aqueous phase radical-driven processing of carbonyl compounds and acids in clouds and deliquescent particles were performed. The model exposed that aqueous radical conversions of carbonyl compounds and its oxidation products can contribute potentially to the formation of functionalised organic acids. The main identified C 2-C 4 organic gas phase precursors are ethylene glycol, glycolaldehyde, glyoxal, methylglyoxal and 1,4-butenedial. The aqueous phase is shown to contribute significantly with about 93%/63%, 47%/8%, 31%/4%, 7%/4%, 36%/8% to the multiphase oxidative fate of these compounds under remote/urban conditions. Interestingly, the studies revealed that aqueous chemical processing is not only limited to in-cloud conditions but also proceeds in deliquescent particle phase with significant fluxes. Oxalic acid is shown to be formed preferably in deliquescent particles subsequent to the in-cloud oxidations. Mean aqueous phase oxalate formation fluxes of about 12, 42 and 0.4 ng m -3 h -1 in the remote, urban and maritime scenario, respectively. Additionally, the turnovers of the oxidation of organics such as methylglyoxal by NO 3 radical reactions are identified to be competitive to their OH pendants. At the current state of CAPRAM, mean C 2-C 4 in-cloud oxidation fluxes of about 0.12 and 0.5 μg m -3 h -1 are modelled under the idealised remote and urban cloud conditions. Finally, turnovers from radical oxidations were compared with those of thermal reactions. It is demonstrated that, based on the sparse kinetic data available organic accretion reaction might be of interest in just a few cases for cloud droplets and aqueous particles but generally do not reach the oxidative conversion rates of the main radical oxidants OH and NO 3. Interestingly, oxidation reactions of H 2O 2 are shown to be competitive to the OH radical conversions in cases when H 2O 2 is not readily used up by the S(IV) oxidation.

  9. Biogenic, urban, and wildfire influences on the molecular composition of dissolved organic compounds in cloud water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Ryan D.; Lin, Ying-Hsuan; Peng, Zhuoyu

    Organic aerosol formation and transformation occurs within aqueous aerosol and cloud droplets, yet little is known about the composition of high molecular weight organic compounds in cloud water. Cloud water samples collected at Whiteface Mountain, New York, during August-September 2014 were analyzed by ultra-high-resolution mass spectrometry to investigate the molecular composition of dissolved organic carbon, with a focus on sulfur- and nitrogen-containing compounds. Organic molecular composition was evaluated in the context of cloud water inorganic ion concentrations, pH, and total organic carbon concentrations to gain insights into the sources and aqueous-phase processes of the observed high molecular weight organic compounds.more » Cloud water acidity was positively correlated with the average oxygen : carbon ratio of the organic constituents, suggesting the possibility for aqueous acid-catalyzed (prior to cloud droplet activation or during/after cloud droplet evaporation) and/or radical (within cloud droplets) oxidation processes. Many tracer compounds recently identified in laboratory studies of bulk aqueous-phase reactions were identified in the cloud water. Organosulfate compounds, with both biogenic and anthropogenic volatile organic compound precursors, were detected for cloud water samples influenced by air masses that had traveled over forested and populated areas. Oxidation products of long-chain (C 10-12) alkane precursors were detected during urban influence. Influence of Canadian wildfires resulted in increased numbers of identified sulfur-containing compounds and oligomeric species, including those formed through aqueous-phase reactions involving methylglyoxal. Light-absorbing aqueous-phase products of syringol and guaiacol oxidation were observed in the wildfire-influenced samples, and dinitroaromatic compounds were observed in all cloud water samples (wildfire, biogenic, and urban-influenced). Overall, the cloud water molecular composition depended on air mass source influence and reflected aqueous-phase reactions involving biogenic, urban, and biomass burning precursors.« less

  10. TOGA: A TOUGH code for modeling three-phase, multi-component, and non-isothermal processes involved in CO 2-based Enhanced Oil Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Lehua; Oldenburg, Curtis M.

    TOGA is a numerical reservoir simulator for modeling non-isothermal flow and transport of water, CO 2, multicomponent oil, and related gas components for applications including CO 2-enhanced oil recovery (CO 2-EOR) and geologic carbon sequestration in depleted oil and gas reservoirs. TOGA uses an approach based on the Peng-Robinson equation of state (PR-EOS) to calculate the thermophysical properties of the gas and oil phases including the gas/oil components dissolved in the aqueous phase, and uses a mixing model to estimate the thermophysical properties of the aqueous phase. The phase behavior (e.g., occurrence and disappearance of the three phases, gas +more » oil + aqueous) and the partitioning of non-aqueous components (e.g., CO 2, CH 4, and n-oil components) between coexisting phases are modeled using K-values derived from assumptions of equal-fugacity that have been demonstrated to be very accurate as shown by comparison to measured data. Models for saturated (water) vapor pressure and water solubility (in the oil phase) are used to calculate the partitioning of the water (H 2O) component between the gas and oil phases. All components (e.g., CO 2, H 2O, and n hydrocarbon components) are allowed to be present in all phases (aqueous, gaseous, and oil). TOGA uses a multiphase version of Darcy’s Law to model flow and transport through porous media of mixtures with up to three phases over a range of pressures and temperatures appropriate to hydrocarbon recovery and geologic carbon sequestration systems. Transport of the gaseous and dissolved components is by advection and Fickian molecular diffusion. New methods for phase partitioning and thermophysical property modeling in TOGA have been validated against experimental data published in the literature for describing phase partitioning and phase behavior. Flow and transport has been verified by testing against related TOUGH2 EOS modules and CMG. The code has also been validated against a CO 2-EOR experimental core flood involving flow of three phases and 12 components. Results of simulations of a hypothetical 3D CO 2-EOR problem involving three phases and multiple components are presented to demonstrate the field-scale capabilities of the new code. This user guide provides instructions for use and sample problems for verification and demonstration.« less

  11. A Systematic Evaluation of the Extent of Photochemical Processing in Different Types of Secondary Organic Aerosols in the Aqueous Phase

    NASA Astrophysics Data System (ADS)

    Romonosky, D.; Lee, H.; Epstein, S. A.; Nizkorodov, S.; Laskin, J.; Laskin, A.

    2013-12-01

    A significant fraction of atmospheric organic compounds are predominantly found in condensed phases, such as organic phase in aerosol particles or aqueous phase in cloud droplets. The oxidation of VOCs followed by the condensation of products into particles was thought to be the main mechanism of organic aerosol (OA) formation. However, in the last several years, scientists have realized that a large fraction, if not the majority of organic particles, is produced through cloud and fog photochemical processes. Many of these organic compounds are photolabile, and can degrade through direct photolysis or indirect photooxidation processes on time scales that are comparable to the typical lifetimes of droplets (hours) and particles (days). We previously reported that compounds in secondary organic aerosol (SOA) from ozonolysis of d-limonene efficiently photodegrade in both organic (Walser et al., 2007) and aqueous phases (Bateman et al., 2011). Significant photolysis was also observed in an aqueous extract of SOA from high-NOx photooxidation of isoprene (Nguyen et al., 2012). More recent experiments studying the response to irradiation of complex aqueous mixtures (as opposed to solutions of isolated compounds) found surprising resilience to photodegradation in aqueous extracts of SOA prepared by photooxidation of alpha-pinene (Romonosky et al., unpublished). We present a systematic investigation of the extent of photochemical processing in different types of SOA from various biogenic and anthropogenic precursors. Chamber- or flowtube-generated SOA is collected on an inert substrate, extracted in a methanol/water solution (70:30), photolyzed in the aqueous solution, and the extent of change in the molecular level composition of the material is assessed with high-resolution mass spectrometry (HR-MS). The outcome of this study will be improved understanding of the role of condensed-phase photochemistry in chemical aging of aerosol particles and cloud droplets. Bateman et al. Photolytic processing of secondary organic aerosols dissolved in cloud droplets. Phys. Chem. Chem. Phys. 2011, 13, 12199. Nguyen et al. Direct aqueous photochemistry of isoprene high-NOx secondary organic aerosol. Phys. Chem. Chem. Phys. 2012, 14, 9702. Walser et al. Photochemical aging of secondary organic aerosol particles generated from the oxidation of d-limonene. J. Phys. Chem. A 2007, 111, 1907.

  12. Process for recovering pertechnetate ions from an aqueous solution also containing other ions

    DOEpatents

    Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.

    1997-01-01

    A solid/liquid process for the separation and recovery of TcO.sub.4.sup.-1 ions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups; whereas the aqueous solution from which the TcO.sub.4.sup.-1 ions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt. A solid/liquid phase admixture of separation particles containing bound TcO.sub.4.sup.-1 ions in such an aqueous solution that is free from MoO.sub.4.sup.-2 ions is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture.

  13. Patterns of intraocular pressure elevation after aqueous humor outflow obstruction in rats.

    PubMed

    Jia, L; Cepurna, W O; Johnson, E C; Morrison, J C

    2000-05-01

    To determine the diural intraocular pressure (IOP) response of Brown Norway rat eyes after sclerosis of the aqueous humor outflow pathways and its relationship to optic nerve damage. Hypertonic saline was injected into a single episcleral vein in 17 animals and awake IOP measured in both the light and dark phases of the circadian cycle for 34 days. Mean IOP for light and dark phases during the experimental period were compared with the respective pressures of the uninjected fellow eyes. Optic nerve cross sections from each nerve were graded for injury by five independent masked observers. For fellow eyes, mean light- and dark-phase IOP was 21 +/- 1 and 31 +/- 1 mm Hg, respectively. For four experimental eyes, mean IOPs for both phases were not altered. Six eyes demonstrated significant mean IOP elevations only during the dark phase. Of these, five showed persistent, large circadian oscillations, and four had partial optic nerve lesions. The remaining seven eyes experienced significant IOP elevations during both phases, and all had extensive optic nerve damage. Episcleral vein injection of hypertonic saline is more likely to increase IOP during the dark phase than the light. This is consistent with aqueous outflow obstruction superimposed on a circadian rhythm of aqueous humor production. Because these periodic IOP elevations produced optic nerve lesions, both light- and dark-phase IOP determinations are necessary for accurate correlation of IOP history to optic nerve damage in animals housed in a light- dark environment.

  14. Interactions in the aqueous phase and adsorption at the air-water interface of caseinoglycomacropeptide (GMP) and beta-lactoglobulin mixed systems.

    PubMed

    Martinez, María J; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Pilosof, Ana M R

    2009-01-01

    The aim of this work was to study the interactions and adsorption of caseinoglycomacropeptide (GMP) and GMP:beta-lactoglobulin (beta-lg) mixed system in the aqueous phase and at the air-water interface. The existence of associative interactions between GMP and beta-lg in the aqueous phase was investigated by dynamic light scattering, differential scanning calorimetry (DSC), fluorometry and native PAGE-electrophoresis. The surface pressure isotherm and the static and dynamic surface pressure were determined by tensiometry and surface dilatational properties. The results showed that GMP presented higher surface activity than beta-lg at a concentration of 4%wt but beta-lg showed higher film forming ability. In the mixed systems beta-lg dominated the static and dynamic surface pressure and the rheological properties of interfacial films suggesting that beta-lg hinders GMP adsorption because, in simple competition, GMP should dominate because of its higher surface activity. The surface predominance of beta-lg can be attributed to binding of GMP to beta-lg in the aqueous phase that prevents GMP adsorption on its own.

  15. RECOVERY OF METAL VALUES FROM AQUEOUS SOLUTIONS BY SOLVENT EXTRACTION

    DOEpatents

    Moore, R.L.

    1959-09-01

    An organic solvent mixure is described for extracting actinides from aqueous solutions; the solvent mixture consists of from 10 to 25% by volume of tributyl phosphate and the remainder a chlorine-fluorine-substituted saturated hydrocarbon having two carbon atoms in the molecule.

  16. Aqueous-phase story of isoprene - A mini-review and reaction with HONO

    NASA Astrophysics Data System (ADS)

    Rudziński, Krzysztof J.; Szmigielski, Rafał; Kuznietsova, Inna; Wach, Paulina; Staszek, Dorota

    2016-04-01

    Isoprene is a major biogenic hydrocarbon emitted to the atmosphere and a well-recognized player in atmospheric chemistry, formation of secondary organic aerosol and air quality. Most of the scientific work on isoprene has focused on the gas-phase and smog chamber processing while direct aqueous chemistry has escaped the major attention because physical solubility of isoprene in water is low. Therefore, this work recollects the results of genuine research carried on atmospherically relevant aqueous-phase transformations of isoprene. It clearly shows that isoprene dissolves in water and reacts in aqueous solutions with common atmospheric oxidants such as hydrogen peroxide, ozone, hydroxyl radicals, sulfate radicals and sulfite radicals. The reactions take place in the bulk of solutions or on the gas-liquid interfaces and often are acid-catalyzed and/or enhanced by light. The review is appended by an experimental study of the aqueous-phase reaction of isoprene with nitrous acid (HONO). The decay of isoprene and formation of new products are demonstrated. The tentative chemical mechanism of the reaction is suggested, which starts with slow decomposition of HONO to NO2 and NO. The aqueous chemistry of isoprene explains the formation of a few tropospheric components identified by scientists yet considered of unknown origin. The reaction of isoprene with sulfate radicals explains formation of the MW 182 organosulfate found in ambient aerosol and rainwater while the reaction of isoprene with HONO explains formation of the MW 129 and MW 229 nitroorganic compounds identified in rainwater. Thus, aqueous transformations of isoprene should not be neglected without evidence but rather considered and evaluated in modeling of atmospheric chemical processes even if alternative and apparently dominant heterogeneous pathways of isoprene transformation, dry or wet, are demonstrated.

  17. Dense Non Aqueous Phase Liquid (DNAPL) Removal from Fractured Rock using Thermal Conductive Heating (TCH)

    DTIC Science & Technology

    2013-01-01

    of 95% or greater in parent compounds . The data also show that most rock concentrations were lowered to around 0-5...INTRODUCTION 1.1 BACKGROUND The removal of dense non-aqueous phase liquids (DNAPL) and associated dissolved phase compounds is challenging in ...trend as presented in Figure 10. Figure 10. Vapor stream VOC concentrations for the dominant compounds . The more or less consistent level of

  18. Process for recovering hydrocarbons from a diatomite-type ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, B.W.

    1983-02-15

    A process for recovering hydrocarbons from a diatomite-type ore which comprises contacting the diatomite ore with a C/sub 4/-C/sub 10/ alcohol and thereafter contacting the diatomite ore-alcohol mixture with an aqueous alkaline solution to separate a hydrocarbon-alcohol phase and an alkaline aqueous phase containing the stripped diatomite ore. Thereafter, the alcohol is distilled off from the hydrocarbon phase and recycled back into the initial process.

  19. Preparation of novel alkaline pH-responsive copolymers for the formation of recyclable aqueous two-phase systems and their application in the extraction of lincomycin.

    PubMed

    Liu, Jiali; Cao, Xuejun

    2016-02-01

    Aqueous two-phase systems have potential industrial application in bioseparation and biocatalysis engineering; however, their practical application is limited primarily because the copolymers involved in the formation of aqueous two-phase systems cannot be recovered. In this study, two novel alkaline pH-responsive copolymers were synthesized and examined for the extraction of lincomycin. The two copolymers could form a novel alkaline aqueous two-phase systems when their concentrations were both 6% w/w and the pH was 8.4(±0.1)-8.7(±0.1). One copolymer was synthesized using acrylic acid, 2-(dimethylamino)ethyl methacrylate, and butyl methacrylate as monomers. Moreover, 98.8% of the copolymer could be recovered by adjusting the solution pH to its isoelectric point (pH 6.29). The other copolymer was synthesized using the monomers methacrylic acid, 2-(dimethylamino)ethyl methacrylate, and methyl methacrylate. In this case, 96.7% of the copolymer could be recovered by adjusting the solution pH to 7.19. The optimal partition coefficient of lincomycin was 0.17 at 30°C in the presence of 10 mM KBr and 5.5 at 40°C in the presence of 80 mM Ti(SO4)2 using the novel alkaline aqueous two-phase systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Structural properties of aqueous metoprolol succinate solutions. Density, viscosity, and refractive index at 311 K

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Kalyankar, T. M.

    2013-06-01

    Density, viscosity and refractive index of aqueous solutions of metoprolol succinate of different concentrations (0.005-0.05 mol dm-3) were measured at 38°C. Apparent molar volume of resultant solutions were calculated and fitted to the Masson's equation and apparent molar volume at infinite dilution was determined graphically. Viscosity data of solutions has been fitted to the Jone-Dole equation and viscosity A- and B-coefficients were determined graphically. Physicochemical data obtained were discussed in terms of molecular interactions.

  1. Volumetric and calorimetric properties of aqueous ionene solutions

    PubMed Central

    Lukšič, Miha; Hribar-Lee, Barbara

    2016-01-01

    The volumetric (partial and apparent molar volumes) and calorimetric properties (apparent heat capacities) of aqueous cationic polyelectrolyte solutions – ionenes – were studied using the oscillating tube densitometer and differential scanning calorimeter. The polyion’s charge density and the counterion properties were considered as variables. The special attention was put to evaluate the contribution of electrostatic and hydrophobic effects to the properties studied. The contribution of the CH2 group of the polyion’s backbone to molar volumes and heat capacities was estimated. Synergistic effect between polyion and counterions was found. PMID:28503012

  2. Nanoparticle engineering of colloidal suspension behavior

    NASA Astrophysics Data System (ADS)

    Chan, Angel Thanda

    We investigate the effects of highly charged nanoparticles on the phase behavior, structure, and assembly of colloidal microsphere suspensions. Specifically, by selectively tuning the electrostatic interactions between silica microspheres and polystyrene nanoparticles, we study the behavior of four key systems: (i) strongly repulsive, (ii) haloing, (iii) weakly attractive, and (iv) strongly attractive systems. In each system, a combination of nanoparticle adsorption, zeta potential, and confocal microscopy measurements are carried out to systematically study the effects of nanoparticle volume fraction, microsphere/nanoparticle size ratios, and interparticle interactions on their behavior. Our observations indicate that minimal adsorption of highly charged nanoparticles occurs on like-charged and negligibly-charged microspheres, whereas their extent of association increases dramatically with increasing microsphere-nanoparticle attraction. A rich phase behavior emerges in these systems based on whether the nanoparticle species serve as depletants, haloing, or bridging species. The phase transitions in the haloing system occur at constant nanoparticle volume fractions, φnano, over a broad range of microsphere volume fractions, φmicro . By contrast, the observed transitions in the weakly and strongly attractive mixtures occur at a constant number ratio of nanoparticles per microsphere, Nnano/Nmicro. Important structural differences emerge, which can be exploited in the assembly of colloidal gels for direct ink writing and colloidal crystals on epitaxially patterned substrates. Finally, for the first time, we explore nanoparticle haloing as a new route for stabilizing hydrophobic colloidal drugs in aqueous suspensions media for preparation of injectable pharmaceuticals. These microsphere suspensions exhibit improved stability relative to their surfactant-stabilized counterparts after autoclaving, a critical processing step for this target applications. This research opens up a new avenue for stabilization of hydrophobic particles, when surfactant additions alone do not provide sufficient stabilization.

  3. Solvent Extraction of Rare Earth Elements from a Nitric Acid Leach Solution of Apatite by Mixtures of Tributyl Phosphate and Di-(2-ethylhexyl) Phosphoric Acid

    NASA Astrophysics Data System (ADS)

    Ferdowsi, Ali; Yoozbashizadeh, Hossein

    2017-12-01

    Solvent extraction of rare earths from nitrate leach liquor of apatite using mixtures of tributyl phosphate (TBP) and di-(2-ethylhexyl) phosphoric acid (D2EHPA) was studied. The effects of nitrate and hydrogen ion concentration of the aqueous phase as well as the composition and concentration of extractants in the organic phase on the extraction behavior of lanthanum, cerium, neodymium, and yttrium were investigated. The distribution ratio of REEs increases by increasing the nitrate concentration in aqueous phase and concentration of extractants in organic phase, but the hydrogen ion concentration in aqueous phase has a decreasing effect. Yttrium as a heavy rare earth is more sensitive to these parameters than light rare earth elements. Although the composition of organic phase has a minor effect on the extraction of light rare earths, the percent of extraction of yttrium decreases dramatically by increasing the TBP content of organic phase. Mixtures of TBP and D2EHPA can show either synergism or antagonism extraction depending on the concentration and composition of extractants in organic phase. The best condition for separating rare earth elements in groups of heavy and light REEs can be achieved at high nitrate concentration, low H+ concentration, and high concentration of D2EHPA in organic phase. Separation of Ce and La by TBP and D2EHPA is practically impossible in the studied conditions; however, low nitrate concentration and high hydrogen ion concentration in aqueous phase and low concentration of extractants in organic phase favor the separation of Nd from other light rare earth elements.

  4. A thermosensitive hydrogel based on biodegradable amphiphilic poly(ethylene glycol) polycaprolactone poly(ethylene glycol) block copolymers

    NASA Astrophysics Data System (ADS)

    Gong, Chang Yang; Qian, Zhi Yong; Liu, Cai Bing; Juan Huang, Mei; Gu, Ying Chun; Wen, Yan Jun; Kan, Bing; Wang, Ke; Dai, Mei; Li, Xing Yi; Gou, Ma Ling; Tu, Ming Jing; Wei, Yu Quan

    2007-06-01

    A series of low molecular weight poly(ethylene glycol)-polycaprolactone-poly(ethylene glycol) (PEG-PCL-PEG) biodegradable block copolymers were successfully synthesized using isophorone diisocyanate (IPDI) as the coupling agent, and were characterized using 1H NMR and Fourier transform infrared spectroscopy. The aqueous solutions of the PEG-PCL-PEG copolymers displayed a special thermosensitive gel-sol transition when the concentration was above the corresponding critical gel concentration. Gel-sol phase diagrams were recorded using the test-tube-inversion method; they depended on the hydrophilic/hydrophobic balance in the macromolecular structure, as well as some other factors, including the heating history, volume, and the ageing time of the copolymer aqueous solutions and dissolution temperature of the copolymers. As a result, the gel-sol transition temperature range could be altered, which might be very useful for application in injectable drug delivery systems. This work was financially supported by the Chinese Key Basic Research Program (2004CB518800 and 2004CB518807), and the Sichuan Key Project of Science and Technology (06(05SG022-021-02)).

  5. A Density Functional Theory Evaluation of Hydrophobic Solvation: Ne, Ar and Kr in a 50-Water Cluster. Implications for the Hydrophobic Effect.

    PubMed

    Kobko, Nadya; Marianski, Mateusz; Asensio, Amparo; Wieczorek, Robert; Dannenberg, J J

    2012-06-15

    The physical explanation for the hydrophobic effect has been the subject of disagreement. Physical organic chemists tend to use a explanation related to pressure, while many biochemists prefer an explanation that involves decreased entropy of the aqueous solvent. We present DFT calculations at the B3LYP/6-31G(d,p) and X3LYP/6-31G(d,p) levels on the solvation of three noble gases (Ne, Ar, and Kr) in clusters of 50 waters. Vibrational analyses show no substantial decreases in the vibrational entropies of the waters in any of the three clusters. The observed positive free energies of transfer from the gas phase or from nonpolar solvents to water appear to be due to the work needed to make a suitable hole in the aqueous solvent. We distinguish between hydrophobic solvations (explicitly studied here) and the hydrophobic effect that occurs when a solute (or transition state) can decrease its volume through conformational change (which is not possible for the noble gases).

  6. A Density Functional Theory Evaluation of Hydrophobic Solvation: Ne, Ar and Kr in a 50-Water Cluster. Implications for the Hydrophobic Effect

    PubMed Central

    Kobko, Nadya; Marianski, Mateusz; Asensio, Amparo; Wieczorek, Robert; Dannenberg, J. J.

    2011-01-01

    The physical explanation for the hydrophobic effect has been the subject of disagreement. Physical organic chemists tend to use a explanation related to pressure, while many biochemists prefer an explanation that involves decreased entropy of the aqueous solvent. We present DFT calculations at the B3LYP/6-31G(d,p) and X3LYP/6-31G(d,p) levels on the solvation of three noble gases (Ne, Ar, and Kr) in clusters of 50 waters. Vibrational analyses show no substantial decreases in the vibrational entropies of the waters in any of the three clusters. The observed positive free energies of transfer from the gas phase or from nonpolar solvents to water appear to be due to the work needed to make a suitable hole in the aqueous solvent. We distinguish between hydrophobic solvations (explicitly studied here) and the hydrophobic effect that occurs when a solute (or transition state) can decrease its volume through conformational change (which is not possible for the noble gases). PMID:22666658

  7. Preservation of anthocyanins in solid lipid nanoparticles: Optimization of a microemulsion dilution method using the Placket-Burman and Box-Behnken designs.

    PubMed

    Ravanfar, Raheleh; Tamaddon, Ali Mohammad; Niakousari, Mehrdad; Moein, Mahmoud Reza

    2016-05-15

    Anthocyanins are the main polyphenol components from red cabbage (Brassica oleracea L. Var. Capitata f. Rubra) extracts that have inherent antioxidant activities. Anthocyanins are effectively stable in acidic gastric digestion conditions, with nearly 100% phenol content recovery. However, the total phenol content recovery after simulated pancreatic digestion was approximately 25%. To protect anthocyanins against harsh environmental conditions (e.g., pH and temperature), solid lipid nanoparticles were prepared by the dilution of water in oil (w/o) microemulsions containing anthocyanins in aqueous media. The formulations were characterized for particle size and encapsulation efficiency. The formulation parameters (e.g., volume of the internal aqueous phase, homogenization time and the percentages of total lipid, total surfactant or stabilizer) were optimized using the Placket-Burman and Box-Behnken experimental designs. Entrapment efficiency (89.2 ± 0.3%) was calculated when the mean particle size was 455 ± 2 nm. A scanning electron microscopy study revealed the spherical morphology of the particles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Partition Efficiency of High-Pitch Locular Multilayer Coil for Countercurrent Chromatographic Separation of Proteins Using Small-Scale Cross-Axis Coil Planet Centrifuge and Application to Purification of Various Collagenases with Aqueous-Aqueous Polymer Phase Systems

    PubMed Central

    Shinomiya, Kazufusa; Kobayashi, Hiroko; Inokuchi, Norio; Nakagomi, Kazuya; Ito, Yoichiro

    2010-01-01

    Partition efficiency of the high-pitch locular multilayer coil was evaluated in countercurrent chromatographic (CCC) separation of proteins with an aqueous-aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The separation column was specially made by high-pitch (ca 5 cm) winding of 1.0 mm I.D., 2.0 mm O.D. locular tubing compressed at 2 cm intervals with a total capacity of 29.5 mL. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin, and lysozyme with the 12.5% (w/w) polyethylene glycol (PEG) 1000 and 12.5% (w/w) dibasic potassium phosphate system (pH 9.2) under 1000 rpm of column revolution. This high-pitch locular tubing yielded substantially increased stationary phase retention than the normal locular tubing for both lower and upper mobile phases. In order to demonstrate the capability of the high-pitch locular tubing, the purification of collagenase from the crude commercial sample was carried out using an aqueous-aqueous polymer phase system. Using the 16.0% (w/w) PEG 1000 – 6.3% (w/w) dibasic potassium phosphate – 6.3% (w/w) monobasic potassium phosphate system (pH 6.6), collagenase I, II, V and X derived from Clostridium hystolyticum were separated from other proteins and colored small molecular weight compounds present in the crude commercial sample, while collagenase N-2 and S-1 from Streptomyces parvulus subsp. citrinus were eluted with impurities at the solvent front with the upper phase. The collagenase from C. hystolyticum retained its enzymatic activity in the purified fractions. The overall results demonstrated that the high-pitch locular multilayer coil is effectively used for the CCC purification of bioactive compounds without loss of their enzymatic activities. PMID:21869859

  9. Coencapsulation of (-)-Epigallocatechin-3-gallate and Quercetin in Particle-Stabilized W/O/W Emulsion Gels: Controlled Release and Bioaccessibility.

    PubMed

    Chen, Xing; McClements, David Julian; Wang, Jian; Zou, Liqiang; Deng, Sumeng; Liu, Wei; Yan, Chi; Zhu, Yuqing; Cheng, Ce; Liu, Chengmei

    2018-04-11

    Particle-stabilized W 1 /O/W 2 emulsion gels were fabricated using a two-step procedure: ( i) a W 1 /O emulsion was formed containing saccharose (for osmotic stress balance) and gelatin (as a gelling agent) in the aqueous phase and polyglycerol polyricinoleate (a lipophilic surfactant) in the oil phase; ( ii) this W 1 /O emulsion was then homogenized with another water phase (W 2 ) containing wheat gliadin nanoparticles (hydrophilic emulsifier). The gliadin nanoparticles in the external aqueous phase aggregated at pH 5.5, which led to the formation of particle-stabilized W 1 /O/W 2 emulsion gels with good stability to phase separation. These emulsion gels were then used to coencapsulate a hydrophilic bioactive (epigallocatechin-3-gallate, EGCG) in the internal aqueous phase (encapsulation efficiency = 65.5%) and a hydrophobic bioactive (quercetin) in the oil phase (encapsulation efficiency = 97.2%). The emulsion gels improved EGCG chemical stability and quercetin solubility under simulated gastrointestinal conditions, which led to a 2- and 4-fold increase in their effective bioaccessibility, respectively.

  10. PROCESS FOR DECONTAMINATING THORIUM AND URANIUM WITH RESPECT TO RUTHENIUM

    DOEpatents

    Meservey, A.A.; Rainey, R.H.

    1959-10-20

    The control of ruthenium extraction in solvent-extraction processing of neutron-irradiated thorium is presented. Ruthenium is rendered organic-insoluble by the provision of sulfite or bisulfite ions in the aqueous feed solution. As a result the ruthenium remains in the aqueous phase along with other fission product and protactinium values, thorium and uranium values being extracted into the organic phase. This process is particularly applicable to the use of a nitrate-ion-deficient aqueous feed solution and to the use of tributyl phosphate as the organic extractant.

  11. In situ synthesis of magnesium-substituted biphasic calcium phosphate and in vitro biodegradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Tae-Wan; Lee, Hyeong-Shin; Kim, Dong-Hyun

    Highlights: ► Mg–BCP were successfully prepared through in situ aqueous co-precipitation method. ► The amount of β-TCP phase was changed with the magnesium substitution level. ► The substitution of magnesium led to a decrease in the unit cell volume. ► Mg–BCP could be able to develop a new apatite phase on the surface faster than BCP. -- Abstract: In situ preparation of magnesium (Mg) substituted biphasic calcium phosphate (BCP) of hydroxyapatite (HAp)/β-tricalcium phosphate (β-TCP) were carried out through aqueous co-precipitation method. The concentrations of added magnesium were varied with the calcium in order to obtain constant (Ca + Mg)/P ratiosmore » of 1.602. X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy were used to characterize the structure of synthesized magnesium substituted BCP powders. The results have shown that substitution of magnesium in the calcium deficient apatites revealed the formation of biphasic mixtures of different HAp/β-TCP ratios after heating at 1000 °C. The ratios of the formation of phase mixtures were dependent on the content of magnesium. After immersing in Hanks’ balanced salt solution (HBSS) for 1 week, 1 wt% magnesium substituted BCP powders were degraded and precipitation started to be formed with small granules consisting of number of flake-like crystal onto the surface of synthesized powders. On the other hand, in the case of pure BCP powders, the formation of new precipitates was detected after immersion in HBSS for 2 weeks. On the basis of these results, magnesium substituted BCP could be able to develop a new apatite phase on the surface in contact with physiological fluids faster than BCP does. In addition, the retention time to produce the new apatite phase in implantation operation for the BCP powder could be controlled by the amount of magnesium substitution.« less

  12. Utilizing Low-Volume Aqueous Acoustic Transfer with the Echo 525 to Enable Miniaturization of qRT-PCR Assay.

    PubMed

    Agrawal, Sony; Cifelli, Steven; Johnstone, Richard; Pechter, David; Barbey, Deborah A; Lin, Karen; Allison, Tim; Agrawal, Shree; Rivera-Gines, Aida; Milligan, James A; Schneeweis, Jonathan; Houle, Kevin; Struck, Alice J; Visconti, Richard; Sills, Matthew; Wildey, Mary Jo

    2016-02-01

    Quantitative reverse transcription PCR (qRT-PCR) is a valuable tool for characterizing the effects of inhibitors on viral replication. The amplification of target viral genes through the use of specifically designed fluorescent probes and primers provides a reliable method for quantifying RNA. Due to reagent costs, use of these assays for compound evaluation is limited. Until recently, the inability to accurately dispense low volumes of qRT-PCR assay reagents precluded the routine use of this PCR assay for compound evaluation in drug discovery. Acoustic dispensing has become an integral part of drug discovery during the past decade; however, acoustic transfer of microliter volumes of aqueous reagents was time consuming. The Labcyte Echo 525 liquid handler was designed to enable rapid aqueous transfers. We compared the accuracy and precision of a qPCR assay using the Labcyte Echo 525 to those of the BioMek FX, a traditional liquid handler, with the goal of reducing the volume and cost of the assay. The data show that the Echo 525 provides higher accuracy and precision compared to the current process using a traditional liquid handler. Comparable data for assay volumes from 500 nL to 12 µL allowed the miniaturization of the assay, resulting in significant cost savings of drug discovery and process streamlining. © 2015 Society for Laboratory Automation and Screening.

  13. Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars

    USGS Publications Warehouse

    Bishop, J.L.; Dobrea, E.Z.N.; McKeown, N.K.; Parente, M.; Ehlmann, B.L.; Michalski, J.R.; Milliken, R.E.; Poulet, F.; Swayze, G.A.; Mustard, J.F.; Murchie, S.L.; Bibring, J.-P.

    2008-01-01

    Observations by the Mars Reconnaissance Orbiter/Compact Reconnaissance Imaging Spectrometer for Mars in the Mawrth Vallis region show several phyllosilicate species, indicating a wide range of past aqueous activity. Iron/magnesium (Fe/Mg)-smectite is observed in light-toned outcrops that probably formed via aqueous alteration of basalt of the ancient cratered terrain. This unit is overlain by rocks rich in hydrated silica, montmorillonite, and kaolinite that may have formed via subsequent leaching of Fe and Mg through extended aqueous events or a change in aqueous chemistry. A spectral feature attributed to an Fe2+ phase is present in many locations in the Mawrth Vallis region at the transition from Fe/Mg-smectite to aluminum/silicon (Al/Si)-rich units. Fe2+-bearing materials in terrestrial sediments are typically associated with microorganisms or changes in pH or cations and could be explained here by hydrothermal activity. The stratigraphy of Fe/Mg-smectite overlain by a ferrous phase, hydrated silica, and then Al-phyllosilicates implies a complex aqueous history.

  14. Characterization of Long-term Stability of Sodium Dithionite for Evaluation of its Potential Utility for Cr(VI) Remediation at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Telfeyan, K.; Migdissov, A. A.; Reimus, P. W.

    2017-12-01

    Sodium dithionite (Na2S2O4) has proven to be an effective remediation agent in aquifers contaminated with Cr(VI). S2O42- rapidly reduces the Fe(III) in aquifer sediments to Fe(II), which then reduces aqueous Cr(VI) to insoluble Cr(III). Previous work demonstrated that the reaction products from this treatment have no long-lasting undesirable effects. However, current literature regarding the stability of dithionite in aqueous solution and its decomposition products, which are important for developing a practical treatment approach, is sparse and inconsistent. Furthermore, S2O42- treatment effectiveness depends on site-specific geochemical and hydrological conditions, so experiments using site-specific materials are necessary to develop an optimal treatment strategy. In this study, we conducted (1) batch aqueous-phase-only experiments aimed at elucidating dithionite lifetimes and decomposition products as a function of dithionite concentration and pH, (2) batch experiments at the most practical pH for a field deployment, with use of four different representations of site aquifer sediments to evaluate dithionite reaction rates in the presence of the sediments and to determine the reduction capacity of the treated sediments, and (3) column experiments to represent a field-scale deployment of dithionite and determine the Cr(VI) reduction capacity of the reduced sediments. The aqueous-phase-only batch experiments verified the presence of S2O42- in aqueous anoxic solution beyond 100 days at alkaline pH. Each sampling interval also recorded the concentration of decomposition products, which enabled the derivation of a possible hydrolysis/decomposition reaction. In the batch experiments with sediments, dithionite reacted more rapidly than in blank solutions, but measurable concentrations remained for over a month. Cr was then added to the reactors to determine the efficacy of treatment. Depending on the sediment type and concentration of dithionite, the treated sediments were able to remove between 100 and 1000 µg Cr per gram of sediment. Column experiments then determined that the dithionite treatment of aquifer sediments could treat over 30 pore volumes of contaminated water (900 ppb Cr) prior to any breakthrough of Cr, suggesting that S2O42- should be an effective treatment agent at this site.

  15. Viscosity and stability of ultra-high internal phase CO2-in-water foams stabilized with surfactants and nanoparticles with or without polyelectrolytes.

    PubMed

    Xue, Zheng; Worthen, Andrew; Qajar, Ali; Robert, Isaiah; Bryant, Steven L; Huh, Chun; Prodanović, Maša; Johnston, Keith P

    2016-01-01

    To date, relatively few examples of ultra-high internal phase supercritical CO2-in-water foams (also referred to as macroemulsions) have been observed, despite interest in applications including "waterless" hydraulic fracturing in energy production. The viscosities and stabilities of foams up to 0.98 CO2 volume fraction were investigated in terms of foam bubble size, interfacial tension, and bulk and surface viscosity. The foams were stabilized with laurylamidopropyl betaine (LAPB) surfactant and silica nanoparticles (NPs), with and without partially hydrolyzed polyacrylamide (HPAM). For foams stabilized with mixture of LAPB and NPs, fine ∼70 μm bubbles and high viscosities on the order of 100 cP at>0.90 internal phase fraction were stabilized for hours to days. The surfactant reduces interfacial tension, and thus facilitates bubble generation and decreases the capillary pressure to reduce the drainage rate of the lamella. The LAPB, which is in the cationic protonated form, also attracts anionic NPs (and anionic HPAM in systems containing polymer) to the interface. The adsorbed NPs at the interface are shown to slow down Ostwald ripening (with or without polymer added) and increase foam stability. In systems with added HPAM, the increase in the bulk and surface viscosity of the aqueous phase further decreases the lamella drainage rate and inhibits coalescence of foams. Thus, the added polymer increases the foam viscosity by threefold. Scaling law analysis shows the viscosity of 0.90 volume fraction foams is inversely proportional to the bubble size. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. EFFECT OF AQUEOUS PHASE PROPERTIES ON CLAY PARTICLE ZETA POTENTIAL AND ELECTRO-OSMOTIC PERMEABILITY: IMPLICATIONS FOR ELECTRO-KINETIC SOIL REMEDIATION PROCESSES

    EPA Science Inventory

    The influence of aqueous phase properties (pH, ionic strength and divalent metal ion concentration) on clay particle zeta potential and packed-bed electro-osmotic permeability was quantified. Although pH strongly altered the zeta potential of a Georgia kaolinite, it did not signi...

  17. Photocatalytic Destruction of Nitrate Esters in Air

    DTIC Science & Technology

    2000-07-01

    four technologies are thermal treatment (direct flame or incineration), absorption (scrubbing), biofiltration , and adsorption (activated carbon). The...recycling the water through an aqueous phase photocatalytic system. Both approaches eliminate the carbon and reduce the water consumption. The use...of an aqueous phase photocatalytic oxidation system increases the capital equipment cost but eliminates the chemical handling and wastewater issues

  18. [Raman spectroscopic analysis of dissolution and phase transformation of chloropinnoite in the boric acid aqueous solution].

    PubMed

    Li, Xiao-Ping; Gao, Shi-Yang; Liu, Zhi-Hong; Hu, Man-Cheng; Xia, Shu-Ping

    2005-01-01

    Raman spectroscopy of dissolution and transformation of chloropinnoite in 4.5% (w.t.%) boric acid aqueous solution at 30 degrees C has been recorded. The Raman spectra of kinetics process have been obtained. The phase transformation product is kurnakovite (2MgO x 3B2O3 x 15H2O). The main polyborate anions and their interaction in aqueous solution have been proposed according to the Raman spectrum. Some assignments were tentatively given and the relations between the existing forms of polyborate anions and the crystallizing solid phases have been gained. A mechanisms of dissolution and crystallization reactions and the formation condition of kurnakovite in Qinghai-Tibet plateau were proposed and discussed.

  19. Sorption of per- and polyfluoroalkyl substances (PFASs) on filter media: implications for phase partitioning studies.

    PubMed

    Chandramouli, Bharat; Benskin, Jonathan P; Hamilton, M Coreen; Cosgrove, John R

    2015-01-01

    Per- and polyfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), are ubiquitous in the environment. Investigations into their fate and potential phase-partitioning behavior require separating solid from aqueous phases via filtration. However, sorption of aqueous-phase PFASs on filtration media may lead to underestimation of PFAS concentrations in the aqueous phase. The authors investigated the sorption of perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids (PFPiAs), polyfluoroalkyl phosphate monoesters, polyfluoroalkyl phosphate diesters (diPAPs), fluorotelomer sulfonates, and perfluorooctane sulfonamide on filtration media. The effects of concentration (3 spiking levels), filter media (4 types), matrix (4 matrices), and compound structure on sorption are reported. Glass fiber filtration resulted in the least sorption, whereas polytetrafluoroethylene filters resulted in the most sorption (up to 98%). Analyte concentration had no significant effect. Sorption was generally consistent across matrix types except for samples affected by aqueous film forming foam deployment, which displayed high sorption of PFOS on nylon filters. Sorption usually increased with an increasing number of carbon or fluorine atoms and was most pronounced for PFPiAs and diPAPs (30–75% sorption). Overall, glass fiber filters are more recommended than nylon filters in environmental samples when phase separation is required. Use of filtration media for PFAS must be preceded by matrix-specific testing to account for unpredictable effects. (C)2014 SETAC

  20. Explicit modeling of volatile organic compounds partitioning in the atmospheric aqueous phase

    NASA Astrophysics Data System (ADS)

    Mouchel-Vallon, C.; Bräuer, P.; Camredon, M.; Valorso, R.; Madronich, S.; Herrmann, H.; Aumont, B.

    2012-09-01

    The gas phase oxidation of organic species is a multigenerational process involving a large number of secondary compounds. Most secondary organic species are water-soluble multifunctional oxygenated molecules. The fully explicit chemical mechanism GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere) is used to describe the oxidation of organics in the gas phase and their mass transfer to the aqueous phase. The oxidation of three hydrocarbons of atmospheric interest (isoprene, octane and α-pinene) is investigated for various NOx conditions. The simulated oxidative trajectories are examined in a new two dimensional space defined by the mean oxidation state and the solubility. The amount of dissolved organic matter was found to be very low (<2%) under a water content typical of deliquescent aerosols. For cloud water content, 50% (isoprene oxidation) to 70% (octane oxidation) of the carbon atoms are found in the aqueous phase after the removal of the parent hydrocarbons for low NOx conditions. For high NOx conditions, this ratio is only 5% in the isoprene oxidation case, but remains large for α-pinene and octane oxidation cases (40% and 60%, respectively). Although the model does not yet include chemical reactions in the aqueous phase, much of this dissolved organic matter should be processed in cloud drops and modify both oxidation rates and the speciation of organic species.

  1. Explicit modeling of volatile organic compounds partitioning in the atmospheric aqueous phase

    NASA Astrophysics Data System (ADS)

    Mouchel-Vallon, C.; Bräuer, P.; Camredon, M.; Valorso, R.; Madronich, S.; Herrmann, H.; Aumont, B.

    2013-01-01

    The gas phase oxidation of organic species is a multigenerational process involving a large number of secondary compounds. Most secondary organic species are water-soluble multifunctional oxygenated molecules. The fully explicit chemical mechanism GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere) is used to describe the oxidation of organics in the gas phase and their mass transfer to the aqueous phase. The oxidation of three hydrocarbons of atmospheric interest (isoprene, octane and α-pinene) is investigated for various NOx conditions. The simulated oxidative trajectories are examined in a new two dimensional space defined by the mean oxidation state and the solubility. The amount of dissolved organic matter was found to be very low (yield less than 2% on carbon atom basis) under a water content typical of deliquescent aerosols. For cloud water content, 50% (isoprene oxidation) to 70% (octane oxidation) of the carbon atoms are found in the aqueous phase after the removal of the parent hydrocarbons for low NOx conditions. For high NOx conditions, this ratio is only 5% in the isoprene oxidation case, but remains large for α-pinene and octane oxidation cases (40% and 60%, respectively). Although the model does not yet include chemical reactions in the aqueous phase, much of this dissolved organic matter should be processed in cloud drops and modify both oxidation rates and the speciation of organic species.

  2. Combined ab initio/empirical approach for optimization of Lennard-Jones parameters for polar-neutral compounds.

    PubMed

    Chen, I Jen; Yin, Daxu; MacKerell, Alexander D

    2002-01-30

    The study of small functionalized organic molecules in aqueous solution is a useful step toward gaining a basic understanding of the behavior of biomolecular systems in their native aqueous environment. Interest in studying amines and fluorine-substituted compounds has risen from their intrinsic physicochemical properties and their prevalence in biological and pharmaceutical compounds. In the present study, a previously developed approach which optimizes Lennard-Jones (LJ) parameters via the use of rare gas atoms combined with the reproduction of experimental condensed phase properties was extended to polar-neutral compounds. Compounds studied included four amines (ammonia, methylamine, dimethylamine, and trimethylamine) and three fluoroethanes (1-fluoroethane, 1,1-difluoroethane, and 1,1,1-trifluoroethane). The resulting force field yielded heats of vaporization and molecular volumes in excellent agreement with the experiment, with average differences less than 1%. The current amine CHARMM parameters successfully reproduced experimental aqueous solvation data where methylamine is more hydrophilic than ammonia, with hydrophobicity increasing with additional methylation on the nitrogen. For both the amines and fluoroethanes the parabolic relationship of the extent of methylation or fluorination, respectively, to the heats of vaporization were reproduced by the new parameters. The present results are also discussed with respect to the impact of parameterization approach to molecular details obtained from computer simulations and to the unique biological properties of fluorine in pharmaceutical compounds.

  3. Polyol-enhanced dispersive liquid-liquid microextraction coupled with gas chromatography and nitrogen phosphorous detection for the determination of organophosphorus pesticides from aqueous samples, fruit juices, and vegetables.

    PubMed

    Farajzadeh, Mir Ali; Afshar Mogaddam, Mohammad Reza; Alizadeh Nabil, Ali Akbar

    2015-12-01

    Polyol-enhanced dispersive liquid-liquid microextraction has been proposed for the extraction and preconcentration of some organophosphorus pesticides from different samples. In the present study, a high volume of an aqueous phase containing a polyol (sorbitol) is prepared and then a disperser solvent along with an extraction solvent is rapidly injected into it. Sorbitol showed the best results and it was more effective on the extraction recoveries of the analytes than inorganic salts such as sodium chloride, potassium chloride, and sodium sulfate. Under the optimum extraction conditions, the method showed low limits of detection and quantification within the ranges of 12-56 and 44-162 pg/mL, respectively. Enrichment factors and extraction recoveries were in the ranges of 2799-3033 and 84-92%, respectively. The method precision was evaluated at a concentration of 10 ng/mL of each analyte, and relative standard deviations were found to be less than 5.9% for intraday (n = 6) and less than 7.8% for interday (n = 4). Finally, some aqueous samples were successfully analyzed using the proposed method and four analytes (diazinon, dimethoate, chlorpyrifos, and phosalone) were determined, some of them at ng/mL level. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Air-assisted dispersive liquid-liquid microextraction based on a new hydrophobic deep eutectic solvent for the preconcentration of benzophenone-type UV filters from aqueous samples.

    PubMed

    Ge, Dandan; Zhang, Yi; Dai, Yixiu; Yang, Shumin

    2018-04-01

    Deep eutectic solvents are considered as new and green solvents that can be widely used in analytical chemistry such as microextraction. In the present work, a new dl-menthol-based hydrophobic deep eutectic solvent was synthesized and used as extraction solvents in an air-assisted dispersive liquid-liquid microextraction method for preconcentration and extraction of benzophenone-type UV filters from aqueous samples followed by high-performance liquid chromatography with diode array detection. In an experiment, the deep eutectic solvent formed by dl-menthol and decanoic acid was added to an aqueous solution containing the UV filters, and then the mixture was sucked up and injected five times by using a glass syringe, and a cloudy state was achieved. After extraction, the solution was centrifuged and the upper phase was subjected to high-performance liquid chromatography for analysis. Various parameters such as the type and volume of the deep eutectic solvent, number of pulling, and pushing cycles, solution pH and salt concentration were investigated and optimized. Under the optimum conditions, the developed method exhibited low limits of detection and limits of quantitation, good linearity, and precision. Finally, the proposed method was successfully applied to determine the benzophenone-type filters in environmental water samples with relative recoveries of 88.8-105.9%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Microbially Enhanced Oil Recovery by Sequential Injection of Light Hydrocarbon and Nitrate in Low- And High-Pressure Bioreactors.

    PubMed

    Gassara, Fatma; Suri, Navreet; Stanislav, Paul; Voordouw, Gerrit

    2015-10-20

    Microbially enhanced oil recovery (MEOR) often involves injection of aqueous molasses and nitrate to stimulate resident or introduced bacteria. Use of light oil components like toluene, as electron donor for nitrate-reducing bacteria (NRB), offers advantages but at 1-2 mM toluene is limiting in many heavy oils. Because addition of toluene to the oil increased reduction of nitrate by NRB, we propose an MEOR technology, in which water amended with light hydrocarbon below the solubility limit (5.6 mM for toluene) is injected to improve the nitrate reduction capacity of the oil along the water flow path, followed by injection of nitrate, other nutrients (e.g., phosphate) and a consortium of NRB, if necessary. Hydrocarbon- and nitrate-mediated MEOR was tested in low- and high-pressure, water-wet sandpack bioreactors with 0.5 pore volumes of residual oil in place (ROIP). Compared to control bioreactors, those with 11-12 mM of toluene in the oil (gained by direct addition or by aqueous injection) and 80 mM of nitrate in the aqueous phase produced 16.5 ± 4.4% of additional ROIP (N = 10). Because toluene is a cheap commodity chemical, HN-MEOR has the potential to be a cost-effective method for additional oil production even in the current low oil price environment.

  6. Diffusion-regulated phase-transfer catalysis for atom transfer radical polymerization of methyl methacrylate in an aqueous/organic biphasic system.

    PubMed

    Ding, Mingqiang; Jiang, Xiaowu; Peng, Jinying; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2015-03-01

    A concept based on diffusion-regulated phase-transfer catalysis (DRPTC) in an aqueous-organic biphasic system with copper-mediated initiators for continuous activator regeneration is successfully developed for atom transfer radical polymerization (ICAR ATRP) (termed DRPTC-based ICAR ATRP here), using methyl methacrylate (MMA) as a model monomer, ethyl α-bromophenylacetate (EBrPA) as an initiator, and tris(2-pyridylmethyl)amine (TPMA) as a ligand. In this system, the monomer and initiating species in toluene (organic phase) and the catalyst complexes in water (aqueous phase) are simply mixed under stirring at room temperature. The trace catalyst complexes transfer into the organic phase via diffusion to trigger ICAR ATRP of MMA with ppm level catalyst content once the system is heated to the polymerization temperature (75 °C). It is found that well-defined PMMA with controlled molecular weights and narrow molecular weight distributions can be obtained easily. Furthermore, the polymerization can be conducted in the presence of limited amounts of air without using tedious degassed procedures. After cooling to room temperature, the upper organic phase is decanted and the lower aqueous phase is reused for another 10 recycling turnovers with ultra low loss of catalyst and ligand loading. At the same time, all the recycled catalyst complexes retain nearly perfect catalytic activity and controllability, indicating a facile and economical strategy for catalyst removal and recycling. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Concurrence of aqueous and gas phase contamination of groundwater in the Wattenberg oil and gas field of northern Colorado.

    PubMed

    Li, Huishu; Son, Ji-Hee; Carlson, Kenneth H

    2016-01-01

    The potential impact of rapid development of unconventional oil and natural gas resources using hydraulic fracturing and horizontal drilling on regional groundwater quality has received significant attention. Major concerns are methane or oil/gas related hydrocarbon (such as TPHs, BTEX including benzene, toluene, ethybenzene and xylene) leaks into the aquifer due to the failure of casing and/or stray gas migration. Previously, we investigated the relationship between oil and gas activity and dissolved methane concentration in a drinking water aquifer with the major finding being the presence of thermogenic methane contamination, but did not find detectable concentrations of TPHs or BTEX. To understand if aqueous and gas phases from the producing formation were transported concurrently to drinking water aquifers without the presence of oil/gas related hydrocarbons, the ionic composition of three water groups was studied: (1) uncontaminated deep confined aquifer, (2) suspected contaminated groundwater - deep confined aquifer containing thermogenic methane, and (3) produced water from nearby oil and gas wells that would represent aqueous phase contaminants. On the basis of quantitative and spatial analysis, we identified that the "thermogenic methane contaminated" groundwater did not have similarities to produced water in terms of ionic character (e.g. Cl/TDS ratio), but rather to the "uncontaminated" groundwater. The analysis indicates that aquifer wells with demonstrated gas phase contamination have not been contacted by an aqueous phase from oil and gas operations according to the methodology we use in this study and the current groundwater quality data from COGCC. However, the research does not prove conclusively that this the case. The results may provide insight on contamination mechanisms since improperly sealed well casing may result in stray gas but not aqueous phase transport. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. A green separation strategy for neodymium (III) from cobalt (II) and nickel (II) using an ionic liquid-based aqueous two-phase system.

    PubMed

    Chen, Yuehua; Wang, Huiyong; Pei, Yuanchao; Wang, Jianji

    2018-05-15

    It is significant to develop sustainable strategies for the selective separation of rare earth from transition metals from fundamental and practical viewpoint. In this work, an environmentally friendly solvent extraction approach has been developed to selectively separate neodymium (III) from cobalt (II) and nickel (II) by using an ionic liquid-based aqueous two phase system (IL-ATPS). For this purpose, a hydrophilic ionic liquid (IL) tetrabutylphosphonate nitrate ([P 4444 ][NO 3 ]) was prepared and used for the formation of an ATPS with NaNO 3 . Binodal curves of the ATPSs have been determined for the design of extraction process. The extraction parameters such as contact time, aqueous phase pH, content of phase-formation components of NaNO 3 and the ionic liquid have been investigated systematically. It is shown that under optimal conditions, the extraction efficiency of neodymium (III) is as high as 99.7%, and neodymium (III) can be selectively separated from cobalt (II) and nickel (II) with a separation factor of 10 3 . After extraction, neodymium (III) can be stripped from the IL-rich phase by using dilute aqueous sodium oxalate, and the ILs can be quantitatively recovered and reused in the next extraction process. Since [P 4444 ][NO 3 ] works as one of the components of the ATPS and the extractant for the neodymium, no organic diluent, extra etractant and fluorinated ILs are used in the separation process. Thus, the strategy described here shows potential in green separation of neodymium from cobalt and nickel by using simple IL-based aqueous two-phase system. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Aqueous-phase oxidation of green leaf volatiles by hydroxyl radical as a source of SOA: Product identification from methyl jasmonate and methyl salicylate oxidation

    NASA Astrophysics Data System (ADS)

    Hansel, Amie K.; Ehrenhauser, Franz S.; Richards-Henderson, Nicole K.; Anastasio, Cort; Valsaraj, Kalliat T.

    2015-02-01

    Green leaf volatiles (GLVs) are a group of biogenic volatile organic compounds (BVOCs) released into the atmosphere by vegetation. BVOCs produce secondary organic aerosol (SOA) via gas-phase reactions, but little is known of their aqueous-phase oxidation as a source of SOA. GLVs can partition into atmospheric water phases, e.g., fog, mist, dew or rain, and be oxidized by hydroxyl radicals (˙OH). These reactions in the liquid phase also lead to products that have higher molecular weights, increased polarity, and lower vapor pressures, ultimately forming SOA after evaporation of the droplet. To examine this process, we investigated the aqueous, ˙OH-mediated oxidation of methyl jasmonate (MeJa) and methyl salicylate (MeSa), two GLVs that produce aqueous-phase SOA. High performance liquid chromatography/electrospray ionization mass spectrometry (HPLC-ESI-MS) was used to monitor product formation. The oxidation products identified exhibit higher molecular mass than their parent GLV due to either dimerization or the addition of oxygen and hydroxyl functional groups. The proposed structures of potential products are based on mechanistic considerations combined with the HPLC/ESI-MS data. Based on the structures, the vapor pressure and the Henry's law constant were estimated with multiple methods (SPARC, SIMPOL, MPBPVP, Bond and Group Estimations). The estimated vapor pressures of the products identified are significantly (up to 7 orders of magnitude) lower than those of the associated parent compounds, and therefore, the GLV oxidation products may remain as SOA after evaporation of the water droplet. The contribution of the identified oxidation products to SOA formation is estimated based on measured HPLC-ESI/MS responses relative to previous aqueous SOA mass yield measurements.

  10. Dispersed phase volume fraction, weak acids and Tween 80 in a model emulsion: Effect on the germination and growth of Bacillus weihenstephanensis KBAB4 spores.

    PubMed

    Léonard-Akkari, Lucie; Guégan, Stéphanie; Courand, Fabienne; Couvert, Olivier; Lepage, Jean-François; Rondeau-Mouro, Corinne; Desriac, Noémie; Mathot, Anne-Gabrielle; Leguérinel, Ivan; Coroller, Louis; Decourcelle, Nicolas

    2018-07-01

    In foodstuffs, physico-chemical interactions and/or physical constraints between spores, inhibitors and food components may exist. Thus, the objective of this study was to investigate such interactions using a model emulsion as a microbial medium in order to improve bacterial spore control with better knowledge of the interactions in the formulation. Emulsions were prepared with hexadecane mixed with nutrient broth using sonication and were stabilized by Tween 80 and Span 80. The hexadecane ratio was either 35% (v/v) or 50% (v/v) and each emulsion was studied in the presence of organic acid (acetic, lactic or hexanoic) at two pH levels (5.5 and 6). Self-diffusion coefficients of emulsion components and the organic acids were measured by Pulsed Field Gradient-Nuclear Magnetic Resonance (PFG-NMR). The inhibition effect on the spore germination and cell growth of Bacillus weihenstephanensis KBAB4 was characterized by the measure of the probability of growth using the most probable number methodology, and the measure of the time taken for the cells to germinate and grow using a single cell Bioscreen® method and using flow cytometry. The inhibition of spore germination and growth in the model emulsion depended on the dispersed phase volume fraction and the pH value. The effect of the dispersed phase volume fraction was due to a combination of (i) the lipophilicity of the biocide, hexanoic acid, that may have had an impact on the distribution of organic acid between hexadecane and the aqueous phases and (ii) the antimicrobial activity of the emulsifier Tween 80 detected at the acidic pH value. The interface phenomena seemed to have a major influence. Future work will focus on the exploration of these phenomena at the interface. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.

    2012-01-01

    Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM-10 mM) was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  12. SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Callis, C.F.; Moore, R.L.

    1959-09-01

    >The separation of ruthenium from aqueous solutions containing uranium plutonium, ruthenium, and fission products is described. The separation is accomplished by providing a nitric acid solution of plutonium, uranium, ruthenium, and fission products, oxidizing plutonium to the hexavalent state with sodium dichromate, contacting the solution with a water-immiscible organic solvent, such as hexone, to extract plutonyl, uranyl, ruthenium, and fission products, reducing with sodium ferrite the plutonyl in the solvent phase to trivalent plutonium, reextracting from the solvent phase the trivalent plutonium, ruthenium, and some fission products with an aqueous solution containing a salting out agent, introducing ozone into the aqueous acid solution to oxidize plutonium to the hexavalent state and ruthenium to ruthenium tetraoxide, and volatizing off the ruthenium tetraoxide.

  13. Process for recovering pertechnetate ions from an aqueous solution also containing other ions

    DOEpatents

    Rogers, R.; Horwitz, E.P.; Bond, A.H.

    1997-02-18

    A solid/liquid process for the separation and recovery of TcO{sub 4}{sup {minus}1} ions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups; whereas the aqueous solution from which the TcO{sub 4}{sup {minus}1} ions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt. A solid/liquid phase admixture of separation particles containing bound TcO{sub 4}{sup {minus}1} ions in such an aqueous solution that is free from MoO{sub 4}{sup {minus}2} ions is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture. 15 figs.

  14. “Towards building better linkages between aqueous phase ...

    EPA Pesticide Factsheets

    Currently, CMAQ’s aqueous phase chemistry routine (AQCHEM-base) assumes Henry’s Law equilibrium and employs a forward Euler method to solve a small set of oxidation equations, considering the additional processes of aitken scavenging and wet deposition in series and employing a bisection method to calculate H+ concentrations. With potentially hundreds of reactions that may be important in cloud water and only seven reactions in the current model, expansion of the existing mechanism is an important area of investigation. However, with the current mechanism hardwired into the solver code, the module is difficult to expand with additional chemistry. It also ignores the impacts of mass transfer limitations on cloud chemistry which may be significant. Here, the Kinetic PreProcessor has been applied to generate a Rosenbrock solver for the CMAQ v5.0.1 aqueous phase chemistry mechanism. The module has been updated to simultaneously solve kinetic mass transfer between the phases, dissociation/association, chemical kinetics, Aitken scavenging, and wet deposition. This will allow for easier expansion of the chemical mechanism in the future and a better link between aqueous phase chemistry and droplet microphysics. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating pre

  15. Influence of Calcium on Microbial Reduction of Solid Phase Uranium (VI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M.

    2007-06-27

    The effect of calcium on microbial reduction of a solid phase U(VI), sodium boltwoodite (NaUO2SiO3OH ∙1.5H2O), was evaluated in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. Batch experiments were performed in a non-growth bicarbonate medium with lactate as electron donor at pH 7 buffered with PIPES. Calcium increased both the rate and extent of Na-boltwoodite dissolution by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) revealed that microbial reductionmore » of solid phase U(VI) is a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. The overall rates of microbial reduction of solid phase U(VI) can be described by the coupled rates of dissolution and microbial reduction that were both influenced by calcium. The results demonstrated that dissolved U(VI) concentration during microbial reduction was a complex function of solid phase U(VI) dissolution kinetics, aqueous U(VI) speciation, and microbial activity.« less

  16. Chloride Transport in Porous Lipid Bilayer Membranes

    PubMed Central

    Andreoli, Thomas E.; Watkins, Mary L.

    1973-01-01

    This paper describes dissipative Cl- transport in "porous" lipid bilayer membranes, i.e., cholesterol-containing membranes exposed to 1–3 x 10-7 M amphotericin B. P DCl (cm·s-1), the diffusional permeability coefficient for Cl-, estimated from unidirectional 36Cl- fluxes at zero volume flow, varied linearly with the membrane conductance (Gm, Ω-1·cm-2) when the contributions of unstirred layers to the resistance to tracer diffusion were relatively small with respect to the membranes; in 0.05 M NaCl, P DCl was 1.36 x 10-4 cm·s-1 when Gm was 0.02 Ω-1·cm-2. Net chloride fluxes were measured either in the presence of imposed concentration gradients or electrical potential differences. Under both sets of conditions: the values of P DCl computed from zero volume flow experiments described net chloride fluxes; the net chloride fluxes accounted for ∼90–95% of the membrane current density; and, the chloride flux ratio conformed to the Ussing independence relationship. Thus, it is likely that Cl- traversed aqueous pores in these anion-permselective membranes via a simple diffusion process. The zero current membrane potentials measured when the aqueous phases contained asymmetrical NaCl solutions could be expressed in terms of the Goldman-Hodgkin-Katz constant field equation, assuming that the P DNa/P DCl ratio was 0.05. In symmetrical salt solutions, the current-voltage properties of these membranes were linear; in asymmetrical NaCl solutions, the membranes exhibited electrical rectification consistent with constant-field theory. It seems likely that the space charge density in these porous membranes is sufficiently low that the potential gradient within the membranes is approximately linear; and, that the pores are not electrically neutral, presumably because the Debye length within the membrane phase approximates the membrane thickness. PMID:4708408

  17. Cephradin-plaga microspheres for sustained delivery to cattle.

    PubMed

    Ustariz-Peyret, C; Coudane, J; Vert, M; Kaltsatos, V; Boisramé, B

    1999-01-01

    In the field of controlled drug delivery, most of the reported work is aimed at introducing new systems, or at providing basic information on the critical parameters which affect release profiles in vitro and occasionally in vivo. The situation is totally different when one wants to fulfil the specific requirements imposed by the marketing of a sustained release device to be used in humans or in animals eaten by human beings. The control of the release characteristics is then a difficult challenge. In this work, attempts were made to combine cephradin, a hydrophilic beta-lactam antibiotic, and bioresorbable polymeric matrices of a poly(alpha-hydroxy acid) in the form of microspheres with the aim of delivering the antibiotic to cattle at a dose rate of 4-5 mg/kg/day over a 3-4 days period after i.m. injection. PLAGA aliphatic polyesters were selected because they are already FDA approved as matrices. The solvent evaporation technique using PVA as the emulsion stabilizer was selected because it is efficient and can be extended to an industrial scale. Various experimental conditions were used in order to obtain the highest encapsulation yields compatible with the desired specifications. Decreasing the volume of the aqueous phase and adding a water-miscible organic solvent/non-solvent of cephradin failed. In contrast, microspheres containing up to 30% cephradin were prepared after addition of sodium chloride to the aqueous dispersing phase. The amount of entrapped drug was raised to 40% by decreasing the temperature and the pressure. Preliminary investigations using dogs showed that 20% cephradin microspheres prepared under these conditions extended the presence of cephradin in the blood circulation up to 48 h. Increasing the load led to higher blood concentrations but shorter sustained release. The fact that the microspheres were for cattle limited the volume of the injection and thus the amount of microspheres to be administered. The other limiting factors were related to microsphere morphology.

  18. Improved Separations of Proteins and Sugar Derivatives Using the Small-Scale Cross-Axis Coil Planet Centrifuge with Locular Multilayer Coiled Columns

    PubMed Central

    Shinomiya, Kazufusa; Umezawa, Motoki; Seki, Manami; Nitta, Jun; Zaima, Kazumasa; Harikai, Naoki; Ito, Yoichiro

    2016-01-01

    1) Background Countercurrent chromatography (CCC) is liquid-liquid partition chromatography without using a solid support matrix. This technique requires further improvement of partition efficiency and shortening theseparation time. 2) Methods The locular multilayer coils modified with and without mixer glass beads were developed for the separation of proteins and 4-methylumbelliferyl (MU) sugar derivatives using the small-scale cross-axis coil planet centrifuge. 3) Results Proteins were well separated from each other and the separation was improved at a low flow rate of the mobile phase. On the other hand, 4-MU sugar derivatives were sufficiently resolved with short separation time at a highflow rate of the mobile phase under satisfactory stationary phase retention. 4) Conclusion Effective separations were achieved using the locular multilayer coil for proteins with aqueous-aqueous polymer phase systems and for 4-MU sugar derivatives with organic-aqueous two-phase solvent systems by inserting a glass bead into each locule. PMID:27891507

  19. Actinium radioisotope products of enhanced purity

    DOEpatents

    Meikrantz, David Herbert; Todd, Terry Allen; Tranter, Troy Joseph; Horwitz, E. Philip

    2010-06-15

    A product includes actinium-225 (.sup.225Ac) and less than about 1 microgram (.mu.g) of iron (Fe) per millicurie (mCi) of actinium-225. The product may have a radioisotopic purity of greater than about 99.99 atomic percent (at %) actinium-225 and daughter isotopes of actinium-225, and may be formed by a method that includes providing a radioisotope mixture solution comprising at least one of uranium-233 (.sup.233U) and thorium-229 (.sup.229Th), extracting the at least one of uranium-233 and thorium-229 into an organic phase, substantially continuously contacting the organic phase with an aqueous phase, substantially continuously extracting actinium-225 into the aqueous phase, and purifying the actinium-225 from the aqueous phase. In some embodiments, the product may include less than about 1 nanogram (ng) of iron per millicurie (mCi) of actinium-225, and may include less than about 1 microgram (.mu.g) each of magnesium (Mg), Chromium (Cr), and manganese (Mn) per millicurie (mCi) of actinium-225.

  20. Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate

    NASA Technical Reports Server (NTRS)

    Jacob, D. J.

    1986-01-01

    The chemistry of OH in nonprecipitating tropospheric clouds was studied using a coupled gas phase/aqueous phase chemical model. The simulation takes into account the radial dependence of the concentrations of short lived aqueous phase species, in particular, O3(aq) OH(aq). Formic acid is shown to be rapidly produced by the aqueous phase reaction between H2C(OH)2 and OH, but HCOO(-) and OH, but HCOO(-) is in turn rapidly oxidized by OH(aq). The HCOOH concentration in cloud is shown to be strongly dependent on the pH of the cloud water; clouds with pH greater than 5 are not efficient HCOOH sources. A novel mechanism is proposed for the oxidation of S(IV) by OH(aq), with the main product predicted to be peroxymonosulfate, HSO5(-). The latter could contribute significantly to total cloud water sulfur.

  1. Effects of ammonium on uranium partitioning and kaolinite mineral dissolution.

    PubMed

    Emerson, Hilary P; Di Pietro, Silvina; Katsenovich, Yelena; Szecsody, Jim

    2017-02-01

    Ammonia gas injection is a promising technique for the remediation of uranium within the vadose zone. It can be used to manipulate the pH of a system and cause co-precipitation processes that are expected to remove uranium from the aqueous phase and decrease leaching from the solid phase. The work presented in this paper explores the effects of ammonium and sodium hydroxide on the partitioning of uranium and dissolution of the kaolinite mineral in simplified synthetic groundwaters using equilibrium batch sorption and sequential extraction experiments. It shows that there is a significant increase in uranium removal in systems with divalent cations present in the aqueous phase but not in sodium chloride synthetic groundwaters. Further, the initial conditions of the aqueous phase do not affect the dissolution of kaolinite. However, the type of base treatment does have an effect on mineral dissolution. Published by Elsevier Ltd.

  2. Microfluidic techniques for the study of self-assembly of soft materials

    NASA Astrophysics Data System (ADS)

    Aguade Cabanas, Rafael

    This research is an approach to the study of soft condensed matter where the use of new microfluidic technology plays a central role. Often, in the study of soft matter, the sample volumes are very small, of the order of nanoliters. Therefore to quantitatively measure the equilibrium or non-equilibrium phase behavior requires microfluidics. Presented here are (1) a new way of producing aqueous drops of order 1 nl volume, in oil, (2) a new fabrication protocol to make microfluidic devices out of epoxy glue, and (3) a new microfluidic flow cell to study colloidal self-assembly. Also presented here is a new kind of colloidal particle, consisting of single strands of DNA linked to the surface of fd virus. This new particle may serve as a liquid crystalline colloid with a temperature dependent tunable potential. The fabrication process is the first step in the study of the self-assembly of rod-like particles with a temperature dependent potential.

  3. Physicochemical Behavior of Some Amino Acids/Glycylglycine in Aqueous D-Galactose Solutions at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Ali, Anwar; Patel, Rajan; Shahjahan; Ansari, Nizamul Haque

    2010-03-01

    The apparent molar volumes {(overline{V_2})} for glycine (Gly), l-alanine (Ala), phenylalanine (Phe), and glycylglycine (Gly-Gly) in 0.10 m aqueous d-galactose solutions have been determined from density measurements at (298.15, 303.15, 308.15, and 313.15) K. The data for {(overline{V_2})} were utilized to estimate the partial molar volume at infinite dilution {(overline{V_2^0})} , and experimental slope {(S_v^ast)} . The transfer volume, {(overline{V2^0}_(tr))} , and hydration number, ( n H) were also evaluated. The viscosity data were used to evaluate A- and B-coefficients of the Jones-Dole equation, the free energy of activation of viscous flow per mole of the solvent {left(Δ μ1^{0ast} right)} and the solute {left(Δ μ 2^{0ast} right)} . The molar refractivity ( R D) was calculated from refractive index data. The results were discussed in terms of hydrophilic-ionic, hydrophilic-hydrophobic, and hydrophobic-hydrophobic interactions, and structure-making/-breaking ability of the solute (AAs/peptide) in aqueous d-galactose solutions.

  4. Glass transition of aqueous solutions involving annealing-induced ice recrystallization resolves liquid-liquid transition puzzle of water

    PubMed Central

    Zhao, Li-Shan; Cao, Ze-Xian; Wang, Qiang

    2015-01-01

    Liquid-liquid transition of water is an important concept in condensed-matter physics. Recently, it was claimed to have been confirmed in aqueous solutions based on annealing-induced upshift of glass-liquid transition temperature, . Here we report a universal water-content, , dependence of for aqueous solutions. Solutions with vitrify/devitrify at a constant temperature, , referring to freeze-concentrated phase with left behind ice crystallization. Those solutions with totally vitrify at under conventional cooling/heating process though, of the samples annealed at temperatures   to effectively evoke ice recrystallization is stabilized at . Experiments on aqueous glycerol and 1,2,4-butanetriol solutions in literature were repeated, and the same samples subject to other annealing treatments equally reproduce the result. The upshift of by annealing is attributable to freeze-concentrated phase of solutions instead of ‘liquid II phase of water’. Our work also provides a reliable method to determine hydration formula and to scrutinize solute-solvent interaction in solution. PMID:26503911

  5. Matrix solid-phase dispersion technique for the determination of a new antiallergic drug, bilastine, in rat faeces.

    PubMed

    Berrueta, L A; Fernández-Armentia, M; Bakkali, A; Gonzalo, A; Lucero, M L; Orjales, A

    2001-08-25

    A matrix solid-phase dispersion (MSPD) procedure for the isolation and HPLC determination of a new antiallergic agent, bilastine, in rat faeces is presented. The effect on recovery of empirical variables such as nature, pH and volume of the washing and elution liquids and nature of the adsorbent has been tested. The best recoveries were attained using an octadecylsilyl sorbent, 10 ml of a 0.1 M NaHCO3-Na2CO3 aqueous buffer of pH 10.0 as washing solvent and 10 ml of methanol as elution solvent. The extracts were evaporated to dryness and reconstituted in mobile phase before their injection into a HPLC system, equipped with a Discovery RP-amide C16 column and a fluorescence detector. The method allows one to reach recoveries of 95.0% within the concentration range 0.05-10 microg/g, with within-day repeatabilities of less than 5% and between-day repeatabilities of less than 9% within this range. This method has been successfully applied to the excretion studies of bilastine in the rat.

  6. Solidification and microstructures of binary ice-I/hydrate eutectic aggregates

    USGS Publications Warehouse

    McCarthy, C.; Cooper, R.F.; Kirby, S.H.; Rieck, K.D.; Stern, L.A.

    2007-01-01

    The microstructures of two-phase binary aggregates of ice-I + salt-hydrate, prepared by eutectic solidification, have been characterized by cryogenic scanning electron microscopy (CSEM). The specific binary systems studied were H2O-Na2SO4, H2O-MgSO4, H2O-NaCl, and H2O-H2SO4; these were selected based on their potential application to the study of tectonics on the Jovian moon Europa. Homogeneous liquid solutions of eutectic compositions were undercooled modestly (??T - 1-5 ??C); similarly cooled crystalline seeds of the same composition were added to circumvent the thermodynamic barrier to nucleation and to control eutectic growth under (approximately) isothermal conditions. CSEM revealed classic eutectic solidification microstructures with the hydrate phase forming continuous lamellae, discontinuous lamellae, or forming the matrix around rods of ice-I, depending on the volume fractions of the phases and their entropy of dissolving and forming a homogeneous aqueous solution. We quantify aspects of the solidification behavior and microstructures for each system and, with these data articulate anticipated effects of the microstructure on the mechanical responses of the materials.

  7. Comparison of theory and experiment for NAPL dissolution in porous media

    NASA Astrophysics Data System (ADS)

    Bahar, T.; Golfier, F.; Oltéan, C.; Lefevre, E.; Lorgeoux, C.

    2018-04-01

    Contamination of groundwater resources by an immiscible organic phase commonly called NAPL (Non Aqueous Phase Liquid) represents a major scientific challenge considering the residence time of such a pollutant. This contamination leads to the formation of NAPL blobs trapped in the soil and impact of this residual saturation cannot be ignored for correct predictions of the contaminant fate. In this paper, we present results of micromodel experiments on the dissolution of pure hydrocarbon phase (toluene). They were conducted for two values of the Péclet number. These experiments provide data for comparison and validation of a two-phase non-equilibrium theoretical model developed by Quintard and Whitaker (1994) using the volume averaging method. The model was directly upscaled from the averaged pore-scale mass balance equations. The effective properties of the macroscopic model were calculated over periodic unit cells designed from images of the experimental flow cell. Comparison of experimental and numerical results shows that the transport model predicts correctly - with no fitting parameters - the main mechanisms of NAPL mass transfer. The study highlights the crucial need of having a fair recovery of pore-scale characteristic lengths to predict the mass transfer coefficient with accuracy.

  8. Small GSH-Capped CuInS2 Quantum Dots: MPA-Assisted Aqueous Phase Transfer and Bioimaging Applications.

    PubMed

    Zhao, Chuanzhen; Bai, Zelong; Liu, Xiangyou; Zhang, Yijia; Zou, Bingsuo; Zhong, Haizheng

    2015-08-19

    An efficient ligand exchange strategy for aqueous phase transfer of hydrophobic CuInS2/ZnS quantum dots was developed by employing glutathione (GSH) and mercaptopropionic acid (MPA) as the ligands. The whole process takes less than 20 min and can be scaled up to gram amount. The material characterizations show that the final aqueous soluble samples are solely capped with GSH on the surface. Importantly, these GSH-capped CuInS2/ZnS quantum dots have small size (hydrodynamic diameter <10 nm), moderate fluorescent properties (up to 34%) as well as high stability in aqueous solutions (stable for more than three months in 4 °C without any significant fluorescence quenching). Moreover, this ligand exchange strategy is also versatile for the aqueous phase transfer of other hydrophobic quantum dots, for instance, CuInSe2 and CdSe/ZnS quantum dots. We further demonstrated that GSH-capped quantum dots could be suitable fluorescence markers to penetrate cell membrane and image the cells. In addition, the GSH-capped CuInS2 quantum dots also have potential use in other fields such as photocatalysis and quantum dots sensitized solar cells.

  9. Fractionation of poly(methacrylic acid) and poly(vinyl pyridine) in aqueous and organic mobile phases by multidetector thermal field-flow fractionation.

    PubMed

    Greyling, Guilaume; Pasch, Harald

    2017-08-25

    Multidetector thermal field-flow fractionation (ThFFF) is shown to be a versatile characterisation platform that can be used to characterise hydrophilic polymers in a variety of organic and aqueous solutions with various ionic strengths. It is demonstrated that ThFFF fractionates isotactic and syndiotactic poly(methacrylic acid) (PMAA) as well as poly(2-vinyl pyridine) (P2VP) and poly(4-vinyl pyridine) (P4VP) according to microstructure in organic solvents and that the ionic strength of the mobile phase has no influence on the retention behaviour of the polymers. With regard to aqueous solutions, it is shown that, despite the weak retention, isotactic and syndiotactic PMAA show different retention behaviours which can qualitatively be attributed to microstructure. Additionally, it is shown that the ionic strength of the mobile phase has a significant influence on the thermal diffusion of polyelectrolytes in aqueous solutions and that the addition of an electrolyte is essential to achieve a microstructure-based separation of P2VP and P4VP in aqueous solutions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A method for the direct injection and analysis of small volume human blood spots and plasma extracts containing high concentrations of organic solvents using revered-phase 2D UPLC/MS.

    PubMed

    Rainville, Paul D; Simeone, Jennifer L; Root, Dan S; Mallet, Claude R; Wilson, Ian D; Plumb, Robert S

    2015-03-21

    The emergence of micro sampling techniques holds great potential to improve pharmacokinetic data quality, reduce animal usage, and save costs in safety assessment studies. The analysis of these samples presents new challenges for bioanalytical scientists, both in terms of sample processing and analytical sensitivity. The use of two dimensional LC/MS with, at-column-dilution for the direct analysis of highly organic extracts prepared from biological fluids such as dried blood spots and plasma is demonstrated. This technique negated the need to dry down and reconstitute, or dilute samples with water/aqueous buffer solutions, prior to injection onto a reversed-phase LC system. A mixture of model drugs, including bromhexine, triprolidine, enrofloxacin, and procaine were used to test the feasibility of the method. Finally an LC/MS assay for the probe pharmaceutical rosuvastatin was developed from dried blood spots and protein-precipitated plasma. The assays showed acceptable recovery, accuracy and precision according to US FDA guidelines. The resulting analytical method showed an increase in assay sensitivity of up to forty fold as compared to conventional methods by maximizing the amount loaded onto the system and the MS response for the probe pharmaceutical rosuvastatin from small volume samples.

  11. Hierarchical drug release of pH-sensitive liposomes encapsulating aqueous two phase system.

    PubMed

    Zhang, Xunan; Zong, Wei; Bi, Hongmei; Zhao, Kunming; Fuhs, Thomas; Hu, Ying; Cheng, Wenlong; Han, Xiaojun

    2018-06-01

    As promising drug delivery vehicles, previous investigations of liposomes as carriers are primarily focused on insertion and modification of lipid membrane interfaces. The utility of the inner core seems to be overlooked. Herein, we developed pH-sensitive liposomes (PSLs) containing an aqueous two phase system (ATPS), and intriguingly discovered their hierarchical release under acidic stimuli. ATPS containing two polymers (poly(ethylene glycol) (PEG) and dextran) is homogeneous above phase transition temperature when producing ATPS-liposomes, and separated into PEG-rich phase and dextran-rich phase after cooling down to room temperature. The overall release time of ATPS-liposomes is divided into two stages and prolonged compared to simple aqueous liposomes. The unique release profile is due to the disproportional distribution of drugs in two phases. Doxorubicin (DOX) is loaded in the ATPS-liposomes, and their half maximum inhibition concentration on HeLa cells is 0.018 μmol L -1 , which means 27.5 fold increase in inhibition efficiency over free DOX. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Cross-phase separation of nanowires and nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Fang; Duoss, Eric; Han, Jinkyu

    In one embodiment, a process includes creating a mixture of an aqueous component, nanowires and nanoparticles, and a hydrophobic solvent and allowing migration of the nanowires to the hydrophobic solvent, where the nanoparticles remain in the aqueous component. Moreover, the nanowires and nanoparticles are in the aqueous component before the migration.

  13. New lipid family that forms inverted cubic phases in equilibrium with excess water: molecular structure-aqueous phase structure relationship for lipids with 5,9,13,17-tetramethyloctadecyl and 5,9,13,17-tetramethyloctadecanoyl chains.

    PubMed

    Yamashita, Jun; Shiono, Manzo; Hato, Masakatsu

    2008-10-02

    With a view to discovering a new family of lipids that form inverted cubic phases, the aqueous phase behavior of a series of lipids with isoprenoid-type hydrophobic chains has been examined over a temperature range from -40 to 65 degrees C by using optical microscopy, DSC (differential scanning calorimetry), and SAXS (small-angle X-ray scattering) techniques. The lipids examined are those with 5,9,13,17-tetramethyloctadecyl and 5,9,13,17-tetramethyloctadecanoyl chains linked to a series of headgroups, that is, erythritol, pentaerythritol, xylose, and glucose. All of the lipid/water systems displayed a "water + liquid crystalline phase" two-phase coexistence state when sufficiently diluted. The aqueous phase structures of the most diluted liquid crystalline phases in equilibrium with excess water depend both on the lipid molecular structure and on the temperature. Given an isoprenoid chain, the preferred phase consistently follows a phase sequence of an H II (an inverted hexagonal phase) to a Q II (an inverted bicontinuous cubic phase) to an L alpha (a lamellar phase) as A* (cross-section area of the headgroup) increases. For a given lipid/water system, the phase sequence observed as the temperature increases is L alpha to Q II to H II. The present study allowed us to find four cubic phase-forming lipid species, PEOC 18+4 [mono- O-(5,9,13,17-tetramethyloctadecyl)pentaerythritol], beta-XylOC 18+4 [1- O-(5,9,13,17-tetramethyloctadecyl)-beta- d-xylopyranoside], EROCOC 17+4 [1- O-(5,9,13,17-tetramethyloctadecanoyl)erythritol], and PEOCOC 17+4 [mono- O-(5,9,13,17-tetramethyloctadecanoyl)pentaerythritol]. The values of T K (hydrated solid-liquid crystalline phase transition temperature) of the cubic phase-forming lipids are all below 0 degrees C. Quantitative analyses of the lipid molecular structure-aqueous phase structure relationship in terms of the experimentally evaluated "surfactant parameter" allow us to rationally select an optimum combination of hydrophilic/hydrophobic part of a lipid molecule that will form a desired phase in a desired temperature range.

  14. Analytical methodologies based on LC-MS/MS for monitoring selected emerging compounds in liquid and solid phases of the sewage sludge.

    PubMed

    Boix, C; Ibáñez, M; Fabregat-Safont, D; Morales, E; Pastor, L; Sancho, J V; Sánchez-Ramírez, J E; Hernández, F

    2016-01-01

    In this work, two analytical methodologies based on liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) were developed for quantification of emerging pollutants identified in sewage sludge after a previous wide-scope screening. The target list included 13 emerging contaminants (EC): thiabendazole, acesulfame, fenofibric acid, valsartan, irbesartan, salicylic acid, diclofenac, carbamazepine, 4-aminoantipyrine (4-AA), 4-acetyl aminoantipyrine (4-AAA), 4-formyl aminoantipyrine (4-FAA), venlafaxine and benzoylecgonine. The aqueous and solid phases of the sewage sludge were analyzed making use of Solid-Phase Extraction (SPE) and UltraSonic Extraction (USE) for sample treatment, respectively. The methods were validated at three concentration levels: 0.2, 2 and 20 μg L(-1) for the aqueous phase, and 50, 500 and 2000 μg kg(-1) for the solid phase of the sludge. In general, the method was satisfactorily validated, showing good recoveries (70-120%) and precision (RSD < 20%). Regarding the limit of quantification (LOQ), it was below 0.1 μg L(-1) in the aqueous phase and below 50 μg kg(-1) in the solid phase for the majority of the analytes. The method applicability was tested by analysis of samples from a wider study on degradation of emerging pollutants in sewage sludge under anaerobic digestion. The key benefits of these methodologies are: • SPE and USE are appropriate sample procedures to extract selected emerging contaminants from the aqueous phase of the sewage sludge and the solid residue. • LC-MS/MS is highly suitable for determining emerging contaminants in both sludge phases. • Up to our knowledge, the main metabolites of dipyrone had not been studied before in sewage sludge.

  15. Preparation and characterization of magnetic carboxylated nanodiamonds for vortex-assisted magnetic solid-phase extraction of ziram in food and water samples.

    PubMed

    Yılmaz, Erkan; Soylak, Mustafa

    2016-09-01

    A simple and rapid vortex-assisted magnetic solid phase extraction (VA-MSPE) method for the separation and preconcentration of ziram (zinc dimethyldithiocarbamate), subsequent detection of the zinc in complex structure of ziram by flame atomic absorption spectrometry (AAS) has been developed. The ziram content was calculated by using stoichiometric relationship between the zinc and ziram. Magnetic carboxylated nanodiamonds (MCNDs) as solid-phase extraction adsorbent was prepared and characterized by Fourier transform infrared (FT-IR) spectra, X-ray diffraction (XRD) spectrometry and scanning electron microscopy (SEM). These magnetic carboxylated nanodiamonds carrying the ziram could be easily separated from the aqueous solution by applying an external magnetic field; no filtration or centrifugation was necessary. Some important factors influencing the extraction efficiency of ziram such as pH of sample solution, amount of adsorbent, type and volume of eluent, extraction and desorption time and sample volume were studied and optimized. The total extraction and detection time was lower than 10min The preconcentration factor (PF), the precision (RSD, n=7), the limit of detection (LOD) and limit of quantification (LOQ) were 160, 7.0%, 5.3µgL(-1) and 17.5µgL(-1), respectively. The interference of various ions has been examined and the method has been applied for the determination of ziram in various waters, foodstuffs samples and synthetic mixtures. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Determination of residual nonsteroidal anti-inflammatory drugs in aqueous sample using magnetic nanoparticles modified with cetyltrimethylammonium bromide by high performance liquid chromatography.

    PubMed

    Khoeini Sharifabadi, Malihe; Saber-Tehrani, Mohammad; Waqif Husain, Syed; Mehdinia, Ali; Aberoomand-Azar, Parviz

    2014-01-01

    A simple and sensitive solid-phase extraction method for separation and preconcentration of trace amount of four nonsteroidal anti-inflammatory drugs (naproxen, indomethacin, diclofenac, and ibuprofen) using Fe3O4 magnetic nanoparticles modified with cetyltrimethylammonium bromide has been developed. For this purpose, the surface of MNPs was modified with cetyltrimethylammonium bromide (CTAB) as a cationic surfactant. Effects of different parameters influencing the extraction efficiency of drugs including the pH, amount of salt, shaking time, eluent type, the volume of solvent, amount of adsorbent, sample volume, and the time of desorption were investigated and optimized. Methanol has been used as desorption solvent and the extracts were analysed on a reversed-phase octadecyl silica column using 0.02 M phosphate-buffer (pH = 6.02) acetonitrile (65 : 35 v/v) as the mobile phase and the effluents were measured at 202 nm with ultraviolet detector. The relative standard deviation (RSD%) of the method was investigated at three concentrations (25, 50, and 200 ng/mL) and was in the range of 3.98-9.83% (n = 6) for 50 ng/mL. The calibration curves obtained for studied drugs show reasonable linearity (R (2) > 0.99) and the limit of detection (LODs) ranged between 2 and 7 ng/mL. Finally, the proposed method has been effectively employed in extraction and determination of the drugs in biological and environmental samples.

  17. Acidities of Water and Methanol in Aqueous Solution and DMSO

    ERIC Educational Resources Information Center

    Gao, Daqing

    2009-01-01

    The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…

  18. Ringer tablet-based ionic liquid phase microextraction: Application in extraction and preconcentration of neonicotinoid insecticides from fruit juice and vegetable samples.

    PubMed

    Farajzadeh, Mir Ali; Bamorowat, Mahdi; Mogaddam, Mohammad Reza Afshar

    2016-11-01

    An efficient, reliable, sensitive, rapid, and green analytical method for the extraction and determination of neonicotinoid insecticides in aqueous samples has been developed using ionic liquid phase microextraction coupled with high performance liquid chromatography-diode array detector. In this method, a few microliters of 1-hexyl-3-methylimidazolium hexafluorophosphate (as an extractant) is added onto a ringer tablet and it is transferred into a conical test tube containing aqueous phase of the analytes. By manually shaking, the ringer tablet is dissolved and the extractant is released into the aqueous phase as very tiny droplets to provide a cloudy solution. After centrifuging the extracted analytes into ionic liquid are collected at the bottom of a conical test tube. Under the optimum extraction conditions, the method showed low limits of detection and quantification between 0.12 and 0.33 and 0.41 and 1.11ngmL(-1), respectively. Extraction recoveries and enrichment factors were from 66% to 84% and 655% to 843%, respectively. Finally different aqueous samples were successfully analyzed using the proposed method. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Cloud iron speciation: Experimental simulations

    NASA Astrophysics Data System (ADS)

    Sofikitis, A. M.; Colin, J. L.; Desboeufs, K. V.; Losno, R.

    2003-04-01

    The aim of our contribution is to identify major processes controlling iron speciation in the atmospheric aqueous phase. Fe is known to participate in a variety of redox reactions in cloud chemistry, as well as controlling free radical production in the troposphere. Iron cycling is slower than cycles with other catalytic transition metals (Cu, Mn). The residence time of each iron species is around ten minutes, this allows analytical separation and determination of each iron redox species and therefore its ratio. As the only source of trace metals in aqueous atmospheric phase is due to the solubilization of aerosols, we present here dissolution rate measurements obtained by laboratory experiments with an open flow reactor. This reactor enables us to reproduce the dissolution of a particle in aqueous atmospheric water. The dissolution rate and the speciation of iron are dependent on the mineralogy of the solid phase. Our experiments included Goethite, hematite and vermiculite, which are typical mineral constituents of dust particles. Comparisons were made with natural loess which is a blend of various crystalline and amorphous phases. We will present results of crustal origin particles dissolution experiments where kinetic parameters are determined, including iron speciation. Major functions of variation are pH and photochemistry in the aqueous weathering solution.

  20. Sorption of carboxylic acid from carboxylic salt solutions at PHS close to or above the pK.sub.a of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine

    DOEpatents

    King, C. Judson; Tung, Lisa A.

    1992-01-01

    Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH.sub.a into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. the acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carobxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia.

  1. Bidentate organophosphorus solvent extraction process for actinide recovery and partition

    DOEpatents

    Schulz, Wallace W.

    1976-01-01

    A liquid-liquid extraction process for the recovery and partitioning of actinide values from acidic nuclear waste aqueous solutions, the actinide values including trivalent, tetravalent and hexavalent oxidation states is provided and includes the steps of contacting the aqueous solution with a bidentate organophosphorous extractant to extract essentially all of the actinide values into the organic phase. Thereafter the respective actinide fractions are selectively partitioned into separate aqueous solutions by contact with dilute nitric or nitric-hydrofluoric acid solutions. The hexavalent uranium is finally removed from the organic phase by contact with a dilute sodium carbonate solution.

  2. First-principles Study of Phenol Hydrogenation on Pt and Ni Catalysts in Aqueous Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Yeohoon; Rousseau, Roger J.; Weber, Robert S.

    2014-07-23

    The effects of aqueous phase on the reactivity of phenol hydrogenation over Pt and Ni catalysts were investigated using density functional theory based ab initio molecular dynamics (AIMD) calculations. The adsorption of phenol and the first hydrogenation steps via three carbon positions (ortho, meta and para) with respect to the phenolic OH group were studied in both vacuum and liquid phase conditions. To gain insight into how the aqueous phase affects the metal catalyst surface, increasing water environments including singly adsorbed water molecule, mono- (9 water molecules), double layers (24 water molecules), and the bulk liquid water which (52 watermore » molecules) on the Pt(111) and the Ni(111) surfaces were modeled. Compared to the vacuum/metal interfaces, AIMD simulation results suggest that the aqueous Pt(111) and Ni(111) interfaces have a lower metal work function in the order of 0.8 - 0.9 eV, thus, making the metals in aqueous phase stronger reducing agents and poorer oxidizing agents. Phenol adsorption from the aqueous phase is found to be slightly weaker that from the vapor phase. The first hydrogenation step of phenol at the ortho position of the phenolic ring is slightly favored over the other two positions. The polarization induced by the surrounding water molecules and the solvation effect play important roles in stabilizing the transition states associated with phenol hydrogenation by lowering the barriers of 0.1 - 0.4 eV. The detailed discussion on the basis of the interfacial electrostatics from the current study is very useful to understand the nature of a broader class of metal catalyzed reactions in liquid solution phase. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences and Office of Energy Efficiency and Renewable Energy. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less

  3. Complexation Enhancement Drives Water-to-Oil Ion Transport: A Simulation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Baofu; Ferru, Geoffroy; Ellis, Ross J.

    We address the structures and energetics of ion solvation in aqueous and organic solutions to understand liquid-liquid ion transport. Atomistic molecular dynamics (MD) simulations with polarizable force field are performed to study the coordination transformations driving lanthanide (Ln(III)) and nitrate ion transport between aqueous and an alkylamide-oil solution. An enhancement of the coordination behavior in the organic phase is achieved in contrast with the aqueous solution. In particular, the coordination number of Ce3+ increases from 8.9 in the aqueous to 9.9 in the organic solutions (from 8 in the aqueous to 8.8 in the organic systems for Yb3+). Moreover, themore » local coordination environ ment changes dramatically. Potential of mean force calculations show that the Ln(III)-ligand coordination interaction strengths follow the order of Ln(III-)nitrate> Ln(III)-water>Ln(III)-DMDBTDMA. They increase 2-fold in the lipophilic environment in comparison to the aqueous phase, and we attribute this to the shedding of the outer solvation shell. Our findings highlight the importance of outer sphere interactions on the competitive solvation energetics that cause ions to migrate between immiscible phases; an essential ingredient for advancing important applications such as rare earth metal separations. Some open questions in simulating the coordination behavior of heavy metals are also addressed.« less

  4. Recovery of sugars from ionic liquid biomass liquor by solvent extraction

    DOEpatents

    Brennan, Timothy Charles R.; Holmes, Bradley M.; Simmons, Blake A.; Blanch, Harvey W.

    2015-10-13

    The present invention provides for a composition comprising a solution comprising (a) an ionic liquid (IL) or ionic liquid-aqueous (ILA) phase and (b) an organic phase, wherein the solution comprises a sugar and a boronic acid. The present invention also provides for a method of removing a sugar from a solution, comprising: (a) providing a solution comprising (i) an IL or ILA phase and (ii) an organic phase, wherein the solution comprises an IL, a sugar and a boronic acid; (b) contacting the sugar with the boronic acid to form a sugar-boronic acid complex, (c) separating the organic phase and the aqueous phase, wherein the organic phase contains the sugar-boronic acid complex, and optionally (d) separating the sugar from the organic phase.

  5. Quantifying the equilibrium partitioning of substituted polycyclic aromatic hydrocarbons in aerosols and clouds using COSMOtherm.

    PubMed

    Awonaike, Boluwatife; Wang, Chen; Goss, Kai-Uwe; Wania, Frank

    2017-03-22

    Functional groups attached to polycyclic aromatic hydrocarbons (PAHs) can significantly modify the environmental fate of the parent compound. Equilibrium partition coefficients, which are essential for describing the environmental phase distribution of a compound, are largely unavailable for substituted PAHs (SPAHs). Here, COSMOtherm, a software based on quantum-chemical calculations is used to estimate the atmospherically relevant partition coefficients between the gas phase, the aqueous bulk phase, the water surface and the water insoluble organic matter phase, as well as the salting-out coefficients, for naphthalene, anthracene, phenanthrene, benz(a)anthracene, benzo(a)pyrene and dibenz(a,h)anthracene and 62 of their substituted counterparts. They serve as input parameters for the calculation of equilibrium phase distribution of these compounds in aerosols and clouds. Our results, which were compared with available experimental data, show that the effect of salts, the adsorption to the water surface and the dissolution in a bulk aqueous phase can be safely neglected when estimating the gas-particle partitioning of SPAHs in aerosols. However, for small PAHs with more than one polar functional group the aqueous phase can be the dominant reservoir in a cloud.

  6. Compact and highly stable quantum dots through optimized aqueous phase transfer

    NASA Astrophysics Data System (ADS)

    Tamang, Sudarsan; Beaune, Grégory; Poillot, Cathy; De Waard, Michel; Texier-Nogues, Isabelle; Reiss, Peter

    2011-03-01

    A large number of different approaches for the aqueous phase transfer of quantum dots have been proposed. Surface ligand exchange with small hydrophilic thiols, such as L-cysteine, yields the lowest particle hydrodynamic diameter. However, cysteine is prone to dimer formation, which limits colloidal stability. We demonstrate that precise pH control during aqueous phase transfer dramatically increases the colloidal stability of InP/ZnS quantum dots. Various bifunctional thiols have been applied. The formation of disulfides, strongly diminishing the fluorescence QY has been prevented through addition of appropriate reducing agents. Bright InP/ZnS quantum dots with a hydrodynamic diameter <10 nm and long-term stability have been obtained. Finally we present in vitro studies of the quantum dots functionalized with the cell-penetrating peptide maurocalcine.

  7. Integration of carboxyl modified magnetic particles and aqueous two-phase extraction for selective separation of proteins.

    PubMed

    Gai, Qingqing; Qu, Feng; Zhang, Tao; Zhang, Yukui

    2011-07-15

    Both of the magnetic particle adsorption and aqueous two-phase extraction (ATPE) were simple, fast and low-cost method for protein separation. Selective proteins adsorption by carboxyl modified magnetic particles was investigated according to protein isoelectric point, solution pH and ionic strength. Aqueous two-phase system of PEG/sulphate exhibited selective separation and extraction for proteins before and after magnetic adsorption. The two combination ways, magnetic adsorption followed by ATPE and ATPE followed by magnetic adsorption, for the separation of proteins mixture of lysozyme, bovine serum albumin, trypsin, cytochrome C and myloglobin were discussed and compared. The way of magnetic adsorption followed by ATPE was also applied to human serum separation. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Predicting the Fluid-Phase Behavior of Aqueous Solutions of ELP (VPGVG) Sequences Using SAFT-VR.

    PubMed

    Zhao, Binwu; Lindeboom, Tom; Benner, Steven; Jackson, George; Galindo, Amparo; Hall, Carol K

    2017-10-24

    The statistical associating fluid theory for potentials of variable range (SAFT-VR) is used to predict the fluid phase behavior of elastin-like polypeptide (ELP) sequences in aqueous solution with special focus on the loci of lower critical solution temperatures (LCSTs). A SAFT-VR model for these solutions is developed following a coarse-graining approach combining information from atomistic simulations and from previous SAFT models for previously reported relevant systems. Constant-pressure temperature-composition phase diagrams are determined for solutions of (VPGVG) n sequences + water with n = 1 to 300. The SAFT-VR equation of state lends itself to the straightforward calculation of phase boundaries so that complete fluid-phase equilibria can be calculated efficiently. A broad range of thermodynamic conditions of temperature and pressure are considered, and regions of vapor-liquid and liquid-liquid coexistence, including LCSTs, are found. The calculated phase boundaries at low concentrations match those measured experimentally. The temperature-composition phase diagrams of the aqueous ELP solutions at low pressure (0.1 MPa) are similar to those of types V and VI phase behavior in the classification of Scott and van Konynenburg. An analysis of the high-pressure phase behavior confirms, however, that a closed-loop liquid-liquid immiscibility region, separate from the gas-liquid envelope, is present for aqueous solutions of (VPGVG) 30 ; such a phase diagram is typical of type VI phase behavior. ELPs with shorter lengths exhibit both liquid-liquid and gas-liquid regions, both of which become less extensive as the chain length of the ELP is decreased. The strength of the hydrogen-bonding interaction is also found to affect the phase diagram of the (VPGVG) 30 system in that the liquid-liquid and gas-liquid regions expand as the hydrogen-bonding strength is decreased and shrink as it is increased. The LCSTs of the mixtures are seen to decrease as the ELP chain length is increased.

  9. Amorphous Metal Oxide Thin Films from Aqueous Precursors: New Routes to High-kappa Dielectrics, Impact of Annealing Atmosphere Humidity, and Elucidation of Non-Uniform Composition Profiles

    NASA Astrophysics Data System (ADS)

    Woods, Keenan N.

    Metal oxide thin films serve as critical components in many modern technologies, including microelectronic devices. Industrial state-of-the-art production utilizes vapor-phase techniques to make high-quality (dense, smooth, uniform) thin film materials. However, vapor-phase techniques require large energy inputs and expensive equipment and precursors. Solution-phase routes to metal oxides have attracted great interest as cost-effective alternatives to vapor-phase methods and also offer the potential of large-area coverage, facile control of metal composition, and low-temperature processing. Solution deposition has previously been dominated by sol-gel routes, which utilize organic ligands, additives, and/or solvents. However, sol-gel films are often porous and contain residual carbon impurities, which can negatively impact device properties. All-inorganic aqueous routes produce dense, ultrasmooth films without carbon impurities, but the mechanisms involved in converting aqueous precursors to metal oxides are virtually unexplored. Understanding these mechanisms and the parameters that influence them is critical for widespread use of aqueous approaches to prepare microelectronic components. Additionally, understanding (and controlling) density and composition inhomogeneities is important for optimizing electronic properties. An overview of deposition approaches and the challenges facing aqueous routes are presented in Chapter I. A summary of thin film characterization techniques central to this work is given in Chapter II. This dissertation contributes to the field of solution-phase deposition by focusing on three areas. First, an all-inorganic aqueous route to high-kappa metal oxide dielectrics is developed for two ternary systems. Chapters III and IV detail the film formation chemistry and film properties of lanthanum zirconium oxide (LZO) and zirconium aluminum oxide (ZAO), respectively. The functionality of these dielectrics as device components is also demonstrated. Second, the impact of steam annealing on the evolution of aqueous-derived films is reported. Chapter V demonstrates that steam annealing lowers processing temperatures by effectively reducing residual counterion content, improving film stability with respect to water absorption, and enhancing dielectric properties of LZO films. Third, density and composition inhomogeneities in aqueous-derived films are investigated. Chapters VI and VII examine density inhomogeneities in single- and multi-metal component thin films, respectively, and show that these density inhomogeneities are related to inhomogeneous metal component distributions. This dissertation includes previously published coauthored material.

  10. Self-consistent field theory of polymer-ionic molecule complexation.

    PubMed

    Nakamura, Issei; Shi, An-Chang

    2010-05-21

    A self-consistent field theory is developed for polymers that are capable of binding small ionic molecules (adsorbates). The polymer-ionic molecule association is described by Ising-like binding variables, C(i) ((a))(kDelta)(=0 or 1), whose average determines the number of adsorbed molecules, n(BI). Polymer gelation can occur through polymer-ionic molecule complexation in our model. For polymer-polymer cross-links through the ionic molecules, three types of solutions for n(BI) are obtained, depending on the equilibrium constant of single-ion binding. Spinodal lines calculated from the mean-field free energy exhibit closed-loop regions where the homogeneous phase becomes unstable. This phase instability is driven by the excluded-volume interaction due to the single occupancy of ion-binding sites on the polymers. Moreover, sol-gel transitions are examined using a critical degree of conversion. A gel phase is induced when the concentration of adsorbates is increased. At a higher concentration of the adsorbates, however, a re-entrance from a gel phase into a sol phase arises from the correlation between unoccupied and occupied ion-binding sites. The theory is applied to a model system, poly(vinyl alcohol) and borate ion in aqueous solution with sodium chloride. Good agreement between theory and experiment is obtained.

  11. Chemical Remediation of Nickel(II) Waste: A Laboratory Experiment for General Chemistry Students

    ERIC Educational Resources Information Center

    Corcoran, K. Blake; Rood, Brian E.; Trogden, Bridget G.

    2011-01-01

    This project involved developing a method to remediate large quantities of aqueous waste from a general chemistry laboratory experiment. Aqueous Ni(II) waste from a general chemistry laboratory experiment was converted into solid nickel hydroxide hydrate with a substantial decrease in waste volume. The remediation method was developed for a…

  12. Productions of Volatile Organic Compounds (VOCs) in Surface Waters from Reactions with Atmospheric Ozone

    NASA Astrophysics Data System (ADS)

    Hopkins, Frances; Bell, Thomas; Yang, Mingxi

    2017-04-01

    Ozone (O3) is a key atmospheric oxidant, greenhouse gas and air pollutant. In marine environments, some atmospheric ozone is lost by reactions with aqueous compounds (e.g. dissolved organic material, DOM, dimethyl sulfide, DMS, and iodide) near the sea surface. These reactions also lead to formations of volatile organic compounds (VOCs). Removal of O3 by the ocean remains a large uncertainty in global and regional chemical transport models, hampering coastal air quality forecasts. To better understand the role of the ocean in controlling O3 concentrations in the coastal marine atmosphere, we designed and implemented a series of laboratory experiments whereby ambient surface seawater was bubbled with O3-enriched, VOC-free air in a custom-made glass bubble equilibration system. Gas phase concentrations of a range of VOCs were monitored continuously over the mass range m/z 33 - 137 at the outflow of the bubble equilibrator by a proton transfer reaction - mass spectrometer (PTR-MS). Gas phase O3 was also measured at the input and output of the equilibrator to monitor the uptake due to reactions with dissolved compounds in seawater. We observed consistent productions of a variety of VOCs upon reaction with O3, notably isoprene, aldehydes, and ketones. Aqueous DMS is rapidly removed from the reactions with O3. To test the importance of dissolved organic matter precursors, we added increasing (milliliter) volumes of Emiliania huxleyi culture to the equilibrator filled with aged seawater, and observed significant linear increases in gas phase concentrations of a number of VOCs. Reactions between DOM and O3 at the sea-air interface represent a potentially significant source of VOCs in marine air and a sink of atmospheric O3.

  13. STIMULATION OF TARSAL RECEPTORS OF THE BLOWFLY BY ALIPHATIC ALDEHYDES AND KETONES

    PubMed Central

    Chadwick, L. E.; Dethier, V. G.

    1949-01-01

    Rejection of eight aldehydes, eight ketones, five secondary alcohols, and 3-pentanol has been studied in the blowfly Phormia regina Meigen. The data agree with results previously reported for normal alcohols and several series of glycols in showing a logarithmic increase in stimulating effect with increasing chain length. The order of increasing effectiveness among the different species of compounds thus far investigated is the following: polyglycols, diols, secondary alcohols, iso-alcohols, normal alcohols, ketones, iso-aldehydes, normal aldehydes. Curves relating the logarithms of threshold concentration to the logarithms of chain length for diols, alcohols, aldehydes, and ketones show inflections in the 3 to 6 carbon range. Above and below the region of inflection the curves are nearly rectilinear. The slopes for the upper limbs (smaller molecules) are of the order of –2; for the lower limbs, about –10. Comparisons of the threshold data with numerical values for molecular weights, molecular areas and volumes, oil-water distribution coefficients, activity coefficients, standard free energies, vapor pressures, boiling points, melting points, dipole moments, dielectric constants, and degree of association are discussed briefly, and it is concluded that none of the comparisons serves to bring the data from the several series and from the two portions of each series into a single homogeneous system. A qualitative comparison with water solubilities shows fewer discrepancies. It is suggested that the existence of a combination of aqueous and lipoid phases at the receptor surface would fit best with what is presently known about the relationship between chemical structure and stimulating effect in contact chemoreception. In this hypothesis the smaller and more highly water-soluble compounds are envisaged as gaining access to the receptors partly through the aqueous phase, the larger molecules predominantly through the lipoid phase. PMID:18114559

  14. Gradient, contact-free volume transfers minimize compound loss in dose-response experiments.

    PubMed

    Harris, David; Olechno, Joe; Datwani, Sammy; Ellson, Richard

    2010-01-01

    More accurate dose-response curves can be constructed by eliminating aqueous serial dilution of compounds. Traditional serial dilutions that use aqueous diluents can result in errors in dose-response values of up to 4 orders of magnitude for a significant percentage of a compound library. When DMSO is used as the diluent, the errors are reduced but not eliminated. The authors use acoustic drop ejection (ADE) to transfer different volumes of model library compounds, directly creating a concentration gradient series in the receiver assay plate. Sample losses and contamination associated with compound handling are therefore avoided or minimized, particularly in the case of less water-soluble compounds. ADE is particularly well suited for assay miniaturization, but gradient volume dispensing is not limited to miniaturized applications.

  15. Aqueous SOA formation from radical oligomerization of methyl vinyl ketone (MVK) and methacrolein (MACR)

    NASA Astrophysics Data System (ADS)

    Renard, P.; Siekmann, F.; Ravier, S.; Temime-Roussel, B.; Clément, J.; Ervens, B.; Monod, A.

    2013-12-01

    It is now accepted that one of the important pathways of secondary organic aerosol (SOA) formation occurs through aqueous phase chemistry in the atmosphere. However, the chemical mechanisms leading to macromolecules are still not well understood. It was recently shown that oligomer production by OH radical oxidation in the aerosol aqueous phase from α-dicarbonyl precursors, such as methylglyoxal and glyoxal, is irreversible and fast. We have investigated the aqueous phase photooxidation of MACR and MVK, which are biogenic organic compounds derived from isoprene. Aqueous phase photooxidation of MVK and MACR was investigated in a photoreactor using photolysis of H2O2 as OH radical source. Electrospray high resolution mass spectrometry analysis of the solutions brought clear evidence for the formation of oligomer systems having a mass range of up to 1800 Da within less than 15 minutes of reaction. Highest oligomer formation rates were obtained under conditions of low dissolved oxygen, highest temperature (T = 298 K) and highest precursor initial concentrations ([MVK]0 = 20 mM). A radical mechanism of oligomerization is proposed to explain the formation of the high molecular weight products. Furthermore, we quantified the total amount of carbon present in oligomers. Kinetic parameters of the proposed oligomerization mechanism are constrained by means of a box model that is able to reproduce the temporal evolution of intermediates and products as observed in the laboratory experiments. Additional model simulations for atmospherically-relevant conditions will be presented that show the extent to which these radical processes contribute to SOA formation in the atmospheric multiphase system as compared to other aqueous phase as well as traditional SOA sources. MVK time profile (as measured by UV Spectroscopy) and mass spectra (obtained using UPLC-ESI-MS for the retention time range 0-5 min in the positive mode) at 5, 10 and 50 min of reaction (MVK 20 mM, 25° C, under supersaturated O2 initial conditions).

  16. Extension of the CAPRAM mechanism with the improved mechanism generator GECKO-A

    NASA Astrophysics Data System (ADS)

    Bräuer, Peter; Mouchel-Vallon, Camille; Tilgner, Andreas; Wolke, Ralf; Aumont, Bernard; Herrmann, Hartmut

    2013-04-01

    Organic compounds are an ubiquitous constituent of the tropospheric multiphase system. With either biogenic or anthropogenic sources, they have a major influence on the atmospheric multiphase system and thus have become a main research topic within the last decades. Modelling can provide a useful tool to explore the tropospheric multiphase chemistry. While in the gas phase several comprehensive near-explicit mechanisms exist, in the aqueous phase those mechanisms are very limited. The current study aims to advance the currently most comprehensive aqueous phase mechanism CAPRAM 3.0 by means of automated mechanism construction. Therefore, the mechanism generator GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere; see Aumont et al., 2005) has been advanced to the aqueous phase. A protocol has been designed for automated mechanism construction based on reviewed experimental data and evaluated prediction methods. The generator is able to describe the oxidation of aliphatic organic compounds by OH and NO3. For the mechanism construction, mainly structure-activity relationships are used, which are completed by Evans-Polanyi-type correlations and further suitable estimates. GECKO-A has been used to create new CAPRAM versions, where branching ratios are introduced and new chemical subsystems with species with up to 4 carbon atoms are added. The currently most comprehensive version, CAPRAM 3.7, includes about 2000 aqueous phase species and more than 3300 reactions in the aqueous phase. Box model studies have been performed using a meteorological scenario with non-permanent clouds. Besides the investigation of the concentration-time profiles, detailed time-resolved flux analyses have been performed. Several aqueous phase subsystems have been investigated, such as the formation of oxidised mono- and diacids in the aqueous phase, as well as interactions to inorganic cycles and the influence on the gas phase chemistry and composition. Results have been compared to results of previous versions and show a significant improvement in the new mechanism versions, when comparing the modelled data to field data from literature. For example, in CAPRAM 3.7 there is a malonic acid production of about 80 ng m-3 compared to a few ng m-3 in CAPRAM 3.0. The results in CAPRAM 3.7 confirm recent measurements by Bao et al. (2012), who measure up to 137 ng m-3. Moreover, several attempts have been undertaken to validate the mechanisms created by GECKO-A with own field experiments, such as the HCCT-2010 campaign and chamber experiments in the LEAK chamber. References Aumont, B., Szopa, S., Madronich, S.: Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach. Atmos. Chem. Phys., 5, 2497-2517 (2005). Bao, L., Matsumoto, M., Kubota, T., Sekiguchi, K., Wang, Q., Sakamoto, K.: Gas/particle partitioning of low-molecular-weight dicarboxylic acids at a suburban site in Saitama, Japan. Atmos. Env., 47, 546 - 553 (2012).

  17. Compositional effects on the chemorheological properties and forming behavior of aqueous alumina-poly(vinyl alcohol) gelcasting suspensions

    NASA Astrophysics Data System (ADS)

    Morissette, Sherry L.

    A new gelcasting system based on aqueous, alumina-poly(vinyl alcohol) (PVA) suspensions cross-linked by an organotitanate coupling agent has been developed. Both the chemorheological properties and forming behavior of this system exhibited a strong compositional dependence. A sol- gel phase diagram was established, which yielded the critical titanium concentration [Ti] c required for gelation at a given PVA volume fraction, as well as the minimum PVA volume fraction ( fminPVA = 0.0245) and titanium PVA concentration ([Ti]min = 9.984 x 10--4 g Ti/ml) below which gelation was not observed irrespective of solution composition. The gelation time of suspensions of constant PVA volume fraction ( fsolnPVA ) decreased with increasing cross-linking agent concentration, PVA temperature, and solids volume fraction. The steady-state viscosity and elastic modulus of polymer solutions ( fsolnPVA = 0.05) of varying [Ti] were well described by the PVA percolation model, giving scaling exponents of 0.84 and 1.79, respectively. The steady-state elastic modulus of gel casting suspensions, which provides a measure of their handling strength in the as-gelled state, increased with increasing solids volume fraction. Gelcasting suspensions were used as feedstock for solid free-form fabrication (SFF) of ceramic components. The influence of processing conditions (e.g., tip diameter, mixing rate, table speed, etc.) and suspension rheology on deposition behavior was investigated. Continuous printablity was achieved for tip diameters ranging from dt = 0.254 -- 1.370 mm for all mixing rates (Rmix 5 -- 300 rpm) and suspension compositions (i.e., fAl2O3 = 0.45, φPVA = 0.275, [Ti] 0 -- 6.30 x 10--3 g Ti/ml) probed, where the minimum tip diameter for continuous printing was 0.203 mm. Printed lines were uniform with good edge definition. Line dimensions were independent of mixing rate for the given process conditions. The as-cast alumina volume fraction ( fAl2O3 ) depended on casting conditions and cross-linking agent concentration, where fAl2O3 decreased with increasing tip diameter and increased with increasing cross-linking agent concentration. Free-fomied Al2O3 components exhibited uniform particle packing and had minimal macro-defects (e.g., slumping or stair casing) and no detectable micro-defects (e.g., bubbles or cracking).

  18. Partitioning phase preference for secondary organic aerosol in an urban atmosphere.

    PubMed

    Chang, Wayne L; Griffin, Robert J; Dabdub, Donald

    2010-04-13

    Secondary organic aerosol (SOA) comprises a significant portion of atmospheric particular matter. The impact of particular matter on both human health and global climate has long been recognized. Despite its importance, there are still many unanswered questions regarding the formation and evolution of SOA in the atmosphere. This study uses a modeling approach to understand the preferred partitioning behavior of SOA species into aqueous or organic condensed phases. More specifically, this work uses statistical analyses of approximately 24,000 data values for each variable from a state of the art 3D airshed model. Spatial and temporal distributions of fractions of SOA residing in the aqueous phase (fAQ) in the South Coast Air Basin of California are presented. Typical values of fAQ within the basin near the surface range from 5 to 80%. Results show that the likelihood of large fAQ values is inversely proportional to the total SOA loading. Analysis of various meteorological parameters indicates that large fAQ values are predicted because modeled aqueous-phase SOA formation is less sensitive than that of organic-phase SOA to atmospheric conditions that are not conducive to SOA formation. There is a diurnal variation of fAQ near the surface: It tends to be larger during daytime hours than during nighttime hours. Results also indicate that the largest fAQ values are simulated in layers above ground level at night. In summary, one must consider SOA in both organic and aqueous phases for proper regional and global SOA budget estimation.

  19. Influence of calcium on microbial reduction of solid phase uranium(VI).

    PubMed

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M; Wang, Zheming

    2007-08-15

    The effect of calcium on the dissolution and microbial reduction of a representative solid phase uranyl [U(VI)], sodium boltwoodite (NaUO(2)SiO(3)OH . 1.5H(2)O), was investigated to evaluate the rate-limiting step of microbial reduction of the solid phase U(VI). Microbial reduction experiments were performed in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1, in a bicarbonate medium with lactate as electron donor at pH 6.8 buffered with PIPES. Calcium increased the rate of Na-boltwoodite dissolution and U(VI) bioavailability by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) collectively revealed that microbial reduction of solid phase U(VI) was a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. Under studied experimental conditions, the overall rate of microbial reduction of solid phase U(VI) was limited by U(VI) dissolution reactions in solutions without calcium and limited by microbial reduction in solutions with calcium. Generally, the overall rate of microbial reduction of solid phase U(VI) was determined by the coupling of solid phase U(VI) dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) that were all affected by calcium. (c) 2007 Wiley Periodicals, Inc.

  20. Densities of L-Glutamic Acid HCl Drug in Aqueous NaCl and KCl Solutions at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Ryshetti, Suresh; Raghuram, Noothi; Rani, Emmadi Jayanthi; Tangeda, Savitha Jyostna

    2016-04-01

    Densities (ρ ) of (0.01 to 0.07) {mol}{\\cdot } {kg}^{-1} L-Glutamic acid HCl (L-HCl) drug in water, and in aqueous NaCl and KCl (0.5 and 1.0) {mol}{\\cdot } {kg}^{-1} solutions have been reported as a function of temperature at T = (298.15, 303.15, 308.15, and 313.15) K and atmospheric pressure. The accurate density (ρ ) values are used to estimate the various parameters such as the apparent molar volume (V_{2,{\\upphi }}), the partial molar volume (V2^{∞}), the isobaric thermal expansion coefficient (α 2), the partial molar expansion (E2^{∞}), and Hepler's constant (partial 2V2^{∞}/partial T2)P. The Cosphere overlap model is used to understand the solute-solvent interactions in a ternary mixture (L-HCl drug + NaCl or KCl + water). Hepler's constant (partial 2V2^{∞}/partial T2)_P is utilized to interpret the structure-making or -breaking ability of L-HCl drug in aqueous NaCl and KCl solutions, and the results are inferred that L-HCl drug acts as a structure maker, i.e., kosmotrope in aqueous NaCl solutions and performs as a structure breaker, i.e., chaotrope in aqueous KCl solutions.

  1. The effect of alloy composition on the mechanism of stress corrosion cracking of titanium alloys in aqueous environments

    NASA Technical Reports Server (NTRS)

    Boyd, J. D.; Williams, D. N.; Wood, R. A.; Jaffee, R. I.

    1972-01-01

    The effects of alloy composition on the aqueous stress corrosion of titanium alloys were studied with emphasis on determining the interrelations among composition, phase structure, and deformation and fracture properties of the alpha phase in alpha-beta alloys. Accomplishments summarized include the effects of alloy composition on susceptibility, and metallurgical mechanisms of stress-corrosion cracking.

  2. OZONATION BY-PRODUCTS 2. IMPROVEMENT OF AN AQUEOUS- PHASE DERIVITIZATION METHOD FOR THE DETECTION OF FORMALDEHYDE AND OTHER CARBONYL COMPOUNDS FORMED BY THE OZONATION OF DRINKING WATER

    EPA Science Inventory

    A method for the determination of low molecular weight aldehydes in water using aqueous-phase derivatization with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride has been improved by the use of high-resolution capillary GC. Detection limits with GC/ECD and GC/MS with ...

  3. Microextraction in a tetrabutylammonium bromide/ammonium sulfate aqueous two-phase system and electrohydrodynamic generation of a micro-droplet.

    PubMed

    Song, Young Soo; Choi, Young Hoon; Kim, Do Hyun

    2007-08-31

    Microextraction of methyl orange in the aqueous two-phase system (ATPS) formed by dissolving tetrabutylammonium bromide (TBAB) and ammonium sulfate (AS) is reported. Methyl orange was transported from the AS-rich phase to TBAB-rich phase across the interface of the two immiscible phases. The electrohydrodynamic effect on the shape of the interface of two immiscible flows was also observed by applying dc voltage at the T-junction of the microchannel and the generation of a droplet of AS-rich phase was observed when the potential difference between positive and negative electrodes exceeds a threshold voltage. The minimum voltage necessary for the droplet generation depends on pH due to the degree of dissociation and charge accumulation.

  4. DYNAPHORE, INC., FORAGER SPONGE TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    The Forager Sponge is a volume reduction technology in which heavy metal contaminants from an aqueous medium are selectively concentrated into a smaller volume for facilitated disposal. he technology treats contaminated groundwater, surface voters and porous waters by absorbing d...

  5. SITE TECHNOLOGY CAPSULE: DYNAPHORE, INC., FORAGER SPONGE TECHNOLOGY

    EPA Science Inventory

    The Forager Sponge is a volume reduction technology in which heavy metal contaminants from an aqueous medium are selectively concentrated into a smaller volume for facilitated disposal. he technology treats contaminated groundwater, surface waters and porous waters by absorbing d...

  6. SITE TECHNOLOGY CAPSULE: DYNAPHORE, INC., FORAGER™ SPONGE TECHNOLOGY

    EPA Science Inventory

    The Forager™ Sponge is a volume reduction technology in which heavy metal contaminants from an aqueous medium are selectively concentrated into a smaller volume for facilitated disposal. The technology treats contaminated groundwater, surface waters, and process waters by absorbi...

  7. Is there an aerosol signature of aqueous processing?

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Sorooshian, A.

    2017-12-01

    The formation of aerosol mass in cloud water has been recognized as a substantial source of atmospheric aerosol mass. While sulfate formation can be relatively well constrained, the formation of secondary organic aerosol mass in the aqueous phase (aqSOA) is much more complex due to the multitude of precursors and variety in chemical processes. Aqueous phase processing adds aerosol mass to the droplet mode, which is formed due to mass addition to activated particles in clouds. In addition, it has been shown that aqSOA mass has specific characteristics in terms of oxidation state and hygroscopicity that might help to distinguish it from other SOA sources. Many models do not include detailed chemical mechanisms of sulfate and aqSOA formation and also lack details on the mass distribution of newly formed mass. Mass addition inside and outside clouds modifies different parts of an aerosol population and consequently affects predictions of properties and lifetime of particles. Using a combination of field data analysis and model studies for a variety of air masses, we will show which chemical and physical aerosol properties can be used, in order to identify an `aqueous phase signature' in processed aerosol populations. We will discuss differences in this signature in clean (e.g., background), moderately polluted (e.g., urban) and highly polluted (e.g., biomass burning) air masses and suggest air-mass-specific chemical and/or physical properties that will help to quantify the aqueous-phase derived aerosol mass.

  8. Sorption-induced effects of humic substances on mass transfer of organic pollutants through aqueous diffusion boundary layers: the example of water/air exchange.

    PubMed

    Ramus, Ksenia; Kopinke, Frank-Dieter; Georgi, Anett

    2012-02-21

    This study examines the effect of dissolved humic substances (DHS) on the rate of water-gas exchange of organic compounds under conditions where diffusion through the aqueous boundary layer is rate-determining. A synthetic surfactant was applied for comparison. Mass-transfer coefficients were determined from the rate of depletion of the model compounds by means of an apparatus containing a stirred aqueous solution with continuous purging of the headspace above the solution. In addition, experiments with continuous passive dosing of analytes into the water phase were conducted to simulate a system where thermodynamic activity of the chemical in the aqueous phase is identical in the presence and absence of DHS. The experimental results show that DHS and surfactants can affect water-gas exchange rates by the superposition of two mechanisms: (1) hydrodynamic effects due to surface film formation ("surface smoothing"), and (2) sorption-induced effects. Whether sorption accelerates or retards mass transfer depends on its effect on the thermodynamic activity of the pollutant in the aqueous phase. Mass transfer will be retarded if the activity (or freely dissolved concentration) of the pollutant is decreased due to sorption. If it remains unchanged (e.g., due to fast equilibration with a sediment acting as a large source phase), then DHS and surfactant micelles can act as an additional shuttle for the pollutants, enhancing the flux through the boundary layer.

  9. Water-in-Water Emulsion Based Synthesis of Hydrogel Nanospheres with Tunable Release Kinetics

    NASA Astrophysics Data System (ADS)

    Aydın, Derya; Kızılel, Seda

    2017-07-01

    Poly(ethylene glycol) (PEG) micro/nanospheres have several unique advantages as polymer based drug delivery systems (DDS) such as tunable size, large surface area to volume ratio, and colloidal stability. Emulsification is one of the widely used methods for facile synthesis of micro/nanospheres. Two-phase aqueous system based on polymer-polymer immiscibility is a novel approach for preparation of water-in-water (w/w) emulsions. This method is promising for the synthesis of PEG micro/nanospheres for biological systems, since the emulsion is aqueous and do not require organic solvents or surfactants. Here, we report the synthesis of nano-scale PEG hydrogel particles using w/w emulsions using phase separation of dextran and PEG prepolymer. Dynamic light scattering (DLS) and scaning electron microscopy (SEM) results demonstrated that nano-scale hydrogel spheres could be obtained with this approach. We investigated the release kinetics of a model drug, pregabalin (PGB) from PEG nanospheres and demonstrated the influence of polymerization conditions on loading and release of the drug as well as the morphology and size distribution of PEG nanospheres. The experimental drug release data was fitted to a stretched exponential function which suggested high correlation with experimental results to predict half-time and drug release rates from the model equation. The biocompatibility of nanospheres on human dermal fibroblasts using cell-survival assay suggested that PEG nanospheres with altered concentrations are non-toxic, and can be considered for controlled drug/molecule delivery.

  10. Iodine retention during evaporative volume reduction

    DOEpatents

    Godbee, H.W.; Cathers, G.I.; Blanco, R.E.

    1975-11-18

    An improved method for retaining radioactive iodine in aqueous waste solutions during volume reduction is disclosed. The method applies to evaporative volume reduction processes whereby the decontaminated (evaporated) water can be returned safely to the environment. The method generally comprises isotopically diluting the waste solution with a nonradioactive iodide and maintaining the solution at a high pH during evaporation.

  11. Single-reactor process for producing liquid-phase organic compounds from biomass

    DOEpatents

    Dumesic, James A.; Simonetti, Dante A.; Kunkes, Edward L.

    2015-12-08

    Disclosed is a method for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons. The method includes the steps of reacting in a single reactor an aqueous solution of a biomass-derived, water-soluble oxygenated hydrocarbon reactant, in the presence of a catalyst comprising a metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au, at a temperature, and a pressure, and for a time sufficient to yield a self-separating, three-phase product stream comprising a vapor phase, an organic phase containing linear and/or cyclic mono-oxygenated hydrocarbons, and an aqueous phase.

  12. Single-reactor process for producing liquid-phase organic compounds from biomass

    DOEpatents

    Dumesic, James A [Verona, WI; Simonetti, Dante A [Middleton, WI; Kunkes, Edward L [Madison, WI

    2011-12-13

    Disclosed is a method for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons. The method includes the steps of reacting in a single reactor an aqueous solution of a biomass-derived, water-soluble oxygenated hydrocarbon reactant, in the presence of a catalyst comprising a metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au, at a temperature, and a pressure, and for a time sufficient to yield a self-separating, three-phase product stream comprising a vapor phase, an organic phase containing linear and/or cyclic mono-oxygenated hydrocarbons, and an aqueous phase.

  13. Comparison of hypotensive, diuretic and renal effects between cladodes of Opuntia ficus-indica and furosemide.

    PubMed

    Bakour, Meryem; Al-Waili, Noori; El-Haskoury, Redouan; El-Menyiy, Nawal; Al-Waili, Thia; Al-Waili, Ali; Lyoussi, Badiaa

    2017-09-01

    To investigate the diuretic, hypotensive and renal effect of Opuntia ficus-indica in two different species in oral and intravenous administration. Diuretic activity was evaluated in rats with the plant cladode gel and aqueous extract administrated orally, and was evaluated in rabbits with plant extract administered intravenously. Single and repeated doses of cladode gel or aqueous extract of cladode were tested. Urine volume and blood and urine creatinine, sodium and potassium were measured, and creatinine clearance was calculated. The hypotensive effect of lyophilized extract of cladode was evaluated in rabbits. Two polyethylene PE50 catheters were used: one in the jugular vein for the infusion of the plant extract and the other in the carotid for the evaluation of the arterial pressure. The cladode gel or aqueous extract increased urine volume, creatinine clearance and urinary excretion of sodium and potassium without significant effect on serum creatinine or blood urea. Furosemide, gel and aqueous extract of cladode insignificantly lowered plasma potassium in rats. Intravenous administration of the lyophilized extract caused a significant decrease in mean arterial pressure in rabbits with a significant increase in urine volume and urine sodium and potassium; the effect was dose dependent. Intravenous administration of lyophilized extract did not affect plasma sodium or potassium. Gel and aqueous extract of Opuntia ficus-indica cladode have a significant diuretic effect on rats, and the lyophilized extract has a diuretic and hypotensive effect on normotensive rabbits without deterioration in renal function test. Additional studies on active ingredients are essential to pave the way for clinical studies on diuretic and hypotensive effect of the plant. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  14. Study of thermodynamic and acoustic behaviour of nicotinic acid in binary aqueous mixtures of D-lactose

    NASA Astrophysics Data System (ADS)

    Sharma, Ravi; Thakur, R. C.

    2017-07-01

    In the present study, the thermodynamic properties such as partial molar volumes, partial molar expansibilities, partial molar compressibilities, partial molar heat capacities and isobaric thermal expansion coefficient of different solutions of nicotinic acid in binary aqueous mixtures of D-lactose have been determined at different temperatures (298.15, 303.15, 308.15, 313.15) K. Masson's equation is used to interpret the data in terms of solute-solute and solute-solvent interactions. In the present study it has been found that nicotinic acid behaves as structure maker in aqueous and binary aqueous mixtures of D-lactose.

  15. Pressure jump relaxation setup with IR detection and millisecond time resolution

    NASA Astrophysics Data System (ADS)

    Schiewek, Martin; Krumova, Marina; Hempel, Günter; Blume, Alfred

    2007-04-01

    An instrument is described that allows the use of Fourier transform infrared (FTIR) spectroscopy as a detection system for kinetic processes after a pressure jump of up to 100bars. The pressure is generated using a high performance liquid chromatography (HPLC) pump and water as a pressure transducing medium. A flexible membrane separates the liquid sample in the IR cell from the pressure transducing medium. Two electromagnetic switching valves in the setup enable pressure jumps with a decay time of 4ms. The FTIR spectrometer is configured to measure time resolved spectra in the millisecond time regime using the rapid scan mode. All components are computer controlled. For a demonstration of the capability of the method first results on the kinetics of a phase transition between two lamellar phases of an aqueous phospholipid dispersion are presented. This combination of FTIR spectroscopy with the pressure jump relaxation technique can also be used for other systems which display cooperative transitions with concomitant volume changes.

  16. Structure-activity relationships for novel drug precursor N-substituted-6-acylbenzothiazolon derivatives: A theoretical approach

    NASA Astrophysics Data System (ADS)

    Sıdır, Yadigar Gülseven; Sıdır, İsa

    2013-08-01

    In this study, the twelve new modeled N-substituted-6-acylbenzothiazolon derivatives having analgesic analog structure have been investigated by quantum chemical methods using a lot of electronic parameters and structure-activity properties; such as molecular polarizability (α), dipole moment (μ), EHOMO, ELUMO, q-, qH+, molecular volume (Vm), ionization potential (IP), electron affinity (EA), electronegativity (χ), molecular hardness (η), molecular softness (S), electrophilic index (ω), heat of formation (HOF), molar refractivity (MR), octanol-water partition coefficient (log P), thermochemical properties (entropy (S), capacity of heat (Cv)); as to investigate activity relationships with molecular structure. The correlations of log P with Vm, MR, ω, EA, EHOMO - ELUMO (ΔE), HOF in aqueous phase, χ, μ, S, η parameters, respectively are obtained, while the linear relation of log P with IP, Cv, HOF in gas phase are not observed. The log P parameter is obtained to be depending on different properties of compounds due to their complexity.

  17. Ultrasonic-energy enhance the ionic liquid-based dual microextraction to preconcentrate the lead in ground and stored rain water samples as compared to conventional shaking method.

    PubMed

    Nizamani, Sooraj; Kazi, Tasneem G; Afridi, Hassan I

    2018-01-01

    An efficient preconcentration technique based on ultrasonic-assisted ionic liquid-based dual microextraction (UA-ILDµE) method has been developed to preconcentrate the lead (Pb +2 ) in ground and stored rain water. In the current proposed method, Pb +2 was complexed with a chelating agent (dithizone), whereas an ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) was used for extraction purpose. The ultrasonic irradiation and electrical shaking system were applied to enhance the dispersion and extraction of Pb +2 complex in aqueous samples. For second phase, dual microextraction (DµE phase), the enriched Pb +2 complex in ionic liquid, extracted back into the acidic aqueous solution and finally determined by flame atomic absorption spectrometry. Some major analytical parameters that influenced the extraction efficiency of developed method, such as pH, concentration of ligand, volume of ionic liquid and samples, time of shaking in thermostatic electrical shaker and ultrasonic bath, effect of back extracting HNO 3 volume, matrix effect, centrifugation time and rate were optimized. At the sample volume of 25mL, the calculated preconcentration factor was 62.2. The limit of detection of proposed procedure for Pb +2 ions was found to be 0.54μgL -1 . The validation of developed method was performed by the analysis of certified sample of water SRM 1643e and standard addition method in a real water sample. The extraction recovery of Pb +2 was enhanced≥2% with shaking time of 80s in ultrasonic bath as compared to used thermostatic electrical shaker, where for optimum recovery up to 10min was required. The developed procedure was successfully used for the enrichment of Pb +2 in ground and stored rain water (surface water) samples of an endemic region of Pakistan. The resulted data indicated that the ground water samples were highly contaminated with Pb +2 , while some of the surface water samples were also have higher values of Pb +2 than permissible limit of WHO. The concentration of Pb +2 in surface and ground water samples was found in the range of 17.5-24.5 and 25.6-99.1μgL - 1 respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Sorption of carboxylic acid from carboxylic salt solutions at pHs close to or above the pK[sub a] of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine

    DOEpatents

    King, C.J.; Tung, L.A.

    1992-07-21

    Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH[sub a] into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. The acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carboxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia. 8 figs.

  19. Method for selectively reducing plutonium values by a photochemical process

    DOEpatents

    Friedman, Horace A.; Toth, Louis M.; Bell, Jimmy T.

    1978-01-01

    The rate of reduction of Pu(IV) to Pu(III) in nitric acid solution containing a reducing agent is enhanced by exposing the solution to 200-500 nm electromagnetic radiation. Pu values are recovered from an organic extractant solution containing Pu(IV) values and U(VI) values by the method of contacting the extractant solution with an aqueous nitric acid solution in the presence of a reducing agent and exposing the aqueous solution to electromagnetic radiation having a wavelength of 200-500 nm. Under these conditions, Pu values preferentially distribute to the aqueous phase and U values preferentially distribute to the organic phase.

  20. Gas driven displacement in a Hele-Shaw cell with chemical reaction

    NASA Astrophysics Data System (ADS)

    White, Andrew; Ward, Thomas

    2011-11-01

    Injecting a less viscous fluid into a more viscous fluid produces instabilities in the form of fingering which grow radially from the less viscous injection point (Saffman & Taylor, Proc. R. Soc. Lon. A, 1958). For two non-reacting fluids in a radial Hele-Shaw cell the ability of the gas phase to penetrate the liquid phase is largely dependent on the gap height, liquid viscosity and gas pressure. In contrast combining two reactive fluids such as aqueous calcium hydroxide and carbon dioxide, which form a precipitate, presents a more complex but technically relevant system. As the two species react calcium carbonate precipitates and increases the aqueous phase visocosity. This change in viscosity may have a significant impact on how the gas phase penetrates the liquid phase. Experimental are performed in a radial Hele-Shaw cell with gap heights O(10-100) microns by loading a single drop of aqueous calcium hydroxide and injecting carbon dioxide into the drop. The calcium hydroxide concentration, carbon dioxide pressure and gap height are varied and images of the gas penetration are analyzed to determine residual film thickness and bursting times.

  1. Recovery of high-purity silver directly from dilute effluents by an emulsion liquid membrane-crystallization process.

    PubMed

    Tang, Bing; Yu, Guojun; Fang, Jianzhang; Shi, Taihong

    2010-05-15

    An emulsion liquid membrane (ELM)-crystallization process, using hypophosphorous acid as a reducing agent in the internal aqueous phase, has been developed for the purpose of recovering high-purity silver directly from dilute industrial effluents (waste rinse water). After pretreatment with HNO(3), silver in waste rinse water can be reliably recovered with high efficiency through the established process. The main parameters in the process of ELM-crystallization include the concentration of carrier in the membrane phase, the concentration of reducing agent in the internal aqueous phase, and the treatment ratio, which influence the recovery efficiency to various extents and must be controlled carefully. The results indicated that more than 99.5% (wt.) of the silver ions in the external aqueous phase were extracted by the ELM-crystallization process, with an average efficiency of recovery of 99.24% (wt.) and a purity of 99.92% (wt.). The membrane phase can be used repeatedly without loss of the efficiency of recovery. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  2. Column Testing and 1D Reactive Transport Modeling to Evaluate Uranium Plume Persistence Processes

    NASA Astrophysics Data System (ADS)

    Johnson, R. H.; Morrison, S.; Morris, S.; Tigar, A.; Dam, W. L.; Dayvault, J.

    2015-12-01

    At many U.S. Department of Energy Office of Legacy Management sites, 100 year natural flushing was selected as a remedial option for groundwater uranium plumes. However, current data indicate that natural flushing is not occurring as quickly as expected and solid-phase and aqueous uranium concentrations are persistent. At the Grand Junction, Colorado office site, column testing was completed on core collected below an area where uranium mill tailings have been removed. The total uranium concentration in this core was 13.2 mg/kg and the column was flushed with laboratory-created water with no uranium and chemistry similar to the nearby Gunnison River. The core was flushed for a total of 91 pore volumes producing a maximum effluent uranium concentration of 6,110 μg/L at 2.1 pore volumes and a minimum uranium concentration of 36.2 μg/L at the final pore volume. These results indicate complex geochemical reactions at small pore volumes and a long tailing affect at greater pore volumes. Stop flow data indicate the occurrence of non-equilibrium processes that create uranium concentration rebound. These data confirm the potential for plume persistence, which is occurring at the field scale. 1D reactive transport modeling was completed using PHREEQC (geochemical model) and calibrated to the column test data manually and using PEST (inverse modeling calibration routine). Processes of sorption, dual porosity with diffusion, mineral dissolution, dispersion, and cation exchange were evaluated separately and in combination. The calibration results indicate that sorption and dual porosity are major processes in explaining the column test data. These processes are also supported by fission track photographs that show solid-phase uranium residing in less mobile pore spaces. These procedures provide valuable information on plume persistence and secondary source processes that may be used to better inform and evaluate remedial strategies, including natural flushing.

  3. Lyotropic Phase Behavior of Polybutadiene-Poly(ethylene oxide) Diblock Copolymers in Ionic Liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simone, Peter M.; Lodge, Timothy P.

    2008-08-26

    The lyotropic phase behavior of three poly(1,2-butadiene-b-ethylene oxide) diblock copolymers (PB-PEO) with different monomer volume fractions has been studied in two different ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMI][PF{sub 6}]), across the complete concentration range. The ordered microstructures present in the solutions were characterized via small-angle X-ray scattering (SAXS). The phase diagrams for the PB-PEO/ionic liquid solutions include regions corresponding to the classical copolymer microstructures: body-centered-cubic lattices of spheres, hexagonally ordered cylinders, and lamellae. Additionally, the phase diagrams also include wide regions of coexisting microstructures and regions apparently corresponding to a disordered network microstructure. The phase behavior ofmore » the PB-PEO copolymers in both ionic liquids was comparable to their previously reported aqueous solution behavior. The temperature dependence of the phase diagrams was very modest, indicative of a highly segregated system. The level of solvent selectivity was also investigated via cryogenic transmission electron microscopy (cryo-TEM) on dilute solutions. On the basis of the morphology of the dilute solution copolymer aggregate structures in the ionic liquid solvents, and on the structural length scales of the concentrated solutions, it was concluded that for PB-PEO [BMI][PF{sub 6}] behaves as a more selective solvent than [EMI][TFSI].« less

  4. Thermochemistry analyses for transformation of C6 glucose compound into C9, C12 and C15 alkanes using density functional theory

    NASA Astrophysics Data System (ADS)

    Verma, Anand Mohan; Kishore, Nanda

    2017-02-01

    The hydrolysis of cellulose fraction of biomass yields C6 glucose which further can be transformed into long-chain hydrocarbons by C-C coupling. In this study, C6 glucose is transformed into three chain alkanes, namely, C9, C12 and C15 using C-C coupling reactions under the gas and aqueous phase milieus. The geometry optimisation and vibrational frequency calculations are carried out at well-known hybrid-GGA functional, B3LYP with the basis set of 6-31+g(d,p) under the density functional theory framework. The single point energetics are calculated at M05-2X/6-311+g(3df,2p) level of theory. All thermochemical properties are calculated over a wide range of temperature between 300 and 900 K at an interval of 100 K. The thermochemistry suggested that the aqueous phase behaviour is suitable for the hydrolysis of sugar into long-chain alkanes compared to gas-phase environment. The hydrodeoxygenation reactions under each reaction pathway are found as most favourable reactions in both phases; however, aqueous phase dominates over gas phase in all discussed thermodynamic parameters.

  5. Temperature-Induced Protein Release from Water-in-Oil-in-Water Double Emulsions

    PubMed Central

    Rojas, Edith C.; Staton, Jennifer A.; John, Vijay T.; Papadopoulos, Kyriakos D.

    2009-01-01

    A model water-in-oil-in-water (W1/O/W2) double emulsion was prepared by a two-step emulsification procedure and subsequently subjected to temperature changes that caused the oil phase to freeze and thaw while the two aqueous phases remained liquid. Our previous work on individual double-emulsion globules1 demonstrated that crystallizing the oil phase (O) preserves stability, while subsequent thawing triggers coalescence of the droplets of the internal aqueous phase (W1) with the external aqueous phase (W2), termed external coalescence. Activation of this instability mechanism led to instant release of fluorescently tagged bovine serum albumin (fluorescein isothiocyanate (FITC)-BSA) from the W1 droplets and into W2. These results motivated us to apply the proposed temperature-induced globule-breakage mechanism to bulk double emulsions. As expected, no phase separation of the emulsion occurred if stored at temperatures below 18 °C (freezing point of the model oil n-hexadecane), whereas oil thawing readily caused instability. Crucial variables were identified during experimentation, and found to greatly influence the behavior of bulk double emulsions following freeze-thaw cycling. Adjustment of these variables accounted for a more efficient release of the encapsulated protein. PMID:18543998

  6. Separation and recycling of nanoparticles using cloud point extraction with non-ionic surfactant mixtures.

    PubMed

    Nazar, Muhammad Faizan; Shah, Syed Sakhawat; Eastoe, Julian; Khan, Asad Muhammad; Shah, Afzal

    2011-11-15

    A viable cost-effective approach employing mixtures of non-ionic surfactants Triton X-114/Triton X-100 (TX-114/TX-100), and subsequent cloud point extraction (CPE), has been utilized to concentrate and recycle inorganic nanoparticles (NPs) in aqueous media. Gold Au- and palladium Pd-NPs have been pre-synthesized in aqueous phases and stabilized by sodium 2-mercaptoethanesulfonate (MES) ligands, then dispersed in aqueous non-ionic surfactant mixtures. Heating the NP-micellar systems induced cloud point phase separations, resulting in concentration of the NPs in lower phases after the transition. For the Au-NPs UV/vis absorption has been used to quantify the recovery and recycle efficiency after five repeated CPE cycles. Transmission electron microscopy (TEM) was used to investigate NP size, shape, and stability. The results showed that NPs are preserved after the recovery processes, but highlight a potential limitation, in that further particle growth can occur in the condensed phases. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Drop mass transfer in a microfluidic chip compared to a centrifugal contactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemer, Martin B.; Roberts, Christine C.; Hughes, Lindsey G.

    2014-06-13

    A model system was developed for enabling a multiscale understanding of centrifugal-contactor liquid–liquid extraction.The system consisted of Nd(III) + xylenol orange in the aqueous phase buffered to pH =5.5 by KHP, and dodecane + thenoyltrifluroroacetone (HTTA) + tributyphosphate (TBP) in the organic phase. Diffusion constants were measured for neodymium in both the organic and aqueous phases, and the Nd(III) partition coefficients were measured at various HTTA and TBP concentrations. A microfluidic channel was used as a high-shear model environment to observe mass-transfer on a droplet scale with xylenol orange as the aqueous-phase metal indicator; mass-transfer rates were measured quantitatively inmore » both diffusion and reaction limited regimes on the droplet scale. Lastly, the microfluidic results were comparable to observations made for the same system in a laboratory scale liquid–liquid centrifugal contactor, indicating that single drop microfluidic experiments can provide information on mass transfer in complicated flows and geometries.« less

  8. Computer modeling of the mineralogy of the Martian surface, as modified by aqueous alteration

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Bourcier, W. L.; Gooding, J. L.

    1988-01-01

    Mineralogical constraints can be placed on the Martian surface by assuming chemical equilibria among the surface rocks, atmosphere and hypothesized percolating groundwater. A study was made of possible Martian surface mineralogy, as modified by the action of aqueous alteration, using the EQ3/6 computer codes. These codes calculate gas fugacities, aqueous speciation, ionic strength, pH, Eh and concentration and degree of mineral saturation for complex aqueous systems. Thus, these codes are also able to consider mineralogical solid solutions. These codes are able to predict the likely alteration phases which will occur as the result of weathering on the Martian surface. Knowledge of the stability conditions of these phases will then assist in the definition of the specifications for the sample canister of the proposed Martian sample return mission. The model and its results are discussed.

  9. Electrochemical ion transfer across liquid/liquid interfaces confined within solid-state micropore arrays--simulations and experiments.

    PubMed

    Strutwolf, Jörg; Scanlon, Micheál D; Arrigan, Damien W M

    2009-01-01

    Miniaturised liquid/liquid interfaces provide benefits for bioanalytical detection with electrochemical methods. In this work, microporous silicon membranes which can be used for interface miniaturisation were characterized by simulations and experiments. The microporous membranes possessed hexagonal arrays of pores with radii between 10 and 25 microm, a pore depth of 100 microm and pore centre-to-centre separations between 99 and 986 microm. Cyclic voltammetry was used to monitor ion transfer across arrays of micro-interfaces between two immiscible electrolyte solutions (microITIES) formed at these membranes, with the organic phase present as an organogel. The results were compared to computational simulations taking into account mass transport by diffusion and encompassing diffusion to recessed interfaces and overlapped diffusion zones. The simulation and experimental data were both consistent with the situation where the location of the liquid/liquid (l/l) interface was on the aqueous side of the silicon membrane and the pores were filled with the organic phase. While the current for the forward potential scan (transfer of the ion from the aqueous phase to the organic phase) was strongly dependent on the location of the l/l interface, the current peak during the reverse scan (transfer of the ion from the organic phase to the aqueous phase) was influenced by the ratio of the transferring ion's diffusion coefficients in both phases. The diffusion coefficient of the transferring ion in the gelified organic phase was ca. nine times smaller than in the aqueous phase. Asymmetric cyclic voltammogram shapes were caused by the combined effect of non-symmetrical diffusion (spherical and linear) and by the inequality of the diffusion coefficient in both phases. Overlapping diffusion zones were responsible for the observation of current peaks instead of steady-state currents during the forward scan. The characterisation of the diffusion behaviour is an important requirement for application of these silicon membranes in electroanalytical chemistry.

  10. Non-aqueous solution preparation of doped and undoped lixmnyoz

    DOEpatents

    Boyle, Timothy J.; Voigt, James A.

    1997-01-01

    A method for generation of phase-pure doped and undoped Li.sub.x Mn.sub.y O.sub.z precursors. The method of this invention uses organic solutions instead of aqueous solutions or nonsolution ball milling of dry powders to produce phase-pure precursors. These precursors can be used as cathodes for lithium-polymer electrolyte batteries. Dopants may be homogeneously incorporated to alter the characteristics of the powder.

  11. Ruthenium on rutile catalyst, catalytic system, and method for aqueous phase hydrogenations

    DOEpatents

    Elliot, Douglas C.; Werpy, Todd A.; Wang, Yong; Frye, Jr., John G.

    2001-01-01

    An essentially nickel- and rhenium-free catalyst is described comprising ruthenium on a titania support where the titania is greater than 75% rutile. A catalytic system containing a nickel-free catalyst comprising ruthenium on a titania support where the titania is greater than 75% rutile, and a method using this catalyst in the hydrogenation of an organic compound in the aqueous phase is also described.

  12. Neurostimulation of the Lacrimal Nerve for Enhanced Tear Production

    PubMed Central

    Kossler, Andrea L.; Wang, Jianhua; Feuer, William; Tse, David T.

    2014-01-01

    Purpose To design a proof-of-concept study to assess the effect of lacrimal nerve stimulation (LNS) with an implantable pulse generator (IPG) to increase aqueous tear production. Methods Experimental animal study design of six Dutch Belted rabbits. Ultra high-resolution optical coherence tomography (UHR-OCT) quantified tear production by measuring the baseline tear volume of each rabbit’s right and left eye. A neurostimulator was implanted adjacent to the right lacrimal nerve. After two minutes of LNS (100 μs, 1.6 mAmp, 20 Hz, 5–8 volts), the tear volumes were measured with UHR-OCT. The change in tear volume was quantified and compared to the non-stimulated left eye. Three rabbits underwent chronic LNS (100 μS, 1.6 mAmp, 10 Hz, 2 volts) and their lacrimal glands were harvested for histopathologic analysis. Results UHR-OCT imaging of the right eyes tear volume showed a 441% average increase in tear production after LNS as a percent of baseline. After stimulation, right eyes had statistically significant greater increase in tear volumes than left eyes (p=0.028, Wilcoxon test). Post-stimulation right eye tear volumes were significantly greater compared to baseline (p=0.028, Wilcoxon test). Histopathologic examination of the lacrimal glands showed no discernible tissue damage from chronic neurostimulation. Additionally, there were no gross adverse effects on the general well-beings of the animals due to chronic stimulation. Conclusions Lacrimal nerve stimulation with an implantable pulse generator appears to increase aqueous tear production. Chronic LNS showed no histopathologic lacrimal gland damage. This study suggests LNS is a promising new treatment strategy to increase aqueous tear production. PMID:25126767

  13. Volume Exclusion and H-Bonding Dominate the Thermodynamics and Solvation of Trimethylamine-N-oxide in Aqueous Urea

    PubMed Central

    2012-01-01

    Trimethylamine-N-oxide (TMAO) and urea represent the extremes among the naturally occurring organic osmolytes in terms of their ability to stabilize/destabilize proteins. Their mixtures are found in nature and have generated interest in terms of both their physiological role and their potential use as additives in various applications (crystallography, drug formulation, etc.). Here we report experimental density and activity coefficient data for aqueous mixtures of TMAO with urea. From these data we derive the thermodynamics and solvation properties of the osmolytes, using Kirkwood–Buff theory. Strong hydrogen-bonding at the TMAO oxygen, combined with volume exclusion, accounts for the thermodynamics and solvation of TMAO in aqueous urea. As a result, TMAO behaves in a manner that is surprisingly similar to that of hard-spheres. There are two mandatory solvation sites. In plain water, these sites are occupied with water molecules, which are seamlessly replaced by urea, in proportion to its volume fraction. We discuss how this result gives an explanation both for the exceptionally strong exclusion of TMAO from peptide groups and for the experimentally observed synergy between urea and TMAO. PMID:22280147

  14. Optimization of Design Parameters and Operating Conditions of Electrochemical Capacitors for High Energy and Power Performance

    NASA Astrophysics Data System (ADS)

    Ike, Innocent S.; Sigalas, Iakovos; Iyuke, Sunny E.

    2017-03-01

    Theoretical expressions for performance parameters of different electrochemical capacitors (ECs) have been optimized by solving them using MATLAB scripts as well as via the MATLAB R2014a optimization toolbox. The performance of the different kinds of ECs under given conditions was compared using theoretical equations and simulations of various models based on the conditions of device components, using optimal values for the coefficient associated with the battery-kind material ( K BMopt) and the constant associated with the electrolyte material ( K Eopt), as well as our symmetric electric double-layer capacitor (EDLC) experimental data. Estimation of performance parameters was possible based on values for the mass ratio of electrodes, operating potential range ratio, and specific capacitance of electrolyte. The performance of asymmetric ECs with suitable electrode mass and operating potential range ratios using aqueous or organic electrolyte at appropriate operating potential range and specific capacitance was 2.2 and 5.56 times greater, respectively, than for the symmetric EDLC and asymmetric EC using the same aqueous electrolyte, respectively. This enhancement was accompanied by reduced cell mass and volume. Also, the storable and deliverable energies of the asymmetric EC with suitable electrode mass and operating potential range ratios using the proper organic electrolyte were 12.9 times greater than those of the symmetric EDLC using aqueous electrolyte, again with reduced cell mass and volume. The storable energy, energy density, and power density of the asymmetric EDLC with suitable electrode mass and operating potential range ratios using the proper organic electrolyte were 5.56 times higher than for a similar symmetric EDLC using aqueous electrolyte, with cell mass and volume reduced by a factor of 1.77. Also, the asymmetric EDLC with the same type of electrode and suitable electrode mass ratio, working potential range ratio, and proper organic electrolyte showed enhanced performance compared with the conventional symmetric EDLC using aqueous electrolyte, with reduced cell mass and volume. These results can obviously reduce the number of experiments required to determine the optimum manufacturing design for ECs and also demonstrate that use of an asymmetric electrode and organic electrolyte was very successful for improving the performance of the EC, with reduced cell mass and volume. These results can also act as guidelines for design, fabrication, and operation of electrochemical capacitors with outstanding storable energy, energy density, and power density.

  15. Test plan for Geo-Cleanse{reg_sign} demonstration (in situ destruction of dense non-aqueous phase liquid (DNAPL))

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerome, K.M.; Looney, B.B.; Accorsi, F.

    1996-09-01

    Soils and groundwater beneath an abandoned process sewer line in the A/M Area of the Savannah River Site (SRS) contain elevated levels of volatile organic compounds, specifically trichloroethylene (TCE) and tetrachloroethylene (PCE), two common chlorinated solvents. These compounds have low aqueous solubilities, thus when released to the subsurface in sufficient quantity, tend to exist as immiscible fluids or nonaqueous phase liquids (NAPLs). Because chlorinated solvents are also denser than water, they are referred to by the acronym DNAPLs, or dense non-aqueous phase liquids. Technologies targeted at the efficient characterization or removal of DNAPL are not currently proven. For example, mostmore » DNAPL studies rely on traditional soil and water sampling and the fortuitous observation of immiscible solvent. Once DNAPL is identified, soil excavation (which is only applicable to small contained spill sites) is the only proven cleanup method. New cleanup approaches based on destruction of DNAPL either in situ or ex situ have been proposed and tested at the pilot scale. The proposed demonstration, as described in this report will evaluate the applicability to DNAPL plumes of a technology proven for in situ destruction of light non-aqueous phase liquids (LNAPLs) such as oils.« less

  16. In situ observation of sol-gel transition of agarose aqueous solution by fluorescence measurement.

    PubMed

    Wang, Zheng; Yang, Kun; Li, Haining; Yuan, Chaosheng; Zhu, Xiang; Huang, Haijun; Wang, Yongqiang; Su, Lei; Fang, Yapeng

    2018-06-01

    Sol-gel transition behavior of agarose aqueous solution was investigated by using rheology and fluorescence measurement. On heating, the storage modulus G' decreased gradually, then deviated abruptly at the temperature of about 65°C, and finally decreased slowly again. For fluorescence measurement, the phase transition point kept almost at the temperature of 65°C, which was consistent with that in rheology measurement. Upon compression, it was indicated that the fluorescence lifetime for the probe in the agarose aqueous solution showed a dramatic change in the vicinity of the phase transition point. T vs. P phase diagram of agarose aqueous solution was constructed, which showed that the melting point was an increasing function of pressure. Based on the phase diagram, the agarose gels were prepared by cooling under atmospheric pressure and the pressure of 300MPa, respectively. From the result of the recovered samples studied by optical rheometry, it was found that agarose gel prepared under high pressure had a higher elasticity and lower viscosity index, compared with that under atmospheric pressure. It could be speculated that such kinds of properties might be attributed to the smaller pore size during gelation under high pressure. Copyright © 2018. Published by Elsevier B.V.

  17. Organic contamination of ground water at Gas Works Park, Seattle, Washington

    USGS Publications Warehouse

    Turney, G.L.; Goerlitz, D.F.

    1990-01-01

    Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on-site. The park soil is currently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the ground water. Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in ground water samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where ground water was in contact with a non-aqueous phase liquid in the soil. Where no non-aqueous phase liquid was present, concentrations were much smaller, even if the ground water was in contact with contaminated soils. This condition is attributed to weathering processes in which soluble, low-molecular-weight organic compounds are preferentially dissolved from the non-aqueous phase liquid into the ground water. Where no non-aqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain. Concentrations of organic contaminants in the soils may still remain large.

  18. Ionization energies of aqueous nucleic acids: photoelectron spectroscopy of pyrimidine nucleosides and ab initio calculations.

    PubMed

    Slavícek, Petr; Winter, Bernd; Faubel, Manfred; Bradforth, Stephen E; Jungwirth, Pavel

    2009-05-13

    Vertical ionization energies of the nucleosides cytidine and deoxythymidine in water, the lowest ones amounting in both cases to 8.3 eV, are obtained from photoelectron spectroscopy measurements in aqueous microjets. Ab initio calculations employing a nonequilibrium polarizable continuum model quantitatively reproduce the experimental spectra and provide molecular interpretation of the individual peaks of the photoelectron spectrum, showing also that lowest ionization originates from the base. Comparison of calculated vertical ionization potentials of pyrimidine bases, nucleosides, and nucleotides in water and in the gas phase underlines the dramatic effect of bulk hydration on the electronic structure. In the gas phase, the presence of sugar and, in particular, of phosphate has a strong effect on the energetics of ionization of the base. Upon bulk hydration, the ionization potential of the base in contrast becomes rather insensitive to the presence of the sugar and phosphate, which indicates a remarkable screening ability of the aqueous solvent. Accurate aqueous-phase vertical ionization potentials provide a significant improvement to the corrected gas-phase values used in the literature and represent important information in assessing the threshold energies for photooxidation and oxidation free energies of solvent-exposed DNA components. Likewise, such energetic data should allow improved assessment of delocalization and charge-hopping mechanisms in DNA ionized by radiation.

  19. Photo-oxidation of Nitrophenols in the Aqueous Phase: Reaction Kinetics, Mechanistic Insights, and Evolution of Light Absorption

    NASA Astrophysics Data System (ADS)

    Hems, R.; Abbatt, J.

    2017-12-01

    Nitrophenols are a class of water soluble, light absorbing compounds which can make up a significant fraction of biomass burning brown carbon. The atmospheric lifetime and aging of these compounds can have important implications for their impact on climate through the aerosol direct effect. Recent studies have shown that brown carbon aerosols can be bleached of their colour by direct photolysis and photo-oxidation reactions on the timescale of hours to days. However, during aqueous phase photo-oxidation of nitrophenol compounds light absorption is sustained or enhanced, even after the parent nitrophenol molecule has been depleted. In this work, we use online aerosol chemical ionization mass spectrometry (aerosol-CIMS) to investigate the aqueous phase photo-oxidation mechanism and determine the second order rate constants for the reaction of OH radicals with three commonly detected nitrophenol compounds: nitrocatechol, nitroguaiacol, and dinitrophenol. These nitrophenol compounds are found to have aqueous phase lifetimes with respect to oxidation by the OH radical ranging between 5 - 11 hours. Our results indicate that functionalization of the parent nitrophenol molecule by addition of hydroxyl groups leads to the observed absorption enhancement. Further photo-oxidation forms breakdown products that no longer absorb significantly in the visible light range.

  20. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification

    PubMed Central

    Choi, Dongwhi; Lee, Donghyeon; Sung Kim, Dong

    2015-01-01

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two–phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid–liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability. PMID:26462437

  1. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification.

    PubMed

    Choi, Dongwhi; Lee, Donghyeon; Kim, Dong Sung

    2015-10-14

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two-phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid-liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability.

  2. Hydrothermal upgrading of algae paste: Inorganics and recycling potential in the aqueous phase.

    PubMed

    Patel, Bhavish; Guo, Miao; Chong, Chinglih; Sarudin, Syazwani Hj Mat; Hellgardt, Klaus

    2016-10-15

    Hydrothermal Liquefaction (HTL) for algal biomass conversion is a promising technology capable of producing high yields of biocrude as well as partitioning even higher quantity of nutrients in the aqueous phase. To assess the feasibility of utilizing the aqueous phase, HTL of Nannochloropsis sp. was carried out in the temperature range of 275 to 350°C and Residence Times (RT) ranging between 5 and 60min The effect of reaction conditions on the NO3(-),PO4(3-),SO4(2-),Cl(-),Na(+),andK(+) ions as well as Chemical Oxygen Demand (COD) and pH was investigated with view of recycling the aqueous phase for either cultivation or energy generation via Anaerobic Digestion (AD), quantified via Lifecycle Assessment (LCA). It addition to substantial nutrient partitioning at short RT, an increase in alkalinity to almost pH10 and decrease in COD at longer RT was observed. The LCA investigation found reaction conditions of 275°C/30min and 350°C/10min to be most suitable for nutrient and energy recovery but both processing routes offer environmental benefit at all reaction conditions, however recycling for cultivation has marginally better environmental credentials compared to AD. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. In-cloud multiphase behaviour of acetone in the troposphere: gas uptake, Henry's law equilibrium and aqueous phase photooxidation.

    PubMed

    Poulain, Laurent; Katrib, Yasmine; Isikli, Estelle; Liu, Yao; Wortham, Henri; Mirabel, Philippe; Le Calvé, Stéphane; Monod, Anne

    2010-09-01

    Acetone is ubiquitous in the troposphere. Several papers have focused in the past on its gas phase reactivity and its impact on tropospheric chemistry. However, acetone is also present in atmospheric water droplets where its behaviour is still relatively unknown. In this work, we present its gas/aqueous phase transfer and its aqueous phase photooxidation. The uptake coefficient of acetone on water droplets was measured between 268 and 281K (γ=0.7 x 10(-2)-1.4 x 10(-2)), using the droplet train technique coupled to a mass spectrometer. The mass accommodation coefficient α (derived from γ) was found in the range (1.0-3.0±0.25) x 10(-2). Henry's law constant of acetone was directly measured between 283 and 298K using a dynamic equilibrium system (H((298K))=(29±5)Matm(-1)), with the Van't Hoff expression lnH(T)=(5100±1100)/T-(13.4±3.9). A recommended value of H was suggested according to comparison with literature. The OH-oxidation of acetone in the aqueous phase was carried out at 298K, under two different pH conditions: at pH=2, and under unbuffered conditions. In both cases, the formation of methylglyoxal, formaldehyde, hydroxyacetone, acetic acid/acetate and formic acid/formate was observed. The formation of small amounts of four hydroperoxides was also detected, and one of them was identified as peroxyacetic acid. A drastic effect of pH was observed on the yields of formaldehyde, one hydroperoxide, and, (to a lesser extent) acetic acid/acetate. Based on the experimental observations, a chemical mechanism of OH-oxidation of acetone in the aqueous phase was proposed and discussed. Atmospheric implications of these findings were finally discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Partial molar volume of anionic polyelectrolytes in aqueous solution.

    PubMed

    Salamanca, Constain; Contreras, Martín; Gamboa, Consuelo

    2007-05-15

    In this work the partial molar volumes (V) of different anionic polyelectrolytes and hydrophobically modified polyelectrolytes (PHM) were measured. Polymers like polymaleic acid-co-styrene, polymaleic acid-co-1-olefin, polymaleic acid-co-vinyl-2-pyrrolidone, and polyacrylic acid (abbreviated as MAS-n, PA-n-K2, AMVP, and PAA, respectively) were employed. These materials were investigated by density measurements in highly dilute aqueous solutions. The molar volume results allow us to discuss the effect of the carboxylic groups and the contributions from the comonomeric principal chain. The PAA presents the smaller V, while the largest V value was for AMVP. The V of PHM shows a linear relationship with the number of methylene groups in the lateral chain. It is found that the magnitude of the contribution per methylene group decreases as the hydrophobic character of the environment increases.

  5. Behaviour of emerging contaminants in sewage sludge after anaerobic digestion.

    PubMed

    Boix, C; Ibáñez, M; Fabregat-Safont, D; Morales, E; Pastor, L; Sancho, J V; Sánchez-Ramírez, J E; Hernández, F

    2016-11-01

    Nowadays, there is an increasing concern over the presence of contaminants in the aquatic environment, where they can be introduced from wastewater after their incomplete removal in the treatment plants. In this work, degradation of selected emerging pollutants in the aqueous and solid phases of sewage sludge has been investigated after anaerobic digestion using two different digesters: mesophilic and thermophilic. Initially, sludge samples were screened by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS) for identification of emerging contaminants in the samples. In a second step, a target quantitative method based on LC coupled to tandem MS was applied for selected pollutants identified in the previous screening. The behaviour of the compounds under anaerobic conditions was studied estimating the degradation efficiency and distribution of compounds between both sludge phases. Irbesartan and benzoylecgonine seemed to be notably degraded in both phases of the sludge. Venlafaxine showed a significant concentration decrease in the aqueous phase in parallel to an increase in the solid phase. The majority of the compounds showed an increase of their concentrations in both phases after the digestion. Concentrations in the solid phase were commonly higher than in the aqueous for most contaminants, indicating that they were preferentially adsorbed onto the solid particles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Comparative study of alkylthiols and alkylamines for the phase transfer of gold nanoparticles from an aqueous phase to n-hexane.

    PubMed

    Li, Lingxiangyu; Leopold, Kerstin; Schuster, Michael

    2013-05-01

    An efficient ligand-assisted phase transfer method has been developed to transfer gold nanoparticles (Au-NPs, d: 5-25 nm) from an aqueous solution to n-hexane. Four different ligands, namely 1-dodecanethiol (DDT), 1-octadecanethiol (ODT), dodecylamine (DDA), and octadecylamine (ODA) were investigated, and DDT was found to be the most efficient ligand. It appears that the molar ratio of DDT to Au-NPs is a critical factor affecting the transfer efficiency, and 270-310 is found to be the optimum range, under which the transfer efficiency is >96%. Moreover, the DDT-assisted phase transfer can preserve the shape and size of the Au-NPs, which was confirmed by UV-vis spectra and transmission electron microscopy (TEM). Additionally, the transferred Au-NPs still can be well dispersed in the n-hexane phase and remain stable for at least 2 weeks. On the other hand, the ODT-, DDA-, and ODA-assisted phase transfer is fraught with problems either related to transfer efficiency or NPs aggregation. Overall, the DDT-assisted phase transfer of Au-NPs provides a rapid and efficient method to recover Au-NPs from an aqueous solution to n-hexane. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Zwitterionic, cationic, and anionic fluorinated chemicals in aqueous film forming foam formulations and groundwater from U.S. military bases by nonaqueous large-volume injection HPLC-MS/MS.

    PubMed

    Backe, Will J; Day, Thomas C; Field, Jennifer A

    2013-05-21

    A new analytical method was developed to quantify 26 newly-identified and 21 legacy (e.g. perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, and fluorotelomer sulfonates) per and polyfluorinated alkyl substances (PFAS) in groundwater and aqueous film forming foam (AFFF) formulations. Prior to analysis, AFFF formulations were diluted into methanol and PFAS in groundwater were micro liquid-liquid extracted. Methanolic dilutions of AFFF formulations and groundwater extracts were analyzed by large-volume injection (900 μL) high-performance liquid chromatography tandem mass spectrometry. Orthogonal chromatography was performed using cation exchange (silica) and anion exchange (propylamine) guard columns connected in series to a reverse-phase (C18) analytical column. Method detection limits for PFAS in groundwater ranged from 0.71 ng/L to 67 ng/L, and whole-method accuracy ranged from 96% to 106% for analytes for which matched authentic analytical standards were available. For analytes without authentic analytical standards, whole-method accuracy ranged from 78 % to 144 %, and whole-method precision was less than 15 % relative standard deviation for all analytes. A demonstration of the method on groundwater samples from five military bases revealed eight of the 26 newly-identified PFAS present at concentrations up to 6900 ng/L. The newly-identified PFAS represent a minor fraction of the fluorinated chemicals in groundwater relative to legacy PFAS. The profiles of PFAS in groundwater differ from those found in fluorotelomer- and electrofluorination-based AFFF formulations, which potentially indicates environmental transformation of PFAS.

  8. Simultaneous extraction and preconcentration of uranium and thorium in aqueous samples by new modified mesoporous silica prior to inductively coupled plasma optical emission spectrometry determination.

    PubMed

    Yousefi, Seyed Reza; Ahmadi, Seyed Javad; Shemirani, Farzaneh; Jamali, Mohammad Reza; Salavati-Niasari, Masoud

    2009-11-15

    A new synthesized modified mesoporous silica (MCM-41) using 5-nitro-2-furaldehyde (fural) was applied as an effective sorbent for the solid phase extraction of uranium(VI) and thorium(IV) ions from aqueous solution for the measurement by inductively coupled plasma optical emission spectrometry (ICP OES). The influences of some analytical parameters on the quantitative recoveries of the analyte ions were investigated in batch method. Under optimal conditions, the analyte ions were sorbed by the sorbent at pH 5.5 and then eluted with 1.0 mL of 1.0 mol L(-1) HNO(3). The preconcentration factor was 100 for a 100mL sample volume. The limits of detection (LOD) obtained for uranium(VI) and thorium(IV) were 0.3 microg L(-1). The maximum sorption capacity of the modified MCM-41 was found to be 47 and 49 mg g(-1) for uranium(VI) and thorium(IV), respectively. The sorbent exhibited good stability, reusability, high adsorption capacity and fast rate of equilibrium for sorption/desorption of uranium and thorium ions. The applicability of the synthesized sorbent was examined using CRM and real water samples.

  9. Synthesis of polydopamine-functionalized magnetic graphene and carbon nanotubes hybrid nanocomposites as an adsorbent for the fast determination of 16 priority polycyclic aromatic hydrocarbons in aqueous samples.

    PubMed

    Chen, Kun; Jin, Rongrong; Luo, Chen; Song, Guoxin; Hu, Yaoming; Cheng, Hefa

    2018-04-01

    A novel adsorbent made of polydopamine-functionalized magnetic graphene and carbon nanotubes hybrid nanocomposite was synthesized and applied to determine 16 priority polycyclic aromatic hydrocarbons by magnetic solid phase extraction in water samples. FTIR spectroscopy, transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy consistently indicate that the synthesized adsorbents are made of core-shell nanoparticles well dispersed on the surface of graphene and carbon nanotubes. The major factors affecting the extraction efficiency, including the pH value of samples, the amount of adsorbent, adsorption time and desorption time, type and volume of desorption solvent, were systematically optimized. Under the optimum extraction conditions, a linear response was obtained for polycyclic aromatic hydrocarbons between concentrations of 10 and 500 ng/L with the correlation coefficients ranging from 0.9958 to 0.9989, and the limits of detection (S/N = 3) were between 0.1 and 3.0 ng/L. Satisfactory results were also obtained when applying these magnetic graphene/carbon nanotubes/polydopamine hybrid nanocomposites to detect polycyclic aromatic hydrocarbons in several environmental aqueous samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ammonium fluoride as a mobile phase additive in aqueous normal phase chromatography.

    PubMed

    Pesek, Joseph J; Matyska, Maria T

    2015-07-03

    The use of ammonium fluoride as a mobile phase additive in aqueous normal phase chromatography with silica hydride-based stationary phases and mass spectrometry detection is evaluated. Retention times, peak shape, efficiency and peak intensity are compared to the more standard additives formic acid and ammonium formate. The test solutes were NAD, 3-hydroxyglutaric acid, α-ketoglutaric acid, p-aminohippuric acid, AMP, ATP, aconitic acid, threonine, N-acetyl carnitine, and 3-methyladipic acid. The column parameters are assessed in both the positive and negative ion detection modes. Ammonium fluoride is potentially an aggressive mobile phase additive that could have detrimental effects on column lifetime. Column reproducibility is measured and the effects of switching between different additives are also tested. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Preparation and physicochemical characteristics of polylactide microspheres of emamectin benzoate by modified solvent evaporation/extraction method.

    PubMed

    Zhang, Shao Fei; Chen, Peng Hao; Zhang, Fei; Yang, Yan Fang; Liu, De Kun; Wu, Gang

    2013-12-18

    Emamectin benzoate is highly effective against insect pests and widely used in the world. However, its biological activity is limited because of high resistance of target insects and rapid degradation speed in fields. Preparation and physicochemical characterization of degradable microcapsules of emamectin benzoate were studied by modified solvent evaporation/extraction method using polylactide (PLA) as wall material. The influence of different compositions of the solvent in internal organic phase and external aqueous phase on diameter, span, pesticide loading, and entrapment rate of the microspheres was investigated. The results indicated that the process of solvent extraction and the formation of the microcapsules would be accelerated by adding water-miscible organic solvents such as ethyl ether, acetone, ethyl acetate, or n-butanol into internal organic phase and external aqueous phase. Accelerated formation of the microcapsules would result in entrapment rates of emamectin benzoate increased to as high as 97%. In addition, by adding ethanol into the external aqueous phase, diameters would reduce to 6.28 μm, whereas the loading efficiency of emamectin benzoate did not increase. The PLA microspheres prepared under optimum conditions were smoother and more spherical. The degradation rate in PLA microspheres of emamectin benzoate on the 10th day was 4.29 ± 0.74%, whereas the degradation rates of emamectin benzoate in methanol solution and solid technical material were 46.3 ± 2.11 and 22.7 ± 1.51%, respectively. The PLA skeleton had combined with emamectin benzoate in an amorphous or molecular state by using differential scanning calorimetry (DSC) determination. The results indicated that PLA microspheres of emamectin benzoate with high entrapment rate, loading efficiency, and physicochemical characteristics could be obtained by adding water-miscible organic solvents into the internal organic phase and external aqueous phase.

  12. Chemical characterization of the main products formed through aqueous-phase photonitration of guaiacol

    NASA Astrophysics Data System (ADS)

    Kitanovski, Z.; Čusak, A.; Grgić, I.; Claeys, M.

    2014-08-01

    Guaiacol (2-methoxyphenol) and its derivatives can be emitted into the atmosphere by thermal degradation (i.e., burning) of wood lignins. Due to its volatility, guaiacol is predominantly distributed atmospherically in the gaseous phase. Recent studies have shown the importance of aqueous-phase reactions in addition to the dominant gas-phase and heterogeneous reactions of guaiacol, in the formation of secondary organic aerosol (SOA) in the atmosphere. The main objectives of the present study were to chemically characterize the main products of the aqueous-phase photonitration of guaiacol and examine their possible presence in urban atmospheric aerosols. The aqueous-phase reactions were carried out under simulated sunlight and in the presence of hydrogen peroxide and nitrite. The formed guaiacol reaction products were concentrated by solid-phase extraction and then purified with semi-preparative high-performance liquid chromatography (HPLC). The fractionated individual compounds were isolated as pure solids and further analyzed with liquid-state proton, carbon-13 and two-dimensional nuclear magnetic resonance (NMR) spectroscopy, and direct infusion negative ion electrospray ionization tandem mass spectrometry ((-)ESI-MS/MS). The NMR and product ion (MS2) spectra were used for unambiguous product structure elucidation. The main products of guaiacol photonitration are 4-nitroguaiacol (4NG), 6-nitroguaiacol (6NG), and 4,6-dinitroguaiacol (4,6DNG). Using the isolated compounds as standards, 4NG and 4,6DNG were unambiguously identified in winter PM10 aerosols from the city of Ljubljana (Slovenia) by means of HPLC/(-)ESI-MS/MS. Owing to the strong absorption of ultraviolet and visible light, 4,6DNG could be an important constituent of atmospheric "brown" carbon, especially in regions affected by biomass burning.

  13. Chemical characterization of the main secondary organic aerosol (SOA) products formed through aqueous-phase photonitration of guaiacol

    NASA Astrophysics Data System (ADS)

    Kitanovski, Z.; Čusak, A.; Grgić, I.; Claeys, M.

    2014-04-01

    Guaiacol (2-methoxyphenol) and its derivatives can be emitted into the atmosphere by thermal degradation (i.e. burning) of wood lignins. Due to its volatility, guaiacol is predominantly distributed in the atmospheric gaseous phase. Recent studies have shown the importance of aqueous-phase reactions in addition to the dominant gas-phase and heterogeneous reactions of guaiacol, in the formation of secondary organic aerosol (SOA) in the atmosphere. The main objectives of the present study were to chemically characterize the low-volatility SOA products of the aqueous-phase photonitration of guaiacol and examine their possible presence in urban atmospheric aerosols. The aqueous-phase reactions were carried out under simulated sunlight and in the presence of H2O2 and nitrite. The formed guaiacol reaction products were concentrated by using solid-phase extraction (SPE) and then purified by means of semi-preparative high-performance liquid chromatography (HPLC). The fractionated individual compounds were isolated as pure solids and further analyzed with liquid-state 1H, 13C and 2D nuclear magnetic resonance (NMR) spectroscopy and direct infusion negative ion electrospray ionization tandem mass spectrometry ((-)ESI-MS/MS). The NMR and product ion (MS2) spectra were used for unambiguous product structure elucidation. The main products of guaiacol photonitration are 4-nitroguaiacol (4NG), 6-nitroguaiacol (6NG), and 4,6-dinitroguaiacol (4,6DNG). Using the isolated compounds as standards, 4NG and 4,6DNG were unambiguously identified in winter PM10 aerosols from the city of Ljubljana (Slovenia) by means of HPLC/(-)ESI-MS/MS. Owing to the strong absorption of UV and visible light, 4,6DNG could be an important constituent of atmospheric "brown" carbon, especially in regions affected by biomass burning.

  14. Aerosol Delivery for Amendment Distribution in Contaminated Vadose Zones

    NASA Astrophysics Data System (ADS)

    Hall, R. J.; Murdoch, L.; Riha, B.; Looney, B.

    2011-12-01

    Remediation of contaminated vadose zones is often hindered by an inability to effectively distribute amendments. Many amendment-based approaches have been successful in saturated formations, however, have not been widely pursued when treating contaminated unsaturated materials due to amendment distribution limitations. Aerosol delivery is a promising new approach for distributing amendments in contaminated vadose zones. Amendments are aerosolized and injected through well screens. During injection the aerosol particles are transported with the gas and deposited on the surfaces of soil grains. Resulting distributions are radially and vertically broad, which could not be achieved by injecting pure liquid-phase solutions. The objectives of this work were A) to characterize transport and deposition behaviors of aerosols; and B) to develop capabilities for predicting results of aerosol injection scenarios. Aerosol transport and deposition processes were investigated by conducting lab-scale injection experiments. These experiments involved injection of aerosols through a 2m radius, sand-filled wedge. A particle analyzer was used to measure aerosol particle distributions with time, and sand samples were taken for amendment content analysis. Predictive capabilities were obtained by constructing a numerical model capable of simulating aerosol transport and deposition in porous media. Results from tests involving vegetable oil aerosol injection show that liquid contents appropriate for remedial applications could be readily achieved throughout the sand-filled wedge. Lab-scale tests conducted with aqueous aerosols show that liquid accumulation only occurs near the point of injection. Tests were also conducted using 200 g/L salt water as the aerosolized liquid. Liquid accumulations observed during salt water tests were minimal and similar to aqueous aerosol results. However, particles were measured, and salt deposited distal to the point of injection. Differences between aqueous and oil deposition are assumed to occur due to surface interactions, and susceptibility to evaporation of aqueous aerosols. Distal salt accumulation during salt water aerosol tests suggests that solid salt forms as salt water aerosols evaporate. The solid salt aerosols are less likely to deposit, so they travel further than aqueous aerosols. A numerical model was calibrated using results from lab-scale tests. The calibrated model was then used to simulate field-scale aerosol injection. Results from field-scale simulations suggest that effective radii of influence on the scale of 8-10 meters could be achieved in partially saturated sand. The aerosol delivery process appears to be capable distributing oil amendments over considerable volumes of formation at concentrations appropriate for remediation purposes. Thus far, evaporation has limited liquid accumulation observed when distributing aqueous aerosols, however, results from salt water experiments suggest that injection of solid phase aerosols can effectively distribute water soluble amendments (electron donor, pH buffer, oxidants, etc.). Utilization of aerosol delivery could considerably expand treatment options for contaminated vadose zones at a wide variety of sites.

  15. Modeling photodegradation kinetics of three systemic neonicotinoids-dinotefuran, imidacloprid, and thiamethoxam-in aqueous and soil environment.

    PubMed

    Kurwadkar, Sudarshan; Evans, Amanda; DeWinne, Dustan; White, Peter; Mitchell, Forrest

    2016-07-01

    Environmental presence and retention of commonly used neonicotinoid insecticides such as dinotefuran (DNT), imidacloprid (IMD), and thiamethoxam (THM) are a cause for concern and prevention because of their potential toxicity to nontarget species. In the present study the kinetics of the photodegradation of these insecticides were investigated in water and soil compartments under natural light conditions. The results suggest that these insecticides are fairly unstable in both aqueous and soil environments when exposed to natural sunlight. All 3 insecticides exhibit strong first-order degradation rate kinetics in the aqueous phase, with rate constants kDNT , kIMD , and kTHM of 0.20 h(-1) , 0.30 h(-1) , and 0.18 h(-1) , respectively. However, in the soil phase, the modeled photodegradation kinetics appear to be biphasic, with optimal rate constants k1DNT and k2DNT of 0.0198 h(-1) and 0.0022 h(-1) and k1THM and k2THM of 0.0053 h(-1) and 0.0014 h(-1) , respectively. Differentially, in the soil phase, imidacloprid appears to follow the first-order rate kinetics with a kIMD of 0.0013 h(-1) . These results indicate that all 3 neonicotinoids are photodegradable, with higher degradation rates in aqueous environments relative to soil environments. In addition, soil-encapsulated imidacloprid appears to degrade slowly compared with dinotefuran and thiamethoxam and does not emulate the faster degradation rates observed in the aqueous phase. Environ Toxicol Chem 2016;35:1718-1726. © 2015 SETAC. © 2015 SETAC.

  16. Chelate-Modified Fenton Reaction for the Degradation of Trichloroethylene in Aqueous and Two-Phase Systems

    PubMed Central

    Lewis, Scott; Lynch, Andrew; Bachas, Leonidas; Hampson, Steve; Ormsbee, Lindell; Bhattacharyya, Dibakar

    2009-01-01

    Abstract The primary objective of this research was to model and understand the chelate-modified Fenton reaction for the destruction of trichloroethylene (TCE) present in both the aqueous and organic (in the form of droplets) phases. The addition of a nontoxic chelate (L), such as citrate or gluconic acid, allows for operation at near-neutral pH and controlled release of Fe(II)/Fe(III). For the standard Fenton reaction at low pH in two-phase systems, an optimum H2O2:Fe(II) molar ratio was found to be between 1:1 and 2:1. Experimentation proved the chelate-modified Fenton reaction effectively dechlorinated TCE in both the aqueous and organic phases at pH 6–7 using low H2O2:Fe(II) molar ratios (4:1 to 8:1). Increasing the L:Fe ratio was found to decrease the rate of H2O2 degradation in both Fe(II) and Fe(III) systems at near-neutral pH. Generalized models were developed to predict the concentration of TCE in the aqueous phase and TCE droplet radius as a function of time using literature-reported hydroxyl radical reaction kinetics and mass transfer relationships. Additional aspects of this work include the reusability of the Fe–citrate complex under repeated H2O2 injections in real water systems as well as packed column studies for simulated groundwater injection. PMID:20418966

  17. Theoretical and vibrational study of N-(3-chloro-4-fluoro-phenyl)-7-methoxy-6-(3-morpholin-4-ylpropoxy)-quinazolin-4-amine (gefitinib)

    NASA Astrophysics Data System (ADS)

    Mıhçıokur, Özlem; Özpozan, Talat

    2015-12-01

    N-(3-chloro-4fluoro-phenyl)-7-methoxy-6-(3-morpholin-4ylpropoxy)-quinazolin-4-amine (GEF), a quinalizoline derivative used as new anti-cancer agent, designed to target activity of epidermal growth factor receptor (EGFR) promoting the growth, division and spread of cancer cells, was examined from the vibrational and theoretical point of view. All calculations have been carried out both in gaseous and aqueous phases. In the calculations of both phases, the molecule has been optimized through conformer analysis beginning with the x-ray data. The conformer analyses have been carried out in each phases and the geometrical differences between the most stable structures in gaseous and in aqueous phases have been discussed. The solvent effect for GEF in aqueous solution was simulated by using self-consistent reaction field (SCRF) calculations employing the integral equation formalism variant (IEFPCM) model. NBO analysis has been performed to indicate the presence of intramolecular charge transfer. The complete assignments of the vibrational spectra (IR&Raman) were made with the aid of calculated spectra both in gaseous and aqueous phases. The observed spectral data of the title compound were compared with the calculated spectra obtained by DFT/B3LYP and DFT/B3PW91 methods using 6-31G(d,p) basis set. The theoretical results were found to be in good agreement with the measured experimental data especially for the interpretation of intra molecular interactions.

  18. [Environment of tryptophan residues in proteins--a factor for stability to oxidative nitrosylation. I. Analysis of primary structure].

    PubMed

    Beda, N V; Nedospasov, A A

    2001-01-01

    Micellar catalysis under aerobic conditions effectively accelerates oxidative nitrosylation because of solubilization of NO and O2 by protein membranes and hydrophobic nuclei. Nitrosylating intermediates NOx (NO2, N2O3, N2O4) form mainly in the hydrophobic phase, and therefore their solubility in aqueous phase is low and hydrolysis is rapid, local concentration of NOx in the hydrophobic phase being essentially higher than in aqueous. Tryptophan is a hydrophobic residue and can nitrosylate with the formation of isomer N-nitrosotryptophans (NOW). Without denitrosylation mechanism, the accumulation of NOW in proteins of NO-synthesizing organisms would be constant, and long-living proteins would contain essential amounts of NOW, which is however not the case. Using Protein Data Bank (more than 78,000 sequences) we investigated the distribution of tryptophan residues environment (22 residues on each side of polypeptide chain) in proteins with known primary structure. Charged and polar residues (D, H, K, N, Q, R, S) are more incident in the immediate surrounding of tryptophan (-6, -5, -2, -1, 1, 2, 4) and hydrophobic residues (A, F, I, L, V, Y) are more rare than in remote positions. Hence, an essential part of tryptophan residues is situated in hydrophilic environment, which decreases the nitrosylation velocity because of lower NOx concentration in aqueous phase and allows the denitrosylation reactions course via nitrosonium ion transfer on nucleophils of functional groups of protein and low-molecular compounds in aqueous phase.

  19. Metal Sulfide Cluster Complexes and their Biogeochemical Importance in the Environment

    NASA Astrophysics Data System (ADS)

    Luther, George W.; Rickard, David T.

    2005-10-01

    Aqueous clusters of FeS, ZnS and CuS constitute a major fraction of the dissolved metal load in anoxic oceanic, sedimentary, freshwater and deep ocean vent environments. Their ubiquity explains how metals are transported in anoxic environmental systems. Thermodynamic and kinetic considerations show that they have high stability in oxic aqueous environments, and are also a significant fraction of the total metal load in oxic river waters. Molecular modeling indicates that the clusters are very similar to the basic structural elements of the first condensed phase forming from aqueous solutions in the Fe-S, Zn-S and Cu-S systems. The structure of the first condensed phase is determined by the structure of the cluster in solution. This provides an alternative explanation of Ostwald's Rule, where the most soluble, metastable phases form before the stable phases. For example, in the case of FeS, we showed that the first condensed phase is nanoparticulate, metastable mackinawite with a particle size of 2 nm consisting of about 150 FeS subunits, representing the end of a continuum between aqueous FeS clusters and condensed material. These metal sulfide clusters and nanoparticles are significant in biogeochemistry. Metal sulfide clusters reduce sulfide and metal toxicity and help drive ecology. FeS cluster formation drives vent ecology and AgS cluster formation detoxifies Ag in Daphnia magna neonates. We also note a new reaction between FeS and DNA and discuss the potential role of FeS clusters in denaturing DNA.

  20. Converting sugars to sugar alcohols by aqueous phase catalytic hydrogenation

    DOEpatents

    Elliott, Douglas C [Richland, WA; Werpy, Todd A [West Richland, WA; Wang, Yong [Richland, WA; Frye, Jr., John G.

    2003-05-27

    The present invention provides a method of converting sugars to their corresponding sugar alcohols by catalytic hydrogenation in the aqueous phase. It has been found that surprisingly superior results can be obtained by utilizing a relatively low temperature (less than 120.degree. C.), selected hydrogenation conditions, and a hydrothermally stable catalyst. These results include excellent sugar conversion to the desired sugar alcohol, in combination with long life under hydrothermal conditions.

Top